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Preface

The papers in this volume were presented at the 22nd International Conference on Principles
of Distributed Systems (OPODIS 2018), held on December 17-19, 2018, in Hong Kong, China.
The conference was organized by the Hong Kong Polytechnic University (PolyU).

OPODIS is an open forum for the exchange of state-of-the-art knowledge about distributed
computing. With strong roots in the theory of distributed systems, OPODIS has expanded
its scope to cover the whole range between the theoretical aspects and practical implementa-
tions of distributed systems, as well as experimentation and quantitative assessments. All
aspects of distributed systems are within the scope of OPODIS: theory, specification, design,
performance, and system building. Specifically, this year, the topics of interest at OPODIS
included:

Biological distributed algorithms
Blockchain technology and theory
Communication networks
Dependable distributed algorithms and systems
Design and analysis of distributed data structures
Design and analysis of distributed graph algorithms
Distributed operating systems and middleware
Embedded systems
Formal methods
Game-theory and economical aspects of distributed computing
Impossibility results for distributed computing
Mesh and ad-hoc networks
Mobile agents, robots, and rendezvous
Randomization in distributed computing
Security and privacy
Self-stabilization
Shared memory algorithms
Specification and verification of distributed systems
Synchronization
Transactional memory

We received 66 submissions, each of which was reviewed by at least three members of
the Program Committee with the help of external reviewers. Overall, the quality of the
submissions was very high. From the 66 submissions, 28 papers were selected to be included
in these proceedings.

The OPODIS proceedings appear in the Leibniz International Proceedings in Informatics
(LIPIcs) series. LIPIcs proceedings are available online and free of charge to readers. The
production costs are paid in part from the conference budget. The review process was done
using EasyChair.

The Best Paper Award was given to Seth Gilbert, Nancy Lynch, Calvin Newport, and
Dominik Pajak, for their paper entitled “On Simple Back-Off in Unreliable Radio Networks”.
The Best Student Paper Award was given to Dean Leitersdorf and and Elia Turner for their
paper entitled “Sparse Matrix Multiplication and Triangle Listing in the Congested Clique
Model”, coauthored with Keren Censor-Hillel. Some of the papers were selected by the
Program Committee for a special issue of Theoretical Computer Science.
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This year OPODIS had three distinguished invited keynote speakers: Amr El Abbadi
(University of California Santa Barbara, USA), Siddhartha Sen (Microsoft Research New
York City, USA), and Jennifer Welch (Texas A&M University, USA)

We would like to thank all the authors for submitting their work to OPODIS. We are also
grateful to the members of the Program Committee for their hard work reviewing papers and
their active participation in the online discussions and the program committee meeting held
via teleconference. We also thank the external reviewers for their help with the reviewing
process.

Organizing this event would not have been possible without the time and the effort of
Carmen Au, the local arrangements chair, Jia Wang, who was responsible for the website,
and Bernardo Ferreira, who managed the proceedings.

Finally, we would like to thank the Steering Committee, especially Sebastien Tixeuil, for
their valuable advice and to Hong Kong Polytechnic University for their support.

December 2018
Jiannong Cao (Hong Kong Polytechnic University)
Faith Ellen (University of Toronto)
Luís Rodrigues (INESC-ID, Instituto Superior Técnico, Universidade de Lisboa)
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Complexity of Multi-Valued Register Simulations:
A Retrospective
Jennifer L. Welch
Department of Computer Science and Engineering, Texas A&M University, USA
welch@cse.tamu.edu

Abstract
I will provide a historical perspective on wait-free simulations of multi-bit shared registers using
single-bit shared registers, starting with classical results from the last century and ending with
an overview of the recent resurgence of interest in the topic. Particular emphasis will be placed
on the space and step complexities of such simulations.
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Distributed Systems and Databases of the Globe
Unite! The Cloud, the Edge and Blockchains
Amr El Abbadi
Department of Computer Science, University of California, Santa Barbara, USA
amr@cs.ucsb.edu

Abstract
Significant paradigm shifts are occurring in Access patterns are widely dispersed and large scale
analysis requires real-time responses. Many of the fundamental challenges have been studied and
explored by both the distributed systems and the database communities for decades. However,
the current changing and scalable setting often requires a rethinking of basic assumptions and
premises. The rise of the cloud computing paradigm with its global reach has resulted in novel
approaches to integrate traditional concepts in novel guises to solve fault-tolerance and scalability
challenges. This is especially the case when users require real-time global access. Exploiting
edge cloud resources becomes critical for improved performance, which requires a reevaluation
of many paradigms, even for a traditional problem like caching. The need for transparency and
accessibility has led to innovative ways for managing large scale replicated logs and ledgers, giving
rise to blockchains and their many applications. In this talk we will be explore some of these
new trends while emphasizing the novel challenges they raise from both distributed systems as
well as database points of view. We will propose a unifying framework for traditional consensus
and commitment protocols, and discuss novel protocols that exploit edge computing resources to
enhance performance. We will highlight the advantages and discuss the limitations of blockchains.
Our overall goal is to explore approaches that unite and exploit many of the significant efforts
made in distributed systems and databases to address the novel and pressing needs of today’s
global computing infrastructure.
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How to Make Decisions (Optimally)
Siddhartha Sen
Microsoft Research New York City, USA
sidsen@microsoft.com

Abstract
Distributed systems are constantly faced with difficult decisions to make, such as in scheduling,

caching, and traffic routing, to name a few. In most of these scenarios, the optimal decision is
unknown and depends heavily on context. How can a system designer know if they have deployed
the best decision-making policy, or if a different policy would perform better? As a community,
we have developed a few methodologies for answering this question, some of them offline (e.g.,
simulation, trace-driven modeling) and some of them online (e.g., A/B testing). Neither approach
is satisfactory: the offline methods suffer from bias and rely heavily on domain knowledge; the
online methods are costly and difficult to deploy. What system designers ideally seek is the ability
to ask “what if” questions about a policy without ever deploying it, which is called counterfactual
evaluation. In this talk, I will show how reinforcement learning and causal inference can be
synthesized to counterfactually evaluate a distributed system. We will apply this methodology
to infrastructure systems in Azure, and face fundamental challenges and opportunities along the
way. This talk will serve as an introduction to reinforcement learning and the counterfactual way
of thinking, which I hope will interest and inspire the OPODIS community.

I will start by introducing reinforcement learning (RL) as the right framework for modeling
decisions in a distributed system. In RL, an agent learns by interacting with its environment:
i.e., making decisions and receiving feedback for them. This is a stark contrast to traditional
(supervised) learning, where the correct answer, or “label”, is known. Since an RL agent does
not know the correct answer, it must constantly explore its world by randomizing some of its
decisions. Now it turns out that this randomization, if used correctly, can give us a special
superpower: the ability to evaluate policies that have never been deployed. As magical as this
may sound, we can use statistics to show that this evaluation is indeed correct.

Unfortunately, applying this methodology to distributed systems is far from straightforward.
Systems are complex, stateful amalgamations of components that navigate large decision spaces.
We will need to wear both an RL hat and a systems hat to address these challenges. On the
other hand, systems also present exciting opportunities. Many systems already use randomiz-
ation in their decisions, e.g., to distribute data or work over replicas, or to manage resource
contention. Sometimes, a conservative decision can implicitly yield feedback for other decisions:
for example, when waiting for a timeout to expire, we automatically get feedback for what would
have happened if we waited for any shorter amount of time. I will show how we can harvest this
randomness and implicit feedback to achieve more effective counterfactual evaluation.

We will apply all of the above ideas to two production infrastructure systems in Azure: a ma-
chine health monitor that decides when to reboot unresponsive machines, and a geo-distributed
edge proxy that chooses the TCP configuration of each proxy machine. In both cases, we are
able to counterfactually evaluate arbitrary policies with estimates that match the ground truth.
Production environments raise interesting constraints and challenges, some of which are prevent-
ing us from scaling up our methodology. I will describe a possible path forward, and invite others
in the community to contemplate these problems as well.
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Sparse Matrix Multiplication and Triangle Listing
in the Congested Clique Model
Keren Censor-Hillel
Department of Computer Science, Technion, Israel
ckeren@cs.technion.ac.il

Dean Leitersdorf
Department of Computer Science, Technion, Israel
dean.leitersdorf@gmail.com

Elia Turner
Department of Computer Science, Technion, Israel
eliaturner11@gmail.com

Abstract
We show how to multiply two n×n matrices S and T over semirings in the Congested Clique
model, where n nodes communicate in a fully connected synchronous network using O(logn)-
bit messages, within O(nz(S)1/3nz(T )1/3/n + 1) rounds of communication, where nz(S) and
nz(T ) denote the number of non-zero elements in S and T , respectively. By leveraging the
sparsity of the input matrices, our algorithm greatly reduces communication costs compared
with general multiplication algorithms [Censor-Hillel et al., PODC 2015], and thus improves
upon the state-of-the-art for matrices with o(n2) non-zero elements. Moreover, our algorithm
exhibits the additional strength of surpassing previous solutions also in the case where only one
of the two matrices is such. Particularly, this allows to efficiently raise a sparse matrix to a power
greater than 2. As applications, we show how to speed up the computation on non-dense graphs
of 4-cycle counting and all-pairs-shortest-paths.

Our algorithmic contribution is a new deterministic method of restructuring the input matri-
ces in a sparsity-aware manner, which assigns each node with element-wise multiplication tasks
that are not necessarily consecutive but guarantee a balanced element distribution, providing for
communication-efficient multiplication.

Moreover, this new deterministic method for restructuring matrices may be used to restruc-
ture the adjacency matrix of input graphs, enabling faster deterministic solutions for graph related
problems. As an example, we present a new sparsity aware, deterministic algorithm which solves
the triangle listing problem in O(m/n5/3 + 1) rounds, a complexity that was previously obtained
by a randomized algorithm [Pandurangan et al., SPAA 2018], and that matches the known lower
bound of Ω̃(n1/3) when m = n2 of [Izumi and Le Gall, PODC 2017, Pandurangan et al., SPAA
2018]. Naturally, our triangle listing algorithm also implies triangle counting within the same
complexity of O(m/n5/3 + 1) rounds, which is (possibly more than) a cubic improvement over
the previously known deterministic O(m2/n3)-round algorithm [Dolev et al., DISC 2012].
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4:2 Sparse Algorithms in the Congested Clique Model
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1 Introduction

Matrix multiplication is a fundamental algebraic task, with abundant applications to various
computations. The value of the exponent ω of matrix multiplication, that is, the value ω for
which Θ(nω) is the complexity of matrix multiplication, is a central question in algebraic
algorithms [25, 9, 26], and is currently known to be bounded by 2.3728639 [13].

The work of Censor-Hillel et al. [7] recently showed that known matrix multiplication
algorithms for the parallel setting can be adapted to the distributed Congested Clique
model, which consists of n nodes in a fully connected synchronous network, limited by a
bandwidth of O(logn) bits per message. Subsequently, this significantly improved the state-
of-the-art for a variety of tasks, including triangle and 4-cycle counting, girth computations,
and (un)weighted/(un)directed all-pairs-shortest-paths (APSP). This was followed by the
beautiful work of Le Gall [14], who showed how to efficiently multiply rectangular matrices,
as well as multiple independent multiplication instances. These led to even faster algorithms
for some of the tasks, such as weighted or directed APSP, as well as fast algorithms for new
tasks, such as computing the size of the maximum matching.

In many cases, multiplication is required to be carried out for sparse matrices, and this
need has been generating much effort in designing algorithms that are faster given sparse
inputs, both in sequential (e.g., [27, 12, 17, 1, 15]) and parallel (e.g., [3, 5, 6, 2, 4, 20, 19, 24])
settings.

In this paper we focus our attention on the task of multiplying sparse matrices in
the Congested Clique model, providing a novel deterministic algorithm with a round
complexity which depends on the sparsity of the input matrices.

An immediate application of our algorithm is faster counting of 4-cycles. Moreover, a
prime feature of our algorithm is that it speeds up matrix multiplication even if only one of
the input matrices is sparse. The significance of this ability stems from the fact that the
product of sparse matrices may be non-sparse, which in general may stand in the way of
fast multiplication of more than two sparse matrices, such as raising a sparse matrix to a
power that is larger than 2. Therefore, this property of our algorithm enables, for instance,
a fast algorithm for computing APSP in the Congested Clique model. We emphasize
that, unlike the matrix multiplication algorithms of [7], we are not aware of a similar sparse
matrix multiplication algorithm existing in the literature of parallel settings.

Furthermore, we leverage our techniques to obtain a deterministic algorithm for sparsity-
aware triangle listing in the Congested Clique model, in which each triangle needs to
be known to some node. This problem has been tackled (implicitly) in the Congested
Clique model for the first time by Dolev et al. [10], providing two deterministic algorithms.
Later, [23, 16] showed a Ω̃(n1/3) lower bound in general graphs. Pandurangan et al. [23]
showed a randomized triangle listing algorithm, with the same round complexity as we obtain.
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1.1 Our contribution
For a matrix A, let nz(A) be its number of nonzero elements. Our main contribution is an
algorithm called SMM (Sparse Matrix Multiplication), for which we prove the following.

I Theorem 1. Given two n×n matrices S and T , Algorithm SMM deterministically computes
the product P = S · T over a semiring in the Congested Clique model, completing in
O(nz(S)1/3nz(T )1/3/n+ 1) rounds.1

An important case of Theorem 1, especially when squaring the adjacency matrix of a
graph in order to solve graph problems, is when the sparsities of the input matrices are
roughly the same. In such a case, Theorem 1 gives the following.

I Corollary 2. Given two n × n matrices S and T , where O(nz(S)) = O(nz(T )) = m,
Algorithm SMM deterministically computes the product P = S · T over a semiring in the
Congested Clique model, within O(m2/3/n+ 1) rounds.

Notice that for m = O(n2), Corollary 2 gives the same complexity of O(n1/3) rounds as
given by the semiring multiplication of [7].

We apply Algorithm SMM to 4-cycle counting, obtaining the following.

I Theorem 3. There is a deterministic algorithm that computes the number of 4-cycles in
an n-node graph G in O(m2/3/n+ 1) rounds in the Congested Clique model, where m is
the number of edges of G.

Notice that for m = O(n3/2) this establishes 4-cycle counting in a constant number of rounds.
As described earlier, our algorithm is fast also in the case where only one of the input

matrices is sparse, as stated in the following corollary of Theorem 1.

I Corollary 4. Given two n× n matrices S and T , where min{O(nz(S)), O(nz(T ))} = m,
Algorithm SMM deterministically computes the product P = S · T over a semiring in the
Congested Clique model, within O((m/n)1/3 + 1) rounds.

This allows us to compute powers that are larger than 2 of a sparse input matrix. Although
we cannot enjoy the guarantees of our algorithm when repeatedly squaring a matrix, because
this may require multiplying dense matrices, we can still repeatedly increase its power by
1. This gives the following for computing APSP, whose comparison to the state-of-the-art
depends on trade-off between the number of edges in the graph and its diameter.

I Theorem 5. There is a deterministic algorithm that computes unweighted undirected APSP
in an n-node graph G in O(D((m/n)1/3 + 1)) rounds in the Congested Clique model,
where m is the number of edges of G and D is its diameter.

For comparison, the previously known best complexity of unweighted undirected APSP is
O(n1−2/ω), given by[7, 14], which is currently known to be bounded by O(n0.158). For a
graph with a number of edges that is m = o(n4−6/ω/D3), which is currently o(n1.474/D3),
our algorithm improves upon the latter.

Lastly, we leverage the routing techniques developed in our sparse matrix multiplication
algorithm in order to introduce an algorithm for the triangle listing problem in the Congested
Clique model.

1 Since we minimize communication rather than element-wise multiplications, the zero element does not
have to be the zero element of the semiring - any single element may be chosen to not be explicitly
communicated.
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4:4 Sparse Algorithms in the Congested Clique Model

I Theorem 6. There is a deterministic algorithm for triangle listing in an n-node, m-edge
graph G in O(m/n5/3 + 1) rounds in the Congested Clique model.

For comparison, two deterministic algorithms by Dolev et al. [10] take Õ(n1/3) and
O(d∆2/ne) rounds, while the sparsity-aware randomized algorithm of Pandurangan et al. [23]
completes in Õ(m/n5/3), w.h.p. Notice that for general graphs, our algorithm matches the
lower bound of Ω̃(n1/3) by[23, 16]. Additionally, our algorithm for triangle listing implies a
triangle counting algorithm. A triangle counting algorithm whose complexity depends on the
arboricity A of the graph is given in [10]. Their algorithm completes in O(A2/n+log2+n/A2 n)
rounds. Since A ≥ m/n, this gives a complexity of Ω(m2/n3), upon which our algorithm
provides more than a cubic improvement. The previously known best complexity of triangle
and 4-cycle counting in general graphs is O(n1−2/ω), given by[7], which is currently known
to be bounded by O(n0.158). For a graph with a number of edges that is m = o(n8/3−2/ω),
which is currently o(n1.824), our algorithm improves upon the latter.

The sections containing triangle listing, APSP, and 4-cycle counting are in the full
paper [8].

1.2 Challenges and Our Techniques
Given two n× n matrices S and T , denote their product by P = S · T , for which P [i][j] =∑n
k=1 S[i][k]T [k][j]. A common way of illustrating the multiplication is by a 3-dimensional

cube of size n× n× n, in which the entry (i, j, k) corresponds to the element-wise product
S[i][k]T [k][j]. In other words, two dimensions of the cube correspond to the matrices S and
T , and the third dimension corresponds to element-wise products. Each index of the third
dimension is a page, and P corresponds to the element-wise summation of all n pages.

In essence, the task of distributed matrix multiplication is to assign each of the n3 element-
wise multiplications to the nodes of the network, in a way which minimizes the amount
of communication that is required.2 This motivates the goal of assigning the element-wise
products to the nodes in a way that balances the number of non-zero elements in S and T that
need to be communicated among the nodes, as this is the key ingredient towards minimizing
the number of communication rounds. The main obstacle is that a sparse input matrix
may be unbalanced, leading to the existence of nodes whose element-wise multiplication
operation assignment requires them to obtain many nonzero elements of the input matrices
that originally reside in other nodes, and thus necessitating much communication.

As we elaborate upon in Section 1.3, algorithms for the parallel settings, which encounter
the same hurdle, typically first permute the rows and columns of the input matrices in an
attempt to balance the structure of the non-zero entries. Ballard et al. [3] write: “While
a priori knowledge of sparsity structure can certainly reduce communication for many
important classes of inputs, we are not aware of any algorithms that dynamically determine
and efficiently exploit the structure of general input matrices. In fact, a common technique
of current library implementations is to randomly permute rows and columns of the input
matrices in an attempt to destroy their structure and improve computational load balance."

Our high-level approach, which is deterministic, is threefold. The first ingredient is
splitting the n× n× n cube into n equally sized sub-cubes whose dimensions are determined
dynamically, based on the sparsity of the input matrices. The second is indeed permuting
the input matrices S and T into two matrices S′ and T ′, respectively. We do so in a subtle

2 We consider all n3 element-wise multiplications rather than Strassen-like algorithms since we work over
a semiring and not a ring.
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a

b

S’

T’

P’

Figure 1 An illustration of the multiplication cube for P ′ = S′T ′. Each sub-matrix is assigned
to n/ab nodes, with a not necessarily consecutive page assignment that is computed on-the-fly to
minimize communication.

manner, for which the resulting matrices exhibit some nice balancing property.3 The third
ingredient is the innovative part of our algorithm, which assigns the computation of pages of
different sub-matrices across the nodes in a non-consecutive manner. We elaborate below
about these key ingredients, with the aid of Figure 1.

Permuting the input matrices: We employ standard parallelization of the task of computing
the product matrix P , by partitioning P into ab equal sized n/a× n/b sub-matrices denoted
by Pi,j for i ∈ [a], j ∈ [b], and assigning n/ab nodes for computing each sub-matrix.

To this end, we leverage the simple observation that the multiplication of permutations
of the rows of S and the columns of T results in a permutation of the product of S and
T , which can be easily inverted. This observation underlies the first part of our algorithm,
in which the nodes permute the input matrices, such that the number of non-zero entries
from S and T that are required for computing each n/a× n/b sub-matrix are roughly the
same across the a · b sub-matrices. We call the two matrices, S′ and T ′, that result from
the permutations, sparsity-balanced matrices with respect to (a, b). The rest of our algorithm
deals with computing the product of two such matrices. This part inherently includes a
computation of the best choice for a and b for minimizing the communication.

Assigning pages to nodes: To obtain each sub-matrix Pi,j , there are n sub-pages Pi,j,`
which need to be computed and summed. For each Pi,j , this task is assigned to distinct n/ab
nodes, each of which computes some of the n sub-pages Pi,j,` and sums them locally. The
local sums are then aggregated and summed, for obtaining Pi,j . We utilize the commutativity
and associativity properties of summation over the semiring in order to assign sub-pages to
nodes in a non-consecutive manner, such that the nodes require receiving a roughly equal
number of non-zero entries in order to compute their assigned sub-pages.

3 Note, we do not assume that balancing the distribution of non-zero elements gives a balanced local
computation. Our balancing is done for the amount of communication: we assign the amount and
identity of matrix entries that should be sent and received by each node in a way that will balance the
communication, not necessarily the local computation.
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4:6 Sparse Algorithms in the Congested Clique Model

Assigning non-zero matrix entries to nodes: For fast communication in the Congested
Clique model using Lenzen’s routing scheme (see Section 1.4), it is moreover paramount
that the nodes also send a roughly equal amount of non-zero matrix entries. However, it
may be the case that a certain row, held by a node v, contains a significantly larger number
of non-zero entries as compared with other rows. Therefore, we rearrange the entries held
by each node such that every node holds a roughly equal amount of non-zero entries that
need to be sent to other nodes for computing the n3 products. Notice that in this step we do
not rearrange the rows or columns of S or T , rather, we redistribute the entries of S and T .
Thus, a node may hold values which originate from different rows.

Routing non-zero elements: Crucially, the assignments made above, for addressing the
need to balance sending and receiving, are not global knowledge. That is, for every Pi,j , the
corresponding n/ab nodes decide which matrix entries are received by which node, but this is
unknown to the other nodes, who need to send this information. Likewise, the redistribution
of entries of S and T across the nodes is not known to all nodes. Nonetheless, clearly, a
node must know the destination of each message it needs to send. As a consequence, we
ultimately face the challenge of communicating some of this local knowledge. In our solution,
a node that needs to receive information from a certain column of S (or row of T ) sends a
request to the nodes holding subsequences of that column (or row) without knowing the
exact partition into subsequences. The nodes then deliver the non-zero entries of this column
(or row), which allow computing the required element-wise multiplications.
Our solutions to the three challenges described above, for sending and receiving as small
as possible amounts of information and for resolving a corresponding routing, and their
combination, are the main innovation of our algorithm.

1.3 Related work
Matrix multiplication in the Congested Clique model: A randomized Boolean matrix
multiplication algorithm was given by Drucker et al. [11], completing in O(nω−2) rounds,
where ω is the exponent of sequential matrix multiplication. The best currently known upper
bound is ω < 2.3728639 [13], implying O(n0.372) rounds for the above.

Later, Censor-Hillel et al. [7] gave a deterministic algorithm for (general) matrix mul-
tiplication over semirings, completing in O(n1/3) rounds, and a deterministic algorithm
for (general) matrix multiplication over rings, completing in O(n1−2/ω) rounds, which by
the current known upper bound on ω is O(n0.158). The latter is a Strassen-like algorithm,
exploiting known schemes for computing the product of two matrices over a ring without
directly computing all n3 element-wise multiplications. Then, Le Gall [14] provided fast
algorithms for multiplying rectangular matrices and algorithms for computing multiple
instances of products of independent matrices.

Related graph computations in the Congested Clique model: Triangle counting in the
Congested Clique model was addressed by Dolev et al. [10], who provided a deterministic
Õ(nd−2/d)-round algorithm for counting the number of appearances of any d-node subgraph,
giving triangle counting in Õ(n1/3) rounds. To speed up the computation for sparse instances,
[10] show that every node in a graph with a maximum degree of ∆ can learn its 2-hop
neighborhood within O(∆2/n) rounds, implying the same round complexity for triangle
counting. They also showed a deterministic triangle counting algorithm completing in
Õ(A2/n+ log2+n/A2 n) rounds, where A is the arboricity of the input graph, i.e., the minimal
number of forests into which the set of edges can be decomposed. Note that a graph with
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arboricity A has at most An edges, but there are graphs with arboricity A and a significantly
smaller number of edges. Since it holds that A ≥ m/n, this implies a complexity of Ω(m2/n3)
for their triangle counting algorithm, upon which our O(m2/3/n+1)-round algorithm provides
a cubic improvement. The deterministic matrix multiplication algorithm over rings of [7]
directly gives a triangle counting algorithm with O(n1−2/ω) rounds.

For 4-cycle counting, the algorithm of [10] completes in Õ(n1/2) rounds, and the matrix
multiplication algorithm of [7] implies a solution in O(n1−2/ω) rounds.

For APSP, the matrix multiplication algorithms of [7] give O(n1−2/ω) for the unweighted
undirected case. For weighted directed APSP, Õ(n1/3) rounds are given in [7], and improved
algorithms for weighted (directed and undirected) APSP are given in [14]. We mention that
our technique could allow for computing weighted APSP, but the cost would be too large
due to our iterative multiplication (as opposed to the previous algorithms that can afford
iterative squaring). Algorithms for approximations of APSP are given in [22, 7, 14].

Note that for all graph problems, Lenzen’s routing scheme [21] (see Section 1.4) implies
that every node can learn the entire structure of G within O(m/n) rounds, where m is the
number of edges (this can also be obtained by a simpler scheme).

Sequential/Parallel matrix multiplication: Additional related work on sequential and par-
allel matrix multiplication can be found in the full paper [8].

1.4 Preliminaries
Model: The Congested Clique model consists of a set [n] = {1, . . . , n} of nodes in a
fully connected synchronous network, limited by a bandwidth of O(logn) bits per message.

In an instance of multiplication of two matrices S and T , the input to each node v is row
v of each matrix and its output should be row v of P = S · T . For a graph problem over a
graph G of n nodes, we identify the nodes of the Congested Clique model with the nodes
of G, and the input to node v in the Congested Clique model is its input in G.

As defined earlier, for a matrix A we denote by nz(A) the number of non-zero elements
of A. Throughout the paper, we also need to refer to the number of non-zero elements in
certain sub-matrices or sequences. We will therefore overload this notation, and use nz(X)
to denote the number of non-zero elements in any object X.

A pair of integers (a, b) is n-split if a, b ∈ [n], both a and b divide n, and n/ab ≥ 1. The
requirement that a and b divide n is for simplification only and could be omitted. Eventually,
the n-split pair that will be chosen is a = n·nz(S)1/3/nz(T )2/3 and b = n·nz(T )1/3/nz(S)2/3.

For a given n-split pair (a, b), it will be helpful to associate each node v ∈ [n] with
three indices, two indicating the Pi,j sub-matrix to which the node is assigned, and one
distinguishing it from the other nodes assigned to Pi,j . Hence, we denote each node v also as
vi,j,k, where i ∈ [a], j ∈ [b], and k ∈ [n/ab]. The assignment of indices to the nodes can be
any arbitrary one-to-one function from [n] to [a]× [b]× [n/ab].

Throughout our algorithms, we implicitly comply with the following: (I) no information
is sent for matrix entries whose value is zero, and (II) when the value of a non-zero entry
is sent, it is sent alongside its location in the matrix. Since sending the location within an
n× n matrix requires O(logn) bits, the overhead in the complexity is constant.

Lenzen’s routing scheme: A useful tool in designing algorithms for the Congested
Clique model is Lenzen’s routing scheme [21]. In this scheme, each of the n nodes can send
and receive n−1 messages (of O(logn) bits each) in a constant number of rounds. While this
is simple to see for the simplest case where each node sends a single message to every other
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4:8 Sparse Algorithms in the Congested Clique Model

node, the power of Lenzen’s scheme is that it applies to any (multi)set of source-destination
pairs, as long as each node is source of at most n− 1 messages and destination of at most
n− 1 messages. Moreover, the multiset of pairs does not need to be known to all nodes in
advance, rather each sender only needs to know the recipient of its messages. Employing
this scheme is what underlies our incentive for balancing the number of messages that need
to be sent and received by all the nodes.

Useful combinatorial claims: The following are simple combinatorial claims that we use
for routing messages in a load-balanced manner.
I Claim 1. Let A = (a1, . . . , at) be a finite set and let 1 ≤ c ≤ t be an integer. There exists
a partition of A into dt/ce subsets of size at most c+ 1 each.
I Claim 2. Given any n finite sets, Ai = (ai1, . . . , aiti) for 1 ≤ i ≤ n. Let avg = (

∑
1≤i≤n ti)/n.

There exists a partition of each Ai into dti/avge subsets of size at most avg + 1 each, such
that the total number of subsets is at most 2n.
I Claim 3. Given a sorted finite multiset A = (a1, . . . , an) of natural numbers, an integer
x ∈ N such that for all i ∈ [n] it holds that ai ≤ x, and an integer k that divides n, there
exists a partition A = ∪ki=jAj into k multisets Aj , 1 ≤ j ≤ k, of equal size n/k, such that
for all 1 ≤ j ≤ k it holds that sum(Aj) ≤ sum(A)/k + x.

2 Fast Sparse Matrix Multiplication

Our main result is Theorem 1, stating the guarantees of our principal algorithm SMM
(Sparse Matrix Multiplication) for fast multiplication of sparse matrices. Algorithm SMM
first manipulates the structure of its input matrices and then calls algorithm SBMM (Sparse
Balanced Matrix Multiplication), which solves the problem of fast sparse matrix multiplication
under additional assumptions on the distributions of non-zero elements in the input matrices,
which are defined next. In Section 2.1, we show how SMM computes general matrix
multiplication P = ST , given Algorithm SBMM and Theorem 8. Algorithm SBMM, and
Theorem 8 which states its guarantees, are deferred to Section 2.2.

Theorem 1 (restated). Given two n×n matrices S and T , Algorithm SMM deterministically
computes the product P = S ·T over a semiring in the Congested Clique model, completing
in O(nz(S)1/3nz(T )1/3/n+ 1) rounds.

We proceed to presenting Theorem 8 which discusses SBMM. SBMM multiplies matrices
S′ and T ′ in which the non-zero elements are roughly balanced between portions of the rows
of S′ and columns of T ′. In what follows, for a matrix A, the notation A[x : y][∗] refers to
rows x through y of A and the notation A[∗][x : y] refers to columns x through y of A. In
the following definition we capture the needed properties of well-balanced matrices.

IDefinition 7. Let S and T be n×nmatrices and let (a, b) be an n-split pair. For every i ∈ [a]
and j ∈ [b], denote Si = S[(i−1)(n/a)+1 : i(n/a)][∗] and Tj = T [∗][(j−1)(n/b)+1 : j(n/b)].
We say that S and T are a sparsity-balanced pair of matrices with respect to (a, b), if:

S-condition: For every i ∈ [a], nz(Si) ≤ nz(S)/a+ n.
T -condition: For every j ∈ [b], nz(Tj) ≤ nz(T )/b+ n.

These conditions ensure that bands of adjacent rows of S and columns of T contain
roughly the same number of non-zero elements. We can now state our theorem for multiplying
sparsity-balanced matrices, which summarizes our algorithm SBMM.
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I Theorem 8. Given two n × n matrices S and T and an n-split pair (a, b), if S and T
are a sparsity-balanced pair with respect to (a, b), then Algorithm SBMM deterministically
computes the product P = S ·T over a semiring in the Congested Clique model, completing
in O(nz(S) · b/n2 + nz(T ) · a/n2 + n/ab) rounds.

We show that O(1) rounds are sufficient in the Congested Clique for transforming
any two general matrices S and T to sparsity-balanced matrices S′ and T ′ by invoking
standard matrix permutation operations. Therefore, in essence, Algorithm SMM performs
permutation operations on S and T , generating the matrices S′ and T ′, respectively, invokes
SBMM on S′ and T ′ to compute P ′ = S′T ′, and finally recovers P from P ′.

2.1 Fast General Sparse Matrix Multiplication - Algorithm SMM
Algorithm Description: First, each node distributes the entries in its row of T to other
nodes in order for each node to obtain its column in T . Then, the nodes broadcast the
number of non-zero elements in their respective row of S and column of T , in order for all
nodes to compute nz(S) and nz(T ). Having this information, the nodes locally compute the
n-split pair (a, b) that minimizes the expression nz(S) · b/n2 + nz(T ) · a/n2 + n/ab, which
describes the round complexities of each of the three parts of Algorithm SBMM. It can be
shown that the pair (n ·nz(S)1/3/nz(T )2/3, n ·nz(T )1/3/nz(S)2/3) minimizes this expression.
Then, the nodes permute the rows of S and columns of T so as to produce matrices S′ and
T ′ which have the required balance. Subsequently, Algorithm SBMM is executed on the
permuted matrices S′ and T ′, followed by invoking the inverse permutations on the product
P ′ = S′T ′ in order to obtain the product P = S · T of the original matrices. A pseudocode
of SMM is given in Algorithm 1.

Proof of Theorem 1. To prove correctness, we need to show that the matrices S′ and T ′
computed in Line 10 are a sparsity-balanced pair of matrices with respect to the n-split pair
(a, b) that is determined in Line 8. Once this is proven, the correctness of the algorithm is
as follows. In Lines 1-12 the matrices S′ and T ′ are computed and are distributed among
the nodes such that each node v ∈ [n] holds row v of S and column v of T . The loop of
Line 13 is only for consistency, having the input to SBMM be the respective rows of both S′
and T ′. Assuming the correctness of algorithm SBMM given in Theorem 8, the matrix P ′
computed in Line 15 is the product P ′ = S′T ′. Finally, in the last loop, node v receives row
v of P = A−1

σ P ′A−1
τ , completing the correctness of the Algorithm SMM.

We now show that S′ and T ′ are indeed a sparsity-balanced pair of matrices with respect
to (a, b). To this end, we first need to show that for all i ∈ [a], the number of non-zero
elements in S′i is at most nz(S′)/a+ n. By construction, the number of non-zero elements in
S′i = S′[(i− 1)(n/a) + 1 : i(n/a)][∗] is exactly sum(ASi ) of the partition computed in Line 9.
By Claim 3 this is bounded by sum(A)/k+x, which in our case is nz(S)/a+n = nz(S′)/a+n.
Thus, S′ satisfies the S-condition of Definition 7. A similar argument shows that T ′ satisfies
the T -condition of Definition 7.

For the complexity, we sum the number of rounds as follows. The first loop allows every
node v to obtain column v of T , while in the second loop the nodes exchange the sums of
non-zero elements in rows and columns of S and T , respectively. Even without the need to
resort to Lenzen’s routing scheme, both of these loops can be completed within O(1) rounds.
A similar argument shows that O(1) rounds suffice for permuting S and T into S′ and T ′, and
for permuting P ′ back into P . Thus, all lines of the pseudocode excluding Line 15 complete in
O(1) rounds. This implies that the complexity of Algorithm SMM equals that of Algorithm
SBMM when given S′, T ′, a, and b as input. By Theorem 8 and due to the choice of a and

OPODIS 2018



4:10 Sparse Algorithms in the Congested Clique Model

Algorithm 1: SMM (S, T ): Computing the product P = S · T . Code for node
v ∈ {1, . . . , n}.

1 foreach u ∈ [n], u 6= v do
2 send T [v][u] to node u
3 foreach u ∈ [n], u 6= v do
4 send nz(S[v][∗]) to node u
5 send nz(T [∗][v]) to node u
6 nz(S)←

∑
u∈[n] nz(S[u][∗])

7 nz(T )←
∑
u∈[n] nz(T [∗][u])

8 (a, b)← argminn-split pairs (a,b){nz(S) · b/n2 + nz(T ) · a/n2 + n/ab}
9 Let AS1 , . . . , ASa be the partition of the sorted multiset of {nz(S[u][∗])|u ∈ [n]} into a

multisets, and AT1 , . . . , ATb be the partition of the sorted multiset of
{nz(T [∗][u])|u ∈ [n]} into b multisets, both proven to exist in Claim 3 (with x = n).

10 Let σ be a permutation for which its n× n permutation matrix Aσ is such that the
rows of the matrix S′ = AσS that correspond to any single ASu are adjacent, and let
τ be a permutation for which its n× n permutation matrix Aτ is such that the
columns of the matrix T ′ = TAτ that correspond to any single ATu are adjacent.

11 send S[v][∗] to node σ(v)
12 send T [∗][v] to node τ(v)
13 foreach u ∈ [n], u 6= v do
14 send T ′[u][v] to node u
15 P ′ ← SBMM(S′, T ′, a, b)
16 foreach u ∈ [n], u 6= v do
17 send P ′[σ−1(v)][τ−1(u)] to node u

b in Line 8, this complexity is O(minn-split pairs (a,b){nz(S) · b/n2 + nz(T ) · a/n2 + n/ab}).
Choosing a = n · nz(S)1/3/nz(T )2/3 and b = n · nz(T )1/3/nz(S)2/3 gives a complexity of
O(nz(S)1/3nz(T )1/3/n+ 1) rounds, which can be shown to be optimal. J

2.2 Fast Sparse Balanced Matrix Multiplication - Algorithm SBMM
Here we present SBMM and prove Theorem 8. We begin with a short overview of the algebraic
computations and node allocation in SBMM. We then proceed to presenting a communication
scheme detailing how to perform the computations of SBMM in the Congested Clique
model in O(MS · b/n2 +MT · a/n2 + n/ab) rounds of communication.

Algorithm Description: Consider the partition of P into ab rectangles, such that ∀(i, j) ∈
[a] × [b], sub-matrix Pi,j = P [(i − 1)(n/a) + 1 : i(n/a)][(j − 1)(n/b) + 1 : j(n/b)]. Each
sub-matrix Pi,j is an n/a×n/b matrix, i.e., has n2/ab entries. Notice that Pi,j = Si ·Tj . We
assign the computation of Pi,j to a unique set of n/ab nodes Ni,j = {vi,j,k|k ∈ [n/ab]}.

In the initial phase of algorithm SBMM, for every (i, j) ∈ [a]× [b], each non-zero element
of Si and Tj is sent to some node in Ni,j . Due to the sparsity-balanced property of S and T ,
all Si’s have roughly the same amount of non-zero elements, and likewise all Tj ’s. Therefore,
each set of nodes Ni,j receives roughly the same amount of non-zero elements from S and T .

Within each Ni,j , the computation of Pi,j is carried out according to the following
framework. For ` ∈ [n], denote each page of Pi,j by Pi,j,` = Si[∗][`] ·Tj [`][∗]. The computation
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Algorithm 2: SBMM (S,T,a,b): Computing the product P = ST , for S and T
that are sparsity-balanced w.r.t. (a, b). Code for node vi,j,k.

1 ExchangeInfo (S, T, a, b)
2 Locally compute Pi,j,` for every ` ∈ Ai,j,k
3 Locally compute P ki,j =

∑
`∈Ai,j,k

Pi,j,`

4 foreach t ∈ [n/a] do
5 send P ki,j [t][∗] to node of respective row
6 foreach ` ∈ [n] do
7 P [v][`]← sum of n/ab respective elements received for this entry

of the n different Pi,j,` sub-matrices is split among the nodes in Ni,j as follows: The set
[n] is partitioned into Ai,j,1, . . . , Ai,j,n/ab such that for each k ∈ [n/ab], node vi,j,k ∈ Ni,j
is required to compute the entries of the matrices in the set {Pi,j,`|` ∈ Ai,j,k}. Then,
node vi,j,k ∈ Ni,j locally sums its computed sub-matrices to produce P ki,j =

∑
`∈Ai,j,k

Pi,j,`.
Clearly, due to the associativity and commutativity of the addition operation in the semiring,
it holds that Pi,j =

∑
`∈[n] Pi,j,` =

∑
k∈[n/ab] P

k
i,j . Therefore, once every node vi,j,k has P ki,j ,

the nodes can collectively compute P , and redistribute its entries in a straightforward manner
such that each node obtains a distinct row of P .

Implementing SBMM: A pseudocode for Algorithm SBMM is given in Algorithm 2, which
consists of three components: exchanging information between the nodes such that every node
vi,j,k has the required information for computing Pi,j,` for every ` ∈ Ai,j,k, local computation
of P ki,j for each (i, j, k) ∈ [a]× [b]× [n/ab] and, finally, the communication of the P ki,j matrices
and assembling of the rows of P .

The technical challenge is in Line 1, upon which we elaborate below. In Lines 2-3, only
local computations are performed, resulting in each node vi,j,k holding P ki,j . In Line 4, each
node sends each row of its sub-matrix P ki,j to the appropriate node, so that in Line 6 each
node can sum this information to produce its row in P . In the full version [8], we prove
Lemma 9.

I Lemma 9. Lines 2-6 of Algorithm 2 complete in O(n/ab) rounds, producing a row of
P = ST for every node.

The remainder of this section is dedicated to presenting and analyzing Line 1. During
this part of the algorithm, for every (i, j) ∈ [a] × [b], each entry in Si and Tj needs to be
sent to a node in Ni,j . As per our motivation throughout the entire algorithm, we strive to
achieve this goal in a way which ensures that all nodes send and receive roughly the same
number of messages. This leads to the following three challenges which we need to overcome.

Sending Challenge: Initially, node v holds row v of S and row v of T . Every column v
of S needs to be sent to b nodes - one node in each Ni,j for an appropriate i ∈ [a] and
every j ∈ [b]. Similarly, every row of T needs to be sent to a nodes - one in each Ni,j for an
appropriate j ∈ [b] and every i ∈ [a]. If we were to trivially choose node v to send all these
messages, then node v would need to send nz(S[∗][v]) · b+ nz(T [v][∗]) · a messages. Since
nz(S[∗][v]) and nz(T [v][∗]) may widely vary for different values of v, it may be the case that
some nodes send a significant amount of messages while others are relatively silent.
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Algorithm 3: ExchangeInfo (S,T,a,b): Sending each entry of Si, Tj to a node
in Ni,j , for every (i, j) ∈ [a]× [b].

1 Compute-Sending
2 Compute-Receiving
3 Resolve-Routing

Receiving Challenge: Since S and T are sparsity-balanced w.r.t. (a, b), for every (i, j) ∈
[a]× [b] it holds that the number of messages to be received by each set of nodes Ni,j is at
most nz(S)/a + nz(T )/b + 2n. This ensures that each node set Ni,j receives roughly the
same amount of messages as every other node set. The challenge remains to ensure that
within any given node set Ni,j , every node receives roughly the same number of messages.

Routing Challenge: When overcoming the above mentioned challenges in a non-trivial
manner, all nodes locally determine that they are senders and recipients of certain messages
with the guarantee that each node sends and receives roughly the same number of messages.
However, these partitions of sending and receiving messages are obtained independently and
thus are not global knowledge; a sender of a message does not necessarily know who the
recipient is. The routing challenge is thus to ensure that each node associates the correct
recipient with every message that it sends.

2.2.1 ExchangeInfo (S, T, a, b)
We next present our implementation of ExchangeInfo (S, T, a, b) which solves the above
challenges in an on-the-fly manner. To simplify the presentation, we split ExchangeInfo
(S, T, a, b) into its three components, as given in the pseudocode of Algorithm 3.

Compute-Sending: In Compute-Sending, whose pseudocode is given in Algorithm 4, we
overcome the sending challenge. The nodes communicate the distribution of non-zero elements
across the columns of S and the rows of T and reorganize the entries held by each node such
that all nodes hold roughly the same amount of non-zero elements of S and T .

Notably, in order to enable fast communication in Resolve-Routing, Algorithm 4 must
guarantee no node holds entries of more than two columns of S and two rows of T .

I Lemma 10. Algorithm 4 completes in O(1) rounds, after which the entries of S and T
are evenly redistributed across the nodes such that every node holds elements from at most 2
columns of S and 2 rows of T and such that every node v knows for every node u the indices
of the two columns of S and two rows of T from which the elements which u holds are taken.

Proof. In Lines 2, 4, 5 the nodes exchange entries of S such that each node holds a distinct
column of S, and knows the number of non-zero entries in each column of S and in each row
of T . This allows local computation of the average number of non-zeros in the following two
lines, as well as locally computing the (same) partition into subsequences.

By Claim 2, in total across all n columns there are at most 2n subsequences of entries
from S, and similarly there are at most 2n subsequences from T . Since ∀u ∈ [n], all nodes
know nz(S[∗][u]) and nz(T [u][∗]), then all nodes know how many subsequences are created
for each u. Thus, all nodes can agree in Line 9 on the assignment of the subsequences, with
each node assigned at most 2 subsequences of entries of S and 2 of entries of T . Crucially
for what follows, all the nodes know the column ` in S or the row ` in T to which the
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Algorithm 4: Compute-Sending: Code for node vi,j,k.

1 foreach u ∈ [n], u 6= v do
2 send S[u][v] to node u
3 foreach u ∈ [n], u 6= v do
4 send nz(S[∗][v]) to node u
5 send nz(T [v][∗]) to node u
6 avg(S)← (

∑
u∈[n] nz(S[∗][u]))/n

7 avg(T )← (
∑
u∈[n] nz(T [u][∗]))/n

8 Let Sv1 , . . . , Svdnz(S[∗][v])/avg(S)e be a partition of the non-zero elements of S[∗][v] into
sets of size at most avg(S) + 1 and let T v1 , . . . , T vdnz(T [v][∗])/avg(T )e be a partition of
the non-zero elements of T [v][∗] into sets of size at most avg(T ) + 1, both proven to
exist in Claim 1. We refer to these sets as subsequences.

9 Assign two subsequences of S, denote by BS(v), and two subsequences of T , denote
by BT (v) to each node v. For each subsequence B, denote by v(B) the node to
which B is assigned.

10 foreach B ∈ {Sv1 , . . . , Svdnz(S[∗][v])/avg(S)e, T
v
1 , . . . , T

v
dnz(T [v][∗])/avg(T )e} do

11 send B to node v(B)

subsequence B belongs. We denote this index `(B). The entries of each subsequence B are
then sent to its node v(B) in the following loop.

For the round complexity, note that a node v sends a single message to every other
node in each of Lines 2, 4, and 5. The rest of the computation until Line 9 is done locally.
Therefore, these lines complete within 3 rounds.

In the last loop of Algorithm 4, node v potentially sends all subsequences with entries
from column v of S and row v of T . Due to the facts that each subsequence is sent only once,
no subsequences overlap, and all the subsequences which v send are parts of a single column
of S and a single row of T , node v sends at most 2n messages during this loop. Additionally,
since every node receives at most 4 subsequences and each subsequence consists of most n
entries, each node receives at most 4n messages. Thus, by using Lenzen’s routing scheme,
this completes in O(1) rounds as well. J

Compute-Receiving: The pseudocode for Compute-Receiving is given in Algorithm 5. This
algorithm assigns the Pi,j,` matrices to different nodes in Ni,j . Specifically, each node vi,j,k
in Ni,j is assigned ab such matrices, while verifying that all nodes in Ni,j require roughly
the same amount of non-zero entries from S and T in order to compute all their assigned
Pi,j,` matrices. Since each sub-matrix Pi,j,` is defined as Pi,j,` = Si[∗][`] · Tj [`][∗], we define
the communication cost of computing Pi,j,` to be w(Pi,j,`) = nz(Si[∗][`]) + nz(Tj [`][∗]). By
this definition, in order to obtain that each node in Ni,j requires roughly the same amount
of messages in order to compute all of its assigned Pi,j,`, we assign the Pi,j,` matrices to the
nodes of Ni,j such that the total communication cost, as measured by w, of all matrices
assigned to a given node is roughly the same for all nodes.

I Lemma 11. Algorithm 5 completes in O(1) rounds, after which each node vi,j,k is assigned a
subset Ai,j,k ⊆ [n], s.t. ∀k ∈ [n/ab] it holds that

∑
`∈Ai,j,k

w(Pi,j,`) ≤ n
ab

∑
`∈[n] w(Pi,j,`)+2n.

Proof. The loop of Line 1 provides each node of Ni′,j′ with the number of non-zero elements
in each column of Si′ and each row of Tj′ . This allows the nodes to compute the required
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Algorithm 5: Compute-Receiving: Code for node vi,j,k.

1 foreach Ni′,j′ , i′, j′ ∈ [a]× [b] do
2 foreach u ∈ Ni′,j′ do
3 foreach B ∈ BS(v) do
4 send nz(Si′ ∩B) to node u
5 foreach B ∈ BT (v) do
6 send nz(Tj′ ∩B) to node u

7 foreach ` ∈ [n] do
8 w(Pi,j,`)← nz(Si[∗][`]) + nz(Tj [`][∗])
9 Let A′

i,j,1, . . . , A
′

i,j,n/ab be a partition of the sorted multiset {w(Pi,j,`)|` ∈ [n]} into
n/ab multisets with a bound x = 2n on its elements, proven to exist in Claim 3.

10 Let Ai,j,1, . . . , Ai,j,n/ab be a partition of [n] such that for every k ∈ [n/ab],
A

′

i,j,k = {w(Pi,j,`)|` ∈ Ai,j,k}. .

communication costs in Line 7. Claim 3 implies that after executing Line 10, each node vi,j,k is
assigned a subset Ai,j,k ⊆ [n], such that for every k ∈ [n/ab] it holds that

∑
`∈Ai,j,k

w(Pi,j,`) ≤
n
ab

∑
`∈[n] w(Pi,j,`) + 2n.

Every node sends every other node exactly 4 messages throughout the loop in Line 1,
while the remaining lines are executed locally for each node, without communication. As
such, this completes in O(1) rounds in total. J

Resolve-Routing: Roughly speaking, we solve this challenge by having the recipient of
each possibly non-zero entry deduce which node is the sender of this entry, and inform the
sender that it is its recipient, as follows. At the end of the execution of Compute-Sending
in Algorithm 4, every node v has at most two subsequences in BS(v) and at most two
subsequences in BT (v). Moreover, the subsequence assignment is known to all nodes due to
performing the same local computation in Line 9. On the other hand, upon completion of
Algorithm 5, node vi,j,k is assigned the task of computing Pi,j,` for every ` ∈ Ai,j,k. For this,
it suffices for vi,j,k to know the non-zero entries of column ` of Si and of row ` of Tj .

Hence, in Resolve-Routing, given in Algorithm 6, node vi,j,k sends every index ` ∈ Ai,j,k
to the nodes that hold subsequences of column ` in S and row ` in T . Notice that vi,j,k does
not know which indices inside these columns and rows are non-zero. However, the nodes
which hold these subsequences have this information, and respond with the non-zero entries
of the respective columns and rows that are part of Si or Tj . The proof of the following
Lemma 12 appears in the full version [8].

I Lemma 12. Algorithm 6 completes in O(nz(S) · b/n2 + nz(T ) · a/n2 + 1) rounds, after
which each node vi,j,k has S[(i− 1)(n/a) + 1 : i(n/a)][`] and T [`][(j − 1)(n/b) + 1 : j(n/b)],
for every ` ∈ Ai,j,k.

Proof of Theorem 8. Lemma 12 implies that each node vi,j,k has the required entries of S
and T in order to compute Pi,j,` for every ` ∈ Ai,j,k. Lemma 9 then gives that Algorithm
SBMM correctly produces a row of P = ST for each node.

Lemmas 10 and 11 show that Compute-Sending and Compute-Receiving complete in O(1)
rounds. Lemma 12 gives the claimed round complexity of O(nz(S) · b/n2 + nz(T ) · a/n2 + 1)
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Algorithm 6: Resolve-Routing: Code for node vi,j,k.

1 foreach ` ∈ Ai,j,k do
2 foreach node u for which there exists B ∈ BS(u) such that `(B) = ` do
3 send ` to node u
4 foreach node u for which there exists B ∈ BT (u) such that `(B) = ` do
5 send ` to node u

6 foreach message ` received from node vi′,j′,k′ in Line 3 do
7 foreach B ∈ BS(v) do
8 send S[(i′ − 1)(n/a) + 1 : i′(n/a)][`] ∩B to node vi′,j′,k′

9 foreach message ` received from node vi′,j′,k′ in Line 5 do
10 foreach B ∈ BT (v) do
11 send T [`][(j′ − 1)(n/b) + 1 : j′(n/b)] ∩B to node vi′,j′,k′

for Resolve-Routing, giving the same total number of rounds for ExchangeInfo. By Lemma 9,
the remainder of Algorithm SBMM completes in O(n/ab) rounds, completing the proof. J

3 Discussion

This work significantly improves upon the round complexity of multiplying two matrices in the
distributed Congested Clique model, for input matrices which are sparse. As mentioned,
we are unaware of a similar algorithmic technique being utilized in the literature of parallel
computing, which suggests that our approach may be of interest in a more general setting.
The central ensuing open question left for future reserach is whether the round complexity of
sparse matrix multiplication in the Congested Clique can be further improved.

Finally, an intriguing question is the complexity of various problems in the more general
k-machine model [18, 23], where the size of the computation clique is k << n. The way
of partitioning the data to the nodes is of importance. One may assume that the input to
each node consists of n/k unique consecutive rows of S and T , and its output should be the
corresponding n/k rows of the product P = S ·T . Applying our algorithm in this setting gives
a round complexity of O(minn-split pairs (a,b) n

2/k2 +nz(S) · b/k2 +nz(T ) ·a/k2 +n2/kab+ 1)
rounds, which is O(n2/3 · nz(S)1/3nz(T )1/3/k5/3 + 1) rounds with the assignment a =
n2/3k1/3 · nz(S)1/3/nz(T )2/3 and b = n2/3k1/3 · nz(T )1/3/nz(S)2/3. To see why, consider
each node as simulating the behavior of n/k virtual nodes of the Congested Clique model
that belong to the same Ni,j set. The round complexity of all steps of the algorithm grows
by a multiplicative factor of n2/k2, apart from the steps in Algorithm 2 which grow only by a
multiplicative factor of n/k, since part of the simulated communication consists of messages
sent between virtual nodes that are simulated by the same actual node, and as such do not
require actual communication. We ask whether this complexity can be improved for k << n.
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Abstract
This paper presents fast, distributed, O(1)-approximation algorithms for metric facility location
problems with outliers in the Congested Clique model, Massively Parallel Computation (MPC)
model, and in the k-machine model. The paper considers Robust Facility Location and Facility
Location with Penalties, two versions of the facility location problem with outliers proposed by
Charikar et al. (SODA 2001). The paper also considers two alternatives for specifying the input:
the input metric can be provided explicitly (as an n×n matrix distributed among the machines)
or implicitly as the shortest path metric of a given edge-weighted graph. The results in the paper
are:

Implicit metric: For both problems, O(1)-approximation algorithms running in
O(poly(logn)) rounds in the Congested Clique and the MPC model and O(1)-approximation
algorithms running in Õ(n/k) rounds in the k-machine model.

Explicit metric: For both problems, O(1)-approximation algorithms running in
O(log log logn) rounds in the Congested Clique and the MPC model and O(1)-approximation
algorithms running in Õ(n/k) rounds in the k-machine model.

Our main contribution is to show the existence of Mettu-Plaxton-style O(1)-approximation
algorithms for both Facility Location with outlier problems. As shown in our previous work
(Berns et al., ICALP 2012, Bandyapadhyay et al., ICDCN 2018) Mettu-Plaxton style algorithms
are more easily amenable to being implemented efficiently in distributed and large-scale models
of computation.
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1 Introduction

Metric Facility Location (in short, FacLoc) is a well-known combinatorial optimization
problem used to model clustering problems. The input to the problem is a set F of facilities,
an opening cost fi ≥ 0 for each facility i ∈ F , a set C of clients, and a metric space
(F ∪ C, d) of connection costs, where d(i, j) denotes the cost of client j connecting to facility
i. The objective is to find a subset F ′ ⊆ F of facilities to open so that the total cost of
opening the facilities plus the cost of connecting all clients to open facilities is minimized.
In other words, the quantity cost(F ′) :=

∑
i∈F ′ fi +

∑
j∈C d(j, F ′) is minimized, where

d(j, F ′) denotes mini∈F ′ d(i, j). FacLoc is NP-complete, but researchers have devised a
number of approximation algorithms for the problem. For any α ≥ 1, an α-approximation
algorithm for FacLoc finds in polynomial time, a subset F ′ ⊆ F of facilities such that
cost(F ′) ≤ α · cost(F ∗), where F ∗ is an optimal solution to the given instance of FacLoc.
There are several well-known O(1)-factor approximation algorithms for FacLoc including
the primal-dual algorithm of Jain and Vazirani [25] and the greedy algorithm of Mettu
and Plaxton [33]. The best approximation factor currently achieved by an algorithm for
FacLoc is 1.488 [30]. More recently, motivated by the need to solve FacLoc and other
clustering problems on extremely large inputs, researchers have proposed distributed and
parallel approximation algorithms for these problems. See for example [14, 15] for clustering
algorithms in systems such as MapReduce [11] and Pregel [32] and [4] for clustering algorithms
in the k-machine model. Clustering algorithms [38] have also been designed for streaming
models of computation [1].

Outliers can pose a problem for many statistical methods. For clustering problems, a few
outliers can have an outsized influence on the optimal solution, forcing the opening of costly
extra facilities or leading to poorer service to many clients. Versions of FacLoc that are
robust to outliers have been proposed by Charikar et al. [10], where the authors also present
O(1)-approximation algorithms for these problems. Specifically, Charikar et al. [10] propose
two versions of FacLoc that are robust to outliers:
Robust FacLoc: In addition to F , C, opening costs {fi|i ∈ F}, and metric d, we are also

given an integer 0 ≤ p ≤ |C|, that denotes the coverage requirement. The objective is to
find a solution (C ′, F ′), where F ′ ⊆ F , C ′ ⊆ C, with |C ′| ≥ p, and

cost(C ′, F ′) :=
∑
i∈F ′

fi +
∑
j∈C′

d(j, F ′)

is minimized over all (F ′, C ′), where |C ′| ≥ p.
FacLoc with Penalties: In addition to F , C, opening costs {fi|i ∈ F}, and metric d, we

are also given penalties pj ≥ 0 for each client j ∈ C. The objective is to find a solution
(C ′, F ′), where F ′ ⊆ F , and C ′ ⊆ C, such that,

cost(C ′, F ′) :=
∑
i∈F ′

fi +
∑
j∈C′

d(j, F ′) +
∑

j∈C\C′
pj

is minimized over all (C ′, F ′).

In this paper we present distributed O(1)-approximation algorithms for Robust FacLoc
and FacLoc with Penalties in several models of large-scale distributed computation. As far
as we know, these are the first distributed algorithms for versions of FacLoc that are robust
to outliers. In distributed settings, the complexity of the problem can be quite sensitive to
the manner in which input is specified. We consider two alternate ways of specifying the
input to the problem.
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Explicit metric: The metric d is specified explicitly as a |F | × |C| matrix distributed among
the machines of the underlying communication network. This explicit description of
the metric assumes that the |F | × |C| matrix fits in the total memory of all machines
combined.

Implicit metric: In this version, the metric is specified implicitly – as the shortest path
metric of a given edge-weighted graph whose vertex set is C ∪ F ; we call this the metric
graph. The reason for considering this alternate specification of the metric is that it
can be quite compact; the graph specifying the metric can be quite sparse (e.g., having
O(|F |+ |C|) edges). Thus, in settings where |F | · |C| is excessively large, but |F |+ |C| is
not, this is a viable option.

For the facility location problems considered in this paper, when the input metric is explicitly
specified, the biggest challenge is solving the maximal independent set (MIS) problem
efficiently. When the input metric is implicitly specified, the biggest challenge is to efficiently
learn just enough of the metric space. Thus, changing the input specification changes the
main challenge in a fundamental way and consequently we obtain very different results for
the two alternate input specifications.

Our algorithms run in 3 models of distributed computation, which we now describe
specifically in the context of facility location problems. All three models are synchronous
message passing model.

Congested Clique model: The Congested Clique model was introduced by Lotker et al. [31]
and then extensively studied in recent years [17, 18, 16, 9, 23, 26, 34, 13, 12, 37, 29]. In
this model, the underlying communication network is a clique and the number of nodes in
this clique equals |F |+ |C|. In each round, each node performs local computation based on
the information it holds and then sends a (possibly distinct) O(logn)-size message to each
of the remaining nodes. Initially, each node hosts a facility or a client and the node hosting
facility i knows the opening cost fi and the node hosting client j knows the penalty pj

for the FacLoc with penalties problem. In the explicit metric setting, the node hosting
facility i knows all the connection costs d(i, j) to all clients j ∈ C. Similarly, the node
hosting client j knows all connection costs d(i, j) to all facilities i ∈ F . In the implicit
metric setting, the node hosting a facility or client knows the edges of the metric graph
incident on that facility or client. We call this input distribution vertex-centric because
each node is responsible for the local input of a facility or client. The vertex-centric
assumption can be made without loss of generality because an adversarially (but evenly)
distributed input can be redistributed in a vertex-centric manner among the nodes in
constant rounds using Lenzen’s routing protocol [29].

Massively Parallel Computation (MPC) model: The MPC model was introduced in [27]
and variants of this model were considered in [19, 5, 2]. It can be viewed as a clean
abstraction of the MapReduce model. We are given k machines, each with S words of
space and the input is distributed in a vertex-centric fashion among the machines, the
only difference being that machines can host multiple facilities and clients (provided
they fit in memory). Let I be the total input size. Typically, we require k and S to
each be sublinear in I, that is O(I1−ε) for some ε > 0. We also require that the total
memory not be too much larger than needed for the input, i.e., k × S = O(I). In each
round, each machine sends and receives a total of O(S) words of information because
it is the volume of information that will fit into its memory. In our work we consider

OPODIS 2018



5:4 Large-Scale Distributed Algorithms for Facility Location with Outliers

MPC algorithms with memory S = Õ(n) 1 where n = |F | = |C|. In the explicit metric
setting, since I = O(n2), even if we assume S = Õ(n), k and S are still strictly sublinear
in I. But in the implicit metric setting, if we assume S = Õ(n) then the memory may
not be strictly sublinear in the input size when the input graph is sparse, having O(n)
edges for example. Therefore, our algorithms are not strictly MPC algorithms when the
input is sparse. Similar to the Congested Clique model, we can assume that the input is
distributed in a vertex-centric manner without loss of generality, due to the nature of
communication in each round and the fact that S = Ω(n).

k-machine model: The k-machine model was introduced in [28] and further studied in [36].
This model abstracts essential features of systems such as Pregel [32] and Giraph (see
http://giraph.apache.org/) that have been designed for large-scale graph processing.
We are given k machines and the input is distributed among the machines. In [28], the
k-machine model is used to solve graph problems and they assume a random vertex
partition distribution of the input graph among the k machines. In other words, each
vertex along with its incident edges is provided to one of the k machines chosen uniformly
at random. The corresponding assumption for facility location problems would be that
each facility and each client is assigned uniformly at random to one of the k machines.
Facility i ∈ F comes with its opening cost fi and client j ∈ C comes with its penalty pj

for the FacLoc with penalties problem. In the explicit metric setting, each facility i ∈ F
comes with connections costs d(i, j) for all j ∈ C whereas in the implicit metric setting
facility i comes along with the edges of the metric graph incident on it. Similarly for each
client j ∈ C. In each round, each machine can send a (possibly distinct) size-B message
to each of the remaining k − 1 machines. Typically, B is assumed to be poly(logn) bits
[28].

The Congested Clique model does not directly model settings of large-scale computation
because in this model the number of nodes in the underlying communication network equals
the number of vertices in the input graph. However, fast Congested Clique algorithms can
usually be translated (sometimes automatically) to fast MPC and k-machine algorithms. So
the Congested Clique algorithms in this paper are important stepping stones towards more
complex MPC and k-machine algorithms [20, 28]. The MPC model and the k-machine model
are quite similar. Even though the k-machine model is specified with a per-edge bandwidth
constraint of B bits, it can be equivalently described with a per-machine bandwidth constraint
of k · B bits that can be sent and received in each round. Thus setting k · B = S makes
the k-machine model and MPC model equivalent in their bandwidth constraint. Despite
their similarities, it is useful to think about both models due to differences in how they are
parameterized and how these parameters affect the running times of algorithms in these
models. For example, in the MPC model, usually one starts by picking S as a sublinear
function of the input size n. This leads to the number of machines being fixed and the
running time of the algorithm is expressed as a function of n. In the k-machine model B is
usually fixed at poly(logn) and the running time of the algorithm is expressed as a function
of n and k. This helps us understand how the running time changes as we increase k. For
example, algorithms with running times of the form O(n/k) exhibit a linear speedup as k
increases, whereas algorithms with running time of the form O(n/k2) indicating a quadratic
speedup [35].

1 Throughout the paper, we use Õ(f(n)) as a shorthand for O(f(n) · poly(log n)) and Ω̃(f(n)) as a
shorthand for Ω(f(n)/poly(log n)).
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1.1 Main Results

In order to obtain O(1)-approximation algorithms for Robust FacLoc and FacLoc with
Penalties, Charikar et al. [10] propose modifications to the primal-dual approximation
algorithm for FacLoc due to Jain and Vazirani [25]. The problem with using this approach
for our purposes is that it seems difficult obtain fast distributed algorithms using the Jain-
Vazirani approach. For example, obtaining a sublogarithmic round O(1)-approximation for
FacLoc in the Congested Clique model using this approach seems difficult. However, as
established in our previous work [21, 4, 8] and in [15] the greedy algorithm of Mettu and
Plaxton [33] for FacLoc seems naturally suited for fast distributed implementation.

The first contribution of this paper is to show that O(1)-approximation algorithms to
Robust FacLoc and FacLoc with Penalties can also be obtained by using variants of the
Mettu-Plaxton greedy algorithm. Our second contribution is to show that by combining
ideas from earlier work [21, 4] with some new ideas, we can efficiently implement distributed
versions of the variants of the Mettu-Plaxton algorithm for Robust FacLoc and FacLoc
with Penalties. The specific results we obtain for the two versions of input specification are
as follows. For simplicity of exposition, we assume |C| = |F | = n.

Implicit metric: For both problems, we present O(1)-approximation algorithms running
in O(poly(logn)) rounds in the Congested Clique and the MPC model. Assuming the
metric graph has m edges, the input size is Θ(m+ n) and we use Õ(m/n) machines each
with memory Õ(n). In the k-machine model, we present O(1)-approximation algorithms
running in Õ(n/k) rounds.
Explicit metric: For both problems, we present extremely fast O(1)-approximation
algorithms, running in O(log log logn) rounds, in the Congested Clique and the MPC
model. The input size is Θ(n2) and we use n machines each with memory Õ(n) in the
MPC model. In the k-machine model, we present O(1)-approximation algorithms running
in Õ(n/k) rounds.

Due to space constraints we only describe our distributed implementations for the Robust
FacLoc algorithm and omit most of the technical proofs. The full version with all the
technical details appears in [24].

2 Sequential Algorithms for Facility Location with Outliers

We first describe the greedy sequential algorithm of Mettu and Plaxton [33] (Algorithm 1)
for the Metric FacLoc problem which will serve as a building block for our algorithms for
Robust FacLoc and the FacLoc with Penalties discussed in this section. The algorithm
first computes a “radius” ri for each facility i ∈ F and it then greedily picks facilities to
open in non-decreasing order of radii provided no previously opened facility is too close. The
“radius” of a facility i is the amount that each client is charged for the opening of facility
i. Clients pay towards this charge after paying towards the cost of connecting to facility
i; clients that have a large connection cost to i pay nothing towards this charge. It is
shown in [33] using a charging argument that Algorithm 1 is 3-approximation for the Metric
FacLoc problem. Later on, [3] gave a primal-dual analysis, showing the same approximation
guarantee, by comparing the cost of the solution to a dual feasible solution. We use the
latter analysis approach as it can be easily modified to work for the algorithms with outliers.
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Algorithm 1: FacilityLocationMP(F,C).
/* Radius Computation Phase: */

1 For each i ∈ F , compute ri ≥ 0, satisfying fi =
∑

j∈C max{0, ri − cij}.
/* Greedy Phase: */

2 Sort and renumber facilities in the non-decreasing order of ri.
3 F ′ ← ∅ . Solution set
4 for i = 1, 2, . . . do
5 if there is no facility in F ′ within distance 2ri from i then
6 F ′ ← F ′ ∪ {i}
7 end
8 end
9 Connect each client j to its closest facility in F ′.

2.1 Robust Facility Location
Since we use the primal dual analysis of [3] to get a bounded approximation factor, we need
to address the fact that the standard linear programming relaxation for Robust FacLoc
has unbounded integrality gap. To fix this we modify the instance in a similar manner to
[10]. Let (C∗, F ∗) be a fixed optimal solution, and let i∗ ∈ F be a facility in that solution
with the maximum opening cost fi∗ . We begin by assuming that we are given a facility, say
ie with opening cost fie

, such that, fi∗ ≤ fie
≤ αfi∗ , where α ≥ 1 is a constant. Now, we

modify the original instance by changing the opening costs of the facilities as follows.

f ′i =


+∞ if fi > fie

0 if i = ie

fi otherwise

Note that we can remove the facilities with opening cost +∞ without affecting the cost
of an optimal solution, and hence we assume that w.l.o.g. all the modified opening costs f ′i
are finite.

Let (C∗e , F ∗e ) be an optimal solution for this modified instance, and let coste(C∗e , F ∗e ) be
its cost using the modified opening costs. Observe that without loss of generality, we can
assume that ie ∈ F ∗e , since its opening cost f ′ie

equals 0. We obtain the following lemma and
its simple corollary.

I Lemma 1. coste(C∗e , F ∗e ) ≤ cost(C∗, F ∗).

I Corollary 2. Let (C ′e, F ′e) be a feasible solution for the instance with modified facility
opening costs, such that, coste(C ′e, F ′e) ≤ β · coste(C∗e , F ∗e ) + γ · fie

(where β ≥ 1, γ ≥ 0).
Then, (C ′e, F ′e) is a β + α · (γ + 1) approximation for the original instance.

To efficiently find a facility ie satisfying fi∗ ≤ fie ≤ αfi∗ , we partition the facilities into
sets where each set contains facilities with opening costs from the range

[
(1 + ε)i, (1 + ε)i+1).

Iterating over all such ranges, and choosing a facility with highest opening cost from that
range, we are guaranteed to find a facility ie such that, fi∗ ≤ fie

≤ (1 + ε)fi∗
2. The total

2 An alternative approach would be to consider each facility one-by-one as a candidate, but for an efficient
distributed implementation we can only afford O(log n) distinct guesses.
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number of such iterations will be O(log1+ε
fmax
fmin

), where fmax is the largest opening cost, and
fmin is the smallest non-zero opening cost. Assuming that every individual item in the input
(e.g., facility opening costs, connection costs, etc.) can each be represented in O(logn) bits
and that ε is a constant, this amounts to O(logn) iterations.

Our facility location algorithm is described in Algorithm 2. This algorithm can be
thought of as running O(logn) separate instances of a modified version of the original Mettu-
Plaxton algorithm (Algorithm 1), where in each instance of the Mettu-Plaxton algorithm,
the algorithm is terminated as soon as the number of outlier clients drops below the required
number, following which there is some post-processing.

We abuse the notation slightly, and denote by (C ′, F ′) the solution returned by the
algorithm, i.e., the solution (C ′t, F ′t) corresponding to the iteration t of the outer loop that
results in a minimum cost solution. Similarly, we denote by ie a facility chosen in line 2 in
the iteration corresponding to this iteration t.

I Theorem 3. coste(C ′, F ′) ≤ 3 · coste(C∗e , F ∗e ) + fie

Applying Corollary 2 with α = 1 + ε, β = 3, γ = 1 yields the following approximation
guarantee.

I Theorem 4. The solution returned by Algorithm 2 is a 5 + ε approximation to the Robust
FacLoc problem.

2.2 Facility Location with Penalties
For the penalty version, each client j comes with a penalty pj which is the cost we pay if
we make j an outlier. Therefore, the radius computation for a facility changes because if
a facility i is asking client j to contribute more than pj − cij then it is cheaper for j to
mark itself as an outlier and pay its penalty. Therefore, for each facility i ∈ F , let ri ≥ 0
be a value such that fi =

∑
j∈C max {min {ri − cij , pj − cij} , 0}, if it exists. Notice that if

for a facility i ∈ F , such an ri does not exist, then it must be the case that for all j ∈ C,
pj ≤ cij . That is, it is for any client, it is cheaper to pay the penalty than to connect it
to this facility. Therefore, removing such a facility from consideration does not affect the
cost of any solution, and hence we assume that for all i ∈ F , an ri ≥ 0 exists such that
fi =

∑
j∈C max {min {ri − cij , pj − cij} , 0}. The algorithm for FacLoc with Penalties is

shown in Algorithm 3.
A primal-dual analysis of Algorithm 3 leads to the following upper bound.

I Theorem 5. cost(C ′, F ′) ≤ 3 · cost(C∗, F ∗).

3 Distributed Robust Facility Location: Implicit Metric

We first present our k-machine algorithm for Distributed Robust FacLoc in the implicit
metric setting and derive the Congested Clique as a special case for k = n. We then describe
how to implement the algorithm in the MPC model.

3.1 The k-Machine Algorithm
In this section we show how to implement the sequential algorithms for the Robust FacLoc
in the k-machine model. To do this we first need to establish some primitives and techniques.
These have largely appeared in [4]. Then we will provide details for implementing the Robust
FacLoc algorithm in the k-machine model.
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Algorithm 2: RobustFacLoc(F,C, p).
/* Recall: ` := |C| − p */

1 for t = 0, . . . , O(logn) do
2 Let ie ∈ F be the most expensive facility from the facilities with opening costs in

the range [(1 + ε)t, (1 + ε)t+1) for some small constant ε > 0
3 Modify the facility opening costs to be

f ′i =


+∞ if fi > fie

0 if i = ie

fi otherwise

/* Radius Computation Phase: */
4 For each i ∈ F , compute ri ≥ 0, satisfying f ′i =

∑
j∈C max {0, ri − cij}.

/* Greedy Phase: */
5 Sort and renumber facilities in the non-decreasing order of ri.
6 Let C ′ ← ∅, F ′ ← ∅, O′ ← C

7 Let F0 ← ∅
8 for i = 1, 2, . . . do
9 if there is no facility in F ′ within distance 2ri from i then

10 F ′ ← F ′ ∪ {i}
11 end
12 Fi ← Fi−1 ∪ {i}
13 Let Ci denote the set of clients that are within distance ri

14 C ′ ← C ′ ∪ Ci, O′ ← O′ \ Ci.
15 if |O′| ≤ ` then break
16 end

/* Outlier Determination Phase: */
17 if |O′| > ` then
18 Let O1 ⊆ O′ be a set of |O′| − ` clients that are closest to facilities in F ′.
19 C ′ ← C ′ ∪O1, O′ ← O′ \O1.
20 end
21 else if |O′| < ` then
22 Let O2 ⊆ C ′ be the set of `− |O′| clients with largest distance to open

facilities F ′.
23 C ′ ← C ′ \O2, O′ ← O′ ∪O2.
24 end
25 Let (C ′t, F ′t )← (C ′, F ′)
26 end
27 return Return (C ′t, F ′t ) with the minimum cost.

Since the input metric is only implicitly provided, as an edge-weighted graph, a key
primitive that we require is computing shortest path distances to learn parts of the metric
space. To this end, the following lemma shows that we can solve the Single Source Shortest
Paths (SSSP) problem efficiently in the k-machine model.

I Lemma 6 (Corollary 1 in [4]). For any 0 < ε ≤ 1, there is a deterministic (1 + ε)-
approximation algorithm in the k-machine model for solving the SSSP problem in undirected
graphs with non-negative edge-weights in O((n/k) · poly(logn)/poly(ε)) rounds.
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Algorithm 3: PenaltyFacLoc(F,C, p).
/* Radius Computation Phase: */

1 Compute ri for each i ∈ F satisfying fi =
∑

j∈C max {min {ri − cij , pj − cij} , 0} .
/* Greedy Phase: */

2 Sort and renumber facilities in the non-decreasing order of ri.
3 C ′ ← ∅, F ′ ← ∅, O′ ← ∅.
4 for i = 1, 2, . . . do
5 if there is no facility in F ′ within distance 2ri from i then
6 F ′ ← F ′ ∪ {i}
7 end
8 end

/* Outlier Determination Phase: */
9 for each client j do

10 Let i be the closest facility to j in F ′
11 if cij ≤ pj then C ′ ← C ′ ∪ {j}
12 else O′ ← O′ ∪ {j}
13 end
14 return (C ′, F ′) as the solution.

Algorithm 4: RadiusComputation Algorithm.
1 Neighborhood-Size Computation. Each machine mj computes qi(v), for all

integers i ≥ 0 and for all vertices v ∈ H(mj).
2 Local Computation. Each machine mj computes r̃v locally, for all vertices

v ∈ H(mj). (Recall that r̃v := (1 + ε)t−1 where t ≥ 1 is the smallest integer for
which

∑t
i=0 qi(v) · ((1 + ε)i+1 − (1 + ε)i) > fv.)

In addition to SSSP, our algorithms require an efficient solution to a more general problem
that we call Multi-Source Shortest Paths (in short, MSSP). The input is an edge-weighted
graph G = (V,E), with non-negative edge-weights, and a set T ⊆ V of sources.

For MSSP, the output is required to be, for each vertex v, the distance d(v, T ) (i.e.,
min{d(v, u) | u ∈ T}) and the vertex v∗ ∈ T that realizes this distance. The following lemma
shows that we can solve this problem efficiently in the k-machine model.

I Lemma 7 (Lemma 4 in [4]). Given a set T ⊆ V of sources known to the machines (i.e.,
each machine mj knows T ∩H(mj)), we can, for any value 0 ≤ ε ≤ 1, compute a (1 + ε)-
approximation to MSSP in Õ(1/poly(ε) · n/k) rounds, w.h.p. Specifically, after the algorithm
has ended, for each v ∈ V \ T , the machine mj that hosts v knows a pair (u, d̃) ∈ T × R+,
such that d(v, u) ≤ d̃ ≤ (1 + ε) · d(v, T ).

Using the primitives described above, [4] show that it is possible to compute approximate
radius values efficiently in the k-machine model. The algorithm is described here, see the full
version [24] for details on the implementation of this algorithm.

For any facility or client v and for any integer i ≥ 1, let qi(v) denote |B(v, (1 + ε)i)|, the
size of the neighborhood of v within distance (1 + ε)i.

Therefore, we get the following lemma the proof of which can be found in Section 4 of [4].
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I Lemma 8. For each facility v ∈ F it is possible to compute an approximate radius r̃v in
Õ(n/k) rounds of the k-machine model such that rv

(1+ε)2 ≤ r̃v ≤ (1 + ε)2rv where rv is the
actual radius of v satisfying fv =

∑
u∈B(v,rv)(rv − d(v, u)).

The greedy phase is implemented by discretizing the radius values computed in the first
phase which results in O(log1+ε n) distinct categories. Note that in each category, the order
in which we process the facilities does not matter as it will only add an extra (1 + ε) factor to
the approximation ratio. This reduces the greedy phase to computing a maximal independent
set (MIS) on a suitable intersection graph for each category i where the vertices are the
facilities in the ith category and there is an edge between two vertices if they are within
distance 2(1 + ε)i of each other.

Finding such an MIS requires O(logn) calls to a subroutine that solves MSSP [39] and
since our implementation of MSSP only returns approximate distances, what we really
compute is a relaxed version of an MIS called an (ε, d)-MIS in [4].

I Definition 9 ((ε, d)-approximate MIS). For an edge-weighted graph G = (V,E), and
parameters d, ε > 0, an (ε, d)-approximate MIS is a subset I ⊆ V such that
1. For all distinct vertices u, v ∈ I, d(u, v) ≥ d

1+ε .
2. For any u ∈ V \ I, there exists a v ∈ I such that d(u, v) ≤ d · (1 + ε).

The work in [4] gives an algorithm that efficiently computes an approximate MIS of an
induced subgraph G[W ] of G for any vertex set W in the k-machine model.

I Lemma 10. We can find an (O(ε), d)-approximate MIS I of G[W ] whp in Õ(n/k) rounds.

We are now ready to describe the k-machine model implementation of Algorithm 2.
Our k-machine model implementation of the Robust FacLoc algorithm is summarized in

Algorithm 5. The correctness proof is similar to that of Algorithm 2 but is complicated by
the fact that we compute (1 + ε)-approximate distances instead of exact distances. Again, as
in the analysis of the sequential algorithm, we abuse the notation so that (i) (C ′, F ′) refers
to a minimum-cost solution returned by the algorithm, (ii) ie refers to the facility chosen in
the line 2 of the algorithm, and (iii) the modified instance with original facility costs. This
analysis appears in the full version [24], and as a result we get the following theorem.

I Theorem 11. In Õ(poly(1/ε) · n/k) rounds, whp, Algorithm 5 finds a factor 5 + O(ε)
approximate solution (C ′, F ′) to the Robust FacLoc problem for any constant ε > 0.

3.2 The Congested Clique and MPC Algorithms
The algorithm for Congested Clique is essentially the same as the k-machine model algorithm
with k = n. The only technical difference is that in the k-machine model, the input graph
vertices are randomly partitioned across the machines. This means that even though there
are n vertices and n machines, a single machine may be hosting multiple vertices. It is easy
to see that the Congested Clique model, in which each machine holds exactly one vertex can
simulate the k-machine algorithm with no overhead in rounds. Therefore, by substituting
k = n in the running time of Theorem 11, we get the following result.

I Theorem 12. In O(poly logn) rounds of Congested Clique, whp, we can find a factor
5 +O(ε) approximate solution to the Robust FacLoc problem for any constant ε > 0.

Now we focus on the implementing the MPC algorithm. The first crucial observation is
that Algorithm 5 reduces the task of finding an approximate solution to the Robust FacLoc
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Algorithm 5: RobustFacLocDist(F,C, p).
/* Recall ` := |C| − p */

1 for t = 1, . . . , O(logn) do
2 Let ie ∈ F be a most expensive facility from the facilities with opening costs in

the range
[
(1 + ε)t, (1 + ε)t+1)

3 Modify the facility opening costs to be

f ′i =


+∞ if fi > fie

0 if i = ie

fi otherwise

/* Radius Computation Phase: */
4 Call the RadiusComputation algorithm (Algorithm 4) to compute approximate

radii.
/* Greedy Phase: */

5 Let F ′ = ∅, C ′ = ∅, O′ = C

6 for i = 0, 1, 2, . . . do
7 Let W be the set of vertices w ∈ F across all machines with r̃w = r̃ = (1 + ε)i

8 Using Lemma 7, remove all vertices from W within approximate distance
2(1 + ε)3 · r̃ from F ′

9 I ← ApproximateMIS(G,W, 2(1 + ε)3 · r̃, ε)
10 F ′ ← F ′ ∪ I
11 Using Lemma 7, move from O′ to C ′ all vertices that are within distance

(1 + ε) · r̃ from Fi, the set of facilities processed up to iteration i
12 if |O′| ≤ ` then break
13 end

/* Outlier Determination Phase: */
14 if |O′| > ` then
15 Using Lemma 7 find O1 ⊆ O′, a set of |O′| − ` clients that are closest to

facilities in F ′.
16 C ′ ← C ′ ∪O1, O′ ← O′ \O1.
17 end
18 else if |O′| < ` then
19 Using Lemma 7 find O2 ⊆ C \O′, a set of (`− |O′|) clients that are farthest

away from facilities in F ′
20 C ′ ← C ′ \O2, O′ ← O′ ∪O2.
21 end
22 Let (C ′t, F ′t )← (C ′, F ′)
23 end
24 return (C ′t, F ′t ) with a minimum cost

problem in the implicit metric setting to poly logn calls to a (1 + ε)-approximate SSSP
subroutine along with some local bookkeeping. Therefore, all we need to do is efficiently
implement an approximate SSSP algorithm in the MPC model.

The second fact that helps us is that Becker et al. [6] provide a distributed implementation
of their approximate SSSP algorithm in the Broadcast Congested Clique (BCC) model. The
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BCC model is the same as the Congested Clique model but with the added restriction that
nodes can only broadcast messages in each round. Therefore we get the following simulation
theorem, which follows almost immediately from Theorem 3.1 of [7].

I Theorem 13. Let A be a T round BCC algorithm that uses Õ(n) local memory at each
node. One can simulate A in the MPC model in O(T ) rounds using Õ(n) memory per
machine.

In any T round BCC algorithm, each vertex will receive O(n · T ) distinct messages. The
approximate SSSP algorithm of Becker et al. [6] runs in O(poly logn/poly(ε)) rounds and
therefore, uses Õ(n) memory per node to store all the received messages (and for local
computation). Therefore, we get the following theorem.

I Theorem 14. In O(poly logn) rounds of MPC, whp, we can find a factor 5 + O(ε)
approximate solution to the Robust FacLoc problem for any constant ε > 0.

4 Distributed Robust Facility Location: Explicit Metric

For the k-machine model implementation, the implicit metric algorithm from the previous
section also provides a similar guarantee for the explicit metric setting and hence we do not
discuss it separately in this section.

4.1 The Congested Clique Algorithm
The work in [21] presents a Congested Clique algorithm that runs in expected O(log logn)
rounds and computes an O(1)-approximation to FacLoc. This is improved exponentially in
[22] which presents an O(1)-approximation algorithm to FacLoc running in O(log log logn)
rounds whp. The algorithms in [21] and in [22] are essentially the same with one key
difference. They both reduce the problem of solving FacLoc in the Congested Clique model
to the ruling set problem. Specifically, showing that if a t-ruling set can be computed in T
rounds, then an O(t)-approximation to FacLoc can be computed in O(T ) rounds. In [21] a
2-ruling set is computed in expected O(log logn) rounds, whereas in [22] it is computed in
O(log log logn) rounds whp.

The algorithm for computing an O(1)-approximation to Robust FacLoc (see Section
2.1) is essentially the FacLoc algorithm in [21, 22], but with an outer loop that runs
O(logn) times. In each iteration of this outer loop, we modify the facility opening costs in a
certain way and solve FacLoc on the resulting instance. Thus we have O(logn) instances of
FacLoc to solve and via the reduction in [21, 22], we have O(logn) independent instances
of the ruling set problem to solve. Here we show that O(logn) independent instances of
the O(log log logn)-round 2-ruling set algorithm in [22] can be executed in parallel in the
Congested Clique model, still in O(log log logn) rounds whp. To be precise, suppose that
the input consists of c = O(logn) graphs G1 = (V,E1), G2 = (V,E2), . . . , Gc = (V,Ec).

I Theorem 15. 2-ruling sets for all graphs Gi, 1 ≤ i ≤ c, can be computed in O(log log logn)
rounds whp.

The theorem above and the discussion preceding it leads to the following theorem.

I Theorem 16. There is an O(1)-approximation algorithm in the Congested Clique model
for Robust FacLoc, running in O(log log logn) rounds whp.
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4.2 The MPC Algorithm
We now utilize the Congested Clique algorithm for Robust FacLoc to design an MPC model
algorithm for Robust FacLoc, also running in O(log log logn) rounds whp. Since each vertex
has explicit knowledge of n distances, the overall memory is O(n2) words. Since the memory
of each machine is Õ(n), the number of machines will be Õ(n) as well. Therefore, we can
simulate the algorithm from the preceding section using Theorem 3.1 of [7] in the MPC
model. We summarize our result in the following theorem.

I Theorem 17. There is an O(1)-approximation algorithm for Robust FacLoc that can be
implemented in the MPC model with Õ(n) words per machine in O(log log logn) rounds whp.

5 Conclusion and Open Questions

This paper presents fast O(1)-factor distributed algorithms for Facility Location problems
that are robust to outliers. These algorithms run in the Congested Clique model and two
models of large-scale computation, namely, the MPC model and the k-machine model. As far
as we know these are the the first such algorithms for these important clustering problems.

Fundamental questions regarding the optimality of our results remain open. In the explicit
metric setting, we present algorithms in the Congested Clique model and the MPC model
that run in O(log log logn) rounds. While these may seem extremely fast, it is not clear that
they are optimal. Via the results of Drucker et al. [13], it seems like showing a non-trivial
lower bound in the Congested Clique model is out of the question for now. So a tangible
question one can ask is whether we can further improve the running time of the 2-ruling
set algorithm in the Congested Clique model, possibly solving it in O(log∗ n) or even O(1)
rounds. This would immediately imply a corresponding improvement in the running time of
our Congested Clique and MPC model algorithms in the explicit metric setting.

All the k-machine algorithms we present in the paper run in Õ(n/k) rounds. It is unclear
if this is optimal. In previous work [4], we showed a lower bound of Ω̃(n/k) in the implicit
metric setting, assuming that in the output to facility location problems every open facility
needed to know all clients that connect to it. The lower bound heavily relies on the implicit
metric and the output requirement assumptions. However, even if we relax both of these
assumptions, i.e., we work in the explicit metric setting and only ask that every client know
the facility that will serve it, we still seem to be unable to get over the Õ(n/k) barrier.
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Abstract
Distributed tasks such as constructing a maximal independent set (MIS) in a network, or properly
coloring the nodes or the edges of a network with reasonably few colors, are known to admit
efficient distributed randomized algorithms. Those algorithms essentially proceed according to
some simple generic rules, by letting each node choosing a temptative value at random, and
checking whether this choice is consistent with the choices of the nodes in its vicinity. If this is
the case, then the node outputs the chosen value, else it repeats the same process. Although
such algorithms are, with high probability, running in a polylogarithmic number of rounds, they
are not robust against actions performed by rational but selfish nodes. Indeed, such nodes may
prefer specific individual outputs over others, e.g., because the formers suit better with some
individual constraints. For instance, a node may prefer not being placed in a MIS as it is not
willing to serve as a relay node. Similarly, a node may prefer not being assigned some radio
frequencies (i.e., colors) as these frequencies would interfere with other devices running at that
node. In this paper, we show that the probability distribution governing the choices of the output
values in the generic algorithm can be tuned such that no nodes will rationally deviate from this
distribution. More formally, and more generally, we prove that the large class of so-called LCL
tasks, including MIS and coloring, admit simple “Luby’s style” algorithms where the probability
distribution governing the individual choices of the output values forms a Nash equilibrium. In
fact, we establish the existence of a stronger form of equilibria, called symmetric trembling-hand
perfect equilibria for those games.
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1 Introduction

1.1 Motivation and Objective
In networks, independent sets and dominating sets can be used as backbones to collect,
transfer, and broadcast information, and/or as cluster heads in clustering protocols (see,
e.g., [19, 23]). Hence, a node belonging to some selected independent or dominating set
may be subject to future costs in term of energy consumption, computational efforts, and
bandwidth usage. As a consequence, rational selfish nodes might be tempted to deviate
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from the instructions of an algorithm used to construct such sets, so that to avoid becoming
member of the independent set, or dominating set, under construction. On the other hand,
the absence of a backbone, or of cluster heads, may penalize the nodes. Hence every node is
subject to a tension between (1) facilitating the obtention of a solution, and (2) avoiding
certain forms of solutions.

A large class of randomized algorithms [5, 22] for constructing maximal independent
sets (MIS) proceed in synchronous rounds, where a round allows every node to exchange
information with its neighbors in the network, and to perform some individual computation.
Roughly, at each round of these algorithms, every node i which has not yet decided applies to
enter the MIS with a certain probability pi. If a node applies to enter the MIS, and none of its
neighbors simultaneously apply, then the former node enters the MIS, and, subsequently, all
its neighbors renounce to enter the MIS. If two adjacent nodes simultaneously apply to enter
the MIS, then there is a conflict, and both nodes remain undecided, and go to the next round.
The round complexity of the algorithm heavily depends on the choice of the probability pi

that node i applies to enter the MIS, which may typically depend on the degree of node i,
and may vary along with the execution of the algorithm, as node i accumulates more and
more information about its neighborhood. Hence, a node i aiming at avoiding entering the
MIS might be tempted to deviate from the algorithm by setting pi small. However, if all
nodes deviate in this way, then the algorithm may take a very long time before converging
to a solution. The same holds whenever all nodes are aiming at entering the MIS.

Similar phenomenons may appear for other problems, like, e.g., coloring [7], that is,
an abstraction of frequency assignment in radio networks. For solving this task, typical
algorithms provides every node i with a probability distribution Di over the colors, and
node i chooses color c at random with probability Di(c). If this color does not conflict with
the chosen colors of its neighbors, then node i adopts this color, else it performs another
random choice, and repeats until no conflicts with the neighbors occur. However, some
frequencies might be preferred to others because, e.g., some frequencies might be conflicting
with local devices present at the node. As a consequence, not all colors are equal for the
nodes, and while each node is aiming at constructing a coloring quickly (in order to take
benefit from the resulting radio network), it is also aiming at avoiding being assigned a color
that it does not want. Therefore, in a random assignments of colors, every node might be
tempted to give more weight to its preferred colors than to its non desired colors, and if all
nodes deviate in this way, then the algorithm may take a long time before converging to a
solution, if converging at all.

In fact, such phenomena as those listed above are susceptible to occur for many network
problems, typically for solving so-called locally checkable labeling tasks [24], or LCL tasks for
short.

1.1.1 Locally Checkable Labelings
LCL tasks [24] form a large class of classical problems, including maximal independent set,
coloring, maximal matching, minimal dominating set, etc., studied for more than 20 years
in the framework of distributed computing in networks. An LCL task is characterized by a
finite set of labels, and a set of good labeled balls3 of radius at most t, for some fixed t ≥ 0.

3 A ball of radius t is a graph with one identified node, called center, and with all the other nodes at
distance at most t from the center. In a graph G, a ball of radius t centered at some node v is the
subgraph induced by all nodes at distance at most t from v in G. A labeled ball is a ball whose every
node is provided with a label (i.e., a bit-string).
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For instance, in the MIS task, balls are of radius 1, a label is either • (interpreted as being
member of the independent set), or ◦ (interpreted as not being member of the independent
set), and a labeled ball is good if either (1) its center is labeled •, and all its neighbors are
labeled ◦, or (2) its center is labeled ◦, and at least one of its neighbors is labeled •. Similarly,
in k-coloring, the labels are in {1, . . . , k}, balls are of radius 1, and a ball is good if the label
of the center is different from the label of each of its neighbors.

Solving an LCL task consists in designing a distributed algorithm resulting in all nodes
collectively assigning a label to each of them, such that all resulting balls are good.

In the following, we restrict ourselves to the large class of LCL tasks that are sequentially
solvable by a greedy algorithm that (1) picks the nodes one by one in an arbitrary order,
and (2) sets the label of each node when picked, after solely consulting the vicinity of the
node. For instance, MIS is greedily constructible, as well as (∆ + 1)-coloring in networks
of maximum degree ∆. Instead, ∆-coloring is not greedily constructible, as witnessed by
2-coloring even cycles. We restrict ourselves to greedily constructible LCL tasks because non
greedily constructible tasks are hard to handle in the distributed network computing setting.
Indeed, for solving such tasks, far away nodes might be forced to coordinate, yielding poor
locality, as witnessed by, again, 2-coloring even cycles (which cannot be solved in less than
Ω(n) rounds [21]).

1.1.2 A Generic “Luby’s Style” Randomized Algorithm for LCL Tasks
A generic randomized algorithm for LCL tasks, directly inspired from [5, 22], and therefore
often referred to as “Luby’s style” algorithm, performs as follows. Every node v aims at
computing its label, label(v), for a given LCL task. The labels should be such that all
resulting labeled balls are good with respect to the considered task. Node v starts with
initial value label(v) = ⊥. Let t be the radius of the task, i.e., the maximum radius of the
labeled balls defining the tasks (both MIS and coloring have radius 1).

Distributed Construction Algorithm: At each round, every node v which has not
yet terminated observes the ball of radius t around it in the network (including its
structure, and the already fixed nodes’ labels). Then v chooses a random temporary
label, tmp-label(v), compatible with the current fixed labels of the nodes in the
observed ball. Next, v observes the ball of radius t around it in the network again,
and recovers the temporary labels randomly chosen by the nodes in the ball. If
tmp-label(v) is compatible with all fixed labels, and with all temporary labels in
the ball of radius t centered at v (i.e., if the observed labeled ball in good w.r.t. the
considered LCL task), then v sets label(v) as equal to tmp-label(v). The value
of label(v) is then fixed, and it is not subject to any modification in the future.
Otherwise, node v goes to the next round.

Note that assuming that the LCL task is greedily constructive prevents nodes from being
blocked by nodes that terminated at previous rounds: every node has always at least one
label at its disposal for building a good ball around it. (It can be easily checked that, for all
greedily constructible LCL tasks, the generic distributed construction algorithm terminates,
and outputs correctly, as long as every label has non zero probability to be chosen). Note
that each phase of the generic algorithm takes only 2t rounds for LCL task of radius t, as
every node performs two snapshots of the labels (fixed or temporary) in its t-ball.

The random choice of tmp-label(v) is governed by some probability distribution D, which
is actually characterizing the algorithm, and must be tuned according to the LCL task at
hand. Importantly, D may depend on the round, and may also depend on the structure of
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v’s neighborhood as observed during the previous rounds. It is known that, for many tasks
such as Maximal Independent Set (MIS), and (∆ + 1)-coloring, there exist distributions D
enabling the generic distributed construction algorithm to terminate in O(logn) rounds in
n-node networks (see, e.g., [5, 7, 22]). In this paper, we consider the following issue:

What if selfish nodes are not playing according to the desired distribution D?

To address this issue, we define LCL games.

1.1.3 LCL Games
To every LCL task can be associated a game, that we call LCL game, and that we define
as follows. Let G be a connected simple graph. Every node v of G is a rational and selfish
player, playing the game with the ultimate goal of maximizing its payoff while performing
the generic distributed construction algorithm described in Section 1.1.2.

Strategy. A strategy for a node v is a probability distribution D over the labels compatible
with the ball of radius t centered at v, which may depend on the history of v during the
execution of the generic algorithm. For instance, in the MIS game, a strategy is a probability
p to propose itself for entering the MIS. Similarly, in the (∆ + 1)-coloring game, a strategy is
a distribution of probabilities over the set of remaining colors compatible with the colors
already assigned to the neighbors. (This set may even include a “fake” color 0 if nodes do
not need to be systematically participating to a choice of color at every round [7]).

I Remark. The distribution D over the labels compatible with the ball of radius t centered
at v is the unique item subject to non-orthodox behaviors. In particular, in LCL games,
every node executes the prescribed algorithm, forwards messages correctly, and does not lie
about its internal state, apart from what is concerning its private strategy for choosing its
temporary label at random.

The strategy of a node at a round, i.e., the distribution D of probability over the labels,
may depend on the history of that node at any point in time during the execution of the
generic distributed construction algorithm. On the other hand, the individual strategies
depend only on the knowledge accumulated by the nodes along with the execution of the
algorithm. In fact, at the beginning of the algorithm, player v does not even know which
node she will play in the network, and just knows that the network may belong to some
given graph family (like, e.g., cycles, planar graphs, etc.).

Payoff. The payoff of the nodes is aiming at capturing the tension between the objective
of every node to compute a global solution rapidly (as this global solution brings benefits to
every node), versus avoiding certain forms of solutions (which may not be desirable from an
individual perspective). We denote by prefv a preference function, which is an abstraction of
how much node v will “suffer” in the future according to a computed solution. For instance,
in the MIS game where nodes do not want to belong the constructed MIS, one could set

prefv(I) =
{

0 if v ∈ I
1 otherwise

for every MIS I. More specifically, we define, for each node v,

prefv : {good balls} → [0, 1]
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by associating to each good ball B centered at v the preference prefv(B) of v for that ball.
The payoff function πv of node v at the completion of the algorithm is decaying with the
number k of rounds before the algorithm terminates at v. More precisely, we set

πv = δk prefv(Bv)

where 0 < δ < 1 is a discount factor, Bv is the good ball centered at v as returned by the
algorithm, and k is the number of rounds performed before all nodes in Bv fix their labels.

The choice of δ ∈ (0, 1) reflects the tradeoff between the quality of the solution from the
nodes’ perspective, and their desire to construct a global solution quickly. Note that k is at
least the time it takes for v to fix its label, and at most the time it takes for the algorithm
to terminate at all nodes. If the algorithm does not terminate around v, that is, if a label
remains perpetually undecided in at least one node of Bv, then we set πv = 0.

The payoff of a node v will thus be large if all nodes in Bv decide quickly (i.e., k is small),
and if the labels computed in Bv suits node v (i.e., prefv(Bv) is close to 1).
Conversely, if v or another node in its ball Bv takes many rounds before deciding a label
(i.e., k is large), or if node v is not satisfied by the computed solution in Bv (i.e., prefv(Bv)
is close to 0), then the payoff of v will be small.

In particular, if the preference for every good ball is the same, then maximizing the payoff is
equivalent to completing the task as quickly as possible. Instead, if the preference is very
small for some balls, then nodes might be willing to slow down the completion of the task,
with the objective of avoiding being the center of such a ball, in order to maximize their
payoff. That is, such nodes may bias their distribution D towards preferred good balls, even
if this is at the price of increasing the probability of conflicting with the choices of close
nodes, resulting in more iterations before reaching convergence.

1.2 Our Results
We show that LCL games have trembling-hand perfect equilibria, that is, a stronger form of
sequential equilibria due to Reinhard Selten [29], which are themselves a stronger form of Nash
equilibria. Trembling-hand perfect equilibria include the possibility of off-the-equilibrium
play, i.e., players may, with small probabilities, choose unintended strategies. In contrast, in
Nash equilibria, players are assumed to play precisely as specified by the equilibrium. We
show the following:

I Theorem 1. For any greedily constructible locally checkable labeling, the LCL game
associated to that labeling has a symmetric trembling-hand perfect equilibrium.

Therefore, in particular, for many tasks occurring in the context of distributed network
computing such as MIS, and (∆ + 1)-coloring, there exist strategies played by the nodes of
the network for solving these tasks such that no nodes have incentive to deviate from these
strategies. Moreover, the related equilibria are strong forms of Nash equilibria which ensure
that the players behave rationally even off the equilibrium path.

To establish Theorem 1, we first notice that LCL games belongs to the class of extensive
games with imperfect information, because a node plays arbitrarily many times, and is not
necessarily aware of the actions taken by far away nodes in the network. Also, LCL games
belongs to the class of games with infinite horizon and finite action set: the horizon is
infinite because neighboring nodes may perpetually prevent each other from terminating,
and the action set is supposed to be finite (as long as the set of labels is finite). However,
the classical game theoretical result [12] does not explicitly apply to LCL games. Indeed,
first, in LCL games the actions of far-away nodes are not observable. Second, the imperfect
information in [12] is solely related to the fact that players play simultaneously, while, again,
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in LCL games, imperfect information also refers to the fact that each node is not aware of
the states of far away nodes in the network. It follows that the first step in our proof consists
of revisiting the results in [12] for extending them, as specified in the following result.

I Lemma 2. Every infinite, continuous, measurable, well-rounded, extensive game with
perfect recall and finite action set has a trembling-hand perfect equilibrium. Moreover, if the
game is, in addition, symmetric, then it has a symmetric trembling-hand perfect equilibrium.

The hypotheses regarding the nature of the strategy, and the nature of the payoff function
(continuity, measurability, etc.) are standard in the framework of extensive games. The
notion of well-rounded game is new, and is used to capture the fact that the nodes play in
synchronous rounds in LCL games. The fact that the equilibrium is symmetric is crucial as
far as games in networks are concerned since, in LCL games, as in randomized distributed
computing in general, the instructions given to all nodes are identical, and the behavior
of the nodes only vary along with the execution of the algorithm when they progressively
discover their environment. Extending the results in [12] is quite technical, but follows the
standard methods for establishing such results in game theory. Therefore, we have chosen
not to include the proof of Lemma 2 in this extended abstract.

The more interesting part of the proof, as far as local distributed computing in networks
is concerned, is to show that LCL games satisfy all requirements stated in Lemma 2. This is
the role of the following result:

I Lemma 3. LCL games are symmetric, infinite, continuous, measurable, well-rounded,
extensive games with perfect recall and finite action set.

Lemmas 2 and 3 together prove Theorem 1. The rest of the paper is therefore focussing
on formalizing LCL games, and on proving Lemma 3.

1.3 Related Work
Let us first position our result into the various settings of game theory. Indeed, games take
various forms, and the types of equilibria that can be satisfied by these games vary according
to their forms. Table 1 surveys the results regarding equilibria for various game settings,
from the finite strategic games to the extensive games with imperfect information (we restrict
our attention to games with a finite number of players). Recall that trembling-hand perfect
equilibria [29] are refinements of sequential equilibria, which are themselves refinements of
subgame-perfect equilibria, all of them being Nash equilibria. In Table 1, we distinguish
strategic games (i.e., 1-step games like, e.g., prisoner’s dilemma) from extensive games (i.e.,
game trees with payoffs, like, e.g., monetary policy in economy). For the latter class, we
also distinguish games with perfect information (i.e., every player knows exactly what has
taken place earlier in the game), from the games with imperfect information. We also
distinguish finite games (i.e., games with a finite number of pure strategies, and finite number
of repetitions) from games with infinite horizon (i.e., games which can be repeated infinitely
often). The latter class of games is also split into games with finite numbers of actions, and
games with infinite set of actions (like, e.g., when fixing the price of a product). In particular,
Fudenberg and Levine [12] have proved that, under specific assumptions, every extensive
game with imperfect information and finite action set has a sequential equilibrium (for
behavior strategies). The specific class of games for which this result holds can be described
as extensive games with observable actions, simultaneous moves, perfect recall, and finite
action set, plus some continuity requirements. Although this class of games captures repeated
games, and contains natural games in economy, LCL games are not explicitly included into
this class. Indeed, as we already mentioned, the actions of far-away nodes are not observable
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Table 1 A summary of results about the existence of equilibria.

Strategic Games Extensive games with Extensive games with
perfect information imperfect information
[28] [29]

Finite games [25] Subgame-perfect equilibrium Trembling-hand perfect eq.
Nash equilibrium Pure strategies Behavior strategies

Games with Mixed strategies [12] [12]
a finite Subgame-perfect equilibrium Sequential equilibrium
action set Pure strategies Behavior strategies
Games with [11] [16] [10]
an infinite [14] Subgame-perfect equilibrium Nash equilibrium
action set Nash equilibrium Pure strategies Behavior strategies

Mixed strategies

in LCL games, and, in these latter games, imperfect information also refers to the fact that
each node is not aware of the states of far away nodes in the network.

We now list some previous works related to games in networks (for network formation
games, see, e.g., [6, 17]). Many games in networks have complete information, and, among
games with incomplete information, a large part of the literature is dedicated to single-stage
games where players are not initially aware of the network topology (see the survey [18]).
Repeated games in networks have also been considered a lot in the literature (again, see [18]).
These games differ from LCL games since, in repeated games, the utility of a player depends
on each round, and it is computed pairwise with each neighbor, while, in LCL games,
the utility is computed solely when the player terminates, and may depend on the whole
neighborhood. Regarding games with incomplete information involving communications in
networks, it is worth mentioning [2, 8, 9, 13, 15]. However, all these work mostly refer to
games in which the players’ actions consist in choosing which information to reveal, and
to whom it should be revealed. Instead, in LCL games, players actions are always fully
observable by their neighbors at distance ≤ t, where t is the maximum radius of the good
balls for the considered LCL task.

Probably the first contribution to distributed computing by rational agents is [1], which
studies leader election in various networks, including complete networks and rings. Different
forms of Nash equilibria are shown to exist, for both synchronous and asynchronous computing.
The contribution in [3] extended and generalized the results in [1] by considering other
problems (consensus, renaming, etc.), and by identifying different utility functions that
encompass different preferences of players in a distributed system: communication preference,
solution preference, and output preference. The paper [4] carried on this line of research,
by enlarging the considered set of problems to coloring, partition, orientation, etc., and by
addressing the question of how much global information agents should know a priori about
the network in order for equilibria to exist. All these previous work differ from our approach
in many ways. First, in [1, 3, 4], the agents strategies define the algorithm itself, including
which messages to send, which information to reveal, etc. Instead, in this paper, the agents
strategies solely consist in choosing a probability distribution on the possible outputs (at
each round, depending on the history of the player). Second, the algorithms in the three
aforementioned papers are “global” in the sense that they can take Ω(n) rounds in n-node
networks. Instead, our (generic) algorithm is in essence “local”, i.e., it is expected to converge
in a polylogarithmic number of rounds, even in networks with large diameter. Last but not
least, we consider a whole family of tasks at once (all “reasonable” LCL tasks) while the
three aforementioned papers address each task separately, each one with its own algorithm.
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2 The Extensive Games Related to LCL Games

In this section, we specify the type of games we are interested in, aiming at capturing the
characteristics of LCL games. We focus on extensive games with imperfect information, and
we include infinite horizon in the analysis of such games. We formally define all the concepts
appearing in the statement of Lemma 2, and/or useful for formally defining LCL games, and
proving Lemma 3. In particular, we define the novel notion of well-rounded games, which
fits with distributed network computing in the LOCAL model [26].

2.1 Basic Definitions

Recall that an extensive game is a tuple Γ = (N,A,X, P, U, p, π), where:
N = {1, . . . , n} is the set representing the players of the game. An additional player,
denoted by c, and called chance, is modeling all external random effects that might occur
in the course of the game.
A is the (finite) action set, i.e., a finite set representing the actions that can be made by
each player when she has to play.
X is the game tree, that is, a subset of A∗ ∪Aω where A∗ (resp., Aω) denotes the set of
finite (resp., infinite) strings with elements in A, satisfying the following properties:

the empty sequence ∅ ∈ X;
X is stable by prefix;
if (ai)i=1,...,k ∈ X for every k ≥ 1, then (ai)i≥1 ∈ X.

The set X is partially ordered by the prefix relation, denoted by �, where x � y means
that x is a prefix of y, and x ≺ y means that x is a prefix of y distinct from y. The
elements of X are called histories. A history x is terminal if it is a prefix of no other
histories in X. In particular, every infinite history in X is terminal. The set of terminal
histories is denoted by Z. If the longest history is finite then the game has finite
horizon, otherwise it has infinite horizon. For every non-terminal history x, we denote by
A(x) = {a ∈ A : (x, a) ∈ X} the set of available actions after the history x.
P is the player partition, i.e., a function P : X \ Z → N ∪ {c} that assigns a player to
each non-terminal history. P (x) is the player who has to play after the history x. The
sets Pi = {x ∈ X \ Z : P (x) = i}, for i ∈ N ∪ {c}, called player sets, form a partition
of X \ Z.
U is the information partition, that is, a refinement of the player partition, whose elements
are called information sets, such that for every u ∈ U , and for every two histories x, y
in this information set u, we have A(x) = A(y), i.e., the sets of available actions after
x and after y are identical. We can therefore define A(u) as the set of actions available
after the information set u. Formally, A(u) = {a ∈ A : (x, a) ∈ X for every x ∈ u}. For
every history x, the information set containing x is denoted by u(x). We also define
P (u) as the player who has to play after the information set u has been reached, and
for every player i, the set Ui = {u ∈ U : P (u) = i}. The collection {Ui, i ∈ N ∪ {c}}
forms a partition of U . Information sets regroup histories that are indistinguishable to
players. Since the chance player c is not expected to behave rationally, we will simply
put Uc = {{x}, x ∈ Pc}.
p is a function that assigns to every history x in Pc (the player set of the chance c) a
probability distribution over the set A(x) of available actions after the history x. This
chance function p is supposed to be common knowledge among the players.
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π is the payoff function, that is, π : Z → Rn assigns the payoff (a real value) to every
player in N for every terminal history of the game. We assume that every payoff is in
[−M,M ] for some M ≥ 0.

2.2 Well-Rounded Games
We introduce the concept of rounds in extensive games, and of well-rounded games.

I Definition 4. The round function r of an extensive game assigns a positive integer to
every non terminal history x, defined by r(x) = |Rec(x)| where

Rec(x) = {x′ ∈ X | x′ ≺ x and P (x′) = P (x)}.

We call r(x) the round of x. The round of a finite terminal history is the round of its
predecessor, and the round of an infinite history z is r(z) = ∞. An extensive game Γ for
which the round function is non decreasing with respect to the prefix relation, i.e.,

y � x =⇒ r(y) ≤ r(x),

is said to be well-rounded.

Note that not every game is well-rounded, because two histories x and y such that x � y
do not necessarily satisfy P (x) = P (y). In a well-rounded game, since r is non decreasing,
we have that, for any non terminal history x, every player has played at most r(x) + 1 times
before x. Moreover, every player which has played less than r(x) times before x will never
play again after x.

Let u ∈ Ui and u′ ∈ Ui be two (non necessarily distinct) information sets of the same
player i, for which there exist x ∈ u, x′ ∈ u′, and a ∈ A(u′), such that (x′, a) � x. Recall
that an extensive game is said to have perfect recall if, for every such i, u, u′ and a, we have:

∀y ∈ u,∃y′ ∈ u′ | (y′, a) � y.

The following lemma will allow us to safely talk about the round of an information set.

I Lemma 5. Let Γ be an extensive game with perfect recall, and let x ∈ X and x′ ∈ X be
two non terminal histories in the same information set u ∈ U . Then x and x′ have the same
round.

Proof. We first observe the following. Let Γ be an extensive game with perfect recall, and
let y ∈ X be a finite history. Let y′ ∈ X and y′′ ∈ X for which there exists u ∈ U such that

y′ ∈ Rec(y) ∩ u and y′′ ∈ Rec(y) ∩ u.

Then y′ = y′′. Indeed, since both y′ and y′′ are in Rec(y), we have that both are prefixes
of y, and thus one of the two is a prefix of the other. Assume, w.l.o.g., that y′′ ≺ y′ ≺ y

(as, if y′ = y′′ then we are done). Let a be the action such that (y′′, a) � y′. Since the
game has perfect recall, there must exist a history y′′′ ∈ u such that (y′′′, a) � y′′. Thus
y′′′ ≺ y′′ ≺ y′ ≺ y.We can repeat the same reasoning for y′′′ and y′′ as we did for y′′ and
y′. In this way, we construct an infinite strictly decreasing sequence of histories, which
contradicts the fact that y is finite.

If both Rec(x) and Rec(x′) are empty, then x and x′ have the same round. Assume,
w.l.o.g., that Rec(x) 6= ∅, and let y ∈ Rec(x). Let a be the action such that (y, a) � x.
Since the game has perfect recall, there exists y′ ∈ u(x′) such that (y′, a) � x′. Therefore
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y′ ≺ x′ and P (y′) = P (y) = P (x) = P (x′). It follows that y′ ∈ Rec(x′). Thus, for any
y ∈ Rec(x), we have identified a corresponding y′ ∈ Rec(x′). This mapping from Rec(x) to
Rec(x′) is one-to-one. Indeed, let y1 and y2 in Rec(x), and let y′1 and y′2 in Rec(x′) be the
corresponding histories. If y′1 = y′2, then, since u(y1) = u(y′1) and u(y2) = u(y′2) = u(y′1), we
get that

y1 ∈ Rec(x) ∩ u(y′1) and y2 ∈ Rec(x) ∩ u(y′1).

It follows from the above observation that y1 = y2. Thus the mapping is one-to-one, and
hence r(x) ≤ r(x′). It follows that we also have Rec(x′) 6= ∅. Therefore, we can apply
the same reasoning by switching the roles of x and x′, which yields r(x′) ≤ r(x). Thus
r(x) = r(x′). J

2.3 Strategies, Outcomes, and Expected Payoff
In this section, we first recall several basic concepts about extensive games with perfect
recall. Without loss of generality, we restrict our attention to behavioral strategies since such
strategies are outcome-equivalent to mixed strategies thanks to [20]. The main objective of
this section is to define the expected payoff function, which is novel as it is adapted to infinite
games.

Recall that, for an information set u, the local strategy bi,u of a player i is a probability
distribution over the set A(u) of actions available given u. The set of local strategies of
player i for u is denoted by Bi,u. The behavioral strategy bi of a player i is a function which
assigns a local strategy bi,u to every information set u of this player. The set of all behavioral
strategies of player i is denoted by Bi. A strategy profile is a n-tuple of behavioral strategies,
one for each player. The set of all strategy profiles is B = ×i∈NBi. For each player i, we
denote by B−i the set ×j 6=iBj . Since

B = Bi ×B−i = ×i∈NBi,

a strategy profile b can be identified different ways, as b = (bi, b−i) = (b1, b2, . . . , bn). If
every player plays according to a strategy profile b, then the outcome of the game in entirely
determined, in the sense that every history x has a probability ρb(x) of being reached. For
every strategy profile b, and every history x = (ai)i=1,...,k where k ∈ N ∪∞, the realization
probability of x is defined by ρb(∅) = 1, and

ρb(x) =
k−1∏
i=0

bP (xi),u(xi)(ai+1)

where x0 = ∅, and, for every positive i ≤ k, xi = (a1, a2, . . . , ai). For the chance player c,
we simply identify its strategy with the chance function p:

P (xi) = c⇒ bP (xi),u(xi)(ai+1) = p(xi, ai+1).

The function ρb : X → [0, 1] is called the outcome of the game under the strategy profile b.
An outcome ρ : X → [0, 1] is feasible if and only if there exists a strategy profile b such that
ρ = ρb. The set of feasible outcomes of Γ is denoted by O.

We are now ready to define the expected payoff. Note that, in a game with infinite horizon,
there can be uncountably many terminal histories. Therefore the definition of the probability
measure on Z requires some care. For any finite history x, let

Zx = {z ∈ Z | x � z}.
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Note that Zx might be uncountable. Let Σ be the σ-algebra on Z generated by all sets of
the form Zx for some finite history x. For each strategy profile b, the measure µb on Σ is
defined by: for every set Zx, µb(Zx) = ρb(x). This definition ensures that µb is a probability
measure because µb(Z) = µb(Z∅) = ρb(∅) = 1.

I Definition 6. Let π be a payoff function that is measurable on Σ. The expected payoff
function Π assigns a real value Π(b) to every strategy profile b ∈ B, defined by

Π(b) =
∫

Σ
π dµb .

Note that each component of the expected payoff function is bounded by M , where M is the
upper bound on every payoff. A game Γ whose payoff function π is measurable on Σ is said
to be a measurable game. In the following, we always assume that the considered games are
measurable.

2.4 Equilibria, and Subgame Perfection
We now show how to adapt the standard notion of ε-equilibria (cf., e.g., [27]) to infinite
games (Nash equilibria are special cases of ε-equilibria, with ε = 0). Recall that a strategy
profile b is a ε-equilibrium if and only if, for every player i, and every behavior strategy
b′i ∈ Bi of this player, we have Πi(b′i, b−i) − Πi(b) ≤ ε. Similarly, we recall the notions of
subgames and subgame perfect equilibria (see, e.g., [28]). A subtree X ′ of X is said to be
regular if no information sets contain both a history in X ′ and a history not in X ′. To each
regular subtree X ′ is associated a game Γ′ = (N,A,X ′, P ′, U ′, p′, π′), where P ′, U ′, p′ and
π′ are the restrictions of P , U , p and π to X ′, called a subgame. The notions of outcomes
and expected payoff functions for subgames follow naturally.

I Definition 7. A strategy profile b is a subgame perfect ε-equilibrium of an infinite game Γ
if and only if, for every subgame Γ′, the restriction of b to Γ′ is an ε-equilibrium.

Note that a subgame perfect ε-equilibrium of Γ is an ε-equilibrium.

2.5 Metrics
In this section, we now define specific metrics on the set O of feasible outcomes, and on the
set of behavior strategy profiles. These definitions are inspired from [12], with adaptations
to fit our infinite setting.

I Definition 8. Let ρ1, ρ2 ∈ O be two feasible outcomes of the same extensive game Γ. We
define the following metric d on O: d(ρ1, ρ2) = supx∈X,x finite 2−r(x) ·

∣∣ρ1(x)− ρ2(x)
∣∣ where

r(x) is the round of the finite history x.

I Lemma 9. The function d : O ×O → R specified in Definition 8 is a metric.
Proof. We first show that d satisfies the triangle inequality. Let ρ1, ρ2 and ρ3 be three
feasible outcomes of Γ. For any finite history x we have the following:

|ρ1(x)− ρ3(x)| ≤ |ρ1(x)− ρ2(x)|+ |ρ2(x)− ρ3(x)|
⇒ 2−r(x)|ρ1(x)− ρ3(x)| ≤ 2−r(x)|ρ1(x)− ρ2(x)|+ 2−r(x)|ρ2(x)− ρ3(x)|
⇒ sup

x∈X
x finite

2−r(x)|ρ1(x)− ρ3(x)| ≤ sup
x∈X

x finite

(
2−r(x)|ρ1(x)− ρ2(x)|+ 2−r(x)|ρ2(x)− ρ3(x)|

)
⇒ sup

x∈X
x finite

2−r(x)|ρ1(x)− ρ3(x)| ≤ sup
x∈X

x finite

2−r(x)|ρ1(x)− ρ2(x)|+ sup
x∈X

x finite

2−r(x)|ρ2(x)− ρ3(x)|

⇒ d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3).
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Next, we prove that d separates different outcomes. Let ρ1 and ρ2 be two feasible outcomes
such that d(ρ1, ρ2) = 0. By definition, this implies that, for every finite history x, we have
ρ1(x) = ρ2(x). Let b1 and b2 be two strategy profiles such that ρ1 = ρb1 and ρ2 = ρb2 .
Let x = (ak)k≥1 be an infinite history, and, for k ≥ 1, let xk = (a1, a2, . . . , ak) be the
corresponding increasing sequence of its prefixes. By definition, ρb1(x) is the limit, for
k → ∞, of the sequence ρb1(xk), and ρb2(xk) → ρb2(x) when k → ∞ as well. Since the
two sequences are equal, they have the same limit, and therefore ρ1(x) = ρ2(x). Since this
equality holds for every infinite history x, it follows that ρ1 = ρ2. J

We can use d to define a metric on behavioral strategy profiles as follows. Let b1, b2 ∈ B
be two behavioral strategy profiles of the same game Γ. We define the metric d on B by:

d(b1, b2) = max
{
d (ρb1 , ρb2) , sup

i∈N
bi∈Bi

d
(
ρ(bi,b1

−i
), ρ(bi,b2

−i
)

)}
.

Finally, we define the continuity of the expected payoff function using the sup norm over Rn.
Specifically, the expected payoff function Π is continuous if, for every sequence of strategy
profiles (bk)k≥1, and every strategy profile b, we have:

d(bk, b) →
k→∞

0 =⇒ sup
i∈N

∣∣Πi(bk)−Πi(b)
∣∣ →

k→∞
0.

An extensive game Γ is continuous if its expected payoff function is continuous.

2.6 Equilibria of Extensive Games Related to LCL Games
As stated in Lemma 2, it can be proved that every (symmetric) infinite, continuous, measur-
able, well-rounded, extensive game with perfect recall and finite action set has a (symmetric)
trembling-hand perfect equilibrium. (Due to lack of space, this proof is not included in this
extended abstract).

3 Proof of Lemma 3

In this section, we show that LCL games satisfy all hypotheses of Lemma 2, from which we
derive Theorem 1. We start by formally defining LCL games.

3.1 Formal Definition of LCL Games
Let A be a finite alphabet, F a family of graphs with at most n vertices, D a probability
distribution over F , and L a greedily constructible LCL task over graphs in F . Let good(L)
be the set of good balls in L, and let t be the radius of L, that is, the largest radius of the
good balls. Let prefi : good(L) 7→ [0, 1], be a preference function of player i over good balls,
and let δ ∈ (0, 1), called discounting factor. We define the game

Γ(L,D,pref, δ) = (N,A,X, P, U, p, π)

associated to the LCL task L, the distribution D, the preference function pref = (prefi)i∈N ,
and the discounting factor δ, as follows.

The player set is N = {1, . . . , n}.
The action set is A ∪ F where the actions in F are only used by the chance player c in
the initial move, and the actions in A are used by the actual players in N .
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The first move of the game is made by the chance player, that is, P (∅) = c. As a result,
a graph G ∈ F is selected at random according to the probability distribution D, and
a one-to-one mapping of the players to the nodes of G is chosen uniformly at random.
From now on, the players are identified with the vertices of the graph G, labeled from 1
to n. Note that F might be reduced to a single graph, e.g., F = {Cn}, and the chance
player just selects, for each vertex v, which player i ∈ N is playing at v (in a one-to-one
manner).
The game is then divided into rounds (corresponding to the intuitive meaning in syn-
chronous distributed algorithms). At each round, the active players play in increasing
order, from 1 to n. At round 0 every player is active and plays, and every action in A is
available.
At the end of each round (i.e., after every active player has played the same number of
times), some players might become inactive, depending on the actions chosen during the
previous rounds. For every i ∈ N , let s(i) denote the last action played by player i, which
we call the state of i, and let ball(i) denote the ball of radius t centered at node i. Every
player i such that ball(i) ∈ good(L) at the end of a round becomes inactive.
In subsequent rounds, the set of available actions might be restricted. For every round
r > 0, and for every active player i, an action a ∈ A is available to player i if and only if
there exists a ball b ∈ good(L) compatible with the states of inactive players in which
s(i) = a.
A history is terminal if and only if either it is infinite, or it comes after the end of a round
with every player being inactive after that round.
Let x be a history. We denote by actionsi(x) the sequence of actions extracted from x by
selecting all actions taken by player i during rounds before r(x). (The action possibly
made by player i at round r(x), and actions made by a player j 6= i are not included in
actionsi(x)).
Let x and y be two non terminal histories such that P (x) = P (y) = i. Then x and y are
in the same information set if and only if, for every j ∈ ball(i), we have

actionsj(x) = actionsj(y).

This can be interpreted by the fact that a player i “knows” every action previously taken
by any player at distance at most t from i in the graph.
Let i be a player, and let z be a terminal history. We define the terminating time of
player i in history z by timei(z) = max{|actionsj(z)|, j ∈ ball(i)}−1. The payoff function
π of the game is then defined as follows. For every player i, and every terminal history z,
we have πi(z) = δtimei(z) · prefi(ball(i)). And πi(z) = 0 if timei(z) =∞.

3.2 The proof of Lemma 3
We survey the properties of LCL games, with emphasis on those listed as pre-conditions in
the statement of Lemma 2.

I Lemma 10. LCL games are well-rounded.

Proof. This follows directly from the fact that, in a LCL game, (1) every active player plays
at every round until it becomes inactive, and (2) once inactive, a player cannot become active
again. J

I Lemma 11. LCL games are symmetric.
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Proof. This follows directly from the fact that, in a LCL game, the position of every player
in the actual graph (which might be fixed, or chosen at random in some given family of
graphs according to some given distribution) is chosen uniformly at random. J

I Lemma 12. LCL games have perfect recall.

Proof. Let Γ = (L,D,pref, δ) = (N,A,X, P, U, p, π) be an LCL game. Let u and u′ be two
information sets of the same player i, for which there exists x ∈ u, x′ ∈ u′, and a ∈ A(u′)
such that (x′, a) � x. Let y be a history in u. Since x and y are in the same information
set u, it follows that, for every player j ∈ ball(i), we have actionsj(x) = actionsj(y). In
particular, this implies that x and y are in the same round. Let y′ be the unique history
which is a prefix of y with P (y′) = i, and with r(y′) = r(x′). (Such a history exists because
r(x′) < r(x), and r(y) = r(x)). Since the players play in the same order at every round, we
get that, for every player j ∈ ball(i), actionsj(x′) = actionsj(y′). As a consequence, we have
y′ ∈ u′. Furthermore, since actionsi(x) = actionsi(y), the action played by i after y′ must be
a, which implies (y′, a) � y, and concludes the proof. J

I Lemma 13. The payoff function π of a LCL game is measurable on the σ-algebra Σ
corresponding to the game.

Proof. We prove that, for every player i, and for every a ∈ R, π−1
i (]a,+∞[) ∈ Σ, which

implies that π is measurable on Σ. In LCL game, we have πi : Z 7→ [0, 1]. For every a < 0,
we have π−1

i (]a,+∞[) = Z ∈ Σ. Similarly, for every a > 1, we have π−1
i (]a,+∞[) = ∅ ∈ Σ.

So, let us assume that a ∈]0, 1], and let z be a terminal history such that πi(z) > a. We have
timei(z) < ln a/ ln δ, i.e., every player in ball(i) has played only a finite number of times in
the history z. Let x be the longest history such that x � z, and r(x) = timei(z). By this
setting, the history x′ that comes right after x in z is the shortest prefix of z satisfying that
every player in ball(i) is inactive. Let z′ be a terminal history such that x′ � z′. Since every
player j ∈ ball(i) is inactive after x′, it follows that the state of any such player in z′ is
the same as its state in z, and thus πi(z′) = πi(z). It follows from the above that, for any
terminal history z such that πi(z) > a, there exists a finite history x′ in round timei(z) + 1
such that z ∈ Zx′ ⊆ π−1

i (]a,+∞[). Since there are finitely many histories in round timei(z),
we get that π−1

i (]a,+∞[) is the union of a finite number of sets of the form Zx′ . As a
consequence, it is measurable in Σ. It remains to prove that π−1

i (]0,+∞[) ∈ Σ. This simply
follows from the fact that

π−1
i (]0,+∞[) =

⋃
k≥1

π−1
i (] 1

k
,+∞[),

and from the fact that Σ is stable by countable unions. J

I Lemma 14. LCL games are continuous.

Proof. Let b be a strategy profile, and let (bk)k≥0 be a sequence of strategy profiles such
that d(bk, b)→ 0 when k →∞. By definition of the metric d on B (cf. subsection 2.5), we
have that d(ρbk , ρb)→ 0 when k →∞. By definition of the metric on O, we have that, for
any finite history x, |ρbk (x) − ρb(x)| −→

k�∞
0. It follows that, for any set of the form Zx as

defined in subsection 2.3, |µbk (Zx)−µb(Zx)| −→
k�∞

0. In other words the sequence of measures
µbk strongly converges to µb. Since, for every player i, the function πi is measurable and
bounded, it follows that∫

Σ
πi dµbk −→

k�∞

∫
Σ
πi dµb.
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Therefore, Πi(bk) −→
k�∞

Πi(b), and thus the expected payoff function Π is continuous. J

Lemmas 10-14 show that every LCL game satisfies the requirements of Lemma 2, that is,
every LCL game satisfies Lemma 3. J

4 Conclusion and Further Work

In this paper, we have proved that natural games occurring in the framework of local
distributed network computing have trembling-hand perfect equilibria, a strong form of Nash
equilibria. Further study includes the analysis of the performances of the robust algorithms
resulting from these equilibria. This study is challenging as determining the performances of
iterative distributed construction algorithms such as the generic algorithm in Section 1.1.2 is
non trivial, even if nodes are altruistic, and follow the prescribed actions imposed by the
algorithm. On the other hand, this line of study is of the utmost importance as, in the
framework of large scale distributed computing, it is unreasonable to assume that no nodes
will be tempted to deviate from the prescribed actions, for optimizing its own benefit, at the
expense of the performances of the algorithms, and of the quality of the solutions.
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Abstract
Spanners are fundamental graph structures that sparsify graphs at the cost of small stretch. In
particular, in recent years, many sequential algorithms constructing additive all-pairs spanners
were designed, providing very sparse small-stretch subgraphs. Remarkably, it was then shown
that the known (+6)-spanner constructions are essentially the sparsest possible, that is, larger
additive stretch cannot guarantee a sparser spanner, which brought the stretch-sparsity trade-
off to its limit. Distributed constructions of spanners are also abundant. However, for additive
spanners, while there were algorithms constructing (+2) and (+4)-all-pairs spanners, the sparsest
case of (+6)-spanners remained elusive.

We remedy this by designing a new sequential algorithm for constructing a (+6)-spanner with
the essentially-optimal sparsity of Õ(n4/3) edges. We then show a distributed implementation of
our algorithm, answering an open problem in [10].

A main ingredient in our distributed algorithm is an efficient construction of multiple weighted
BFS trees. A weighted BFS tree is a BFS tree in a weighted graph, that consists of the lightest
among all shortest paths from the root to each node. We present a distributed algorithm in the
CONGEST model, that constructs multiple weighted BFS trees in |S|+D − 1 rounds, where S
is the set of sources and D is the diameter of the network graph.
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7:2 The Sparsest Additive Spanner via Multiple Weighted BFS Trees

1 Introduction

A spanner of a graph G is a spanning subgraph H of G that approximately preserves distances.
Spanners find many applications in distributed computing [12, 9, 42, 43, 45], and thus their
distributed construction is the center of many research papers. We focus on spanners that
approximately preserve distances between all pairs of nodes, and where the stretch is only by
an additive factor (purely-additive all-pairs spanners).

Out of the abundant research on distributed constructions of spanners, only two papers
discuss the construction of purely additive spanners in the congest model: the construction
of (+2)-spanners is discussed in [35], and the construction of (+4)-spanners and (+8)-
spanners in [10], along with other types of additive spanners and lower bounds. However,
the distributed construction of (+6)-spanners remained elusive, stated explicitly as an open
question in [10]. This is especially important since additive factors greater then 6 cannot
yield essentially sparser spanners [2].

In this paper, we give a distributed algorithm for constructing a (+6)-spanner, with an
optimal number of edges up to sub-polynomial factors; our spanner is even sparser than
the (+8)-spanner presented in [10]. Several sequential algorithms building (+6)-spanners
were presented, but none of them seems to be appropriate for a distributed setting. Thus,
to achieve our result we also present a new, simple sequential algorithm for constructing
(+6)-spanners, a result that could be of independent interest.

As a key ingredient, we provide a distributed construction of multiple weighted BFS
trees. Constructing a breadth-first search (BFS) tree is a central task in many computational
settings. In the classic synchronous distributed setting, constructing a BFS tree from a given
source is straightforward. Due to its importance, this task has received much attention in
additional distributed settings, such as the asynchronous setting (see, e.g., [40] and references
therein). Moreover, at the heart of many distributed applications lies a graph structure that
represents the edges of multiple BFS trees [30, 34], which are rooted at the nodes of a given
subset S ⊆ V , where G = (V,E) is the underlying communication graph. Such a structure
is used in distance computation and estimation [30, 29, 34], routing table construction [34],
spanner construction [10, 35, 34], and more.

When the bandwidth is limited, constructing multiple BFS trees efficiently is a non-trivial
task. Indeed, distributed constructions of multiple BFS trees in the congest model [40],
where in each round of communication every node can send O(logn)-bit messages to each of
its neighbors, have been given in [30, 34], who showed that it is possible to build BFS trees
from a set of sources S in O(|S|+D) rounds, where D is the diameter of the graph G. It is
easy to show that this is asymptotically tight.

In some cases, different edges of the graph may have different attributes, which can be
represented using edge weights. The existence of edge weights has been extensively studied
in various tasks, such as finding or approximating lightest paths [20, 37, 27, 21, 34, 31, 4, 25],
finding a minimum spanning tree (MST) in the graph [5, 23, 13], finding a maximum
matching [36, 13], and more. However, as far as we are aware, no study addresses the
problem of constructing multiple weighted BFS (WBFS) trees, where the goal is not to find
the lightest paths from the sources to the nodes, but rather the lightest shortest paths. That
is, the path in a WBFS tree from the source s to a node v is the lightest among all shortest
paths from s to v in G.

Thus, we provide an algorithm that constructs multiple WBFS trees from a set of source
nodes S in the congest model. Our algorithm completes in |S| + D − 1 rounds, which
implies that no overhead is needed for incorporating the existence of weights.
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1.1 Our contribution
At a high level, our approach for building multiple WBFS trees is to generalize the algorithm
of Lenzen et al. [34] in order to handle weights. In [34], the messages are pairs consisting of
a source node and a distance, which are prioritized by the distance traversed so far. When
incorporating weights into this framework it makes sense to use triplets instead of pairs,
where each triplet also contains the weight of the respective path. However, it may be that a
node v needs to send multiple messages that correspond to the same source and the same
distance but contain different weights, since congestion over edges may cause the respective
messages to arrive at v in different rounds and, in the worst case, in a decreasing order of
weights. The challenge in generalizing this framework therefore lies in guaranteeing that
despite the need to consider weights, we can carefully choose a total order to prioritize
triplets, such that not too many messages need to be sent, allowing us to handle congestion.
Our construction and its proof appear in Section 3, giving the following.

I Theorem 1. Given a weighted graph G = (V,E,w) and a set of nodes S ⊆ V , there exists
an algorithm for the congest model that constructs a WBFS tree rooted at s, for every
s ∈ S, in |S|+D − 1 rounds.

The importance of our multiple WBFS trees construction lies in our ability to use it
for pinning down the question of constructing (+6)-spanners in the congest model. The
construction of additive spanners in the congest model was studied beforehand [35, 10],
but the +6 case remained unresolved, for reasons we describe below. Naturally, the quality
of a spanner is measured by its sparsity, which is the motivation for allowing some stretch in
the distances to begin with, and different spanners present different tradeoffs between stretch
and sparsity. The properties of our (+6)-spanner construction algorithm are summarized in
the following theorem.1

I Theorem 2. There exists an algorithm for the congest model that constructs a (+6)-
spanner with O

(
n4/3 log4/3 n

)
edges in O

(
n2/3

log1/3 n
+D

)
rounds and sucseeds w.h.p.

Previous distributed algorithms for spanners similar to ours, i.e., purely additive all-
pairs spanners, construct a (+2)-spanner with Õ(n3/2) edges in Õ(n1/2 + D) rounds [35],
a (+4)-spanner with Õ(n7/5) edges in Õ(n3/5 + D) rounds [10], and a (+8)-spanner with
Õ(n15/11) edges in Õ(n7/11 + D) rounds [10]. Hence, our algorithm is currently the best
non-trivial spanner construction algorithm in terms of density, sparser even than the previous
(+8)-spanner. The option of getting even sparser spanners by allowing more stretch was
essentially ruled out [2], while the question of improving the running time remains open for
all stretch parameters.

1.2 Other spanner construction algorithms
Previous distributed spanner construction algorithms all build upon known sequential al-
gorithms, and present a distributed implementations of them, or of a slight variant of
them [35, 10]. For example, many sequential algorithms start in a clustering phase, where
stars around high-degree nodes are added to the spanner one by one. Implementing this
directly in the distributed setting will take too long; instead, it is shown that choosing cluster
centers at random yields almost as good results, and can be implemented in a constant

1 We use w.h.p. to indicate a probability that is at least 1 − 1/nc for some constant c ≥ 1 of choice.
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time. Similar methods are used for implementing other parts of the construction. However,
the approach of finding a distributed implementation for a sequential algorithm fails for all
known (+6)-spanner algorithms, as described next. Thus, we introduce a new sequential
algorithm for the problem, and then present its distributed implementation.

There are three known approaches for the design of sequential (+6)-spanner algorithms.
The first, presented by Baswana et al. [6], is based on measuring the quality of paths in
terms of cost and value, and adding to the spanner only paths which are “affordable”. This
approach was later extended by Kavitha [32] to other families of additive spanners. The
second approach, presented by Woodruff [46], uses a subroutine that finds almost-shortest
paths between pairs of nodes, and obtains a faster algorithm at the expense of a slightly worst
sparsity guarantee. The third approach, presented by Knudsen [33], is based on repeatedly
going over pairs of nodes, and adding a shortest path between a pair of nodes to the spanner
if their current distance in the spanner is too large.

Unfortunately, direct implementation in the congest model of the known sequential
algorithms is highly inefficient. We are not aware of fast distributed algorithms that allow
the computation of the cost and value of paths needed for the algorithm of [6]. Similarly,
for [46], the almost-shortest paths subroutine seems too costly for the congest model. The
algorithm of [33] needs repeated updates of the distances in the spanner between pairs of
nodes after every addition of a path to it, which is a sequential process in essence, and thus
we do not find it suitable for an efficient distributed implementation.

A different approach for the distributed construction of (+6)-spanners could be to
adapt a distributed algorithm with different stretch guarantees to construct a (+6)-spanner.
This approach does not seem to work: the distributed algorithms for constructing (+2)-
spanners [35] and (+4)-spanner [10] are both very much tailored for achieving the desired
stretch, and it is not clear how to change them in order to construct sparser spanners
with higher stretch. The (+8)-spanner construction algorithm [10] starts with clustering,
and then constructs a (+4)-pairwise spanner between the cluster centers. Replacing the
(+4)-pairwise spanner by a (+2)-pairwise spanner will indeed yield a (+6)-all-pairs spanner,
as desired. However, even using the sparsest (+2)-pairwise spanners [10, 1], the resulting
(+6)-spanner may have Õ(n5/3) edges, denser than our new (+6)-spanner and than the
known (+8)-spanner [10].

Thus, we start by presenting a new sequential algorithm for the construction of (+6)-
spanners, an algorithm that is more suitable for a distributed implementation, and then
discuss its distributed implementation. Our construction starts with a clustering phase, and
then adds paths that minimize the number of additional edges that need to be added to the
spanner. To implement our construction in the congest model, we assign weights to the
edges and use our WBFS algorithm to find shortest paths with as few edges as possible that
are not yet in the spanner. Note that although the graph and the spanner we construct for
it are both unweighted, the ability of our multiple WBFS algorithm to handle weights is
crucial for our solution.

A (+6)-spanner must contain n4/3/2O(
√

log n) edges [2]. The best sequential algorithms [33,
6] construct a spanner with O(n4/3) edges. Our distributed algorithm constructs a spanner
with O(n4/3 log4/3 n) edges, which is slightly denser than optimal but still sparser than the
O(n4/3 log3 n) edges in the fast sequential construction of [46].

1.3 Related work
Algorithms for the congest model that construct multiple (unweighted) BFS trees, rooted
at a set of sources S, were suggested in [34] and [30], running in O(|S|+D) rounds. Both
algorithms start the construction of all the BFS trees simultaneously, and proceed by
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transferring messages containing the source of a BFS tree and the distance the message has
traversed so far. The algorithms differ in how they order message deliveries when several
messages need to be sent over an edge at the same round. We base our multiple WBFS
construction on the [34] algorithm, in which messages sent by a node are prioritized by the
distance they traversed so far, with a preference to messages that traversed smaller distance.
The [30] algorithm, which we cannot use for our construction [28], prioritizes messages by
the identity of the root, and transmits a message only in one direction of each edge in each
round.

Spanners were first introduced in 1989 by [41, 42], and since then have been a topic for wide
research due to their abundant applications. Prime examples for the need for sparse spanners
can be found in synchronizing distributed networks [42], information dissemination [9],
compact routing schemes [12, 43, 45], and more.

Distributed constructions of various spanners have been widely studied [35, 34, 44, 10,
6, 7, 14, 15, 16, 18, 19, 22, 17, 39, 24, 38, 26, 8]. Lower bounds were given in [44, 10, 3].
However, obtaining an efficient and sparse (+6)-all-pairs spanner has remained an open
question [10].

Several lower bounds for the time complexity of spanner construction in the congest
model where presented in [10], but these are applicable only to pairwise spanners with a
bounded number of pairs, and not to all-pairs spanners. A lower bound from [44] states
that the construction of a spanner with Õ(n4/3) edges, such as the one we build, must take
Ω̃(n3/8) rounds. This lower bound does not take into account the bandwidth restrictions at
all (it is proven for the local model), and so we believe that a higher lower bound for the
congest model should apply, but this is left as an intriguing open question.

2 Preliminaries

All graphs in this work are simple, connected and undirected. A graph can be unweighted,
G = (V,E), or weighted G = (V,E,w) with w : E → {0, . . . ,W}, in which case we assume
W ∈ poly(n). Given a path ρ in a weighted graph G, we use |ρ| to denote the length of
ρ, which is the number of edges in it, and w(ρ) to denote the weight of the path, which is
the sum of its edge-weights. The distance between two nodes u, v in a graph G, denoted
δG(u, v), is the minimum length of a path in G connecting u and v. The diameter of a graph
(weighted or unweighted) is D = maxu,v∈V {δG(u, v)}.

We consider the congest model of computation[40], where the nodes of a graph commu-
nicate synchronously by exchanging O(logn)-bit messages along the edges. The goal is to
distributively solve a problem while minimizing the number of communication rounds.

WBFS trees: We are interested in a weighted BFS tree, which consists of all lightest shortest
paths from the root, formally defined as follows.

I Definition 3. Given a connected, weighted graph G = (V,E,w) and a node s ∈ V , a
weighted BFS tree (WBFS) for G rooted at s is a spanning tree Ts of G satisfying the
following properties:
(i) For each v ∈ V , the path from s to v in T is a shortest path in G between s and v.
(ii) For each v ∈ V , no shortest path from s to v in G is lighter than the path from s to v

in T .

We emphasize that this is different than requiring a subgraph containing all lightest paths
from the root. One may wonder if a WBFS tree always exists, but this is easily evident by
the following refinement of a (sequential) BFS search, returning a WBFS tree: go over the
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7:6 The Sparsest Additive Spanner via Multiple Weighted BFS Trees

nodes in an order of non-decreasing distances from the source s, starting with w(s) = 0;
each node v chooses as a parent a neighbor u that was already processed and minimizes
w(v) = w(u)+w(u, v), and adds the edge {u, v} to the tree. Each node has a single parent, so
this is indeed a tree; the node ordering guarantees that this is indeed a BFS tree, assuring (i);
and the parent choice guarantees the paths are lightest among the shortest, assuring (ii).

Spanners: Given a graph G = (V,E), a subgraph H = (V,E′) of G is called an (α, β)-
spanner if for every u, v ∈ V it holds that δH(u, v) ≤ αδG(u, v) + β. The parameters α and
β are called the stretch parameters.

When α = 1, such a spanner is called a purely additive spanner. In this paper we focus
on purely additive (+6)-spanners, i.e., α = 1 and β = 6.

For completeness, we mention that when β = 0, such a spanner is called a multiplicative
spanner. In addition, while sometimes the stretch parameters need to be guaranteed only
for some subset of all the pairs of nodes of the graph (such as in pairwise spanners), we
emphasize that our construction provides the promise of a +6 stretch for all pairs.

3 Multiple Weighted BFS Trees

In the congest model, the problem of finding a WBFS tree requires each node to know its
parent in the WBFS tree, and the unweighted and weighted distances to the source within
the tree. This allows the node to send messages to the source node through the lightest
among all shortest paths. When there are multiple sources, each node should know the
parent leading to each of the sources in S.

We define data structures for representing multiple WBFS trees. Given a node v ∈ V , the
S-proximity-list (or proximity list for short) of v, noted PL∗v, is an ascending lexicographically
ordered list of triples (d(s, v), s, w(s, v)), where d(s, v) and w(s, v) are the length and weight
of the path from s to v in Ts. Two different triples are ordered such that (d(s, v), s, w(s, v)) <
(d(t, v), s, w(t, v)) if d(s, v) < d(t, v), or d(s, v) = d(t, v) and s < t, where s and t may be
compared by any predefined order on the node identifiers. Note that Ts contains a single
path from s to v, so both d(s, v) = d(t, v) and s = t cannot happen simultaneously without
having w(s, v) = w(t, v).

The S-path-map (or path-map for short) of v is a mapping from each source s ∈ S to the
parent of v in Ts, noted by PM∗v. The list PM∗v is sorted with respect to the order of PL∗v, such
that the first records of PM∗v belong to sources closest to v.

Algorithm 1, which constructs multiple WBFS trees from a set S in the congest model,
is based on carefully extending the distributed Bellman-Ford-based algorithm of Lenzen et
al. [34]. The heart of the algorithm is a loop (Line 7), and each iteration of it takes a single
round in the congest model. We show that |S| + D − 1 iterations of the loop suffice in
order to construct the desired WBSF trees.

The algorithm builds the WBFS trees by gradually updating the proximity list and the
path map of each node. Each round is composed of two phases: updating the neighbors
about changes in the proximity list, and receiving updates from other nodes. The path map
is only used by the current node, and therefore changes to it are not sent.

Ideally, each node would update its neighbors regarding all the changes made to its
proximity list. However, due to bandwidth restrictions, a node cannot send the entire
list in each round. Therefore, at each round each node sends to all of its neighbors the
lexicographically smallest triplet in its proximity list that it has not yet sent, while maintaining
a record noting which triplets have been sent and which are waiting. Each triplet is only
sent once, though a node may send multiple triplets regarding a single source.
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Algorithm 1: Weighted distributed Bellman-Ford algorithm for node v
1 Lv ← ()
2 for s ∈ S do
3 PMv(s)← ⊥
4 if v ∈ S then
5 PLv ← ((0, v, 0))
6 sentv(0, v, 0)← FALSE /* A variable marking sent triplets */

7 for |S|+D − 1 rounds do
8 if ∃(ds, s, ws) ∈ PLv such that sentv(ds, s, ws) = FALSE then
9 (ds, s, ws)← min {(dt, t, wt) ∈ PLv such that sentv(dt, t, wt) = FALSE}

10 send (ds, s, ws) to all neighbors
11 sentv(ds, s, ws)← TRUE

12 for received (ds, s, ws) from u ∈ V do
13 ds ← ds + 1
14 ws ← ws + w(u, v)
15 if @(d′s, s, w′s) ∈ PLv such that (d′s < ds or (d′s = ds and w′s < ws)) then
16 PLv ← PLv \ {(·, s, ·)}
17 PLv ← PLv ∪{(ds, s, ws)}
18 PMv(s)← u

19 sentv(ds, s, ws)← FALSE

A node uses the messages received in the current round in order to update its proximity
list and path map for the next round. A triplet (ds, s, ws) received by a node v from a
neighbor u represents the length ds and weight ws of some path ρ from s to u in the graph.
The node v then considers the extended path ρ′ = ρ ◦ v from s to v, compares it to its
currently known best path from s to v, and updates the proximity list and path map in case
a shorter path has been found, or a lighter path with the same length.

To prove correctness, we generalize the proof of [34] to handle weights, and show that
our algorithm solves the weighted (S, d, k)-detection problem: each node should learn which
are the sources from S closest to it, but at most k of them and only up to distance d. This
is formally defined as follows.

I Definition 4. Given a weighted graph G = (V,E,w), a subset S ⊆ V of source nodes, and
a node v ∈ V , let PL∗v denote the S-proximity-list and let PM∗v denote the path map of the
node v. The weighted (S, d, k)-detection problem requires that each node v ∈ V learns the
first min

{
k, λd

v

}
entries of PL∗v and PM∗v, where λd

v is the number of sources s ∈ S such that
d(s, v) ≤ d.

Given a node v, PLv is a variable in Algorithm 1 holding the proximity list of v, and we
denote by PL(r)

v the state of the list PLv at the beginning of round r of the algorithm, and by
PL(∞)

v the value of PLv at the end of the algorithm. Recall that PL∗v is the true proximity
list, so our goal is proving PL(∞)

v = PL∗v, i.e., proving that the algorithm obtains the correct
values of the proximity list.

We use similar notations for the path map PM∗v. Since the records of PMv are updated
under the same conditions as the records of PLv, the correctness of PMv at the end of the
algorithm with respect to PM∗v immediately follows, and we omit the details.
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We start by showing that if there was no bound on the number of rounds, then the values
of PLv would have eventually converged to the true values of PL∗v. The proof of Lemma 5 can
be found at the full version of this paper [11].

I Lemma 5. Given a graph G = (V,E,w) and a set S ⊆ V , if we let the for loop in Line 7
of Algorithm 1 to run forever, then there exists a round r0 ∈ N such that no node v ∈ V sends
messages or modifies PLv after round r0. Moreover, PL(r0)

v = PL∗v, i.e., for every (ds, s, ws) ∈
PL(r0)

v , it holds that ds = d(v, s) and ws = min {w(ρ) | ρ connects v with s, and |ρ| = ds}.

Lemma 5 shows that without the limit on the number of rounds, the algorithm would
compute the right values; however, it does not bound the number of rounds needed for this
to occur. Next, we show that |S|+D − 1 rounds suffice. We cannot apply the claims of [34]
directly, since the existence of weights restricts the number of viable solutions even further,
causing more updates to the proximity list and an increase in the number of messages sent.
However, we do use a similar technique: we bound the number of rounds in which the k
smallest entries of PLv can change.

For an entry (ds, s, ws) ∈ PL(r)
v , let `(r)

v (ds, s, ws) denote the index of the entry in the
lexicographically ordered list PL(r)

v at the beginning of round r. For completeness, we define
`

(r)
v (ds, s, ws) = −∞ if (ds, s, ws) did not appear in PLv at the beginning of round r, and

PLv =∞ if the triplet was removed from PLv before the beginning of this round. Note that
a removed triplet is never returned to the list, since the lexicographical order is transitive.

I Lemma 6. For a triplet (ds, s, ws), the following holds:
(i) `(r)

v (ds, s, ws) is non-decreasing with r.
(ii) If the triplet (ds, s, ws) is sent from a node u to a node v at round r, resulting in the

addition of a new triplet (d′s, s, w′s) to PLv at the end of round r, where d′s = ds + 1 and
w′s = ws + w(u, v), then `(r)

u (ds, s, ws) ≤ `(r+1)
v (d′s, s, w′s).

Part (i) follows from the fact that the number of triplets below (ds, s, ws) cannot decrease.
To prove part (ii), we show that all the triplets below (ds, s, ws) in PLu are sent from u to v
and added to PLv before (ds, s, ws) is sent and added.

Proof. Part (i) is a consequence of the method used by our algorithm for managing the list
PLv. According to our algorithm, triplets are not removed from PLv when they are sent. The
only case in which a triplet (dt, t, wt) is removed from PLv is when a lexicographically smaller
triplet (d′t, t, w′t) is added to the list instead. When this happens in round r, it holds that
`

(r)
v (dt, t, wt) ≥ `(r+1)

v (d′t, t, w′t), since the new triplet is lexicographically smaller. Hence, for
every other triplet (ds, s, ws) ∈ PLv, the number of lexicographically smaller triplets in PLv

cannot decrease throughout the algorithm.
We now turn to prove part (ii) of the lemma. By the fact that the triplet (ds, s, ws) is

sent by the node u in round r, we conclude that the `(r)
u (ds, s, ws)− 1 triplets preceding it

in the list PL(r)
u have already been sent by u in earlier rounds, and arrived at the node v.

For each such triplet (dt, t, wt), either dt ≤ ds, or t < s and dt = ds. Therefore, when added
to PLv as (dt + 1, t, wt + w(u, v)) it is lexicographically smaller than (d′s, s, w′s). At round
r, either (dt + 1, t, wt + w(u, v)) is in PL(r)

v or it was replaced by a lexicographically smaller
triplet containing t. Thus, there are at least `(r)

u (ds, s, ws)− 1 triplets smaller than (d′s, s, w′s)
in PL(r+1)

v , and hence `(r)
u (ds, s, ws) ≤ `(r+1)

v (d′s, s, w′s). J

Lemma 6 implies that as the algorithm progresses, messages at higher indexes of the
proximity list are sent and updated. This can be used to obtain an upper bound on the
round in which a triplet at a certain index of the proximity list can be sent or received, as
formalized by the next lemma.
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I Lemma 7. In round r ∈ N of Algorithm 1, a node v ∈ V can:
(i) send a message (ds, s, ws) only if

ds + `(r)
v (ds, s, ws) ≥ r

(ii) add to PLv a triplet (ds, s, ws) only if

ds + `(r+1)
v (ds, s, ws) > r

Part (i), when put in words, is rather intuitive: while a triplet might need to wait before
being sent, the waiting time is bounded from above by the distance the triplet has traversed
from its source, plus the number of triplets that were to be sent before it. Part (ii) is
complementary to part (i): the time before a triplet is added, is, once more, bounded by the
distance it traversed plus the number of lexicographically smaller triplets.

Proof. We start by showing that, for a given round r, if Lemma 7(i) holds for all nodes
then Lemma 7(ii) holds as well. Consider a triplet (d′s, s, w′s) that is added to PLv as
a result of a message (ds, s, ws) sent from u to v in round r, where d′s = ds + 1 and
w′s = ws + w(u, v). Lemma 7(i) implies that ds + `

(r)
u (ds, s, ws) ≥ r, and by Lemma 6(ii) we

have that `(r+1)
v (d′s, s, w′s) ≥ `(r)

u (ds, s, ws). As d′s > ds, we conclude

d′s + `(r+1)
v (d′s, s, w′s) > ds + `(r)

u (ds, s, ws) ≥ r,

which implies Lemma 7(ii).
Next, we prove by induction that both parts of the lemma hold. In round 1, Lemma 7(i)

holds trivially, since by definition `(1)
v (ds, s, ws) ≥ 1. Assume that Lemma 7 holds at round

r − 1; we show the lemma holds at round r. Since Lemma 7(i) implies Lemma 7(ii), it is
sufficient to show that every message (ds, s, ws) sent by some node v ∈ V in round r satisfies
ds + `

(r)
v (ds, s, ws) ≥ r.

Observe that if (ds, s, ws) is sent by a node v in round r, then the triplet must have been
added to PLv in some round r′ ≤ r − 1. If r′ = r − 1, according to the induction hypothesis,
Lemma 7(ii) holds and ds + `

(r)
v (ds, s, ws) > r − 1, implying ds + `

(r)
v (ds, s, ws) ≥ r, since all

the terms are integers.
Otherwise r′ < r − 1. In this case, in round r − 1 the triplet (ds, s, ws) appeared in PLv

and was not yet sent. Since (ds, s, ws) is sent in round r, a different triplet (dt, t, wt) with
t 6= s must have been sent in round r − 1, implying:

ds + `(r−1)
v (ds, s, ws) > dt + `(r−1)

v (dt, t, wt).

By Lemma 6(i), we have that `(r)
v (ds, s, ws) ≥ `

(r−1)
v (ds, s, ws), and combined with the

induction hypothesis for Lemma 7(i) in round r − 1 we conclude:

ds + `(r)
v (ds, s, ws) ≥ ds + `(r−1)

v (ds, s, ws) > dt + `(r−1)
v (dt, t, wt) ≥ r − 1.

This gives that ds + `
(r)
v (ds, s, ws) ≥ r, since all the terms are integers. J

Lemma 5 implies that eventually, the lists PLv converge to contain the correct values, and
Lemma 7 restricts the number of rounds in which specific list entries may change. From this,
we conclude that the algorithm solves the weighted (S, d, k)-detection problem.

I Lemma 8. Given an instance of the weighted (S, d, k)-detection problem, for every v ∈ V
and round r of an execution of Algorithm 1 with

r ≥ min {d,D}+ min {k, |S|} ,
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the truncation of PL(r)
v to the first min

{
k, λd

v

}
entries, where λd

v is the number sources s ∈ S
such that d(s, v) ≤ d, solves weighted (S, d, k)-detection problem.

This lemma says that the truncated list is correct at the beginning of the relevant round.
To prove it, we use Lemma 7(ii) to show that the values in the truncated list cannot change
at round r or later, and Lemma 5 to deduce they are correct.

Proof. Assume w.l.o.g that d ≤ D, as D bounds the distance to any source, and k ≤ |S|, as
otherwise v needs to learn about all sources.

By Lemma 5, there is a round r0 when all entries of PL(r0)
v are correct, and let (ds, s, ws)

be a triplet in one of the first min
{
k, λd

v

}
entries of PL(r0)

v . Since (ds, s, ws) is one of the first
λd

v entries and PL(r0)
v = PL∗v, we have ds ≤ d.

Let r be the round when (ds, s, ws) is inserted to the list PLv. By Lemma 7(ii), r <
ds + `

(r+1)
v (ds, s, ws). By Lemma 6(i), when the triplet is inserted to the list, it is already

placed in one of the first min
{
k, λd

v

}
entries, i.e., `(r+1)

v (ds, s, ws) ≤ min
{
k, λd

v

}
≤ k. Hence,

r < ds + `(r+1)
v (ds, s, ws) ≤ d+ k.

Since this claim holds for any of the first min
{
k, λd

v

}
entries, these were all correct at the

beginning of round d+ k, and in all the succeeding rounds. J

The construction of multiple WBFS trees is an instance of the (S,D, |S|)-detection
problem. Lemma 8 shows that after |S|+D − 1 rounds of Algorithm 1 on such an instance,
all the entries of the list PL(|S|+D)

v are correct, yielding the main result of this section.

Theorem 1 (restated). Given a weighted graph G = (V,E,w) and a set of nodes S ⊆ V ,
there exists an algorithm for the congest model that constructs a WBFS tree rooted at s,
for every s ∈ S, in |S|+D − 1 rounds.

4 A (+6)-Spanner Construction

In this section we discuss the distributed construction of (+6)-spanners. First, we present
a template for constructing a (+6)-spanner and analyze the stretch and sparsity of the
constructed spanner. Then, we provide an implementation of our template in the congest
model and analyze its running time.

A cluster Ci around a cluster center ci ∈ V is a subset of the set of neighbors of ci in G.
A node belonging to a cluster is clustered, while the other nodes are unclustered.

Our algorithm starts by randomly choosing cluster centers, and adding edges between
them to their neighbors, where each neighbor arbitrarily chooses a single center to connect to.
Then, additional edges are added, to connect each unclustered node to all its neighbors. Next,
shortest paths between clusters are added to the spanner. In order to find these shortest
paths in the congest model, we use the WBFS construction algorithm to build WBFS trees
from random sources. At the heart of our algorithm stands the path-hitting framework of
Woodruff [46]: a shortest path in the graph which has many edges between clustered nodes,
must go through many clusters. This fact is used in order to show that a path with many
missing edges (edges not in H) is more likely to have an adjacent source of a WBFS tree,
and thus it is well approximated by a path within the spanner.

Woodruff’s algorithm starts with a similar clustering step. However, in order to add
paths between clusters, it uses an involved subroutine that finds light almost-shortest paths
between pairs of nodes. This subroutine seems too global to be implemented efficiently in a
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distributed setting, so in our construction it is replaced by only considering lightest shortest
paths, which we do using the WBFS trees defined earlier.

Our algorithm constructs a (+6)-spanner with O(n4/3 log4/3 n) edges in Õ(n2/3 + D)
rounds, as stated next.

Theorem 2 (restated). There exists an algorithm for the congest model that constructs a
(+6)-spanner with O

(
n4/3 log4/3 n

)
edges in O

(
n2/3

log1/3 n
+D

)
rounds and sucseeds w.h.p.

Lemmas 9 and 10 analyze the size and stretch of Algorithm 6AP given below. The number
of rounds of its distributed implementation is analyzed in Lemma 11, giving Theorem 2. We
use c > 2 to denote a constant that can be chosen according to the desired exponent of 1/n
in the failure probability.

Algorithm 6AP
Input: a graph G = (V,E), a constant c > 2;
Output: a subgraph H of G;
Initialization: n← |V |; H ← (V, ∅); k ← 1

Clustering. Pick each node as a cluster center w.p. c
n1/3 log1/3 n

, and denote the set of
selected nodes by C = {c1, c2, . . .}. For each ci, initialize a cluster Ci ← ∅.

For each node v ∈ V , choose a neighbor ci of v which is a cluster center, if such a neighbor
exists, add the edge (v, ci) to H, and add v to Ci. If none of the neighbors of v is a cluster
center, add to H all the edges adjacent to v. Let H0 ← H.

Path Buying.
While k ≤ 8cn2/3

log1/3 n
do:

1. Sk ← ∅
2. Add each cluster center ci ∈ C to Sk w.p. 8c2 log n

k , independently of the other centers
3. For each pair (ci, cj) ∈ C × Sk:

a. A← ∅ /* A is a set of paths */
b. For each v ∈ Cj :

i. Among all the shortest paths from ci to v, let Pv be a path with minimum |Pv \H0|
ii. If |Pv \H0| < 2k, add Pv to A

c. If A 6= ∅, add to H one of the shortest among the paths of A
4. k ← 2k

I Lemma 9. Algorithm 6AP outputs a subgraph H of G with O(n4/3 log4/3 n) edges, with
probability at least 1−O(n−c+1).

Proof. The algorithm starts with H = (V, ∅) and only adds edges from G, so H is indeed a
subgraph of G over the same node set.

In the first part of the clustering phase, each node adds to H at most one edge, connecting
it to a single cluster center, for a total of O(n) edges. Then, the probability that a node of

degree at least n1/3 log4/3 n is left unclustered is at most
(

1− c
n1/3 log1/3 n

)n1/3 log4/3 n

, which
is O(n−c). A union bound implies that all nodes of degree at least n1/3 log4/3 n are clustered
w.p. 1−O(n−c+1), and thus the total number of edges added to H by unclustered nodes in
the second part of the clustering phase is O(n4/3 log4/3 n), w.p. 1−O(n−c+1).

OPODIS 2018



7:12 The Sparsest Additive Spanner via Multiple Weighted BFS Trees

x′x y′

w

y

w3w1

c2 ∈ Sk

c1 c3

C1 C3

C2

σ

ρ

Figure 1 Illustration of the proof of Lemma 10

We start the analysis of the path buying phase by bounding the size of C. A node v ∈ V
is added to C w.p. c

n1/3 log1/3 n
, so E[|C|] = cn2/3

log1/3 n
. A Chernoff bound implies that

Pr
[
|C| > 4cn2/3

log1/3 n

]
≤ exp

(
− cn2/3

log1/3 n

)
= o(n−c).

Similarly, for each value of k, we have E[|Sk|] = 8c2n2/3 log2/3 n
k , and

Pr
[
|Sk| >

32c2n2/3 log2/3 n

k

]
≤ exp

(
−8c2n2/3 log2/3 n

k

)
= O(n−c),

where the last equality follows since k ≤ n2/3

log1/3 n
. A union bound implies that |C| =

O
(

n2/3

log1/3 n

)
and |Sk| = O

(
n2/3 log2/3 n

k

)
for all k, w.p. at least 1−O(n−c+1).

Finally, for each k, for each (ci, cj) ∈ C × Sk we add at most one path with less than 2k
missing edges to H. Thus, for each value of k we add less than |C| · |Sk| ·2k = O(n4/3 log1/3 n)
edges to H, w.p. at least 1−O(n−c+1). Summing over all O(logn) values of k, and adding
the number of edges contributed by the clustering phase, we conclude that H has at most
O(n4/3 log4/3 n) edges, w.p. at least 1−O(n−c+1). J

I Lemma 10. The graph H constructed by Algorithm 6AP satisfies δH(x, y) ≤ δG(x, y) + 6
for each pair (x, y) ∈ V × V , with probability at least 1−O

(
n−c+2).

Proof. Consider a shortest path ρ in G between two nodes x, y ∈ V (see Figure 1). Let x′
and y′ be the first and last clustered nodes on ρ, respectively. If all nodes of ρ are unclustered,
then ρ is fully contained in H0 and we are done.

Let c1 and c3 be the centers of the clusters containing x′ and y′, respectively. Let σ be a
shortest path in G between c1 and c3, and denote by k′ the number of edges of σ \H0. Let
k be the largest power of 2 such that k ≤ k′.

An edge can be in σ \H0 only if it connects two clustered nodes. Hence, k′, the number
of edges in σ \H0, is smaller than the number of clustered nodes in σ. On the other hand,
σ cannot contain more than three nodes of the same cluster: the distance between every
two nodes in a cluster is at most two, so a shortest path cannot traverse more than three
nodes of the same cluster. Thus, the number of clusters intersecting σ is at least k′/3. As
k′/3 ≥ k/3, the probability that none of the centers of these clusters is chosen to Sk is at

most
(

1− 8c2 log n
k

)k/3
= O

(
n−c2

)
. For each pair of nodes, a cluster center on a shortest

path between them is chosen to Sk, for the appropriate value of k, with similar probability. A
union bound implies that this claim holds for all pairs in V × V w.p. at least 1−O(n−c2+2).
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Let w be a node on σ in a cluster C2 such that c2 ∈ Sk, if such a cluster exists. Denote
by σ[c1, w] the sub-path of σ from c1 to w. As there are k′ < 2k edges in σ \H0, there are
also less than 2k edges in σ[c1, w] \H0. Thus, in step 3(b) of the path-buying phase for k,
either the path σ[c1, w] or some other path between c1 and w of length at most δG(c1, w) is
added to A. In step 3(c), a path from c1 to some node w1 ∈ C2 is added to H, and this is
a shortest path in A, so δH(c1, w1) ≤ δG(c1, w). Similarly, a shortest path from c3 to some
w3 ∈ C2 is added to H, and δH(c3, w3) ≤ δG(c3, w).

The path σ is a shortest path from c1 to c3 in G, so |σ| ≤ δG(x′, y′) + 2. As δG(c1, w) +
δG(c3, w) = |σ|, we conclude δH(c1, w1) + δH(c3, w3) ≤ |σ| ≤ δG(x′, y′) + 2.

Consider the path from x to y in H composed of the sub-path of ρ from x to x′, the edge
(x′, c1), the path from c1 to w1, the edges (w1, c2) and (c2, w3), the path from w3 to c3, the
edge (c3, y

′), and finally, the sub-path of ρ from y′ to y. This is a path from x to y in H,
implying

δH(x, y) ≤ δH(x, x′) + 1 + δH(c1, w1) + 2 + δH(w3, c3) + 1 + δH(y′, y)
≤ δG(x, x′) + 4 + δG(x′, y′) + 2 + δG(y′, y) = δG(x, y) + 6,

as desired. J

We now discuss the implementation of Algorithm 6AP in the congest model.

I Lemma 11. Algorithm 6AP can be implemented in O
(

n2/3

log1/3 n
+D

)
rounds in the congest

model, with probability at least 1− o(n−c).

Proof. For the clustering phase, each node decides locally w.p. c
n1/3 log1/3 n

to become a
cluster center, and notifies its neighbors. Each node with a neighbor that is a cluster center
now joins a cluster by sending a message to such a neighbor and adding the appropreate
edge to the spanner. A node with no neighboring cluster centers notifies all its neighbors
and adds all its edges to the spanner. This is done in a constant number of rounds.

Before the path buying phase, the nodes construct a single BFS tree, along which they
compute an upper bound D′ on D, satisfying D ≤ D′ < 2D, and count the number of cluster
centers, |C|. The nodes mark the edges of H0 with weight 0 and the other edges with weight
1. Then, they construct a WBFS tree rooted at each cluster center by executing Algorithm 1
for |C| + D′ many rounds. By the proof of Lemma 9, we have |C| ∈ O

(
n2/3

log1/3 n

)
w.p. at

least 1− o(n−c), and thus the construction of the WBFS trees takes O
(

n2/3

log1/3 n
+D

)
rounds

with the same probability.
Each node v now knows about a “good” path to each cluster center ci, i.e., a shortest

path from ci to v, with a minimal number of edges not in H after the clustering phase. A
node v in a cluster Cj notifies its neighbor cj about all the distances to other cluster centers
in C and the number of missing edges in each such path. That is, each v ∈ Cj sends |C|
messages to cj , which takes O

(
n2/3

log1/3 n

)
rounds.

Each cluster center cj decides locally to join each set Sk w.p. 8c2 log n
k . For each other

center ci ∈ C, cj locally constructs the list A: for each v ∈ Cj , A contains the shortest path
from ci to v ∈ Cj found by the WBFS algorithm, and the number of missing edges in it.
Then, cj chooses from A a path from ci to some v ∈ Cj with a minimal number of missing
edges, and if it has at most 2k missing edges, cj sends a “buy ci” message to v.

Finally, all nodes simultaneously execute a “buy” phase, where “buy ci” messages are sent
up the WBFS tree. To avoid congestion, we assume that during the execution of Algorithm 1,
each node keeps a record of the messages it got in each round and the WBFS source each
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message referred to. Each node v then sends messages in reversed order: if v has a message
“buy ci”, and it got a message from u regarding ci in the r-before-last round of Algorithm 1,
then it sends the message “buy ci” to u in round r of the “buy” phase. Then, u adds
“buy ci” to its list of messages, and adds the edge (u, v) to the spanner. This parts takes
O
(

n2/3

log1/3 n
+D

)
rounds, just like the execution of Algorithm 1. J

5 Discussion and Open Questions

While we present an application of WBFS trees, our algorithm also solves the weighted
(S, d, k)-detection problem, a result the could be of independent interest.

The question of finding the lightest paths between all pairs of nodes in a graph is a
fundamental question in many computational models. In the congest model, no exact
algorithm for the problem running in O(n) rounds is known. This major question is still left
open here, but we hope our study of lightest shortest paths could facilitate future research
on the question of finding lightest paths.

While this paper settles the question of constructing sparse (+6)-spanners fast, the study
of spanner construction in distributed environments still lags behind the study of sequential
spanner construction algorithms. In the field of purely additive spanners, we still do not have
fast algorithms, e.g., for the construction of sparse (+0)-pairwise spanners (a.k.a. pairwise
preservers) and (+6)-pairwise spanners.

A more intriguing question is proving time lower bounds for the construction of spanners
in the congest model: while Ω(D) rounds are known to be necessary [44], lower bounds that
depend on other parameters of the graph or the spanners exist only for pairwise spanners [10].
Finding a lower bound for the construction of all-pairs spanners in the congest model is
still an open question. Such a lower bound could show that the n3/2 term in the time bound
of our construction is inevitable, or motivate a design of faster algorithms for the problem.

References

1 Amir Abboud and Greg Bodwin. Error Amplification for Pairwise Spanner Lower Bounds.
In 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 841–854,
2016.

2 Amir Abboud and Greg Bodwin. The 4/3 Additive Spanner Exponent Is Tight. J. ACM,
64(4):28:1–28:20, 2017.

3 Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-Linear Lower Bounds for Dis-
tributed Distance Computations, Even in Sparse Networks. In 30th International Sympo-
sium on Distributed Computing, DISC, pages 29–42, 2016.

4 Udit Agarwal, Vijaya Ramachandran, Valerie King, and Matteo Pontecorvi. A Determinis-
tic Distributed Algorithm for Exact Weighted All-Pairs Shortest Paths in Õ(n3/2) Rounds.
In ACM Symposium on Principles of Distributed Computing, PODC, pages 199–205, 2018.

5 Baruch Awerbuch. Optimal Distributed Algorithms for Minimum Weight Spanning Tree,
Counting, Leader Election and Related Problems. In ACM Symposium on Theory of Com-
puting, STOC, pages 230–240, 1987.

6 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners
and (alpha, beta)-spanners. ACM Trans. Algorithms, 7(1):5, 2010.

7 Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Struct. Algorithms, 30(4):532–563,
2007.



K. Censor-Hillel, A. Paz, and N. Ravid 7:15

8 Keren Censor-Hillel and Michal Dory. Distributed Spanner Approximation. In ACM Sym-
posium on Principles of Distributed Computing, PODC, pages 139–148, 2018.

9 Keren Censor-Hillel, Bernhard Haeupler, Jonathan A. Kelner, and Petar Maymounkov.
Global computation in a poorly connected world: fast rumor spreading with no dependence
on conductance. In 44th Symposium on Theory of Computing Conference, STOC, pages
961–970, 2012.

10 Keren Censor-Hillel, Telikepalli Kavitha, Ami Paz, and Amir Yehudayoff. Distributed
Construction of Purely Additive Spanners. In 30th International Symposium on Distributed
Computing, DISC, pages 129–142, 2016.

11 Keren Censor-Hillel, Ami Paz, and Noam Ravid. The Sparsest Additive Spanner via Mul-
tiple Weighted BFS Trees. CoRR, abs/1811.01997, 2018. arXiv:1811.01997.

12 Shiri Chechik. Compact routing schemes with improved stretch. In ACM Symposium on
Principles of Distributed Computing, PODC, pages 33–41, 2013.

13 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed Verification and Hardness
of Distributed Approximation. SIAM J. Comput., 41(5):1235–1265, 2012.

14 Bilel Derbel and Cyril Gavoille. Fast deterministic distributed algorithms for sparse span-
ners. Theor. Comput. Sci., 399(1-2):83–100, 2008.

15 Bilel Derbel, Cyril Gavoille, and David Peleg. Deterministic Distributed Construction of
Linear Stretch Spanners in Polylogarithmic Time. In 21st International Symposium on
Distributed Computing, DISC, pages 179–192, 2007.

16 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of dis-
tributed sparse spanner construction. In 27th Annual ACM Symposium on Principles of
Distributed Computing, PODC, pages 273–282, 2008.

17 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. Local Computation of
Nearly Additive Spanners. In International Symposium on Distributed Computing, DISC,
pages 176–190, 2009.

18 Devdatt P. Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan,
and Aravind Srinivasan. Fast distributed algorithms for (weakly) connected dominating
sets and linear-size skeletons. J. Comput. Syst. Sci., 71(4):467–479, 2005.

19 Michael Elkin. Computing almost shortest paths. ACM Trans. Algorithms, 1(2):283–323,
2005.

20 Michael Elkin. Distributed exact shortest paths in sublinear time. In ACM SIGACT
Symposium on Theory of Computing, STOC, pages 757–770, 2017.

21 Michael Elkin and Ofer Neiman. Hopsets with Constant Hopbound, and Applications
to Approximate Shortest Paths. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS, pages 128–137, 2016.

22 Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1 + ε, β)-spanners in
the distributed and streaming models. Distributed Computing, 18(5):375–385, 2006.

23 Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A Distributed Algorithm for
Minimum-Weight Spanning Trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983.

24 Mohsen Ghaffari and Fabian Kuhn. Derandomizing Distributed Algorithms with Small
Messages: Spanners and Dominating Set. In International Symposium on Distributed Com-
puting, DISC, volume 121 of LIPIcs, pages 29:1–29:17, 2018.

25 Mohsen Ghaffari and Jason Li. Improved distributed algorithms for exact shortest paths.
In SIGACT Symposium on Theory of Computing, STOC, pages 431–444, 2018.

26 Ofer Grossman and Merav Parter. Improved Deterministic Distributed Construction of
Spanners. In 31st International Symposium on Distributed Computing, DISC, pages 24:1–
24:16, 2017.

OPODIS 2018

http://arxiv.org/abs/1811.01997


7:16 The Sparsest Additive Spanner via Multiple Weighted BFS Trees

27 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic
almost-tight distributed algorithm for approximating single-source shortest paths. In ACM
SIGACT Symposium on Theory of Computing, STOC, pages 489–498, 2016.

28 Stephan Holzer. Personal communication.
29 Stephan Holzer, David Peleg, Liam Roditty, and Roger Wattenhofer. Distributed 3/2-

Approximation of the Diameter. In 28th International Symposium on Distributed Comput-
ing, DISC, pages 562–564, 2014.

30 Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and
applications. In ACM Symposium on Principles of Distributed Computing, PODC, pages
355–364, 2012.

31 Chien-Chung Huang, Danupon Nanongkai, and Thatchaphol Saranurak. Distributed Exact
Weighted All-Pairs Shortest Paths in Õ(n5/4) Rounds. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pages 168–179, 2017.

32 Telikepalli Kavitha. New Pairwise Spanners. In 32nd International Symposium on Theo-
retical Aspects of Computer Science, STACS, pages 513–526, 2015.

33 Mathias Bæk Tejs Knudsen. Additive Spanners: A Simple Construction. In 14th Scandi-
navian Symposium and Workshops on Algorithm Theory, SWAT, pages 277–281, 2014.

34 Christoph Lenzen, Boaz Patt-Shamir, and David Peleg. Distributed distance computation
and routing with small messages. Distributed Computing, pages 1–25, 2018.

35 Christoph Lenzen and David Peleg. Efficient distributed source detection with limited
bandwidth. In ACM Symposium on Principles of Distributed Computing, PODC, pages
375–382, 2013.

36 Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved Distributed Approximate Match-
ing. J. ACM, 62(5):38:1–38:17, 2015.

37 Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths.
In Symposium on Theory of Computing, STOC, pages 565–573, 2014.

38 Merav Parter. Vertex fault tolerant additive spanners. Distributed Computing, 30(5):357–
372, 2017.

39 Merav Parter and Eylon Yogev. Congested Clique Algorithms for Graph Spanners. In
International Symposium on Distributed Computing, DISC, volume 121 of LIPIcs, pages
40:1–40:18, 2018.

40 David Peleg. Distributed Computing: A Locality-Sensitive Approach. Monographs on Dis-
crete Mathematics and Applications. Society for Industrial and Applied Mathematics, 2000.

41 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989.

42 David Peleg and Jeffrey D. Ullman. An Optimal Synchronizer for the Hypercube. SIAM
J. Comput., 18(4):740–747, 1989.

43 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. J.
ACM, 36(3):510–530, 1989.

44 Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Dis-
tributed Computing, 22(3):147–166, 2010.

45 Mikkel Thorup and Uri Zwick. Compact routing schemes. In ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA, pages 1–10, 2001.

46 David P. Woodruff. Additive Spanners in Nearly Quadratic Time. In 37th International
Colloquium on Automata, Languages and Programming, ICALP, pages 463–474, 2010.



The Amortized Analysis of a Non-blocking
Chromatic Tree
Jeremy Ko
Department of Computer Science, University of Toronto, Canada
jerko@cs.toronto.edu

Abstract
A non-blocking chromatic tree is a type of balanced binary search tree where multiple processes
can concurrently perform search and update operations. We prove that a certain implementation
has amortized cost O(ċ+logn) for each operation, where ċ is the maximum number of concurrent
operations at any point during the execution and n is the maximum number of keys in the tree
during the operation. This amortized analysis presents new challenges compared to existing
analyses of other non-blocking data structures.
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1 Introduction

A concurrent data structure is one that can be concurrently updated by multiple processes.
A wait-free implementation of a concurrent data structure guarantees that every operation
completes within a finite number of steps by the process that invoked the operation. A
non-blocking implementation of a concurrent data structure guarantees that whenever there
are active operations, one operation will eventually complete in a finite number of steps. Since
a particular operation may not complete in a finite number of steps, it not possible to perform
a worst-case analysis for non-blocking data structures. However, such implementations are
desirable since they are typically less complicated than wait-free implementations and often
perform well in practice. Amortized analysis gives an upper bound on the worst-case number
of steps performed during a sequence of operations in an execution, rather than on the
worst-case step complexity of a single operation. This type of analysis is useful for expressing
the efficiency of non-blocking data structures.

In this paper, we present an amortized analysis of a non-blocking chromatic tree. The
chromatic tree was introduced by Nurmi and Soisalon-Soininen [12] as a generalization of
a red-black tree with relaxed balance conditions, allowing insertions and deletions to be
performed independently of rebalancing. Boyar, Fagerberg, and Larsen [2] showed that the
amortized number of rebalancing transformations per update is constant, provided each
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update and each rebalancing transformation is performed without interference from other
operations.

Brown, Ellen, and Ruppert [5] gave a non-blocking implementation using LLX and
SCX primitives [4], which themselves can be implemented using CAS. Unfortunately, this
implementation does not have good amortized complexity. We prove that a slightly modified
implementation has amortized cost O(ċ(α) + logn(op)) for each operation op in an execution
α, where ċ(α) is the point contention of α and n(op) is the maximum number of nodes in
the chromatic tree during op’s execution interval.

Our amortized analysis for the chromatic tree is based on the amortized analysis for the
unbalanced binary search tree by Ellen, Fatourou, Helga, and Ruppert [7]. Several challenges
make our analysis more difficult than their analysis.

The unbalanced binary search tree only has one transformation to perform insertions and
one transformation to perform deletions. The chromatic tree also has 11 different rebalancing
transformations (not including their mirror images). Our analysis has the feature that it
does not require a separate case for each type of transformation performed. A very similar
analysis should give the same amortized step complexity for other types of balanced binary
search trees, especially for those implemented using LLX and SCX [3].

Unlike update transformations, which only occur at leaf nodes, rebalancing transforma-
tions may occur anywhere in the tree. Furthermore, operations may perform rebalancing
transformations on behalf of other operations, or may cause them to perform additional
rebalancing transformations they would otherwise not perform. For an amortized analysis
done using the accounting method, these facts make it much more difficult to determine the
steps in which dollars should be deposited into bank accounts to pay for future steps.

Much like the analysis of the unbalanced binary search tree, many overlapping trans-
formations can cause all but one to fail. Many operations may also be working together to
perform the same rebalancing transformations. The amortized analysis of the chromatic tree
is complicated by the fact that the constant upper bound on the number of rebalancing trans-
formations per operation is amortized, even when each update and rebalancing transformation
is performed atomically. Since the number of rebalancing transformations performed by each
operation may differ, a bad configuration in which many rebalancing transformations can
occur may also have high contention. Executions including such configurations must be
accounted for in the amortized analysis.

The remainder of this paper is organized as follows. In Section 2, we present the
asynchronous shared memory model assumed in our analysis. In Section 3, we give an
overview of related work done on the amortized analysis of concurrent data structures. In
Section 4, we give an overview of the modified chromatic tree implementation. Finally, in
Section 5, we determine its amortized step complexity.

2 Model

Throughout this paper, we use an asynchronous shared memory model [1]. Shared memory
consists of a collection of shared variables accessible by all processes in a system. Processes
communicate using read, write, and CAS primitives.

A configuration of a system consists of the values of all shared variables and the states of
all processes. A step by a process applies a primitive to a shared variable and can also change
the state of the process. An execution is an alternating sequence of configurations and steps,
starting with a configuration. A solo execution from a configuration C by a process P is an
execution starting from C in which all steps are performed by P .
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An abstract data type is a collection of mathematical objects and operations that satisfies
certain properties. A concurrent data structure for the abstract data type provides repres-
entations of the objects in shared memory and algorithms for the processes to perform the
operations. An operation on a data structure by a process becomes active when the process
performs the first step of its algorithm. The operation becomes inactive after the last step of
the algorithm is performed by the process. The execution interval of the operation consists
of all configurations in which it is active. In the initial configuration, the data structure
represents an empty instance of the abstract data type and there are no active operations.

The worst-case step complexity of an operation is the maximum number of steps taken by
a process during the execution interval of any instance of this operation in any execution. The
amortized step complexity of a data structure is the maximum number of steps in any execution
consisting of operations on the data structure, divided by the number operations invoked
in the execution. One can determine an upper bound on the amortized step complexity by
assigning an amortized cost to each operation, such that for all possible executions α on the
data structure, the total number of steps taken in α is at most the sum of the amortized
costs of the operations in α. The amortized cost of a concurrent operation is often expressed
as a function of contention. For a configuration C, we define its contention ċ(C) to be the
number of active operations in C. For an operation op in an execution α, we define its point
contention ċ(op) to be the maximum number of active operations in a single configuration
during the execution interval of op. Finally, for an execution α, we define its point contention
ċ(α) to be the maximum number of active operations in a single configuration during α.

3 Related Amortized Analyses of Non-blocking Data Structures

In this section, we give an overview of the amortized analyses of various non-blocking
data structures. While there are many papers that give implementations of non-blocking
data structures, there are relatively few that give the amortized step complexity of their
implementations.

Fomitchev and Ruppert [9] modify an implementation of a singly linked list by Harris [11]
with the addition of backlinks. A backlink is a pointer to the predecessor of a node that has
been marked for deletion. Whenever an update operation fails, the backlinks can be followed
until an unmarked node is reached, rather than restarting searches from the head of the
linked list. They prove an amortized step complexity of O(n(op) + ċ(op)) for their improved
implementation, where n(op) is the number of elements in the linked list when operation op
is invoked. The amortized analysis is done by charging each failed CAS and each backlink
traversal performed by an operation op to a successful CAS of a concurrent operation in
the execution interval of op. Gibson and Gramoli [10] give a simplified implementation of a
linked list and claim it has the same amortized step complexity.

Ellen, Fatourou, Ruppert, and van Breugel [8] give the first provably correct non-blocking
implementation of an unbalanced binary search tree using CAS primitives. Ellen, Fatourou,
Helga, and Ruppert [7] show that this implementation has poor amortized step complexity.
They improve the implementation by allowing failed update attempts to backtrack to a
suitable internal node in the tree, rather than restarting attempts from the root. They prove
for their implementation, each operation op has amortized cost O(h(op) + ċ(op)), where
h(op) is the height of the binary search tree when op is invoked. The amortized analysis is
difficult because a single Delete operation can cause a sequence of overlapping Delete
operations by other processes to fail. The accounting method is used to show how all failed
attempts in an execution can be paid for. Chatterjee, Nguyen and Tsigas [6] give a different
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implementation of an unbalanced binary search tree, and give a sketch that the amortized
cost of each operation in their implementation is also O(h(op) + ċ(op)).

Shafiei [13] gives an implementation of a non-blocking doubly-linked list. She proves an
amortized cost of O(ċ(op)) for update operations op. The analysis closely follows the analysis
of the unbalanced binary search tree [7], except modified to use the potential method.

4 The Non-blocking Implementation of the Chromatic Tree

A chromatic tree is a data structure for a dynamic set of elements, each with a distinct key
from an ordered universe. It supports the following three operations:

Insert(k), which adds an element with key k into the set and returns True if the set
does not contain an element with key k; otherwise it returns False,
Delete(k), which removes the element with key k from the set and returns True if
there is such an element; otherwise it returns False, and
Find(k), which returns True if there is an element in the set with key k and False
otherwise.

A chromatic tree is a generalization of a red-black tree with relaxed balance conditions.
It is leaf-oriented, so every element in the dynamic set represented by the data structure
corresponds to a leaf and all nodes have 0 or 2 children. Each node in a chromatic tree has
a non-negative weight. We call a node red if it has weight 0, black if it has weight 1, and
overweight if it has weight greater than 1. The weighted level of a node x is the sum of node
weights along the path from the root node to x. The balance conditions of red-black trees
and chromatic trees as described in [2] are as follows.

I Definition 1. A red-black tree T satisfies following balance conditions:
B1. The leaves of T are black.
B2. All leaves of T have the same weighted level.
B3. No path from T ’s root to a leaf contains two consecutive red nodes.
B4. T has only red and black nodes.

I Definition 2. A chromatic tree T satisfies the following balance conditions:
C1. The leaves of T are not red.
C2. All leaves of T have the same weighted level.

Let x be a node that is in the chromatic tree with weight x.w. If x and its parent both
have weight 0, then a red-red violation occurs at x. If x.w > 1, then x.w − 1 overweight
violations occur at x. When a chromatic tree contains no violations, it satisfies the balance
conditions of a red-black tree. The balance conditions of a red-black tree ensure its height is
O(logn), where n is the number of nodes in the tree.

An example of a chromatic tree is shown in Figure 1. The number inside each node is its
key and the number to its right is its weight. The weighted level of each leaf is 3. There is
an overweight violation at the leaf with key 1, and a red-red violation at the internal node
with key 6.

Rebalancing is done independently of insertions and deletions. This allows rebalancing to
be done at times when there are fewer processes that want to perform operations. However,
the chromatic tree may not be height balanced at all times. The following lemma proven by
Boyar, Fagerberg, and Larsen [2] gives an upper bound on the total number of rebalancing
transformations that can occur.
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3 1
1 2 4 1

3 1 5 0
4 1 6 0

5 1 6 1

Figure 1 A chromatic tree containing elements with keys 1, 3, 4, 5 and 6.

I Lemma 3. If i > 0 insertions and d deletions are performed on an initially empty chromatic
tree, then at most 3i+ d− 2 rebalancing transformations can occur.

In the non-blocking implementation by Brown, Ellen, and Ruppert [5], rebalancing is done as
a part of Insert and Delete operations. They proved that the imbalance in the chromatic
tree depends on the number of active operations.

I Lemma 4. If there are c active Insert and Delete operations and the chromatic tree
contains n elements, then its height is O(c+ logn).

4.1 An Implementation of a Chromatic Tree using LLX and SCX
An implementation of a chromatic tree was first given by Brown, Ellen, and Ruppert [5]
using the LLX and SCX primitives. We describe a slightly modified implementation with
better amortized step complexity. LLX and SCX are themselves implemented using CAS
primitives. It is necessary to understand the step complexity of LLX and SCX to analyze
the chromatic tree.

LLX and SCX operate on Data-records. A Data-record is a collection of fields used
to represent a natural piece of a data structure. A successful LLX(r) on Data-record r

returns a snapshot of the fields of r. A process can only perform SCX(V,R, fld, new) if it
has previously performed a successful LLX on each Data-record in V since it last performed
SCX (or the beginning of the execution if it has never performed SCX). A successful
SCX(V,R, fld, new) finalizes all Data-records in R ⊆ V . It also updates fld, one field of a
single Data-record in V , to the value new. This removes the Data-records in R from the data
structure. An unsuccessful SCX returns False, which only occurs when there is a concurrent
SCX(V ′, R′, f ld′, new′) such that V ∩ V ′ 6= ∅. Likewise an LLX can return Fail if there is a
concurrent SCX(V ′, R′, f ld′, new′) such that r ∈ V ′. An LLX(r) returns Finalized if r has
been previously finalized by an SCX. In both of these cases, the LLX is unsuccessful.

Each node of the chromatic tree is represented by one Data-record that contains fields
for its key, weight, child pointers, marked bit, and info pointer. The marked bit is used to
finalize nodes. A node is only removed from the chromatic tree after it is marked. Once a
marked bit is set to True, it cannot be changed back to False. The info pointer points
to an SCX-record, which contains information required for processes to perform a pending
SCX on behalf of another process. It contains a state field whose value is either InProgress,
Aborted, or Committed, and is initially InProgress.

Consider an SCX(V,R, fld, new) performed by a process P . For the chromatic tree, each
node of R is reachable from the node pointed to by fld by only following child pointers
of nodes in R. P first creates a new SCX-record U for this SCX. A node r is frozen for
U if r.info points to U and either U.state = InProgress, or U.state = Committed and r is
marked. Freezing acts like a lock on a node held by a particular operation. For each node
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frozen
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× finalized
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Figure 2 The update transformations of the chromatic tree.

v ∈ V , P attempts to freeze v by setting v.info to point to U using a freezing CAS. This
only succeeds if v has not been frozen since P ’s last LLX on v. If the freezing CAS fails and
no other process has frozen v for U , then P performs an abort step and returns False. An
abort step atomically unfreezes all nodes frozen for U by setting U to the Aborted state.

Once all nodes in V are successfully frozen for U , the SCX can no longer fail. Then each
node in R ⊆ V is marked for removal and an update CAS sets fld to the value new. At this
point, the nodes in R are no longer reachable from the root of the chromatic tree. Finally, a
commit step is performed, which atomically unfreezes all nodes in V \R by setting U to the
Committed state. The nodes in R remain frozen.

Consider an LLX(r) by a process P . If r is marked when the LLX is invoked, P will
help the SCX that marked r (if it is not yet complete) and return Finalized. Otherwise P
attempts to take a snapshot of the fields of r. If r is not frozen while P reads each of its
fields, the LLX is successful and returns the fields of r. If a concurrent SCX operation freezes
r sometime during P ’s LLX, P may help the concurrent SCX complete before returning
Fail.

LLX and SCX guarantee non-blocking progress. If SCX is performed infinitely often, then
an infinite number succeed [4]. Much of our amortized analysis will require a mechanism to
charge a failed LLX or SCX of one operation to a different operation that caused it to fail.

We give an overview of the algorithm to Insert an element with key k into a chromatic
tree. The algorithm for the Delete operation is similar. The Insert operation is divided
into an update phase and a cleanup phase. An update phase repeatedly performs update
attempts until one is successful.

An update attempt begins with a search through the tree for the key k, starting from the
root, until it visits a leaf l. Let p denote the node visited immediately before visiting l. If
l.key = k, then the key is already in the chromatic tree, so Insert returns False. Otherwise
a subroutine TryInsert(p, l) is invoked, which attempts to perform an LLX on the nodes
p and l, followed by a single SCX to apply the Insert transformation shown in Figure 2.
Gray nodes represent nodes on which LLXs and freezing CASs are performed. Nodes marked
with × are removed from the chromatic tree, while nodes marked with + are new nodes
added to the tree. Any weight restrictions on a node are shown to its right. Notice that, to
complete the transformation, an SCX is only required to update the pointer of a single node
to point to a subtree of new nodes. The instance of TryInsert fails if any of its LLXs or
SCXs are unsuccessful, in which case a new update attempt begins immediately following the
failed LLX or SCX. If a violation is created during the insertion performed by a successful
TryInsert, the operation enters its cleanup phase. Otherwise, the Insert terminates.

Ellen, Fatourou, and Helga, and Ruppert [7] use a stack to recover from failed update
attempts in their unbalanced binary search tree. Each time a process visits a node during
its search, it pushes a pointer to this node onto a local stack. After a failed attempt, the
process can pop nodes off its stack until an unmarked node is found. This allows the process
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Figure 3 One of the 11 different rebalancing transformations.

to recover from a failed attempt without restarting its search from the root. A process
is backtracking during the interval in which it pops nodes off its stack. As described in
[7], update operations that restart searches from the root without using a stack have poor
amortized cost. Consequently, we will consider an implementation of the chromatic tree
using a stack to recover from failed attempts. The proof of correctness of this modification
appears in the full version.

The cleanup phase is also divided into a series of attempts. At the start of the cleanup
phase, the process empties its local stack and performs a new search for k starting from the
root. When a new attempt begins, the process pops nodes off its stack until an unmarked
node is found. Then it continues searching for k from this node. The cleanup phase
terminates when the search reaches a leaf without encountering a violation. If a violation
is encountered at a node v during the search, a subroutine TryRebalance(ggp, gp, p, v)
attempts to remove the violation, where p, gp, and ggp are the last 3 nodes visited on
the search to v. TryRebalance determines which of the 11 rebalancing transformations
should be applied. It applies the rebalancing transformation by performing LLX on each
node involved in the transformation and then using SCX to update one pointer. LLXs are
performed from top to bottom. If two nodes involved in the transformation have the same
height, then one of these is ggp, gp, p, or v, and an LLX is performed on this node first. If
any LLX or SCX is unsuccessful, TryRebalance immediately returns. Whether or not
TryRebalance successfully performs a rebalancing transformation, a new attempt begins.
A cleanup attempt is successful if it performs a successful SCX during TryRebalance;
otherwise it is unsuccessful.

For our analysis, we identify a single node for each rebalancing transformation as its
center. In Figure 3, the node with a bold outline is the center node. The center node of a
transformation always contains a violation. A rebalancing transformation is centered at a
violation if the violation occurs at the center node of the transformation. We classify each
node involved in an SCX as either a downwards node or a cross node.

I Definition 5. Consider an instance S of SCX(V,R, fld, new), where V = {v1, . . . , vk},
enumerated in the order they are frozen. For 1 ≤ i < k, vi is a cross node for S if vi is the
sibling of vi+1, otherwise vi is a downwards node for S. We define vk to be a downwards
node for S.

Only Insert transformations create red-red violations and only Delete transformations
create overweight violations. For the Insert transformation shown in Figure 2, if p.w = 0 and
l.w = 1, then a red-red violation is created at the new node n. The Delete transformation
creates an overweight violation at the new node n if p.w > 0 and s.w > 0, and moves any
overweight violations from p or s to n.
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Rebalancing transformations remove at most 1 violation. Consider the rebalancing
transformation RB2 shown in Figure 3. The red-red violation located at the center node v
is removed. If gp.w > 1, then there are gp.w − 1 overweight violations at gp. We say that
these overweight violations are moved to the new node n. Similar definitions can be made
for the remaining 10 rebalancing transformations.

Some rebalancing transformations may move violations, without removing any violations.
Thus, several rebalancing transformations may be centered at a violation before it is eventually
removed.

I Definition 6. If the update phase of an operation creates a violation and, hence, begins
a cleanup phase, cp, let viol(cp) denote this violation. Let rebal(viol(cp)) be the number
of times during the execution viol(cp) is located at the center of a successful rebalancing
transformation.

Intuitively, our analysis will charge cp for every successful rebalancing transformation centered
at viol(cp).

We can show that cp does not terminate until viol(cp) is removed. Since an update
transformation creates at most 1 violation, the number of violations in the chromatic tree is
bounded by the number of incomplete Insert and Delete operations. This fact is used to
show that Lemma 4 continues to hold when backtracking is used.

5 Chromatic Tree Amortized Analysis

In this section, we present an amortized step complexity of the chromatic tree. We use the
following notation.

I Definition 7. For each configuration C and operation op with update phase up and cleanup
phase cp of an execution α, let:

h(C) be the height of the chromatic tree in configuration C,
h(up) and h(cp) be the height of the chromatic tree in the starting configurations of up
and cp, respectively,
h(op) be the maximum height of the chromatic tree over all configurations in the execution
interval of op, and
ċ(up) and ċ(cp) be the maximum number of active operations in a single configuration in
the execution interval of up and cp respectively.

We first give a sketch of our amortized analysis. Its structure is similar to the amortized
analysis of a binary search tree by Ellen et al [7].

I Definition 8. For an update phase or cleanup phase xp, let attempts(xp) be the number
of attempts made by xp, and pushes(xp) be the number of times xp pushes a node onto its
stack.

The number of steps an operation takes during searches is a constant times the number
of pushes it performs. Each attempt performs a constant number of LLXs and SCXs, each
of which takes a constant number of steps. These observations imply the following result.

I Lemma 9. The number of steps taken by an operation op with update phase up and cleanup
phase cp is steps(op) = O(attempts(up) + attempts(cp) + pushes(up) + pushes(cp)). If op
has no cleanup phase, then steps(op) = O(attempts(up) + pushes(up)).
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In the amortized analysis of the binary search tree [7], it is shown how the total number
of pushes can be bounded by a function of the total number of attempts, the height of the
tree at the beginning of each operation, and point contention. For the chromatic tree, we
similarly prove that for any finite execution α,∑

up∈α
pushes(up) +

∑
cp∈α

pushes(cp) ≤
∑
up∈α

[2 · attempts(up) + h(up) + 4ċ(up)]

+
∑
cp∈α

[3 · attempts(cp) + h(cp) + 10ċ(cp) · rebal(viol(cp))].

The majority of our amortized analysis is devoted to showing that∑
up∈α

attempts(up) ≤
∑
up∈α

[30h(up) + 5594ċ(up) + 159]

and∑
cp∈α

attempts(cp) ≤
∑
cp∈α

[78h(cp) + 312ċ(cp) + 5008ċ(cp) · rebal(viol(cp)) + 357].

Note that the constants used are larger than required to simplify the analysis. Combining
these results with Lemma 9 gives the following lemma.

I Lemma 10. For any finite execution α of Insert, Delete, and Find operations on the
chromatic tree,

∑
op∈α

steps(op) = O

( ∑
up∈α

[h(up) + ċ(up)] +
∑
cp∈α

[h(cp) + rebal(viol(cp)) · ċ(cp)]
)
.

The height terms h(up) and h(cp) in Lemma 10 are the number of steps to perform a
search in the update phase and cleanup phase, respectively, assuming there are no concurrent
operations. The ċ(up) terms account for extra steps taken by operations concurrent with up
due to the successful insertion or deletion made by up. Similarly, the rebal(viol(cp)) · ċ(cp)
terms account for extra steps taken due to successful rebalancing transformations centered
at viol(cp).

Lemma 10 and Lemma 3 together prove the main theorem of our paper.

I Theorem 11. The amortized number of steps made by any chromatic tree operation op in
any finite execution α is O(ċ(α) + logn(op)), where n(op) is the maximum number of nodes
in the chromatic tree during op’s execution interval.

Proof. For any operation op with update phase up and cleanup phase cp, h(up) ≤ h(op) and
h(cp) ≤ h(op) since the starting configurations of up and cp are contained in op. Therefore,∑

up∈α
h(up) +

∑
cp∈α

h(cp) ≤
∑
op∈α

2h(op).

Similarly, ċ(up) ≤ ċ(α) and ċ(cp) ≤ ċ(α) since up and cp are intervals contained in α.
Therefore, Lemma 10 can be expressed as

∑
op∈α

steps(op) = O

( ∑
op∈α

[h(op) + ċ(α)] + ċ(α) ·
∑
cp∈α

rebal(viol(cp))
)
.
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Suppose the execution α contains i Insert operations and d Delete operations. Then, by
Lemma 3,

ċ(α) ·
∑
cp∈α

rebal(viol(cp)) ≤ ċ(α)(3i+ d− 2)

≤ ċ(α)(3i+ 3d)

≤
∑
op∈α

3ċ(α).

So, the total number of steps taken by all operations in an execution α is∑
op∈α

steps(op) = O

( ∑
op∈α

[ċ(α) + h(op)]
)
.

It follows that the amortized cost of a single operation op is O(ċ(α) + h(op)) = O(ċ(α) +
logn(op)), by Lemma 4. J

Notice that the amortized cost of each operation has an additive term of O(ċ(α)), as
opposed to O(ċ(op)). This is because the operation with the largest contention in the
execution may perform a lot of the rebalancing. Lemma 3 only gives an upper bound on the
total number of rebalancing transformations that may occur in an execution, but does not
state anything about which operations will perform these rebalancing transformations.

The analysis for bounding the total number of attempts made in update phases in the
chromatic tree is similar to the analysis for bounding the total number of attempts made in
the unbalanced binary search tree. In the remaining sections, we give an overview of the
analysis for bounding the total number of attempts made in cleanup phases. The complete
amortized analysis appears in the full version of the paper.

5.1 Bounding the Number of Failed Cleanup Attempts
In this section, we count the number of cleanup attempts that fail due to unsuccessful LLXs.
Counting the number of cleanup attempts that fail due to unsuccessful SCXs is similar.
Lemma 3 gives an upper bound on the number of successful cleanup attempts, so we focus
on counting unsuccessful cleanup attempts.

Our analysis uses the accounting method. We define a number of bank accounts for
each cleanup phase cp. The rules that deposit and withdraw dollars from bank accounts
are designed so that the bank (i.e. the collection of all bank accounts) satisfies the following
properties for any finite execution.

Property P1: The total number of dollars deposited into the bank by an operation is
O(h(cp) + rebal(viol(cp)) · ċ(cp)) during its cleanup phase cp.
Property P2: Every failed attempt caused by a failed LLX during an operation’s cleanup
phase cp withdraws one dollar from one of its own accounts.
Property P3: All bank accounts have non-negative balance.

Assuming these properties of the bank hold, the total number of attempts that fail due to
LLXs is bounded by the total number of dollars deposited into the bank. Thus, the total
number of attempts that fail due to LLXs is

∑
cp∈αO(h(cp) + rebal(viol(cp)) · ċ(cp)).

Let #llx(cp) be the maximum number of LLXs performed by cp in a single attempt. It
can be verified that #llx(cp) ≤ 7. For each node x in the chromatic tree at some point in the
execution, and for each cleanup phase cp, we define the accounts B(cp), Bllx(cp, x), S(cp, x)
and Li(cp), for 1 ≤ i ≤ #llx(cp). For each type of bank account X(args), we let X(args, C)
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Table 1 Rules for bank accounts owned by a cleanup phase cp.

D1-S Consider a successful update CAS ucas for a rebalancing transformation
centered at viol(cp). For all nodes x removed from the chromatic tree by ucas

and for all active cleanup phases cp′, cp deposits 1 dollar into S(cp′, x).
D1-L The start of a cleanup phase cp deposits 3 dollars into each of its own

Li(cp) accounts (for 1 ≤ i ≤ #llx(cp)).
D2-L A successful update CAS for a rebalancing transformation centered at

viol(cp) deposits 3 dollars into each active Li account.
D1-B The start of a cleanup phase cp deposits 78h(cp) + 312ċ(cp) + 312 dollars

into its own B(cp) account.
D2-B A successful update CAS of a rebalancing transformation centered at

viol(cp) deposits 4934 dollars into each active B account.
D3-B A successful commit step of a rebalancing transformation centered at

viol(cp) deposits 26 dollars into each active B account.
W-S A stale invocation of TryRebalance for a cleanup phase cp that blames a

node x withdraws 1 dollar from S(cp, x).
W-L Suppose that cp fails its ith LLX during a non-stale instance of TryRebalance.

If Li(cp) is non-empty, the failure step of the LLX withdraws 1 dollar from
Li(cp). If Li(cp) is empty, consider the node x on which this LLX is performed.
If x is a downwards node for the SCX blamed by the LLX, then cp withdraws
1 dollar from Bllx(cp, x); otherwise it withdraws from Bllx(cp, p), where p is
the parent of x.

T-B Consider a successful freezing CAS from a configuration C performed by
any process on a downwards node x for some SCX. Every cleanup phase cp,
where x ∈ targets(cp, C), transfers 1 dollar from B(cp) to Bllx(cp, x).

be the number of dollars in X(args) in a configuration C. A bank account X(cp) or X(cp, x)
is active if cp is active. Each bank account is initially empty.

The bank accounts S(cp, x) and Li(cp) will serve two purposes. First, they pay for any
failed attempts due to unsuccessful LLXs of cp due to steps that occur prior to the start of cp.
Second, they will pay for cp’s failed attempts due to unsuccessful LLXs of cp due to recent
changes in the structure of the chromatic tree. Whenever the S(cp, x) and Li(cp) accounts do
not pay for a failed attempt, a dollar will be withdrawn from one of the Bllx(cp, x) accounts
instead. The B(cp) account is only responsible for transferring dollars into the Bllx(cp, x)
accounts.

The rules for bank accounts owned by cp are summarized in Table 1. Some terms in the
rules will be defined when introduced in the following sections. There are 6 deposit rules
beginning with D. They indicate which accounts cp deposits dollars into. There are two
withdraw rules beginning with W. They define when cp withdraws dollars from its accounts.
There is one transfer rule T-B that transfers dollars from B(cp) to Bllx(cp, x).

We next show that Properties P1 and P2 are always satisfied. Recall that a successful
SCX contains 1 successful update CAS, 1 successful commit step, and a number of successful
freezing CASs.

I Lemma 12. The total number of dollars deposited into the bank by an operation is
O(h(cp) + rebal(viol(cp)) · ċ(cp)) during its cleanup phase cp.

Proof. Consider a process in its cleanup phase cp. Rules D1-L and D1-B are each applied
once, at the start of cp. Rule D1-L only deposits a constant number of dollars. Rule
D1-B deposits O(h(cp) + ċ(cp)) dollars. By definition, there are rebal(viol(cp)) successful
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rebalancing transformations centered at viol(cp), so each of rules D1-S, D2-L, D2-B, and D3-B
are applied rebal(viol(cp)) times throughout cp. There are at most ċ(cp) active operations
each time a rule is applied. It can be verified by inspection of the rebalancing transformations
that at most 5 nodes are removed from the chromatic tree by a single update CAS, so
rule D1-S deposits O(ċ(cp)) dollars each time it is applied. Since #llx(cp) ≤ 7, rule D2-L
deposits O(ċ(cp)) dollars each time it is applied. By the rules in Table 1, cp deposits a total
of O(h(cp) + rebal(viol(cp)) · ċ(cp)) dollars. Thus, Property P1 of the bank is satisfied. J

I Lemma 13. Every failed attempt caused by a failed LLX during an operation’s cleanup
phase cp withdraws one dollar from one of its own accounts.

Proof. Every cleanup attempt contains at most 1 unsuccessful LLX. The LLXs performed
by cp only occur during an instance of TryRebalance. By rule W-S, if this instance is
stale (which will be defined in the following section), a dollar is withdrawn from one of cp’s S
accounts. Otherwise, by rule W-L, a dollar is withdrawn from one of cp’s Li or Bllx accounts.
Thus, Property P2 of the bank is satisfied. J

It remains to show that the balance of each bank account is non-negative. In Section 5.2,
we consider the S(cp, x), Li(cp), and Bllx(cp, x) accounts, and in Section 5.3, we consider
the B(cp) accounts.

5.2 The S(cp, x), Li(cp), and Bllx(cp, x) Accounts
In this section, we describe the purpose of the S(cp, x), Li(cp), and Bllx(cp, x) accounts, and
show that the balance in these accounts are non-negative.

I Definition 14. An instance I of TryRebalance(ggp, gp, p, v) starting from configuration
C is called stale if one of ggp, gp, p, or v is not in the chromatic tree in C. If x is the first
node in the sequence 〈ggp, gp, p, v〉 that is no longer in the chromatic tree in C, then I blames
the node x.

The S(cp, x) account pays for all failed attempts containing a stale instance of TryRe-
balance(ggp, gp, p, v) that blame a node x. According to D1-S, whenever cp is active and
a node x is removed from the chromatic tree, 1 dollar is deposited into S(cp, x). It can be
shown that TryRebalance will blame a node x at most once sometime after x is removed
from the chromatic tree, since in cp’s following cleanup attempt, cp will restart its search
from a node from which x is no longer reachable. It follows that S(cp, x, C) ≥ 0.

The Li(cp) or Bllx(cp, x) accounts are used to pay for each failed attempt due to an
unsuccessful LLX during a non-stale instance of TryRebalance. We require a number of
definitions to explain why at least one of these bank accounts has a positive balance when
these LLXs occur. During a cleanup phase cp by a process P , P traverses from the root
to a leaf, attempting to cleanup any violations it encounters during its traversal. When
cp is performing a rebalancing transformation centered at a node v in the chromatic tree
in a configuration C, we define focalNode(cp, C) = v. If not, but the node cp is currently
visiting in its search is in the chromatic tree, then focalNode(cp, C) is defined to be this node.
Otherwise, focalNode(cp, C) is the next node in the chromatic tree that cp will visit in a solo
execution starting from C. Let focalPath(cp, C) be the set of all nodes along the path from
the root to focalNode(cp, C), including both endpoints.

We define a set of nodes rebalSet(v, C) so that any rebalancing transformation whose
center node is v only involves nodes in rebalSet(v, C). We use rebalSet(v, C) to simplify
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Figure 4 The set of nodes rebalSet(v, C).

the amortized analysis so that each of the 11 rebalancing transformations do not have to be
considered individually. This set of nodes is illustrated in Figure 4.

I Definition 15. For any node v in the chromatic tree in configuration C, let rebalSet(v, C)
be the set of nodes including the following 13 nodes:

v and its four closest ancestors (labeled p, gp, ggp, and gggp),
p’s sibling, and
all nodes with depth 2 or less in the subtree rooted at v’s sibling.

For every cleanup phase cp and configuration C in which cp is active, let targets(cp, C) =
rebalSet(focalNode(cp, C), C). The following lemma concerning non-stale instances of TryRe-
balance is used to prove properties of the Li(cp) accounts.

I Lemma 16. In the first configuration C of a non-stale TryRebalance(ggp, gp, p, v)
performed by cp, targets(cp, C) = rebalSet(v, C).

For every unsuccessful LLX that occurs during a non-stale instance of TryRebalance,
we choose an SCX which causes the LLX to fail.

I Definition 17. Let I be an LLX(r) that returns Fail or Finalized. Let the failure step
of I be the last time I reads r.info, the pointer to r’s SCX-record. Let U be the SCX-record
pointed to by r.info when I performs its failure step. We say that I blames the SCX that
created U .

Consider a failed attempt by cp due to an unsuccessful LLX during a non-stale instance
of TryRebalance. By rule W-L, if cp’s ith LLX during this instance of TryRebalance
is unsuccessful and Li(cp) is non-empty, then cp withdraws 1 dollar from Li(cp). Since this
is the only rule that withdraws from Li(cp), the Li(cp) account always has a non-negative
balance. Rules D1-L and D2-L show that Li(cp) is non-empty during cp’s first 3 attempts,
or when a successful update CAS (by some other process) has occurred during cp’s previous
3 attempts. We can use these facts along with Lemma 16 to prove the following lemma.

I Lemma 18. Suppose a cleanup phase cp fails its ith LLX during a non-stale instance of
TryRebalance. Let x be the node on which this LLX is performed. If Li(cp) does not pay
for the unsuccessful LLX(x), then x ∈ targets(cp, C ′) in the configuration C ′ immediately
before the successful freezing CAS on x during the SCX blamed by the LLX(x).

If Li(cp) is empty, the failed attempt is paid for by a Bllx(cp, x) account. No rules deposit
directly into Bllx(cp, x) accounts. Dollars are only transferred into Bllx(cp, x) from B(cp) by
rule T-B. Lemma 18 can be used to show that each time rule W-L withdraws a dollar from
Bllx(cp, x), rule T-B has previously transferred a dollar into this account.
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I Lemma 19. Consider the failure step of an unsuccessful LLX(x) that withdraws 1 dollar
from Bllx(cp, x). In the configuration C immediately before the failure step, Bllx(cp, x, C) > 0.

To see why Lemma 19 is true, let S be the SCX blamed by the unsuccessful LLX(x).
Let C ′ be the configuration immediately before the successful freezing CAS on x during S.
Since a dollar is withdrawn from Bllx(cp, x) to pay for this LLX, Lemma 18 implies that
x ∈ targets(cp, C ′). Furthermore, by rule W-L, x is a downwards node for S. Therefore, by
rule T-B, the successful freezing CAS that freezes x for S transfers 1 dollar from B(cp) into
Bllx(cp, x). Using properties of LLX, we can prove that no other unsuccessful LLX by cp
withdraws this dollar between C ′ and C. Therefore, Bllx(cp, x, C) > 0.

According to rule W-L, an unsuccessful LLX(x) may instead withdraw a dollar from
Bllx(cp, p), where p is the parent of x. Results similar to Lemma 18 and Lemma 19 show
that, in this case, Bllx(cp, p) is also non-empty. Therefore, the Bllx accounts always have
non-negative balance.

5.3 The B(cp) Accounts
Rule T-B is the only rule that reduces the number of dollars in B(cp). Since unsuccessful
SCXs may contain successful freezing CASs, the total number of dollars transferred from
B(cp) throughout cp may be large. We show that, whenever T-B is applied, the balance in
B(cp) remains non-negative. We will define a function J(cp, C) and show that, for every
configuration C, B(cp, C) ≥ J(cp, C) ≥ 0.

We require some definitions. For any variable z(args, C), we use z(args) to denote
z(args, C) as a function of C. For any node x in the chromatic tree in configuration C, let

depth(x,C) be the number of edges along the path from the root to x in C,
isFrozen(x,C) be 1 if x is frozen in C and 0 otherwise, and
npa(x,C) be the set of nodes that are not proper ancestors of x in C.

I Definition 20. For each node x in the chromatic tree at some point in an execution, define
abort(x,C), which is 0 in initial configurations and is updated by the following four rules:

A1: A successful freezing CAS on a downwards node x sets abort(p) = 1, where p is the
parent of x.
A2: A successful freezing CAS on a cross node x sets abort(x) = 1.
A3: A successful abort step that unfreezes node x sets abort(x) = 0.
A4: The completion of an update or cleanup attempt sets abort(x) = 0 for all nodes x
except for those on which LLX(x) has been performed in the latest attempt of an active
operation.

Next we define H(x,C), which maps node x in the chromatic tree in configuration C to
an integer. A similar function is defined in the analysis of the unbalanced binary search tree
[7]. For any node x in the chromatic tree in configuration C, let

H(x,C) = 3h(C) + 12− 3depth(x,C) + 6ċ(C) +
∑

u∈npa(x,C)

[abort(u,C)− isFrozen(u,C)].

I Lemma 21. For any node x in the chromatic tree in configuration C, H(x,C) has the
following properties.
1. 0 ≤ H(x,C) ≤ 3h(C) + 12ċ(C) + 12.
2. If p is the parent of x, 2 ≤ H(p, C)−H(x,C) ≤ 4.
3. If s is the sibling of x, H(s, C) = H(x,C).
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4. A successful freezing CAS on a downwards node x of an SCX decreases H(x) by 1, and
does not increase H(u) for any other node u in the chromatic tree.

5. A successful commit step of an SCX increases H(x) by at most 1.
6. A successful abort step of an SCX does not increase H(x).

I Definition 22. For every cleanup phase cp and every node x in the chromatic tree at the
beginning of cp, backup(cp, x) = 0. When an update CAS by any process adds a new node x
into the chromatic tree during cp, backup(cp, x) is initialized to 1 if x is on focalPath(cp), and
0 otherwise. Finally, a step that removes a node x from focalPath(cp) sets backup(cp, x) = 0.

If backup(cp, x, C) = 1, then x is a node that has been added as a proper ancestor of
focalNode(cp, C) since cp began. When cp backtracks up the tree, so that x is no longer on
focalPath(cp), the decrease in backup(cp, x) will ensure that J(cp) does not increase.

I Definition 23. For any cleanup phase cp and any configuration C in which cp is active,

J(cp, C) =
∑

x∈targets(cp,C)

2H(x,C) +
∑

x∈focalPath(cp,C)

576 · backup(cp, x, C).

By Lemma 21.1, H(x,C) ≥ 0 for all nodes x and configurations C. By definition,
backup(cp, x, C) ≥ 0. Hence J(cp, C) is always non-negative.

I Lemma 24. For all cleanup phases cp and configurations C in which cp is active,
B(cp, C) ≥ J(cp, C) ≥ 0.

Proof sketch. In the first configuration C ′ in which cp is active, backup(cp, x, C ′) = 0 for all
nodes x. By Lemma 21.1, 2H(x,C ′) ≤ 6h(C ′) + 24ċ(C ′) + 24. Since |targets(cp, C ′)| = 13,
J(cp, C ′) ≤ 78h(C ′) + 312ċ(C ′) + 312. Thus, by rule D1-B, B(cp, C ′) ≥ J(cp, C ′). We show
that, whenever a step subsequently decreases the balance in B(cp), J(cp) decreases by at
least the same amount, and whenever a step subsequently increases J(cp), the balance in
B(cp) increases by at least the same amount. This implies that, in all configurations C in
which cp is active, B(cp, C) ≥ J(cp, C).

Rule T-B decreases the balance in B(cp) by 1 when a successful freezing CAS is performed
on a downwards node x in targets(cp, C). Lemma 21.4 says that, when this happens, H(x)
decreases by 1 and the H values of all other nodes do not change, so J(cp) decreases by 2.
No other steps decrease the balance of B(cp).

Only successful commit steps and update CASs increase J(cp). For example, Lemma 21.2
and Lemma 21.3 can be used to show that, when focalNode(cp) changes from a node p to one
of its children x, J(cp) decreases as a result of the changes to targets(cp) and focalPath(cp).
Furthermore, by Lemma 21.6, abort steps do not increase J(cp).

By Lemma 21.5, a commit step increases H(x) by at most 1, for all nodes x in the
chromatic tree. Thus, J(cp) increases by at most 2|targets(cp, C)| = 26. Rule D3-B deposits
26 dollars into B(cp), and so B(cp, C) ≥ J(cp, C).

A successful update CAS can change targets(cp). We use the fact that rebalancing
transformations only change a localized section of the tree to calculate an upper bound
on the difference between the H values of cp’s new targets and old targets. This is done
independently of the type of rebalancing transformation applied by the update CAS.

Because an update CAS may remove nodes from the chromatic tree that are on cp’s stack,
focalNode(cp) may change to a new node with much smaller depth. As a result, each term in
the first summation in J(cp) may increase by an amount that is proportional to the change
in depth of focalNode(cp). The backup(cp, x) variables are used to offset this increase. We
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show that whenever focalNode(cp) decreases in depth, a proportional number of nodes x with
backup(cp, x) = 1 are removed from focalPath(cp). This decreases the second summation in
J(cp) to offset the increase in the first summation in J(cp). We show that J(cp) increases by
at most 4934 as a result of an update CAS, so the number of dollars deposited into B(cp) by
rule D2-B is sufficient to maintain that B(cp, C) ≥ J(cp, C). J

Since all bank accounts owned by cp have non-negative balance, Property P3 of the bank
is satisfied. Thus, the total number of attempts that fail due to unsuccessful LLXs in an
execution α is

∑
cp∈αO(h(cp) + rebal(viol(cp)) · ċ(cp)).

6 Conclusion

We have shown that the amortized step complexity of an implementation of a non-blocking
chromatic tree is O(ċ(α) + logn(op)). It would be interesting to see if amortized step
complexity O(ċ(op)+logn(op)) can be shown for the chromatic tree. This is more challenging
because one must argue that an operation with high contention does not perform an excessive
amount of rebalancing. This may require a more detailed analysis of the chromatic tree
than what is shown by Lemma 3. Alternatively, one may try to show a lower bound of
Ω(ċ(α) + logn(op)). Finally, we believe that the techniques presented here can be applied to
other balanced binary search tree implementations using LLX and SCX.
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Abstract
This paper considers the modeling and the analysis of the performance of lock-free concurrent
search data structures. Our analysis considers such lock-free data structures that are utilized
through a sequence of operations which are generated with a memoryless and stationary access
pattern. Our main contribution is a new way of analyzing lock-free concurrent search data
structures: our execution model matches with the behavior that we observe in practice and
achieves good throughput predictions.

Search data structures are formed of basic blocks, usually referred to as nodes, which can be
accessed by two kinds of events, characterized by their latencies; (i) CAS events originated as a
result of modifications of the search data structure (ii) Read events that occur during traversals.
An operation triggers a set of events, and the running time of an operation is computed as the
sum of the latencies of these events. We identify the factors that impact the latency of such
events on a multi-core shared memory system. The main challenge (though not the only one) is
that the latency of each event mainly depends on the state of the caches at the time when it is
triggered, and the state of caches is changing due to events that are triggered by the operations
of any thread in the system. Accordingly, the latency of an event is determined by the ordering
of the events on the timeline.

Search data structures are usually designed to accommodate a large number of nodes, which
makes the occurrence of an event on a given node rare at any given time. In this context, we
model the events on each node as Poisson processes from which we can extract the frequency and
probabilistic ordering of events that are used to estimate the expected latency of an operation,
and in turn the throughput. We have validated our analysis on several fundamental lock-free
search data structures such as linked lists, hash tables, skip lists and binary trees.
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1 Introduction

A search data structure is a collection of 〈key, value〉 pairs which are stored in an organized
way to allow efficient search, delete and insert operations. Linked lists, hash tables, binary
trees are some widely known examples. Lock-free implementations of such concurrent data
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structures are known to be strongly competitive at tackling scalability by allowing processors
to operate asynchronously on the data structure.

Performance (here throughput, i.e. number of operations per unit of time) is ruled by
the number of events in a search data structure operation (e.g. O(logN ) for the expected
number of steps in a skip list or a binary tree). The practical performance estimation requires
an additional layer as the cost (latency) of these events need to be mapped onto the hardware
platform; typical values of latency varies from 4 cycles for an access to the first level of cache,
to 350 cycles for the last level of remote cache. To estimate the latency of events, one needs
to consider the misses, which are sensitive to the interleaving of these events on the timeline.
On the one hand, a capacity miss in data or TLB (Translation Lookaside Buffer) caches with
LRU (Least Recently Used) policy arise when the interleaving of memory accesses evicted
a cacheline. On the other hand, the coherence cache misses arise due to the modifications,
that are often realized with Compare-and-Swap (CAS) instructions, in the lock-free search
data structure. The interleaving of events that originate from different threads, determine
the frequency and severity of these misses, hence the latencies of the events.

In the literature, there exist many asymptotic analyses on the time complexity of sequential
search data structures and amortized analyses for the concurrent lock-free variants that
involve the interaction between multiple threads. But they only consider the number of
events, ignoring the latency. On the other side, there are performance analyses that aim
to estimate the coherence and capacity misses for the programs on a given platform, with
no view on data structures. We go through them in the related work. However, there is a
lack of results that merge these approaches in the context of lock-free data structures to
analytically predict their practical performance.

An analytical performance prediction framework could be useful in many ways: (i) to
facilitate design decisions by providing an extensive understanding; (ii) to compare different
designs in various execution contexts; (iii) to help the tuning process. On this last point,
lock-free data structures come with specific parameters, e.g. padding, back-off and memory
management related parameters, and become competitive only after picking their hopefully
optimal values.

In this paper, we aim to compute the average throughput (T ) of search data structures
for a sequence of operations, generated by a memoryless and stationary access pattern.
Throughput is directly linked to the latency of operations. As the traversal of a search data
structure is light in computation, the latency of an operation is dominated by the memory
access costs to the nodes that belong to the path from the entry of the data structure to the
targeted node.

Therefore, part of this paper is dedicated to the discovery of the route(s) followed by
a thread on its way to reach any node in the data structure. In other words, what is the
sequence of nodes that are accessed when a given key is targeted by an operation.

As the latency of an operation is the sum of the latency of each memory access to the
nodes that are on the path, we obviously need to estimate the individual latency of each
accessed node. Even if, in the end, we are interested in the average throughput, this part of
the analysis cannot be satisfied with a high-level approach, where we would ignore which
thread accesses which node across time. For instance, the cache, whose misses are expected
to greatly impact throughput, should be taken carefully into account. This can only be
done in a framework from which the interleaving of memory accesses among threads can be
extracted. That is why we model the distribution of the memory accesses for every thread.

More precisely, a memory access can be either the read or the modification of a node, and
two point distributions per node represent the triggering instant of either a Read or a CAS .
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These point distributions are modeled as Poisson processes, since they can be approximated
by Bernoulli processes, in the context of rare events. Knowing the probabilistic ordering of
these events gives a decisive information that is used in the estimate of the access latency
associated with the triggered event. Once this information is grabbed, we roll back to the
expectation of the access of a node, then to the expectation of the latency of an operation.

We validate our approach through a large set of experiments on several lock-free search
data structures that are based on various algorithmic designs, namely linked lists, hash tables,
skip lists and binary trees. We feed our experiments with different key distributions, and
show that our framework is able to predict and explain the observed phenomena.

The rest of the paper is organized as follows. We discuss related work in Section 2, then
the problem is formulated in Section 3. We present our framework in Section 4 and analysis
of throughput in Section 5. In Section 6, we show how to initiate our model by considering
the particularity of different search data structures. Finally, we describe the experimental
results in Sections 7.

2 Related Work

When it comes to estimating the performance of concurrent lock-free data structures, the
focus of the previous work has been on studying the contention overhead that occurs due
to the existence of concurrent operations which overlap in time and access the same shared
memory locations. In such cases, the contention manifests in the form of stall times [13] due
to hardware conflicts and extended operation execution times due to logical conflicts in the
algorithmic level (e.g. re-execution of the retry loop iteration).

For the time complexity of lock-free search data structure operations, previous work
considered asymptotic amortized analysis [16] since it is not possible to bound the execution
time of a single operation, by definition. The analysis is parameterized with a measure of
contention (e.g. point contention [5]) that bounds the extra cost of failed attempts that are
billed to a successful operation. Also, it is common to model a concurrent execution as an
adversary that schedules the steps of concurrent processes in order to analyze the impact of
contention [8, 13]. These studies target theoretical worst-case execution times. Closer to the
practical domain, the expected system and individual operation latencies are analyzed for a
general class of lock-free algorithms under a uniform stochastic scheduler in [1].

In our previous work [2, 3], we aim at estimating the average throughput performance
of some lock-free data structures, that is observed in practice. We consider a universal
construction [20] of lock-free data structures in its practical use. Data structures that have
inherent sequential bottlenecks (e.g. stacks, counters and queues) are targeted; the universal
construction can not be exploited in practice for the efficient designs of search data structures
since it inhibits the potential disjoint access parallelism.

Conversely, in this work, we study the performance of the efficient designs of lock-free
search data structures. These designs employ fine-grained synchronization, in which the
modifications are spread to many different shared memory locations. As a result of this
characteristic, hardware (stall time) and logical conflicts between threads, that were playing
a central role in our previous work, occurs very rarely for search data structures and the
performance is driven by different impacting factors. The performance of concurrent lock-free
search data structures is studied and investigated through empirical studies in [18, 11]. To the
best of our knowledge, we attempt for the first time to model and analyze the performance
of lock-free search data structures and obtain estimates that are close to what is observed in
practice on top of actual hardware platforms.

OPODIS 2018
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Procedure AbstractAlgorithm
1 while ! done do
2 key ← SelectKey(keyPMF);
3 operation ← SelectOperation(operationPMF);
4 result ← SearchDataStructure(key, operation);

Figure 1 Generic framework.

On the other hand, various performance metrics for search data structures have been
studied for the sequential setting. The search path length of skip lists is analyzed in [21].
In [12, 24], various performance shapers for the randomized trees are studied, such as the
time complexity of operations, the expectation, and distribution of the depth of the nodes
based on their keys. However, these studies are not concerned with the interaction between
the algorithms and the hardware. The following approaches rely on the independent reference
model (IRM) for memory references and derive theoretical results or performance analysis.
In [15], the exact cache miss ratio is derived analytically (computationally expensive) for
LRU caches under IRM. As an outcome of this approach, the cache miss ratio of a static
binary tree is estimated by assigning independent reference probabilities to the nodes in [14].

3 Problem Statement

We describe in this section the structure of the algorithm and the system that is covered by
our model. We target a multicore platform where the communication between threads takes
place through shared memory accesses. The threads are pinned to separate cores and call
AbstractAlgorithm (see Figure 1) when they are spawned.

A concurrent search data structure is a shared collection of data elements, each associated
with a key, that support three basic operations holding a key as a parameter. Search (resp.
Insert, Delete) operation returns (resp. inserts, deletes) the element if the associated key
is present (resp. absent, present) in the search data structure, otherwise returns null.

The applications that use a search data structure can be seen as a sequence of operations
on the structure, interleaved by application-specific code containing at least the key and
operation selection, as reflected in AbstractAlgorithm.

The access pattern (i.e. the output of the key and operation selections) should be
considered with care since it plays a decisive role in the throughput value. An application
that always looks for the first element of a linked list will obviously lead to very high
throughput rates. In this study, we consider a memoryless and stationary key and operation
selection process i.e. such that for any operation in the sequence the probability of selecting
a key (resp. an operation type) is a constant.

A search data structure is modeled as a set of basic blocks called nodes, which either
contain a value (valued nodes) or routes towards nodes (router nodes). W.l.o.g. the key set
can be reduced to [1..R], where R is the number of possible keys. We denote by (Ni)i∈[1..N ]
the set of N potential nodes, and by Ki the key associated with Ni. Until further notice ,
we assume that we have exactly one node per cacheline.

An operation can trigger two types of events in a node. We distinguish these events
as Read and CAS events. The latency of an event is based on the state of the hardware
platform at the time that the event occurs, e.g. for a Read request, the level of the cache
that a node belongs to. We summarize the parameters of our model as follows:
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Algorithm parameters: Expected latency of the application specific-code (interleaves
data structure operations) tapp, local computational cost while accessing a node tcmp (a
constant cost of a few cycles for the key comparisons, local updates for pointer chasing),
probability mass functions for the key and operation selection.
Platform parameters: Cache hit latencies (resp. capacity) from level `: tdat

` (resp. Cdat
` )

for the data caches and ttlb` (resp. Ctlb
` ) for TLB caches; other memory instruction

latencies (that depends on P ): tcas for a CAS execution and trec to recover from an
invalid state (Read at an invalid cacheline, that is in Modified state in another thread’s
local cache); number of threads P .

4 Framework

4.1 Event Distributions
We consider first a single thread running AbstractAlgorithm on a data structure where only
search operations happen, and we observe the distribution of the Read triggering events on a
given node Ni. The execution is composed of a sequence of search operations, where each
operation is associated with a set of accessed nodes, which potentially includes Ni. If we
slice the time into consecutive intervals, where an interval begins with a call to an operation,
we can model the Read events as a Bernoulli process (a successful Bernoulli trial implies that
a Read event on Ni occurs in the respective operation), where the probability of having a
Read event during an interval depends on the parameters of the associated operation (recall
that the process that generates the operation parameters is stationary and memoryless).

Search data structures have been designed as a way to store large data sets while still
being able to reach any node within a short time: the set of accessed nodes is then expected
to be small compared to the total number of nodes. This implies that, given an operation,
the probability that Ni belongs to the set of accessed nodes is small. Therefore we can map
the Bernoulli process on the timeline with constant-sized interval of length T −1 instead of
mapping it with the actual operation intervals: as the probability of having a Read event
within an operation is small, the duration between two events is big, and this duration is
close to the number of initial intervals within this duration, multiplied by T −1 (with high
probability, because of the Central Limit Theorem).

When we increase the scope of the operations to insertion and deletion, the structure is no
longer static and the probability for a node to appear in an interval is no longer uniform, since
it can move inside the data structure. There exists a long line of research in approximating
Bernoulli processes by Poisson point processes [7], in which not only the number events but
also their respective locations on the timeline are approximated. In particular, [9] has dealt
with non-uniform Bernoulli processes, in which the success probabilities of trials are not
necessarily same. Their error bounds, which are proportional to the success probabilities,
strengthen the use of Poisson processes in our context: the events on Ni are rare, thus the
probabilities in Bernoulli trials are small and the approximation is well-conditioned.

Once Read and CAS triggering events are modeled as Poisson processes for a single thread,
the merge (superposition) of several Poisson processes models the multi-thread execution.

Lastly, we specify a point on the dynamicity: since we have insertions and deletions,
nodes can enter and leave the data structure. This is modeled by the masking random
variable Pi which expresses the presence of Ni in the structure. At a random time, we denote
by D the set of nodes that are inside the data structure, and Pi is set to 1 iff Ni ∈ D. We
denote by pi its probability of success (pi = P [Pi = 1]). Its evaluation will often rely on the
probability that the last update operation on key k was an Insert; we denote it by qk, and

OPODIS 2018
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qk = P
[
Op = opins

k

]
/(P

[
Op = opins

k

]
+P

[
Op = opdel

k

]
). Note that the search data structures

contain generally several sentinel nodes which define the boundaries of the structure and are
never removed from the structure: their presence probability is 1.

For a given node Ni, we denote by λacc
i (resp. λread

i , λcas
i ) the rate of the events triggering

an access (resp. Read, CAS) of Ni due to one thread, when Ni ∈ D. opdel
k (resp. opins

k ,
opsrc
k ) stands for a Delete (resp. Insert, Search) on node key k. The probability for the

application to select opok, where o ∈ {ins, del, src} is denoted by P [Op = opok]. opok  cas(Ni)
(resp. read (Ni)) means that during the execution of opok, a CAS (resp. a Read) occurs on
Ni. Putting all together, we derive the rate of the triggering events:

∀e ∈ {cas, read} : λei = T
P
×

∑
o∈{ins,del,src}

R∑
k=1

P [Op = opok]×P [opok  e(Ni) |Ni ∈ D] (1)

Recall for later that Poisson processes have useful properties, e.g. merging two Poisson
processes produces another Poisson process whose rate is the sum of the two initial rates.
This implies especially that the access triggering events follows a Poisson process with rate
λacc
i = λread

i + λcas
i , and that the read triggering events that originates from P ′ different

threads and occurs at Ni follow a Poisson process with rate P ′ × λread
i .

To quantify the error in Poisson process approximations, we experimentally extract the
cumulative distribution function of the inter-arrival latency of events that occur on a given
node. Then, we apply the Kolmogorov-Smirnov test to compare it against exponential
distributions (recall that the time between events in a Poisson process is exponentially
distributed). Please see [4] for this comprehensive set of comparisons.

4.2 Impacting Factors
We have identified five factors that dominate the access latency of a node, distributed into
two sets. On the one hand, the first set of factors only emerges in the concurrent executions
as a result of the coherence issues on the search data structures. Atomic primitives, such as
a CAS , are used to modify the shared search data structures asynchronously. To execute a
CAS in multi-core architectures, the cache coherency protocol enforces exclusive ownership of
the target cacheline by a thread (pinned to a core) through the invalidation of all the other
copies of the cacheline in the system, if needed. One can guess the performance implications
of this process that triggers back and forth communication among the cores. As the first
factor, CAS instruction has a significant latency. The thread that executes the CAS pays this
latency cost. Secondly, any other thread has to stall until the end of the CAS execution if it
attempts to access (read or modify) the node while the CAS is getting executed. Last and
most importantly, any thread pays a cost to bring a cacheline to a valid state if it attempts
to access a node that resides in this cacheline and that has been modified by another thread
after its previous access to this node.

On the other hand, the capacity misses in the data and TLB caches are other performance
impacting factors for the node accesses. Consider a cache of size C, assume a node is accessed
by a thread at time t and the next access (same thread and node) occurs at time t′. The
thread would experience a capacity miss for the access at time t′ if it has accessed at least C
distinct nodes in the interval (t, t′). The same applies for TLB caches where the references
to the distinct pages are counted instead of the nodes.

At a given instant, we denote by Accessi the latency of accessing node Ni, either due
to a Read event or a CAS event, for a given thread. This latency is the sum of random
variables that correspond to the previous respective five impacting factors and the constant
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local computation cost (≈ 4 cycles):

Accessi = tcmp + CASexe
i + CASstall

i + CASreco
i +

∑
`

Hitcache`
i +

∑
`

Hittlb`
i , (2)

where, at a random time, CASexe
i is the latency of a CAS , CASstall

i the stall time implied
by other threads executing a CAS on Ni, CASreco

i the time needed to fetch the data from
another modifying thread, Hitcache`

i the latency resulting from a hit on the data cache in
level `, and Hittlb`

i the latency coming from a hit on the TLB cache in level `.

4.3 Solving Process

The solving decomposes into three main steps. Firstly, we can notice that Equation 1 exposes
2R+1 unknowns (the 2R access rates and throughput) against 2R equations. To end up with
a unique solution, a last equation is necessary. The first two steps provide a last sufficient
equation thanks to Little’s law (see Section 5.2), which links throughput with the expectation
of the access latency of a node, computed in Sections 5.1. We show in this section that the
each component of the access latency can be expressed according to the access rates λread

i

and λcas
i . The last step focuses on the values of the probabilities in Equation 1, which are

strongly related with the particular data structure under consideration; they are instantiated
in Section 6.1 (resp. 6.2, 6.3, 6.4) for linked lists (resp. hash tables, skip lists, binary trees).

5 Throughput Estimation

5.1 Access Latency

Applying expectation to Equation 2 leads to E [Accessi] = tcmp +E [CASexe
i ]+E

[
CASstall

i

]
+

E [CASreco
i ] +E

[∑
` Hitcache`

i

]
+E

[∑
` Hittlb`

i

]
. We express here each term according to the

rates at every node λcas
? and λread

? .

CAS Execution

Naturally, among all access events, only the events originating from a CAS event contribute,
with the latency tcas of a CAS : E [CASexe

i ] = tcas · λcas
i /(λread

i + λcas
i ).

Stall Time

A thread experiences stall time while accessing Ni when a thread, among the (P − 1)
remaining threads, is currently executing a CAS on the same node. As a first approximation,
supported by the rareness of the events, we assume that at most one thread will wait for the
access to the node.

Firstly, we obtain the rate of CAS events generated by (P −1) threads through the merge
of their Poisson processes. Consider an access of Ni at a random time; (i) the probability of
being stalled is the ratio of time when Ni is occupied by a CAS of (P − 1) threads, given by:
λcas
i (P − 1)tcas; (ii) the stall time that the thread would experience is distributed uniformly

in the interval [0, tcas]. Then, we obtain: E
[
CASstall

i

]
= λcas

i (P − 1)tcas(tcas/2).

OPODIS 2018
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Invalidation Recovery

Given a thread, a coherence cache miss occurs if Ni is modified by any other thread in
between two consecutive accesses of Ni. The events that are concerned are: (i) the CAS
events from any thread; (ii) the Read events from the given thread. When Ni is accessed, we
look back at these events, and if among them, the last event was a CAS from another thread,
a coherence miss occur: P [Coherence Miss on Ni] = λcas

i (P−1)
λcas

i
P+λread

i

. We derive the expected
latency of this factor during an access at Ni by multiplying this with the latency penalty of
a coherence cache miss: E [CASreco

i ] = P [Coherence Miss on Ni]× trec.

Che’s Approximation

Che’s Approximation [10] is a technique to estimate the hit ratio of an LRU cache of size C,
where the object (here, node) accesses follow IRM (Independent Reference Model). IRM
is based on the assumption that the object references occur in an infinite sequence from a
fixed catalog of N objects. The popularity of object i (denoted by si, where i ∈ [1..N ]) is a
constant that does not depend on the reference history and does not vary over time.

Starting from t = 0, let the time of reference to object i be denoted by Oi, then the time
for C unique references is given by: tc = inf{t > 0 : X(t) = C}, where X(t) =

∑N
j=1 10<Oj≤t.

Che’s approximation estimates the hit ratio of object i with Hiti ≈ 1 − e−siT , where the
so-called characteristic time (denoted by T that approximates tc) is the unique solution of the
following equation: C =

∑N
j=1(1− e−sjT ) = E [X(T )]. The accuracy of the approximation is

rooted at the random variable X(t) that is approximately Gaussian since it is defined as the
sum of many independent random variables (Central Limit Theorem). We provide a more
detailed discussion on this approximation in [4] based on the analysis in [17].

Cache Misses

We consider a data cache at level ` of size Cdat
` and compute the hit ratio of Ni on this cache.

On a given data structure, we have compared two related scenarios: a search only scenario,
leading to a given expected size of the data structure, against a scenario with updates, that
leads to the same expected size. We have observed that the capacity cache miss ratio were
similar in both cases. Therefore, we consider that with or without updates, N? is either
present in the search data structure or not, during the characteristic time of the cache.

We can employ the access rates as popularities, i.e. sx = λacc
x for x ∈ [1..N ], and modify

Che’s approximation to distinguish whether, at a random time, Nx is inside the data structure
or not.

We integrate the masking variable Px into Che’s approximation. We have: Xcache(t) =∑N
x=1 Px10<Ox≤t, where Ox denotes the reference time of Nx. We can still assume Xcache(t)

is Gaussian, as a sum of many independent random variables. We estimate the characteristic
time as follows with the linearity of expectation and the independence of the random
variables: E

[
Xcache(t)

]
=
∑N
x=1 E [Px10<Ox≤t] =

∑N
x=1 E [Px]E [10<Ox≤t] =

∑N
x=1 px(1 −

e−λ
acc
x t). Lastly, we solve the equation for the characteristic time T dat

` of level ` cache:∑N
x=1 px(1− e−λacc

x T dat
` ) = Cdat

` thanks to a fixed-point approach. After computing T dat
` , we

estimate the cache hit ratio (on level `) of Ni: 1− e−λacc
i T dat

` .

Page Misses

In this paragraph, we aim at computing the page hit ratio of Ni for the TLB cache at level `
of size Ctlb

` . The total numberM of pages that are used by the search data structure can be
regulated by a parameter of the memory management scheme (frequency of recycling attempts
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for the deleted nodes), as the total number of nodes is a function of R. Different from the
cachelines (corresponding to the nodes), we can safely assume that a page accommodates at
least a single node that is present in the structure at any time.

We cannot apply straightforwardly Che’s approximation since the page reference probab-
ilities are unknown. However, we are given the cacheline reference probabilities sx = λacc

x

for x ∈ [1..N ] and we assume that N cachelines are mapped uniformly to M pages,
[1..N ] → [1..M], N > M. Under these assumptions, we know that the resulting page
references would follow IRM because aggregated Poisson processes form again a Poisson
process.

We follow the same line of reasoning as in the cache miss estimation. First, we consider
a set of Bernoulli random variables (Y jx ), leading to a success if Nx is mapped into page j,
with probability px/M (hence Y jx does not depend on j). Under IRM, we can then express
the page references as point processes with rate rj =

∑N
x=1 Y

j
x sx, for all j ∈ [1..M].

Similar to the previous section, we denote the time of a reference to page j with Oj and
we define the random variable Xpage(t) =

∑M
j=1 10<Oj≤t and compute its expectation:

E [Xpage(t)] =
M∑
j=1

E
[
10<Oj≤t

]
=
M∑
j=1

E
[
1− e−rjt

]
=
M∑
j=1

E
[
1− e−

∑N
x=1

Y j
x λ

acc
x t

]

=
M∑
j=1

(
1−

N∏
x=1

E
[
e−Y

j
x λ

acc
x t
])

=
M∑
j=1

(
1−

N∏
x=1

(
M− px
M

+ pxe
−λacc

x t

M

))

E [Xpage(t)] =M
(

1−
N∏
x=1

(
M− px
M

+ pxe
−λacc

x t

M

))
,

Assuming Xpage(t) is Gaussian as it is sum of many independent random variables, we
solve the following equation for the constant T tlb

` (characteristic time of a TLB cache of size
C): E

[
Xpage(T tlb

` )
]

= Ctlb
` .

Lastly, we obtain the TLB hit rate for Ni by relying on the average Read rate of the page
that Ni belongs to; we should add to the contributions of Ni, the references to the nodes
that belong to the same page as Ni. Then follows the TLB hit ratio: 1 − e−ziT

tlb
` , where

zi = λacc
i + E

[∑N
x=1,x 6=i Y

j
x λ

acc
x

]
= λacc

i +
∑N
x=1,x 6=i pxλ

acc
x /M.

Interactions

To be complete, we mention the interaction between impacting factors and the possibility
of latency overlaps in the pipeline. Firstly, the access latency of different nodes can not be
overlapped due to the semantic dependency for the linked nodes. For a single node access,
the latency for CAS execution and stall time can not be overlapped with any other factor.
Based on the cache coherency protocol behavior, we do not charge invalidation recovery cost
for CAS events. We consider inclusive data and TLB caches. It is not possible to have a
cache hit on level l, if the cache on level l − 1 is hit, and we do not consider any cost for
the data cache hit if invalidation recovery or CAS execution (coherence) cost is induced (i.e.
E
[
Hitcache`

i

]
= (1− P [coherence cost])(P [hit cachel]− P [hit cachel−1])tdat

` ).

5.2 Latency vs. Throughput
In the previous sections, we have shown how to compute the expected access latency for a
given node. There remains to combine these access latencies in order to obtain the throughput
of the search data structure. Given Ni ∈ D, the average arrival rate of threads to Ni is
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λacc
i = λread

i + λcas
i . Thus the average arrival rate of threads to Ni is: piλacc

i . It can then
be passed to Little’s Law [22], which states that the expected number of threads (denoted
by ti) accessing Ni obeys to ti = piλ

acc
i E [Accessi]. The equation holds for any node in the

search data structure, and for the application call occurring in between search data structure
operations. Its expected latency is a parameter (E [Access0] = tapp) and its average arrival rate
is equal to the throughput (λacc

0 = T ). Then, we have:
∑N
i=0 ti =

∑N
i=0(piλacc

i E [Accessi]),
where λacc

i and E [Accessi] are linear functions of T . We also know
∑N
i=0 ti = P as the

threads should be executing some component of the program. We define constants with
ai, bi, ci for i ∈ [0..N ]. And, we represent λacc

i = aiT and E [Accessi] = biT + ci and we
obtain the following second order equation:

∑N
i=0(piaibi)T 2 +

∑N
i=0(piaici)T − P = 0. This

second order equation has a unique positive solution that provides the throughput, T .

6 Instantiating the Throughput Model

In this section, we show how to instantiate our model with widely known lock-free search
data structures, that have different operation time complexities. In order to obtain a
throughput estimate for a structure, we need to compute the rates λread

? and λcas
? , and

P [opok  e(Ni) |Ni ∈ D], i.e. the probability that, at a random time, an operation of type
o on key k leads to a memory instruction of type e on node Ni, knowing that Ni is in the
data structure. For the ease of notation, nodes will sometimes be doubly or triply indexed,
and when the context is clear, we will omit |Ni ∈ D in the probabilities. As a remark, the
properties of the access pattern (memoryless and stationary) are critical here because they
allow us to extract the probability of the state that the data structure could be in (based on
the presence of nodes) at a random time, which is then used to find P [opok  e(Ni) |Ni ∈ D].

We first estimate the throughput of linked lists and hash tables, on which we can directly
apply our method, then we move on more involved search data structure, namely skip lists
and binary trees, that need a particular attention.

6.1 Linked List

We start with the lock-free linked list implementation of Harris [19]. All operations in the
linked list start with the search phase in which the linked list is traversed until a key. At
this point all operations terminate except the successful update operations that proceed by
modifying a subset of nodes in the structure with CAS instructions. The structure contains
only valued node and two sentinel nodes N0 and NR+1, so that N = R + 2 and for all
i ∈ [1..R], Ni holds key i, i.e. Ki = i.

First, we need to compute the probabilities of triggering a Read event and CAS event
on a node, given that the node is in the search data structure, for all operations of type
t ∈ {Insert, Delete, Search} targeted to key k.

At a random time, Nk, for k ∈ [1..R], is in the linked list iff the last update operation on key
k is an insert: pk = qk, by definition of qk. Moreover, when Nk is in the structure (condition
that we omit in the notation), optk′ reads Nk, either if Nk is before Nk′ , or if it is just after
Nk′ . Formally, P [opok′  read(Nk)] = 1 if k ≤ k′ and P [opok′  read(Nk)] =

∏k−1
i=k′(1− pi) if

k > k′.
CAS events can only be triggered by successful Insert and Delete operations. A

successful Insert operation, targeted to Nk′ , is realized with a CAS that is executed on Nk,
where k = sup{` < k′ : N` ∈ D}. The probability of success, which conditions the CAS ’s,
follows from the presence probabilities:
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P
[
opins

k′  cas(Nk)
]

=


0, if k ≥ k′

k′∏
i=k+1

(1− pi), if k < k′
;

P
[
opdel

k′  cas(Nk)
]

=


1, if k = k′

0, if k > k′

pk′

k′−1∏
i=k+1

(1− pi), if k < k′

6.2 Hash Table

We analyze here a chaining based hash table where elements are hashed to B buckets
implemented with the lock-free linked list of Harris [19]. The structure is parametrized with
a load factor lf which determines B through B = R/lf . The hash function h : k 7→ dk/lf e
maps the keys sequentially to the buckets, so that, after including the sentinel nodes (2 per
bucket), we can doubly index the nodes: Nb,k is the node in bucket b with key k, where
b ∈ [1..B] and k ∈ [1..lf ] (the last bucket may contain less elements).

P
[
opob′,k′  read

(
Nb,k

)]
=


0, if b′ 6= b

1, if b′ = b and k′ ≥ k
k−1∏
j=k′

(1− pb,j), if b′ = b and k′ < k

P
[
opins

b′,k′  cas
(
Nb,k

)]
=

0, if b′ 6= b or k′ ≤ k
k′∏

j=k+1

(1− pb,j), if b′ = b and k′ > k

P
[
opdel

b′,k′  cas
(
Nb,k

)]
=

0, if b′ 6= b or k′ < k

1, if b′ = b and k′ = k

pb,k′

k′−1∏
j=k+1

(1− pb,j), if b′ = b and k′ > k

In the previous two data structures, we do observe differences in the access rate from
node to node, but the node associated with a given key does not show significant variation in
its access rate during the course of the execution: inside the structure, the number of nodes
preceding (and following) this node is indeed rather stable. In the next two data structures,
node access rates can change dramatically according to node characteristics, that may include
its position in the structure. In a skip list, a node Ni containing key Ki with maximum
height will be accessed by any operation targeting a node with a higher key. However, Ni
can later be deleted and inserted back with the minimum height; the operations that access
it will then be extremely rare. The same reasoning holds when comparing an internal node
with key Ki of a binary tree located at the root or close to the leaves.

As explained before, an accurate cache miss analysis cannot be satisfied with average
access rates. Therefore, the information on the possible significant variations of rates should
not be diluted into a single access rate of the node. To avoid that, we pass the information
through virtual nodes: a node of the structure is divided into a set of virtual nodes, each
of them holding a different flavor of the initial node (height of the node in the skip list or
subtree size in the binary tree). The virtual nodes go through the whole analysis instead of
the initial nodes, before we extract the average behavior of the system hence throughput.
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Search (key=k’)

key=-∞ key=k key=k’ key=∞

Node

Node
Data

Routing

Figure 2 Skip List Events: Read Event Probability.

6.3 Skip List
There exist various lock-free skip list implementations and we study here the lock-free skip
list [25].

Skip lists offer layers of linked lists. Each layer is a sparser version of the layer below
where the bottom layer is a linked list that includes all the elements that are present in the
search data structure. An element that is present in the layer at height h appears in layer at
height h+ 1 with a fixed appearance probability (1/2 for our case) up to some maximum
layer hmax that is a parameter of the skip list.

Skip list implementations are often realized by distinguishing two type of nodes: (i) valued
nodes reside at the bottom layer and they hold the key-value pair in addition to the two
pointers, one to the next node at the bottom layer and one to the corresponding routing
node (could be null); (ii) routing nodes are used to route the threads towards the search
key. Being coupled with a valued node, a routing node does not replicate the key-value
pair. Instead, only a set of pointers, corresponding to the valued node containing the next
key in different layers, are packed together in a single routing node (that fits in a cacheline
with high probability). Every Read event in a routing node is preceded by a Read in the
corresponding valued node.

We denote by N rou
k,h the routing node containing key k, whose set of pointers is of height h,

where h ∈ [1..hmax ]. A valued node containing the key k is denoted by Ndat
k,h when connected

to N rou
k,h (h = 0 if there is no routing node). Furthermore, there are four sentinel nodes

Ndat
0,hmax

, N rou
0,hmax

, Ndat
R+1,hmax

, N rou
R+1,hmax

. The presence probabilities result from the coin flips
(bounded by hmax): for z ∈ {dat, rou}, pz

k,h = 2−(h+1)qk if h < hmax , pz
k,h = qk−

∑hmax−1
`=0 pz

k,`

otherwise.
By decomposing into three cases, we compute the probability that an operation opok′ of

type o ∈ {ins, del, src}, targeted to k′, causes a Read triggering event at N z
k,h when N z

k,h ∈ D.
Let assume first that k′ > k. The operation triggers a Read event at node N z

k,h if for all
(x, y) such that y > h and k < x ≤ k′, Nz

x,y is not present in the skip list (i.e. in Figure 2, no
node in the skip list overlaps with the red frame). Let assume now k′ < k. The occurrence of
a Read event requires that: for all (x, y) such that y ≥ h and k′ ≤ x < k, N z

x,y, is not present
in the structure. Lastly, a Read event is certainly triggered if k′ = k. The final formula is
given by:

P
[
opok′  read

(
N z
k,h

)]
=


∏k′

x=k+1

(
1−

(∑hmax
y=h+1 p

z
x,y

))
, if k ≤ k′∏k−1

x=k′

(
1−

(∑hmax
y=h p

z
x,y

))
, if k > k′

To be complete, we describe in [4] how to compute the probability for CAS events,
following a similar approach.



A. Atalar, P. Renaud-Goud, and P. Tsigas 9:13

6.4 Binary Tree
We show here how to estimate the throughput of external binary trees. They are composed
of two types of nodes: internal nodes route the search towards the leaves (routing nodes) and
store just a key, while leaves, referred to as external nodes contain the key-value pair (valued
node). We use the external binary tree of Natarajan [23] to instantiate our model. The
search traversal starts and continues with a set of internal nodes and ends with an external
node. We denote by N int

k (resp. Next
k ) the internal (resp. external) node containing key k,

where k ∈ [1..R]. The tree contains two sentinel internal nodes that reside at the top of the
tree (hence are accessed by all operation): N int

−1 and N int
0 .

Our first aim is to find the paths followed by any operation through the binary tree, in order
to obtain the access triggering rates, thanks to Equation 1. Binary trees are more complex
than the previous structures since the order of the operations impact the positioning of the
nodes. The random permutation model proposes a framework for randomized constructions
in which we can develop our model. Each key is associated with a priority, which determines
its insertion order: the key with the highest priority is inserted first. The performance
characteristics of the randomized binary trees are studied in [24]. In the same vein, we
compute the access probability of the internal node with key k in an operation that targets
key k′.

I Lemma 1. Given an external binary tree, the probability of accessing N int
k in an operation

that targets key Kk′ is given by: (i) 1/f(k, k′) if k′ ≥ k; (ii) 1/(f(k′, k)− 1) if k′ < k, where
f(x, y) provides the number internal nodes whose keys are in the interval [x, y].

Proof. N int
k would be accessed if it is on the search path to the external node with key k′.

Given k′ ≥ k, this happens iff N int
k has the highest priority among the internal nodes in the

interval [k, k′]. This interval contains f(k, k′) internal nodes, thus, the probability of N int
k to

possess the highest priority is 1/f(k, k′). Similarly, if k′ < k, then N int
k is accessed iff it has

the highest priority in the interval (k′, k]. Hence, the lemma. J

Even if in the binary tree, nodes are inserted and deleted an infinite number of times,
Lemma 1 can still be of use. The number of internal nodes in the interval [k, k′] (or
(k′, k] if k′ < k) is indeed a random variable which is the sum of independent Bernoulli
random variables that models the presence of the nodes. As a sum of many independent
Bernoulli variables, the outcome is expected to have low variations because of its asymptotic
normality. Therefore, we replace this random variable with its expected value and stick to
this approximation in the rest of this section. The number of internal nodes in any interval
come out from the presence probabilities: pzk = qk, where z ∈ {int, ext}.

In an operation is targeted to key k′, a single external node is accessed (if any): Next
k′ ,

if present, else the external node with the biggest key smaller than k′, if it exists, else the
external node with the smallest key. Then, we have:

P
[
opok′  read

(
N int
k

)]
={

1/(1 +
∑k−1
i=k′+1 p

int
i ), if k > k′

1/(1 +
∑k′

i=k+1 p
int
i ), if k ≤ k′

,

P
[
opok′  read

(
Next
k

)]
=

1, if k = k′∏k′

i=k+1(1− pext
i ), if k < k′∏k−1

i=1 (1− pext
i ), if k > k′

These probabilities finally lead to the computation of the Read (resp. CAS) rates λread
z,k

(resp. λcas
z,k) of Nz

k , where z ∈ {int, ext}, that will be used in the last following step.
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We focus now on the Read rate of the internal nodes. We have found the average behavior
of each node in the previous step; however, the node can follow different behaviors during the
execution since the Read rate of N int

k depends on the size of the subtree whose root is N int
k ,

which is expected to vary with the update operations on the tree. We dig more into this and
reflect these variations by decomposing N int

k into Hk virtual nodes, N int
k,h, where h ∈ [1..Hk].

We define the Read rate λread
int,k,h of these virtual nodes as a weighted sum of the initial node

rate thanks the two equations pint
k =

∑Hk

h=1 p
int
k,h and pint

k λread
int,k =

∑Hk

h=1 p
int
k,hλ

read
int,k,h.

We connect the virtual nodes to the initial nodes in two ways. On the one hand, one
can remark that the Read rate is proportional to the subtree size: λread

int,k,h ∝ hλread
int,k. On the

other hand, based on the probability mass function of the random variable Subk representing
the size of the subtree rooted at N int

k , we can evaluate the weight of the virtual nodes:
pint
k,h = pint

k P [Subk = h].
More details are to be found in [4], on how to obtain the mass function of the random

variable Subk to compute Read rates for the virtual nodes and how to deal with the CAS
events.

7 Experimental Evaluation

We validate our model through a set of well-known lock-free search data structure designs,
mentioned in the previous section. We stress the model with various access patterns and
number of threads to cover a considerable amount of scenarios where the data structures
could be exploited. For the key selection process, we vary the key ranges and the distribution:
from uniform (i.e. the probability of targeting any key is constant for each operation) to
zipf (with α = 1.1 and the probability to target a key decreases with the value of the key).
Regarding the operation types, we start with various balanced update ratios, i.e. such that
the ratio of Insert (among all operations) equals the ratio of Delete. Then, we also consider
asymmetric cases where the ratio of Insert and Delete operations are not equal, which
changes the expected size of the structure.

7.1 Setting
We have conducted experiments on an Intel ccNUMA workstation system. The system is
composed of two sockets, each containing eight physical cores. The system is equipped with
Intel Xeon E5-2687W v2 CPUs. Threads are pinned to separate cores. One can observe the
performance change when number of threads exceeds 8, which activates the second socket.

In all the figures, y-axis provides the throughput, while the number of threads is repres-
ented on x-axis. The dots provide the results of the experiments and the lines provide the
estimates of our framework. The key range of the data structure is given at the top of the
figures and the percentage of update operations are color coded.

We instantiate all the algorithm and architecture related latencies, following the meth-
odologies described in [6] In line with these studies, we observed that the latencies of tcas

and trec are based on thread placement. We distinguish two different costs for tcas according
to the number of active sockets. Similarly, given a thread accessing to a node Ni, the
recovery latency is low (resp. high), denoted by trec

low (resp. trec
high), if the modification has

been performed by a thread that is pinned to the same (resp. another) socket. Before the
execution, we measure both trec

low and trec
high, and instantiate trec with the average recovery

latency, computed in the following way for a two-socket chip. For s ∈ {1, 2}, we denote by
Ps the number of threads that are pinned to socket numbered s. By taking into account
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Figure 3 Hash Table with
load factor 2.
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Figure 5 Binary Tree.

all combinations, we have trec = (P1(P1t
rec
low + P2t

rec
high) + P2(P2t

rec
low + P1t

rec
high))/P 2. Since

P = P1 + P2, we obtain trec = trec
low + 2(P1/P )(1− P1/P )(trec

high − trec
low).

For the data structure implementations, we have used ASCYLIB library [11] that is
coupled with an epoch based memory management mechanism which has negligible latency.

7.2 Search Data Structures
In Figure 3, 4 and 5, we provide the results for the hash table, skip list and binary tree where
the key selection is done with the uniform distribution. One can see that the performance
drops as the update rate increases, due to the impact of CAS related factors. This impact
is magnified with the activation of the second socket (more than 8 threads) since the event
becomes more costly. When there is no update operation, the performance scales linearly
with the number of threads. Since the threads access disjoint parts of structure, we observe
a similar behaviour for the cases with updates. See [4] for a more comprehensive set of
experiments and applications.

8 Conclusion

In this paper, we have modeled and analyzed the performance of search data structures under
a stationary and memoryless access pattern. We have distinguished two types of events that
occur in the search data structure nodes and have modeled the arrival of events with Poisson
processes. The properties of the Poisson process allowed us to consider the thread-wise and
system-wise interleaving of events which are crucial for the estimation of the throughput.
For the validation, we have used several fundemental lock-free search data structures.

As a future work, it would be of interest to study to which extent the application workload
can be distorted while giving satisfactory results. Putting aside the non-memoryless access
patterns, the non-stationary workloads such as bursty access patterns, could be covered by
splitting the time interval into alternating phases and assuming a stationary behaviour for
each phase. Furthermore, we foresee that the framework can capture the performance of
lock-based search data structures and also can be exploited to predict the energy efficiency
of the concurrent search data structures.
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corruption, as well as providing guarantees of correctness for concurrent operations. Lock-free
data-structures are a class of concurrent data-structures that have specific properties relating
to system or thread progress guarantees. The programming of portable and practical lock-free
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data-structures is becoming ever more practical, with the addition of mainstream language
support for atomic variables, and a well defined thread memory model (see [5], [28]).

Concurrent algorithms can be separated into two major classes, namely blocking and
non-blocking, with both featuring further partitions based on the specific progress guarantees
within those classes [20]. Blocking algorithms have well documented issues when it comes
to their use. They are susceptible to deadlock, priority inversion, convoying, and a lack
of composability with respect to multiple operations on data-structures. A lock-free, or
non-blocking, algorithm has none of these problems. Such algorithms suffer, however, from
their own set of challenges relating to memory management ([1], [2], [26], [14], [9]), correctness
([22], [24], [3]) and potentially lackluster performance as the system is flooded with contention
under heavy write load. As hardware manufacturers resort to expanding processor core
counts for enhanced performance [34], non-blocking data-structures are coming to the fore,
providing more robust progress guarantees and tolerance to the suspension of threads. For
end consumers to realise the full performance of their system, algorithms must efficiently
exploit as many cores as possible.

Hash tables are one of the major building blocks in software applications, providing
efficient implementations for the abstract data types of maps and sets. These data-structures
are highly versatile, making them an active area of research in concurrency (e.g. [25], [20],
[21], [8], [27], [30], [32]). Hash tables are associative data-structures that contain a pool of
keys and associated values [10], lending themselves to efficient implementations. In general,
they feature the methods Add, Remove, and Contains, each of which is bound by O(1)
computational complexity while requiring O(n) space [10]. Hash table algorithms achieve
this performance by calculating an index, called a hash, from each key, and use this to
efficiently find the relevant entry in the pool of keys, normally an array. Unlike comparative
structures, which store keys in a sorted order and binary search through the space, hash
tables rely on the hash function to distribute the keys across the space. Ideally, the hash
function generates a unique index for each key. In reality, however, the keys often have the
same hash, creating what is known as a collision. A primary focus of research in hash tables
is how to efficiently deal with these collisions.

Hash tables can be divided into two major design variants, namely open-addressing and
closed-addressing (i.e. separate-chaining). Open addressing stores the key and value pairings
in different buckets in the table, either through a pointer or directly in the internal array
itself, with a single item allowed per bucket. When a hash collision takes place (when another
entry has taken the desired bucket), a new bucket is selected via some collision resolution
algorithm. Separate chaining, on the other hand, stores a pointer to a list of values at that
bucket, containing all the key and value pairings that collided on that bucket.

Robin Hood Hashing [7] is an open-addressing hash table method in which entries in
the table are moved around so that the variance of the distances to their original bucket is
minimised. Insertion is a multi-stage process, potentially moving multiple items throughout
the table. The general goal is to find an empty bucket, or another entry that is less ‘deserving’
of its bucket than the current item being inserted or moved. If an empty bucket is found, it is
taken. If another less deserving entry has been identified, then it’s swapped with the current
entry and ‘kicked’ further down the line, with this process repeating until an empty bucket
is found. The serial version of Robin Hood is well suited to modern computer architecture.
As CPU utilisation effectively becomes a function of the memory bottleneck [11], algorithms
that use the CPU cache more efficiently can enhance performance for memory bounded tasks.
For instance, Robin Hood Hashing has a very low expected probe count, allowing reads to
be culled early even though the algorithm uses linear probing. Low probe counts mean fewer
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cache misses, performing very well on modern architectures. As it stands, these attractive
properties have been maintained in our concurrent versions. Our concurrent solution manages
to achieve non-blocking progress with physical deletion and all of the aforementioned benefits
of the serial algorithm. We use an algorithmically optimised K-CAS [4] implementation
along with a timestamp mechanism to handle bulk relocations while maintaining correctness.

In Section 2 we review the current landscape of concurrent and lock-free hash tables,
and the original Robin Hood algorithm. Section 3 outlines the structure of our algorithms
and the various challenges encountered in adding concurrency, while Section 4 discusses the
performance of these algorithms relative to competitors.

2 Background

2.1 Prior Work
A number of concurrent open-addressing hash table algorithms have been proposed. Purcell
and Harris [30] presented a lock-free open-addressing hash table where per-bucket upper
bounds are stored in conjunction with the keys, thus allowing searches to be culled early.
Nielson and Karlsson [27] built upon the work of Purcell and Harris with a Lock-Free Linear
Probing hash table, simplifying the earlier algorithm, reducing the number of bucket states
required, and removing the word normally required. Herlihy, Shavit, and Tzafrir [21] presented
Hopscotch Hashing, a concurrent hash table algorithm with outstanding performance. This
algorithm allows searches, insertions, and removals to skip over irrelevant items, and is also
cache aware in its reordering of entries present in the table. While Hopscotch’s insertions
and deletions are blocking, the mutating operations are sharded over multiple locks.

Like open-addressing, separate-chaining can be implemented in many different forms.
Michael [25] presented a lock-free hash table, with each bucket containing a slightly modified
Harris linked list [16]. Shalev and Shavit [32] presented a particularly succinct implementation
of using a linked list as a hash table, indexing into it from an array of node pointers. In this
case, the list can grow forever, so long as pointers to new entry points are added to prevent
the probe length from growing out of control. The table can be automatically resized, as
only the entry point array of pointers need be extended. Laborder, Feldman, and Dechev
[13] presented their Wait-Free Hash Table, whereby a key collision at a bucket leads the
bucket to be expanded into another sub-table until a point is reached such that all collisions
are resolved.

2.2 Original Robin Hood
Robin Hood Hashing was first proposed by Celis [7] in 1986. Though remaining relatively
obscure, it has recently gained recognition via the new programming language Rust [35],
which has adopted Robin Hood as its standard hash table algorithm. Robin Hood is an
open-addressing hash table algorithm that employs linear probing for finding items and for
finding spaces for new entries. Robin Hood does exactly what it says on the tin: it steals
from the rich and gives to the poor. Here, “rich” refers to items that got lucky during the
hashing process, by finding a free bucket close to their original bucket. In other words, these
“rich” items have a low Distance From their expected Bucket (this distance is referred to
as DFB for short) and a low expected probe count before being found. In contrast, being
“poor” means hashing to a bucket that has been heavily saturated beforehand, and thus has
a high number of items to step over before finding a free bucket. “Poor” items thus have a
higher DFB, and a high expected probe count before being found.

OPODIS 2018
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Figure 1 An example Robin Hood insertion where V is inserted into X’s bucket. Each step of the
insertion is numbered.

Figure 2 Comparison of Robin Hood to Linear Probing for insertion of V.

Robin Hood solves this inequality during insertion by moving existing entries around
the table. In other words, when the item being relocated has a larger DFB than the item
currently being examined, these items are swapped, and the search continues for an empty
bucket. Once an empty bucket is found, the relocated item is inserted, and the process
terminates. Figure 1 shows an example Robin Hood insertion. In all examples the subscripts
represent the DFB of each entry. Step 1 shows the table initially containing X, Y, Z, and W,
each with a DFB of 0, 1, 1, and 1 respectively. Step 2 shows that V is to be inserted where X
currently resides. Step 3 shows how V doesn’t kick out X, as they’re equal in DFB; the same
is true for Y in step 4. Step 5 shows the swap between V and Z, as V is now further away than
Z (DFB of 2, compared to 1). Z linear probes further down the table in step 6, and in step 7
swaps with W. Finally, in step 8 W lands in the empty bucket at the end, and the insertion
process finishes. In summary, V is swapped with Z, Z is swapped with W, and, finally, W is
placed in the empty bucket at the end. Figure 2 shows a comparison of the Robin Hood
insertion and the same insertion using the Linear Probing collision resolution. As can be
seen, the entry V ends up far further away using Linear Probing than using Robin Hood.

The outcome of this shuffling is a reduced average variance in DFB (i.e. reduced probe
lengths). Not only does reduced variance make for more predictable and uniform performance,
it also allows searches to be culled early, without having to find an empty bucket, which is
typically the requirement for calling off a linear probing search. As soon as the item being
examined during the search has a lower DFB than the current probing DFB the search can
be called off, with the knowledge that it will be unsuccessful: the item being searched for
cannot possibly be present in the table, as it would already have kicked out any items with a
lower DFB than itself. Figure 3 shows an example Robin Hood search operation. The key U
is being queried, probing the table as far as the bucket containing Z before terminating. The
linear probing is shown in steps 1 to 3, while termination happens at step 4. Termination is
possible as U is 3 buckets away from its original bucket, whereas Z is only 2, meaning U can’t
possibly be in the table. The reasoning is that if U was being inserted it would have displaced
Z for having a higher DFB than itself; therefore, it cannot possibly be in the table. A similar
search taking place using linear probing would have to keep searching until an empty bucket
is found, resulting in far more probes at higher load factors, and higher amounts of cache
misses too. We refer to this search mechanism as the Robin Hood invariant. Violating this
invariant leads to a corrupted table, potentially losing items in the table. These factors
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Figure 3 Example Robin Hood search, querying the table for the entry U.

Figure 4 Example Robin Hood deletion. Entry in question is Y.

enable Robin Hood to support a higher load factor, given that the expected search is only 2.6
probe counts on average for successful searches, and O(ln(n)) for unsuccessful searches [7].

Deletion in Robin Hood is more complicated than in linear probing. In linear probing one
can simply tombstone a bucket, as it does not matter what entry was there before. However,
in Robin Hood the DFB of the entry matters, as subsequent searches employ this metric
to determine if the entry being queried is contained in the table. The solution to this is to
either logically mark the entry as deleted, or shift back every entry in front of it until some
criterion is met. Logical deletion is unacceptable, as it causes the table to fill up and lose its
efficiency, resulting in unnecessary resizes. Backward shifting effectively undoes the insertion
of the entry we wish to delete from the table. An example of this is given in Figure 4. Since
the removing thread cannot tell which entries the item to be deleted originally displaced to
get there (assuming they aren’t at their ideal bucket), we must shift back all items. The
shifting is continued until we find an empty bucket or an item in its ideal bucket. Step 1
shows the initial table, step 2 shows the “nulling” of Y. Steps 3, 4, and 5 show a backward
shifting of entries within the table. Step 6 shows the termination of the shifting, as an empty
bucket is ahead of W.

2.3 K-CAS

K-CAS or, multi-word-compare-and-swap, is an extended version of CAS, supporting multiple
compare-and-swap operations on many distinct memory locations, all of which either succeed
or else fail together. Our algorithm employs a modified version of the K-CAS originally
proposed by Harris, Kaiser and Pratt [17]. The K-CAS algorithm does come at a small cost,
reserving an additional 0-2 bits for each word being manipulated by the algorithm. These
reserved bits are needed to store run-time type information that allows descriptors to be
distinguished from normal values. The standard K-CAS interface provides two functions
for basic reading and writing, K_CAS_READ(loc: T*) -> T and K_CAS_WRITE(loc: T*, T
val) -> void, and a mechanism for adding addresses and their values to a descriptor. The
rationale for needing dedicated read and write functions is that the values being operated on
have specific bits reserved to indicate an ongoing K-CAS operation. Both the read and write
functions help any pending K-CAS operation installed at that particular memory location.

Traditional K-CAS implementations need a memory reclaimer system, as each descriptor
must be fresh to avoid the ABA problem [29] . However, the specific K-CAS implementation
we use, developed by Arbel-Raviv and Brown [4], employs descriptor reuse, thereby eliminating
the need for a freshly allocated descriptor for each operation. Given that this implementation
does not require a memory allocation per K-CAS operation, or a reclaimer, its performance
is substantially improved. This enhancement makes K-CAS a feasible concurrency primitive
and, as we show, allows it to outperform the best lock-based hash table algorithms.
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Figure 5 The problem of concurrent searches and removals. The searcher is trying to find V while
entry Y is being removed.

3 Algorithm

3.1 Challenges For Concurrent Robin Hood
The primary challenge in making Robin Hood concurrent is, unsurprisingly, the modifying
operations on the table. Both Add and Remove can modify large parts of the table, with Add
potentially performing a global table reorganisation, and Remove potentially shifting back
many entries. These problems defeat naive solutions such as sharded locks, as Add could
potentially grab all of them, leading to no concurrency. Another issue is that of deadlock;
insertions at two different points in the table might grab the locks in a cyclic manner, leading
to deadlock. For example, the table could have 8 locks with 8 ongoing insertions in 8 different
locations. Initially, each insertion will grab one lock corresponding to the original location.
If all insertions relocate an entry to another lock section, deadlock occurs. To achieve a truly
concurrent implementation of Robin Hood we need an efficient mechanism to update large
disparate parts of the underlying table. For this there are two options. The first is K-CAS,
which became feasible from a performance standpoint thanks to the work of Arbel-Raviv and
Brown [4]. The second choice is hardware transactional memory, which we use to provide
efficient speculative lock-elision [31].

3.2 Overview
K-CAS is a natural choice for relocation-based hash table algorithms. It prohibits a number of
issues that typical concurrent algorithms run into, for example, examining whether invariants
hold during some intermediate operation or state. K-CAS behaves like an expressively weaker
transactional memory [19], but unlike hardware transactional memory [37], it has well defined
progress guarantees. Another reason for using K-CAS is that keys can be stored directly in
the table, thus improving cache locality. The entry relocations initiated by modifications are
summarised into a K-CAS descriptor instead of relying on in-place modifications of the table
featuring entry relocation information. Threads cannot see a K-CAS operation partially
completed. Nevertheless, special considerations need to be made for operations when reading
the table, as they can experience inconsistent views if applied naively.

Since entries can be moved around during concurrent reads, they could inadvertently
miss a key due to some ongoing relocation operation. For example, when Contains uses the
Robin Hood invariant to terminate a search early, there is a race with a concurrent Remove
which could have shifted that particular entry in question back through the table, behind the
reader, leading to an incorrect result. This happens when Remove is called on an unrelated
entry located in the vicinity of the entry being queried. An example of this phenomenon is
illustrated in Figure 5. Here the entry V is being queried while at the same time entry Y is
being removed. When the reader gets to the bucket containing V, the remover executes its
K-CAS operation, shifting a number of entries, including V, backwards. The searcher then
checks the bucket after the shift and sees Z, terminates the search, and falsely declares V as
not present in the table.



R. Kelly, B. A. Pearlmutter, and P. Maguire 10:7

Figure 6 An illustration of how the timestamps are sharded across multiple entries.

Our solution to avoiding this race is to associate each part of the table with a timestamp,
updated upon every relocation. Figure 6 shows the correspondence of timestamps to physical
buckets in the table. A timestamp can be mapped onto several buckets in the table. The
mapping of the timestamps is identical to how locks are sharded in blocking hash tables like
Hopscotch Hashing [21]. When a reader is checking for the presence of a particular key, the
reader remembers the timestamps encountered during its search. If the key is found and
read atomically, then the search can finish. However, if they key isn’t found the reader must
check the values of those timestamps after the search has completed. If a discrepancy is
found, the search is restarted, otherwise we know for certain the key isn’t in the table. When
Remove is executing, it increments the timestamp every time it shifts an entry, and similarly
for the Add method.

3.3 Algorithm Methods
We now outline our algorithm with annotations of code presented in Figures 7, 8, and 9,
which highlight and explain important parts and what they do. The algorithmic code has
been simplified in two areas. The first simplification involves timestamps: the code provided
doesn’t check if a timestamp has already been added to the list, nor does it check the number
of entries per timestamp. The second simplification involves Remove when shuffling elements
back. In both cases the code is long but simple, so we have excluded it for the sake of clarity.

A - Contains

All line numbers refer to Figure 7. At the beginning of the Contains method, a timestamp
list is created. Line 8 adds the timestamp for that bucket to the list of timestamps. Line
9 loads a candidate key from the table; if it’s a Nil key, then the search is culled and the
timestamps are checked. Line 11 handles a matching key, returning true. Lines 12 – 13
handle the case where the distance of the key is too far away from its original bucket to be
present in the table. Lines 17 – 19 check if the timestamp for the particular key has changed
since the beginning of the operation, requiring the entire Contains method to be retried, as
a key could have been missed.

B - Add

All line numbers refer to Figure 8. Add is quite similar to the serial version. Lines 4 – 5 keep
track of the entry currently being relocated via the active key, initially setting the variable to
the key being inserted. Add also keeps track of the last timestamp bucket it has incremented.
This is hidden behind a helper function called add_timestamp_increment. Timestamps
are incremented to prevent a concurrently running Add or Remove from interfering with the
correctness of the method. Lines 10 – 14 attempt to insert the key currently being relocated

OPODIS 2018
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1 fn Contains(key: K) -> bool {
2 start_bucket: u64 = hash(key) % size;
3 retry:
4 timestamps: List<u64> = [];
5 for(i = start_bucket, cur_dist = 0;; cur_dist++, i++) {
6 i %= size;
7 // Add the timestamp for that specific index.
8 timestamps.append(read_timestamp(i));
9 cur_key: K = K_CAS_load(&table[i]);
10 if(cur_key == Nil) { goto timestamp_check; }
11 if(cur_key == key) { return true; }
12 distance: u64 = calc_dist(cur_key, i); // Robin Hood Invariant
13 if (distance < cur_dist) { goto timestamp_check; }
14 }
15 timestamp_check:
16 // Compare every timestamp.
17 for(i = start_bucket, idx = 0; idx < timestamps.size(); i++, idx++) {
18 i %= size;
19 if(list[idx] != read_timestamp(i)) { goto retry; }
20 }
21 return false; // No key
22 }

Figure 7 Pseudo-code for Contains.

into a Nil bucket, retrying the whole Add operation on failure. Line 16 returns false upon
a key match, as the entry is already in the set. Lines 17 – 24 check if an entry needs to
be relocated, replacing it with the entry currently being relocated in the thread’s K-CAS
descriptor.

C - Remove

All line numbers refer to Figure 9. Remove is a combination of Contains and Add. First,
Remove tries to find the key. If the key isn’t found then, as per Contains, timestamps are
checked in case a concurrent Remove or Add has relocated the key during its search. If a key
is found, then the process of deletion begins. Lines 12 – 17 constitute the deletion process.
The function shuffle_items linearly shuffles items back until a Nil key is found, or else
an entry with a DFB of 0 is found. As mentioned earlier, the function is simple, though
expansive, so we exclude it. Each linear shuffle is put into the K-CAS descriptor, with line
15 performing the K-CAS operation. The ultimate outcome of this operation is the physical
deletion of the entry. Lines 19 – 20 check for the Robin Hood invariant, terminating the
search and checking timestamps if the criterion is met. Like Contains, Remove will restart if
there is a discrepancy in the timestamps. Lines 24 – 26 check the timestamps of each bucket
read.
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1 fn Add(key: K) -> bool {
2 start_bucket: u64 = hash(key) % size;
3 retry:
4 active_key: K = key;
5 descriptor: K_CAS_Desc = create_descriptor();
6 for(i = start_bucket, active_dist = 0;; i++, active_dist++) {
7 i %= size;
8 cur_timestamp = read_timestamp(i);
9 cur_key: K = K_CAS_load(&table[i]);

10 if(cur_key == Nil) {
11 descriptor.add(&table[i], Nil, active_key);
12 res: bool = K_CAS(descriptor); // Attempt to K-CAS operations
13 if(!res) { goto retry; }
14 return true;
15 }
16 if(cur_key == key) { return false; }
17 distance: u64 = calc_dist(cur_key, i); // Robin Hood Invariant
18 if (distance < active_dist) {
19 descriptor.add(&table[i], cur_key, active_key); // Swap keys
20 // Increment the timestamp within the descriptor.
21 add_timestamp_increment(i, cur_timestamp);
22 // Swap active key and kick this key down the table
23 active_key = cur_key;
24 active_dist = distance;
25 }
26 }
27 }

Figure 8 Pseudo-code for Add.

3.4 Proof Of Correctness
The proof of correctness is relatively simple and informal. K-CAS [17] is itself linearisable
[22], and K-CAS encodes all relocations and timestamp increments to the data structure in
its descriptors. An invocation of K-CAS essentially turns each modification operation on
the table into a transaction. Every Add or Remove call that results in relocations increments
a timestamp via the K-CAS operation; if any reading thread was to examine the table’s
contents during a relocation, the reader could compare before and after timestamps so as
to ensure that no entry was moved during the search. Furthermore, because each reader
also helps the K-CAS operation, reading the timestamp will result in one of three outcomes.
Either the reader will read a new timestamp value, the same timestamp, or else help the
operation complete an ongoing K-CAS operation by reading the new timestamp if the
operation succeeds or the old one if it fails. Readers need only ensure that the timestamps
haven’t changed since their initial reading. Since Remove can exit in two ways, it has two
different linearisation points. The linearisation point of Add, and the first code path of
Remove are at line 12 in Figure 8 and line 15 in Figure 9, where the K-CAS is successfully
called. Contains and the second exit point of Remove linearise at the point of reading their
last timestamp from their search on lines 8 and 9 respectively.
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1 fn Remove(key: K) -> bool {
2 start_bucket: u64 = hash(key) % size;
3 retry:
4 timestamps: List<u64> = [];
5 descriptor: K_CAS_Desc = create_descriptor();
6 for(i = start_bucket, cur_dist = 0;; cur_dist++, i++) {
7 i %= size;
8 // Add the timestamp for that specific index.
9 timestamps.append(read_timestamp(i));
10 cur_key: K = K_CAS_load(&table[i]);
11 if(cur_key == Nil) { goto timestamp_check; }
12 if(cur_key == key) {
13 // Shuffle items down until a Nil key or dist(key) == 0
14 shuffle_items(i, cur_key);
15 res: bool = K_CAS(descriptor);
16 if(!res) { goto retry; }
17 return true;
18 }
19 distance: u64 = calc_dist(cur_key, i); // Robin Hood Invariant
20 if (distance < cur_dist) { goto timestamp_check; }
21 }
22 timestamp_check:
23 // Compare every timestamp.
24 for(i = start_bucket, idx = 0; idx < timestamps.size(); i++, idx++) {
25 i %= size;
26 if(list[idx] != read_timestamp(i)) { goto retry; }
27 }
28 return false;
29 }

Figure 9 Pseudo-code for Remove.

3.5 Progress
The progress of each operation is parameterised by the progress of the K-CAS operation. If the
K-CAS operation is blocking, then all method calls on the hash table are blocking. However
if we have a lock-free implementation of K-CAS, then the following classifications for each
method occur. Calls to Contains are obstruction-free [18], as other concurrent operations
can cause a relevant timestamp to change, thus forcing the method to restart. Threads
calling Contains can starve but they are not blocked if another thread dies. Add has the
same progress guarantees as Contains and for the same reasons, other modifying operations
can modify relevant timestamps forcing the method to fail and restart. Timestamps are
not guaranteed to correspond to the entries the method wants to examine, they are coarse
and each timestamp corresponds to a number of entries. Remove must first find the entry it
wishes to remove, effectively running the same code as Contains and thus having the same
classification. Afterwards, once found, the deletion and subsequent shuffling of that entry is
also obstruction-free since other irrelevant operations with the same timestamp can interfere
with its progress. In summary, lock-free K-CAS calls to Contains, Add, and Remove are
obstruction-free.
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4 Performance, Results, and Discussion

In this section we detail the performance and implementation of our algorithms. All of our
code is made freely available online [23]. This includes K-CAS Robin Hood, the hardware
transactional [19] variant of Robin Hood Hashing with lock-elision [31], the implementation
of alternative competing algorithms (either coded by us or obtained via online sources), and
benchmarking code which allows readers to replicate our results.

4.1 Experimental Setup

For our experiments we opted to use a set of microbenchmarks which stressed the hash table
under various capacities and workloads. Our benchmarks were run on a 4 CPU machine, with
each CPU (Intel® Xeon® CPU E7-8890 v3) featuring 18 cores with 36 hardware threads and
512 GiB RAM. The machine was running Ubuntu 14.04 with kernel version 3.13.0-141. Each
thread was pinned to a specific core during testing. When scaling the number of threads,
care was taken to pin the thread to a new core, avoiding HyperThreading™ until necessary.
Once all non HyperThreading™ cores on each CPU were exhausted, HyperThreading™ was
employed thereafter. The rational for this scheduling choice is that algorithms which employ
hardware transactional memory are disproportionately penalised by HyperThreading™ and
some mainstream operating systems, such as OpenBSD, disable HyperThreading™. As a
result we shed light on how our algorithms would scale on those systems. NUMA memory
effects were controlled by specifying where each thread could allocate using the numactl
command, allocating on the RAM banks closest to the running CPUs as they came into use.

The algorithms used in the experiments are as follows: K-CAS Robin Hood, Transactional
Lock-Elision Robin Hood Hashing, Hopscotch Hashing [21], a Lock-Free Linear Probing hash
table described by Nielsen and Karlsson [27], and Michael’s lock-free hash table [25].

A number of workload configurations were used in graphing the results. Four load factors
of 20%, 40%, 60%, and 80% were chosen, along with two update workload configurations,
namely 10% and 20%, referred to herein as “light” and “heavy”. Both of the workload
configurations were tried at the specified load factors, and both were used for comparing
the different Robin Hood Hashing algorithms against each other, and against competitors.
We sized the tables at 223 to ensure that they wouldn’t fit into the cache, thereby exposing
each algorithm’s effective cache use. The key space was equal to the size of the table, and
was filled to the specified load factors. The scalable JeMalloc [12] allocator was used in the
experiments and no memory reclamation system was used in algorithms that traditionally
require one.

The testing process was carried out as follows: Each thread calls a random method with
a random argument from some predefined method and key distribution. All threads are
synchronised before execution on the data structure, and for a specified amount of time
rather than a specific number of iterations. Each thread counts the number of operations
it performed on the structure during the benchmark. The total amount of operations per
microsecond for all threads is then graphed. Each experiment was run five times for 10
seconds each, and the average of each result was computed and plotted. All of our algorithms
were written in C++11, and compiled with g++ 4.8.4 with O3 level of optimisation. Cache
misses were collected via PAPI [36].
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Figure 10 Single-core performance of the hash tables relative to K-CAS Robin Hood.

Table 1 Cache misses relative to K-CAS Robin Hood single-core.

Configurations (Load factor w/ Updates)

Hash
Tables

20%
w/
10%

20%
w/
20%

40%
w/
10%

40%
w/
20%

60%
w/
10%

60%
w/
20%

80%
w/
10%

80%
w/
20%

Hopscotch Hashing 88% 82% 70% 71% 64% 68% 59% 65%
Lock-Free LP 185% 207% 227% 240% 294% 305% 430% 453%
Maged Michael 109% 105% 95% 95% 89% 93% 85% 91%
Transactional RH 86% 85% 82% 78% 89% 86% 93% 90%

4.2 Discussion and results
In order to gain an understanding of general operation overhead, we measured single-core
performance. The performance is measured against K-CAS Robin Hood. In Figure 10 we see
that Hopscotch Hashing, Maged Michael’s Separate Chaining, and Lock-Free Linear Probing
are significantly slower than the other algorithms. The reason for this is two-fold. First, the
issue of cache efficiency arises: Lock-Free Linear Probing and separate chaining use dynamic
memory allocation, meaning that a pointer dereference is needed for every bucket access.
While Hopscotch Hashing does not use dynamically allocated memory, it does put more
pressure on the cache by storing the original hash of a key inside the table. However it should
be noted that it doesn’t put as much pressure on the cache as K-CAS Robin Hood, as per
Table 1. The second issue is the amount of work carried out for every operation: Hopscotch
Hashing is the most complicated, executing more code and performing more operations.
Transactional Robin Hood has higher performance than K-CAS Robin Hood as it does not
require to consult the K-CAS descriptor and timestamps.
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Figure 11 Cumulative operations per microsecond for the hash tables at 20% and 40% load
factors at two update rates. (Higher is better)

The cache results can be seen in Table 1 as a percentage relative to K-CAS Robin Hood
for a single-core. These cache statistics were measured over the course of the entire execution
of the benchmark for each table and for each configuration. Hopscotch Hashing fares very
well as it is able to skip over irrelevant entries. Lock-Free Linear Probing uses dynamic
memory and thus puts enormous pressure on the cache. Another downside is that as the table
fills up over time with tombstones, it forces operations to take roughly the same amount of
time regardless of load factor. This phenomenon is called contamination [15]. Maged Michael
[25] fares reasonably well even though it uses dynamic memory. Very few buckets have more
than a single node, meaning few extra nodes are needed. Transactional Lock-Elision Robin
Hood performs better as it does not need to consult an extra timestamp array or any extra
K-CAS descriptor, which would require an extra level of indirection.

As is clear from the multi-core results in Figure 11, 12 the K-CAS Robin Hood Hashing
algorithm either scales better than, or is competitive with, its opposition. Across all graphs
there are two significant dips in performance. The first is at 18 threads, where threads
are pinned to a different CPU socket. The use of another socket requires inter-socket
communication and NUMA effects, reducing overall performance. The second is when
increasing from 72 to 81 threads, which is the point where HyperThreading™ kicks in.
This kink is particularly pronounced for the transactional Robin Hood variant, which never
recovers after that point. Both of these effects become most pronounced when a significant
write load is placed on the tables.

Each of the workloads highlights the particular performance characteristics of each hash
table. The update-light (10% writes) workload shows K-CAS Robin Hood dominating
the competition across all thread counts and load factors. The update-heavy (20% writes)
workload has two distinct outcomes predicated on the table load factor. The lower load
factor shows K-CAS Robin Hood is slightly beaten out by the Transactional Robin Hood
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Figure 12 Cumulative operations per microsecond the hash tables at 60% and 80% load factors
at two update rates. (Higher is better)

variant until the 72 thread mark, wherein it drops off entirely. K-CAS Robin Hood also
edges out Hopscotch Hashing throughout most of the update-heavy workload until the very
upper end of the thread count, where it is slightly outclassed. However, at higher load
factors K-CAS Robin Hood demonstrates similar relative performance to the lower load
factor benchmarks but maintains its lead over Hopscotch Hashing. All workloads show the
gap between K-CAS Robin Hood and Hopscotch begins to narrow once HyperThreading™
kicks in. As mentioned earlier, in every configuration the transactional variant of Robin
Hood scales very well until 72 threads, after which HyperThreading™ causes a huge kink
in performance, and the algorithm never recovers. Maged Michael scales well in the tested
workloads, though the gradient of the line isn’t steep enough to challenge K-CAS Robin
Hood or Hopscotch Hashing. Lock-Free Linear Probing does the worst of all, ending up at
the same end point as Transactional Robin Hood.

4.3 Future Work

An issue we don’t deal with is resize, specifically, when to resize the table and how to do
it. Lock-free resize methods have been discussed in the literature ([8], [32]). To the best of
our knowledge there has not yet been a formally published generic hash table resize method.
Another item for future work is a combination of lock-free K-CAS and transactional [19]
memory, such as the algorithm presented by Trevor Brown [6] for lock-free trees. A similar
exploration for Robin Hood and other the hash tables benchmarked would be of interest.
Work done by Siakavaras et el. [33] shows that a naive application of hardware transactional
systems to data-structures typically perform poorly and require algorithm modifications to
operate efficiently. Future work aimed at determining the optimal modifications for Robin
Hood might elevate its performance for hardware transactional memory.
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5 Conclusion

We have presented an obstruction-free Robin Hood Hashing algorithm which achieves superior
performance relative to other concurrent algorithms with similar capabilities, and a hardware
transaction variant which demonstrates best in class performance. These results establish
that the Robin Hood algorithm is algorithmically suited to concurrency. Our experiments
have shown that it scales strongly at all thread counts. Unlike linear probing, the algorithm
can scale effectively to significantly higher load factors. It is very simple in nature, relying
primarily on an efficient K-CAS, as well as being highly portable, using only single word
compare-and-swap instructions, with no memory reclaimer required. These results represent
the first development in more than 10 years on the state of the art in the field.
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Abstract
A parallel batched data structure is designed to process synchronized batches of operations on
the data structure using a parallel program. In this paper, we propose parallel combining, a
technique that implements a concurrent data structure from a parallel batched one. The idea is
that we explicitly synchronize concurrent operations into batches: one of the processes becomes a
combiner which collects concurrent requests and initiates a parallel batched algorithm involving
the owners (clients) of the collected requests. Intuitively, the cost of synchronizing the concurrent
calls can be compensated by running the parallel batched algorithm.

We validate the intuition via two applications. First, we use parallel combining to design
a concurrent data structure optimized for read-dominated workloads, taking a dynamic graph
data structure as an example. Second, we use a novel parallel batched priority queue to build a
concurrent one. In both cases, we obtain performance gains with respect to the state-of-the-art
algorithms.
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1 Introduction

To ensure correctness of concurrent computations, various synchronization techniques are
employed. Informally, synchronization is used to handle conflicts on shared data, e.g., resolving
data races, or shared resources, e.g., allocating and deallocating memory. Intuitively, the
more sophisticated conflict patterns a concurrent program is subject to – the higher are the
incurred synchronization costs.
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Figure 2 Execution on a concurrent data
structure.

Let us consider a concurrent-software class which we call parallel programs. Provided
an input, a parallel program aims at computing an output that satisfies a specification,
i.e., an input-output relation (Figure 1). To boost performance, the program distributes
the computation across multiple parallel processes. Parallel programs are typically written
for two environments: for static multithreading and dynamic multithreading [11]. In static
multithreading, each process is given its own program and these programs are written
as a composition of supersteps. During a superstep, the processes perform conflict-free
individual computations and, when done, synchronize to accumulate the results. In dynamic
multithreading, the program is written using dynamically called fork-join mechanisms (or
similar ones, e.g., #pragma omp parallel in OpenMP [6]). In both settings, synchronization
only appears in a specific form: memory allocation/deallocation, and aggregating superstep
computations or thread scheduling [17].

General-purpose concurrent data structures, such as stacks, binary search trees and
priority queues, operate in a much less controlled environment. They are programmed
to accept and process asynchronous operation calls, which come from multiple concurrent
processes and may interleave arbitrarily. If we treat operation calls as inputs and their
responses as outputs, we can say that inputs and outputs are distributed across the processes
(Figure 2). It is typically expected that the interleaving operations match the high-level
sequential semantics of the data type [24], which is hard to implement efficiently given diverse
and complicated data-race patterns often observed in this kind of programs. Therefore,
designing efficient and correct concurrent data structures requires a lot of ingenuity from
the programmer. In particular, one should strive to provide the “just right” amount of
synchronization. Lock-based data structures obviate data races by using fine-grained locking
ensuring that contested data is accessed in a mutually exclusive way. Wait-free and lock-free
data structures allow data races but mitigate their effects by additional mechanisms, such as
helping where one process may perform some work on behalf of other processes [23].

As parallel programs are written for a restricted environment with simple synchronization
patterns, they are typically easier to design than concurrent data structures. In this paper,
we suggest benefiting from this complexity gap by building concurrent data structures from
parallel programs. We describe a methodology of designing a concurrent data structure from
its parallel batched counterpart [2]. A parallel batched data structure is a special case of a
parallel program that accepts batches (sets) of operations on a given sequential data type
and executes them in a parallel way. In our approach, we explicitly synchronize concurrent
operations, assemble them into batches, and apply these batches on an emulated parallel
batched data structure.
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More precisely, concurrent processes share a set of active requests using any combining
algorithm [31, 21, 15, 16]. One of the processes with an active request becomes a combiner
and forms a batch from the requests in the set. Under the coordination of the combiner, the
owners of the collected requests, called clients, apply the requests in the batch to the parallel
batched data structure. As we show, this technique becomes handy when the overhead
of explicitly synchronizing operation calls in batches is compensated by the advantages of
involving clients into the computation using the parallel batched data structure.

We discuss two applications of parallel combining and experimentally validate performance
gains. First, we design concurrent implementations optimized for read-dominated workloads
given a sequential data structure. Intuitively, updates are performed sequentially and
read-only operations are performed by the clients in parallel under the coordination of the
combiner. In our performance analysis, we considered a dynamic graph data structure [25]
that can be accessed for adding and removing edges (updates), as well as for checking the
connectivity between pairs of vertices (read-only). Second, we apply parallel combining
to priority queue that is subject to sequential bottlenecks for minimal-element extractions,
while most insertions can be applied concurrently. As a side contribution, we propose a novel
parallel batched priority queue, as no existing batched priority queue we are aware of can be
efficiently used in our context. Our perfomance analysis shows that implementations based
on parallel combining may outperform state-of-the-art algorithms.

Structure. The rest of the paper is organized as follows. In Section 2, we give preliminary
definitions. In Section 3, we outline parallel combining technique. In Sections 4 and 5,
we present applications of our technique. In Section 6, we report on the outcomes of our
performance analysis. In Section 7, we overview the related work. We conclude in Section 8.

2 Background

Data types and data structures. A sequential data type is defined via a set of operations,
a set of responses, a set of states, an initial state and a set of transitions. Each transition
maps a state and an operation to a new state and a response. A sequential implementation
(or sequential data structure) corresponding to a given data type specifies, for each operation,
a sequential read-write algorithm, so that the specification of the data type is respected in
every sequential execution.

We consider a system of n asynchronous processes (processors or threads of computation)
that communicate by performing primitive operations on shared base objects. The primitive
operations can be reads, writes, or conditional operations, such as test&set or compare&swap.
A concurrent implementation (or concurrent data structure) of a given data type assigns,
for each process and each operation of the data type, a state machine that is triggered
whenever the process invokes an operation and specifies the sequence of steps (primitives
on the base objects) the process needs to perform to complete the operation. We require
the implementations to be linearizable with respect to the data type, i.e., we require that
operations take effect instantaneously within their intervals [24].

Batched data structures. A batched implementation (or batched data structure) of a data
type exports one function apply. This operation takes a batch (set) of data type operations
as a parameter and returns responses for these operations that are consistent with some
sequential application of the operations to the current state of the data structure, which is
updated accordingly. We also consider extensions of the definition where we explicitly define
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11:4 Parallel Combining

the “batched” data type via the set [30] or interval [10] linearizations. Such a data type
takes a batch and a state, and returns a new state and a vector of responses.

For example, in the simplest form, a batched implementation may sequentially apply
operations from a batch to the sequential data structure. But batched implementations
may also use parallelism to accelerate the execution of the batch: we call these parallel
batched implementations. We consider two types of parallel batched implementations:
static-multithreading ones and dynamic-multithreading ones [11].

Static multithreading. A parallel batched data structure specifies a distinct (sequential)
code to each process in PRAM-like models (PRAM [27], Bulk synchronous parallel model [37],
Asynchronous PRAM [18], etc.). For example, in this paper, we provide a batched imple-
mentation of a priority queue in the Asynchronous PRAM model. The Asynchronous PRAM
consists of n sequential processes, each with its own private local memory, communicating
through the shared memory. Each process has its own program. Unlike the classical PRAM
model, each process executes its instructions independently of the timing of the other pro-
cessors. Each process performs one of the four types of instructions per tick of its local clock:
global read, global write, local operation, or synchronization step. A synchronization step for
a set S of processes is a logical point where each processor in S waits for all the processes in
S to arrive before continuing its local program.

Dynamic multithreading. Here the parallel batched implementation is written as a sequen-
tial read-write algorithm using concurrency keywords specifiying logical parallelism, such as
fork, join and parallel-for [11]. An execution of a batch can be presented as a directed acyclic
graph (DAG) that unfolds dynamically. In the DAG, nodes represent unit-time sequential
subcomputations, and edges represent control-flow dependencies between nodes. A node
that corresponds to a “fork” has two or more outgoing edges and a node that corresponds
to a “join” has two or more incoming edges. The batch is executed using a scheduler that
chooses which DAG nodes to execute on each process. It can only execute ready nodes: not
yet executed nodes whose predecessors have all been executed. The most commonly used
work-stealing scheduler (e.g., [5]) operates as follows. Each process p is provided with a
deque for ready nodes. When process p completes node u, it traverses successors of u and
collects the ready ones. Then p selects one of the ready successors for execution and adds the
remaining ready successors at the bottom of its deque. When p’s deque is empty, it becomes
a thief : it randomly picks a victim processor and steals from the top of the victim’s deque.

3 Parallel Combining

In this section, we describe the parallel combining technique in a parameterized form: the
parameters are specified depending on the application. We then discuss how to use the
technique in transforming parallel batched programs into concurrent data structures.

3.1 Combining Data Structure
Our technique relies on a combining data structure C (e.g., the one used in [21]) that
maintains a set of requests to a data structure and determines which process is a combiner.
If the set of requests is not empty then exactly one process should be a combiner.

Elements stored in C are of Request type consisting of the following fields: 1) the method
to be called and its input; 2) the response field; 3) the status of the request with a value in an
application-specific STATUS_SET; 4) application-specific auxiliary fields. In our applications,
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Listing 1 Parallel combining: pseudocode
1 Request:
2 method
3 input
4 res
5 status ∈ STATUS_SET
6 ...
7

8 execute(method, input):
9 req ← new Request()

10 req.method ← method
11 req.input ← input
12 req.status ← INITIAL
13 if C.addRequest(req):
14 // combiner
15 A← C.getRequests()
16 COMBINER_CODE
17 C.release()
18 else:
19 while req.status = INITIAL:
20 nop
21 CLIENT_CODE
22 return

STATUS_SET contains, by default, values INITIAL and FINISHED: INITIAL meaning that the
request is in the initial state, and FINISHED meaning that the request is served.

C supports three operations: 1) addRequest(r : Request) inserts request r into the
set, and the response indicates whether the calling process becomes a combiner or a client;
2) getRequests() returns a non-empty set of requests; and 3) release() is issued by the
combiner to make C find another process to be a combiner.

In the following, we use any black-box implementation of C providing this functionality [31,
21, 15, 16].

3.2 Specifying Parameters

To perform an operation, a process executes the following steps (Listing 1): 1) it prepares
a request, inserts the request into C using addRequest(·); 2) if the process becomes the
combiner (i.e., addRequest(·) returned true), it collects requests from C using getRequests(),
then it executes algorithm COMBINER_CODE, and, finally, it calls release() to enable another
active process to become a combiner; 3) if the process is a client (i.e., addRequest(·) returned
false), it waits until the status of the request becomes not INITIAL and, then, executes
algorithm CLIENT_CODE.

To use our technique, one should therefore specify COMBINER_CODE, CLIENT_CODE, and
appropriately modify Request type and STATUS_SET.

Note that sequential combining [31, 21, 16, 14] is a special case of parallel combining in
which all the work is done by the combiner, and the client code is empty.
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3.3 Parallel Batched Algorithms
We discuss how to build a concurrent data structure given a parallel batched one in one of
two forms: for static or dynamic multithreading.

In the static multithreading case, each process is provided with a distinct version of apply
function. We enrich STATUS_SET with STARTED. In COMBINER_CODE, the combiner collects
the requests, sets their status to STARTED, performs the code of apply and waits for the
clients to become FINISHED. In CLIENT_CODE the client waits until its request has STARTED
status, performs the code of apply and sets the status of its request to FINISHED.

Suppose that we are given a parallel batched implementation for dynamic multithreading.
One can turn it into a concurrent one using parallel combining with the work-stealing
scheduler. Again, we enrich STATUS_SET with STARTED. In COMBINER_CODE, the combiner
collects the requests and sets their status to STARTED. Then the combiner creates a working
deque, puts there a new node of computational DAG with apply function and starts the work-
stealing routine on processes-clients. Finally, the combiner waits for the clients to become
FINISHED. In CLIENT_CODE, the client creates a working deque and starts the work-stealing
routine.

In Section 5, we illustrate the use of parallel combining and parallel batched programs on
the example of a priority queue.

4 Read-Optimized Concurrent Data Structures

Before discussing parallel batched algorithms, let us consider a natural application of parallel
combining: data structures optimized for read-dominated workloads.

Suppose that we are given a sequential data structure D that supports read-only (not
modifying the data structure) operations, the remaining operations are called updates. We
assume a scenario where read-only operations dominate over other updates.

Now we explain how to set parameters of parallel combining for this application. At first,
STATUS_SET consists of three elements INITIAL, STARTED and FINISHED. Request type does
not have auxiliary fields.

In COMBINER_CODE (Listing 2 Lines 1-19), the combiner iterates through the set of collected
requests A: if a request contains an update operation then the combiner executes it and
sets its status to FINISHED; otherwise, the combiner adds the request to set R. Then the
combiner sets the status of requests in R to STARTED. After that the combiner checks whether
its own request is read-only. If so, it executes the method and sets the status of its request to
FINISHED. Finally, the combiner waits until the status of the requests in R become FINISHED.

In CLIENT_CODE (Listing 2 Lines 21-24), the client checks whether its method is read-only.
If so, the client executes the method and sets the status of the request to FINISHED.

I Theorem 1. Algorithm in Listing 2 produces a linearizable concurrent data structure from
a sequential one.

Proof. Any execution of the algorithm can be viewed as a series of non-overlapping combining
phases (Listing 2, Lines 2-19). We can group the operations into batches by the combining
phase in which they are applied.

Each update operation is linearized at the point when the combiner applies this operation.
Note that this is a correct linearization since all operations that are linearized before are
already applied: the operations from preceding combining phases were applied during
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Listing 2 Parallel combining in application to read-optimized data structures.
1 COMBINER_CODE:
2 R ← ∅
3

4 for r ∈ A:
5 if isUpdate(r.method):
6 apply(D, r.method, r.input)
7 r.status ← FINISHED
8 else:
9 R ← R ∪ r

10

11 for r ∈ R:
12 r.status ← STARTED
13 if req.status = STARTED:
14 apply(D, req.method, req.input)
15 req.status ← FINISHED
16

17 for r ∈ R:
18 while r.status = STARTED:
19 nop
20

21 CLIENT_CODE:
22 if not isUpdate(req.method):
23 apply(D, req.method, req.input)
24 req.status ← FINISHED

the preceding phases, while the operations from the current combining phase are applied
sequentially by the combiner.

Each read-only operation is linearized at the point when the combiner sets the status of
the corresponding request to STARTED. By the algorithm, a read-only operation observes all
update operations that are applied before and during the current combining phase. Thus,
the chosen linearization is correct. J

To evaluate the approach in practice we implement a concurrent dynamic graph data
structure by Holm et al. and execute it in read-dominated environments [25] (Section 6.1).

5 Priority Queue

Priority queue is an abstract data type that maintains an ordered multiset and supports two
operations:

Insert(v) – inserts value v into the set;
v ← ExtractMin() – extracts the smallest value from the set.

To the best of our knowledge, no prior parallel implementation of a priority-queue [32,
13, 9, 33] can be efficiently used in our context: their complexity inherently depends on the
total number of processes in the system, regardless of the actual batch size. We therefore
introduce a novel heap-based parallel batched priority-queue implementation in a form of
COMBINER_CODE and CLIENT_CODE convenient for parallel combining. The concurrent priority
queue is then derived from the described below parallel batched one using the approach
presented in Section 3.3.
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11:8 Parallel Combining

Here we give only the brief overview of our parallel batched algorithm. Please refer to
the full version of the paper [3] for a detailed description.

In Section 6.2, we show that the resulting concurrent priority queue is able to outperform
manually crafted state-of-the-art implementations.

5.1 Sequential Binary Heap
Our batched priority queue is based on the sequential binary heap by Gonnet and Munro [19],
one of the simplest and fastest sequential priority queues. We briefly describe this algorithm
below.

A binary heap of size m is represented as a complete binary tree with nodes indexed
by 1, . . . , m. Each node v has at most two children: 2v and 2v + 1 (to exist, 2v and 2v + 1
should be less than or equal to m). For each node, the heap property should be satified: the
value stored at the node is less than the values stored at its children.

The heap is represented with size m and an array a where a[v] is the value at node v.
Operations ExtractMin and Insert are performed as follows:

ExtractMin records the value a[1] as a response, copies a[m] to a[1], decrements m and
performs the sift down procedure to restore the heap property. Starting from the root,
for each node v on the path, we check whether value a[v] is less than values a[2v] and
a[2v + 1]. If so, then the heap property is satisfied and we stop the operation. Otherwise,
we choose the child c, either 2v or 2v + 1, with the smallest value, swap values a[v] and
a[c], and continue with c.
Insert(x) initializes a variable val to x, increments m and traverses the path from the
root to a new node m. For each node v on the path, if val < a[v], then the two values
are swapped. Then the operation continues with the child of v that lies on the path from
v to node m. Reaching node m the operation sets its value to val.

The complexity is O(log m) steps per operation.

5.2 Setup
The heap is defined by its size m and an array a of Node objects. Node object has two fields:
value val and boolean locked (In the full version [3] it has an additional field).

STATUS_SET consists of three items: INITIAL, SIFT and FINISHED.
A Request object consists of: a method method to be called and its input argument v; a

result res field; a status field and a node identifier start.

5.3 ExtractMin Phase
Combiner: ExtractMin preparation. The combiner withdraws requests A from combining
data structure C. It splits A into sets E and I: the set of ExtractMin requests and Insert
requests. Then it finds |E| nodes v1, . . . , v|E| of heap with the smallest values using the
Dijkstra-like algorithm in O(|E| · log |E|) steps: (i) create a heap of nodes ordered by values,
put there the root 1; (ii) at each of the next |E| steps withdraw the node v with the minimal
value from the heap; (iii) put two children of v, 2v and 2v+1, to the heap. The |E| withdrawn
nodes are the nodes with the |E| minimal values. For each request E[i], the combiner sets
E[i].res to a[vi].val, a[vi].locked to true, and E[i].start to vi.

The combiner proceeds by pairing Insert requests in I with ExtractMin requests in
E using the following procedure. Suppose that ` = min(|E|, |I|). For each i ∈ [1, `], the
combiner sets a[vi].val to I[i].v and I[i].status to FINISHED, i.e., this Insert request becomes
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Figure 3 Split and target nodes.

completed. Then, for each i ∈ [` + 1, |E|], the combiner sets a[vi].val to the value of the last
node a[m] and decrements m, as in the sequential algorithm. Finally, the combiner sets the
status of all requests in E to SIFT.

Clients: ExtractMin phase. Briefly, the clients sift down the values in nodes v1, . . . , v|E|
in parallel using hand-over-hand locking: the locked field of a node is set whenever there is a
sift down operation working on that node.

A client c waits until the status of its request becomes SIFT. c starts sifting down from
req.start. Suppose that c is currently at node v. c waits until the locked fields of the children
become false. If a[v].val, the value of v, is less than the values in its children, then sift down
is finished: c unsets a[v].locked and sets the status of its request to FINISHED. Otherwise, let
w be the child with the smallest value. Then c swaps a[v].val and a[w].val, sets a[w].locked,
unsets a[v].locked and continues with node w.

If the request of the combiner is ExtractMin, it also runs the code above as a client. The
combiner considers the ExtractMin phase completed when all requests in E have status
FINISHED.

5.4 Insert Phase
For simplicity, we describe first the sequential algorithm.

At first, the combiner removes all completed requests from I. Then it initializes new
nodes m + 1, . . . , m + |I| which we call target nodes and increments m by |I|. The nodes for
which the subtrees of both children contain at least one target node are called split nodes.
(See Figure 3 for an example of how target and split nodes can be defined.)

The combiner collects the values of the remaining Insert requests and sorts them:
r1, . . . , r|I|. Then it sets the status of these requests to FINISHED.

Now, we introduce InsertSet class: it consists of two sorted lists A and B. The combiner
starts the following recursive procedure at the root with InsertSet s: s.A contains r1, . . . , r|I|
while s.B is empty. Suppose that the procedure is called on node v and InsertSet s. Let
min be the minimum out of the first element of s.A and the first element of s.B. If v is a
target node then the combiner sets a[v].res to min and withdraws m from the corresponding
list. Otherwise, the combiner compares a[v].res with min: if a[v].res is smaller, then it
does nothing; otherwise, it appends a[v].res to the end of s.B (note that s.B remains sorted
because s.B consists only of values that were ancestors in the heap), withdraws min from
the corresponding list and sets a[v].res to min.
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If v is not the split node the combiner calls the recursive procedure on the child with
target nodes in the subtree and with InsertSet s. Otherwise, the combiner calculates inL and
inR – the number of target nodes in the left and right subtrees of v. Suppose, for simplicity,
that inL is less than inR (the opposite case can be resolved similarly). The combiner splits
s into two parts: create InsertSet sL, move min(inL, |s.A|) first values from s.A to sL.A and
move min(inL− |sL.A|, |s.B|) first values from s.B to sL.B. Finally, it calls the recursive
procedure on the left child with InsertSet sL and on the right child with InsertSet s.

This algorithm works in O(log m + c log c) steps (and can be optimized to O(log m + c)
steps), where m is the size of the queue and c is the number of Insert requests to apply. Note
that this algorithm is almost non-parallelizable due to its small complexity, and our parallel
algorithm is only developed to reduce constant factors.

Now, we construct a parallel algorithm for the Insert phase. We enrich Node object with
the IntegerSet field split. The combiner sets the start field of the first client (i[1].start) to
the root 1, while start fields of other clients to the right children of split nodes (we have
exactly |I| − 1 split nodes). Then it intializes the split field of the root as the IntegerSet s is
initialized at the beginning of the sequential algorithm: list A contains values of requests
while list B is empty.

Each client waits until the split field of the corresponding start node is non-null. Then
it reads this IntegerSet: the values from this set should be inserted in the subtree. Finally,
the client performs the procedure similar to the recursive procedure from the sequential
algorithm except for one difference: when it reaches a split node instead of going recursively
to left and right children, it splits InsertSet to sL and sR of sizes inL and inR, puts sR into
the split field of the right child (in order to wake another client) and continues with the left
child and sL.

For further details about the parallel algorithm we refer to the full version of the paper [3].

6 Experiments

We evaluate Java implementations of our data structures on a 4-processor AMD Opteron
6378 2.4 GHz server with 16 threads per processor (yielding 64 threads in total), 512 Gb of
RAM, running Ubuntu 14.04.5 with Java 1.8.0_111-b14 and HotSpot JVM 25.111-b14.

6.1 Concurrent Dynamic Graph
To illustrate how parallel combining can be used to construct read-optimized concurrent
data structures, we took the sequential dynamic graph implementation by Holm et al. [25].
This data structure supports two update methods: an insertion of an edge and a deletion of
an edge; and one read-only method: a connectivity query that tests whether two vertices are
connected.

We compare our implementation based on parallel combining (PC) with flat combining [21]
as a combining data structure against three others: (1) Lock, based on ReentrantLock from
java.util.concurrent; (2) RW Lock, based on ReentrantReadWriteLock from java.util.concurrent;
and (3) FC, based on flat combining [21]. The code is available at https://github.com/
Aksenov239/concurrent-graph.

We consider workloads parametrized with: 1) the fraction x of connectivity queries (50%,
80% or 100%, as we consider read-dominated workloads); 2) the set of edges E: edges of
a single random tree, or edges of ten random trees; 3) the number of processes P (from 1
to 64). We prepopulate the graph on 105 vertices with edges from E: we insert each edge
with probability 1

2 . Then we start P processes. Each process repeatedly performs operations:

https://github.com/Aksenov239/concurrent-graph
https://github.com/Aksenov239/concurrent-graph
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Figure 4 Dynamic graph implementations.

1) with probability x, it calls a connectivity query on two vertices chosen uniformly at
random; 2) with probability 1− x

2 , it inserts an edge chosen uniformly at random from E;
3) with probability 1− x

2 , it deletes an edge chosen uniformly at random from E.
We denote the workloads with E as a single tree as Tree workloads, and other workloads

as Trees workloads. Tree workloads are interesting because they show the degenerate
case: the dynamic graph behaves as a dynamic tree. In this case, about 50% of update
operations successfully change the spanning fprest, while other update operations only check
the existence of the edge and do not modify the graph. Trees workloads are interesting
because a reasonably small number (approximately, 5-10%) of update operations modify
the maintained set of all edges and the underlying complex data structure that maintains
a spanning forest (giving in total the squared logarithmic complexity), while other update
operations can only modify the set of edges but cannot modify the underlying complex data
structure (giving in total the logarithmic complexity).

For each setting and each algorithm, we run the corresponding workload for 10 seconds
to warmup HotSpot JVM and then we run the workload five more times for 10 seconds. The
average throughput of the last five runs is reported in Figure 4.

From the plots we can infer two general observations: PC exhibits the highest thoughput
over all considered implementations and it is the only one whose throughput scales up with
the number of the processes. On the 100% workload we expect the throughput curve to be
almost linear since all operations are read-only and can run in parallel. The plots almost
confirm our expectation: the curve of the throughput is a linear function with coefficient
1
2 (instead of the ideal coefficient 1). We note that this is almost the best we can achieve:
a combiner typically collects operations of only approximately half the number of working
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processes. In addition, the induced overhead is still perceptible, since each connectivity query
works in just logarithmic time. With the decrease of the fraction of read-only operations we
expect that the throughput curve becomes flatter, as plots for the 50% and 80% workloads
confirm.

It is also interesting to point out several features of other implementations. At first, FC
implementation works slightly worse than Lock and RW Lock. This might be explained
as follows. Lock implementations (ReentrantLock and ReentrantReadWriteLock) behind
Lock and RWLock implementations are based on CLH Lock [12] organized as a queue: every
competing process is appended to the queue and then waits until the previous one releases
the lock. Operations on the dynamic graph take significant amount of time, so under high
load when the process finishes its operation it appends itself to the queue in the lock without
any contention. Indeed, all other processes are likely to be in the queue and, thus, no process
can contend. By that the operations by processes are serialized with almost no overhead.
In contrast, the combining procedure in FC introduces non-negligible overhead related to
gathering the requests and writing them into requests structures.

Second, it is interesting to observe that, against the intuition, RWLock is not so superior
with respect to Lock on read-only workloads. As can be seen, when there are update
operations in the workload RWLock works even worse than Lock. We relate this to the
fact that the overhead hidden inside ReentrantReadWriteLock spent on manipulation with
read and write requests is bigger than the overhead spent by ReentrantLock. With the
increase of the percentage of read-only operations the difference between Lock and RWLock
diminishes and RWLock becomes dominant since read operations become more likely to
be applied concurrently (for example, on 50% it is normal to have an execution without
any parallelization: read operation, write operation, read operation, and so on). However,
on 100% one could expect that RWLock should exhibit ideal throughput. Unfortunately,
in this case, under the hood ReentrantReadWriteLock uses compare&swap on the shared
variable that represents the number of current read operations. Read-only operations take
enough time but not enough to amortize the considerable traffic introduced by concurrent
compare&swaps. Thus, the plot for RWLock is almost flat, getting even slightly worse with
the increase of the number of processes, and we blame the traffic for this.

6.2 Priority Queue
We run our algorithm (PC) with flat combining [21] as a combining data structure against six
state-of-the-art concurrent priority queues: (1) the lock-free skip-list by Linden and Johnson
(Linden SL [28]), (2) the lazy lock-based skip-list (Lazy SL [23]), (3) the non-linearizable
lock-free skip-list by Herlihy and Shavit (SkipQueue [23]) as an adaptation of Lotan and
Shavit’s algorithm [34], (4) the lock-free skip-list from Java library (JavaLib), (5) the binary
heap with flat combining (FC Binary [21]), and (6) the pairing heap with flat combining (FC
Pairing [21]). 2 The code is available at https://github.com/Aksenov239/FC-heap.

We consider workloads parametrized by: 1) the initial size of the queue S (8 · 105 or
8 · 106); and 2) the number P of working processes (from 1 to 64). We prepopulate the
queue with S random integers chosen uniformly from the range [0, 231 − 1]. Then we start P

processes, and each process repeatedly performs operations: with equal probability it either
inserts a random value taken uniformly from [0, 231 − 1] or extracts the minimum value.

2 We are aware of the cache-friendly priority queue by Braginsky et al. [8], but we do not have its Java
implementation.

https://github.com/Aksenov239/FC-heap
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Figure 5 Priority Queue implementations.

For each setting and each algorithm, we run the corresponding workload for 10 seconds
to warmup HotSpot JVM and then we run the workload five more times for 10 seconds. The
average throughput of the last five runs is reported in Figure 5.

On a small number of processes (< 15), PC performs worse than other algorithms. With
respect to Linden SL, Lazy SL, SkipQueue and JavaLib this can be explained by two different
issues:

Synchronization incurred by PC is not compensated by the work done;
Typically, a combiner collects operations of only approximately half the processes, thus,
we “overserialize”, i.e., only n

2 operations can be performed in parallel.
In contrast, on small number of processes, the other four algorithms can perform operations
almost with no contention. With respect to algorithms based on flat combining, FC Binary
and FC Pairing, our algorithm is simply slower on one process than the simplest sequential
binary and pairing heap algorithms.

With the increase of the number of processes the synchronization overhead significantly
increases for all algorithms (in addition to the fact that FC Binary and FC Pairing cannot
scale). As a result, starting from 15 processes, PC outperforms all algorithms except for
Linden SL. Linden SL relaxes the contention during ExtractMin operations, and it helps to
keep the throughput approximately constant. At approximately 40 processes the benefits of
the parallel batched algorithm in PC starts prevailing the costs of explicit synchronization,
and our algorithms overtakes Linden SL.

It is interesting to note that FC Binary performs very well when the number of processes
is small: the overhead on the synchronization is very small, the processes are from the same
core and the simplest binary heap performs operations very fast.

7 Related Work

To the best of our knowledge, Yew et al. [38] were the first to propose combining concurrent
operations. They introduced a combining tree: processes start at distinct leaves, traverse
upwards, and gain exclusive access by reaching the root. If, during the traversal, two
processes access the same tree node, one of them adopts the operations of another and
continues the traversal, while the other waits until its operations are completed. Several
improvements of this technique have been discussed, such as adaptive combining tree [36],
barrier implementations [20, 29] and counting networks [35].
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A different approach was proposed by Oyama et al. [31]. Here the data structure is
protected by a lock. A thread with a new operation to be performed adds it to a list of
submitted requests and then tries to acquire the lock. The winner of the lock performs
the pending requests on behalf of other processes from the list in LIFO order. The main
drawback of this approach is that all processes have to perform CAS on the head of the
list. The flat combining technique presented by Hendler et al. [21] addresses this issue by
replacing the list of requests with a publication list which maintains a distinct publication
record per participating process. A process puts its new operation in its publication record,
and the publication record is only maintained in the list if the process is “active enough”.
This way the processes generally do not contend on the head of the list. Variations of flat
combining were later proposed for various contexts [15, 16, 26, 14].

Hierarchical combining [22] is the first attempt to improve performance of combining
using the computational power of clients. The list of requests is split into blocks, and each
of these blocks has its own combiner. The combiners push the combined requests from the
block into the second layer implemented as the standard flat combining with one combiner.
This approach, however, may be sub-optimal as it does not involve all clients. Moreover,
this approach works only for specific data structures, such as stacks or unfair synchronous
queues, where operations could be combined without accessing the data structure.

In a different context, Agrawal et al. [2] suggested to use a parallel batched data structure
instead of a concurrent one. They provide provable bounds on the running time of a dynamic
multithreaded parallel program using P processes and a specified scheduler. The proposed
scheduler extends the work-stealing scheduler by maintaining separate batch work-stealing
deques that are accessed whenever processes have operations to be performed on the abstract
data type. A process with a task to be performed on the data structure stores it in a request
array and tries to acquire a global lock. If succeeded, the process puts the task to perform
the batch update in its batch deque. Then all the processes with requests in the request
array run the work-stealing routine on the batch deques until there are no tasks left. The
idea of [2] is similar to ours. However, their algorithm is designed for systems with the fixed
set of processes, whereas we allow the processes to join and leave the execution. From a
more formal perspective, our goals are different: we aim at improving the performance of a
concurrent data structure while their goal was to establish bounds on the running time of a
parallel program in dynamic multithreading. Furthemore, implementing a concurrent data
structure from its parallel batched counterpart for dynamic multithreading is only one of the
applications of our technique, as sketched in Section 3.3.

8 Concluding remarks

Besides performance gains, parallel combining can potentially bring other interesting benefits.
First, a parallel batched implementation is typically provided with bounds on the running

time. The use of parallel combining might allow us to derive bounds on the operations
of resulting concurrent data structures. Consider, for example, a binary search tree. To
balance the tree, state-of-the-art concurrent algorithms use the relaxed AVL-scheme [7]. This
scheme guarantees that the height of the tree never exceeds the contention level (the number
of concurrent operations) plus the logarithm of the tree size. Applying parallel combining
to a parallel batched binary search tree (e.g., [4]), we get a concurrent tree with a strict
logarithmic bound on the height.

Second, the technique might enable the first ever concurrent implementation of certain
data types, for example, a dynamic tree [1].



V. Aksenov, P. Kuznetsov, and A. Shalyto 11:15

As shown in Section 6, our concurrent priority queue performs well compared to state-of-
the-art algorithms. A possible explanation is that the underlying parallel batched implement-
ation is designed for static multithreading and, thus, it has little synchronization overhead.
This might not be the case for implementations based on dynamic multithreading, where the
overhead induced by the scheduler can be much higher. We intend to explore this distinction
in the forthcoming work.
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Abstract
The replicated list object is frequently used to model the core functionality of replicated collabor-
ative text editing systems. Since 1989, the convergence property has been a common specification
of a replicated list object. Recently, Attiya et al. proposed the strong/weak list specification and
conjectured that the well-known Jupiter protocol satisfies the weak list specification. The major
obstacle to proving this conjecture is the mismatch between the global property on all replica
states prescribed by the specification and the local view each replica maintains in Jupiter using
data structures like 1D buffer or 2D state space. To address this issue, we propose CJupiter
(Compact Jupiter) based on a novel data structure called n-ary ordered state space for a replic-
ated client/server system with n clients. At a high level, CJupiter maintains only a single n-ary
ordered state space which encompasses exactly all states of each replica. We prove that CJupiter
and Jupiter are equivalent and that CJupiter satisfies the weak list specification, thus solving the
conjecture above.
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1 Introduction

Collaborative text editing systems, like Google Docs [2], Apache Wave [1], or wikis [11],
allows multiple users to concurrently edit the same document. For availability, such systems
often replicate the document at several replicas. For low latency, replicas are required to
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respond to user operations immediately without any communication with others and updates
are propagated asynchronously.

The replicated list object has been frequently used to model the core functionality (e.g.,
insertion and deletion) of replicated collaborative text editing systems [8, 13, 26, 5]. A
common specification of a replicated list object is the convergence property, proposed by
Ellis et al. [8]. It requires the final lists at all replicas be identical after executing the same
set of user operations. Recently, Attiya et al. [5] proposed the strong/weak list specification.
Beyond the convergence property, the strong/weak list specification specifies global properties
on intermediate states going through by replicas. Attiya et al. [5] have proved that the
existing RGA protocol [16] satisfies the strong list specification. Meanwhile, it is conjectured
that the well-known Jupiter protocol [13, 26], which is behind Google Docs [3] and Apache
Wave [4], satisfies the weak list specification.

Jupiter adopts a centralized server replica for propagating updates 2, and client replicas
are connected to the server replica via FIFO channels; see Figure 1 3. Jupiter relies on the
technique of operational transformations (OT) [8, 20] to achieve convergence. The basic idea
of OT is for each replica to execute any local operation immediately and to transform a
remote operation so that it takes into account the concurrent operations previously executed
at the replica. Consider a replicated list system consisting of replicas R1 and R2 which
initially hold the same list (Figure 2). Suppose that user 1 invokes o1 = Ins(f, 1) at R1 and
concurrently user 2 invokes o2 = Del(5) at R2. After being executed locally, each operation
is sent to the other replica. Without OT (Figure 2a), the states of two replicas diverge. With
the OT of o1 and o2 (Figure 2b), o2 is transformed to o′2 = Del(6) at R1, taking into account
the fact that o1 has inserted an element at position 1. Meanwhile, o1 remains unchanged.
As a result, two replicas converge to the same list. We note that although the idea of OT is
straightforward, many OT-based protocols for replicated list are hard to understand and
some of them have even been shown incorrect with respect to convergence [8, 20, 22].

The major obstacle to proving that Jupiter satisfies the weak list specification is the
mismatch between the global property on all states prescribed by such a specification and the
local view each replica maintains in the protocol. On the one hand, the weak list specification
requires that states across the system are pairwise compatible [5]. That is, for any pair of
(list) states, there cannot be two elements a and b such that a precedes b in one state but b
precedes a in the other. On the other hand, Jupiter uses data structures like 1D buffer [18]
or 2D state space [13, 26] which are not “compact” enough to capture all replica states in
one. In particular, Jupiter maintains 2n 2D state spaces for a system with n clients [26]:
Each client maintains a single state space which is synchronized with those of other clients
via its counterpart state space maintained by the server. Each 2D state space of a client (as
well as its counterpart at the server) consists of a local dimension and a global dimension,
keeping track of the operations processed by the client itself and the others, respectively.
In this way, replica states of Jupiter are dispersed in multiple 2D state spaces maintained
locally at individual replicas.

To resolve the mismatch, we propose CJupiter (Compact Jupiter), a variant of Jupiter,
which uses a novel data structure called n-ary ordered state space for a system with n clients.
CJupiter is compact in the sense that at a high level, it maintains only a single n-ary ordered
state space which encompasses exactly all states of each replica. Each replica behavior

2 Since replicas are required to respond to user operations immediately, the client/server architecture
does not imply that clients process operations in the same order.

3 The details about Figure 1 will be described in Examples 4 and 13.
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corresponds to a path going through this state space. This makes it feasible for us to reason
about global properties and finally prove that Jupiter satisfies the weak list specification,
thus solving the conjecture of Attiya et al. The roadmap is as follows:

(Section 3) We propose CJupiter based on the n-ary ordered state space data structure.
(Section 4) We prove that CJupiter is equivalent to Jupiter in the sense that the behaviors
of corresponding replicas of these two protocols are the same under the same schedule
of operations. Jupiter is slightly optimized in implementation at clients (but not at the
server) by eliminating redundant OTs, which, however, has obscured the similarities
among clients and led to the mismatch discussed above.
(Section 5) We prove that CJupiter satisfies the weak list specification. Thanks to the
“compactness” of CJupiter, we are able to focus on a single n-ary ordered state space
which provides a global view of all possible replica states.

Section 2 presents preliminaries on specifying replicated list data type and OT. Section 6
describes related work. Section 7 concludes the paper. The full paper [25] contains proofs
and pseudocode.

2 Preliminaries: Replicated List and Operational Transformation

We describe the system model and specifications of replicated list in the framework for
specifying replicated data types [7, 6, 5].

2.1 System Model
A highly-available replicated data store consists of replicas that process user operations
on the replicated objects and communicate updates to each other with messages. To be
highly-available, replicas are required to respond to user operations immediately without any
communication with others. A replica is defined as a state machine R = (Σ, σ0, E,∆), where
1) Σ is a set of states; 2) σ0 ∈ Σ is the initial state; 3) E is a set of possible events; and 4)
∆ : Σ × E → Σ is a transition function. The state transitions determined by ∆ are local
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steps of a replica, describing how it interacts with the following three kinds of events from
users and other replicas:

do(o, v): a user invokes an operation o ∈ O on the replicated object and immediately
receives a response v ∈ Val. We leave the users unspecified and say that the replica
generates the operation o;
send(m): the replica sends a message m to some replicas; and
receive(m): the replica receives a message m.

A protocol is a collection R of replicas. An execution α of a protocol R is a sequence of
all events occurring at the replicas in R. We denote by R(e) the replica at which an event
e occurs. For an execution (or generally, an event sequence) α, we denote by e ≺α e′ (or
e ≺ e′) that e precedes e′ in α. An execution α is well-formed if for every replica R: 1)
the subsequence of events 〈e1, e2, . . .〉 at R, denoted α|R, is well-formed, namely there is a
sequence of states 〈σ1, σ2, . . .〉, such that σi = ∆(σi−1, ei) for all i; and 2) every receive(m)
event at R is preceded by a send(m) event in α. We consider only well-formed executions.

We are often concerned with replica behaviors and states when studying a protocol. The
behavior of replica R in α is a sequence of the form: σ0, e1, σ1, e2, . . ., where 〈e1, e2, . . .〉 = α|R
and σi = ∆(σi−1, ei) for all i. A replica state σ of R in α can be represented by the events
in a prefix of α|R it has processed. Specifically, σ0 = 〈〉 and σi = σi−1 ◦ ei = 〈e1, e2, . . . , ei〉.

We now define the causally-before, concurrent, and totally-before relations on events in
an execution. When restricted to the do events only, they define relations on user operations.
In an execution α, event e is causally before e′, denoted e hbα−−→ e′ (or e hb−→ e′), if one of the
following conditions holds [10]: 1) Thread of execution: R(e) = R(e′) ∧ e ≺α e′; 2) Message
delivery: e = send(m) ∧ e′ = receive(m); 3) Transitivity: ∃e′′ ∈ α : e hbα−−→ e′′ ∧ e′′ hbα−−→ e′.
Events e, e′ ∈ α are concurrent, denoted e ‖α e′ (or e ‖ e′), if it is neither e hbα−−→ e′ nor
e′

hbα−−→ e. A relation on events in an execution α, denoted e tbα−−→ e′ (or e tb−→ e′), is a totally-
before relation consistent with the causally-before relation ‘ hbα−−→’ on events in α if it is total:
∀e, e′ ∈ α : e tbα−−→ e′ ∨ e′ tbα−−→ e, and it is consistent: ∀e, e′ ∈ α : e hbα−−→ e′ =⇒ e

tbα−−→ e′.

2.2 Specifying Replicated Objects
A replicated object is specified by a set of abstract executions which record user operations
(corresponding to do events) and visibility relations on them [7]. An abstract execution is a
pair A = (H, vis), where H is a sequence of do events and vis ⊆ H ×H is an acyclic visibility
relation such that 1) if e1 ≺H e2 and R(e1) = R(e2), then e1

vis−−→ e2; 2) if e1
vis−−→ e2, then

e1 ≺H e2; and 3) vis is transitive: (e1
vis−−→ e2 ∧ e2

vis−−→ e3) =⇒ e1
vis−−→ e3.

An abstract execution A′ = (H ′, vis′) is a prefix of another abstract execution A = (H, vis)
if H ′ is a prefix of H and vis′ = vis ∩ (H ′ ×H ′). A specification S of a replicated object is
a prefix-closed set of abstract executions, namely if A ∈ S, then A′ ∈ S for each prefix A′ of
A. A protocol R satisfies a specification S, denoted R |= S, if any (concrete) execution α of
R complies with some abstract execution A = (H, vis) in S, namely ∀R ∈ R : H|R = α|doR ,
where α|doR is the subsequence of do events of replica R in α.

2.3 Replicated List Specification
A replicated list object supports three types of user operations [5] (U for some universe):

Ins(a, p): inserts a ∈ U at position p ∈ N and returns the updated list. For p larger than
the list size, we assume an insertion at the end. We assume that all inserted elements are
unique, which can be achieved by attaching replica identifiers and sequence numbers.
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Del(a, p): deletes an element at position p ∈ N and returns the updated list. For p larger
than the list size, we assume an deletion at the end. The parameter a ∈ U is used to
record the deleted element [22], which will be referred to in condition 1(a) of the weak
list specification defined later.
Read: returns the contents of the list.

The operations above, as well as a special NOP (i.e., “do nothing”), form O and all
possible list contents form Val. Ins and Del are collectively called list updates. We denote
by elems(A) =

{
a | do

(
Ins(a,_),_

)
∈ H

}
the set of all elements inserted into the list in an

abstract execution A = (H, vis).
We adopt the convergence property in [5] which requires that two Read operations that

observe the same set of list updates return the same response. Formally, an abstract execution
A = (H, vis) belongs to the convergence property Acp if and only if for any pair of Read events
e1 = do

(
Read, w1 , a0

1 . . . a
m−1
1

)
and e2 = do

(
Read, w2 , a0

2 . . . a
n−1
2
)
(aji ∈ elems(A)), it

holds that
(
vis−1

Ins,Del(e1) = vis−1
Ins,Del(e2)

)
=⇒ w1 = w2, where vis−1

Ins,Del(e) denotes the set
of list updates visible to e.

The weak list specification requires the ordering between elements that are not deleted to
be consistent across the system [5].

I Definition 1 (Weak List Specification Aweak [5]). An abstract execution A = (H, vis) belongs
to the weak list specification Aweak if and only if there is a relation lo ⊆ elems(A)× elems(A),
called the list order, such that:
1. Each event e = do(o, w) ∈ H returns a sequence of elements w = a0 . . . an−1, where

ai ∈ elems(A), such that:
a. w contains exactly the elements visible to e that have been inserted, but not deleted:

∀a. a ∈ w ⇐⇒
(
do
(
Ins(a,_),_

)
≤vis e

)
∧ ¬
(
do
(
Del(a,_),_

)
≤vis e

)
.

b. The list order is consistent with the order of the elements in w:

∀i, j. (i < j) =⇒ (ai, aj) ∈ lo.

c. Elements are inserted at the specified position: op = Ins(a, k) =⇒ a = amin{k,n−1}.
2. lo is irreflexive and for all events e = do(op, w) ∈ H, it is transitive and total on
{a | a ∈ w}.

I Example 2 (Weak List Specification). In the execution depicted in Figure 1 (produced
by CJupiter), there exist three states with list contents w1 = ba, w2 = ax, and w3 = xb,
respectively. This is allowed by the weak list specification with the list order lo: b lo−→ a on
w1, a

lo−→ x on w2, and x
lo−→ b on w3. However, an execution is not allowed by the weak list

specification if it contained two states with, say w = ab and w′ = ba.

2.4 Operational Transformation (OT)
The OT of transforming o1 ∈ O with o2 ∈ O is expressed by the function o′1 = OT (o1, o2).
We also write (o′1, o′2) = OT (o1, o2) to denote both o′1 = OT (o1, o2) and o′2 = OT (o2, o1). To
ensure the convergence property, OT functions are required to satisfy CP1 (Convergence
Property 1) [8]: Given two operations o1 and o2, if (o′1, o′2) = OT (o1, o2), then σ; o1; o′2 =
σ; o2; o′1 should hold, meaning that the same state is obtained by applying o1 and o′2 in
sequence, and applying o2 and o′1 in sequence, on the same initial state σ. A set of OT
functions satisfying CP1 for a replicated list object [8, 9, 22] can be found in Figure A.1
of [25].
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3 The CJupiter Protocol

In this section we propose CJupiter (Compact Jupiter) for a replicated list based on the data
structure called n-ary ordered state space. Like Jupiter, CJupiter also adopts a client/server
architecture. For convenience, we assume that the server does not generate operations [26, 5].
It mainly serializes operations and propagates them from one client to others. We denote
by ‘≺s’ the total order on the set of operations established by the server. Note that ‘≺s’ is
consistent with the causally-before relation ‘ hb−→’. To facilitate the comparison of Jupiter and
CJupiter, we refer to ‘ hb−→’ and ‘≺s’ together as the schedule of operations.

3.1 Data Structure: n-ary Ordered State Space
For a client/server system with n clients, CJupiter maintains (n + 1) n-ary ordered state
spaces, one per replica (CSSs for the server and CSSci for client ci). Each CSS is a directed
graph whose vertices represent states and edges are labeled with operations; see Appendix B.1
of [25].

An operation op of type Op is a tuple op = (o, oid, ctx, sctx), where 1) o is the signature
of type O described in Section 2.3; 2) oid is a globally unique operation identifier which is
a pair (cid, seq) consisting of the client id and a sequence number; 3) ctx is an operation
context which is a set of oids, denoting the operations that are causally before op; and 4)
sctx is a set of oids, denoting the operations that, as far as op knows, have been executed
before op at the server. At a given replica, sctx is used to determine the total order ‘≺s’
relation between two operations as in Algorithm B.1 of [25].

The OT function of two operations op, op′ ∈ Op, denoted (op〈op′〉 : Op, op′〈op〉 : Op) =
OT (op, op′), is defined based on that of op.o, op′.o ∈ O, denoted (o, o′) = OT (op.o, op′.o), such
that op〈op′〉 = (o, op.oid, op.ctx ∪ {op′.oid}, op.sctx) and op′〈op〉 = (o′, op′.oid, op′.ctx ∪
{op.oid}, op′.sctx).

A vertex v of type Vertex is a pair v = (oids, edges), where oids is the set of operations
(represented by their identifies) that have been executed, and edges is an ordered set of edges
of type Edge from v to other vertices, labeled with operations. That is, each edge is a pair
(op : Op, v : Vertex). Edges from the same vertex are totally ordered by their op components.
For each vertex v and each edge e = (op, u) from v to u, it is required that

the ctx of op associated with e matches the oids of v: op.ctx = v.oids;
the oids of u consists of the oids of v and the oid of op: u.oids = v.oids ∪ {op.oid}.

I Definition 3 (n-ary Ordered State Space). An n-ary ordered state space is a set of
vertices such that
1. Vertices are uniquely identified by their oids.
2. For each vertex u with |u.edges| ≥ 2, let u′ be its child vertex along the first edge

euu′ = (op′, u′) and v another child vertex along euv = (op, v). There exist (Figure 3)
a vertex v′ with v′.oids = u.oids ∪ {op′.oid, op.oid};
two edges eu′v′ = (op〈op′〉, v′) from u′ to v′ and evv′ = (op′〈op〉, v′) from v to v′.

The second condition models OTs in CJupiter described in Section 3.2, and the choice of
the “first” edge is justified in Lemmas 5 and 7.

3.2 The CJupiter Protocol
Each replica in CJupiter maintains an n-ary ordered state space S and keeps the most recent
vertex cur (initially (∅, ∅)) of S. Following [26], we describe CJupiter in three parts; see
Appendix B.2 of [25] for pseudocode.
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Figure 3 Illustration of an OT of
two operations op, op′ in both the n-
ary ordered state space of CJupiter
and the 2D state space of Jupiter:
(op〈op′〉, op′〈op〉) = OT (op, op′). In
the CJupiter and Jupiter protocols
(and Examples 4 and 13), op corres-
ponds to the new incoming operation
to be transformed.
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Figure 4 The same final n-ary ordered state space (thus
for CSSs and each CSSci) constructed by CJupiter for each
replica under the schedule of Figure 1. Each replica behavior
(i.e., the sequence of state transitions) corresponds to a path
going through this state space.

Local Processing Part. When a client receives an operation o ∈ O from a user, it
1. applies o locally, obtaining a new list val ∈ Val;
2. generates op ∈ Op by attaching to o a unique operation identifier and the operation

context S.cur.oids, representing the set of operations that are causally before op;
3. creates a vertex v with v.oids = S.cur.oids ∪ {op.oid}, appends v to S by linking it to

S.cur via an edge labeled with op, and updates cur to be v;
4. sends op to the server asynchronously and returns val to the user.

Server Processing Part. To establish the total order ‘≺s’ on operations, the server maintains
the set soids of operations it has executed. When the server receives an operation op ∈ Op
from client ci, it
1. updates op.sctx to be soids and updates soids to include op.oid;
2. transforms op with an operation sequence in S to obtain op′ by calling S.xForm(op) (see

below), and applies op′ (specifically, op′.o) locally;
3. sends op (instead of op′) to other clients asynchronously.

Remote Processing Part. When a client receives an operation op ∈ Op from the server, it
transforms op with an operation sequence in S to obtain op′ by calling S.xForm(op) (see
below), and applies op′ (specifically, op′.o) locally.
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Figure 5 Illustration of client c3 in CJupiter under the schedule of Figure 1. Its behavior (i.e.,
the sequence of state transitions) is indicated by the path in CSS4

c3 . (Please refer to Figure B.1
of [25] for the illustration of clients c1 and c2 and the server s.)

OTs in CJupiter. The procedure S.xForm(op : Op) transforms op with an operation
sequence in an n-ary ordered state space S. Specifically, it
1. locates the vertex u whose oids matches the ctx of op, i.e., u.oids = op.ctx 4, and creates

a vertex v with v.oids = u.oids ∪ {op.oid};
2. iteratively transforms op with an operation sequence consisting of operations along the

first edges from u to the final vertex cur of S (Figure 3):
a. obtains the vertex u′ and the operation op′ associated with the first edge of u;
b. transforms op with op′ to obtain op〈op′〉 and op′〈op〉;
c. creates a vertex v′ with v′.oids = v.oids ∪ {op′.oid};
d. links v′ to v via an edge labeled with op′〈op〉 and v to u via an edge labeled with op;
e. updates u, v, and op to be u′, v′, and op〈op′〉, respectively;

3. when u is the final vertex cur of S, links v to u via an edge labeled with op, updates cur
to be v, and returns the last transformed operation op.

To keep track of the construction of the n-ary ordered state spaces in CJupiter, for each
state space, we introduce a superscript k to refer to the one after the k-th step (i.e., after
processing k operations), counting from 0. For instance, the state space CSSci (resp. CSSs)
after the k-th step maintained by client ci (resp. the server s) is denoted by CSSkci (resp.
CSSks). This notational convention also applies to Jupiter (reviewed in Section 4.1).

I Example 4 (Illustration of CJupiter). Figure 5 illustrates client c3 in CJupiter under the
schedule of Figure 1. For convenience, we denote, for instance, a vertex v with v.oids =
{o1, o4} by v14 and an operation o3 with o3.ctx = {o1, o2} by o3{o1, o2}. We have also
mixed the notations of operations of types O and Op when no confusion arises. We map
various vertices and operations in this example to the ones (i.e., u, u′, v, v′, op, op′) used in
the description of the CJupiter protocol.

After receiving and applying o1 = Ins(x, 0) of client c1 from the server, client c3 generates
o4 = Ins(b, 1). It applies o4 locally, creates a new vertex v14, and appends it to CSS1

c3
via an

edge from v1 labeled with o4{o1}. Then, o4{o1} is propagated to the server.

4 The vertex u exists due to the FIFO communication between the clients and the server.
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Next, client c3 receives o2 = Del(x, 0) of client c1 from the server. The operation context
of o2 is {o1}, matching the oids of v1 (u). By xForm, o2{o1} (op) is transformed with o4{o1}
(op′): OT

(
o2{o1} = Del(x, 0), o4{o1} = Ins(b, 1)

)
=
(
o2{o1, o4} = Del(x, 0), o4{o1, o2} =

Ins(b, 0)
)
. As a result, v124 (v′) is created and is linked to v12 (v) and v14 (u′) via the edges

labeled with o4{o1, o2} and o2{o1, o4}, respectively. Because o2 is unaware of o4 at the server
(o4.sctx = ∅ now), the edge from v1 to v12 is ordered before (to the left of) that from v1 to
v14 in CSS3

c3
.

Finally, client c3 receives o3{o1} = Ins(a, 0) of client c2 from the server. The operation
context of o3 is {o1}, matching the oids of v1 (u). By xForm, o3{o1} will be transformed
with the operation sequence consisting of operations along the first edges from v1 to the final
vertex v124 of CSS3

c3
, namely o2{o1} from v1 and o4{o1, o2} from v12. Specifically, o3{o1}

(op) is first transformed with o2{o1} (op′): OT
(
o3{o1} = Ins(a, 0), o2{o1} = Del(x, 0)

)
=(

o3{o1, o2} = Ins(a, 0), o2{o1, o3} = Del(x, 1)
)
. Since o3 is aware of o2 but unaware of o4

at the server, the new edge from v1 labeled with o3{o1} is placed before that with o4{o1} but
after that with o2{o1}. Then, o3{o1, o2} (op) is transformed with o4{o1, o2} (op′), yielding
v1234 and o3{o1, o2, o4}. Client c3 applies o3{o1, o2, o4}, obtaining the list content ba.

The choice of the “first” edges in OTs is necessary to establish equivalence between
CJupiter and Jupiter, particularly at the server side. First, the operation sequence along
the first edges from a vertex of CSSs at the server admits a simple characterization.

I Lemma 5 (CJupiter’s “First” Rule). Let OP = 〈op1, op2, . . . , opm〉 (opi ∈ Op) be the
operation sequence the server has currently processed in total order ‘≺s’. For any vertex v in
the current CSSs, the path along the first edges from v to the final vertex of CSSs consists of
the operations of OP \ v in total order ‘≺s’ (may be empty if v is the final vertex of CSSs),
where

OP \ v =
{
op ∈ OP | op.oid ∈ {op1.oid, op2.oid, · · · , opm.oid} \ v.oids

}
.

I Example 6 (CJupiter’s “First” Rule). Consider CSSs at the server shown in Figure 4 under
the schedule of Figure 1; see Figure B.1a of [25] for its construction. Suppose that the server
has processed all four operations. That is, we take OP = 〈o1, o2, o3, o4〉 in Lemma 5 (we
mix operations of types O and Op). Then, the path along the first edges from vertex v1
(resp. v13) consists of the operations OP \ v1 = {o2, o3, o4} (resp. OP \ v13 = {o2, o4}) in
total order ‘≺s’.

Based on Lemma 5, the operation sequence with which an operation transforms at the
server can be characterized as follows, which is exactly the same with that for Jupiter [26].

I Lemma 7 (CJupiter’s OT Sequence). In xForm of CJupiter, the operation sequence L
(may be empty) with which an operation op transforms at the server consists of the operations
that are both totally ordered by ‘≺s’ before and concurrent by ‘‖’ with op. Furthermore, the
operations in L are totally ordered by ‘≺s’.

I Example 8 (CJupiter’s OT Sequence). Consider the behavior of the server summarized in
Figure 4 under the schedule of Figure 1. According to Lemma 5, the operation sequence
with which op = o4 transforms consists of operations o2 (i.e., o2{o1}) from vertex v1 and o3
(i.e., o3{o1, o2}) from vertex v12 in total order ‘≺s’, which are both totally ordered by ‘≺s’
before and concurrent by ‘‖’ with o4.
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3.3 CJupiter is Compact
Although (n+ 1) n-ary ordered state spaces are maintained by CJupiter for a system with
n clients, they are all the same. That is, at a high level, CJupiter maintains only a single
n-ary ordered state space.

I Proposition 9 (n+ 1⇒ 1). In CJupiter, the replicas that have processed the same set of
operations (in terms of their oids) have the same n-ary ordered state space.

Informally, this proposition holds because we have kept all “by-product” states/vertices
of OTs in the n-ary ordered state spaces, and each client is “synchronized” with the server.
Since all replicas will eventually process all operations, the final n-ary ordered state spaces
at all replicas are the same. The construction order may differ replica by replica.

I Example 10 (CJupiter is Compact). Figure 4 shows the same final n-ary ordered state
space constructed by CJupiter for each replica under the schedule of Figure 1. (Figure B.1
of [25] shows the step-by-step construction for each replica.) Each replica behavior (i.e.,
the sequence of state transitions) corresponds to a path going through this state space. As
illustrated, the server s and client c1 go along the path v0

o1−→ v1
o2−→ v12

o3−→ v123
o4−→ v1234,

client c2 goes along the path v0
o1−→ v1

o3−→ v13
o2−→ v123

o4−→ v1234, and client c3 goes along
the path v0

o1−→ v1
o4−→ v14

o2−→ v124
o3−→ v1234.

Together with the fact that the OT functions satisfy CP1, Proposition 9 implies that

I Theorem 11 (CJupiter |= Acp). CJupiter satisfies the convergence property Acp.

4 CJupiter is Equivalent to Jupiter

We now prove that CJupiter is equivalent to Jupiter (reviewed in Section 4.1) from perspect-
ives of both the server and clients. Specifically, we prove that the behaviors of the servers
are the same (Section 4.2), and that the behaviors of each pair of corresponding clients are
the same (Section 4.3). Consequently, we have that

I Theorem 12 (Equivalence). Under the same schedule, the behaviors (Section 2.1) of
corresponding replicas in CJupiter and Jupiter are the same.

4.1 Review of Jupiter
We review the Jupiter protocol in [26], a multi-client description of Jupiter first proposed
in [13] 5. Consider a client/server system with n clients. Jupiter [26] maintains 2n 2D
state spaces (Appendix C.1 of [25]), each consisting of a local dimension and a global
dimension. Specifically, each client ci maintains a 2D state space, denoted DSSci , with the
local dimension for operations generated by the client and the global dimension by others.
The server maintains n 2D state spaces, one for each client. The state space for client ci,
denoted DSSsi , consists of the local dimension for operations from client ci and the global
dimension from others.

Jupiter is similar to CJupiter with two major differences: First, in xForm(op : Op, d ∈
{LOCAL,GLOBAL}) of Jupiter, the operation sequence with which op transforms is determined
by the parameter d, indicating the local/global dimension described above (instead of following

5 The Jupiter protocol in [13] uses 1D buffers, but does not explicitly describe the multi-client scenario.



H. Wei, Y. Huang, and J. Lu 12:11

the first edges as in CJupiter). Second, in Jupiter, the server propagates the transformed
operation (instead of the original one it receives) to other clients. As with CJupiter, we
describe Jupiter in three parts. We omit the details that are in common with and have been
explained in CJupiter; see Appendix C.2 of [25] for pseudocode.

Local Processing Part. When client ci receives an operation o ∈ O from a user, it applies
o locally, generates op ∈ Op for o, saves op along the local dimension at the end of its 2D
state space DSSci , and sends op to the server asynchronously.

Server Processing Part. When the server receives an operation op ∈ Op from client ci, it
first transforms op with an operation sequence along the global dimension in DSSsi to obtain
op′ by calling xForm(op,GLOBAL) (see below), and applies op′ locally. Then, for each j 6= i,
it saves op′ at the end of DSSsj along the global dimension. Finally, op′ (instead of op) is
sent to other clients asynchronously.

Remote Processing Part. When client ci receives an operation op ∈ Op from the server, it
transforms op with an operation sequence along the local dimension in its 2D state space
DSSci to obtain op′ by calling xForm(op, LOCAL) (see below), and applies op′ locally.

OTs in Jupiter. In the procedure xForm(op : Op, d : LG = {LOCAL,GLOBAL}) of Jupiter,
the operation sequence with which op transforms is determined by an extra parameter d.
Specifically, it first locates the vertex u whose oids matches the operation context op.ctx of
op, and then iteratively transforms op with an operation sequence along the d dimension
from u to the final vertex of this 2D state space.

I Example 13 (Illustration of Jupiter). Figure 6 illustrates client c3, as well as the server s, in
Jupiter under the schedule of Figure 1. The first three state transitions made by client c3 in
Jupiter due to the operation sequence consisting of o1 from client c1, o4 generated by itself,
and o2 from client c1 are the same with those in CJupiter; see CSS1

c3
, CSS2

c3
, and CSS3

c3
of

Figure 5 and DSS1
c3
, DSS2

c3
, and DSS3

c3
of Figure 6.

We now elaborate on the fourth state transition of client c3 in Jupiter. First, client
c2 propagates its operation o3{o1} = Ins(a, 0) to the server s. At the server, o3{o1} is
transformed with o2{o1} = Del(x, 0) in DSS3

s2
, obtaining o3{o1, o2} = Ins(a, 0). In addition

to being stored in DSS3
s1

and DSS3
s3
, the transformed operation o3{o1, o2} is then redirected

by the server to clients c1 and c3. At client c3, the operation context of o3{o1, o2} (i.e.,
{o1, o2}) matches the oids of v12 (u) in DSS4

c3
. By xForm, o3{o1, o2} (op) is transformed

with o4{o1, o2} (op′), yielding v1234 and o3{o1, o2, o4}. Finally, client c3 applies o3{o1, o2, o4},
obtaining the list content ba.

We highlight three differences between CJupiter and Jupiter, by comparing the behaviors
of client c3 in this example and Example 4. First, the fourth operation the server s redirects
to client c3 is the transformed operation o3{o1, o2} = Ins(a, 0), instead of the original one
o3{o1} = Ins(a, 0) 6 generated by client c2. Second, each vertex in the n-ary ordered state
space of CJupiter (such as CSS4

c3
of Figure 5) is not restricted to have only two child vertices,

while Jupiter does. Third, because the transformed operations are propagated by the server,
Jupiter is slightly optimized in implementation at clients by eliminating redundant OTs. For
example, in CSS4

c3
of Figure 5, the original operation o3{o1} of client c2 redirected by the

6 Although they happen to have the same signature Ins(a, 0), they have different operation contexts.
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Figure 6 (Rotated) illustration of client c3, as well as the server s, in Jupiter [26] under the
schedule of Figure 1. (Please refer to Figure C.1 of [25] for details of clients c1 and c2.)

server should be first transformed with o2{o1} to obtain o3{o1, o2}. In Jupiter, however,
such a transformation which has been done at the server (i.e., in DSS3

s2
) is not necessary at

client c3 (i.e., in DSS4
c3
).

4.2 The Servers Established Equivalent
As shown in [26] (see the “Jupiter” section and Definition 8 of [26]), the operation sequence
with which an incoming operation transforms at the server in xForm of Jupiter can be
characterized exactly as in xForm of CJupiter (Lemma 7). By mathematical induction on
the operation sequence the server processes, we can prove that the state spaces of Jupiter
and CJupiter at the server are essentially the same. Formally, the n-ary ordered state space
CSSs of CJupiter equals the union 7 of all 2D state spaces DSSsi maintained at the server
for each client ci in Jupiter. For example, CSSs of Figure 4 is the union of the three DSSsi ’s
of Figure 6. More specifically, we have

7 The union is taken on state spaces which are (directed) graphs as sets of vertices and edges. The order
of edges of n-ary ordered state spaces should be respected when DSSsi ’s are unioned to obtain CSSs.
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I Proposition 14 (n↔ 1). Suppose that under the same schedule, the server has processed
a sequence of m operations, denoted O = 〈op1, op2, . . . , opm〉 (opi ∈ Op), in total order ‘≺s’.
We have that

CSSks =
i=k⋃
i=1

DSSisc(opi)
=

⋃
ci∈c(O)

j=k⋃
j=1

DSSjsci , 1 ≤ k ≤ m, (∗)

where c(opi) denotes the client that generates the operation opi (more specifically, opi.o) and
c(O) = {c(op1), c(op2), . . . , c(opm)}.

The equivalence of servers are thus established.

I Theorem 15 (Equivalence of Servers). Under the same schedule, the behaviors (i.e., the
sequence of (list) state transitions, defined in Section 2.1) of the servers in CJupiter and
Jupiter are the same.

4.3 The Clients Established Equivalent
As discussed in Example 13, Jupiter is slightly optimized in implementation at clients by
eliminating redundant OTs. Formally, by mathematical induction on the operation sequence
client ci processes, we can prove that DSSkci of Jupiter is a part (i.e., subgraph) of CSSkci
of CJupiter. The equivalence of clients follows since the final transformed operations (for
an original one) executed at ci in Jupiter and CJupiter are the same, regardless of the
optimization adopted by Jupiter at clients.

I Proposition 16 (1↔ 1). Under the same schedule, we have that

DSSkci ⊆ CSSkci , 1 ≤ i ≤ n, k ≥ 1. (?)

I Theorem 17 (Equivalence of Clients). Under the same schedule, the behaviors (Section 2.1)
of each pair of corresponding clients in CJupiter and Jupiter are the same.

5 CJupiter Satisfies the Weak List Specification

The following theorem, together with Theorem 12, solves the conjecture of Attiya et al. [5].

I Theorem 18 (CJupiter |= Aweak). CJupiter satisfies the weak list specification Aweak.

Proof. For each execution α of CJupiter, we construct an abstract execution A = (H, vis)
with vis = hbα−−→ (Section 2.1). We then prove the conditions of Aweak (Definition 1) in the
order 1(c), 1(a), 1(b), and 2.

Condition 1(c) follows from the local processing of CJupiter. Condition 1(a) holds due
to the FIFO communication and the property of OTs that when transformed in CJupiter,
the type and effect of an Ins(a, p) (resp. a Del(a, p)) remains unchanged (with a trivial
exception of being transformed to be NOP), namely to insert (resp. delete) the element a
(possibly at a different position than p).

To show that A = (H, vis) belongs to Aweak, we define the list order relation lo in
Definition 19 below, and then prove that lo satisfies conditions 1(b) and 2 of Definition 1. J

I Definition 19 (List Order ‘lo’). Let α be an execution. For a, b ∈ elems(A), a lo−→ b if and
only if there exists an event e ∈ α with returned list w such that a precedes b in w.
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By definition, 1) lo is transitive and total on {a | a ∈ w} for all events e = do(o, w) ∈ H;
and 2) lo satisfies 1(b) of Definition 1. The irreflexivity of lo can be rephrased in terms of
the pairwise state compatibility property.

I Definition 20 (State Compatibility). Two list states w1 and w2 are compatible, if and only
if for any two common elements a and b of w1 and w2, their relative orderings are the same
in w1 and w2.

I Lemma 21 (Irreflexivity). Let α be an execution and A = (H, vis) the abstract execution
constructed from α as described in the proof of Theorem 18. The list order lo based on α is
irreflexive if and only if the list states (i.e., returned lists) in A are pairwise compatible.

The proof relies on the following lemma about paths in n-ary ordered state spaces.

I Lemma 22 (Simple Path). Let Pv1 v2 be a path from vertex v1 to vertex v2 in an n-ary
ordered state space. Then, there are no duplicate operations (in terms of their oids) along
the path Pv1 v2 . We call such a path a simple path.

Therefore, it remains to prove that all list states in an execution of CJupiter are pairwise
compatible, which concludes the proof of Theorem 18. By Proposition 9, we can focus on
the state space CSSs at the server. We first prove several properties about vertex pairs and
paths of CSSs, which serve as building blocks for the proof of the main result (Theorem 26).

By mathematical induction on the operation sequence processed in the total order ‘≺s’
at the server and by contradiction (in the inductive step), we can show that

I Lemma 23 (LCA). In CJupiter, each pair of vertices in the n-ary ordered state space
CSSs (as a rooted directed acyclic graph) has a unique LCA (Lowest Common Ancestor). 8

In the following, we are concerned with the paths to a pair of vertices from their LCA.

I Lemma 24 (Disjoint Paths). Let v0 be the unique LCA of a pair of vertices v1 and v2 in
the n-ary ordered state space CSSs, denoted v0 = LCA(v1, v2). Then, the set of operations
Ov0 v1 along a simple path Pv0 v1 is disjoint in terms of the operation oids from the set of
operations Ov0 v2 along a simple path Pv0 v2 .

The next lemma gives a sufficient condition for two states (vertices) being compatible in
terms of disjoint simple paths to them from a common vertex.

I Lemma 25 (Compatible Paths). Let Pv0 v1 and Pv0 v2 be two paths from vertex v0 to
vertices v1 and v2, respectively in the n-ary ordered state space CSSs. If they are disjoint
simple paths, then the list states of v1 and v2 are compatible.

The desired pairwise state compatibility property follows, when we take the common
vertex v0 in Lemma 25 as the LCA of the two vertices v1 and v2 under consideration.

I Theorem 26 (Pairwise State Compatibility). Every pair of list states in the state space
CSSs are compatible.

Proof. Consider vertices v1 and v2 in CSSs. 1) By Lemma 23, they have a unique LCA,
denoted v0; 2) By Lemma 22, Pv0 v1 and Pv0 v2 are simple paths; 3) By Lemma 24, Pv0 v1

and Pv0 v2 are disjoint; and 4) By Lemma 25, the list states of v1 and v2 are compatible. J

8 The LCAs of two vertices v1 and v2 in a rooted directed acyclic graph is a set of vertices V such that
1) Each vertice in V has both v1 and v2 as descendants; 2) In V , no vertice is an ancestor of another.
The uniqueness further requires |V | = 1.
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6 Related Work

Convergence is the main property for implementing a highly-available replicated list object [8,
26]. Since 1989 [8], a number of OT [8]-based protocols have been proposed. These protocols
can be classified according to whether they rely on a total order on operations [26]. Various
protocols like Jupiter [13, 26] establish a total order via a central server, a sequencer, or a
distributed timestamping scheme [1, 24, 18, 12, 23]. By contrast, protocols like adOPTed [15]
rely only on a partial (causal) order on operations [8, 14, 21, 20, 19].

In 2016, Attiya et al. [5] propose the strong/weak list specification of a replicated list
object. They prove that the existing CRDT (Conflict-free Replicated Data Types) [17]-based
RGA protocol [16] satisfies the strong list specification, and conjecture that the well-known
OT-based Jupiter protocol [13, 26] satisfies the weak list specification.

The OT-based protocols typically use data structures like 1D buffer [18], 2D state
space [13, 26], or N -dimensional interaction model [15] to keep track of OTs or choose correct
OTs to perform. As a generalization of 2D state space, our n-ary ordered state space is similar
to the N -dimensional interaction model. However, they are proposed for different system
models. In an n-ary ordered state space, edges from the same vertex are ordered, utilizing
the existence of a total order on operations. By contrast, the N -dimensional interaction
model relies only on a partial order on operations. Consequently, the simple characterization
of OTs in xForm of CJupiter does not apply in the N -dimensional interaction model.

7 Conclusion and Future Work

We prove that the Jupiter protocol [13, 26] satisfies the weak list specification [5], thus solving
the conjecture recently proposed by Attiya et al. [5]. To this end, we have designed CJupiter
based on a novel data structure called n-ary ordered state space. In the future, we will
explore how to algebraically manipulate and reason about n-ary ordered state spaces. We
also plan to generalize this data structure to the scenarios without a central server and study
whether the distributed adOPTed protocol [15] satisfies the strong/weak list specification.
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Abstract
Fast rerouting is an essential mechanism in any dependable communication network, allowing to
quickly, i.e., locally, recover from network failures, without invoking the control plane. However,
while locality ensures a fast reaction, the absence of global information also renders the design
of highly resilient fast rerouting algorithms more challenging. In this paper, we study algorithms
for fast rerouting in emerging Segment Routing (SR) networks, where intermediate destinations
can be added to packets by nodes along the path. Our main contribution is a maximally resilient
polynomial-time fast rerouting algorithm for SR networks based on a hypercube topology. Our
algorithm is attractive as it preserves the original paths (and hence waypoints traversed along
the way), and does not require packets to carry failure information. We complement our results
with an integer linear program formulation for general graphs and exploratory simulation results.
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the first and most widely deployed alternatives to traditional weight and destination based
routing (such as OSPF), enabling a per-flow traffic engineering. Recently, Segment Routing
(SR) [38, 20] has emerged as a scalable alternative to MPLS networks: SR networks do
not require any resource reservations nor states on all the routers part of the route (the
virtual circuit). SR networks are also attractive for their simple deployment; in contrast to,
e.g., Software-Defined Network (SDN) and OpenFlow-based solutions, they rely on existing
protocols such as IPv6 [62].

We in this paper investigate how to enhance SR networks with (local) fast rerouting algo-
rithms, to react to failures without the need to invoke the control plane. The re-computation
(and distribution) of routes after failures via the control plane is notoriously slow [26] and
known to harm performance [44]. Also link-reversal algorithms [27] tolerating multiple
failures have a quadratic convergence time [7], besides requiring dynamic routing tables.
This is problematic as certain applications, e.g., in datacenters, are known to require a
latency of less than 100 ms [67]; voice traffic [33] and interactive services [35] already degrade
after 60 ms of delay. Not surprisingly, reliability is also one of the foremost challenges for
network carriers nowadays [66], and in the context of power systems (e.g., smart grids), an
almost entirely lossless network is expected [58]. Accordingly, most modern communication
networks (including IP, MPLS, OpenFlow networks) feature fast rerouting primitives to
support networks to recover quickly from failures.

Designing a fast rerouting algorithm however is non-trivial, as reactions need to be
(statically) pre-defined and can only depend on the local failures, but not on “future” failures,
downstream. As link failures, also multiple ones, are common in networks [46], e.g., due
to shared link risk groups or virtualization, it is crucial to pre-define the conditional local
failover rules such that connectivity is preserved (i.e., forwarding loops and blackholes
avoided) under any possible additional failures. In fact, in many networks, including SR
networks, algorithms cannot even depend on already encountered failures upstream, as it
requires mechanisms to carry and process such information in the packet header; such
“failure-carrying packets” [22, 37] require additional and complex forwarding rules. Further
challenges are introduced by policy-related constraints on the paths along which packets are
rerouted in case of failures. In particular, failover paths may not be allowed to “skip” nodes,
but rather should reroute around failed links individually: communication networks include
an increasing number of middleboxes and network functions, so-called waypoints [2], which
must be traversed for security and performance reasons. Without precautions, in case of a
link failure, the backup path could omit these waypoints.

Ideally, a local fast rerouting algorithm preserves connectivity “whenever this is still
possible”, i.e., as long as the underlying network is still physically connected. In other words,
in a k-(link-)connected network, we would like the rerouting algorithm to tolerate k − 1
link failures. We will refer to this strong notion of robustness as maximal robustness in the
following.

1.2 Example
Figure 1 illustrates an example for the problem considered in this paper: how to efficiently
circumvent multiple link failures using SR local fast failover mechanisms, such that the
original route will be preserved as part of the packets’ new route, hence also ensuring waypoint
traversal. In this example, while the backup path in dotted green reaches the destination, the
middlebox w is not visited. Ideally, we want to circumvent the failed link and then continue
on the original route (as depicted in the red dashed walk).
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Figure 1 Illustration of two different fast failover mechanisms, upon hitting a link failure. The
default path is depicted in dash-dotted blue. In the green dotted path, the destination t is reached,
but the waypoint w is not traversed. The red dashed walk circumvents the link failure, traverses w,
and then reaches t.

In case of only a single link e = (v, w) failing, one can exploit that both nodes v, w have
a globally correct view of the network link states. For example, if a packet hits the failed
link e at v, the node v can provide an alternative path to w, after which the packet resumes
its original path, as shown in dashed red in Figure 1. To this end, each node only needs to
be provisioned with one alternative path for each of its incident links.

In Segment Routing, similar to MPLS, each packet contains a label stack, consisting of
nodes or links. However, these labels just represent the next waypoint to be reached, the
route (“segment”) which depends on the underlying routing functions (e.g., shortest path).
Once the top item is reached, the corresponding label is popped and the next item on the
stack is parsed. As such, the next label does not need to be in the vicinity of the current
node, it can be anywhere in the network. For the case of a single link e = (v, w) failure, it
has been shown that pushing two items on the label stack always suffices [25], if the network
is still connected and a shortest alternative path is chosen.

While SR enables waypoint traversal even after a single link failure [25], dealing with
multiple link failures in SR is still not well understood. As observed in [22], the option of
choosing the shortest alternative path already fails under two link failures, see Figure 2;
when e1 fails (and the dash-dotted blue path as well), the packet will be sent along e.g.
e2, but upon the failure of e2, the packet is sent along e1—a forwarding loop (shown in
dotted red). In this example, we can easily fix the reachability issues: a failure of e2 causes
rerouting along e3 (in dashed green, not along e1), and failure of e3 causes rerouting along
e1. In other words, e1 depends on e2, which depends on e3, which in turn depends on e1.
As this circular dependency chain has a length of three, two failures of {e1, e2, e3} cannot
induce a forwarding loop when routing to w. We will later formalize and extend these ideas,
generating dependency chains of length ≥ k for k-dimensional hypercubes.

1.3 Contributions
We initiate the study of fast reroute algorithms for emerging Segment Routing networks
which are 1) resilient to a maximum number of failures (i.e., are maximally robust), 2) respect
the path traversal of the original route, and 3) are compatible to current technologies in
that they do not require packets to carry failure information: routing tables are static and
forwarding just depends on the packet’s top-of-the-stack destination label and the incident
link failures.

OPODIS 2018
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e2
e1e3

v3 v1 v2

w

Figure 2 Example illustrating how local fast failover methods for a single link failure can loop
under two link failures, as shown in [22]. When the dash-dotted blue default route between v1 and
w fails, v2 can be pushed as a segment, to in turn reroute along e2. However, when v2 uses e1 via v1

as a failover for e2, then failing both e1 and e2 leads to a permanent forwarding loop, as depicted in
dotted red. In order to route successfully under both e1, e2 failing, v2 has to push segments v1, v3 to
route along e3, as depicted in dashed green.

Our main result is an efficient algorithm which provably provides all these properties on
hypercube networks, as they are commonly used in datacenters (see e.g., [48]). Furthermore,
we formulate the underlying optimization problem as an integer linear program for general
graphs, and provide first exploratory insights on the practical performance of segment routing
under multiple link failures.

1.4 Organization
The remainder of this paper is organized as follows. We first introduce necessary model
preliminaries in Section 2, followed by our main result in Section 3, where we provide a
maximally robust SR failover scheme for k-dimensional hypercubes. We cover related work in
Section 4 and conclude our study in Section 5, where we also provide further insights which
we believe to be useful for future work, in the form of an integer linear program formulation
for general graphs and a brief investigation regarding testbed experiments.

2 Model

In this section, we start by providing model and notation preliminaries. We will consider
undirected graphs G = (V,E), where the links may be indexed according to some (possibly
arbitrary) ordering, with `i ∈ E denoting the ith link. All routing rules have to be pre-
computed and may not be changed during the runtime (e.g., after failures). We will only
allow routing rules that match on 1) the packet’s next destination (i.e., the top of the label
stack)2, and the 2) incident link failures.3 When a packet hits a failed link ` = (u, v) at some
node u, the current node u may push a set of pre-computed labels on top of the current label
stack, in order to create a so-called backup path to v (which can also be traversed in reverse
from v to u).

I Definition 1. A backup path for a link ` is a simple path (not containing `) that connects
the endpoint of the link `. Let P be the set of all backup paths in a graph. An injective
function BP : E → P that maps one backup path to each link is a backup path scheme.

2 In practice, one could also imagine matching on other header fields, such as the packet’s source, and
also the incoming port. However, our algorithms do not require these additional inputs.

3 In other words, only the endpoints u, v of the failed link (u, v) = ` ∈ E are aware of the failure.
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When the packet reaches the current top label, the respective label is popped and the
underlying label is set as top label. As such, via backup paths, the incoming packets
that normally travel through ` are rerouted around the link to the respective endpoint,
circumventing the failure. Hence, our model preserves the intermediate visits (i.e., all possible
waypoints) and their order in a subset of the traversed route, possibly introducing repeated
visits [1]. In the following, we will investigate backup path schemes that guarantee packet
delivery even under multiple failures. To this end, we need to ensure that the backup paths
do not contain infinite forwarding loops, for their specified maximum number of failures.
More formally:

I Definition 2. A backup path scheme BP (.) is called f-resilient if and only if there does
not exist a subset of links L ⊆ E, |L| ≤ f such that for some ordering σ : {0, . . . , |L| − 1} →
{0, . . . , |E| − 1}, ∀j < |L| : `σ(j+1 (mod |L|)) ∈ BP (`σ(j)). We refer to the inclusion relation
(∈) as dependency from `σ(j) to `σ(j+1 (mod |L|)). Equivalently, BP (.) is f -resilient if and
only if any cycle of dependencies is longer than f .

In the next section, we will show how to efficiently generate a (k − 1)-resilient backup path
scheme for k-dimensional hypercubes. As k-dimensional hypercubes are k-link-connected,
our scheme has ideal robustness.

3 Efficient Resilient Segment Routing on k-Dimensional Hypercubes

This section presents a fast and maximally robust rerouting algorithm on hypercubes, one
of the most important and well-studied network topologies [53, 64]. The regular structure
of hypercubes makes them an ideal fit for e.g., parallel interconnection architectures [52] or
datacenter [30].

Our study on k-dimensional hypercubes is structured as follows: We first provide an intu-
ition and overview of the (k− 1)-resilient scheme in Section 3.1, providing a formal definition
of all backup paths in Term 1. Next, in Section 3.2, we introduce some useful technical
preliminaries for the correctness proof of our scheme, which is presented in Section 3.3.

3.1 Overview of the Fast Local Failover Scheme
We label the nodes in a k-dimensional hypercube (k-cube) with tuples (bk, bk−1, . . . , b1),
∀i ∈ [k] : bi ∈ {0, 1}, such that the origin node has the label {0}k. A hypercube link is
denoted by an ordered pair of binary node labels (a, b) s.t. a, b ∈ {0, 1}k, a < b, where the
two labels differ in one bit. Additionally, a link is said to be in dimension d, d ∈ [k], if and
only if a and b differ only at their dth bit. We refer to them as d-dim links. For convenience,
we treat a hypercube as a set of links grouped by their dimension, within each dimension
sorted according to the following bitwise comparison. For x ∈ {0, 1}k, let x>>s := x >> s,
where >> is right circular shift. Let `di denote the ith link in dimension d, see Figure 3a.
For `dp = (a, b) and `dq = (c, d), we have p < q if and only if a>>d < c>>d. Lastly, we denote
a k-cube by Ck := ∪d,i`di , d ∈ [k], 0 ≤ i < 2k−1.

The idea is to allocate backup paths in k iterations, one for each subset of links in the
same dimension, such that the induced dependencies over same-dimension links form cycles of
length at least k. However, since there are additional dependency cycles induced by links in
different dimensions, we devise a scheme that does not induce any dependency cycle shorter
than k (hence (k − 1)-resiliency follows).

Due to gray coding, starting from any link `di = (a, b), by traversing the (unique) pair
of incident d′-dim links, we reach the link Nd′(`di ) = (a′, b′) such that a′ = (2d′−1)2 ⊕ a

OPODIS 2018
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Figure 3 Illustration of BP (.) on 2 and 3 dimensional cubes.

and b′ = (2d′−1)2 ⊕ b. Let
(
Ld
′

0 [`di ], Ld
′

1 [`di ]
)
denote the (unique) pair of incident d′-dim

links, i.e. Ld′0 [`di ] = (a, a′) and Ld′1 [`di ] = (b, b′). The subscripts 0 and 1 indicate the value
at the dth bit position of the links in the pair. Due to symmetry, Nd′(Nd′(`di )) = `di and
Ld
′

b [`di ] = Ld
′

b [Nd′(`di )], b ∈ {0, 1}.
We formulate the backup path of a d-dim link as a set consisting of one d-dim link and

pairs of links. These pairs constitute a joint path, i.e., two paths over the endpoints of
detoured d-dim links. We refer to this joint path as a backup path and we always traverse
it towards the included d-dim link. However in reality, a packet traverses the two paths in
opposite directions, towards and away from the respective d-dim link.

For instance, the backup path of the first 1-dim link (i.e. `1
0) includes the 1-dim link

reached via the incident pair of 2-dim links, and the pair itself (see Figure 3b): BP (`1
0) =

{L2
0[`1

0], L2
1[`1

0], N2(`1
0)} = {`2

0, `
2
1, `

1
1} (see Figure 3c). For the second 1-dim link we use the

same pair, but we have to detour `1
0 in order to avoid conflict:

BP (`1
1) = {L2

1[`1
1], L2

1[`1
1], L3

0[`1
0], L3

1[`1
0], N3(`1

0)} = {`2
0, `

2
1, `

3
0, `

3
1, `

1
3}.

In general, the backup path of `di begins with the pair
(
Ld+1

0 [`di ], Ld+1
1 [`di ]

)
. If the first d-dim

link, i.e. Nd+1(`di ), is conflicting, then one continues by detouring this link via the pair of
(d + 2)-dim links and detours further d-dim links, until one reaches a d-dim link that is
not conflicting, then traverses this link. Moreover, the jth detour is performed via the pair
of (d + j)-dim links. Hence the pairs are traversed in the ascending order of consecutive
dimensions. We denote the closure form of Nd(.) w.r.t. this ordering as

N (j)(`di ) := Nd+j(Nd+j−1(. . . Nd+1(`di ) . . . ), 1 ≤ j < k.

We can now describe our backup path scheme formally, we refer to Figure 3c for an
example listing all generated backup paths on the 3-dimensional hypercube. For each
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dimension d ∈ [k] and every 0 ≤ i < 2k−1, the backup path of `di is

BP (`di ) =
{
Ld+1

0 [`di ], Ld+1
1 [`di ],

Ld+2
0 [Nd+1(`di )], Ld+2

1 [Nd+1(`di )],
. . . ,

Ld+r
0 [N (r−1)(`di )], Ld+r

1 [N (r−1)(`di )],

N (r)(`di )) = `di′
}
. (1)

The path detours r − 1 links, where r is the number of link pairs necessary to have, in
order to reach the non-conflicting link `di′ with smallest index. Therefore the path length is
2r + 1. We will later argue that r ≤ R := dlog ke.

Alternatively to the explicit formulation in (1), `di′ can be obtained directly using bitwise
operations. Assume `di = (a, b) and `di′ = (a′, b′). By comparing a′ to a (b′ to b), we can see
that only the r bits to the left of dth bit are affected, i.e., the bits d+ 1 to d+R (mod k).
For x ∈ {0, 1}k and s := R− (k − d), we define the increment function that determines the
successor link as incs,d(x) := (x>>s + (2d)>>s2 )>>−s. Here the + ignores the carry flag out
of the leftmost position. Therefore, a′ = incs,d(a) and b′ = incs,d(b). It is clear that the
overall computation takes polynomial time.

In the next section, we will state some necessary observations regarding our hypercube
construction, which we will employ for the correctness proof of our scheme in Section 3.3.

3.2 Proof Preliminaries
According to our backup path formulation (1), the backup path of a d-dim link passes
through a d-dim link reached via links in higher dimensions, which are presented in pairs in
(1). The backup path possibly detours some other d-dim links along its way. The pairs and
the involved d-dim links together resemble a chain-like structure which facilitates describing
some properties in this section. We now describe these structures formally.

I Definition 3. Given a sequence of dimensions Sd := (di)i=0, di ∈ [k] \ {d}, a chain
of d-dim links, starting from `di0 , denoted by C(`di0), consists of a subset of d-dim links
and pairs of di-dim links, di ∈ Sd. The pairs form two walks over the endpoints of the
contained d-dim links. The two parallel walks jointly traverse the chain. We denote the
chain by CSd

(`di0) := {. . . , `dij , (L
dj

0 [`dij ], Ldj

1 [`dij ]), `dij+1
, . . .}, j ≥ 0, `dij+1

= Ndj
(`dij ). Moreover,

if ∃`ij′ ∈ C(`di0) : `dij′+1
= `i0 , then it is a closed chain denoted by CSd

.

We can directly obtain the following property.

I Property 4. Starting from any link `di , by traversing a chain CSd
(`di ), assume we arrive

back at the same link. Then it must be the case that Sd contains every dimension an even
number of times.

I Definition 5. A link (a, b), a < b is traversed in uphill direction when it is from a. The
opposite is a downhill direction.

Based off this definition, we can categorize the traversal directions.

I Property 6. Consider a closed chain containing the pair (Ld′0 [`di ], Ld
′

1 [`di ]) traversed between
the links `di and `dj = Nd′(`di ). If j > i then the direction from `di to `dj is uphill, otherwise
downhill.
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I Property 7. By Properties 4 and 6, in a closed chain, the number of traversals in every
dimension is even, half of which is in downhill (uphill) direction.

Intuitively, uphill and downhill traversals cancel each other which consequently turns the
joint walks into joint closed walks over the endpoints.

We next study the interaction between chains. Let Sd, Sd′ , d′ 6= d be two sequences of
dimensions. We say the chain CS′

d
crosses the chain CSd

if ∃P := (L0
d, L

1
d) ∈ CSd′ : P ∩CSd

6=
∅. That is, CS′

d
traverses a pair of d-dim links, at least one of which belongs to CSd

.

I Definition 8. A mixed chain is the concatenation of multiple chains (over several di-
mensions) that cross each other consecutively. In other words, a mixed chain consists of
chains of links in at least two dimensions. Formally, for given dimensions d, d′, d′′ ∈ [k] and
sequences Sd and Sd′ , assume the chain CSd′ = {. . . , `d′x , (L0

d[`d
′

x ] = `dy, L
1
d[`d

′

x ]), . . . } crosses
CSd

= {. . . , `dy, (L0
d′′ [`dy], L1

d′′ [`dy]), . . . }. We concatenate these chains into a mixed chain as
{. . . , `d′x , `dy, (L0

d′′ [`dy], L1
d′′ [`dy]), . . . }.

The observations in the Properties (4), (6), and (7) hold for mixed chains as well. This is
because the mentioned properties do not depend on the dimension of the links being chained,
but only on dimensions that are actually traversed. However, traversing a chain of d-dim links
does not always imply that dimension d is traversed. Consider three chains of d, d′, and d′′-
dim links that cross each other consecutively. E.g., the chain CSd

= {. . . , `djL
, . . . , `djR

, (L0
d′′ =

`d
′′

jR+1, L
1
d′′), . . .} that is crossed by the chain CSd′ = {. . . , `d′jL−1, (L0

d = `djL
, L1

d), . . .} at the
link `dijL

. Also, CSd
crosses the chain CSd′′ = {. . . , `d′′ijR+1

, . . .} at the link `d′′ijR+1
. We examine

whether dimension d is traversed by comparing the dth bit of the last link before the first
cross to CSd

, i.e. `d′ijL−1
= (a0, b0), to the dth bit of the first link after the second cross (by

CSd
), i.e. `d′′ijR+1

= (a1, b1). Dimension d is traversed if and only if the two bits hold different
values. That is, (a0 ∧ a1) ∧ (2d−1)2 = 0.

A backup path BP (`di ) = {(L0
d+1, L

1
d+1), . . . , N∗(`di )} can be represented as a chain

C(`di ) := {`di , {L0
d+1, L

1
d+1}, N (1)(`di ), . . . , N (∗)(`di )}. By Definition 2, there is a dependency

from `di to every other link `d
′

i′ ∈ BP (`di ). Let MC(`di , `d
′

i′ ) ⊆ C(`di ) ∪ {`d
′

i′ } denote the
mixed chain up to and including `d

′

i′ . Consider the set of backup paths of some subset
of links {`d0

i0
, `d1
i1
, . . . , `

dx−1
ix−1
} that induce a cycle of dependencies. Each dependency corre-

sponds to a mixed chain, concatenating them sequentially, yields the closed mixed chain
MC := MC(`d0

i0
, `d1
i1

) ∪MC(`d1
i1
, `d2
i2

) ∪ · · · ∪MC(`dx−1
ix−1

, `d0
i0

). Recall that in BP (.), pairs con-
necting consecutive same-dimension links are traversed in the ascending order of dimensions.
Therefore, the sequence of dimensions traversed byMC is specified by (d̃i)i=0, where d̃0 = 0,
and either d̃j+1 = d̃j or d̃j+1 = d̃j + 1 (mod k). From now on, we assume only the closed
chains restricted to the sequence of dimensions d̃i.

3.3 Correctness
In the following, we address the correctness of our backup path scheme, i.e., resilience to up
to k− 1 link failures in k-dimensional hypercubes. To this end, we need one additional result:

I Claim 9. In any backup path p := BP (`di ) at most one pair of links is traversed in uphill
direction.

Proof. If p does not detour any link then the only pair of links, i.e. (L0
d+1(`di )), L1

d+1(`di ))),
is traversed either in uphill or downhill direction, which trivially satisfies the claim. If p
detours some link `dj , then j < i (by construction). By Property 6, the pair of links preceding
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`dj is traversed in downhill direction. Since p does not detour the last d-dim link, only the
last pair (preceding the last link) is possibly traversed in uphill direction. J

We can now prove our main result:

I Theorem 10. The scheme BP (.) listed in Term (1) is (k − 1)-resilient.

Proof. In order to show that the scheme is (k − 1)-resilient, we argue that any cycle of
dependencies consists of at least k links. We first show that for every d ∈ [k], any cycle of
dependencies over d-dim links is of length at least k. The backup path of every link `di uses
only one d-dim link `di′ , i′ = i + 1 (mod R). Hence, the set of d-dim links are dependent
sequentially. Therefore, having R = dlog ke is sufficient to ensure any cycle of dependencies
induced by d-dim links is of length 2R ≥ k.

It remains to analyze the dependency cycles that consist of links in multiple dimensions.
By Definition 8 and the construction of theMC, such cycles correspond to mixed chains in
the k-cube, each having the following properties:
1. Due to the non-descending sequence d̃i and by Property 4,MC traverses the sequence of

dimensions 1, . . . k an even number of times, therefore there are at least 2k traversals.
2. By Property 7, at least k of the traversals are in uphill direction.
3. By Property 9, a backup path takes at most one uphill. Meaning, each dependency

contributes at most one uphill traversal to the mixed chain.

Combining (1), (2), and (3), implies that there must be at least k dependencies in the
assumed cycle of dependencies, which concludes our claim. J

4 Related Work

Most modern communication networks support some form of resilient routing, and the
topic has already received much interest in the literature. There exists much literature
on single [16, 47, 65, 68], double [12, 49], and more [15] failure scenarios, the latter being
motivated by, e.g., shared risk link groups [57], attacks [61], or simply node failures which
affect all incident links [3, 15, 28, 56]. The spectrum of solutions is broad as well, with some
solutions providing only heuristic guarantees [12, 49], some schemes exploiting packet-header
rewriting [8, 15] (which however is not always supported in existing networks) or packet-
duplication [32] (which however comes with overheads). Furthermore, there is also work that
aims at quickly optimizing network behavior after link failures have propagated, e.g., by
pre-computing how to rescale traffic at ingress routers once these nodes are fault-aware [43].
However, such mechanisms do not provide protection for packets during convergence.

An interesting line of research studies mechanisms which do not require any additional
information in the packet header, such as the works by Feigenbaum et al. [17], by Chiesa
et al. [10, 11] (establishing an interesting connection to arc-disjoint graph covers), by
Elhourani et al. [15], by Stephens et al. [59, 60], by Borokhovich et al. [6], by Pignolet et
al. [51] (establishing an interesting connection to distributed computing problems without
communication [45]), and by Foerster et al. [23]. However, these solutions do not require
failover paths to traverse the nodes of the original path and do not account for the specific
properties of the networks considered in this paper. The former is particularly motivated by
the advent of (virtualized [18]) middleboxes [9], and is also known as local protection scheme
in MPLS terminology [55].

Our work is situated in the context of MPLS and Segment Routing (SR) networks where
routing is based on stacks and more specifically, the top of the stack label [50]. While the
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design of resilient routing algorithms has received much attention already in the context of
MPLS, see e.g., [31] and [55, 36] and references therein, existing research on SR networks
mainly revolves around flow control, traffic engineering and network utilization [5, 63, 13, 42],
or network monitoring [4], see the works by Filsfils et al. [21] and Lebrun et al. [14, 38, 41, 40]
for a good overview. Optimization problems typically include the minimization of the number
of segments required to compute segmented paths [29]. Salsano et al. [54] propose methods
to leverage SR in a network without requiring extensions to routing protocols, and Hartert
et al. [34] propose a framework to express and implement network requirements in SR. Only
little is known today about fast rerouting in SR networks. In [22], it has been shown that
existing solutions for SR fast failover, based on TI-LFA [25], do not work in the presence of
two or more failures. However, [22] relies on failure-carrying packets, which is undesirable as
discussed above and we overcome in the current paper. Finaly, we in this paper considered
hypercubes, which have recently been studied for local fast failover algorithms in [11, 24] as
well. While for a single link failure, the general approach of François et al. [25] can be used,
we are not aware of any approaches that (conceptually) employ Segment Routing for local
fast failover in hypercubes for multiple failures.

5 Conclusion and Future Work

This paper studied the design of algorithms for local fast failover in Segment Routing networks,
subject to multiple link failures. Our main result is a maximally robust, (k − 1)-resilient
algorithm for k-dimensional hypercubes, which can be computed efficiently.

We see our work as a first step and believe that it opens several promising directions
for future research. On the algorithmic side, it would be interesting to extend the study to
algorithms for other graph classes, also providing a minimal number of segments or requiring
a minimal number of forwarding rules. On the practical side, given that segment routing is
ready to be deployed in IPv6 environments, it would be interesting to study experimental
evaluations, which can in turn also refine our model. In the following, we provide some first
directions.

5.1 Future Work I: Resilient Segment Routing on General Graphs
It will be interesting to study the complexity of fast rerouting on general graphs, and develop
(approximation) algorithms accordingly. We conjecture that computing backup path schemes
with maximal resiliency is NP-hard on general graphs. In non-polynomial time, a Mixed
Integer Program (MIP) formulation can provide an optimal solution for general graphs. The
following MIP considers the problem of generating a small number of required segments for
the backup paths, and if the desired resiliency cannot be met, at least maximizes the number
of protected links. We hope that our MIP formulation can aid the community in developing
further backup path schemes, e.g., by using it as a baseline comparison to evaluate the quality
of polynomial runtime algorithms for different graph classes beyond the hypercube.

More specifically, the MIP presented next will compute an f -resilient backup path
allocation that is optimal in the number of protected links. For completeness purposes, we
consider directed graphs G = (V,E). As our MIP is also concerned with the number of
labels for each backup path, we provide some additional preliminaries relevant to practical
implementations. A backup path in general can be subdivided into path segments, each
being a shortest path between its endpoints: such a path segment will only need one label on
the stack, when the nodes employ shortest path routing. However, when the network utilizes
link weights, some backup paths cannot be represented by node labels [25]: e.g., if a link on
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the backup path has infinite weight, while all other links have unit weight. For these corner
cases, we need to allow single links as items on the label stack, which we denote as tunnel
links: In the worst case, the whole backup path contains only tunnel links. Should a tunnel
link physically fail, the corresponding label will be popped to prevent stuck packets (a failed
link cannot be traversed), and the respective backup path will be traversed.

Maximize
∑
`∈E

I` (2)

SPz` =
{

1 ` ∈ SP (u, z)
0 else

∀` = (u, v) ∈ E, z ∈ V (3)

D``′ ,X v``′ , T``′ ,Wv
` , I`,∈ {0, 1} ∀`, `′ ∈ E,∀v ∈ V (4)

D`` = 0 ∀` ∈ E (5)

∑
`2=(v,∗)

D`1`2 −
∑

`2=(∗,v)

D`1`2 =


I`1 v = s

−I`1 v = t

0 else
∀`1 = (s, t) ∈ E, v ∈ V (6)

X v`1`2
≤ SPv`2

,
∑

`∈E,`3v

D`1` ∀`1, `2 ∈ E, v ∈ V (7)

D`1`2 ≤ SP
t
`2

+ T`1`2 +
∑
v∈V
X v`1`2

∀`1 = (s, t), `2 ∈ E (8)

d`1`2 ≥ 0, d`1`1 = 0 ∀`1, `2 ∈ E (9)
d`1`3 ≤ d`1`2 + 1 + (1−D`2`3)×∞ ∀`1, `2, `3 ∈ E (10)
d`1`2 + d`2`1 ≥ f + 1 ∀`1, `2 ∈ E (11)
Wv
`1
≥ X v`1`2

∀`1`2 ∈ E, v ∈ V (12)∑
v∈V
Wv
` +

∑
`′∈E

T``′ ≤ LABELS ∀` ∈ E (13)

Armed with the above preliminaries, we can now provide a general overview of the MIP. Let
SP (u, z) be the shortest path between u and z.4 For every link ` = (s, t), we pre-compute
constants SPz` , each indicating whether the shortest path from s to z includes ` or not.
With respect to the logical flow of the formulation, the MIP first computes a backup path
P` = {`′ ∈ E | D``′ = 1} for every link ` ∈ E. Then, for every link `′ ∈ P` whose shortest
path to t does not take the link itself (i.e. SPt`′ = 0), the MIP either finds an intermediate
node v such that SPv`′ = 1, or flags the link as a tunnel link (with T`1`2). As a result, every
link of P` either is a tunnel link or is on the shortest path to a next intermediate node, if not
t (i.e. on a segment). This is imposed by the set of constraints (7) and (8). With constraints
(9) to (11), we ensure an f -resilient backup path selection. Constraint (11) forbids any cyclic
dependency of length ≤ f . At the end, the MIP restricts the number of segments to the
constant LABELS.

Next, we explain each set of constraints and variables more technically.
(2): maximizing the number of protected links. The failure of any subset of up to f
protected links can be tolerated.
(3): are the pre-computed shortest path trees for all nodes.

4 Should there be multiple options for shortest paths, we pick them in such a way that each subpath of a
shortest path is again a shortest path.
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(4): each variable D``′ is set to 1 if `′ is designated to the backup path of ` (P`), otherwise
remains 0. Each variable X v``′ indicates whether 1) the node v is a waypoint on P` and 2)
`′ is on the shortest path from the tail of `′ to v, hence on the backup path. Similarly,
T``′ indicates whether `′ is a tunnel link on P`. Variables Wv

` is set to 1 when some node
v is used as a waypoint for P`. Each variable I` indicated whether ` is protected.
(6): these constraints enforce the links specified by D`1∗ to form a simple path connecting
the endpoints of `1, not using `1 (due to (5)).
(7), (8): a link `2 = (x, y) is allowed to be on the the backup path P`1 , `1 = (s, t) only if
1. the link `2 is on the shortest path SP (x, t) i.e. SP t`2

= 1;
2. else, a node v ∈ P`1 exists s.t. SP (x, v) begins with `2 (when X v`1`2

= 1 in (7)),
3. else, the variable T`1`2 is set to 1, which enforces the link `2 on P`1 as a tunnel link.
Therefore at least one of the cases must apply to the pair `1, `2 in order to have D`1`2 = 1
feasible. Cases 2 and 3 correspond to adding new segments. Note that the case 3 can
trivially hold for any link which would result in unrestricted number of segments. But
latter constraints avoid this in favour of having fewer segments.
(9),(10),(11): here we formulate the all-pairs shortest path sub-problem on the dependency
graph induced by D∗∗. Given a feasible assignment, the value of each dxy is at most the
length of the shortest path from x to y. The length of the shortest cycle of dependencies
through each dependency arc (`1, `2) is constrained by (11).
(12),(13): the flag Wv

` is set to 1 whenever the node v ∈ P` is used as a waypoint for
some `′ on P`. We restrict the total number of labels (thus, the number of segments)
using the constant LABELS.

5.2 Future Work II: Testbeds for Fast Failover in Segment Routing
The most popular testing environment for Segment Routing is Nanonet [39], which provides an
IPv6 data plane and is conceptually based off Mininet5. Nanonet allows to easily benchmark
Segment Routing in different topologies, all contained in a virtualized enviroment.

To conduct a first feasibility study and evaluate the performance of Segment Routing
under different failure scenarios, we deploy the example from Figure 2 as a topology, with an
additional source node s connected to v1, using w as the destination node. Each link has 1
ms delay and bidirectional 10 Mbit/s bandwidth. Without failures, the standard route is
s—v1–(e1)–w.

If e1 is unavailable, then v1 will push v2 as a segment label (and w will switch to e2
for the return path), i.e., the packet path is s—v1—v2–(e2)–w. When additionally e2 is
unavailable, then v1 will push v1, v3 as segment labels (with w switching to e3 for the return
path), with the total packet path being s—v1—v2—v1—v3–(e3)–w.

We use iperf3 to generate IPv6 traffic to evaluate the TCP throughput between source
and destination nodes, stopping the experiment after 20 seconds, providing ample time
for TCP to stabilize. As Nanonet does not support failing links during runtime, we run
the experiment three times, first without link failures, then deactivating e1, and lastly
deactivating e1 and e2. The results of all three experiments are plotted in Figure 4.

As can be seen, the throughput slightly deteriorates after one link failure, with an
additional very small performance hit after the second link failure. We believe that the extent
of the slowdown may be related to simulation constraints, as implementing Segment Routing
takes additional computational overhead in the virtualized environment, but it would be

5 http://mininet.org/

http://mininet.org/
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Figure 4 TCP throughput of iperf3 under 0, 1, and 2 link failures in Nanonet, using an adapted
version of the topology and Segment Routing rules from Figure 2.

interesting to investigate the performance impact in a real hardware testbed. Additionally,
we believe it would be worthwhile to implement link failures during the simulation runtime
in Nanonet, to efficiently estimate the possible performance changes that occur directly after
the links went down. We plan to extend our current simulations in these directions.
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Abstract
Consider a point-to-point message-passing network. We are interested in the asynchronous crash-
tolerant consensus problem in incomplete networks. We study the feasibility and efficiency of
approximate consensus under different restrictions on topology knowledge and the relay depth,
i.e., the maximum number of hops any message can be relayed. These two constraints are
common in large-scale networks, and are used to avoid memory overload and network congestion
respectively. Specifically, for positive integer values k and k′, we consider that each node knows
all its neighbors of at most k-hop distance (k-hop topology knowledge), and the relay depth is
k′. We consider both directed and undirected graphs. More concretely, we answer the following
question in asynchronous systems:

What is a tight condition on the underlying communication graphs for achieving approx-
imate consensus if each node has only a k-hop topology knowledge and relay depth k′?

To prove that the necessary conditions presented in the paper are also sufficient, we have de-
veloped algorithms that achieve consensus in graphs satisfying those conditions:

The first class of algorithms requires k-hop topology knowledge and relay depth k. Unlike
prior algorithms, these algorithms do not flood the network, and each node does not need the
full topology knowledge. We show how the convergence time and the message complexity of
those algorithms is affected by k, providing the respective upper bounds.
The second set of algorithms requires only one-hop neighborhood knowledge, i.e., immediate
incoming and outgoing neighbors, but needs to flood the network (i.e., relay depth is n,
where n is the number of nodes). One result that may be of independent interest is a topology
discovery mechanism to learn and “estimate” the topology in asynchronous directed networks
with crash faults.
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Figure 1 Effect of increased k-hop knowledge and relay depth k. In both figures, asynchronous
consensus with f = 1 is impossible for k = 1, but possible for k = 2.

1 Introduction

The fault-tolerant consensus problem proposed by Lamport et al. [20] has been studied
extensively under different point-to-point network models, including complete networks
(e.g., [20, 12]) and undirected networks (e.g., [13, 11]). Recently, many works are exploring
various consensus problems in directed networks, e.g., [7, 5, 16], including our own work
[23, 25, 22]. More precisely, these works address the problem in incomplete directed networks,
i.e., not every pair of nodes is connected by a channel, and the channels are not necessarily
bi-directional. We will often use the terms graph and network interchangeably. In this work,
we explore the crash-tolerant approximate consensus problem in asynchronous incomplete
networks under different restrictions on topology knowledge – where we assume that each
node knows all its neighbors of at most k-hop distance – and relay depth – the maximum
number of hops that information (or a message) can be propagated. These constraints are
common in large-scale networks to avoid memory overload and network congestion, e.g.,
neighbor table and Time-to-live (TTL) (or hop limit) in the Internet Protocol (IP). We
consider both undirected and directed graphs in this paper.

Motivation. Prior results [23] showed that exact crash-tolerant consensus is solvable in
synchronous networks with only one-hop knowledge and relay depth 1, i.e., each node only
needs to know its immediate incoming and outgoing neighbors, and no message needs to be
relayed (or forwarded). Such a local algorithm is of interest in practice due to low deployment
cost and low message complexity. In asynchronous undirected networks, there exists a simple
flooding-based algorithm adapted from [13, 11] that achieves approximate consensus with
up to f crash faults if the network satisfies (f + 1) node-connectivity2 and n > 2f , where
n is the number of nodes. However, these two conditions are not sufficient for an iterative
algorithm with one-hop knowledge and relay depth 1, in which each node maintains a state
and exchanges state values with only one-hop neighbors in each iteration.

Consider Figure 1a, which is a ring network of four nodes. There is no iterative algorithm
with one-hop knowledge and relay depth 1 under one crash fault. The adversary can divide
the nodes into disjoint sets {a, b} and {c, d} such that the communication delay across sets
is so large that a thinks d has crashed, and d thinks a has crashed, and similarly for the pair
b and c. As a result, no exchange of state values is possible across the sets in the execution;
hence, consensus is not possible (a more precise discussion in Section 3). On the other
hand, suppose each node has two-hop knowledge, i.e., a complete topology knowledge in this
network, and relay depth 2. Then a knows that it will be able to receive state values from at
least two of the other nodes since the node connectivity is 2, and up to one node may fail.

2 For brevity, we will simply use the term “connectivity” in the presentation below.
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Following this observation, it is easy to design a flooding-based algorithm in the ring network
based on [13, 11]. This example shows that both topology knowledge and relay depth affect
the feasibility of asynchronous approximate consensus.

Interestingly, increasing connectivity alone does not make iterative algorithm feasible.
In the full version [21], we show that no fault-tolerant approximate consensus algorithm
with one-hop topology and relay depth 1 exists in the network in Figure 1b, which has
two sparsely-connected cliques of size n/2 and connectivity n/2 − 1. Motivated by these
observations, this work addresses the following question in asynchronous systems:

What is a tight condition on the underlying communication graphs
for achieving approximate consensus if each node has only a k-hop
topology knowledge and relay depth k′?

The problem. We consider the asynchronous approximate consensus problem. The system
consists of n nodes, of which at most f nodes may crash. Each node is given an input, and
after a finite amount of time, each fault-free node should produce an output, which satisfies
validity and agreement conditions (formally defined later). Intuitively, the state at fault-free
nodes must be in the range of all the inputs, and are guaranteed to be within ε of each other
for some ε > 0 after a sufficiently large number of rounds.

In [23], we presented Condition CCA (Crash-Consensus-Asynchronous, see definition in
Section 2) and showed that it is necessary and sufficient on the underlying directed graphs for
achieving approximate consensus in asynchronous systems [23]. The approximate consensus
algorithms in prior work [23, 13, 11] are based on flooding (i.e., relay depth n) and assume
that each node has n-hop topology knowledge. However, such an algorithm is not practical
in a large-scale network, since, (i) nodes’ local memory may not be large enough to store
the entire network, (ii) flooding-based algorithms (e.g., [23, 13, 11]) incur prohibitively high
message overhead for each phase, and (iii) complete topology knowledge may require a high
deployment and configuration cost. Therefore, we explore algorithms that only require “local”
knowledge and limited message relay.

Contributions. We identify tight conditions on the graphs under different assumptions on
topology knowledge and relay depth. Particularly, we have the following results:

Limited Topology Knowledge and Relay Depth (Section 3): We consider the case with
k-hop topology knowledge and relay depth k. The family of algorithms that captures
these constrains are iterative k-hop algorithms – nodes only have topology knowledge of
their k-hop neighborhoods, and propagate state values to nodes that are at most k-hops
away. Note that no other information is relayed. For iterative k-hop algorithms, we
derive a family of tight conditions, namely Condition k-CCA for 1 ≤ k ≤ n, for solving
approximate consensus in directed networks. To prove the tightness of the conditions, we
propose a family of iterative algorithms called k-LocWA and show how the convergence
time and the message complexity of those algorithms is affected by k, providing the
respective upper bounds.
Topology Discovery and Unlimited Relay Depth (Section 4): We consider the case with
one-hop topology knowledge and relay depth n. In other words, nodes initially only
know their immediate incoming and outgoing neighbors, but nodes can flood the network,
learn (some part of) the topology, and eventually solve consensus based on the learned
topology. We show that Condition CCA from [23] is also sufficient in this case. Since
we assume only one-hop knowledge, our result implies that Condition CCA is tight for
any k-hop topology knowledge. One contribution that may be of independent interest is
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a topology discovery mechanism to learn and “estimate” the topology in asynchronous
directed networks with crash faults. Such a discovery mechanism will be useful for
self-stabilization and reconfiguration of a large-scale system.

In Section 5, we discuss fault-tolerance implications of the derived conditions and Condition
CCA. We also discuss how to speed up our algorithms in terms of real time delay.

Related Work. There is a large body of work on fault-tolerant consensus. Here, we discuss
related works exploring consensus in different assumptions on graphs. Fischer et al. [13] and
Dolev [11] characterized necessary and sufficient conditions under which Byzantine consensus
is solvable in undirected graphs. In synchronous systems, Charron-Bost et al. [7, 8] solved
approximate crash-tolerant consensus in dynamic directed networks using local averaging
algorithms, and in the asynchronous setting, Charron-Bost et al. [7, 8] addressed approximate
consensus with crash faults in complete graphs which are necessarily undirected. We solve
the problem in incomplete directed graphs in asynchronous systems. Moreover, in [7, 8],
nodes are constrained to only have the one-hop topology knowledge. We study different
types of algorithms, including the ones that allow nodes to learn the topology (i.e., we allow
topology discovery).

There were also works studying limited topology knowledge. Su and Vaidya [22] identi-
fied the condition for solving synchronous Byzantine consensus using a variation of k-hop
algorithms. Alchieri et al. [1] studied the synchronous Byzantine problem under unknown
participants. We consider asynchronous systems in this work. Nesterenko and Tixeuil [17]
studied the topology discovery problem in the presence of Byzantine faults in undirected
networks, whereas we present a solution that works in directed networks with crash faults.

Extensive prior works studied graph properties for other similar problems in the presence
of Byzantine failures, such as (i) Byzantine approximate consensus in directed graphs using
“local averaging” algorithms wherein nodes only have one-hop neighborhood knowledge
(e.g., [25, 24, 22, 26, 10]), (ii) Byzantine consensus with unknown participants [1], (iii)
Byzantine consensus with authentication in undirected networks [3]. These papers only
consider synchronous systems, and our algorithms and analysis are significantly different
from those developed for Byzantine algorithms, and (iv) consensus problems in synchronous
dynamic networks where the adversary can change the network topology. In this line of work,
impossibility results for consensus and k-set agreement are given in [4, 6] and sufficiency
is guaranteed by requiring a period of stability, during which certain nodes are strongly
connected; the first tight condition for the feasibility of consensus and broadcast is presented
in [9]. Additionally, in [2], Byzantine corruptions and a dynamic node set is assumed and
a O(log3 n)-round randomized algorithm is presented. Our work is different from all these
works because of the assumption of asynchronous systems and limited topology knowledge.

2 Preliminary

Before presenting the results, we introduce our system model, some terminology, and our
prior results from [23] to facilitate the discussion.

System Model. The point-to-point message-passing network is static, and it is represented
by a simple directed graph G(V, E), where V is the set of n nodes, and E is the set of directed
edges between the nodes in V . The communication links are reliable. We assume that n ≥ 2,
since the consensus problem for n = 1 is trivial. Node i can transmit messages to another
node j directly if directed edge (i, j) is in E . Each node can send messages to itself as well;
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however, for convenience, we exclude self-loops from set E . We will use the terms edge and
link interchangeably.

Up to f nodes may suffer crash failures in an execution. A node that suffers a crash failure
simply stops taking step (i.e., fail-stop model). We consider the asynchronous message-passing
communication, in which a message may be delayed arbitrarily but eventually delivered if the
receiver node is fault-free. We assume that the adversary has both the control of crashing
nodes and delaying messages at any point of time during the execution.

Terminology. Upper case letters are used to name sets. Lower case italic letters are used
to name nodes. All paths used in our discussion are directed paths.

Node j is said to be an incoming neighbor of node i if (j, i) ∈ E . Let N−i be the set of
incoming neighbors of node i, i.e., N−i = {j | (j, i) ∈ E}. Define N+

i as the set of outgoing
neighbors of node i, i.e., N+

i = {j | (i, j) ∈ E}.
For set B ⊆ V, node i is said to be an incoming neighbor of set B if i 6∈ B, and there

exists j ∈ B such that (i, j) ∈ E . Given subsets of nodes A and B, set B is said to have k
incoming neighbors in set A if A contains k distinct incoming neighbors of B.

I Definition 1. Given disjoint non-empty subsets of nodes A and B, A x⇒ B if B has at
least x distinct incoming neighbors in A. When it is not true that A x⇒ B, we will denote
that fact by A

x

6⇒ B.

Approximate Consensus. For the approximate consensus problem (e.g., [12, 15, 23]), it is
usually assumed that each node i maintains and regularly updates a state, with vi[p] denoting
the p-th update of the state of node i. In asynchronous systems, value vi[p] is also called
the state of node i at the end of phase (or iteration) p. The initial state of node i, vi[0], is
equal to the initial input provided to node i. At the start of phase p (p > 0), the state of
node i is vi[p− 1].

Let U [p] and µ[p] be the maximum and the minimum state at nodes that have not crashed
by the end of phase p. Then, a correct approximate consensus algorithm needs to satisfy the
following two conditions:

Validity: ∀p > 0, U [p] ≤ U [0] and µ[p] ≥ µ[0]; and
Convergence: limp→∞ U [p]− µ[p] = 0.

Equivalently the Convergence condition can be stated as:

∀ε > 0, there exists a phase pε such that for p > pε, U [p]− µ[p] < ε.

Towards facilitating the study of the number of phases needed for convergence and the
corresponding message complexity, observe that convergence with respect to a specific ε must
be considered. Therefore we will also use the following convergence notion.

ε-Convergence: ∃pε, ∀p ≥ pε, U [p]− µ[p] ≤ ε.

Remark on Termination. The variation of approximate consensus defined above, also ap-
pears in the literature under the name of asymptotic consensus (cf. [14]). The main difference
is that in the original approximate consensus problem defined in [12], termination for any ε
is also required. However, we stress that the algorithms we present can trivially be extended
to achieve termination using an approach similar to the ones presented in [12, 15]. In these
works and in most of the approximate consensus literature, the problem is solved by iterative
algorithms of similar structure and each node can locally compute an upper bound on the
number of iterations that are needed for ε-convergence. Thus termination is easily guaranteed.
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Prior Result. In [23], we identified necessary and sufficient conditions on the underly-
ing communication graphs G(V, E) for achieving crash-tolerant consensus in directed net-
works. The theorem below, presented in [23], states that condition CCA (Crash-Consensus-
Asynchronous) is tight for approximate consensus under full topology knowledge and relay
depth. Observe that, naturally, the impossibility result holds regardless of those parameters.

I Theorem 2 (from [23]). Approximate crash-tolerant consensus in asynchronous systems,
under full topology knowledge and relay depth, is feasible iff for any partition L,C,R of V,
where L and R are both non-empty, either L∪C f+1⇒ R or R∪C f+1⇒ L. (Condition CCA)

3 Limited Topology Knowledge and Relay Depth

In this section, we study how topology knowledge and the relay depth affect the tight
conditions on the directed communication network. Particularly, we consider the case with
k-hop topology knowledge and relay depth k for 1 ≤ k ≤ n. Prior works (e.g., [23, 13, 11])
assumed that each node has n-hop topology knowledge and relay depth n. However, in
large-scale networks, such an assumption may not be realistic. Partial knowledge models have
been recently explored in [18, 19]. We are interested in algorithms that only require nodes to
exchange a small amount of information within their local neighborhoods. One other benefit
is that these algorithms do not require flooding [23] or all-to-all communication [13, 11] in
each asynchronous phase.

We are interested in iterative k-hop algorithms – nodes only have topology knowledge
in their k-hop neighborhoods, and propagate state values to nodes that are at most k-hops
away. We introduce a family of conditions, namely Condition k-CCA for 1 ≤ k ≤ n, which
we prove necessary and sufficient for achieving asynchronous approximate consensus, through
the use of iterative k-hop algorithms. The results presented in this section also imply how
the parameter k affects the tight conditions on the directed networks. To the best of our
knowledge, two prior papers [1, 22] examined a similar problem – synchronous Byzantine
consensus. In [22], Su and Vaidya identified the condition under different relay depths.
Alchieri et al. [1] studied the problem under unknown participants. The technique developed
for asynchronous consensus in this section is significantly different.

Observe that since the system is asynchronous, any algorithm has to be event-oriented.
For this reason, we define a locally verifiable condition WAIT, which dictates the end of
the reception step and the start of the state update step as seen below. Different WAIT
conditions need to be defined for each algorithm we consider.

Iterative k-hop Algorithms. The iterative algorithms considered here have relay depth k
and require each node i to perform the following three steps in asynchronous phase t:
1. Transmit: Transmit messages of the form (vi[t − 1], t − 1) to nodes that are reachable
from node i via at most k hops away, where vi[t − 1] is the current state value, which is
accompanied by the phase tag t− 1. If node i is an intermediate node on the route of some
message, then node i forwards that message as instructed by the source;
2. Receive: Until a condition WAIT is satisfied, receive messages from the nodes that can
reach node i via at most k hops. Denote by Ri[t] the set of messages that node i received at
phase t; and
3. Update: Once condition WAIT is satisfied, update state using a transition function Zi,
where Zi is a part of the specification of the algorithm, and takes as input the set Ri[t]. i.e.,

vi[t] := Zi(Ri[t], vi[t− 1]) at node i
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Note that (i) no exchange of topology information takes place in this class of algorithms,
and (ii) each node’s state only propagates within its k-hop neighborhood. For a node i, its
k-hop incoming neighbors are defined as the nodes j which are connected to i by a directed
path in G that has ≤ k hops. The notion of k-hop outgoing neighbors is defined similarly.

Technique. The algorithms presented in this section are motivated by prior work [12, 22]
including our own work [23]. The algorithms are iterative and simple; thus, the proof
structure shares some similarity with prior work [12, 23, 25].

Generally speaking, the proof proceeds as following: (i) nodes are divided into two disjoint
sets, say L and R so that nodes have “closer” state values in each set; (ii) because each node
receives an adequate set of messages, we show that under any delay and crash scenarios, at
least one non-crashed node in either L or R will receive one message from the other set of
nodes in each phase; and (iii) after enough phases, the value of all non-crashed nodes in either
L or R will move “closer” to the values in the other set. Two key novelties in this paper are:
identifying the “adequate set” of messages that needs to be received before updating local
state in each asynchronous phase, and showing that even with limited k-hop propagation,
some node is still able to receive messages from the other set (satisfying the above point (ii)).

3.1 k = 1 Case
To initiate the study, we first consider the one-hop case, where each node only knows its one-
hop incoming and outgoing neighbors. The following notion is crucial for the characterization
of graphs in which asynchronous approximate consensus is feasible with relay depth 1.

I Definition 3 (A→ B). Given disjoint non-empty subsets of nodes A and B, we will use
the notation A → B if there exists a node i in B such that i has at least f + 1 distinct
incoming neighbors in A. When it is not true that A → B, we will denote that fact by
A 6→ B.

Condition 1-CCA, presented below proves to be necessary and sufficient for achieving
asynchronous approximate consensus with relay depth 1. Note that 1-CCA requires the
existence of a single node that has at least f + 1 incoming neighbors, while CCA requires
the distinct incoming neighbors of the corresponding set to be at least f + 1.

I Definition 4 (Condition 1-CCA). For any partition L,C,R of V, where L and R are both
non-empty, either L ∪ C → R or R ∪ C → L.

The necessity of Condition 1-CCA for the specific class of iterative 1-hop algorithms, is
similar to the necessity proof of Condition CCA in [23] and is presented in the full version [21].

For sufficiency, we present Algorithm LocWA (Local-Wait-Average), which is inspired
by Algorithm WA [23] 3. Note that LocWA utilizes only one-hop information. Recall that
by definition, no message relay with depth greater than 1 is allowed. In Algorithm LocWA,
heardi[p] is the set of one-hop incoming neighbors of i from which i has received values
during phase p. Each node i performs the averaging operation to update its state value when
Condition 1-WAIT below holds for the first time in phase p.

3 The main difference lies in the WAIT condition and the fact that no relay of messages takes place in
LocWA. Also, the termination of LocWA can be dealt with as argued in the corresponding remark in
Section 2.
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Algorithm 1: LocWA for node i ∈ V.
vi[0] := input at node i
For phase p ≥ 1:
* On entering phase p:

Ri[p] := {vi[p− 1]}
heardi[p] := {i}
Send message (vi[p− 1], i, p) to all the outgoing neighbors

* When message (h, j, p) is received for the first time:
Ri[p] := Ri[p] ∪ {h} // Ri[p] is a multiset
heardi[p] := heardi[p] ∪ {j}

* When Condition 1-WAIT holds for the first time in phase p:

vi[p] :=
∑
v∈Ri[p] v

|Ri[p]|
(1)

Enter phase p+ 1

Condition 1-WAIT. The condition is satisfied at node i, in phase p, when |heardi[p]| ≥
|N−i | − f , i.e., when i has not received values from a set of at most f incoming neighbors.

To prove the correctness of LocWA, we will use the supplementary definitions below.

I Definition 5. For disjoint sets A,B, in(A → B) denotes the set of all the nodes in B

that each have at least f + 1 incoming edges from nodes in A. When A 6→ B, define
in(A→ B) = ∅. Formally, in(A→ B) = { v | v ∈ B and f + 1 ≤ |N−v ∩A| }.

I Definition 6. For non-empty disjoint sets A and B, set A is said to propagate to set B in l
steps, where l > 0, if there exist sequences of sets A0, A1, A2, · · · , Al and B0, B1, B2, · · · , Bl
(propagating sequences) such that

A0 = A, B0 = B, Al = A ∪B, Bl = ∅, Bτ 6= ∅ for τ < l, and
for 0 ≤ τ ≤ l − 1, (i) Aτ → Bτ ; (ii) Aτ+1 = Aτ ∪ in(Aτ → Bτ ); and
(iii) Bτ+1 = Bτ − in(Aτ → Bτ ).

Observe that Aτ and Bτ form a partition of A∪B, and for τ < l, in(Aτ → Bτ ) 6= ∅. We say
that set A propagates to set B if there is a propagating sequence for some steps l as defined
above. Note that the number of steps l in the above definition is upper bounded by n− f − 1,
since set A must be of size at least f + 1 for it to propagate to B; otherwise, A 6→ B.

Now, we present two key lemmas whose proofs are presented in the full version [21]. In
the discussion below, we assume that G satisfies Condition 1-CCA.

I Lemma 7. For any partition A,B of V, where A,B are both non-empty, either A propagates
to B, or B propagates to A.

The lemma below states that the interval to which the states at all the fault-free nodes
are confined shrinks after a finite number of phases of Algorithm LocWA. Recall that U [p]
and µ[p] denote the maximum and minimum states at the fault-free nodes at the end of the
p-th phase and. We also denote with F [p], the nodes that have not computed value v[p] in
phase p, i.e., nodes in F [p] have crashed before computing v[p].

I Lemma 8. Suppose that at the end of the p-th phase of Algorithm LocWA, V can be
partitioned into non-empty sets R and L such that (i) R propagates to L in l steps, and (ii)
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the states of fault-free nodes in R − F [p] are confined to an interval of length ≤ U [p]−µ[p]
2 .

Then, with Algorithm LocWA,

U [p+ l]− µ[p+ l] ≤
(

1− αl

2

)
(U [p]− µ[p]), where α = min

i∈V

1
|N−i |

(2)

Using lemma 8 and simple algebra, we can prove the following Theorem. For the sake of
space, we present only a proof sketch. The complete proof is deferred to the full version [21].

I Theorem 9. If G(V, E) satisfies Condition 1-CCA, then Algorithm LocWA achieves both
Validity and Convergence.

Proof Sketch. To prove the Convergence of LocWA, we show that given any ε > 0, there
exists τ such that U [t] − µ[t] ≤ ε,∀t ≥ τ . Consider p-th phase, for some p ≥ 0. If
U [p]− µ[p] = 0, then the algorithm has already converged; thus, we consider only the case
where U [p] − µ[p] > 0. In this case, we can partition V into two subsets, A and B, such
that, for each fault-free node i ∈ A, vi[p] ∈

[
µ[p], U [p]+µ[p]

2

)
, and for each fault-free node

j ∈ B, vj [p] ∈
[
U [p]+µ[p]

2 , U [p]
]
. (Full proof in [21], identifies how to partition the nodes.)

By Lemma 7, we have that either A propagates to set B or B propagates to A. In both
cases above, we have found two non-empty sets L = A (or L = B) and R = B (or L = A)
partitioning V and satisfy the hypothesis of Lemma 8, since R propagates to L and the states
of all fault-free nodes in R are confined to an interval of length ≤ U [p]−µ[p]

2 . The theorem is
then proven by using simple algebra and the fact that the interval to which the states of all
the fault-free nodes are confined shrinks after a finite number of phases. J

3.2 General k Case
Now, consider the case when each node only knows its k-hop neighbors and the relay depth is
k. In the following, we generalize the notions presented above to the k-hop case. For node i,
denote by N−i (k) the set of i’s k-hop incoming neighbors, For a set of nodes A, let N−A be the
set of A’s one-hop incoming neighbors. Formally, N−A = {i | i ∈ V−A, and ∃j ∈ A, (i, j) ∈ E}.
Next we define the relation A→ B for the k-hop case.

I Definition 10 (A →k B). Given disjoint non-empty subsets of nodes A and B, we will
say that A →k B holds if there exists a node i in B for which there exist at least f + 1
node-disjoint paths of length at most k from distinct nodes in A to i. More formally, if PAi (k)
is the family of all sets of k-length node-disjoint paths (with i being their only common node)
initiating in A and ending in node i, A→k B means that ∃i ∈ B, max

P∈PA
i

(k)
|P | ≥ f + 1.

I Definition 11 (Condition k-CCA). For any partition L,C,R of V , where L and R are both
non-empty, either L ∪ C →k R or R ∪ C →k L.

The necessity of Condition k-CCA for achieving asynchronous approximate consensus
through an iterative k-hop algorithm holds analogously with the one-hop case, where a set of
x incoming neighbors of node i has to be replaced with a set of x distinct nodes that reach i
through disjoint paths. For sufficiency, we next present a generalization of Algorithm LocWA
for the k-hop case. There are two differences between Algorithms k-LocWA and LocWA: (i)
nodes transmit their state to all their k-hop outgoing neighbors, and (ii) Algorithm k-LocWA
relies on the generalized version of Condition 1-WAIT, presented below.
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Algorithm 2: k-LocWA for node i ∈ V.
vi[0] := input at node i
For phase p ≥ 1:
* On entering phase p:

di[p] := 1
Ri[p] := {vi[p− 1]}
heardi[p] := {i}
Send message (vi[p− 1], i, p) to nodes in N+

i (k), all k-hop outgoing neighborsa

* When message (h, j, p) is received for the first time:
Ri[p] := Ri[p] ∪ {h} // Ri[p] is a multiset
heardi[p] := heardi[p] ∪ {j}

* When Condition k-WAIT holds for the first time in phase p:

vi[p] :=
∑

v∈Ri[p]
v

|Ri[p]|
Enter phase p+ 1

a For brevity, we do not specify how the network routes the messages within the k-hop neighborhood
– this can be achieved by using local flooding through tagging a hop counter in each message.

Condition k-WAIT. For Fi ⊆ N−i (k), we denote with reachki (Fi) the set of nodes that
have paths of length l ≤ k to node i in GV−Fi . That is, the set of k-hop incoming neighbors
of i that remain connected with i even when all nodes in set Fi crash. The condition
is satisfied at node i, in phase p if there exists Fi ⊆ N−i (k) with |Fi[p]| ≤ f such that
reachki (Fi[p]) ⊆ heardi[p].

Correctness of Algorithm k-LocWA. Proving the correctness of k-LocWA follows a similar
reasoning of the correctness of LocWA. The key here is to identify Condition k-CCA and
Condition k-WAIT so that the proof structure remains almost identical. To adapt the
arguments to the general case, one should define the analogous in(A→k B) definition based
on the general A→k B notion.

I Definition 12. For disjoint sets A,B, in(A→k B) denotes the set of all the nodes i in B
such that there exist at least f + 1 incoming disjoint paths of length at most k from distinct
nodes in N−i ∩A to i. When A 6→k B, define in(A→k B) = ∅. Formally, in the terminology
of Definition 10: in(A→ B) = {i ∈ B : max{|p| : p ∈ PAi (k)} ≥ f + 1}

The following proof sketch outlines necessary adaptations for general k case proof.

I Theorem 13. Approximate crash-tolerant consensus in an asynchronous system using
iterative k-hop algorithms is feasible iff G satisfies Condition k-CCA.

Proof Sketch. Having defined the basic notion in(A →k B), Definition 6 of the notion A
propagates to B is the same for the k-hop case. Intuitively, if A propagates to B, information
will be propagated gradually from A to B in l steps. Any faulty set of f nodes will not
be able to block propagation from A to a specific node i ∈ B because the definition of
in(A→k B) guarantees that i will receive information from at least f + 1 disjoint paths if
it has not crashed. A difference with the k = 1 case is that for every of the l steps needed
to propagate from A to B, k communication steps will be required in the worst case, since
information may be propagated through paths of length k. Lemma 8 is intuitively the same
since it is based on the general propagation notion but value α which is defined based on
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the number of incoming neighbors will now be defined on the number of k-hop incoming
neighbors, i.e., αk = min

i∈V

1
|N−i (k)|

. The main correctness proof remains essentially the same

since it repeatedly makes use of the abstract propagation notion between various sets, without
focusing on how the values are propagated. J

3.3 Condition Relation and Convergence Time Comparison
Next, we first compare the feasibility of approximate consensus for different values of k by
presenting a relation among the various k-CCA conditions as well as their relation with
Condition CCA from [23].

Condition Relation
Intuitively, achieving approximate consensus for a lower k requires the existence of more
paths in the graph; this can be observed by definition and is summarized in the following
theorem.

I Theorem 14. For values k, k′ ∈ N with k ≤ k′, Condition k-CCA implies Condition
k′-CCA.

Proof. Let Condition k-CCA hold and assume, without loss of generality that L ∪ C →k R

holds for a partition L,C,R. This means that there exists a node i in R that has at least
f + 1 incoming disjoint paths of length at most k initiating from distinct nodes in L ∪ C.
Consequently, the same f + 1 paths will consist of i’s incoming disjoint paths of length at
most k′, since k′ ≥ k, and thus, L ∪ C →k′ R which means that k′-CCA holds. J

We next show that Condition CCA is equivalent to Condition n-CCA. The proof illustrates
how the locally defined Condition k-CCA naturally coincides with the globally defined
condition CCA in the extreme case.

I Theorem 15. Condition CCA is equivalent to Condition n-CCA.

Proof. It is easy to see that Condition n-CCA implies Condition CCA. If Condition CCA is
violated in G, then Condition n-CCA does not hold either, since L and R have at most f
one-hop incoming neighbors.

Now, we show the other direction. Assume for the sake of contradiction that Condition
CCA holds but Condition n-CCA does not. Then, there exists a partition L,C,R with
L,R 6= ∅ such that L∪C 6→k R and R ∪C 6→k L. Since Condition CCA holds, we have that

either L∪C f+1⇒ R or R∪C f+1⇒ L. Now consider the case that L∪C f+1⇒ R and R∪C
f+1
6⇒ L.

This means that |N−R | ≥ f + 1 and |N−L | ≤ f . The case of L ∪ C
f+1
6⇒ R and R ∪ C f+1⇒ L is

symmetrical and the case of L ∪ C f+1⇒ R and R ∪ C f+1⇒ L can be proved by applying the
argument below once for set R and once for set L.

Let i be the node in R with the maximum number m of disjoint paths initiating from
distinct nodes in V − R (as implied by Definition 10). The fact L ∪ C 6→k R implies that
m ≤ f . Subsequently, |N−R | ≥ f + 1 implies that the set A = N−R − N

−
i (n) is non-empty

(the maximal subset of N−R which does not contain any n-hop incoming neighbors of i). Let
B = N+

A (n)∩R be the set of all the outgoing n-hop neighbors of all nodes j ∈ A confined in
the set R. By definition of B and A, it holds that N−i (n)∩B = ∅. We can now create a new
partition L′ = L,C ′ = C ∪B,R′ = R−B by moving B from R to C. For partition L′, C ′, R′
it holds that L′, R′ 6= ∅ since i ∈ R′ and L′ = L. Moreover, it holds that (i) |N−R′ | ≤ f , since
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|N−R′ | = |N
−
R −A| and A 6= ∅; and (ii) |N−L | ≤ f since L = L′. The latter points imply that

R ∪ C
f+1
6⇒ L and L ∪ C

f+1
6⇒ R, which yield a contradiction to the hypothesis that Condition

CCA holds. This completes the proof. J

Convergence Time Comparison
We derive upper bounds on the number of asynchronous phases needed for ε-convergence of
Algorithm k-LocWA and its message complexity up to this ε-convergence point pε. These
upper bounds are functions of values ε, k, f, n and δ = U [0] − µ[0] which are naturally
expected to affect the convergence time and message complexity. Moreover, since the bounds
depend on k, it provides a way to compare the convergence time and message complexity
of Algorithms k-LocWA for different values of k. Next, we present the upper bound on the
convergence time of k-LocWA, the proof of the theorem is deferred to the full version [21].

I Theorem 16 (Convergence-time complexity). The number of phases required by Algorithm

k-LocWA to ε-converge is O

 (n− f) log ε/δ

log
(

1− αn−f−1
k

2

)
.

Comparison of Algorithms k-LocWA Convergence. Observe that the above bound de-
creases, as the maximum number of k-hop incoming neighbors increases, since αk =
min
i∈V

1
|N−i (k)|

. Since the maximum number of k-hop incoming neighbors increases with

k we have that for k′ > k, Algorithm k′-LocWA ε-converges faster than k-LocWA by a factor
implied by the bound. Moreover, given the upper bound on phases for ε-convergence of
Theorem 16 we can easily derive an upper bound on the message complexity of k-LocWA as
is shown in [21].

4 Topology Discovery and Unlimited Relay Depth

In this section, we consider the case with one-hop topology knowledge and relay depth n. In
other words, nodes initially only know their immediate incoming and outgoing neighbors,
but nodes can flood the network and learn the topology. The study of this case is motivated
by the observation that full topology knowledge at each node (e.g., [23, 13, 11]) requires a
much higher deployment and configuration cost. We show that Condition CCA from [23]
is necessary and sufficient for solving approximate consensus with one-hop neighborhood
knowledge and relay depth n in asynchronous directed networks. Compared to the iterative
k-hop algorithms in Section 3, the algorithms in this section are not restricted in the sense
that nodes can propagate any messages to all the reachable nodes.

The necessity of Condition CCA is implied by our prior work [23]. The algorithms
presented below are again inspired by Algorithm WA from [23]. The main contribution is to
show how each node can learn “enough” topology information to solve approximate consensus
– this technique may be of interest in other contexts as well. In the discussion below, we
present an algorithm that works in any directed graph that satisfies Condition CCA.

Algorithm LWA. The idea of Algorithm LWA (Learn-Wait-Average) is to piggyback the
information of incoming neighbors when propagating state values. Then, each node i will
locally construct an estimated graph Gi[p] in every phase p, and check whether Condition
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Algorithm 3: LWA for node i ∈ V.
vi[0] := input at node i
Gi[0] := GN−

i
⇒i

For phase p ≥ 1:
* On entering phase p:

Ri[p] := {vi[p− 1]}
heardi[p] := {i}
Send message (vi[p− 1], N−i , i, p) to all the outgoing neighbors

* When message (h,N, j, p) is received for the first time:
Ri[p] := Ri[p] ∪ {h} // Ri[p] is a multiset
heardi[p] := heardi[p] ∪ {j}
Gi[p] := Gi[p] ∪GN⇒j a

Send message (h,N, j, p) to all the outgoing neighbors
* When Condition n-WAIT holds on Gi[p] for the first time in phase p:

vi[p] :=
∑

v∈Ri[p]
v

|Ri[p]|
Gi[p+ 1] := GN−

i
⇒i // “Reset” the learned graph

Enter phase p+ 1
a G1(V1, E1) ∪G2(V2, E2) ≡ G3(V3, E3), where V3 = V1 ∪ V2 and E3 = E1 ∪ E2. Note that this is not

a multiset, there is only one copy of each node or edge.

n-WAIT holds in Gi[p] or not. Note that Gi[p] may not equal to G, as node i may not receive
messages from some other nodes due to asynchrony or failures. We say Condition n-WAIT
holds in the local estimated graph Gi[p](Vi[p], E i[p]) if there exists a set Fi[p] ⊆ Vi[p]−{i},
where |Fi[p]| ≤ f , such that reach′i(Fi[p]) ⊆ heardi[p]. Here, reach′i(Fi) is the set of
nodes that have paths to node i in the subgraph induced by the nodes in Vi[p]− Fi[p] for
Fi[p] ⊆ Vi[p]− {i} and |Fi[p]| ≤ f .

Recall that N−i denotes the set of i’s one-hop incoming neighbors. Given a set of nodes N
and node i, we also use the notation GN⇒i to describe a directed graph consisting of nodes
N ∪ {i} and set of directed edges from each node in N to i. Formally, GN⇒i = (N ∪ {i}, E′),
where E′ = {(j, i) | j ∈ N}.

Correctness of Algorithm LWA. The key lemma to prove the correctness of Algorithm WA
in [23] is to show that for any pair of nodes that have not crashed in phase p, they must
receive a state value from at least one common node. In the full version [21], we show that
Algorithm LWA achieves the same property. Intuitively, if Condition n-WAIT does not hold
in the local estimated graph Gi[p], then node i knows it can learn more states in phase p.
Also, when Condition n-WAIT is satisfied in Gi[p], there exists a scenario that node i cannot
receive any more information; hence, it should not wait for any more message. This is why
the Algorithm LWA allows each node to learn enough state values to achieve approximate
consensus. We rely on this observation to prove the correctness in [21]. Algorithm LWA
works on undirected graphs as well, as is shown in the full version [21].

5 Discussion

In asynchronous systems, the real time communication delay is arbitrary but finite. In a
formal framework, it is common to assume that execution proceeds in rounds representing
real time intervals, but the nodes do not have knowledge of the round index. To model the
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(a) Graph G, i-CCA holds for any i ∈
{1, . . . , 4} and f = 1.

B C
A

D

(b) Arbitrary delay in directed edges
(A, C), (C, A), (B, D), (D, B)

Figure 2 Real time delay example.

worst-case real time delay in the execution of a system we can use the notion of delay scenario
which is a description of the delays, incurring on the communication through all edges of
the network. The delivery delay of a message sent over a channel e will be described by the
number of rounds (amount of real time) that are needed for the delivery to be completed.

We first compare the real time performance of Algorithms k-LocWA for different values
of k with respect to the real time delay. Specifically we show that there is a case where
Algorithm LocWA terminates each phase in one round (one interval of real time), while it
may take arbitrary number of rounds for Algorithm 2-LocWA to terminate phase 1.

I Example 17. Consider the graph of Figure 2a. For f = 1, it is easy to verify that Condition
1-CCA holds, which implies that Conditions i-CCA, for i ∈ {1, . . . , n} hold. Assume that
the delivery of messages through directed edges (A,C), (C,A), (B,D), (D,B) is delayed by d
rounds while the communication in all the other edges is instant (one round). For ease of
presentation assume that no node crashes. Then, in an execution of Algorithm LocWA, it is
clear that every node i will finish phase t in time t. On the other hand, in an execution of
Algorithm 2-LocWA, node D will only receive a message from C in one round, since (C,B)
is a directed edge, and delay on edges (A,C) and (B,D) is d. in this case, D will not be
able to decide before round d, the first round where Condition 2-WAIT will be satisfied.
Specifically, for the first phase it will hold that reach2

D ⊆ heardD[1] only after round d since,
if D considers FD = {B} as a possible corruption set, it has to wait for a message from A

which will be propagated by C and setting FD = {C}, it has to wait for a message from B.
For similar reasons, the same holds for nodes A,C. Since d may be an arbitrary integer,
there is a delay scenario where the ε-convergence time for Algorithm 2-LocWA is arbitrarily
larger than the ε-convergence time of Algorithm LocWA.

Strong version of k-LocWA with respect to real time. As shown in the full version [21],
the k-WAIT condition of k-LocWA algorithm can be strengthened such that, for k′ ≥ k and
any ε, Algorithm k′-LocWA will ε-converge faster than Algorithm k-LocWA. This can be

achieved by condition strong k-WAIT: wait until
k∨
i=1

(i-WAIT) = true for the first time.
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Abstract
Byzantine fault-tolerant (BFT) consensus in an asynchronous system can only tolerate up to
bn−1

3 c faulty processes in a group of n processes. This is quite a strict limit in certain application
scenarios, for example a group consisting of only 3 processes. In order to break through this limit,
we can leverage a hybrid fault model, in which a subset of the system is enhanced and cannot
be arbitrarily faulty except for crashing. Based on this model, we propose a randomized binary
consensus algorithm that executes in complete asynchrony, rather than in partial synchrony
required by deterministic algorithms. It can tolerate up to bn−1

2 c Byzantine faulty processes
as long as the trusted subsystem in each process is not compromised, and terminates with a
probability of one. The algorithm is resilient against a strong adversary, i. e. the adversary is
able to inspect the state of the whole system, manipulate the delay of every message and process,
and then adjust its faulty behaviour during execution.

From a practical point of view, the algorithm is lightweight and has little dependency on
lower level protocols or communication primitives. We evaluate the algorithm and the results
show that it performs promisingly in a testbed consisting of up to 10 embedded devices connected
via an ad hoc wireless network.
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1 Introduction

Fault-tolerant consensus is one of the fundamental problems in distributed systems. It is an
essential component to build more sophisticated distributed applications. Especially with the
rapid growth of wireless embedded devices in recent years, systems tend to work cooperatively
to achieve a common goal [16, 11, 14]. This requires novel consensus algorithms to adapt to
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the corresponding system features and application requirements that are inherently different
from the quite well-explored wired settings. Firstly, network connectivity is fragile and an
upper bound of communication delay may not be guaranteed. Thus an asynchronous system
model must be considered. Secondly, the system could be running in an open environment
in contrast to more or less static and well maintained environments such as data centers.
Furthermore processes might be exposed to extreme temperature, radiation, physical damage
and malicious attacks. All these factors lead to a higher demand for fault-resilience. In short,
the system has to tolerate as many faulty processes as possible – and not only crashes, but
also Byzantine faults. Thirdly, because of the limited resources, the consensus algorithm
should have low complexity and less assumptions about low-level network protocols.

In this work we present a novel binary consensus algorithm, Trusted Ben-Or, which is
tailored for embedded wireless systems. It is fault-tolerant and can work in a completely
asynchronous system. Due to the fact that no deterministic consensus algorithm exists in an
asynchronous system with faulty processes [13], Trusted Ben-Or uses randomization to
overcome this impossibility. In the end it ensures that all correct processes can terminate
with the probability of 1.

Moreover, in an asynchronous system a total of n processes can only tolerate up to bn−1
3 c

Byzantine processes in order to achieve consensus [8]. This is quite a strict constraint, and it
is impossible for a group of only 3 processes to reach BFT consensus. So another important
goal of our work is to increase the number of tolerable faulty processes utilizing a slightly
extended system model. Many modern processors, including the ones used in the context
of embedded systems [3], provide nowadays trusted execution environments, which can be
utilized to build a trusted subsystem protected by hardware. The trusted subsystem is
tamper-proof and cannot be compromised by a Byzantine host, except for crashing. This
technique can be leveraged to prevent equivocation, i. e. sending contradictory messages to
different recipients. As a result, the tolerable processes can be increased to bn−1

2 c. The idea
that a subsystem is more trustworthy than the remainder of the system can be categorized
as a hybrid fault model [21].

In summary, the contributions of this paper include:
We propose an asynchronous hybrid fault-tolerant consensus algorithm, Trusted Ben-
Or, which can tolerate up to bn−1

2 c faulty processes among n processes.
The algorithm is resilient against a strong adversary model, which means that the
adversary can inspect the state of every process and message, and can arbitrarily reorder
the message delivery of every process. We provide a correctness proof, which is the first
complete proof under this system model to our knowledge.
Trusted Ben-Or is tailored for wireless embedded systems for its simplicity and low
complexity. Every message is sent via broadcast to make full use of the transmission
medium. The communication does not require encryption, nor complex communication
primitives such as reliable broadcast, nor TCP-like protocols that could be unavailable in
certain application domains. Because of the trusted subsystem, the message authentication
can use symmetric encryption, which is more efficient than asymmetric digital signatures.
We implement Trusted Ben-Or and evaluate it in a real wireless ad hoc environment
instead of in a pure simulation. The results are promising and comparable to Turquois [19],
another well-known wireless ad hoc BFT consensus algorithm.
We discuss some common issues regarding the termination of randomized BFT consensus
algorithms, and point out that some algorithms might not be able to terminate in a
strong adversary model.

The rest of the paper is organized as follows: Section 2 defines the system model and
the problem statement. Section 3 explains the Trusted Ben-Or algorithm in details. The
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correctness proof is given in Section 4. Section 5 discusses the optimization against omission
failures and common issues of randomized BFT consensus algorithms. Section 6 shows the
evaluation results. Section 7 discusses the related work, and Section 8 concludes the paper.

2 System Model and Problem Definition

In this section we give the system model and the correctness criteria of the consensus problem.

2.1 Processes and Asynchronous System
The system consists of n processes numbering from 1 to n. It is an asynchronous system in
which the delay of message transmission or process execution is unbounded. We firstly consider
a reliable communication so that every message transmitted between correct processes (defined
below) is eventually delivered. Later we will discuss the message omission issue.

For the purpose of presentation, we assume a global wall-clock, which is nevertheless
not available to the processes. We also model the algorithm execution as a discrete event
simulation and assume a virtual scheduler. At each time (clock tick) t, the scheduler chooses
a process to take a step, e. g. to deliver a message, or to execute a line of the algorithm, etc.
We call each step an event.

2.2 Strong Adversary Model and Trusted Subsystem
There exists an adversary working against the system. At any time t, the adversary can
compromise the current scheduled process to behave abnormally. Such faulty behaviours
include: skip some execution steps or stop working permanently (crash), update state or
send messages not according to the algorithm, send messages to only a subset of recipients,
etc. A process is marked as Byzantine at the time when he performs the faulty behaviours,
and will never be regarded as correct afterwards. All the processes not marked as Byzantine
are called correct at time t. In the remaining of this paper, the statements like “a correct
process does something” indicate that the process is still correct at the time when he does the
thing. The adversary can compromise at most f ≤ bn−1

2 c processes in total. For simplicity
we assume f = bn−1

2 c in the rest of the paper.
The adversary is a strong adversary, meaning that he knows all the previous events, and

is able to inspect the current state of every process and the content of every message in the
network at any time. He also has the full control over the scheduler to schedule the events
arbitrarily. In this way, the adversary can adapt his behaviour to the current system state,
leading to a maximum attack power.

However, each process is equipped with a trusted subsystem that cannot be compromised
by the adversary and will always operate honestly, unless it is crashed. Furthermore, the
adversary does not know the secret key(s) stored in the subsystem, neither can he break the
cryptographic mechanisms. As a result, the adversary cannot bypass the trusted subsystem
to forge any messages authenticated by the subsystem. As we will show later, the trusted
subsystem is used to implement a hybrid fault model [21] similar to identical Byzantine [4].

I Remark. A strong adversary seems impractical in real-life scenarios. However, for a
distributed algorithm, it is impossible to predict the execution order and message delivery
order because of race conditions. There could be corner cases that will hinder the algorithm.
In fact, a strong adversary model indicates that each of these corner cases is already tackled.
Otherwise, people need to explain why these cases cannot or can hardly happen.
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2.3 Problem Definition

Every process can propose a binary value 0 or 1. (A faulty process can propose both values, or
no value at all. Any abnormal value other than 0 and 1 will be ignored by correct processes.)
The randomized consensus algorithm is called correct, if it fulfils the following properties:

Agreement: if two correct processes decide, they decide the same value.
Validity: if a correct process decides v, v ∈ {0, 1} and is proposed by at least bn

4 c + 1
processes.
Termination: any process decides with the probability of 1, or he becomes Byzantine.

Note that the validity implies that the decision can be proposed merely by Byzantine processes.
This is different from the strong validity in most 3f + 1 consensus problems, which requires
that if all correct processes propose v, they must also decide v. However, strong validity is
impossible in an asynchronous system with n < 3f +1, so the requirement must be relaxed in
our case. Yet it is adequate to certain applications, in which both values are acceptable and
the processes only need to agree on a common one. Or some extra mechanisms can be applied
to detect and eliminate the faulty value (e. g. [10]). Since these can be application-dependent
and do not belong to the consensus, we omit the detailed discussion here.

3 Trusted Ben-Or Algorithm

Trusted Ben-Or is a randomized consensus algorithm consisting of several asynchronous
rounds and each round has two phases, as shown in Algorithm 1. In the first phase, every
process broadcasts a P-message to propose its current value, together with a flag indicating
whether this value is taken deterministically (D-GET) or from a coin flip (R-GET). Upon
receiving dn+1

2 e P-messages (including his own), a process enters the second phase by
broadcasting a V-message to vote. He votes for v ∈ {0, 1} if all received P-messages have the
same value v, otherwise he votes for a default value ⊥. The process then waits for dn+1

2 e
V-messages. If all of them vote for the same value v ∈ {0, 1}, the process can decide on v. If
at least one V-message votes for v ∈ {0, 1} while the others vote for ⊥, the process updates
his own value to v and sets the flag to D-GET. Otherwise, i. e. all received V-messages vote
for ⊥, the process flips a coin to get a random number, and sets the flag to R-GET.

There is an initialization round (line 4-9), in which each process broadcasts his initial
proposal and picks the majority from the received quorum to start round 1.

3.1 Message Authentication and Trusted Coin in the Subsystem

One critically harmful Byzantine fault is equivocation, i. e. sending inconsistent messages to
different recipients in a broadcast. Equivocation can be prevented by reliable broadcast [7],
which takes several communication rounds and requires n > 3f . It can also be avoided by
simply using a strict monotonic counter in the trusted subsystem of every process. Every
message must be authenticated together with a counter value, and each value can only be
used once. More technical details can be referred to works such as [17].

The algorithm also requires a random bit (line 15), so an unbiased trusted coin is placed
inside the trusted subsystem. This prevents a Byzantine process from arbitrarily manipulating
the result of the coin. Moreover, the message authentication and random number generation
should be integrated as an atomic operation. Otherwise, a Byzantine process can repeatedly
toss the trusted coin until it obtains the desired result.
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Algorithm 1 Trusted Ben-Or algorithm.
1 vD ← vp /* Store last D-get value */
2 φ← 0 /* phase number */
3 flag ← D-GET
4 broadcast 〈INIT, φ, p, vD〉
5 wait for dn+1

2 e valid 〈INIT, φ, i, vi, f lagi〉 messages from different processes
6 if among them exist ≥ dn+1

2 e/2 messages with value 0
7 vD ← 0
8 else
9 vD ← 1

10 φ← 1
11 loop forever:
12 if flag = D-GET /* P-phase */
13 broadcast 〈PR, φ, p, vD, D-GET 〉 with certificate (see Section 3.2)
14 else
15 broadcast 〈PR, φ, p, coin(), R-GET 〉 with certificate
16 wait for dn+1

2 e valid 〈PR, φ, i, vi, f lagi〉 messages from different processes
17 if all messages of carry the same v: /* V-phase */
18 broadcast 〈V O, φ, i, v〉 with certificate
19 else:
20 broadcast 〈V O, φ, i,⊥〉 with certificate
21 wait for dn+1

2 e valid 〈V O, φ, i, ∗〉 messages from different processes
22 if all messages of above line have the same value v 6= ⊥:
23 decide v

24 if received at least one 〈V O, φ, i, vi〉 with vi 6= ⊥: /* Update */
25 vD ← vi

26 flag ← D-GET
27 else:
28 flag ← R-GET
29 φ← φ+ 1

The trusted subsystem maintains a unique identifier uid, a monotonically increasing
counter value u, and secrete key(s) to calculate message authentication codes. The keys
cannot be disclosed to the non-trusted part of the system. It provides the following APIs:

authenticate(m,u): Takes a message m and a counter value u; Requires u greater than
its last accepted value; Outputs an authentication code based on m||uid||u.
authenticate_with_coin(m, ptr, u): Takes an extra pointer pointing to a bit of m;
Requires u greater than its last accepted value; Firstly fills the bit where ptr points to
with the trusted coin toss result, then outputs an authentication code based on m||uid||u.
verify(m,uid, u,AC): Checks whether the authentication code AC is generated based
on m||uid||u by the trusted subsystem uid.

Now we define the corresponding counter value u that is uniquely bound to every message.
More specifically, INIT message must be authenticated with counter value u = 0. Every P-
message of round φ must have u = [φ|0], where “|” is the separation of the least significant bit
and higher bits. And every V-message must have u = [φ|1]. Note that at line 15 of Algorithm 1,
〈PR, φ, p, coin(), R-GET 〉 is authenticated by invoking authenticate_with_coin, and the
result of the a coin toss is filled into the place where coin() stands.

3.2 Message Certificate and Validation
Every message needs to be proved that it is congruent with the algorithm specification. To
achieve this, a process is required to provide a set of previously received messages, named
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certificate, when he broadcasts a new message. The certificate is piggybacked with the
newly sent message. A message is called valid only if it includes the correct certificate. The
certificate of every message is defined as follows:
1. 〈INIT, 1, ∗, v,D-GET 〉 is valid if v ∈ {0, 1} without any certificate.
2. 〈PR, 1, ∗, v,D-GET 〉 requires (bn

4 c + 1)〈INIT, 0, ∗, v〉 for v = 0, or (bn+2
4 c + 1)

〈INIT, 0, ∗, v〉 for v = 1.2

3. 〈PR, φ, ∗, v,D-GET 〉(φ > 1) requires dn+1
2 e〈PR, φ− 1, ∗, v, ∗〉.

4. 〈PR, φ, ∗, v, R-GET 〉(φ > 1) requires dn+1
2 e〈V O, φ− 1, ∗,⊥〉.

5. 〈V O, φ, ∗, v〉 with v ∈ {0, 1} requires dn+1
2 e〈PR, φ, ∗, v, ∗〉. Furthermore, if there is one

〈PR, φ, ∗, v,D-GET 〉 in the certificate, the certificate of this message, i. e. dn+1
2 e〈PR, φ−

1, ∗, v, ∗〉, must also be included.
6. 〈V O, 1, ∗,⊥〉 requires dn+1

2 e〈PR, 1, ∗, ∗, D-GET 〉 with both 0 and 1 are proposed.
7. 〈V O, φ, ∗,⊥〉(φ > 1) requires dn+1

2 e〈PR, φ, ∗, ∗〉 with both 0 and 1 are proposed, plus
dn+1

2 e〈V O, φ− 1, ∗,⊥〉.

The certificates are carefully designed to ensure the correctness of the algorithm. There
are two important properties. Firstly, a process can immediately validate a message based
on the certificate, and does not rely on previously received messages. Secondly, the messages
in the certificate do not require further certificate for themselves. Otherwise the message size
will grow infinitely. However, this gives a Byzantine process the chance to bypass the validity
check, because he can include some other invalid messages into the certificate, turning a
faulty message into valid. But this issue does not affect the correctness, as we will see later.

The cases 1, 2, 4 and 6 are trivial as they directly follow the algorithm execution. The
other three cases deserve some explanations.

In case 3, if a correct process i sends a 〈PR, φ, i, v,D-GET 〉(φ > 1), he must have received
at least one valid 〈V O, φ − 1, ∗, v〉 (line 24). It is pointless to use this single message
as a certificate, because this message itself can be invalid. But if i is correct, he must
have validated the 〈V O, φ− 1, ∗, v〉, which contains dn+1

2 e〈PR, φ− 1, ∗, v, ∗〉 according
to case 5. So he must include these dn+1

2 e messages into his own certificate.
In case 5, 〈V O, φ, i, v〉 implies that the process i has received dn+1

2 e〈PR, φ, ∗, v, ∗〉 (line 17),
which must be included in the certificate. The extra requirement is only necessary for
the termination as we will prove later. If i is correct, he must have checked the validity
of any 〈PR, φ, ∗, v,D-GET 〉 before putting it into certificate. So he is required to strip
the certificate of that message and put into his own certificate.
In case 7, the process sends 〈V O, φ, i,⊥〉(φ > 1) because he has received dn+1

2 e〈PR, φ, ∗, ∗〉
proposing different values (line 19). As we will see later, it is impossible to see both
valid 〈PR, φ, ∗, 0, D-GET 〉 and 〈PR, φ, ∗, 1, D-GET 〉 in the same round φ > 1, so one of
the different values must come from a 〈PR, φ, ∗, ∗, R-GET 〉 caused by a coin flip, whose
certificate is dn+1

2 e〈V O, φ − 1, ∗,⊥〉. So i must strip the certificate from this R-GET
message and include it into his own certificate.

According to the explanation above, we can conclude the following lemma:

I Lemma 1. If a correct process is about to broadcast a message, he is able to attach a
corresponding certificate to that message immediately.

2 Because bn
4 c+ 1 = dn+1

2 e/2, i. e. a majority of the quorum. And if a tie between 0 and 1 appears in the
quorum, we choose 0 here. This can be modified to 1, depending on the application.
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4 Correctness Proof

In this section we prove the correctness of Trusted Ben-Or.

4.1 Agreement
We first show that if any correct process decides any value v, then from the next round, no
one can generate a valid P-message to propose another value.

I Lemma 2. If a correct process decides v in round φ, the only valid P-message of φ+ k is
〈PR, φ+ k, ∗, v,D-GET 〉 for any k > 0.

Proof. We start with k = 1. A correct process only decides v if there are
dn+1

2 e〈V O, φ, ∗, v〉. This excludes the existence of any valid 〈PR, φ+ 1, ∗, ∗, R-GET 〉 that re-
quires dn+1

2 e〈V O, φ, ∗,⊥〉 as certificate. Because 2 quorums or dn+1
2 e processes intersect with

at least one process, the equivocation mechanism ensures that a process cannot vote for v and
⊥ in the same round. And each 〈V O, φ, ∗, v〉 contains dn+1

2 e〈PR, φ, ∗, v, ∗〉 in its certificate.
So for the same reason, 〈PR, φ+1, ∗, 1−v,D-GET 〉, which requires dn+1

2 e〈PR, φ, ∗, 1−v, ∗〉,
cannot become valid, either. On the other hand, 〈PR, φ + 1, ∗, v,D-GET 〉 can be valid
because its certificate exists, making it to be the only valid P-message of φ+ 1.

Now assume that the only valid P-message of φ+ k is 〈PR, φ+ k, ∗, v,D-GET 〉 for some
k > 0. Then all correct processes only broadcast 〈PR, φ + k, ∗, v,D-GET 〉. This makes
〈PR, φ+k+ 1, ∗, 1− v,D-GET 〉 invalid. Since all correct processes do not accept any invalid
〈PR, φ+k, ∗, 1−v, ∗〉, they can only broadcast 〈V O, φ+k, ∗, v〉. So 〈PR, φ+k+1, ∗, ∗, R-GET 〉
cannot be valid because less than dn+1

2 e vote for ⊥. Thus 〈PR, φ+ k + 1, ∗, v,D-GET 〉 is
the only valid P-message. Using induction we can confirm this lemma. J

The agreement property directly ensues:

I Theorem 3. No two correct processes decide differently.

Proof. We prove it by contradiction. Suppose that two correct processes decide v in φ and 1−v
in φ′ respectively. Apparently φ 6= φ′, because dn+1

2 e〈V O, φ, ∗, v〉 and d
n+1

2 e〈V O, φ, ∗, 1− v〉
cannot exist at the same time. Assume φ < φ′, according to Lemma 2, the only valid
P-message of φ′ is 〈PR, φ′, ∗, v,D-GET 〉. But correct process decides 1− v in φ′ means that
he has received dn+1

2 e valid 〈V O, φ
′, i, 1−v〉 messages certified with dn+1

2 e〈PR, φ
′, ∗, 1−v, ∗〉.

This leads to a contradiction, because no correct process will propose 1−v in a P-message. J

4.2 Termination
The proof of termination is similar to the proof of [2], but is more complex due to the
Byzantine behaviours. We first show that every correct process is able to start any round,
then prove that there is some “lucky” round in which every correct process can decide.

I Lemma 4. Every correct process is able to start any round φ ≥ 1.

Proof. It clearly applies for φ = 0 and 1. Now assume that every correct process starts a
round φ ≥ 1. According to Lemma 1, each correct process is able to assemble a certificate
and broadcast a valid P-message. So eventually there are at least dn+1

2 e valid P-messages in
the system, enabling correct processes to terminate the wait of line 16 and then broadcast a
valid V-message. Again there are at least dn+1

2 e valid V-messages eventually, so every correct
process can terminate the wait of line 21 and start the next round φ+ 1. Using induction we
confirm that every correct process can start any round φ ≥ 1. J

OPODIS 2018



15:8 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

I Corollary 5. In every round φ, at least one of the three P-message forms is valid:
〈PR, φ, ∗, 0, D-GET 〉, 〈PR, φ, ∗, 1, D-GET 〉, 〈PR, φ, ∗, ∗, R-GET 〉. And at least one of the
three V-message forms is valid: 〈V O, φ, ∗, 0〉, 〈V O, φ, ∗, 1〉, 〈V O, φ, ∗,⊥〉

In order to show a lucky round will eventually happen, we adopt the similar definition
of [2], but with some modifications due to the presence of Byzantine faults:

I Definition 6. A value v ∈ {0, 1} is φ-major at time t0, if ≥ dn+1
2 e processes have created

the message 〈PR, φ, ∗, v, ∗〉 and authenticated with the monotonic counter at t0. A value
v ∈ {0, 1} is φ-locked at time t0, if 1) no valid 〈PR, φ, ∗, 1− v, ∗〉 with a certificate exists
before t0 and 2) from t0 on, no 〈PR, φ, ∗, 1 − v, ∗〉 can be created, or such a message can
never collect a certificate.

In other words, v is φ-locked at t0 means that we are sure that no valid 〈PR, φ, ∗, 1− v, ∗〉
can exist at any time. Obviously, if v is φ-major or φ-locked at t0, then v is also φ-major or
φ-locked at any time t ≥ t0.

I Lemma 7. If a value v is φ-locked at some time, then every correct process can decide v
by the end of round φ+ 1.

Proof. All correct processes will start round φ and they only propose v. They will not
accept any P-message with value 1− v, since it is invalid. So they only vote for v, leading
to less than dn+1

2 e〈V O, φ, ∗,⊥〉, therefore 〈V O, φ+ 1, ∗,⊥〉 can never become valid. Neither
〈V O, φ+ 1, ∗, 1− v〉 can be valid, because of the lack of certificate. According to Lemma 4
and Corollary 5, a correct process can complete collecting valid V-messages at line 21, and
the only valid form is 〈V O, φ+ 1, ∗, v〉. As a result, every correct process can decide v by
the end of φ+ 1. J

In the rest part we will show if the trusted random number generators of every process
happen to generate a sequence of lucky results, one value will become locked. We start with
the following lemma:

I Lemma 8. If v is φ-major at t0, and if the trusted random number generator happens to
output v for every process creating 〈PR, φ+ 1, ∗, v, R-GET 〉 at any time (can be before t0),
then v is (φ+ 1)-locked at t0.

Proof. There is no 〈PR, φ + 1, ∗, 1 − v,R-GET 〉 because of the trusted random number
generator. And a 〈PR, φ+1, ∗, 1−v,D-GET 〉 cannot be valid any more, because v is already
φ-major and no certificate containing dn+1

2 e〈PR, φ, ∗, 1− v, ∗〉 can exist. J

Starting from φ = 2, we group every 3 rounds into an epoch. So the r-th epoch (r ≥ 1)
consists of rounds 3r−1, 3r and 3r+1. And we define two oracle functions. The oracles know
the state of the whole system, but are not available to the processes. The first_toss(r, t)
oracle returns the time ta ≤ t, when the first correct process executes line 15 to flip a coin to
create 〈PR, 3r, ∗, v, R-GET 〉 in round 3r. If no correct processes ever did that, the oracle
returns NaN . Note that the correct process i needs only to be correct until ta. Also note that
the function can return ta = t, i. e. a correct process is executing line 15 exactly at time t.

The lucky_coin(r, φ, t)→ {0, 1} oracle assesses whether a random bit obtained in round
φ, at time t is lucky or not. The return value of lucky_coin(r, φ, t) is defined as following:
(i) lucky_coin(r, 3r + 1, t) returns 1 for any t;
(ii) lucky_coin(r, 3r − 1, t) and lucky_coin(r, 3r, t) return 1, if first_toss(r, t) returns

ta, and 0 is not (3r − 1)-major at time ta;
(iii) lucky_coin(r, 3r − 1, t) and lucky_coin(r, 3r, t) return 0 in cases other than (ii).
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Obviously, as soon as a process (correct or Byzantine) has executed line 15 to flip the
coin, we can immediately know whether the result is lucky or not. The reason is that the
return values of both first_toss(r, t) and lucky_coin(r, φ, t) are determined merely by the
events happened before or at t, and are independent of any future events.

We say an epoch is lucky, if every coin toss at time t of line 15 gets the consistent result
of lucky_coin(r, φ, t). Let tb be the time when every correct process has completed round
3r + 1. Such a tb must exist (Lemma 4), and the system state has only three possibilities:
1. first_toss(r, tb) returns NaN , meaning that no correct process ever tossed a coin;
2. first_toss(r, tb) returns ta and 0 is (3r − 1)-major at time ta;
3. first_toss(r, tb) returns ta and 0 is not (3r − 1)-major at time ta.

For the three cases, there are the following lemmas:

I Lemma 9. (Case 1) If first_toss(r, tb) returns NaN , then some value v is (3r+1)-locked
at tb.

Proof. All correct processes have completed phase 3r and no one created
〈PR, 3r, ∗, ∗, R-GET 〉, so they all must have created 〈PR, 3r, ∗, v,D-GET 〉 with the same v.

If v = 0: because lucky_coin(r, 3r, t) must return 0 due to its definition (case (iii)), so all
〈PR, 3r, ∗, v′, R-GET 〉 messages (must be created by Byzantine processes) have v′ = 0. And
there are no valid 〈PR, 3r, ∗, 1, D-GET 〉 messages, so 0 is 3r-locked, thus also (3r+ 1)-locked.

If v = 1: since all correct processes propose 1 in round 3r, 1 is 3r-major at time tb.
According to case (i) of the definition of lucky_coin, in round 3r + 1, the lucky coin always
returns 1. So 1 is (3r + 1)-locked because of Lemma 8. J

I Lemma 10. (Case 2) If first_toss(r, tb) returns ta and 0 is (3r − 1)-major at time ta,
then 0 is 3r-locked at tb.

Proof. Because 0 is (3r − 1)-major at time ta, it is also (3r − 1)-major at time tb. For any
time t < ta, lucky_coin(r, 3r, t) must return 0; for any time t ≥ ta, lucky_coin(r, 3r, t)
must return 0 as well. So every 〈PR, 3r, ∗, v, R-GET 〉, whenever it is created, must have
v = 0. According to Lemma 8, 0 must be 3r-locked. J

I Lemma 11. (Case 3) If first_toss(r, tb) returns ta and 0 is not (3r − 1)-major at time
ta, then 1 is (3r + 1)-locked at tb.

Proof. A correct process creates a 〈PR, 3r, ∗, v, R-GET 〉 at time ta (here v = 1). This
indicates that he must have received dn+1

2 e〈V O, 3r − 1, ∗,⊥〉, among which at least one is
from a correct process. That process must have received at least one valid 〈PR, 3r−1, ∗, 1, ∗〉.
This P-message cannot have the flag R-GET , because any coin tossed before ta must get 0
(case (iii) of lucky_coin(r, 3r − 1, t)). So there is one valid 〈PR, 3r − 1, ∗, 1, D-GET 〉, but
there is never valid 〈PR, 3r − 1, ∗, 0, D-GET 〉. From time ta on, the lucky coin only returns
1 for phase 3r − 1 according to case (ii), so there is no more 〈PR, 3r − 1, ∗, 0, R-GET 〉 after
ta. Thus the total number of 〈PR, 3r − 1, ∗, 0, R-GET 〉 is less than dn+1

2 e forever. So we
can confirm that there is never a valid 〈V O, 3r − 1, ∗, 0〉, because 1) it cannot include an
invalid 〈PR, 3r − 1, ∗, 0, D-GET 〉 into the certificate (recall the definition of the certificate),
and 2) the number of 〈PR, 3r − 1, ∗, 0, R-GET 〉 can never reach dn+1

2 e.
Now that there are no valid 〈V O, 3r− 1, ∗, 0〉, and the lucky coin only returns 1 for phase

3r after ta, so no correct process will create 〈PR, 3r, ∗, 0, ∗〉. Eventually 1 will be 3r-major.
And because the lucky coin always returns 1 in round 3r + 1, 1 must be (3r + 1)-locked
because of Lemma 8. J

OPODIS 2018



15:10 Hybrid Fault-Tolerant Consensus in Asynchronous and Wireless Embedded Systems

I Lemma 12. If epoch r is lucky, all correct processes can decide no later than round 3r+ 2.

Proof. According to Lemmas 9, 10 and 11, some value v must be 3r-locked or (3r+ 1)-locked
at some time. So all correct processes can decide in round 3r + 1 or 3r + 2 (Lemma 7). J

I Theorem 13. The probability that all correct processes decide is 1.

Proof. An epoch is lucky if and only if all results from the random number generator coincide
with the definition of lucky_coin. Each of these coincidences has the probability of 0.5, and
is independent with each other. Every epoch may contain at most 3n random numbers, so
the probability that an epoch is lucky is at least (0.5)3n. So the probability that a lucky
epoch eventually occurs is 1− (1− p3n)∞ = 1. Lemma 12 ensures that all correct processes
must decide immediately after such a lucky epoch. J

4.3 Validity
I Theorem 14. If a correct process decides v, v ∈ {0, 1} and is proposed by at least bn

4 c+ 1
processes.

Proof. All messages are required to carry a value v ∈ {0, 1}, so correct processes cannot
decide other values. Assume v is proposed by less than bn

4 c+ 1 processes. Then there is no
valid 〈PR, 1, ∗, v, ∗〉 in the first round because of the lack of INIT messages, which means v
is 1-locked. Every correct process will decide 1− v by the end of round 2 (Lemma 7), so no
correct one will decide v. J

5 Optimization and Discussion

Now we discuss some common issues in the proof of randomized consensus algorithms, as
well as the optimization against omission failures, given that the reliable communication
without message omissions is sometimes impractical in certain applications.

5.1 Randomization and Strong Adversary
Like most randomized and round-based algorithms, the termination of Trusted Ben-Or
relies on a set of processes to luckily obtain the preferred coin values in certain rounds. The
definition of a lucky coin value is not trivial, but we argue that this is necessary in a strong
adversary model. As mentioned, the luckiness of a coin only depends on the current system
state, but not on any future events. Otherwise, suppose that a coin is only lucky if something
in the future happens, the adversary could take actions to prevent this from occurring. If an
algorithm design violates this principle, it can hardly withstand a strong adversary.

We have considered several other algorithms (e. g. [10, 19]). Similar to Trusted Ben-Or,
by the end of each round every process gets an updated value, either deterministically or
randomly, and any two correct processes can only deterministically get the same value (0 or
1) in this round. So they conclude that, if all correct processes deterministically or randomly
get the same v, they can decide. However, there is a corner case: if the correct processes start
with different values, a strong adversary can hinder the termination indefinitely. Because
by manipulating the message delivery order, the adversary can firstly let a correct node
randomly obtain a value v, then lets another correct node deterministically update to 1− v
in the same round. As a result, all the correct processes again have different values at the
beginning of a new round.
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5.2 Handling Omission Failures
In real-world networks, especially in wireless ad hoc networks, links are not always reliable and
messages could get lost. In this case, we can consider a fair-loss link model, meaning that if a
process p sends a message infinitely many times to q, q will then deliver the message infinitely
many times. Trusted Ben-Or cannot directly work under a fair-loss link model, so we
modify the algorithm by introducing another two tasks running in parallel to Algorithm 1.
Task 1 is to periodically broadcast the last sent message. Task 2 is to let a process “jump” to
a future round or phase, if it has received a valid message from that round or phase. More
specifically, if a process receives a valid 〈PR, φ′, ∗, v,D-GET 〉 or 〈V O, φ′, ∗, v〉 that is more
advanced than its current state, it will send a message with the same content, and update
its state correspondingly. If a 〈PR, φ′, ∗, ∗, R-GET 〉 is received, besides updating the state,
the process has to toss its own coin to create the 〈PR, φ, i, coin(), R-GET 〉.

With this modification, the agreement of the algorithm still holds, because the correctness
of Lemma 2 and Theorem 3 only relies on the equivocation prevention and certificate
mechanism. However, the termination becomes problematic. Assume the corner case where
a correct process receives all P-messages but misses all V-messages in each round. Then it
can never decide. But we can guarantee that no correct process gets blocked at any round:

I Lemma 15. At any time t1, for any correct process in round φ1, there is a time t2 > t1
when the process is in a new round φ2 > φ1, or it becomes Byzantine.

Proof. Suppose there is a correct process p that stays forever in round φ1 after time t1.
Then apparently there is no correct process entering any round φ2 > φ1 while also staying
correct forever, otherwise it will periodically broadcast messages of round φ2 or later rounds.
Eventually p can receive at least one of them and can jump to a new round. So all other correct
processes keep staying in rounds ≤ φ1 after time t1. Because p is infinitely broadcasting its
message of φ1, all correct processes will eventually receive it and will enter and stay in φ1.
Eventually at least one correct process can receive the messages from all correct processes,
and can then enter φ1 + 1. This leads to a contradiction. J

Therefore, we have to assume a more relaxed model than fair-loss link, for instance every
message gets an independent probability of omission (similar to [20]). The probability can
vary from time to time but cannot always be 0. Then if there is a lucky epoch and all messages
in this epoch as well as the following round are delivered, all the correct processes can decide.
(They still have to handle the outdated V-messages for decision.) This assumption is close to
the real network conditions. As we will see later, during our experiments we have observed
regular packet losses (24%), but the algorithm can still terminate with relatively low latency.

6 Evaluation

Trusted Ben-Or is evaluated on a testbed consisting of 10 nodes of Raspberry Pi 3 (model
B). Each node has a Quad-Core ARM Cortex-A53 1.2 GHz CPU, 1 GB RAM and a 2.4 GHz
802.11n wireless module. The trusted subsystem is built on top of the Open Portable Trusted
Execution Environment (OP-TEE) [18] based on ARM TrustZone [3].3 The algorithm is
implemented in C++, except that the trusted functions (counter authentication and random
number generation) are implemented in C because of lacking of C++ support in OP-TEE.
For comparison, we implement Turquois on the same system as well.

3 According to this disclaimer (https://github.com/OP-TEE/build/blob/master/docs/rpi3.md), Rasp-
berry Pi does not provide an enough trust level. It is only used for demonstration purpose.
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The 10 nodes are distributed in different rooms and the farthest distance is about 20 meters.
They are connected with a wireless ad hoc network, and all messages of Trusted Ben-Or
are sent via UDP multicast. The minimal, median and maximum of the round trip time of
an ICMP ping message is 5.6 ms, 12.5 ms and 1356.7 ms respectively. With the iperf3 tool
we also test the UDP link, and the result between two nodes reports the jitter as 139.9 ms,
which stands for a high variance of the communication delay, and 24% packet loss rate. So
compared to a simulated network, this testbed can reflect a real network environment more
closely. Because of the packet loss, we implemented the optimization of Section 5.2.

For the experiment, all nodes are connected to a signal machine via Ethernet, and wait
for the start signal to start the consensus algorithm almost simultaneously. The nodes are
equally divided to be assigned with 0 and 1 as their initial proposals. The performance is
evaluated as the delay from the time when nodes start the algorithm until the non-faulty
ones decide. For each system setting, we repeat the experiment 100 times.

Firstly the fault-free case is evaluated, and the results are presented in Figure 1. The
curve of Turquois starts with 4 because it cannot work with 3 nodes. Figure 1a shows that the
median of latency of Trusted Ben-Or has no significant difference compared to Turquois,
especially when we take the high jitter value into account. With an increasing of group
size, both algorithms tend to take longer time to terminate. The highest median latency
of Trusted Ben-Or is 247.4 ms observed in a group with 10 nodes. Besides the median
value, we also evaluate the variance of the latency as presented in Figure 1b. It shows that
from n = 8, the variance increases notably in Trusted Ben-Or. Occasionally (with ≤ 10%
probability) it takes 2-3 seconds to terminate. In contrast, the variance of Turquois increases
only slowly with n.

In the second experiment, we inject Byzantine faults into the system to evaluate the
fault resilience of Trusted Ben-Or. More specifically, we let bn−1

2 c nodes act as Byzantine
processes. Whenever they are about to send a value of 0 or 1 (if not from the trusted coin),
they flip the value to the opposite and then send it; and if they are sending a ⊥, they do
not change it. Furthermore, we let Byzantine nodes not perform the validation at all, so an
invalid message could still be included in the certificate of a message voting for ⊥. As a result,
there are fewer valid messages with value 0 or 1, while more valid messages voting for ⊥.
This will hinder the correct nodes achieving consensus. We inject faults into Turquois as well,
but only bn−1

3 c nodes are Byzantine. Since there is no equivocation prevention mechanism
in Turquois, we let faulty nodes always send two opposite values if their values are 0 or 1.

We compare the two algorithms with the existence of Byzantine faults and the results
are shown in Figure 2. The difference between the median values of latency again is not
significant, but both algorithms take longer to terminate. For example with n = 10, they
need twice as much time as in the fault-free case. Regarding the variance, Turquois is not
much affected by the Byzantine faults. But in Trusted Ben-Or the variance becomes
higher. In the worst case, the latency could exceed 5 s with n ≥ 8. This is partly because
there are more Byzantine processes in Trusted Ben-Or.

We can conclude that for the most cases, Trusted Ben-Or does not introduce extra
overhead when tolerating more faulty processes compared to Turquois. But the variance
of Trusted Ben-Or is higher, and more sensitive to the Byzantine faults. Besides the
different number of Byzantine processes, another reason is that Turquois has one more phase
of message exchange in each round. At a first glance, this is counter-intuitive since one more
phase means more communication delay. But in Turquois, in the second phase every process
broadcasts its proposal and picks the majority as its vote in the third phase. So if a node is
faster in progress, it is more likely to disseminate his proposal to the others because they
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(b) Box plot of latency. The three horizontal bars of the box represent the first, second (median)
and third quantiles respectively; the whiskers correspond to the 9th and 91st percentiles
respectively.

Figure 1 Latency of consensus in fault-free case.

communicate via multicast broadcast. As a result, the nodes are more likely to receive the
same vector of proposals, then pick the common value for the third phase. On the other
hand, Trusted Ben-Or has only two phases in each round. If they propose different values,
very likely they have to toss the coin to start the next round. In fact, we have seen more
than 50 rounds until they all decide in a group with 10 nodes.

7 Related Work

The impossibility result by Fischer, Lynch and Paterson [13] precludes any deterministic
consensus algorithm in asynchronous systems with even a single faulty process. There
are two approaches to bypass this impossibility. Firstly we can resort to a weakened
system model, e. g. a partially synchronous model [12]. The other option is to use a
randomized algorithm (although the correctness criterion is correspondingly weakened from
“must terminate” to “terminates with a probability of 1”).
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(b) Box plot of latency. The meaning of the boxes is the same as Figure 1b.

Figure 2 Latency of consensus when Byzantine processes exist.

Ben-Or’s algorithm [6] is a randomized fault tolerant consensus algorithm for a completely
asynchronous system and can withstand a strong adversary. It has a crash fault tolerant
variant and a BFT variant. The former can tolerate f ≤ bn−1

2 c crashed processes, which has
inspired this work. The BFT version requires n > 5f , which is less attractive in practice.
Bracha’s algorithm [7] improves the maximum tolerable faults to f ≤ bn−1

3 c at the cost of
using reliable broadcast, which can introduce considerable overhead. Turquois [19] has a novel
message validation mechanism to get rid of the reliable broadcast primitive. Meanwhile, it
utilizes an efficient message authentication approach and UDP broadcast, making it tailored
for wireless embedded systems. The authors did not mention the strong/weak adversary
model, but it turns out that Turquois cannot withstand a strong adversary, as discussed
in Section 5.1. Several works have explicitly addressed the weak adversary model [9, 1], in
which the adversary does not know everything about the whole system state. They achieve
high efficiency at the cost of having this weakened adversary model. Vavala and Neves
also propose a speculative randomized consensus algorithm in a so-called normal condition
where the adversary model is further relaxed compared to the worst case [20]. It is worth
mentioning the correctness proof of the crash fault tolerant Ben-Or’s algorithm [2]. It gives
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a good example of how to proof termination under a strong adversary model. But if we take
Byzantine faults into account, the proof becomes more complex as we show in this work.

The hybrid fault model [21] is a common approach to increase the maximum tolerable
faulty processes and to decrease the complexity of consensus. In this model, a small subset
of the system is trusted and cannot be arbitrarily faulty, but can only fail by crashing. One
common usage of this subsystem is to prevent equivocation by using one or more monotonic
counters for message authentication [17, 22, 15, 5, 23], so that a Byzantine process cannot
send contradictory messages to different recipients — similar to the identical Byzantine fault
model [4]. Among them, Ratcheta [23] is also tailored for wireless embedded systems. But
all the above mentioned works are deterministic algorithms and assume partial synchrony.
Correia et al. [10] discuss the transformation from a crash consensus to Byzantine consensus
in asynchronous systems by means of using the hybrid fault model. Although they provide an
idea to transform the original Ben-Or’s algorithm, above all they require the reliable broadcast
primitive. Besides that, the algorithm relies on a failure detector that can eventually find
out all Byzantine processes, but the design of this failure detector is unclear. Moreover, they
do not mention a trusted random number generator, so the termination seems problematic.

8 Conclusion

In this work, we present Trusted Ben-Or, a randomized hybrid fault-tolerant consensus
algorithm. It is operational in an asynchronous system and is resilient against a strong
adversary, as long as the adversary cannot compromise the trusted subsystem of each process.
Trusted Ben-Or increases the maximum tolerable Byzantine processes to bn−1

2 c. The algo-
rithm is tailored for wireless embedded systems because it does not rely on connection-oriented
communication protocols, e. g. TCP, or any complex communication primitives. Neither does
it require expensive asymmetric digital signatures. We evaluate Trusted Ben-Or on a
testbed consisting of 10 Raspberry Pis connected via an ad hoc wireless network. The results
show that the median latency is below 250 ms, and for most of the time Trusted Ben-Or
achieves almost the same performance as Turquois – another well-known asynchronous BFT
consensus algorithm tolerating only up to bn−1

3 c Byzantine processes.
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Abstract
Tendermint-core blockchains (e.g. Cosmos) are considered today one of the most viable altern-
atives for the highly energy consuming proof-of-work blockchains such as Bitcoin and Ethereum.
Their particularity is that they aim at offering strong consistency (no forks) in an open system
combining two ingredients (i) a set of validators that generate blocks via a variant of Practical
Byzantine Fault Tolerant (PBFT) consensus protocol and (ii) a selection strategy that dynamic-
ally selects nodes to be validators for the next block via a proof-of-stake mechanism. The exact
assumptions on the system model under which Tendermint underlying algorithms are correct and
the exact properties Tendermint verifies, however, have never been formally analyzed. The con-
tribution of this paper is as follows. First, while formalizing Tendermint algorithms we precisely
characterize the system model and the exact problem solved by Tendermint, then, we prove that
in eventual synchronous systems a modified version of Tendermint solves (i) under additional
assumptions, a variant of one-shot consensus for the validation of one single block and (ii) a
variant of the repeated consensus problem for multiple blocks. These results hold even if the set
of validators is hit by Byzantine failures, provided that for each one-shot consensus instance less
than one third of the validators is Byzantine.
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1 Introduction

Blockchain is today one of the most appealing technology since its introduction in the Bitcoin
White Paper [30] in 2008. Blockchain systems, similar to P2P systems in the early 2000, take
their roots in the non academic research. After the releasing of the most popular blockchains
(e.g. Bitcoin [30] or Ethereum [36]) with a specific focus on economical transactions, their
huge potential for various other applications ranging from notary to medical data recording
became evident. In a nutshell, Blockchain systems maintain a continuously-growing history
of ordered information, encapsulated in blocks. Blocks are linked to each other by relying on
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collision resistant hash functions, i.e., each block contains the hash of the previous block.
The Blockchain itself is a distributed data structure replicated among different peers. In
order to preserve the chain structure those peers need to agree on the next block to append
in order to avoid forks. The most popular technique to decide which block will be appended
is the proof-of-work mechanism of Dwork and Naor [15]. The block that will be appended
to the blockchain is owned by the node (miner) having enough CPU power to solve first a
crypto-puzzle first. The only possible way to solve this puzzle is by repeated trials. The
major criticisms for the proof-of-work approach are as follows: it is assumed that the honest
miners hold a majority of the computational power, the generation of a block is energetically
costly, which yield to the creation of mining pools and finally, multiple blockchains might
coexist in the system due to accidental or intentional forks.

Recently, the non academic research developed alternative solutions to the proof-of-work
technique such as proof-of-stake (the power of block building is proportional to the participant
wealth), proof-of-space (similar to proof-of-work, instead of CPU power the prover has to
provide the evidence of a certain amount of space) or proof-of-authority (the power of block
building is proportional to the amount of authority owned in the system). These alternatives
received little attention in the academic research. Among all these alternatives proof-of-
stake protocols and in particular those using variants of Practical Byzantine Fault-Tolerant
consensus [8] became recently popular not only for in-chain transaction systems but also in
systems that provide cross-chain transactions. Tendermint [27, 7, 25, 28] was the first in this
line of research having the merit to link the Practical Byzantine Fault-Tolerant consensus to
the proof-of-stake technique and to propose a blockchain where a dynamic set of validators
(subset of the participants) decide on the next block to be appended to the blockchain.
Although, the correctness of the original Tendermint protocol [27, 7, 25] has never been
formally analyzed from the distributed computing perspective, it or slightly modified variants
became recently the core of several popular systems such as Cosmos [26] for cross-chain
transactions.

In this paper we analyse the correctness of the original Tendermint agreement protocol as
it was described in [27, 7, 25] and discussed in [28, 22]. The code of this protocol is available
in [35]. One of our fundamental results proved in this paper is as follows:

In an eventual synchronous system, a slightly modified variant of the original Tendermint
protocol implements the one-shot and repeated consensus, provided that (i) the number of
Byzantine validators, f , is f < n/3 where n is the number of validators participating in each
single one-shot consensus instance and (ii) eventually a proposed value will be accepted by at

least 2n/3 + 1 processes (Theorem 7 and Theorem 8).

More in detail, we prove that the original Tendermint (specified for the first time in a
preliminary version of this work, see technical report [2]) verifies the consensus termination
with a small twist in the algorithm (a refinement of the timeout) and with the additional
assumption stating that there exists eventually a proposer such that its proposed value will be
accepted, or voted, by more than two-third of validators. The rest of the paper is organized
as follows. Related works are discussed in Section 2. Section 3 defines the model and the
formal specifications of one-shot and repeated consensus. Section 4 formalizes the original
Tendermint One-Shot and Repeated Consensus protocols through pseudo-code and proves
the correctness of the One-Shot Consensus algorithm. Due to space limitations, the fairness
study along with full descriptions of the counter-examples that motivate the modification of
the original algorithm and the additional assumptions for correctness are provided in [2].
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2 Related Work

Interestingly, only recently distributed computing academic scholars focus their attention on
the theoretical aspects of blockchains motivated mainly by the intriguing claim of popular
blockchains, as Bitcoin and Ethereum, that they implement consensus in an asynchronous
dynamic open system. This claim is refuted by the famous impossibility result in distributing
computing [17]. In distributed systems, the theoretical studies of proof-of-work based
blockchains have been pioneered by Garay et al [19]. Garay et al. decorticate the pseudo-
code of Bitcoin and analyse its agreement aspects considering a synchronous round-based
communication model. This study has been extended by Pass et al. [31] to round based
systems where messages sent in a round can be received later. [16] proposes a mix between
proof-of-work blockchains and proof-of-work free blockchains referred as Bitcoin-NG. Bitcoin-
NG inherits, however, the drawbacks of Bitcoin: costly proof-of-work process, forks, no
guarantee that a leader in an epoch is unique, no guarantee that the leader does not change
the history at will if it is corrupted. On another line of research, in [11] Decker et al. propose
the PeerCensus system that targets linearizability of transactions. PeerCensus combines
the proof-of-work blockchain and the classical results in Practical Byzantine Fault Tolerant
agreement area. PeerCensus suffers the same drawbacks as Bitcoin because of the proof-of-
work. Byzcoin [24] builds on top of Practical Byzantine Fault-Tolerant consensus [8] enhanced
with a scalable collective signing process. [24] is based on a leader-based consensus over a
group of members chosen by a proof-of-membership mechanism. When a miner succeeds to
mine a block, it gains a membership share, and the miners with the highest shares are part
of the fixed size voting member set. In the same spirit, SBFT [21] and Hyperledger Fabric
[3] build on top of [8]. In [32] and [20], sortition based blockchains are discussed, where the
proof-of-work mechanism is completely replaced by a probabilistic ingredient.

The only academic works that address the consensus in proof-of-stake based blockchains
are [10] and [23]. In [10], Daian et al. which proposes a protocol for weakly synchronous
networks. The execution of the protocol is organized in epochs. Similar to Bitcoin-NG [16]
in each epoch a different committee is elected and inside the elected committee a leader will
be chosen. The leader is allowed to extend the new blockchain. The protocol is validated
via simulations and only partial proofs of correctness are provided. Ouroboros [23] proposes
a sortition based proof-of-stake protocol and addresses mainly the security aspects of the
proposed protocol. Red Belly [9] focuses on consortium blockchains, where only a predefined
subset of processes are allowed to update the blockchain, and proposes a Byzantine consensus
protocol.

Interestingly, none of the previous academic studies made the connection between the
repeated consensus specification [5, 13, 12] and the repeated agreement process in blockchain
systems. Moreover, in terms of fairness of rewards, no academic study has been conducted
related to blockchains based on repeated consensus.

3 System model and Problem Definition

The system is composed of an infinite set Π of asynchronous sequential processes, namely
Π = {p1, . . . }; i is called the index of pi. Asynchronous means that each process proceeds
at it own speed, which can vary with time and remains unknown to the other processes.
Sequential means that a process executes one step at a time. This does not prevent it from
executing several threads with an appropriate multiplexing. As local processing times are
negligible with respect to message transfer delays, they are considered as being equal to zero.
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Arrival model. We assume a finite arrival model [1], i.e. the system has infinitely many
processes but each run has only finitely many. The size of the set Πρ ⊂ Π of processes
that participate in each system run is not a priori-known. We also consider a finite subset
V ⊆ Πρ of validators. The set V may change during any system run and its size n is a-priori
known. A process is promoted in V based on a so-called merit parameter, which can model
for instance its stake in proof-of-stake blockchains. Note that in the current Tendermint
implementation, it is a separate module included in the Cosmos project [26] that is in charge
of implementing the selection of V .

Communication network. The processes communicate by exchanging messages through
an eventually synchronous network [14]. Eventually Synchronous means that after a finite
unknown time τ there is an upper bound δ on the message transfer delay.

Failure model. There is no bound on processes that can exhibit a Byzantine behaviour [33]
in the system, but up to f validators can exhibit a Byzantine behaviour at each point of the
execution. A Byzantine process is a process that behaves arbitrarily: it can crash, fail to send
or receive messages, send arbitrary messages, start in an arbitrary state, perform arbitrary
state transitions, etc. Byzantine processes can control the network by modifying the order in
which messages are received, but they cannot postpone forever message receptions. Moreover,
Byzantine processes can collude to “pollute” the computation (e.g., by sending messages
with different contents, while they should send messages with the same content if they were
non-faulty). A process (or validator) that exhibits a Byzantine behaviour is called faulty.
Otherwise, it is non-faulty or correct. To be able to solve the consensus problem, we assume
that f < n/3.

Communication primitives. In the following we assume the presence of a broadcast prim-
itive. A process pi broadcasts a message by invoking the primitive broadcast(〈TAG,m〉),
where TAG is the type of the message, and m its content. To simplify the presentation, it
is assumed that a process can send messages to itself. The primitive broadcast() is a best
effort broadcast, which means that when a correct process broadcasts a value, eventually all
the correct processes deliver it. A process pi receives a message by executing the primitive
delivery(). Messages are created with a digital signature, and we assume that digital signa-
tures cannot be forged. When a process pi delivers a message, it knows the process pj that
created the message.

Let us note that the assumed broadcast primitive in an open dynamic network can be
implemented through gossiping, i.e. each process sends the message to current neighbors
in the underlying dynamic network graph. In these settings the finite arrival model is a
necessary condition for the system to show eventual synchrony. Intuitively, a finite arrival
implies that message losses due to topology changes are bounded, so that the propagation
delay of a message between two processes not directly connected can be bounded [29, 4].

Problem definition. In this paper we analyse the correctness of Tendermint protocol against
two abstractions in distributed systems: one-shot consensus and repeated consensus defined
formally as follows.

I Definition 1 (One-Shot Consensus). We say that an algorithm implements One-Shot
Consensus if and only if it satisfies the following properties:

Termination. Every correct process eventually decides some value.
Integrity. No correct process decides twice.
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More than 2n/3 Prevote(nil) ∨

TimeOutPrevoteexpired ∨

More than 2n/3 of any Prevote(-)

More than

2n/3 Precommit(B)

More than 2n/3 Prevote(nil) ∨

TimeOutPrecommit expired ∨

More than 2n/3 of any Precommit(-)

Figure 1 State Machine for Tendermint One-Shot algorithm described in Figure 3.

Agreement. If there is a correct process that decides a value B, then eventually all the
correct processes decide B.
Validity[9]. A decided value is valid, it satisfies the predefined predicate denoted
isValid().

The concept of multi-consensus is presented in [5], where the authors assume that only
the faulty processes can postpone the decision of correct processes. In addition, the consensus
is made a finite number of times. The long-lived consensus presented in [13] studies the
consensus when the inputs are changing over the time, their specification aims at studying
in which condition the decisions of correct process do not change over time. None of these
specifications is appropriate for blockchain systems. In [12], Delporte-Gallet et al. defined
the Repeated Consensus as an infinite sequence of One-Shot Consensus instances, where
the inputs values may be completely different from one instance to another, but where all
the correct processes have the same infinite sequence of decisions. We consider a variant
of the repeated consensus problem as defined in [12]. The main difference is that we do
not predicate on the faulty processes. Each correct process outputs an infinite sequence of
decisions. We call that sequence the output of the process.

I Definition 2 (Repeated Consensus). An algorithm implements a repeated consensus if and
only if it satisfies the following properties:

Termination. Every correct process has an infinite output.
Agreement. If the ith value of the output of a correct process is B, then B is the ith
value of the output of any other correct process.
Validity. Each value in the output of any correct process is valid, it satisfies the
predefined predicate denoted isValid().

4 Tendermint Formalization

4.1 Informal description of Tendermint and its blockchain
Tendermint protocol [27, 7] aims at building a blockchain without forks relying on a variant
of PBFT consensus. When building the blockchain, a subset of fixed size n of processes called
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Figure 2 State machine Lock/Unlock

validators should agree on the next block to append to the blockchain. The set of validators is
deterministically determined by the current content of the blockchain, referred as the history.
We note that this subset may change once a block is appended. The mechanism to choose
the validators from a given history is further referred as selection mechanism. Note that
in the current Tendermint implementation, it is a separate module included in the Cosmos
project [26] that is in charge of implementing the selection mechanism. Intuitively, such
mechanism should be based on the proof-of-stake approach but its actual implementation is
currently left open.

The first block of Tendermint blockchain, called the genesis block, is at height 0. The
height of a block is the distance that separates that block to the genesis block. Each block
contains: (i) a Header which contains a pointer to the previous block and the height of the
block, (ii) the Data which is a list of transactions, and (iii) a set LastCommit which is the set
of validators that signed on the previous block. Except the first block, each block refers to the
previous block in the chain. Given a current height of Tendermint blockchain, a total ordered
set of validators V is selected to add a new block. The validators start a One-Shot Consensus
algorithm. The first validator creates and proposes a block B, then if more than 2n/3 of
the validators accept B, B will be appended as the next block, otherwise the next validator
proposes a block, and the mechanism is repeated until more than 2n/3 of the validators
accept a block. For each height of Tendermint blockchain, the mechanism to append a new
block is the same, only the set of validators may change. Therefore, Tendermint applies
a Repeated Consensus algorithm to build a blockchain, and at each height, it relies on a
One-Shot Consensus algorithm to decide the block to be appended. Due to space limitations,
Repeated Consensus proofs are provided in [2].

Although the choice of validators is managed by a separate module (see Cosmos project
[26]) the rewards for the validators that contributed to the block at some specific height H
are determined during the construction of the block at height H + 1. The validators for H
that get a reward for H are the ones that validators for H + 1 “saw” when proposing a block.
This mechanism can be unfair, since some validator for H may be slow, and its messages
may not reach the validators involved in H + 1, implying that it may not get the rewards it
deserved. Due to space limitations, our fairness study are provided in [2].

4.2 Tendermint One-Shot Consensus algorithm
Tendermint One-Shot Consensus algorithm is a round-based algorithm used to decide on the
next block for a given height H. In each round there is a different proposer that proposes a
block to the validators that try to decide on that block. A round consists of three steps: (i)
the Propose step, the proposer of the round broadcasts a proposal for a block; (ii) the Prevote
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Function consensus(H,Πρ, signature); %One-Shot Consensus for the height H with the set Πρ of processes%

Init:
(1) r ← 0; LLRi ← −1; PoLCRi ← ⊥; lockedBlocki ← nil; B ← nil;
(2) TimeOutPropose ← ∆Propose; TimeOutPrevote ← ∆Prevote;
(3) proposalReceivedH,r

i
← ⊥; prevotesReceivedH,r

i
← ⊥; precommitsReceivedH,r

i
← ⊥;

———————————————————————————————————————————————–
while (true) do
(4) r ← r + 1; PoLCRi ← ⊥;
———————————————————— Propose step r ————————————————————
(5) if (pi == proposer(H, r)) then
(6) if (LLRi 6= −1) then PoLCRi ← LLRi; B ← lockedBlocki;
(7) else B ← createNewBlock(signature);
(8) endif
(9) trigger broadcast 〈PROPOSE, (B,H, r,PoLCRi)i〉;
(10) else
(11) set timerProposer to TimeOutPropose;
(12) wait until ((timerProposer expired) ∨ (proposalReceivedH,r

′
i

6= ⊥));
(13) if ((timerProposer expired) ∧ (proposalReceivedH,r

′
i

== ⊥)) then
(14) TimeOutPropose ← TimeOutPropose + 1;
(15) endif
(16)endif
———————————————————— Prevote step r ————————————————————
(17) if ((PoLCRi 6= ⊥) ∧ (LLRi 6= −1) ∧ (LLRi < PoLCRi < r)) then
(18) wait until |prevotesReceivedH,PoLCR

i
| > 2n/3;

(19) if (∃B′ : (is23Maj(B′, prevotesReceivedH,PoLCRi
i

)) ∧ (B′ 6= lockedBlocki)) then lockedBlocki ← nil; endif
(20)endif
(21) if (lockedBlocki 6= nil) then trigger broadcast 〈PREVOTE, (lockedBlocki, H, r)i〉;
(22) else if (isValid(proposalReceivedH,r

i
)) then trigger broadcast 〈PREVOTE, (proposalReceivedH,r

i
, H, r)i〉; endif

(23) else trigger broadcast 〈PREVOTE, (nil, H, r)i〉;
(24)endif
(25)wait until ((is23Maj(nil, prevotesReceivedH,r

i
)) ∨ (∃B′′ : (is23Maj(B′′, prevotesReceivedH,r

i
)))∨

(|prevotesReceivedH,r
i
| > 2n/3)); %Delivery of any 2n/3 prevotes for the round r%

(26) if (¬(is23Maj(nil, prevotesReceivedH,r
i

)) ∧ ¬(∃B′′ : (is23Maj(B′′, prevotesReceivedH,r
i

)))) then
(27) set timerPrevote to TimeOutPrevote;
(28) wait until (timerPrevote expired);
(29) if (timerPrevote expired) then TimeOutPrevote ← TimeOutPrevote + 1; endif
———————————————————— Precommit step r ——————————————————–
(30) if (∃B′ : (is23Maj(B′, prevotesReceivedH,r

i
))) then

(31) lockedBlocki ← B′;
(32) trigger broadcast 〈PRECOMMIT, (B′, H, r)i〉;
(33) LLRi ← r;
(34) else if (is23Maj(nil, prevotesReceivedH,r

i
)) then

(35) lockedBlocki ← nil; LLRi ← −1;
(36) trigger broadcast 〈PRECOMMIT, (nil, H, r)i〉;
(37) endif
(38) else trigger broadcast 〈PRECOMMIT, (nil, H, r)i〉);
(39)endif
(40)wait until ((is23Maj(nil, prevotesReceivedH,r

i
)) ∨ (|precommitsReceivedH,r

i
| > 2n/3))

endwhile

Figure 3 First part of Tendermint One-shot Consensus algorithm at correct process pi.

step, validators broadcast their prevotes depending on the proposal they delivered during the
previous step; and (iii) the Precommit step, validators broadcast their precommits depending
on the occurrences of prevotes for the same block they delivered during the previous step.
To preserve liveness, steps have a timeout associated, so that each validator moves from one
step to another either if the timeout expires or if it delivers enough messages of a particular
typology. When pi broadcasts a message (〈TAG,m〉), m contains a block B along with other
information. We say that pi prevotes (resp. precommits) on B if TAG = PREVOTE (resp.
TAG=PRECOMMIT). In Figure 1 is depicted the state machine for the Tendermint one-Shot
Consensus.

To preserve safety of the protocol and to satisfy the Agreement property, when a validator
delivers more than 2n/3 prevotes for B then it “locks” on such block. Informally, it means
that there are at least n/3 + 1 prevotes for B from correct processes, then B is a possible
candidate for a decision so that validators try to stick on that. More formally, a validator
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upon event delivery 〈PROPOSE, (B′, H, r′,PoLCRj)j〉:
(41) if (proposalReceivedH,r

′
i

= ⊥) then
(42) proposalReceivedH,r

′
i

← (B′, H, r′)j ;
(43) PoLCRi ← PoLCRj ;
(44) trigger broadcast 〈PROPOSE, (B′, H, r′,PoLCRj)j〉;
(45)endif
————————————————————————————————————

upon event delivery 〈PREVOTE, (B′, H, r′,LLR)j〉:
(46) if ((B′, H, r′,LLR)j /∈ prevotesReceivedH,r

′
i

) then
(47) prevotesReceivedH,r

′
i

← prevotesReceivedH,r
′

i
∪ (B′, H, r′,LLR)j ;

(48) trigger broadcast 〈PREVOTE, (B′, H, r′,LLR)j〉;
(49) if ((r < r′) and (|prevotesReceivedH,r

′
i
| > 2/3)) then

(50) r ← r′;
(51) goto Prevote step r;
(52) endif
(53)endif
————————————————————————————————————

upon event delivery 〈PRECOMMIT, (B′, H, r′)j〉:
(54) if ((B′, H, r′)j /∈ precommitsReceivedH,r

′
i

) then
(55) precommitsReceivedH,r

′
i

← precommitsReceivedH,r
′

i
∪ (B′, H, r′)j ;

(56) trigger broadcast 〈PRECOMMIT, (B′, H, r′)j〉;
(57) if ((r < r′) and (|precommitsReceivedH,r

′
i
| > 2/3)) then

(58) r ← r′;
(59) goto Precommit step r;
(60) endif
(61)endif
————————————————————————————————————

when (∃B′ : is23Maj(B′, precommitsReceivedH,r
′

i
)):

(62)return B’;%Terminate the consensus for the height H by deciding B′%

Figure 3 Second part of Tendermint One-shot Consensus algorithm at correct process pi.

has a Proof-of-LoCk (PoLC) for a block B (resp. for nil) at a round r for the height H if it
received at least 2n/3 + 1 prevotes for B (resp. for nil). In this case we say that a process is
locked on such block. A PoLC-Round (PoLCR) is a round such that there was a PoLC for a
block at round PoLCR. In Figure 2 the state machine concerning the process of locking and
unlocking on a block B is shown.

Preamble. Note that our analysis of the original Tendermint protocol [27, 7, 25] led to the
conclusion that several modifications were needed in order to implement One-Shot Consensus
problem. Full description of these bugs in the original Tendermint protocol are reported
in [2]. In more details, with respect to the original Tendermint, our Tendermint One-shot
Consensus algorithm (see Figure 3) has the following modifications. We added line 29 in
order to catch up the communication delay during the synchronous periods. Moreover, we
modified the line 19 in order to guarantee the agreement property of One-Shot Consensus
(defined in Section 3). The correctness of Tendermint One-shot Consensus algorithm needs
an additional assumption stating that eventually a proposal is accepted by a majority of
correct processes. This assumption, stated formally in Theorem 7, is necessary to guarantee
the termination.

Variables and data structures. r and PoLCRi are integers representing, respectively, the
current round and the PolCR. lockedBlocki is the last block on which pi is locked, if it is
equal to a block B, we say that pi is locked on B, otherwise it is equal to nil, and we say
that pi is not locked. When lockedBlocki 6= nil and switches the value to nil, then pi unlocks.
Last-Locked-Round (LLRi) is an integer representing the last round where pi locked on a
block. B is the block the process created.
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Each validator manages timeouts, TimeOutPropose and TimeOutPrevote, concerning the
propose and prevote phases respectively. Those timeouts are set to ∆Propose and ∆Prevote
and are started at the beginning of the respective step. Both are incremented if they expire
before the validator moves to the next step.

Each validator manages three sets for the messages delivered. In particular, the set
proposalReceivedH,ri contains the proposal that pi delivered for the round r at height H.
prevotesReceivedH,ri is the set containing all the prevotes pi delivered for the round r at
height H. precommitsReceivedH,ri is the set containing all the precommits pi delivered for
the round r at height H.

Functions. We denote by Block the set containing all blocks, and by MemPool the structure
containing all the transactions.

proposer : V ×Height×Round→ V is a deterministic function which gives the proposer
out of the validators for a given round at a given height in a round robin fashion.
createNewBlock : 2Πρ ×MemPool → Block is an application-dependent function which
creates a valid block (w.r.t. the application), where the subset of processes is a parameter
of the One-Shot Consensus, and is a subset of processes that send a commit for the block
at the previous height, called the signature of the previous block.
is23Maj : (Block∪nil)× (prevotesReceived ∪ precommitsReceived)→ Bool is a predicate
that checks if there is at least 2n/3 + 1 of prevotes or precommits on the given block or
nil in the given set.
isValid : Block → Bool is an application dependent predicate that is satisfied if the given
block is valid. If there is a block B such that isValid(B) = true, we say that B is valid.
We note that for any non-block, we set isValid to false, (e.g. isValid(nil) = false).

Detailed description of the algorithm. In Figure 3 we describe Tendermint One-Shot
algorithm to solve the One-Shot Consensus (defined in Section 3) for a given height H.
For each round r at height H the algorithm proceeds in 3 phases:
1. Propose step (lines 5 - 16): If pi is the proposer of the round and it is not locked on

any block, then it creates a valid proposal and broadcasts it. Otherwise it broadcasts
the block it is locked on. If pi is not the proposer then it waits for the proposal from
the proposer. pi sets the timer to TimeOutProposal, if the timer expires before the
delivery of the proposal then pi increases the time-out, otherwise it stores the proposal in
proposalReceivedH,ri . In any case, pi goes to the Prevote step.

2. Prevote step (lines 17 - 29): If pi delivers the proposal during the Propose step, then it
checks the data on the proposal. If lockedBlocki 6= nil, and pi delivers a proposal with
a valid PoLCR then it unlocks. After that check, if pi is still locked on a block, then it
prevotes on lockedBlocki; otherwise it checks if the block B in the proposal is valid or
not, if B is valid, then it prevotes B, otherwise it prevotes on nil. Then pi waits until
|prevotesReceivedH,ri | > 2n/3. If there is no PoLC for a block or for nil for the round r,
then pi sets the timer to TimeOutPrevote, waits for the timer’s expiration and increases
TimeOutPrevote. In any case, pi goes to Precommit step.

3. Precommit step (lines 30 - 40): pi checks if there was a PolC for a particular block or
nil during the round (lines 30 and 34). There are three cases: (i) if there is a PoLC for
a block B, then it locks on B, and precommits on B (lines 30 - 32); (ii) if there is a
PoLC for nil, then it unlocks and precommits on nil (lines 34 - 36); (iii) otherwise, it
precommits on nil (line 38); in any case, pi waits until |precommitsReceivedH,ri | > 2n/3
or (is23Maj(nil, prevotesReceivedH,ri )), and it goes to the next round.
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Whenever pi delivers a message, it broadcasts it (lines 44, 48 and 56). Moreover, during
a round r, some conditions may be verified after a delivery of some messages and either (i)
pi decides and terminates or (ii) pi goes to the round r′ (with r′ > r). The conditions are:

For any round r′, if for a block B, is23Maj(B, precommitsReceivedH,r
′

i ) = true , then pi
decides the block B and terminates, or
If pi is in the round r at height H and |prevotesReceivedH,r

′

i | > 2n/3 where r′ > r, then
it goes to the Prevote step for the round r′, or
If pi is in the round r at height H and |precommitsReceivedH,r

′

i | > 2n/3 where r′ > r,
then it goes to the Precommit step for the round r′.

4.2.1 Correctness of Tendermint One-Shot Consensus
In this section we prove the correctness of Tendermint One-Shot Consensus algorithm (Fig.
3) for a height H under the assumption that during the synchronous period there exists
eventually a proposer such that its proposed value will be accepted by at least 2n/3 + 1
processes.

I Lemma 1 (One-Shot Integrity). In an eventual synchronous system, Tendermint One-Shot
Consensus Algorithm verifies the following property: No correct process decides twice.

I Lemma 2 (One-Shot Validity). In an eventual synchronous system, Tendermint One-Shot
Consensus Algorithm verifies the following property: A decided value is valid, if it satisfies
the predefined predicate denoted isValid().

I Lemma 3. In an eventual synchronous system, Tendermint One-Shot Consensus Algorithm
verifies the following property: If f + 1 correct processes locked on the same value B during
a round r then no correct process can lock during round r′ > r on a value B′ 6= B.

Proof. We assume that f + 1 correct processes are locked on the same value B during the
round r, and we denote by Xr the set of those processes. We first prove by induction that
no process in Xr will unlock or lock on a new value. Let let pi ∈ Xr.

Initialization: round r + 1. At the beginning of round r + 1, all processes in Xr are
locked on B. Moreover, we have that LLRi = r, since pi locks on round r (line 31). Let
pj be the proposer for round r + 1. If LLRj = r, it means that pj is also locked on B,
since there cannot be a value B′ 6= B such that is23Maj(B, prevotesReceivedH,rj ) = true,
for that to happen, at least n/3 processes should prevote both B and B′ during round r,
which means that at least a correct process prevoted two times in the same round, which
is not possible, since it is correct, and the protocol does not allow to vote two times in
the same round (lines 17 - 29). Three cases can then happen:
pj locked on a value Bj during the round LLRj ≤ r. This means that during the round
LLRj is23Maj(Bj , prevotesReceivedH,LLRj

j ) = true (line 31). pj the proposer proposes
a value Bj along with LLRj (lines 5 - 9). Since LLRj ≤ LLRi = r, pi does not unlock
and prevotes B for the round r + 1, and so are all the other processes in Xr (lines 17 -
21). The only value that can have more than 2n/3 prevotes is then B. So pi is still
locked on B at the end of r + 1.
If pj is not locked, the value it proposes cannot unlock processes in Xr because
−1 = LLRj < r, and they will prevote on B (lines 17 - 21). The only value that can
have more than 2n/3 prevotes is then B. So pi is still locked on B at the end of r + 1.
pj locked on a value Bj during the round LLRj > r, pj the proposer proposes a value
Bj along with LLRj (lines 5 - 9). Since LLRj ≥ r+ 1, pi does not unlock and prevotes
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B for the round r + 1, and so are all the other processes in Xr (lines 17 - 21). The
only value that can have more than 2n/3 prevotes is then B. So pi is still locked on B
at the end of r + 1.

At the end of round r + 1, all processes in Xr are still locked on B and it may happen
that other processes are locked on B for round r + 1 at the end of the round.
Induction: We assume that for a given a > 0, the processes in Xr are still locked on B
at each round between r and r + a. We now prove that the processes in Xr will still be
locked on B at round r + a+ 1.
Let pj be the proposer for round r+a+1. Since the f+1 processes in Xr were locked on B
for all the rounds between r and r+ a, no new value can have more than 2n/3 of prevotes
during one of those rounds, so @B′ 6= B : is23Maj(B′, prevotesReceivedH,rjj ) = true where
r < rj < r + a+ 1. Moreover, if pj proposed the value B along with a LLR > r, since
the processes in Xr are already locked on B, they do not unlock and prevote B (lines 17
- 21). The proof then follows as in the Initialization case.

Therefore all processes in Xr will stay locked on B at each round after round r. Since
f + 1 processes will stay locked on the value B on rounds r′ > r, they will only prevote
on B (lines 17 - 21) for each new round. Let B′ be a value, we have that ∀r′ ≥ r if
B′ : is23Maj(B′, prevotesReceivedH,r

′

j ) = true then B′ = B. J

I Lemma 4 (One-Shot Agreement). In an eventual synchronous system, Tendermint One-
Shot Consensus Algorithm verifies the following property: If there is a correct process that
decides a value B, then eventually all the correct processes decide B.

Proof. Let pi be a correct process. Without loss of generality, we assume that pi is
the first correct process to decide, and it decides B at round r. If pi decides B, then
is23Maj(B, precommitsReceivedH,ri ) = true (line 62), since the signature of the messages are
unforgeable by hypothesis and f < n/3, then pi delivers more than n/3 of those precommits
for round r from correct processes, and those correct process are locked on B at round r (line
31). pi broadcasts all the precommits it delivers (line 56), so eventually all correct processes
will deliver those precommits, because of the best effort broadcast guarantees.

We now show that before delivering the precommits from pi, the other correct processes
cannot decide a different value than B. f < n/3 by hypothesis, so we have that at least
f + 1 correct processes are locked on B for the round r. By Lemma 3 no correct process can
lock on a value different than B. Let B′ 6= B, since correct processes lock only when they
precommit (lines 30 - 32), no correct process will precommit on B′ for a round bigger than
r, so is23Maj(B′, precommitsReceivedH,r

′

i ) = false for all r′ ≥ r since no correct process will
precommit on B′. No correct process cannot decide a value B′ 6= B (line 62) once pi decided.
Eventually, all the correct processes will deliver the 2n/3 signed precommits pi delivered and
broadcasted, thanks to the best effort broadcast guarantees and then will decide B. J

I Lemma 5. In an eventual synchronous system, and under the assumption that during
the synchronous period eventually there is a correct proposer pk such that |{pj : LLRk ≤
LLRj and pj is correct}| < n/3− f , Tendermint One-Shot Consensus Algorithm verifies the
following property: Eventually a correct process decides.

Proof. Let r be the round where the communication becomes synchronous and when all the
messages broadcasted by correct processes are delivered by the correct processes within their
respective step. The round r exists, since the system is eventually synchronous and correct
processes increase their time-outs when they did not deliver enough messages (lines 13 - 15,
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26 - 29 and 40). If a correct process decides before r, that ends the proof. Otherwise no
correct process decided yet. Let pi be the proposer for the round r. We assume that pi is
correct. Let B be the value such that pi proposes (B,LLRi), we have three cases:

Case 1: No correct process is locked on a value before r. ∀pj ∈ Πρ such that pj is correct,
LLRj = −1.
Correct processes delivered the proposal (B,LLRi) before the Prevote step (lines 12,
42 - 44). Since the proposal is valid, then all correct processes will prevote on that
value (line 22), and they deliver the others’ prevotes and broadcast them before en-
tering the Precommit step (lines 25 - 29 and 48). Then for all correct process pj , we
have is23Maj(B, precommitsReceivedH,rj ) = true. The correct processes will lock on B,
precommit on B (lines 30 - 32) and will broadcast all precommits delivered (line 56).
Eventually a correct process pj will have is23Maj(B, precommitsReceivedH,rj ) = true then
pj will decide (line 62).
Case 2: Some correct processes are locked and if pj is a correct process, LLRj < LLRi.
Since LLRj < LLRi for all correct processes pj , then the correct processes that are locked
will unlock (line 19) and the proof follows as in the Case 1.
Case 3: Some correct processes are locked on a value, and there exist a correct process pj
such that LLRi ≤ LLRj .

(i) If |{pj : LLRi ≤ LLRj and pj is correct}| < n/3 − f (which means that even
without the correct processes that are locked in a higher round than the proposer pi,
there are more than 2n/3 other correct processes unlock or locked in a smaller round
than LLRi), then as in the case 2, a correct process will decide.
(ii) If |{pj : LLRi ≤ LLRj and pj is correct}| ≥ n/3 − f , then during the round
r, @B′ : is23Maj(B′, precommitsReceivedH,ri ) = true, in fact correct processes only
precommit once in a round (lines 30 - 40). Eventually, thanks to the additional
assumption, there exists a round r1 where the proposer pk is correct and at round
r1, |{pj : LLRk ≤ LLRj and pj is correct}| < n/3− f . The proof then follows as case
(3.i).

If pi is Byzantine and more than n/3 correct processes delivered the same message during
the proposal step, and the proposal is valid, the situation is like pi was correct. Otherwise,
there are not enough correct processes that delivered the proposal, or if the proposal is not
valid, then there will be less than n/3 processes that will prevote that value. No value will
be committed. Since the proposer is selected in a round robin fashion, a correct process will
eventually be the proposer, and a correct process will decide. J

I Lemma 6 (One-Shot Termination). In an eventual synchronous system, and under the
assumption that during the synchronous period eventually there is a correct proposer pk such
that |{pj : LLRk ≤ LLRj and pj is correct}| < n/3 − f , Tendermint One-Shot Consensus
Algorithm verifies the following property: Every correct process eventually decides some value.

Proof. By construction, if a correct process does not deliver a proposal during the proposal
step or enough prevotes during the Prevote step, then that process increases its time-outs
(lines 13 - 15 and 26 - 29), so eventually, during the synchrony period of the system, all the
correct processes will deliver the proposal and the prevotes from correct processes respectively
during the Propose and the Prevote step. By Lemma 5, a correct process decides a value,
and then by the Lemma 4, every correct process eventually decides. J

I Theorem 7. In an eventual synchronous system, and under the assumption that during
the synchronous period eventually there is a correct proposer pk such that |{pj : LLRk ≤
LLRj and pj is correct}| < n/3− f : Tendermint One-Shot Algorithm implements the One-
Shot Consensus.
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Function repeatedConsensus(Πρ); %Repeated Consensus for the set Πρ of processes%

Init:
(1) H ← 1 %Height%; B ← ⊥; V ← ⊥ %Set of validators%;
(2) commitsReceivedHi ← ∅; toRewardHi ← ∅; TimeOutCommit ← ∆Commit;
—————————————————————————————————————

while (true) do
(3) B ← ⊥;
(4) V ← validatorSet(H); %Application and blockchain dependant%
(5) if (pi ∈ V ) then
(6) B ← consensus(H,V, toRewardH−1

i
); %Consensus function for the height H%

(7) trigger broadcast 〈COMMIT, (B,H)i〉;
(8) else
(9) wait until (∃B′ : |atLeastOneThird(B′, commitsReceivedHi )|);
(10) B ← B′;
(11)endif
(12) set timerCommit to TimeOutCommit;
(13)wait until(timerCommit expired);
(14)trigger decide(B);
(15)H ← H + 1;

endwhile
—————————————————————————————————————

upon event delivery 〈COMMIT, (B′, H′)j〉:
(16) if (((B′, H′)j /∈ commitsReceivedH

′
i ) ∧ (pj ∈ validatorSet(H′))) then

(17) commitsReceivedH
′

i ← commitsReceivedH
′

i ∪ (B′, H′)j ;
(18) toRewardH

′
i ← toRewardH

′
i ∪ pj ;

(19) trigger broadcast 〈COMMIT, (B′, H′)j〉;
(20)endif

Figure 4 Tendermint Repeated Consensus algorithm at correct process pi.

Proof. The proof follows directly from Lemmas 1, 2, 4 and 6. J

4.3 Tendermint Repeated Consensus algorithm
For a given height, the set V of validators does not change. Note that each height corresponds
to a block. Therefore, in the following we refer this set as the set of validators for a block.

Data structures. The integer H is the height where is called a One-Shot Consensus instance.
V is the current set of validators. B is the block to be appended. commitsReceivedHi is the set
containing all the commits pi delivered for the height H. toRewardHi is the set containing the
validators from which pi delivered commits for the height H. TimeOutCommit represents the
time a process has for collecting commits after an instance of consensus. TimeOutCommit is
set to ∆Commit.

Functions.
validatorSet : Πρ×Height → 2Πρ is an application dependent and deterministic selection
function which gives the set of validators for a given height w.r.t the blockchain history,
and ∀H ∈ Height, |validatorSet(H)| = n.
consensus : Height × 2Πρ × commitsReceived → Block is the One-Shot Consensus instance
presented in 4.2.
atLeastOneThird : Block × commitsReceived → Bool is a predicate which checks if there
is at least n/3 of commits of the given block in the given set.

Detailed description of the algorithm. In Fig. 4 we describe the algorithm to solve the
Repeated Consensus as defined in Section 3. The algorithm proceeds as follows:

pi computes the set of validators for the current height;
If pi is a validator, then it calls the consensus function solving the consensus for the
current height, then broadcasts the decision, and sets B to that decision;
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Otherwise, if pi is not a validator, it waits for at least n/3 commits from the same block
and sets B to that block;
In any case, it sets the timer to TimeOutCommit to receive more commits and lets it
expire. Then pi decides B and goes to the next height. We note that this timer is
not adjustable, so processes might miss commits from correct processes even during the
synchronous period (see fairness study [2] for further details).

Whenever pi delivers a commit, it broadcasts it (lines 16 - 20). Note that the reward for the
height H is given during the height H + 1, and to a subset of validators who committed the
block for H (line 6).

I Theorem 8. In an eventual synchronous system, Tendermint Repeated Consensus algorithm
implements the Repeated Consensus.

5 Conclusion & Discussion

The contribution of this paper is the improvement and the formal analysis of the original
Tendermint protocol, a PBFT-based repeated consensus protocol where the set of validators
is dynamic. Each improvement we introduced is motivated by bugs we discovered in the
original protocol. A preliminary version of this paper has been reported in [2]. Very recently
a new version of Tendermint has been advertised in [6] by Tendermint foundation without
an operational release. The authors argue that their solution works if the two hypothesis
below are verified: Hypothesis 1 : if a correct process receives some message m at time t, all
correct processes will receive m before max(t, global stabilization time) + ∆. Note that this
property called by the authors gossip communication should be verified even though m has
been sent by a Byzantine process. Hypothesis 2 : there exists eventually a proposer such that
its proposed value will be accepted by all the other correct processes. Moreover, the formal
and complete correctness proof of this new protocol is still an open issue (several not trivial
bugs have been reported recently e.g. [34]).

We are further interested in the fairness of Tendermint-core blockchains since without
a glimpse of fairness in the way rewards are distributed, these blockchains may collapse.
It is common knowledge that in permisionless blockchain systems the main threat is the
tragedy of commons that may yield the system to collapse if the rewarding mechanism
is not adequate. Ad minimum the rewarding mechanism must be fair, i.e. distributing
the rewards in proportion to the merit of participants. Our fairness preliminary study,
reported in [2], is in line with Francez definition of fairness [18], generally defines the fairness
of protocols based on voting committees (e.g. Byzcoin[24], PeerCensus[11], RedBelly [9],
SBFT [21] and Hyperledger Fabric [3] etc), by the fairness of their selection mechanism and
the fairness of their reward mechanism. The selection mechanism is in charge of selecting
the subset of processes that will participate to the agreement on the next block to be
appended to the blockchain, while the reward mechanism defines the way the rewards are
distributed among processes that participate in the agreement. Our preliminary analysis of
the reward mechanism allowed to establish the following result with respect to the fairness
of repeated-consensus blockchains as follows:

There exists a(n) (eventual) fair reward mechanism for repeated-consensus blockchains if
and only if the system is (eventual) synchronous (see [2]).

It follows that in our fairness model the original Tendermint protocol is not eventually
fair, however with a small twist in the way delays are handled its reward mechanism becomes
eventually fair. More details can be found in [2]. Our study opens an interesting future
research direction related to the fairness of the selection mechanism in repeated-consensus
based blockchains.
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Abstract
Some of the recent blockchain proposals, such as Stellar and Ripple, use quorum-like structures
typical for Byzantine consensus while allowing for open membership. This is achieved by con-
structing quorums in a decentralised way: each participant independently chooses whom to trust,
and quorums arise from these individual decisions. Unfortunately, the theoretical foundations
underlying such blockchains have not been thoroughly investigated. To close this gap, in this
paper we study decentralised quorum construction by means of federated Byzantine quorum sys-
tems, used by Stellar. We rigorously prove the correctness of basic broadcast abstractions over
federated quorum systems and establish their relationship to the classical Byzantine quorum sys-
tems. In particular, we prove correctness in the realistic setting where Byzantine nodes may lie
about their trust choices. We show that this setting leads to a novel variant of Byzantine quorum
systems where different nodes may have different understanding of what constitutes a quorum.
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1 Introduction

Blockchains are distributed databases that maintain an append-only ledger over a set of
potentially Byzantine nodes. The nodes use a Byzantine fault-tolerant (BFT) consensus pro-
tocol to agree on a total order in which transactions are appended to the ledger. Blockchains
usually come in two flavours. Permissioned blockchains assume a known set of participants,
and are often based on classical BFT consensus protocols, such as PBFT [5]. In these
protocols consensus is reached once a quorum of participants agrees on the same decision.
Quorums can be defined as sets containing enough nodes in the system, e.g., 2f + 1 out of
3f + 1, assuming at most f failures. They can also be defined by a more general structure
called a Byzantine quorum system (BQS) [10] – a pair of a quorum system Q and a fail-prone
system B, the latter containing the sets of nodes characterising possible failure scenarios [10].
A subclass of dissemination quorum systems (DQS) requires Q and B to satisfy certain
additional axioms, e.g., that any two quorums must intersect in a non-faulty node.

The other kind of blockchains are permissionless ones, which allow anyone to participate
in consensus, with the membership constantly changing. These blockchains are often based
on consensus protocols such as proof-of-work [7, 12], which do not rely on quorums. Despite
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the advantages of open membership, proof-of-work suffers from a number of drawbacks,
including high energy consumption and the absence of hard guarantees on when a transaction
can be considered successfully appended to the ledger. This has motivated a number of
proposals of alternative architectures for permissionless blockchains. In this paper we focus
on an intriguing new class of blockchains, such as Stellar [11] and Ripple [13], that use
quorum-like structures typical for BFT consensus while allowing open membership. This is
achieved by constructing the quorum system in a decentralised way: each protocol participant
independently chooses whom to trust, and quorums arise from these individual decisions.

In particular, in Stellar trust assumptions are specified using a federated Byzantine quorum
system (FBQS)1, where each participant selects a set of quorum slices – sets of nodes each of
which would convince the participant to accept the validity of a given statement. Quorums
are defined as sets of nodes U such that each node in U has some quorum slice fully within
U , so that the nodes in a quorum can potentially reach an agreement. Consensus is then
implemented by a fairly intricate protocol whose key component is federated voting – a
protocol similar to Bracha’s protocol for reliable Byzantine broadcast [2, 3]. Importantly, the
decentralised nature of Stellar means that its participants operate based on an incomplete
and inconsistent information about the trust assumptions of various nodes. First, a node
may not have complete knowledge of quorum slices of all other nodes in the system. Second,
Byzantine nodes may lie to other nodes about their choices of quorum slices. These features
make establishing the correctness of the protocols underlying Stellar nontrivial.

Even though Stellar has been deployed as a functioning blockchain, its theoretical
foundations remain shaky. The core Stellar protocols lack rigorous formalisations and proofs
of correctness. Furthermore, as observed in [4], the federated quorum structures arising
in Stellar are similar to the classical Byzantine quorum systems, where trust assumptions
are defined globally for the whole system [10]. But the relationship between these has not
been investigated, and this is a barrier to transferring ideas between the classical and the
federated settings. In this paper we take the first step towards closing these gaps and perform
a rigorous theoretical study of the basic concepts underlying the Stellar blockchain.

In more detail, the closest protocol to Stellar’s core federated voting protocol in the world
of classical Byzantine quorum systems is Bracha broadcast [2]. This implements reliable
Byzantine broadcast [3] in a system of 3f + 1 processes where at most f processes can fail and
any 2f + 1 processes constitute a quorum. The protocol allows a node to send a message to a
group of receivers; the sender may be faulty and can thus send different messages to different
receivers. The protocol guarantees, among other properties, that: (i) correct receivers cannot
deliver different messages; and (ii) if a correct receiver delivers a message, then eventually
all correct receivers will deliver the same message [3]. Bracha’s protocol can also be executed
over an arbitrary dissemination quorum system (which we prove in §2).

We investigate Stellar’s federated voting through the prism of the reliable Byzantine
broadcast abstraction. We first consider an idealised setting (used in the Stellar whitepa-
per [11]) where nodes have consistent information about the quorum slices of nodes they
interact with, i.e., faulty nodes do not equivocate about their quorum slices, but can otherwise
behave arbitrarily. Thus, all nodes act according to the same FBQS. Our first contribution
is to show that, in this setting, a federated Byzantine quorum system used in Stellar induces
a classical Byzantine quorum system (Q,B), so that protocols such as Bracha broadcast

1 In the Stellar whitepaper these are called federated Byzantine agreement systems [11]. The name used
in this paper is chosen to be in line with common terminology [10] and to emphasise that these systems
can be used for purposes other than solving consensus.
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can also be run out of the box in a federated setting (§3). However, Bracha broadcast
requires a node to know the fail-prone system B, and computing it from an FBQS would
require the node to know the quorum slices of all the nodes in the system. This is infeasible
in a system with open membership. Stellar circumvents this problem by allowing a node
to take decisions based solely on the quorum slices of the nodes it interacts with directly.
Our next contribution is to prove that the resulting Stellar broadcast implements what we
call weakly reliable Byzantine broadcast (§4). This guarantees the safety property (i) of the
usual reliable Byzantine broadcast and the liveness property (ii) where only certain intact
nodes are guaranteed to deliver the message. In a given protocol execution, the set of intact
nodes is the largest set that excludes all faulty nodes and satisfies certain basic properties
allowing correct protocol operation among these nodes, e.g., that every two quorums intersect.
This result strengthens the correctness theorems in the Stellar whitepaper [11], which only
guarantee safety to intact nodes (instead of all correct ones) and guarantee liveness only
under an assumption that an intact node delivers a message (rather than only correct one).
We also show that a variation of the Stellar protocol actually implements the usual reliable
Byzantine broadcast and prove that this variation is observationally equivalent to Bracha
broadcast over the corresponding DQS. On a conceptual level, our correctness results show
that some of the ad hoc protocols proposed for Stellar actually implement a variant of a
well-known broadcast abstraction.

We next consider a more realistic setting where faulty nodes may lie about their choices
of quorum slices (§5), which has not been covered by the existing correctness theorems for
Stellar [11]. In this setting, different nodes may have different understanding of what the
quorum slices of a given faulty node are. We capture this by the notion of a subjective
FBQS, where each node has its own, possibly different, copy of an FBQS such that the
different FBQSes agree on the quorum slices of correct nodes. This also leads different nodes
to disagree on what constitutes a quorum. More precisely, a subjective FBQS induces a
subjective quorum system, where each node has its own copy of a quorum system such that
the projections of different quorum systems to correct nodes coincide. Our next result is to
show that the Stellar broadcast correctly implements weakly reliable Byzantine broadcast
even when each node acts according to its subjective view on the trust choices in the system.
This result is required to get confidence in the correctness of the Stellar blockchain, since in
its intended deployment faulty nodes may lie about everything, including their trust choices.

Finally, we generalise the theory of classical Byzantine quorum systems to allow for nodes
to have inconsistent information about quorums, regardless of the origin of this inconsistency
(§6); this may be useful in the future for dealing with approaches to decentralising trust
different from Stellar. To this end, we introduce the notion of a subjective dissemination
quorum system, where each node has its own Byzantine quorum system such that the
different systems satisfy a variation on the DQS axioms. For example, we require that any
two quorums, even when coming from the systems of different nodes, have to intersect in a
non-faulty node. We show that Bracha broadcast over a subjective DQS implements reliable
Byzantine broadcast. Furthermore, we show that a subjective FBQS induces a subjective
DQS, on top of which one can execute Bracha broadcast.

Our results open the door to a deeper theoretical study of the novel quorum structures
arising in a federated setting and to proving the correctness of the whole Stellar consensus
protocol. We also hope that the connections we have established between classical broadcast
abstractions and the novel Stellar protocols will enable transferring ideas from the existing
optimised protocols for BFT consensus [9, 6] into the federated setting.

Due to space constraints, proofs are deferred to an extended version of the paper [8].
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2 Byzantine Quorum Systems and Bracha Broadcast

System model. In this paper we consider a system consisting of a set of client nodes C
and a disjoint set of server nodes V. We assume a Byzantine failure model: some nodes
may be faulty, in which case they can deviate arbitrarily from their specification. All other
nodes are called correct. We assume that any two nodes (clients or servers) can communicate
over an asynchronous point-to-point channel. If both endpoints of the channel are correct,
then this channel is both authenticated and reliable: a correct node receives a message from
another correct node if and only if the latter node sent it.

Byzantine quorum systems. A quorum system is a non-empty set Q of subsets of some
universe of nodes, such that

every quorum in Q is non-empty;
any two quorums in Q intersect: ∀U1, U2 ∈ Q. U1 ∩ U2 6= ∅;
Q is closed under union: ∀U1, U2 ∈ Q. U1 ∪ U2 ∈ Q.

In this paper we let the universe of nodes coincide with the set of servers V, so that Q ⊆ 2V.
A fail-prone system B is a non-empty set of subsets of V such that none of its elements is
contained in another. A fail-prone system characterises the failure scenarios that can occur:
in any execution of the system, some B ∈ B is meant to contain all the faulty servers. A
Byzantine quorum system (BQS) is a pair (Q,B) of a quorum system and a fail-prone system.
We sometimes use the adjective ‘classical’ to distinguish such quorum systems from federated
ones that we define in §3.

In this paper we focus on a particular class of BQSes that satisfy additional properties.
Namely, a dissemination quorum system (DQS) is a BQS with the following properties [10]:

D-consistency: ∀U1, U2 ∈ Q.∀B ∈ B. U1 ∩ U2 6⊆ B; and
D-availability: ∀B ∈ B.∃U ∈ Q. U ∩B = ∅.

Informally, D-consistency ensures that any two quorums must intersect in a correct server.
D-availability ensures the existence of a quorum containing only correct servers.

I Example 1. Consider a universe V with 3f + 1 servers, a quorum system Q that contains
every set with at least 2f + 1 servers, and a fail-prone system B that contains every set
with exactly f servers. Then (Q,B) is a DQS. Indeed, D-consistency holds because any
two quorums have at least f + 1 servers in common, at least one of which must be correct.
D-availability holds because, for each B ∈ B, the set V \B has 2f + 1 servers and is thus a
quorum in Q.

I Example 2. Consider the universe V = {1, 2, 3, 4}, the quorum system

Q = {{1, 2}, {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4}}

and the fail-prone system B = {{2}, {3, 4}}. Then (Q,B) is a DQS. D-consistency holds
because all quorums in Q intersect at 1, which does not belong to any element of B. D-
availability holds because both {1, 3, 4} and {1, 2} are quorums.

Bracha broadcast over DQS. We next consider the abstraction of reliable Byzantine
broadcast and show that a generalisation of Bracha broadcast [2] implements it when executed
over an arbitrary dissemination quorum system. This protocol is the closest one from the
world of classical BQSes that matches the broadcast protocol used in Stellar, and we relate
the two in the following sections.
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Algorithm 1: Bracha broadcast over an arbitrary DQS (Q,B).
1 process client(c ∈ C)
2 broadcast(a)
3 send BCAST(a) to every v ∈ V;

4 process server(v ∈ V)
5 echoed, ready, delivered← ff ∈ Bool;
6 when received BCAST(a) from c and echoed = ff
7 echoed← tt;
8 send ECHO(a) to every v′ ∈ V;

9 when received ECHO(a) from every u ∈ U for some U ∈ Q and ready = ff
10 ready← tt;
11 send READY(a) to every v′ ∈ V;

12 when received READY(a) from every u ∈ B for some B ∈ 2V \ {∅} such
that ∀B′ ∈ B. B 6⊆ B′ and ready = ff

13 ready← tt;
14 send READY(a) to every v′ ∈ V;

15 when received READY(a) from every u ∈ U for some U ∈ Q and
delivered = ff

16 delivered← tt;
17 deliver(a);

The broadcast allows a distinguished client to broadcast a value a to a group of servers,
an event which we denote broadcast(a). We denote the event of a server delivering a value a

as deliver(a). Both the sender and some of the receivers can be Byzantine. Reliable Byzantine
broadcast is defined by the following properties [3]:

Validity: If the sender client is correct and broadcasts a value a, then every correct server
eventually delivers a.
No duplication: Every correct server delivers at most one value.
Integrity: If some correct server delivers a value a and the sender client is correct, then a

was previously broadcast by the sender.
Consistency: If some correct server delivers a value a and another correct server delivers
a value a′, then a = a′.
Totality: If a correct server delivers a value, then every correct server eventually delivers
a value.

The Validity property ensures that the broadcast operates as expected when the sender is
correct. When the sender is faulty, the above properties guarantee that servers may not
deliver contradictory values, even if the sender sends different values to different servers. In
this case they may also not deliver any value at all, but the liveness property of Totality
ensures that all correct servers behave the same in this respect.

In Algorithm 1 we present an implementation of reliable Byzantine broadcast over a DQS
(Q,B). This generalises Bracha’s protocol [2] for reliable Byzantine broadcast, which works
over the cardinality-based DQS from Example 1. In order to broadcast a value a, the client
sends a BCAST(a) message to every server (line 2). Servers process client messages in several
phases, with progress denoted by several Boolean flags (line 5).

OPODIS 2018
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Since a faulty client may send contradictory messages to different servers, to ensure
Consistency the servers first cross-check the client’s proposals. A server that receives a
message BCAST(a) for the first time sends an ECHO(a) message to all servers (including itself,
for uniformity; line 6). When the server receives a quorum of ECHO(a) messages, it sends a
READY(a) message to every server, signalling its willingness to deliver the value a (line 9).
Note that correct servers cannot send READY messages in this way with two different values:
this would require two quorums of ECHO messages with different values, but by D-consistency
these quorums would intersect in a correct server, which cannot send contradictory ECHO
messages. When a server receives a quorum of READY(a) messages, it delivers a (line 15).

The exchange of READY messages is necessary to ensure Totality: it guarantees that, if a
correct server delivers a value, other correct servers have enough information to also deliver
the value. This relies on an additional rule in line 12, allowing a server to send a READY(a)
message even if it previously echoed a different value: this is done if the server receives
READY(a) from each member of a set B that is not a subset of any element of B. In this case
at least one of the servers in B must be correct, and hence, we can trust that the value it
proposes has been cross-checked for consistency by a quorum.

I Theorem 3. Let (Q,B) be a DQS. Then the protocol in Algorithm 1 satisfies the specification
of reliable Byzantine where all faulty servers belong to some element of B.

The next example shows that removing the handler at line 12 of Algorithm 1 would
undermine Totality.

I Example 4. Consider the DQS (Q,B) from Example 1, where quorums and fail-prone
sets are defined by their cardinalities, and let f = 1 with a total number of 4 servers. As
before, assume servers 1, 2 and 4 are correct, and 3 is faulty. Let the sender be faulty and
send contradictory BCAST(a) and BCAST(a′) messages to the sets {1, 2} and {4}, respectively.
Imagine faulty 3 sends ECHO(a) to 1 and 2 and never sends anything to 4. Then both 1 and 2
will send READY(a) to every server thanks to the conditions in line 9. If now 3 sends READY(a)
to 1 and 2, then both will deliver value a thanks to the conditions in line 15. However, correct
4 cannot send READY(a) and thus cannot deliver a, because it never receives ECHO(a) from
a quorum. But correct 1 and 2 did deliver a. By enabling the handler at line 12, 4 would
send READY(a) to every server after receiving READY(a) from 1 and 2, because any set of two
servers is not contained in any of the elements of B, which are singletons. After receiving
READY(a) from 1, 2 and 4, server 4 will also deliver a thanks to the conditions in line 15.

The next example demonstrates that delivering values right after receiving a quorum of
ECHO messages would also undermine Totality, thus motivating the need for READY messages.

I Example 5. Consider the DQS (Q,B) and the set of faulty servers from Example 4 and
assume that the sender is faulty and sends contradictory BCAST(a) and BCAST(a′) messages to
the sets {1} and {2, 4}, respectively. Imagine 3 sends ECHO(a′) to 2. Then 2 receives ECHO(a′)
from the quorum {2, 3, 4}. Imagine now that the faulty server 3 stops sending messages. If
servers delivered values after receiving a quorum of ECHO messages, then correct server 2
would deliver a′, but correct servers 1 and 4 would never deliver any value.

3 Federated Byzantine Quorum Systems

FBQS definition. We now consider federated Byzantine quorum systems (FBQS), which
are used in the Stellar blockchain to construct quorums from the trust choices of individual
participants [11]. An FBQS is a function S : V→ 22V \ {∅} that specifies the set of quorum
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slices for each server, ranged over by q. We require that a server belong to all of its own
quorum slices: ∀v ∈ V.∀q ∈ S(v). v ∈ q. Quorum slices reflect the trust choices of each
server: a server can be convinced to accept the validity of a statement by any of its slices.

An FBQS specifies quorum slices for all servers. However, to participate in a protocol
such as reliable broadcast or consensus, a server may not need to know the whole FBQS,
which is infeasible in a system with open membership. Instead, it may be sufficient for the
server to know only the quorum slices for the servers it interacts with, which it can receive
directly from these servers. A complication is that faulty servers may lie about their quorum
slices and, in particular, give contradictory information to their peers. In this section we
consider an idealised setting (used in the Stellar whitepaper [11]) that assumes this does not
happen: faulty servers do not equivocate about their quorum slices, even though they can
otherwise behave arbitrarily. Hence, every server knows a part of the same FBQS S. We lift
this assumption in §5.

A non-empty set of servers U ⊆ V is a quorum in an FBQS S if U contains a slice
for each member: ∀v ∈ U.∃q ∈ S(v). q ⊆ U . Note that a server can check whether U is a
quorum based solely on the quorum slices of its participants. Hence, a server can discover
quorums without knowing a complete FBQS by probing different servers until it finds a set
forming a quorum. Alternatively, (signed) information about quorum slices of a given server
can be transitively propagated via chains of trust dependencies, with each server receiving
information from the servers in its slices. We say that an FBQS enjoys quorum intersection
when any two of its quorums intersect. An FBQS S with quorum intersection induces a
quorum system Q consisting of its quorums.

I Example 6. Consider an FBQS with 3f + 1 servers where every server has a slice for each
set of 2f + 1 servers. This FBQS induces the quorum system Q from from Example 1: any
set of 2f + 1 or more servers is a quorum.

I Example 7. Consider the following FBQS, where each server has only one slice determined
by outgoing arrows, except server 1, which has two slices respectively determined by the
solid and the dashed arrows (we omit self-loops in the diagram to avoid clutter). This FBQS
induces the quorum system Q from Example 2.

1 2

3 4

S(1) = {{1, 2}, {1, 4}}
S(2) = {{1, 2}}
S(3) = {{1, 3}}
S(4) = {{3, 4}}

Intact servers. The correctness of protocols over FBQSes is stated using the following
notion of intact servers [11]. Informally, the set of intact servers is the biggest one that
excludes all faulty servers and still yields a quorum system that satisfies certain properties
allowing correct protocol operation within this set. Formally, consider an FBQS S and a
set of servers I. We define the projection S|I of S to I as the FBQS over universe I defined
as follows: S|I(v) = {q ∩ I | q ∈ S(v)}. Given a set of faulty servers Vbad, the set of intact
servers Vint is the biggest set such that

all servers in Vint are correct: Vint ∩Vbad = ∅;
if Vint is non-empty, then it is a quorum in S;
S|Vint enjoys quorum intersection.

OPODIS 2018
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We call the servers in V \Vint befouled. Informally, even though befouled servers may be
correct, they “trust wrong guys” and thus protocols we consider may not guarantee all
correctness properties for them.

I Proposition 8. The set of intact servers in an FBQS with quorum intersection is well-
defined.

For the FBQS from Example 6, which corresponds to a cardinality-based DQS, the
notions of correct and intact coincide. However, this is not the case for the FBQS S from
Example 7. Namely, assume servers 1, 2 and 4 are correct and server 3 is faulty. The set
{1, 2} is a quorum in S, and S|{1,2} satisfies quorum intersection. Furthermore, adding the
correct server 4 to the set {1, 2} does not result in a quorum in S. Hence, servers 1 and 2
are intact and server 4 is correct, but befouled. Intact servers satisfy the following useful
property [11], which is similar to the D-consistency property of DQSes.

I Proposition 9. Consider an FBQS S with quorum intersection. Fix a set of faulty servers
and assume that there exists at least one intact server in S. Then the intersection of every
two quorums in S contains some intact server.

From federated to classical quorum systems. We now show that every FBQS induces a
corresponding DQS. An FBQS does not explicitly specify the possible failure scenarios, since
in a setting with open membership one cannot easily predict them. Hence, to construct a
fail-prone system for an FBQS, we consider all possible failures that do not bring the whole
system down, i.e., leave at least some servers intact.

I Theorem 10. Consider an FBQS S with quorum intersection. Let Q be the quorum system
it induces and let B consist of the maximal sets B such that the failure of B leaves the set of
intact servers in S non-empty. Then (Q,B) is a DQS.

We say that FBQS S induces the DQS (Q,B) from the theorem. For example, the FBQS
S from Example 6 induces the DQS from Example 1. Similarly, the FBQS S from Example 7
induces the DQS from Example 2. Indeed, the failure of server 2 leaves 1, 3 and 4 intact, and
the failure of 3 and 4 leaves 1 and 2 intact. Extending either of these failure sets leaves no
servers intact. The correspondence stated by Theorem 10 allows us to run any off-the-shelf
protocol over a DQS on top of an FBQS with at least one intact server. In particular, the
following corollary of Theorems 3 and 10 shows that this is the case for Bracha broadcast.

I Corollary 11. Let S be an FBQS with quorum intersection and (Q,B) be the DQS it
induces. Then the protocol in Algorithm 1 satisfies the specification of reliable Byzantine
broadcast in executions where at least one server in S is intact.

Note that, unlike in Theorem 3, where the assumption on the allowed failure scenarios
was stated using a given B, here this is done by requiring the existence of at least one intact
server. For example, consider the FBQS from Example 6. The existence of an intact server
in this FBQS is equivalent to requiring that no more than f servers fail, which corresponds
to the standard requirement for the cardinality-based DQS (Example 1).

4 Stellar Broadcast and its Correctness

Stellar broadcast. Despite Corollary 11, using Bracha broadcast in a federated setting is
problematic. While servers can discover quorums in Q without knowing the whole FBQS,
Bracha broadcast also requires participants to know the fail-prone system B (line 12).
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Computing the B induced by S requires knowing the quorum slices of all participants, which
is infeasible in a system with open membership. Stellar solves this problem by replacing the
condition in line 12 by one that a server can check locally. We now present and prove correct
the corresponding broadcast protocol, which is a reformulation of Stellar’s federated voting
protocol; we call the resulting protocol the Stellar broadcast.

Given an FBQS S and a server v, a set of servers B is called v-blocking if B overlaps
each quorum slice in S(v). The Stellar broadcast is obtained from Bracha broadcast in
Algorithm 1 by making the following changes to three lines:

9: when received ECHO(a) from each u ∈ U for some U ∈ Q such that v ∈ U

and ready = ff ;
12: when received READY(a) from every u ∈ B for some v-blocking B ∈ 2V\{∅}

and ready = ff ;
15: when received READY(a) from every u ∈ U for some U ∈ Q

such that v ∈ U and delivered = ff ,

where v is the server executing the code. The new checks at lines 9 and 15 require a server
to only accept information from quorums it belongs to. The new check at line 12 depends
only on the slices of v and can thus be performed locally. This allows v to operate even when
knowing only the part of the FBQS corresponding to the servers it directly interacts with.
The role of the new check in line 12 resembles that of the old check in Algorithm 1. The old
check guaranteed that the server v has received at least one READY(a) message from a correct
server. Due to the following proposition, the new check guarantees that, if v is intact, then
it has received at least one READY(a) message from an intact server.

I Proposition 12. Assume an FBQS S with quorum intersection. For a given set of faulty
servers, the set Vbef of befouled servers is not v-blocking for any intact v.

Proof. Consider an intact server v. The set of all intact servers Vint = V \Vbef is a quorum
in S. Then there exists a slice q ∈ S(v) such that q ⊆ Vint. Hence, Vbef cannot overlap all
of v’s slices, as required. J

As it happens, the Stellar broadcast does not implement reliable Byzantine broadcast,
but only its weaker version, which we call weakly reliable Byzantine broadcast. This weakens
the properties of Validity and Totality (§2) by guaranteeing them only to intact servers:

Validity for intact servers: If the sender client is correct and broadcasts a value a, then
every intact server eventually delivers a.
Totality for intact servers: If a correct server delivers a value, then every intact server
eventually delivers a value.

As we noted above, for the cardinality-based quorum system from Example 1 the notions
of intact and correct coincide. Hence, for this quorum system the weak and the classical
broadcast abstractions coincide as well.

I Theorem 13. Let S be an FBQS with quorum intersection. The protocol in Algorithm 1
over S with the changed lines 9, 12 and 15 satisfies the specification of weakly reliable
Byzantine broadcast in executions where at least one server in S is intact.

As the next example illustrates, the Stellar broadcast does not satisfy the Totality property
of reliable Byzantine broadcast.

OPODIS 2018
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I Example 14. Consider the FBQS S from Example 7. Assume the sender is faulty and it
sends contradictory BCAST(a) and BCAST(a′) messages to the sets {1, 2} and {4} respectively.
Servers 1 and 2 will receive ECHO(a) from the quorum {1, 2}, and by the conditions in the
changed lines 9 and 15, they will then send READY(a) to every server and deliver value a.
However, 4 will not be able to deliver a, because it will receive READY(a) from the set {1, 2},
which is a quorum to which 4 does not belong.

The condition in the Stellar broadcast that a server only accepts information from
quorums it belongs to (lines 9 and 15) is not strictly required to allow a server to operate
without the knowledge of the whole system: a server can ensure that a set of servers is a
quorum based on the quorum slices of its participants, regardless of whether the server is
one of them. If we drop the above condition, then the protocol implements the usual reliable
Byzantine broadcast.

I Theorem 15. Let S be an FBQS with quorum intersection. The protocol in Algorithm 1
over S with the changed line 12 satisfies the specification of reliable Byzantine broadcast in
executions where at least one server in S is intact.

The above theorems yield several novel insights with respect to the existing results about
Stellar. First, they show that some of the ad hoc protocols proposed for Stellar actually
implement a variant of a well-known broadcast abstraction. Second, the theorems strengthen
the existing correctness theorems for Stellar’s federated voting [11]. Namely, we guarantee
Consistency for all correct servers, whereas the Consistency property proved for federated
voting [11, Theorem 9] applies only to a subset of correct servers I such that S|I enjoys
quorum intersection. The difference is significant in practice, since a server cannot easily
find out if it belongs to such a subset. The Totality property proved for federated voting [11,
Theorem 11] requires an intact server to deliver a value, whereas we show that a correct server
delivering a value is enough for all intact servers to also deliver the value. Our theorems also
show that, assuming the existence of at least one intact server, the guarantees provided by
the protocol can be strengthened if a server accepts information from quorums it does not
participate in. In §5 we strengthen our correctness statements even further by considering
the case when faulty servers may equivocate about their quorum slices.

Proving correctness. We give the key steps in proving Theorem 13, which we revisit in §5
to show that the protocol also works when faulty servers equivocate about their quorum
slices. The following lemma is used to establish Consistency.

I Lemma 16. Assume an FBQS S with quorum intersection. If intact servers in an execution
of Stellar broadcast over S send messages READY(a) and READY(a′), then a = a′.

Proof sketch. To prove this lemma, using Proposition 12 we establish that, if intact servers
send messages READY(a) and READY(a′), then some (possibly different) intact servers receive
quorums of messages ECHO(a) and ECHO(a′), respectively. By Proposition 9 these quorums
have to intersect in an intact server, which is also correct and thus cannot send contradictory
ECHO messages. J

Proof sketch for Consistency. Assume that correct servers deliver values a and a′. Then
by the condition in the changed line 15, the corresponding servers received a quorum of
READY(a) and READY(a′) messages, respectively. Since at least one server in S is intact, the
set of intact servers forms a quorum. Then, since S has quorum intersection, each of the
quorums that sent the READY(a) and READY(a′) messages must contain at least one intact
server. But then by Lemma 16 we have a = a′, as required. J
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The next lemma is used to prove Totality.

I Lemma 17. Let S be an FBQS with quorum intersection. Consider an execution of
the Stellar broadcast with the set of intact servers in S being Vint 6= ∅. Assume that
Vint = V + ] V − and for some quorum U we have U ∩Vint ⊆ V +. Then either V − = ∅ or
there exists some server v ∈ V − such that V + is v-blocking.

Proof sketch for Totality. Delivering a value a at an intact server requires this server to
receive READY(a) messages from a quorum U . Since the set of intact servers forms a quorum
and any two quorums intersect, the quorum U must contain some intact servers. Using the
above lemma, we can then show that, as the READY(a) messages from these intact servers
propagate through the system, more and more intact servers will execute the handler at
line 12 and send READY(a) messages themselves. When applying the lemma, the set V + is
the set of intact servers that have sent READY(a) and V − the set of intact servers that have
not done so yet. The lemma ensures that in the end all intact servers will send READY(a) and
will be able to deliver a. J

Observational equivalence. We now establish a tighter correspondence between the Stellar
broadcast over an FBQS and Bracha broadcast over the corresponding BQS: we show that
Bracha broadcast is observationally equivalent to the version of the Stellar broadcast with
the changed line 12 only. Informally, this means that any externally observable behaviour of
one of the protocols can also be produced by the other. Note that this relationship does not
simply follow from the fact that the two broadcasts implement the same specification, because
the specification is non-deterministic: when the sender is faulty and sends contradictory
values, it allows receivers to pick one value to deliver, or not to deliver any value at all. The
equivalence thus shows that, whenever servers in one of the protocols decide to deliver a
value, there is an execution of the other protocol (with some behaviour of faulty servers) that
also delivers the same value.

We formulate the equivalence using the following notion. A history H is a set of events in
an execution of a broadcast protocol that includes the reception of the first BCAST message
received by each server and the triggering of the deliver primitive by each server. A history
captures the initial communication between the clients and the system and the outcome of
the protocol’s execution that is observable by applications running at the servers.

I Theorem 18. Let S be an FBQS with quorum intersection. Fix the sets of faulty and
correct servers such that at least one intact server exists in S, and let (Q,B) be the DQS
that S induces.
(i) For every execution of Bracha broadcast over (Q,B) with a history H, there exists an

execution of the Stellar broadcast over S with the changed line 12 that also entails H.
(ii) For every execution of the Stellar broadcast over S with the changed line 12 that has a

history H, there exists an execution of Bracha broadcast over (Q,B) with a history H.

5 Lying about Trust Choices

So far we have assumed that faulty servers do not equivocate about their quorum slices, so
that all servers share the same FBQS S. This is unrealistic, since in practice servers find
out about quorum slices of their peers from the peers themselves, and faulty peers may lie.
This may lead different servers to have inconsistent information about the quorum slices of a
given faulty server. To capture this, we generalise the notion of an FBQS to allow different
servers to have different views on quorum slices. Let us fix the sets of correct and faulty

OPODIS 2018



17:12 Federated Byzantine Quorum Systems

servers, Vok and Vbad. We say that an indexed family {Sv}v∈Vok is a subjective FBQS if
each Sv is an FBQS and the different FBQSes agree on the quorum slices of correct servers:
∀v1, v2, v ∈ Vok.Sv1(v) = Sv2(v). A subjective FBQS reflects each correct server’s view on
the choices of trust of other servers. We thus sometimes call Sv the view of the server v. We
say that q is u’s slice known by v if q ∈ Sv(u). Note that a subjective FBQS does not specify
the views of faulty servers, as they are immaterial.

The fact that different servers may have inconsistent information about quorum slices
means that the same holds for quorums. Given a subjective FBQS {Sv}v∈Vok , we say that U

is a quorum known by v when U is a quorum in FBQS Sv. As before, a server can discover
(subjective) quorums by asking its peers for their slices until it finds a set forming a quorum.
A subjective FBQS {Sv}v∈Vok satisfies quorum intersection if Sv satisfies quorum intersection
for every v that is correct. A subjective FBQS {Sv}v∈Vok with quorum intersection induces
a subjective quorum system {Qv}v∈Vok , consisting of the quorums known by each correct
server.

I Example 19. Let V = {1, 2, 3, 4} and assume that 3 is faulty and the rest are correct.
Consider a subjective FBQS defined by the following diagrams:

S1,S4 :

1 2

3 4

S2 :

1 2

3 4

Each server’s slices are determined by the outgoing arrows (we omit self-loops). In the case
of server 1 we have the two slices determined respectively by the solid and the dashed arrows.
Hence, we have

S1(1) = S2(1) = S4(1) = {{1, 2}, {1, 4}}; S1(2) = S2(2) = S4(2) = {{1, 2}};
S1(4) = S2(4) = S4(4) = {{3, 4}}.

The faulty server 3 communicates the slices S1(3) = S4(3) = {{1, 3}} to servers 1 and 4, and
the slices S2(3) = {{2, 3}} to server 2. The above FBQS induces a subjective quorum system
with

Q1 = Q4 = {{1, 2}, {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4}}; Q2 = {{1, 2}, {1, 2, 3}, {1, 2, 3, 4}}.

Thus, due to server 3 equivocating, servers 1 and 4 consider {1, 3, 4} a quorum, but server 2
does not.

We next adapt the notion of intact servers to subjective FBQSes by requiring the
conditions satisfied by intact servers to hold in any subjective view. Given a subjective FBQS
{Sv}v∈Vok , the set of intact servers Vint is the biggest set such that

all servers in Vint are correct: Vint ∩Vbad = ∅;
if Vint is non-empty, then it is a quorum in Sv for each v ∈ Vok;
for each v ∈ Vok, Sv|Vint enjoys quorum intersection.

Note that the definition of intact servers depends only on the slices of correct servers in
{Sv}v∈Vok , which agree across the views Sv of different servers v. Hence, the notions of
intact computed from the subjective views of every server coincide with the above notion.
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I Proposition 20. The set of intact servers in a subjective FBQS {Sv}v∈Vok with quorum
intersection is well-defined and is equal to the set of intact servers in any of Sv.

For instance, the set of intact servers in any of the subjective views in Example 19 is
{1, 2}. As before, servers that are not intact are called befouled.

Using the fact that the views of different servers agree on the quorum slices of correct
servers, we can prove the following proposition, which ensures that the intersection of any
two quorums, even when coming from the views of different servers, has to contain an intact
node. This proposition generalises Proposition 9 and is key for proving the correctness of the
Stellar broadcast in the subjective setting.

I Proposition 21. Let {Sv}v∈Vok be a subjective FBQS with quorum intersection and at
least one intact server, and let {Qv}v∈Vok be its induced subjective quorum system. Then the
intersection of every two quorums in

⋃
v∈Vok

Qv contains some intact server.

For example, any two quorums in the quorum system from Example 19 intersect at 1,
which is intact.

We can run the Stellar broadcast (with the changes to lines 9, 12 and 15; §4) over a
subjective FBQS {Sv}v∈Vok by letting each correct server v act according to its FBQS Sv,
which it constructs based on the information provided by its peers. In particular, a set B ⊆ V
is now considered v-blocking when it overlaps every slice in Sv(v): ∀q ∈ Sv(v). q ∩ B 6= ∅.
In this setting, the Stellar broadcast still implements weakly reliable Byzantine broadcast,
defined as before using the above notion of intact.

I Theorem 22. Given sets of correct and faulty servers, Vok and Vbad, let {Sv}v∈Vok be a
subjective FBQS with quorum intersection and at least one intact server. Then the Stellar
broadcast over this system implements weakly reliable Byzantine broadcast.

We can also establish an analogue of Theorem 15, showing that, when servers accept
quorums they do not belong to, the broadcast guarantees are strengthened.

The above theorem is our key result: it shows that the Stellar broadcast is correct in
the setting of its intended deployment, where servers may have inconsistent information
about the trust choices of their peers. This setting has not been considered by the existing
correctness theorems for Stellar [11]. Note that, like in the idealised setting we considered
earlier, a server in the Stellar broadcast is able to operate when knowing only the quorum
slices of the servers it directly interacts with (even though those reported by faulty servers
may be bogus). Theorem 22 holds because the key lemmas used to prove the correctness of
the Stellar broadcast in the idealised setting can be adjusted to the more general setting we
consider here. The following lemma generalises Lemmas 16 and is used to prove Consistency.

I Lemma 23. Assume a subjective FBQS {Sv}v∈Vok with quorum intersection and consider
an execution of Stellar broadcast over {Sv}v∈Vok . If intact servers send messages READY(a)
and READY(a′), then a = a′.

We prove the above lemma similarly to Lemma 16, but using Proposition 21 instead of
Proposition 9. We prove Totality similarly to the idealised case using the following lemma,
generalising Lemma 17.

I Lemma 24. Let {Sv}v∈Vok be a subjective FBQS with quorum intersection. Consider an
execution of the Stellar broadcast with the set of intact servers in {Sv}v∈Vok being Vint 6= ∅.
Assume that Vint = V + ] V − and for some quorum U known by a server v we have
U ∩Vint ⊆ V +. Then either V − = ∅ or there exists some server v′ ∈ V − such that V + is
v′-blocking.
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6 Subjective Dissemination Quorum Systems

We have shown that a federated system where servers may lie about their trust choices
generates a system in which every server has its own subjective notion of a quorum. We
now investigate such subjective quorum structures independently from the way they are
generated, which may be useful in the future for dealing with approaches to decentralising
trust different from Stellar. To this end, we introduce the notion of a subjective Byzantine
quorum system, where different servers may have different Byzantine quorum systems.

Let us fix the sets of correct and faulty servers, Vok and Vbad. A subjective Byzantine
quorum system is a pair of two indexed families – a subjective quorum system {Qv}v∈Vok and
a subjective fail-prone system {Bv}v∈Vok , where each Bv is a fail-prone system. A subjective
BQS ({Qv}v∈Vok , {Bv}v∈Vok) is a subjective DQS when the following properties hold:

SD-safety: ∀v ∈ Vok.∃B ∈ Bv. Vbad ⊆ B;
SD-consistency:
∀v ∈ Vok.∀U1 ∈ Qv.∀U2 ∈

⋃
v′∈Vok

Qv′ .∀B ∈ Bv. Vbad ⊆ B =⇒ U1 ∩ U2 6⊆ B; and
SD-availability: each pair (Qv,Bv) with v ∈ Vok satisfies D-availability.

SD-safety requires that the fail-prone system of each server contains some element that
includes all faulty servers. Such a condition was not part of the previous DQS definition,
but we required it when stating protocol correctness in a particular execution where the set
of faulty servers was fixed (Theorem 3). Since a subjective DQS is already defined in the
context of a fixed set of faulty servers, we add this condition to its definition. SD-consistency
requires that the intersection of a quorum known by a server v with a quorum known by
any other server cannot be completely faulty according to v’s view. To formulate this we
consider only sets B ∈ Bv that contain all faulty servers; at least one such set is guaranteed
to exist by SD-safety. This requirement ensures that we can generate a subjective DQS from
a subjective FBQS from a view of each correct server as per the mapping in Theorem 10.

I Theorem 25. Given sets of correct and faulty servers, Vok and Vbad, let {Sv}v∈Vok be
a subjective FBQS with quorum intersection and with at least one intact server, and let
{Qv}v∈Vok be the subjective quorum system it induces. For each v ∈ Vok let Bv consist of the
maximal sets B such that the failure of B leaves the set of intact servers in Qv non-empty.
Then ({Qv}v∈Vok , {Bv}v∈Vok) is a subjective DQS.

The properties of subjective DQSes are strong enough to execute Bracha broadcast
assuming each correct server acts according to its view in an arbitrary subjective DQS.

I Theorem 26. Given sets of correct and faulty servers, Vok and Vbad, let
({Qv}v∈Vok , {Bv}v∈Vok) be a subjective DQS. Then Bracha broadcast over this system imple-
ments reliable Byzantine broadcast.

In the special case when all views of correct servers are the same, a subjective DQS
degenerates into a variant of a usual DQS (Q,B) that satisfies a weaker version of D-
consistency that considers only sets B ∈ B that include all faulty servers:

∀U1, U2 ∈ Q.∀B ∈ B. Vbad ⊆ B =⇒ U1 ∩ U2 6⊆ B.

Theorem 26 implies that Bracha broadcast is also correct when executed over this DQS
variant, which weakens the classical conditions required for correctness. The following
stronger version of SD-consistency does specialise to D-consistency of DQSes:

∀v ∈ Vok.∀U1 ∈ Qv.∀U2 ∈
⋃

v′∈Vok
Qv′ .∀B ∈ Bv. U1 ∩ U2 6⊆ B.
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Obviously, Bracha broadcast can also be correctly executed over a subjective DQS satisfying
this property. Finally, Theorems 25 and 26 imply that Bracha broadcast can be executed
over a subjective DQS induced by a subjective FBQS.

I Corollary 27. Given sets of correct and faulty servers, Vok and Vbad, let {Sv}v∈Vok

be a subjective FBQS with quorum intersection where at least one server is intact. Let
({Qv}v∈Vok , {Bv}v∈Vok) be the subjective DQS that this FBQS induces. Then Bracha broad-
cast over this subjective DQS implements reliable Byzantine broadcast.

Note that constructing the fail-prone system Bv required to run Bracha broadcast at
server v requires the server to have a complete (but possibly imperfect) information about
the quorum slices of all servers in the system. Hence, the advantage of the Stellar broadcast
over Bracha broadcast is preserved in the subjective setting.

7 Related Work

Byzantine quorum systems were proposed by Malkhi and Reiter [10], who also demonstrated
how they can be used to implement read-write registers. The generalisation of Bracha
broadcast to dissemination quorum systems in Algorithm 1 follows the techniques used
in [10]. Researchers have also considered quorum systems that provide stronger guarantees
than dissemination ones and studied which quorum systems yield the best performance
characteristics [14]. An interesting avenue for future work is to investigate whether other
types of quorum systems can be useful in the federated setting.

The Stellar broadcast as presented in this paper is based on the federated voting protocol,
which is crucial to the Stellar consensus. In the Stellar whitepaper [11] this protocol is
formulated as a form of binary consensus without termination guarantees. The whitepaper
does not establish its relationship to reliable Byzantine broadcast or existing protocols. It
does contain some correctness statements for the federated voting protocol; in particular, our
proof of Totality (Lemma 17) follows the ideas in the whitepaper. However, the existing proofs
only consider the idealised setting where Byzantine servers do not equivocate about their
trust choices, which does not reflect the intended deployment of Stellar. They furthermore
establish weaker safety and liveness properties than us.

8 Conclusions and Future Work

In this paper we have rigorously studied the basic concepts underlying the Stellar blockchain.
In particular, we have established a formal correspondence between federated and classical
Byzantine quorum systems, and between the federated voting protocol of Stellar and Bracha
protocol for reliable Byzantine broadcast. Our results explicate the main benefit of designing
a broadcast protocol tailored for the federated setting: allowing servers to operate based
on incomplete information. By formalising the relationship between Stellar and Bracha
broadcasts, we were additionally able to show that a variant of the Stellar broadcast closer to
the original Bracha broadcast still allows servers to operate based on incomplete information,
yet provides stronger guarantees.

We have also faithfully captured a realistic setting for deploying Stellar where Byzantine
nodes may equivocate about their trust choices. We have shown that this setting motivates a
generalisation of the classical Byzantine quorum systems that allows nodes to have inconsistent
information about quorums. This may be useful in the future for dealing with alternative
approaches to decentralising trust.
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Our results demonstrate that the purpose of FBQSes is not limited to solving consensus,
for which they were originally proposed. In particular, we believe that apart from broadcast
abstractions, FBQSes can also be used to implement read-write registers on the lines of
existing constructions [10, 1]. Even though in this paper we did not handle the whole of
Stellar consensus protocol, in the future our results should also enable a rigorous analysis of
this protocol and similar ones, such as Ripple [13]. Finally, we hope that the connections we
have established between classical broadcast abstractions and the novel Stellar protocols will
enable transferring ideas from the existing optimised protocols for BFT consensus [9, 6] into
the federated setting.
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Abstract
Message-passing models of distributed computing vary along numerous dimensions: degree of
synchrony, kind of faults, number of faults... Unfortunately, the sheer number of models and
their subtle distinctions hinder our ability to design a general theory of message-passing models.
One way out of this conundrum restricts communication to proceed by round. A great variety
of message-passing models can then be captured in the Heard-Of model, through predicates on
the messages sent in a round and received during or before this round. Then, the issue is to find
the most accurate Heard-Of predicate to capture a given model. This is straightforward in syn-
chronous models, because waiting for the upper bound on communication delay ensures that all
available messages are received, while not waiting forever. On the other hand, asynchrony allows
unbounded message delays. Is there nonetheless a meaningful characterization of asynchronous
models by a Heard-Of predicate?

We formalize this characterization by introducing Delivered collections: the collections of
all messages delivered at each round, whether late or not. Predicates on Delivered collections
capture message-passing models. The question is to determine which Heard-Of predicates can
be generated by a given Delivered predicate. We answer this by formalizing strategies for when
to change round. Thanks to a partial order on these strategies, we also find the "best" strategy
for multiple models, where "best" intuitively means it waits for as many messages as possible
while not waiting forever. Finally, a strategy for changing round that never blocks a process
forever implements a Heard-Of predicate. This allows us to translate the order on strategies into
an order on Heard-Of predicates. The characterizing predicate for a model is then the greatest
element for that order, if it exists.
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1 Introduction

1.1 Motivation
Even when restricted to message-passing, distributed computing spawns a plethora of models:
with various degrees of synchrony, with different kinds of faults, with different failure
detectors... Although some parameters are quantitative, such as the number of faults, the
majority are qualitative instead, for example the kinds of faults. Moreover, message-passing
models are usually defined by a mix of mathematical formalism and textual description,
with crucial details nested deep inside the latter. This is why these models resist unification
into a theory of distributed computing, and why results in the field are notoriously hard to
organize, use and extend.

One solution requires constraining communication to proceed by round: each process
repeatedly broadcasts a message with its current round number, waits for as many messages
as possible bearing this round number, and changes round by computing both its next state
and next message. The variations between models are then captured by the dynamic graph
specifying, for each round, from which processes each process received a message with this
round number before the end of its round; this fits the concept of dynamic network from
Kuhn and Oshman [11]. Nonetheless, we will privilege the perspective of Charron-Bost and
Schiper Heard-Of model [4], which places itself more at the level of processes. Here, the
Heard-Of collection of an execution contains, for each round r and each process j, the set
of processes from which j received a message sent in round r before going to round r + 1.
Then, a predicate on Heard-Of collections characterizes a message-passing model.

Yet rounds don’t remove the complexities and subtleties of message-passing models –
they just shift them to the characterization of a given model by a Heard-Of predicate. This
characterization depends on how rounds can be implemented in the underlying model. In the
synchronous case, processes progress in lock-step, and every message that will ever be received
is received during its corresponding round. Hence, the Heard-Of predicate characterizing a
synchronous model simply specifies which messages can be lost. In asynchronous models on
the other hand, messages can be late, and thus the distance between the round numbers of
processes is unbounded. The combination of these uncertainties implies that processes do
not know which messages will be delivered and when. Thus, there is a risk of not waiting for
useful messages that will eventually arrive, and to wait forever for messages that never will.

To the best of our knowledge, there is no systematic study of the Heard-Of predicates
generated by various asynchronous message-passing models. Because it is a crucial step in
unifying distributed computing’s menagerie of models through rounds, we also believe this
topic to be of importance.

1.2 Approach and Overview
As hinted above, the difficulty lies in the potential discrepancy between messages delivered
on time – captured by Heard-Of collections – and messages delivered at all. We want to
determine the former, but it is considerably easier to specify the latter for an operational
model: list the messages that will eventually arrive. We therefore center our formalization
around Delivered collections, infinite sequences of communication graphs capturing, for each
round, all messages sent at this round and eventually delivered for a given operational model.
The question is thus to characterize by a Heard-Of predicate which messages can be waited
for when the deliveries are those from the Delivered predicate.
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From these Delivered collections, we build runs representing the different scheduling
of deliveries and changes of round. Some of these runs, called valid, define a Heard-Of
collection; invalid runs have processes blocked forever at some round. We filter the latter
thanks to strategies: sets of local states for which a process is allowed to change round. Runs
for a strategy must also satisfy a fairness condition ensuring that if a process can change
round continuously, it does. Strategies with only valid runs for a Delivered predicate, that is
strategy implementing a Heard-Of predicate, are called valid.

The next question is how to choose a valid strategy and the corresponding predicate,
as characterizing a Delivered predicate and its underlying model? We answer by taking
the strategy generating the Heard-Of predicate that is the smallest overapproximation of
the Delivered predicate. From this intuition, we define a partial order on valid strategies
called domination; a characterizing strategy is a greatest element for this order, and the
characterizing predicate is the one it generates.

The results obtained with this approach are threefold:
The formalization itself, with a complete example: the asynchronous message-passing
model with reliable communication and at most F permanent crashes.
The study of carefree strategies, the ones depending only on messages from the current
round. This restricted class is both well-behaved enough to always have a unique
dominating strategy, and expressive enough to capture interesting Delivered predicates.
The study of reactionary strategies, the ones depending only on messages from past and
current rounds. Here too we show well-behavior of this class as well as an example where
reactionary is needed for domination, and another one where it is insufficient.

Along these results, we also formally prove the characterization of asynchronous models by
Heard-Of predicates given by Charron-Bost and Schiper [4].

We begin by the formalization in Section 2, while Section 3 introduces a fully developed
example: the asynchronous message-passing model with reliable communication and at most
F permanent crashes. Section 4 explores carefree strategies in terms of well-behavior and
expressivity, closing with the example with at most B failed broadcasts per round, a Delivered
predicate dominated by a carefree strategy. We follow by studying reactionary strategies
in Section 5. Here again, well-behavior and expressivity are examined, followed by the
example of at most F permanent initial crashes. Section 6 and Section 7 then conclude
the paper with a discussion of related works, the value of our results and some perspectives.

Due to space constraints, we only provide sketches for some proofs; the complete versions
can be found in the long paper [14].

2 Formalization

All our abstractions revolve around infinite sequences of graphs, called collections. A Delivered
collection maps each round r and process j to the set of processes from which j receive a
message sent at r. A Heard-Of collection maps each round r and process j to the set of
processes from which j received, before going to round r + 1, the message sent at r. The
difference lies in considering all deliveries for Delivered collections, but only the deliveries
before the end of the round of the receiver for Heard-Of collections.

I Definition 1 (Collections and Predicates). Let Π a set of processes. Col : (N∗×Π) 7→ P(Π) is
either a Delivered collection or a Heard-Of collection for Π, depending on the context.

In the same way, Pred : P((N∗ × Π) 7→ P(Π)) is either a Delivered predicate or a
Heard-Of predicate for Π.
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For a given Col, the kernel of round r are the processes from which everyone receives a
message for this round KCol(r) ,

⋂
j∈Π

Col(r, j).

2.1 Runs and Strategies
The behavior of processes is classically specified by runs, sequences of both states and
transitions satisfying some restricting conditions: messages cannot be delivered before the
round they are sent and are delivered only once. Given a Delivered collection, we additionally
require that the delivered messages are exactly the ones in the Delivered collection.

As we only care about which messages can be waited for, ignoring the content of messages
or the underlying computation, we limit the state to the received messages and the round.

I Definition 2 (Run). Let Π be a set of n processes. Let Q = (N× P(N∗ ×Π)) the set of
process states. The first element is the round of a process (written q.round for q ∈ Q) and
the second is the set of pairs 〈round it was sent, sender〉 for each delivered message (written
q.received for q ∈ Q). Let the set of transitions T = {nextj | j ∈ Π} ∪ {deliver(r, k, j) | r ∈
N∗ ∧ k, j ∈ Π} ∪ {end}. nextj is the transition for j changing round, deliver(r, k, j) is the
transition for the delivery to j of the message sent by k in round r, and end is the transition
to end a finite run. For qt ∈ Qn × T and j ∈ Π, we write qt.state for the state, qt.state.j for
the local state of j and qt.transition for the transition. Finally, let (Qn × T )∞ be the set of
finite and infinite words on the set (Qn × T ). Then, t ∈ (Qn × T )∞ is a run ,

(Initial state) t[0].state = 〈1, ∅〉n
(Transitions) ∀i ∈ [0, size(t)) :

∃r ∈ N∗,∃k, j ∈ Π : t[i].transition = deliver(r, k, j) =⇒
t[i + 1].state = t[i].state

Except t[i + 1].state.j.received = t[i].state.j.received ∪ {(r, k)}
∧ ∃j ∈ Π : t[i].transition = nextj =⇒

t[i + 1].state = t[i].state Except t[i + 1].state.j.round = t[i].state.j.round + 1
∧ (t[i].transition = end) =⇒ (i = size(t)− 1)


(Delivery after sending) ∀i ∈ [0, size(t)) :
t[i].transition = deliver(r, k, j) =⇒ t[i].state.k.round ≥ r

(Unique delivery) ∀〈r, k, j〉 ∈ (N∗ × Π × Π) : (∃i ∈ [0, size(t)) : t[i].transition =
deliver(r, k, j)) =⇒ (∀i′ ∈ [0, size(t)) \ {i} : t[i′].transition 6= deliver(r, k, j))

Let CDel be a Delivered collection. Then, runs(CDel), the runs of CDel ,t a run

∣∣∣∣∣∣∣∣
∀〈r, k, j〉 ∈ N∗ ×Π×Π :

(k ∈ CDel(r, j) ∧ ∃i ∈ [0, size(t)) : t[i].state.j.round ≥ r)
⇐⇒
(∃i ∈ [0, size(t)) : t[i].transition = deliver(r, k, j))


For PDel a Delivered predicate, we write runs(PDel) = {runs(CDel) | CDel ∈ PDel}.

Our definition of runs does not force processes to change rounds. This contradicts our
intuition about a system using rounds: processes should keep on "forever", or at least as long
as necessary. In a valid run, processes change round an infinite number of times.

IDefinition 3 (Validity). A run t is valid , ∀j ∈ Π : |{i ∈ N | t[i].transition = nextj}| = ℵ0.

Valid run are necessarily infinite. Yet the definition above allows finite runs thanks to
the end transition. This is used in proofs by contradiction which imply the manipulation of
invalid runs and thus potentially finite ones.

Next, we define the other building block of our approach: strategies. They are simply
sets of local states, representing the states where processes can change round.
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I Definition 4 (Strategy). f : P(Q) is a strategy.

Combining a Delivered predicate and a strategy results in runs capturing the behavior of
processes for the corresponding Delivered collections when following the strategy. In these
runs, processes can change round only when allowed by the strategy, and must also do so if
the strategy allows it continuously.

I Definition 5 (Runs Generated by a Strategy). Let f be a strategy and t a run. t is a run
generated by f , t satisfies the following:

(Next only if allowed) ∀i ∈ [0, size(t)),∀j ∈ Π : (t[i].transition = nextj =⇒
t[i].state.j ∈ f)
(Infinite fairness of next) If t is infinite, then ∀j ∈ Π : |{i ∈ N | t[i].transition =
nextj}| < ℵ0 =⇒ |{i ∈ N | t[i].state.j /∈ f}| = ℵ0
(Finite fairness of next) If t is finite, then ∀j ∈ Π : t[size(t)− 1].state.j /∈ f .

For a Delivered predicate PDel, we note runsf (PDel) = {t a run | t generated by f ∧ t ∈
runs(PDel)}.

From that point, it is clear that a well-behaved strategy is such that all its runs are valid.

I Definition 6 (Valid Strategy). Let PDel a Delivered predicate and f a strategy. f is a
valid strategy for PDel , ∀t ∈ runsf (PDel) : t is a valid run.

Validity guarantees an infinite number of complete rounds for every run of the strategy.
This ensures that a run defines a Heard-Of collection, as we see next.

2.2 From Delivered Collections to Heard-Of Collections
Recall that the difference between a Heard-Of and a Delivered collection is that the latter
takes into account all delivered messages, while the former only considers messages from a
round if they were received before or during the corresponding round of the receiver.

If a run is valid, then all processes have infinitely many rounds, and thus it defines a
Heard-Of collection through its behavior.

I Definition 7 (Heard-Of Collection of a Valid Run). Let t a valid run. Then, CHOt is the
Heard-Of collection of t ,

∀r ∈ N∗, ∀j ∈ Π : CHOt(r, j) =

k ∈ Π

∣∣∣∣∣∣ ∃i ∈ N :

 t[i].state.j.round = r

∧ t[i + 1].j.state.round = r + 1
∧ 〈r, k〉 ∈ t[i].state.j.received


It is useful to go the other way, and extract from a Heard-Of collection some canonical

valid run generating it. Our choice is a run where processes change round in lockstep, every
message from a Heard-Of set is delivered in the round where it was sent, and every late
message is delivered in the round following the one where it was sent.

I Definition 8 (Standard Run of a Heard-Of collection). Let cho be a Heard-Of collection.
For r > 0, let onTimeMesr be a permutation of {deliver(r, k, j) | k, j ∈ Π ∧ k ∈ cho(r, j)},
lateMesr a permutation of {deliver(r − 1, k, j) | k, j ∈ Π ∧ k /∈ cho(r − 1, j)}, and nexts
be a permutation of {nextj | j ∈ Π}. Then, the run starting at the initial state and with
transitions defined by the word

∏
r>0

(lateMesr.onTimeMesr.nexts) is a standard run of cho.

This canonical run is a run of any Delivered predicate containing the collection where
every message is delivered. This collection captures the case where no failure occurs: every
process always broadcasts and no message is lost. Having this collection in a Delivered
predicate ensures that although faults might happen, they are not forced to do so.
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I Lemma 9 (Standard Run is a Run for Total Collection). Let cho be a Heard-Of collection
and let PDel be a Delivered predicate containing the total collection CDeltotal defined by
∀r > 0,∀j ∈ Π : CDeltotal(r, j) = Π. Then, a standard run t of cho is a run of PDel.

Proof. t is a run since it satisfies the four constraints defining a run. Furthermore, one
message from each process is eventually delivered to everyone for each round in t, which
means that t is a run of the total Delivered collection, and thus a run of PDel. J

I Definition 10 (Heard-Of Predicate Generated by Strategy). If f is a valid strategy for PDel,
we write PHOf (PDel) for the Heard-Of collections of the runs generated by f for PDel:
PHOf (PDel) , {CHOt | t ∈ runsf (PDel)}.

Every valid strategy generates a Heard-Of predicate from the Delivered predicate. We
now have a way to go from a Delivered predicate to a Heard-Of one: design a valid strategy
for the former that generates the latter. But we still have not answered the original question:
among all the Heard-Of predicates one can generate from a given Delivered predicate, which
one should we consider as the characterization of the Delivered predicate?

First, remark that all Delivered collections can be generated as Heard-Of collections by
a valid strategy: simply deliver all messages from a round before changing the round of a
process – the change of round must eventually happen by validity of the strategy. Thus,
every Heard-Of predicate generated from a Delivered one is an overapproximation of the
latter: for any strategy f , PDel ⊆ PHOf (PDel). But we want to receive as many messages
as possible on time, that is to be as close as possible to the original Delivered predicate. The
characterizing Heard-Of predicate is thus the smallest such overapproximation, if it exists.

We formalize this intuition by defining a partial order on valid strategies for a Delivered
predicate capturing the implication of the generated Heard-Of predicates. One strategy
dominates another if the Heard-Of set it generates is included in the one generated by the
other. Dominating strategies are then the greatest elements for this order. By definition
of domination, all dominating strategies generate the same dominating Heard-Of predicate,
which characterizes the Delivered predicate.

I Definition 11 (Domination Order, Dominating Strategy and Dominating Predicate). Let
PDel be a Delivered predicate and let f and f ′ be two valid strategies for PDel. Then,
f dominates f ′ for PDel, written f ′ ≺PDel f , PHOf ′(PDel) ⊇ PHOf (PDel).

A greatest element for ≺PDel is called a dominating strategy for PDel. Given such a
strategy f , the dominating predicate for PDel is then PHOf (PDel).

3 A Complete Example: At Most F Crashes

To provide a more concrete intuition, we turn to an example: the message-passing model with
asynchronous and reliable communication, and at most F permanent crashes. To find the
corresponding Delivered predicate, we characterize which messages are delivered in a round
execution of this model: all the messages sent by a process before it crashes are delivered; it
sends no message after; at the round where it crashes, there may be an incomplete broadcast
if the process crashes in the middle of it. Additionally, at most F processes can crash.

I Definition 12 (PDelF ). The Delivered predicate PDelF for the asynchronous model with
reliable communication and at most F permanent crashes ,{
CDel ∈ (N∗ ×Π) 7→ P(Π)

∣∣∣∣ ∀r > 0,∀j ∈ Π : |CDel(r, j)| ≥ n− F

∧ CDel(r + 1, j) ⊆ KCDel(r)

}
.
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The folklore strategy for this model is to wait for at least n− F messages before allowing
the change of round.

I Definition 13 (waiting for n− F messages). The strategy to wait for n− F messages is:
fn−F , {q ∈ Q | |{k ∈ Π | 〈q.round, k〉 ∈ q.received}| ≥ n− F}

To see why this strategy is used in the literature, simply remark that at least n − F

messages must be delivered to each process at each round. Thus, waiting for that many
messages ensures that no process is ever blocked. Rephrased with the concepts introduced
above, fn−F is a valid strategy for PDelF .

I Lemma 14 (Validity of fn−F ). fn−F is valid for PDelF .

Proof. We proceed by contradiction: Assume fn−F is invalid for PDelF . Thus, there exists
t ∈ runsfn−F

(PDelF ) invalid. Because t is infinite, the problem is either the infinite fairness
of next or a next done when fn−F does not allow it. Each next transition being played an
infinite number of times, we conclude that some next is played while fn−F does not allow it.
Let r be the smallest round where it happens and j be a process blocked at r in t. Let also
CDelt be a Delivered collection of PDelF such that t ∈ runs(CDelt).

We know by definition of PDelF that |CDelt(r, j)| ≥ n− F . The minimality of r and the
fact that t ∈ runs(CDel) then ensure that all messages in this Delivered set are delivered at
some point in t. By definition of fn−F , the transition nextj is then available from this point
on. This contradicts the fact that j cannot change round at this point in t. J

The Heard-Of predicate generated by fn−F was first given by Charron-Bost and Schiper [4]
as a characterization the asynchronous model with reliable communication and at most F

crashes. The intuition behind it is that even in the absence of crashes, we can make all
processes change round by delivering any set of at least n− F messages to them.

I Theorem 15 (Heard-Of Characterization of fn−F ).
PHOfn−F

(PDelF ) = {cho ∈ (N∗ ×Π) 7→ P(Π) | ∀r ∈ N∗,∀j ∈ Π : |cho(r, j)| ≥ n− F}.

Proof. First, we show ⊆. Let cho ∈ PHOfn−F
(PDelF ) and t ∈ runsfn−F

(PDelF ) a run
of fn−F generating cho. By definition of the runs of fn−F , processes change round only
when they received at least n − F messages from the current round, which implies that
∀r ∈ N∗,∀j ∈ Π : |cho(r, j)| ≥ n− F .

Then, we show ⊇. Let cho a Heard-Of collection over Π such that ∀r ∈ N,∀j ∈ Π :
|cho(r, j)| ≥ n−F . Let t be a standard run of cho; since PDelF contains the total collection,
t is a run of PDelF by Lemma 9. To prove this is also a run of fn−F , we proceed by
contradiction: Assume it is not: because t is infinite, the problem is either the infinite
fairness of next or a next done when fn−F does not allow it. Each next transition being
played an infinite number of times in a standard run, the only possibility left is the second
one: some next transition in t is done while fn−F does not allow the corresponding process
to change round. Let r be the smallest round where this happens, and j one of the concerned
processes at round r. By definition of t as a standard run, j received all messages from
cho(r, j) before the problematic next. And |cho(r, j)| ≥ n− F by hypothesis. By definition
of fn−F , the transition nextj is then available from this point on. This contradicts the fact
that j cannot change round at this point. We conclude that cho ∈ PHOfn−F

(PDelF ). J

Finally, we want to vindicate the folklore intuition about this strategy: that it is optimal
in some sense. Intuitively, waiting for more than n− F messages per round means risking
waiting forever, and waiting for less is wasteful. Our domination order captures this concept
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of optimality: we show that fn−F is indeed a dominating strategy for PDelF . Therefore,
PHOfn−F

(PDelF ) is the dominating predicate for PDelF .
To do so, we introduce another canonical run, this time for the combination of a Delivered

collection and a strategy. This run consists in delivering every message as early as possible.

I Definition 16 (Earliest Run of Strategy for Delivered Collection). Let CDel be a Delivered
collection and f be a strategy. An earliest run of f for CDel is a run of runsf (CDel)
starting in the initial state, and with the following transitions happening in successive
iterations:

At each iteration, all messages that can be delivered and were not already are delivered.
Then, every process allowed by f to change round does so.

By combining standard and earliest runs, we show that any valid strategy for PDelF is
dominated by fn−F and thus that PHOfn−F

(PDelF ) is the dominating predicate for PDelF .

I Theorem 17 (fn−F Dominates PDelF ). fn−F dominates PDelF .

Proof. Let f be a valid strategy for PDelF ; we now prove that f ≺PDelF fn−F , that is
PHOfn−F

(PDelF ) ⊆ PHOf (PDelF ). Let cho ∈ PHOfn−F
(PDelF ), and let t be a standard

run of cho. Since PDelF contains the total collection, t is a run of PDelF by Lemma 9. We
only need to prove that it is also a run of f to conclude.

We do so by contradiction. Assume t is not a run of f : because t is infinite, the problem
is either the infinite fairness of next or a next done by a process j when f does not allow
it. Each next transition being played an infinite number of times in a standard run, the
only possibility left is the second one. At the point of the forbidden next, by definition
of a standard run, j has received every message from previous rounds, and all messages
from cho(r, j). By application of Theorem 15 and cho being in PHOfn−F

(PDelF ), cho(r, j)
contains at least n− F processes.

Let CDelblock be the Delivered collection where all processes from which j did not
receive a message at the problematic next in t stop sending messages from this round on:

∀r′ > 0,∀k ∈ Π : CDelblock(r′, k) =
{

Π if r′ < r

cho(r, j) otherwise
This is a Delivered collection of PDelF : processes that stop sending messages never do

again, and at most F processes do so because cho(r, j) contains at least n− F processes.
Let tblock be an earliest run of f for CDelblock. This is a run of f , by definition. We then

have two possibilities.
During one of the first r−1 iterations of tblock, there is some process which cannot change
round. Let r′ be the smallest iteration where it happens, and k be a process unable to
change round at this iteration. By minimality of r′, all processes arrive at round r′, and
by symmetry of CDelblock they all receive the same messages as k. Thus, all processes are
blocked at round r′, there are no more next or deliveries, and tblock is therefore invalid.
For the first r − 1 iterations, all processes change round. Thus, every one arrives at
round r. By definition of an earliest run, all messages from the round are delivered before
any next. The symmetry of CDelblock also ensures that every process received the same
messages, that is all messages from round < r and all messages from cho(r, j). These are
exactly the messages received by j in t at round r. But by hypothesis, j is blocked in
this state in t. We thus deduce that all processes are blocked at round r in tblock, and
thus that it is an invalid run.

Either way, we deduce that f is invalid, which is a contradiction. J
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This means that when confronted with a model captured by PDelF , there is no point
in remembering messages from past rounds – and messages from future rounds are simply
buffered. Intuitively, messages from past rounds are of no use in detecting crashes in the
current round. As for messages from future rounds, they could serve to detect that a process
has not crashed when sending its messages from the current round. This does not alter the
Heard-Of predicate because nothing forces messages from future rounds to be delivered early,
and thus there is no way to systematically use the information from future rounds.

4 Carefree Strategies

We now turn to more general results about Delivered predicates and strategies. We focus
first on a restricted form of strategies, the carefree ones: they depend only on the received
messages from the current round. For example, fn−F is a carefree strategy. These are quite
simple strategies, yet they can be dominating, as shown for fn−F and PDelF .

4.1 Definition and Expressiveness Results
I Definition 18 (Carefree Strategy). Let f be a strategy and, ∀q ∈ Q, let cfree(q) =
{k ∈ Π | 〈q.round, k〉 ∈ q.received}. f is a carefree strategy , ∀q, q′ ∈ Q : cfree(q) =
cfree(q′) =⇒ (q ∈ f ⇐⇒ q′ ∈ f).

For f a carefree strategy, let Nextsf , {cfree(q) | q ∈ f}. It uniquely defines f .

Thus a carefree strategy can be defined by a set of sets of processes: receiving a message
from all processes in any of those set makes the strategy authorize the change of round.
This gives us a simple necessary condition on such a strategy to be valid: its Nexts set must
contains all Delivered set from the corresponding Delivered predicate. If it does not, then an
earliest run of any collection containing a Delivered set not in the Nexts would be invalid.

This simple necessary condition also proves sufficient.

I Lemma 19 (Validity of Carefree). Let PDel be a Delivered predicate and f a carefree strategy.
Then, f is valid for PDel ⇐⇒ ∀CDel ∈ PDel, ∀r > 0,∀j ∈ Π : CDel(r, j) ∈ Nextsf .

Proof sketch. (⇒) Let f be valid for PDel. We show by contradiction that it is impossible
that ∃CDel ∈ PDel that falsifies the right-hand side. Let t be an earliest run of f for a CDel,
which is a run of f by definition. If all processes reach round r, then by definition of t, all
messages from round r are delivered before any next at round r; if a process cannot change
round at this point, it will never be able later as its set of received messages from r will
never change, and t would be invalid. If some process is stuck at a round r′ < r while the
other ones reach rounds ≥ r′, by the same reasoning, it has received all available messages
from round r′ and will never be able to change round, which makes t invalid. Both cases
contradict the validity of f .

(⇐) Let PDel and f which satisfies the right-hand side, and assume that f is invalid. For
an invalid run t ∈ runsf (PDel), there is a delivery collection CDel and a smallest round r

where a process is blocked. By minimality of r, all processes reach r and the blocked process
eventually receives all messages from r, and thus can change round, which contradicts the
fact that some process is blocked. J

Carefree strategies are elegant, but they also have some drawbacks: mainly that the Heard-
Of predicates they can implement are quite basic. Precisely, when the Delivered predicate
contains the total collection, they implement predicates where the Heard-Of collections are
all possible combinations of Delivered sets from the original Delivered predicate.
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I Theorem 20 (Heard-Of Predicates of Carefree Strategy). Let PDel be a Delivered predicate
containing the total collection, and let f be a valid carefree strategy for PDel. Then, ∀cho a
Heard-Of collection for Π : cho ∈ CHOf (PDel) ⇐⇒ ∀r > 0,∀j ∈ Π : cho(r, j) ∈ Nextsf .

Proof. (⇒) This direction follows from the definition of a carefree strategy: it allows changing
round only when the messages received from the current round form a set in its Nexts.

(⇐) Let cho be a Heard-Of collection for Π such that ∀r > 0,∀j ∈ Π : cho(r, j) ∈ Nextsf .
Let t be a standard run of cho. It is a run by Lemma 9. It is also a run of f because at each
round, processes receive messages from a set in Nextsf and are thus allowed by f to change
round. We conclude that cho ∈ PHOf (PDel). J

Finally, carefree strategies always have a dominating element for a given Delivered
predicate.

I Theorem 21 (Always a Dominating Carefree Strategy). Let PDel be a Delivered predicate and
let fcfDom be the carefree strategy with Nextsf = {CDel(r, j) | CDel ∈ PDel ∧ r > 0 ∧ j ∈ Π}.
fcfDom dominates all carefree strategies for PDel.

Proof. First, fcfDom is valid for PDel by application of Lemma 19.
As for domination, we also deduce from Lemma 19 that ∀f a valid carefree strategy for

PDel, NextsfcfDom
⊆ Nextsf and thus fcfDom ⊆ f . Therefore, ∀q ∈ Q : q ∈ fcfDom =⇒ q ∈

f . This gives us runsfcfDom
(PDel) ⊆ runsf (PDel), and we conclude PHOfcfDom

(PDel) ⊆
PHOf (PDel). Therefore, fcfDom dominates all valid carefree strategies for PDel. J

In the case where PDel allows the delivery of all messages, that is contains the total
collection, there is only one carefree strategy which dominates all carefree strategies.

I Theorem 22 (With Total Collection, Unique Dominating Carefree Strategy). Let PDel be a
Delivered predicate containing the total collection. Let fcfDom be the carefree strategy with
Nextsf = {CDel(r, j) | CDel ∈ PDel ∧ r > 0 ∧ j ∈ Π}. fcfDom is the unique carefree strategy
which dominates all carefree strategies for PDel.

Proof. First, fcfDom dominates all carefree strategies for PDel by Theorem 21. To show
uniqueness, let f be a valid carefree strategy different from fcfDom; thus
Nextsf 6= NextsfcfDom

. By Lemma 19, we also have NextsfcfDom
⊆ Nextsf . Therefore,

NextsfcfDom
( Nextsf .

Let D ∈ Nextsf \ NextsfcfDom
and let cho ∈ (N∗ × Π) 7→ P(Π) the Heard-Of collection

such that ∀r > 0,∀j ∈ Π : cho(r, j) = D. By application of Theorem 20, this is a Heard-Of
collection generated by f but not by fcfDom. Therefore, PHOf (PDel) 6⊂ PHOfcfDom

(PDel),
and f ′ does not dominate fcfDom. J

4.2 When Carefree is Enough
Finally, the value of carefree strategy depends on which Delivered predicates have such a
dominating strategy. We already know that PDelF does; we now extend this result to a class
of Delivered predicates called Round-symmetric. This condition captures the fact that given
any Delivered set D, one can build, for any r > 0, a Delivered collection where processes
receive all messages up to round r, and then they share D as their Delivered set in round r.
As a limit case, the predicate also contains the total collection.

I Definition 23 (Round-Symmetric Delivered Predicate). Let PDel be a Delivered Predicate.
PDel is round-symmetric ,
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(Total collection) PDel contains the total collection: CDeltotal ∈ PDel where CDeltotal

is defined by ∀r > 0,∀j ∈ Π : CDeltotal(r, j) = Π.
(Symmetry up to a round) ∀D ∈ {CDel(r, j) | CDel ∈ PDel ∧ r > 0 ∧ j ∈ Π},
∀r > 0,∃CDel ∈ PDel,∀j ∈ Π : (∀r′ < r : CDel(r′, j) = Π ∧ CDel(r, j) = D)

What round-symmetry captures is what makes PDelF be dominated by a carefree strategy:
the inherent symmetry of these Delivered collections allows us to block processes with exactly
the same received messages. This allows us to show that any valid strategy should allow
changing round at this point, which is fundamental to any proof of domination.

I Theorem 24 (Sufficient Condition of Carefree Domination). Let PDel be a Round-symmetric
Delivered predicate. Then, there is a carefree strategy which dominates PDel.

Proof Sketch. Let f be the carefree strategy dominating all carefree strategies for PDel. It
exists by Theorem 21 and, as PDel contains the total collection, it is unique by Theorem 22.
Let f ′ be a valid (not necessarily carefree) strategy for PDel. We prove that f ′ ≺PDelF f ,
that is PHOf (PDel) ⊆ PHOf ′(PDel). Let cho ∈ PHOf (PDel) and t a standard run of cho.
We show t is a run of f ′ by contradiction on the validity of f ′. Assume it is not, then there
is some nextj transition at some round r in t that f ′ does not allow.

The round-symmetry of PDel allows us to build CDelblock ∈ PDel such that ∀r′ < r,∀k ∈
Π : CDelblock(r′, k) = Π and ∀k ∈ Π : CDelblock(r, k) = cho(r, j). Consider tblock, an earliest
run of f ′ for CDelblock. For a round r′ < r, all processes get a message from everyone. By
symmetry, either all processes are blocked, which makes f ′ invalid, or all processes change
round. For round r, all processes get the same set cho(r, j), and as a result, receive the same
messages that prevent j from changing round in t. No process is allowed to change round by
f ′ at this point, which makes f ′ invalid. J

As another example of a Delivered predicate satisfying this condition, we study the model
where at most B broadcasts per round can fail: either all processes receive the message sent
by a process at a round or none does; there are at most B processes per round that can be in
the latter case, where no one receives their message. The Delivered predicate states that each
process receives the kernel of the round, and this kernel contains at least n−B processes.

I Definition 25 (PDelB). The Delivered predicate PDelB corresponding to at most B full
broadcast failures is:
{CDel ∈ (N∗ ×Π) 7→ P(Π) | ∀r > 0,∀j ∈ Π : CDel(r, j) = KCDel(r) ∧ |KCDel(r)| ≥ n−B}.

The astute reader might have noticed that the carefree strategy dominating all carefree
for this Delivered predicate is fn−B (which is fn−F with F instantiated to B).

I Lemma 26 (fn−B Carefree Dominates PDelB). fn−B dominates carefree strategies for
PDelB.

Proof. The definition of PDelB gives us {CDel(r, j) | CDel ∈ PDel∧ r > 0∧ j ∈ Π} = { S ∈
P(Π) | |S| ≥ n−B} = Nextsfn−B

, because the only constrained on the Delivered sets are
that they must be the same for all processes at a round and that they must have at least
n−B processes. We therefore conclude from Lemma 19 that fn−B is valid for PDelB and
from Theorem 21 that it dominates carefree strategy for the same predicate. J

I Theorem 27 (fn−B Dominates PDelB). fn−B dominates PDelB.
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Proof. We only need to prove that PDelB is round-symmetric; Theorem 24 will then
yield that PDelB is dominated by a carefree strategy, thus dominated by the carefree
strategy that dominates all carefree strategies. First, PDelB contains the total collection
where no failure occurs. Then, let D be any CDel(_,_) of PDelB. By definition of
PDelB, D contains at least n − B processes. Let r > 0 and consider a CDel such that
∀j ∈ Π : ∀r′ < r : CDel(r′, j) = Π ∧ ∀r′ ≥ r : CDel(r, j) = D. All processes share the same
Delivered set of size at least n−B, thus CDel ∈ PDelB . CDel is symmetric, thus PDelB is
round-symmetric. J

I Theorem 28 (Heard-Of Characterization of PDelB). The Heard-Of predicate implemented
by fn−B in PDelB is CHOfn−B

(PDelB) = {cho ∈ (N∗ × Π) 7→ P(Π) | ∀r > 0,∀j ∈ Π :
|cho(r, j)| ≥ n−B}.

Proof. We know that Nextsfn−B = {cfree(q) | q ∈ Q ∧ |{k ∈ Π | 〈q.round, k〉 ∈ q.received}| ≥
n−B} = {S ∈ P(Π) | |S| ≥ n−B}. We conclude by application of Theorem 20. J

5 Beyond Carefree Strategies: Reactionary Strategies

Sometimes, carefree strategies are not enough to capture the subtleties of a Delivered
predicate. Take the one corresponding to at most F initial crashes for example: to make
the most of this predicate, a strategy should remember from which processes it received a
message, since it knows this process did not crash. A class of strategies which allows this is
the class of reactionary strategies: they depend on messages from current and past rounds, as
well as the round number. The only part of the local state these strategies cannot take into
account is the set of messages received from "future" rounds, a possibility due to asynchrony.

5.1 Definition and Expressiveness Results
I Definition 29 (Reactionary Strategy). Let f be a strategy, and ∀q ∈ Q, let reac(q) ,
〈q.round, {〈r, k〉 ∈ q.received | r ≤ q.round}〉. f is a reactionary strategy , ∀q, q′ ∈ Q :
reac(q) = reac(q′) =⇒ (q ∈ f ⇐⇒ q′ ∈ f). We write NextsR

f , {reac(q) | q ∈ f} for the
set of reactionary states in f . This uniquely defines f .

Even if reactionary strategies are more complex, we can still prove the same kind of
results as for carefree ones, namely about validity and the existence of a reactionary strategy
dominating all reactionary strategies.

I Lemma 30 (Validity of Reactionary). Let PDel be a Delivered predicate and f a reactionary
strategy. Then, f is valid for PDel ⇐⇒ ∀CDel ∈ PDel, ∀r > 0,∀j ∈ Π : 〈r, {〈r′, k〉 | r′ ≤
r ∧ k ∈ CDel(r′, j)} 〉 ∈ NextsR

f .

Proof sketch. The proof is the same as the one of Lemma 19, replacing “messages from
round r” by “messages up to round r”. J

There is also always a reactionary strategy dominating all reactionary strategies for a
given Delivered predicate.

I Theorem 31 (Always a Dominating Reactionary Strategy). Let PDel a Delivered predicate
and let frcDom be the reactionary strategy defined by
NextsR

rcDom = {〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ CDel(r′, j)} 〉 | r > 0 ∧ CDel ∈ PDel}.
frcDom dominates all reactionary strategies for PDel.
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Proof. First, frcDom is valid for PDel by application of Lemma 30.
As for domination, we also deduce from Lemma 30 that ∀f a valid reactionary strategy for

PDel, NextsR
frcDom

⊆ NextsR
f and thus frcDom ⊆ f . Therefore, ∀q ∈ Q : q ∈ frcDom =⇒ q ∈

f . This gives us runsfrcDom
(PDel) ⊆ runsf (PDel), and we conclude PHOfrcDom

(PDel) ⊆
PHOf (PDel). We conclude that frcDom dominates all valid carefree strategies for PDel. J

5.2 Example Dominated by Reactionary Strategy
To show the usefulness of reactionary strategies, we study the Delivered predicate corre-
sponding to reliable communication and at most F initial crashes: either processes crash
initially and no message of theirs is ever delivered, or they do not and all their messages will
be delivered eventually.

I Definition 32 (PDelF
ini). The Delivered predicate PDelFini for at most F initial crashes is:

{CDel ∈ (N∗ ×Π) 7→ P(Π) | ∃Σ ⊆ Π : |Σ| ≥ n− F ∧ ∀r > 0,∀j ∈ Π : CDel(r, j) = Σ}.

As we mentioned above, it is possible to take advantage of the past by waiting in the
current round for messages from processes which sent a message in a past round.

I Definition 33 (Past complete strategy). The past-complete strategy fpc is defined by
NextsR

fpc
= {〈r, [1, r]× Σ〉 | r > 0 ∧ Σ ⊆ Π ∧ |Σ| ≥ n− F}.

I Lemma 34 (fpc Reactionary Dominates PDelF
ini). fpc dominates all reactionary strategies

for PDelFini.

Proof. It follows from Theorem 31, because NextsR
fpc

= {〈r, { 〈r′, k〉 | r′ ≤ r ∧ k ∈ Σ}〉 | r >

0∧Σ ⊆ Π∧ |Σ| ≥ n−F} = {〈r, {〈r′, k〉 | r′ ≤ r∧k ∈ CDel(r′, j)}〉 | r > 0∧CDel ∈ PDelFini}.
The last equality follows from the fact that Delivered sets are always the same for all Delivered
collection in PDelFini. J

Reactionary strategies can generate more complex and involved Heard-Of predicates than
carefree ones. The one generated by fpc for PDelFini is a good example: it ensures that all
Heard-Of sets contains at least n−F processes, and it also forces Heard-Of sets for a process
to be non-decreasing, and for all rounds to eventually converge to the same Heard-Of set.
This follows from the fact that a process can detect an absence of crash: if one message is
received from a process, it will always be safe to wait for messages from this process as it
did not crash and never will. Since there is no loss of message for non crashed processes,
every one eventually receives a message from every process sending messages, and thus the
Heard-Of sets converge.

I Theorem 35 (Heard-Of Characterization of PDelF
ini). PHOfpc

(PDelFini) =cho ∈ (N∗ ×Π) 7→ P(Π)

∣∣∣∣∣∣
 ∀r > 0,∀j ∈ Π :

(
|cho(r, j)| ≥ n− F

∧ cho(r, j) ⊆ cho(r + 1, j)

)
∧ ∃Σ0 ⊆ Π,∃r0 > 0,∀r ≥ r0,∀j ∈ Π : cho(r, j) = Σ0


Proof Sketch. First, we show ⊆. Let cho ∈ PHOfpc

(PDelFini) and t a run of fpc implement-
ing cho. By definition of fpc, processes change round only when they have received at least
n− F messages from the current round and they have completed their past, which gives the
first conjunction. Concerning the second conjunction, observe that due to fairness, there is a
point in t where all messages from round 1 have been delivered. After that round (r0), fpc

makes all processes wait for the messages of the living processes (Σ0).
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Then, we show ⊇. Consider a run t of cho in iterations such that at each iteration, the
delivered messages are the Heard-Of sets and the messages needed to complete the past of
these sets, and every process changes round. It is a run of fpc because each Heard-Of set
contains at least n − F processes and the past of each process is complete before playing
any next. Moreover, there is a round after which all processes share the same Heard-Of set
Σ0 forever. Consider CDel such that ∀r > 0,∀j ∈ Π : CDel(r, j) = Σ0. t ∈ runs(CDel) and
CDel ∈ PDelFini. Thus, cho ∈ PHOfpc

(PDelFini). J

As for fpc dominating PDelFini, the argument is quite similar to the one for fn−F

dominating PDelF , with a more subtle manipulation of Delivered collection because we need
to take the past into account.

I Theorem 36 (fpc Dominates PDelF
ini). fpc dominates PDelFini.

Proof Sketch. This domination proof is similar to the one for Round-Symmetric Predicates
or for PDelF . The difference is that given a Heard-Of collection in PHOfpc

(PDelFini), the
run generating it for any valid strategy is a run in iterations where, at each iteration, all
processes get delivered their Heard-Of set and the messages necessary to complete their past,
and then they all change round. J

5.3 When The Future Serves
In the above, we considered cases where the dominating strategy is at most reactionary: only
the past and present rounds are useful for generating Heard-Of collections. But messages
from future rounds serve in some cases. We give an example, presenting only the intuition.

I Definition 37 (PDel1lost). The Delivered predicate PDel1lost corresponding to at most 1
message lost is: {CDel ∈ (N∗ ×Π) 7→ P(Π) |

∑
r>0,j∈Π

|Π \ CDel(r, j)| ≤ 1}.

Application of our results on carefree strategy shows that the carefree strategies dominating
all carefrees for this predicate is fn−1. Similarly, looking at the past only allows processes
to wait for n− 1 messages because one can always deliver all messages from the past, and
then the loss might be a message from the current round. If we look at the messages from
the next round, on the other hand, we can ensure that at each round, at most one message
among all processes is not delivered on time.

I Definition 38 (Asymmetric Strategy). Let after : Q 7→ P(Π) such that ∀q ∈ Q : after(q) =
{k ∈ Π | 〈q.round + 1, k〉 ∈ q.received}, and cfree as in Definition 18.

Define fasym ,

{
q ∈ Q

∣∣∣∣ cfree(q) = Π
∨ (|after(q)| = n− 1 ∧ |cfree(q)| = n− 1}

}
.

Intuitively, this strategy is valid because at each round and for each process, only two
cases exist: either no message for this process at this round is lost, and it receives a message
from each process; or one message for this process is lost at this round, and it only receives
n− 1 messages. But all other processes receive n messages, thus change round and send their
message from the next round. Since the one loss already happened, all these messages are
delivered, and the original process eventually receives n− 1 messages from the next round.

This strategy also ensures that at most one process per round receives only n−1 messages
on time – the others must receive all messages. This vindicates the value of messages from
future rounds for some Delivered predicates, such as the ones with asymmetry in them.
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6 Related Works

Rounds Everywhere. Rounds in message-passing algorithms date at least back to their
use by Arjomandi et al. [1] as a synchronous abstraction of time complexity. Since then,
they are omnipresent in the literature. First, the number of rounds taken by a distributed
computation is a measure of its complexity. Such round complexity was even developed into
a full-fledged analogous of classical complexity theory by Fraigniaud et al. [7]. Rounds also
serve as stable intervals in the dynamic network model championed by Kuhn and Osham [11]:
each round corresponds to a fixed communication graph, the dynamicity following from
possible changes in the graph from round to round. Finally, many fault-tolerant algorithms
are structured in rounds, both synchronous [6] and asynchronous ones [3].

Although we only study message-passing models in this article, one cannot make justice to
the place of rounds in distributed computing without mentioning its even more domineering
place in shared-memory models. A classic example is the structure of executions underlying
the algebraic topology approach pioneered by Herlihy and Shavit [9], Saks and Zaharoglou [13],
and Borowsky and Gafni [2].

Abstracting the Round. Gafni [8] was the first to attempt the unification of all versions
of rounds. He introduced the Round-by-Round Fault Detector abstraction, a distributed
module analogous to a failure detector which outputs a set of suspected processes. In a
system using RRFD, the end condition of rounds is the reception of a message from every
process not suspected by the local RRFD module; communication properties are then defined
as predicates on the output of RRFDs. Unfortunately, this approach does not suit our needs:
RRFDs do not ensure termination of rounds, while we require it.

Next, Charron-Bost and Schiper [4] took a dual approach to Gafni’s with the Heard-Of
Model. Instead of specifying communication by predicates on a set of suspected processes,
they used Heard-Of predicates: predicates on a collection of Heard-Of sets, one for each
round r and each process j, containing every process from which j received the message sent
in round r before the end of this same round. This conceptual shift brings two advantages: a
purely abstract characterization of message-passing models and the assumption of infinitely
many rounds, thus of round termination.

But determining which model implements a given Heard-Of predicate is an open question.
As mentioned in Marić [12], the only known works addressing it, one by Hutle and Schiper [10]
and the other by Drăgoi et al. [5], both limit themselves to very specific predicates and
partially synchronous system models.

7 Conclusion and Perspectives

We propose a formalization for characterizing Heard-Of predicate of an asynchronous message-
passing model through Delivered predicates and strategies. We also show its relevance,
expressivity and power: it allows us to prove the characterizations from Charron-Bost and
Schiper [4], to show the existence of characterizing predicates for large classes of strategies as
well as the form of these predicates. Yet there are two aspects of this research left to discuss:
applications and perspectives.

First, what can we do with this characterizing Heard-Of predicate? As mentioned above,
it gives the algorithm designer a concise logical formulation of the properties on rounds a
given model can generate. Therefore, it allows the design of algorithms at a higher level of
abstraction, implementable on any model which can generate the corresponding Heard-Of
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predicate. The characterizing predicate is also crucial to verification: it bridges the gap
between the intuitive operational model and its formal counterpart. To verify a round-based
algorithm for a given message-passing model, one needs only to check if its correctness for
the characterizing predicate. If it is the case, we have a correct implementation by combining
the algorithm with a dominating strategy; if it is not, then the algorithm will be incorrect
for all predicates generated by the model.

Finally, it would be beneficial to prove more results about the existence of a dominating
strategy, as well as more conditions for the dominating strategy to be in a given class. There
is also space for exploring different Delivered predicates. For example, some of our results
suppose that the predicate contains the total Delivered collection; what can we do without
this assumption? Removing it means that faults are certain to occur, which is rarely assumed.
Nonetheless, it might be interesting to study this case, both as a way to strengthen our
results, and because forcing failures might be relevant when modelling highly unreliable
environments such as the cloud or natural settings. Another viable direction would be to add
oracles to the processes, giving them additional information about the Delivered collection,
and see which Heard-Of predicates can be generated. These oracles might for example
capture the intuition behind failure detectors.
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Abstract
Distributed agreement-based algorithms are often specified in a crash-stop asynchronous model
augmented by Chandra and Toueg’s unreliable failure detectors. In such models, correct nodes
stay up forever, incorrect nodes eventually crash and remain down forever, and failure detectors
behave correctly forever eventually, However, in reality, nodes as well as communication links
both crash and recover without deterministic guarantees to remain in some state forever.

In this paper, we capture this realistic temporary and probabilitic behaviour in a simple new
system model. Moreover, we identify a large algorithm class for which we devise a property-
preserving transformation. Using this transformation, many algorithms written for the asyn-
chronous crash-stop model run correctly and unchanged in real systems.
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1 Introduction

Distributed systems comprise multiple software and hardware components that are bound to
eventually fail [10]. Such failures can cause service malfunction or unavailability, incurring
significant costs to mission-critical systems, e.g., automation systems and on-line transactions.
The failures’ impact can be minimized by protocols that let systems agree on actions despite
failures. As a consequence, many variants of the agreement or the consensus problem [29]
under different assumptions have been studied. Of particular importance are synchrony and
failure model assumptions, as they determine the problem’s complexity.

In the simplest failure model, often called the crash-stop model, a process fails by stopping
to execute its protocol and never recovers. Combining this failure model with an asynchronous
system, i.e., a system without bounds on execution delays or message latency, makes it
impossible to distinguish a crashed from a very slow process. This renders consensus-like
problems unsolvable deterministically [16], already in this very simple failure model. To
circumvent this impossibility, previous works have investigated ways to relax the underlying
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asynchrony assumption either explicitly, e.g., by using partial synchrony [12], or implicitly,
by defining oracles that encapsulate time, e.g., failure detectors [8]. The result is a large
and rich body of literature that builds on top of the former and latter techniques to solve
consensus-like problems in the presence of crash-stop failures. Typically, the respective proofs
rely on assumptions of the “eventually forever” form: the correct nodes stay up forever,
incorrect nodes eventually crash and remain down forever, and failure detectors produce
wrong output in the beginning, but provide correct results forever eventually.

However, such “eventually forever” assumptions are not met by real distributed systems.
In reality, processes may crash but their processors reboot, and the recovered process rejoins
the computation. Communication might also fail at any point in time, but get restored
later. Hence, the failure and recovery modes of processes as well as communication links
are in reality probabilistic and temporary [13, 15, 31], especially in systems incorporating
many unreliable off-the-shelf low-cost devices and communication technologies. This led to
the development of crash-recovery models, where processes repeatedly leave and join the
computation unannounced. This requires new failure detector definitions and new consensus
algorithms built on top of these failure detectors [1, 24, 11, 21] as well as completely new
solutions (without failure detectors) that consider different classes of failures, namely classified
according to how many times a process can crash and recover [25]. However, such solutions
eliminate the “eventually forever” assumptions only on the processes’ level and not for the
communication and failure detectors. Moreover, these works derive new algorithms tailored
to crash-recovery settings. This leaves unanswered the question: can the plethora of existing
crash-stop algorithms be reused (ideally, unchanged) in crash-recovery settings?

To this end, this paper investigates how to re-use consensus algorithms defined for
the crash-stop model with reliable links and failure detectors in a more realistic crash-
recovery model, where processes and links can crash and recover probabilistically and for an
unbounded number of times. Our models allow unstable nodes, i.e., nodes that fail and recover
infinitely often. These are often excluded or limited in number in other models. In contrast,
we explicitly allow unstable behavior of any number of processes and links, by modeling
communication problems and crash-recovery behaviors as probabilistic and temporary, rather
than deterministic and perpetual. Our system model, similar to existing models that rely on
probabilistic factors, e.g., coin flips, comes with the trade-off of solving consensus (namely
the termination property), with probability 1, rather than deterministically.

However, unlike existing solutions that incorporate probabilistic behavior, our approach
does not aim at inventing new consensus algorithms but rather focuses on using existing
deterministic ones to solve consensus with probability 1. Our approach is modular: we build
a wrapper that interacts with a crash-stop algorithm as a black box, exchanges messages with
other wrappers and transforms these messages into messages that the crash-stop algorithm
understands. We then formally define classes of algorithms and safety properties for which
we prove that our wrapper constructs a system that preserves these properties. Additionally,
we show that termination with probability 1 is guaranteed for wrapped algorithms of this
class. Moreover, this class is wide and includes the celebrated Chandra-Toueg algorithm [8]
as well as the instantiation of the indulgent framework with failure detectors from [20] . Our
work allows such algorithms to be ported unchanged to our crash-recovery model. Hence
applications built on top of such algorithms can run in real systems with crash-recovery
behavior by simply using our wrapper.

Contributions: To summarize, our main contributions are:
New system models that capture probabilistic and temporary failures and recoveries of
processes and communication links in real distributed systems (described in Section 3)
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A wrapper framework that allows a wide class of crash-stop consensus algorithms to be
used unchanged in our more realistic models (described in Section 4)
Formal properties describing which crash-stop consensus algorithms benefit from our
framework and hence can be reused to solve consensus in crash-recovery settings (described
in Sections 5 and 6)

In addition to the sections presenting our contributions, we discuss related work in Section 2
and conclude the paper in Section 7. Due to space limitations, we defer most proofs and some
formalization details to the full version, available at https://arxiv.org/abs/1811.05007.

2 Related Work

Several works addressed the impossibility of asynchronous consensus. One direction exploits
the concept of partial synchrony [12], in which an asynchronous system becomes synchronous
after some unknown global stabilization time (GST) for a bounded number of rounds. For
the same model, ASAP [3] is a consensus algorithm where every process decides no later than
round GST +f +2 (optimal). Another direction augments asynchronous systems with failure
detector oracles, and builds asynchronous consensus algorithms on top [8]. These detectors
typically behave erratically at first, but eventually start behaving correctly forever. Like
with partial synchrony, the intuitive expectation is that failure detectors must only behave
correctly for “sufficiently long” instead of forever [8]; however, quantifying “sufficiently long”
is impossible in a purely asynchronous model [9]. Both lines of work initially investigated
crash-stop failures of processes. In real systems processes as well as network links crash and
recover multiple times and sometimes even indefinitely. This gave rise to a large body of
literature that studied how to adapt the two lines of work to crash-recovery behavior of
processes and links. We next survey some of this literature.

Failure detectors and consensus algorithms for crash recovery: Dolev et al. [11] consider
an asynchronous environment where communication links first lose messages arbitrarily,
but eventually communication stabilizes such that a majority of processes forms a forever
strongly connected component. Processes belonging to such a strongly-connected component
are termed correct, and the others faulty. Process state is always (fully) persisted in stable
storage. The authors propose a failure detector that allows the correct processes to reach a
consensus decision and show that the rotating coordinator algorithm [8] works unchanged in
their setting, as long as all messages are constantly retransmitted. This relies on piggybacking
all previous messages onto the last message, and regularly retransmitting the last message.
As this yields very large messages, they also propose a modification of [8] for which no
piggybacking is necessary. While our results also rely on strongly connected components,
we do not require their existence to be deterministic nor perpetual. We also do not require
piggybacking in order for algorithms like [8] to be used unchanged.

Oliveira et al. [28] consider a crash-recovery setting with correct processes that may crash
only finitely many times (and thus eventually stay up forever) and faulty processes that
permanently crash or crash infinitely often. As in [8], the authors note that correct processes
only need to stay up for long enough periods in practice (rather than forever), but this cannot
be expressed in the asynchronous model. The authors take the consensus algorithm of [30]
which uses stubborn links and transform it to work in the crash-recovery setting by logging
every step into stable storage and adding a fast-forward mechanism for skipping rounds.
Hurfin et al. [22] describe an algorithm using the �S detector in the crash-recovery case.
The notions of correct/faulty processes and of failure detectors are the same as in Oliviera
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et al [28]. Their algorithm is however more efficient when using stable storage compared
to [28]: there is only one write per round (of multiple data), and the required network buffer
capacity for each channel (connecting a pair of processes) is one. Compared to [28] and [22]
our system does not regard processes that crash and recover infinitely often as faulty and
hence we allow such “unstable” processes to implement consensus.

Aguilera et al. [1] consider a crash-recovery system with lossy links. They show that
previously proposed failure detectors for the crash-recovery setting have anomalous behaviors
even in synchronous systems when considering unstable processes, i.e., processes that crash
and recover infinitely often. The authors propose new failure detectors to mitigate this
drawback. They also determine the necessary conditions regarding stable storage that allow
consensus to be solved in the crash-recovery model, and provide two efficient consensus
algorithms: one with, and one without using stable storage. Unlike [1], we do not exclude
unstable processes from implementing consensus, thus our model tolerates a wider variety of
node behavior. Furthermore, our wrapper requires no modifications to the existing crash-stop
consensus algorithms, as it treats them as black-boxes.

Modular Crash-Recovery Approaches: Similar to [1], Freiling et al. [18] investigate the
solvability of consensus in the crash-recovery model under varying assumptions, regarding
the number of unstable and correct processes and what is persisted in stable storage. They
reuse existing algorithms from the crash-stop model in a modular way (without changing
them) or semi-modular way, with some modifications to the algorithm (as in the case of [8]).
Similar to our work, they provide algorithms to emulate a crash-stop system on top of a
crash-recovery system. Our work, however, always reuses algorithms in a fully modular way,
and we define a wide class of algorithms for which such reuse is possible. Furthermore, as we
model message losses, processes crashes, and process recoveries probabilistically, our results
also apply if processes are unstable, i.e., crash and recover infinitely often.

Randomized Consensus Algorithms: Besides the literature that studied deterministic
consensus algorithms, existing works have also explored randomized algorithms to solve
“consensus with probability 1”. These include, for example, techniques based on using random
coin-flips [2, 5, 17] or probabilistic schedulers [7]. In systems with dynamic communication
failures, multiple randomized algorithms [27, 26] addressed the k-consensus problem, which
requires only k processes to eventually decide. Moniz et al. [27] considered a system with
correct processes and a bound on the number of faulty transmission. In a wireless setting,
where multiple processes share a communication channel, Moniz et al. [26] devise an algorithm
tolerating up to f Byzantine processes and requires a bound on the number of omission faults
affecting correct processes. In comparison, our work in this paper does not use randomization
in the algorithm itself: we focus on using existing deterministic algorithms to solve consensus
(with probability 1) in networks with probabilistic failure and recovery patterns of processes
and links.

3 System Models

We start by defining the notation we use, and then define general concepts common to all of
our models. Then, we define each of our models in turn.

Notation: Given a set S, we define S⊥ to be the set S ∪ {⊥}, where ⊥ is a distinguished
element not present in S. The set of finite sequences over a set S is denoted by S∗. We also
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call sequences words, when customary. Given a non-empty sequence, head defines its first
element, tail the remainder of the sequence, and, if the sequence is finite, last its last element.
Given two sequences u and v, where u is finite, u · v denotes their concatenation. For a word
u, |u| denotes the length of u. Letting u(i) be the i-th letter of u, we say that u is a subword
of v if there exists a strictly monotone function f : N → N such that u(i) = v(f(i)), for
1 ≤ i ≤ |u| if u is finite, and for all i ∈ {1, 2, . . .} if u is infinite. Analogously, v is a superword
of u.

We denote the space of partial functions (maps) between sets A and B by A ⇀ B. Note
that (A→ B) ⊆ (A ⇀ B).

Common concepts: We consider a fixed finite set of processes Π = {1 . . . N}, and a fixed
countable set of values, denoted V . For each algorithm there is an algorithm-specific countable
set of local states Σp, for each process p ∈ Π. For simplicity, we restrict ourselves to algorithms
where Σp = Σq, ∀p, q ∈ Π. Note that this does not exclude algorithms that take decisions
based on identifiers. We define the global state space Σ =

∏
p∈Π Σp. Given a s ∈ Σ, we

define sp ∈ Σp as the projection of s to its p-th component.
A property over an alphabet A is a set of infinite words over A. We use standard definitions

of liveness and safety properties [4]. A property P is a safety property if, for every infinite
word w /∈ P , there exists a finite prefix u of w such that the concatenation u · v /∈ P for all
infinite words v. Intuitively, the prefix u is “bad” and not recoverable from. A property P is
a liveness property if for any finite word u there exists an infinite word v such that u · v ∈ P .
Intuitively, “good” things can always happen later.

In this paper, we are interested in preserving properties over the alphabet Σ between the
crash-stop and crash-recovery versions of an algorithm. In particular, we assume that the
local states Σp are records, with two distinguished fields: inp of type V and dec of type V⊥.
Intuitively, a dec value of ⊥ indicates that the process has not decided yet. For an infinite
word w over the alphabet Σ, let w(i, p) denote the local state of the process p at the i-th
letter of the word. Let us state the standard safety properties of consensus in our notation.

Validity. Decided values must come from the set of input values. Formally, validity describes
the set of words w such that ∀p, i, v. w(i, p).dec = v ∧ v 6= ⊥ =⇒ ∃q. w(1, q).inp = v

Integrity. Processes do not change their decisions. Formally, integrity describes the set of
words w such that ∀p, i. v. w(i, p).dec = v ∧ v 6= ⊥ =⇒ ∀i′ > i. w(i′, p).dec = v

(Uniform) Agreement. No two processes ever make different non-⊥ decisions. Formally,
∀p, q, i, j. w(i, p).dec 6= ⊥ 6= w(j, q).dec =⇒ w(i, p).dec = w(j, q).dec

To simplify our preservation results for safety properties, our models store information
about process failures separately from Σ. As a consequence, the standard crash-stop
termination property cannot be expressed as a property over Σ: it is conditioned on a process
not failing. However, we do not directly use the crash-stop notion of termination and we
omit this definition here. Instead, we will prove the following property for the algorithms in
our probabilistic crash-recovery model:

Probabilistic crash-recovery termination. With probability 1, all processes eventually de-
cide.

3.1 The crash-stop model
Our definition of the crash-stop model is standard and closely follows [8]. We assume an
asynchronous environment, with processes taking steps in an interleaved fashion. Processes
communicate using reliable links, and can query failure detectors.
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Failure detectors: A failure pattern fp is an infinite word over the alphabet 2Π. Intuitively,
each letter is the set of failed processes in a transition step of a run of a transition system.
A failure detector with range R is a function from failure patterns to properties over the
alphabet R.1 A failure detector D is unreliable if D(fp) is a liveness property for all fp.
Intuitively, a detector constrains how the failure detector outputs (the R values) must depend
on the failure pattern of a run, and unreliable detectors can produce arbitrary outputs in the
beginning. We write FD(R) for the set of all detectors with range R.

Algorithms and algorithm steps: The type of crash-stop steps over a message space M
and a failure detector range R, written CSS(M,R) is defined as a pair of functions of types:

next : Σp × (Π×M)⊥ ×R → Σp, send : Σp → (Π ⇀M).
Intuitively, given zero or one messages received from some other processes and an output of
the failure detector, a step maps the current process state to a new state, and maps the new
state to a set of messages to be sent, with zero or one messages sent to each process.
A crash-stop algorithm A over Σ,M and R is a tuple (I, step, D,Nf ) where:
(1) I ⊆ Σ is the finite set of initial states,
(2) step ∈ CSS(M,R) is the step function,
(3) D ∈ FD(R) is a failure detector, and
(4) Nf < N is the resilience condition, i.e., the number of failures tolerated by the algorithm

(recall that we consider a fixed N).
We refer to the components of an algorithm A by A.I, A.step, A.D and A.Nf .

Configurations: As noted earlier, we focus on preserving properties over Σ between crash-
stop and crash-recovery models. However, Σ contains insufficient information to model the
algorithm’s crash-stop executions (runs). In particular, to account for
(1) asynchronous message delivery and
(2) process failures,
we must extend states to configurations. A crash-stop configuration is a triple (s,M,F )
where: s ∈ Σ is the (global) state, M ⊆ Π×Π×M is the set of in-flight messages, where
(p, q,m) ∈M represents a message m that was sent to p by q, and F ⊆ Π is the set of failed
processes. As with algorithms, we refer to the components of a configuration c by c.s, c.M
and c.F .

Step labels and transitions: While the algorithm steps are deterministic, the asynchronous
transition system is not: any (non-failed) process can take a step at any point in time, with
different possible received messages, and different failure detector outputs. Accessing this
non-determinism information is useful in proofs, so we extract it as follows. A crash-stop
step label is a quadruple (p, rmsg, fails, fdo), where:
(1) p ∈ Π is the process taking the step,
(2) rmsg ∈ (Π×M)⊥ is the message p receives in the step (⊥ modeling a missing message),
(3) fails ⊆ Π is the set of processes failed at the end of the step, and
(4) fdo ∈ R is p’s output of the failure detector.
A crash-stop step of the algorithm A is a triple (c, l, c′), where c and c′ are configurations
and l is a label. Crash-stop steps must satisfy the following properties: (i) p is not failed at
the start of the step. (ii) p takes a step according to the label and A’s rules, and the other

1 This definition does not distinguish which process received the output, which is sufficient for �S. The
definition can be easily extended to other failure detectors like �W.
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processes do not move. (iii) If a message was received, then it was in flight; the received
message is removed from the set of in-flight messages, while the produced messages are added.
(iv) Failed processes do not recover, i.e., c.F ⊆ c′.F = fails.

Algorithm runs: A finite (respectively infinite) crash-stop run of A is a finite (infinite)
alternating sequence c0, l0, c1 . . . of configurations and labels, that ends in a configuration
if finite, such that the initial state is allowed by the algorithm, (ci, li, ci+1) are valid steps,
and the resilience condition is satisfied. Furthermore, the output of the failure detector
must satisfy the condition of the failure detector. Such a run has reliable links if all in-flight
messages eventually get delivered, unless the sender or the receiver is faulty. The crash-stop
system of the algorithm A is the sequence of all crash-stop runs of A. The crash-stop system
with reliable links of the algorithm A is the set of all crash-stop runs with reliable links.

As mentioned before, we are interested in properties that are sequences of global states. In
this sense, runs contain too much information (e.g., in-flight messages). Thus, given a run ρ,
we define its state trace trs(ρ), obtained by removing the labels and projecting configurations
onto just the states. We introduce a notion of a state property: an infinite sequence of (global)
states. The crash-stop system (with or without reliable links) satisfies a state property P if
for every run ρ of the system, trs(ρ) ∈ P . We later show that our crash-recovery wrappers
for crash-stop protocols preserve important state properties of crash-stop algorithms. Lastly,
we note down a simple property of crash-stop runs.

I Lemma 1 (Reliable links irrelevant for prefixes). Let ρ be a finite crash-stop run of A. Then,
ρ can be extended to an infinite crash-stop run of A that has reliable links (intuitively, by
eventually delivering all in-flight messages, M).

Summary of time and failure assumptions

Time. Processes are asynchronous and have no notion of time. Links are asynchronous.

Failures. Processes can fail by halting forever, while links interconnecting them do not fail.

3.2 The lossy synchronous crash-recovery model
We next define our first crash-recovery model. Formally, this a lossy synchronous crash-
recovery model, with non-deterministic, but not probabilistic losses, crashes, and recoveries.
We use it to prove the preservation of safety properties without taking probabilities into
account, since they are not used in such arguments. In this model, we will not distinguish
between volatile and persistent memory of a process. Instead, we assume that all memory is
persistent. This can be emulated in practice by persisting all volatile memory before taking
any actions with side-effects (such as sending network messages). Finally, while the model
is formally synchronous, in that all processes take steps simultaneously, it also captures
processing delays, as a slow process behaves like a process that crashes and later recovers.

Algorithms and algorithm steps: A crash-recovery step over a message spaceM, written
CRS(M) is defined as the pair of functions next and send, with types:

next : Σp × (Π ⇀M)→ Σp send : Σp → (Π→M).
In other words, a step determines the new state based on the current state and the map of
received messages. Given the new state, a process sends a message to every other processes
(including itself). Compared to the asynchronous setting (Section 3.1), in this model:
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1. A process can receive multiple messages simultaneously (rather than receiving at most
one message in a step).

2. Every process sends a message to every other process at each step. The wrapped
algorithms in later sections satisfy this by sending heartbeat messages, if there is nothing
else to exchange. Delivery of sent messages is not guaranteed in this model.

3. No failure detector oracle is specified. The synchrony assumption of this model inherently
provides spurious failure detection: each process can suspect all peers it did not hear
from in the last message exchange. This is in fact exactly what we will use to provide
failure detector outputs to the “wrapped” crash-stop algorithms run in this setting2.

A crash-recovery algorithm AR over Σ,M is a pair (I, step) where: I ⊆ Σ is a finite set of
initial states, and step ∈ CRS(M) is the step function.

Configurations: As in the crash-stop case, we require more than just the global states
to model algorithm executions; we hence introduce configurations. These, however, differ
from those for the crash-stop setting. As communication is synchronous, we need not store
the in-flight messages; they are either delivered by the end of a step, or they are gone.
Furthermore, as processes take steps synchronously, we can introduce a global step number. 3

A crash-recovery configuration is a tuple (n, s, F ) where n ∈ N is the step number, s ∈ Σ is
the (global) state, F ⊆ Π is the set of failed processes. We denote the set of all crash-recovery
configurations by CR. Note that this set is countable. This will allow us to impose a Markov
chain structure on the system in the later model.

Step labels and transitions: As in the crash-stop setting, we use labels to capture all
sources of non-determinism in a step. We will use these labels to assign probabilities to
different state transitions in the probabilistic model of the next section.

A crash-recovery step label is a pair (rmsgs, fails), where:
rmsgs : Π → (Π ⇀ M) denotes the message received in the step; rmsgs(p)(q) is the
message received by p on the channel from q to p. As we assume that q always attempts
to send a message to p, if rmsgs(p)(q) is undefined (rmsgs(p) is a partial function), then
either the message on this channel was lost in the step, or the sender q has failed.
fails ⊆ Π is the set of processes that are failed at the end of the step.

The crash-recovery steps (or transitions) of A, written Tr(A), is the set of all triples
(c, l, c′), where (i) only processes that are up handle their messages (ii) messages from failed
senders are not received (iii) failed processes fails = c′.F .

Algorithm runs: A finite, resp. infinite crash-recovery run of A is a finite, resp. infinite
alternating sequence c0, l0, c1 . . . of (crash-recovery) configurations and labels, ending in a
configuration if finite, such that: c0.s ∈ A.I, i.e., the initial state is allowed by the algorithm,
and (ci, li, ci+1) ∈ Tr(A) for all i, that is, each step is a valid crash-recovery transition of A.
The crash-recovery system of algorithm A is the sequence of all crash-recovery runs of A.

2 Similar to Gafni’s round-by-round fault detectors [19]; in our case, the detectors are “step-by-step”
3 We use global step numbers later in the probabilistic model, to assign failure probabilities for processes

and links (e.g., a probability pij(t) of a message from i to j getting through, if sent in the t-th step).
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Summary of time and failure assumptions

Time. Processes are synchronous and operate in a time-triggered fashion. Links are
synchronous (all delivered messages respect a timing upper bound on delivery).

Failures. Processes can fail and recover infinitely often. In every time-step, a link can be
either crashed or correct. A crashed link drop the messages (if any) sent over it.

3.3 The probabilistic crash-recovery model
We now extend the lossy synchronous crash-recovery model to a probabilistic model, where
both the successful delivery of messages and failures follow a distribution that can vary
with time. A probabilistic network N is a function of type Π × Π × N → [0, 1], such that
∃εN > 0. ∀p, q, t. N (q, p, t) > εN Intuitively, N (q, p, t) is the delivery probability for a
message sent from p to q at time (step number) t. A probabilistic failure pattern FP is
a function Π × N → [0, 1], such that ∃εF > 0. ∀p, t. εF < FP(p, t) < 1 − εF . Intuitively,
FP(p, t) gives the probability of p being up at time t.4

Given a crash-recovery algorithm AR, a probabilistic network N and failure pattern FP ,
a probabilistic crash-recovery system SR(AR,N , FP) is the Markov chain [6] with:

The set of states CR, i.e., the crash-recovery configuration set.
The transition probabilities P (c)(c′), defined as follows. Intuitively, a transition from c

to c′ is only possible if it is possible in the lossy synchronous crash-recovery model. The
probability of this transition is calculated by summing over all labels that lead from c

to c′, and giving each such label a weight. Hence, we define P (c) = nftrans(c) · trans(c),
where nftrans(c) is the normalization factor for trans(c) and trans(c)(c′) is defined as

trans(c)(c′) =
∑

rmsgs,fails

J(c, (rmsgs, fails), c′) ∈ Tr(AR)K ·
∏
p,q

(Jrmsgs(p)(q) definedK · N (q, p, c.n)

+ Jrmsgs(p)(q) undefinedK · Jq /∈ c.F K · (1−N (q, p, c.n)))

·
∏

p

((1− F P(p, c′.n)) · Jp ∈ failsK + F P(p, c′.n) · Jp /∈ failsK).

Here, J · K maps the Boolean values true and false to 1 and 0 respectively. Note that the
only non-determinism in the transitions of Tr(AR) comes exactly from the behavior we
deem probabilistic: messages being dropped by the network, and process failures.
It is easy to see that nf trans(c) is well defined for all c, as for a fixed configuration c,
trans(c)(c′) is non-zero for only finitely many configurations c′.
The distribution over the initial states defined by ι = norm(init), where
Pf (F ) =

∏
p/∈F

FP(p, 0) ·
∏

p∈F

(1− FP(p, 0)),

init(n, s, F ) = Pf (F ) · Jn = 0K · Js ∈ AR.IK,
and norm normalizes the probabilities. Note that normalization is possible, since we
assumed that after fixing N , each algorithm comes with a finite set of initial states.

Summary of time and failure assumptions

Time. Processes are synchronous and operate in a time-triggered fashion. Links are
synchronous (all delivered messages respect a timing upper bound on delivery).

4 Considering infinite time, the upper and lower bounds on F P (p, t) ensure that, with probability 1, there
is a time when process p is up.
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Probabilistic Channel

Crash-Stop Consensus Algorithm

Failure 
Detector

Reliable 
Channel

Crash-stop messages and 
failure detector output

Crash-Recovery Wrapper

Crash-recovery messages and 
acknowledgements

Figure 1 Wrapper concept.

Failures. Processes and links can fail and recover infinitely often. At the beginning of
any time-step a crashed process/link can recover with positive probability and a correct
process/link can fail with positive probability.

Important: Results in Sections 4 and 5 hold for both crash-recovery models (Section 3.2
and 3.3). Results in Section 6 rely on probabilities.

4 Wrapper for Crash-Stop Algorithms

We now define the transformation of a crash-stop algorithm A into a crash-recovery algorithm
AR. Intuitively, we do this by (also illustrated in Figure 1):

Generating a synchronous crash-recovery step using a series of crash-stop steps. Each step
in the series handles one individual received message, allowing us to iteratively handle
multiple simultaneously incoming messages and bridge the synchrony mismatch between
the crash-stop and crash-recovery models.
Using round-by-round failure detectors to produce the failure detector outputs to be fed
to the crash-stop algorithm. These outputs are from the set 2Π.5

Providing reliable links, as required by the crash-stop algorithm. During each crash-
recovery step, we buffer all outgoing messages of a process, and send them repeatedly in
the subsequent crash-recovery steps, until an acknowledgment is received.

We first define the message and state spaces of the crash-recovery version AR of a given
crash-stop algorithm A as follows:

In AR, we send a pair of messages to each process in each step:
(1) the actual payload message (from A), replaced by a special heartbeat message hb being

sent when no payload needs to be sent, and
(2) an acknowledgment message, confirming the receipt of the last message on the channel

in the opposite direction,

5 We could instead produce outputs that never suspect anyone, since no process crashes forever in our
probabilistic model. However for a weaker model that we define in the full version (where processes are
allowed to crash forever), we need failure detectors that suspect processes.
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The local state sp of a process p has three components (st, buff, acks): (1) st stores the
state of p in the target crash-stop algorithm; (2) buff represents p’s outgoing message
buffers, with one buffer for each process (including one for p); and (3) acks(q) records the
last message that p received from q. The buffers are LIFO, a choice which proves crucial
for our termination proof (Section 6).

Next, given a crash-recovery state s, a process p, and the messages rmsgs received by
p in the given round, we define unfold(p, s, rmsgs), p’s local step unfolding for s and
rmsgs. We define unfold(p, s, rmsgs) as the sequence of intermediate steps p takes. Said
differently, unfold(p, s, rmsgs) is a sequence of crash-recovery states and crash-stop labels
s0, l0, s1, l1, s2, . . . sn, where the intermediate state si represents the state of p after processing
the message of the i-th process. In a crash-recovery run, p transitions directly from s0 to sn.
The intermediate states are listed here separately to intuitively show how sn is computed.
The unfolding also allows to relate traces of A and AR more easily in our proofs, as we
produce a crash-stop run from a crash-recovery run when proving properties of the wrapper.
The content of p’s buffers changes as we progress through the states si of unfold(p, s, rmsgs),
as the wrapper routes the messages to A and receives new ones from it. The failure detector
output (recorded in the labels li) remains constant through the unfolding: all processes from
whom no message was received in the crash-recovery step are suspected. Finally, the set of
failed processes in each label is defined to be empty. We emulate the process recovery that is
possible in the crash-recovery model by crash-stop runs in which no processes fail.
Finally, given a crash-stop algorithm A with an unreliable failure detector and with the
per-process state space Σp, we define its crash-recovery version AR where:

the initial states of AR constitute the set of crash-recovery configurations c such that
there exists a crash-stop configuration cs ∈ A.I satisfying the following: (i) the initial
states of c and cs correspond to each other and in c all buffers are empty, (ii) no messages
are acknowledged, and (iii) the failed processes in c and cs are the same.
the next state of a process p is computed by unfolding, based on the messages p received
in this round.
the message that p sends to a process q pairs the first element of p’s (LIFO) buffer for q
with the acknowledgment for the last message that p received from q.
the execution is short-circuited as soon as a process decides. This is achieved by broad-
casting a message to all other processes, announcing that it has decided. When processes
receives such a message, they immediately decide and short-circuits their execution.

Short-circuiting behavior is a common pattern for consensus algorithms [8, 20]. It can be
applied in a black-box way and it is sound for any crash-stop consensus algorithm.

A more formal description of the wrapper can be found in the full version. We overload
the function symbol trs(·) to work on both crash-stop and crash-recovery runs. Given a
crash-recovery run ρR, we define its state trace, trs(ρR), as the sequence obtained by first
removing the labels, then projecting each resulting configuration c onto c.s, and finally
projecting each local state c.sp onto c.sp.st. Note that both crash-stop and crash-recovery
state properties are sequences of states from the same state space Σ.

5 Preservation Results

As our first main result, we show that crash-recovery versions of algorithms produced by our
wrapper preserve a wide class of safety properties. The class includes the safety properties
of consensus: validity, integrity and agreement (Section 3). In other words, if a trace of
a crash-recovery version of an algorithm violates a property, then some crash-stop trace
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of the same algorithm also violates that property. We show this in the non-probabilistic
crash-recovery model. However, the result also translates to the probabilistic model, since all
allowed traces of the probabilistic model are also traces of the non-probabilistic one.

Preserving all safety properties for all algorithms and failure detectors would be too
strong of a requirement, for two reasons. First, as our crash-recovery model assumes nothing
about link or process reliability, in finite runs we can give no guarantees about the accuracy
of the simulated failure detectors. Second, the crash-recovery model is synchronous, meaning
that different processes take steps simultaneously. This is impossible in the crash-stop model,
which is asynchronous. Thus, the following simple safety property OneChanges defined by
“the local state of at most one process changes between two successive states in a trace” holds
in the crash-stop model, but not in the crash-recovery model (equivalently, we can find a
crash-recovery trace, but not a crash-stop trace that violates the property).

We work around the first problem by assuming that the crash-stop algorithms use
unreliable failure detectors. For the second problem, we restrict the class of safety properties
that we wish to preserve as follows. Consider a property P . Let u /∈ P and w be runs with
the same initial states (i.e., u(1) = w(1)) such that u is a subword of w (recall we define
subwords earlier). P then belongs to the class of properties not repairable through detours if
w /∈ P for all such u and w. Intuitively, this means that the sequence of states represented
by u inherently violates P ; so adding “detours” by the means of additional intermediate
states (forming w) does not help satisfy P .

The property OneChanges is an example of a safety property that is repairable through
detours: we can take any word that violates OneChanges and extend it to a word that does
not violate OneChanges. However, we can easily show that the following safety properties
are not repairable through detours:

The safety properties of consensus. E.g., consider the validity property: given a word u
such that v = u(i, p).dec is a non-initial and a non-⊥ value, adding further states between
the initial state and u(i) does not change the fact that v is neither initial nor ⊥.
State invariant properties, defined by a set S of “good” states, such that for a trace u,
u ∈ Inv(S) only if ∀i. u(i) ∈ S. Equivalently, these properties rule out traces which reach
the “bad” states in the complement of S. Intuitively, if a bad state is reached, we cannot
fix it by adding more states before or after the bad state.

We establish the following lemma, which is essential to the ensuing preservation theorem.

I Lemma 2 (Crash-recovery traces have crash-stop superwords). Let A be a crash-stop
algorithm with an unreliable failure detector. Let ρR be a finite run of the crash-recovery
wrapper AR. Then, there exists a finite run ρ of A such that trs(ρR) is a subword of trs(ρ),
trs(ρR)(1) = trs(ρ)(1), last(trs(ρ)) = last(trs(ρR)), no processes fail in ρ, and in-flight
messages of last(ρ) match the messages in the buffers of last(ρR).

I Theorem 3 (Preservation of detour-irreparable safety properties). Let A be a crash-stop
algorithm with an unreliable failure detector, and let P be a safety state property that is not
repairable through detours. If A satisfies P , then so does AR.

Proof. We prove the theorem’s statement by proving its contrapositive. Assume AR violates
P . By the definition of safety properties [4], there exists a finite run ρR of AR such that no
continuation of trs(ρR) is in P . By Lemma 2, there exists a run ρ of A such that trs(ρR) is
a subword of trs(ρ). By Lemma 1, ρ can be extended to an infinite run ρ · w of A. By the
choice of ρR, we have that trs(ρR) · trs(w) /∈ P . As trs(ρR) · trs(w) is a subword of trs(ρ ·w),
and since P is not detour repairable, then also trs(ρ · w) /∈ P . Thus, A also violates P . J
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Proving that the safety properties of consensus are detour-irrepairable, means that these
properties are preserved by our wrapper. Since state invariants are also detour-irreparable,
they too are preserved by our wrapper. This makes our wrapper potentially useful for reusing
other kinds of crash-stop algorithms in a crash-recovery setting, not just the consensus ones.

I Corollary 4. If A satisfies the safety properties of consensus, then so does AR.

I Corollary 5. If A satisfies a state invariant, then so does AR.

6 Probabilistic Termination

Termination of consensus algorithms depends on stable periods, during which communication
is reliable and no crashes or recoveries occur. In this section, we first state a general result
about so-called selective stable periods for our probabilistic crash-recovery model. We then
define a generic class of crash-stop consensus algorithms, which we call bounded algorithms.
We prove that termination for these algorithms is guaranteed in our probabilistic model when
run under the wrapper. Namely, we prove that, with probability 1, all processes eventually
decide. We also show that the class of bounded algorithms covers a wide spectrum of existing
algorithms including the celebrated Chandra-Toueg [8] and the instantiation of the indulgent
framework of [20] that uses failure detectors.

6.1 Selective Stable Periods
Similar to [11], our proofs will rely on forming strongly-connected communication components
between particular sets of processes. However, we will require their existence only for bounded
periods of time, which we call selective stable periods.

I Definition 6 (Selective stable period). Fix a crash-recovery algorithm AR. A selective-
stable period of AR of length ∆ for a crash-recovery configuration c and a set of processes C,
written stable(AR,∆, c, C), is the set of all sequences c = c0, c1, . . . c∆+1 of crash-recovery
configurations such that ∀i. 1 ≤ i ≤ ∆ + 1 we have ci.F = Π \C and there exist rmsgsi such
that (ci, (rmsgsi, ∅), ci+1) is a step of AR and rmsgsi(p)(q) is defined ∀p, q ∈ C.

Such selective stable periods must occur in runs of a crash-recovery algorithm AR.

I Lemma 7 (Selective stable periods are mandatory). Fix a crash-recovery algorithm AR, a pos-
itive integer ∆ and a selection function sel : CR → 2Π, mapping crash-recovery configurations
to process sets. Then, the set of crash-recovery runs

{c0, l0, c1, . . . | ∀i ≥ 0. ci, li, . . . , ci+∆+1 /∈ stable(AR,∆, ci, sel(ci))}, has a probability of 0.

The next section shows how our wrapper exploits such periods to construct crash-recovery
algorithms from existing crash-stop ones in a blackbox manner. For future work it might
also be interesting to devise consensus algorithm directly on top of this property.

6.2 Bounded Algorithms
We next define the class of bounded crash-stop algorithms for which our wrapper guarantees
termination in the crash-recovery setting. This class comprises algorithms which operate in
rounds, with an upper bound on the number of messages exchanged per round as well the
number of rounds correct processes can be apart. More formally, they are defined as follows.
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I Definition 8 (Bounded algorithms). A crash-stop consensus algorithm (using reliable links
and a failure detector [8]) is said to be bounded if it satisfies all properties below:

(B1) Communication-closed rounds: processes operate in rounds. The rounds must be
communication-closed [14]: only the messages from the current round are considered.

(B2) Externally triggered state changes: After the first step of every round, the pro-
cesses change state only upon receipt of round messages, or on a change of the failure
detector output.

(B3) Bounded round messages: There exists a bound Bs such that, in any round, a
process sends at most Bs messages to any other process.

(B4) Bounded round gap: Let Nc = N − Nf , that is, the number of correct processes
according to the algorithm’s resilience criterion. Then, there exists a bound B∆, such
that the fastest Nc processes are at most B∆ rounds apart.

(B5) Bounded termination: There exists a bound Badv such that for any reachable
configuration c where any Nc fastest processes in c are correct, the other processes are
faulty, and the failure detector output at these processes is perfect after c, then all of
these Nc processes decide before any of them reaches the round rmax(c) +Badv.

Checking 1-3 for a given algorithm is typically trivial. We can check 4 by examining under
which condition(s) a process increments its round number, and 5 by observing the algorithm’s
termination under perfect failure detection given a quorum of correct processes. Section 6.3
shows an example of these checks. If an algorithm satisfies the Definition 8, we next prove
that it terminates in all sufficiently long selective stable periods.

I Theorem 9 (Bounded selective stable period termination). Let A be a bounded algorithm
and AR its wrapped crash-recovery version. Let c be a reachable crash-recovery configuration
of the AR, and let C be some set of Nc fastest processes in c. Then, there exists a bound B,
such that, for any selective stable period of length B for c and C, all processes in C decide
in AR. Moreover, the bound B is independent of the configuration c.

Proof. We partition the processes from C into the set A (initially C) and NA (initially ∅).
The processes in A will advance their rounds further, and the processes in NA will not
advance, but will have already decided. Let p be some slowest process from A in c. We first
claim that p advances or decides in any selective stable period for c and C of length at most
Bslow, defined as Bslow = Bs · B∆ + 1. Denote the period configurations by c = c0, c1, . . ..
Then, using Lemma 2, we obtain a crash-stop configuration cs

1 from c1 that satisfies the
conditions of bounded termination, with the processes from C being correct, and the others
faulty. We consider two cases.

First, if p advances in the crash-stop model after receiving all the in-flight round messages
in cs

1 from other processes in A, then it also advances in the crash-recovery model after
receiving these messages. Moreover, our wrapper delivers all such messages within Bs ·B∆
steps, as
(1) it uses LIFO buffers;
(2) bounds B∆ and Bs apply to cs

1 by 3 and 4; and
(3) by Lemma 2, the same bounds also apply to c1 (as 4 is an invariant).

Second, if p does not advance in the crash-stop model, then, since the failure detector
output remains stable, and since no further round messages will be delivered to p in the
crash-stop model, the requirement 2 ensures that p will not advance further in the crash-stop
setting. Moreover, requirements 5 and 2 ensure that p must decide after receiving all of its
round messages; we move p to the set NA.
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We have thus established that the slowest process from A can move to either NA or
advance its round after Bslow steps. Next, we claim that we can repeat this procedure by
picking the slowest member of A again. This is because the procedure ensures that the
processes in NA always have round numbers lower than the processes in A. Thus, due to 1
and 2, the processes in A cannot rely on those from NA for changing their state.

Lastly, we note that this procedure needs to be repeated at most Biter = N · (B∆ +Badv)
times before all processes move to the round rmax(c) +Badv, by which point 5 guarantees
that all processes terminate. Thus Bslow ·Biter gives us the required bound B. J

The main result of this paper shows that the wrapper guarantees all consensus properties
for wrapped bounded algorithms, including termination.

I Theorem 10 (CR consensus preservation). If a bounded algorithm A solves consensus in the
crash-stop setting, then AR also solves consensus in the probabilistic crash-recovery setting.

Proof. By Corollary 4, we conclude that AR solves the safety properties of consensus in the
crash-recovery setting. For (probabilistic) termination, the result follows from Theorem 9
and Lemma 7, using as the selection function for Lemma 7
(1) any function that selects some Nc fastest processes in a configuration if no process has

decided yet and
(2) all processes, if some process has decided.
The latter allows us to propagate the decision to all processes, due to short-circuiting in
AR. J

6.3 Examples of Bounded Algorithms

We next give two prominent examples of bounded algorithms: the Chandra-Toueg (CT)
algorithm [8] and the instantiation of the indulgent framework of [20] that uses failure
detectors. For these algorithms, rounds are composite, and consist of the combination of
what the authors refer to as rounds and phases. Checking that the algorithms then satisfy
conditions 1–3 is straightforward. 4 holds for the CT algorithm with B∆ = 4 ·N : take the
fastest process p in a crash-stop configuration; if its CT round number rp is N or less, the
claim is immediate. Otherwise, p must have previously moved out of the phase 2 of the last
round r′p in which it was the coordinator, which implies that at least Nc processes have also
already executed rp. Since CT uses the rotating coordinator paradigm, rp − r′p ≤ N ; as each
round consists of 4 phases, B∆ = 4 ·N . For the algorithm from [20], processes only advance
to the next round (which consists of two phases) when they receive messages from Nc other
processes. Thus, B∆ = 2. Finally, proving the requirement 5 is similar to, but simpler
than the original termination proofs for the algorithms, since it only requires termination
under conditions which includes perfect failure detector output. For space reasons, we do
not provide the full proofs here, but we note that Badv = phases · bN/2c for both algorithms,
where phases is the number of phases per algorithm round. Intuitively, within this many
rounds the execution hits a round where a correct processor is the coordinator; since we
assume perfect failure detection for this period, no process will suspect this coordinator, and
thus no process will move out of this round without deciding.

I Corollary 11. The wrapped versions of Chandra-Toueg’s algorithm [8] and the instantiation
of the indulgent framework of [20] using failure detectors solve consensus in the probabilistic
crash-recovery model.
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7 Concluding Remarks

This paper introduced new system models that closely capture the messy reality of distributed
systems. Unlike the usual distributed computing models, we account for failure and recovery
patterns of processes and links in a probabilistic and temporary, rather than a deterministic
and perpetual manner. Our models allow an unbounded number of processes and communi-
cation links to probabilistically fail and recover, potentially for an infinite number of times.
We showed how and under which conditions we can reuse existing crash-stop distributed
algorithms in our crash-recovery systems. We presented a wrapper that allows crash-stop
algorithms to be deployed unchanged in our crash-recovery models. The wrapper preserves
the correctness of a wide class of consensus algorithms.

Our work opens several new directions for future investigations. First, we currently model
failures of processes as well as communication links individually and independently, with
a non-zero probability of failing/recovering at any point in time. In the full version, we
sketch how our results can be extended to systems where some processes may never even
recover from failure. It is interesting to investigate what results can be established with more
complicated probability distributions, e.g., if the model is weakened to allow processes and
links to fail/recover on average with some non-zero probability [15]. Second, our wrapper
fully persists the processes state. Studying how to minimize the amount of persisted state
while still allowing our results (or similar ones) to hold is another promising direction. Finally,
we focus on algorithms that depend on the reliability of message delivery. Some algorithms,
notably Paxos [23], do not. Finding a modular link abstraction for the crash-stop setting that
identifies these algorithms is another interesting topic. For those algorithms, we speculate
that preserving termination in the crash-recovery model is simpler.
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Abstract
Causal broadcast constitutes a fundamental communication primitive of many distributed pro-
tocols and applications. However, state-of-the-art implementations fail to forget obsolete control
information about already delivered messages. They do not scale in large and dynamic systems.
In this paper, we propose a novel implementation of causal broadcast. We prove that all and
only obsolete control information is safely removed, at cost of a few lightweight control messages.
The local space complexity of this protocol does not monotonically increase and depends at each
moment on the number of messages still in transit and the degree of the communication graph.
Moreover, messages only carry a scalar clock. Our implementation constitutes a sustainable
communication primitive for causal broadcast in large and dynamic systems.
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1 Introduction

Causal broadcast constitutes the core communication primitive of many distributed sys-
tems [9]. Applications such as distributed social networks [3], distributed collaborative
software [10, 19], or distributed data stores [2, 4, 6, 15, 24] use causal broadcast to ensure
consistency criteria. Causal broadcast ensures reliable receipt of broadcast messages, exactly-
once delivery, and causal delivery following Lamport’s happen before relationship [14]. When
Alice comments on Bob’s picture, nobody sees Alice’s comment without Bob’s picture, and
nobody sees multiple occurrences of Alice’s comment or Bob’s picture.

Vector clock-based approaches [16, 18, 20] need to keep all their control information
forever. They cannot forget any control information. The consumed memory monotonically
increases with the number of processes that ever broadcast a message O(N). They become
unpractical in large and dynamic system comprising from hundreds to millions of processes
joining, leaving, self-reconfiguring, or crashing at any time.

In this paper, we propose a novel implementation of causal broadcast that forgets all
and only obsolete control information. A process p that has i incoming links receives each
message i times. A message m is active for p between its first and last reception by p. Process
p keeps control information about all its active messages. As soon as a message becomes
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inactive, the process can forget all control information related to it. Consequently, processes
do no store any permanent control information about messages. When no message is active,
no control information is stored in the system.
Our contribution is threefold:

We define the notion of link memory as a mean for each process to forbid multiple delivery.
Link memory allows each process to identify processes from which it will receive a copy of
an already delivered message. This allows each process to safely remove obsolete control
information about broadcast messages that will never be received again. We prove that
using causal delivery, each process can build such knowledge even in dynamic systems
where processes may join, leave, self-reconfigure, or crash at any time.
We propose an implementation of causal broadcast that uses the notion of link memory,
where each process manages a local data the size of which is O(i ·A) where i is the number
of incoming links and A is the number of active messages. Moreover, the only control
information piggybacked on messages is a scalar Lamport clock.
We evaluate our implementation using large scale simulations. The experiments highlight
the space consumed and the traffic generated by our protocol in dynamic systems with
varying latency. The results confirm that the proposed approach scales with system
settings and use.

The rest of this paper is organized as follows. Section 2 describes the model, highlights
the issue, introduces the principle solving the issue, provides an implementation solving the
issue along with its complexity analysis. Section 3 shows the experiments. Section 4 reviews
related work. We conclude and discuss about perspectives in Section 5.

2 Proposal

In this section, we present a causal broadcast protocol providing a novel trade-off between
speed, memory, and traffic. Among others, it safely removes obsolete control information
about broadcast messages. Its memory consumption increases and decreases over receipts.
The key ideas are:
(1) Every process broadcasts or forwards a message once, hence every link carries a message

once. A process expects to receive as many copies of a message as its number of links.
Once a process received all expected copies, it can forget about this broadcast message,
i.e., it can safely remove the control information associated to this broadcast message.

(2) Adding links between pair of processes adds uncertainty. The receiver cannot state any
longer when it should expect a message from a link.

(3) By exploiting causal order, processes remove this uncertainty. Causal order allows
processes to remove batches of obsolete information while reasoning about temporarily
buffered broadcast messages.

2.1 Model
A distributed system comprises a set of processes that can communicate with each other
using messages. Processes may not have the knowledge of all processes in the system. Instead,
processes build and maintain overlay networks: each process updates a local partial view of
logical communication links, i.e., a set of processes to communicate with. The partial view is
usually much smaller than the actual system size. We use the terms of overlay networks, and
distributed systems interchangeably.



B. Nédelec, P. Molli, and A. Mostéfaoui 20:3

I Definition 1 (Overlay network). An overlay network G = (P, E) comprises a set of processes
P and a set of directed links E ⊆ P × P . An overlay network is static if both sets P and E
are immutable. Otherwise, the overlay network is dynamic. An overlay network is strongly
connected if there exists a path – i.e. a link or an sequence of links – from any process to
any other process. We only consider strongly connected overlay networks.

I Definition 2 (Process). A process runs a set of instructions sequentially. Processes
communicate with each other using asynchronous message passing. A process A can send a
message to a process B sAB(m), or to any process sA(m); receive a message from a process B
rAB(m), or from any process rA(m). A process sends messages using the set of links departing
from it, called out-view Qo. Processes reachable via these links are called neighbors. A
process receives messages from the set of links arriving to it, called in-view Qi. Processes are
faulty if they crash, otherwise they are correct. We do not consider Byzantine processes.

Causal broadcast ensures properties similar to those of reliable broadcast. Each process
may receive each broadcast message multiple times but delivers it once. In this paper, we
tackle the issue of implementing these properties.

I Definition 3 (Uniform reliable broadcast). When a process A broadcasts a message to all
processes of its system bA(m), each correct process B eventually receives it and delivers it
dB(m). Uniform reliable broadcast guarantees 3 properties:
(1) Validity: If a correct process broadcasts a message, then it eventually delivers it.
(2) Uniform Agreement: If a process – correct or not – delivers a message, then all correct

processes eventually deliver it.
(3) Uniform Integrity: A process delivers a message at most once, and only if it was previously

broadcast.

In static systems, implementing these properties only requires a local structure the size
of which grows and shrinks over receipts [22]. Every process knows the number of copies of
each delivered message it should expect. When this number drops down to 0, the process
safely removes the control information associated to the delivered messages. This forbids
multiple delivery for the process will never receive – hence deliver – this message again.

However, in dynamic systems where processes join, leave, or self-reconfigure their out-view
at any time, the removal of a link may impair the consistency of the number of expected
messages. Either processes cannot safely garbage collect obsolete control information, or
processes suffer from multiple delivery.

In this paper, we solve this issue by exploiting causal broadcast’s ability to ensure a
specific order on message delivery. To characterize the order among events such as send, or
receive, we define time in a logical sense using Lamport’s definition.

I Definition 4 (Happens-before [14]). The happens-before relationship defines a strict partial
order of events. The happens-before relationship → is transitive (e1 → e2 ∧ e2 → e3 =⇒
e1 → e3), irreflexive (e1 6→ e1), and antisymmetric (e1 → e2 =⇒ e2 6→ e1). The sending of
a message always precedes its receipt sAB(m)→ rBA(m). Two messages are concurrent if
none happens before the other (rA(m1) 6→ sA(m2) ∧ rA(m2) 6→ sA(m1)).

I Definition 5 (Causal order). The delivery order of messages follows the happen before
relationships of the corresponding broadcasts. dA(m)→ bA(m′) =⇒ dB(m)→ dB(m′)

I Definition 6 (Causal broadcast). Causal broadcast is a uniform reliable broadcast ensuring
causal order.
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Figure 1 Link memory allows to safely remove obsolete control information in static systems.

2.2 Link memory
We define link memory as a mean for processes to forbid multiple delivery while safely
removing obsolete control information. Processes attach control information about expected
messages to each link of their respective in-view.

I Definition 7 (Link memory). Assuming a link (A, B), Process B remembers among its
delivered messages those that it will receive from this link; and forgets among its delivered
messages those that it will never receive from this link. rememberBA(m) ≡ dB(m)∧¬rBA(m)

I Theorem 8 (Link memory forbids multiple delivery). A process that delivers only messages
it does not remember using link memory delivers each broadcast message exactly once.

Proof. We must show that, for any message m, its receipt cannot lead to its delivery if a
copy of m has already been delivered before: @m, dB(m)→ rBA(m) ∧ rBA(m)→ dB(m).
The delivery dB(m) implies a prior receipt rB(m)→ dB(m). Assuming that each link carries
each messages once, and this receipt comes from link (A, B), then Process B cannot receive,
hence deliver, m from (A, B) again: @m, rBA(m)→ dB(m)∧dB(m)→ rBA(m)∧rBA(m)→
dBA(m).
If this receipt comes from any other link (C, B), C 6= A, Process B remembers m on other
links, and among others, on link (A, B): ∀m, rBC(m)→ rememberBA(m). Assuming that
each link carries each message once, Process B eventually receives a copy of m from link
(A, B): rememberBA(m)→ rBA(m). Since remembering a message forbids its delivery, this
cannot lead to another delivery of m: @m, rBA(m)→ dB(m).
Finally, since every process delivers, hence forwards each message once, each link carries each
messages once. J

Algorithm 1 shows a set of instructions that implements causal broadcast for static
systems. It uses reliable FIFO links to ensure causal order [7], and implements link memory
to forbid multiple delivery. Every process maintains a local structure the size of which
increases and decreases over receipts. The first receipt of a broadcast message from a link
tags the other links (see Line 15). The receipt on other links of this broadcast message
removes the corresponding tag (see Line 16). Figure 1 depicts its functioning in a system
comprising 3 processes. In Figure 1a, Process B broadcasts b. It awaits a copy of b from
the only link in its in-view. In Figure 1b, Process A receives b. It delivers it, for no link
in its in-view is tagged with b, meaning this is a first receipt. It tags the other link in its
in-view with b and forwards b to its out-view. In Figure 1c, Process B receives the awaited
copy of b from Process A. It removes the corresponding entry. The broadcast protocol at
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Algorithm 1: Causal broadcast for static systems.
1 Qo // Out-view
2 Qi // In-view
3 E ← ∅ // Map of expected messages Qi : M∗

4 DISSEMINATION:
5 function C-broadcast(m)
6 receive(m, _)
7 upon receive(m, l)
8 if ¬received(m, l) then
9 foreach q ∈ Qo do sendTo(q, m)

10 C-deliver(m)

11 function received(m, l)
12 rcvd← ∃q ∈ E with m ∈ E[q]
13 if ¬rcvd then
14 foreach q ∈ Qi do
15 E[q]← E[q] ∪m
16 E[l]← E[l] \m
17 return rcvd

A
{B,C : a}

B
∅

C
∅

a

a

(a) Process A broadcasts
a and expects a copy
from both Process B and
Process C.

A
{B,C : a}

B
∅

C
∅∅∅

a a

(b) Process C receives,
delivers, and forwards a.
It does not expect addi-
tional copies.

A
{B : a}

B
∅∅∅

C
∅

a a
(c) Process B adds a link
to Process C. Then it re-
ceives, delivers, and for-
wards a.

A
∅∅∅

B
∅

C
{A : a}

a

(d) Process C receives
and mistakes a for a new
message. It delivers, and
forwards a.

Figure 2 Causal broadcast (Algorithm 1) fails to forbid multiple delivery in dynamic systems.

Process B does not consume space anymore. Process C receives b. It detects a first receipt so
it delivers and forwards b. It does not tag any link, for the only link from its in-view is the
link from which it just received b. In Figure 1d, the last process to await a copy of b finally
receives it. None of processes remembers about b. No copy of b travels in the system. This
implementation forbids multiple delivery in static systems while safely removing obsolete
control information.

However, implementing link memory becomes more challenging in dynamic systems where
processes can start sending messages to any other process at any time. Any process can
receive an already forgotten message from any other process. Figure 2 illustrates the issue.
In Figure 2a, Process A broadcasts a. It expects a copy from both Process B and Process C.
In Figure 2b, Process C immediately receives, delivers, and forwards a. It does not tag any
link and expects to never receive this message again. However, network condition delays the
receipt of b from Process B. In Figure 2c, Process B adds a communication link towards
Process C. Then it receives, delivers, and forwards b. Since Process C now belongs to
its out-view, the forwarding includes Process C. In Figure 2d, Process C receives a again.
However, it did not keep control information about this message. It mistakes it for a first
receipt. It delivers and forwards a. Not only Process C suffers multiple delivery but this has
cascading effects over the whole system.

The rest of this section describes how causal broadcast can exploit causal order to initialize
link memory, an implementation of such broadcast, and its complexity analysis.
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A

B

A1

α

A1 ∪ B1

β

B1 ∪ A2

π

Bα

A2 ∪ B2

ρ

Bβ

B2 ∪ A3

B
β

Bπ

A′3 ∪ B3 with A′3 ⊆ A3

Figure 3 Initializing the link memory from Process A to Process B. Control messages α, β,
π, and ρ are delivered after all preceding messages while Bβ is not. At receipt of Bβ , Process B
classifies the messages: Bβ ∩ (Bα ∪Bπ) = B2 ∪ A′3 are messages to ignore; Bβ \Bα \Bπ = A3 \ A′3
are messages to deliver; Bπ \Bβ = B3 are messages to expect from Process A.

2.3 Link memory for dynamic systems
This section demonstrates that causal broadcast can use causal order to initialize link memory,
thereby enabling the use of link memory in dynamic systems.

Algorithm 1 already implements the maintenance of link memory over receipts. Every
process safely removes obsolete control information over receipts. However, Figure 2 highlights
that new links lack of consistent initialization. The challenge consists in initializing such
memory without history of past messages. Causal broadcast starts to build the knowledge
on-demand, i.e., when a process wants to add a link to another process. The protocol disables
the new link until initialized. This initialization requires round-trips of control messages and
message buffering. Causal broadcast takes advantage of causal order to provide guarantees
on messages included in buffers.

Figure 3 depicts the principle of the approach. When a Process A adds a link to Process B,
Process A notifies Process B using a control message α. This control message α, as all
control messages that will follow (β, π, ρ), must be delivered after all its preceding messages.
Hence, at receipt, Process B implicitly removes obsolete information: messages delivered by
Process A before the sending of the notification A1. At receipt of α, Process B can start
gathering control information about its delivered messages in a buffer Bα. Among other,
Process B wants to identify messages concurrent to the correct establishment of the new
link. Process B acknowledges Process A’s notification using a control message β. At receipt
of β, Process A removes obsolete information: messages delivered by Process B before the
sending of the acknowledgment A1 ∪ B1. This solves the issue identified in Figure 2, for a
would belong to A1 or B1. However, this is not sufficient to initialize link memory. Process A
sends a control message π to Process B, and starts to gather control information about its
delivered messages in a buffer Bβ . Upon receipt of π, Process B closes its first buffer Bα.

I Lemma 9 (Messages in buffer Bα). The buffer Bα contains messages delivered by Process B
after the sending of β and before the receipt of π.
This includes all messages delivered by Process A before the sending of π that were not
delivered by Process B before the sending of β: A2. Above all, this also includes all messages
delivered by Process B that were not delivered by Process A at the sending of π: B2.

Proof. Since control messages are delivered after preceding messages, all broadcast mes-
sages delivered by Process A before the sending of α precede the buffering: ∀m, dA(m)→
sA(αAB) =⇒ m 6∈ Bα. Since messages are delivered once, ∀m, dA(m) → sA(πAB) ∧
dB(m)→ sB(βAB) =⇒ m 6∈ Bα. This removes A1 and B1.
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The buffer Bα contains the rest of messages delivered by Process B before the receipt of
π. This includes messages delivered by Process A between the sending of α and π but not
delivered by Process B before the sending of β (A2); and messages delivered by Process B
but not delivered by Process A before the sending of π (B2). J

Upon receipt of π, Process B continues to gather control information about its delivered
messages in another buffer Bπ. Some messages in this buffer will be expected from Process A,
but Process B cannot determine which ones just yet. It sends the last acknowledgment ρ
to Process A. Upon receipt of this acknowledgment, Process A closes its buffer and sends
it using the new link. Afterwards, Process A uses the new link for causal broadcast, for it
knows that Process B will receive Bβ before upcoming broadcast messages on this new link,
and the receipt of Bβ will allow Process B to initialize this new link memory.
Upon receipt of Bβ , Process B stops buffering in Bπ.

I Lemma 10 (Messages in buffer Bβ). The buffer Bβ contains messages delivered by Process A
after the sending of π and before the receipt of ρ.
This includes all messages delivered by Process B before the sending of ρ that were not
delivered by Process A before the sending of π: B2. This also includes all messages delivered
by Process A that were not delivered by Process B at the sending of ρ: A3.

Proof. The proof is similar to that of Lemma 9. Control messages shift roles. π becomes ρ;
β becomes π; α becomes β. J

I Lemma 11 (Messages in buffer Bπ). The buffer Bπ contains messages delivered by Process B
after the sending of π and before the receipt of Bβ.
This may includes messages delivered by Process A before the sending of Bβ that were not
delivered by Process B before the sending of ρ: A′

3. This also includes all messages delivered
by Process B that were not delivered by Process A at the sending of Bβ: B3.

Proof. The proof is similar to that of Lemmas 10 and 11. The difference being that Bβ
is not necessarily delivered after preceding messages. Hence, the receipt of Bβ follows the
sending of ρ but Process B cannot state if it received all, part, or none of messages in A3.
Thus, A′

3 ⊆ A3. J

Using Bα, Bβ , and Bπ buffers, Process B identifies messages in Bβ it must deliver against
messages it must ignore, and messages in Bπ it must receive from Process A. This allows
Process B to initialize link memory.

I Theorem 12 (Bα, Bβ , and Bπ initialize link memory). A process consistently initializes
link memory at receipt of Bβ using Bα and Bπ.

Proof. From Lemma 9, Bα = A2 ∪ B2. From Lemma 10, Bβ = B2 ∪ A3. From Lemma 11,
Bπ = A′

3 ∪ B3.
First, we must show that Process B delivers all and only messages from Bβ it did not deliver
yet: m ∈ A3 \ A′

3.
Since Bβ \Bα \Bπ = (B2 ∪A3) \ (A2 ∪B2) \ (A′

3 ∪B3) = A3 \ (A′
3 ∪B3). Since B3 ∩A3 = ∅,

we have Bβ \Bα \Bπ = A3 \ A′
3.

Second, we must show that Process B initializes the new link memory with all and only
messages from Bπ that Process A did not deliver at the sending of Bβ : m ∈ B3.
Bπ \Bβ = (A′

3 ∪B3) \ (B2 ∪A3). Since B3 ∩B2 = ∅ and A′
3 ⊆ A3, Bπ \ (Bβ \Bα) = B3. J
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Algorithm 2: PRC-broadcast at Process p.
1 B ← ∅ // @Sender Map of buffers Qo : M∗
2 S ← ∅ // @Receiver Map of buffers Qi : M∗ ×M∗ × bool
3 DISSEMINATION:
4 function PRC-broadcast(m)
5 C-broadcast(m)
6 upon C-deliver(m)
7 buffering(m)
8 PRC-deliver(m)

9 function buffering(m)
10 foreach q ∈ B do B[q]← B[q] ∪m
11 foreach 〈Bα, Bπ, receivedπ〉 ∈ S do
12 if receivedπ then Bπ ← Bπ ∪m
13 else Bα ← Bα ∪m

14 LINK MEMORY:
@Sender

15 upon openo(to)
16 Qo ← Qo \ to
17 send-α(p, to)

@Receiver
18 upon openi(from)
19 Qi ← Qi \ from

20 upon receive-β(from, to)
21 B[to]← ∅
22 send-π(from, to)

23 upon receive-α(from, to)
24 S[from]← 〈∅, ∅, false〉
25 send-β(from, to)

26 upon receive-ρ(from, to)
27 send-Bβ(from, to, B[to])
28 B ← B \ to
29 Qo ← Qo ∪ to

30 upon receive-π(from, to)
31 〈Bα, Bπ, _〉 ← S[from]
32 S[from]← 〈Bα, Bπ, true〉
33 send-ρ(from, to)

filter messages to ignore →
to deliver →
to expect →

34 upon receive-Bβ(from, to, Bβ)
35 〈Bα, Bπ, _〉 ← S[from]
36 S ← S \ from
37 foreach m ∈ Bβ \Bα \Bπ do
38 receive(m, from)
39 E[from]← Bπ \Bβ
40 Qi ← Qi ∪ from

41 upon closeo(to)
42 B ← B \ to

43 upon closei(from)
44 S ← S \ from
45 E ← E \ from

2.4 Implementation

PRC-broadcast stands for Preventive Reliable Causal broadcast. It prevents both causal
order violations and multiple delivery by using all and only links that are safe [20], and
the memory of which is correctly initialized and maintained. PRC-broadcast ensures that
control messages are delivered after all their preceding messages by sending them on reliable
FIFO links used for causal broadcast. PRC-broadcast uses a local structure the size of
which increases and decreases over receipts. Every process safely removes obsolete control
information about past broadcast messages.

Algorithm 2 shows the instructions of PRC-broadcast. Figure 4 illustrates its operation
in a scenario involving 3 processes. In this example, Process B adds a link to Process C.
Process B disables the new link for causal broadcast until it is safe and guaranteed that
Process C correctly initialized its memory.
Process B sends a first control message α to Process B using safe links (see Line 17 and
Figure 4a).
After being routed to Process C by intermediary processes (see Figure 4b), α reaches Process C
(see Figure 4c). Process C starts to register messages it delivers in a buffer Bα. Process C
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α
Bα : {c1}

β c1

(c) Process C receives α and an-
swers by sending β to Process B us-
ing Process A as mediator. Then,
Process C broadcasts c1 and reg-
isters it in Bα.

A

B

C Bα : {c1}

c1
β

c1

(d) Process A receives β and routes it
to Process B. Process A receives c1 and
forwards it to both its neighbors.

A

B
β

Bβ : [c1, b1]

C Bα : {c1}

π
c1
b1

(e) Process C receives and discards c1. Process B receives
β and replies π to Process C using Process A as mediator.
Process B receives c1 and forwards it to its neighbor. Process B
broadcasts b1. It registers c1 and b1 in Bβ .

A

B
Bβ : [c1, b1]

C Bα : {c1, c2}b1

b1 π

c2

(f) Process A receives c1 and discards it. Pro-
cess A receives π and routes it to Process C.
Process A receives b1 and forwards it to its neigh-
bors. Process C broadcasts c2 and registers it in
Bα.

A

B
Bβ : [c1, b1, b2]

C
π
Bα : {c1, c2}
Bπ : {b1, c3}

c2

b2

c2

ρ b1 c3

(g) Process A receives c2 and forwards it to its neigh-
bors. Process B broadcasts b2 and registers it in Bβ .
Process C receives π and replies ρ to Process B using
Process A as mediator. Then it receives and forwards
b1. Then it broadcasts c3. It registers b1 and c3 in
Bπ.

A

B
ρ

Bβ : [c1, b1, b2, c2]

C
Bα : {c1, c2}
Bπ : {b1, c3}c3

b2
c2

c3 b2

B
β

(h) Process A receives and discards b1. Pro-
cess A receives and routes ρ to Process B.
Process A receives and forwards b2 then c3.
Process B receives, forwards, and registers c2.
Then Process B receives ρ and sends Bβ to
Process C using the new link.

A

B

C
Bα : {c1, c2}
Bπ : {b1, c3}
Bβ : [c1, b1, b2, c2]

c3
b2

c2

c3 b2

(i) Once Process A sent Bβ , the new link is safe. Pro-
cess C receives Bβ . Process C does not deliver c1, b1
and c2, for it already delivered them. Process C delivers
b2 and expects another copy from Process A, for it con-
stitutes a new message. Process C expects to eventually
receive c3 from Process B.

Delivered by
Process B

To deliver:
Bβ \Bα \Bπ
[c1, b1, b2, c2] \ {c1, c2} \ {b1, c3}

[b1, b2] \ {b1, c3}

[b2]

To expect from B:
Bπ \Bβ

{b1, c3} \ [c1, b1, b2, c2]

{c3}

To ignore:
Bβ ∧ (Bα ∪Bπ)

[c1, b1, b2, c2] ∧ ({c1, c2} ∪ {b1, c3})

[c1, b1, b2, c2] ∧ {b1, c1, c2, c3}

{c1, b1, c2}

Delivered by
Process C

(j) Process C categorizes each message of Bβ and Bπ.

Figure 4 Using buffers and control messages, PRC-broadcast provides reliable causal broadcast.
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acknowledges the receipt of α by sending a second control message β to Process B using safe
links (see Line 25). In Figure 4c, Process C broadcasts c1 and registers it in Bα.
After being routed to Process B (see Figure 4d), β reaches Process B. Process B starts to
register messages it delivers in a buffer Bβ . Process B sends a third control message π to
Process C using safe links (see Line 22). In Figure 4e, Process B delivers c1 then broadcasts
b1. It registers them in Bβ . In Figure 4f, Process C broadcasts c2 and registers it in Bα.
After being routed to Process C by intermediary processes (see Figure 4f), π reaches Process C.
Process C ends its first buffer Bα. Process C starts to register messages it delivers in Bπ.
Process C sends a fourth and last control message ρ to Process B using safe links (see Line 33).
In Figure 4g Process C delivers b1, broadcasts c3, and registers them in Bπ. In the meantime,
Process B broadcasts b2 and registers it in Bβ .
After being routed to Process B, ρ reaches Process B (see Figure 4h). Process B stops
buffering and sends its buffer of messages Bβ using the new link sBC(Bβ) (see Line 27). In
Figure 4i, this buffer contains b1, b2, and c2. The new link is safe. Process B starts to use
this link normally for causal broadcast using Algorithm 1.
Once Process C receives the buffer, it ends its buffer Bπ (see Figure 4i). Using Bα, and Bπ,
Process C identifies among messages from Bβ the array of messages to deliver (see Line 38).
In Figure 4j, this array only includes b2. Using Bα, and Bπ, Process C also identifies the set
of messages to ignore which is the rest of the buffer. In Figure 4j, this set includes c1, b1 and
c2. Finally, Process C identifies among its own delivered messages the messages to expect
from Process B (see Line 39). In Figure 4j, this set includes c3. This set constitutes the
memory of the new safe link. Afterwards, messages received by this new link are processed
normally.

PRC-broadcast builds link memory using control messages that acknowledges the delivery
of preceding messages. Every process safely removes obsolete control information about past
broadcast messages. The size of the local structure increases and decreases over receipts. In
the next section, we analyze the complexity of this causal broadcast implementation.

2.5 Complexity
In this section, we analyze the complexity of PRC-broadcast in terms of broadcast message
overhead, delivery execution time, local space consumption, and number of control messages.
The broadcast message overhead is constant O(1). The protocol uses reliable FIFO links
to transmit messages.
The delivery execution time, i.e., the time complexity of the receipt function is O(|Qi|).
The protocol checks and updates control information associated to each link in the in-view
Qi. The size of in-views can be much smaller than the number of processes in the system
|P |. For instance, peer-sampling approaches [8, 21] provides every process with an in-view
the size of which is logarithmically scaling with the number of processes O(ln(|P |)).
The local space consumption depends on the size of buffers and the size of the in-view.
Each link in the in-view has its buffer of control information about messages. A message
appears in the structure after its first receipt and disappears at its last receipt. So the local
space complexity is O(|Qi| ·M) where M is the number of messages already delivered that
will be received again from at least a link in the in-view Qi. The local space consumption
depends on system settings (e.g. processes do not consume space when the system topology
is a ring or a tree) and use (e.g. processes do not consume space when no process broadcasts
any message).
The overhead in terms of number of control messages per added link in an out-view varies
from 6 to 4 · |P |2 depending on the overlay network; P being the set of processes currently
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in the system. It achieves 6 messages when Process A adds Process B using Process C as
mediator, and Process B has Process A in its out-view. It achieves 8 control messages when
peer-sampling protocols build out-views using neighbor-to-neighbor interactions [11, 21]. It
achieves O(4 · log(|P |)) control messages when peer-sampling protocols allows processes to
route their messages [12, 25]. It achieves O(4 · |P |2) control messages when Process A adds
Process B without knowledge of any route. Process A and Process B fall back to reliable
broadcast instead of routing to disseminate control messages.

This complexity analysis shows that PRC-broadcast proposes a novel trade-off in terms of
complexity. In systems allowing a form of routing, processes only send a few control messages
to handle dynamicity. Every process maintains a local structure the size of which increases
and decreases over receipts. Every process safely removes obsolete control information
about past messages. It constitutes an advantageous trade-off that depends on the actual
system settings and use instead of past deliveries. The next section describes an experiment
highlighting the effects of the system settings on the space consumed by processes.

3 Experimentation

PRC-broadcast proposes a novel trade-off between speed, memory, and traffic. Most impor-
tantly, its space consumed varies over receipts. In this section, we evaluate the impact of the
actual system on the space consumed and traffic generated by processes. The experiments
run on the PeerSim simulator [17] that allows to build large and dynamic systems. Our
implementation is available on the Github platform at http://github.com/chat-wane/
peersim-prcbroadcast.

Objective: To confirm that local space complexity depends on in-views and message receipts.

Description: We measure the average size of buffers and arrays of expected messages. This
constitutes the average local space overhead consumed by PRC-broadcast to detect and
forbid multiple delivery in dynamic systems.
Runs involve 3 overlay networks comprising 100, 1k, and 10k processes. Spray [21] builds a
highly dynamic overlay networks. The resulting topology has properties close to those of
random graphs such as low diameter, or low clustering coefficient. Such systems are highly
resilient to random crashes, and allows processes to balance the load of the traffic generated
by broadcasting. Each process maintains an out-view logarithmically scaling with the number
of processes in the system. Each process of the 100-processes system has an out-view of ≈ 10
neighbors. Each process of the 1k-processes system has an out-view of ≈ 13.5 neighbors.
Each process of the 10k-processes system has a out-view of ≈ 15 neighbors. Each process
dynamically reconfigures its out-view: it gives half of its correctly initialized links to a chosen
neighbor; the latter gives half of its correctly initialized links to the former as well. Each
exchange leads to link memory initialization and safety checks of the new links, and removal
of given links. Each process starts to reconfigures its out-view as soon as it joins the system
and reconfigures its out-view every minute. This uniformly spreads reconfigurations over the
duration of the experiment.
Links are bidirectional, their safety must be checked in both directions but the overhead
remains minor. Since the peer-sampling protocol that builds the system uses neighbor-to-
neighbor communication to establish new links, each control message is two hops away from
its destination. Overall, a new link requires 8 control messages to be initialized properly.
Links have transmission delay, i.e., the time between the sending of a message and its receipt
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Figure 5 Overhead of PRC-broadcast required to ensure causal order and forbid multiple delivery
in dynamic systems with varying latency.

is not null. The experiments start with 1 millisecond transmission delay. At 15 minutes, the
delay starts to increase. At 17 minutes, links reach 300 milliseconds transmission delay. At
40 minutes, links reach 2.5 seconds transmission delay and it stops increasing.
From 2 minutes to 50 minutes, every second, 10 processes chosen uniformly at random among
all processes broadcast a message.

Results: Figure 5a shows the results of this experiment. The x-axis denotes the time in
minute. The top part of the figure shows the local space overhead while the bottom part of
the figure shows the evolution of transmission delays.
Figure 5a confirms that the local space consumption depends on the in-view size. Systems with
larger in-views consume more space. Each new delivered message adds control information
on each link of the in-view (see Algorithm 1).
Figure 5a confirms that the local space consumption depends on network condition. The
overhead increases as the latency increases. Latency increases the time between the first and
the last receipt of each message. Processes store messages longer until their safe removal.
Figure 5a confirms that the local space consumption depends on broadcast messages. When
processes stops broadcasting, the space consumed at each process drops to 0. Each process
eventually receive each message and safely remove the corresponding entry.
Figure 5a shows that at a rate of 10 broadcasts per second and when latency stays under
a realistic bound (300 milliseconds), the overhead is lower than vector-based approaches.
Whatever system conditions, it would require a vector of 100, 1k entries, 10k entries to
forbid multiple delivery in the 100-processes system, 1k-processes system, 10k-processes
system respectively. However, it is worth noting that the overhead of PRC-broadcast
increases linearly with the number of messages currently transiting. 100 broadcasts per
second would multiply measurements made on PRC-broadcast by a factor of 10. In such
case, the 100-entries vector would be better than PRC-broadcast even under a latency of 300
milliseconds.
PRC-broadcast provides a novel trade-off between speed, memory, and traffic. Among other,
its space consumed increases and decreases depending on the system and its current use;
instead of past use (see Section 4. This result means that it constitutes an advantageous
trade-off in
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(i) dynamic systems
(ii) comprising up to millions of processes
(iii) that could broadcast at any time.

Objective: To confirm that the generated traffic overhead depends on the dynamicity of
the system.

Description: We measure the average number of control messages received by each process
during a second. This includes the routing of messages. The setup is identical to that of
prior experiment.

Results: Figure 5b shows the results of this experiment. The top part of the figure depicts
the traffic overhead generated by PRC-broadcast while the bottom part of the figure depicts
the evolution of transmission delays.
Figure 5b shows that the number of control messages received by processes depends on
the dynamicity of the system. The more dynamic the higher the traffic overhead. At the
beginning of the experiment, processes join the system. Numerous links are established at
once, hence the high number of control messages. Then processes shuffle their out-view
during 50 minutes. The number of links to add and remove is roughly constant over time,
hence the stabilization in number of control messages. Finally, processes stop shuffling at 50
minutes. Processes do not receive additional control messages.
Figure 5b confirms our traffic overhead complexity analysis. For instance, in the 10k-processes
system, views comprises 15 processes which belong half from the out-view and half from the
in-view. Each process shuffles every minute. Each shuffle adds and removes 7.5 links (twice
half of the out-view size). Since the peer-sampling protocol establishes links using neighbor-to-
neighbor interactions, it allows a form of routing where only 8 control messages are required
to initialize a new link. |exchanged_links| ∗ |control_messages|/60 ≈ 7.5∗8/60 ≈ 1 control
message per second.
Figure 5b shows that latency smooth and decreases the number of control messages. The
peer-sampling protocol only shuffles links already safe and the memory of which is initialized.
Since increasing latency increases the initialization time of links, processes exchange less links
at each shuffle. The generated traffic decreases accordingly. Latency also spreads control
messages over time, hence the smoothing in measurements.
Assuming peer-sampling protocols that enable a form of routing, PRC-broadcast forbids
multiple delivery at the cost of a few lightweight control messages in dynamic systems. In
this experiment, the underlying peer-sampling protocol builds a random graph topology
that has numerous desirable properties such as resilience to failures, quick dissemination of
information, or load balancing [11]. It fits dynamic systems where numerous processes join
and leave continuously. Nonetheless, other peer-sampling protocols could be used depending
on the configuration of the system. One could minimize latency [5], or gather people based
on user preferences [12].

Overall, this section showed that PRC-broadcast proposes a novel trade-off in terms of
complexity. Its complexity actually depends on the system (its dynamicity, its latency, its
topology) and current use (broadcasts per second). PRC-broadcast forbids multiple delivery
and safely removes obsolete control information about broadcast messages. The next section
reviews state-of-the-art approaches designed to forbid multiple delivery.
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Table 1 Complexity of broadcast algorithms at each process. N the number of processes that
ever broadcast a message. P is the set of processes in the system. W the number of messages
received but not delivered yet. Qi is the set of incoming links. M is the number of messages already
delivered that will be received again from at least one link in Qi.

message
overhead

delivery
execution time

local space
consumption

# control messages
per added link

reliable broadcast [9] O(1) O(1) O(N) 0
causal broadcast [23] O(N) O(W ·N) O(N +W ·N) 0
preventive broadcast [20] O(1) O(1) O(N) 3 to 2 · |P |2

this paper O(1) O(|Qi|) O(|Qi| ·M) 6 to 4 · |P|2

4 Related work

Causal broadcast ensures causal order and forbids multiple delivery. PRC-broadcast uses
the former to improve on the complexity of the latter. This section reviews state-of-the-art
broadcast protocols that forbid multiple delivery in asynchronous and dynamic systems.

Building specific dissemination topologies such as tree or ring guarantees that every
process receives each message once [4, 22]. Processes deliver messages as soon as they arrive.
They do not need to save any control information about messages, for they will never receive
a copy of this message again. While these approaches are lightweight, they stay confined to
systems where failures are uncommon, and where churn rate remains low [13]. PRC-broadcast
generalizes on these specific topologies. It follows the same principle where the topology
impacts on the number of receipts. Its space complexity scales linearly with this number of
receipts. In turns, PRC-broadcast inherits from the resilience of the underlying topology
maintained by processes. PRC-broadcast supports dynamic systems without assuming any
specific topology.

Without any specific dissemination topology, each process may receive each broadcast
message multiple times. Despite multiple receipts, a process must deliver a message once.
Using local structures based on logical clocks [14], every process differentiates between
the first receipt of a broadcast message and the additional receipts of this message. It allows
to deliver the former while ignoring the latter. Unfortunately, the size of these structures
increases monotonically and linearly with the number of processes that ever broadcast a
message [16, 18]. Processes cannot reclaim the space consumed, for it would require running
an overcostly distributed garbage collection that is equivalent to a distributed consensus [1].
This limits their use to context where the number of broadcasters is known to be small.
PRC-broadcast uses local structures based on logical clocks too. However, instead of saving
the past deliveries of broadcasters, its saves the messages expected from direct neighbors.
The set of expected messages varies over receipts, and the number of neighbors can be far
smaller than the set of broadcasters. PRC-broadcast scales in large and dynamic systems.
Among others, PRC-broadcast fits contexts where the number of participants is unknown,
such as distributed collaborative editing [19].

Table 1 summarizes the complexity of broadcast implementations that handle asyn-
chronous and dynamic systems. To the best of our knowledge, all causal broadcast implemen-
tations use an underlying reliable broadcast in order to forbid multiple delivery. Their local
space complexity comprises O(N) where N is the number of processes that ever broadcast a
message. Compared to preventive causal broadcast [20], PRC-broadcast slightly increases the
delivery execution time, and doubles the number of control message per added link. In turns,
PRC-broadcast keeps a constant overhead on broadcast message, and changes the terms of



B. Nédelec, P. Molli, and A. Mostéfaoui 20:15

local space complexity. Most importantly, the local space consumed does not monotonically
increase anymore.

5 Conclusion

In this paper, we proposed a causal broadcast implementation that provides a novel trade-off
between speed, memory, and traffic. Our approach exploits causal order to improve on
the space complexity of the implementation that forbids multiple delivery. The local space
complexity of this protocol does not monotonically increase and depends at each moment
on the number of messages still in transit and the degree of the communication graph. The
overhead in terms of number of control messages depends on the dynamicity of the system
and remains low upon the assumption that the overlay network allows a form of routing.
This advantageous trade-off makes causal broadcast a lightweight and efficient middleware
for group communication in distributed systems.

As future work, we plan to investigate on ways to retrieve the partial order of messages
out of PRC-broadcast. Applications may require more than causal order, they also may
need to identify concurrent messages [26]. PRC-broadcast discards a lot of information by
ignoring multiple receipts altogether. Analyzing the receipt order could provide insight on
the partial order. The cost could depend on the actual concurrency of the system.
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Abstract
We classify the functions f : N2 → N which are stably computable by output-oblivious Stochastic
Chemical Reaction Networks (CRNs), i.e., systems of reactions in which output species are never
reactants. While it is known that precisely the semilinear functions are stably computable by
CRNs, such CRNs sometimes rely on initially producing too many output species, and then
consuming the excess in order to reach a correct stable state. These CRNs may be difficult to
integrate into larger systems: if the output of a CRN C becomes the input to a downstream CRN
C′, then C′ could inadvertently consume too many outputs before C stabilizes. If, on the other
hand, C is output-oblivious then C′ may consume C’s output as soon as it is available. In this work
we prove that a semilinear function f : N2 → N is stably computable by an output-oblivious CRN
with a leader if and only if it is both increasing and either grid-affine (intuitively, its domains
are congruence classes), or the minimum of a finite set of fissure functions (intuitively, functions
behaving like the min function).
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1 Introduction

Stochastic Chemical Reaction Networks (CRNs) – systems of reactions involving chemical
species – have traditionally been used to reason about extant physical systems, but are
currently also of strong interest as a distributed computing model for describing molecular
programs [8, 16]. They are closely related to Population Protocols [1, 3, 4, 9], another
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21:2 Output-Oblivious Stochastic Chemical Reaction Networks

distributed computing model; these models have found applications in areas as diverse as
signal processing [13], graphical models [14], neural networks [12], and modeling cellular
processes [5, 6]. CRNs can simulate Universal Turing Machines [16, 2]. However, these
simulations have drawbacks: the number of reactions or molecules may scale with the space
usage and the computation is only correct with an arbitrarily small probability of error. If
we require stable computation – that the CRN always eventually produces the correct answer
– then Angluin et al. [4] showed that precisely the class of semilinear predicates can be stably
computed. Chen et al. [8] extended this result to show that precisely the semilinear functions
can be stably computed.

Recent advances in physical implementations of CRNs and, more generally, chemical
computation using strand displacement systems (e.g., [15, 17, 18, 19]) are a step towards
the use of CRNs in biological environments and nanotechnology. As these systems become
more complex, it may be necessary to integrate multiple, interacting CRNs in one system.
However, current CRN constructions may perform poorly in such scenarios. As a concrete
example, consider a CRN C given by the reactions X → 2Y , Y + L→ ∅, where the system
begins with n copies of input species X, and one copy of L (called the leader). This CRN
eventually produces 2n− 1 copies of output species Y , and so (stably) computes the function
n 7→ 2n− 1. If another CRN C′ uses the output of C as its input, and if the first reaction
occurs n times before the second occurs at all, then C′ may consume all 2n copies of Y
and may thus itself produce an erroneous output. Current CRN constructions circumvent
this issue by using diff-representation, where the count y of output species Y of a CRN is
represented indirectly as the difference y = yP − yC between the counts of two species Y P

and Y C [8], rather than as the count of one output species Y . While these constructions
enable the counts of both Y C and Y P to be non-decreasing throughout the computation, it
is not immediately clear how a second CRN might use these two species reliably as input.

More generally, if multiple function-computing CRNs comprise a larger system it can be
desirable that no CRN ever produces a number of outputs that exceeds its function value.
We might even demand more: that an output species of a CRN is never used as a reactant
species, i.e., is never consumed. This ensures that any secondary CRN relying on the first’s
output can consume the output indiscriminately.

It is thus natural to ask: What functions can be stably computed in an output-oblivious
manner, in which outputs are never reactants, without using diff-representation?

This question is the focus of this paper. Doty and Hajiaghayi [11] already observed
that output-oblivious functions must not only be semilinear but also increasing, that is,
f(n1) ≤ f(n2) whenever n1 ≤ n2, but did not provide further insights. Chalk et al. [7]
asked the same question but for a different model, namely mass-action CRNs. That model
tracks real-valued species concentrations, unlike the stochastic model in which configurations
are vectors of species counts. In contrast with the mass-action mode, leader molecules can
play a very important role in the stochastic model, and we focus on the case where leaders
are present. Mass-action CRN models cannot have leaders since there are no species counts.
Functions that are stably computable by output-oblivious mass-action CRNs must be super-
additive [7], that is f(n) + f(n′) ≤ f(n+ n′). Semilinear functions that are super-additive
are a proper subset of the class of output-oblivious functions (characterized in this paper)
that can be stably computed by stochastic CRNs with leaders.

1.1 Our Results
In this work we characterize the class of output-oblivious semilinear functions, i.e., those
functions that can be stably computed by an output-oblivious stochastic CRN. We assume
that one copy of a leader species is present initially in addition to the input. We focus on
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f(n) =


ϕ1(n) = 2, n ∈ Dom1,

ϕ2(n) = n1 + n2, n ∈ Dom2,

ϕ3(n) = n1 + 2n2 + 5, n ∈ Dom3,

ϕ4(n) = n1 + 2n2 + 4, n ∈ Dom4 .

Figure 1 Here we represent a grid-affine function f : N2 → N by its decomposition on different
domains, all of which are grids. The domains of f are illustrated on the left. Each black point is
a zero-dimensional grid, while the grey points represent four one-dimensional grids, namely the
lines {(α, 0) + (2, i) : α ∈ N} and {(0, α) + (i, 2) : α ∈ N} for i = 0, 1. The blue points represent
points (n1, n2) such that n1 + n2 is even, and cover the union of two grids: {(2α1, 2α2) : αi ∈
N} ∪ {(2α1, 2α2) + (1, 1) : αi ∈ N}. Similarly, the gold points represent two grids.

functions with two inputs and one output, since this case already is quite complex. Our
results generalize trivially when there are more outputs since each output can be handled
independently, and we believe that our techniques also generalize to multiple inputs.

Our results also hold for Population Protocols, since stable function-computing CRNs
can be translated into Population Protocols and vice versa. Section 2 introduces the relevant
background in order to formally describe our results, but we describe them informally here.

Perhaps the simplest type of output-oblivious function with domain N2 is an affine
function, such as f(n1, n2) = 2n1 + 3n2 + 1 which could be computed by a CRN with
reactions L → Y , X1 → 2Y and X2 → 3Y where L is a single leader. Here and hereafter,
Xi will typically correspond to the input species representing ni.

In Section 3 we show that an increasing function that can be specified as partial affine
functions whose domains are different “grids” of N2 is also output-oblivious; for example,
the function f(n1, n2) = 2n1 + 3n2 + 1 when n1 + n2 = 0 mod 2, and f(n1, n2) = 2n1 + 3n2
when n1 +n2 = 1 mod 2. More generally, a function that can be specified in terms of output-
oblivious partial functions fi, 1 ≤ i ≤ k, defined on different grids of N2, is output-oblivious.
The grids may be 0-dimensional, in which case they are points; 1-dimensional in which case
they are lines, or 2-dimensional. We call such functions grid-affine functions. See Figure 1
for a slightly more complicated example of a grid-affine function, and a representation of
its domains. We show how the CRNs for partial functions fi on the different grids can be
“stitched” together to obtain an output-oblivious CRN for f .

It is also straightforward to obtain an output-oblivious CRN for a function f that is
the min of a finite set of output-oblivious functions. In the simplest case, for example,
min(n1, n2) can be computed as X1 +X2 → Y . In our main positive result we describe a
more general type of “min-like” function, which we call a fissure function, and we show how
to construct output-oblivious CRNs for such functions. We give a very simple example of a
fissure function and a corresponding output-oblivious CRN in Figure 2.

However, constructing CRNs for other fissure functions appears to be significantly trickier
than that shown in Figure 2. Consider the function f(n1, n2) = 2n1 + 3n2 + 2 if n1 > n2,
f(n1, n2) = 3n1 + 2n2 + 2 if n1 < n2 and f(n1, n2) = 5n1 on the "fissure line" n1 = n2.
The simple line-tracking mechanism of the CRN of Figure 2 can’t be used here because the
affine functions for the "wedge" domains "n1 > n2" and "n1 < n2" depend both on n1 and
n2. Also the function cannot be written as the sum of an increasing grid-affine function and
an increasing simple fissure function of the type in Figure 2, where the "above" function
ϕA() depends only on n1 and the "below" function ϕB() depends only on n2. Our main
positive result is a construction that can handle such fissure functions, as well as functions
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21:4 Output-Oblivious Stochastic Chemical Reaction Networks

f(n) =


ϕA(n) = n1 + 1, n ∈ DomA,

ϕ0(n) = n1, n ∈ Dom0,

ϕB(n) = n2 + 1, n ∈ DomB .

[0] +X1 → [A] + Y

[0] +X2 → [B] + Y

[A] +X2 → [0]
[B] +X1 → [0]

Figure 2 A simple fissure function f : N2 → N. On the left the three domains of f are illustrated.
There is one "fissure line" called Dom0, and two "wedge" domains called DomA and DomB ("A" is
above and "B" is below the fissure line). The function value on each of these domains is specified in
the center. The function f agrees with the function min{n1 + 1, n2 + 1} except that it dips down by
1 on the fissure line Dom0. On the right is a CRN which stably computes f . In the CRN, the input
n = (n1, n2) is represented as counts of species X1 and X2 and the leader is initially [0]. The three
possible states [0], [A] and [B] of the leader track whether the input lies on the fissure line Dom0,
which is the line where ϕA(n) − ϕB(n) = 0, or whether the input lies above or below the fissure
line, i.e., in domains DomA or DomB respectively. In this simple example, the CRN need not track
how far above (or how far below) the fissure line an input might be, since the function ϕA does not
depend on n2 (and the function ϕB does not depend on n1).

with multiple parallel fissure lines.
In Section 4 we present results on the negative side. A non-trivial example of a function

that is not output-oblivious is the maximum function. Intuitively, a CRN that attempts to
compute the max would have to keep track of the relative difference of its two inputs in order
to know when the count of one input overtakes the count of the other, and it’s not possible
to keep track of that difference with a finite number of states. Developing this intuition
further, we show that an increasing semilinear function f : N2 → N is output-oblivious if and
only if f is grid-affine or is the min of finitely many fissure functions.

Putting both positive and negative results together, we state our main result here (see
Section 2 for precise definitions of grid-affine and fissure functions).

I Theorem 1. A semilinear function f : N2 → N is output-oblivious if and only if f is
increasing and is either grid-affine or the minimum of finitely many fissure functions.

Since only semilinear functions are stably computable by CRNs, Theorem 1 provides a
complete characterization of functions f : N2 → N which are output-oblivious. Moreover,
in Section 4, we will prove that if f is output-monotonic, then it is either grid-affine or
the minimum of fissure functions, a stronger statement than in Theorem 1. A function is
output-monotonic if it is stably computable by a CRN whose output count never decreases
but unlike an output-oblivious CRN an output may act as a catalyst of a reaction, being
both a reactant and product. For example, the CRN X → Y , L+ Y → 2Y which computes
the function n 7→ n+ 1 for n ≥ 1 and 0 7→ 0 is output-monotonic, but not output-oblivious.
Thus, we also obtain a characterization for output-monotonic functions.

To obtain our results, we provide new characterizations of semilinear sets and functions.
We show that all semilinear sets can be written as finite unions of sets which are the
intersection of grids and hyperplanes. Such sets are points, lines or wedges (pie-shaped slices)
on 2D grids. Using this and the representation of semilinear functions as piecewise affine
functions discovered by Chen et al. [8], we give a new representation of semilinear functions
as “periodic semiaffine functions”, essentially piecewise affine functions whose domains are
points, lines or wedges.

The rest of the paper is structured as follows. Section 2 provides the relevant technical
background on CRNs, stable computation and semilinear functions. It also contains our new
results on the structure of semilinear sets and functions, and rigorous definitions of grid-affine
and fissure functions. In the remaining two sections we prove Theorem 1, with Section 3
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providing explicit constructions of CRNs and Section 4 proving that any function which is
stably computable by an output-oblivious CRN obeys certain properties. Some proofs are
omitted and will appear in the full version of the paper.

2 Preliminaries

We begin by introducing Chemical Reaction Networks, and what it means for a CRN to
stably compute a function. We then formally define grid-affine and fissure functions and,
along the way, state new results concerning semilinear sets and functions.

2.1 Chemical Reaction Networks (CRNs)
CRNs specify possible behaviours of systems of interacting species. Let Z = {Z1, . . . , Zm}
be a finite set of species. At any given instant, the system is described by a configuration
c ∈ NZ , where c(Zi) is the current count of the species Zi ∈ Z in the system. The
system’s configuration changes by way of reactions, each of which is described as a pair
(s, t) = ((s1, . . . , sm), (t1, . . . , tm)) ∈ NZ × NZ such that for at least one 1 ≤ j ≤ m, sj 6= tj .
Reaction (s, t) can be written as∑

k:sk>0
skZk →

∑
k:tk>0

tkZk.

The species Zk with sk > 0 are the reactants, which are consumed, while those with tk > 0
are the products (if both sk > 0 and tk > 0 then species Zk is a catalyst). A CRN is
thus formally described as a pair C = (Z,R), where Z is a set of species, and R a set
of reactions. Reaction r = (s, t) is applicable to configuration c if s ≤ c (pointwise in-
equality), i.e., sufficiently many copies of each reactant are present. If applicable reaction
(s, t) occurs when the system is in configuration c = (c1, . . . , cm), the new configuration is
c′ = (c1 − s1 + t1, . . . , cm − sm + tm). In this case we say that c′ is directly reachable from
c and write c r−→ c′. An execution E = c0, . . . , ct of C is a sequence of configurations of
C such that ci is directly reachable from ci−1 for 1 ≤ i ≤ t. We say that ct is reachable from c0.

Stable CRN Computation of functions with a leader. Angluin et al. [3] introduced the
concept of stable computation of boolean predicates by population protocols, and Chen et
al. [8] adapted the notion to function computation by CRNs. While this paper focuses on
two-dimensional domains, we present the following details in full generality.

Let f : Nk → N` be a function. Formally, a Chemical Reaction Network (CRN) for
computing f with a leader is C = (Z,R, I,O, L), where Z is a set of species, R is a set of reac-
tions, I = {X1, X2, . . . , Xk} ⊆ Z is an ordered set of input species, O = {Y1, Y2, . . . , Y`} ⊆ Z
is an ordered set of output species and L is a leader species, L ∈ Z \ I.

Function computation on input n = (n1, . . . , nk) ∈ Nk starts from a valid initial configura-
tion c0 of C; namely a configuration in which the count of L is 1, the count of species Xi is ni,
and the count of any other species is 0. A computation is an execution of C from a valid initial
configuration to a stable configuration. A configuration c is stable if for every c′ ∈ Nm reach-
able from c, c(Y ) = c′(Y ) for all Y ∈ O. That is, once the system reaches configuration c, the
counts of the output species do not change. We say that C stably computes f if for every valid
initial configuration c0 and for every configuration c reachable from c0, there exists a stable
configuration c′ reachable from c such that f(c0(X1), . . . , c0(Xk)) = (c′(Y1), . . . , c′(Y`)).
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21:6 Output-Oblivious Stochastic Chemical Reaction Networks

Output-monotonic and output-oblivious CRNs. We say a CRN C is output-oblivious if it
never consumes any of its output species, and output-monotonic if on all executions from
a valid initial configuration, the count of any output species never decreases. As noted in
the introduction, these notions are not equivalent. We say a function f is output-oblivious
(monotonic) if there exists an output-oblivious (monotonic) CRN which stably computes f .
Our results show that the set of output-oblivious functions and output-monotonic functions
are the same.

2.2 Linear and Semilinear Sets; Lines, Grids, and Wedges
For a vector v, let vi denote its ith coordinate. Let D ⊆ N2 and let Π1 and Π2 denote
the projection maps onto x and y axes, respectively. We say D is two-way-infinite if
|Π1(D)| = |Π2(D)| = ∞, one-way-infinite if either |Π1(D)| = ∞ or |Π2(D)| = ∞ but not
both, and finite if |Π1(D)| < ∞ and |Π2(D)| < ∞. Also, if A,B ⊆ N2 and n ∈ N2 we let
A+B = {a+ b : a ∈ A, b ∈ B} and A+ n = A+ {n}.

A set E ⊂ N2 is linear if E = {
∑t

i=1 xiαi + o : αi ∈ N} for some t ∈ N and xi,o ∈ N2. If
t = 1 we say that E is a line. A set is semilinear if it is the finite union of linear sets.

A linear set G ⊆ N2 is a grid if there exist p, q ∈ N and o ∈ N2 such that G =
{(p, 0)α1 + (0, q)α2 : αi ∈ N} + o = {(pα1 + o1, qα2 + o2) : αi ∈ N}. If both p and q are
zero, the grid is simply the point o. If p > 0 and q = 0, or p = 0 and q > 0, the grid is a
one-way-infinite line with period p or q respectively. If p = q > 0 we say that the grid is
periodic, with period p. We let Gp + o be the grid {(α1p, α2p) : αi ∈ N}+ o and write Gp if
o = (0, 0).

A threshold set is a linear set with the form {x : x · v ≥ r} (i.e., a halfspace) for some
v ∈ Z2 and r ∈ Z. Let E be a two-way-infinite linear set of the form G ∩ T , where G is a
grid and T is a finite intersection of threshold sets. E is bounded by two lines (represented
by threshold sets and/or the x or y axes; the points on these lines, if any, are in E). If the
two bounding lines are parallel, E is the finite union of lines on G, i.e., all points of each line
lie on grid G. Otherwise we call E a wedge on G. For example, the sets {n : n1 ≥ n2} and
{(1, 1)α1 + (1, 2)α2 : αi ∈ N} are wedges on G1. Likewise, the two regions above and below
the fissure line in Figure 2 are wedges on G1. More generally, we can intuitively think of a
wedge as a pie-like slice of N2 ∩ G, except that pieces may be chopped off near the narrow
"corner" that is closest to the origin. If the two bounding lines are the x and y axes, the
wedge is all of G. We can show the following characterization of semilinear sets.

I Lemma 2. Every semilinear set can be represented as the finite union of points, lines on
grids, and wedges on grids, with all grids having the same period.

2.3 Semilinear, Semiaffine, Grid-Affine, and Fissure Functions
For a function f : N2 → N, the restriction of f to domain D ⊆ N2 is the partial function
f |D : D → N given by f |D(n) = f(n) for all n ∈ D. We say that f : D → N is (partial)
affine if f(n) = a1n1 + a2n2 + a0 for rational numbers a0, a1, and a2 ∈ Q. Function f is a
finite combination of the finite set of functions {ϕ1, . . . , ϕk} if Dom(f) =

⋃k
i=1 Dom(ϕi) and

f(n) = ϕi(n) whenever n ∈ Dom(ϕi). Throughout we write Domi in place of Dom(ϕi). We
define semilinear functions using a characterization of Chen et al. [8]:

I Definition 3 (Semilinear function [8]). A function f : N2 → N is semilinear if and only if f
is a finite combination of partial affine functions with linear domains.
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We next define semiaffine functions, a refinement of Definition 3. Lemma 5 then states
that semilinear and semiaffine functions are equivalent.

I Definition 4 (Semiaffine function). Let Gp +o be a periodic grid. A function f : Gp +o→ N
is semiaffine if and only if f is a finite combination of partial affine functions whose domains
are points, lines or wedges on grid Gp + o. A function f : N2 → N is semiaffine with period
p ∈ N+ if and only if f is a combination of semiaffine functions on grids of the form Gp + o.

I Lemma 5. A function f : N2 → N is semilinear if and only if f is semiaffine.

Our main result, Theorem 1, shows that output-oblivious functions are exactly the
following two special types of semiaffine functions. In the first special case, on each grid
Gp + o, f is restricted to be an affine (rather than a more general semiaffine) function.

I Definition 6 (Grid-affine function). A function f : N2 → N is grid-affine if and only if for
some p ∈ N+, f is a combination of affine functions on points and on grids of period p.

A function f : D → N is increasing if f(n) ≤ f(n′) for all n ≤ n′, where n,n′ ∈ D.
Doty and Hajiaghayi [11] observed that an output-oblivious function must be increasing.
Accordingly, we hereafter focus on increasing functions.

I Definition 7 (Fissure function). Let G be a two-way-infinite grid. An increasing semiaffine
function f : G → N is a partial fissure function if for some o ∈ N2, f can be represented as
follows for all n ≥ o:

f(n) =


ϕA(n), if ϕA(n)− ϕB(n) ≤ −k,
ϕ−i(n) = ϕA(n)− d−i, if ϕA(n)− ϕB(n) = −i, 1 ≤ i < k,

ϕi(n) = ϕB(n)− di, if ϕA(n)− ϕB(n) = i, 0 ≤ i < k,

ϕB(n), if ϕA(n)− ϕB(n) ≥ k.

(1)

where ϕA(n) = A0 + A1n1 + A2n2, ϕB(n) = B0 + B1n1 + B2n2, for integers A0 and B0,
nonnegative rationals A1, A2, B1 and B2, and nonnegative integers d−k, . . . , d−1, d0, d1, . . . , dk.
For −k ≤ i ≤ k, we refer to the line ϕA(n) − ϕB(n) = i as a fissure line and call it Li.
Moreover, ϕA < ϕB on DomA and ϕB < ϕA on DomB ; thus A1 > B1 and B2 > A2. We say
f : N2 → N is a (complete) fissure function if f is a combination of partial fissure functions
on grids of period p.

3 Proof of Sufficiency in Theorem 1

This section shows that if an increasing semilinear function f : N2 → N is either a grid-affine
function or a fissure function, then f is output-oblivious. We do this in three lemmas. Lemma
8 shows that an increasing affine function whose domain is a grid is output-oblivious. Lemma
10 shows that a partial fissure function is output-oblivious. Finally, Lemma 11 shows that if
f is increasing and is a combination of partial output-oblivious functions defined on grids,
we can stitch together the CRNs for the partial functions to obtain an output-oblivious CRN
for f .

I Lemma 8. Let G be a grid. Any increasing affine function f : G → N is output-oblivious.

Proof. We consider the case that G = {(p, 0)α1 + (0, q)α2 : αi ∈ N}+ o is two-way-infinite;
the cases when G is a point or a line are simpler. Let f(n) = a1n1 + a2n2 + a0, where
a1, a2 ∈ Q+ and a0 ∈ Q. Since G is two-way-infinite and f is increasing, a1 and a2 are
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21:8 Output-Oblivious Stochastic Chemical Reaction Networks

nonnegative. On input n = (n1, n2) ∈ G, i.e., given n1 copies of X1 and n2 copies of X2, the
following CRN will produce f(n) copies of Y :

L+ o1X1 + o2X2 → L′ + (a1o1 + a2o2 + a0)Y // base case
L′ + pX1 → L′ + a1pY

L′ + qX2 → L′ + a2qY

Note that the first reaction must produce a non-negative and integral number of Y ’s since
f(o) ∈ N. Likewise, a1p ∈ N since a1p = f(o + (p, 0))− f(o), and similarly for a2q. Finally,
the CRN is clearly output-oblivious since the output species Y is never a reactant. J

We show in Lemma 10 below that any partial fissure function is output-oblivious. First
we describe some useful structure pertaining to partial fissure functions f : G → N. We can
represent such a fissure function as f(n) = min{ϕA(n), ϕB(n)} − di, where di is determined
by the fissure line Li on which n resides, and di = 0 if i is not on a fissure line; this formulation
is not identical to but is equivalent to that of Definition 7. As noted in that definition, it
must be that A1 > B1 and B2 > A2, since ϕA < ϕB on DomA and vice versa.

For all integers i, let Li be the line ϕA(n)− ϕB(n) = i. All of these lines, which include
the 2k− 1 “fissure lines” Li,−k < i < k, have the same slope. In addition to the fissure lines,
our CRN construction will also refer to the lines Li for i in the range [k, . . . ,K − 1], where
K = k + dmax − 1. We call these the lower boundary lines, and we call the lines Li for i in
the range [−K + 1, . . . ,−k] the upper boundary lines. Note that (0, 0) is on the line LA0−B0

and more generally, if point p is on line Li then (A1 −B1)p1 − (B2 −A2)p2 = i−A0 +B0.
For n ∈ G let M(n) = (ϕA(n), ϕB(n)). The next lemma shows that M(n) ∈ N2 for all
sufficiently large n ∈ G, even though DomA and DomB are proper subsets of G.

I Lemma 9. Let ϕ : D → N be a partial affine function, where D is a wedge domain on G.
Let m be a minimal point of D. Then ϕ(n) ∈ N on all n ∈ G with n ≥m.

We let P be the set of rational points p for which M(p) ∈ N and let Q be the range of M
with respect to domain P . For q ∈ Q, let M−1(q) denote the inverse of M (M−1q is unique
since (A1, A2) and (B1, B2) are linearly independent). The following claim follows easily
from the definition of M and will be useful later.

I Claim 1. Let z1, z
′
1, z2, z

′
2 ∈ N. If z1 ≤ z′1 and M−1(z1, z2) is in DomB then M−1(z′1, z2)

is also in DomB. Similarly if z2 ≤ z′2 and M−1(z1, z2) is in DomA then M−1(z1, z
′
2) is also

in DomA.

I Lemma 10. Any partial fissure function f : G → N is output-oblivious.

Proof. For simplicity we assume that the grid G is N2, i.e., the period of the grid is 1 and
the offset o is zero; it is straightforward to generalize to larger grid periods. With these
assumptions, it must be that A0 and B0 are nonnegative integers, which slightly simplifies
base cases of our construction.

The CRN input is represented as the initial counts of species X1 and X2, and x = (x1, x2)
denotes the counts of X1 and X2 that have been consumed at any time. Rather than
producing output f(x) directly upon consumption of x, our CRN produces ϕA(x) copies
of a species Z1 and ϕB(x) copies of a species Z2, effectively computing the mapping M
described above. Note that ϕA(x) and ϕB(x) are nonnegative integers by Lemma 9. The
CRN works backwards from the quantities ϕA(x) and ϕB(x) to reconstruct f(x). Roughly
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this is possible because f(x) is “almost” the min of ϕA(x) and ϕB(x), and min is easy to
compute. More precisely, we can assume that f(x) = min{ϕA(x), ϕB(x)} − di, where di

is determined by the fissure line Li on which n resides, and di = 0 if i is not on a fissure
line. In addition to the input, a leader L is also present initially. Other CRN molecules
(not initially present) represent a state [lx, lz, d] containing three components; we explain
the components later. Our CRN has three types of reactions: Z-producing, Z-consuming,
and Y -producing reactions. The first Z-producing reaction handles the base case, producing
(ϕA(0, 0), ϕB(0, 0)) = (A0, B0):

L→ L′ +A0Z1 +B0Z2.

The remaining two Z-producing reactions consume X1 and X2 while producing Z1 and Z2.
If Li is the line containing x, the first state component, lx, keeps track of i mod 2K − 1,
where K = k + dmax. If i is in the range [−K + 1,K − 1] then lx uniquely determines i. For
convenience in what follows, we consider lx to be in the range [−K + 1,K − 1] rather than
[0, 2K − 1]. The reactions are as follows, where ∗ represents any state component value that
is unchanged as a result of the reaction:

[lx, ∗, ∗] +X1 → [lx + (A1 −B1) mod 2K − 1, ∗, ∗] +A1Z1 +B1Z2
[lx, ∗, ∗] +X2 → [lx + (A2 −B2) mod 2K − 1, ∗, ∗] +A2Z1 +B2Z2

We next describe the Z-consuming reactions. These reactions update the remaining two
components of the state to keep track of which fissure or boundary line contains M−1(z),
where z = (z1, z2) denotes the counts of (Z1, Z2) that have been consumed at any time.
The reactions also track what is the deficit, i.e., the difference between the “true” output
f(M−1(z)) and the current output y, i.e., number of copies of species Y that has been
actually produced so far. Formally, all reactions maintain the following state invariant: if
after any reaction the state is [lx, lz, d] then
1. lz is the index of the boundary or fissure line Llz that contains M−1(z), and lz is in the

range −K + 1 ≤ lz ≤ K − 1; and
2. d = f(M−1(z))− y is the deficit in the number of y’s produced, and is in the finite range
−dmax ≤ d ≤ 2dmax + 1, where dmax = max{di | − k < i < k}.

Z-consuming reactions of the first type handle the base case when n = (0, 0):

L′ +A0Z1 +B0Z2 → [A0 −B0, A0 −B0,min{A0, B0} − dA0−B0 ].

Z-consuming reactions of the second type consume a copy of Z1 and reactions of the third
type consume a copy of Z2. Upon consumption, the state components are updated to ensure
that the state invariant holds.

[lx, lz, d] + Z1 → [lx, lz + 1, d+ d+
lz

], −K < lz < k, d ≤ dmax and
[lx, lz, d] + Z2 → [lx, lz − 1, d+ d−lz

], −k < lz < K, d ≤ dmax,

where

d+
lz

=
{
dlz − dlz+1, lz ≥ 0
dlz − dlz+1 + 1, lz < 0. and d−lz

=
{
dlz − dlz−1 + 1, lz ≥ 0
dlz − dlz−1, lz < 0.

The deficit d can never exceed 2dmax +1 since the reactions are only applicable when d ≤ dmax
and d can increase by at most dmax + 1.

The Y -producing reactions produce output molecules of species Y , while maintaining the
state invariant above, and ensuring that at the end of the computation the number of Y s
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produced equals f(n). The first Y -producing reaction produces d− dmax copies of Y when d
becomes greater than dmax.

[∗, ∗, d]→ [∗, ∗, dmax] + (d− dmax)Y, if d > dmax.

Before describing the remaining Y -producing reactions, we describe some properties of the
system of reactions above. We say that Z-consumption stalls if none of the Z-consuming
reactions are ever applicable again. Let zs = (z1s, z2s) be the counts of (Z1, Z2) consumed
when Z-consumption stalls (zs is independent of the order in which the reactions happen).
The Y -producing reaction above ensures that the Z-consuming reactions are never stalled
because d becomes too large. Also, the Z-consuming reactions don’t stall if lz is a fissure
line and another Z1 is or will eventually be available (and similarly if another Z2 is or will
eventually be available), because łz changes by 1 upon consumption of Z1 and so is still less
than K.

Stalling happens when and only when one of the following (exclusive) cases arise. (i)
All copies of both Z1 and Z2 have been consumed and no more will ever be produced, so
zs = (ϕA(n), ϕB(n)). (ii) All copies of Z2 have been consumed and no more will ever be
produced, so z2s = ϕB(n) but z1s < ϕA(n). In this case, M−1(zs) is on a lower boundary
line. To see why, note that if M−1(zs) were on a fissure or upper boundary line, then the
Z-consuming reaction that consumes Z1 would eventually be applicable, because lz is in the
proper range and at least one copy of Z1 has yet to be consumed. (iii) All copies of Z1 have
been consumed and no more will ever be produced, so z1s = ϕA(n), but z2s < ϕB(n). In
this case, the line Llz containing M−1(zs) must be an upper boundary line.

I Claim 2. f(M−1(zs)) = f(n).

Proof. This is trivial in case (i) when all Zs have been consumed and no more will be
produced, since M−1(zs) = n. Consider case (ii) (case (iii) is similar). Then M−1(zs) =
M−1(z1s, ϕB(n)), z1s < ϕA(n), and the line containingM−1(zs) is a lower boundary line. By
Claim 1, n must be in DomB , because n = M−1(ϕA(n), ϕB(n)) and ϕA(n) > z1s. Therefore,
f(M−1(zs)) = ϕB(M−1(zs)) = ϕB(n) = f(n). J

We now return to the last three reactions of the CRN, which are Y -producing reactions;
we will number them so that we can reference them later and refer to them as deficit-clearing
reactions. The next reaction clears a positive deficit when both x and M−1(z) lie on the
same fissure line:

[lx, lz, d]→ [lx, lz, 0] + dY if − k < lx = lz < k. (2)

The last two Y -producing reactions clear the deficit if M−1(z) is on a lower boundary line
and for some nonnegative integer r, M−1(z + (r, 0)) is on a line Ll with l = lx mod 2K − 1.
If such an r exists, let r1 be the smallest such integer and add the following reaction:

[lx, lz, d] + r1Z1 → [lx, lz, 0] + r1Z1 + dY, lz ≥ k, lz + r1 = lx mod 2K − 1, d > 0. (3)

We add a similar reaction when the line Llz containing M−1(z) is an upper boundary line,
when an similarly-defined r2 exists:

[lx, lz, d] + r2Z2 → [lx, lz, 0] + r2Z2 + dY, lz ≤ −k, lz + r2 = lx mod 2K − 1, d > 0.
(4)

This completes the description of the CRN. We need one more claim in order to complete
the proof of the lemma:
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I Claim 3. When Z-consumption stalls, the deficit is nonnegative.

To complete the proof, we argue that once Z-consumption stalls, some deficit-clearing
reaction will eventually be applicable, ensuring that the output eventually produced is f(n).
If M−1(zs) is on a fissure line then M−1(zs) must equal n, in which case Y -producing
reaction (2) is applicable. If M−1(zs) is on a boundary line then either (3) or (4) will be
applicable once all inputs are consumed, since for some r, either M−1(zs + (r, 0)) = n or
M−1(zs + (0, r)) = n. Thus in all cases some Y -producing reaction eventually clears the
deficit, ensuring that the output produced is f(n). J

I Lemma 11. (Stitching Lemma) Let Let f be an increasing function. If f : N2 → N
is a finite combination of output-oblivious functions whose domains are grids, then f is
output-oblivious. Also if f is the min of a finite number of output-oblivious functions then f
is output-oblivious.

Proof Sketch. Let f be a finite combination of output-oblivious functions, say f1, f2, . . . , fm,
whose domains are grids. We first describe the construction for the case that the domain
Domj of fj is a two-way-infinite grid for all j, 1 ≤ j ≤ m. Let the offset of the jth grid be
oj = (oj,1, oj,2). On input n, our CRN C first produces m distinct “inputs” n(j) ∈ N2 such
that n ≤ n(j) and n = n(j) if n ∈ Domj . From these, C produces m “outputs” yj = fj(n(j)),
using CRNs Cj for each fj . Finally, C produces y = min{y1, . . . , ym}.

To see that such a C is correct, i.e., that y = f(n), note that if n ∈ Domj then
yj = fj(n(j)) = fj(n) = f(n), since n = n(j), and if n 6∈ Domj then yj = fj(n(j)) ≥ f(n),
since f is increasing and n(j) ≥ n. Thus f(n) = min{y1, . . . , ym} = y. The details of
producing the n(j)s and the output are found in the full version.

When f is the min of a finite number of output-oblivious functions, say f1, f2, . . . , fm,
we can similarly stably compute each fi using an output-oblivious CRN Ci such that the
species for each Ci are distinct, and then take the min of the outputs as the result. J

We complete this section by proving the sufficiency (if) direction of Theorem 1.

Theorem 1 (if direction). A semilinear function f : N2 → N is output-oblivious if f is
increasing and is either grid-affine or the minimum of finitely many fissure functions.

Proof. First suppose that f is grid-affine. Then by Definition 6, f is a combination of
affine functions f1, . . . , fm whose domains G1, . . . ,Gm respectively are grids. By Lemma 8,
fi : Gi → N is output-oblivious, 1 ≤ i ≤ m. By Lemma 11, f is output-oblivious.

Otherwise f is the min of finitely many complete fissure functions f1, . . . , fm. By Definition
7, each fi is a combination of partial fissure functions on grids of period p, for some p ∈ N.
By Lemma 10, each of these partial fissure functions is output-oblivious. By Lemma 11, each
fi is output-oblivious and also f is output-oblivious. J

4 Proof of Necessity in Theorem 1

In this section we prove that if a function is output-monotonic, then it is either grid-affine or
the minimum of finitely many fissure functions. In Section 4.1 we describe two conditions on
a function which ensure that it is not output-oblivious. In Section 4.2 we show two technical
results which are needed in Section 4.3, which contains the proof of necessity. The arguments
made in this section pertain to output-monotonic functions, allowing us to both characterize
this set of functions and output-oblivious functions since any output-oblivious function is
clearly output-monotonic.
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4.1 Impossibility Lemmas
The results of this section use Dickson’s Lemma:

I Lemma 12. (Dickson’s Lemma [10]) Any infinite sequence in Nk has an infinite, non-
decreasing subsequence.

I Lemma 13. Let f : N2 → N be a semiaffine function. Suppose that f = ϕi on Domi and
f = ϕj on Domj , where Domi and Domj lie on the same grid, Domi is a wedge domain and
for some two-way-infinite line L in Domj , ϕj > ϕi on L. Then f cannot be stably computed
by an output-monotonic CRN.

Proof. Suppose to the contrary that CRN C stably computes f . Either Domi is counter-
clockwise to Domj or vice versa. Assume it is the latter; the proof is similar if the orientation
of the domains is reversed.

Let {pk}k∈N, be an infinite sequence of points in Domi that are strictly increasing in the
first dimension, and form a line which is not parallel to L (this is possible since Domi is a
wedge domain). Let ck be a stable configuration reached on a computation of C on input pk.
Applying Dickson’s Lemma, choose an infinite subsequence of {ck} and renumber so that
ck ≤ ck+1 for all k. Let n1,n2, . . . be another strictly increasing sequence in N2 such that
pk + nk ∈ L and pk′ + nk ∈ Domi for k′ > k. Such a sequence exists because {pk} is not
parallel to L, and L is two-way-infinite.

If C is correct, then on input pk + nk some execution sequence of C first reaches configur-
ation ck, which has ϕi(pk) copies of Y , and then outputs ϕj(pk + nk)− ϕi(pk) additional
Y s (since pk + nk ∈ Domj). Let k′ > k. On input pk′ + nk (which is in Domi), C can output
a number of Y s equal to:

ϕi(pk′) + ϕj(pk + nk)− ϕi(pk).

This occurs when C first produces stable output ϕi(pk′) while consuming input pk′ and
reaching configuration ck′ . Since ck′ ≥ ck, it can then follow the same execution that it
would follow from ck to produce ϕj(pk + nk)− ϕi(pk) copies of Y (since all the necessary
species are available). However, since ϕj > ϕi on L, the number of Y s produced is greater
than

ϕi(pk′) + ϕi(pk + nk)− ϕi(pk) = ϕi(pk′ + nk)

(the equality here follows since ϕi is affine). Thus too many Y ’s can be output by C on input
pk′ + nk, and so C cannot be output-monotonic. J

I Lemma 14. Let f : N2 → N be a semiaffine function. Suppose that f = ϕi on Domi and
f = ϕj on Domj, where Domi and Domj are wedge domains on the same grid G such that
(i) ϕi = ϕj on N2 and (ii) there is a two-way-infinite line L ⊂ G separating Domi and Domj ,
with ϕL < ϕi (= ϕj) on L. Then f cannot be stably computed by an output-monotonic CRN.

4.2 Properties of Increasing Semiaffine Functions
Here we show several useful properties of increasing semiaffine functions f : N2 → N. For
a partial affine function ϕi with domain Domi, write ϕi(n) = 〈ai,n〉 + a0,i (where 〈·, ·〉
denotes the standard inner product). We say that a line L is a constant distance from
Domi if there exists some constant K such that for all n ∈ L there is some c(n) with
−(K,K) ≤ c(n) ≤ (K,K) and n + c(n) ∈ Domi.
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I Lemma 15. Let f : N2 → N be an increasing semiaffine function. Suppose that f = ϕi on
Domi and f = ϕj on Domj, where ϕi and ϕj are partial affine functions, Domi and Domj

are two-way infinite domains, and some line L in Domj is a constant distance from Domi.
Then there exists some κ ∈ Q such that 〈ai,n〉 = 〈aj ,n〉+ κ for all n ∈ L.

I Lemma 16. Let f : N2 → N be an increasing semiaffine function. Suppose that f = ϕi on
Domi and f = ϕj on Domj, where ϕi and ϕj are partial affine functions. If there exist two
non-parallel lines I, L ⊂ Domi which are both a constant distance from Domj, then ai = aj.

What follows is an easy consequence of the previous lemma.

I Lemma 17. Let f : N2 → N be an increasing semiaffine function. If there exists a two-
way-infinite domain D on which ϕi and ϕj are well-defined such that f(n) = ϕi(n) = ϕj(n)
on all n ∈ D, then ϕi = ϕj.

4.3 Proof of Necessity
We first provide the main argument in the proof of necessity – that the desired result holds
on individual grids.

I Lemma 18. Let f : N2 → N be an increasing semiaffine function with period p. Then
f is output-monotonic only if for any large enough offset o, f |Gp+o is either affine or the
minimum of finitely many partial fissure functions.

Proof. Fix a representation of f as a semiaffine function with period p. Choose o large
enough so that, if G = Gp + o, no domains of f that are points or one-way-infinite domains
overlap G, and also no two-way-infinite domains of f cross. Assume that f |G is not affine;
we need to show that f |G is the minimum of partial fissure functions. Assume that the
representation of f on G minimizes the number of wedge domains.

Consider all line domains in the representation of f |G , plus all two-way-infinite lines that
define the top or bottom boundaries of wedge domains. Partition these lines into maximal
sets of parallel lines. For each such set s, we define a function fs : G → N2, and show in
Claim 4 that each fs is a partial fissure function. Let S be the set of all of the sets s of
parallel lines. We show in Claim 5 that f |G = mins∈S fs, completing the proof of Lemma 18.

Definition of fs. Fix any maximal set s of parallel lines. Without loss of generality we
assume that s has at least three lines (we can add additional domains to f ’s representation
if needed to ensure this). Some line of s, say LA,s, defines the lower boundary of a wedge
domain; we assume that this is top line of s (we can remove line domains of s above LA,s

from f ’s representation if needed to ensure this). Let f = ϕA,s on this wedge domain, where
ϕA,s is a partial affine function. In what follows, we drop the subscript s when referring to
these and other domains and functions. Let DomA be the wedge of points of G that lie on or
above LA. (Note that DomA may not be a domain of f |G since lines from some other set sj

may lie above the lines of s.) Similarly, we can assume that the bottom line, say LB, of s
defines the upper boundary of a wedge domain. Let f = ϕB(= ϕB,s) on this wedge domain
and let DomB be the wedge of points of G that lie on or below LB . We can assume without
loss of generality (by adding more lines if necessary and further adjusting which lines are
LA and LB) that any line L that lies between, and is parallel to, LA and LB is a (possibly
empty) domain of f |G. Number these lines L1, L2, . . ., say from top to bottom, and let ϕi be
the partial affine function that agrees with f on line Li.
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Let fs : G → N be the following function associated with set s:

fs(n) =


ϕA(n), if n ∈ DomA,

ϕi(n), if n ∈ Li, 2 ≤ i ≤ |s| − 1,
ϕB(n), if n ∈ DomB .

I Claim 4. fs is a partial fissure function.

Proof. Note that the lines Li are parallel to, and have constant distance from, both LA

and LB. By Lemma 15, for some di,A ∈ Q we have that ϕi(n) = ϕA(n)− di,A for all n on
line Li. That is, Li is the set of all n such that ϕA(n) − ϕi(n) = di,A. Since ϕi(n) and
ϕA(n) ∈ N for all n in G ∩ Li, di,A must be in Z. Also, since f is output-monotonic, Lemma
13 shows that ϕi ≤ ϕA on Li and so di,A must be in N. By reasoning similar to that in
the last paragraph, ϕi(n) = ϕB(n)− di,B for all n on line Li, for some di,B ∈ N. It follows
that Li is the set of points n ∈ G for which ϕA(n)− ϕB(n) = k, for some k ∈ Z. It follows
(by potentially adding yet more lines if necessary so that the number of lines Li that lie
above the line ϕA(n)− ϕB(n) = 0 is equal to the number of lines of s that lie below the line
ϕA(n)− ϕB(n) = 0) that we can represent fs(n) as in Definition 7.

It remains to show that ϕA < ϕB onDomA and ϕB < ϕA onDomB . Suppose that there
exists a point n ∈ DomA such that ϕA(n) ≥ ϕB(n). If there are only finitely many such points
in any dimension, then we may disregard them by taking o sufficiently large. Hence, we may
assume that if there is one such point then there are infinitely many and they form a two-way-
infinite domain, D. Let E = {n ∈ D : ϕA(n) > ϕB(n)} and F = {n ∈ D : ϕA(n) = ϕB(n)}.
Note that E ∪ F = D. We consider three cases. If E and F are both one-way-infinite, then
one is a horizontal line and the other a vertical line. As above, we may disregard these
points by taking o large enough. If E is two-way-infinite we can find a two-way-infinite line
L ⊂ DomA such that ϕA > ϕB on L. By Lemma 13, this contradicts the fact that f is
output-monotonic. Otherwise, F is two-way-infinite. By Lemma 16 we see that ϕA = ϕB.
Furthermore, for some i, we have ϕi < ϕA. Otherwise, di,A = 0 for all i and consequently
the number of wedge domains of f |G can be reduced by merging the domains DomA, DomB

and the Li contradicting our assumption that the representation of f on G minimizes the
number of wedge domains. However, ϕA, ϕB and ϕi then meet the conditions of Lemma 14,
a contradiction. The proof that ϕB < ϕA on DomB is similar. J

I Claim 5. f |G = mins∈S fs.

Proof. Let n ∈ Dom(fs), so that f |G(n) = fs(n). Suppose to the contrary that fs′(n) < fs(n)
for some s′ ∈ S. We consider the case where the lines of s′ lie above those of s; the case
where the lines of s′ lie below those of s is similar. Hence fs′(n) = ϕA,s′(n). We consider
three distinct cases based on the partitioning of Dom(fs).

1. n ∈ DomA,s so fs(n) = ϕA,s(n). Applying the same argument as in the proof of Claim
4, since ϕA,s′(n) < ϕA,s(n), there is a line L ⊂ DomA,s such that ϕA,s′ < ϕA,s on L.
Thus, ϕA,s′ and ϕA,s and their respective domains meet the condition of Lemma 13,
contradicting the fact that f can be stably computed by an output-monotonic CRN.

2. n ∈ Domi,s for some i with 2 ≤ i ≤ |s| − 1, so fs(n) = ϕi,s(n). Since fs is a fissure
function, we have ϕi,s(n) = ϕA,s(n) − di, for some di ∈ N, hence fs(n) = ϕi,s(n) ≤
ϕA,s(n) ≤ ϕA,s′(n) = fs′(n). Clearly then, it cannot be the case that fs′(n) < fs(n).

3. n ∈ DomB,s. This is similar to Case 1. J
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Since we get a contradiction in all three cases, we conclude that fs(n) must be less than or
equal to fs′(n) for all s′ ∈ S, and the claim is proved.

This completes the proof of Lemma 18. J

Lemma 18 describes properties of increasing semiaffine functions on one grid. We now
turn to properties of such functions across grids. The proof of the next lemma builds on that
of Lemma 18 and uses Lemma 16 to relate f across grids.

I Lemma 19. Let f : N2 → N be an output-monotonic semiaffine function with period p.
Let o be large enough that for all o′ ≥ o, f |Gp+o′ is either affine or the minimum of finitely
many partial fissure functions. If f is affine on G = Gp + o, then f |Gp+o′ must also be affine
for all o′ ≥ o, and thus f is grid-affine. Otherwise f is the minimum of finitely many fissure
functions.

We complete this section by proving the necessity (only if) direction of Theorem 1,
strengthening it slightly so that it applies also to output-monotonic functions.

Theorem 1 (only if direction). A semilinear function f : N2 → N is output-monotonic only
if f is increasing and is either grid-affine or the minimum of finitely many fissure functions.

Proof. By Lemma 5, f is a semiaffine function with period p. By Lemmas 18 and 19, f is
either grid-affine or the minimum of fissure functions. J

5 Conclusions and Future Work

Here we have characterized the class of functions f : N2 → N that can be stably computed
by output-oblivious and output-monotonic stochastic chemical reaction networks (CRNs)
with a leader. A natural next step for future work is to generalize the result to functions
f : Nk → N for k > 2; we are optimistic that many of the building blocks that we introduce
here for the two-dimensional case will generalize to the multi-dimensional case.

Another natural question is to determine what can be computed when there is no leader.
By similar reasoning to that of Chalk et al. [7] for mass-action CRNs, such functions must be
super-additive, but whether only the super-additive semilinear functions have output-oblivious
stochastic CRNs remains to be determined.

Yet another direction for future work is to determine whether, for some functions, there
is a provable gap between the time needed to stably compute the functions with an output-
oblivious CRN and the time needed by a CRN that is not restricted to be output-oblivious.
Yet other directions are to better understand output-oblivious CRN computation when errors
are allowed, and whether it is possible to "repair" a CRN that is not output-oblivious so that
composition is possible.
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Abstract
What can be computed by a network of n randomized finite state machines communicating under
the stone age model (Emek & Wattenhofer, PODC 2013)? The inherent linear upper bound on
the total space of the network implies that its global computational power is not larger than
that of a randomized linear space Turing machine, but is this tight? We answer this question
affirmatively for bounded degree networks by introducing a stone age algorithm (operating under
the most restrictive form of the model) that given a designated I/O node, constructs a tour in
the network that enables the simulation of the Turing machine’s tape. To construct the tour
with high probability, we first show how to 2-hop color the network concurrently with building
a spanning tree.
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1 Introduction

Synergy, the whole is greater than its parts, is many times true, however in traditional
distributed computing, each node is usually assumed to be as powerful as a Turing machine,
hence its local computational power is equivalent to the global computational power of the
whole network. Here, we address the computational power of a network of randomized finite
state machines with a very weak communication scheme (similar to the communication
scheme of the beeping model, [14, 2]), and show that even under these harsh conditions,
synergy can be achieved: the network as a whole is computationally more powerful than its
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through the lens of theoretical distributed computing. These are typically huge networks
of primitive devices that nevertheless perform complicated tasks (e.g., an ant colony that
solves problems no small number of ants can), thus raising the following question: How do
limitations on the local computation and communication capabilities of the individual nodes
affect the global computational power of the whole network?

The current paper addresses this question using the stone age (SA) model of Emek and
Wattenhofer [25] that captures a network of devices with very weak local computation and
communication capabilities. It has been shown in [25, Sec. 5 (full version)] that an n-node
SA network with a path topology can simulate a randomized O(n)-space Turing machine,
denoted hereafter as an RSPACE(n) machine. Little is known though about the global
computational power of SA networks with more general topologies and/or more restrictive
communication schemes. In this paper, we shed some light into this unexplored research
domain, proving that RSPACE(n) machines can be simulated over any network topology
of bounded degree by a variant of the SA model where the nodes have no sender collision
detection (see Section 1.1).

1.1 Model

Our model follows the stone age (SA) model introduced in [25] and used subsequently in
[26, 5]. Throughout, we assume that the communication network is represented by a finite
size connected undirected graph G = (V,E) with node degrees bounded by constant ∆. The
nodes are controlled by randomized finite automata with state space Q, message alphabet Σ,
and transition function τ whose role is explained soon.

Each node v ∈ V of degree dv ≤ ∆ is associated with dv input ports (or simply ports), one
port ψv(u) for each neighbor u of v in G, holding the last message σ ∈ Σ received from u at v.
The communication model is defined so that when node u sends a message, the same message
is delivered to all its neighbors v; when (a copy of) this message reaches v, it is written into
port ψv(u), overwriting the previous message in this port. Node v’s (read-only) access to its
own ports ψv(·) is very limited: for each message type σ ∈ Σ, it can only distinguish between
the case where σ is not written in any port ψv(·) and the case where it is written in at least
one port.

The execution is event driven with an asynchronous scheduler that schedules the afore-
mentioned message delivery events as well as node activation events.3 When node v ∈ V
is activated, the transition function τ : Q× {0, 1}Σ → 2Q×Σ determines (in a probabilistic
fashion) its next state q′ ∈ Q and the next message σ′ ∈ Σ to be sent based on its current
state q ∈ Q and the current content of its ports.4 Formally, the pair (q′, σ′) is chosen
uniformly at random from τ(q, χv), where χv ∈ {0, 1}Σ is defined so that χv(σ) = 1 if and
only if σ is written in at least one port ψv(·).

To complete the definition of the randomized finite automata, one has to specify the
initial state q0 ∈ Q (assumed to be the same for all nodes in the current paper), the set
Qout ⊆ Q of output states that encode the node’s output, and the initial message σ0 ∈ Σ
written in the ports when the execution begins. In addition, SA algorithms are required to
have termination detection, namely, every node must eventually decide on its output and
this decision is irrevocable.

3 The only assumption we make on the event scheduling is FIFO message delivery: a message sent by
node u at time t is written into port ψv(u) of its neighbor v before the message sent by u at time t′ > t.

4 Node v’s actual transition in step t is an atomic operation occurring at the beginning of the step.



Y. Afek, Y. Emek, and N. Kolikant 22:3

Following the convention in message passing distributed computing (cf. [37]), the run-time
of an asynchronous SA algorithm is measured in terms of time units scaled to the maximum
time it takes to deliver any message or the time between any two consecutive activations of a
node. Refer to [25] for a more detailed description of the SA model.

We adopt the communication scheme presented in [5] that weakens the SA model of
[25] in two aspects. First, under the model of [25], the algorithm designer could choose an
additional constant bounding parameter b ∈ Z>0, providing the nodes with the capability to
count the number of ports holding message σ ∈ Σ up to b. As done in [5], in the current
paper, the bounding parameter is set to b = 1. This model choice can be viewed as an
asynchronous multi-frequency variant of the beeping communication model [14, 2].

Second, in contrast to the setting considered in [25], the communication graph G = (V,E)
assumed in the current paper may include self-loops of the form (v, v) ∈ E which means, in
accordance with the aforementioned model definition, that node v admits port ψv(v) that
holds the last message received from itself. Using the terminology of the beeping model
literature (see, e.g., [2]), the assumption that the communication graph is free of self-loops
corresponds to a sender collision detection, whereas lifting this assumption means that node
v may not necessarily distinguish its own transmitted message from those of its neighbors
u 6= v.

The cruxes of the SA model are that (1) node v cannot distinguish between its ports;
and (2) the number of states in Q and the size of the message alphabet Σ are constants
independent of the size (and any other global parameter) of the graph G.5 The same holds
for the size of the transition function τ , that can be encoded as a Q× 2Σ table whose entries
are subsets of Q× Σ.

Sequential Stone Age Machines. We wish to use a SA network to simulate an RSPACE(n)
machineM, but before we can describe this simulation, we have to explain how the O(n)-bit
input I of M, that is normally stored in M’s tape at the beginning of the execution, is
provided to our network. Clearly, no node in the network can hold more than a constant
number of bits, hence I should be distributed over multiple nodes. Unlike [25], where a path
topology is assumed, here the network topology is arbitrary and does not (initially) induce
any sequential order on the nodes, thus storing I in the nodes of the network before the
execution starts does not make sense. Instead, we introduce the key notion of a sequential
stone age machine (SSAM), where I is fed to the SA algorithm bit-by-bit in a sequential
fashion through some node.

Formally, given a network G = (V,E), a SSAM is a SA algorithm running on the nodes
of G that allows an external user to
(1) pick any node v ∈ V and send to it a designated I/O_prepare message;
(2) wait until v sends a designated I/O_ready message;
(3) feed v with a sequence of input bits by means of sending a sequence of designated input

messages (and receiving a corresponding sequence of acknowledgments from v);
(4) wait until the computational process terminates; and
(5) get the desired output back from v by means of receiving from it a sequence of designated

output messages.
We refer to node v picked by the user in (1) as an I/O node. To exploit the combined
computational power of all nodes (in contrast to a single node whose computational power is
restricted to that of a randomized finite state machine), the computational process described

5 In the current paper, |Q| and |Σ| may depend on the fixed degree bound ∆; the exact dependency is
analyzed in the full version [6].
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in (4) typically involves the whole network. The SSAM is said to be a (T p, T io)-SSAM if it is
guaranteed that the external user waits at most T p time between sending the I/O_prepare
message and receiving the I/O_ready message and at most T io time between feeding the
input bits and getting back the output bits.

1.2 Our Results
We prove that any problem that can be solved whp by an RSPACE(n) machine in time
T can be solved whp on any n-node bounded degree graph G by an (O(D), O(T ))-SSAM
operating under an asynchronous scheduler, where D denotes the diameter of G;6 in other
words, it takes O(D) time to initialize the SSAM so that it is ready to accept its input,
whereas the actual simulation of the RSPACE(n) machine takes O(T ) time. Specifically, our
main algorithmic contribution is a SA algorithm that given an n-node bounded degree graph
G = (V,E) and a designated root node r ∈ V , constructs a 2-hop coloring of G and a node
sequence 〈S(i)〉2n−1

i=0 , referred to as a tour, that satisfies: (i) every node appears in S exactly
twice; (ii) S(0) = S(2n− 1) = r; and (iii) the state of node S(i) encodes enough information
to route a message to S(i+ 1 mod 2n) and to S(i− 1 mod 2n) that reaches its destination
in O(1) time for every 0 ≤ i ≤ 2n− 1; our algorithm terminates with a correct 2-hop coloring
and a correct tour in time O(D) whp.

In the SSAM context, the tour S is constructed during phase (2) (while the external user
waits for the I/O_ready message) with the I/O node serving as the root. This tour is then
employed to simulate a randomized Turing machineM with a (2n)-cell tape in phase (4) as
follows. Node S(i) simulates the ith cell C(i) in the tape so that the state of S(i) encodes:
(a) the current content of C(i); (b) whether the head ofM is currently located at C(i); and
(c) the state ofM in case the head is located at C(i). A step ofM’s (sequential) execution,
where the head moves from cell C(i) to cell C(i± 1), is implemented by sending a designated
’head moving’ message from S(i) to S(i± 1) that encodes the new state ofM.

1.3 Main Technical Challenges
A 2-hop coloring is a useful construction in anonymous networks (see, e.g., [27]) that enables
local point-to-point communication under broadcast communication schemes. As discussed
in [25, Sec. 4.3], it is fairly easy to design a 2-hop coloring SA algorithm in bounded degree
graphs with bounding parameter b = 2. However, once the bounding parameter is set to b = 1
(as defined in the current paper), this becomes a challenging task because the nodes can no
longer verify (deterministically) that their neighborhood does not admit color conflicts. The
setting considered in the current paper is even harder since the graph may contain self-loops.

Our algorithm resolves this issue by coloring the nodes concurrently with growing a tree
T̃ of depth O(D) rooted at the designated root r. The nodes use a randomized test that
looks for color conflicts and if a conflict is detected, the tree T̃ is carefully used to reset
the coloring and tree construction processes. It is interesting to point out that without a
designated root, it is impossible to obtain even a 1-hop coloring in our setting – see Section 5.

Another source of difficulty that we had to overcome when designing our algorithm stems
from the requirement that the algorithm terminates correctly whp. While whp guarantees are
common in traditional distributed graph algorithms, they are more challenging to obtain with
SA algorithms: the individual nodes do not (and cannot) have any notion of n; nevertheless,
the algorithm should err with probability that decreases (polynomially) with n.

6 Throughout this paper, we say that event A occurs with high probability, abbreviated by whp, if
P(A) ≥ 1− n−c, where n is the number of nodes in the graph and c is an arbitrarily large constant.
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1.4 Related Work

Most literature on distributed network algorithms does not deal with computability issues,
simply because the computational power of the whole network is identical to that of a single
node (that is, a Turing machine). Things become more interesting when restrictions are
imposed on the computational power of the individual nodes, in particular, when the nodes
are restricted to finite state machines.

Computational models based on networks of finite state machines have been studied for
many years. The best known such model is the extensively studied cellular automata that
were introduced by Ulam and von Neumann [39] and became popular with Martin Gardner’s
Scientific American column on Conway’s game of life [31] (see also [40]).

Another popular model that considers a network of finite state machines is the population
protocols model, introduced by Angluin et al. [7] (see also [8, 35]), where the network
entities communicate through a sequence of atomic pairwise interactions controlled by a
fair (adversarial or randomized) scheduler. This model provides an elegant abstraction for
networks of mobile devices with proximity derived interactions and it also fits certain types
of chemical reaction networks [21].

The neat amoebot model introduced by Dolev et al. [20] also considers a network of finite
state machines in a (hexagonal) grid topology, but in contrast to the models discussed so far,
the particles in this network are augmented with certain mobility capabilities, inspired by
the amoeba contraction-expansion movement mechanism. This model has been successfully
employed for the theoretical investigation of self-organizing particle systems [38, 18, 16, 19,
17, 11, 15], especially in the context of programmable matter.

The SA model, that constitutes the heart of this paper, was introduced in [25] with
the goal of demonstrating that certain classic distributed graph problems, e.g., maximal
independent set, coloring, and maximal matching, can be solved fast (in polylogarithmic
time) by a network of devices whose computation and communication capabilities are perhaps
sufficiently weak to capture biological cellular networks (cf. [10]). Since then, this model
was successfully employed in theoretical studies of distributed computing in other kinds of
networks including a series of works inspired by ant foraging processes [34, 23, 33, 22, 12] as
modeled by Feinerman et al. [30, 28]. The SA maximal independent set algorithm of [25] has
been adjusted to handle dynamic networks too [24].

As discussed in Section 1.2, the SA algorithm developed in the current paper assumes a
unique root node, where in the SSAM context, the role of the root node is played by the
I/O node chosen by the external user. The task of selecting a unique root node (cf. leader
election) under the SA model has recently been studied in [5]. This paper also introduces
the variant of the SA model (with a weaker communication scheme, see Section 1.1) used in
the current paper.

Much of the technical challenge in designing the SA algorithms presented in [25, 24, 5]
stems from the necessity to handle graphs of arbitrary node degrees. In contrast, the focus
of the current paper (that studies a completely different problem) is restricted to bounded
degree graphs and the main technical challenge arises from other factors (see Sec. 1.3). In
this regard, it is important to point out that although imposing a constant bound on the
node degrees is a severe limitation from a graph theoretic perspective, in practice, many of
the networks that motivate our model, particularly biological cellular networks, typically
exhibit small node degrees.
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2 Preliminaries

Notation and Terminology. Throughout this paper, the degree bound ∆ is regarded as
a constant. In some places, the asymptotic notation is augmented with a ∆ subscript to
emphasize that a ∆ function is hidden, e.g., O∆(n) or Ω∆(logn). Using this notation,
notice that the diameter D of the graph is larger than log∆ n = Ω∆(logn). When the exact
dependency on ∆ is more important, we may also mention it explicitly inside the asymptotic
notation.

We denote the shortest distance (in hops) from node u to node v in graph G = (V,E)
by distG(u, v) and omit the subscript G when the graph is clear from the context. The
(inclusive) d-hop neighborhood of v is denoted by Γd+(v) = {u ∈ V | dist(v, u) ≤ d}; when
d = 1, we omit it from the superscript and write simply Γ+(v). Let Γ(v) = Γ+(v)− {v} be
the (exclusive) neighborhood of v. Let Γ∗(v) = Γ+(v) if v admits a self-loop and Γ∗(v) = Γ(v)
otherwise. A k-hop coloring of G is a function c : V → Z>0 satisfying the requirement that
c(u) 6= c(v) for every two nodes u 6= v such that distG(u, v) ≤ k. A 1-hop coloring is often
referred to simply as a coloring.

In the context of rooted trees, the terms parent, child, sibling, leaf, depth, and height are
used in their standard meaning (see, e.g., [13]). We also use the term branch for a tree path
that starts at the root. These terms are generalized from a rooted tree to a directed acyclic
graph (DAG), recalling that there, the parent of node v and the branch that ends at v are not
necessarily unique. Finally, for a positive integer k, the set {1, 2, . . . , k} is denoted by [k].

Synchronizer Transformation. As explained in Section 1.1, the execution is controlled
by an asynchronous scheduler. One of the contributions of [25] is a SA synchronizer
implementation (cf. the α-synchronizer of Awerbuch [9]). Given a synchronous SA algorithm
A whose execution progresses in fully synchronized rounds t ∈ Z>0 (with simultaneous wake-
up), the synchronizer generates a valid (asynchronous) SA algorithm A′ whose execution
progresses in pulses such that the actions taken by A′ in pulse t are identical to those taken
by A in round t.7 The synchronizer is designed so that the asynchronous algorithm A′ has
the same bounding parameter b (= 1 in the current paper) and asymptotic run-time as the
synchronous algorithm A.

Although the model considered by Emek and Wattenhofer [25] assumes that the graph has
no self-loops, it is straightforward to apply their synchronizer to graphs that do include self-
loops (see also [5]). Hence, our algorithm is designed to operate under a locally synchronous
scheduler. Specifically, we assume that the execution progresses in synchronous rounds
t ∈ Z>0, where in round t, each node v
(1) receives the messages sent by its neighbors in round t− 1;
(2) updates its state; and
(3) sends a message to its neighbors (same message to all neighbors).

Notice that under a locally synchronous scheduler, if node u is in round t and node v is
in round t′, then it is guaranteed that |t− t′| ≤ dist(u, v). This means that there exists some
constant c so that in any period of c(T +D) time units, every node in the graph performs at
least T steps. Consequently, an upper bound of O(T ) on the number of rounds performed by
an arbitrary node, implies an upper bound of O(T +D) on the total elapsed time.

7 We emphasize the role of the assumption that when the execution begins, the ports hold the designated
initial message σ0. Based on this assumption, a node can “sense” that some of its neighbors have not
been activated yet, hence synchronization can be maintained right from the beginning.
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3 Algorithm Description

In this section, we present our algorithm that constructs the desired (2n)-hop long tour over
the bounded degree graph assuming there is a single distinguished root node.

Overview. At the beginning, all nodes (other than the root) are identical, and as a first
step, the algorithm 2-hop colors them. Given a 2-hop coloring, each node can distinguish
between its neighbors and establish a one-to-one communication with each of them. Based
on this infrastructure, it is possible to construct a rooted tree from the distinguished root
and build a tour on it.

To build the above on a network of identical randomized finite state machines, we use a
layered approach. The first layer, referred to as the synchronizer layer, runs a synchronizer
similar to those designed in [3, 25, 5] so that all layers above it operate assuming a locally
synchronous scheduler. The goal of the second layer, referred to as the degree estimation
layer, is for each node to compute its own degree in G. This is done based on a randomized
process that continuously verifies that the current estimate on the number of neighbors is
correct. Each time the estimate is updated, a reset is invoked and the layers above this
second layer may be restarted (more on that later).

In the next, third, 2-hop coloring layer, we rely on each node correctly knowing its degree.
The root starts a process that 2-hop colors the graph and constructs a rooted spanning
tree, denoted by T̃ , at the same time. Upon termination of this process, an echo process
up the branches of T̃ (towards the root) is invoked. Tree T̃ is designed so that its depth
is O(D) whp. Notice that T̃ ’s construction assumes all nodes know their accurate degree;
if not, the constructed T̃ may be a DAG (see Section 2), but this will be detected by the
degree estimation layer and a reset will (eventually) be invoked to delete T̃ and restart the
tree construction (intertwined with 2-hop coloring) process. The goal of the fourth and final
layer, referred to as the tour construction layer, is to construct the desired tour. This is done
by simulating a depth first search traversal of T̃ in a concurrent manner. The depth first
search procedure is implemented so that when the root terminates, the tour is ready to be
used. Refer to the full version [6] for an illustration of the layer hierarchy.

3.1 The Layers
Recall that initially, all nodes reside in the initial state q0 and all ports hold the initial
letter σ0. The root starts the synchronizer (as described in Section 2) and any node that
reads a message different than σ0 on any of its ports, starts executing the synchronizer layer
and the layers above it as described below. The bottom layer, the synchronizer, is the only
asynchronous layer. All layers above it operate under a locally synchronous scheduler and
make a transition on a round-by-round basis.

The layers model essentially breaks the state machine in each node into several randomized
finite state machines, each corresponding to a block of the algorithm, where block in this
regard refers to a layer or a process within a layer. The state set Q and message alphabet
Σ are the Cartesian products of the state sets and message alphabets, respectively, of each
block’s state machine. Some blocks make no move until another block enters some specified
state indicating that its task has been completed (for example, all nodes in the neighborhood
of node v must be colored before v can start participating in the tour construction layer).

Below we provide detailed descriptions of the different blocks (refer to the full version [6]
for pseudocodes). For clarity of the exposition, these blocks are described in a conventional
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(distributed) algorithmic style, but they can be easily implemented using a randomized finite
state machine. In the full version [6], we discuss the size of the state sets and message
alphabets of those state machines in more detail.

3.1.1 The Degree Estimation Layer
In each round (working on top of the synchronizer), each node v first randomly draws a label
lv (the word “color” is preserved for the 2-hop coloring procedure) from a set of ∆4 labels
and then, verifies that the number of distinct labels chosen by its neighbors is not larger
than its current deg_estimate variable. Otherwise, it updates deg_estimate and interrupts
the layer above it. These labels are also used in upper layers but are only useful when then
number of current labels matches the most updated deg_estimate. For this reason we set
another flag variable safe which is used to indicate if the current number of labels equals
deg_estimate.

3.1.2 The 2-Hop Coloring Layer
A naive algorithm would be for each node in each round to randomly select a color from
a sufficiently large (as a function of ∆) palate of colors until it verifies that the number
of colors in its neighborhood is not smaller than the degree estimate given by the layer
below. However, neighbors may have to change their color causing a chain of node re-coloring
that may be difficult to control. Instead, we carefully use the network’s size to our benefit,
producing a 2-hop coloring whp. To that end, we intertwine the coloring trials with a tree
construction process, where each node is colored before joining the tree; this tree, denoted
by T̃ , serves as the underlying communication structure if a reset process is invoked (this
will be explained later). Using a BFS like tree construction, we guarantee that the depth
of T̃ , as well as its construction time, are O(D) whp. However, the (randomized) 2-hop
coloring trials, carried out by the nodes on the boundary of T̃ , may introduce some level of
asynchronicity and thus, T̃ may not be an exact BFS.

The Tree Construction Process. The process of constructing T̃ while 2-hop coloring the
nodes on its boundary is referred to as the tree construction process. The main variables
maintained by this process for each node v are color and p_color, storing the color of v
and the color of v’s parent(s) in T̃ , respectively (the plural form corresponds to the case
where T̃ is a DAG, rather than a tree). The values of these variables are reported in every
message sent by v.

The tree construction process starts with the root r setting r.color← 1; following that,
the root transmits a designated join message. Node v receiving a join message for the first
time, initiates its 2-hop coloring trials; when these trials succeed, v joins T̃ .

Specifically, upon receiving the join message for the first time, node v selects the
color of one of the neighbors u ∈ Γ(v) from which a join message was received; it then
writes v.p_color ← u.color and v.g_p_color ← u.p_color, where g_p_color is another
(temporary) variable maintained by v. Following that, v randomly selects a new color c from
the palette [∆4 − {v.p_color, v.g_p_color}] and broadcasts a request to color itself with
color c using a designated color_req(c) message. Node v then waits (for two rounds) for
its neighbor’s responses (the process in charge of these responses is described soon), and if
receives approve messages from all of them, then it writes v.color ← c and broadcasts a
join message; otherwise (some neighbors of v did not respond with an approve message), it
starts a new coloring trial. Once v’s color variable is set, we think of it as being part of T̃ .
Notice that the nodes do not record their children in T̃ .
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The Color Approval Process. The mechanism in charge of approving/disapproving the
color_req messages is referred to as the color approval process. This process runs continually
at each node v and its role is to check that when node u ∈ Γ(v) attempts to pick the color c
(reflected by a color_req(c) message received from u), no other node in Γ+(v) is (or soon to
be) colored c. This task is trivial to accomplish if all the nodes in Γ+(v)− {u} are already
colored. However, it may be the case that multiple neighbors of v may have not yet chosen a
color (which means that they have not yet joined T̃ ) and thus, may look indistinguishable to
v. What if two (or more) of these neighbors attempt to pick the same color c?

To overcome this problem, we go back to the safe flag of the degree estimation layer.
Recall that this flag is set to true only when the number of distinct labels received by node v
is equal to its deg_estimate variable, which means that v can distinguish between all its
perceived neighbors. Therefore, v sends an approve message if (and only if) safe == true
and the colors it receives in the color_req messages are consistent with a valid 2-hop coloring
given the fixed colors in Γ+(v); that is, the color_req colors are distinct and different from
the colors of the nodes in Γ+(v) that already fixed their colors.

The Echo Process. An echo process up the branches of T̃ is used to detect the termination
of the tree construction process. Each node v can detect the colors of its children in T̃ –
those are simply the nodes declaring v.color as their parent’s color. When a designated
echo message is received from all its children (at the same round), v starts sending echo
messages until its parent sends its own echo message. The execution of the echo process
together with the tree construction process forces all the nodes of the network to execute
at least D rounds, which is critical to guarantee the high probability success of the degree
estimation layer as D > log∆ n.

3.1.3 The Tour Construction Layer
The tour construction layer lays out a (2n)-hop long tour of the network based on the 2n
timestamps of a depth first search (DFS) traversal of T̃ (see, e.g., [13, Section 22.3]). Recall
that these timestamps are integers in {0, 1, . . . 2n− 1} and that the DFS traversal assigns
two of them to each node v: one for the time 0 ≤ v.d ≤ 2n − 2 at which v is discovered
by the DFS traversal and one for the time 0 ≤ v.f ≤ 2n − 1 at which the DFS traversal
backtracks from v. We construct the desired tour 〈S(i)〉2n−1

i=0 so that S(v.d) = S(v.f) = v.
The DFS timestamps have the following important property: if one of the timestamps

of node u is in {v.d ± 1, v.f ± 1}, then u is either v itself, the parent of v, a child of v, or
a sibling of v.8 The nodes cannot store the actual timestamps (this would have required
Ω(logn) bits), however, node S(i) can store the colors of the nodes along the unique paths
in T̃ from S(i) to S(i ± 1). If the 2-hop coloring is valid, then this information enables
one-to-one communication between S(i) and S(i± 1). The aforementioned property ensures
that each one of these two paths includes at most two hops, so in total, the tour construction
layer stores at most 8 colors of the palette [∆4] at each node v.

These colors are stored in the designated forward_pointerd, backward_pointerd,
forward_pointerf , and backward_pointerf variables that correspond to S(v.d + 1),
S(v.d − 1), S(v.f + 1), and S(v.f − 1), respectively. Each pointer encodes the empty
path from v to itself or the path to a child, parent, or sibling of v and thus, consists of at
most two colors.

8 The arithmetic done in this section is modulo 2n.
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The role of the tour construction layer is to set those pointers so that the resulting tour
reflects the DFS traversal of T̃ . This is done concurrently at all nodes, without actually
running a DFS traversal. This construction could have been totally local, without sending
any message, if the nodes would have been fully aware of the color assignment in their 2-hop
neighborhood in T̃ . However, this would have been expensive in terms of the size |Q| of
the state set (making it exponential, rather than polynomial, in ∆ – see the full version
[6]). Instead, the 2-hop coloring layer constructs T̃ so that each node stores only its parent.
To overcome this obstacle, each node v instructs its children on how to set their pointers,
helping them connect to their siblings and to v itself, without knowing all of their colors at
the same time. The method employed in this regard is iterative, trading space for time, by
connecting one child node at a time. This method is invoked at v right after the echo process
has ended (and v stopped sending echo messages).

3.1.4 Resets
The algorithm described thus far may err if a node in T̃ under-estimated its degree. In
this case the 2-hop coloring may be invalid which means that T̃ may be a DAG (rather
than a tree) and the tour constructed based on T̃ may be wrong. Therefore, if a degree
under-estimation is detected, the data structures of the 2-hop coloring and tour construction
layers must be deleted and re-constructed from scratch. This can be detected in two possible
ways: (1) when a node in the degree estimation layer increases its deg_estimate variable; or
(2) when a node receives different messages with the same color field (which means that
they come from different neighbors that were not distinguished so far). The former condition
is checked by the degree estimation layer. In both cases, if a degree under-estimation is
detected, a designated reset interrupt is signaled.

The process that catches the reset interrupts is referred to as the reset process. As
mentioned earlier, this process resets the flags and variables maintained by the 2-hop coloring
and tour construction layers. (We emphasize that the deg_estimate variable and the
variables maintained by the synchronizer layer are not affected by a reset.) But before these
flags and variables can be reset at node v, we must make sure that the the reset process is
invoked at all other nodes in T̃ . This can be tricky as an independent reset interrupt may
be signaled at some node u while the reset process initiated by v spreads in the network.

To overcome this obstacle, we follow the reset technique introduced in [4], and execute the
reset process as follows. (1) A node receiving a reset interrupt initiates a reset_request
only if it has already joined T̃ (otherwise no reset is initiated by this node). (2) The
reset_request messages are forwarded up the branches of T̃ (towards the root). (3) Upon
receiving a reset_request message, the root broadcasts freeze_command messages that are
forwarded to all nodes in T̃ down its branches. (4) Upon receiving a freeze_command message,
each leaf echos a freeze_ack message; each internal node sends a freeze_ack message to
its parent after it receives freeze_ack messages from all its children. (5) When the root is
fully acknowledged with the freeze_ack messages (and thus knows the entire T̃ is frozen), it
broadcasts reset_command messages that are forwarded to all nodes in T̃ down its branches.
(6) Upon receiving a reset_command message, each leaf echos a reset_ack message; each
internal node sends a reset_ack message to its parent after it receives reset_ack messages
from all its children. At this stage, the (leaf or internal) node resets all flags and variables of
the 2-hop coloring and tour construction layers. When the root is fully acknowledged with
the reset_ack messages, it restarts the 2-hop coloring and tour construction layers from
scratch.
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Notice that the nodes reset and remove themselves from T̃ from the leaves up towards
the root, so T̃ never decomposes into several subgraphs. Moreover, the freeze phase in the
reset process ensures that T̃ does not continue growing in an uncontrolled manner while a
reset is in motion. Finally, notice that the reset process works as long as T̃ is a DAG and
does not rely on a tree topology.

4 Analysis

Due to space limitations, this extended abstract contains only parts of the analysis; refer to
the full version [6] for the complete analysis. Recall that the 2-hop coloring layer generates a
subgraph T̃ that consists of all colored nodes with an edge connecting vertex u to vertex v if
u.color = v.p_color; for the sake of convenience, we orient this edge from u to v and think
of T̃ as a directed graph.

I Lemma 1. T̃ is a DAG. Moreover, r is the unique source in T̃ .

4.1 Correctness with High Probability
The desired tour construction relies on the correctness of the 2-hop coloring. The latter
allows node v to communicate in a one-to-one fashion with each of its neighbors u, which in
turn, supports one-to-one communication with more distant nodes w provided that the colors
along some (v, w)-path are known. The correctness (whp) of our 2-hop coloring scheme is
based on three foundations:
(1) Once all nodes hold an accurate degree estimation, a valid 2-hop coloring is reached with

no further resets with probability 1 (see Corollary 4).
(2) After O(log∆(n)) rounds of the degree estimation layer, each node holds an accurate

degree estimation whp (see Corollary 6).
(3) All nodes execute Ω(log∆(n)) rounds of the degree estimation layer before termination

(see Lemma 7).
The following lemma plays a key role in establishing these three foundations.

I Lemma 2. Consider a tree construction process that starts after all nodes hold an accurate
degree estimation. Let w be some node and let u, v ∈ Γ+(w), u 6= v, be two nodes in T̃ . Then,
u.color 6= v.color.

Proof. Nodes u and v are colored since both are in T̃ . Assume by contradiction that
u.color = v.color = c. Recall that a node can fix its own color only in a round at which it
receives approve messages from all its neighbors. Let tu and tv be these rounds for u and v,
respectively, from the perspective of w (that is, in w’s round counting). Assume without loss
of generality that tu ≤ tv.

If tu = tv, then w approved u.color ← c and v.color ← c in the same round. The
design of the color approval process guarantees that w.safe was true at that round, which
means that the number of distinct labels received by w at that round was w.deg_estimate.
The assumption that all deg_estimate variables were accurate when the tree construction
process started implies that u and v picked distinct labels. But this means that the color
approval process at w witnessed a color conflict in that round and did not send an approve
message, reaching a contradiction.

If tu < tv, then w approved v.color← c after u has already fixed its color to u.color = c.
But the design of the color approval process guarantees that if v tries to pick color c, then w
does not send an approve message, again reaching a contradiction. J
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I Corollary 3. If a tree construction process starts after all nodes hold an accurate degree
estimation, then T̃ will not experience a reset.

Proof. A reset is initiated either because some node updates its deg_estimate variable
(the degree estimation layer), which cannot happen due to the assumption, or because two
different messages carrying the same color field are received (the validity check process),
which cannot happen by Lemma 2. J

I Corollary 4. Once all nodes hold an accurate degree estimation, a valid 2-hop coloring is
reached within finite time with probability 1.

I Observation 5. For a label set of size ∆4, in every round of the degree estimation process,
the number of distinct labels received by node v equals its degree with probability 1−O(1/∆2).

Proof. Follows immediately from a birthday paradox argument since |Γ∗(v)| ≤ ∆ + 1. J

I Corollary 6. For a label set of size ∆4, after O(log∆(n)) rounds of node v’s degree
estimation layer, v holds an accurate degree estimation whp.

I Lemma 7. When the echo process terminates, it is guaranteed that every node performed
Ω(log∆(n)) rounds.

Proof. Suppose that r initiated the tree construction process at its round t. Let v be a node
that maximizes distG(r, v) = H and observe that H = Ω(D) = Ω(log∆(n)). Let t1 be v’s
round at which v received a join message for the first time and let t2 be v’s round at which
v completed its role in the echo process. We show in the full version [6] that t1 ≥ t + H,
so also t2 ≥ t+H. Based on that, we conclude that if r terminates the tree construction
process at its t′ round, then t′ ≥ t2 +H, hence t′ − t ≥ 2H.

Since t > 0, it follows that the degree estimation layer of r has made at least 2H rounds by
the time the echo process terminates. Since distG(r, u) ≤ H for every node u, the properties
of the locally synchronous scheduler ensure that the degree estimation layer of any node has
made at least H rounds by that time. The assertion follows as H = Ω(log∆(n)). J

Recall that the DAG T̃ constructed by the 2-hop coloring layer may be deleted (together
with the corresponding 2-hop coloring) due to a reset. In the full version [6], we address the
correctness of the reset process, proving that every reset can be mapped injectively to a node
that initiated a reset_request message and that every node that initiated such a message,
performs a reset (and deletes itself from T̃ ) within finite time. Moreover, if node v initiates a
reset_request message over DAG T̃ , then, within finite time, we reach a configuration in
which T̃ is deleted and the network does not contain any reset messages.

4.2 Algorithm’s Performance and Resources
4.2.1 Run-Time
We divide the algorithm’s execution into three stages: stage (1) that lasts from the beginning
of the execution until the last reset is over; stage (2) that lasts from the end of stage (1)
until the echo process of the 2-hop coloring layer reaches the root; and stage (3) that lasts
from the end of stage (2) until the tour construction terminates. Let T1, T2, and T3 be the
run-times of the first, second, and third stages, respectively.

Corollary 6 guarantees that after each node v executed O(log∆(n)) rounds, it holds an
accurate estimation of its degree whp. This means that whp, v will not initiate a new reset
after executing O(log∆(n)) rounds. In the full version [6], we show that a reset initiated by
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some node will disappear from the network after O(H) rounds of the root, where H is T̃ ’s
height. In Corollary 11, we prove that H = O∆(D), hence T1 = O∆(D).

The second stage contains the tree construction and echo processes. The run-time of
the latter is O(H), which is O∆(D) by Corollary 11, whereas the former is intertwined with
coloring trials that may delay its progression and require a more delicate analysis. This
analysis is concluded in Corollary 10, showing that the run-time of the tree construction
process is O(D + logn) = O∆(D).

The tour construction layer is designed so that once node v completes its role in the echo
process of the 2-hop coloring layer, it completes its role in the tour construction layer in
O(∆) additional rounds. Thus, the run-time of the third stage is T3 = O(∆). To conclude,
the total run-time of our algorithm is T1 + T2 + T3 = O∆(D).

A color_req(·) trial of node v succeeds when the following two conditions are satisfied for
every node u ∈ Γ∗(v): (1) the safe flag of u is true; (2) u does not witness a color_req(·)
conflict in Γ∗(u). We show that these two conditions are satisfied with probability close to 1.

I Lemma 8. Assuming that no reset interrupt is signaled in Γ+(v), every color_req(·)
trial of node v succeeds with probability 1−O(1/∆).

Proof. Fix some node u ∈ Γ∗(v). By Observation 5, the safe flag of u is true with probability
1−O(1/∆2). Since the nodes use a color palette of size ∆4 and since |Γ∗(u)| ≤ ∆ + 1, we
deduce by a birthday paradox argument that the probability that u witnesses a color_req(·)
conflict in Γ∗(u) is O(1/∆2). The assertion follows by a union bound argument over all
nodes u ∈ Γ∗(v). J

I Lemma 9. Suppose that the root r starts a new tree construction process at round t0 and
let T̃ be the constructed DAG. If node v with distG(r, v) = x joins T̃ during round t1 of r,
then whp (1) t1 − t0 ≤ O(x+ logn); and (2) the depth of v in T̃ is O(x+ logn).

Proof. Let π = (r = v0, v1, . . . , vx = v) be a shortest (r, v)-path in G. When a node is
trying to pick a color, it may go through successive color_req(·) trials until one of them is
approved. The actual order in which the nodes in π are colored is not necessarily identical
to the order induced by π, but after x color_req(·) trails in π are approved, all nodes in π
are colored.

Assuming that no reset interrupt is signaled in Γ+(v), we prove in the full version [6]
that every color_req(·) trial of node succeeds with probability 1−O(1/∆). The number of
failed color_req(·) trials in π is stochastically dominated by a negative binomial random
variable N with parameters x and 1− p, where p = 1−O(1/∆) ≥ Ω(1) Therefore, we have to
up-bound N + x which accounts for the total number of color_req(·) trails in π, including
the approved ones. Using standard tail bounds on the negative binomial distribution, we
conclude that N + x = O(x+ logn) whp.

Starting from r’s round t0, after r executed at least (c+ 1)x+ c · log(n) = O(x+ logn)
rounds, it is ensured by the properties of the locally synchronous scheduler that all nodes at
distance at most x from r executed at least c(x+ logn) rounds. Therefore, all these nodes
have fixed their color and joined T̃ whp, so their depth in T̃ is at most O(x+ logn). J

I Corollary 10. Suppose that the root r starts a new tree construction process at round t0
after all nodes hold an accurate degree estimation. Then, this process is completed within
O(D + logn) rounds of r.

I Corollary 11. Any DAG T̃ constructed by the tree construction process satisfies height(T̃ ) ≤
O∆(D) whp.
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Proof. Let v be a node at distance x ≤ D from r. By Lemma 9, we conclude that v joins T̃ in
r’s t0 +O(D+ logn) round whp, implying that its depth in T̃ is O(D+ logn) = O∆(D). J

5 The Necessity of our Assumptions

As discussed in Sec. 1.1, from the perspective of the algorithm designer, the model considered
in the current paper is weaker than that of [25] in the sense that the bounding parameter
is restricted to b = 1 and the graph may contain self loops (cf. [5]). At the same time, the
current paper makes two simplifying assumptions:
(1) the node degrees are bounded by some constant ∆; and
(2) the algorithm is provided with a unique I/O node and although this node is chosen
arbitrarily, it may still serve as a (unique) leader, thus facilitating the design of the SSAM.
Assumption (1) is clearly mandatory for the construction of the 2-hop coloring as the number
of colors is an inherent lower bound on the number of states. Whether a 2-hop coloring is
indeed a prerequisite for a SSAM is left as an open question; we conjecture that the answer
to this question is positive. Assumption (2) is justified by the following two lemmas.

I Lemma 12. At the absence of a designated root node, there does not exist any SA algorithm
that solves the (1-hop) coloring problem on a simple path with self-loops with failure probability
bounded away from 1.

I Lemma 13. At the absence of a designated root node, there does not exist any SA
algorithm that solves the 2-hop coloring problem on a simple path without self-loops with
failure probability bounded away from 1.

The proofs of Lem. 12 and 13 are based on probabilistic indistinguishability arguments,
similar to those used in many distributed computing negative results, starting with the classic
leader election impossibility result of Itai and Rodeh [32] (see also [5]).

Proof of Lem. 12. Our attention in this proof is restricted to algorithms operating under a
fully synchronous scheduler on graph family {L	

n }n≥1, where L	
n is a simple path of n nodes

augmented with self-loops. Assume by contradiction that there exists an algorithm A as in
the lemma’s statement and let Σ denote its message alphabet. Consider the execution of A
on the instance L	

1 and let v be the (single) node in this instance. By definition, there exist
a color c, constants p > 0 and `, and message sequence S ∈ Σ` such that when A runs on
this instance, with probability at least p, node v reads message S(t) in its (single) port in
round t = 1, . . . , ` and chooses color c at the end of round `.

Now, consider graph L	
n for some sufficiently large n whose value is determined later on

and let v1, . . . , v2`+2 be any 2`+ 2 contiguous nodes in the underlying path of L	
n , referred

to as a gadget. The key observation now is that when A runs on L	
n , with probability at

least q = p2`+2, both middle nodes v`+1 and v`+2 in the gadget receive the same message
S(t) in (all) their ports in round t = 1, . . . , ` and both choose color c at the end of round `,
independently of the random bits of the nodes outside the gadget. We refer to this event,
which clearly leads to an invalid output, as a gadget failure. Since p and ` are constants that
depend only on A, q = p2`+2 is also a constant that depends only on A.

Take z to be an arbitrarily large constant. If n is sufficiently large, then we can embed
y = dz/qe disjoint gadgets in L	

n . When A runs on L	
n , each of these y gadgets fails

(independently) with probability at least q. Therefore, the probability that A returns a valid
output is at most (1− q)y. The assertion follows since this expression tends to 0 as y →∞
which is obtained as z →∞. J
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The proof of Lem. 12 essentially shows that no SA algorithm can distinguish between L	
1

and L	
n with a bounded failure probability. Regarding Lem. 13, we can use a very similar

line of arguments to show that no SA algorithm can distinguish between L2 and Ln with a
bounded failure probability, thus establishing the lemma.
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Abstract
We consider the anonymous broadcast model: a set of n anonymous processes communicate via
send-to-all primitives. We assume that underlying communication channels are asynchronous but
reliable, and that the processes are subject to crash failures. We show first that in this model,
even a single faulty process precludes implementations of atomic objects with non-commuting
operations, even as simple as read-write registers or add-only sets. We, however, show that a
sequentially consistent read-write memory and add-only sets can be implemented t-resiliently for
t < n/2, i.e., provided that a majority of the processes do not fail. We use this implementation
to establish an equivalence between the t-resilient read-write anonymous shared-memory model
and the t-resilient anonymous broadcast model in terms of colorless task solvability. As a result,
we obtain the first task computability characterization for unreliable anonymous message-passing
systems.
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1 Introduction

Algorithms for conventional distributed systems assume that every process is assigned a
distinct identifier that can be used in the code. However, anonymous algorithms that have
to program processes identically can be used in a much wider context. Many systems, such
as sensor networks, web services, peer-to-peer file repositories, are anonymous by design or
may choose anonymity for the sake of users’ privacy [2, 10].

In this paper, we consider computability issues of anonymous systems. This topic is
traditionally tackled in shared-memory models where a set of asynchronous (or partially
synchronous) anonymous processes communicate via multi-writer multi-reader shared memory
locations. A number of interesting complexity and computability bounds [16, 7, 12, 20, 8, 6]
have been established for these models. Guerraoui and Ruppert [16] showed that many
interesting abstractions, such as timestamps and atomic snapshots, can be implemented in
a wait-free way, i.e., tolerating an arbitrary number of faulty processes. Yanagisawa [20]
characterized the class of colorless tasks that can be solved wait-free in this model.1 It turns

1 Informally, a colorless task, such as consensus or set agreement, is defined in terms of relations between
sets of inputs and sets of outputs, so they allow natural formulations for anonymous systems. A wait-free
algorithm guarantees that a process makes progress, e.g., produces a task output, in a finite number of
its own steps, even if all n− 1 remaining processes are faulty.
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out the class is precisely the tasks that can be solved in the conventional non-anonymous
model, i.e., getting rid of process identifiers does not make the system weaker with respect
to solving colorless tasks. The equivalence has been recently generalized to t-resilient models
assuming that at most t processes are allowed to fail by Delporte et al. [13]: a colorless task
is t-resiliently solvable in the (non-anonymous) read-write shared-memory model if and only
it is t-resiliently solvable in the anonymous counterpart.

Anonymous computing in networks. One can argue that shared memory may be an
inadequate communication model for large-scale systems, which typically motivate assuming
anonymous algorithms. In this paper, we propose to have a closer look at anonymous
computations in message-passing systems. More precisely, we consider systems in which
processes communicate via the reliable anonymous broadcast primitive: every broadcast
message is eventually received and the integrity of received messages is ensured, while it is
impossible to detect the source of a given message.

The model has been considered earlier in the fault-free context by Aspnes et al. [3].
They showed that if no process can fail, any idemdicent object can be implemented in
the anonymous broadcast model in the linearizable way, i.e., ensuring that each operation
on it appears to be executed atomically within the operation’s interval. Intuitively, for an
idemdicent object, such as a register, an add-only set, or a counter with separate increment and
read operations, any operation modifying the object’s state returns only a (non-informative)
ack response.

Unreliable anonymous networks. We propose a set of computability results for the anony-
mous broadcast model with unreliable processes. We show first that no object exporting
non-commuting operations, including registers and add-only sets, has a linearizable imple-
mentation in this model, as long as just a single process can fail. We leverage the fact that, in
anonymous message-passing systems, no process can detect whether a given message comes
in reaction to its own action or to an earlier action performed by its clone, i.e., a process
having an identical state. Therefore, it might become impossible to ensure that operations on
the implemented object appear in an order that preserves their real-time precedence, which
is required by linearizability.

We show, however, that a t-resilient sequentially consistent add-only set can be imple-
mented in the anonymous broadcast model, assuming that t < n/2, i.e., less than half of the
processes are allowed to fail. Unlike linearizable objects, sequentially consistent ones do not
ensure that the sequential execution preserves the real time precedence between operations
and, as a result, sequential consistency is not a composable property [17]. Our t-resilient
implementation of an add-only set, inspired by the wait-free atomic snapshot algorithm by
Afek et al. [1], is interesting in its own right. To ensure that the views of the set contents
evaluated by different processes are consistent with the same sequential execution, a get
operation is only allowed to return a set of values that is agreed upon by a majority of
processes. To guarantee that every correct process completes each of its operations, we
introduce a helping mechanism: every value added to the set is equipped with a view that
can be used by future get operations.

Colorless tasks in unreliable anonymous networks. Further, we show that a sequentially
consistent add-only set is as good as a linearizable one, as long as colorless task computability
is concerned. More precisely, we can characterize the class of colorless tasks that are t-
resiliently solvable in the anonymous broadcast model, where t < n

2 . The characterization



P. Kuznetsov and N. Yanagisawa 23:3

stipulates that a colorless task is t-resilient solvable in the anonymous broadcast model if and
only if it is t-resiliently solvable in the anonymous shared-memory model, where t < n

2 . Thus,
for colorless tasks, the anonymous broadcast model with a majority of correct processes is
as powerful as the anonymous shared-memory model and, by recalling the equivalence of
Delporte et al. [13], the regular (non-anonymous) shared-memory model.

Technically, the if part of our characterization is established by the following two steps:
First, we present an implementation of a sequentially-consistent snapshot. Then, we show
that any algorithm that t-resiliently solves a colorless task using an atomic snapshot memory
also solves the colorless task with a sequentially-consistent snapshot memory. The only
if part follows from the characterization of the t-resilient colorless task solvability in the
anonymous shared-memory model by Delporte et al. [13].

Related work. Colorless tasks, a fundamental class of distributed problems, include consen-
sus [15], set agreement [9], and loop agreement [19]. The class was extensively studied mainly
in the context of the non-anonymous shared-memory computing [18]. There are recent papers
that have studied the computability of colorless tasks in the anonymous shared-memory
model [20, 13].

In the non-anonymous setting, the message-passing model and the shared-memory model
are equivalent in the sense of simulation [4], where t < n

2 . Thus, a colorless task can be solved
in the shared-memory model if and only if it can be solved in the t-resilient message-passing
model. The situation is different in the anonymous case. In general, the anonymous broadcast
model and the anonymous shared-memory model cannot simulate each other. Thus, results
concerning the anonymous shared-memory colorless task computability cannot be directly
applied to the anonymous broadcast model.

The add-only set object has been first introduced under the name of weak set by Delporte
and Fauconnier [11]. The object has been studied mainly in the context of anonymous
shared-memory computing and used to characterize anonymous shared-memory systems
concerning colorless tasks [20, 13, 14].

Failure detectors that enable solutions to the consensus task in unreliable anonymous
networks have been discussed by Bonnet and Raynal [5]. In contrast, this paper focuses on
general task computability in asynchronous anonymous networks, i.e., without help from
external oracles.

Roadmap. The rest of the paper is organized as follows. In Section 2, we give our model
definitions. In Section 3, we show that no type with weakly non-commutative operations
allows a linearizable implementation in an unreliable atomic broadcast model. In Section 4,
we present a sequentially consistent implementation of an add-only set in the anonymous
broadcast model with a majority of correct processes. In Section 5, we present our anonymous
colorless task computability theorem. In Section 6, we discuss relaxations of linearizability
that might fit the anonymous broadcast context.

2 Preliminaries

We consider the anonymous model of n processes, p1, . . . , pn, that have no knowledge of
their identifiers and execute an identical algorithm. We particularly focus on the anonymous
asynchronous broadcast model. In the model, a distributed system is composed of n anonymous
processes that run asynchronously and communicate by broadcasting messages via a fully
connected reliable network: every pair of processes are connected via a first-in-first-out

OPODIS 2018



23:4 Task Computability in Unreliable Anonymous Networks

(FIFO) reliable link. To send a message m to all, a process invokes broadcast(m) primitive,
and an event receive(m) occurs when the message is received.

Broadcast models. Here we distinguish two broadcast models: instantaneous and non-
instantaneous broadcasts. In the instantaneous broadcast model, every event broadcast(m)
performed by a process pi instantaneously sends message m to every other process and, as
the links are assumed to be reliable, it is guaranteed that the message will eventually be
received by every correct process. In the non-instantaneous broadcast model, if broadcast(m)
is the last event performed by a faulty process, then it sends m to a subset of processes
and guarantees that the message will be eventually received by every correct process in this
subset. In both cases, the communication channels ensure FIFO semantics: the messages are
delivered in the order they have been sent. Notice, however, that a process cannot detect
through which link a message has been received.

Our impossibility result is shown for the stronger instantaneous model and our upper
bounds hold for the weaker non-instantaneous model. (By default we assume that the model
is non-instantaneous.)

Object types and implementations. A sequential object type is defined as a tuple T =
(Q, q0, O,R,∆), where Q is a set of states, q0 ∈ Q is an initial state, O is a set of operations,
R is a set responses and ∆ ⊆ Q × O × Q × R is a relation that associates a state and an
operation to a set of possible new states and corresponding responses. Here we assume that ∆
is total on the first two elements, i.e., for each state q ∈ Q and each operation in o ∈ O, some
transition to a new state is defined, i.e., ∀(q, o) ∈ Q×O,∃(q′, r) ∈ Q×R: (q, o, q′, r) ∈ ∆.

A history is a sequence of (operation) invocations and responses and a sequential history
is a history that starts with an invocation of an operation and in which every invocation is
immediately followed with a matching response. A sequential history o1, r1, o2, r2, . . ., where
∀i ≥ 1, oi ∈ O, ri ∈ R, is legal with respect to type T = (Q, q0, O,R,∆) if there exists a
sequence q1, q2, . . . of states in Q such that ∀i ≥ 1, (qi−1, oi, qi, ri) ∈ ∆.

An implementation of an object type T is an algorithm that, for each invoked operation,
prescribes the actions that a process needs to take to perform it. In our case, the actions are
invocations of broadcast primitives, processing of receive events and returning responses to the
invoked operations. An execution of an implementation is a sequence of events: invocations
and responses of operations, broadcast calls and receive events: the sequence of events at
every process must respect the algorithm assigned to it. A process is called faulty in an
infinite execution if it stops before performing an event prescribed by its algorithm; otherwise
it is called correct.

Linearizability and sequential consistency. We assume that no process invokes a new
operation before receiving a response for the previous one. For each pattern of invocations,
the implementation produces a history, i.e., the sequence of distinct invocations and responses,
labelled with process identifiers and unique sequence numbers.

A projection of a history H to process pi, denoted H|i is the subsequence of elements of
H labelled with pi. An invocation o by a process pi is incomplete in H if it is not followed by
a response in H|i. A history is complete if it has no incomplete invocations. A completion
of H is a history H̄ that is identical to H except that every incomplete invocation in H is
either removed or completed by inserting a matching response somewhere after it.

A sequentially consistent implementation of an object type T ensures that for every
history H it produces, there exists a completion H̄ and a legal sequential history S such that
for all processes pi, H̄|i = S|i.
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A linearizable implementation, additionally, preserves the real-time order between invoca-
tions. Formally, an invocation o1 precedes an invocation o2 in H, denoted o1 ≺H o2, if o1 is
complete and the corresponding response r1 precedes o2 in H. Note that ≺H stipulates a
partial order on invocations in H. Now a linearizable implementation of T ensures that for
every history H it produces, there exists a completion H̄ and a legal sequential history S
such that (1) for all processes pi, H̄|i = S|i and (2) ≺H⊆≺S .

A (sequentially consistent or linearizable) implementation is t-resilient if, under the
assumption that at most t processes crash, it ensures that every invocation performed by a
correct process is eventually followed by a response.

An anonymous implementation is not allowed to use process identifiers: every process is
assigned the same algorithm that only depends on the sequence of operation invocations and
received messages.

3 Linearizable objects with non-commuting operations

In this section, we show that nontrivial sequential object types cannot be implemented in a
linearizable way in the anonymous broadcast model if t ≥ 1, i.e., at least one process may
fail.

Given a type T = (Q, q0, O,R,∆), we say that operations o1, o2 ∈ O are weakly-non-
commutative if, for all r1, r2 ∈ R such that o1r1o2r2 is legal, o1r1o2r2o1r1 is not legal.
Intuitively, o1 is a read operation and o2 is an update: swapping the order of the two
operations affects the response of o1.

Two examples of types with weakly non-commutative operations are read-write register
and add-only set. A register stores an integer value, initially 0, and exports operations read,
which returns the value, and write(v), v ∈ N, which replaces the value with v. Here read()
and write(1) are examples of weakly non-commutative operations. An add-only set stores a
set of integer values, initially ∅, and exports operations get, which returns the set, and add(v),
v ∈ N, which adds v to the set. Similarly, get() and add(1) are weakly non-commutative.

I Theorem 1. There does not exist a 1-resilient linearizable implementation of a type with
weakly non-commutative operations in the anonymous instantaneous broadcast model.

Proof. Suppose, by contradiction, that there exists such an implementation of a type
T = (Q, q0, O,R,∆) with weakly non-commutative operations. Let o1, o2 ∈ O be operations
of T such that for all r1, r2 ∈ R, whenever o1r1o2r2 is legal, it holds that o1r1o2r2o1r1 is not
legal.

Consider the following execution of the implementation. Process p1 invokes o1 and takes
steps of the algorithm until a response r1 is returned, then invokes o2 and takes steps of
the algorithm until a response r2 is returned. In this execution, we pick another process
p2 and delay all messages broadcast by and to p2 at least until r2 is returned at p1. The
remaining processes obediently take steps of the algorithm and all messages sent across these
processes are eventually received. Note that both o1 and o2 must eventually return at p1, as
the implementation is 1-resilient and, from p1’s perspective, the execution is indistinguishable
from an execution in which p2 has crashed initially and all other processes are correct. Let α
be the resulting (finite) execution and e1, . . . , ek be the subsequence of events of p1 in α that
starts with o1 and ends with r1.

Let e′1, . . . , e′k be the sequence of events that is identical to e1, . . . , ek, except that every
event is now labelled with p2 (or, in other words, is performed by p2).

We claim that αe′1, . . . , e′k is an execution of our implementation. By the construction
of α, e′1 is the invocation of o1, i.e., αe′1 is an execution of the implementation. Inductively,
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Figure 1 The execution constructed in the proof of Theorem 1. Processes p1 and p2 are clones:
they execute exactly the same sequence of events in which operation o1 returns response r1.

suppose that for some `, 1 ≤ ` < k, αe′1, . . . , e′` is an execution of the implementation. Note
that, since the algorithm is anonymous, the local state of p2 after αe′1, . . . , e′` is identical to
the local state of p1 after e1, . . . , e`.

Thus, if e`+1 is a broadcast event, then p2 can also perform a similar broadcast event
e′`+1 after αe′1, . . . , e′` and, thus, e′`+1 after αe′1, . . . , e′`+1 is indeed an execution.

Now suppose that e`+1 is a receive event, for some message m previously broadcast by
a process pi. Recall that in α, p2 has not received a single broadcast message. Note that
in αe′1, . . . , e′`, p2 received every message received by p1 in e1, . . . , e`, but no other messages.
Thus, as m is the next message to be received by p1 from pi in e1, . . . , e`, it is also the
next message to be received by p2 from pi in αe′1, . . . , e′`. Hence, αe′1, . . . , e′`+1 is indeed an
execution of our implementation. By induction, we constructed an execution αe′1, . . . , e

′
k

which produces a history o1r1o2r2o1r1 that is not legal – a contradiction. J

4 Sequentially consistent add-only set

We now describe a sequentially consistent t-resilient implementation of add-only set in the
anonymous broadcast model.

Overview. In spirit, our t-resilient implementation (Algorithm 1) is close to the wait-free
atomic snapshot implementation by Afek et al. [1]. Similar to the snapshot operation in
the algorithm by Afek al., a get operation executed by pi repeatedly broadcasts its current
(constantly evolving) evaluation of the set contents until either “sufficiently many” processes
agree with it, or some process pj reports a set of values containing all the values known to pi

at the beginning of the operation (in which case pj helps pi with completing the operation).
The algorithm proceeds in monotonically increasing rounds. Every process pi maintains

a set of values Vi, its local version of the set contents, where each value is equipped with a
“witness set” (the set obtained by a get operation before the value has been added).

A get operation returns a set of values as soon as it establishes that a majority of processes
evaluate the same set of values for the current round (line 21). Here, given a set of tuples
[u,W ], where u is a value and W is a set of values “witnessed” by the process that added u,
values(V ) returns the set of first entries of tuples in V .

Otherwise, the process updates its local set with new values and proceeds to the next
round. Note that if no values are added to the set from some point on, every get operation
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Algorithm 1 Implementation of sequentially consistent add-only set: code for process pi

1 Local variables :
2 Vi: set initially ∅ // local estimate of the set of values ,
3 // equipped with witness sets
4 Mr

i : multiset initially ∅ // messages of round r

5 ri: integer initially 0 // current round number

6 add(v):
7 Vals = get()
8 Vi = Vi ∪ {[v, Vals]}
9 broadcast ([Vi])

10 upon receive [V ]
11 Vi = Vi ∪ V

12 get ():
13 U = Vi

14 while true do
15 ri ++
16 V = Vi

17 if Mri
i = ∅ then

18 broadcast ([V, ri])
19 wait until |Mri

i | >
n
2

20 if ∀V ′ ∈Mri
i : V ′ = V then

21 return values (V )
22 if ∃V ′ ∈Mri

i , ∃[u, W ] ∈ V ′ : values(U) ⊆W then
23 return W

24 upon receive [V, r]
25 Vi = Vi ∪ V

26 if Mr
i = ∅ then

27 broadcast ([Vi, r])
28 Mr

i = Mr
i ∪ {V }

invoked by a correct process will eventually return. Thus, the only reason for a get operation
not to return is an infinite number of successful add operations performed by a concurrent
process. To ensure that each correct process eventually completes every operation it invokes,
we introduce a helping mechanism: before adding a new value to the set, a process gets the
current set of values (line 7) and attaches it to the new value. If, within a get operation, a
process finds a value equipped with a “sufficiently recent” outcome of another get operation,
it adopts it and outputs as its own (line 23).

Of course, in an anonymous system, detecting the source of a received message is
impossible. Therefore, to guarantee that all received messages associated with a round r are
coming from distinct processes and to render the “majority condition” in line 19 meaningful,
we require that a process broadcasts a message associated with a given round exactly once
(lines 25-27). Of course, such messages can be associated to an identical request sent by a
process different from pi (clone of pi). But, as we will see below, this is not an issue for
the algorithm’s correctness. To account for a “slow” process that might receive messages
associated with rounds the process has not reached yet, it proactively stores all the messages
it receives.
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Correctness. Fix an execution of Algorithm 1. We show first that views, sets of values
returned by get operations, are ordered by containment.

I Lemma 2. For any two views U and W returned by get operations, U ⊆W or W ⊆ U .

Proof. Note that each set of values U returned by a get operation is either evaluated by
the operation itself and returned in line 21 or “adopted” from another get operation that
terminated earlier and returned in line 23. But there can be only finitely many get operations
that terminated before a given get operation returns. Thus, each such view U was returned
in line 21 by some get operation. We then can associate U with the round number r in which
this happened, we say U was returned in round r.

Let U and W be returned, respectively in rounds r and r′, r ≤ r′. We show below that
U ⊆W . Indeed, a get operation returns U in round r if a majority of processes broadcast
the same message [V, r] such that values(V ) = U . Since a process only broadcasts its set for
a given round only once, two processes returning in a given round return the same set of
values. Furthermore, if a process returns U in round r, then every process pi that passed
through that round, will get U ⊆ values(Vi). Thus, W returned in round r′ ≥ r must satisfy
U ⊆W . J

I Lemma 3. If two get operations invoked by the same process pi return U and then W ,
then U ⊆W .

Proof. By the algorithm, every view returned by a get operations (lines 13 and 22) invoked
by a process pi contains values(Vi) at the time of the invocation. As Vi grows monotonically
with time (lines 8 and 25), we have U ⊆W . J

I Lemma 4. If pi complete an add(v) and later a get operation that returns U , then v ∈ U .

Proof. As every get operation by pi returns a superset of values(Vi) evaluated at the moment
of its invocation (line 13), and every add(v) operation by pi adds v to values(Vi) (line 13),
and Vi grows monotonically with time (lines 8 and 25), we have v ∈ U . J

I Lemma 5. Every operation invoked by a correct process eventually returns.

Proof. Suppose, by contradiction, that an operation op invoked by a correct process pi never
terminates. Note that op must be a get operation, either invoked directly or within an
add operation. By the algorithm, as at most t < n/2 processes are faulty, pi goes through
infinitely many rounds in lines 14–23. Let U be the set of values (line 13) with which pi

started op.
Suppose first that there is a time after which no process completes an add operation.

Then, there is a time after which no process pj adds a new value to its local Vj . Since the
broadcast channels are reliable, every message sent by a correct process is eventually received
by every correct process (line 27). Thus, there exists a round r and a set of tuples V such
that every process that broadcasts a message of the kind [V ′, r′], where r′ ≥ r, will have
V ′ = V . Eventually, after sufficiently many rounds, pi will reach a round for which every
received set of values is V and, thus, pi will return values(V ) in line 23 – a contradiction.

Thus, a concurrent process pj completes infinitely many add operations. Before adding
a new value v, pj performs a get operation and attaches the returned view to the added
value v. Moreover, eventually pj will receive and include in Vj all values that appear in
U . Thus, eventually, pj will attach a view W such that values(U) ⊆ W to every value it
adds (line 8). As pj is correct, [v,W ] will be included to Vi and pi will return in line 23 – a
contradiction. J
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I Theorem 6. Algorithm 1 implements a sequentially consistent add-only set in the anony-
mous non-instantaneous broadcast model.

Proof. Fix an execution of the algorithm. Let H be the corresponding history.
By Lemma 2, all views returned by complete get operations in this execution can be

totally ordered based on the growing containment relation. Let S be the corresponding
sequential history of get operations. By the algorithm, all values that appear in these views
are arguments of some (complete or incomplete) add operations. Thus, we can amend S
by inserting each such operation add(v) just before the first get in S that returns a view
containing v. By Lemma 3 and 4, we can choose S to be consistent with local histories H|i
which end up with complete get operations.

If there are only finitely many complete get operations in H, all complete add operations
in H whose arguments do not appear in views returned in H can be inserted after the last
get operation in S without affecting legality.

Otherwise, if there are infinitely many get operations in H, we claim that the argument
of every complete add operation in H appears in some view returned in H. Indeed, by the
algorithm (line 9), every complete add(v) operation by pi broadcasts Vi that includes v and,
eventually, every correct process will have v in its local view. Thus, there is a time after
which every complete get operation returns a view containing v.

Thus, the resulting legal sequential history S is equivalent to a completion of H that
contains all complete add and get operations and some incomplete add operations in H.

Finally, by Lemma 5, every operation invoked by a correct process returns. Thus,
Algorithm 1 is a sequentially consistent implementation of add-only set. J

5 Colorless tasks in anonymous networks

Our sequentially consistent implementation of an add-only set allows us to prove several
interesting computability results for colorless tasks.

Colorless tasks. A process invokes a distributed task with an input value and the task
returns an output value, so that the inputs and the outputs across the processes respect the
task specification. In a colorless task, processes are free to use each others’ input and output
values, so the task can be defined in terms of input sets and output sets.

Formally, a colorless task is defined through a set I of input sets, a set O of output sets,
and a total relation ∆ : I 7→ 2O that associates each input set with a set of possible output
sets. We require that ∆ is carrier map i.e., ∀τ, σ ∈ I : τ ⊆ σ ⇒ ∆(τ) ⊆ ∆(σ). A colorless
task is said to be t-resiliently solvable if there exists a t-resilient protocol that guarantees
that, in every execution with t or fewer failures and input set σ ∈ I, every correct process
outputs a value such that the output set τ satisfies τ ∈ ∆(σ). Check [18] for more details on
the definition.

In this section, we show that the anonymous broadcast model is equivalent, from the
colorless task computability viewpoint, to the non-anonymous read-write shared memory
model.

Sequentially-consistent snapshot. We now describe an implementation of a sequentially-
consistent snapshot object, that maintains a vector of ` values and exports two types of
operations, update(i, v) and snapshot(), where i = 0, 1, . . . , `, with the following sequential
specification. Operation update(i, v) replaces the content of the i-th component of the
object with value v, and snapshot() returns the current state of the vector. Without loss of
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Algorithm 2 implementation of sequentially-consistent snapshot: code for a process pi

1 Shared variables :
2 SET: a sequentially - consistent add -only set

3 update (i, v):
4 S = SET.get ()
5 t = maxTS(S)
6 SET.add ([i, t + 1, v])

7 snapshot ():
8 S = SET.get ()
9 v = recent (S)

10 return v

11 macro maxTS(S):
12 if S = ∅ then
13 return 0
14 return max{t | ∃i, v : [i, t, v] ∈ S}

15 macro recent (S):
16 for i in 1, . . . , ` do
17 snap[i] = recent i(S)
18 return snap

19 macro recent i(S):
20 if {(t, v) | ∃i : [i, t, v] ∈ S} = ∅ then
21 return ⊥
22 (t′, v′) = max{(t, v) | ∃i : [i, t, v] ∈ S}
23 return v′

generality, we assume that the values that can be stored in the vector are natural numbers.
We also assume that each component of the object is initialized with a default value ⊥.

Our implementation of a sequentially-consistent snapshot maintains a single shared
sequentially consistent set SET and operates as follows. To update the i-th component by a
value v, a process takes the current copy of the underlying add-only set, calculates the largest
timestamp t, increments it, and then adds tuple [i, t, v] to the set. To take a snapshot, the
process first evaluates the current state S of the underlying add-only set. Then, the process
calculates the most recent value of the each i-th component based on the lexicographic order
on the set {(t, v) | [i, t, v] ∈ S}, where the empty set corresponds the initial value ⊥. Overall,
the implementation, presented in Algorithm 2, resembles an implementation of a linearizable
register in the non-anonymous broadcast model [4].

I Theorem 7. Algorithm 2 implements a sequentially-consistent snapshot in the anonymous
non-instantaneous broadcast model.

Proof. Fix an execution of the algorithm and let H be the corresponding history. In the
executions, each update(i, v) is associated with a timestamp TS(update(i, v)) = maxTS(S)+1
for S in Line 4. For each snapshot(), underlyingSet(snapshot()) denotes the set S of Line 8.
We write (t, v) < (t′, v′) if and only if (t, v) is lexicographically smaller than (t′, v′).

We may assume, without loss of generality, that every process performs updates and
snapshots alternatively, e.g., running a full-information protocol: the first update carries
the input value of the process and every next update carries the outcome of the preceding
snapshot operation.
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We can now construct a sequential history S corresponding to H in the following manner:
Let op1 and op2 be update or snapshot operations appeared in H.

In the case of op1 = update(i, v) and op2 = update(i, v′), op1 precedes op2 in S if and
only if (TS(op1), v) < (TS(op2), v′).
In the case of op1 = snapshot() and op2 = snapshot(), op1 precedes op2 in S if and only
if underlyingSet(op1) ⊆ underlyingSet(op2).
In the case of op1 = update(i, v) and op2 = snapshot(), op1 precedes op2 in S if and
only if the tuple [i, t, v] that op1 has added at Line 6 is in underlyingSet(op2).

In all other cases, op1 and op2 can be arbitrarily ordered as long as the order keeps the
process local histories of H. J

Since decision tasks do not concern the order of inputs or outputs, the following lemma
holds:

I Lemma 8. Assume that there is an anonymous shared-memory protocol that runs on top
of an atomic snapshot object and t-resiliently solve a colorless task T . Then the very same
protocol can be run on top of a sequentially-consistent snapshot object and still t-resiliently
solve the colorless task T .

Proof. Let P (resp. P ′) be the protocol that runs on top of the atomic snapshot object
(resp. a sequentially-consistent object). Fix a set of inputs σ ∈ I and fix the execution E′ of
the protocol P ′ starting from σ. Let H ′ be the corresponding history of E′ and S′ be the
sequential history that is equivalent to H ′. Then, there exists an execution E of the protocol
P that corresponds to the execution S′.

In executions E and E′, every process pi reads and writes the exactly same values in
the same order. Thus, if the process terminates and makes output in E, the process must
terminate and produce the same output in E′. By the above arguments, if the protocol
P t-resiliently solves the given colorless task T , the protocol P ′ also t-resiliently solves the
colorless task T . J

Therefore, every decision task that can be t-resiliently solved with an atomic snapshot object
can be t-resiliently solved with a sequentially-consistent snapshot object.

Combining Theorem 6, Theorem 7, and Lemma 8 we obtain the following result.

I Lemma 9. Every colorless task that is t-resiliently solvable in the anonymous shared-
memory model is also t-resiliently solvable in the anonymous broadcast model, where t < n

2 .

We can prove the converse of Lemma 9 by [13, Theorem 3].

I Theorem 10 ([13, Theorem 3]). A colorless task is t-resiliently solvable in the anonymous
shared-memory model if and only if it is t-resiliently solvable in the non-anonymous one.

I Lemma 11. Every colorless task that is t-resiliently solvable in the anonymous broadcast
model is also t-resiliently solvable in the anonymous shared-memory model, where t < n

2 .

Proof. If a colorless task T is t-resiliently solvable in the anonymous broadcast model, it is
obviously t-resiliently solvable in the non-anonymous broadcast model. Then, T is also t-
resiliently solvable in the non-anonymous shared-memory model because the non-anonymous
shared-memory model simulates the non-anonymous broadcast model, where t < n

2 [4]. Thus,
by Theorem 10, the colorless task T is t-resiliently solvable in the anonymous shared-memory
model. J
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Let us note that the above argument is necessary because, in the anonymous setting, the
shared-memory model does not simulate the broadcast model. In the anonymous shared-
memory model, processes cannot know the number of clone processes if they take steps
alternately and keep in the identical state. On the other hand, in the anonymous broadcast
model, each process eventually receives the messages sent by clone processes by an amount
equal to the number of the clones.

I Theorem 12. A colorless task T is t-resiliently solvable in the anonymous broadcast model
if and only if it is t-resiliently solvable in the anonymous shared-memory model, where t < n

2 .

The theorem says that the anonymous broadcast model is equivalent to the anonymous
shared-memory model from the viewpoint of colorless task solvability when less than majority
of processes may fail.

6 Concluding remarks: on linearizability in anonymous networks

We showed that the anonymous broadcast model does not allow linearizable implementations
of nontrivial object types (Theorem 1). On the positive side, we suggested to consider
sequential consistency and proposed a sequentially consistency implementation of add-only
set. While sequential consistency is good enough for exploring one-shot task computability
(Section 5), it may not be an attractive property for long-lived abstractions that can be
composed in a larger context. Unlike linearizability, the property does not preserve real-time
precedence of operations: precisely because of this, sequentially consistent implementations
do not compose [17].

A closer look at the proof of Theorem 1 reveals that sequential consistency might be a
very rough fix to obviate the impossibility. Indeed, in the constructed non-linearizable history,
a clone of a process that completed its operation earlier cannot distinguish the current state
from the initial one and, thus, must return a “stale”, inconsistent response. However, modulo
operations executed by the clone, the constructed history can be seen as a linearizable one
that preserves real-time ordering of “original” (non-cloning) operations.

Intuitively, we can think of a straightforward modification of our add-only set implemen-
tation that seems to enable this kind of relaxed linearizability. Before returning, an add
operation may ensure that the added value is accepted by a majority of processes.

An interesting open question is whether this intuition is justified: can we come up with a
composable relaxation of linearizability that applies to the anonymous broadcast model?
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Abstract
We study the Rendezvous problem for two autonomous mobile robots in asynchronous settings
with persistent memory called light. It is well known that Rendezvous is impossible in a basic
model when robots have no lights, even if the system is semi-synchronous. On the other hand,
Rendezvous is possible if robots have lights of various types with a constant number of colors.
If robots can observe not only their own lights but also other robots’ lights, their lights are
called full-light. If robots can only observe the state of other robots’ lights, the lights are called
external-light. This paper focuses on robots with external-lights in asynchronous settings and a
particular class of algorithms called L-algorithms, where an L-algorithm computes a destination
based only on the current colors of observable lights. When considering L-algorithms, Rendezvous
can be solved by robots with full-lights and three colors in general asynchronous settings (called
ASYNC) and the number of colors is optimal under these assumptions. In contrast, there exist
no L-algorithms in ASYNC with external-lights regardless of the number of colors.

In this paper, extending the impossibility result, we show that there exist no L-algorithms in
so-called LC -1-Bounded ASYNC with external-lights regardless of the number of colors, where
LC -1-Bounded ASYNC is a proper subset of ASYNC and other robots can execute at most one
Look operation between the Look operation of a robot and its subsequent Compute operation.
We also show that LC -1-Bounded ASYNC is the minimal subclass in which no L-algorithms with
external-lights exist. That is, Rendezvous can be solved by L-algorithms using external-lights
with a finite number of colors in LC -0-Bounded ASYNC (equivalently LC -atomic ASYNC).
Furthermore, we show that the algorithms are optimal in the number of colors they use.
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1 Introduction

Background and Motivation. The computational issues of autonomous mobile robots have
been the object of much research in the field of distributed computing. In particular, a large
amount of work has been dedicated to the research of theoretical models of autonomous mobile
robots [1, 2, 3, 6, 12, 15, 19, 20]. In the basic common setting, a robot is modeled as a point
in a two dimensional plane and its capability is quite weak. We usually assume that robots
are oblivious (no memory to record past history), anonymous and uniform (robots have no
IDs and run identical algorithms) [8]. Robots operate in Look-Compute-Move (LCM ) cycles
in the model. In the Look operation, robots obtain a snapshot of the environment and they
execute the same algorithm using the snapshot as input for the Compute operation, and move
towards the computed destination in the Move operation. Repeating these cycles, all robots
collectively perform a given task. The weak capabilities of the robots make it challenging
for them to accomplish even simple tasks. Therefore, identifying the minimum (weakest)
capabilities that the robots need to complete a given task in a given model constitutes a
very interesting and important challenge for the theoretical research on autonomous mobile
robots.

This paper considers the problem of Gathering, which is one of the most fundamental
tasks for autonomous mobile robots. Gathering is the process where n mobile robots, initially
located at arbitrary positions, meet within finite time at a location, not known a priori.
When there are two robots in this setting (i.e., for n = 2), this task is called Rendezvous. In
this paper, we focus on Rendezvous in asynchronous settings and we reveal the relationship
among several assumptions.

Since Gathering and Rendezvous are simple but essential problems, they have been
intensively studied and a number of possibility and/or impossibility results have been shown
under the different assumptions [1, 2, 3, 5, 6, 7, 9, 13, 14, 15, 16, 18, 19]. The solvability
of Gathering and Rendezvous depends on the activation schedule and the synchronization
level. Usually three basic types of schedulers are identified, namely, the fully synchronous
(FSYNC), the semi-synchronous (SSYNC) and the asynchronous (ASYNC) models. In
the FSYNC model, there is a common round and in each round all robots are activated
simultaneously and Compute and Move are done instantaneously. The SSYNC model is the
same as FSYNC except that at each round only a subset of the robots are activated, with
a fairness guarantee that every robot is activated infinitely often in any infinite execution.
In the ASYNC scheduler, there are no restrictions about the notion of time. In particular,
Compute and Move and the interval between them can take any (finite) duration, a robot
can be seen while moving, and in the interval between an observation and a corresponding
move other robots may have possibly moved several times. Gathering and Rendezvous are
trivially solvable in FSYNC in the basic model (e.g., without lights) by using an algorithm
that moves to the center of gravity. However, these problems can not be solved in SSYNC
without any additional assumptions [8].

Das et al. [4] extend the classical model with persistent memory, called lights, to reveal the
relationship between ASYNC and SSYNC and they show that asynchronous robots equipped
with lights and a constant number of colors, are strictly more powerful than semi-synchronous
robots without lights. In order to solve Rendezvous without any other additional assumptions,
robots with lights have been introduced [10, 4, 21]. Table 1 shows previous results including
ours to solve Rendezvous by robots with lights, for each scheduler and movement restriction.
In the table, LC -atomic ASYNC is a subclass of ASYNC, in which we consider from the
beginning of each Look operation to the end of the corresponding Compute operation as an
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Table 1 Rendezvous algorithms by robots with lights.

scheduler movement full-light external-light internal-light no-light

FSYNC Non-Rigid − − − © [8]

Non-Rigid 2∗(S) [21] 3∗(S) [21] ∞∗ [10]
× [8]SSYNC Rigid − − 6 [10]

Non-Rigid(+δ) − − 3 [10]

Non-Rigid 2*(S) [17] ?→ 4*(QS),5*(S) ?
−

LC-atomic Rigid − ? → 3* ?
ASYNC Non-Rigid(+δ) − ? ?

Non-Rigid 2(S) [11],3*(S) [21] ∞∗ [10] ?
−

ASYNC Rigid 2* [21] 12 [10] ?
Non-Rigid(+δ) − 3 [10] ?

©: solvable, ×: unsolvable. ∗: L-algorithm, (S): self-stabilizing,
(QS): quasi-self-stabilizing. − indicates that this part has been solved under weaker
conditions or unsolved under stronger ones. A number represents the number of colors used
in these algorithms and it is in boldface when optimal. ? means that this part has not been
solved.

atomic one, that is, no robot can observe between the beginning of each Look operation
and the end of the next Compute on the same robot [17]. Regarding the various kinds of
lights, full-light means that robots can see their own light as well as that of the other robots,
whereas external-light and internal-light respectively mean that they can see only the lights
of the other robots, or only their own light. Regarding the movement restriction, Rigid
means that the robots can always reach the computed destination during the move operation.
Non-Rigid means that robots may be stopped before reaching the computed destination but
move a minimum distance δ > 0. Non-Rigid(+δ) means it is Non-Rigid and robots know the
value δ.

In Table 1, we can see that complete solutions have been obtained for the case of full-lights.
However, the cases of external-lights and internal-lights are still insufficiently explored and
should be solved.

Our Contribution. In this paper, we are concerned with Rendezvous for robots equipped
with external-lights and a particular class of algorithms called L-algorithms. Briefly, an
L-algorithm means that each robot (1) always computes a destination on the line connecting
the two robots, and (2) using only the observed colors of the lights of the robots.

Algorithms of this class are of interest because they operate also when the coordinate
system of a robot is not self-consistent (i.e., it can unpredictably rotate, change its scale
or undergo a reflection) [10]. Rendezvous can be solved by an L-algorithm with 3 colors of
external-lights in SSYNC [21], but cannot be solved by any L-algorithm with any number of
colors of external-lights in ASYNC [10].

In this paper, we reveal the relationship among the number of colors, movement restrictions
and initial configurations on L-algorithms with external-lights in asynchronous settings. We
introduce subclasses of ASYNC called LC -k-Bounded ASYNC (k ≥ 0), where LC -k-Bounded
ASYNC is a subclass of ASYNC in which any other robot can execute at most k Look
operations between the Look operation of a robot and its subsequent Compute one. When
k = 0, it is equivalent to LC -atomic ASYNC and any Look operation and its subsequent
Compute one can be executed atomically and this interval cannot be observed by any other
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robots. We show that Rendezvous cannot be solved by any L-algorithm with any number
of colors of external-lights in LC -1-Bounded ASYNC and Rendezvous can be solved by
L-algorithm with a finite number of colors of external-lights in LC -0-Bounded (LC -atomic)
ASYNC. In fact, we give three L-algorithms with external-lights in LC -atomic ASYNC,
such that (1) if we may start from a particular initial configuration with the same color,
Rendezvous is solved with 3 colors in Rigid, (2) if we start from any initial configuration with
the same color (called quasi-self-stabilizing), Rendezvous is solved with 4 colors in Non-Rigid,
and (3) if we start from any initial configuration (called self-stabilizing), Rendezvous is
solved with 5 colors and in Non-Rigid. We also show that the numbers of colors used in
the three algorithms are optimal in the sense that no L-algorithm with fewer colors can
solve Rendezvous. In order to derive the lower bounds we give several essential properties of
L-algorithms.

The remainder of the paper is organized as follows. In Section 2, we define the robot
model with lights, the Rendezvous problem, and basic terminology. Section 3 reviews
previous results on Rendezvous with lights and the impossibility result of L-algorithms with
external-lights is extended. Section 4 shows several properties of L-algorithms for Rendezvous
with 3 colors of external-lights and Section 5 shows optimal Rendezvous L-algorithms on
Asynchronous robots with external-lights. Section 6 concludes the paper.

2 Preliminaries

2.1 Robot Model
We consider a set of n anonymous mobile robots R = {r1, . . . , rn} located in IR2. Each robot
ri has a persistent state `(ri) called light which may be taken from a finite set of colors L.

We denote by `(ri, t) the color that the light of robot ri has at time t and p(ri, t) ∈ IR2

the position occupied by ri at time t represented in some global coordinate system. Given
two points p and q ∈ IR2, dis(p, q) denotes the distance between p and q.

Each robot ri has its own coordinate system where ri is located at its origin at any time.
These coordinate systems do not necessarily agree with those of other robots. It means that
there is no common knowledge of unit of distance, directions of its coordinates, or clockwise
orientation (chirality).

At any point of time, a robot can be active or inactive. When a robot ri is activated, it
executes Look-Compute-Move operations:

Look: The robot ri activates its sensors to obtain a snapshot which consists of a pair of
light and position for every robot with respect to the coordinate system of ri. Since the
result of this operation is a snapshot of the positions of all robots, the robot does not
notice the movement, even if it sees other moving robots. We assume that robots can
observe all other robots (unlimited visibility).
Compute: The robot ri executes its algorithm using the snapshot and the color of its
own light (if allowed by the model) and returns a destination point desi expressed in its
coordinate system and a light `i ∈ L to which its own color is set.
Move: The robot ri moves to the computed destination desi. A robot r is said to collide
with robot s at time t if p(r, t) = p(s, t) and at time t r is performing Move. The collision
is accidental if r’s destination is not p(r, t). Since robots are seen as points, we assume
that accidental collisions are immaterial. A moving robot, upon causing an accidental
collision, proceeds in its movement without changes, in a “hit-and-run” fashion [8]. The
robot may be stopped by an adversary before reaching the computed destination. If
stopped before reaching its destination, a robot moves at least a minimum distance δ > 0.
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Note that without this assumption an adversary could make it impossible for any robot
to ever reach its destination. If the distance to the destination is at most δ, the robot
can reach it. In this case, the movement is called Non-Rigid. Otherwise, it is called Rigid.
If the movement is Non-Rigid and robots know the value of δ, it is called Non-Rigid(+δ).

A scheduler decides which subset of robots is activated for every configuration. The
schedulers we consider are asynchronous and semi-synchronous and it is assumed that
schedulers are fair, each robot is activated infinitely often.

ASYNC: The asynchronous (ASYNC) scheduler, activates the robots independently,
and the duration of each Compute, Move and between successive activities is finite and
unpredictable. As a result, robots can be seen while moving and the snapshot and its
actual configuration are not the same and so its computation may be done with the old
configuration.
SSYNC: The semi-synchronous(SSYNC) scheduler activates a subset of all robots
synchronously and their Look-Compute-Move cycles are performed at the same time.
We can assume that activated robots at the same time obtain the same snapshot and
their Compute and Move are executed instantaneously. In SSYNC, we can assume that
each activation defines discrete time called round and Look-Compute-Move is performed
instantaneously in one round.

As a special case of SSYNC, if all robots are activated in each round, the scheduler is
called full-synchronous (FSYNC).

In this paper, we are concerned with ASYNC and we assume the followings; In a Look
operation, a snapshot of the environment at time tL is taken and we say that the Look
operation is performed at time tL. Each Compute operation of ri is assumed to be done at
time tC and the color of its light `i(t) and its pending destination desi are both set to the
computed values for any time greater than tC2. In a Move operation, when the movement
begins at time tB and ends at tE , we say that it is performed during interval [tB , tE ], and
the beginning (resp. ending) of the movement is denoted by MoveBEGIN (resp. MoveEND)
occurring at time tB (resp. tE). In the following, Compute, MoveBEGIN and MoveEND are
abbreviated as Comp, MB and ME , respectively. When a cycle has no actual movement (i.e.,
robots only change color and their destinations are the current positions), we can equivalently
assume that the Move operation in this cycle is omitted, since we can consider the Move
operation to be performed just before the next Look operation.

Without loss of generality, we assume the set of time instants at which the robots start
executions of Look, Comp, MB and ME is IN.

We also consider the following restricted classes of ASYNC. Let k be a non-negative
integer. Let a robot r execute a cycle. If any other robot can execute at most k Look
operations between the Look operation of r and its subsequent Compute in that cycle, the
model is said to be LC -k-Bounded. If k = 0, it is said to be LC -atomic. Thus we can
assume that in the LC -atomic ASYNC model, Look and Comp operations in every cycle are
performed simultaneously (or atomically), say at time tLC , and we say that the LC -operation
is performed at time tLC .

Similarly, if no other robot can execute at most Look operations between the operation
MB of r and its corresponding ME , the model is said to be Move-k-Bounded. If k = 0, it
is said to be Move-atomic. In this case Move operations in all cycles can be considered to

2 Note that if some robot performs a Look operation at time tC , then it observes the former color and if
it does at time tC + ε(∀ε > 0), then it observes the newly computed color.
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be performed instantaneously and at time tM . In Move-atomic ASYNC, when a robot r
observes another robot r′ performing a Move operation at time tM , r observes the snapshot
after the moving of r′.

Since each operation occurs at integer times, when LC -operation is performed at time t
in LC -atomic ASYNC, we can assume that the snapshot at t is obtained at t and the
computation completes at t+ 1. Also when Move-operation begins (MB occurs) at time t in
Move-atomic ASYNC, ME can be assumed to occur at time t+ 1. Thus, if a robot r observes
another robot r′ performing a Move operation at time tM , then r observes the snapshot
before the moving of r′ until and at time t, and the snapshot after the moving of r′ from
tM + 1.

In our settings, robots have persistent lights and can change their colors instantly at each
Compute operation. We consider the following three robot models according to the visibility
of lights.

full-light, a robot can observe the lights of other robots as well as its own, and it can also
change the color of its own light.
external-light, a robot can observe the light of other robots but not its own. It can
however change the color of its own light in a “write-only” manner.
internal-light, a robot can observe and change the color of its own light, but cannot
observe the lights of other robots.

2.2 Rendezvous and L-Algorithms
An n-Gathering problem is defined as follows: given n(≥ 2) robots initially placed at arbitrary
positions in IR2, they congregate in finite time at a single location which is not predefined.
In the following, we consider the case where n = 2 and the 2-Gathering problem is called
Rendezvous.

When we consider algorithms on robots with lights, we exclude algorithms that solve
Rendezvous only starting from initial settings in which robots have different colors of lights.
That is, we consider Rendezvous algorithms that can solve Rendezvous even from initial
settings in which all robots have the same color. An algorithm solving Rendezvous is said
to be quasi-self-stabilizing if it assumes that both robots always start with the same initial
color chosen arbitrarily, and it is self-stabilizing if the robots can start from arbitrary colors.

A particular class of algorithms, denoted by L, requires that robots only compute a
destination point of the form (1 − λ) · me.position + λ · other.position for some λ ∈ IR,
obtained as a function having only the colors as input (i.e., color of the other robot in the
external-light) [21]. We call an algorithm in this class an L-algorithm.

3 Previous Results for Rendezvous

Rendezvous is trivially solvable in FSYNC but is not in SSYNC in general.

I Theorem 1. [8] Rendezvous is deterministically unsolvable in SSYNC even if chirality is
assumed.

If robots have a constant number of colors in their lights, Rendezvous can be solved as
shown in the following theorems (or Table 1).

I Theorem 2. Rendezvous is solved by self-stabilizing L-algorithms under the following
assumptions;
1. full-light with 2 colors, Non-Rigid and LC -atomic ASYNC [17],
2. full-light with 3 colors, Non-Rigid and ASYNC [21],
3. external-light with 3 colors, Non-Rigid and SSYNC [10].
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Figure 1 Move-atomic and LC-1-Bounded ASYNC schedule Rendezvous never succeeds.

I Theorem 3. [11] Rendezvous is solved by a self-stabilizing non-L-algorithm in full-light
with 2 colors, Non-Rigid and ASYNC.

I Theorem 4. [10] Rendezvous is solved by non-quasi-self-stabilizing non-L-algorithms under
the following assumptions;
1. external-light with 3 colors, Non-Rigid(+δ) and ASYNC,
2. external-light with 12 colors, Rigid and ASYNC,
3. internal-light with 3 colors, Non-Rigid(+δ) and SSYNC,
4. internal-light with 6 colors, Rigid and SSYNC.

Impossibility of Rendezvous L-algorithms is stated as follows.

I Theorem 5.
1. In ASYNC and Rigid, Rendezvous is not solvable by any quasi-self-stabilizing L-algorithm

with full-light of 2 colors [21].
2. In ASYNC and Non-Rigid, Rendezvous is not solvable by any L-algorithm with full-light

of 2 colors [21].
3. In Move-atomic but non-LC -atomic ASYNC and Rigid, Rendezvous is not solvable by

any L-algorithm with external-light of any number of colors [10].
4. In SSYNC and Rigid, Rendezvous is not solvable by any L-algorithm with internal-light

of any number of colors [10].

Theorem 5 point 3 can be extended as follows;

I Theorem 6. In Move-atomic and LC -1-Bounded ASYNC, and Rigid, Rendezvous is not
solvable by any L-algorithm with external-light of any number of colors.

Proof. For each robot, the destination point and the next color are a function of the color of
the other robot only. Assume that both robots start in the same color (say, A) and perform
their execution synchronously. Consider a time t when both robots compute the midpoint m
as a result of looking each other color A. Only robot r is let begin the cycle and perform
Look operation, Compute one and ME one at tL = t, tC and tME

, respectively. Robot r
computes the midpoint m and changes its color to say, B at tC . Robot s is let perform Look
operation at time t′L (tL < t′L < tC), compute the midpoint m and change its color to B at
time t′C (tME

< t′C), and move to m at time t′ME
(Figure 1). Robot r is let end the next

cycle before t′C and perform Look operation, Compute one and ME one at t′′L, t′′C and t′ME
,

respectively, where t′′ME
< t′C . Since r keeps seeing s set to A in this cycle, r computes the

new midpoint m′ and changes its color to B. Then, both robots have the same color and
does not attain Rendezvous at the time t′ME

. By repeating the pattern, the robots never
attain Rendezvous. Also this pattern satisfies Move-atomic and LC -1-Bounded ASYNC, and
Rigid. J

OPODIS 2018



24:8 Optimal Rendezvous L-Algorithms with External-Lights

Algorithm 1 SS-Rendezvous-with-3-colors (scheduler, movement, initial-color)[10].

Parameters: scheduler, movement-restriction, initial-color
Assumptions: external-light, three colors (A, B and C)

1: case other.light of
2: A:
3: me.light← B
4: me.des← the midpoint of me.position and other.position
5: B:
6: me.light← C
7: C:
8: me.light← A
9: me.des← other.position
10: endcase

In the following sections, we consider L-algorithms to solve Rendezvous on robots with
external-lights and clarify the relationship among synchrony, the number of colors, movement
restriction, and initial configurations.

4 Rendezvous L-Algorithms for Robots with Three Colors of
External Lights

In what follows, two robots are denoted as r and s. Let t0 be the starting time of the
algorithm. Given a robot robot, an operation op(∈ {Look,Comp,LC ,MB,ME}), and a
time t, t+(robot, op) denotes the time robot performs the first op after t (inclusive) if there
exists such operation, and t−(robot, op) denotes the time robot performs the first op before t
(inclusive) if there exists such operation. If t is the time the algorithm terminates, t+(robot, op)
is not defined for any op. When robot does not perform op before t and t−(robot, op) does
not exist, t−(robot, op) is defined to be t0.

A time tc is called a cycle start time (cs-time, for short), if the next performed operations
of both r and s after tc are both Look, or otherwise, the robots performing the operations
neither change their colors of lights nor move. In the latter case, we can consider that these
operations can be performed before tc and the subsequent Look operation can be performed
as the first operation after tc.

In [10], a Rendezvous algorithm is shown in SSYNC and Non-Rigid with external-light of
three colors (Algorithm 1).

I Theorem 7. [10] Rendezvous is solved by SS-Rendezvous-with-3-colors(SSYNC, Non-Rigid,
any). It is a self-stabilizing L-algorithm.

We will show that Algorithm 1 does not work in even LC -atomic and Move-atomic
ASYNC and Rigid, starting from the initial color A. In fact, in the next section, more
generally we will show that there exist no L-algorithms to solve Rendezvous in LC -atomic
and Move-atomic ASYNC and Non-Rigid with three colors of external-lights. We also show
that there exist no quasi-self-stabilizing L-algorithms to solve Rendezvous if we change
the assumption of Non-Rigid to Rigid. On the other hand, we show that there exists a
non-quasi-self-stabilizing L-algorithm to solve Rendezvous in LC -atomic ASYNC and Rigid
with three colors of external-lights (Algorithm 2).

I Theorem 8. Rendezvous is solved by NonQSS-Rendezvous-with-3-colors
(LC -atomic ASYNC, Rigid, A). It is a non-quasi-self-stabilizing L-algorithm.
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Algorithm 2 NonQSS-Rendezvous-with-3-colors (scheduler, movement, initial-color).

Parameters: scheduler, movement-restriction, initial-color
Assumptions: external-light, three colors (A, B and C)

1: case other.light of
2: A:
3: me.light← B
4: me.des← the midpoint of me.position and other.position
5: B:
6: me.light← C
7: C:
8: me.light← B
9: me.des← other.position
10: endcase

A

B C

1/2

0

1

(a) Algorithm 1

A

B C

1/2

0

1

(b) Algorithm 2

Figure 2 Graph representations for Algorithms 1 (a) and 2 (b).

In the following, we derive lower bounds on the number of colors of external-lights. In
order to do so, we introduce some notation for L-algorithms and show their properties.

In L-algorithms, the next color and destination (denoted as λ) is determined only by the
current color observed by the robot. Thus an L-algorithm is represented by an edge-labeled
directed graph GL = (VL, EL, `L), where VL is a set of colors used in the algorithm, EL is a
set of transitions from current colors observed by the robots to the next colors computed by
the robots, and `L is an edge-labeled function from EL to IR. Edge e = (c1, c2) ∈ EL and
`L(e) = λ mean that when a robot observes color c1 of the other robot, it changes its color
to c2 and moves to the point decided by the value λ.3 Also the out-degree of each node must
be one, since we consider deterministic L-algorithms. Thus, when the number of nodes in
GL is k, GL has k edges. For example, Algorithms 1 and 2 are represented by the following
directed graphs GL1 and GL2, respectively.

GL1 = (VL1, EL1, `L1), where VL1 = {A,B,C}, EL1 = {(A,B), (B,C), (C,A)} and
`L1((A,B)) = 1/2, `L1((B,C)) = 0 and `L1((C,A)) = 1 (Figure 2(a)).

GL2 = (VL2, EL2, `L2), where VL2 = {A,B,C}, EL2 = {(A,B), (B,C), (C,B)} and
`L2((A,B)) = 1/2, `L1((B,C)) = 0 and `L2((C,B)) = 1 (Figure 2(b)).

In what follows, we identify an L-algorithm with its graph representation and e =
(c1, c2) ∈ EL and `L(e) = λ are denoted as c1

λ→ c2.

I Lemma 9. Let AL be an L-algorithm solving Rendezvous in SSYNC and Rigid with
external-light. If AL starts from an initial setting such that both robots have the same color,
then AL has the following properties.

3 Note that GL is not a state-transition graph.

OPODIS 2018



24:10 Optimal Rendezvous L-Algorithms with External-Lights

1. There is a color X such that AL must have an edge X 1/2→ Y .
2. There is a color X such that AL must have an edge X 1→ Y .
3. There is a color X such that AL must have an edge X 0→ Y .

Lemma 9 implies that any L-algorithm must contain three different edges beginning with
different colors.

I Theorem 10. 4 In any Rendezvous L-algorithm with external-light, robots must have three
colors in SSYNC and Rigid.

This theorem implies that Algorithm 1 has the optimal number of colors of external-lights
in SSYNC. Note that it is self-stabilizing and works in Non-Rigid. On the other hand, if we
assume Rigid movement, we can show the L-algorithm with three colors to solve Rendezvous
in LC -atomic ASYNC, which is however not quasi-self-stabilizing. In the next section, we will
show a quasi-self-stabilizing L-algorithm with four colors and a self-stabilizing L-algorithm
with five colors to solve Rendezvous in LC -atomic ASYNC and Non-Rigid. We will also
show that the number of colors used in each algorithm is optimal.

5 Optimal Rendezvous L-Algorithms for LC-atomic ASYNC Robots
with External Lights

5.1 Lower Bounds
In this subsection, we first show that there exist no Rendezvous L-algorithms with external
light of 3 colors in LC -atomic and Move-atomic ASYNC in Non-Rigid.

If there exists such an L-algorithm, the algorithm must be an edge-labeled directed graph
GL = (VL, EL, `L) such that VL = {A,B,C}(three colors) and `L(EL) = {0, 1/2, 1} (by
Lemma9) and one of the following edge sets:
1. EL contains a self-loop edge, say (A,A), and does not contain both directed edges,
2. EL contains both directed edges, say (B,C) and (C,B), or
3. EL = {(A,B), (B,C), (C,A)}.
For Case 1. If the algorithm does not contain both directed edges, it can be verified that no
algorithm can solve Rendezvous in SSYNC and Rigid. That is, if the algorithm starts with a
color consisting of a self-loop edge, then it cannot solve Rendezvous since it cannot use more
than one color. If the algorithm starts with a color not consisting of a self-loop edge, the
color of both robots can be changed into the color with the self-loop edge without attaining
Rendezvous. Thus, the algorithm also fails to Rendezvous in this case.

For Case 2. If algorithms do not contain self-loop edges, their graphs are the same as that
of Algorithm 2. But it can be verified that Algorithm 2 fails to solve Rendezvous in SSYNC,
Rigid and starting from color B or C, or SSYNC, Non-Rigid and starting from any color.
It is easily verified that other algorithms with different edge-labeled functions fail to solve
Rendezvous in SSYNC and Rigid starting from any color. If algorithms contain self-loop
edges (both directed edges and a self-loop edge), since they can use only less than three
colors even if starting from any color, they never solve Rendezvous in SSYNC and Rigid.

In Case 3, there are essentially two algorithms.

(a) `L((A,B)) = 1/2, `L((B,C)) = 0, and `L((C,A)) = 1 (denoted as Alg-(a)),
(b) `L((A,B)) = 1/2, `L((B,C)) = 1, and `L((C,A)) = 0 (denoted as Alg-(b)).

4 This result is stated in [10, 21] but is not proved yet.
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Figure 3 Special schedules alt and sim.

Note that Alg-(a) is Algorithm 1.
We introduce special schedules to analyze L-algorithms solving Rendezvous in LC -atomic

ASYNC, with which we show that these algorithms do not work well.
Let ([α1, β1], [α2, β2], . . .) be a sequence of operations that robots r and s perform, where

r and s perform αi and βi at time ti (1 ≤ i), respectively, and αi and βi are taken from LC -
operation (denoted as LC ), Move-operations, MB , ME or M (if Move-atomic) (denoted as
M), and a “no-op” operation (denoted as −). For example, ([LC ,−], [−,LC ], [M ,−], [−,M ])
denotes that r performs LC and M at times t1 and t3 and s performs LC and M at times t2
and t4, which is in LC -atomic Move-atomic ASYNC. Similarly, ([LC ,LC ], [M ,M ]) denotes
that r and s perform LC at time t1 and perform M at time t2, which is in FSYNC. The
former is called alternating schedule and denoted as alt and the latter is called simultaneous
schedule and denoted as sim (Figure 3).

Assume that r and s have colors cr and cs at some time t and let dt = dis(p(r, t), p(s, t)).
Let (cr, cs; dt) denote a configuration of a pair of colors of robots and its distance at t. When
a configuration (cr, cs; dt) is changed into another one (c′r, c′s; dt′) by performing an algorithm
alg with a schedule sch, we denote (cr, cs; dt)

sch→ (c′r, c′s; dt′)alg, where t′ is the time after
which the robots have performed alg with the schedule sch. The suffix alg is usually omitted
when the algorithm is apparent from the context.

We show that Alg-(a) and Alg-(b) cannot work from any initial configuration of the same
color by using the schedules alt and sim.

I Lemma 11. Alg-(a) cannot solve Rendezvous in LC -atomic and Move-atomic ASYNC
and Rigid.

I Lemma 12. Alg-(b) cannot solve Rendezvous in LC -atomic and Move-atomic ASYNC
and Rigid.

I Theorem 13. There exist no L-algorithms of Rendezvous with external light of 3 colors
in LC -atomic and Move-atomic ASYNC and Non-Rigid. Furthermore, there exist no quasi-
self-stabilizing L-algorithms of Rendezvous with external light of 3 colors in LC -atomic and
Move-atomic ASYNC and Rigid.

In an argument similar to the one above, we show that there exist no self-stabilizing
L-algorithms of Rendezvous with external-light of 4 colors in LC -atomic and Move-atomic
ASYNC and Rigid.

If there exists such an L-algorithm, the algorithm must be an edge-labeled directed graph
GL = (VL, EL, `L) such that VL = {A,B,C,D}(four colors) and `L(EL) ⊇ {0, 1/2, 1} (by
Lemma 9). If the number of strongly connected components for GL is at least two, then there
exists an initial configuration of both robots with a same color, from which an algorithm
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Algorithm 3 QSS-Rendezvous-with-4-colors (LC -atomic ASYNC, Non-Rigid, initial-color).

Parameters: scheduler, movement-restriction, initial-color
Assumptions: external-light, four colors (A, B, C and D)
1: case other.light of
2: A:
3: me.light← B
4: me.des← the midpoint of me.position and other.position
5: B:
6: me.light← C
7: C:
8: me.light← D
9: me.des← other.position
10: D:
11: me.light← A
12: endcase

cannot use four colors, it cannot solve Rendezvous by Theorem 13. Then the remaining case
is that these graphs have one strongly connected component (one cycle) and have one of the
following edge sets:

(1) `L((A,B)) = 1/2, `L((B,C)) = 0, `L((C,D)) = 1, and `L((D,A)) = λ(denoted as
Alg-(1)),

(2) `L((A,B)) = 1/2, `L((B,C)) = 1, `L((C,D)) = 0, and `L((D,A)) = λ(denoted as
Alg-(2)),

(3) `L((A,B)) = 1/2, `L((B,C)) = 0, `L((C,D)) = λ, and `L((D,A)) = 1(λ 6= 1)(denoted
as Alg-(3)),

(4) `L((A,B)) = 1/2, `L((B,C)) = 1, `L((C,D)) = λ, and `L((D,A)) = 0(λ 6= 0)(denoted
as Alg-(4)),

(5) `L((A,B)) = 1/2, `L((B,C)) = λ, `L((C,D)) = 0, and `L((D,A)) = 1(λ 6= 1)(denoted
as Alg-(5)),

(6) `L((A,B)) = 1/2, `L((B,C)) = λ, `L((C,D)) = 1, and `L((D,A)) = 0(λ 6= 0)(denoted
as Alg-(6)).

I Lemma 14. Alg-(1)-Alg-(6) cannot solve Rendezvous in LC -atomic and Move-atomic
ASYNC and Rigid from some initial configuration.

I Theorem 15. There exist no self-stabilizing L-algorithms of Rendezvous with external-light
of 4 colors in LC -atomic and Move-atomic ASYNC and Rigid.

5.2 Optimal L-algorithms
In this subsection, we show two optimal L-algorithms of Rendezvous, one is quasi-self-
stabilizing with 4 colors (Algorithm 3) and the other is self-stabilizing with 5 colors (Al-
gorithm 4).

Algorithm 3 (QSS-Rendezvous-with-4-colors (LC -atomic ASYNC, Non-Rigid, initial-
light)) satisfies the following lemmas. Let tc be a cs-time of Algorithm 3.

The correctness proof proceeds as follows;
1. First we prove that Algorithm 3 is quasi-self-stabilizing. Algorithm 3 does not work

from the initial configuration {`(r, t0), `(s, t0)} = {A,C} or {`(r, t0), `(s, t0)} = {B,D}
(Lemma 14). However, we show that these configurations can not be reached from the
initial configuration that r and s have a same color as follows. Assume that robots r
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Algorithm 4 SS-Rendezvous-with-5-colors (LC -atomic ASYNC, Non-Rigid, initial-color).

Parameters: scheduler, movement-restriction, Initial-color)
Assumptions: external-light, five colors (A, B, C, D and E)
1: case other.light of
2: A:
3: me.light← B
4: me.des← the midpoint of me.position and other.position
5: B:
6: me.light← C
7: C:
8: me.light← D
9: me.des← other.position
10: D:
11: me.light← E
12: E:
13: me.light← A
14: endcase
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Figure 4 Graph representations for Algorithms 3 (a) and 4 (b).

and s start with a same color. If all LC -operations of r and s are performed at the same
times, Rendezvous succeeds preserving that `(r, t) = `(s, t) for any cs-time t (Lemma 16).
Otherwise, there are different times at which LC -operations of r and s are performed and
let tr and ts be the first times r and s are performed LC -operations, respectively (tr 6= ts).
Then we show that there are colors α and β such that {`(r, t∗), `(s, t∗)} = {α, β} and
α→ β for any cs-time t∗ after the time max(tr, ts) (Lemma 17). When robots r and s
start with {`(r, tc), `(s, tc)} = {α, β} such that α→ β, this relation of colors is preserved
for any cs-time after tc (Lemma 18).

2. Next we show that if robots r and s start with colors α and β such that α → β,
Algorithm 3 attains Rendezvous. If {α, β} = {B,C}, Rendezvous succeeds, or there
is a cs-time t∗(≥ tc) such that the distance between r and s at t∗ decreases at least δ
from the distance at tc and {`(r, t∗), `(s, t∗)} = {C,D} or {`(r, t∗), `(s, t∗)} = {D,A}
(Lemma 22). If {α, β} = {A,B}, {C,D}, or {D,A}, then there is a cs-time t∗(≥ tc) such
that the distance between r and s at t∗ is less than or equal to the distance at tc and
{`(r, t∗), `(s, t∗)} = {B,C} (Lemma 23).

I Lemma 16. Let `(r, tc) = `(s, tc). Assume that all LC -operations of r and s are performed
at the same times, and let ti(i = 1, 2, 3, . . .) be the times r and s perform LC -operations
simultaneously. Then `(r, ti) = `(s, ti) for any time ti(i = 1, 2, 3, . . .) and there is a cs-time
t∗(≥ tc) such that dis(p(r, t∗), p(s, t∗)) = 0.
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I Lemma 17. Let `(r, tc) = `(s, tc). Assume that there are different times at which LC -
operations of r and s are performed and let tr and ts be the first times r and s are per-
formed LC -operations, respectively (tr 6= ts). Then there are colors α∗ and β∗ such that
{`(r, t∗), `(s, t∗)} = {α∗, β∗} and α∗ → β∗ for the first cs-time t∗after max(tr, ts).

The following lemma can be proved similar to Lemmas 16-17.

I Lemma 18. Assume that Algorithm 3 starts with {`(r, tc), `(s, tc)} = {α, β} such that
α → β. Let t∗ be the first cs-time after tc. Then there are colors α∗ and β∗ such that
{`(r, t∗), `(s, t∗)} = {α∗, β∗} and α∗ → β∗.

I Lemma 19. Let `(r, tc) = `(s, tc). If Algorithm 3 is performed starting from tc, there does
not exist any cs-time t∗(≥ tc) such that {`(r, t∗), `(s, t∗)} = {A,C} or {`(r, t∗), `(s, t∗)} =
{B,D}.

Proof. Configuration of {`(r, t∗), `(s, t∗)} = {A,C} or {`(r, t∗), `(s, t∗)} = {B,D} at any
cs-time t∗ cannot be reached from any initial configuration that r and s have a same color
by Lemmas 16-18. J

I Lemma 20. If dis(p(r, tc), p(s, tc)) = 0 and Algorithm 3 is performed starting from tc,
dis(p(r, t), p(s, t)) = 0 for any t ≥ tc.

Proof. Since dis(p(r, tc), p(s, tc)) = 0, any move operation becomes no move (stay). J

I Lemma 21. Let α = B and β = C or α = D and β = A. If `(r, tc) = α and `(s, tc) = β

in Algorithm 3, then `(s, t) = β and p(s, t) = p(s, tc) for any t(tc ≤ t ≤ t1 = t+c (r,LC )).

Proof. When s with color β observes r with color α at t(tc ≤ t ≤ t1), s does not change its
color at time t and stays at position p(s, tc). J

I Lemma 22. If Algorithm 3 starts with {`(r, tc), `(s, tc)} = {B,C}, for any schedule
of two robots after tc, there is a cs-time t∗(≥ tc) such that dis(p(r, t∗), p(s, t∗)) = 0, or
dis(p(r, t∗), p(s, t∗)) ≤ dis(p(r, tc), p(s, tc))− δ and {`(r, t∗), `(s, t∗)} = {C,D} or
{`(r, t∗), `(s, t∗)} = {D,A} .

I Lemma 23. If Algorithm 3 starts with {`(r, tc), `(s, tc)} = {α, β} such that α→ β, for any
schedule of two robots after tc, there is a cs-time t∗(≥ tc) such that {`(r, t∗), `(s, tc)} = {B,C}
and dis(p(r, t∗), p(s, t∗)) ≤ dis(p(r, tc), p(s, tc)).

Lemmas 16-23 follow the next theorem.

I Theorem 24. Rendezvous is solved by QSS-Rendezvous-with-4-colors(LC-atomic ASYNC,
Non-Rigid, any) with `(r, t0) = `(s, t0). It is a quasi-self-stabilizing L-algorithm.

Algorithm 4 also satisfies similar properties of Lemmas 16-23 (Lemmas 26-33) and it can
be also shown to be a self-stabilizing L-algorithm by using these lemmas and the following
Lemma 25. In Algorithm 3, two color pairs {A,C} and {B,D} of r and s cannot be reached
from any initial configuration with same colors (Lemma 19). However, it cannot achieve
Rendezvous from the initial configuration {A,C} or {B,D} (Lemma 14), since repetitions
of {A,C} and {B,D} never attain Rendezvous. This is the reason why Algorithm 3 is not
self-stabilizing. On the other hand, we can show that Algorithm 4 is self-stabilizing. In fact,
it can solve Rendezvous from the initial configurations {A,C}, {B,D}, {C,E}, {D,A} or
{E,B} as expressed in the following Lemma 25. Even if these configurations repeat, since
the repetition contains {C,E}, Rendezvous succeeds. Otherwise, any configuration can reach
some configuration {α, β} (α→ β).
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I Lemma 25. Let {`(r, tc), `(s, tc)} = {α, γ}, where α → β and β → γ. If Algorithm 4
starts with from any configuration {`(r, tc), `(s, tc)} = {α, γ}, for any schedule of two robots
after tc, there is a cs-time t∗(≥ tc) such that
dis(p(r, t∗), p(s, t∗)) = 0, or dis(p(r, t∗), p(s, t∗)) ≤ dis(p(r, tc), p(s, tc))− δ
and {`(r, t∗), `(s, t∗)} = {α′, β′} for some α′ and β′ (α′ → β′).

The remaining lemmas can be proved similar to Lemmas 16-23.

I Lemma 26. Let `(r, tc) = `(s, tc) in Algorithm 4. If all LC -operations of r and s are
performed at the same times, and let ti(i = 1, 2, 3, . . .) be the times r and s perform LC -
operations simultaneously. Then `(r, ti) = `(s, ti) for any time ti(i = 1, 2, 3, . . .) and there is
a cs-time t∗(≥ tc) such that dis(p(r, t∗), p(s, t∗)) = 0.

I Lemma 27. Let `(r, tc) = `(s, tc) in Algorithm 4. Assume that there are different times
at which LC -operations of r and s are performed. Let t∗ be the first cs-time after the first
different time at which different LC -operations of r and s are performed. Then there are
colors α∗ and β∗ such that {`(r, t∗), `(s, t∗)} = {α∗, β∗} and α∗ → β∗.

I Lemma 28. Assume that Algorithm 4 starts with {`(r, tc), `(s, tc)} = {α, β} such that
α → β. Let t∗ be the first cs-time after tc. Then there are colors α∗ and β∗ such that
{`(r, t∗), `(s, t∗)} = {α∗, β∗} and α∗ → β∗.

I Lemma 29. Let `(r, tc) = `(s, tc). If Algorithm 4 is performed starting from tc, there exist
no cs-time t∗(≥ tc) such that {`(r, t∗), `(s, t∗)} = {α, γ}, where α→ β and β → γ.

I Lemma 30. If dis(p(r, tc), p(s, tc)) = 0 and Algorithm 4 is executed starting from tc,
dis(p(r, t), p(s, t)) = 0 for any t ≥ tc.

I Lemma 31. Let α = B and β = C, α = D and β = E, or α = E and β = A. If
`(r, tc) = α and `(s, tc) = β in Algorithm 4, then `(s, t) = β and p(s, t) = p(s, tc) for any
t(tc ≤ t ≤ t+c (r,LC )).

I Lemma 32. If Algorithm 4 starts with {`(r, tc), `(s, tc)} = {B,C}, for any schedule
of two robots after tc, there is a cs-time t∗(≥ tc) such that dis(p(r, t∗), p(s, t∗)) = 0, or
dis(p(r, t∗), p(s, t∗)) ≤ dis(p(r, tc), p(s, tc))− δ and {`(r, t∗), `(s, t∗)} = {C,D}
or {`(r, t∗), `(s, t∗)} = {D,A} .

I Lemma 33. If Algorithm 4 starts with {`(r, tc), `(s, tc)} = {α, β} such that α→ β, for any
schedule of two robots after tc, there is a cs-time t∗(≥ tc) such that {`(r, t∗), `(s, tc)} = {B,C}
and dis(p(r, t∗), p(s, t∗)) ≤ dis(p(r, tc), p(s, tc)).

Lemmas 25-33 follow the next theorem.

I Theorem 34. Rendezvous is solved by SS-Rendezvous-with-5-colors(LC -atomic ASYNC,
Non-Rigid, any). It is a self-stabilizing L-algorithm.

6 Concluding Remarks

We have shown that Rendezvous can be solved by L-algorithms in LC -atomic ASYNC
with the optimal number of colors of external-lights in the following cases. (1) Rigid and
non-quasi-self-stabilizing, (2) Non-Rigid and quasi-self-stabilizing, and (3) Non-Rigid and
self-stabilizing. We have also shown impossibility result that Rendezvous cannot be solved
by any L-algorithm with any number of colors of external-lights in LC -1-Bounded ASYNC.
Combining it with our algorithms in LC -atomic ASYNC, we have shown that LC -atomic
ASYNC is the maximal subclass in ASYNC Rendezvous can be solved by L-algorithms with
external-lights.

OPODIS 2018
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Abstract
Two anonymous robots placed at different positions on an infinite line need to rendezvous. Each
robot possesses a clock which it uses to time its movement. However, the robot’s individual
parameters in the form of their walking speed and time unit may or may not be the same for
both robots. We study the feasibility of rendezvous in different scenarios, in which some subsets
of these parameters are not the same. As the robots are anonymous, they execute the same
algorithm and when both parameters are identical the rendezvous is infeasible. We propose a
universal algorithm, such that the robots are assured of meeting in finite time, in any case when
at least one of the parameters is not equal for both robots.
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1 Introduction

Rendezvous is concerned with two robots arbitrarily placed in a known search region and
moving about until they meet each other. In this paper we will study symmetric rendezvous
in which the two robots are instructed to employ the same algorithm. In our setting the
robots’ environment is an infinite line on which each robot may move at a constant speed.
Each robot is equipped with its own clock which is used to time its movements and this
clock is not necessarily consistent between the robots.

The rendezvous problem was studied for numerous models and various types of environ-
ments in randomized as well as deterministic settings. The fundamental question related to
deterministic rendezvous concerns feasibility, or, more exactly, to identify the parameters of
the model for which the rendezvous is possible to achieve (in finite time). The main concern
related to the feasibility of rendezvous is that of symmetry breaking. Typical example of
symmetry breaking is the use of the robot label in which the robot is aware of its label and
may use its value as a parameter.

In the present paper the symmetry is broken yet another way. If the robots differ according
to their speeds or private time units, we have a universal algorithm which guarantees
rendezvous. Furthermore, and contrary to the case of labeled robots, knowledge as to which
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of the parameters is different is not necessary. Our robot is completely unaware of the
value(s) of its individual parameters and it does not use them in the computations needed to
run the algorithm.

When the rendezvous is feasible, research is concerned with the efficiency of the algorithm,
which is usually measured by the time required until the meeting of the two robots takes
place. The objective is to design algorithms that achieve good competitive ratios for the
time spent by the robots to rendezvous divided by the time spent by the robots if they were
running an optimal algorithm.

1.1 Model
We consider the symmetric rendezvous problem of two mobile robots R and R′ modeled
as points on the infinite line. The robots are initially located an unknown distance d from
each other and the rendezvous problem is solved if it ever happens that the robots occupy
the same position on the line at the same time (i.e. their trajectories intersect). The robots
cannot see each other and must employ the same algorithm in order to rendezvous. We
assume that robots can store and compute real numbers with arbitrary precision.

We consider a model in which each robot has its own constant speed and in which each is
equipped with a clock allowing them to measure their travel time. Each robot will consider
itself as the origin of its own coordinate system and it will use its clock to fix the distance
unit for this coordinate system as the product of its maximum speed and local time unit. We
explicitly consider the possibility that the robots have different speeds and / or clocks. We
study algorithms which progress in a synchronous and continuous time model (i.e. robots
are always active).

Without loss of generality, we will present our analysis from the viewpoint of the robot
R and thus assume that this robot has maximum unit speed, and that its clock is “correct”
in the sense that it agrees with some predefined global coordinate system. On the other
hand, we set the speed of R′ as v > 0, and set its time unit as τ > 0 with the result that one
time unit as measured by the clock of R′ will actually be τ time units as measured by the
clock of R. The robots will determine their progress/distance traveled in an algorithm as
the product of their travel time and maximum speed.

We specifically focus on three sub-models obtained from the preceding general model
by fixing one of v, τ , or the product vτ to one. In the equal time-unit model (or T -Model)
τ = 1, in the equal distance-unit model (or D-Model) vτ = 1, and in the equal speeds model
(or V -Model) v = 1. Since only one of v or τ is independent in these models we will assume
without loss of generality that 0 < v < 1 in the T - and D-Models and take 0 < τ < 1 in the
V -Model.

In analyzing the time complexity of our rendezvous algorithms we will employ an ad-
versarial argument in which we assume that an adversary is able to choose the values of d, v,
and/or τ in order to maximize the competitive ratio of a given algorithm (i.e. we employ
a worst-case analysis). Loosely defined, the competitive ratio of a rendezvous algorithm A
is the maximum ratio of the time it takes the robots to rendezvous using A divided by the
time it would take them given that they are running an optimal algorithm. We will give a
more precise definition of the competitive ratio at a later time.

To end this section we observe that to be most general one should consider the possibility
that the robots also differ in their orientations (i.e. sense of positive direction). However, in
all cases for rendezvous on the line studied here, having different orientations will only help
the robots in achieving their goal. As a result, all derived upper bounds will not be affected
by a difference in orientation and, since including this only serves to complicate notation, we
will not explicitly consider it in this work.
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1.2 Related Work
Search may be viewed as a game between two players having divergent goals, one trying to
hide for as long as possible and the other one attempting to minimize its search time. As
a contrast, in rendezvous the two involved players have converging goals in that they are
aiming to find one another as quickly as possible. The duality of the two problems has been
presented and investigated in the beautiful book [1].

The search problem for one robot on an infinite line was initiated independently by
Bellman [7] and Beck [5]. There have been numerous studies on search even for an environment
as simple as the infinite line, emphasizing various aspects arising from the capabilities of one
or more robots and the status of the search domain. These include randomized [23], group
search [10], linear terrains [14], faulty searchers [15], and turn costs [17]. The efficiency of
linear search is most often measured by the competitive ratio, which is the time spent by the
robot to complete its search divided by the time needed by an omniscient robot that knows
the location of the target. The competitive ratio of 9 is obtained by the cow-path algorithm
(cf. [7] and Beck [5]) and was first proved to be optimal for stochastic linear search in [6]
and deterministically in [2, 3].

The approach to solving the rendezvous problem is most often fundamentally different
from the techniques applied for search (although, somewhat surprisingly, this will not always
be the case in the present paper). The solution of the symmetric rendezvous problem requires
that the two robots are somehow equipped to break symmetry [25]. There has been extensive
research literature concerned with taking advantage of “innate” asymmetries of the studied
model. For example, [16, 26, 18, 19] focus on robots having distinct labels, [24, 27] on
robots equipped with identical tokens that can be placed on selected nodes, [12] on a robot’s
awareness of its GPS position in the environment.

The rendezvous (and its more general version of gathering) problem has been also studied
for robots of different speeds [8, 20], inconsistent compasses [11, 22] and chirality or sense
of direction [4, 9]. However, in the studies previously mentioned, these differences were
obstacles that needed to be circumvented by the suggested algorithms, rather than used for
the benefit of the proposed approach, which is the case of the present paper. To the best of
our knowledge, linear rendezvous for robots with asymmetric clocks has never been studied
before.

1.3 Results and outline
In this paper we study the rendezvous problem when the robots are equipped with asymmetric
clocks. In addition to exploring novel ways of defining rendezvous algorithms, we demonstrate
the feasibility of rendezvous and give two algorithms solving rendezvous in finite time provided
that at least one of a robot’s maximum speed or time unit differs from the other (see end
of Section 5). In addition, we study rendezvous in the three restricted models, T -model,
D-model, and V -model.

In Section 3 we analyze rendezvous in the T -Model and show that possessing equal
time-units reduces rendezvous into the problem of search, allowing one to optimally solve
the problem with a competitive ratio of 9. In Section 4 we analyze rendezvous under the
assumption that the robots have equal distance-units, i.e. vτ = 1. Here we get our first taste
of the difficulties involved with asymmetric clocks. We show that rendezvous is solved with a
competitive ratio of 105

11 ≈ 9.55. Furthermore, in the limit of large d, the competitive ratio
is 9.
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In Section 5 we analyze rendezvous when the robots’ speeds are equal and 0 < τ < 1. This
is the most difficult model to analyze and we will observe large differences in the algorithms
employed and resulting upper bounds, as compared to the T - and D-Models. We give two
algorithms that solve rendezvous, the first with a competitive ratio of O

(
τ log2(d)

log(τ)

)
and the

second with a slightly tunable competitive ratio of O
(
τ log1+c(d)
c log(τ)

)
, where c > 0 is a parameter

of the algorithm. We also offer arguments as to why it may not be possible to achieve a
constant competitive ratio in this model.

2 Preliminaries and Notation

In this section we introduce some preliminary ideas and notations used throughout our
analysis. We begin with some notation.

As usual, for any real number we use | · | to indicate its absolute value, log(·) to indicate
the base-2 logarithm, and ln(·) to indicate the natural logarithm with base e.

2.1 Time and position space
It will be useful to consider rendezvous algorithms as specifying a piecewise-continuous
trajectory in a two dimensional space where the horizontal axis represents a robot’s position
on the line and the vertical axis represents the flow of time. In this representation one can
view the effect of v, τ , and d as a scaling and translation of the coordinate axes of the local
xt-space of R′ as compared to R. As a result, if we represent the trajectory t(x) of R as a
(possibly multivalued) function of position on the line, then the actual trajectory of R′ will
be τ · t

(
x±d
vτ

)
. Equivalently, if the trajectory of R is represented as a function of time x(t),

then the trajectory of R′ is vτx
(
t
τ

)
± d. It would help to remember these transformations

as they will be used repeatedly throughout our analysis.

2.2 Rendezvous algorithms
In what follows assume that we are speaking about the robot R.

We consider algorithms whereby robots move between an infinite sequence of turning-
points Pk = (Xk, Tk) which specify the time and location on the line at which a robot
reverses its direction. On the round k of such an algorithm a robot will move from its initial
position to the turning-point Pk and then return to its initial position. The time necessary to
finish a round will be 2|Xk| and the time at which a robot begins the round k is 2

∑k−1
i=0 |Xi|.

The time Tk at which a robot is at the turning-point Pk can thus be written as

Tk = 2
k−1∑
i=0
|Xi|+ |Xk|. (1)

Since Tk is dependent on Xk we will often refer to Xk as the kth turning-point. We will also
adopt the convention that P−1 indicates a robot’s starting location and assume without loss
of generality that Xk > 0 when k is even (i.e. a robot initially moves to the right). Finally,
we will always explicitly state whether or not R′ begins on the left or right of R and assume
that d > 0.

Using the same terminology as [1] we call an infinite sequence of turning-points periodic
and monotonic if, for all k ≥ 0, it satisfies

X2k−1 < X2k+1 < · · · < 0 < · · · < X2k < X2k+2. (2)
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Algorithm 1 Rendezvous[Xk].
1: k = 0
2: repeat
3: Move to the position Xk and return to initial position. k = k + 1.
4: until Meeting occurs

As discussed4 in [1], an adversary may achieve an arbitrarily large competitive ratio if
an algorithm ever has a first turning-point. This results from the ability of an adversary to
choose d arbitrarily small with respect to this first turning-point and force R to initially
move away from the initial position of R′. As a result, one either needs to consider doubly
infinite sequences of turning-points or, more practically, make the additional assumption that
the robots possess knowledge of a lower bound on d (which might be indirectly due to the
robot having a finite size or visibility range). In this work we are primarily interested in large
values of d and / or v and τ close to one, we will take the latter approach and assume that
the adversary is restricted to values of d that are comparable in size to the first turning-point
of a rendezvous algorithm.

We observe that any periodic and monotonic algorithm will have turning-points that span
a cone-shaped curve T (x) in xt-space satisfying the identity Tk = T (Xk) (i.e. the turning
points lie on the boundary of a cone-shaped curve). This observation allows us to give an
alternate, and particularly useful representation of a rendezvous algorithm – we specify the
curve T (x) and have the robots infer where their turning-points are located. Using this
method a robot will be instructed to move in one direction until its trajectory in xt-space
intersects the curve T (x). It will then reverse its direction and move at full speed until its
trajectory again intersects T (x), and so on. The robots can compute their turning-points for
this type of algorithm using the relation Tk = T (Xk).

If an algorithm is given by its turning-points Xk then we say that Xk induces the curve
T (x). If an algorithm is specified by T (x) then we say that T (x) induces the turning-points
Xk. We call an algorithm symmetric if the curve T (x) is an even function of x. We will be
interested in algorithms that are symmetric, periodic, and monotonic and we call SPM the
class of all such algorithms. We will use the following formal definition, based on T (x), for
an algorithm to be in the class SPM :

I Definition 1. An algorithm with turning-points Xk is in the class SPM if the curve T (x)
which induces these turning-points satisfies:
1. T (x) is an even function, i.e. T (x) = T (−x).
2. There exists an X0 > 0 such that X0 = T (X0).
3. For all |x| > X0, T (x) > |x|.
4. T (x) is continuously differentiable for all x > X0.

One can easily confirm that if T (x) satisfies the above definition, the induced turning-
points will be periodic and monotonic (as per the condition (2)). In the sequel we will
construct algorithms which belong to the class SPM .

We formally define Algorithm 1 and Algorithm 2 which respectively take Xk and T (x)
as parameters. So far we have only discussed rendezvous algorithms from the perspective of
R. When referring to the turning-points etc. of R′ we will indicate this using a prime. So,

4 Technically this was discussed for the case of search but the argument also applies here.
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Algorithm 2 Rendezvous[T (x)].
1: Run Algorithm 1 with Xk defined by Tk = T (Xk).

for example, the turning-points of R′ will be P ′k = (X ′k, T ′k) and the curve induced by these
turning-points will be T ′(x). We note that X ′k = vτXk±d, T ′k = τTk, and T ′(x) = τT

(
x∓d
vτ

)
.

2.3 Robot trajectories and rendezvous points
Viewed as a whole, a rendezvous algorithm will specify a trajectory in xt-space composed
of a series of line segments connected at their endpoints. For an algorithm defined by the
sequence Xk we can explicitly write the equations of the lines traversed by R as

tk(x) = (−1)kx+ Tk − |Xk|. (3)

where tk(x) is the segment beginning at Pk−1 and ending at Pk. Likewise, the lines traversed
by R′ can be written as

t′k(x) = (−1)k x∓ d
v

+ τTk − τ |Xk|. (4)

We claim the following:

I Lemma 2. Assume that we have chosen |Xk| such that Algorithm 1 solves rendezvous.
Then, if the robots meet when R is approaching its kth turning-point and R′ is approaching
its jth turning-point then the time of rendezvous can be written as

tk,j = ±(−1)kd− (−1)k+jvτ(Tj − |Xj |) + Tk − |Xk|
1− (−1)k+jv

Proof. It is obvious that the possible points of rendezvous will occur at intersections of
pairs of lines tk(x) and t′j(x), k, j ≥ 0. The lemma follows from solving the equation
tk(x) = t′j(x). J

2.4 Competitive ratios
We are interested in algorithms that achieve small competitive ratios where we have defined the
competitive ratio of an algorithm A as the supremum ratio of the time it takes to rendezvous
using A to the time taken to rendezvous if the robots employ an optimal algorithm. We now
give more precise definitions.

I Definition 3. Let A be an algorithm solving rendezvous in the T - or D-Models and let the
time of rendezvous be T∗(v, d). Then the competitive ratio of A is CR = supv,d

(1−v)T∗(v,d)
d .

I Definition 4. Let A be an algorithm solving rendezvous in the V -Model and let the time
of rendezvous be T∗(τ, d). Then the competitive ratio of A is CR = supτ,d

(1−τ)T∗(τ,d)
d .

We will justify these definitions as we consider each model in turn.

2.5 Feasibility of rendezvous
Here we establish the feasibility of rendezvous. To this end consider an algorithm in the class
SPM with the curve T (x). We say that T (x) contains T ′(x) (resp. T ′(x) contains T (x))
if there exists an x0 such that for all x satisfying |x| > |x0| we have T (x) ≤ T ′(x) (resp.
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Figure 1 Illustration of the idea of containment. On the left T (x) contains T ′(x) and on the
right T ′(x) contains T (x). In both cases the containment point is indicated.

T (x) ≥ T ′(x)). If such an x0 exists we call x0 and t0 = T (x0) the containment point and
containment time of T (x) and T ′(x). Intuitively, x0 will be an intersection point of T (x)
and T ′(x). Figure 1 illustrates these definitions. We can now claim the following:

I Lemma 5. If either of T (x) or T ′(x) contains the other, then rendezvous is guaranteed.

Proof. Assume that T (x) contains T ′(x) and let t0 be the containment time. Let Xk be
the first turning-point that R reaches after the time t0 and assume that Xk > 0. In this
situation R will be on the right of R′ once it reaches Xk and will be on the left of R′ once it
reaches Xk+1. Likewise, if Xk < 0, then R will be on the left of R′ at Xk and on the right of
R′ at Xk+1. In either case the robots must rendezvous between the turning-points Xk and
Xk+1 of R. In a similar manner one can confirm that the robots will rendezvous between
the turning-points X ′j and X ′j+1 of R′ where Xj is the first turning-point R′ reaches after
the time t0. J

In both the T - and D-models there are a wide range of algorithms in the class SPM
with curves T (x) such that T (x) contains T ′(x). In particular, if v 6= 1 and T (x) is a linear
function, then T ′(x) = τT

(
x∓d
vτ

)
= 1

vT (x∓ d) and T (x) will clearly contain this. If v = 1
then there are still a variety of curves one can choose (for example, T (x) = x2) and thus
rendezvous is guaranteed in general.

3 T -Model

In this section we analyze rendezvous under the assumption that the robots have the same
time units, i.e. τ = 1. This assumption turns out to be rather powerful as it allows us to
reduce the problem into the problem of search for a stationary target.

I Theorem 6. Rendezvous in T -Model is equivalent to search for a stationary target at
distance d∗ = d

1−v .

Proof. Assume that we have a rendezvous algorithm that specifies the trajectory R(t) for
R. The robot R′ will then follow the actual trajectory R′(t) = vR(t)± d. Now consider a
coordinate system moving with the robot R′ and scaled by a factor of 1

1−v . In this coordinate
system R′ will appear to be stationary at the position ± d

1−v and R will appear to move
along the trajectory R∗(t) = R(t). We can thus view this problem as a search problem for a
target at distance d

1−v and any algorithm solving search will also solve rendezvous in the
same amount of time. J
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This clearly justifies our definition of the competitive ratio for this model. Furthermore, this
result allows us to draw on many of the results known about search and, in particular, allows
one to optimally solve the rendezvous problem.

I Theorem 7. Rendezvous in T -Model is optimally solved with a competitive ratio of 9 using
Algorithm 1 with |Xk| = 2k.

Proof. Observe that Algorithm 1 with |Xk| = 2k is the familiar cow-path algorithm which
optimally solves search for a target at distance d in time 9d. Since search is equivalent to
rendezvous in T -Model, this algorithm will optimally solve rendezvous as well. J

Note that the optimal solution in this case lies within the class SPM .

4 D-Model

In this section we analyze rendezvous under the assumption that the robots have the same
distant-units, i.e. vτ = 1. Unlike the T -model, we cannot transform the problem into the
search problem and thus we will approach our analysis slightly different. We begin with a
lemma that justifies our definition of the competitive ratio for this model.

I Theorem 8. Rendezvous in D-model takes time at least d
1−v .

Proof. Consider any rendezvous algorithm with turning points Xk. Assume that the robots
rendezvous between the (k − 1)st and kth turning points of R and the (j − 1)st and jth

turning points of R′. Furthermore, assume that R′ begins to the right of R. In this case R
must be moving to the right when the robots rendezvous and thus k will be even. Assume
that d and τ are chosen such that the robots rendezvous when j is also even. Then, by
Lemma 2, the robots will rendezvous at the time

tk,j = d− (Tj − |Xj |) + (Tk − |Xk|)
1− v =

d− 2
∑j−1
i=0 |Xi|+ 2

∑k−1
i=0 |Xi|

1− v .

Since v < 1 and vτ = 1 we have τ > 1 and thus R′ will always take longer to finish a round.
We must therefore have j ≤ k and the rendezvous time will be at least d

1−v . J

We note that the above lower bound is general and applies to any algorithm (not just those
in the class SPM). We now claim the following:

I Theorem 9. Rendezvous in D-Model is solved with a competitive ratio of 105
11 using

Algorithm 1 with |Xk| = 2k. Furthermore, in the limit of large d, the competitive ratio is 9.

Proof. Assume that R is approaching its kth turning-point and when R′ is approaching its
jth turning-point the robots rendezvous. Then, by Lemma 2, they will rendezvous at the
time

tk,j = ±(−1)kd− (−1)k+j(Tj − |Xj |) + Tk −Xk

1− (−1)k+jv
.

Observe that the robots will never rendezvous when R is traveling away from R′. Thus, if R′
begins to the right of R, k must be even. Likewise, if R′ begins to the left of R, k must be
odd. On the other hand, R′ may be moving towards or away from R when they rendezvous
and thus j may be even or odd. This gives two possible rendezvous times depending on
the parity of k + j. If k + j is even then tk,j = d+2k+1−2j+1

1−v and if k + j is odd then
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tk,j = d+2k+1+2j+1−4
1+v . The competitive ratios for these two cases are CR+ = 1 + 2

d (2k − 2j)
and CR− = 1−v

1+v
[
1 + 2

d (2k + 2j − 2)
]
where CR+ (resp. CR−) corresponds to k + j even

(resp. k + j odd).
We note that, in order for R and R′ to meet while traveling towards their kth and

jth turning-points, the time tk,j must satisfy Tk−1 ≤ tk,j ≤ Tk and T ′j−1 ≤ tk,j ≤ T ′j .
Furthermore, since R′ will take longer to finish a round, there can be at most one turning-
point of R′ between any two turning-points of R.

Now assume that k + j is even. In this case an adversary will get the best payoff if
they choose d as small as they can without causing the robots to rendezvous on an earlier
round. The smallest value of d is achieved if d and v can be chosen such that the (k − 2)nd
turning-point of R is arbitrarily close to the (j − 2)nd turning-point of R′ (see the left
side of Figure 2). We claim that the adversary can choose d and v to achieve this. To see
why assume that the adversary has chosen d and v such that Tk−2 = T ′j−2. In order to
rendezvous at the time tk,j then we need to satisfy T ′j−1 ≤ tk,j ≤ T ′j . Since the robots will
not rendezvous when R is moving away from R′, we can easily conclude that T ′j−1 ≤ tk,j .
Also, since tk,j must be smaller than Tk, we can also conclude that tk,j ≤ T ′j due to the
fact that T ′j−2 = Tk−2 and because R′ takes longer to finish a round. Thus, in the worst
case, we may take Xk−2 = X ′j−2 which, after simplification, tells us that we should take
d = 2k−2 − 2j−2. Using this result in the expression for CR+ yields a competitive ratio of 9.

Now assume that k + j is odd. In this case the competitive ratio will depend on both d
and v. However, we can similarly conclude that the adversary would like to minimize d and
thus they will try to choose d and v in order to make the (j − 1)st turning-point of R′ equal
(or arbitrarily close) to the (k − 2)nd turning-point of R. However, in this case, we claim
that the adversary cannot always do this. Indeed, if Tk−2 = T ′j−1 and Xk−2 = X ′j−1 then,
after some manipulation, we find that,

2j−1 = dv

1− v + 2
3 (5)

and

2k−2 = d

1− v + 2
3 . (6)

Since we are assuming that R′ meets R as it is traveling towards its jth turning-point we need
tk,j ≤ T ′j . Using (6), (5), and the expression for tk,j we find that d must satisfy d ≤ 2

3
( 1
v − 1

)
and thus j must satisfy 2j−1 = dv

1−v + 2
3 ≤

4
3 . Clearly, the only j that satisfies this is j = 1

and we can conclude that, in the case that k + j is odd, the worst-case situations occur
when j = 1 (and k is even). When j = 1, we have from (5) that d = 1−v

3v and from (6) that
2k = 4

3
( 1
v + 2

)
. Using these results in the expression for CR− gives us CR− = 15v+9

1+v and
this can be seen to increase with v. However, we cannot simply maximize this over v. If
we take k = 2 then we need v = 1 and d ≤ 0 and this is clearly not possible. We can thus
conclude that k ≥ 4. If k = 4 then one can confirm that v = 1

10 , and if k > 4 then v < 1
10 .

Thus, we find the maximum competitive ratio when v = 1
10 . Substituting this result in for

CR− we find that CR− ≤ 105
11 .

Finally, since we found that 2k = 4
3
( 1
v + 2

)
in the worst case, we can see that for very

large k we will have v very small. Since k will be large for large d and since CR− = 15v+9
1+v = 9

when v = 0, we can conclude that the competitive ratio approaches 9 as d gets large. J

We note that the upper-bound of Theorem 9 is tight for the algorithm considered since it
is easily confirmed that the competitive ratio is exactly 9.55 when v = 1

10 and d = 3.
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Figure 2 The two worst case possibilities in D-Model using Algorithm 1 with |Xk| = 2k. The
point of rendezvous is indicated in green and in both cases the robots rendezvous as R is approaching
its jkth turning-point and when R′ is approaching its jth turning-point. Left: The case that k + j is
even. Right: The case that k + j is odd. The absolute worst-case is depicted and occurs when d = 3
and v = 1

10 such that the competitive ratio is 9.55. Note that the scales of the depicted trajectories
are not the same for the two cases.

What is somewhat surprising about this result is that the competitive ratio is nearly
identical to that of the T -Model when d is large, and this is achieved using the same algorithm.
We suspect that this algorithm is optimal here since, in the limit that v goes to zero, this
model reduces to search for which a competitive ratio of 9 is optimal. We do not have
a formal proof of this, however, and thus it is still an open question whether or not this
algorithm is optimal.

5 V -Model

In this section we analyze upper bounds on rendezvous when the robots’ speeds are equal
and 0 < τ < 1. In both the T -Model and D-Model the robots employed Algorithm 1 with
a geometric sequence of turning-points (|Xk| = 2k) in order to rendezvous with a small
constant competitive ratio. We will see that the V -Model is rather more complicated, and,
in particular, a geometric sequence of turning-points will not work (see Lemma 18 at the end
of this section). We will therefore have to employ a different type of algorithm. We begin,
however, with a lower-bound to justify our definition of the competitive ratio:

I Theorem 10. Rendezvous in V -Model takes time at least d
1−τ .

Proof. For concreteness assume that R′ begins to the right of R. Then, the robots will
rendezvous as R is traveling to the right and R′ is traveling to the left. Consider the jth
turning-point of R′ and assume that j is even such that R′ moves left after this turning-point.
Let Xk be the first even turning-point of R′ after the jth turning-point of R′. Observe
that the robots will rendezvous before the (j + 1)st turning-point of R′ provided that
X ′j −Xk ≤ Tk − T ′j . Now assume that τ is close enough to one such that we may assume
that j = k. In this case we can rewrite the condition X ′j −Xk ≤ Tk − T ′j as Tk +Xk ≥ d

1−τ .
Since we are free to choose d and τ let us choose these parameters such that Tk +Xk =

d
1−τ − ε for an arbitrarily small ε > 0. Then the robots will not rendezvous until some
time after the (k + 2)nd turning-point of R′. Since Tk+2 = Tk+1 + |Xk+1| + |Xk+2| =
Tk + |Xk|+ 2|Xk+1|+ |Xk+2| = d

1−τ − ε+ 2|Xk+1|+ |Xk+2| we can conclude that the robots
will take at least d

1−τ time to rendezvous. J
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Note that this lower bound applies to any algorithm. Now for an upper bound. We claim
the following:

I Theorem 11. Rendezvous in V -Model is solved with a competitive ratio of 18 log2(d)τ
| log(τ)| +

O
(

log(d)τ
| log(τ)|

)
using Algorithm 1 with |Xk| = (k + 2)2k.

An overview of the proof of this theorem is as follows. We first show that Algorithm 1 with
|Xk| = (k + 2)2k does indeed solve rendezvous and we will do this by demonstrating that
T (x) contains T ′(x). Since T (x) contains T ′(x), the robots will be guaranteed to rendezvous
by the second turning-point reached by R after the containment time and we will use this
fact to bound the rendezvous time. Throughout the proof we will need to make use of the
Lambert-W function (or simply Lambert function) W (x) which is defined as the inverse
function of f(x) = xex (we consider the real valued branches only and thus x is restricted to
the range x ≥ −1

e ). Since W (x) is multivalued on the open interval (−e−1, 0) it is usual to
define W−1(x) as the branch which attains values ≤ −1 and reserve the use of W (x) to refer
to the principal branch which attains values ≥ −1. We will need the following properties of
W (x) which are found in, or trivially derived from, the results in [21] and [13]:

I Lemma 12. The two real valued branches W (x) and W−1(x) satisfy:

W (x) ≤ ln(x)− ln(ln(x)) + e

e− 1 ·
ln(ln(x))

ln(x) , x ≥ e (7)

W (x) ≥ ln(x)− ln(ln(x)) + ln(ln(x))
2 ln(x) , x ≥ e (8)

W−1(x) < ln(−x), (9)
d

dx

x

W (x) = 1
1 +W (x) , (10)

d2

dx2
x

W (x) < 0. (11)

Before we can demonstrate that the algorithm solves rendezvous we need to first determine
the curve T (x) induced by the turning-points |Xk| = (k + 2)2k.

I Lemma 13. Let T (x) be the curve induced by Algorithm 1 with |Xk| = (k + 2)2k. Then

T (x) = 3|x| − 4 ln(2)|x|
W (4 ln(2)|x|) .

Proof. One can observe that the turning-points |Xk| = (k + 2)2k form an arithmetico-
geometric sequence and its sum has the closed form expression

∑k−1
i=0 |Xi| = k2k. We therefore

have Tk = 2
∑k−1
i=0 |Xi|+ |Xk| = (3k+ 2)2k. We may rewrite Tk as Tk = 3(k+ 2)2k − 4 · 2k =

3|Xk| − 4|Xk|
k+2 .

To express Tk fully in terms of |Xk| we need to invert |Xk| = (k + 2)2k. We can do this
using the Lambert function. First rewrite the equation |Xk| = (k + 2)2k as 4 ln(2)|Xk| =
ln(2)(k + 2)eln(2)(k+2). In this form we can directly apply the definition of the Lambert
function to get the solution ln(2)(k + 2) = W (4 ln(2)|Xk|). We can therefore express Tk as
Tk = 3|Xk| − 4 ln(2)|Xk|

W (4 ln(2)|Xk|) . Since T (Xk) = Tk the lemma follows. J

Now that we have determined the curve T (x) induced by the turning points |Xk| = (k+ 2)2k,
we can show that T (x) will contain T ′(x) and thus the algorithm will solve rendezvous.

I Lemma 14. Consider Algorithm 1 with |Xk| = (k + 2)2k. Then T (x) contains T ′(x).
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Proof. We need to show that, for all d and τ < 1, there exists an x0 such that for all |x| > x0
we have T ′(x) > T (x). To do this we will assume that d = 0 and show that the difference
D(x) = T ′(x)− T (x) grows without bound for all τ satisfying 0 < τ < 1. If this is the case,
then, no matter the value of d, there will eventually be an x0 such that for all x > x0 we
have T ′(x) > T (x).

To this end consider the rate of change of T (x) for x > 0. Using (10) we find that
dT (x)
dx = 3− 4 ln(2)

1+W (4 ln(2)x) . Since W (0) = 0 and W (x) is an increasing function, T (x) is also
increasing for all x > 0. Furthermore, if d = 0 we have dT ′(x)

dx = 3− 4 ln(2)
1+W (4 ln(2) xτ ) and this is

clearly larger than dT (x)
dx for 0 < τ < 1. The rate of change of D(x) must therefore always

be positive and thus D(x) does indeed grow without bound. J

We need one more simple lemma before tackling the proof of Theorem 11.

I Lemma 15. Consider Algorithm 1 with |Xk| = (k + 2)2k and let T (x), x0, and t0 be the
induced curve, and containment time and position. Then t0 < 3x0 and τT (x−d) > T (x)−3d.

Proof. The first part of the lemma follows easily from the fact that dT (x)
dx < 3. The second

part also follows easily from the facts that dT (x)
dx < 3 and T (x) is a convex function (see

(11)). As a result, T (x) always lies below any secant line, and every secant line will have a
slope less than three. J

Proof. (Theorem 11) We would like to bound the rendezvous time and to do this we will first
bound the containment time. Since the robots must rendezvous by the second turning-point
of R after the containment time, and since |Xk+2|

|Xk| ≤ 8, the rendezvous time will be bounded
by eight times the containment time. By Lemma 15 the containment time is itself bounded
by three times the containment position and thus we will actually determine a bound on
the containment position. Thus, if T∗, t0, and x0 are respectively the rendezvous time,
containment time, and containment position, then T∗ < 8t0 < 24|x0|. We will assume that
x0 > 0 and note that, since T (x) contains T ′(x), we must have d > 0 in order for x0 > 0.

To begin, we note that x0 is the solution to the equation T ′(x)− T (x) = 0, and, since
this difference is increasing, any x satisfying T ′(x)− T (x) > 0 will suffice for a bound. In
particular, since T ′(x) = τT (x−dτ ) > τT (xτ )−3d, we have T ′(x)−T (x) > τT (xτ )−T (x)−3d
and we will thus bound x0 by an x satisfying τT (xτ )− T (x) > 3d.

To simplify notation we introduce the variable y = 4 ln(2)x and set f(y) = 1
W (y) −

1
W ( yτ )

and D(y) = y · f(y). We therefore wish to find a y satisfying D(y) = y · f(y) > 3d. By
(8) and (7) we can write f(y) ≥ 1

ln(y)−ln(ln(y))+ e
e−1

ln(ln(y))
ln(y)

− 1
ln( yτ )−ln(ln( yτ ))+

ln(ln( y
τ

))

2 ln( y
τ

)

. Now set

z = ln(y). The right hand side of the above inequality then becomes

h(z) = 1
z − ln(z) + e

e−1
ln(z)
z

− 1
z − ln(τ)− ln(z − ln(τ)) + ln(z−ln(τ))

2(z−ln(τ))

.

One can confirm that h(z) admits a generalized Puiseaux series in the limit z →∞. Keeping
only the leading term of this series we find that h(z) = ln( 1

τ )
z2 +O

(
ln2(z)
z3

)
. We can therefore

conclude that f(y) > ln( 1
τ )

ln2(y) , D(y) > ln(τ)y
ln2(y) , and we now wish to find a y satisfying ln(τ)y

ln2(y) ≥ 3d.
Let y+ be the solution to ln(τ)y

ln2(y) = 3d. We can use the Lambert W function to solve this

equation. We find that y+ = 12d
ln( 1

τ )W
2
−1

(
−
√

ln( 1
τ )

12d

)
. Since the rendezvous time satisfies
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T∗ < 8t0 < 24x0 <
6y+
ln(2) , we find that T∗ < 72d

ln(2) ln( 1
τ )W

2
−1

(
−
√

ln( 1
τ )

12d

)
. To express this in

terms of more familiar functions we can use (9) to write

T∗ <
72d

ln(2) ln( 1
τ )

ln2

√ ln( 1
τ )

12d

 = 18d ln2(d)
ln(2) ln( 1

τ )
+O

(
d ln(d)
ln( 1

τ )

)

Expressing T∗ with base-2 logarithms and dividing by d
1−τ gives the desired bound on the

competitive ratio. J

If we abandon the use of algorithms with turning-points that are easily defined, then we can
get an algorithm with a competitive ratio which is slightly “tunable”. We claim the following:

I Theorem 16. Rendezvous in V -Model is solved with a competitive ratio of 72 lnc(2)d log(d)1+c

c| log( 1
τ )|

+O
(
d logc(d)
c log( 1

τ )

)
using Algorithm 2 with T (x) = 3|x| − |x|

lnc(|x|) where c > 0 is a parameter of
the algorithm.

As the proof of Theorem 16 is essentially identical to that for Theorem 11 we do not provide
it here.

There are a couple of things to note about this upper bound. First, although we can
reduce the exponent of the log(d) term by making c small, we cannot make it arbitrarily
small without suffering a large multiplicative constant due to the 1

c term in the competitive
ratio. Thus, the algorithm of Theorem 16 will be most useful if one knows a lower bound
on d as this will allow one to compare the bounds of Theorem 11 and 16 and choose an
appropriate c. Without this knowledge it may be better to just stick with the algorithm of
Theorem 11 as it has the benefit of having simple turning-points.

The upper-bounds of Theorem 11 and 16 are clearly much worse than the competitive
ratios found for both the T - and D-Models. In those cases we had a constant competitive
ratio and in these cases the competitive ratio is unbounded. One might then expect that
we can do better. This, however, does not seem to be the case. We provide two arguments
for this. First off, if one tries to use an algorithm in which the leading term of T (x) is ω (x)
then we arrive to a similar result – the competitive ratio is unbounded.

I Lemma 17. If the leading term of T (x) is ω (x) then the competitive ratio is ω (1).

Proof. We observe that before the robots can rendezvous, there must be, at the very least,
an intersection point (x∗, t∗) of the curves T (x) and T ′(x) satisfying 0 < |x∗| < d. We will
show that we can always choose d and τ to make the time t∗ = ω

(
d

1−τ

)
if the leading term

of T (x) is ω (x). For concreteness, assume that R′ begins to the right of R such that x∗ is
the intersection point of the right arm of T (x) and the left arm of T ′(x). Furthermore, since
T (x) = ω (x), we will express the leading order term of T (x) as x · f(x) for some positive
function f(x) = ω (1).

We claim that x∗ is bigger than d
2 . Indeed, the right arm of T (x) is bounded from below

by x and the left arm of T ′(x) is bounded from below by d− x. Since x = d− x when x = d
2 ,

we must have x∗ > d
2 . However, if x∗ > d

2 then t∗ > T (d2 ) > d
2f(d2 ). For any fixed τ 6= 1

we can take d large enough that d
2f(d2 ) > d

1−τ g(
d

1−τ ) for an appropriately chosen function
g(x) = ω (1). Thus, t∗ = ω

(
d

1−τ

)
and, since the rendezvous time is larger than t∗, the

lemma follows. J
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Thus, the two algorithms analyzed in this section do seem to be from the “right” class of
algorithms one should consider if one is to hope for a constant competitive ratio. The next
lemma – which demonstrates why a geometric sequence of turning-points cannot be used –
also supports this conclusion:

I Lemma 18. If T (x) has the form T (x) = ax+G(x) with a > 1 and |G(x)| = O(1) then
there are choices of τ 6= 1 such that the robots will never rendezvous.

Proof. Let us first determine what the turning-points of T (x) look like. Since the turning-
points satisfy the relation T (Xk) = Tk and Tk = 2

∑k−1
i=0 |Xi|+ |Xk| we have a|Xk|+G(Xk) =

2
∑k−1
i=0 |Xi|+ |Xk| and this simplifies to |Xk| = 2

a−1
∑k−1
i=0 |Xi| −G(Xk). Set Gk = G(Xk)

and observe that

|Xk+1| =
2

a− 1

k∑
i=0
|Xi| −Gk+1 = 2

a− 1 |Xk|+
(

2
a− 1

k−1∑
i=0
|Xi| −Gk

)
+Gk −Gk+1

= a+ 1
a− 1 |Xk|+Gk −Gk+1

and we can therefore see that Xk+1 is nearly a geometric sequence with common ratio a+1
a−1 .

Let b = a+1
a−1 , and assume that τ = b−2 and that R′ begins to the right of R. In this case

we can write

|Xk+2| = b|Xk+1|+Gk+1 −Gk+2 = b(b|Xk|+Gk −Gk+1) +Gk+1 −Gk+2

= b2|Xk|+ bGk − (b− 1)Gk+1 −Gk+2.

Combining this with the fact that |X ′k+2| = τ |Xk+2|+ d gives us

|X ′k+2| − |Xk| = d+ 1
b2 [bGk − (b− 1)Gk+1 −Gk+2] = d+ ∆k.

implying that the robot R′ will be a distance d+ ∆k from its (k + 2)nd turning-point when
R reaches its kth turning-point. Clearly, in order to rendezvous, d + ∆k must eventually
decrease to zero. However, since G(x) = O (1), we can always take d sufficiently large such
that this difference is bounded from below by a positive constant. Thus, with an appropriate
choice of τ and d, the robots will never rendezvous. J

We are thus left with a rather small class of functions that T (x) can belong to – if T (x) = ω (x)
then the algorithm will take too much time, and if T (x) = a · x ± O (1) then rendezvous
cannot be solved. Thus, the only possibility left is if T (x) = a · x+ f(x) with |f(x)| = o (x)
and |f(x)| = ω (1). The two algorithms analyzed in this section each used curves of this
form.

It is interesting to note that simulations of the two algorithms in this section show that
there are choices of d and τ to (nearly) match the upper-bounds derived here. Even more
interesting is that, in order to achieve these worst-case situations, one chooses d and τ precisely
so that the two robots have turning-points that are arbitrarily close to the containment point
of the curves T (x) and T ′(x). This reflects a similar argument we made when we derived
an upper-bound on rendezvous in the D-Model. In that case it also turned out that there
were choices of d and τ in order to achieve the upper bound. If one could prove that it is
always possible to choose d and τ such that the robots do have turning-points arbitrarily
close to the containment point for all algorithms with T (x) = a · x + f(x), |f(x)| = o (x),
and |f(x)| = ω (1) then a lower-bound that grows with d would easily follow. This is easier
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said than done, however, and we leave it as an open problem whether or not one can achieve
a constant competitive ratio in the V -Model.

Finally, we note that both algorithms provided in this section are universal in the sense
that they will also solve the problem if both v and τ are different than one (it is trivial to
see that one of T (x) or T ′(x) will contain the other if v 6= 1). Since a robot does not need to
know the values of its parameters in order to employ these algorithms we can conclude that
it is sufficient to rendezvous if at least one of v or τ is different than one.

I Theorem 19. Both of Algorithm 1 with Xk = (k + 2)2k and Algorithm 2 with T (x) =
3|x| − |x|

lnc(|x|) solve rendezvous in general if at least one of v or τ is different than one.

The time complexity of this more general model does not turn out to be all that interesting
to study since, in the worst cases, an adversary chooses v = 1. Thus, the general model
reduces to the V -Model and all of the results derived here still apply.

6 Discussion and conclusion

The focus of our paper was on symmetric rendezvous on an infinite line for two robots
endowed with asymmetric clocks. After introducing the new concept of asymmetric clocks,
we gave a universal algorithm which ensures feasibility of rendezvous if at least one of the
robots’ maximal speeds or time units differ. We analyzed the impact of equal time-unit,
distance-unit, and equal speeds of the robots on the competitive ratio of the cost of rendezvous.
The problem considered not only provides a surprising twist to the well-known rendezvous
problem on an infinite line, it also creates interesting avenues for future research. These
may include improving the algorithms, tightening bounds, employing robots that may have
alternative capabilities (visibility and variable speed), as well as extensions to gathering for
multiple robots.
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Abstract
For many distributed algorithms, neighborhood size is an important parameter. In radio networks,
however, obtaining this information can be difficult due to ad hoc deployments and communi-
cation that occurs on a collision-prone shared channel. This paper conducts a comprehensive
survey of the approximate neighbor counting problem, which requires nodes to obtain a constant
factor approximation of the size of their network neighborhood. We produce new lower and upper
bounds for three main variations of this problem in the radio network model: (a) the network
is single-hop and every node must obtain an estimate of its neighborhood size; (b) the network
is multi-hop and only a designated node must obtain an estimate of its neighborhood size; and
(c) the network is multi-hop and every node must obtain an estimate of its neighborhood size.
In studying these problem variations, we consider solutions with and without collision detection,
and with both constant and high success probability. Some of our results are extensions of ex-
isting strategies, while others require technical innovations. We argue this collection of results
provides insight into the nature of this well-motivated problem (including how it differs from
related symmetry breaking tasks in radio networks), and provides a useful toolbox for algorithm
designers tackling higher level problems that might benefit from neighborhood size estimates.
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1 Introduction

Many distributed algorithms assume nodes have advance knowledge of their neighborhood,
allowing them to take steps that depend, for example, on gathering information from every
neighbor (e.g., [16]), or flipping a coin weighted with their neighborhood size (e.g., [1]).

In standard wired network models, obtaining this neighbor information is often trivial (e.g.,
as in the LOCAL or CONGEST models). In radio networks, by contrast, this information
might be harder to obtain. Specifically, because nodes in these networks are often deployed
in an ad hoc manner, and subsequently communicate only on a contended shared channel, we
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cannot expect that they possess advance knowledge of their neighborhood. In fact, learning
this information might require non-trivial feats of contention management.

Some distributed algorithms for radio networks depend on nodes possessing an estimate of
their neighborhood size (e.g., [9, 10]), while other algorithms could be significantly simplified
if this information was available (e.g., [22, 18, 13]). Though it is generally assumed that
calculating these size estimates should not take too long in most settings, this problem has
escaped the more systematic scrutiny applied to related tasks like contention resolution.

In this paper, we work toward filling in more of this knowledge gap. We conduct a
comprehensive survey of lower and upper bounds for the approximate neighbor counting
problem in the radio network model under different combinations of common assumptions
for this setting. Some of our results require only extensions of existing strategies, while many
others require non-trivial technical innovations.

Combined, this collection of results provides two important contributions to the study of
distributed algorithms for radio networks. First, it supports a deeper understanding of the
well-motivated neighbor counting problem, highlighting both its similarities and differences
to related low-level radio network tasks. Second, the collection acts as a useful toolbox for
algorithm designers tackling higher level problems.

Result summary. The radio network model we study describes the underlying network
topology with an undirected connected graph G = (V,E), with the n = |V | vertices
corresponding to the radio devices (usually called nodes in this paper), and the edges in E
describing which node pairs are within communication range. For every node u ∈ V , nu
describes the number of neighbors of u in G. We sometimes call this parameter the neighbor
count of u. In single-hop networks (i.e., G is a clique), all nodes have the same neighbor
count, while in multi-hop networks these counts can differ.

The approximate neighbor counting problem requires nodes to calculate constant factor
estimates of their neighbor counts. We study the variant where every node must obtain
this estimate (e.g., during network initialization), and the variant where only a designated
node must obtain this estimate (e.g., when neighborhood of a node changes). We study
these variants in single-hop and multi-hop networks, and consider solutions with and without
collision detection. We study both lower and upper bounds for randomized solutions. When
relevant, we look at both results that hold with constant and high probability.

Our results are summarized in Table 1. Notice that we do not study both designated
and all nodes counting in single-hop networks, as in this setting all nodes have the same
neighbor count, making these two cases essentially identical (e.g., a designated node in
a single-hop network can simply announce its count, transforming the solution to an all
nodes counting solution). We also do not study constant probability solutions for all nodes
counting in multi-hop networks. This follows because in the multi-hop setting the success
probability applies to each individual node. A constant success probability, therefore, implies
that a constant fraction of the nodes are expected to generate inaccurate neighbor counts – a
result that is too weak in most scenarios. In the single-hop setting, by contrast, the success
probability refers to the probability that all nodes generate good counts.

Also notice that two upper bounds are given for multi-hop all nodes counting without
collision detection: O(lg2 nu) and O(lg3N). The first bound describes an algorithm that
generates good neighbor counts but never terminates (specifically, each node must keep
participating to help neighbors that are still counting). The second bound does terminate,
but requires an upper bound N on the maximum possible network size. This is the only
algorithm we study that requires this information to work properly.
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Table 1 Summary of all approximate neighbor counting results proved in this paper. In the
above table, “CD” and “no-CD” denote “with collision detection” and “without collision detection”
respectively, while “high probability” is expressed with respect to the parameter in the bound. The
N and N∆ terms describe upper bounds on the maximum neighbor count in single-hop and multi-hop
networks, respectively. Our lower bounds are expressed with respect to these maximum sizes, while
our upper bounds are expressed with respect to the actual network sizes, with the exception of
the O(lg3 N) bound for multi-hop all nodes counting without collision detection. This is the only
algorithm we study that requires knowledge of network statistics to work properly.

with constant probability with high probability

no-CD CD no-CD CD

all nodes
in single-hop

lower bound Ω(lg N) Ω(lg lg N) Ω(lg2 N) Ω(lg N)

upper bound O(lg n) O(lg lg n) O(lg2 n) O(lg n)

designated node
in multi-hop

lower bound Ω(lg N∆) Ω(lg lg N∆) Ω(lg2 N∆) Ω(lg N∆)

upper bound O(lg nw) O(lg lg nw) O(lg2 nw) O(lg nw)

all nodes
in multi-hop

lower bound – – Ω(lg2 N∆) Ω(lg N∆)

upper bound – – O(lg2 nu),
O(lg3 N) O(lg2 nu)

Discussion. For all but one cases that we have lower bounds, they match our upper bounds.
For the single-hop results, these bounds also match the relevant bounds from the related
single-hop contention resolution problem (c.f., [19]). In fact, most of the lower bounds in
this single-hop setting follow by reduction from contention resolution. That is, we show
that if you can solve approximate neighbor counting fast, then you can also solve contention
resolution fast – allowing existing lower bounds from the latter to carry over to the former.

The single-hop upper bounds, however, required more than the simple application of
existing contention resolution strategies. In contention resolution, for example, if you get
lucky with your coin flips, and a node broadcasts alone earlier than expected, this is good
news – you have solved the problem even faster! In neighbor counting, however, this “luck”
might lead you to output an inaccurate size estimate. The analysis used for neighbor counting
must bound the probabilities of these precocious symmetry breaking events.

Another complexity of neighbor counting (in single-hop networks) as compared to con-
tention resolution is that all nodes must learn an estimate. This requires extra mechanisms
to ensure that once some nodes learn a good estimate, this information is spread to all others.
The most difficult single-hop case is the combination of high probability correctness and
collision detection. To achieve an accurate estimate in an optimal O(lgn) rounds required
the adaptation of a technique based on one-dimensional random walks [18, 3].

Obtaining lower bounds for the multi-hop designated node setting required technical
innovations. In the single-hop setting, our lower bounds used reduction arguments that
applied the contention resolution bounds from [19] as a black box. In the multi-hop designated
node setting, by contrast, we were forced to open the black boxes and modify them to handle
the issues specific to multi-hop topologies. For the particular case of collision detection and
high probability, substantial new arguments were needed to transform the bound.

In the multi-hop all nodes setting, obtaining upper bounds also required techniques
beyond standard symmetry breaking strategies, as each node may simultaneously participate
in multiple estimation processes. Our collision detector algorithm for this case has nodes use
detectable noise to notify neighbors that they are still counting. When collision detection
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is not available, we consider two different approaches and hence present two algorithms.
The first one returns an estimate for nu in O(lg2 nu) rounds, which is correct with high
probability in nu. The second algorithm uses a “double counting” trick and takes longer
time, but the returned estimate is correct with high probability in N .

Last but not least, we would like to clarify a point about our lower bound statements.
As shown in Table 1, our lower bounds are expressed with respect to the maximum possible
neighbor counts (e.g., N and N∆), whereas, to obtain the strongest possible results, our upper
bounds are expressed with respect to the actual neighbor counts in the analyzed execution
(e.g., n and nu). The right way to interpret our lower bounds is that they claim in a setting
where the number of participants comes from a set of N (or N∆) possible participants, there
exists a subset of these participants for which the stated bound holds.

Our lower bound technique does not directly tell us anything about the size of the
participant set that induces the slow performance. Given our matching upper bounds,
however, we can conclude that the worst case participant sets for these algorithms must have
a size close to the maximum bounds. Consider, for example, single-hop counting with no
collision detection. The lower bound says that for each algorithm there exists a collection of
no more than N participants that requires Ω(lgN) rounds to generate a good count with
constant probability. Our upper bound, on the other hand, guarantees a good count in
O(lgn) rounds with constant probability, where n is the size of the participant set. It follows
that when the lower bound is applied to our algorithm, the bad participant set must have a
size that is polynomial in N (i.e., n = Θ(Nγ), for some constant 0 < γ ≤ 1), as otherwise
the existence of both bounds is a logical contradiction.

2 Related Work

Algorithms to reduce contention and enable communication on shared channels date back
to the early days of networking (c.f., [11, 6]), and remain an active area of study today. In
the study of distributed algorithms for shared radio channels, many strategies explicitly
execute approximate neighbor counting as a subroutine. For example, in their study of
energy-efficient initialization with collision detection, Bordim et al. [2] propose a protocol
that returns an estimate of n in the range [n/(16 lgn), 2n/ lgn] within O(lg2 n) time, while
requiring each node to be awake for at most O(lgn) rounds. Similarly, Gilbert et al. [10] use
approximate neighbor counting as part of a neighbor discovery protocol in cognitive radio
networks. It is also common for algorithms in this setting to simply assume these estimates
are provided in advance. E.g., the often-used decay strategy introduced by Bar-Yehuda et
al. [1], requires a bound on local neighborhood size to limit the estimates it tests.

As mentioned throughout this paper, neighbor counting is often closely related to con-
tention resolution, which requires a single node to broadcast alone on the channel. Some
common contention resolution strategies implicitly provide this approximation as a side-effect
of their operation (e.g., [22, 18, 13]). At the same time, under some assumptions, a good
estimate simplifies the problem of contention resolution. As we detail throughout this paper,
however, this relationship is not exact. Lower bounds for neighbor counting often require
more intricate arguments than contention resolution, and in some cases, contention resolution
algorithms require nontrivial extra analysis and mechanisms to provide counts. Teasing apart
this intertwined relationship is one of the main contributions of this paper.

Others have directly studied approximate neighbor counting in radio networks. Jurdzinski
et al. [12] develop an algorithm that provides a constant factor approximation of n within
O(lg2+δ n) time without collision detection for arbitrary constant δ > 0. Their algorithm
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guarantees that no node participates in more than O((lg lgn)δ) rounds. (Our relevant
algorithm only needs O(lg2 n) rounds, but consumes more energy.) Caragiannis et al. [4]
devise two constant-factor approximation algorithms: the first one requires collision detection
and takes O((lgn) · (lg lgn)) time, while the second one works without collision detection
and takes O(lg2 n) time. (Our relevant algorithms only need O(lgn) rounds with collision
detection, and perform as well as theirs without collision detection.) In [14, 15], the authors
discuss how to approximate network size when adversaries are present.

Approximate neighbor counting has also been studied in the beeping model [7], which is
similar to, but somewhat weaker than, the standard radio network model. In this setting,
Chen et al. [5] conduct an excellent mini survey on recent works in RFID counting (e.g.,
[24, 21, 23, 5]). They conclude that a two-phase approach is the key to achieve efficient and
accurate RFID counting. They also prove several lower bounds, one of which shows Ω(lg lgn)
rounds are needed to obtain a constant factor approximation with constant probability. More
recently, Brandes et al. [3] study how to efficiently estimate the size of a single-hop beeping
network: they provide both lower and upper bounds for a parameterized approximation
accuracy. Notice, the main objective of [5] and [3] differs from ours not just in the model,
but in that they seek a (1 + ε) approximation of n for any ε > 0 (ε can be non-constant).
Nonetheless, they both use constant factor approximation as a key subroutine.

3 Model and Problem

We consider a synchronous radio network. We model the topology of this network with a
connected undirected graph G = (V,E), with the n = |V | vertices corresponding to the radio
devices (usually called nodes in this paper), and the edges in E describing which node pairs
are within communication range.

For each node u ∈ V , we use Γu to denote the set of neighbors of u, and use nu = |Γu|
to denote the number of neighbors of u. Let n∆ = maxu∈V {nu}. Our algorithms assume
nu ≥ 1. That is, we do not confront the possibility of a node isolated from the rest of a
multi-hop network, or a single-hop network consisting of only a single node (we see the
so-called loneliness detection problem as an interesting but somewhat orthogonal challenge;
e.g., [8]). For the ease of presentation, we assume nu and n are always a power of two. This
assumption does not affect the correctness or asymptotic time complexities of our results. We
define N and N∆ to be upper bounds on the maximum possible size of n and n∆, respectively.
To obtain the strongest and most general possible results, our algorithms are not provided
with knowledge of N and N∆, with the exception of an O(lg3N) time algorithm for multi-hop
all nodes counting without collision detection.

We divide time into discrete and synchronous slots that we also sometimes call rounds.
We assume all nodes start execution during the same slot. (The definition of “neighbor
counting” becomes complicated once nodes can activate in different time slots.) These
assumptions imply nodes have access to a global clock. We assume each node is equipped
with a half-duplex radio transceiver. That is, in each time slot, each node can choose to
broadcast or listen, but cannot do both. If a node chooses to broadcast, then it gets no
feedback from the communication channel. If a node chooses to listen and no neighbors of it
broadcasts, then the node hears nothing (i.e., silence). If a node chooses to listen and exactly
one of its neighbors broadcasts, then the node receives the message from that neighbor.
Finally, if a node chooses to listen and at least two of its neighbors broadcast, then the
result depends on the availability of a collision detection mechanism: if collision detection is
available, then the listening node hears noise; otherwise, the listening node hears nothing.
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As a result, without collision detection, a listening node cannot tell whether there are no
neighbors broadcasting or there are multiple neighbors broadcasting.

In this paper, we are interested in the approximate neighbor counting problem. This
problem requires selected node(s) to obtain a constant factor approximation of their neigh-
borhood size(s). In more detail, let constant c̃ ≥ 1 be the fixed approximation threshold for
this problem. Each node u that produces an estimate n̂u must satisfy nu ≤ n̂u ≤ c̃ · nu. We
consider three variations of this problem that differ with respect to the allowable network
topologies and requirements on which nodes produce an estimate. The first variant assumes
G is single-hop and all nodes must produce an identical estimate. The second variant assumes
G is multi-hop, but only a single designated node w must produce an estimate. The third
variant is the same as the second, except that now every node must produce an estimate.
We study randomized algorithms that are proved to be correct with a given probability p. In
the single-hop variant, p describes the probability of the event in which all nodes generate a
single good approximation. In the multi-hop variants, by contrast, p is the probability that
an individual counting node generates a good approximation.

Throughout this paper, we cite the related contention resolution problem. In single-hop
networks, the contention resolution problem is solved once some node broadcasts alone. Later
in the paper, we consider a version of multi-hop contention resolution in which a single
designated node must receive a message from a neighbor to solve the problem.

Finally, in the following, we say an event occurs with high probability in parameter k (or
“w.h.p. in k”) if it occurs with probability at least 1− 1/kγ , for some constant γ ≥ 1.

4 Lower Bounds

In this section, we presents our lower bounds for the approximate neighbor counting problem.
We begin, in Section 4.1 by looking at lower bounds that can be proved by reducing from the
contention resolution problem. That is, in that subsection, we prove lower bounds by arguing
that solving neighbor counting fast implies an efficient algorithm to contention resolution,
allowing the relevant contention resolution lower bounds to apply.

We employ this approach to derive bounds for constant probability and high probability
counting with no collision detection in both single-hop and designated node multi-hop settings.
We also apply this approach to derive bounds for constant probability counting with collision
detection in these settings. We cannot, however, apply this approach to high probability
counting with collision detection, as the reduction itself is too slow compared to the desired
bounds. We note that for the single-hop arguments, we leverage existing contention resolution
bounds from [19]. For the multi-hop arguments, however, we must first generalize the results
from [19] to hold for the considered network topology.

In Section 4.2, we look at lower bounds for high probability approximate neighbor counting
with collision detection in both single-hop and designated node multi-hop settings. Unlike in
Section 4.1, we cannot deploy a reduction-based argument. We instead prove a new lower
bound that directly argues a sufficiently accurate estimate requires the stated rounds.

Finally, in Section 4.3 we look at lower bounds for the remaining case of multi-hop all
nodes counting. We establish these bounds by reduction from designated node multi-hop
bounds, as solving all nodes counting trivially also solves designated node counting.

4.1 Lower Bounds via Reduction from Contention Resolution
We begin with our lower bound arguments that rely on reductions from contention resolution.
For the single-hop scenario, we can reduce from single-hop contention resolution and apply
existing lower bounds from [19]. (See full version of the paper [20] for details on contention
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resolution lower bounds in single-hop networks.) For multi-hop designated node counting,
however, we must first prove new contention resolution lower bounds.

In particular, consider the definition of multi-hop contention resolution in which there is
a well-defined designated node w, and the goal is for exactly one of w’s neighbors – which
is a size nw subset drawn from a size N∆ universe – to broadcast alone in some time slot.
At first glance, this problem might seem easier than single-hop contention resolution as we
are provided with a designated node w that could coordinate its neighbors in their quest to
break symmetry among themselves. We prove, however, that this is not the case: the lower
bounds are the same as their single-hop counterparts. In more detail, we prove the following
two lemmas by adapting the techniques from [19] to this new set of assumptions (see full
version of the paper [20] for the omitted proofs of this section):

I Lemma 1. Let A be an algorithm that solves contention resolution in g(N∆) time slots
with probability p in multi-hop networks with no collision detection. It follows that: (a) if p is
some constant, then g(N∆) ∈ Ω(lgN∆); and (b) if p ≥ 1− 1/N∆, then g(N∆) ∈ Ω(lg2N∆).

I Lemma 2. Let A be an algorithm that solves contention resolution in g(N∆) time slots
with probability p in multi-hop networks with collision detection. It follows that if p is some
constant, then g(N∆) ∈ Ω(lg lgN∆).

With the needed contention resolution lower bounds in hand, we turn our attention to
reducing this problem to approximate neighbor counting. Take the single-hop scenario as an
example, the basic idea behind the reduction is that once nodes have an estimate n̂ of n, they
can simply broadcast with probability 1/n̂ in each time slot. If this estimate is good, then
in each time slot, they have a constant probability of isolating a broadcaster, thus solving
contention resolution. Moreover, repeating this step multiple times increases the chance of
success proportionally. Building on these basic observations, we prove the following:

I Lemma 3. Assume there exists an algorithm A that solves approximate neighbor counting
in h(N) (or, h(N∆) in the multi-hop scenario) time slots with probability p. Then, there
exists an algorithm B that solves contention resolution in 2(h(N) + k) (resp., 2h(N∆) + k in
the multi-hop scenario) time slots with probability at least (1− e−k/(4c̃)) · p. Here, k ≥ 1 is
an integer, and c̃ ≥ 1 is the constant defined in Section 3.

Combining the reduction described in Lemma 3 with the single-hop lower bounds for
contention resolution from [19] and the new multi-hop lower bounds proved above, we get
the following lower bounds for approximate neighbor counting:

I Theorem 4. In a single-hop radio network containing at most N nodes:
When collision detection is not available, solving approximate neighbor counting with
constant probability requires Ω(lgN) time in the worst case; solving approximate neighbor
counting with high probability in N requires Ω(lg2N) time in the worst case.
When collision detection is available, solving approximate neighbor counting with constant
probability requires Ω(lg lgN) time in the worst case.

In a multi-hop radio network in which the designated node has at most N∆ neighbors:
When collision detection is not available, solving approximate neighbor counting with
constant probability requires Ω(lgN∆) time in the worst case; solving approximate neighbor
counting with high probability in N∆ requires Ω(lg2N∆) time in the worst case.
When collision detection is available, solving approximate neighbor counting with constant
probability requires Ω(lg lgN∆) time in the worst case.
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4.2 Custom Lower Bounds for High Probability and Collision Detection
At this point, for single-hop and designated node multi-hop variants of the approximate
neighbor counting problem, the only lower bounds missing are the ones of ensuring high
success probability with collision detection. As we detail in full version of the paper [20], our
previous reduction-based approach no longer works in these scenarios. (Roughly speaking,
the reduction itself takes at least as long as the lower bound we intend to prove.) Therefore,
we must construct custom lower bounds for this problem and exact set of assumptions.

We start by proving the following combinatorial result:

I Lemma 5. Let c and k be two positive integers such that c ≤ k. Let R be the set containing
all size c subsets from [k] = {1, 2, · · · , k}. Let H be an arbitrary set of size less than lg(k/c)
such that each element in H is a subset of [k]. Then, there exists some R ∈ R such that for
each H ∈ H, either R ⊆ H or R ∩H = ∅.

Intuitively, a set H can be interpreted as a broadcast schedule generated by an algorithm
A: a node labeled i broadcasts in slot j if and only if it is activated, and i is in the jth set in
H. Given this interpretation, Lemma 5 suggests: for both the single-hop and the multi-hop
designated node scenario, for any approximate neighbor counting algorithm A, and for any
broadcast schedule generated by A of length less than lg (k/c), there exists a set of c nodes
(or a set of c neighbors of the designated node in the multi-hop scenario) such that if these c
nodes are activated and execute A, then during each of the first lg (k/c)− 1 time slots, either
none of them broadcast or all of them broadcast. This further implies, if only two of these c
nodes are activated, then their view (of the first lg (k/c)− 1 time slots of the execution) is
indistinguishable from the case in which all of these c nodes are activated.

Now, imagine an adversary who samples a size c subset from R with uniform randomness,
and then flips a fair coin to decide whether to activate all these c nodes, or just two of them.
If the adversary happens to have chosen the set R proved to exist in Lemma 5, then by the
end of slot lg (k/c)− 1, algorithm A cannot distinguish between two and c nodes. Notice, if c
is large compared to the approximation threshold c̃, then this difference matters: outputting
two when the real count is c (or vice versa) is unacceptable. Thus, in such case, the algorithm
gets the right answer with only probability 1/2 – not enough for high success probability.

A complete and rigorous proof for the above intuition is actually quite involved, again
see full paper [20] for more details. In the end, we obtain the following lower bounds:

I Theorem 6. Assume collision detection is available, then:

In a single-hop radio network containing at most N nodes, solving approximate neighbor
counting with high probability in N requires Ω(lgN) time in the worst case.
In a multi-hop radio network in which the designated node has at most N∆ neighbors,
solving approximate neighbor counting with high probability in N∆ requires Ω(lgN∆) time
in the worst case.

4.3 All Nodes Multi-Hop Lower Bounds
If an algorithm can solve multi-hop all nodes approximate neighbor counting, then clearly
the same algorithm can be used to solve multi-hop designated node approximate neighbor
counting, with same time complexity and success probability. Therefore, the lower bounds
we previously proved for the latter variant naturally carries over to the former variant:

I Theorem 7. In a multi-hop radio network containing at most N nodes:
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When collision detection is not available, solving approximate neighbor counting with high
probability in N requires Ω(lg2N) time in the worst case.
When collision detection is available, solving approximate neighbor counting with high
probability in N requires Ω(lgN) time in the worst case.

5 Upper Bounds

In this section, we describe and analyze several randomized algorithms that solve the
approximate neighbor counting problem. We will begin with single-hop all nodes counting.
Specifically, four algorithm are presented for this variant, each based on a different approach.
Though most of the strategies used are previously known, extensions to design and analysis
are often needed. We then introduce three algorithms for multi-hop all nodes counting,
including one which is particularly interesting, as it uses a “double counting” trick that is
not related to contention resolution at all to obtain high success probability. Finally, we
briefly discuss solutions for multi-hop designated node counting, as most of these algorithm
are simple variations of their counterparts for single-hop all nodes counting.

Due to space constraint, if not otherwise stated, complete proofs for lemma and theorem
statements are provided in the appendix. Nonetheless, we will usually discuss the intuitions
or high-level strategies for proving them.

5.1 Single-Hop Networks: No Collision Detection
Our algorithms often adopt a classical technique inspired by the contention resolution
literature: “guess and verify”. In more detail, take a guess about the count, and then verify
its accuracy; if the guess is good enough then we are done, otherwise take another guess
and repeat. This simple approach is versatile: depending on how the guesses are made and
verified, many variations exist, resulting in efficient algorithms suitable for different settings.

A standard approach to this guessing is to use a geometric sequence with common ratio
two, which is usually called (exponential) decay [1]. This sequence leverages the fact that we
only need a constant factor estimate to speed things up. Particularly, if the real count is n,
then only O(lgn) iterations are needed before reaching an accurate estimate.

Once a guess is made, we need to verify its accuracy. To accomplish this, it is sufficient to
let each participating node broadcast with a probability proportional to the reciprocal of the
guess, and then observe the status of the channel. The intuition is simple: underestimate will
result in collision and overestimate will result in silence; and we expect one node to broadcast
alone – a distinguishable event – iff the estimate is accurate enough. The algorithms described
below adapt this general approach to their specific constraints.

Constant probability of success. We now present Count-SH-noCD-Const. (In the
algorithm’s name, SH means “single-hop”, noCD means “no collision detection”, and Const
means “success with constant probability”.) This algorithm applies the most basic form of
the “guess and verify” strategy. It provides a correct estimate with constant probability in
O(lgn) time for single-hop radio networks, when collision detection is not available.

Count-SH-noCD-Const contains multiple iterations, each of which has two time slots.
In the ith iteration, nodes assume n ≈ 2i, and verify whether this estimate is accurate or
not. More specifically, in the first time slot within the ith iteration, each node will broadcast
a beacon message with probability 1/2i and listen otherwise. If a node decides to listen
and hears a beacon message in the first time slot, then it will set its estimate to 2i+2 and
terminate after this iteration. That is, if a single node u broadcasts alone in the first time
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slot of iteration i, then all listening nodes – which is all nodes except u – will terminate by
the end of this iteration, with 2i+2 being their estimate. Notice, we still need to inform u

about this estimate, which is the very purpose of the second time slot within each iteration.
More specifically, in the second time slot within the ith iteration, for each node u, if it has
heard a beacon message in the first time slot of this iteration, then it will broadcast a stop
message with probability 1/(2i − 1). Otherwise, if u has broadcast in the first time slot of
this iteration, then it will listen in this second time slot. Moreover, it will terminate with its
estimate set to 2i+2, if it hears a stop message in this second time slot.

Despite its simplicity, proving the correctness of Count-SH-noCD-Const requires efforts
beyond what would suffice for basic contention resolution. First, by carefully calculating
and summing up the failure probabilities, we show no node will terminate during the first
lgn− 3 iterations, with at least constant probability. Then, we show during iteration i where
lgn− 2 ≤ i ≤ lgn, either no node terminates or all nodes terminate, with at least constant
probability. Finally, we prove that if all nodes are still active by iteration lgn, then all of
them will terminate by the end of it, again with at least constant probability. Complete
analysis can be found in the full paper [20], here we present only the main theorem:

I Theorem 8. The Count-SH-noCD-Const approximate neighbor counting algorithm
ensures the following properties with constant probability when executed in a single-hop
network with no collision detection: (a) all nodes terminate simultaneously within O(lgn)
slots; and (b) all nodes obtain the same estimate of n, which is in the range [n, 4n].

High probability of success. Observe that in the aforementioned simplest form of “guess
and verify”, as the estimate increases, the probability that multiple nodes broadcast decreases,
and the probability that no node broadcasts increases. A more interesting metric is the
probability that a single node broadcasts alone: it first increases, and then decreases; not
surprisingly, the peak value is reached when the estimate is the real count. These facts
suggest, for each estimate n̂, we could repeat the procedure of broadcasting with probability
1/n̂ multiple times, and use the fraction of noisy/silent/clear-message slots to determine
the accuracy of the estimate. This method can provide stronger correctness guarantees, but
complicates termination detection (i.e., when should a node stop), as different nodes may
observe different fraction values. For example, if some nodes have already obtained a correct
estimate but terminate too early, then remaining nodes might never get correct estimates,
since there are fewer nodes remaining. The situation becomes more challenging when an
upper bound of the real count is not available. To resolve this issue, sometimes, we have to
carefully craft and embed a “consensus” mechanism.

Count-SH-noCD-High highlights our above discussion. This algorithm contains mul-
tiple iterations, each of which has three phases. In the ith iteration, nodes assume n ≈ 2i.
The first phase of each iteration i – which contains Θ(i) time slots – is used to verify the
accuracy of the current estimate. In particular, in each slot within the first phase, each node
will broadcast a beacon message with probability 1/2i, and listen otherwise. By the end of
the first phase, each node will calculate the fraction of time slots (among all its listening slots
in this phase) in which it has heard a beacon message. For each node, if at the end of the
first phase of some iteration j, this fraction value has reached 1/2e for the first time since
the start of execution, the node will set 2j as its private estimate for n. Recall nodes might
not obtain private estimates simultaneously, thus they cannot simply terminate and output
private estimates as the final estimate. This is the place where the latter two phases come
into play. More specifically, in the second phase, nodes that have already obtained private
estimates will try to broadcast informed messages to signal other nodes to stop. In fact,
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hearing an informed message is the only situation in which a node can safely terminate, even
if the node has already obtained its private estimate. On the other hand, the third phase
is used to deal with the case in which one single “unlucky” node successfully broadcasts
an informed message during phase two (thus terminate all other nodes), but never gets the
chance to successfully receive an informed message (thus cannot terminate along with other
nodes). Complete description of Count-SH-noCD-High can be found in full paper [20].

To prove the correctness of Count-SH-noCD-High, we need to show: (a) nodes can
correctly determine the accuracy of their estimates; and (b) all nodes terminate simultaneously
and output identical estimate. Part (b) follows from our careful protocol design, as phase
two and three in each iteration act like a mini “consensus” protocol, allowing nodes to agree
on when to stop. Proving part (a), on the other hand, needs more effort. Recall we use the
fraction of clear message slots to determine the accuracy of an estimate, and the expected
fraction value should be identical for all nodes. However, due to random chances, the actual
fraction value observed by each node might deviate from expectation. If we have an upper
bound N of n, then by making the first phase to contain Θ(lgN) slots, Chernoff bounds [17]
will enforce the observed fraction value to be tightly concentrated around its expectation.
In our case, N is not available, and we rely on more careful analysis. Specifically, during
iterations one to lg(n/(a lnn)) where a is some sufficiently large constant, in each time slot
in phase one, at least two nodes will broadcast (since the estimate is too small), thus no node
will obtain private estimate in these iterations. Starting from iteration lg(n/(a lnn)), the
length of phase one is long enough so that concentration inequalities will ensure the observed
fraction value is close to its expectation. Building on these observations, we can eventually
conclude the following theorem (again, see [20] for full analysis):

I Theorem 9. The Count-SH-noCD-High approximate neighbor counting algorithm
ensures the following properties with high probability in n when executed in a single-hop
network with no collision detection: (a) all nodes terminate simultaneously within O(lg2 n)
slots; and (b) all nodes obtain the same estimate of n, which is in the range [n, 4n].

5.2 Single-Hop Networks: Collision Detection
Without collision detection, the feedback to a listening node is either silence or a message.
Failing to receive a message, therefore, does not hint the nature of the failure: either no
node is sending, or multiple nodes are sending. As a result, in the two previous algorithms,
when nodes “guess” the count, they have to do it in a linear manner: start with a small
estimate, and double if the guess is incorrect. With collision detection, by contrast, listening
nodes can distinguish whether too few (i.e., zero) or too many (i.e., at least two) nodes
are broadcasting. As first pointed out back in the 1980’s [22], this extra power enables an
exponential improvement over linear searching, since nodes can now perform a binary search.

Constant probability of success. Here we leverage the aforementioned binary search strat-
egy to return a constant factor estimate of n in O(lg lgn) time, with at least some constant
probability. Recall efficient binary search requires a rough upper bound of n as input. To
this end, we first introduce an algorithm called EstUpper-SH: it can provide a polynomial
upper bound of n within O(lg lgn) time. At a high level, EstUpper-SH is doing a linear
“guess and verify” search to estimate lgn. (Notice, it is not estimating n.) This strategy, to
the best of our knowledge, is first discussed by Willard in the seminal paper [22], and has
later been used in other works (see, e.g., [5, 3]). Due to space constraint, detailed description
and analysis of EstUpper-SH are provided in full version of the paper [20].
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Once this estimate is obtained, we switch to the main logic of Count-SH-CD-Const.
This algorithm contains multiple iterations, each of which has four time slots. In each
iteration i, all nodes have a lower bound ai and an upper bound bi, and will test whether
the median mi = b(ai + bi)/2c is close to lgn or not. More specifically, in the first time slot
in iteration i, each node will broadcast a beacon message with probability 1/2mi , and listen
otherwise. Listening nodes will use the channel status they observed to adjust ai (or bi), or
terminate and output the final estimate. On the other hand, the other three time slots in
each iteration allow nodes that have chosen to broadcast in the first time slot to learn the
channel status too, with the help of the nodes that have chosen to listen in the first time
slot. (See full paper [20] for complete description of Count-SH-CD-Const.)

To prove Count-SH-CD-Const can provide a correct estimate, we demonstrate that
during one execution of Count-SH-CD-Const: (a) whenever mi is too large or too small,
all nodes can correctly detect this and adjust ai or bi accordingly; and (b) when mi is a good
estimate, all nodes can correctly detect this as well and stop execution. The full analysis can
be found in the full version of the paper [20], here we state only the main theorem:

I Theorem 10. The Count-SH-CD-Const approximate neighbor counting algorithm
ensures the following properties when executed in a single-hop network with collision detection:
(a) all nodes terminate simultaneously; and (b) with at least constant probability, all nodes
obtain the same estimate of n in the range [n, 4n] within O(lg lgn) time slots.

High probability of success. Our last algorithm for the single-hop scenario is Count-SH-
CD-High. It significantly differs from the other algorithms studied so far in that it does not
use a “guess and verify” strategy. Instead, it deploys a random walk to derive an estimate.
The use of random walks for contention resolution was introduced by Nakano and Olariu [18],
in the context of leader election in radio networks. It was later adopted by Brandes et al. [3]
for solving approximate counting in beeping networks.

Prior to executing Count-SH-CD-High, nodes will first use O(lg lgn) time slots to run
EstUpper-SH to obtain a polynomial upper bound of n. Call this upper bound N̂ . All
nodes then perform a random walk, the state space of which consists of potential estimates
of n. More specifically, Count-SH-CD-High contains Θ(lg N̂) iterations, each of which
has three time slots. In each iteration, all nodes maintain a current estimate on n which
is denoted by n̂. (Initially, n̂ is set to N̂ .) In the first slot in a iteration, each node will
broadcast a beacon message with probability 1/n̂, and listen otherwise. If a node hears
silence, it will decrease n̂ by a factor of four; if a node hears noise, it will increase n̂ by a
factor of four; and if a node hears a beacon message, it will keep n̂ unchanged. Similar to
what we have done in Count-SH-CD-Const, in each iteration, the nodes that have chosen
to listen in the first time slot will use the latter two slots to help nodes that have chosen to
broadcast in the first time slot to learn the channel status of the first time slot. After these
Θ(lg N̂) iterations, all nodes will use 4ñ to be the final estimate of n, where ñ is the most
frequent estimate used by the nodes during the Θ(lg N̂) iterations.

The high-level intuition of Count-SH-CD-High is: when the estimate is too large or
too small, it will quickly shift towards correct estimates; and when the estimate is correct, it
will remain unchanged. Therefore, the most frequent estimate will likely to be a correct one.
Complete analysis is deferred to full paper [20], here we provide only the main theorem:

I Theorem 11. The Count-SH-CD-High approximate neighbor counting algorithm ensures
the following properties when executed in a single-hop network with collision detection: (a)
all nodes terminate simultaneously; and (b) with high probability in n, all nodes obtain the
same estimate of n in the range [n, 64n] within O(lgn) time slots.
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5.3 Multi-Hop with All Nodes Counting: No Collision Detection
All nodes counting in a multi-hop network is challenging as different nodes may have
significantly different number of neighbors. In this part, we present two algorithms that
attempt to overcome this obstacle, the second of which is particularly interesting.

We begin with the first algorithm – called Count-All-noCD– which still relies on the
linear “guess and verify” approach. However, it requires the upper bound N∆ as an input
parameter to enforce termination. Nonetheless, for each node, Count-All-noCD always
returns an accurate estimate, even when knowledge of N∆ is absent.

In more detail, Count-All-noCD contains lgN∆ iterations, and the ith iteration
contains Θ(i) time slots. In each slot in iteration i, each node will choose to be a broadcaster
or a listener each with probability 1/2. If a node chooses to be a listener in a time slot,
it will simply listen. Otherwise, if a node chooses to be a broadcaster, it will broadcast a
beacon message with probability 1/2i, and do nothing otherwise. After an iteration i, for a
node u, if for the first time since the beginning of protocol execution, it has heard beacon
messages in at least 1/10 fraction of slots among the listening slots (within this iteration),
then u will use 2i+3 as its estimate for nu. Proving the correctness of Count-All-noCD
borrows heavily from our analysis of Count-SH-noCD-High (see the full version of the
paper [20] for more details), here we only state the main theorem:

I Theorem 12. For each node u, the Count-All-noCD approximate neighbor counting
algorithm ensures the following with high probability in nu when executed in a multi-hop
network with no collision detection: u will obtain an estimate of nu in the range [nu, 4nu]
within O(lg2 nu) time. Moreover, u will terminate after O(lg2N∆) time when N∆ is known.

Notice that in Count-All-noCD, for a node u, the high correctness guarantee is with
respect to nu. This implies, when nu is some constant, the probability that the obtained
estimate is desirable is also a constant. Sometimes, we may want identical and high correctness
guarantees for all estimates, such as high probability in n. Our second algorithm – which is
called Count-All-noCD-2– achieves this goal, at the cost of accessing N and demanding
longer execution time. (Count-All-noCD only needs N∆ to enforce termination, while
Count-All-noCD-2 needs N to work properly.)

Careful readers might suspect Count-All-noCD-2 just extends the length of each
iteration of Count-All-noCD to Θ(lgN). Unfortunately, this simple modification is
not sufficient: we still cannot change the fact that when a node u listens, the number of
broadcasters among its neighbors is concentrated to nu/2 only with high probability in nu.

Instead, Count-All-noCD-2 takes a different approach, the core of which is a “double
counting” trick. Specifically, Count-All-noCD-2 contains L = Θ(lgN) iterations, each
of which has Θ(lg2N) time slots. At the beginning of each iteration, each node chooses to
be a broadcaster or a listener each with probability 1/2. Then, by applying the “guess and
verify” strategy, each listener will spend the Θ(lg2N) time slots in this iteration to obtain
a constant factor estimate on the number of neighboring broadcasters. When all Θ(lgN)
iterations are done, each node will sum the estimates it has obtained, divide it by L/4, and
output the result as its estimate for the neighborhood size.

Due to space constraint, detailed description for each iteration is deferred to the full
paper [20]. We only note here that the estimates obtained by the listeners are quite accurate:

I Lemma 13. Consider an arbitrary iteration during the execution of Count-All-noCD-2,
assume node u is a listener with m neighboring broadcasters. By the end of this iteration,
node u will obtain an estimate of m in the range [m, 4m], with high probability in N .
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We can now state and prove the guarantees provided by Count-All-noCD-2:

I Theorem 14. The Count-All-noCD-2 approximate neighbor counting algorithm ensures
the following properties when executed in a multi-hop network with no collision detection: (a)
all nodes terminate after O(lg3N) time slots; and (b) with high probability in N , for each
node u, the node will obtain an estimate of nu in the range [nu, 5nu].

Proof sketch. Consider a node u and one of its neighbor v. Assume Count-All-noCD-
2 contains a lgN iterations, where a is a sufficiently large constant. In expectation, in
(a/4) · lgN iterations, u will be listener and v will be broadcaster. Apply a Chernoff bound,
we know u will be listener and v will be broadcaster in at least (1− δ) · (a/4) · lgN iterations,
and at most (1 + δ) · (a/4) · lgN iteration, w.h.p. in N . Here, 0 < δ < 1 is a small constant
determined by a. Take a union bound over all O(N) neighbors of u, we know this claim
holds true for them as well. Therefore, if u were able to accurately count the number of
broadcasting neighbors without any error in each listening iteration, the sum it will obtain
would be in the range [(1− δ) · (a/4) · lgN · nu, (1 + δ) · (a/4) · lgN · nu], w.h.p. in N .

Now, due to Lemma 13, we know the actual sum of counts u will obtain is in the range
[(1− δ) · (a/4) · lgN · nu, 4 · (1 + δ) · (a/4) · lgN · nu], w.h.p. in N . As a result, according to
our algorithm description, the final estimate u will obtain is in the range [nu, 5nu], w.h.p. in
N . Take a union bound over all nodes, the theorem is proved. J

5.4 Multi-Hop with All Nodes Counting: Collision Detection
In Count-All-noCD, we resolve the termination detection problem by accessing N∆. This
allows nodes to run long enough so that they could be sure that everyone has a chance to learn
what it needed to learn. With the addition of collision detection, however, the assumption
that nodes know N∆ can be removed for many network topologies. In particular, we can
leverage the idea that neighbors of u that have not obtained estimates yet can use noise to
reliably inform u that they wish u to continue. We call this algorithm Count-All-CD.

Count-All-CD contains multiple iterations, each of which has two parts. The first
part of any iteration i is identical to iteration i of Count-All-noCD. The second part,
on the other hand, helps nodes to determine when to stop. In particular, the second part
of iteration i contains a single slot. For a node u, if it has not obtained an estimate of nu
by the end of the first part of iteration i yet, then in the second part, it will broadcast a
continue message. On the other hand, if u has already obtained an estimate of nu by the end
of the first part of iteration i, it will simply listen in part two. Moreover, u will continue into
the next iteration iff it hears continue or noise during part two. The guarantees provided by
Count-All-CD are stated below, and the proof of it is provided in the full paper [20].

I Theorem 15. The Count-All-noCD approximate neighbor counting algorithm ensures
the following properties for each node u when executed in a multi-hop network with collision
detection: (a) u will obtain an estimate of nu in the range [nu, 4nu] within O(lg2 nu) time
slots, with high probability in nu; and (b) if

∑
v∈Γu∪{u}(1/nv) < 1, then u will terminate

within (maxv∈Γu∪{u}{lgnv})2 time slots, with probability at least 1−
∑
v∈Γu∪{u}(1/nv).

A key point about the above termination bound is that it requires
∑
v∈Γu∪{u}(1/nv) < 1.

(In fact, this constraint can be relaxed to
∑
v∈Γu∪{u}(1/n

γ
v) < 1, for an arbitrarily chosen

constant γ ≥ 1.) If this is not the case (e.g., in a dense star network), the termination
detection mechanism might not work properly. In that situation, the default dependence on
N∆ from the no collision detection case can be applied as a back-up.
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5.5 Multi-Hop with Designated Node Counting
Compared to the all nodes counting variant, multi-hop neighbor counting with only the
designated node is easier: the strategies we previously used for single-hop counting are still
applicable, and the introduction of the designated node can actually make coordination
easier. (In particular, this node can greatly simplify termination detection). Due to space
constraint, we defer the upper bounds for this variant to the full version of the paper [20].

We note that one interesting algorithm in this variant is Count-Desig-noCD-Const,
which achieves constant success probability without collision detection. Count-Desig-
noCD-Const differs from its single-hop counterpart (i.e., Count-SH-noCD-Const) in
that it uses fraction of clear message slots to determine the accuracy of nodes’ estimate.
The primary reason we develop this algorithm is that the success probability of Count-
SH-noCD-Const is fixed. In contrast, in Count-Desig-noCD-Const, by tweaking the
running time (up to some constant factor), the success probability – despite being a constant
– can be adjusted accordingly.

6 Discussion

We see at least two problems that worth further exploration. First, how do termination
requirements affect the complexity of the problem? This is particularly interesting in the
multi-hop all nodes counting scenario, when knowledge of N∆ or N is not available. Count-
All-noCD shows lower bound can be achieved at the cost of no termination, but how much
time must we spend if termination needs to be enforced, or is simply impossible without
knowing N∆ or N? Another open problem concerns the gap between the lower and upper
bounds, in the multi-hop all nodes counting scenario with collision detection. On the one
hand, the lower bound might be loose as it is a simple carry over, ignoring the possibility that
all nodes counting could be fundamentally harder than designated node counting. Yet on
the other hand, we have not found a way to leverage collision detection to reduce algorithm
runtime (e.g., it seems hard to run multiple instances of binary search in parallel). Currently,
our best guess is that both the lower bound and the upper bound are not tight.
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1 Introduction

In this paper, we study upper and lower bounds for efficient broadcast in the dual graph
radio network model [4, 11, 12, 3, 6, 5, 8, 7, 14, 9], a dynamic network model that describes
wireless communication over both reliable and unreliable links. As argued in previous studies
of this setting, including unpredictable link behavior in theoretical wireless network models
is important because in real world deployments radio links are often quite dynamic.

The Back-Off Paradox. Existing papers [12, 8, 14] proved that it is impossible to solve
standard broadcast problems efficiently in the dual graph model without the addition of
strong extra assumptions (see related work). In real radio networks, however, which suffer
from the type of link dynamics abstracted by the dual graph model, simple back-off strategies
tend to perform quite well. These dueling realities seem to imply a dispiriting gap between
theory and practice: basic communication tasks that are easily solved in real networks are
impossible when studied in abstract models of these networks.

What explains this paradox? This paper tackles this fundamental question.
As detailed below, we focus our attention on the adversary entity that decides which

unreliable links to include in the network topology in each round of an execution in the dual
graph model. We introduce a new type of adversary with constraints that better generalize
the dynamic behavior of real radio links. We then reexamine simple back-off strategies
originally introduced in the standard radio network model [2] (which has only reliable links),
and prove that for reasonable parameters, these simple strategies now do guarantee efficient
communication in the dual graph model combined with our new, more realistic adversary.

We also detail how this performance degrades toward the existing dual graph lower bounds
as the new constraints are reduced toward non-existent, and prove lower bounds that establish
these bounds to be near tight for a large and natural class of back-off strategies. Finally,
we perform investigations of even more general (and therefore more difficult) variations of
this new style of adversary that continue to underscore the versatility of simple back-off
strategies.

We argue that these results help resolve the back-off paradox described above. When
unpredictable link behavior is modeled properly, predictable algorithms prove to work
surprisingly well.

The Dual Graph Model. The dual graph model describes a radio network topology with
two graphs, G = (V,E) and G′ = (V,E′), where E ⊆ E′, V corresponds to the wireless
devices, E corresponds to reliable (high quality) links, and E′ \E corresponds to unreliable
(quality varies over time) links. In each round, all edges from E are included in the network
topology. Also included is an additional subset of edges from E′ \E, chosen by an adversary.
This subset can change from round to round. Once the topology is set for the round, the
model implements the standard communication rules from the classical radio network model:
a node u receives a message broadcast by its neighbor v in the topology if and only if u
decides to receive and v is its only neighbor broadcasting in the round.

We emphasize that the abstract models used in the sizable literature studying distributed
algorithms in wireless settings do not claim to provide high fidelity representations of real
world radio signal communication. They instead each capture core dynamics of this setting,
enabling the investigation of fundamental algorithmic questions. The well-studied radio
network model, for example, provides a simple but instructive abstraction of message loss
due to collision. The dual graph model generalizes this abstraction to also include network
topology dynamics. Studying the gaps between these two models provides insight into the
hardness induced by the types of link quality changes common in real wireless networks.
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The Fading Adversary. Existing studies of the dual graph model focused mainly on the
information about the algorithm known to the model adversary when it makes its edge
choices. In this paper, we place additional constraints on how these choices are generated.

In more detail, in each round, the adversary independently draws the set of edges from
E′ \E to add to the topology from some probability distribution defined over this set. We
do not constrain the properties of the distributions selected by the adversary. Indeed, it
is perfectly valid for the adversary in a given round to use a point distribution that puts
the full probability mass on a single subset, giving it full control over its selection for the
round. We also assume the algorithm executing in the model has no advance knowledge of
the distributions used by the adversary.

We do, however, constrain how often the adversary can change the distribution from
which it selects these edge subsets. In more detail, we parameterize the model with a stability
factor, τ ≥ 1, and restrict the adversary to changing the distribution it uses at most once
every τ rounds. For τ = 1, the adversary can change the distribution in every round, and
is therefore effectively unconstrained and behaves the same as in the existing dual graph
studies. On the other extreme, for τ =∞, the adversary is now quite constrained in that
it must draw edges independently from the same distribution for the entire execution. As
detailed below, we find τ ≈ log ∆, for local neighborhood size ∆, to be a key threshold after
which efficient communication becomes tractable.

Notice, these constraints do not prevent the adversary from inducing large amounts of
changes to the network topology from round to round. For non-trivial τ values, however, they
do require changes that are nearby in time to share some underlying stochastic structure. This
property is inspired by the general way wireless network engineers think about unreliability
in radio links. In their analytical models of link behavior (used, for example, to analyze
modulation or rate selection schemes, or to model signal propagation in simulation), engineers
often assume that in the short term, changes to link quality come from sources like noise and
multi-path effects, which can be approximated by independent draws from an underlying
distribution (Gaussian distributions are common choices for this purpose). Long term changes,
by contrast, can come from modifications to the network environment itself, such as devices
moving, which do not necessarily have an obvious stochastic structure, but unfold at a slower
rate than short term fluctuations.

In our model, the distribution used in a given round captures short term changes, while
the adversary’s arbitrary (but rate-limited) changes to these distributions over time capture
long term changes. Because these general types of changes are sometimes labeled short/fast
fading in the systems literature (e.g., [16]), we call our new adversary a fading adversary.

Our Results and Related Work. In this paper, we study both local and global broadcast.
The local version of this problems assumes some subset of devices in a dual graph network
are provided broadcast messages. The problem is solved once each receiver that neighbors
a broadcaster in E receives at least one message. The global version assumes a single
broadcaster starts with a message that it must disseminate to the entire network. Below we
summarize the relevant related work on these problems, and the new bounds proved in this
paper. We conclude with a discussion of the key ideas behind these new results.

Related Work. In the standard radio network model, which is equivalent to the dual graph
model with E = E′, Bar-Yehuda et al. [2] demonstrate that a simple randomized back-off
strategy called Decay solves local broadcast in O(log2 n) rounds and global broadcast in
O(D logn+ log2 n) rounds, where n = |V | is the network size and D is the diameter of G.
Both results hold with high probability in n, and were subsequently proved to be optimal

OPODIS 2018



27:4 On Simple Back-Off in Unreliable Radio Networks

Table 1 A summary of the upper and lower bounds proved in this paper, along with pointers
to the corresponding theorems. In the following, n is the network size, ∆ ≤ n is an upper bound
on local neighborhood size, D is the (reliable link) network diameter, and τ is the stability factor
constraining the adversary.

Problem Time Prob. Remarks Ref.

Local broadcast

O
(

∆1/τ̄ ·τ̄2

log ∆ · log (1/ε)
)

1− ε τ̄ = min{τ, log ∆} Thm 6

Ω
(

∆1/τ τ
log ∆

)
1
2 τ ∈ O(log ∆) Thm 7

Ω
(

∆1/τ τ2

log ∆

)
1
2 τ ∈ O(log ∆/ log log ∆) Thm 8

Global broadcast

O
(

(D + log(n/ε)) · ∆1/τ̄ τ̄2

log ∆

)
1− ε τ̄ = min{τ, log ∆} Thm 9

Ω
(
D · ∆1/τ τ

log ∆

)
1
2 τ ∈ O(log ∆) Thm 10

Ω
(
D · ∆1/τ τ2

log ∆

)
1
2 τ ∈ O(log ∆/ log log ∆) Thm 10

or near optimal1 [1, 13, 15]. In [11, 12], it is proved that global broadcast (with constant
diameter), and local broadcast require Ω(n) rounds to solve with reasonable probability
in the dual graph model with an offline adaptive adversary controlling the unreliable edge
selection, while [8] proves that Ω(n/ logn) rounds are necessary for both problems with an
online adaptive adversary. As also proved in [8]: even with the weaker oblivious adversary,
local broadcast requires Ω(

√
n/ logn) rounds, whereas global broadcast can be solved in an

efficient O(D log (n/D) + log2 n) rounds, but only if the broadcast message is sufficiently
large to contain enough shared random bits for all nodes to use throughout the execution.
In [14], an efficient algorithm for local broadcast with an oblivious adversary is provided
given the assumption of geographic constraints on the dual graphs, enabling complicated
clustering strategies that allow nearby devices to coordinate randomness.

New Results. In this paper, we turn our attention to local and global broadcast in the
dual graph model with a fading adversary constrained by some stability factor τ (unknown
to the algorithm). We start by considering upper bounds for a simple back-off style strategy
inspired by the decay routine from [2]. This routine has broadcasters simply cycle through
a fixed set of broadcast probabilities in a synchronized manner (all broadcasters use the
same probability in the same round). We prove that this strategy solves local broadcast with
probability at least 1− ε, in O

(
∆1/τ̄ ·τ̄2

log ∆ · log (1/ε)
)
rounds, where ∆ is an upper bound on

local neighborhood size, and τ̄ = min{τ, log ∆}.
Notice, for τ ≥ log ∆ this bound simplifies to O(log ∆ log (1/ε)), matching the optimal

results from the standard radio network model.2 This performance, however, degrades toward
the polynomial lower bounds from the existing dual graph literature as τ reduces from log ∆
toward a minimum value of 1. We show this degradation to be near optimal by proving
that any local broadcast algorithm that uses a fixed sequence of broadcast probabilities
requires Ω(∆1/ττ/ log ∆) rounds to solve the problem with probability 1/2 for a given τ . For
τ ∈ O(log ∆/ log log ∆) , we refine this bound further to Ω(∆1/ττ2/ log ∆), matching our
upper bound within constant factors.

1 The broadcast algorithm from [2] requires O(D logn+ log2 n) rounds, whereas the corresponding lower
bound is Ω(D log (n/D) + log2 n). This gap was subsequently closed by a tighter analysis of a natural
variation of the simple Decay strategy used in [2]

2 To make it match exactly, set ∆ = n and ε = 1/n, as is often assumed in this prior work.
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We next turn our attention to global broadcast. We consider a straightforward global
broadcast algorithm that uses our local broadcast strategy as a subroutine. We prove that
this algorithm solves global broadcast with probability at least 1− ε, in O(D + log(n/ε)) ·
∆1/τ̄ τ̄2/ log ∆) rounds, where D is the diameter of G, and τ̄ = min{τ, log ∆}. Notice, for
τ ≥ log ∆ this bound reduces to O(D log ∆ + log ∆ log (1/ε)), matching the near optimal
result from the standard radio network model. As with local broadcast, we also prove the
degradation of this performance as τ shrinks to be near optimal. (See Table 1 for a summary
of these results and pointers to where they are proved in this paper.)

Finally we consider the generalized model when we allow correlation between the dis-
tributions selected by the adversary within a given stable period of τ rounds. It turns out
that in the case of arbitrary correlations any simple algorithm needs time Ω(

√
∆/l) if it

uses only cycles of length l. In particular any our previous algorithms would require time
Ω(
√

∆/ log ∆) in the model with arbitrary correlations. The adversary construction in this
lower bound requires large changes in the degree of a node in successive steps. Such changes
are unlikely in real networks thus we propose a restricted version of the adversary. We assume
that the expected change in the degree of any node can be at most ∆1/(τ̄(1−o(1)). With such
restriction it is again possible to propose a simple, but slightly enhanced, back-off strategy
(with a short cycle of probabilities) that works efficiently in time O

(
∆1/τ̄ · τ̄ · log (1/ε)

)
.

Technique Discussion. Simple back-off strategies can be understood as experimenting
with different guesses at the amount of contention afflicting a given receiver. If the network
topology is static, this contention is fixed, therefore so is the right guess. A simple strategy
cycling through a reasonable set of guesses will soon arrive at this right guess – giving the
message a good chance of propagating.

The existing lower bounds in the dual graph setting deploy an adversary that changes the
topology in each round to specifically thwart that round’s guess. In this way, the algorithm
never has the right guess for the current round so its probability of progress is diminished.
The fading adversary, by contrast, is prevented from adopting this degenerate behavior
because it is required to stick with the same distribution for τ consecutive rounds. An
important analysis at the core of our upper bounds reveals that any fixed distribution will
be associated with a right guess defined with respect to the details of that distribution. If τ
is sufficiently large, our algorithms are able to experiment with enough guesses to hit on this
right guess before the adversary is able to change the distribution.

More generally speaking, the difficulty of broadcast in the previous dual graph studies was
not due to the ability of the topology to change dramatically from round to round (which can
happen in practice), but instead due to the model’s ability to precisely tune these changes
to thwart the algorithm (a behavior that is hard to motivate). The dual graph model with
the fading adversary preserves the former (realistic) behavior while minimizing the latter
(unrealistic) behavior.

2 Model and Problem

We study the dual graph model of unreliable radio networks. This model describes the
network topology with two graphs G = (V,E) and G′ = (V,E′), where E ⊆ E′. The n = |V |
vertices in V correspond to the wireless devices in the network, which we call nodes in the
following. The edge in E describe reliable links (which maintain a consistently high quality),
while the edges in E′ \ E describe unreliable links (which have quality that can vary over
time). For a given dual graph, we use ∆ to describe the maximum degree in G′, and D to
describe the diameter of G.

OPODIS 2018
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Time proceeds in synchronous rounds that we label 1, 2, 3... For each round r ≥ 1, the
network topology is described by Gr = (V,Er), where Er contains all edges in E plus a
subset of the edges in E′ \ E. The subset of edges from E′ \ E are selected by an adversary.
The graph Gr can be interpreted as describing the high quality links during round r. That
is, if {u, v} ∈ Er, this mean the link between u and v is strong enough that u could deliver a
message to v, or garble another message being sent to v at the same time.

With the topology Gr established for the round, behavior proceeds as in the standard
radio network model. That is, each node u ∈ V can decide to transmit or receive. If u
transmits, it learns nothing about other messages transmitted in the round (i.e., the radios
are half-duplex). If u receives and exactly one neighbor v of u in Er transmits, then u

receives v’s message. If u receives and two or more neighbors in Er transmit, u receives
nothing as the messages are lost due to collision. If u receives and no neighbor transmits,
u also receives nothing. We assume u does not have collision detection, meaning it cannot
distinguish between these last two cases.

The Fading Adversary. A key assumption in studying the dual graph model are the
constraints placed on the adversary that selects the unreliable edges to include in the network
topology in each round. In this paper, we study a new set of constraints inspired by real
network behavior. In more detail, we parameterize the adversary with a stability factor that
we represent with an integer τ ≥ 1. In each round, the adversary must draw the subset of
edges (if any) from E′ \ E to include in the topology from a distribution defined over these
edges. The adversary selects which distributions it uses. Indeed, we assume it is adaptive in
the sense that it can wait until the beginning of a given round before deciding the distribution
it will use in that round, basing its decision on the history of the nodes’ transmit/receive
behavior up to this point, including the previous messages they send, but not including
knowledge of the nodes’ private random bits.

The adversary is constrained, however, in that it can change this distribution at most
once every τ rounds. On one extreme, if τ = 1, it can change the distribution in every round
and is effectively unconstrained in its choices. On the other other extreme, if τ =∞, it must
stick with the same distribution for every round. For most of this paper, we assume the
draws from these distributions are independent in each round. Toward the end, however, we
briefly discuss what happens when we generalize the model to allow more correlations.

As detailed in the introduction, because these constraints roughly approximate the
fast/slow fading behavior common in the study of real wireless networks, we call a dual
graph adversary constrained in this manner a fading adversary.

Problem. In this paper, we study both the local and global broadcast problems. The local
broadcast problem assumes a set B ⊆ V of nodes are provided with a message to broadcast.
Each node can receive a unique message. Let R ⊆ V be the set of nodes in V that neighbor
at least one node in B in E. The problem is solved once every node in R has received at least
one message from a node in B. We assume all nodes in B start the execution during round
1, but do not require that B and R are disjoint (i.e., broadcasters can also be receivers).
The global broadcast problem, by contrast, assumes a single source node in V is provided a
broadcast message during round 1. The problem is solved once all nodes have received this
message. Notice, local broadcast solutions are often used as subroutines to help solve global
broadcast.
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Uniform Algorithms. The broadcast upper and lower bounds we study in this paper focus
on uniform algorithms, which require nodes to make their probabilistic transmission decisions
according to a predetermined sequence of broadcast probabilities that we express as a
repeating cycle, (p1, p2, ..., pk) of k probabilities in synchrony. In studying global broadcast,
we assume that on first receiving a message, a node can wait to start making probabilistic
transmission decisions until the cycle resets. We assume these probabilities can depend on n,
∆ and τ (or worst-case bounds on these values).

In uniform algorithms in the model with fading adversary an important parameter of any
node v is its effective degree in step t denoted by dt(v) and defined as the number of nodes
w such that (v, w) ∈ Et and w has a message to transmit (i.e., participates in step t).

As mentioned in the introduction, uniform algorithms, such as the decay strategy from [2],
solve local and global broadcast with optimal efficiency in the standard radio network model.
A major focus of this paper is to prove that they work well in the dual graph model as well,
if we assume a fading adversary with a reasonable stability factor.

The fact that our lower bounds assume the algorithms are uniform technically weaken
the results, as there might be more efficient non-uniform strategies. In the standard radio
network model, however, this does not prove to be the case: uniform algorithms for local and
global broadcast match lower bounds that hold for all algorithms (c.f., discussion in [15]).

3 Local broadcast

We begin by studying upper and lower bounds for the local broadcast problem. Our upper
bound performs efficiently once the stability factor τ reaches a threshold of log ∆. As τ
decreases toward a minimum value of 1, this efficiency degrades rapidly. Our lower bounds
capture that this degradation for small τ is unavoidable for uniform algorithms. In the
following we use the notation τ̄ = min{τ, dlog ∆e}. By logn we will always denote logarithm
at base 2 and by lnn the natural logarithm.

3.1 Upper Bound
All uniform local broadcast algorithms behave in the same manner: the nodes in B

repeatedly broadcast according to fixed cycle of k broadcast probabilities. We formal-
ize this strategy with algorithm RLB (Robust Local Broadcast) described below. We
break out Uniform into its own procedure as we later reuse it in our improved algorithm:

1 Procedure: Uniform(k, p1, p2, . . . , pk)
2 for i = 1, 2, . . . , k do
3 if has message then
4 with probability pi Transmit otherwise

Listen
5 else Listen

1 Algorithm: RLB(r, τ̄)
2 for i← 1 to τ̄ do

pi ← ∆−i/τ̄
3 repeat r times
4 Uniform

(τ̄ , p1, p2, . . . , pτ̄ )

Before we prove the complexity of RLB we will show two useful properties of any uniform
algorithm. Let R(v)

t denote the event that v receives a message from its neighbor in step t.

I Lemma 1. For any uniform algorithm and any node v and step t if dt(v) > 0 and the
algorithm uses in step t probability p ≤ 1/2, then Pr

[
R

(v)
t

]
≥ p·dt(v)

(2e)p·dt(v) .

Proof. For this to happen exactly one among dt(v) neighbors of v has to transmit and v
must not transmit. Node v does not transmit with probability 1− p if it has the message
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and clearly with probability 1 if it has the message. Denote by α = p · dt(v). We have

Pr
[
R

(v)
t

]
≥ pdt(v) · (1− p)dt(v) = α ·

(
1− α

dt(v)

)dt(v)

= α

((
1− α

di(v)

)dt(v)/α−1
· (1− p)

)α
≥ α(e−1(1− p))α ≥ α

(2e)α .

J

I Lemma 2. For any uniform algorithm, node v and step t if dt(v) > 0:

Pr
[
R

(v)
t | dt(v) ∈ [d1, d2]

]
≥ min

{
Pr
[
R

(v)
t | dt(v) = d1

]
,Pr

[
R

(v)
t | dt(v) = d2

]}
.

Proof. If the algorithm uses probability p in step t then Pr
[
R

(v)
t

]
= pdt(v)(1 − p)dt(v).

Seeing this expression as a function of dt(v) we can compute the derivative and obtain that
this function has a single maximum in dt(v) = 1/(ln(1/(1− p))). Hence if we restrict dt(v)
to be within a certain interval, then value of the function is lower bounded by the minimum
at the endpoints of the interval. J

Our upper bound analysis leverages the following useful lemma which can be shown by
induction on n (the left side is also known as the Weierstrass Product Inequality):

I Lemma 3. For any x1, x2, . . . , xn such that 0 ≤ xi ≤ 1:

1−
n∑
i=1

xi ≤
n∏
i=1

(1− xi) ≤ 1−
n∑
i=1

xi +
∑

1≤i<j≤n
xixj .

To begin our analysis, we focus on the behavior of our algorithm with respect to a single re-
ceiver when we use the transmit probability sequence p1, p2, ..., pτ̄ , where τ̄ = min{τ, dlog ∆e},
and pi = ∆−i/τ̄ .

I Lemma 4. Fix any receiver u ∈ R and error bound ε > 0. It follows: RLB(2dln(1/ε)e · d4e ·
∆1/τ̄e, τ̄) delivers a message to u with probability at least 1− ε in time O(∆1/τ̄ τ̄ log(1/ε)).

Proof. It is sufficient to prove the claim for τ ≤ log ∆. For τ > log ∆ we use the algorithm
for τ = log ∆. Note that any algorithm that is correct for some τ must also work for any
larger τ because the adversary may not choose to change the distribution as frequently as it
is permitted to. In the case where τ ≤ log ∆ we get that ∆1/τ ≥ 2.

We want to show that if the nodes from Nu ∩B execute procedure Uniform(τ, p1, . . . , pτ )
twice, then u receives some message with probability at least log ∆/(2e∆1/ττ). Every time
we execute Uniform twice, we have a total of 2τ consecutive time slots out of which, by
the definition of our model, at least τ consecutive slots have the same distribution of the
additional edges and moreover stations try all the probabilities p1, p2, . . . , pτ (not necessarily
in this order). Let T denote the set of these τ time slots and for i = 1, 2, . . . , τ let ti ∈ T
be the step in which probability pi is used. We also denote the distribution used in steps
from set T by E(T ). Hence we can denote the edges between u and its neighbors that
have some message by Epart = {(u, b) : b ∈ B} ∩ E′. We know that the edge sets are
chosen independently from the same distribution: Et ∼ E(T ) for t ∈ T . Let us denote by
Xt = |Et∩Epart| the random variable being the number of neighbors that are connected to u
in step t and belong to B. For each i from 1 to τ we define qi = Pr

[
∆(i−1)/τ < Xt ≤ ∆i/τ

]
,

for any t ∈ T . Observe that probabilities qi do not depend on t during the considered τ
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rounds. Moreover since u ∈ R then u is connected via a reliable edge to at least one node in
B, thus E ∩ Epart 6= ∅, hence Pr[Xt = 0 ] = 0 thus:

τ∑
i=1

qi = 1, (1)

Let Si denote the indicator random variable being 1 if in ti-th round if exactly one neighbor
of u transmits and u is not transmitting in round t and 0 otherwise. Clearly if Si = 1 in
some round t, then u receives some message in round t. Then we would like to show for each
i = 1, 2, . . . , τ that:

Pr[Si = 1 ] ≥ qi
2e∆1/τ . (2)

In ti-th slot the transmission probability is pi = ∆−i/τ and the transmission choices done by
the stations are independent from the choice of edges Eti active in round ti. Note that u
might also belong R and try to transmit. But since pi ≤ 1/2 then u is not transmitting with
probability at least 1/2. If Qi denotes the event that ∆(i−1)/τ < Xti ≤ ∆i/τ then:

Pr[Si = 1 ] ≥ Pr[Si = 1|Qi ] ·Pr[Qi ] ≥ pi(∆(i−1)/τ + 1) · (1− pi)∆(i−1)/τ
· 1

2 · qi

≥ pi∆(i−1)/τ · (1− pi)∆i/τ−1 · 1
2 · qi

≥ ∆−1/τ ·
(

1− 1
∆i/τ

)∆i/τ−1
· qi2 ≥

qi
2e∆1/τ ,

because inequality (1 − 1/x)x−1 ≥ e−1 holds for all x > 0. Since the edge sets are chosen
independently in each step and the random choices of the stations whether to transmit or
not are also independent from each other we have:

Pr
[

τ∧
i=1

(Si = 0)
]

=
τ∏
i=1

Pr[Si = 0 ] ≤
τ∏
i=1

(
1− qi

2e∆1/τ

)
by Equation (2)

≤ 1−
τ∑
i=1

qi
2e∆1/τ +

∑
1≤i<j≤τ

qiqj
4e2∆2/τ by Lemma 3

≤ 1−
∑τ
i=1 qi

2e∆1/τ +
(
∑τ
i=1 qi)

2

4e2∆2/τ

≤ 1− 1
2e∆1/τ + 1

4e2∆2/τ ≤ 1− 1
4e∆1/τ by Equation (1)

Hence if we execute the procedure for 2τdln(1/ε)e · d4e ·∆1/τe time steps, we have at least
dln(1/ε)e · d4e ·∆1/τe sequences of τ consecutive time steps in which the distribution over
the unreliable edges is the same and the algorithm tries all the probabilities {p1, p2, . . . , pτ}.
Each of these procedures fails independently with probability at most 1 − 1/(4e∆1/τ )
hence the probability that all the procedures fail is at most:

(
1− 1

4e∆1/τ

)dln(1/ε)e·d4e∆1/τe ≤
e−dln(1/ε)e < ε J

On closer inspection of the analysis of Lemma 4, it becomes clear that if we tweak slightly
the probabilities used in our algorithm, we require fewer iterations. In more detail, the
probability of a successful transmission in the case where each of the x transmitters broadcasts
independently with probability α/x is approximately α/(2e)α. In the previous algorithm we
were transmitting in successive steps with probabilities ∆−1/τ ,∆−2/τ , . . . . Thus if x = 1 we
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would get in i-th step α = ∆−i/τ and approximately the sum of probabilities of success in τ
consecutive steps would be ∆−1/τ . The formula α/(2e)−α shows that the success probability
depends on α linearly if α < 1 (“too small" probability) and depends exponentially on α if
α > 1 (“too large" probability). In the previous theorem we intuitively only use the linear
term. In the next one we would like to also use, to some extent, the exponential term. If
we shift all the probabilities by multiplying them by a factor of β > 1, the total success
probability would be approximately β∆−1/τ if x = 1 and β(2e)−β if x = ∆. Thus by setting
β = log2e ∆/τ we maximize both these values.

1 Algorithm: FRLB(r, τ̄)
2 for i← 1 to τ̄ do pi ← ∆−i/τ̄ · log2e ∆/τ̄
3 repeat r times
4 Uniform (τ̄ , p1, p2, . . . , pτ̄ )

The following lemma makes this above intuition precise and gains a log-factor in perfor-
mance in algorithm FRLB (Fast Robust Local Broadcast) compared to RLB. As part of this
analysis, we add a second statement to our lemma that will prove useful during our subsequent
analysis of global broadcast. The correctness of this second lemma is a straightforward
consequence of the analysis.

I Lemma 5. Fix any receiver u ∈ R and error bound ε > 0. It follows:
1. FRLB(2dln(1/ε)e · d4∆1/τ̄ τ̄ / log2e ∆e, τ̄) completes local broadcast with a single receiver in

time O
(

∆1/τ̄ ·τ̄2

log ∆ · log (1/ε)
)
with probability at least 1− ε, for any ε > 0,

2. FRLB(2, τ̄) completes local broadcast with a single receiver with probability at least log2e ∆
4∆1/τ̄ τ̄

.

Proof Idea. The proof is similar to the one of Lemma 4. We define the probabilities qi and
events Qi in the same way. The key difference is in the evaluation of the probability of success
in round ti conditioned on Qi (Pr[Si = 1 | Qi ]). Event Qi restricts the number of neighbors
connected to u to some interval. We prove that the success probability Pr[Si = 1 | Qi ]
is lower bounded by the minimum of the values at the endpoints of this interval. This is
true because when x stations transmit with probability p to a common neighbor then the
probability of a successful transmission seen as a function of x has a single maximum at
x = 1/p hence its value at any point of some fixed interval is lower bounded by the minimum
of the values at the endpoints. J

In Lemmas 4 and 5 we studied the fate of a single receiver in R during an execution of
algorithms RLB and FRLB. Here we apply this result to bound the time for all nodes in R to
receive a message, therefore solving the local broadcast problem. In particular, for a desired
error bound ε, if we apply these lemmas with error bound ε′ = ε/n, then we end up solving
the single node problem with a failure probability upper bounded by ε/n. Applying a union
bound, it follows that the probability that any node from R fails to receive a message is less
than ε. Formally:

I Theorem 6. Fix an error bound ε > 0. It follows that algorithm FRLB(2dln(n/ε)e ·
d4∆1/τ̄ τ̄ / log ∆e) solves local broadcast in O

(
∆1/τ̄ ·τ̄2

log2e ∆ · log (n/ε)
)
rounds, with probability at

least 1− ε.
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3.2 Lower bound
Observe that for τ = Ω(log ∆), FRLB has a time complexity of O(log ∆ logn) rounds for
ε = 1/n, which matches the performance of the optimal algorithms for this problem in the
standard radio model. This emphasizes the perhaps surprising result that even large amounts
of topology changes do not impede simple uniform broadcast strategies, so long as there is
independence between nearby changes.

Once τ drops below log ∆, however, a significant gap opens between our model and the
standard radio network model. Here we prove that gap is fundamental for any uniform
algorithm in our model.

In the local broadcast problem, a receiver from set R can have between 1 and ∆ neighbors
in set B. The neighbors should optimally use probabilities close to the inverse of their
number. But since the number of neighbors is unknown, the algorithm has to check all the
values. If we look at the logarithm of the inverse of the probabilities (call them log-estimates)
used in Lemma 4 we get i log ∆/τ , for i = 1, 2, . . . , τ – which are spaced equidistantly on the
interval [0, log ∆]. The goal of the algorithm is to minimize the maximum gap between two
adjacent log-estimates placed on this interval since this maximizes the success probability
in the worst case. With this in mind, in the proof of the following lower bound, we look
at the dual problem. Given a predetermined sequence of probabilities used by an arbitrary
uniform algorithm, we seek the largest gap between adjacent log-estimates, and then select
edge distributions that take advantage of this weakness.

I Theorem 7. Fix a maximum degree ∆ ≥ 10, stability factor τ ≤ log(∆−1)/16, and uniform
local broadcast algorithm A. Assume that A guarantees with probability at least 1/2 to solve
local broadcast in f(∆, τ) rounds when executed in any dual graph network with maximum
degree ∆ and fading adversary with stability τ . It follows that f(∆, τ) ∈ Ω(∆1/ττ/ log ∆).

Proof Idea. In this proof we use a star with ∆ arms out of which only one is reliable – all
other arms are controlled by the adversary. The single receiver u is the center of the star.
For any uniform algorithm we divide the probabilities pi into sequences of length τ and find
a distribution in which the degree of u is “hard” for each sequence. The algorithm places τ
log-estimates on interval [0, log ∆] we, as an adversary, can clearly find a largest gap between
adjacent log-estimates of length approximately log ∆/τ . We choose the degree d of u such
that its logarithm is inside this gap (in correct distances from both its endpoints). With this
choice we can upper bound the probability of a successful transmission in any step during
these τ steps, because the distance between the log-estimate and the logarithm of the degree
of u gives us lower bound on dpi if pi > 1/d or of 1/(dpi) if pi < 1/d which in turn upper
bounds the probability of a successful transmission. J

In our next theorem, we refine the argument used in Theorem 7 for the case where τ is a
non-trivial amount smaller than the log ∆ threshold. We will argue that for smaller τ , the
complexity is Ω(∆1/ττ2/ log ∆), which more exactly matches our best upper bound. We are
able to trade this small amount of extra wiggle room in τ for a stronger lower bound because
it simplifies certain probabilistic obstacles in our argument. Combined with our previous
theorem, the below result shows our upper bound performance is asymptotically optimal for
uniform algorithms for all but a narrow range of stability factors, for which it is near tight.

I Theorem 8. Fix a maximum degree ∆ ≥ 10, stability factor τ ≤ ln(∆− 1)/(12 log log(∆−
1)), and uniform local broadcast algorithm A. Assume that A guarantees with probability
at least 1/2 to solve local broadcast in f(∆, τ) rounds when executed in any dual graph
network with maximum degree ∆ and fading adversary with stability τ . It follows that
f(∆, τ) ∈ Ω(∆1/ττ2/ log ∆).
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Proof Idea. The proof is similar to proof of Theorem 7. Here we also find a gap of length
log ∆/τ and then we argue that in a “proximity” of each such a large gap there has to exist
a large number of log-estimates. The proximity is defined so that all log-estimates outside of
it are (almost) irrelevant, give a very small probability of success, if we choose the logarithm
of the degree of u to be inside the considered gap. This in turn implies that in the remaining
part of the interval the “density" of log-estimates is lower hence there must exist another
large gap. By repeating this argument we can derive a contradiction with the assumed time
complexity. The reason why we need to restrict τ is that our defined proximity must be of
the same order as log ∆/τ which is no longer true for τ being close to log ∆. J

4 Global Broadcast

We now turn our attention to the global broadcast problem. Our upper bound will use the
same broadcast probability sequence as our best local broadcast algorithm from before. As
with local broadcast, for τ ≥ log ∆, our performance nearly matches the optimal performance
in the standard radio network model, and then degrades as τ shrinks toward 1. Our lower
bound will establish that this degredation is near optimal for uniform algorithms in this
setting. In this section we also use the notation τ̄ = min{τ, dlog ∆e}.

4.1 Upper Bound
A uniform global broadcast algorithm requires each node to cycle through a predetermined
sequence of broadcast probabilities once it becomes active (i.e., has received the broadcast
message). The only slight twist in our algorithm’s presentation is that we assume that
once a node becomes active, it waits until the start of the next probability cycle to start
broadcasting. To implement this logic in pseudocode, we use the variable Time to indicate
the current global round count. We detail this algorithm below (notice, the FRLB(2) is the
local broadcast algorithm analyzed in Lemma 5).

1 Algorithm: RGB(ε)
2 Wait until receiving the message
3 Wait until (Time mod 2τ̄) = 0
4 repeat dln (2n/ε)e · d4∆1/τ̄ τ̄ / log ∆e times
5 FRLB(2)

I Theorem 9. Fix an error bound ε > 0. It follows that algorithm RGB(ε) completes global
broadcast in time O

(
(D + log(n/ε)) · ∆1/τ̄ τ̄2

log ∆

)
, with probability at least 1− ε.

Proof Idea. Here we use the same idea as in the proof of [2, Theorem 4]. There a local
broadcast algorithm (Decay) is used as a black box in a global broadcast algorithm. We use
a different local broadcast algorithm (FRLB) but the same analysis applies. J

4.2 Lower Bound
The global broadcast lower bound of Ω(D log(n/D)), proved by Kushilevitz and Mansour [13]
for the standard radio network model, clearly still holds in our setting, as the radio network
model is a special case of the dual graph model where E′ = E. Similarly, the Ω(logn log ∆)
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lower bound proved by Alon et al. [1] also applies.3 It follows that for τ ≥ log ∆, we almost
match the optimal bound for the standard radio network model, and do match the time of
the seminal algorithm of Bar-Yehuda et al. [2].

For smaller τ , this performance degrades rapidly. Here we prove this degradation is
near optimal for uniform global broadcast algorithms in our model. We apply the obvious
approach of breaking the problem of global broadcast into multiple sequential instances of
local broadcast (though there are some non-obvious obstacles that arise in implementing this
idea). As with our local broadcast lower bounds, we separate out the case where τ is at least
a 1/ log log ∆ factor smaller than our log ∆ threshold, as we can obtain a slightly stronger
bound under this assumption.

I Theorem 10. Fix a maximum degree ∆ ≥ 10, stability factor τ , diameter D ≥ 24 and
uniform global broadcast algorithm A. Assume that A solves global broadcast in expected time
f(∆, D, τ) in all graphs with diameter D, maximum degree ∆ and fading adversary with
stability τ . It follows that:
1. if τ < ln(∆− 1)/(12 log log(∆− 1)) then f(∆, D, τ) ∈ Ω(D∆1/ττ2/ log ∆),
2. if τ < ln(∆− 1)/16 then f(∆, D, τ) ∈ Ω(D∆1/ττ/ log ∆).

Proof Idea. In this proof we connect together Ω(D) gadgets used in the proof of Theorem 7
(and 8) and lower bound the time the message spends in each of the gadgets. The only
problem in this approach is that after the message enters to the next gadget, the adversary
might not be allowed to change the distribution for some number of steps. We solve this by
keeping a distribution that is “hard” for the first τ probabilities of the algorithm in each of
the gadgets that has not been reached by the message yet. J

5 Correlations

Here we explore a promising direction for the study of broadcast in realistic radio network
models. In particular, the fading adversary studied above assumes that the distribution
draws are independent. As we will show, interesting results are still possible when considering
the even more general case where the marginal distributions in each step are not necessarily
independent in each round. More precisely, in this case, the adversary chooses a distribution
over sequences of length at least τ of the sets of unreliable edges. A sequence from this
distribution is used to determine which unreliable edges are active in successive steps. The
adversary after a least τ steps can decide to change the distribution. In this model, we first
show a simple lower bound that any uniform algorithm using a short list of probabilities
of length l (our algorithms in previous sections always used list of length min{τ, log ∆})
needs time Ω(

√
n/l) for some graphs. Our lower bound uses distributions over sequences of

graphs in which the degrees of nodes change by a large number in successive steps. Such
large changes in degree turn out to be crucial as we show that if in the sequence taken from
the distribution chosen by the adversary, in every step in expectancy only O(∆1/(τ−o(τ)))
edges adjacent to each node can be changed then we can get an algorithm working in time
O(∆1/ττ log(1/ε)) with probability at least 1 − ε and using list of probabilities of length
O(min{τ, log ∆}).

3 This bound is actually stated as Ω(log2 n), but ∆ = Θ(n) in the lower bound network, so it can be
expressed in terms of ∆ as well for our purposes here.
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5.1 A Lower Bound for Correlated Distributions
The following lower bound shows that any simple back-off algorithm, similar to the ones
presented in Section 3, that uses at most log ∆ probabilities requires time Ω(

√
∆/ log ∆) if

arbitrary correlations are permitted.

I Proposition 11. Any uniform local broadcast algorithm that repeats a procedure consisting
of l probabilities requires expected time Ω(

√
∆/l) in graph with ∆ = n− 2 even if τ =∞.

Proof. Denote the procedure that is being used by the algorithm by P . Assume for simplicity
that

√
∆ is a natural number. We take as a graph a connected pair of stars.

The fist star has arms v1, v2, . . . , v∆ and center at u. In the fist star, arms v1, v2, . . . , v∆
are connected to center u by reliable edges. The second star has arms v1, v2, . . . , v∆ and
center at v. In the second star, connection from v1 to v is reliable and all other connections
are unreliable. Note that by such construction, graph G is connected. All nodes, except v,
are initially holding a message.

The single distribution is defined in the following way. Let ei = min{1/pi,∆} for

i = 1, 2, . . . , l be the estimates used by procedure P. Let ēi =
{

1 if ei ≥
√

∆,
n otherwise .

Let s be

a number chosen uniformly at random from {1, 2, . . . , l}. In our distribution, the degree of
v in step t is dt = ē1+rt , where rt is the remainder of t + s modulo l. More precisely, in
step t in the distribution exactly dt − 1 edges chosen at random among edges between v and
v2, v3, . . . , v∆ are activated. Observe that before the algorithm starts, the distribution of
the degree of node v in each step is simply a uniform number from multiset {ē1, ē2, . . . , ēl}.
But after step 1 the sequence of degrees of v becomes deterministic and depends only on
the value s of the shift. The dependencies are designed in such a way that if s = l (which
happens with probability 1/l) then in any step t of the algorithm, the probability pt used
by the algorithm satisfies either pt · dt ≥

√
∆ or pt · dt < 1/

√
∆. This means by Lemma 1

that the success probability is at most 1/
√

∆ in each step and hence by the union bound
the success probability in the whole procedure is at most l/

√
∆. Thus with probability at

least 1/l the algorithm has to repeat procedure P at least
√

∆/(2l) times to get a constant
probability of success. Hence the expected time is Ω(

√
∆/l). J

5.2 Locally Limited Changes
The previous section shows that under an adversary that is allowed to use arbitrary correla-
tions then any simple procedure need polynomial time in the worst case.

In this section we want to consider the adversary that can use correlations but cannot
change the degree too much in successive steps. Of course once every at most τ steps the
adversary is allowed to define a completely new distribution over the unreliable edges. We
want to argue that it is possible to build a simple algorithm resistant to such an adversary.
Intuitively the changes of the degree are problematic only if the changes are by a large
(non-constant) factor. Note by Lemma 1 that if we perturb the effective degree by only a
constant factor then the bound also changes only by a constant factor. Hence in order to
design an algorithm that is immune to such changes we should add more “coverage” to the
small-degree nodes. We do this by enhancing each phase of algorithm RLB with additional
steps in which we assume that the effective degree of a node is small. The adversary may try
to avoid the successful transmission in these steps by changing the degree (the adversary
knows the probabilities used by the algorithm). But having the restriction on the distance
the adversary can move the degree allows us to define overlapping “zones” such that in two
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consecutive steps we are sure to find the degree in one of the zones. We also have to make
sure that the whole phase of the new algorithm fits into τ steps.

Now we present algorithm RLBC (Robust Local Broadcast with Correlations). We first
show that the algorithm works under (l, τ)–deterministic adversary that can change at most
l edges adjacent to each node per round and all the edges from E′ \E once every at most τ
rounds. Our algorithm will be resistant to deterministic adversary that can change at most
τ∆1/(τ−o(τ)) edges adjacent to each node in every step.

Then we show that it also works under restricted fading adversary with parameters τ and
l. Restricted fading adversary can change the distribution arbitrarily once every at most τ
steps, if the distribution is not changed then the expected change of the degree of any node
can be at most l. Under these restrictions, the adversary can design arbitrary correlations
between successive steps. We show that RLBC works with restricted fading adversary with l
of at most ∆1/(τ−o(τ)).

1 Algorithm: RLBC(r, τ)
2 τ̄ ← min{dlog2e ∆/2e, τ}; a← dτ̄ / log2e τ̄e; k ← d∆1/(τ−2a)e
3 e1 ← k · a; e2 ← k2 · τ · a
4 repeat 2r times
5 RLB(1, τ̄ − 2a)
6 repeat a times
7 Uniform (1, 1/e1)
8 Uniform (1, 1/e2)

I Theorem 12. If τ ≥ 1000 Algorithm RLBC(8edln(1/ε)∆1/τe, τ) solves local broadcast in
the presence of

(⌊
∆

1
τ−2dτ/ log2e τe

⌋
τ/2, τ

)
-deterministic adversary in time O(∆1/ττ log(1/ε))

with probability at least 1− ε.

Proof Idea. For a fixed receiver v we want to show that the probability that v receives the
message in one of the r cycles (each 2 iterations of loop in Lines 7− 11 is one cycle) is at
least ps = 1

8ek . We do it by separately considering two cases depending on degree dt(v),
where t is the first step of the considered cycle. If dt(v) ≥ 2l2 we can show that the degree
cannot change in total in this cycle by more than a factor of 2 (here we use the restriction
on the adversary) in which case we can show that in one of the steps of procedure RLB the
probability of success is at least ps. For smaller degrees dt(v) < 2l2 we pick a pairs of steps
such that in the first step of the pair the algorithm uses probability 1/e1 and in the second
it uses 1/e2. Then we observe that either in the first step of the pair the degree is at most 2l
in which case broadcasting with probability 1/e1 gives probability ps/a of success. In the
opposite case the degree is at least l (here we use the restriction on the adversary) in the
second step and broadcasting with probability 1/e2 gives probability ps/a of success. Since
we have a such pairs the claim follows. J

The case with deterministic adversary can be generalized to stochastic restricted adversary.

I Theorem 13. If τ ≥ 1000 Algorithm RLBC(16edln(1/ε)∆1/τe, τ) solves local broadcast in
the presence of l-restricted fading adversary using correlations with l =

⌊
∆

1
τ(1−1/ log2e τ)

⌋
/4

in time O(∆1/ττ log(1/ε)) with probability at least 1− ε.
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Proof Idea. We show that if an algorithm works with 2lτ -deterministic adversary then it
also works with l-stochastic adversary with correlations. We note that by Markov’s inequality
with probability at least 1/(2τ) the degree of the receiver changes by at most 2lτ . By the
union bound with probability at least 1/2, the degree does not change by more then 2lτ
throughout the whole cycle of length τ . For such cycles, the analysis of the deterministic
case gives us probability ps of success. Thus in the stochastic case the probability of success
in each cycle is at least ps/2. J
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Abstract
With the advent of parallel architectures, distributed programs are used intensively and the
question of how to formally specify the behaviors expected from such programs becomes crucial.
A very general way to specify concurrent objects is to simply give the set of all the execution
traces that we consider correct for the object. In many cases, one is only interested in studying a
subclass of these concurrent specifications, and more convenient tools such as linearizability can
be used to describe them.

In this paper, what we call a concurrent specification will be a set of execution traces that
moreover satisfies a number of axioms. As we argue, these are actually the only concurrent
specifications of interest: we prove that, in a reasonable computational model, every program
satisfies all of our axioms. Restricting to this class of concurrent specifications allows us to
formally relate our concurrent specifications with the ones obtained by linearizability, as well as
its more recent variants (set- and interval-linearizability).
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1 Introduction

A common setting to study distributed computing is the one of asynchronous processes
communicating through shared objects. It is of particular interest in the area of fault-tolerant
distributed computing [9], where we assume that some processes might crash during the
computation. The goal is to determine which concurrent tasks are solvable by wait-free
programs [8], depending on which shared objects the processes are allowed to use. In this
context, the question of how to formally specify the behavior of the shared objects arises:
what we want is an abstract, high-level specification, that does not refer to a particular
implementation of the object. To illustrate our discussion, let us first introduce a toy (and
running) example which we call the count object.
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1.1 Counting processes

When a process calls the count object, it should return the number of processes that are
currently calling the object in parallel. This is similar, although not completely identical,
to Java’s Thread.activeCount method, which returns “an estimate of” the current number
of running threads. A typical execution of this object is depicted below. Each of the three
processes P0, P1 and P2 is calling the count object twice. The horizontal axis represents
the real-time scheduling of the operations and the intervals between square brackets depict
the time span during which a process is executing the count() method: when two intervals
vertically overlap, the processes are running the method concurrently. For instance, the last
three calls are concurrent: the three processes should see each other and all return 3.

count() 2

count() 2

count() 1

count() 3

count() 3

count() 3

P0

P1

P2

The specification of count seems to be clear on this example. But what about the behaviors
depicted below? In execution (a), process P1 responds 3 since it has seen the two other
processes; but there is no point in time when the three processes are running concurrently.
Execution (b) represents the same situation, but this time P1 has seen two different calls
of P0. In execution (c), the two calls are concurrent, but for a very short time, so they did
not manage to see each other. In execution (d), process P1 managed to see process P0, but
not reciprocally. All of these executions may or may not seem correct depending on what
exact specification we have in mind. One could for example ask for a variant of the count
object that accepts executions (a) and (c), but rejects (b) and (d), and so on.

count() 2

count() 3

count() 2

P0

P1

P2

(a)

count() 2

count() 3

count() 2
P0

P1

P2

(b)

count() 1

count() 1
P0

P1

P2

(c)

count() 1

count() 2
P0

P1

P2

(d)

1.2 Specifying concurrent objects

A simple but very general way of specifying such objects was proposed by Lamport [13].
The specification of a concurrent object is simply the set of all the execution traces that we
consider correct for this object. For the count object example, if we draw every possible
diagram as in the pictures above and decide which ones we want or not, we will have a
well-specified object. Of course, we need a mathematical abstraction of these pictures, we
represent them by execution traces (Lamport originally used the happens-before partial order;
the trace formalism used here was introduced by Herlihy and Wing [10]).
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count() 1

count() 2

count() 2

count() 2
P0

P1

P2

T = i0 · r1
0 · i2 · i1 · r2

1 · i0 · r2
2 · r2

0

(e)

An implicit assumption of this representation is that invocations and responses are totally
ordered according to some global time clock. Another assumption is that only the relative
position of the events in time matters: the intervals can be moved around as long as the
overlapping pattern is conserved. In particular, we cannot tell how long processes overlap, so
execution (c) is indistinguishable from an execution where P0 and P1 are fully concurrent.

Although very powerful in terms of expressiveness, this idea of specifying a concurrent
object by giving the set of all correct executions can be cumbersome to work with in practice.

Very often, one is only interested in studying concurrent objects that have a “sequential
flavor”, i.e., objects that are concurrent versions of sequential data structures, such as lists or
queues. In this scenario, it is usually better to use one of the many correctness criteria found
in the literature such as atomicity [16], sequential consistency [12], serializability [19], causal
consistency [20], or linearizability [10]. In fact, those correctness criteria can be regarded as
convenient ways of defining concurrent specifications in the sense of Lamport. For example,
given the sequential specification σ of some object (say, a list), we can generate the set
Lin(σ) of linearizable concurrent traces, that is, the set of correct executions of a concurrent
list (according to linearizability). Thus, Lin(σ) is a concurrent specification (in the sense of
Lamport) which is parameterized by a sequential specification σ. Note that σ is a much
better-understood mathematical object than general concurrent specifications.

The drawback of these methods is that they cannot specify every concurrent object. The
original paper on linearizability [10] already remarked that Lamport’s approach is more
general, since it can express non-linearizable behavior. The count object described above is
a typical example of an object that exhibits intrinsically concurrent behavior, which cannot
be specified by sequential means. Many other examples are found in the area of distributed
computability [9], such as immediate snapshot, consensus or set-agreement objects. Another
notable example is Java’s Exchanger object. In order to specify those objects, many variants
of linearizability have been defined recently: local linearizability [6], set-linearizability [17]
(a.k.a. concurrency-aware linearizability [7]) and interval-linearizability [2]. The latter notion
is the most expressive one; in particular, they show that their framework allows to specify
every concurrent task, in the sense of distributed computability [9].

1.3 Contributions
In this paper, we define a notion of concurrent specification which is based on Lamport’s
idea of a set of correct execution traces; but we moreover impose a number of axioms that
should hold on this set. We advocate the relevance of this definition as follows.

Firstly, we define a reasonable computational model (thought of as the operational
semantics of a concurrent programming language with shared objects), and prove that in this
model, every program satisfies our axioms (Theorem 12). This means that our concurrent
specifications are the only relevant ones: a specification that does not verify our axioms could
never be implemented by a program. Thus, imposing those axioms is not very restrictive;
rather, they are desirable properties that concurrent specifications should satisfy.
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Secondly, this particular set of axioms allows us to relate formally our specifications and
the linearizability-based ones, by constructing Galois connections between them (Theorem 16).
In particular, as a corollary, we obtain that our concurrent specifications coincide with the
ones that are definable using interval-linearizability. Beyond the applications that we show
here, this theorem is also interesting in itself: it states formally in what sense linearizability
is the canonical way to turn a sequential specification into a concurrent one. Indeed, given a
sequential specification σ, linearizability gives the smallest possible concurrent specification,
among the ones that both contain σ and satisfy our axioms.

1.4 Plan
We begin by introducing our definition of concurrent specification (Section 2). Then, we
provide an operational model that validates our axioms (Section 3), and we establish Galois
connections with various notions of linearizable specification (Section 4). Finally, we conclude
(Section 5).

2 Concurrent specifications

In the rest of the paper, we suppose fixed a number n ∈ N of processes and write [n] =
{0, 1, . . . , n − 1} for the set of process names (a process is identified by its number). We
also suppose fixed a set V of values which can be exchanged between processes and objects
(typically V = N). The set A of possible actions for an object is defined as

A = {ixi | i ∈ [n], x ∈ V} ∪ {ryi | i ∈ [n], y ∈ V}

An action is thus either
ixi : an invocation of the object by the process i with input value x,
ryi : a response of the object to the process i with output value y.

An execution trace is a finite sequence of actions, and we write T = A∗ for the set of those;
we also write ε for the empty trace and T · T ′ for the concatenation of two traces T and T ′.

Given a process i ∈ [n], the i-th projection πi(T ) of a trace T ∈ T is the trace obtained
from T by removing all the actions of the form ixj or rxj with j 6= i. A trace T ∈ T is
alternating if for all i ∈ [n], πi(T ) is either empty or it begins with an invocation and
alternates between invocations and responses, i.e., using the traditional notation of regular
expressions:

πi(T ) ∈
( ⋃
x,y∈V

ixi · r
y
i

)∗
·
( ⋃
x∈V

ixi + ε
)

In the remaining of the paper, we will only consider alternating traces. If πi(T ) ends with an
invocation, we call it a pending invocation. An alternating trace T is complete if it does not
have any pending invocation.

I Definition 1. A concurrent specification σ is a subset of T which is
(1) alternating: every T ∈ σ is alternating,
(2) prefix-closed: if T · T ′ ∈ σ then T ∈ σ,
(3) non-empty: ε ∈ σ,
(4) receptive: if T ∈ σ and πi(T ) has no pending invocation, then T · ixi ∈ σ for every x ∈ V ,
(5) total: if T ∈ σ and πi(T ) has a pending invocation, there exists x ∈ V such that T · rxi ∈ σ,
(6) has commuting invocations: if T · ixi · i

y
j · T ′ ∈ σ then T · iyj · ixi · T ′ ∈ σ,
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(7) has commuting responses: if T · rxi · r
y
j · T ′ ∈ σ then T · ryj · rxi · T ′ ∈ σ,

(8) is closed under expansion: if T · ryj · ixi · T ′ ∈ σ with i 6= j then T · ixi · r
y
j · T ′ ∈ σ.

We write CSpec for the set of concurrent specifications.

A concurrent specification σ is the set of all executions that we consider acceptable: a
program implements the specification σ if all the execution traces that it generates belong
to σ (this will be detailed in Section 3). The axioms (1-4) are quite natural and commonly
considered in the literature. They can be read as follows: an object gives answers to
invocations of processes and a process has to wait for the response before invoking again the
object (1), an object can do one action at a time (2), an object can do nothing (3), invocations
of objects are always possible (4). The axiom (5) states that objects always answer and in a
non-blocking way; this is a less fundamental axiom and more of a design choice, since we
want to model wait-free computation. Note that receptivity (4) does not force objects to
accept all inputs: we could have a distinguished “error” value which is returned in case of an
invalid input. Similarly, an object with several inputs, or several interacting methods (for
example, a stack) can be modeled by choosing a suitable set of values V.

The conditions (6), (7) and (8) might seem more surprising, and will be crucial to establish
the Galois connection of Section 4. For example, one could expect to specify an object whose
behavior depends on which process was invoked first; but that would break condition (6).
As we show in Section 3, in an asynchronous model, no program can implement such a
specification. Let us explain intuitively why the “closure under expansion” condition holds.
Suppose T · ryj · ixi · T ′ is an acceptable execution of the object we are specifying. Then, in the
trace T · ixi · r

y
j · T ′, where process i invokes its operation a little bit earlier, i might be idle

for a while and only start computing after j has returned, resulting in the same behavior.
Thus, the execution T · ixi · r

y
j · T ′ should also be considered acceptable. Alternatively, we can

also think of it as process j being idle for a while before it returns. Applied to the count
object example, the expansion property implies that execution (c) must be accepted, since it
is obtained by expanding a correct sequential execution. This expansion condition reflects
the idea that invocations and responses do not correspond to actual actions taken by the
processes, but rather define an interval in which they are allowed to take steps.

The conditions (6) and (7) above ensure that two invocations (resp. two responses)
“commute”: we say that two alternating traces T, T ′ ∈ T are equivalent, written T ≡ T ′, if
one is obtained from the other by reordering the actions within each block of consecutive
invocations or consecutive responses. Generally, in the rest of the paper, we are only interested
in studying traces up to equivalence.

It will prove quite useful to consider operations in traces, which are pairs consisting of an
invocation and its matching response. Formally,

I Definition 2. Consider an alternating trace T = T0 · · ·Tk−1. An operation of process i
in T is either

a complete operation: a pair (p, q) such that Tp = ixi and Tq = ryi and Tq comes right after
Tp in πi(T ), or
a pending operation: a pair (p,+∞) where Tp is a pending invocation,

where p, q ∈ N, with 0 ≤ p, q < k, are indices of actions in the trace. We write opi(T ) for the
set of operations of the i-th process and op(T ) for the set of all operations.

The operations of a trace can be ordered by the smallest partial order � such that (p, q) ≺
(p′, q′) whenever q < p′. This partial order is called precedence and two incomparable
operations are called overlapping or concurrent. Note that for every i ∈ [n], (opi(T ),�) is
totally ordered.
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3 A computational model

In this section, we provide an operational model for concurrent programs communicating
through shared objects. The model itself is similar to other trace-based operational semantics
that can be found in the literature [4]. We assume given a set O of objects: they might be,
for instance, concurrent data structures that have already been implemented, and that our
programs are able to use in order to compute and communicate. We do not want to depend
on a particular implementation of these objects, but on their specification. Thus, each object
comes with its concurrent specification (as in Definition 1), which is the set of behaviors that
it might exhibit. Note that our model does not have any special construct for reading and
writing in the shared memory: we assume that the memory itself is given as an object in O,
with an appropriate specification. Thus, the only meaningful action a program can take is to
call one of the objects; and possibly do some local computation to determine what the next
call should be.

To abstract away the syntax of the programming language, we use an automata-like
representation, which roughly corresponds to the control-flow graph of the program. In a
given state of the automaton, the decision function δ indicates which is the next object
that the program will call, and the transition function τ says what the next state will be
depending on the return value of the call. The example below shows an implementation
of the count object for two processes communicating using a wait-free variant of Java’s
exchanger object: either two processes call the exchanger concurrently and swap their values,
or the process fails after some timeout and gets back its own value.

count(x) {
y = exchanger (x);
if (y == x)

return 1;
else

return 2;
}

x = 0
y = 0
δ = 1

x = 0
y = 1
δ = 2

x = 1
y = 0
δ = 2

x = 1
y = 1
δ = 1

x = 0
δ = (exchanger, 0)

x = 1
δ = (exchanger, 1)

⊥τ(0) τ(1)

τ(0) τ(1) τ(0) τ(1)

We fix a set O of objects, along with their concurrent specification spec(o) ∈ CSpec for
each o ∈ O. Here, a program (i.e., the implementation of an object) is basically a piece of
code which takes a value as input, makes several calls to the objects in O (using algebraic
operations to combine their results) and finally returns a value. Formally,

I Definition 3. A program is given by:
a (possibly infinite) set Q of local states containing an idle state ⊥ ∈ Q,
a decision function δ : Q \ {⊥} → (O × V) t V,
a transition function τ : Q× V → Q \ {⊥}.

The idle state is the one where the program is waiting to be called with some input value x,
in which case it will go to state τ(⊥, x). After that, the decision function gives the next step
of the process depending on the current state: either call some object with some input value,
or terminate and output some value. In the case where an object is called, the transition
function gives the new local state of the process, depending on the previous state and the
value returned by the object.

A protocol P is given by a program Pi = (Qi,⊥i, δi, τi) for each process i ∈ [n]. The
global state of a protocol P is an element q = (q0, . . . , qn−1) of Q =

∏
iQi, consisting of a
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state for each process Pi. The initial state is qinit = (⊥0, . . . ,⊥n−1). We now describe the
set A of possible actions for P , as well as their effect ∆ : Q×A → Q on global states.
ixi : the i-th process is called with input value x ∈ V . The local state qi of process i is changed

from ⊥i to τi(⊥i, x):

∆(q, ixi ) = q[i← τi(⊥i, x)] (9)

where the state on the right is q where qi has been replaced by τi(⊥i, x).
i(o)x

i : the i-th process invokes the object o ∈ O with input value x ∈ V . This does not have
any effect on the global state:

∆(q, i(o)xi ) = q (10)

r(o)x
i : the object o ∈ O returns some output value x ∈ V to the i-th process. The local state
of process i is updated according to its transition function τi:

∆(q, r(o)xi ) = q[i← τi(qi, x)] (11)

rx
i : the i-th process has finished computing, returning the output value x ∈ V. It goes back

to idle state:

∆(q, rxi ) = q[i← ⊥i] (12)

The actions of the form ixi and rxi (resp. i(o)xi and r(o)xi ) are called outer (resp. inner)
actions. Given a trace T ∈ A∗ and an object o, we denote by To, called the inner projection
on o, the trace obtained from T by keeping only the inner actions of the form i(o)xi or
r(o)yi . The function ∆ is extended as expected as a function ∆ : Q × A∗ → Q, i.e.,
∆(q, T · T ′) = ∆(∆(q, T ), T ′) and so on. A trace is valid if at each step in the execution, the
next action is taken according to the decision function δ. Formally:

I Definition 4. A trace T ∈ A∗ is valid when for every strict prefix U of T , writing
T = U · a · V and q′ = ∆(qinit, U), with a ∈ A, we have:

either a = ixi and q′i = ⊥i;
or a = ryi and q′i 6= ⊥i and δi(q′i) = y;
or a = i(o)xi and q′i 6= ⊥i and δi(q′i) = (o, x);
or a = r(o)yi and q′i 6= ⊥i.

Moreover, we require that for every object o ∈ O, the inner projection To belongs to spec(o).
The set of valid traces for P is written TP ⊆ A∗.

A protocol P is wait-free if there is no valid infinite trace (i.e., all its prefixes are valid)
involving only inner-i-actions after some position. Given a trace T ∈ A∗, we write π(T ) for
the trace obtained by keeping only outer actions.

I Definition 5. The semantics of a protocol P is the set of traces JP K = {π(T ) | T ∈ TP }
and P implements a concurrent specification σ whenever JP K ⊆ σ, i.e., all its outer traces
are valid with respect to σ.

We will now show that if P is wait-free, then JP K itself is a concurrent specification
(Theorem 12). This means that in our model, the set of traces produced by a program
necessarily satisfies all the axioms of concurrent specifications. The wait-free assumption is
only used to prove totality; all the other axioms are true for any program. In the following,
we use uppercase letters T, T ′ to denote traces containing only outer actions, and lowercase
letters w,w′, r, s, t to denote traces that might contain both inner and outer actions.
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I Lemma 6. The following commutativity properties hold:
commutativity of invocations: for all T, T ′ ∈ A∗, i, j ∈ [n] and x, y ∈ V,

T · ixi · i
y
j · T

′ ∈ JP K implies T · iyj · ixi · T ′ ∈ JP K,

commutativity of responses: for all T, T ′ ∈ A∗, i, j ∈ [n] and x, y ∈ V,

T · rxi · r
y
j · T

′ ∈ JP K implies T · ryj · rxi · T ′ ∈ JP K.

Proof. Assume there is a word w ∈ TP such that π(w) = T · ixi · i
y
j · T ′. So, w is of the form

r · ixi ·s · i
y
j · t where s does not contain outer actions. We will show that w′ = r · iyj · ixi ·s · t ∈ TP ,

and the result follows. Since the inner projections are the same, the specifications of the
objects are satisfied. We have to show that the conditions regarding the decision functions
are respected. Write q = ∆(qinit, r) and q′ = ∆(qinit, r · ixi · s). Then since w is valid, we have
qi = ⊥i and q′j = ⊥j .

Claim 1: s does not contain any action of process j. Indeed, only an outer action ryj can
set j’s local state to ⊥j , and s has no outer action: so j’s local state is ⊥j during all of s.
But inner actions can only be valid when the local state is not ⊥j .

Claim 2: Let u be a prefix of s and q′′ = ∆(qinit, r · ixi · u) = ∆(q, ixi · u). Then
∆(q, iyj · ixi · u) = q′′[j ← τj(⊥j , y)]. This is proved by induction on the length of the prefix u
and using Claim 1.

Claim 3: ∆(q, ixi · s · i
y
j ) = ∆(q, iyj · ixi · s). Take u = s in Claim 2.

Finally, let u is a prefix of w′ = r · iyj · ixi · s · t. If u ends in r or (by Claim 3) in t, the
global state after executing it is the same as for w, so the validity condition is verified. If
u ends in s, then by Claim 2 the global state only differs by its j component, but since by
Claim 1 the next action is not from j, the validity condition is also verified.

For commutativity of responses, the situation is very similar: suppose that w = r · rxi · s ·
ryj · t ∈ TP , and show that w′ = r · s · ryj · rxi · t ∈ TP . The analogue of Claim 1 says that there
is no action of process i in s. J

I Lemma 7. JP K has the expansion property.

Proof. The proof is again very similar to that of Lemma 6. Assume that there is a word
w ∈ TP such that π(w) = T · ryj · ixi · T ′. Thus, w is of the form r · ryj · s · ixi · t, where s does
not contain outer actions.

Then we have two ways of making the invocation and response commute:
either show that w′ = r · ixi · r

y
j · s · t ∈ TP , as in the proof of the commutativity of

invocations,
or show that w′′ = r · s · ixi · r

y
j · t ∈ TP , as in the proof of the commutativity of responses.

These two possible proofs correspond to the two ways that we can view the expansion
property that were explained in Section 2: either process i is invoked sooner and idles for a
while (first proof), or process j idles before returning (second proof). J

The key reason that makes Lemmas 6 and 7 go through is the fact that the actions ixi
and ryi do not have any effect besides starting a process or terminating it. Taking these
steps does not communicate any information to the other processes. For example, a process
might start running and then wait for a while before doing any “real” computation. Such a
process cannot be seen by the others. This is an arbitrary choice in how we designed our
computational model, but it reflects what really happens in practice: calling a function,
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or returning a value, both consume some amount of clock cycles from the processor, and
they do not usually have any effect on the shared memory. Thus, one could possibly have a
process which has started running, but was immediately preempted by the scheduler before
it could perform any meaningful operation.

I Lemma 8. JP K is closed under prefix.

Proof. TP is closed under prefix since for all o ∈ O, spec(o) is closed under prefix by definition,
and the conditions on the decision functions are also preserved. Then, JP K is also closed
under prefix. J

I Lemma 9. Every trace T ∈ JP K is alternating.

Proof. T must begin by an invocation because qiniti = ⊥i and the only i-action that can
occur with local state ⊥i is ixi . We then prove by induction on the length of w ∈ A∗ that
∆(qinit, w)i 6= ⊥i if the last outer i-action in w was an invocation, and ∆(qinit, w)i = ⊥i if it
was a response. This implies that no two invocations nor two responses by the same process
can occur consecutively in a valid trace. J

I Lemma 10. JP K is receptive.

Proof. Assume T ∈ JP K where πi(T ) does not have a pending invocation. Let w ∈ TP such
that π(w) = T . The last outer i-action in w is a response, and thus we have τ(qinit, w)i = ⊥i
(cf. proof of Lemma 9). So w · ixi is valid for all x, and T · ixi ∈ JP K. J

I Lemma 11. JP K is total.

Proof. Assume T ∈ JP K where πi(T ) has a pending invocation. Let w ∈ TP such that
π(w) = T . The last outer i-action in w is an invocation, so the local state of i after executing
w is qi 6= ⊥i. If δi(qi) = y ∈ V, then w · ryi is a valid execution, which concludes the proof.
Otherwise, δi(qi) = (o, x). Then w · i(o)xi is valid because the object o is receptive. And since
o is total, there exists y such that w · i(o)xi · r(o)

y
i is valid. The new local state of i after

executing this trace is q′i 6= ⊥i, so we can iterate the previous reasoning. Eventually, we
will reach some local state q′′i with δi(q′′i ) = y′′ ∈ V, because P is wait-free (i.e., there is no
infinite execution ending with only inner i-actions). J

Putting all the previous lemmas together, we obtain Theorem 12:

I Theorem 12. The semantics JP K of a wait-free protocol is a concurrent specification.

This theorem ensures that the axioms of concurrent specifications are reasonable, in the
sense that they are validated in our model. Thus, our concurrent specifications are the only
ones of interest: specifications that do not satisfy these axioms cannot be implemented. For
instance, this theorem implies that any protocol implementing a count-like object must
accept execution (c), since it is obtained by expanding a valid sequential execution, and the
protocol’s behavior is closed under expansion.

4 Linearizability

The notion of linearizability has been introduced by Herlihy and Wing [10] as a correctness
criterion for concurrent implementations of sequential data structures. Linearizability is very
popular thanks to its locality property, which allows programmers to reason modularly about
each object. Here, we adopt a slightly unusual point of view on linearizability: instead of
a correctness criterion, it is a map that turns a sequential specification into a concurrent
specification, in our sense.
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For ease of presentation, we begin by introducing a general notion called L-linearizability
which subsumes several variants found in the literature. It is actually quite straightforward
to check that the usual notions of linearizability, set-linearizability and interval-linearizability
are recovered by instantiating L with the right set of traces. Thus, the definition of
L-linearizability should not be regarded as a contribution of this paper; it is merely a
presentation trick to avoid dealing with three variants of the same definition.

The main result of this section is stated in Theorem 16. We then explore its consequences
in three particular cases: standard, set- and interval-linearizability.

4.1 L-specifications

We first introduce a notion of specification, akin to the one of Definition 1, which is
parameterized by a set L of traces, which we abstractly consider as the “linear” ones. To
recover the standard notion of linearizability, we let L be the set of sequential traces, in
which case L-specifications correspond to sequential specifications.

We always require L to be alternating, prefix-closed, non-empty and
receptive for complete traces: if T ∈ L is complete then T · ixi ∈ L for all i ∈ [n] and x ∈ V ,
fully total: if T ∈ L and πi(T ) has a pending invocation then T · rxi ∈ L for every x ∈ V.

Intuitively, these conditions mean that L is a set of traces which have some specific
“shape” (e.g., being sequential), but it does not say anything about the values. The set of
sequential traces is the smallest set satisfying those properties. Now, given such a set L, an
L-specification says which execution traces are correct or not, but only among those of L.

I Definition 13 (L-specification). An L-specification σ is a set of traces in L which is
prefix-closed, non-empty and

receptive within L: for all T ∈ σ, i ∈ [n] and x ∈ V, if T · ixi ∈ L then T · ixi ∈ σ,
total: if T ∈ σ and πi(T ) has a pending invocation, there exists x ∈ V such that T · rxi ∈ σ.

We write SpecL for the set of L-specifications.

In particular, a concurrent specification is an L-specification for L the set of all alternating
traces, such that conditions 6, 7 and 8 are moreover satisfied.

4.2 Comparison with concurrent specifications

In order to compare L-specifications and concurrent ones, we define two functions as below:

SpecL CSpec

LinL

UL

a

The function UL is defined by keeping only linear traces in a specification: UL(τ) = τ ∩ L.
The converse will require us to consider traces which are linearizable with respect to L.

We write T  T ′ when the trace T ′ can be obtained from the trace T by applying the
following series of local transformations (forming a string rewriting system):

ixi · i
y
j  iyj · ixi rxi · r

y
j  ryj · rxi ixi · r

y
j  ryj · ixi for i 6= j.
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This amounts to contracting the intervals, the opposite of expansion. In the picture below,
T is represented in black with square brackets, T ′ in blue with round brackets:

P0

P1

P2

I Definition 14. A trace T ∈ T is L-linearizable w.r.t. an L-specification σ if there exists a
completion T ′ of T , obtained by appending responses to the pending invocations of T , and a
trace S ∈ σ, such that T ′  S.

It is not difficult to check that the above definition is equivalent to the usual one of [10];
this local presentation as a rewriting system is sometimes used in linearizability proofs using
Lipton’s left/right movers [14]. A minor difference is that the completion T ′ of T is usually
allowed to remove some of the pending invocations of T . This is not useful here since all our
specifications are total: a response to the pending invocations can always be found. Finally,
given an L-specification σ, we define LinL(σ) as the set of traces which are L-linearizable
with respect to σ. We now show that it is a concurrent specification.

I Proposition 15. Let σ ∈ SpecL be an L-specification. Then

LinL(σ) = {T ∈ T | T is linearizable with respect to σ}

is a concurrent specification.

Proof (Sketch). We prove the conditions 6, 7 and 8 of Definition 1, which are the ones of
interest in this paper. The closure under prefix is a bit technical.

Commutativity of invocations. Assume T = U · ixi · i
y
j ·V ∈ LinL(σ). So there is a sequence

of responses T̂ and S ∈ σ such that T · T̂  S. By rewriting one step (i 6= j because of
alternation), we get U · iyj · ixi · V · T̂  T · T̂  S. Thus, U · iyj · ixi · V ∈ LinL(σ).
Commutativity of responses is similar.
For closure under expansion, assume T = U · ryj · ixi · V ∈ LinL(σ) with i 6= j, and let T̂
and S ∈ σ be such that T · T̂  S. We want to show that T ′ = U · ixi · r

y
j · V ∈ LinL(σ).

But since T ′ · T̂  T · T̂  S, we are done. J

Proposition 15 shows that all the axioms that we impose on our concurrent specifications
are reasonable in the sense that they are naturally enforced by all the specification tech-
niques based on linearizability. Thus, linearizability is a canonical way of turning a weaker
specification σ (e.g., one specifying only sequential behaviors) into a concurrent specification:

I Theorem 16. The functions LinL and UL are monotonous w.r.t. inclusions, and form a
Galois connection: for every σ ∈ SpecL and τ ∈ CSpec,

LinL(σ) ⊆ τ ⇐⇒ σ ⊆ UL(τ).

Proof. The monotonicity of UL is trivial. For LinL, assume σ ⊆ σ′ and T ∈ LinL(σ).
Let S ∈ σ be a linearization of T . Since S ∈ σ′, we also have T ∈ LinL(σ′).

Now let σ and τ as in the theorem and assume LinL(σ) ⊆ τ . By monotonicity of UL,
UL(LinL(σ)) ⊆ UL(τ). But σ ⊆ UL(LinL(σ)) since every T ∈ σ is in L and is its own
linearization (if T has pending invocations, we can add any valid response using totality).

Conversely, assume σ ⊆ UL(τ), and let T be a linearizable trace w.r.t. σ. Let T ′ be an
extension of T and S ∈ σ ⊆ UL(τ) ⊆ τ such that T ′  S. So we can go from S to T ′ through
a sequence of expansions and commutations, which gives us T ′ ∈ τ by applying axioms (6-8)
of concurrent specifications, and by prefix closure, T ∈ τ . J
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In general, the posets SpecL and CSpec ordered by inclusion are not isomorphic, but the
above theorem shows that the next best thing one could expect happens: every L-specification
has a canonical approximation as a concurrent specification and conversely. Note that Galois
connections are widely used for comparing semantics of programs and deriving program
analysis methods [3], and are a particular case of adjunctions, which have been promoted as
the canonical way of comparing models for concurrency [18].

The right-to-left implication of Theorem 16 can be understood as follows: LinL(σ) is
the smallest concurrent specification which contains σ. Notice that the axioms (6-8) are
crucial here: if one of them were missing, we could produce specifications smaller than or
incomparable to LinL(σ). In fact, the theorem states that LinL is a kind of free construction:
starting with the traces in σ, we add all the traces that are required to be in the specification
by our axioms, and no other trace than the required ones.

4.3 Sequential linearizability
A trace T is sequential when the poset (op(T ),�) is totally ordered, we write seq for the
set of sequential traces. A sequential specification is a seq-specification (i.e., Definition 13
with L = seq). Note that a sequential specification is not a particular case of concurrent
specification: it only satisfies the receptivity condition of Definition 13, not the stronger
one of Definition 1. Intuitively, this means a sequential specification does not specify which
behaviors are allowed when some of the processes run in parallel. Sequential linearizability is
thus a canonical way to extend a sequential specification to a concurrent one.

The notion of seq-linearizability coincides with the usual notion of linearizability, that we
call here sequential linearizability to avoid confusion. The Galois connection of Theorem 16
says that Linseq(σ) is the smallest concurrent specification whose set of sequential traces
contains σ. Moreover, it is a Galois insertion:

I Proposition 17. For every σ ∈ Specseq, we have Useq(Linseq(σ)) = σ.

Proof. The inequality σ ⊆ Useq(Linseq(σ)) is implied by the Galois connection. Let T ∈
Useq(Linseq(σ)), i.e., T is both sequential and linearizable w.r.t. σ. Let T ′ be a completion of
T and S ∈ σ such that T ′  S. Since T ′ is sequential, it is a normal form of the rewriting
system (i.e., no rule can be applied): so we must have T ′ = S. Moreover S is required to be
in σ, so T ′ ∈ σ and by prefix-closure, T ∈ σ. J

This implies that Specseq is a subposet of CSpec, which justifies calling linearizable a concurrent
specification in the image of Linseq. This is however a strict subposet, as an application of
Theorem 16:

I Proposition 18. There are non-linearizable concurrent specifications.

Proof. From Proposition 17, any linearizable concurrent specification τ = Linseq(σ) satisfies
Linseq(Useq(τ)) = τ . Now, consider the concurrent specification set-count ⊆ T which is the
set of traces whose set of operations has a partition (Ei)i∈I such that every e, e′ ∈ Ei are
concurrent and their response value is the cardinal of Ei.

Informally, Ei is a set of pairwise-concurrent processes that “saw” each other. Note that,
because of expansion, we cannot require that all processes running in parallel should see each
other: the execution (b) is accepted. All other executions (a), (c), (d) and (e) are rejected. In
a sequential trace T ∈ set-count, every response returns 1. Thus, Linseq(Useq(set-count))
only contains traces whose response is 1. But set-count also has traces with different
responses, e.g. ii · ij · r2

j · r2
i . Therefore, set-count is not linearizable. J
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4.4 Set-linearizability
The idea behind set-linearizability [17] is to specify what happens when a set of processes
call an object at the same time. In this setting, an execution trace will be a sequence of
sets of processes. In each of these sets, all the processes start executing, then all of them
must terminate before we proceed with the next set of processes. Set-linearizability was also
recently re-discovered by Hemed et al. [7], who call it concurrency-aware linearizability. A
typical example of a set-linearizable (but not linearizable) object is the immediate-snapshot
protocol [1] widely used in distributed computability [9]. Another example is Java’s exchanger
that allows two concurrent threads to atomically swap values.

A trace T is set-sequential if it is of the form T = I1 ·R1 · · · Ik ·Rk, where each of the Ii
is a non-empty sequence of invocations, Ri for i < k is a sequence of responses with the
same set of process numbers as Ii, and Rk is a (possibly empty) sequence of responses
whose process numbers are included in those of Ik. We write set for the set of such traces.
If we consider L-linearizability with L = set, we recover the previously defined notion of
set-linearizability [17]. Of course, Theorem 16 still holds, but we do not have an analogue
of Proposition 17 here: given σ ∈ Specset, Uset(Linset(σ)) might actually contain more set-
sequential traces than σ. This is because set-sequential specifications are not required to
satisfy the expansion property nor the commutativity of invocations and of responses. The
linearizability map adds just enough set-sequential traces to make these properties verified.
A concurrent specification is set-linearizable if it is of the form Linset(σ) for some σ ∈ Specset.

I Example 19. The set-count specification defined in the proof of Proposition 18 is
set-linearizable. It is obtained as Linset(σ) where σ is the set of set-sequential traces of the
form I1 ·R1 · · · Ik ·Rk, where every response in Ri is returning the value |Ii|.

I Proposition 20. There are non-set-linearizable concurrent specifications.

Proof. This is again an application of Theorem 16: from the properties of Galois connections,
a set-linearizable concurrent specification τ must be such that Linset(Uset(τ)) = τ . Define the
concurrent specification interval-count as the set of alternating traces such that every
operation e has a response of the form rki , where k is smaller or equal to the number of
operations that are overlapping with e. This is a very permissive version of counting: all
executions (a)–(e) are allowed. In a set-sequential trace, all return values are at most n, the
total number of processes. Therefore, Linset(Uset(τ)) only contains traces whose response
is smaller than n. But τ also contains traces with greater responses, as in execution (b)
where process P1 responds 3 even though only two processes are running. We deduce that
interval-count is not set-linearizable. J

4.5 Interval-linearizability
Interval-linearizability was introduced in [2] with the aim of going beyond linearizability
and set-linearizability, in order to be able to specify every distributed task. They prove
that every task can be obtained as the restriction to one-shot executions of an interval-
linearizable object. We will show that this result actually extends beyond one-shot tasks:
every concurrent specification is interval-linearizable. An example of an interval-linearizable
(but not set-linearizable) object is the (non-immediate) write-snapshot object.

We write int for the set of all alternating traces. The notions of interval-sequential
specification and interval-linearizability defined in [2] coincide with L-specifications and
L-linearizability where L = int. Interval-sequential specifications are almost the same as
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concurrent specifications, except that they do not require the commutativity of invocations,
commutativity of responses and expansion property to be satisfied. In fact, it is mentioned
in [2] that one can without loss of generality restrict to interval-sequential executions of
the form I1 ·R1 · · · Ik ·Rk, where the Ii (resp., Ri) are non-empty sets of invocations (resp.,
responses). This amounts to enforcing the commutativity of invocations and of responses.
We do not include it here since it will be enforced anyway after we apply linearizability.

Uint is by definition the “identity” function. As in the case of set-linearizability, an
analogue of Proposition 17 does not hold, but we have the converse:

I Proposition 21. For every τ ∈ CSpec, Linint(Uint(τ)) = τ .

Proof. The inclusion Linint(Uint(τ)) ⊆ τ follows from the Galois connection. For the other
inclusion, recall that Uint is the identity, so we want to prove τ ⊆ Linint(τ). But this is trivial
since every trace is its own linearization. J

A concurrent specification is interval-linearizable if it is in the image of Linint.

I Proposition 22. Every concurrent specification is interval-linearizable.

Proof. This is an immediate corollary of Proposition 21: τ = Linint(τ), and τ is (in particular)
an interval-sequential specification. J

Thus, interval-linearizable objects and concurrent specifications are one and the same. One
can see interval-linearizability as a convenient way of defining concurrent specifications in
practice: we do not have to worry about the expansion and commutativity conditions (6-8),
linearizability does that for us.

The results of the last three sections can be summed up in the following diagram, by
factoring Linseq and Linset as follows:

Specseq Specset Specint CSpec

Lin′
seq Lin′

set

U′
seq

Linint

Uset
′ Id

a

where the a symbol between Linint and Id indicates that they are related by a Galois connection,
and the primed functions are the expected ones. Moreover, the two other Galois connections
are obtained by composition:

Linint ◦ Lin′set = Linset a Uset and Linint ◦ Lin′set ◦ Lin′seq = Linseq a Useq.

4.6 Other variants
Using the results of Section 4.2, it is easy to come up with new notions of linearizability. For
instance, say a trace T is k-concurrent if every prefix of T has at most k pending invocations.
Intuitively, a trace is k-concurrent if at any time, no more than k processes are running in
parallel. Let L be the set of k-concurrent traces. Then, given a specification that says how
an object behaves when it is accessed concurrently by at most k processes, L-linearizability
is a canonical way of extending this specification to any number of processes. In their paper
about concurrency-aware linearizability [7], Hemed et al. specify Java’s exchanger object
on traces that are both 2-concurrent and set-sequential, then they apply linearizability to
obtain the full concurrent specification.
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5 Conclusion and perspectives

We have studied a class of concurrent specifications satisfying a number of desirable properties,
and argued that those properties make sense computationally. This has allowed us to formally
compare different notions of linearizability in Theorem 16. Finally, we have explored some
consequences and applications of this theorem. We believe that this should be the starting
point of a series of future works.

While we have illustrated the robustness of this notion, there are many possible small
interesting variants, such as removing the totality condition to model programs which are
not wait-free. In particular, it is often desirable to impose specifications to be deterministic:
the most simple definition (if the specification contains two traces T · rxi and T · ryi then x = y

should hold) does not play well with asynchrony, we think that a definition in the spirit
of [15] is however possible. Another direction worth considering is to get rid of the notion of
global time, inherent to the trace formalism. Very recent work generalize linerizability in
this direction, with applications to weak memory models [21] and relativistic effects [5].

We would also like to use our formalism in order to be able to reason about concurrent
programs in a compositional way. The model we introduce in Section 3 is (purportedly) very
close to the models of programming languages traditionally considered in game semantics [11],
and in particular the asynchronous variants [15], which are able to express the main opera-
tional features of the languages while enjoying compositionality. We shall investigate the
compositional (categorical) structures enjoyed by our concurrent specifications in the future.
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Figure 1 SMT-based Counterexample-Guided Synthesis Technique.

1 Introduction

Program synthesis (often called the “holy grail” of computer science) is the problem of
automated generation of a computer program from a formally specified set of properties.
The program generated in this fashion is guaranteed to be correct by construction. Program
synthesis is known to be computationally intractable and, thus, is usually used to deal with
small but intricate components of a system, e.g., concurrent/distributed algorithms that may
exhibit obscure corner cases, where reasoning about their correctness is not straightforward.

Dijkstra [3] introduced the notion of self-stabilization in distributed systems, where
the system always converges to a good behavior even if it is arbitrarily initialized or is
subject to transient faults. Proof of self-stabilization is, however, often much more complex
than what it initially seems like. Dijkstra himself published the proof of correctness of his
seminal 3-state machine solution 12 years later [4]. This means that program synthesis
can play a prime role in designing and reasoning about the correctness of self-stabilizing
algorithms. In [8, 9, 11, 12, 10], we introduced a set of algorithms and tools for synthesizing
self-stabilizing protocols. Our techniques take as input the network topology, timing model
(asynchronous or synchronous), the good behavior of the protocol (either explicitly as a set
of legitimate states or implicitly as a set of temporal logic formulas), type of symmetry, and
type of stabilization (e.g., strong, weak, monotonic, ideal) and generate a set of first-order
modulo theory constraints. Then, a satisfiability modulo theory (SMT) solver solves these
constraints and, if satisfiable, produces a model that respects the input specification. Our tool
Assess [10] has successfully synthesized complex algorithms such as Raymond’s distributed
mutual exclusion [24], Dijkstra’s token ring [3] (for both three and four state machines),
maximal matching [23], weak stabilizing token circulation in anonymous networks [2], and the
three coloring problem [14]. Our algorithms are complete for a predetermined fixed number
of processes; i.e., if they fail to find a solution to the synthesis problem, then there does not
exist one. This completeness, however, comes at a big cost which is scalability. That is, for
most instances, we could only synthesize solutions up to 5 processes at best.

In this paper, our goal is to address scalability as well as the shortcoming that the previous
work can synthesize only a fixed and predetermined number of processes. To this end, we
focus on automated synthesis of self-stabilizing protocols in symmetric and parameterized
rings, where an unbounded number of processes exhibit identical behavior. We make two
main contributions. First, we show how to solve the parameterized synthesis problem based
on the notion of cutoffs [6] that can guarantee properties of distributed systems of arbitrary
size by considering only systems of up to a certain fixed size c ∈ N, and augment this by a
sound but incomplete abstraction-based synthesis approach for properties that are known to
be undecidable. In particular, we provide:
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cutoffs for the closure and deadlock-freedom properties, under the assumption that the
set of legitimate states is defined by a conjunction of predicates on the local state of
processes; we show that smaller cutoffs are possible under additional assumptions, and
that all our cutoffs are tight under the assumptions we consider.
an abstraction-based method for the convergence property, which is known to be unde-
cidable in general [19, 21]; we show how, for the class of silent algorithms, a sufficient
condition for convergence of the parameterized system can be efficiently checked on a
finite system that over-approximates the behavior of systems of arbitrary size.

Note that these results can be used for both synthesis and verification. A drawback of our
cutoffs is that they are quadratic in the state space of a single process, so even with a cutoff,
we need synthesis methods that scale to a large number of processes. Thus, as our second
contribution, we propose a counterexample-guided synthesis technique that exploits our
symmetry assumption. More specifically, it consists of fours steps (see Fig. 1):
1. First, we synthesize a solution for a small network of i processes using existing techniques;
2. Next, we trivially generalize this solution to a larger network with i+ 1 processes;
3. Then, we verify this solution using a model checker, and
4. If verification succeeds, we return to step 2 to attempt a larger network. Otherwise, we

obtain a counterexample that is added as a negative constraint for the synthesis algorithm,
and we return to step 1 for another round of synthesis with limited search space.

Using this approach and our cutoff results, we successfully synthesized parameterized self-
stabilizing protocols for well-known problems including three coloring, maximal matching,
and maximal independent set in less than 10 minutes. To our knowledge, this is the first
instance of such parameterized synthesis.

Organization. The rest of the paper is organized as follows. Section 2 introduces the
preliminary concepts. In Section 3, we present the formal statement of our synthesis problem.
The parameterized correctness results are presented in Section 4, while our counterexample-
guided synthesis approach is presented in Section 5. Experimental results and case studies
are reported in Section 6. Related work is discussed in Section 7, and finally, we make
concluding remarks and discuss future work in Section 8.

2 Preliminaries

2.1 Distributed Programs
Most self-stabilizing algorithms are defined in the shared-memory model. Assume V to be
the set of all variables in the system, where each variable v ∈ V has a finite domain Dv. We
define a state s as a valuation of each variable in V by a value in its domain. The set of all
possible states is called the state space, and represented by S. A transition is defined as an
ordered pair (s0, s1), where s0, s1 ∈ S. We denote the value of a variable v in state s by v(s).

I Definition 1. A process π is a tuple 〈Rπ,Wπ, Tπ〉, where
Rπ ⊆ V is the set of variables that π can read their values and is called the read-set of π;
Wπ ⊆ Rπ is the set of variables that π can write to, and is called the write-set of π, and
Tπ is the set of transitions of π, where for each transition (s0, s1) ∈ Tπ and each variable
v, such that v(s0) 6= v(s1), we have v ∈Wπ.

The third condition imposes the constraint that a process can only change the value of a
variable in its write-set, and the second condition states that this change cannot be blind. A
process π = 〈Rπ,Wπ, Tπ〉 is called enabled in state s0, if there exists a state s1, such that
(s0, s1) ∈ Tπ. The local state space of π is the set of all possible valuations of the variables
that π can read: Sπ =

∏
v∈Rπ Dv

OPODIS 2018
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π0

π3 π1

π2

Figure 2 One-bit maximal matching example.

I Definition 2. A distributed program is a tuple D = 〈PD, TD〉, where
PD is a set of processes over a common set V of variables, such that:

for any two distinct processes π1, π2 ∈ PD, we have Wπ1 ∩Wπ2 = ∅;
for each process π ∈ PD and each transition (s0, s1) ∈ Tπ, the following read restriction
holds:

∀s′0, s′1 : ((∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))) ∧
(∀v 6∈ Rπ : v(s′0) = v(s′1))) =⇒ (s′0, s′1) ∈ Tπ (1)

TD is the set of transitions and is the union of transitions of all processes:

TD =
⋃
π∈PD

Tπ

Intuitively, the read restriction in Definition 2 imposes the constraint that for each process π,
each transition in Tπ depends only on the variables in the read-set of π. Thus, each transition
is an equivalence class in TD, which we call a group of transitions. The key consequence of
read restrictions is that during synthesis, if a transition is included (respectively, excluded)
in TD, then its corresponding group must also be included (respectively, excluded) in TD.

Example. We use the problem of distributed self-stabilizing one-bit maximal matching as a
running example to describe the concepts throughout the paper. Consider a ring of 4 processes
(see Fig. 2), and let V = {x0, x1, x2, x3} be the set of variables, where each xi is a Boolean
variable with domain {F, T}. Let D = 〈PD, TD〉 be a distributed program, where PD =
{π0, π1, π2, π3}. Each process πi (0 ≤ i ≤ 3) can write to the variable xi (i.e., Wπi = {xi}),
and read the variables of its own and its neighbors (Rπi = {xi, x(i+1) mod 4, x(i−1) mod 4}).
Notice that following Definition 2 and read/write restrictions of π0, (arbitrary) transitions

t1 = ([x0 = F, x1 = F, x2 = F, x3 = F], [x0 = T, x1 = F, x2 = F, x3 = F])
t2 = ([x0 = F, x1 = F, x2 = T, x3 = F], [x0 = T, x1 = F, x2 = T, x3 = F])

are in the same group. The reason is that π0 cannot read x2, and if, for example, t1 is
included in the set of transitions, while t2 is not, it implies that the execution in process π0
depends on the value of x2, which is not possible.

I Definition 3. An uninterpreted local function for a process maps the local state space of a
process to a domain Dlf . The interpretation of an uninterpreted local function for a process
π is a function:

Sπ → Dlf

where Sπ is the local state space of π.

In the sequel, we use “uninterpreted functions” to refer to uninterpreted local functions.
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Example. To formulate the requirements in the one-bit maximal matching example, we
assume each process πi is associated with an uninterpreted local function, called match, with
the domain Dmatchi = {l, r, n}, where l, r, and n correspond to the cases where the process
is matched to its left, right, and no neighbor (self-matched), respectively. The interpretation
of matchi is a function:

(matchi)I : {F, T} × {F, T} × {F, T} → {l, r, n}

In other words, the value of matchi depends on the value of the process and its neighbors’
Boolean variables.

I Definition 4. A local predicate of a process maps the local state space of a process to a
Boolean:

Sπ → {F, T}

We use this definition to define legitimate states in Section 2.3.

2.1.1 Network Topology
A topology specifies the communication model of a distributed program.

I Definition 5. A topology is a tuple T = 〈V, |PT |, RT ,WT 〉, where
V is a finite set of finite-domain discrete variables,
|PT | ∈ N≥1 is the number of processes,
RT is a mapping {0 . . . |PT | − 1} → 2V from a process index to its read-set,
WT is a mapping {0 . . . |PT | − 1} → 2V from a process index to its write-set, such that
WT (i) ⊆ RT (i), for all i (0 ≤ i ≤ |PT | − 1).

Example. The topology of our maximal matching problem is a tuple 〈V, |PT |, RT ,WT 〉:
V = {x0, x1, x2, x3}, with domains Dx0 = Dx1 = Dx2 = Dx3 = {T, F},
|PT | = 4,
RT (0) = {x0, x1, x3}, RT (1) = {x1, x2, x0},
RT (2) = {x2, x3, x1}, RT (3) = {x3, x0, x2}, and
WT (0) = {x0}, WT (1) = {x1}, WT (2) = {x2}, and WT (3) = {x3}.

I Definition 6. A distributed program D = 〈PD, TD〉 has topology
T = 〈V, |PT |, RT ,WT 〉 iff

each process π ∈ PD is defined over V
|PD| = |PT |
there is a mapping g : {0 . . . |PT | − 1} → PD such that

∀i ∈ {0 . . . |PT | − 1} : (RT (i) = Rg(i)) ∧ (WT (i) = Wg(i))

2.2 Symmetric Networks
Roughly speaking, a topology is symmetric, if the read-set and write-set of any two distinct
processes can be swapped (i.e., there is a bijection that maps read/write variables of a process
to another).

I Definition 7. A topology T = 〈V, |PT |, RT ,WT 〉 is symmetric, iff for any distinct
i, j ∈ {0 . . . |PT | − 1}, there exists

OPODIS 2018
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a bijection f : RT (i)→ RT (j), such that ∀v ∈ RT (i) : Dv = Df(v), and
a bijection g : WT (i)→WT (j), such that ∀v ∈WT (i) : Dv = Dg(v).

We call a symmetric topology a (bi-directional) ring (of size k = |PT |) if for every
i ∈ {0 . . . |PT | − 1}, we have RT (i) = WT (i− 1 mod k) ∪WT (i) ∪WT (i+ 1 mod k). Since
in this paper we only deal with rings, to simplify notation throughout the paper, arithmetic
on process indices is implicitly modulo the size of the ring.

Example. The topology of our one-bit maximal matching example is symmetric, and a ring
of size 4 (Fig. 2). For any two numbers i and j, function g is the mapping from xi to a xj ,
and function f maps xi 7→ xj , x(i+1) 7→ x(j+1), and x(i−1) 7→ x(j−1).

I Definition 8. A distributed program D = 〈PD, TD〉 is called symmetric iff

it has a symmetric topology, and
for any two distinct processes π, π′ ∈ PD, the following condition holds:

∀(s0, s1) ∈ Tπ : ∃(s′0, s′1) ∈ Tπ′ :(
∀v ∈ Rπ :

(
v(s0) = f(v)(s′0))

)
∧
(
∀v ∈Wπ : (v(s1) = g(v)(s′1)

)) (2)

where f and g are the functions defined in Definition 7.
In other words, in a symmetric distributed program the read- and write-sets of all processes
are identical up to renaming, and so are their transitions. Therefore, we also write T π for a
symmetric distributed program that has topology T and where all processes are identical up
to renaming to π.

2.3 Self-Stabilization
Given a subset of the state space, called the set of legitimate states (denoted by LS), a
self-stabilizing [3] program always recovers to a state in LS from any arbitrary state (e.g.,
due to bad initialization or occurrence of transient faults) in a finite number of steps, and
stays in LS thereafter.

I Definition 9. A computation of D = 〈PD, TD〉 is an infinite sequence of states s = s0s1 · · · ,
such that: (1) for all i ≥ 0, we have (si, si+1) ∈ TD, and (2) if a computation reaches a state
si, from where there is no state s 6= si, such that (si, s) ∈ TD, then the computation stutters
at si indefinitely. Such a computation is called a terminating computation.

I Definition 10. A distributed program D = 〈PD, TD〉 is self-stabilizing for a set LS of
legitimate states iff

1. (Convergence) For any computation s = s0s1 · · · , there exists a state sj ∈ s (j ≥ 0),
such that sj ∈ LS .

2. (Closure) For any transition (s0, s1) ∈ TD, if s0 ∈ LS , then s1 ∈ LS .

I Definition 11. A distributed program D = 〈PD, TD〉 is silent with respect to a given LS
if for any transition (s0, s1) ∈ TD, if s0 ∈ LS , then s1 = s0.

I Definition 12. A set of legitimate states is locally defined if it can be defined by

s ∈ LS if and only if ∀i ∈ {0 . . . |PT | − 1} : LS i(s),

where LS i is a predicate on the read-set of process πi.
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Example. In a directed graph, a maximal matching is a maximal set of edges, in which
no two edges share a common vertex. In a ring topology, each process can be matched
to one of its two adjacent processes. To formulate this requirement, we assume each
process πi is associated with a local uninterpreted function, called matchi, with the domain
Dmatchi = {l, r, n}. LS can be locally defined with

LS i =
{
s | (matchi−1(ΠRπi−1

(s)) = r ∧ matchi(ΠRπi
(s)) = l ∧ matchi+1(ΠRπi+1

(s)) = n) ∨

(matchi−1(ΠRπi−1
(s)) = n ∧ matchi(ΠRπi

(s)) = r ∧ matchi+1(ΠRπi+1
(s)) = l) ∨

(matchi−1(ΠRπi−1
(s)) = l ∧ matchi(ΠRπi

(s)) = n ∧ matchi+1(ΠRπi+1
(s)) = r) ∨

(matchi−1(ΠRπi−1
(s)) = l ∧ matchi(ΠRπi

(s)) = r ∧ matchi+1(ΠRπi+1
(s)) = l) ∨

(matchi−1(ΠRπi−1
(s)) = r ∧ matchi(ΠRπi

(s)) = l ∧ matchi+1(ΠRπi+1
(s)) = r)

}
The system is in its legitimate state, if and only if all processes are in their local legitimate
states. For example, in a ring of size three with the set of processes P = {π0, π1, π2}, the set
of legitimate states can be formulated as the following:

{s | LS0(s) ∧ LS1(s) ∧ LS2(s)}

Note how uninterpreted functions can be used to easily express LS . Without matchi, the
user has to explicitly specify the cases where a process is matched to its left, right or itself,
using the Boolean variables of its own and its adjacent processes (its read set).

3 Problem Statement

Our goal is to propose an automated method for parameterized synthesis of silent self-
stabilizing protocols in symmetric ring networks. That is, we consider a problem where the
size of the topology is a parameter, and we want to automatically synthesize the transition
predicate and the interpretation of the uninterpreted function of each process, such that the
resulting distributed program is silent self-stabilizing for any value of the parameter.

Formally, a parameterized topology is a sequence of symmetric topologies T1, T2, . . ., where
for all n we have |PTn | = n and bijections read-sets and write-sets, as required in Definition 7,
also exist between process indices from different elements of the sequence. A parameterized
program is a sequence of symmetric distributed programs D1,D2, . . . such that Di = T πi for
a parameterized topology T1, T2, . . ., and some process π.

The parameterized synthesis problem takes as input:
a parameterized topology, and
a set of locally defined legitimate states LS ,

and generates as output:
a process π such that for every element Tn of the topology, the program Dn = T πn is
self-stabilizing to LS .

I Definition 13. For a given parameterized topology and a property under consideration, a
cutoff is a natural number c such that for any given process π and a locally defined LS the
following holds: Dn = T πn satisfies the property wrt. LS for all n ∈ N iff Di = T πi satisfies
the property wrt. LS for all i ∈ {1 . . . c}.
Note that cutoffs can be used for both parameterized verification and synthesis. In Section 4,
we will present cutoffs for two properties: i) closure, and ii) the absence of deadlocks outside
of LS . Moreover, we will introduce an abstraction-based method that can be combined with
the cutoffs to solve the parameterized synthesis problem.

OPODIS 2018
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4 Parameterized Synthesis of Self-Stabilization in Symmetric Rings

In this section, we show how to reduce reasoning about parameterized programs to reasoning
about a finite number of finite programs. To prove self-stabilization, we need to prove that
the algorithm has the two properties of closure and convergence. We split the latter into two
properties: (1) the absence of deadlocks outside of LS , and (2) the absence of cycles outside
of LS . In the following, we provide tight cutoffs for closure and deadlocks outside of LS , as
well as a sound abstraction to prove the absence of cycles outside of LS . Finally, we provide
our main theorem that combines these results into a method for parameterized synthesis of
self-stabilizing algorithms in rings.

4.1 Cutoffs for Closure and Deadlock Detection
Assume that the write-set of each process has l valuations. In other words, if process πi has
WT (i) = {v1, . . . , vn}, then l = |Dv1 | × · · · × |Dvn |.

I Lemma 1. For self-stabilizing algorithms on a ring topology, the following are cutoffs for
the closure property:

c = l2 + 1, if LS is locally defined;
c = l + 1, if LS is locally defined and LS i only depends on WT (i) and WT (i+ 1), and
c = 3, if LS is locally defined and LS i only depends on WT (i).

All of the cutoffs are tight under their respective assumptions.

I Lemma 2. For self-stabilizing algorithms on a ring topology, the following are cutoffs for
the detection of deadlocks outside of LS :

c = l2 + 1, if LS is locally defined;
c = l + 1, if LS is locally defined and transitions of processes only depend on WT (i) and
WT (i+ 1) (i.e., the ring is uni-directional), and
c = 3, if LS is locally defined and transitions of processes only depend on WT (i) (i.e.,
processes are completely independent).

All of the cutoffs are tight under their respective assumptions.3

4.2 Process Abstraction for Convergence
As mentioned before, to prove self-stabilization of a parameterized program, we need to
prove closure and convergence. Closure can be proved based on Lemma 1, and Lemma 2
shows how to deal with deadlocks outside of LS . Thus, the missing part is a method to
prove that there are no cycles outside of LS that prevents a computation to eventually reach
LS . In contrast to the two previous problems, we now consider infinite behaviors of the
system. Since parameterized verification and synthesis of symmetric self-stabilization in rings
is known to be undecidable [19, 21], we cannot obtain cutoffs for this property. Therefore, we
resort to proving the absence of cycles based on a sound abstraction of the system behavior.

The basic idea is the following: we check whether there is a loop that starts and ends
in the same local state for an arbitrary process. If we can show that this is not possible,
then certainly no global loop is possible. Note that this is a stronger property than what we
want to prove; it proves that there could not be any loops in the protocol, neither inside nor

3 Detailed proofs for Lemmas 1 and 2 can be found at http://web.cs.iastate.edu/~borzoo/
Publications/18/OPODIS/opodis18.pdf.

http://web.cs.iastate.edu/~borzoo/Publications/18/OPODIS/opodis18.pdf
http://web.cs.iastate.edu/~borzoo/Publications/18/OPODIS/opodis18.pdf
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Figure 3 Blue processes act based on the algorithm and grey (with slanted lines) processes act
randomly.

outside LS. It is obvious that this property can only be satisfied for silent protocols. To this
end, we fix five processes (see Fig. 3), and define the following property:

S ⇒ ( S ∨ ¬ S),

where S is the local state of πi (i.e., the valuation of its read-set), is the ‘eventually’
operator and is the ‘always’ operator in temporal logic. That is, given a local state in
S, any future extension either reaches a state where S is continually true, or, S does not
become true infinitely often. Next, we attempt to prove the property in a ring of size 7,
where 5 processes behave according to the synthesized protocol, and the other two processes
have the same write-set, but can execute arbitrary transitions. The idea is that these two
processes over-approximate the possible behavior of all other processes. If we can prove the
property above in this abstraction of the system, then this implies that no loops are possible
in a concrete system in a ring of size ≥ 5. Note that the precision of the abstraction can be
refined by increasing the number of processes that behave according to the protocol, or by
including the local state of additional processes into S. For the problems we considered in
our experiments (see Sect. 6), the fixed abstraction with 5 + 2 processes was sufficient.

4.3 Parameterized Self-Stabilization
Based on Lemmas 1 and 2, and the approach in Section 4.2, we obtain our main result.

I Theorem 14. Let T1, T2, . . . be a parameterized ring topology, π a process, and let LS be
locally defined by LS i. Let c1 and c2 be cutoffs for closure and deadlock detection wrt. LS ,
respectively. If (1) closure holds in rings of size up to c1, (2) deadlocks outside of LS are
impossible in rings of size up to c2, and (3) the absence of cycles can be proven in rings of
up to size 4 and in an abstract system as above, then every instance of the parameterized
program D1 = T π1 ,D2 = T π2 , . . . is self-stabilizing to LS .

5 SMT-based Counterexample-Guided Synthesis

5.1 General Idea
In [8, 9, 11], we introduced SMT-based methods to solve the synthesis problem for self-
stabilizing systems. In a nutshell, our techniques generate a set of SMT constraints from the
input synthesis instance and produce a model that represents a self-stabilizing protocol. In

OPODIS 2018



29:10 Parameterized Synthesis of Self-Stabilizing Protocols in Symmetric Rings

order to scale up these technique to synthesize solutions up to the cutoff point efficiently, in
this section, we propose a method, where we find a solution for a larger topology using a
solution for a smaller topology. Let us first entertain a naïve idea, where we first synthesize
a protocol for a small topology and then simply use this solution for larger topologies with
the hope that since the protocol is symmetric, a small solution works in a larger network as
well. We now show that this approach is not conceivable even for very simple protocols.

Example. When applying our latest algorithm [11] to the one-bit maximal matching example,
the first synthesized solution for 4 processes is the following transition relation encoded by
guarded commands for each process πi:

πi : (xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = F) → xi := T

(xi = T) ∧ (x(i+1) = T) → xi := F

and the following interpretation for uninterpreted function matchi:

matchi : (xi = T) ∧
(
(x(i+1) = T) ∨ (x(i−1) = F)

)
7→ l

(x(i+1) = T) ∧ (x(i−1) = F) 7→ l

(xi = T) ∧ (x(i+1) = F) ∧ (x(i−1) = T) 7→ r

(xi = F) ∧ (x(i+1) = T) ∧ (x(i−1) = T) 7→ r

(xi = F) ∧ (x(i+1) = F) 7→ n

Now, if we trivially use the synthesized protocol on a topology with 5 processes, the resulting
protocol is incorrect. In particular, the following is a counterexample (i.e., a finite computation
that violates the specification) in terms of predicate match:(

[match0 = n,match1 = n,match2 = n,match3 = n,match4 = n],

[match0 = l,match1 = n,match2 = n,match3 = n,match4 = l],

[match0 = l,match1 = r,match2 = l,match3 = n,match4 = l]
)

This computation violates convergence, as it reaches a deadlock state in ¬LS . This example
shows that a synthesized symmetric solution cannot be trivially extended to larger topologies.

5.2 The Counterexample-Guided Synthesis Algorithm
In order to limit the search space of SMT-solvers for a solution, we incorporate a synthesis-
verification loop guided by counterexamples. Our approach consists of the following steps:
1. Given a topology with i processes and a set of legitimate states, we use our existing

approach [8, 9, 11] to formulate the synthesis problem as an SMT instance.
2. We use an SMT solver to find a solution for the SMT instance, as a transition relation

and an interpretation for each uninterpreted function. Note that due to symmetry, the
transition relations and the interpretation functions are identical for all processes.

3. Next, we generalize the solution for a topology with i+1 processes and verify this solution
using a model checker.

4. If the result of verification is positive, we go back to step 3 to check the properties for a
topology with i+ 2 processes. Otherwise, we transform the generated counterexample
into an SMT constraint and add it to the initial SMT instance and return to step 2.
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For reasons of space, we do not include the details of our SMT-based synthesis technique [8,
9, 11]. We now analyze the nature of counterexamples. In the context of closure and
convergence, a model checker may generate a counterexample of the form s = s0s1 · · · sn.
Observe that s is one of the following three types of counterexamples:

If closure is violated, then s = (s0, s1), where s0 ∈ LS and s1 6∈ LS .
If convergence is violated, s = s0s1 · · · sn, where for all i ∈ [0, n], si 6∈ LS and either
s0 = sn; i.e., a loop exists outside the set of legitimate states, or
there does not exist a state s, where (sn, s) is a valid transition; i.e., sn is a deadlock
state outside the set of legitimate states.

Dealing with the first type of counterexamples is pretty straightforward: we only add a
constraint to the SMT instance that disallows transition (s0, s1) in the transition relation. To
address deadlocks, we need to add a constraint to the SMT instance to enforce a change in the
resulting synthesized model, so that sn is not a deadlock state. To this end, we propose two
sets of heuristics to change either the transition relation or the interpretation of uninterpreted
functions in Section 5.3. Dealing with loops is a bit more complicated. For example, one
can remove a transition from the loop to break it, but the choice of transition may involve a
combinatorial enumeration to find the right transition. This type of counterexamples is not
our focus in this paper and we leave it for future work. Interestingly, all of our case studies
in Section 6 do not involve loop counterexamples.

5.3 Heuristics Considering Transition Relations

The simplest method to resolve a deadlock is to formulate a constraint imposing the existence
of an outgoing transition from sn. Since in this paper, our focus is on asynchronous systems,
a transition is the execution of one of the processes. We propose two strategies for selecting
a process to have an outgoing transition from a deadlock state.

Progress Heuristic. In this approach, we add a constraint stating that at least one of
the proceses should have an outgoing transition from sn. More formally, assume that the
current topology includes i processes, where the read-set of each process has r variables, with
domains D0, . . . , Dr−1, and the write-set of each process includes w variables, with domains
D′0, · · · , D′w−1. Note that since the goal is to synthesize a symmetric program, all processes
execute similarly according to the function Tp:

Tp :
( ∏
j∈[0,r−1]

Dj

)
→
( ∏
j∈[0,w−1]

D′j
)

and function f is of type:

f : N→
(
S →

( ∏
j∈[0,r−1]

Dj

))

Then, the constraint to be added to the SMT instance can be written as:

∀j ∈ [0, w − 1] : ∃valj ∈ D′j :
∨

k∈[0,i)

((
f(k)(sn), [val0, val1, · · · , valw−1]

)
∈ Tp

)
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Example. Consider the counterexample mentioned in Section 5.1. Each process can read
three Boolean variables and write to one Boolean variable and, hence, Tp is defined as follows:

Tp : {F, T} × {F, T} × {F, T} → {F, T}

Note that for each process πj , f(j) returns [x(j−1), xj , x(j+1)]. In the counterexample we
presented in the previous example, the last state where the deadlock happens is:

[x0 = T, x1 = F, x2 = T, x3 = F, x4 = F]

Thus, we add the following constraint to the SMT instance:

∃val ∈ {F, T} :
(

([F, T, F], val) ∈ Tp ∨ ([T, F, T], val) ∈ Tp ∨ ([F, T, F], val) ∈ Tp ∨

([T, F, F], val) ∈ Tp ∨ ([F, F, T], val) ∈ Tp
)

In the above constraint, the jth clause imposes a constraint on Tp to have an outgoing
transition considering the local state of the jth process. (Note that the first and third clauses
are the same, and we just put them for clarity.)

Local LS Heuristic. As mentioned in Section 2, we focus on sets LS that can be locally
defined, i.e., the set of legitimate states can be described as a conjunction over local legitimate
states of processes. In this case, a deadlock can be resolved by checking the local state of
each process and imposing a constraint to have an outgoing transition for at least one of
those processes that are not in their local legitimate states.

Example. For the counterexample of one-bit maximal matching with 4 processes, the local
set of legitimate states is already presented in the example below Definition 12, and the
deadlock state is:

[x0 = T, x1 = F, x2 = T, x3 = F, x4 = F]

For checking the local state of each process, we should first note the values of uninterpreted
functions matchi in this state:

[match0 = l,match1 = r,match2 = l,match3 = n,match4 = l]

Processes π0, π1, π3, and π4 are not in a local legitimate state, and hence, the added
constraint to the original SMT model will be as follows:

∃val ∈ {F, T} :
(

([F, T, F], val) ∈ Tp ∨ ([T, F, T], val) ∈ Tp ∨

([T, F, F], val) ∈ Tp ∨ ([F, F, T], val) ∈ Tp
)

Note that although this method seems more efficient than the progress approach in terms of
having shorter constraints, it has the drawback of missing some solutions that the previous
approach can find. More specifically, for a process being in a legitimate local state in a
deadlock state, it may be the case that taking a transition by this process leads to a state,
from which its neighbors can take other transitions that finally leads to a legitimate state.
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5.4 Heuristics Considering Uninterpreted Functions
Our second class of heuristics focus on uninterpreted functions, where we impose a constraint
to change the interpretation function of at least one uninterpreted function in the deadlock
state. Similar to the heuristics introduced for transition relations, we introduce two approaches
for selecting at least one process to change the interpretation of its uninterpreted function.
Because of the similarity to the previous heuristics, we skip the details of this heuristic.

6 Case Studies and Experimental Results

We used the model finder Alloy [15] and model checker NuSMV [7] to implement our
counterexample-guided synthesis approach. Our experimental platform is an 2.9 GHz Intel
Core i7 processor, with 16 GB of RAM. Our synthesis results are reported in Table 1.

6.1 Three Coloring
We consider the three coloring problem [14] on a ring, where each process πi is associated
with a variable ci with domain {0, 1, 2}. Each value of the variable ci represents a distinct
color. A process can read and write its own variable. It can also read the variables of its
neighbors. LS includes all states, where each process has a color different from its both
neighbors. Thus, for a ring of 4 processes, LS is defined by the following predicate:

c0(s) 6= c1(s) ∧ c1(s) 6= c2(s) ∧ c2(s) 6= c3(s) ∧ c3(s) 6= c0(s)

Observe that the closure/deadlock-freedom cutoff point for this case study is 32 + 1 = 10
and, hence, we need to synthesize a solution for 10 processes. The synthesis time reported in
Table 1 is a bit smaller in the case of local LS heuristic, which is probably due to the smaller
constraints added in this case. The resulting protocols for the two heuristics are different.
Following is the one synthesized for the case of local LS:

πi : (ci = 2) ∧ (c(i+1) = 2) ∧ (c(i−1) 6= 0) → ci := 0
(ci 6= 0) ∧ (c(i+1) = 1) ∧ (c(i−1) = 2) → ci := 0
(ci = 1) ∧ (c(i+1) = 1) ∧ (c(i−1) 6= 2) → ci := 2
(ci = 0) ∧ (c(i+1) 6= 2) ∧ (c(i−1) = 0) → ci := 2
(ci 6= 1) ∧ (c(i+1) = 2) ∧ (c(i−1) = 0) → ci := 1

6.2 One-Bit Maximal Matching
This case study is the running example in this paper with cutoff point of 22 + 1 = 5 processes.
Note that using the heuristics considering transition relations, we could not synthesize a
protocol for this problem (Alloy reports unsatisfiablity after adding the counterexample
constraints). The interesting point about this case study is that the progress heuristic has
better efficiency compared to the local LS . The reason may be due to the fact that the
constraints added in the local LS heuristic are too restrictive, and hence, Alloy needs to
search more in order to find a solution. The synthesized solutions using both heuristics are
the same for this case study, where the transition relation is the following:

πi : (xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = F) → xi := T

(xi = T) ∧ (x(i+1) = T) → xi := F

OPODIS 2018
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Table 1 Results for parameterized synthesis.

Problem cutoff # Heuristic Synthesis Model Checking
Time Time

Three Coloring 10 Local LS 7m 3sec 16 msec
Three Coloring 10 Progress 9m 5sec 16 msec
One-Bit MM 5 Local LS 1m 48sec 27 msec
One-Bit MM 5 Progress 1m 44sec 33 msec

Maximal Matching 10 Local LS 7m 59sec 36 msec
Maximal Matching 10 Progress 4m 57sec 37 msec

Maximal Independent Set 5 Local LS 10sec 18 msec

and the interpretation function for matchi is the following:

matchi : (xi = T) ∧ (x(i+1) = T) ∧ (x(i−1) = T) 7→ l

(x(i+1) = F) ∧ (x(i−1) = F) 7→ l

(xi = T) ∧ (x(i+1) = F) ∧ (x(i−1) = T) 7→ r

(xi = F) ∧ (x(i+1) = T) 7→ r

(xi = T) ∧ (x(i+1) = T) ∧ (x(i−1) = F) 7→ n

(xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = T) 7→ n

6.3 Maximal Matching
In this case study, we used the same problem as in Section 6.2, but instead of using one
Boolean variable for each process, we use a variable with three values {l, r, n} and, hence,
we do not need the uninterpreted functions anymore. The resulting protocols for the two
heuristics are different. As an example, the synthesized protocol for the case of local LS is
the following:

πi : (xi = n) ∧ (x(i+1) = n) ∧ (x(i−1) = n) → xi := r

(xi 6= r) ∧ (x(i+1) 6= r) ∧ (x(i−1) = l) → xi := r

(xi 6= n) ∧ (x(i+1) = r) ∧ (x(i−1) = l) → xi := n

(xi = n) ∧ (x(i−1) = r) → xi := l

(xi = r) ∧ (x(i+1) = r) ∧ (x(i−1) 6= l) → xi := l

6.4 Maximal Independent Set
An independent set in a graph is a subset of vertices in which no pair of vertices are adjacent.
To synthesize a protocol that finds a maximal independent set, we consider a set of processes
connected in a ring topology, where each process has a Boolean variable, the value of which
shows whether or not it is included in the maximal independent set. The set of legitimate
states include those states, where the processes whose variables have the true value form a
maximal independent set. As an example, if ci is the variable of the process πi, then the set
of legitimate states for the case of four processes is formulated by the following predicate:

(c0(s) = T∧c1(s) = F∧c2(s) = T∧c3(s) = F) ∨(c0(s) = F∧c1(s) = T∧c2(s) = F∧c3(s) = T)
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The point of this case study is that the resulting model for 4 processes worked for the size
5 as well, and hence, no counterexample is found. Therefore, the result for both heuristics is
the same. The resulting protocol is the following:

πi : (xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = F) → xi := T

(xi = T) ∧ (x(i+1) = T) → xi := F

7 Related Work

Regarding the synthesis of self-stabilizing algorithms, one approach is to add self-stabilization
to a given algorithm. In contrast to our approach, the technique proposed by Ebnenasir
and Farahat [5] starts from a given non-stabilizing algorithm, it requires a more explicit
specification of the legitimate states, and it is not complete, i.e., it may fail to find a
solution even though there exists one. Klinkhammer and Ebnenasir show that adding strong
convergence is NP-complete in the size of the state space, which itself is exponential in the
size of variables of the protocol [18], and introduce a new method for adding self-stabilization
that is complete, but otherwise has the same limitations as mentioned above [20]. For ring
topologies, they have shown that parameterized verification of self-stabilization is undecidable
in uni-directional rings [19], while the parameterized synthesis problem is undecidable in bi-
directional rings, but surprisingly remains decidable in uni-directional rings [21]. Faghih and
Bonakdarpour introduced an SMT-based synthesis technique for automatically synthesizing
self-stabilizing systems [8, 9] that is complete and not based on existing non-stabilizing
algorithms. An extension of this work [11] allows to symbolically specify the legitimate states
as a set of requirements, and supports the synthesis of ideal-stabilizing systems.

While these approaches are promising and can automatically synthesize a number of
well-known self-stabilizing systems, they all suffer from the problem of scalability, as the
complexity of the problem increases exponentially in the number of processes. For example,
all results reported by Faghih and Bonakdarpour [8, 9, 11] correspond to automatically
synthesis of self-stabilizing systems with at most 5 processes. One way to address this
scalability issue in synthesis is to use a counterexample-guided synthesis method, as it has
been proposed for the completion of program sketches [25], for the lazy synthesis of reactive
systems [13], and for the synthesis of Byzantine-resilient systems [1]. The latter approach also
supports the synthesis of self-stabilizing systems, but counterexamples are only used to guide
the encoding of Byzantine-resilience, and the approach is limited to synchronous systems. In
all of these examples, a counterexample-guided approach can solve problems that are out of
reach for existing approaches. In our work, we for the first time used counterexamples to
guide synthesis for an increasing size of the topology, which allows us to scale the SMT-based
synthesis of self-stabilizing algorithms to systems with up to 200 processes.

Finally, the problem of scalability in the number of processes can be solved once and for
all by using a parameterized synthesis approach, as introduced by Jacobs and Bloem [16]
for (non-stabilizing) reactive systems. The approach relies on cutoff results, similar to the
ones we introduced in this work for closure and deadlock detection. Different techniques
are introduced in [17] to improve scalability of this approach in the complexity of the
specification, including the modular application of cutoff results in synthesis. An extension
of the approach [1] also supports the parameterized synthesis of self-stabilizing systems, but
only for synchronous systems, and not in all cases resulting in a completely symmetric system.
Finally, Lazic et al. [22] propose a method for synthesizing parameterized fault-tolerant
distributed algorithms. In contrast to our approach, synthesis is based on a sketch of an
asynchronous threshold-based fault-tolerant distributed algorithm, and the goal is to find
the right values for coefficients that may be missing in the guards.
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8 Conclusion

In this paper, we proposed a new method for parameterized synthesis of self-stabilizing
algorithms in symmetric rings using cutoff points. Furthermore, in order to scale the existing
synthesis solutions [8, 9, 11, 12, 10] up to the cutoff point, we introduced an iterative loop of
synthesis and verification guided by counterexamples. We demonstrated the effectiveness of
our approach by synthesizing parameterized self-stabilizing protocols for well-known problems.
For future, we plan to work on asymmetric and dynamic networks as well as the case, where
the protocol is live in the set of legitimate states.
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Abstract
A loosely-stabilizing leader election protocol with polylogarithmic convergence time in the pop-
ulation protocol model is presented in this paper. In the population protocol model, which is
a common abstract model of mobile sensor networks, it is known to be impossible to design
a self-stabilizing leader election protocol. Thus, in our prior work, we introduced the concept
of loose-stabilization, which is weaker than self-stabilization but has similar advantage as self-
stabilization in practice. Following this work, several loosely-stabilizing leader election protocols
are presented. The loosely-stabilizing leader election guarantees that, starting from an arbitrary
configuration, the system reaches a safe configuration with a single leader within a relatively
short time, and keeps the unique leader for an sufficiently long time thereafter. The convergence
times of all the existing loosely-stabilizing protocols, i.e., the expected time to reach a safe con-
figuration, are polynomial in n where n is the number of nodes (while the holding times to keep
the unique leader are exponential in n). In this paper, a loosely-stabilizing protocol with poly-
logarithmic convergence time is presented. Its holding time is not exponential, but arbitrarily
large polynomial in n.
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1 Introduction

We consider the population protocol (PP) model [3] in this paper. A network called population
consists of a large number of finite-state automata, called agents. Agents often make
interactions (i.e., pairwise communication) each between a pair of agents by which they
update their states. The interactions are opportunistic, that is, they are unknown and
unpredictable (or predictable only with probability). Agents are strongly anonymous: they
do not have identifiers and they cannot distinguish their neighbors with the same states. As
with the majority of studies on population protocols, we assume that the network of agents
is a complete graph, and that the scheduler selects an interacting pair of agents at each step
uniformly at random.

In this paper, we focus on the problem of self-stabilizing leader election (SS-LE), which
is one of the most important and well-studied problems in the PP model. Self-stabilizing
leader election requires that starting from any configuration, a population reaches a safe
configuration in which exactly one leader exists; and after that, the population keeps that
leader forever. These requirements guarantee excellent tolerance against any finite number
of transient faults. Since many protocols (whether self-stabilizing or non-stabilizing) in the
literature work with the assumption that a unique leader exists [3, 4, 5], SS-LE is a key to
improving the fault-tolerance of the PP model itself. However, SS-LE is strictly impossible in
the PP model: no protocol can solve SS-LE unless every agent in the population knows the
exact size of the population (i.e., the number of agents) [4]. This impossibility comes from
a simple partitioning argument1. Thus, most of the studies extend (i.e., strengthen) the
PP model to circumvent the impossibility. One approach of studies [7, 13, 18] assumes that
every agent knows the exact value of n and focuses on the space complexity to solve SS-LE.
Another approach [9, 6, 8] solves SS-LE by using oracles, which tell every agent whether or
not there exists an agent in a leader-state.

To solve SS-LE in a more practical way, our previous work [14] introduces the concept of
loose-stabilization, which relaxes the closure requirement of self-stabilization but keeps its
advantage in practice. Specifically, starting from any initial configuration, the population
must reach a safe configuration within a relatively short time; after that, the specification of
the problem (the unique leader for leader election) must be sustained for a sufficiently long
time, though not necessarily forever. In [14], we gave a loosely-stabilizing leader election
(LS-LE) protocol assuming that every agent knows a common upper bound N of n. This
protocol is practically equivalent to an SS-LE protocol since it maintains the unique leader
for exponential time in n (that is, practically forever) after reaching a safe configuration
within O(N logN) parallel time, which we will define later. The assumption that we can use
an upper bound N of n is practical because the protocol works correctly even if we make
a large overestimation of n, such as N = 10n. Recently, Izumi [11] give a method which
improves the convergence time of this protocol to linear time, i.e., O(N). In [15, 16, 17],
LS-LE protocols are presented for a population where some pairs of agents may not have
interactions, i.e., the interaction graph is not complete.

1 Assume that a SS-LE protocol P works without knowledge of exact size n of the population. Then,
there must exist n1, n2, (n1 < n2) such that P works correctly both when n = n1 and when n = n2.
Consider an execution of P on the population with size n2 which starts from a safe configuration where
exactly one leader exists. If some n2 − n1 agents including the unique leader do not interact for a
sufficiently long time, the rest of the population consisting of the other n1 agents must create a new
leader to satisfy the convergence requirement of self-stabilization. However, this creation results in two
leaders in the population, violating the closure requirement of self-stabilization.
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Leader election is easily solved in linear parallel time in the PP model if one does not
stick to self- or loose- stabilization. When we design non-stabilizing protocols, we can assume
that all agents are in a specific state in the initial configuration. A non-stabilizing leader
election protocol was first presented in [3], which elects a unique leader within O(n) parallel
time. Recently, Alistarh and Gelashvili [1] give a non-stabilizing leader election protocol with
polylogarithmic parallel time. Starting from a specific initial configuration, their protocol
elects a unique leader within O(log3 n) parallel time, with the assumption that all agents
share a common integer m = Θ(log3 n). More recently, Gąsieniec and Staehowiak [10] give an
algorithm which converges in O(log2 n) parallel time. (The space complexity of the algorithm
[10] is also surprisingly small, i.e., O(log log logn) bits.) The key strategies used in these
papers to achieve polylogarithmic time are interesting, but we can not utilize them for our
purpose because both of them critically depend on the assumption that all agents have the
same initial state.

A number of results in the PP model assume the uniformly random scheduler, that is, a
pair of agents is chosen uniformly at random to interact at each step [3, 5, 11, 14, 2, 10, 1].
This assumption has been used mainly for evaluating the time complexity of protocols. We
also adopt this assumption because the measure of time is crucial in the concept of loose-
stabilization. In the PP model, time complexities, such as convergence time and holding time,
are often evaluated in parallel time, which is defined as the expected number of interactions
or steps, divided by n (i.e., the number of agents). This is a natural measure of time because,
in practice interactions typically occur in parallel in the population.

1.1 Our Contribution
We now present an LS-LE protocol with polylogarithmic convergence time and polynomial
holding time. Here, and for the remainder of this section, when we discuss time complexity,
we shall always presume parallel computation. To the best of our knowledge, all previously
published LS-LE protocols have at least linear convergence time, and exponential holding
time, as shown in Table 1. Our protocol PPL breaks through the barrier of linear convergence
time. There is a convergence time/holding time trade-off. Given a parameter c ≥ 1 and
an upper bound N of n, our protocol converges within O(c log3N) time, and has Ω(cn10c)
holding time. Although our expected holding time is not exponential in N , it grows as an
exponential function of c. Also, the convergence time of PPL does not suffer much from large
overestimation of n; it is always O(c log3 n) as long as N is polynomial in n. It is worth
mentioning that PPL has small space complexity. Each agent needs only O(log logN) bits of
memory to store all variables of PPL. We can say that this is small space when we consider
that any self-stabilizing leader election protocol, which requires knowledge of n, needs the
space of at least dlogne bits [7]. These performances of our protocol cannot be obtained
if we require exponential holding time: it is proven by Izumi [11] that any LS-LE protocol
whose holding time is exponential requires Ω(N) convergence time and Ω(logN)-bit space at
each agent.

We obtain a useful tool when analyzing the convergence and holding time of PPL. Let
var be a variable of some algorithm. Consider that two agents interact and the values of
var in the two agents change from x and y to x′ and y′. We call var a propagating variable
if both x′ ≥ max(x − 1, y − 1, 0) and y′ ≥ max(x − 1, y − 1, 0) are always guaranteed. To
the best of our knowledge, all loosely-stabilizing protocol (and possibly some non-stabilizing
protocols) use propagating variables. Let z and ∆ be any integers. If some agent has value
z + ∆ for a propagating variable var and ∆ is sufficiently large, the propagating property
of var guarantees that all the agents obtain values larger than z in var in a short time;
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Table 1 Self/Loosely-stabilizing leader election in the PP model (shown in parallel time).

Protocol Type Knowledge Convergence Time Holding Time Agent Space (bits)
[14] loose-stab. N O(N log N) Ω(eN ) O(log N)
[11] loose-stab. N O(N) Ω(eN ) O(log N)
PPL loose-stab. N O(c log3 N) Ω(cn10c) O(log log N)
[7] self-stab. (exact) n polynomial ∞ O(log n)

specifically, in O(logn) time with high probability. The interesting question is how large this
∆ should be. In the analysis of [14], a trivially sufficient value ∆ = Θ(n) is used. However,
this linear value is useless for designing a protocol with polylogarithmic convergence time.
In this paper, we prove that ∆ = Θ(logn) is sufficient to propagate of values larger than z
to the whole population (Lemma 6). This result may seem trivial for experts at the first
glance, however, it is not trivial. This is because, whereas every agent participates in each
interaction of an execution with probability 2/n, the probability that a virtual agent (defined
later) participates in each interaction may not be equal to 2/n. We prove ∆ = Θ(logn) by
using three different kinds of random variables and bounding ∆ by the sum of them. As we
will see later, this result is very helpful in the analysis of the behavior of a protocol with
propagating variables.

2 Preliminaries

In this section, we describe our model of computation. We denote the set of integers
{z ∈ N | x ≤ z ≤ y} by [x, y], and denote the nth harmonic number by Hn =

∑n
k=1

1
k . We

write the natural logarithm of x as ln x; we indicate the base of other logarithms of x, such
as log2 x.

A population is a network consisting of agents. We denote the set of all the agents by
V and let n = |V |. We assume that a population is complete graph, thus every pair of
agents (u, v) can interact, where u serves as the initiator and v serves as the responder of
the interaction.

A protocol P (Q,Y, T, πout) consists of a finite set Q of states, a finite set Y of output
symbols, a transition function T : Q×Q→ Q×Q, and an output function πout : Q→ Y .
When two agents interact, T determines their next states according to their current states.
The output of an agent is determined by πout : the output of an agent in state q is πout(q).

A configuration is a mapping C : V → Q that specifies the states of all the agents. We
denote the set of all configurations of protocol P by Call(P ). We say that a configuration
C changes to C ′ by the interaction e = (u, v), denoted by C

e→ C ′, if (C ′(u), C ′(v)) =
T (C(u), C(v)) and C ′(w) = C(w) for all w ∈ V \ {u, v}.

A schedule γ = γ0, γ1, · · · = (u0, v0), (u1, v1), . . . is a sequence of interactions. A schedule
determines which interaction occurs at each time, i.e., interaction γt happens at time t under
schedule γ. In particular, we consider a uniformly random scheduler Γ = Γ0,Γ1, . . . in this
paper: each Γt is a random variable such that Pr(Γt = (u, v)) = 1

n(n−1) for any t ≥ 0 and any
distinct u, v ∈ V . Note that we use capital letter Γ for this uniform random scheduler while
we refer a deterministic schedule with a lower case such as γ. Given an initial configuration
C0 and a schedule γ, the execution of protocol P is defined as ΞP (C0, γ) = C0, C1, . . . such
that Ct

γt→ Ct+1 for all t ≥ 0. Note that the execution ΞP (C0,Γ) = C0, C1, . . . under the
uniformly random scheduler is a sequence of configurations where each Ci is a random
variable. For a schedule γ = γ0, γ1, . . . and any t ≥ 0, we say that agent v ∈ V participates
in γt if v is either the initiator or the responder of γt.
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The leader election problem requires that every agent should output L or F which means
“leader” or “follower” respectively. The specification of leader election, denoted by LE ,
requires that there exists one agent v such that v is always a leader and all other agents are
always followers throughout an execution. We define EIHP (C,LE) as the expected number
of interactions during which an execution ΞP (C,Γ) starting from a configuration C ∈ Call(P )
keeps LE (i.e., the expected number of interactions until ΞP (C,Γ) deviates from LE). For
any set S ⊆ Call(P ) of configurations, we also define EICP (C,S) as the expected number
of interactions required for the population to enter a configuration in S in an execution
ΞP (C,Γ) starting from a configuration C ∈ Call(P ). The notation EIH (resp. EIC) stands
for the Expected number of Interactions to Hold (resp. Converge).

I Definition 1 (Loose-stabilizing leader election [14]). Protocol P (Q,Y, T, πout) is an (α, β)-
loosely-stabilizing leader election protocol if there exists a set S of configurations satisfying
the following two inequalities:

max
C∈Call(P )

EICP (C,S) ≤ α and min
C∈S

EIHP (C,LE) ≥ β.

We call a configuration in S in the above definition a safe configuration of P . In terms
of parallel time, (α, β)-loosely-stabilizing protocol leader election protocol P reaches a safe
configuration within α/n parallel time in expectation and keeps the unique leader for β/n
parallel time in expectation thereafter. We call α/n and β/n the expected holding time and
the expected convergence time of P .

Throughout the paper, we will use the following three variants of Chernoff bounds.

I Lemma 2 ([12], Theorems 4.4, 4.5). Let X1, . . . , Xs be independent Poisson trials, and let
X =

∑s
i=1Xi. Then

∀δ, 0 ≤ δ ≤ 1 : Pr(X ≥ (1 + δ)E[X]) ≤ e−δ
2E[X]/3, (1)

∀R ≥ 6E[X] : Pr(X ≥ R) ≤ 2−R, (2)

∀δ, 0 < δ < 1 : Pr(X ≤ (1− δ)E[X]) ≤ e−δ
2E[X]/2. (3)

3 Protocol PPL

We give a loosely-stabilizing leader election protocol PPL. This protocol uses a given upper
bound N on n and has a parameter c ≥ 1 by which we can adjust the expected convergence
time and the expected holding time. As mentioned above, time complexity is measured as
parallel time, which is defined as the number of interactions divided by n. The expected
convergence time of PPL is O(c logn · log2N) ⊆ O(c log3N) and the expected holding time
is Ω(cn10c+1). Thus, we achieve loosely-stabilizing leader election with polylogarithmic
convergence time and polynomial holding time by setting c = Θ(1). For example, assigning
c = 10 gives O(log3N) convergence time and Ω(n100) holding time.

The pseudo code of PPL is given as Algorithm 1. Each agent has five variables: leader ∈
{>,⊥}, shield ∈ {>,⊥}, virus ∈ [0, tvirus], timerL ∈ [0, tmax], and timerI ∈ [0, temit].
The first two variables leader and shield are Boolean variables: v.leader = > means
that v is a leader, v.shield = > means that v is shielded, which will be explained later.
The next three variables virus, timerL, and timerI are count-down timers where their
maximum values are tvirus = 60dlnNe, tmax = 12c · tvirusdlnNe, and temit = 12c · tvirusdlnNe,
respectively (Note that tmax = temit). The output function πout is defined as follows: an
agent with leader = > (resp. leader = ⊥) outputs L (resp. F ).
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Algorithm 1 PPL.
Constants:
c,N // given parameters. N ≥ n is guaranteed.
tvirus = 60dlnNe
tmax = 12c · tvirusdlnNe
temit = 12c · tvirusdlnNe

Variables of each agent:
leader ∈ {>,⊥}, shield ∈ {>,⊥},
timerL ∈ [0, tmax], virus ∈ [0, tvirus], timerI ∈ [0, temit],

Output function πout :
if v.leader = > holds, then the output of agent v is L, otherwise F .

Interaction between initiator a0 and responder a1:
1: a0.timerL ← a1.timerL ← max(a0.timerL − 1, a1.timerL − 1, 0)
2: for i ∈ {0, 1} such that ai.timerL = 0 do ai.leader← > endfor
3: if ∃i ∈ {0, 1} : ai.leader = > then a0.timerL ← a1.timerL ← tmax endif

4: a0.virus← a1.virus← max(a0.virus− 1, a1.virus− 1, 0)
5: for i ∈ {0, 1} such that ¬ai.shield ∧ (ai.virus > 0) do ai.leader← ⊥ endfor

6: for i ∈ {0, 1} do ai.timerI ← max(ai.timerI − 1, 0) endfor
7: if a0.timerI = 0 ∧ a0.leader = > then (a0.virus, a0.shield)← (tvirus,>) endif
8: if a1.timerI = 0 ∧ a1.leader = > then a1.shield← ⊥ endif
9: for i ∈ {0, 1} such that ai.timerI = 0 do ai.timerI ← temit endfor

Protocol PPL consists of a timeout mechanism (Lines 1-3) and a virus-war mechanism
(Lines 4-9). By using variable timerL, the timeout mechanism creates a leader when no
leader exists in the population. By using variables timerI , virus, and shield, the virus-war
mechanism reduces the number of leaders if there are two or more leaders.

The timeout mechanism of PPL (Lines 1-3) is almost the same as that of the protocol
given in [14]. This mechanism uses a leader-timer timerL, which indicates the possibility of
existence of a leader. A leader agent always keeps timerL = tmax, and resets the leader-timer
of the other agent to tmax every time it interacts with a non-leader agent (Line 3). We call
this operation timer reset. When two non-leaders interact, we take the larger timer value of
the two agents, decrease it by one, and substitute the decreased value into the leader-timers of
both agents (Line 1). We call this operation larger value propagation. When the leader-timer
of a non-leader decreases to zero, it suspects that no leader exists in the population, and
it becomes a new leader (Line 2). We call this event timeout. This mechanism works well
for the following reasons: (i) the timeout rarely happens when the population has a leader
because the leader-timers of all agents have large values thanks to the timer reset and the
larger value propagation, (ii) when no leader exists in the population, a timeout happens and
a new leader is created within a short time because there is no possibility of a timer reset.
It is proven in [14] that, if tmax = Ω(n), the timeout rarely happens in the population with
at least one leader. In the next section, we show that, with a high probability, the timeout
does not happen for a long time when a leader exists, even if the maximum value tmax is
polylogarithmic in N , specifically, tmax = Θ(log2N).

The basic idea of the virus-war mechanism is first presented in [15]. PPL uses this idea,
but implements it in a considerably different way in order to reduce the number of leaders to
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one within a polylogarithmic parallel time. In the virus-war mechanism (Lines 4-9), every
leader tries to kill other leaders by using viruses and become the unique leader. We say that
agent v has a virus if v.virus > 0, and that v is shielded if v.shield = >. As we will see
later, a virus is propagated to the whole population by interactions and kills leaders that are
not shielded. Every agent has an individual timer timerI to create a new virus periodically.
This timer is decreased by one every time that agent participates in an interaction (Line 6).
When the individual timer of a leader reaches zero at an interaction, its fate differs according
to its role in the interaction, initiator or responder. If the agent is an initiator, it succeeds
in creating a new virus and becomes shielded, that is, virus ← tvirus and shield ← >
(Line 7). If it is a responder, it becomes unshielded i.e., shield← ⊥ (Line 8). Thereafter,
the individual timer is reset to the maximum value temit in both cases (Line 9). A virus
spreads by interactions (Line 4). A leader is killed and becomes a non-leader if it catches a
virus when it is not shielded (Line 5). The value of virus in an agent corresponds to the
TTL (time to live) of the virus that the agent carries. Since it decreases in the larger value
propagation fashion, viruses eventually disappear from the population and no virus exists in
the following execution until a new virus is created by some leader.

When there are multiple leaders, the virus-war mechanism elects exactly one leader within
a short time. Since every agent participates in any interaction Γt with probability 2/n, the
individual timer of an agent reaches zero within O(ntemit) interactions with high probability.
Therefore, some leader creates a new virus (and becomes shielded) by executing Line 7 within
O(ntemit) interactions in expectation and approximately half of leaders are killed by the
virus. Therefore, the number of shielded leaders is approximately halved for every O(ntemit)
interactions. This rough and intuitive analysis explains why O(ntemit logn) ⊆ O(cn log3N)
interactions are sufficient to elect a unique leader. On the other hand, we must consider the
risk of suicide, i.e., the event where a single leader creates a new virus and then becomes
unshielded before the virus disappears from the population. This event causes the unique
leader to be killed by the virus. A long holding time cannot be achieved if suicides are
frequent. Suicide of a single leader v occurs only when a leader v first executes Line 7,
starting a new virus while shielding itself, and then later executes Line 8 while the virus is
still present, causing itself to be killed shortly thereafter. We can ensure that the frequency
of that sequence of events is extremely small by assigning a sufficiently large value to temit
compared to tvirus, as we discuss carefully in the next section.

4 Analysis of Convergence and Holding Time

In this section, we prove that PPL is a (O(cn logn · log2N),Ω(cn10c+1))-loosely-stabilizing
leader election protocol. Define the set S of safe configurations as follows:

Li = {C ∈ Call(PPL) | 1 ≤ |{v ∈ V | C(v).leader}| ≤ i} , for i = 1, 2, . . . , n

Ghalf = {C ∈ Call(PPL) | ∀v ∈ V : C(v).timerL ≥ tmax/2} ,

Lsafe = {C ∈ Call(PPL) | ∃v ∈ V : C(v).leader ∧ C(v).shield ∧ C(v).timerI ≥ temit/2} ,

Vclean = {C ∈ Call(PPL) | ∀v ∈ V : C(v).virus = 0}.
S = L1 ∩ Ghalf ∩ (Lsafe ∪ Vclean),

We need to prove the following two equalities:

max
C∈Call(PPL)

EICPPL(C,S) = O(cn logn · log2N), (4)

min
C∈S

EIHPPL(C,LE) = Ω
(
cn10c+1) . (5)
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Note that C ∈ Li requires that the population in configuration C has at least one leader but
does not have more than i leaders. For example, L1 is the set of configuration where exactly
one leader exists in the population and Ln is the set of configurations where at least one
leader exists in the population. Clearly, L1 ⊂ L2 ⊂ · · · ⊂ Ln holds.

In the remainder of this section, we first introduce analytic tools (the notions of epidemic
and virtual agents) in Section 4.1. Expected holding time and expected convergence time are
analyzed in Sections 4.2 and 4.3, respectively. Since we evaluate the expected convergence
time and the expected holding time only asymptotically, it suffices to assume that n is
sufficiently large. Specifically, we assume n ≥ 55; we then have dlnNe ≥ 5.

4.1 Tools
The goal of this Section is, intuitively, to prove ∆ = Θ(logn) where ∆ is the integer introduced
at the end of Section 1.1. First, we review the notions of epidemic and virtual agents presented
in [5] and [14] respectively. Most of the definitions in Section 4.1 are borrowed from [14].

By an abuse of notation, we will identify an interaction (u, v) with the set {u, v} whenever
convenient. Let γ = γ0, γ1, . . . be an infinite sequence of interactions and let r be an agent
in V . The epidemic function Ir,γ : [0,∞)→ 2V is defined as follows: Ir,γ(0) = {r}, and for
t = 1, 2, . . . , Ir,γ(t) = Ir,γ(t−1)∪γt−1 if Ir,γ(t−1)∩γt−1 6= ∅; otherwise, Ir,γ(t) = Ir,γ(t−1).
We say that v is infected at time t if v ∈ Ir,γ(t) in the epidemic starting from agent r under
γ. At time 0, only r is infected; at later steps, an agent becomes infected if it interacts with
an infected agent. Once an agent becomes infected, it remains infected thereafter. We define
the infection time tr,γ(v) of agent v ∈ V to be min{t ≥ 0 | v ∈ Ir,γ(t+ 1)} if v 6= r, and we
let tr,γ(r) = −1. Note that every agent v 6= r is infected by the interaction γtr,γ(v).

We now define the virtual agent VAr,γ(v) of each agent v ∈ V . We assume that all
agents eventually become infected, that is, Ir,γ(t′) = V holds for some t′. The virtual agent
VAr,γ(v) is not defined if no such t′ exists.2 Let v be any agent other than r. We define
the parent of v as the agent that infects v at time tr,γ(v). This parent-child relation defines
a spanning tree of G rooted at r. In this tree, we call the unique path from r to v i.e.,
v0(= r), v1, v2, . . . , vk(= v), the infection path of v. The virtual agent VAr,γ(v) is a virtual
entity that migrates from r to v through this infection path. At the beginning, VAr,γ(v)
stays at r. For every i ∈ [0, k − 1], it migrates from vi to vi+1 at time tr,γ(vi+1) After
reaching vk = v, the virtual agent remains at v. For t ≥ 0, we say that virtual agent VAr,γ(v)
participates in γt if, at time t, VAr,γ(v) is at one of the two agents participating in γt. For
any t ≥ 1, we define VI r,γ(v, t) as the number of interactions in γ0, γ1, . . . , γt−1 that VAr,γ(v)
participates in. Formally, we define VI r,γ(v, t) = |{j ∈ [0, t−1] | (v ∈ γj ∧ j ≥ tr,γ(v))∨ (∃i ∈
[0, k − 1] : vi ∈ γj ∧ tr,γ(vi) ≤ j < tr,γ(vi+1))}|.

Consider an execution ΞP (C0, γ) = C0, C1, . . . of some protocol P that has a propagating
variable var. Larger value propagation guarantees that the virtual agent VAr,γ(v) brings
a large value of var from r to v when it reaches v through the infection path if r has a
sufficiently large value of var in C0 and virtual agent VAr,γ(v) participates in sufficiently few
interactions in γ0, γ1, . . . , γtr,γ(v). This property is formalized as the following trivial lemma.

I Lemma 3. Let γ = γ0, γ1, . . . be a schedule, P be a protocol, and var be a propagating vari-
able of P . Let C0 ∈ Call(P ) and ΞP (C0, γ) = C0, C1, . . . . Then v ∈ Ir,γ(t) ⇒ Ct(v).var ≥
C0(r).var−VI r,γ(v, t) for any agents r, v ∈ V and any integer t ≥ 1.

2 Such t′ exits with probability 1 when the uniformly random scheduler Γ is given.
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Angluin et al. [5] prove that the epidemic from any agent r ∈ V finishes (i.e., all agents
are infected) within Θ(n logn) interactions with high probability. Furthermore, our previous
work [14] gives a concrete lower bound on the probability that the epidemic finishes within a
given number of interactions as follows:

I Lemma 4 ([14]). Let r ∈ V . For any integer t ≥ 1, Pr(Ir,Γ(2t) 6= V ) ≤ ne−t/n.

From Lemmas 3 and 4, we can achieve the goal of this section by giving a sufficiently
tight lower bound of VI r,γ(v, t) with high probability. It would be easy if the probabilities
of VAr,γ(v) ∈ Γt for distinct t were independent of each other, and equal to 2/n, like the
probability of v ∈ Γt. Then, the simple Chernoff bound would give a tight lower bound with
high probability. However, Pr(VAr,γ(v) ∈ Γt) = 2/n does not hold in general. This is because
VAr,γ(v) at time t is determined not only by the preceding interactions Γ0,Γ1, . . . ,Γt−1 but
also by the subsequent interactions. Γt,Γt+1, . . . . Therefore, we need a careful analysis.
The following lemma is one of the main contributions in this paper; it enables us to bound
VI r,Γ(v, t) probabilistically to a logarithmic order when t is logarithmic in n.

I Lemma 5. The following two inequalities hold for any r, v ∈ V , t ≥ 1, d ≥ 3, d′ ≥ 3, and
d′′ ≥ 6:

Pr
(

VI r,Γ(v, t) ≥ 4ddlog2 ne+ 2d′Hn + 4d′′t
n

∣∣∣∣ Ir,Γ(t) = V

)
≤ n−d + n−d

′
+ e−

2d′′t
n ,

Pr
(

VI r,Γ(v, t) ≥ 4ddlog2 ne+ 2d′Hn + 8t
n

∣∣∣∣ Ir,Γ(t) = V

)
≤ n−d + n−d

′
+ e−

4t
3n .

Proof. Assume that Ir,Γ(t) = V . Let t1, t2, . . . , tn−1 be the integers such that Ir,Γ(ti) 6=
Ir,Γ(ti + 1) for each i ∈ [1, n − 1] and 0 ≤ t1 < t2 < · · · < tn−1 < t. Let u1, u2, . . . , un−1
be the agents where ti = tr,Γ(ui). Intuitively, ui is the (i + 1)st agent to be infected and
ti is its infection time in the epidemic starting from r under Γ. We let u0 = r. Note
that both ui and ti are random variables. Let Z1 be the number of interactions that
virtual agent VAr,γ(v) participates in among the n− 1 interactions Γt1 ,Γt2 , . . . ,Γtn−1 . Let
Z2 = VI r,Γ(v, t)− Z1. As mentioned above, the parent-child relation based on the epidemic
starting from r gives the infection path from r to v, denoted by v0(= r), v1, v2, . . . , vk = v.
(Note that k and each vi are random variables.) For any j (0 ≤ j < t), let Xj be the
indicator variable such that Xj = 1 holds if VAr,Γ(v) participates in Γt, otherwise Xj = 0.
In other words, we define Xj = 1⇔ (j ≥ tr,Γ(v) ∧ v ∈ Γj) ∨ (∃i : tr,Γ(vi) ≤ j < tr,Γ(vi+1) ∧
vi ∈ Γj). Let X =

∑
j∈{t1,t2,...,tn−1}\{tr,Γ(v1),tr,Γ(v2),...,tr,Γ(vk)}Xj . It trivially holds that

Z1 =
∑
j∈{t1,t2,...,tn−1}Xj = k + X. Hence, VI r,Γ(v, t) = Z1 + Z2 = k + X + Z2. In the

following, we give probabilistic upper bounds on k, X, and Z2.

First, we focus on k, the length of the infection path from r to v. The index of
vi (0 ≤ i ≤ k), denoted by xi, is defined to be the integer such that vi = uxi−1, i.e., vi
is the xth

i agent to be infected among the population. For example, v0 = r is the first
infected agent and thus x0 = 1. The parent of each uj is chosen uniformly at random among
u0, u1, . . . , uj−1. Therefore, Pr(xi ≥ 2xi−1) ≥ 1/2 for i = 1, 2, . . . , k. If k ≥ 4ddlog2 ne, then
the event xi ≥ 2xi−1 must not happen more than dlog2 ne times for i = 1, 2, . . . , 4ddlog2 ne.
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Hence, letting Y be a binomial random variable such that Y ∼ B(4ddlog2 ne, 1/2), we have

Pr(k ≥ 4ddlog2 ne | Ir,Γ(t) = V ) ≤ Pr(Y ≤ dlog2 ne)

= Pr
(
Y ≤ E[Y ]

2d

)
≤ exp

(
−1

2 ·
(

2d− 1
2d

)2
· 2ddlog2 ne

)

≤ exp
(
−d lnn · log2 e ·

(
2d− 1

2d

)2
)

≤ n−d,

where we use (3) in Lemma 2 for the second inequality and ∀d ≥ 3 : log2 e · ((2d−1)/2d)2 ≥ 1
for the last inequality (log2 e · (5/6)2 = 1.00187 . . . ).

Next, we focus on the random number X =
∑
j∈{t1,t2,...,tn−1}\{tr,Γ(v1),tr,Γ(v2),...,tr,Γ(vk)}Xj .

For any j ∈ {t1, t2, . . . , tn−1} \ {tr,Γ(v1), tr,Γ(v2), . . . , tr,Γ(vk)}, we have Pr(Xj = 1) = 1/i,
where j = ti. Therefore, letting W1,W2, . . . ,Wn−1 be a sequence of independent Poisson
trials with probability Pr(Wi = 1) = 1/i, we have

Pr(X ≥ 2d′Hn | Ir,Γ(t) = V ) ≤ Pr
(
n−1∑
i=1

Wi ≥ 2d′Hn−1

)
≤ 2−2d′Hn−1 ≤ e−d

′Hn−1 ≤ n−d
′
,

where we use d′ ≥ 3, Hn−1 = E[
∑n−1
i=1 Wi], (2) in Lemma 2 for the second inequality, and

Hn−1 > lnn for the last inequality.
Finally, we focus on Z2, the number of non-infection interactions that virtual agent

VAr,Γ(v) participates in among Γ0,Γ1, . . . ,Γt−1. Under the condition that no agent is newly
infected by an interaction Γj , the probability that VAr,Γ(v) participates in Γj is at most 4/n
[14]. This is because, letting m = |Ir,Γ(j)| and 0C2 = 1C2 = 0, the probability is exactly

m−1
mC2+n−mC2

, which is at most 4/n regardless of j (See Appendix in [14]). Therefore, letting
W ′ be a binomial random variable such that W ′ ∼ B(t, 4/n), we have

Pr
(
Z2 ≥

4d′′t
n

∣∣∣∣ Ir,Γ(t) = V

)
≤ Pr

(
W ′ ≥ 4d′′t

n

)
≤ 2−4d′′t/n ≤ e−2d′′t/n,

where we use d′′ ≥ 6 and (2) in Lemma 2 for the second inequality. Similarly, we have

Pr
(
Z2 ≥

8t
n

∣∣∣∣ Ir,Γ(t) = V

)
≤ Pr

(
W ′ ≥ 8t

n

)
≤ e−4t/3n,

where we use (1) in Lemma 2 for the second inequality.
The two inequalities of the lemma follow from the above probabilistic upper bounds on k,

X, and Z2. J

From Lemma 3, Lemma 4, and Lemma 5, we obtain Lemma 6 below.

I Lemma 6. Let P be any protocol and var be a propagating variable of P . Let C0 ∈ Call(P )
and ΞP (C0,Γ) = C0, C1, . . . . Then the following inequalities hold for any r ∈ V , t ≥ 1,
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d ≥ 3, d′ ≥ 3, and d′′ ≥ 6:

Pr
(
∀v ∈ V : C2t(v).var > C0(r).var− 4ddlog2 ne − 2d′Hn −

8d′′t
n

)
≥ 1− n

(
n−d + n−d

′
+ e−

4d′′t
n + e−

t
n

)
Pr
(
∀v ∈ V : C2t(v).var > C0(r).var− 4ddlog2 ne − 2d′Hn −

16t
n

)
≥ 1− n

(
n−d + n−d

′
+ e−

8t
3n + e−

t
n

)
.

Lemma 6 is formalized for general applications: the lemma can be used for any protocol and
any of its propagating variables. In this paper, we use the following two corollaries.

I Corollary 7. Let C0 ∈ Ln and ΞPPL(C0,Γ) = C0, C1, . . . . Then:

Pr
(
C6cndlnNe2 ∈ Ghalf

)
≥ 1− 3n−10c.

Proof. There exists an agent r ∈ V such that C0(r).leader holds since C0 ∈ Ln. The value
of the leader-timer in r may not be tmax in the initial configuration C0. However, in the
first interaction that r participates in, r resets the timers of both of the interacting agents
to tmax. Therefore, we can assume that C0(r).timerL = tmax. Assigning t = 3cndlnNe2,
d = d′ = 11c, and d′′ = 6 to the first inequality of Lemma 6 yields the result, because we
have:

4ddlog2 ne+ 2d′Hn + 8d′′t
n
≤ 44cdlog2 ne+ 22c(1 + lnn) + 144cdlnNe2

≤ 44c(1 + log2 edlnNe) + 22c(1 + dlnNe) + 144cdlnNe2

≤ 144cdlnNe2 + 86cdlnNe+ 66c

≤ tmax

2 ,

where we use tmax = 720cdlnNe2 in the last inequality, and we have:

n
(
n−d + n−d

′
+ e−

4d′′t
n + e−

t
n

)
≤ n(2n−11c + n−72cdlnNe +N−15c) ≤ 3n−10c. J

I Corollary 8. Let C0 ∈ Call(PPL) and ΞPPL(C0,Γ) = C0, C1, . . . . Assume C0(r).virus =
tvirus for some r ∈ V . Then:

Pr
(
∀v ∈ V : C4ndlnNe(v).virus > 0

)
≥ 1− 2/n.

Proof. Assigning t = 2ndlnNe and d = d′ = 3 to the second inequality of Lemma 6 we have

4ddlog2 ne+ 2d′Hn + 16t
n
≤ 12dlog2 ne+ 6(1 + dlnNe) + 32dlnNe

≤ 12(1 + log2 edlnNe) + 6(1 + dlnNe) + 32dlnNe
≤ 56dlnNe+ 18
< tvirus,

where we use the assumption dlnNe ≥ 5 in the last inequality, and we have

n
(
n−d + n−d

′
+ e−

8t
3n + e−

t
n

)
≤ n(2n−3 +N−5 +N−2) ≤ 2/n,

where we use the assumption n ≥ 55 in the last inequality. J

OPODIS 2018



30:12 Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time

4.2 Expected Holding Time
We prove (5) in this section, that is, minC∈S EIHPPL(C,LE) = Ω

(
cn10c+1). Let t be a positive

integer and γ = γ0, γ1, . . . be a schedule. Let C0 ∈ Call(PPL) and ΞPPL(C0, γ) = C0, C1, . . . .
We define the indicator variable: L+

C0,γ
(t) = > if a timeout occurs and a new leader is

created in the prefix C0, C1, . . . , Ct of length t+1 of the execution that is, at least one
of the interactions γ(0), γ(1), . . . , γ(t − 1) causes a timeout in ΞPPL(C0, γ); Otherwise we
let L+

C0,γ
(t) = ⊥. For convenience, we define L+

C0,γ
(0) = ⊥. Similarly, we define the

indicator variable L0
C0,γ

(t) as follows: L0
C0,γ

(t) = > if and only if the prefix of length
t + 1 of the execution includes a configuration where no leader exists. We also define
τ = 144cndlnNe2 = ntemit/5. In the rest of this section, we prove that for any configuration
C0 ∈ S:

Pr
(
¬L+

C0,Γ(τ) ∧ ¬L0
C0,Γ(τ) ∧ Cτ ∈ S

)
≥ 1−O(n−10c), (6)

where ΞPPL(C0,Γ) = C0, C1, . . . . From this inequality, we have minC∈S EIHPPL(C,LE) ≥
(1−O(n−10c)) ·(τ+minC∈S EIHPPL(C,LE)), which yields (5), i.e., minC∈S EIHPPL(C,LE) =
Ω(cn10c+1).

Let v be an agent, t ≥ 1 an integer, and γ = γ0, γ1, . . . a schedule. We denote by RI γ(v, t)
the number of interactions in which v participates among the first t interactions of γ (i.e.,
γ0, γ1, . . . , γt−1). We also define (asynchronous) round time. The first round time RTγ(1) is
the minimum t satisfying ∀v ∈ V,∃j ∈ [0, t − 1] : v ∈ γj . For any i ≥ 2, we define the ith
round time RTγ(i) as the minimum t satisfying ∀v ∈ V,∃j ∈ [RTγ(i− 1), t− 1] : v ∈ γj . For
completeness, we define RTγ(0) = 0. Note that, for any i ≥ 1, every agent v ∈ V participates
in at least one interaction in γRTγ(i−1), . . . , γRTγ(i)−1.

I Lemma 9. Pr(maxv∈V RI Γ(v, τ) ≥ temit/2) < N−30c+1.

Proof. Since each agent v participates in Γt with probability 2/n for any t ≥ 0, we have
E[RI Γ(v, τ)] = 2τ/n = 2

5 temit. Therefore, Pr(RI Γ(v, τ) ≥ 1
2 temit) = Pr(RI Γ(v, τ) ≥

5
4E[RI Γ(v, τ)]) ≤ exp(−E[RI Γ(v, τ)]/48) = exp(−6cdlnNe2) ≤ N−30c by the Chernoff
bound (1) in Lemma 2 with δ = 1/4, and by the assumption dlnNe ≥ 5. Hence, the lemma
holds by the union bounds. J

To prove (6), we first give lower bounds on the probabilities of ¬L+
C0,Γ(τ) and ¬L0

C0,Γ(τ)
in Lemmas 10 and 11, respectively. Then, we give lower bounds on the probability of Cτ ∈ S
by Lemmas 14 and 15.

I Lemma 10. Let C0 ∈ Ghalf . Then, Pr(L+
C0,Γ(τ)) ≤ N−30c+1.

Proof. Since tmax = temit, and the leader-timer of every agent is no less than tmax/2 in
C0 ∈ Ghalf , a timeout happens within the first τ interactions with probability at most
N−30c+1, by Lemma 9. J

I Lemma 11. Let C0 ∈ Ln ∩ (Lsafe ∪ Vclean). Then, Pr(L0
C0,Γ(τ)) ≤ N−30c+1.

Proof. First, consider the case C0 ∈ Lsafe. The population has a shielded leader vl whose
individual timer is at least temit/2 at C0. Therefore, L0

C0,Γ(τ) holds only if vl participates in
temit/2 or more interactions and becomes unshielded within the first τ interactions. Next,
consider the case C0 ∈ Ln ∩ Vclean. One or more leaders exist, but no virus exists in the
population in C0. The leaders are never killed (become non-leaders) until viruses appear in
the population. Therefore, L0

C0,Γ(τ) holds only if some leader, say vl, creates a new virus.
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However, vl resets its individual timer to temit and becomes shielded when it creates a new
virus. Therefore, L0

C0,Γ(τ) holds only if vl participates in temit or more interactions among
the first τ interactions. Thus, in both cases, L0

C0,Γ(τ) holds only if some agent participates
in temit/2 or more interactions among the first τ interactions. By Lemma 9, this necessary
condition holds with probability at most N−30c+1, which yields the lemma. J

I Lemma 12. Pr(RTΓ(i) ≥ 2in(1 + dlnne)) ≤ ne−i/4 for any i ≥ 1.

Proof. Each round finishes when every agent v ∈ V has interacted during that round.
Consider the case that s (s ≥ 1) agents have not yet interacted in round j. One of
these s agents participates in the next interaction with probability sC2+s(n−s)

nC2
≥ s

n . Let
X1,s, X2,s, . . . , Xi,s be independent random variables each of which corresponds to the number
of trials needed to reach the first success where the success probability of each trial is s/n.
We have

Pr(RTΓ(i) ≥ 2in(1 + dlnne) ≤ Pr

 i∑
j=1

n∑
s=1

Xj,s ≥ 2in(1 + dlnne)


≤ Pr

 n∑
s=1

i∑
j=1

Xj,s ≥ 2inHn


≤ Pr

 n∑
s=1

i∑
j=1

Xj,s ≥
n∑
s=1

2in
s

 ≤ n∑
s=1

Pr

 i∑
j=1

Xj,s ≥
2in
s

 .

For a binomial random variable Ys ∼ B(d 2in
s e,

s
n ), we have Pr(

∑i
j=1Xj,s ≥ 2in

s ) =
Pr(
∑i
j=1Xj,s ≥ d 2in

s e) ≤ Pr(Ys ≤ i). Hence

Pr

 i∑
j=1

Xj,s ≥
2in
s

 ≤ Pr(Ys ≤ i) ≤ Pr
(
Ys ≤

1
2 ·E[Ys]

)
≤ e−E[Ys]/8 ≤ e−i/4,

where we use Chernoff bound given as (3) in Lemma 2 for the third inequality. J

I Corollary 13. Pr(RTΓ(tvirus) ≥ τ) ≤ N−15c+1.

Proof. Since we assume dlnNe ≥ 5, Lemma 12 yields Pr(RTΓ(tvirus) ≥ τ) = Pr(RTΓ(tvirus) ≥
144cndlnNe2) ≤ Pr(RTΓ(tvirus) ≥ 120cndlnNe(1 + dlnne)) ≤ Pr(RTΓ(c · tvirus) ≥ 2(c ·
tvirus)n(1 + dlnne)) ≤ ne−c·tvirus/4 ≤ N−15c+1. J

I Lemma 14. Let C0 ∈ Call(PPL) and ΞPPL(C0,Γ) = C0, C1, . . . . Then, Pr(Cτ /∈ Lsafe ∪
Vclean) ≤ 2N−15c+1.

Proof. Consider the case that every agent has fewer than temit/2 interactions during the first
τ interactions, and the tthvirus round finishes during the first τ interactions. Thanks to the latter
condition, viruses disappear from the population and no virus exists in Cτ , i.e., Cτ ∈ Vclean,
if no leader creates a new virus within the first τ interactions. If some leader vl ∈ V creates a
new virus during that period, then vl.leader∧vl.shield∧vl.timerI ≥ temit/2 in Cτ , thanks
to the former condition, which implies Cτ ∈ Lsafe. This is because vl resets its individual
timer to temit and becomes shielded at the time it creates a new virus. The probability that
both conditions hold is at least 1−N−30c+1 +N−15c+1 > 1− 2N−15c+1 by Lemma 9 and
Corollary 13. J
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I Lemma 15. Let C0 ∈ Call(PPL) and ΞPPL(C0, γ) = C0, C1, . . . . Then Pr(Cτ /∈ Ghalf |
Cτ−6cndlnNe2 ∈ Ln) ≤ 3n−10c.

Proof. Immediate from Corollary 7. J

The inequality (6) follows from Lemma 10, Lemma 11, Lemma 14, and Lemma 15. Thus,
we obtain the following lemma from the discussion in the beginning of this sub-section.

I Lemma 16. minC∈S EIHPPL(C,LE) = Ω
(
cn10c+1).

4.3 Expected Convergence Time
We prove (4) in this section, that is, maxC∈Call(PPL) EICPPL(C,S) = O(cn logn · log2N).
Recall that S = L1 ∩ Ghalf ∩ (Lsafe ∪ Vclean). We make use of the fact that τ = 144cndlnNe2.

I Lemma 17. Let C0 ∈ Lsafe ∪ Vclean and ΞPPL(C0,Γ) = C0, C1, . . . . Then Pr(∃j ∈
[0, 12τdlnNe] : Cj ∈ Ln ∩ (Lsafe ∪ Vclean)) ≥ 1−O(N−1).

Proof. Since C0 ∈ Lsafe ∪ Vclean, we have C0 ∈ Ln ∩ (Lsafe ∪ Vclean) if C0 ∈ Ln. Hence, it
suffices to consider only the case that C0 /∈ Ln. In this case, C0 ∈ Vclean also holds because
C0 ∈ Lsafe ∪ Vclean and Lsafe ⊂ Ln. To conclude, we need only consider the case that there
exists no virus and no leader in the population at C0. Staring from such a configuration,
the population reaches a configuration in Ln ∩ (Lsafe ∪ Vclean) immediately after a new
leader is created by the timeout. While no leader exists in the population, maxv∈V v.timerL
is monotonically non-increasing and decreases at least by one during each asynchronous
round. Therefore, the timeout occurs within tmax rounds. Lemma 12 guarantees that
Pr(RTΓ(tmax) ≥ 2ntmax(1 + dlnne) ≤ ne−tmax/4 = O(N−1). Since dlnNe ≥ 5, we have
2ntmax(1 + dlnne) = 10τ(1 + dlnne) ≤ 12τdlnNe, which yields the lemma. J

I Lemma 18. Let C0 ∈ Ln ∩ (Lsafe ∪ Vclean) and ΞPPL(C0,Γ) = C0, C1, . . . . Then Pr(Cτ ∈
Ln ∩ Ghalf ∩ (Lsafe ∪ Vclean)) ≥ 1−O(N−1).

Proof. Immediate from Lemma 11, Lemma 14, and Lemma 15. J

I Lemma 19. Pr(minv∈V RI Γ(v, 5τ) ≤ temit) < N−900c+1.

Proof. Each agent participates in Γt with probability 2
n , for any t ≥ 0. Therefore, the

Chernoff bound given as (3) in Lemma 2 with δ = 1/2 yields Pr(RI Γ(v, 5τ) ≤ temit) ≤
etemit/4 < N−900c. The lemma holds by the union bounds. J

Intuitively, the following lemma guarantees that the number of leaders decreases at least
by half during every 15τ interactions with probability close to 1/4, and never increases with
probability 1 − O(N−1) after the population enters a configuration in C0 ∈ Ln ∩ Ghalf ∩
(Lsafe ∪ Vclean).

I Lemma 20. Let i ∈ [0, n− 1]. Let C0 ∈ L1+i ∩ Ghalf ∩ (Lsafe ∪ Vclean) and ΞPPL(C0,Γ) =
C0, C1, . . . . The following inequalities hold:

Pr(C15τ ∈ L1+bi/2c) ≥ 1/4−O(n−1) (7)
Pr(C15τ ∈ L1+i ∩ Ghalf ∩ (Lsafe ∪ Vclean)) ≥ 1−O(N−1). (8)
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Proof. In this proof, we use notation “with high probability” to represent “with probability
1−O(n−1)”. By repeated application of Lemma 10, Lemma 11, Lemma 14, and Lemma 15, it
holds with high probability that no new leader is created and at least one leader always exists
in the population in C0, C1, . . . , C15τ . Moreover, Lemma 19 guarantees that the individual
timer of every agent reaches zero in every 5τ interactions with high probability. In particular,
for all v ∈ V , v.timerI reaches zero at least once in the middle period C5τ , C5τ+1, . . . , C10τ
with high probability. Let VL be the set of all leaders in C0 and i′ = |VL| − 1. Note that
0 ≤ i′ ≤ i since C0 ∈ L1+i. Since ¬L0

C0,Γ(15τ) with high probability, some vl ∈ VL creates a
new virus with probability at least 1/2−O(n−1). This is because, when the individual timer
of a leader reaches zero in an interaction, that leader creates a new virus with probability
1/2 (i.e., if it is the initiator of the current interaction). The virus propagates to the whole
population within 4n logn (< 5τ) interactions thereafter with high probability by Corollary
8. At this time, with probability at least 1/2, independently of configuration C0, no less
than di′/2e agents in VL \ {vl} are unshielded. This is because the individual timer of every
v ∈ VL \ {vl} reaches zero before the time, and then becomes unshielded with probability
1/2. We make the margin period C0, C1, . . . , C5τ for this reason. To conclude, no fewer
than di′/2e leaders in VL \ {vl} are killed and at most 1 + bi′/2c ≤ 1 + bi/2c leaders survive
(i.e., remain leaders) in C15τ , with probability 1/4−O(n−1). Therefore, we obtain (7) since
¬L+

C0,Γ(15τ) ∧ ¬L0
C0,Γ(15τ) holds with high probability. Inequality (8) is guaranteed simply

by applying Lemma 10, Lemma 11, Lemma 14, and Lemma 15 repeatedly (fifteen times). J

The following corollary follows from Lemma 20.

I Corollary 21. Let C0 ∈ Ln ∩ Ghalf ∩ (Lsafe ∪ Vclean) and ΞPPL(C0,Γ) = C0, C1, . . . . Then,
there exists some integer w = O(τ logn) such that Pr(Cw ∈ S) ≥ 1−O

(
logn
N

)
.

I Lemma 22. maxC∈Call(PPL) EICPPL(C,S) = O
(
cn logn · log2N

)
holds.

Proof. By Lemma 14, Lemma 17, Lemma 18, and Corollary 21, we have the following
inequality:

max
C∈Call(PPL)

EICPPL(C,S) ≤ O(τ logn) +O

(
logn
N

)
· max
C∈Call(PPL)

EICPPL(C,S).

Solving this inequality yields maxC∈CallPPL EICPPL(C,S) = O(τ logn) = O(cn logn · log2N).
J

I Theorem 23. Protocol PPL is an (O(cn logn · log2N),Ω(cn10c+1))- loosely-stabilizing
leader election protocol.

Thus, in terms of parallel time, PPL is a loosely-stabilizing leader election algorithm with
polylogarithmic convergence time (O(c logn · log2N) ⊆ O(c log3N)) and arbitrarily large
polynomial holding time (Ω(cn10c)).

5 Conclusion

We have presented a loosely-stabilizing leader election protocol with polylogarithmic conver-
gence time. Given an upper bound N of n and a parameter c, our protocol elects a unique
leader in the population within O(c log3N) parallel time starting from any configuration,
and keeps the unique leader for Ω(cn10c) parallel time.
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Self-stabilizing and silent distributed algorithms for token distribution in rooted tree networks
are given. Initially, each process of a graph holds at most ` tokens. Our goal is to distribute
the tokens in the whole network so that every process holds exactly k tokens. In the initial
configuration, the total number of tokens in the network may not be equal to nk where n is the
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the number of redundant token moves are presented. One reduces the number of redundant token
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1 Introduction

The token distribution problem was originally defined by Peleg and Upfal in their seminal
paper [15]. Consider a network of n processes and n tokens. Initially, the tokens are arbitrarily
distributed among processes but with up to a maximum of ` tokens in any process. The
problem is to distribute the tokens among the processes such that every process ends up
with exactly one token. The above problem was redefined in another paper by the same
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authors [14] by considering m tokens instead of n tokens. The goal in this case is to reach a
configuration at which there are either bm/nc or dm/ne tokens at each process. The token
distribution problem is a form of the load balancing problem in distributed systems. A token
can be considered to represent a unit of task (or load) of a process. The solution to the token
distribution problem provides a solution of the load balancing problem, where the goal is to
maintain the loads of process as evenly as possible.

The fault-tolerant (self-stabilizing) version of the problem of load balancing in distributed
systems was first considered by Arora and Gouda [1]. A self-stabilizing algorithm has two
properties, convergence and stability. The convergence property states that regardless of
the initial number of tokens in the processes, when the faults cease to occur, that is, the
environment no longer changes the load, the execution will reach in finite steps a state where
the loads of processes are balanced. The stability property avoids the possibility of any
execution shifting any unit of load between any two processes forever.

In [1] and many other papers on token distribution papers, a special property (referred
to as constraint in [1]) is maintained. This property specifies that during any execution
of the load balancing or token distribution algorithm, no new tokens are produced and no
tokens are consumed by any process. However, that constraint cannot be maintained in our
work due to the nature of the problem. The token distribution problem solved in this paper
requires storing a fixed number (k) of tokens at each process. As we deal with self-stabilizing
systems, the network (tree in this paper) can start in an arbitrary configuration where the
total number of tokens in the network may not be exactly equal to nk. Instead, each process
holds an arbitrary number, from zero to `, of tokens in an initial configuration. Thus, our
algorithm must make an exception to the constraint above. We assume that only the root
process can push/pull tokens to/from the external store as needed.

We present three silent and self-stabilizing token distribution algorithms for rooted tree
networks in this paper. The performances of the algorithms are summarized in Table 1.
First, we present a self-stabilizing token distribution algorithm Base. This algorithm has
the optimal convergence time, O(n`) (asynchronous) rounds. (As we will see in Section 3,
any self-stabilizing token distribution algorithm requires convergence time of Ω(n`) rounds.)
However, Base may have a large number of redundant token moves; Θ(nhε) redundant
(or unnecessary) token moves occur in the worst case where ε = min(k, ` − k), where h is
the height of the tree network. Next, we combine the algorithm Base with a synchronizer
or with PIF waves to reduce redundant token moves, which results in SyncTokenDist or
PIFTokenDist, respectively. Algorithm SyncTokenDist reduces the number of redundant
token moves to O(nh) without additional costs, while PIFTokenDist drastically reduces
the number of redundant token moves to the asymptotically optimal value, i.e., O(n), at
the expense of increasing convergence time from O(n`) to O(nh`) rounds. The work space
space, i.e., the amount of memory needed to store information except for tokens, of all our
algorithms are constant both per process and per link register.

1.1 Related Work
The token distribution problem is introduced by Peleg and Upfal in [15]. Another solution
to the same problem is given by the same authors in [14]. In these papers, the problem is
defined for general bounded degree graphs. Herley [8] gives another scheme to solve the
problem and claims that his solution is more efficient if the time for the local computation
steps is not ignored. Another version of the problem, called near-perfect token distribution
problem is introduced in [2]. In this problem, at the termination of the algorithm, no more
than O(1) tokens can be present at any process. There is a variation of the near-perfect
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Table 1 Token distribution algorithms for rooted trees. (ε = min(k, `− k)).

Conv. Time #Red. Token Moves Work Space (Process,Link)
Base O(n`) rounds Θ(nhε) (0, O(1))

SyncTokenDist O(n`) rounds O(nh) (O(1), O(1))
PIFTokenDist O(nh`) rounds O(n) (O(1), O(1))
LowerBounds Ω(n`) rounds Ω(n) -

token distribution problem, where the maximum difference of tokens between any pair of
processes at the termination of the algorithm is non-constant. That is, the difference depends
on some network parameter. Algorithms in [7, 10, 11] are in this category. Algorithms for
general networks are given in [7], for complete binary trees in [10], and for meshes and torus
networks in [11].

The token distribution problem for tree networks is stated, without any solution, by Peleg
in [13]. In this paper, we solve the problem given in that paper. Another version of the token
distribution problem on trees is stated in [12], where the total number of tokens, denoted by
T , and the number of processes of the tree are computed by the algorithm. The tokens are
then distributed perfectly among the processes in O(Td) time, where d is the diameter of the
tree. Although the asynchronous message passing model was used in their work, they used
stronger communication primitives than the typical send/receive primitives. The solution in
[9] is for tree networks, where processes use the knowledge of n. The dimension-exchange
model used in [9] is also different from models used by the other algorithms discussed above.

The token distribution problem is a version of the load balancing problem. Arora and
Gouda [1] give self-stabilizing load balancing algorithms for ring and tree networks. Starting
from an arbitrary initial assignment of load (or tasks), their algorithms are guaranteed to
converge to a state where the loads of any pair of processes differ by at most 1.

2 Preliminaries

2.1 Model of Computation

We consider a tree network T = (V,E) where V is the set of n processes and E is the set
of n− 1 links. Let vroot be the root process of T , and let p(v) be the parent of any process
v 6= vroot. Let N(v) be the neighbors of a process v. Let C(v) be the set of children of v,
i.e., all neighbors of v except its parent. Let Tv be sub-tree of T consisting of v and its
descendants. Let nv = |Tv|. The height hv of a process v is the length of the longest path
through T between v and a leaf of Tv. Let h = hvroot .

Each link {u, v} ∈ E has two link registers (or just registers) ru,v and rv,u. We call ru,v
an output register of u and an input register of v. A process can read its input and its output
registers. but can write only to its output registers. Thus, neighboring processes u and v
can communicate with each other through ru,v and rv,u.

A process v holds at most ` tokens, each of which is a bit sequence of length b. These
tokens are stored in a dedicated memory space of the process, called the internal token store,
written v.tokenStore, We use a link register to send and receive a token between processes.
Each register ru,v contains at most one token in a dedicated variable ru,v.token. The root
process vroot can also access the external token store, which contains infinitely many tokens.
As we will see later, vroot can reduce the total number of tokens in the tree, i.e., the tokens
in the internal token stores and the links, by pushing a token into the external store, and
can increase it by pulling a token from the external store.
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We use the composite atomicity model with link registers. An algorithm A is specified
by a set of local variables in processes, a set of shared variables in link registers, and actions
that specify how a process v updates its local variables and shared variables in its output
registers at each step, but not the local variables of its neighbors. When a process v executes
the procedure, according to the values of its local variables, shared variables in ru,v and
rv,u for all u ∈ N(v), the number of tokens in its token store (i.e., |v.tokenStore|), and two
given parameters ` and k, process v updates its local variables and shared variables of rv,u,
and executes Push and Pull arbitrarily many times. If a process v executes v.Push(x), it
append a token with bit sequence x into its token store; when it executes v.Pull(), it extracts
and removes an arbitrary token from its token store. A process v can detect whether its
local token store is empty (i.e., |v.tokenStore| = 0), and whether its local token store is full
(i.e., |v.tokenStore| = `). A process v is not allowed to invoke Pull when its token store is
empty, nor to invoke Push when its token store is full. The root process vroot can push a
token into or pull a token out of the external store by executing exPush(x) and exPull(),
respectively. Typically, it can move a token from its local token store to the external store
by exPush(Pull()) and can move a token in the reverse direction by Push(exPull()). There
is one restriction, however, each of exPush() and exPull() can be executed at most once per
step.1 We say a process is enabled if execution of the procedure would change the value of
at least one variable; otherwise, the process is disabled.

The values of all variables in a process define the state of the process; similarly, the
values of the variables, including token, in a link register define the state of that register. A
global state or configuration of T is specified by the the states of all processes, the states
of all link registers, and the contents of the token stores of all processes. Let γ and γ′ be
two configurations of an algorithm A on T . We say that γ 7→ γ′ is a step of A if there is a
non-empty set S ⊆ V of enabled processes such that γ changes to γ′ when all the processes in
S simultaneously execute the procedure of A. A process in S is said to be selected at the step
γ 7→ γ′. We define an execution of A to be a maximal sequence γ0, γ1, . . . of configurations
such that each γi 7→ γi+1 is a step of A. For any local variable var1 and any shared variable
var2, we denote local variable var1 of a process v by v.var1, and shared variable var2 of
register ru,v by ru,v.var2. Furthermore, for any configuration γ, we denote the values of
v.var1 and ru,v.var2 in configuration γ by γ(v).var1 and γ(ru,v).var2, respectively.

We assume that a scheduler (or daemon) selects a set of processes that execute at each
step of an execution. The execution ends when there are no enabled processes. In this paper,
we assume the distributed unfair daemon, which selects an arbitrary nonempty subset of
enabled processes at each step; it is unfair because it is not required to select a specific
enabled process v unless v is the only enabled process.

2.2 Problem Specification
We now formally specify the problem. Given positive integers k ≤ `, our goal is to reach a
configuration where every process holds exactly k tokens starting from any configuration
where the number of tokens at each process is arbitrary in the range 0, 1, . . . , `.

First, we give the definition of legality of an algorithm. Intuitively, we want to guarantee
that no tokens in the network disappear from the network unless vroot pushes them into the
external store, and that no new token appears in the network until vroot pulls a token from

1 This is a natural restriction since we have the rule that a process can send at most one token to a given
neighbor in a step, as we shall see later. Simply think of the external store as located in a fictitious
neighboring process.
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the external store. The nature of a token is defined by the application; we can assume it is a
bit string. To transfer a token x from process u to v, process u writes x to ru,v.token. But v
cannot delete x from ru,v.token since ru,v is an input register of v. Instead, we assume that
every algorithm A specifies a predicate PA which indicates whether or not A recognizes that
a token exists in a link register ru,v according to the states of ru,v and rv,u. Let RA be the
set of all the states of a register in algorithm A. Given PA : RA × RA → {false, true}, we
consider that a token represented by the bit sequence x exists in register ru,v if and only if
ru,v.token = x and PA(a, b) = true where a and b are the states of ru,v and rv,u, respectively.
Then, the multiset of tokens in the network with a configuration γ is uniquely determined
and we denote this multiset by mγ,PA . (i.e., A bit sequence x appears nx times in multiset
mγ,PA if and only if exactly nx tokens with contents x exists in the network.) We say that a
step γ 7→ γ′ is legal with PA if the following three conditions hold: (i) process vroot does not
invoke both the two commands exPush(x) and exPull() in step γ 7→ γ′, (ii) if vroot pulls a
token x from (resp. pushes a token x to) the external store in step γ 7→ γ′, the number of
tokens with contents x increases (resp. decreases) by one and the numbers of other tokens
are unchanged from mγ,PA to mγ′,PA , and (iii) if vroot does not execute either exPush(x)
nor exPull() during step γ 7→ γ′, then mγ,PA = mγ′,PA . We say that an algorithm A is
legal with PA if every step of algorithm A is legal with PA.

We say that A is a self-stabilizing [6] token distribution algorithm if A is legal with some
predicate PA and there is a set LA of legitimate configurations, such that the following
three conditions are satisfied: (i) Closure: If γ ∈ LA holds, and γ 7→ γ′ is a step of A,
then γ′ ∈ LA. (ii) Convergence: Every execution of A, which starts from an arbitrary
configuration, contains a configuration in LA. (iii) Correctness: At any γ ∈ LA, every
process holds exactly k tokens in its token store and no registers hold tokens in γ in the sense
of predicate PA. We also say that a self-stabilizing token distribution algorithm A is silent if
every execution of A is finite, that is, reaches a configuration where no process is enabled.

2.3 Complexities
We evaluate token distribution algorithms with three metrics – time complexity, space
complexity, and the number of token moves.

We measure the time complexity in terms of (asynchronous) rounds. Let Γ = γ0, γ1, . . .

be an execution of A, and let E be the set of processes which are enabled at γ0. We define
the first round of execution Γ to be the smallest prefix, say γ0, . . . , γt, of Γ such that every
member of E either executes or becomes disabled during the first t steps. We define γ0, . . . γt
to be the range of the first round of Γ. Let Γ′ be the suffix of Γ starting from γt. The second
round of Γ is defined to be the first round of Γ′, and so forth.

It requires lb bits (resp. b bits) of space to manage a token store in each process (resp. vari-
able token in each register). In this paper, we focus on work space complexity in each process
and in each register of an algorithm. The work space complexity in each process (resp. in
each register) is the bit length to represent all variables on the process (resp. in the register)
except for tokenStore (resp. token).

Generally, a token is transferred from a process u to a process v in the following two
steps: (i) u moves the token from u.tokenStore to ru,v.token; (ii) v moves the token from
ru,v.token to v.tokenStore. In this paper, we regard the above two steps together as one
token move and consider the number of token moves as the number of the occurrences of
the former steps. Specifically, we say that a token moves from u to v in step γ 7→ γ′ of
algorithm A when predicate ¬PA(γ(ru,v), γ(rv,u))∧PA(γ′(ru,v), γ′(rv,u)) holds. Furthermore,
introducing a virtual process p(vroot) /∈ V , we also say that a token moves from vroot to
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Figure 2 A tree to prove Theorem 2.

p(vroot) (resp. from p(vroot) to vroot) in a step when vroot invokes exPush() (resp. exPull())
in that step. We are interested in the number of redundant token moves. Given v ∈ V and
configuration γ, let τ(γ, v) be the number of tokens in input registers of v in configuration γ.
Then, we define ∆(γ, v) =

∑
u∈Tv

d(γ, u) where d(γ, u) = |γ(u).tokenStore|+ τ(γ, u) − k.
Intuitively, ∆(γ, v) is the number of tokens that v must send to p(v) to achieve the token
distribution in an execution starting from configuration γ if ∆(γ, v) ≥ 0; Otherwise, p(v)
must send −∆(γ, v) tokens to v in the execution. Therefore, in an execution Γ = γ0, γ1, . . . ,
we need at least

∑
v∈V |∆(γ0, v)| token moves to achieve token distribution. We define the

number of redundant token moves in Γ = γ0, γ1, . . . as the total number of token moves in
the execution minus

∑
v∈V |∆(γ0, v)|.

3 Lower Bounds

I Theorem 1. For any self-stabilizing token distribution algorithm A, there exists an
execution of A that takes Ω(nl) rounds to reach a configuration where all processes hold
exactly k tokens.

Proof. Consider a tree network of an even number of processes where vroot has two children
u and u′ where nu = n/2 and nu′ = n/2 − 1, and consider a configuration of A on the
graph where Tu holds nu · l tokens in total and Tu′ holds zero tokens (Figure 1). Obviously,
process u must be selected by the scheduler Ω(n(l − k)) times to send nu(l − k) tokens to
vroot and process u′ must be selected by the scheduler Ω(nk) times to receive nv · k tokens
from vroot. Thus, there exists an execution of A starting from this configuration which takes
max(Ω(n(l − k)),Ω(nk)) = Ω(nl) rounds to achieve the token distribution. J

I Theorem 2. For any self-stabilizing token distribution algorithm A, there exists an
execution of A such that the number of redundant token moves in the execution is Ω(n).

Proof. Consider the tree network where vroot has n′ children u1, u2, . . . , un′ , each ui has
exactly one child wi, and no other processes exist (See Figure 2). Consider an execution
of A, on this graph, that starts from a configuration where, for all i = 1, 2, . . . , n′, process
ui holds k + 1 tokens, wi holds no token, and ui, rui,vroot , rvroot,ui

, rui,wi
, and rwi,ui

are in
states such that ui sends a token to vroot when ui is selected by the scheduler. (Such states
must exist for any self-stabilizing token distribution algorithm.) If every ui is selected by the
scheduler in the first step of this execution, then n′ = bn/2c redundant token moves must
happen in the first step. J
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4 Constant-Space Algorithms for Self-stabilizing Token Distribution

Before presenting the three algorithms – Base, SyncTokenDist, and PIFTokenDist – we
describe the token-passing mechanism (or handshake mechanism) that all these algorithms
use to send and receive a token between two processes. Each register ru,v has two shared
boolean variables ru,v.exist and ru,v.ready in addition to ru,v.token. We use predicate
PBase(a, b) ≡ a.exist ∧ b.ready (where a and b are states of ru,v and rv,u, respectively) for
all the three algorithms to represent the existence of a token in link register: register ru,v
holds a token when ru,v.exist∧ rv,u.ready holds. Let u and v be neighboring processes. We
define four predicates used in the pseudocodes as follows:

IsReady(u, v) ≡ (¬ru,v.exist ∧ rv,u.ready),
JustSent(u, v) ≡ (ru,v.exist ∧ rv,u.ready),

JustReceived(u, v) ≡ (ru,v.exist ∧ ¬rv,u.ready),
NotReady(u, v) ≡ (¬ru,v.exist ∧ ¬rv,u.ready).

All the three algorithms adopt the token passing mechanism consisting of the following rules
to send a token from a process u to a process v:
Rule 1 When IsReady(u, v) and |u.tokenStore| > 0, process u may perform “ru,v.token←

Pull()” and “ru,v.exist← true”. After that, JustSent(u, v) becomes true.
Rule 2 When JustSent(u, v) and |v.tokenStore| < l, process v may perform

“Push(ru,v.token)” and “rv,u.ready ← false”. After that, JustReceived(u, v) becomes
true.

Rule 3 When JustReceived(u, v), process u may perform “ru,v.exist← false”. After that,
NotReady(u, v) becomes true.

Rule 4 When NotReady(u, v), process v may perform “rv,u.ready ← true”. After that,
IsReady(u, v) becomes true.

By definition of PBase, a token exists in ru,v if and only if JustSent(u, v) is true. In any step
γ 7→ γ′, none of the above rule changes mγ,PBase , i.e., a multiset of tokens in the network. In
addition to the above rules, there is another mechanism to update a local token store. The
root process vroot pushes a token to and pulls a token from the external store. Specifically,
vroot pulls a token from the external store by Push(exPull()), and vroot pushes a token to
the external store by “exPush(Pull())”. The former (resp. latter) operation is performed
only when |vroot.tokenStore| < l (resp. |vroot.tokenStore| > 0). Shared variables token,
exist, and ready are never updated in any way other than Rules 1-4.

An arbitrary step γ 7→ γ′ of an algorithm which adopts the above token mechanism is
legal because Rules 1-4 do not affect the multiset mγ′,PBase . Thus the following lemma holds.

I Lemma 3. Algorithms Base, SyncTokenDist, and PIFTokenDist are all legal with PBase.

4.1 Algorithm Base
In this section, we define our self-stabilizing token distribution algorithm, which we call

Base. The work space complexity of Base in process (resp. on register) is zero (resp. constant).
Its convergence time is O(n`) rounds and it makes Θ(nhε) redundant token moves.

Some functions take a configuration (e.g., γ) as one of their arguments, such as ∆(γ, v),
defined in Section 2.2. In what follows, we omit the configuration when it is clear from the
context. For example, we write ∆(v) instead of ∆(γ, v). We use the standard notation sgn(x),
that is, sgn(x) = 1, sgn(x) = 0, and sgn(x) = −1 if x > 0, x = 0, and x < 0, respectively.
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Algorithm 1 Base
[Variables of process v and register rv,u]
v.tokenStore {an array containing at most l tokens}
rv,u.exist, rv,u.ready
rv,u.est ∈ {1, 0+, 0, 0−,−1,⊥} {rv,u.est ∈ {1, 0,−1} if v is a leaf.}
rv,u.token ∈ 2b

[Actions of process v]
1: rv,u.exist← false for all u ∈ N(v) such that JustReceived(v, u)
2: rv,u.ready← true for all u ∈ N(v) such that NotReady(u, v)
3: ReceiveToken(u) for all u ∈ N(v) such that JustSent(u, v)
4: SendToken(u) for all u ∈ C(v) such that ru,v.est = −1 ∧ IsReady(v, u)
5: if v = vroot then
6: AdjustTokens()
7: else
8: SendToken(p(v)) if Est(v) = 1 ∧ IsReady(v, p(v))
9: rv,p(v).est← Est(v)

10: end if

[SendToken(u)]:
11: if |v.tokenStore| > 0 then
12: rv,u.token← Pull()
13: rv,u.exist← true
14: ReceiveToken(w) if ∃w ∈ N(v) : JustSent(w, v)
15: end if

[ReceiveToken(u)]:
16: if |v.tokenStore| < l then
17: Push(ru,v.token)
18: rv,u.ready← false
19: end if

[AdjustTokens()]:
20: if Est(v) = −1 then
21: Push(exPull())
22: else if Est(v) = 1 then
23: exPush(Pull())
24: ReceiveToken(u) if ∃u ∈ N(v) : JustSent(u, v)
25: end if

During an execution of Base, each process v tries to estimate sgn(∆(v)), that is, tries
to find whether ∆(v) is positive, negative, or just zero. Each process v 6= vroot reports that
estimate to its parent p(v) using a shared variable rv,p(v).est. When its estimate is negative,
p(v) sends a token to v if p(v) holds a token and IsReady(p(v), v). When the estimate is
positive, v sends a token to its parent p(v) if v holds a token and IsReady(v, p(v)). The root
vroot always pulls a new token from the external store to increase ∆(vroot) when its estimate
is negative, and pushes a token to the external store to decrease ∆(vroot) when the estimate
is positive. If all processes v correctly estimate sgn(∆(v)), each of them eventually holds k
tokens. After that, no process sends a token.
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Thus, estimating sgn(∆(v)) is the key of algorithm Base. Each process v computes Est(v),
its estimate of sgn(∆(v)) as follows.

Est(v) =



1 (Diff (v) > 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {1, 0+, 0})

0+ (Diff (v) = 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {1, 0+, 0}
∧∃w ∈ C(v) : ru,v.est ∈ {0+, 1})

0 (Diff (v) = 0 ∧ ∀u ∈ C(v) : ru,v.est = 0)

0− (Diff (v) = 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {−1, 0−, 0}
∧∃w ∈ C(v) : ru,v.est ∈ {0−,−1})

−1 (Diff (v) < 0 ∧ ∀u ∈ C(v) : ru,v.est ∈ {−1, 0−, 0})
⊥ (otherwise),

Diff (v) = |v.tokenStore|+ |{u ∈ N(v) | JustSent(u, v)}| − k

where the candidate values 1, 0+, 0, 0−, −1, and ⊥ of Est(v) represent that the estimate is
positive, “never negative”, zero, “never positive”, negative, and “unsure”, respectively. A
process sends a token to its parent only when its estimate is 1, and it sends a token to its
child only when the child’s estimate is −1. Note that ∆(v) =

∑
u∈Tv

Diff (u). For process
v ∈ V \ {vroot}, the domain of variable rv,p(v).est is {1, 0+, 0, 0−,−1} if v is not a leaf, and
is {1, 0,−1} if v is a leaf.

Algorithm 1 gives the pseudocode of Base. When v executes, it first updates rv,u.exist
and rv,u.ready for all u ∈ N(v) such that JustReceived(v, u) or NotReady(u, v), according
to the token-passing mechanism (Lines 1-2). Then, v checks whether each input register
ru,v holds a token, and receives that token by invoking ReceiveToken(u) if its token store
is not full, using the token-passing mechanism (Lines 3, 16-19). Then, v sends a token to
each u ∈ C(v) such that IsReady(v, u) and ru,v.est = −1 (i.e., ∆(u) is estimated to be
negative) by invoking SendToken(u) if v’s token store is not empty (Lines 4, 11-15). Next,
v ∈ V \{vroot} and vroot perform different action. If v 6= vroot, it sends a token to its parent if
IsReady(v, p(v)) and Est(v) = 1, i.e., ∆(v) is estimated to be positive, and reports the latest
estimate of sgn(∆(v)) to its parent, and stores Est(v) into rv,p(v).est (Lines 7-10 ). Note
that Diff (v) decreases when v sends a token to its parent, hence the value of Est(v) may
differ in Lines 8 and 9. Process vroot invokes AdjustTokens() by which vroot may increase or
decrease the number of tokens in the tree by pulling a token from or pushing a token to the
external store (Lines 6, 20-25).

In the algorithm description, we have used several functions which take a process as an
argument, like Est(v) and Diff (v). The values of such functions depend on the states of the
process and its registers, i.e., they depend on the current configuration. In what follows, we
sometimes denote such functions with an explicitly specified configuration. For example, we
sometimes denote Est(v) in configuration γ by Est(γ, v) and denote Diff (v) in configuration
γ by Diff (γ, v).

In what follows, we show the correctness, the number of redundant token moves, and the
convergence time of algorithm Base. First, we show that every execution of Base is finite
(Lemma 4). The correctness of Base immediately follows. (Theorem 5).

I Lemma 4. Every execution of Base is finite.

Proof. Fix an execution Γ = γ0, γ1, . . . of Base. For any v ∈ V , we define a predi-
cate Pfinite(v) ≡ PfiniteMove(v) ∧ PfiniteEst(v), where PfiniteMove(v) and PfiniteEst(v) are also
predicates: PfiniteMove(v) holds if and only if v sends and receives tokens only finitely
many times in Γ, and PfiniteEst(v) holds if and only if v = vroot or v changes the value
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of rv,p(v).est only finitely many times in Γ. In the remainder of this proof, we prove
(∀u ∈ C(v);Pfinite(u))⇒ Pfinite(v) for all v ∈ V . This proposition guarantees that (i) every
leaf w satisfies Pfinite(w) because it has no children, and (ii) every process v with height i > 0
satisfies Pfinite(v) if every process u with height i − 1 satisfies Pfinite(u). Thus, Pfinite(v′)
holds for all v by induction on the height hv of v, from which gives the lemma.

Let v ∈ V , and suppose Pfinite(u) holds for all u ∈ C(v). Then, v sends or receives no
token to or from its children, and ru,v.est remains unchanged for all u ∈ C(v) after some
point of the execution. Let γt 7→ γt+1 be the first step that v is selected after that point. (The
unfair daemon may never selects v after that point, but we need not consider this case because
then Pfinite(v) clearly holds.) In an execution after that step, say Γt+1 = γt+1, γt+2, . . . ,
process v sends a token to p(v) only if Diff (v) > 0, and p(v) sends a token to v only if
Diff (v) < 0. Hence, v sends and receives tokens at most |Diff (γt+1, v)| times in Γt+1, which
implies PfiniteMove(v). Thus, there exists t′ > t such that v never sends or receives a token
after γt′ . Since Diff (v) never changes after γt′ , Est(v) also never changes after γt′ . This
means that rv,p(v).est never changes after γt′+1, which implies PfiniteEst(v). Thus Pfinite(v)
holds in all cases. J

I Theorem 5. Algorithm Base is a silent self-stabilizing token distribution algorithm.

Proof. Let Γ = γ0, γ1, . . . be an execution of Base. Lemma 4 guarantees that γ ends at
its final configuration γf , that is, Γ = γ0, γ1, . . . , γf . No process is enabled in γf . Hence,
every process holds k tokens in its token store and no token exists in registers in γf because
otherwise some process must be enabled. J

We now give an asymptotically tight bound. on the number of redundant token moves of
Base. Recall that ε = min(k, l − k).

I Lemma 6. The number of redundant token moves in any execution of Base is O(nhε).

Proof. For any process v, let ∆+(v) =
∑
u∈Tv

max(Diff (u), 0) and ∆−(v) =
∑
u∈Tv

max(−Diff (u), 0). During the execution Γ = γ0, γ1, . . . of Base, each v sends a token
to p(v) at most ∆+(γ0, v) +nv times. This is because ∆+(v) is monotonically non-increasing,
except for the case that the parent of a process u ∈ Tv sends a token to u before the
first time u is selected by the scheduler, and ∆+(v) decrements by one every time v

sends a token to p(v). Similarly, p(v) sends a token to v at most ∆−(γ0, v) times in
Γ. Since ∆(γ0, v) = ∆+(γ0, v) − ∆−(γ0, v) and

∑
v∈V nv ≤ nh, the number of redun-

dant token moves in Γ is at most
∑
v∈V (∆+(γ0, v) + ∆−(γ0, v) + nv)−

∑
v∈V |∆(γ0, v)| =∑

v∈V (2 min(∆+(γ0, v),∆−(γ0, v))+nv) ≤
∑
v∈V (2 min(nv(l−k), nv ·k)+nv) = O(nhε). J

I Lemma 7. The number of redundant token moves in an execution of Base is Ω(nhε).

Proof. Consider the network shown in Figure 3 where 2x · 2y processes except for vroot are
divided into four sets A, B, C, and D, each of which consists of xy processes. Consider a
configuration where each process v in A∪D holds no token (i.e., Diff (v) = −k), each process
u in B ∪ C holds ` tokens (i.e., Diff (u) = `− k), and rwi,p(wi).est = rw′

i
,p(w′

i
) = 0 holds for

all i = 1, 2, . . . , y. In an execution starting from the configuration, the scheduler can select
processes only in A∪D∪ {vroot} until all processes in A∪D∪ {vroot} become disabled. Such
an execution must make at least min(x(x− 1)yk/2, x(x− 1)y(l − k)/2) = Ω(nhε) redundant
token moves. J
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Figure 3 A tree to prove Lemma 7.

Finally, we analyze the convergence time of Base. We first consider the values of rv,p(v).est.
Specifically, we prove that every execution of Base satisfies predicate Pest(v), which is defined
as follows, within 2hv rounds, for any process v other than vroot:

Pest(v) ≡ P1(v) ∧ P2(v) ∧ P3(v) ∧ P4(v) ∧Q1(v) ∧Q2(v) ∧Q3(v) ∧ ∀u ∈ C(v) : Pest(u)
P1(v) ≡ rv,p(v).est ∈ {1, 0+} ⇒ ∆(v) > 0 ∧Diff (v) ≥ 0
P2(v) ≡ rv,p(v).est = 0 ⇒ ∆(v) = 0 ∧Diff (v) = 0
P3(v) ≡ rv,p(v).est = 0− ⇒ ∆(v) ≤ 0 ∧Diff (v) ≤ 0
P4(v) ≡ rv,p(v).est = −1 ⇒ (∆(v) < 0 ∨ (∆(v) = 0 ∧ JustSent(p(v), v)))

∧Diff (v) ≤ 0,
Q1(v) ≡ rv,p(v).est ∈ {1, 0+} ⇒ ∀u ∈ Tv : ru,p(u).est ∈ {1, 0+, 0},
Q2(v) ≡ rv,p(v).est = 0 ⇒ ∀u ∈ Tv : ru,p(u).est = 0,
Q3(v) ≡ rv,p(v).est ∈ {0−,−1} ⇒ ∀u ∈ Tv : ru,p(u).est ∈ {0, 0−,−1}.

I Lemma 8. Let v ∈ V \ {vroot} and let γ 7→ γ′ be a step of Base where Pest(γ, v) holds.
Then, the following three statements hold:

γ(rv,p(v)).est = 0⇒ γ′(rv,p(v)).est = 0 (1)
γ(rv,p(v)).est ∈ {1, 0+} ⇒ γ′(rv,p(v)).est ∈ {1, 0+, 0} (2)

γ(rv,p(v)).est ∈ {0−,−1} ⇒ γ′(rv,p(v)).est ∈ {0, 0−,−1} (3)

Proof. If γ(rv,p(v)).est = 0, then γ′(rv,p(v)).est = 0 because Pest(γ, v) implies that
Diff (γ, v) = 0 and γ(ru,v).est = 0 for all u ∈ C(v). If γ(rv,p(v)).est ∈ {1, 0+}, then
γ′(rv,p(v)).est ∈ {1, 0+, 0} because Pest(γ, v) implies that Diff (γ, v) ≥ 0 and ∀u ∈ C(v) :
γ(ru,v).est ∈ {1, 0+, 0}. Similarly, γ′(rv,p(v)).est ∈ {0, 0−,−1} holds if γ(rv,p(v)).est ∈
{0−,−1}. J

I Lemma 9. Let v ∈ V . If Pest(u) holds for all u ∈ C(v), then once Pest(v) holds, Pest(v)
always holds.
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Proof. Let γ 7→ γ′ be a step of Base where Pest(γ, v) holds and Pest(γ, u) and Pest(γ′, u)
hold for all u ∈ C(v). It suffices to show Pest(γ′, v) to prove the lemma. First, consider the
case of γ(rv,p(v)).est = ⊥. If rv,p(v).est remains ⊥ in step γ 7→ γ′, then Pest(γ′, v) trivially
holds. If rv,p(v).est becomes 1 or 0+ at the step, i.e., γ′(rv,p(v).est) ∈ {1, 0+}, then P1(γ′, v)
holds and γ(ru,v.est) ∈ {1, 0+, 0} for all u ∈ C(v) by the definition of Base. The latter
statement, and Lemma 8, imply Q1(γ′, v). Hence, Pest(γ′, v) holds if γ′(rv,p(v).est) ∈ {1, 0+}.
Similarly, Pest(γ′, v) holds if γ′(rv,p(v).est) ∈ {0, 0−,−1}. Next, suppose γ(rv,p(v)).est 6= ⊥.
In this case, γ′(rv,p(v)).est 6= ⊥ holds by Lemma 8. If γ′(rv,p(v)).est ∈ {1, 0+}, then
P1(γ′, v) trivially holds by the definition of Base, and Pest(γ, v) and Lemma 8 imply that
γ′(ru,v).est ∈ {1, 0+, 0} for all u ∈ C(v), which implies Q1(γ′, v). Hence, Pest(γ′, v) holds if
γ′(rv,p(v).est) ∈ {1, 0+}. Similarly, Pest(γ′, v) holds if γ′(rv,p(v).est) ∈ {0, 0−,−1}. J

I Lemma 10. Let v ∈ V . If Pest(u) holds for all u ∈ C(v), Pest(v) holds once v is selected
twice by the scheduler or v is disabled.

Proof. Consider an execution Γ = γ0, γ1, . . . of Base where Pest(γt, u) holds for all t ≥ 0
and all u ∈ C(v). During the execution, Pest(v) holds when v is disabled, by the definition
of algorithm Base, and by the assumption that Pest(u) holds for all u ∈ C(v). Hence, it
suffices to show that Pest(γt+1, v) or Pest(γt′+1, v) holds where γt 7→ γt+1 and γt′ 7→ γt′+1
are the first and the second steps where v is selected by the scheduler in Γ. Due to the token
passing mechanism, p(v) cannot send a token to rp(v),v in both steps. For any step γ 7→ γ′,
Pest(γ′, v) holds by the definition of Base if v is selected by the scheduler in γ 7→ γ′, p(v)
cannot send a token to rp(v),v at the step, and Pest(γ, u) ∧ Pest(γ′, u) holds for all u ∈ C(v).
Hence, Pest(γt+1, v) or Pest(γt′+1, v) holds. J

I Lemma 11. Let v ∈ V and let Γ = γ0, γ1, . . . be an execution of Base. The predicate
Pest(γt, v) holds for any t ≥ s(Γ, 2hv), i.e., Pest(v) always holds after 2hv rounds have elapsed.

Proof. By induction on hv. J

We define Cest to be the set of all configurations where Pest(v) holds for all v 6= vroot.
The following corollary directly follows from Lemma 9 and Lemma 10. Furthermore, Lemma
13, below trivially holds by the definition of Base. Note that Lemma 13 implies that no
redundant token move can occur after an execution reaches a configuration in Cest.

I Corollary 12. An execution of Base reaches a configuration of Cest within 2h rounds and
never deviates from Cest thereafter.

I Lemma 13. For any process v, |∆(v)| is monotonically non-increasing during an execution
of Base starting from a configuration in Cest.

In the rest of this section, we prove that every execution starting from a configuration in
Cest finishes in O(n`) rounds. Given v ∈ V , we define

R(v) = min
{
c ≥ 0

∣∣∣ ∀j = 1, 2, . . . , |∆(v)| :
∑
u∈C2(j+c)−1(v) |Diff (u)| ≥ j)

}
where Ci(v) is the set of processes in Tv whose distance from v is no greater than i (e.g.,
C0(v) = {v} and C1(v) = {v} ∪ C(v)). See Figure 4. In the left tree of the figure,
R(v) = 1 because C2j+1(v) holds at least j extra tokens (i.e.,

∑
u∈C2j+1(v) Diff (v) ≥ j)

for all j = 1, 2, 3, but C1 holds no extra token. In the right tree of the figure, R(v) = 3
because C2j+5(v) is short at least j tokens (i.e.,

∑
u∈C2j+5(v)(−Diff (v)) ≥ j) for j = 1, 2, 3,

but C7 is short only one token. Let Γ = γ0, γ1, . . . be an execution starting from a
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Figure 4 A tree network Tv with ∆(v) > 0 (Left) A tree network with ∆(v) < 0 (Right). The
signed integer with process w indicates Diff (w), omitted when Diff (w) = 0.

configuration in Cest and v ∈ V \{vroot} be a process such that rv,p(v).est 6= ⊥ holds for some
configuration γt. Then either ∀u ∈ Tv : ru,p(u).est ∈ {1, 0+, 0} or ∀u ∈ Tv : ru,p(u).est ∈
{0, 0−,−1} holds for γt, γt+1, . . . . Intuitively, R(γt, v) has the following meaning: (i) when
γt(rv,p(v)).est ∈ {1, 0+}, v sends ∆(γt, v) tokens within 8(R(γt, v) + ∆(γt, v)) rounds in
γt, γt+1, . . . if p(v) always receives a token from rv,p(v) immediately after v sends a token
to rv,p(v), and (ii) when γt(rv,p(v)).est ∈ {0−,−1}, v receives −∆(γt, v) tokens within
8(R(γt, v)−∆(γt, v)) rounds in γt, γt+1, . . . if p(v) always sends a token to rp(v),v immediately
after IsReady(p(v), v) ∧ rp(v),v.est = −1 becomes true. For any process v ∈ V , we define
f(v) as follows:

f(v) =


R(v) + |∆(v)|+

∣∣{u ∈ Tv ∣∣ ru,p(u).est 6= 0
}∣∣ (v 6= vroot ∧ rv,p(v).est 6= ⊥)

l + 3 +
∑
u∈C(v) f(u) (v 6= vroot ∧ rv,p(v).est = ⊥)∑

u∈C(v) f(u) (v = vroot).

I Lemma 14. For any configuration γ, f(γ, vroot) = O(n`).

Proof. Let v be any process other than vroot. Define V ′ = {u ∈ Tv | γ(ru,p(u)).est 6= ⊥∧(u =
v ∨ γ(rp(u),p(p(u))).est = ⊥)}. Then, f(γ, v) ≤

∑
u∈Tv

(`+ 3) +
∑
u∈V ′(R(γ, u) + |∆(γ, u)|+

|{u′ ∈ Tu | γ(ru′,p(u′)).est 6= 0}|) ≤ nv(` + 3) +
∑
u∈V ′(hu + nu · ` + nu) ≤ nv(` + 3) +∑

u∈V ′ nu(`+ 2) ≤ nv(2`+ 5). Therefore, f(γ, vroot) ≤
∑
v∈C(vroot) nv(2`+ 5) = O(n`). J

Note that f(v) is monotonically non-increasing during any execution starting from a
configuration in Cest because both R(v) + |∆(v)| and |{u ∈ Tv | ru,p(u).est 6= 0}| are
monotonically non-increasing once rv,p(v) 6= ⊥ holds in such an execution. Moreover, detailed
analysis gives Lemma 15. whose proof are omitted due to the lack of space.

I Lemma 15. Let Γ = γ0, γ1, . . . be an execution starting from Cest. Then, f(vroot) decre-
ments at least by one in eight rounds of Γ as long as f(vroot) > 0.

I Lemma 16. Every execution Γ of Base ends within O(n`) rounds.

Proof. Corollary 12, Lemma 14 and Lemma 15 imply that Γ reaches a configuration where
rv,p(v).est = 0 and ∆(v) = 0 for all v ∈ V \ {vroot} within O(n`) rounds. Pushing tokens to
or pulling tokens from the external store, after an additional O(`) rounds Diff (vroot) = 0. J
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I Theorem 17. Algorithm Base is a silent and self-stabilizing token distribution algorithm,
which uses no work space per process and only constant work space per register, converges in
O(n`) rounds, and causes Θ(nhε) redundant token moves.

4.2 Algorithm SyncTokenDist
Due to the lack of space, we present only an outline of the algorithm SyncTokenDist which
reduces the number of redundant token moves of Base. The key idea is simple. Corollary 12
and Lemma 13 guarantee that every execution of Base enters a configuration in Cest within 2h
rounds and no redundant token moves happen thereafter. However, some processes can send
or receive many tokens in the first 2h rounds, which makes Ω(nhε) redundant token moves
in total in the worst case (Lemma 7). Algorithm SyncTokenDist simulates an execution
of Base with a simplified version of the Z3 synchronizer [5], which loosely synchronizes an
execution of Base so that the following property holds.

For any integer x, if a process executes the procedure of Base at least x+ 2 times,
then every neighboring process of the process must execute the procedure of Base at
least x times.

This property and Lemma 10 guarantee that every process v can execute the procedure of
Base at most O(h) times until a configuration in Cest is reached, after which no redundant
token moves happen.

Specifically, in SyncTokenDist, every process v has variable v.clock ∈ {0, 1, 2} and
rv,u.clock ∈ {0, 1, 2} for every u ∈ N(v). It always copies the latest value of v.clock to
rv,u.clock for all u ∈ N(v). It also has all the variables of Base. We say that a process u is
ahead of v if u.clock = v.clock+1 (mod 3). Process v increments its clock when it is ahead
of no neighbors and it has a neighbor that is ahead of v or when v is enabled to execute
the procedure of Base and v.clock = u.clock holds for all neighbors u ∈ N(v). Process v
executes the procedure of Base every time v increments its clock. It is easy to see that this
simple algorithm satisfies the above property, hence we obtain the following theorem.

I Theorem 18. Algorithm SyncTokenDist is a silent and self-stabilizing token distribution
algorithm, which uses only constant work space per process and per register, converges in
O(n`) rounds, and causes O(nh) redundant token moves.

4.3 Algorithm PIFTokenDist
In this section, we present PIFTokenDist, which reduces the number of redundant token
moves of Base from O(nhε) to O(n) but increases the convergence time from O(n`) to
O(nh`). Algorithm PIFTokenDist uses Propagation of Information with Feedback (PIF)
scheme [3] to reduce the number of redundant token moves. For our purpose, we use a
simplified version of PIF. The pseudo code is shown in Algorithm 2. Each process v has
a local variable v.wave ∈ {0, 1, 2}, a shared variable rv,u.wave ∈ {0, 1, 2} for all u ∈ N(v),
and all the variables of Base. Process v always copies the latest value of v.wave to rv,u.wave
for all u ∈ N(v) (Line 4). An execution of PIFTokenDist repeats the cycle of three waves –
the 0-wave, the 1-wave, and the 2-wave (Figure 5). Once vroot.wave = 0, the zero value is
propagated from vroot to leaves (Line 1, the 0-value). In parallel, each process v changes
v.wave from 0 to 1 after verifying that all its children already have the zero value in variable
wave (Line 2, the 1-wave). When the 1-wave reaches a leaf, the wave bounces back to the
root, changing the wave-value of processes from 1 to 2 (Line 3, the 2-wave). When the 2-wave
reaches the root, it resets vroot.wave to 0, thus the next cycle begins. A process v executes
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Figure 5 PIF waves of PIFTokenDist. A number in a circle represents the value of variable wave.
Note that the 0-wave and the 1-wave run simultaneously.

Algorithm 2 PIFTokenDist.
[Actions of process v]
1: v.wave← 0 if (v = vroot ∧ v.wave = 2) ∨ (v 6= vroot ∧ rp(v),v.wave = 0)
2: v.wave← 1 if (v.wave = 0)∧ (v = vroot ∨ rp(v),v.wave = 1)∧ ∀u ∈ C(v) : ru,v.wave = 0)
3: v.wave← 2 and execute the procedure of Base if (v.wave = 1)∧(∀u ∈ C(v) : ru,v.wave =

2)
4: rv,u.wave← v.wave for all u ∈ N(v)

the procedure of Base every time it receives the 2-wave, that is, every time it changes v.wave
from 1 to 2 (Line 3).

It is easy to see that every execution of PIFTokenDist reaches a configuration from
which the cycle of three waves is repeated forever. Furthermore, the above PIF mechanism
guarantees that, for any path v0, v1, . . . , vρ such that v0 is a leaf, each process vi (1 ≤ i ≤ ρ)
receives the 2-wave at least once in the order of v0, v1, . . . , vρ before vρ receives the 2-
wave twice. Therefore, it holds by Lemma 10 that an execution of PIFTokenDist reaches
a configuration in Cest before some process executes the procedure of Base more than
three times. Hence, the number of redundant token moves is O(n) in total. However, the
convergence time increases from O(n`) to O(nh`) because it takes O(h) rounds between
every two consecutive executions of the procedure of Base at each process in an execution of
PIFTokenDist. PIFTokenDist, shown in Algorithm 2 is not silent, but it can made silent by
slightly modifying the algorithm, such that the root begins the 0-wave at Line 1 only when
it detects that the simulated algorithm (Base) is not terminated. This modification is easily
implemented by using the enabled-signal-propagation technique presented in [4].

I Theorem 19. PIFTokenDist is a silent and self-stabilizing token distribution algorithm,
which uses constant work space per process and per register, converges in O(nh`) rounds,
and permits O(n) redundant token moves.

5 Conclusion

We have given self-stabilizing and silent distributed algorithms for token distribution for
rooted tree networks. The base algorithm Base converges in O(n`) asynchronous rounds and
causes O(nhε) redundant token moves. Algorithms SyncTokenDist and PIFTokenDist use a
synchronizer and a PIF scheme, respectively. Algorithm SyncTokenDist reduces the number
of redundant token moves to O(nh) without increasing convergence time while PIFTokenDist
reduces the number of redundant token moves to O(n), but increases the convergence time
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to O(nh`) rounds. All of the three algorithms uses constant memory space for each process
and each link register.
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