
22nd International Conference
on Database Theory

ICDT 2019, March 26–28, 2019, Lisbon, Portugal

Edited by

Pablo Barcelo
Marco Calautti

LIPIcs – Vo l . 127 – ICDT 2019 www.dagstuh l .de/ l ip i c s

Editors

Pablo Barcelo
Department of Computer Science, Universidad de Chile, CL
pbarcelo@dcc.uchile.cl

Marco Calautti
School of Informatics, University of Edinburgh, UK
mcalautt@inf.ed.ac.uk

ACM Classification 2012
Computing Methodologies → Knowledge Representation and Reasoning; Theory of computation → Data
modeling; Theory of computation → Incomplete, inconsistent, and uncertain databases; Information
systems → Data management systems; Information systems → Data streams; Information systems →
Database query processing; Information systems → Incomplete data; Information systems → Inconsistent
data; Information systems → Relational database model; Information systems → Relational database
query languages; Mathematics of computing → Graph theory; Theory of computation → Complexity
theory and logic; Theory of computation → Data structures and algorithms for data management; Theory
of computation → Semantics and reasoning

ISBN 978-3-95977-101-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-101-6.

Publication date
March, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ICDT.2019.0

ISBN 978-3-95977-101-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:pbarcelo@dcc.uchile.cl
mailto:mcalautt@inf.ed.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-101-6
https://www.dagstuhl.de/dagpub/978-3-95977-101-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.ICDT.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-101-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Christel Baier (TU Dresden)
Javier Esparza (TU München)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ICDT 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Pablo Barcelo and Marco Calautti . 0:vii

Organization
. 0:ix

External Reviewers
. 0:xi

Contributing Authors
. 0:xiii

ICDT 2019 Test of Time Award
Wenfei Fan, Magdalena Ortiz and Ke Yi . 0:xv

Invited Talks

Learning Models over Relational Databases
Dan Olteanu . 1:1–1:1

The Power of Relational Learning
Lise Getoor . 2:1–2:1

The Power of the Terminating Chase
Markus Krötzsch, Maximilian Marx, and Sebastian Rudolph . 3:1–3:17

Regular Papers

Counting Triangles under Updates in Worst-Case Optimal Time
Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang 4:1–4:18

A Formal Framework for Complex Event Processing
Alejandro Grez, Cristian Riveros, and Martín Ugarte . 5:1–5:18

A Formal Framework for Probabilistic Unclean Databases
Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and
Theodoros Rekatsinas . 6:1–6:18

On the Expressive Power of Linear Algebra on Graphs
Floris Geerts . 7:1–7:19

Fragments of Bag Relational Algebra: Expressiveness and Certain Answers
Marco Console, Paolo Guagliardo, and Leonid Libkin . 8:1–8:16

Categorical Range Reporting with Frequencies
Arnab Ganguly, J. Ian Munro, Yakov Nekrich, Rahul Shah, and
Sharma V. Thankachan . 9:1–9:19

Approximating Distance Measures for the Skyline
Nirman Kumar, Benjamin Raichel, Stavros Sintos, and Gregory Van Buskirk 10:1–10:20

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Index-Based, High-Dimensional, Cosine Threshold Querying with Optimality
Guarantees

Yuliang Li, Jianguo Wang, Benjamin Pullman, Nuno Bandeira, and
Yannis Papakonstantinou . 11:1–11:20

An Experimental Study of the Treewidth of Real-World Graph Data
Silviu Maniu, Pierre Senellart, and Suraj Jog . 12:1–12:18

Recursive Programs for Document Spanners
Liat Peterfreund, Balder ten Cate, Ronald Fagin, and Benny Kimelfeld 13:1–13:18

Parallel-Correctness and Parallel-Boundedness for Datalog Programs
Frank Neven, Thomas Schwentick, Christopher Spinrath, and Brecht Vandevoort . 14:1–14:19

The First Order Truth Behind Undecidability of Regular Path Queries
Determinacy

Grzegorz Głuch, Jerzy Marcinkowski, and Piotr Ostropolski-Nalewaja 15:1–15:18

Datalog: Bag Semantics via Set Semantics
Leopoldo Bertossi, Georg Gottlob, and Reinhard Pichler . 16:1–16:19

Oblivious Chase Termination: The Sticky Case
Marco Calautti and Andreas Pieris . 17:1–17:18

A Single Approach to Decide Chase Termination on Linear Existential Rules
Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo, and Federico Ulliana . . . 18:1–18:19

Additive First-Order Queries
Gerald Berger, Martin Otto, Andreas Pieris, Dimitri Surinx, and
Jan Van den Bussche . 19:1–19:14

Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection
Stefan Mengel and Sebastian Skritek . 20:1–20:18

Boolean Tensor Decomposition for Conjunctive Queries with Negation
Mahmoud Abo Khamis, Hung Q. Ngo, Dan Olteanu, and Dan Suciu 21:1–21:19

Constant-Delay Enumeration for Nondeterministic Document Spanners
Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth 22:1–22:19

Consistent Query Answering for Primary Keys in Logspace
Paraschos Koutris and Jef Wijsen . 23:1–23:19

Learning Definable Hypotheses on Trees
Emilie Grienenberger and Martin Ritzert . 24:1–24:18

Preface

The 22nd International Conference on Database Theory (ICDT 2019) was held in Lisbon,
Portugal, March 26–28, 2019. The proceedings of ICDT 2019 include an extended abstract
of a keynote by Dan Olteanu (University of Oxford), an extended abstract of a keynote by
Lise Getoor (University of California, Santa Cruz), a paper by Markus Kroetzsch (Technical
University of Dresden) and coauthors based on his invited tutorial, a laudation concerning the
ICDT 2019 Test of Time Award, and 21 research papers that were selected by the Program
Committee from 67 submissions.

The Program Committee selected the paper Counting Triangles under Updates in Worst-
Case Optimal Time by Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu and Haozhe
Zhang for the ICDT 2019 Best Paper Award. Furthermore, a specially designated committee
formed by Wenfei Fan, Magdalena Ortiz, and Ke Yi decided to give the Test of Time Award
for ICDT 2019 to the paper Automatic verification of data-centric business processes by Alin
Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu (originally published in ICDT 2009).
We sincerely congratulate to the authors of these award winning papers!

We would like to thank all people who contributed to the success of ICDT 2019, including
authors who submitted papers, keynote and tutorial speakers, and, of course, all members of
the Program Committee, and the external reviewers, for the very dedicated work they have
done over the two submission cycles of ICDT 2019. Their help and assistance were crucial to
ensure that the final program of the conference keeps satisfying the highest standards.

We would also like to thank the ICDT Council members for their support on a wide
variety of matters concerning ICDT, and the local organizers of the EDBT/ICDT 2019
conference, leaded by General Chair Helena Galhardas (Universidade de Lisboa, Portugal),
for their constant help in the organization of the conference and some co-located events.
Finally, we wish to acknowledge Dagstuhl Publishing for their support with the publication
of the proceedings in the LIPIcs (Leibniz International Proceedings in Informatics) Series.

Pablo Barcelo and Marco Calautti
March 2019

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

Conference Chair

Wim Martens (University of Bayreuth)

Program Chair

Pablo Barcelo (University of Chile)

Proceedings and Publicity Chair

Marco Calautti (University of Edinburgh)

Program Committee Members

Isolde Adler (University of Leeds)

Antoine Amarilli (Telecom ParisTech)

Paul Beame (University of Washington)

Elena Botoeva (Imperial College London)

Victor Dalmau (Universitat Pompeu Fabra)

Diego Figueira (Labri, CNRS)

Dominik D. Freydenberger (Loughborough University)

Paolo Guagliardo (University of Edinburgh)

Zengfeng Huang (The University of New South Wales)

Benny Kimelfeld (Technion, Israel)

Paris Koutris (University of Wisconsin)

Maurizio Lenzerini (Sapienza University of Rome)

Yakov Nekrich (University of Waterloo)

Matthias Niewerth (University of Bayreuth)

Cristian Riveros (PUC, Chile)

Sebastian Skritek (TU Vienna)

Julia Stoyanovich (Drexel University)

Szymon Torunczyk (University of Warsaw)

Ke Yi (HKUST)

Thomas Zeume (University of Dortmund)

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Giovanni Amendola

Christoph Berkholz

Leopoldo Bertossi

Marco Console

Shaleen Deep

Johannes Doleschal

Nadime Francis

Travis Gagie

Floris Geerts

Boris Glavic

Tomasz Gogacz

Alejandro Grez

Aidan Hogan

Jean Christoph Jung

Egor V. Kostylev

Sławomir Lasota

Leonid Libkin

Ester Livshits

Brendan Lucier

Mikaël Monet

Frank Neven

Miguel Romero Orth

Paweł Parys

Thomas Pellissier Tanon

Liat Peterfreund

Andreas Pieris

Juan L. Reutter

Vladislav Ryzhikov

Emanuel Sallinger

Luc Segoufin

Mantas Simkus

Dan Suciu

Stijn Vansummeren

Nils Vortmeier

Domagoj Vrgoc

Zhewei Wei

Xuan Wu

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Contributing Authors

Antoine Amarilli

Nuno Bandeira

Gerald Berger

Leopoldo Bertossi

Pierre Bourhis

Marco Calautti

Balder ten Cate

Marco Console

Christopher De Sa

Ronald Fagin

Arnab Ganguly

Floris Geerts

Lise Getoor

Grzegorz Gluch

Georg Gottlob

Alejandro Grez

Emilie Grienenberger

Paolo Guagliardo

Ihab F. Ilyas

Suraj Jog

Ahmet Kara

Mahmoud Abo Khamis

Benny Kimelfeld

Paraschos Koutris

Markus Krötzsch

Nirman Kumar

Michel Leclère

Yuliang Li

Leonid Libkin

Silviu Maniu

Jerzy Marcinkowski

Maximilian Marx

Stefan Mengel

Marie-Laure Mugnier

Ian Munro

Yakov Nekrich

Frank Neven

Hung Q. Ngo

Matthias Niewerth

Milos Nikolic

Dan Olteanu

Piotr Ostropolski-Nalewaja

Martin Otto

Yannis Papakonstantinou

Liat Peterfreund

Reinhard Pichler

Andreas Pieris

Benjamin Pullman

Benjamin Raichel

Christopher Ré

Theodoros Rekatsinas

Martin Ritzert

Cristian Riveros

Sebastian Rudolph

Thomas Schwentick

Pierre Senellart

Rahul Shah

Stavros Sintos

Sebastian Skritek

Christopher Spinrath

Dan Suciu

Dimitri Surinx

Sharma Thankachan

Michaël Thomazo

Martín Ugarte

Federico Ulliana

Gregory Van Buskirk

Jan Van den Bussche

Brecht Vandevoort

Jianguo Wang

Jef Wijsen

Haozhe Zhang

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

ICDT 2019 Test of Time Award

In 2013, the International Conference on Database Theory (ICDT) began awarding the
ICDT test-of-time (ToT) award, with the goal of recognizing one paper, or a small number
of papers, presented at ICDT a decade earlier that have best met the "test of time". In 2019,
the award recognizes a paper from the ICDT 2009 proceedings that has had the most impact
in terms of research, methodology, conceptual contribution, or transfer to practice over the
past decade. The award was presented during the EDBT/ICDT 2019 Joint Conference,
March 26-29, 2019, in Lisbon, Portugal.

The 2019 ToT Committee consists of Wenfei Fan (chair), Magdalena Ortiz, and Ke Yi.
After careful consideration and soliciting external assessments, the committee has chosen the
following recipient of the 2019 ICDT Test of Time Award:

Automatic verification of data-centric business processes
Alin Deutsch, Richard Hull, Fabio Patrizi, Victor Vianu

The paper has been a cornerstone in the research on artifact-centric and data-aware processes.
It opens up the possibility of verifying data-aware processes not only in niche cases but also in
quite broad classes. It provides a formalization of IBM’s artifact-based approach to business
processes, and models arbitrary inputs from external users with infinite domains. This gives
rise to processes that have infinite states and hence are impossible to verify through standard
model checking techniques. In addition to this formalization, it investigates verification of
properties in an extension of LTL over artifacts, which is challenging since it deals with
infinite alphabets.

The paper has generated impact not only on database and business process communities,
but also influenced artificial intelligence, verification and Web services. It has received
over 250 citations coming from these diverse communities. In addition, its techniques have
influenced theoretical work on fundamental aspects of languages over infinite alphabets.

Wenfei Fan Magdalena Ortiz Ke Yi
University of Edinburgh Vienna University of

Technology (TU Wien)
Hong Kong University of
Science and Technology

The ICDT Test-of-Time Award Committee for 2019

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Learning Models over Relational Databases
Dan Olteanu
Department of Computer Science, University of Oxford, Oxford, UK
dan.olteanu@cs.ox.ac.uk

Abstract
In this talk, I will make the case for a first-principles approach to machine learning over relational
databases that exploits recent development in database systems and theory.

The input to learning classification and regression models is defined by feature extraction queries
over relational databases. The mainstream approach to learning over relational data is to materialize
the training dataset, export it out of the database, and then learn over it using statistical software
packages. These three steps are expensive and unnecessary. Instead, one can cast the machine
learning problem as a database problem by decomposing the learning task into a batch of aggregates
over the feature extraction query and by computing this batch over the input database.

The performance of this database-centric approach benefits tremendously from structural prop-
erties of the relational data and of the feature extraction query; such properties may be algebraic
(semi-ring), combinatorial (hypertree width), or statistical (sampling). It also benefits from database
systems techniques such as factorized query evaluation and query compilation. For a variety of
models, including factorization machines, decision trees, and support vector machines, this approach
may come with lower computational complexity than the materialization of the training dataset used
by the mainstream approach. Recent results show that this translates to several orders-of-magnitude
speed-up over state-of-the-art systems such as TensorFlow, R, Scikit-learn, and mlpack.

While these initial results are promising, there is much more awaiting to be discovered.

2012 ACM Subject Classification Theory of computation → Database query processing and opti-
mization (theory); Information systems → Database query processing; Computing methodologies →
Supervised learning; Computing methodologies → Machine learning approaches

Keywords and phrases In-database analytics, Data complexity, Feature extraction queries, Database
dependencies, Model reparameterization

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.1

Category Invited Talk

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 682588.

Acknowledgements This work is part of the FDB project (https://fdbresearch.github.io) and
based on collaboration with Maximilian Schleich (Oxford), Mahmoud Abo-Khamis, Ryan Curtin,
Hung Q. Ngo (RelationalAI), Ben Moseley (CMU), and XuanLong Nguyen (Michigan).

© Dan Olteanu;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dan.olteanu@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.ICDT.2019.1
https://fdbresearch.github.io
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The Power of Relational Learning
Lise Getoor
Computer Science Department, University of California, Santa Cruz, US
getoor@soe.ucsc.edu

Abstract
We live in a richly interconnected world and, not surprisingly, we generate richly interconnected
data. From smart cities to social media to financial networks to biological networks, data is
relational. While database theory is built on strong relational foundations, the same is not true
for machine learning. The majority of machine learning methods flatten data into a single table
before performing any processing. Further, database theory is also built on a bedrock of declarative
representations. The same is not true for machine learning, in particular deep learning, which
results in black-box, uninterpretable and unexplainable models. In this talk, I will introduce the
field of statistical relational learning, an alternative machine learning approach based on declarative
relational representations paired with probabilistic models. I’ll describe our work on probabilistic
soft logic, a probabilistic programming language that is ideally suited to richly connected, noisy data.
Our recent results show that by building on state-of-the-art optimization methods in a distributed
implementation, we can solve very large relational learning problems orders of magnitude faster
than existing approaches.

2012 ACM Subject Classification Computing methodologies → Machine learning; Information
systems → Data management systems

Keywords and phrases Machine learning, Probabilistic soft logic, Relational model

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.2

Category Invited Talk

© Lise Getoor;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:getoor@soe.ucsc.edu
https://doi.org/10.4230/LIPIcs.ICDT.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The Power of the Terminating Chase
Markus Krötzsch
TU Dresden, Germany
markus.kroetzsch@tu-dresden.de

Maximilian Marx
TU Dresden, Germany
maximilian.marx@tu-dresden.de

Sebastian Rudolph
TU Dresden, Germany
sebastian.rudolph@tu-dresden.de

Abstract
The chase has become a staple of modern database theory with applications in data integration,
query optimisation, data exchange, ontology-based query answering, and many other areas. Most
application scenarios and implementations require the chase to terminate and produce a finite
universal model, and a large arsenal of sufficient termination criteria is available to guarantee this
(generally undecidable) condition. In this invited tutorial, we therefore ask about the expressive
power of logical theories for which the chase terminates. Specifically, which database properties
can be recognised by such theories, i.e., which Boolean queries can they realise? For the skolem
(semi-oblivious) chase, and almost any known termination criterion, this expressivity is just that of
plain Datalog. Surprisingly, this limitation of most prior research does not apply to the chase in
general. Indeed, we show that standard–chase terminating theories can realise queries with data
complexities ranging from PTime to non-elementary that are out of reach for the terminating skolem
chase. A “Datalog-first” standard chase that prioritises applications of rules without existential
quantifiers makes modelling simpler – and we conjecture: computationally more efficient. This is
one of the many open questions raised by our insights, and we conclude with an outlook on the
research opportunities in this area.

2012 ACM Subject Classification Theory of computation → Database query languages (principles);
Theory of computation → Complexity theory and logic; Theory of computation → Database
constraints theory; Theory of computation → Logic and databases

Keywords and phrases Existential rules, Tuple-generating dependencies, all-instances chase termin-
ation, expressive power, data complexity

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.3

Category Invited Talk

Funding This work is partly supported by the German Research Foundation (DFG) in CRC 248
(Perspicuous Systems), CRC 912 (HAEC), and Emmy Noether grant KR 4381/1-1; and by the
European Research Council (ERC) Consolidator Grant 771779 (DeciGUT).

Acknowledgements We thank David Carral for his comments on an earlier version of this paper.

1 Introduction

Forty years ago, the first versions of the chase algorithm were developed, initially as a way of
deciding implication problems of specific classes of dependencies [26, 2], and soon thereafter
as a proof system for the more general (and undecidable) case of tuple-generating and equality-
generating dependencies (TGDs and EGDs) [6, 7]. As of today, the chase is understood
as an iterative method for constructing universal models of Horn logic theories [19], which
corresponds to the computation of most general solutions to logical entailment problems. Such

© Markus Krötzsch, Maximilian Marx, and Sebastian Rudolph;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 3; pp. 3:1–3:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9172-2601
mailto:markus.kroetzsch@tu-dresden.de
https://orcid.org/0000-0003-1479-0341
mailto:maximilian.marx@tu-dresden.de
https://orcid.org/0000-0002-1609-2080
mailto:sebastian.rudolph@tu-dresden.de
https://doi.org/10.4230/LIPIcs.ICDT.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 The Power of the Terminating Chase

universal solutions have many natural applications in data integration, query optimisation,
data exchange, and query answering under constraints. The re-discovery of TGDs as
existential rules, and their application to ontological modelling and knowledge representation
has motivated many further studies [3, 11, 15].

Of course, our practical interest is usually in cases where the chase terminates and the
resulting model is therefore finite, corresponding to a database that has been “repaired” to
satisfy the given dependencies. Unfortunately, chase termination is undecidable, no matter if
we ask for the termination on a particular database [7] or for “universal” termination on all
databases [22, 23]. Nonetheless, practical implementations of chase procedures have been
successfully applied in many contexts [21, 4, 9, 8, 35]. It is then up to the user to provide
terminating inputs, and this is facilitated by many decidable sufficient criteria for ensuring
chase termination, which have been developed for this purpose [20, 27, 3, 25, 15, 12].

This brings up a natural question: given an efficient practical implementation of some
variant of the chase, what computational problems can we solve with it? That is: what is
the expressive power of logical theories for which the chase terminates? To answer this, we
first need to clarify what the input is: the theory and database, or merely the database while
the theory is fixed? These two views can be associated with traditional perspectives from
formerly separated and now converging fields of computer science [31]. The first perspective
is that of knowledge representation, where logical theories (“ontologies”) are exchanged and
combined, and reasoning over such theories is necessary to access the encoded knowledge.

The second perspective is common in database theory, where theories are comparatively
small and static, whereas databases are large and dynamic. This is also reflected in many
current chase implementations, which treat logical theories as “programs,” usually in a
tool-specific format that prevents any kind of interchange, while supporting data-level
interoperability with standard sources (such as relational DBMS or RDF stores). The
data-centric view is also taken by most studies on termination criteria, which aim to identify
theories for which the chase will terminate with every database instance.

We can therefore specify our question as follows: what is the expressivity of logical
theories for which the chase terminates on all database instances? Surprisingly little is known
about this, and what we can conclude from previous results is thoroughly disappointing:
if our chase variant is the skolem (a.k.a. semi-oblivious) chase, expressivity is essentially
limited to traditional Datalog [27, 25, 36]. The vast majority of known termination criteria
applies to the skolem chase [15], and is therefore facing the same limitations. In spite of the
significant challenges that existential quantifiers introduce to rule-based reasoning, it seems
that our current approaches to ensuring decidability cannot offer substantial advantages
regarding the problems that one can solve in practice.

Surprisingly, this apparent weakness of the chase is specific to the skolem chase and the
termination criteria that are tailored to this variant. We show this by demonstrating
1. that there are PTime decision problems that are not expressible in Datalog, and hence

neither via terminating skolem chase, but that can be solved in the terminating standard
(a.k.a. restricted) chase, and

2. that the terminating standard chase can solve decision problems of non-elementary (data)
complexity, whereas Datalog and the skolem chase have PTime data complexity.

Therefore, the standard chase is superior to the skolem chase regarding tractable as well as
highly complex computations. Each implementation of this algorithm inherits this power –
as long as one is willing to give up the restriction to skolem-chase terminating theories.

As another contribution, we investigate a particularly natural class of chase strategies,
where Datalog rules (containing no existential quantification) are always applied before any

M. Krötzsch, M. Marx, and S. Rudolph 3:3

true existential rule. This Datalog-first strategy simplifies the construction of universally
terminating theories, and in fact is the only variant of the chase for which we could solve
decision problems as in (1) in polynomial time. Although we give an encoding of (1) that
terminates in the standard chase, this might require exponentially many steps (in spite of
the query describing a property of databases recognizable in PTime).

A major consequence of our study is that focussing research activities related to chase
termination on the skolem chase is arguably too restrictive, since one relinquishes significant
expressive power when doing so. This insight is complemented by recent empirical studies
proving the standard chase almost always more efficient in practical implementations [8, 35].
This might be surprising, given that a standard chase step is computationally more demanding
[23]; but the reduction in redundant computation seems to compensate for this cost even in
cases where termination does not rely on it. Shifting the focus away from the skolem chase
also reveals how little we know about more complex chase variants, and raises a number of
open questions for future research.

After a quick overview of preliminary definitions (Section 2), we review several important
chase variants (Section 3), and the state of the art regarding their termination (Section 4).
Thereafter, we make the previously established expressive limits of the skolem chase explicit
(Section 5). We then continue to demonstrate that these limits can be overcome both on
queries in PTime (Section 6) and on queries of considerably higher complexity (Section 7).
We conclude with an overview of open questions and conjectures (Section 8).

2 Preliminaries

We briefly introduce the necessary concepts and terminology. For a more thorough introduc-
tion, we refer to [1, 14]. We construct expressions from countably infinite, mutually disjoint
sets V of variables, F of (skolem) function symbols, N of labelled nulls, and R of relation
names. Each function or relation name s ∈ F ∪R has an arity ar(s) ≥ 0. Function symbols
of arity 0 are constants, and we set C := {c ∈ F | ar(c) = 0}. Terms are either elements of
V ∪N ∪C, or, recursively, expressions f(t1, . . . , tn) with f ∈ F, ar(f) = n, and t1, . . . , tn
terms. We generally use t to denote a list t1, . . . , t|t| of terms, and similar for special types of
terms. An atom is an expression r(t) with r ∈ R, t a list of terms, and ar(r) = |t|. Ground
terms or atoms contain neither variables nor nulls.

Rules and queries. An existential rule (or just rule) ρ is a formula

ρ = ∀x,y. ϕ[x,y]→ ∃z. ψ[y, z], (1)

where ϕ and ψ are conjunctions of atoms using only terms from C or from the mutually
disjoint lists of variables x,y, z ⊆ V. We call ϕ the body (denoted body(ρ)), ψ the head
(denoted head(ρ)), and y the frontier of ρ. We often treat conjunctions of atoms like sets, and
omit the universal quantifiers in rules. A rule is Datalog if it has no existential quantifiers.
A conjunctive query (CQ) q[x] with free variables x is a formula ∃y.ϕ[x,y], where ϕ is a
conjunction of atoms using only constants and variables from x ∪ y. A boolean conjunctive
query (BCQ) is a CQ without free variables. Since CQ answering and BCQ answering are
polynomially reducible to one another [3], we restrict our attention to BCQs.

Databases and morphism. A database I is a set of atoms without variables. A concrete
database D is a finite database without function symbols, except for constants. Given a

ICDT 2019

3:4 The Power of the Terminating Chase

set of atoms A and database I, a homomorphism h : A → I is a function that maps the
terms occurring in A to (the variable-free) terms occurring in I, such that: (i) for all f ∈ F:
h(f(t)) = f(h(t)); (ii) for all r ∈ R: if r(t) ∈ A, then r(h(t)) ∈ I, where h(t) is the list of
h-images of the terms t. A homomorphism h is strong if r(t) ∈ A ⇐⇒ r(h(t)) ∈ I for all
r ∈ R, and an embedding if it is strong and injective.

Semantics of rules and queries. A match of a rule ρ in a database I is a function h from
the universally quantified variables of ρ to I that restricts to a homomorphism body(ρ)→ I.1
A match h of ρ in I is satisfied if there is a homomorphism h′ : head(ρ) → I that agrees
with h on all frontier variables. Rule ρ is satisfied by I, written I |= ρ, if every match
of ρ in I is satisfied. A set of rules Σ is satisfied by I, written I |= Σ, if I |= ρ for all
ρ ∈ Σ. We may treat a concrete database D as sets of rules with empty bodies (also called
facts), and write, e.g., I |= D,Σ to express that I |= Σ and D ⊆ I. In this case, I is a
model of Σ and D. A BCQ q = ∃x.ϕ[x] is satisfied by a database I, written I |= q, if
there is a homomorphism ϕ[x] → I; it is entailed by a concrete database D and rule set
Σ, written D,Σ |= q, if I |= q for every I with I |= D,Σ (note that for empty rule sets,
satisfaction coincides with entailment). Since homomorphisms are closed under composition,
the existence of homomorphisms q → I and I → J implies that q is satisfied by J : the set
of databases that satisfy a BCQ is closed under homomorphisms.

Expressivity. When discussing expressivity of query languages, it is convenient to have
an abstract notion of (boolean) queries. An abstract query over a given finite signature
REDB ⊆ R of so-called extensional database relations is a set D of concrete databases over
REDB. We say that a given set of rules Σ and BCQ q realise D if for every database D over
REDB holds D,Σ |= q exactly if D ∈ D. Note that Σ and q can make use of other (so-called
intensional database) relations not in REDB. This notion of query realisation allows us to
focus on input databases which are “well-formed” in terms of the relation names used.

For an arbitrary set of rules Σ, checking D,Σ |= q is undecidable, however, the set
{D | D,Σ |= q} is recursively enumerable and closed under homomorphisms. In fact, for
every homomorphism-closed, recursively enumerable abstract query D, there exist Σ and q
that realise D [32].

3 Universal Models and the Chase

BCQ entailment (and CQ answering) can be solved by computing universal models [19]. A
model I of a set of rules Σ is universal if it admits a homomorphism h : I → J to every model
J of Σ. Due to closure under homomorphisms, BCQs that are entailed by a universal model
are entailed by every model. Since the converse is also true, universal models characterise
BCQ entailment.2 For this reason (among others), many algorithms for computing universal
models have been developed. Their basic approach, known as the chase, is to construct such
models bottom-up by applying rules to facts. We consider several variants of this approach:
the standard (a.k.a. restricted) chase [20], the skolem (a.k.a. semi-oblivious) chase [27], and
the core chase [19].

1 If all frontier variables occur in body atoms (i.e., the rule is safe), h is a homomorphism body(ρ) → I
itself; the chosen definition accommodates the possibility of unsafe rules.

2 We remark that universal models are generally neither unique, nor the only models that characterise
BCQ entailment (see [13] for some discussion).

M. Krötzsch, M. Marx, and S. Rudolph 3:5

We first define the standard and skolem chases. For a rule ρ of form (1), the skolemised
rule sk(ρ) is ϕ[x,y] → ψ[y, tz], where ψ[y, tz] is obtained from ψ[y, z] by replacing each
variable z ∈ z with a skolem term f(y) using a fresh skolem function symbol f . Notions
that were defined for existential rules naturally extend to skolemised rules. For uniformity,
the next definition also treats skolemised rules as formulas of the form (1), where z is empty
and ψ may contain functions instead.

I Definition 1. A chase sequence for a concrete database D and a set of existential or
skolemised rules Σ is a potentially infinite sequence D0,D1, . . . such that
(1) D0 = D;
(2) for every Di with i ≥ 0, there is a match h for some rule ρ = ϕ[x,y]→ ∃z.ψ[y, z] ∈ Σ

in Di such that
a. h is an unsatisfied match in Di (i.e., h cannot be extended to a homomorphism

ψ → Di), and
b. Di+1 = Di ∪ ψ[h′(y), h′(z)], where h′ : ψ → Di+1 is such that h′(y) = h(y) for all

y ∈ y, and for all z ∈ z, h′(z) ∈ N is a distinct labelled null that does not occur in
Di (in particular, h is a satisfied match in Di+1).

(3) if h is a match for a rule ρ ∈ Σ and Di (i ≥ 0), then there is j > i such that h is satisfied
in Dj (fairness).

The chase for such a chase sequence is the database
⋃

i≥0Di.

Note that this definition allows individual rule applications to occur in any (fair) order,
and in particular does not require that all matches for a rule are processed together. This
generality makes sense to cover all current implementations, some of which deploy parallelised,
streaming rule applications that might result in such an interleaved derivation order [30].

Given a set Σ of existential rules, a chase for Σ is called standard chase, and a chase for
sk(Σ) is called skolem chase. A Datalog-first chase is a standard chase where non-Datalog
rules are applied in step (2) only if all matches for Datalog rules in Di−1 are satisfied.
Standard and Datalog-first chases might not be unique, due to the dependence of condition
(2.a) on the order of rule applications, i.e., on the chase strategy.

I Example 2. Consider the concrete database r(a, b) and the rules

r(x, y)→ ∃v.r(y, v) (2)
r(x, y)→ r(y, y) (3)

In the standard chase, we can apply rule (2) with the match {x 7→ a, y 7→ b} to derive
r(b, n1), where n1 is a new null. Applying (3) to {x 7→ a, y 7→ b} yields r(b, b), which would
have blocked the first rule application if it had been computed earlier. Depending on the
order of further rule applications in the given strategy, the standard chase might terminate
after arbitrarily many steps, or fail to terminate altogether. In contrast, the Datalog-first
chase prioritises (3), and therefore terminates with the model {r(a, b), r(b, b)}. Regarding the
entailed BCQs, all of these results (including the infinite r-chain with loops) are equivalent.

The Datalog-first chase restricts to a sensible class of strategies, but it does not free
the chase from its dependence on a selected strategy. For example, standard and Datalog-
first chases coincide whenever there are no Datalog rules, which is easy to achieve by
extending rule heads with redundant existential statements, e.g., we could replace (3) by
r(x, y)→ ∃v.r(y, y) ∧ r(x, v). In contrast, the skolem chase is always unique, since (2.a) is
equivalent to ψ[h(y)] 6⊆ Di−1 in this case.

ICDT 2019

3:6 The Power of the Terminating Chase

I Example 3. Skolemising Example 2, rule (2) turns into r(x, y)→ r(y, f(y)) for some skolem
function f . The skolem chase is the infinite database {r(a, b), r(b, b), r(b, f(b)), r(f(b), f(b)),
r(f(b), f(f(b))), . . .}.

Further variations of these chases have been defined in the literature [8]. For example,
the parallel chase computes Di+1 from Di by considering all matches (w.r.t. Di) in step (2).
Di+1 then contains new derivations from many rule applications, even if some of them could
have prevented the application of others. The 1-parallel chase is similar, but only considers
the matches of one rule in each step. These modifications lead to variants of the standard
and Datalog-first chase, but do not affect the skolem chase.

An important extension of the parallel standard chase is the core chase, where the
database is reduced to a core after each derivation step [19]. A database I is a core if
every homomorphism h : I → I is an embedding. Given a database J , a core of J
is a core obtained by restricting J to its image under some appropriate homomorphism
h : J → J [24, 5]. Every finite database D has a unique core (up to isomorphism),3 which
we denote by core(D).

I Definition 4. A core chase sequence for a concrete database D and a set of existential
rules Σ is a maximal sequence D = D0,D1, . . . , such that Di is not isomorphic to Di+1 and
Di+1 = core(Σ(Di)), where Σ(Di) is the result of applying all rules ρ ∈ Σ that have a match
for Di as in step (2) of Definition 1. If this sequence is finite, then its final element D` is
the core chase, which is then unique up to isomorphism.

The key advantage of this more complex algorithm is that it characterises when a set of
rules admits a finite universal model over a given database:

I Theorem 5 ([19]). A concrete database D and a set of existential rules Σ admit a finite
universal model if and only if the core chase terminates (producing such a model).

4 Chase Termination

In practice, we are particularly interested in cases where the chase produces a finite universal
model. In this section, we discuss this situation and review several criteria for recognising it
effectively. We start by defining the most important types of termination.

Let Σ be a set of existential rules and a concrete database D. Σ has an all-strategies
terminating standard chase on D if all chase sequences for Σ and D are finite. Adopting
notation of Grahne and Onet [23], we write CTstd

D∀ for the class of all such rule sets. Analogously,
CTdlf
D∀ denotes the class of all Datalog-first terminating rule sets. These notions can be

generalised to require all-instances termination:4 CTstd
∀∀ =

⋂
D CTstd

D∀ and CTdlf
∀∀ =

⋂
D CTdlf

D∀.
For the skolem chase and for the core chase, the chosen strategy does not affect termination,
hence we simplify notation and write CTsk

D and CTsk
∀ , respectively, and similarly for the core

chase. It is known that CTsk
∀ ⊂ CTstd

∀∀ ⊂ CTcore
∀ [23], and it is similarly easy to see that we

also have CTstd
∀∀ ⊂ CTdlf

∀∀ ⊂ CTcore
∀ .

Termination is generally undecidable, often not even recursively enumerable [22, 23],5 but
many sufficient criteria have been proposed. Most existing works give criteria for inclusion in

3 Infinite databases can have several non-isomorphic cores, or none at all [13].
4 Note that this includes instances D that do not only contain extensional database relations, i.e.,

termination is also required if the input database is not “well-formed.”
5 For the Datalog-first chase, one can reduce from the undecidable termination problems for the standard
chase by extending Datalog rules with irrelevant existential quantifiers.

M. Krötzsch, M. Marx, and S. Rudolph 3:7

CTsk
∀ [20, 27, 28, 25, 3, 15], and some can also be used for data-dependent classes CTsk

D [28, 15].
Comparatively few works propose criteria that exploit the better termination behaviour of
the standard chase [19, 28, 12]. We give a more detailed overview below.

Recent works established the decidability of termination for syntactically restricted classes
of rules: CTsk

∀ is decidable on sticky rules [10], while CTstd
∀∀ is decidable on linear rules [29]

and also on guarded rules [34]. An even stronger notion than all-instances termination is
k-boundedness, which requires that any fact in the chase can be derived by at most k rule
applications. This criterion is known to be decidable for skolem and standard chase [18].

4.1 Termination of the Skolem Chase
In general, the question “Σ ∈ CTsk

D?” is clearly semi-decidable by simply running the chase,
i.e., CTsk

D is recursively enumerable. Marnette observed that all-instance termination can be
reduced to this special case by considering what he called the critical instance [27].

I Definition 6. Let Σ be a rule set, and denote by const(Σ) the sets of constants occurring in
Σ. The critical instance for Σ is the concrete database D∗ consisting of all atoms of form r(t),
where r is a relation name occurring in Σ and t is a list of constants from {∗} ∪ const(Σ),
with ∗ a fresh constant. By a slight abuse of notation, we write CTsk

D∗ for the class of all rule
sets for which the skolem chase on their respective critical instance terminates.

I Theorem 7 ([27]). CTsk
D∗ = CTsk

∀ .

Therefore, CTsk
∀ is recursively enumerable, and, moreover, any technique for establishing

skolem-chase termination on a specific instance can be used to establish all-instance termina-
tion. Many such techniques have been proposed. We can readily turn the chase itself into a
decidable termination criterion if we ensure that the computation will halt even if the chase
does not terminate. For example, we can stop the skolem chase when a cyclic skolem term
occurs, i.e., a term of the form f(t1, . . . , tn) where f also occurs in some ti. This termination
criterion was called MFA (model-faithful acyclicity) and yields one of the largest decidable
classes of skolem-chase terminating rules known today [15].

MFA is decidable but 2ExpTime-complete, and the chase might become double exponen-
tial before a cyclic term occurs. Many easier-to-check criteria are obtained by abstracting
from the exact chase sequence and adapting the notion of cycle accordingly. If we identify
terms that use the same outermost function symbol (equivalently: replace skolem terms by
constants), we obtain MSA (model-summarising acyclicity), which is ExpTime-complete [15].
Super-weak acyclicity (SWA) [27] and joint acyclicity (JA) [25] replace terms by places and
positions, respectively, both of which describe terms based on the general shape of inferred
facts they might occur in. These possible facts can be (over-)estimated in polynomial time,
and both criteria are PTime-complete. Even simpler – namely NL-complete – is weak-
acyclicity (WA), which over-estimates term propagation by solving a reachability problem
[20]. In terms of generality, the notions form a total order:

WA ⊂ JA ⊂ SWA ⊂ MSA ⊂ MFA ⊂ CTsk
∀

Another way of abstracting MFA is to consider dependencies among rules instead of propaga-
tion of terms, i.e., we ask whether the conclusion produced by one rule might make another
rule applicable. Termination is guaranteed if we thus obtain an acyclic graph of rule depend-
encies [3]. While subsumed by MFA, this NP-complete criterion is incomparable to other
term-based notions [15]. Various kinds of dependencies of rules can be used to decompose
rule sets into strata, which can then be analysed independently for termination [19, 28, 3].

ICDT 2019

3:8 The Power of the Terminating Chase

Other sufficient criteria for skolem-chase termination were proposed. However, to the
best of our knowledge, our listing includes all of the best-performing basic proposals in terms
of complexity/expressivity trade-off.6

4.2 Termination of the Standard and Core Chase
Much less is known for the standard chase. Skolem chase termination yields a sufficient
condition, since CTsk

∀ ⊂ CTstd
∀∀, but very few criteria take advantage of the standard chase’s

stronger inclination to terminate. Deutsch et al. define rule dependencies that are specific to
the standard chase [19], and obtain a criterion for all-instances termination of the standard
chase under some strategies. A corrected version that works for all strategies was proposed
by Meier et al. [28].

These early dependency-based termination conditions were combined with weak acyclicity,
i.e., term-level cycle detection remained confined to conditions for CTsk

∀ . The difficulty is that
the critical instance can no longer be used to detect universal termination, since the standard
chase always terminates on this instance. More generally, the set of databases on which the
standard chase with a given rule set terminates is no longer closed under homomorphisms –
adding more facts may lead to termination.

Carral et al. recently proposed a way of approaching this problem [12]. Their notions
of restricted JA (RJA) and restricted MFA (RMFA) show membership in CTdlf

∀∀, i.e., for
arbitrary instances and Datalog-first strategies, while also covering rule sets that are not in
CTstd
∀∀ (or CTsk

∀). The essential idea for RMFA is to perform a modified skolem chase that,
like MFA, starts from the critical instance and checks for cyclic terms. However, a match
of a skolem rule is only applied after verifying that the match is not necessarily satisfied
in all Datalog-first chase sequences. To this end, rule applications are retraced to find the
most general set of facts from which the considered rule match can follow – a “universal
premise” of the match that has a homomorphism into any chase where this match occurs.
The Datalog-first strategy is honoured by further closing these facts under the given Datalog
rules. If the match is satisfied by this Datalog-closed, universal premise, then the match is
blocked and will not be used. The approach for RJA uses a similar block check to restrict
the estimated propagation of terms along positions in JA.

It is easy to generalise RMFA and RJA to arbitrary (not necessarily Datalog-first)
strategies by simply omitting the closure under Datalog rules. However, the wider practical
applicability shown empirically by Carral et al. often hinges on the presence of Datalog rules
that make the use of other existential rules obsolete.

For the core chase, due to Theorem 5, termination criteria correspond to general criteria
for showing that a rule set has a finite universal model. We are not aware of any specific
criteria that were proposed for this case while covering cases that are not in CTstd

∀∀.

5 The Weakness of the Terminating Skolem Chase

Already when Marnette first proposed the skolem chase, he observed an important feature
that is tied to its all-instances termination: the size of the chase of any rule set in CTsk

∀ is
polynomial in the size of the underlying concrete database [27]. It follows that the data
complexity of BCQ answering over CTsk

∀ is in PTime, but also that CTsk
∀ is inherently limited

6 There can be no “most general termination criterion” for any complexity class that is closed under finite
variations, so “best-performing” can only refer to empirical coverage of rule sets found in practice [15].

M. Krötzsch, M. Marx, and S. Rudolph 3:9

in terms of its expressive power. In this section, we elaborate on this limitation and relate
it to more recent insights on the expressivity limits of Datalog. Let us start by explaining
Marnette’s result:

I Theorem 8 ([27]). For every Σ ∈ CTsk
∀ and concrete database D, the skolem chase over Σ

and D is polynomial in the size of D. The data complexity of BCQ entailment over CTsk
∀ is

PTime-complete.

Proof. We expand on the idea underlying the use of the critical instance in Theorem 7.
Let chasesk(Σ,D) denote the skolem chase over Σ and D. For any concrete database D, let
h : D → D∗ be the unique mapping that (i) is identical on const(Σ), (ii) maps all other
constants to ∗, and (iii) satisfies h(f(t)) = f(h(t)) for all f ∈ F with ar(f) ≥ 1. Then
h extends to a mapping h′ : chasesk(Σ,D) → chasesk(Σ,D∗) satisfying (i)–(iii), as is easy
to show by induction along the length of the chase sequence. In particular, chasesk(Σ,D)
contains only terms for which a term of the same nesting structure occurs in chasesk(Σ,D∗).
The number k of distinct terms in chasesk(Σ,D∗) is finite, and there is a largest number
` of occurrences of constants in these terms. Therefore, if D contains n distinct nulls and
constants, and relation names of arity ≤ a, then chasesk(Σ,D) contains ≤ kn` terms and
≤ (kn`)a facts, which is polynomial in n. The number of possible matches of any rule body
likewise is polynomial in n, and chasesk(Σ,D) can therefore be computed in polynomial time.
PTime-hardness follows from the known data complexity of Datalog. J

Theorem 8 already establishes that rule sets in CTsk
∀ cannot express properties that are

not in PTime, such as defining an ExpTime-hard set of concrete databases. However, we can
obtain even tighter limits. Krötzsch and Rudolph define a transformation from jointly acyclic
rule sets (a subset of CTsk

∀) to Datalog that preserves entailment of (similarly rewritten)
BCQs [25]. Zhang et al. observed that this idea generalises to all of CTsk

∀ and that BCQ
rewriting is not necessary if we allow for a set of weakly acyclic “output” rules on top of
Datalog [36]. In summary, we find that CTsk

∀ has the same expressivity as Datalog:

I Theorem 9. For every Σ ∈ CTsk
∀ and BCQ q, there is a set of Datalog rules Σ′ and BCQ

q′ such that {D | D,Σ |= q} = {D | D,Σ′ |= q′}.

Proof sketch. As observed in the proof of Theorem 8, the size of terms occurring in any
chase of Σ is bounded. We can therefore encode terms as bounded-length lists of elements
(that occur as leaves in the term tree), new auxiliary constants (to encode function symbols of
arity > 1), and the special constant � (to fill unused positions in a list). If the maximal arity
of skolem functions is k and the maximal nesting depth of functions in the critical-instance
chase is `, then each term can be represented as a list of k` +k`−1 +1 elements (corresponding
to the total number of leaves and inner nodes of a tree of depth ` and branching factor
k). For example, if k = 2 and ` = 2, then the fact p(f(a, g(b))) can be “flattened” to
p̂(f, a,�,�, g, b,�). It is not hard to modify all (skolemised) rules accordingly. J

It is clear that CTsk
∀ does not capture PTime (since existential rules can only express

properties that are preserved under homomorphisms), but Theorem 9 further confines CTsk
∀

to the expressiveness boundaries of Datalog, which cannot even express every homomorphism-
closed Boolean query in PTime. Dawar and Kreutzer show that the following query cannot
be realised by Datalog [17]:

I Definition 10. Consider the following decision problem:

Input: A directed graph G with two distinguished vertices s and t
Question: Is G cyclic, or is there a simple path from s to t of length 22n2

for some n ∈ N?

ICDT 2019

3:10 The Power of the Terminating Chase

The DK query DDK is the abstract Boolean query containing exactly those concrete databases
that encode an instance of this decision problem using a binary relation edge and constant
symbols s and t.

DDK is closed under homomorphisms: homomorphisms preserve cycles, and simple paths
are either preserved or mapped to sub-structures with cycles. Moreover, the DK query can
be checked in polynomial time, where we note that the length of any simple path is at most
linear in the size of the input. Therefore, since the DK query is not expressible in Datalog
[17], Theorem 9 implies that there are homomorphism-closed PTime queries that cannot be
expressed in CTsk

∀ :

I Theorem 11. The DK query DDK is homomorphism-closed and in PTime, yet it is not
realised by any Σ ∈ CTsk

∀ and BCQ q.

6 Beyond the Skolem Chase

Surprisingly, the mechanisms that limit the expressive power of CTsk
∀ are specific to the

skolem chase. Other chase variants are not confined in such ways, and can break both the
PTime-barrier of Theorem 8 and surpass the expressive power of Datalog within PTime. In
this section, we focus on the latter aspect by discussing several techniques of expressing the
Dawar-Kreutzer query of Definition 10. We start with a result for the Datalog-first chase:

I Theorem 12. There is a rule set Σ ∈ CTdlf
∀∀ and BCQ q that realise the DK query.

Moreover, the Datalog-first chase on Σ is polynomial in the size of the input database.

Note that Theorem 12 establishes two independent results: (1) that the terminating
Datalog-first chase is more expressive than the terminating skolem chase even on polynomial-
time queries; and (2) that it will terminate in polynomial time in spite of this increased
expressivity. For the standard chase, we will also establish property (1), but we conjecture
that (2) cannot be attained.

Proof of Theorem 12. Inspired by a technique from Rudolph and Thomazo [33], we provide
a rule set Σ ∈ CTdlf

∀∀ with the required properties in Figure 1, where the corresponding BCQ
is goal (a query with a nullary relation name). The first group of rules (4)–(6) computes
the transitive closure path of edge, and derives goal if there is a cycle.

Rules (7)–(16) check for the other condition of the DK query by measuring the length
of paths from s to t. We define an initial zero element (7) and assign it to measure the
distance of s from itself (8). Representatives of numbers larger than zero are created by
adding successors (9), used in rule (10) to measure the s-distance of further vertices reached
via edge. Note that a vertex might be assigned more than one distance if it is reachable
through paths of different lengths. Two details are significant: (i) successors are only created
for elements that are already used as distances (9), which ensures that the creation of
successors terminates naturally in acyclic graphs; and (ii) establishing the relation of vertices
to distances in rule (10) is independent of the creation of new successor elements in (9),
which ensures that succ forms a unique chain, used globally to measure distances. Together,
(i) and (ii) imply that only a linear number of new elements are created in acyclic graphs,
even though such graphs might contain an exponential number of distinct paths.

Using the linear order of succ, rules (11)–(15) axiomatise arithmetic relationships in
the usual way. Relation names have the expected intended meaning: add(x, y, z) means
“x+ y = z”, mul(x, y, z) means “x ∗ y = z”, and exp(x, y) means “2x = y.” Finally, rule (16)
derives goal if an s–t path of the required length is discovered.

M. Krötzsch, M. Marx, and S. Rudolph 3:11

edge(v1, v2)→ path(v1, v2) (4)
edge(v1, v2) ∧ path(v2, v3)→ path(v1, v3) (5)

path(v, v)→ goal (6)

→ ∃x.zero(x) (7)
zero(x)→ dist(s, x) (8)

dist(v, x)→ ∃x′.succ(x, x′) (9)
dist(v1, x1) ∧ edge(v1, v2) ∧ succ(x1, x2)→ dist(v2, x2) (10)

zero(x) ∧ dist(v, y)→ add(x, y, y) ∧ mul(x, y, x) (11)
add(x, y, z) ∧ succ(x, x′) ∧ succ(z, z′)→ add(x′, y, z′) (12)

mul(x, y, z) ∧ succ(x, x′) ∧ add(z, y, z′)→ mul(x′, y, z′) (13)
zero(x) ∧ succ(x, x′)→ exp(x, x′) (14)

exp(x, y) ∧ succ(x, x′) ∧ add(y, y, y′)→ exp(x′, y′) (15)
mul(x, x, y) ∧ exp(y, y′) ∧ exp(y′, z) ∧ dist(t, z)→ goal (16)

dist(v, x) ∧ goal→ succ(x, x) (17)

Figure 1 Rule set in CTdlf
∀∀ that expresses the DK query, with termination guaranteed after

polynomially many chase steps.

As argued above, the rules terminate polynomially on acyclic graphs (even when using
the skolem chase). If there are cycles, however, paths can be of unbounded length, leading to
a non-terminating creation of successor elements in (9). This is prevented by rule (17), which
entails succ-loops on all distances once goal was derived, thus blocking further applications
of (9) in the standard chase. In the Datalog-first chase, cycles will be detected before creating
any elements, and succ-loops are established before considering (9). Therefore, this chase
terminates after polynomially many steps on cyclic graphs as well. J

Although the rules of Figure 1 are in CTdlf
∀∀, they do not fall into the RMFA fragment of

Carral et al. [12]. Indeed, we obtain termination by a case distinction: either the graph is
cyclic and existential rules will be blocked, or the graph is acyclic and existential rules will
apply at most once for each vertex. It is open how this type of reasoning by cases can be
integrated into practical termination criteria.

Also note that the rules of Figure 1 are neither in CTsk
∀ nor in CTstd

∀∀. The skolem chase
produces an infinite succ-chain if an edge-cycle is reachable from s, and rule (17) cannot
prevent the application of rule (9) in this chase. The standard chase does have the ability to
block rule (9), but it fails to do so if its strategy is to apply rule (9) before rule (17).

Indeed, our rule (17) effectively acts as an “emergency break” for the chase. Similar
devices were considered before. Grahne and Onet introduce so-called denial constraints, which
are rules that, when applied, stop the chase immediately [23]. Gogacz and Marcinkowski
observe that this is also achievable with regular rules in the style of (17), which they call
flooding rules [22]. This approach is strategy-dependent since it requires that the “break” is
triggered eagerly before creating further unnecessary elements.

Can we modify Figure 1 to work for the standard chase? Even with arbitrary strategies,
we require fairness, so all rule matches must eventually be satisfied. This is not enough,
however, since rule (17) has an unbounded number of matches that could all be satisfied

ICDT 2019

3:12 The Power of the Terminating Chase

→ ∃x.zero(x) (21)
zero(x)→ dist(s, x) ∧ ins(s, x, x) ∧ done(x) (22)

dist(v1, x1) ∧ edge(v1, v2) ∧ done(x1)→ ∃x2.ins(v2, x1, x2) ∧ subset(x2, x2) (23)
subset(x1, x2) ∧ ins(v, x0, x1)→ ins(v, x2, x2) ∧ subset(x0, x2) (24)

subset(x1, x2) ∧ zero(x1)→ ins(s, x2, x2) ∧ done(x2) (25)
dist(v1, x1) ∧ edge(v1, v2) ∧ ins(v2, x1, x2)→ dist(v2, x2) ∧ succ(x1, x2) (26)

Figure 2 Rules for creating sets of vertices to represent simple paths.

too late. An all-strategies terminating version can be obtained by modifying (17) to require
only a single satisfied match to halt all computation globally. To this end, we introduce two
new unary relation names block and real, remove the rules (9) and (17), add new rules:

→ ∃x.block(x) ∧ succ(x, x) (18)
dist(v, x) ∧ block(y)→ ∃x′.succ(x, x′) ∧ real(x′) ∧ succ(x′, y) (19)

block(x) ∧ goal→ real(x) (20)

and replace every body atom of the form succ(e, f) with a conjunction succ(e, f) ∧ real(f)
in any of the other rules.

Intuitively, block defines a single element that acts as a universal blocker for all potential
applications of rule (19). However, rules are restricted to work with successors that are
marked as real, which is initially not the case for the blocking element. The block becomes
“real” and therefore effective when rule (20) is applied. In contrast to the earlier version, (20)
only needs to be applied for a single match. By fairness, any cyclic graph will eventually lead
to the derivation of goal and hence to the application of (20). Therefore, the modified rule
set is in CTstd

∀∀, but there termination can take arbitrarily long depending on the strategy.
This result connects to recent observations of Gogacz et al., who show that fairness is

irrelevant for standard chase termination if all rules have only one atom per rule head [34].
They noted, however, that this no longer holds if rules may have multiple head atoms. Our
construction requires such larger heads in all existential rules that should be affected by the
global blocker, i.e., rule (19) in our example.

We have therefore learned that the standard chase, too, is strictly more expressive than
the skolem chase. We can strengthen this result to obtain an upper bound for the size of the
chase, albeit not a polynomial one:

I Theorem 13. There is a rule set Σ ∈ CTstd
∀∀ and BCQ q that realise the DK query.

Moreover, the standard chase on Σ is at most exponential in the size of the input database.

It remains open whether this can be strengthened to obtain a polynomial runtime
guarantee – we conjecture that the exponential increase in effort is unavoidable. Indeed, the
rule set used to show Theorem 13 may result in a chase of exponential size, even when using
the Datalog-first strategy.

Proof of Theorem 13. A bigger change in our original approach is now needed. Instead of
constructing a unique succ-chain to measure distances, we build a tree-like succ-structure
that grows one branch for every s-path, and which stops to grow when encountering cycles.
In other words, every element of the succ-structure represents a simple path. To accomplish

M. Krötzsch, M. Marx, and S. Rudolph 3:13

first(v)→ ∃x.start(x, x, v) ∧ end(x) (27)
start(x, u, v) ∧ end(u) ∧ next(v, v′)→ ∃y1, y2.start(y1, x, v

′) ∧
succ(y1, y2) ∧ end(y2) (28)

start(x, u, v) ∧ succ(u, u′)→ ∃y.left(x, y) ∧ start(y, u′, v) (29)
left(x, y)→ ∃y′.right(x, y′) ∧ succ(y, y′) (30)

right(x, y) ∧ succ(x, x′)→ ∃y′.left(x′, y′) ∧ succ(y, y′) (31)
end(x) ∧ right(x, y)→ end(y) (32)

start(x, u, v) ∧ end(u) ∧ last(v) ∧ succ(x, x′)→ chain(x, x′) (33)
chain(x, x′) ∧ succ(x′, x′′)→ chain(x′, x′′) (34)

Figure 3 Rule set to generate a k-exponentially long chain for the proof of Theorem 14.

this, we associate each element with the set of all vertices that have previously been visited
along this path. The rules (7)–(10) and (17) in Figure 1 are replaced by the rules in Figure 2.
We use facts of the form ins(v, x, y) to express that y is the result of inserting v into the set
x, i.e., “{v} ∪ x = y.” In particular, ins(v, x, x) can be read as “v ∈ x.” Rules (21) and (22)
initialise a zero element to encode {s}. Rule (23) creates a new vertex set when required for
extending a path, where done(x1) asserts that set x1 was fully initialised and subset(x1, x2)
states that x2 contains all elements of x1. Rules (24) and (25) propagate subset to farther
ancestors while establishing that all previously added vertices are also in the newly created
set. A set is only considered done when when reaching the zero element {s} (25). Finally,
rule (26) uses the vertex sets to measure distances. The resulting succ branches are used as
a basis for arithmetic operations as before, using rules (11)–(16).

At any given intermediate stage of the chase, we can associate any element c with a
set [c] that contains all elements e for which there is a fact ins(e, c, c). Clearly, the unique
zero element c0 with zero(c0) satisfies [c0] = {s}. By an easy induction, one can show that
elements cn for which done(cn) was derived satisfy the following: there is a unique chain
of facts ins(e1, c0, c1), . . . , ins(en, cn−1, cn) with ci 6= ci+1, and we have [cn] = {s, e1, . . . en}
and subset(ci, cn) for all 0 ≤ i ≤ n. The existence of these facts implies that a match h of
rule (23) is always satisfied if h(v) ∈ [h(x1)], i.e., the rule can only be used to create strictly
larger sets. Since the size of any set of vertices is bounded by the size of the input, there are
at most exponentially many such elements, even if the graph has cycles.

If the graph is acyclic, then the succ relation forms a tree structure that corresponds to
an unravelling of the directed acyclic graph rooted in s. The distance-related checks work as
in Theorem 12. If the graph is cyclic, then succ might also contain cycles, but is still finite.
Rules (4)–(6) will detect the cycle and lead to acceptance, as required. J

7 Beyond Polynomial Time

After observing the superior expressive power of the standard and Datalog-first chase on
polynomial time problems, we turn to the question of whether one can also express queries of
higher complexity in rule sets that are guaranteed to terminate in these chases. The answer
is a resounding yes:

ICDT 2019

3:14 The Power of the Terminating Chase

I Theorem 14. There is a rule set Σ ∈ CTdlf
∀∀ and a BCQ q that express a non-elementary

Boolean query.

Proof. We reduce from the following non-elementary decision problem:

Input: A Turing machineM and a number k
Question: When started on the empty tape, doesM halt in at most 22···2︸ ︷︷ ︸

k times

steps?

The number k is encoded by input facts first(e0), next(e0, e1), . . . , next(ek−1, ek), last(ek).
We use the chase to construct a chain of the required k-exponential length. A simulator for
k-exponential Turing machine computations can then be implemented with Datalog rules
using a standard construction [16]. Note that the query result on inputs that do not use the
required encoding (of k or the Turing machine) is irrelevant for hardness; yet we must ensure
that the chase terminates on such inputs.

We first describe the basic construction of the k-exponential chain and discuss ter-
mination later. The rules in Figure 3 produce a series of k full binary trees of depth
1, 2, 22, 222

, . . . Each tree starts on the second level (containing two elements) and uses
relation names left and right to define a node’s children. Nodes on the same level form a
chain succ(n1, n2), succ(n2, n3), . . . , succ(n`−1, n`); the first element n1 is marked by a fact
start(n1, u, v) where u defines the level of the tree, and v defines the number of the tree;
the last element n` is marked by end(n`).

Rule (27) creates a one-element “tree” as a start (not in the above list of k rootless trees).
Rule (28) initialises the first level of the next tree, using the succ-chain of the last level of
the previous tree to count up the levels. Subsequent levels of the tree are initialised by (29)
and completed by rules (30) and (31). The next level’s last element is marked by (32). Rules
(33) and (34) define the last level of the last tree as the required chain.

It is not hard to see that the rules in Figure 3 terminate, even in the skolem chase, if the
next-graph does not have cycles and the database only mentions the relation names first,
next, and last. To ensure termination in case of next-cycles, we can add cycle-detection
rules similar to (4)–(6). To ensure termination on all database instances (i.e., such that
already contain facts using other relation names such as succ or start), we need to detect
similar cyclic arrangements involving succ or start. Termination of the Datalog-first chase
can then be ensured by adding “flooding rules” akin to (17), in this case creating ubiquitous
start, left, right, and succ relations, so as to block rules (28)–(31). J

As discussed in Section 6, the flooding rules used to ensure termination of the Datalog-first
chase can be replaced by introducing a global blocking element that can be activated in a
single rule application when a cycle is detected. Fairness then also ensures the termination
of the standard chase, and we obtain:

I Theorem 15. There is a rule set Σ ∈ CTstd
∀∀ and a BCQ q that express a non-elementary

Boolean query.

It is not difficult to define a fixed next-chain in rules, so as to use a constant tower of k
exponentials instead of a data-dependent one. This yields rule sets that realise k-ExpTime-
complete queries, which by the Time Hierarchy theorems cannot be realised in (k−1)-
exponential time. This yields the following:

I Theorem 16. The classes of rule sets in CTstd
∀∀ that terminate after at most k-exponentially

many steps form a hierarchy of strictly increasing expressivity. The same applies to k-
exponentially terminating rule sets in CTdlf

∀∀.

M. Krötzsch, M. Marx, and S. Rudolph 3:15

8 Conclusion

We have studied classes CTx
∀(∀) of existential rules for which a certain chase variant x ∈

{sk, std, dlf, core} terminates on all database instances, and (where applicable) under all
strategies. To review our results, it is meaningful to further distinguish chase termination
classes by upper bounds in terms of the size of the input database. For example, CTdlf

∀∀(poly)
would denote the subset of CTdlf

∀∀ where chase termination is guaranteed after polynomial
time. Now given such a class CT, we investigated the set JCTK of all abstract queries (sets of
concrete databases over an input signature) that can be expressed by some theory from CT.
Using this notation, our main results are as follows:

JDatalogK
(Thm 9)

= JCTsk
∀ K

(Thm 12)

⊂ JCTdlf
∀∀(poly)K

(Thm 16)

⊂ JCTdlf
∀∀(exp)K

(Thm 16)

⊂ . . . ⊂ J
⋃

k CTdlf
∀∀(k-exp)K

(Thm 14)

⊂ JCTdlf
∀∀K

(Thm 8) = ⊆ ⊆ ⊆ ⊆

JCTsk
∀ (poly)K ⊆ JCTstd

∀∀(poly)K
(Thm 16)

⊂ JCTstd
∀∀(exp)K

(Thm 16)

⊂ . . . ⊂ J
⋃

k CTstd
∀∀(k-exp)K

(Thm 15)

⊂ JCTstd
∀∀K

Many further questions remain open, and indicate promising directions for future research:

Absolute expressibility. A terminating chase can only express queries that are decidable
and closed under homomorphism, but we saw that the skolem chase can express much less.
Some of the other chase variants might actually capture this class of queries. Even if not, it
would be interesting to characterise their expressivity semantically.

Relative expressibility. We know that JCTstd
∀∀K ⊆ JCTdlf

∀∀K ⊆ JCTcore
∀ K, but it remains open

if any of these inclusions are strict. If some are equalities, it would be interesting to find
computable rewritings that produce rule sets for which a weaker chase terminates.

Complexity relationships. Theorem 13 achieved termination for the standard chase at the
cost of an exponential runtime increase. We conjecture that this is unavoidable, and that
JCTstd

∀∀(poly)K ⊂ JCTdlf
∀∀(poly)K. Can all queries in JCTdlf

∀∀K be implemented in worst-case
optimal time? And can the standard chase express the same queries at an exponential
penalty? Do we even have JCTsk

∀ K 6= JCTstd
∀∀(poly)K?

Decidable termination criteria. None of our beyond-skolem queries satisfy any of the
known termination criteria. New approaches are needed to encompass our examples.

Termination on restricted database classes. We required termination on all databases,
using databases with restricted EDB signatures only to define query realisation. Requiring
termination only on databases over EDB relations might lead to larger classes of rule sets,
possibly with higher expressivity. This certainly occurs when restricting to specific “well-
formed” instance databases: if we would exclude cyclic databases, even the skolem chase
could express non-elementary queries. However, such restrictions are also enough to capture
all of PTime (assuming negation and order to be axiomatised), and even unrealistically
powerful classes, such as non-uniform P/poly.

Practical applications. Practical implementations for standard chase and also for Datalog-
first chase exist, so it is promising to explore the use of beyond-skolem expressive power in
applications. Specific uses could help guide the theoretical research.

ICDT 2019

3:16 The Power of the Terminating Chase

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley,

1994.
2 Alfred V. Aho, Catriel Beeri, and Jeffrey D. Ullman. The Theory of Joins in Relational

Databases. ACM Trans. Database Syst., 4(3):297–314, 1979.
3 Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with

existential variables: Walking the decidability line. Artificial Intelligence, 175(9–10):1620–1654,
2011.

4 Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and Clément Sipieter.
Graal: A Toolkit for Query Answering with Existential Rules. In Nick Bassiliades, Georg
Gottlob, Fariba Sadri, Adrian Paschke, and Dumitru Roman, editors, Proc. 9th Int. Web Rule
Symposium (RuleML’15), volume 9202 of LNCS, pages 328–344. Springer, 2015.

5 Bruce L. Bauslaugh. Core-like properties of infinite graphs and structures. Discrete Math.,
138(1):101–111, 1995.

6 Catriel Beeri and Moshe Y. Vardi. The Implication Problem for Data Dependencies. In
Shimon Even and Oded Kariv, editors, Proc. 8th Colloquium on Automata, Languages and
Programming (ICALP’81), volume 115 of LNCS, pages 73–85. Springer, 1981.

7 Catriel Beeri and Moshe Y. Vardi. A Proof Procedure for Data Dependencies. J. ACM,
31(4):718–741, 1984.

8 Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik, Paolo Papotti,
Donatello Santoro, and Efthymia Tsamoura. Benchmarking the Chase. In Proc. 36th Symposium
on Principles of Database Systems (PODS’17), pages 37–52. ACM, 2017.

9 Angela Bonifati, Ioana Ileana, and Michele Linardi. Functional Dependencies Unleashed for
Scalable Data Exchange. In Peter Baumann, Ioana Manolescu-Goujot, Luca Trani, Yannis E.
Ioannidis, Gergely Gábor Barnaföldi, László Dobos, and Evelin Bányai, editors, Proc. 28th
Int. Conf. on Scientific and Statistical Database Management (SSDBM’16), pages 2:1–2:12.
ACM, 2016.

10 Marco Calautti and Andreas Pieris. Oblivious Chase Termination: The Sticky Case. In Proc.
22nd Int. Conf. on Database Theory (ICDT’19). Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2019.

11 Andrea Calì, Georg Gottlob, and Andreas Pieris. Query Answering under Non-guarded Rules
in Datalog+/-. In Pascal Hitzler and Thomas Lukasiewicz, editors, Proc. 4th Int. Conf. on
Web Reasoning and Rule Systems (RR 2010), volume 6333 of LNCS, pages 1–17. Springer,
2010.

12 David Carral, Irina Dragoste, and Markus Krötzsch. Restricted Chase (Non)Termination for
Existential Rules with Disjunctions. In Carles Sierra, editor, Proc. 26th Int. Joint Conf. on
Artificial Intelligence (IJCAI’17), pages 922–928. ijcai.org, 2017.

13 David Carral, Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Sebastian Rudolph.
Preserving Constraints with the Stable Chase. In Benny Kimelfeld and Yael Amsterdamer,
editors, Proc. 21st Int. Conf. on Database Theory (ICDT’18), volume 98 of LIPIcs, pages
12:1–12:19. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

14 Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases. Springer,
1990.

15 Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina Magka,
Boris Motik, and Zhe Wang. Acyclicity Notions for Existential Rules and Their Application
to Query Answering in Ontologies. J. of Artificial Intelligence Research, 47:741–808, 2013.

16 Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and
Expressive Power of Logic Programming. ACM Computing Surveys, 33(3):374–425, 2001.

17 Anuj Dawar and Stephan Kreutzer. On Datalog vs. LFP. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Proc. 35th Int. Colloquium on Automata, Languages, and Programming (ICALP’08);
Part II, volume 5126 of LNCS, pages 160–171. Springer, 2008.

M. Krötzsch, M. Marx, and S. Rudolph 3:17

18 Stathis Delivorias, Michel Leclère, Marie-Laure Mugnier, and Federico Ulliana. On the
k-Boundedness for Existential Rules. In Christoph Benzmüller, Francesco Ricca, Xavier
Parent, and Dumitru Roman, editors, Proc. 2nd Int. Joint Conf. on Rules and Reasoning
(RuleML+RR’18), volume 11092 of LNCS, pages 48–64. Springer, 2018.

19 Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The Chase Revisited. In Maurizio Lenzerini
and Domenico Lembo, editors, Proc. 27th Symposium on Principles of Database Systems
(PODS’08), pages 149–158. ACM, 2008.

20 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theoretical Computer Science, 336(1):89–124, 2005.

21 Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. That’s All Folks!
LLUNATIC Goes Open Source. PVLDB, 7(13):1565–1568, 2014.

22 Tomasz Gogacz and Jerzy Marcinkowski. All-Instances Termination of Chase is Undecidable.
In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Proc.
41st Int. Colloquium on Automata, Languages, and Programming (ICALP’14); Part II, volume
8573 of LNCS, pages 293–304. Springer, 2014.

23 Gösta Grahne and Adrian Onet. Anatomy of the Chase. Fundam. Inform., 157(3):221–270,
2018.

24 Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete Math., 109:117–126, 1992.
25 Markus Krötzsch and Sebastian Rudolph. Extending Decidable Existential Rules by Joining

Acyclicity and Guardedness. In Toby Walsh, editor, Proc. 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI’11), pages 963–968. AAAI Press/IJCAI, 2011.

26 David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implications of data
dependencies. ACM Transactions on Database Systems, 4:455–469, 1979.

27 Bruno Marnette. Generalized Schema-Mappings: from Termination to Tractability. In Jan
Paredaens and Jianwen Su, editors, Proc. 28th Symposium on Principles of Database Systems
(PODS’09), pages 13–22. ACM, 2009.

28 Michael Meier, Michael Schmidt, and Georg Lausen. On Chase Termination Beyond Stratific-
ation. PVLDB, 2(1):970–981, 2009.

29 Michaël Thomazo Michel Leclére, Marie-Laure Mugnier and Federico Ulliana. A Single
Approach to Decide Chase Termination on Linear Existential Rules. CoRR, abs/1810.02132,
2018. arXiv:1810.02132.

30 Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. Parallel Materialisa-
tion of Datalog Programs in Centralised, Main-Memory RDF Systems. In Proc. 28th AAAI
Conf. on Artif. Intell. (AAAI’14), pages 129–137. AAAI Press, 2014.

31 Sebastian Rudolph. The Two Views on Ontological Query Answering. In Georg Gottlob
and Jorge Pérez, editors, Proc. 8th Alberto Mendelzon Workshop on Foundations of Data
Management (AMW’14), volume 1189 of CEUR Workshop Proceedings. CEUR-WS.org, 2014.

32 Sebastian Rudolph and Michaël Thomazo. Characterization of the Expressivity of Existential
Rule Queries. In Qiang Yang and Michael Wooldridge, editors, Proc. 24th Int. Joint Conf. on
Artificial Intelligence (IJCAI’15), pages 3193–3199. AAAI Press, 2015.

33 Sebastian Rudolph and Michaël Thomazo. Expressivity of Datalog Variants - Completing
the Picture. In Subbarao Kambhampati, editor, Proc. 25th Int. Joint Conf. on Artificial
Intelligence (IJCAI’15), pages 1230–1236. AAAI Press, 2016.

34 Andreas Pieris Tomasz Gogacz, Jerzy Marcinkowski. All-Instances Restricted Chase Termina-
tion: The Guarded Case. CoRR, abs/1901.03897, 2019. arXiv:1901.03897.

35 Jacopo Urbani, Markus Krötzsch, Ceriel J. H. Jacobs, Irina Dragoste, and David Carral.
Efficient Model Construction for Horn Logic with VLog: System description. In Didier
Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Proc. 9th Int. Joint Conf. on
Automated Reasoning (IJCAR’18), volume 10900 of LNCS, pages 680–688. Springer, 2018.

36 Heng Zhang, Yan Zhang, and Jia-Huai You. Existential Rule Languages with Finite Chase:
Complexity and Expressiveness. In Blai Bonet and Sven Koenig, editors, Proc. 29th AAAI
Conf. on Artificial Intelligence (AAAI’15). AAAI Press, 2015.

ICDT 2019

http://arxiv.org/abs/1810.02132
http://arxiv.org/abs/1901.03897

Counting Triangles under Updates in Worst-Case
Optimal Time
Ahmet Kara
Department of Computer Science, University of Oxford, Oxford, UK
ahmet.kara@cs.ox.ac.uk

Hung Q. Ngo
RelationalAI, Inc., Berkeley, CA, USA
hung.ngo@relational.ai

Milos Nikolic1

School of Informatics, University of Edinburgh, Edinburgh, UK
milos.nikolic@ed.ac.uk

Dan Olteanu
Department of Computer Science, University of Oxford, Oxford, UK
dan.olteanu@cs.ox.ac.uk

Haozhe Zhang
Department of Computer Science, University of Oxford, Oxford, UK
haozhe.zhang@cs.ox.ac.uk

Abstract
We consider the problem of incrementally maintaining the triangle count query under single-tuple
updates to the input relations. We introduce an approach that exhibits a space-time tradeoff such
that the space-time product is quadratic in the size of the input database and the update time can
be as low as the square root of this size. This lowest update time is worst-case optimal conditioned
on the Online Matrix-Vector Multiplication conjecture.

The classical and factorized incremental view maintenance approaches are recovered as special
cases of our approach within the space-time tradeoff. In particular, they require linear-time
maintenance under updates, which is suboptimal. Our approach can also count all triangles in a
static database in the worst-case optimal time needed for enumerating them.

2012 ACM Subject Classification Theory of computation → Database query processing and opti-
mization (theory); Information systems → Database views; Information systems → Data streams

Keywords and phrases incremental view maintenance, amortized analysis, data skew

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.4

Related Version An extended version of this work is available online at [13], https://arxiv.org/
abs/1804.02780.

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 682588. Kara acknowledges funding from Fondation
Wiener Anspach.

Acknowledgements Olteanu would like to thank Nicole Schweikardt for the connection between the
Online Matrix-Vector Multiplication conjecture and the triangle query.

1 Work performed while being at the University of Oxford.

© Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 4; pp. 4:1–4:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahmet.kara@cs.ox.ac.uk
mailto:hung.ngo@relational.ai
mailto:milos.nikolic@ed.ac.uk
mailto:dan.olteanu@cs.ox.ac.uk
mailto:haozhe.zhang@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.ICDT.2019.4
https://arxiv.org/abs/1804.02780
https://arxiv.org/abs/1804.02780
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Counting Triangles under Updates in Worst-Case Optimal Time

1 Introduction

We consider the problem of incrementally maintaining the result of the triangle count query

Q() =
∑

a∈Dom(A)

∑
b∈Dom(B)

∑
c∈Dom(C)

R(a, b) · S(b, c) · T (c, a) (1)

under single-tuple updates to the relations R, S, and T with schemas (A,B), (B,C), and
(C,A), respectively. The relations are given as functions mapping tuples over relation schemas
to tuple multiplicities. A single-tuple update δR = { (α, β) 7→ m } to relation R maps the
tuple (α, β) to a nonzero multiplicity m, which is positive for inserts and negative for deletes.

The triangle query and its counting variant have served as a milestone for worst-case
optimality of join algorithms in the centralized and parallel settings and for randomized
approximation schemes for data processing. They serve as the workhorse showcasing subop-
timality of mainstream join algorithms used currently by virtually all commercial database
systems. For a database D consisting of R, S, and T , standard binary join plans implement-
ing these queries may take O(|D|2) time, yet these queries can be solved in O(|D| 32) time [2].
This observation motivated a new line of work on worst-case optimal algorithms for arbitrary
join queries [18]. The triangle query has also served as a yardstick for understanding the
optimal communication cost for parallel query evaluation in the Massively Parallel Commu-
nication model [15]. The triangle count query has witnessed the development of randomized
approximation schemes with increasingly lower time and space requirements, e.g., [9].

A worst-case optimal result for incrementally maintaining the exact triangle count query
has so far not been established. Incremental maintenance algorithms may benefit from a
good range of processing techniques whose flexible combinations may make it harder to
reason about optimality. Such techniques include algorithms for aggregate-join queries with
low complexity developed for the non-incremental case [17]; pre-materialization of views that
reduces maintenance of the query to that of simpler subqueries [14]; and delta processing
that allows to only compute the change in the result instead of the entire result [7].

1.1 Existing Incremental View Maintenance (IVM) Approaches

The problem of incrementally maintaining the triangle count has received a fair amount
of attention. Existing exact approaches require at least linear time in worst case. After
each update to a database D, the naïve approach joins the relations R, S, and T in time
O(|D| 32) using a worst-case optimal algorithm [2, 18] and counts the result tuples. The
number of distinct tuples in the result is at most |D| 32 , which is a well-known result by
Loomis and Whitney from 1949 (see recent notes on the history of this result [17]). The
classical first-order IVM [7] computes on the fly a delta query δQ per single-tuple update δR
to relation R (or any other relation) and updates the query result:

δQ() = δR(α, β) ·
∑

c∈Dom(C)

S(β, c) · T (c, α), Q() = Q() + δQ().

The delta computation takes O(|D|) time since it needs to intersect two lists of possibly
linearly many C-values that are paired with β in S and with α in T (i.e., the multiplicity of
such pairs in S and T is nonzero). The recursive IVM [14] speeds up the delta computation
by precomputing three auxiliary views representing the update-independent parts of the
delta queries for updates to R, S, and T :

A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:3

VST (b, a) =
∑

c∈Dom(C)

S(b, c) · T (c, a)

VTR(c, b) =
∑

a∈Dom(A)

T (c, a) ·R(a, b)

VRS(a, c) =
∑

b∈Dom(B)

R(a, b) · S(b, c).

These three views take O(|D|2) space but allow to compute the delta query for single-tuple
updates to the input relations in O(1) time. Computing the delta δQ() = δR(α, β) ·VST (β, α)
requires just a constant-time lookup in VST ; however, maintaining the views VRS and VTR,
which refer to R, still requires O(|D|) time. The factorized IVM [19] materializes only one of
the three views, for instance, VST . In this case, the maintenance under updates to R takes
O(1) time, but the maintenance under updates to S and T still takes O(|D|) time.

Further exact IVM approaches focus on acyclic conjunctive queries. For free-connex
acyclic conjunctive queries, the dynamic Yannakakis approach allows for enumeration of
result tuples with constant delay under single-tuple updates [11]. For databases with or
without integrity constraints, it is known that a strict, small subset of the class of acyclic
conjunctive queries admit constant-time update, while all other conjunctive queries have
update times dependent on the size of the input database [4, 5].

Further away from our line of work is the development of dynamic descriptive complexity,
starting with the DynFO complexity class and the much-acclaimed result on FO expressibility
of the maintenance for graph reachability under edge inserts and deletes, cf. a recent
survey [20]. The k-clique query can be maintained under edge inserts by a quantifier-free
update program of arity k − 1 but not of arity k − 2 [22].

A distinct line of work investigates randomized approximation schemes with an arbitrary
relative error for counting triangles in a graph given as a stream of edges, e.g., [3, 12, 6, 16, 8].
Each edge in the data stream corresponds to a tuple insert, and tuple deletes are not
considered. The emphasis of these approaches is on space efficiency, and they express the
space utilization as a function of the number of nodes and edges in the input graph and
of the number of triangles. The space utilization is generally sublinear but may become
superlinear if, for instance, the number of edges is greater than the square root of the number
of triangles. The update time is polylogarithmic in the number of nodes in the graph.

A complementary line of work unveils structure in the PTIME complexity class by giving
lower bounds on the complexity of problems under various conjectures [10, 21].

I Definition 1 (Online Matrix-Vector Multiplication (OMv) [10]). We are given an n × n
Boolean matrix M and receive n column vectors of size n, denoted by v1, . . . ,vn, one by one;
after seeing each vector vi, we output the product Mvi before we see the next vector.

I Conjecture 2 (OMv Conjecture, Theorem 2.4 in [10]). For any γ > 0, there is no algorithm
that solves OMv in time O(n3−γ).

The OMv conjecture has been used to exhibit conditional lower bounds for many dynamic
problems, including those previously based on other popular problems and conjectures,
such as 3SUM and combinatorial Boolean matrix multiplication [10]. This also applies
to our triangle count query: For any γ > 0 and database of domain size n, there is no
algorithm that incrementally maintains the triangle count under single-tuple updates with
arbitrary preprocessing time, O(n1−γ) update time, and O(n2−γ) answer time, unless the
OMv conjecture fails [4].

ICDT 2019

4:4 Counting Triangles under Updates in Worst-Case Optimal Time

0 1
2

1

1
2

1

3
2

ε

Asymptotic
complexity
|D|y

Space
Time

y

ε = 1
classical IVM

ε = 0
classical IVM

εS = 0 εR = εT = 1
or

εR = εS = 0 εT = 1
factorized IVM

static case
ε = 1

2

Figure 1 IVMε’s space and amortized update time parameterized by ε. The classical IVM is
recovered by setting ε ∈ {0, 1}. The factorized IVM is recovered by setting εR ∈ {0, 1}, εS = 0, and
εT = 1 when VST is materialized (similar treatment when VRS or VTR is materialized). For ε = 1

2 ,
IVMε counts all triangles in a static database in the worst-case optimal time for enumerating them.

1.2 Our Contribution
This paper introduces IVMε, an incremental view maintenance approach that maintains the
triangle count in amortized sublinear time. Our main result is as follows:

I Theorem 3. Given a database D and ε ∈ [0, 1], IVMε incrementally maintains the result of
Query (1) under single-tuple updates to D with O(|D| 32) preprocessing time, O(|D|max{ε,1−ε})
amortized update time, constant answer time, and O(|D|1+min{ε,1−ε}) space.

The preprocessing time is for computing the triangle count on the initial database before
the updates; if we start with the empty database, then this time is O(1). The IVMε approach
exhibits a tradeoff between space and amortized update time, cf. Figure 1.

IVMε uses a data structure that partitions each input relation into a heavy part and
a light part based on the degrees of data values. The degree of an A-value a in relation
R is the number of B-values paired with a in R. The light part of R consists of all tuples
(a, b) from R such that the degree of a in R is below a certain threshold that depends on
the database size and ε. All other tuples are included in the heavy part of R. Similarly, the
relations S and T are partitioned based on the degrees of B-values in S and C-values in T ,
respectively. The maintenance is adaptive in that it uses different evaluation strategies for
different heavy-light combinations of parts of the input relations that overall keep the update
time sublinear. Section 3 introduces this adaptive maintenance strategy.

As the database evolves under updates, IVMε needs to rebalance the heavy-light partitions
to account for a new database size and updated degrees of data values. While this rebalancing
may take superlinear time, it remains sublinear per single-tuple update. The update time is
therefore amortized. Section 4 discusses the rebalancing strategy of IVMε.

For ε = 1
2 , IVMε achieves the lowest update time O(|D| 12) while requiring O(|D| 32) space.

This update time is optimal conditioned on the OMv conjecture. For this, we specialize the
lower bound result in [4] to refer to the size |D| of the database:

I Proposition 4. For any γ > 0 and database D, there is no algorithm that incrementally
maintains the result of Query (1) under single-tuple updates to D with arbitrary preprocessing
time, O(|D| 12−γ) amortized update time, and O(|D|1−γ) answer time, unless the OMv
conjecture fails.

A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:5

This lower bound is shown in the extended paper [13]. Theorem 3 and Proposition 4
imply that IVMε incrementally maintains the triangle count with optimal update time:

I Corollary 5 (Theorem 3 and Proposition 4). Given a database D, IVMε incrementally
maintains the result of Query (1) under single-tuple updates to D with worst-case optimal
amortized update time O(|D| 12) and constant answer time, unless the OMv conjecture fails.

IVMε also applies to triangle count queries with self-joins, such as when maintaining the
count of triangles in a graph given by the edge relation. The space and time complexities are
the same as in Theorem 3 [13].

IVMε defines a continuum of maintenance approaches that exhibit a space-time tradeoff
based on ε. As depicted in Figure 1, the classical first-order IVM and the factorized IVM
are specific extreme points in this continuum. To recover the former, we set ε ∈ {0, 1} for
O(|D|) update time and O(|D|) space for the input relations. To recover the latter, we use a
distinct parameter ε per relation: for example, using εR ∈ {0, 1}, εS = 0, and εT = 1, we
support updates to R in O(1) time and updates to S and T in O(|D|) time; the view VST
takes O(|D|2) space [13].

We observe that at optimality, IVMε recovers the worst-case optimal time O(|D| 32) of
non-incremental algorithms for enumerating all triangles [18]. Whereas these algorithms are
monolithic and require processing the input data in bulk and all joins at the same time,
IVMε achieves the same complexity by inserting |D| tuples one at a time in initially empty
relations R, S, and T , and by using standard join plans [13].

2 Preliminaries

Data Model. A schema X is a tuple of variables. Each variable X has a discrete domain
Dom(X) of data values. A tuple x of data values over schema X is an element from
Dom(X) =

∏
X∈X Dom(X). We use uppercase letters for variables and lowercase letters for

data values. Likewise, we use bold uppercase letters for schemas and bold lowercase letters
for tuples of data values.

A relation K over schema X is a function K : Dom(X) → Z mapping tuples over X
to integers such that K(x) 6= 0 for finitely many tuples x. We say that a tuple x is in K,
denoted by x ∈ K, if K(x) 6= 0. The value K(x) represents the multiplicity of x in K. The
size |K| of K is the size of the set {x | x ∈ K}. A database D is a set of relations, and its
size |D| is the sum of the sizes of the relations in D.

Given a tuple x over schema X and a variable X in X, we write x[X] to denote
the value of X in x. For a relation K over X, a variable X in X, and a data value
x ∈ Dom(X), we use σX=xK to denote the set of tuples in K whose X-value is x, that is,
σX=xK = {x | x ∈ K ∧ x[X] = x }. We write πXK to denote the set of X-values in K,
that is, πXK = {x[X] | x ∈ K }.

Query Language. We express queries and view definitions in the language of functional
aggregate queries (FAQ) [1]. Compared to the original FAQ definition that uses several
commutative semirings, we define our queries using the single commutative ring (Z,+, ·, 0, 1)
of integers with the usual addition and multiplication. A query Q has one of the two forms:

1. Given a set {Xi}i∈[n] of variables and an index set S ⊆ [n], let XS denote a tuple (Xi)i∈S
of variables and xS denote a tuple of data values over the schema XS . Then,

Q(x[f]) =
∑

xf+1∈Dom(Xf+1)

· · ·
∑

xn∈Dom(Xn)

∏
S∈M

KS(xS), where:

ICDT 2019

4:6 Counting Triangles under Updates in Worst-Case Optimal Time

M is a multiset of index sets.
For every index set S ∈M, KS : Dom(XS)→ Z is a relation over the schema XS .
X[f] is the tuple of free variables of Q. The variables Xf+1, . . . , Xn are called bound.

2. Q(x) = Q1(x) +Q2(x), where Q1 and Q2 are queries over the same tuple of free variables.

In the following, we use
∑
xi

as a shorthand for
∑
xi∈Dom(Xi).

Updates and Delta Queries. An update δK to a relation K is a relation over the schema
of K. A single-tuple update, written as δK = {x 7→ m}, maps the tuple x to the nonzero
multiplicity m ∈ Z and any other tuple to 0; that is, |δK| = 1. The data model and query
language make no distinction between inserts and deletes – these are updates represented as
relations in which tuples have positive and negative multiplicities.

Given a query Q and an update δK, the delta query δQ defines the change in the query
result after applying δK to the database. The rules for deriving delta queries follow from
the associativity, commutativity, and distributivity of the ring operations.

Query Q(x) Delta query δQ(x)

Q1(x1) ·Q2(x2) δQ1(x1) ·Q2(x2) +Q1(x1) · δQ2(x2) + δQ1(x1) · δQ2(x2)∑
x
Q1(x1)

∑
x
δQ1(x1)

Q1(x) +Q2(x) δQ1(x) + δQ2(x)
K′(x) δK(x) when K = K′ and 0 otherwise

Computation Time. Our maintenance algorithm takes as input the triangle count query Q
and a database D and maintains the result of Q under a sequence of single-tuple updates. We
distinguish the following computation times: (1) preprocessing time is spent on initializing
the algorithm using D before any update is received, (2) update time is spent on processing
one single-tuple update, and (3) answer time is spent on obtaining the result of Q. We
consider two types of bounds on the update time: worst-case bounds, which limit the time
each individual update takes in the worst case, and amortized worst-case bounds, which limit
the average worst-case time taken by a sequence of updates. Enumerating a set of tuples
with constant delay means that the time until reporting the first tuple, the time between
reporting two consecutive tuples, and the time between reporting the last tuple and the end
of enumeration is constant. When referring to sublinear time, we mean O(|D|1−γ) for some
γ > 0, where |D| is the database size.

Computational Model. We consider the RAM model of computation. Each relation (view)
K over schema X is implemented by a data structure that stores key-value entries (x,K(x))
for each tuple x over X with K(x) 6= 0 and needs space linear in the number of such tuples.
We assume that this data structure supports (1) looking up, inserting, and deleting entries in
constant time, (2) enumerating all stored entries in K with constant delay, and (3) returning
|K| in constant time. For instance, a hash table with chaining, where entries are doubly
linked for efficient enumeration, can support these operations in constant time on average,
under the assumption of simple uniform hashing.

For each variable X in the schema X of relation K, we further assume there is an index
structure on X that allows: (4) enumerating all entries in K matching σX=xK with constant
delay, (5) checking x ∈ πXK in constant time, and (6) returning |σX=xK| in constant time,
for any x ∈ Dom(X), and (7) inserting and deleting index entries in constant time. Such
an index structure can be realized, for instance, as a hash table with chaining where each
key-value entry stores an X-value x and a doubly-linked list of pointers to the entries in K

A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:7

having the X-value x. Looking up an index entry given x takes constant time on average,
and its doubly-linked list enables enumeration of the matching entries in K with constant
delay. Inserting an index entry into the hash table additionally prepends a new pointer to
the doubly-linked list for a given x; overall, this operation takes constant time on average.
For efficient deletion of index entries, each entry in K also stores back-pointers to its index
entries (as many back-pointers as there are index structures for K). When an entry is deleted
from K, locating and deleting its index entries takes constant time per index.

Data Partitioning. We partition each input relation into two parts based on the degrees of
its values. Similar to common techniques used in databases to deal with data skew, our IVM
approach employs different maintenance strategies for values of high and low frequency.

I Definition 6 (Relation Partition). Given a relation K over schema X, a variable X from
the schema X, and a threshold θ, a partition of K on X with threshold θ is a set {Kh,Kl}
satisfying the following conditions:

(union) K(x) = Kh(x) +Kl(x) for x ∈ Dom(X)

(domain partition) (πXKh) ∩ (πXKl) = ∅

(heavy part) for all x ∈ πXKh : |σX=xKh| ≥ 1
2 θ

(light part) for all x ∈ πXKl : |σX=xKl| < 3
2 θ

The set {Kh,Kl} is called a strict partition of K on X with threshold θ if it satisfies the
union and domain partition conditions and the following strict versions of the heavy part
and light part conditions:

(strict heavy part) for all x ∈ πXKh : |σX=xKh| ≥ θ

(strict light part) for all x ∈ πXKl : |σX=xKl| < θ

The relations Kh and Kl are called the heavy and light parts of K.

Definition 6 admits multiple ways to (non-strictly) partition a relation K on variable X
with threshold θ. For instance, assume that |σX=xK| = θ for some X-value x in K. Then,
all tuples in K with X-value x can be in either the heavy or light part of K; but they cannot
be in both parts because of the domain partition condition. If the partition is strict, then all
such tuples are in the heavy part of K.

The strict partition of a relation K is unique for a given threshold and can be computed
in time linear in the size of K.

3 IVMε: Adaptive Maintenance of the Triangle Count

We present IVMε, our algorithm for the incremental maintenance of the result of Query (1).
We start with a high-level overview. Consider a database D consisting of three relations R,
S, and T with schemas (A,B), (B,C), and (C,A), respectively. We partition R, S, and T
on variables A, B, and C, respectively, for a given threshold. We then decompose Query (1)
into eight skew-aware views expressed over these relation parts:

Qrst() =
∑
a,b,c

Rr(a, b) · Ss(b, c) · Tt(c, a), for r, s, t ∈ {h, l}.

Query (1) is then the sum of these skew-aware views: Q() =
∑
r,s,t∈{h,l}Qrst().

IVMε adapts its maintenance strategy to each skew-aware view Qrst to ensure amortized
update time that is sublinear in the database size. While most of these views admit sublinear

ICDT 2019

4:8 Counting Triangles under Updates in Worst-Case Optimal Time

Materialized View Definition Space Complexity

Q() =
∑

r,s,t∈{h,l}

∑
a,b,c

Rr(a, b) · Ss(b, c) · Tt(c, a) O(1)

VRS(a, c) =
∑

b
Rh(a, b) · Sl(b, c) O(|D|1+min { ε,1−ε })

VST (b, a) =
∑

c
Sh(b, c) · Tl(c, a) O(|D|1+min { ε,1−ε })

VTR(c, b) =
∑

a
Th(c, a) ·Rl(a, b) O(|D|1+min { ε,1−ε })

Figure 2 The definition and space complexity of the materialized views in V = {Q,VRS , VST , VTR}
as part of an IVMε state of a database D partitioned for ε ∈ [0, 1].

delta computation over the relation parts, few exceptions require linear-time maintenance.
For these exceptions, IVMε precomputes the update-independent parts of the delta queries as
auxiliary materialized views and then exploits these views to speed up the delta evaluation.

One such exception is the view Qhhl. Consider a single-tuple update δRh = {(α, β) 7→ m}
to the heavy part Rh of relation R, where α and β are fixed data values. Computing the delta
view δQhhl() = δRh(α, β)·

∑
c Sh(β, c)·Tl(c, α) requires iterating over all the C-values c paired

with β in Sh and with α in Tl; the number of such C-values can be linear in the size of the
database. To avoid this iteration, IVMε precomputes the view VST (b, a) =

∑
c Sh(b, c)·Tl(c, a)

and uses this view to evaluate δQhhl() = δRh(α, β) · VST (β, α) in constant time.
Such auxiliary views, however, also require maintenance. All such views created by

IVMε can be maintained in sublinear time under single-tuple updates to the input relations.
Figure 2 summarizes these views used by IVMε to maintain Query (1): VRS , VST and VTR.
They serve to avoid linear-time delta computation for updates to T , R, and S, respectively.
IVMε also materializes the result of Query (1), which ensures constant answer time.

We now describe our strategy in detail. We start by defining the state that IVMε initially
creates and maintains upon each update. Then, we specify the procedure for processing a
single-tuple update to any input relation, followed by the space complexity analysis of IVMε.
Section 4 gives the procedure for processing a sequence of such updates.

I Definition 7 (IVMε State). Given a database D = {R,S, T} and ε ∈ [0, 1], an IVMε state
of D is a tuple Z = (ε,N,P,V), where:

N is a natural number such that the size invariant
⌊ 1

4N
⌋
≤ |D| < N holds. N is called

the threshold base.
P = {Rh, Rl, Sh, Sl, Th, Tl} consists of the partitions of R, S, and T on variables A, B,
and C, respectively, with threshold θ = N ε.
V is the set of materialized views {Q,VRS , VST , VTR} as defined in Figure 2.

The initial state Z of D has N = 2 · |D|+ 1 and the three partitions in P are strict.

By construction, |P| = |D|. The size invariant implies |D| = Θ(N) and, together with the
heavy and light part conditions, facilitates the amortized analysis of IVMε in Section 4.
Definition 6 provides two essential upper bounds for each relation partition in an IVMε state:
The number of distinct A-values in Rh is at most N

1
2N

ε = 2N1−ε, i.e., |πARh| ≤ 2N1−ε, and
the number of tuples in Rl with an A-value a is less than 3

2N
ε, i.e., |σA=aRl| < 3

2N
ε, for any

a ∈ Dom(A). The same bounds hold for B-values in {Sh, Sl} and C-values in {Th, Tl}.

A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:9

3.1 Preprocessing Stage

The preprocessing stage constructs the initial IVMε state given a database D and ε ∈ [0, 1].

I Proposition 8. Given a database D and ε ∈ [0, 1], constructing the initial IVMε state of
D takes O(|D| 32) time.

Proof. We analyze the time to construct the initial state Z = (ε,N,P,V) of D. Retrieving
the size |D| and computing N = 2 · |D|+ 1 take constant time. Strictly partitioning the input
relations from D using the threshold N ε, as described in Definition 6, takes O(|D|) time.
Computing the result of the triangle count query on D (or P) using a worst-case optimal join
algorithm [18] takes O(|D| 32) time. Computing the auxiliary views VRS , VST , and VTR takes
O(|D|1+min{ε,1−ε}) time, as shown next. Consider the view VRS(a, c) =

∑
bRh(a, b) · Sl(b, c).

To compute VRS , one can iterate over all (a, b) pairs in Rh and then find the C-values in
Sl for each b. The light part Sl contains at most N ε distinct C-values for any B-value,
which gives an upper bound of |Rh| ·N ε on the size of VRS . Alternatively, one can iterate
over all (b, c) pairs in Sl and then find the A-values in Rh for each b. The heavy part Rh
contains at most N1−ε distinct A-values, which gives an upper bound of |Sl| · N1−ε on
the size of VRS . The number of steps needed to compute this result is upper-bounded by
min{ |Rh| ·N ε, |Sl| ·N1−ε } < min{N ·N ε, N ·N1−ε } = N1+min{ε,1−ε}. From |D| = Θ(N)
follows that computing VRS on the database partition P takes O(|D|1+min{ε,1−ε}) time; the
analysis for VST and VTR is analogous. Note that maxε∈[0,1]{1 + min{ε, 1− ε}} = 3

2 . Overall,
the initial state Z of D can be constructed in O(|D| 32) time. J

The preprocessing stage of IVMε happens before any update is received. In case we start
from an empty database, the preprocessing cost of IVMε is O(1).

3.2 Processing a Single-Tuple Update

We describe the IVMε strategy for maintaining the result of Query (1) under a single-tuple
update to the relation R. This update can affect either the heavy or light part of R, hence
we write δRr, where r stands for h or l. We assume that checking whether the update affects
the heavy or light part of R takes constant time. The update is represented as a relation
δRr = { (α, β) 7→ m }, where α and β are data values and m ∈ Z. Due to the symmetry of
the triangle query and auxiliary views, updates to S and T are handled similarly.

Figure 3 shows the procedure ApplyUpdate that takes as input a current IVMε state
Z and the update δRr, and returns a new state that results from applying δRr to Z. The
procedure computes the deltas of the skew-aware views referencing Rr, which are δQrhh
(Line 3), δQrhl (Line 4), δQrlh (Line 5), and δQrll (Line 6), and uses these deltas to maintain
the triangle count (Line 7). These skew-aware views are not materialized, but their deltas
facilitate the maintenance of the triangle count. If the update affects the heavy part Rh of R,
the procedure maintains VRS (Line 9) and Rh (Line 12); otherwise, it maintains VTR (Line
11) and Rl (Line 12). The view VST remains unchanged as it has no reference to Rh or Rl.

Figure 3 also gives the time complexity of computing these deltas and applying them to
Z. This complexity is either constant or dependent on the number of C-values for which
matching tuples in the parts of S and T have nonzero multiplicities.

I Proposition 9. Given a state Z constructed from a database D for ε ∈ [0, 1], IVMε

maintains Z under a single-tuple update to any input relation in O(|D|max{ε,1−ε}) time.

ICDT 2019

4:10 Counting Triangles under Updates in Worst-Case Optimal Time

ApplyUpdate(δRr,Z) Time

1 let δRr = {(α, β) 7→ m}

2 let Z = (ε,N, {Rh, Rl, Sh, Sl, Th, Tl}, {Q,VRS , VST , VTR})

3 δQrhh() = δRr(α, β) ·
∑

c
Sh(β, c) · Th(c, α) O(|D|1−ε)

4 δQrhl() = δRr(α, β) · VST (β, α) O(1)

5 δQrlh() = δRr(α, β) ·
∑

c
Sl(β, c) · Th(c, α) O(|D|min {ε,1−ε})

6 δQrll() = δRr(α, β) ·
∑

c
Sl(β, c) · Tl(c, α) O(|D|ε)

7 Q() = Q() + δQrhh() + δQrhl() + δQrlh() + δQrll() O(1)

8 if (r is h)

9 VRS(α, c) = VRS(α, c) + δRh(α, β) · Sl(β, c) O(|D|ε)
10 else
11 VTR(c, β) = VTR(c, β) + Th(c, α) · δRl(α, β) O(|D|1−ε)
12 Rr(α, β) = Rr(α, β) + δRr(α, β) O(1)

13 return Z

Total update time: O(|D|max{ε,1−ε})

Figure 3 (left) Counting triangles under a single-tuple update. ApplyUpdate takes as input an
update δRr to the heavy or light part of R, hence r ∈ {h, l}, and the current IVMε state Z of a
database D partitioned using ε ∈ [0, 1]. It returns a new state that results from applying δRr to
Z. Lines 3-6 compute the deltas of the affected skew-aware views, and Line 7 maintains Q. Lines
9 and 11 maintain the auxiliary views VRS and VTR, respectively. Line 12 maintains the affected
part Rr. (right) The time complexity of computing and applying deltas. The evaluation strategy for
computing δQrlh in Line 5 may choose either Sl or Th to bound C-values, depending on ε. The total
time is the maximum of all individual times. The maintenance procedures for S and T are similar.

Proof. We analyze the running time of the procedure from Figure 3 given a single-tuple
update δRr = {(α, β) 7→ m} and a state Z = (ε,N,P,V) of D. Since the query and auxiliary
views are symmetric, the analysis for updates to S and T is similar.

We first analyze the evaluation strategies for the deltas of the skew-aware views Qrst:
(Line 3) Computing δQrhh requires summing over C-values (α and β are fixed). The
minimum degree of each C-value in Th is 1

2N
ε, which means the number of distinct

C-values in Th is at most N
1
2N

ε = 2N1−ε. Thus, this delta evaluation takes O(N1−ε) time.
(Line 4) Computing δQrhl requires constant-time lookups in δRr and VST .
(Line 5) Computing δQrlh can be done in two ways, depending on ε: either sum over
at most 2N1−ε C-values in Th for the given α or sum over at most 3

2N
ε C-values in Sl

for the given β. This delta computation takes at most min{2N1−ε, 3
2N

ε} constant-time
operations, thus O(Nmin {ε,1−ε}) time.
(Line 6) Computing δQrll requires summing over at most 3

2N
ε C-values in Sl for the

given β. This delta computation takes O(N ε) time.
Maintaining the result of Query (1) using these deltas takes constant time (Line 7). The views
VRS and VTR are maintained for updates to distinct parts of R. Maintaining VRS requires
iterating over at most 3

2N
ε C-values in Sl for the given β (Line 9); similarly, maintaining

VTR requires iterating over at most 2N1−ε C-values in Th for the given α (Line 11). Finally,

A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:11

maintaining the (heavy or light) part of R affected by δRr takes constant time (Line 12).
The total update time is O(max{1, N ε, N1−ε, Nmin{ε,1−ε}}) = O(Nmax{ε,1−ε}). From the
invariant |D| = Θ(N) follows the claimed time complexity O(|D|max{ε,1−ε}). J

3.3 Space Complexity
We next analyze the space complexity of the IVMε maintenance strategy.

I Proposition 10. Given a database D and ε ∈ [0, 1], the IVMε state constructed from D to
support the maintenance of the result of Query (1) takes O(|D|1+min{ε,1−ε}) space.

Proof. We consider a state Z = (ε,N,P,V) of database D. N and ε take constant space
and |P| = |D|. Figure 2 summarizes the space complexity of the materialized views Q, VRS ,
VST , and VTR from V. The result of Q takes constant space. As discussed in the proof of
Proposition 8, to compute the auxiliary view VRS(a, c) =

∑
bRh(a, b) · Sl(b, c), we can use

either Rh or Sl as the outer relation:

|VRS | ≤ min{ |Rh| · max
b∈πBSl

|σB=bSl|, |Sl| · max
b∈πBRh

|σB=bRh| } < min{N · 3
2N

ε, N · 2N1−ε }

The size of VRS is thus O(N1+min{ε,1−ε}). From |D| = Θ(N) follows that VRS takes
O(|D|1+min{ε,1−ε}) space; the space analysis for VST and VTR is analogous. Overall, the
state Z of D takes O(|D|1+min{ε,1−ε}) space. J

4 Rebalancing Partitions

The partition of a relation may change after updates. For instance, an insert δRl = {(α, β) 7→
1} may violate the size invariant

⌊ 1
4N
⌋
≤ |D| < N or may violate the light part condition

|σA=αRl| < 3
2N

ε and require moving all tuples with the A-value α from Rl to Rh. As the
database evolves under updates, IVMε performs major and minor rebalancing steps to ensure
the size invariant and the conditions for heavy and light parts of each partition always hold.
This rebalancing also ensures that the upper bounds on the number of data values, such as
the number of B-values paired with α in Rl and the number of distinct A-values in Rh, are
valid. The rebalancing cost is amortized over multiple updates.

Major Rebalancing

If an update causes the database size to fall below b 1
4Nc or reach N , IVMε halves or,

respectively, doubles N , followed by strictly repartitioning the database with the new
threshold N ε and recomputing the materialized views, as shown in Figure 4.

I Proposition 11. Given ε ∈ [0, 1], major rebalancing of an IVMε state constructed from a
database D takes O(|D|1+min{ε,1−ε}) time.

Proof. We consider the major rebalancing procedure from Figure 4. Strictly partitioning the
input relations takes O(|D|) time. From the proof of Proposition 8 and |D| = Θ(N) follow
that recomputing VRS , VST , and VTR takes O(|D|1+min{ε,1−ε}) time. J

The (super)linear time of major rebalancing is amortized over Ω(N) updates. After
a major rebalancing step, it holds that |D| = 1

2N (after doubling), or |D| = 1
2N −

1
2 or

|D| = 1
2N − 1 (after halving, i.e., setting N to

⌊ 1
2N
⌋
− 1; the two options are due to the

floor functions in the size invariant and halving expression). To violate the size invariant⌊ 1
4N
⌋
≤ |D| < N and trigger another major rebalancing, the number of required updates is

at least 1
4N . Section 4.1 proves the amortized O(|D|min{ε,1−ε}) time of major rebalancing.

ICDT 2019

4:12 Counting Triangles under Updates in Worst-Case Optimal Time

OnUpdate(δR,Z)

let δR = {(α, β) 7→ m}
let Z = (ε,N, {Rh, Rl} ∪P,V)
if (α ∈ πARh or ε = 0)
Z = ApplyUpdate(δRh = {(α, β) 7→ m},Z)

else
Z = ApplyUpdate(δRl = {(α, β) 7→ m},Z)

if (|D| = N)
N = 2N
Z = MajorRebalancing(Z)

else if (|D| <
⌊

1
4N
⌋
)

N =
⌊

1
2N
⌋
− 1

Z = MajorRebalancing(Z)
else if (α ∈ πARl and |σA=αRl| ≥ 3

2N
ε)

Z = MinorRebalancing(Rl, Rh, A, α,Z)
else if (α ∈ πARh and |σA=αRh| < 1

2N
ε)

Z = MinorRebalancing(Rh, Rl, A, α,Z)
return Z

MajorRebalancing(Z)

let Z = (ε,N, {Rh, Rl, Sh, Sl, Th, Tl},
{Q,VRS , VST , VTR})

{Rh, Rl} = StrictPartition(Rh, Rl, A,N ε)
{Sh, Sl} = StrictPartition(Sh, Sl, B,N ε)
{Th, Tl} = StrictPartition(Th, Tl, C,N ε)
VRS(a, c) =

∑
b
Rh(a, b) · Sl(b, c)

VST (b, a) =
∑

c
Sh(b, c) · Tl(c, a)

VTR(c, b) =
∑

a
Th(c, a) ·Rl(a, b)

return Z

MinorRebalancing(Ksrc,Kdst , X, x,Z)

foreach t ∈ σX=xKsrc do
m = Ksrc(t)
Z = ApplyUpdate(δKsrc = { t 7→ −m },Z)
Z = ApplyUpdate(δKdst = { t 7→ m },Z)

return Z

Figure 4 Counting triangles under a single-tuple update with rebalancing. OnUpdate takes
as input an update δR and the current IVMε state Z of a database D. It returns a new state
that results from applying δR to Z and, if necessary, rebalancing partitions. The condition ε = 0
in the third line ensures that all tuples are in Rh when ε = 0. ApplyUpdate is given in Fig-
ure 3. MinorRebalancing(Ksrc,Kdst , X, x,Z) moves all tuples with the X-value x from Ksrc to
Kdst . MajorRebalancing(Z) recomputes the relation partitions and views in Z. StrictParti-
tion(Kh,Kl, X, θ) constructs a strict partition of relation K on variable X with threshold θ (see
Definition 6). The OnUpdate procedures for updates to relations S and T are analogous.

Minor Rebalancing

After each update δR = {(α, β) 7→ m}, IVMε checks whether the two conditions |σA=αRh| ≥
1
2N

ε and |σA=αRl| < 3
2N

ε still hold. If the first condition is violated, all tuples in Rh with
the A-value α are moved to Rl and the affected views are updated; similarly, if the second
condition is violated, all tuples with the A-value α are moved from Rl to Rh, followed by
updating the affected views. Figure 4 shows the procedure for minor rebalancing, which
deletes affected tuples from one part and inserts them into the other part.

I Proposition 12. Given ε ∈ [0, 1], minor rebalancing of an IVMε state constructed from a
database D takes O(|D|ε+max{ε,1−ε}) time.

Proof. Consider a state Z = (ε,N,P,V). Minor rebalancing moves fewer than 1
2N

ε tuples
(from heavy to light) or fewer than 3

2N
ε + 1 tuples (from light to heavy). Each tuple move

performs one delete and one insert and costs O(|D|max{ε,1−ε}) by Proposition 9. Since there
are O(N ε) such operations and |D| = Θ(N), the total time is O(|D|ε+max{ε,1−ε}). J

The (super)linear time of minor rebalancing is amortized over Ω(N ε) updates. This
lower bound on the number of updates comes from the heavy and light part conditions
(cf. Definition 6), namely from the gap between the two thresholds in these conditions.
Section 4.1 proves the amortized O(|D|max{ε,1−ε}) time of minor rebalancing.

A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:13

Figure 4 gives the trigger procedure OnUpdate that maintains Query (1) under a
single-tuple update to relation R and, if necessary, rebalances partitions; the procedures for
updates to S and T are analogous. Given an update δR = {(α, β) 7→ m} and an IVMε state
of a database D, the procedure first checks in constant time whether the update affects the
heavy or light part of R. The update targets Rh if there exists a tuple with the same A-value
α already in Rh, or ε is set to 0; otherwise, the update targets Rl. When ε = 0, all tuples are
in Rh, while Rl remains empty. Although this behavior is not required by IVMε (without
the ε = 0 condition, Rl would contain only tuples whose A-values have the degree of 1, and
Rh would contain all other tuples), it allows us to recover existing IVM approaches, such as
classical IVM and factorized IVM, which do not partition relations; by setting ε to 0 or 1,
IVMε ensures that all tuples are in Rh or respectively Rl. The procedure OnUpdate then
invokes ApplyUpdate from Figure 3. If the update causes a violation of the size invariant⌊ 1

4N
⌋
≤ |D| < N , the procedure invokes MajorRebalancing to recompute the relation

partitions and auxiliary views (note that major rebalancing has no effect on the triangle
count). Otherwise, if the heavy or light part condition is violated, MinorRebalancing
moves all tuples with the given A-value α from the source part to the destination part of R.

4.1 Proof of Theorem 3
We are now ready to prove Theorem 3 that states the complexity of IVMε.

Proof. The preprocessing stage constructs the initial IVMε state from a database D in
O(|D| 32) time, as shown in Proposition 8. Materializing the query result ensures constant
answer time. The space complexity O(|D|1+min{ε,1−ε}) follows from Proposition 10.

We next analyze the amortized update time complexity. Let Z0 = (ε,N0,P0,V0)
be the initial IVMε state of a database D0 and u0, u1, . . . , un−1 a sequence of arbitrary
single-tuple updates. The application of this update sequence to Z0 yields a sequence
Z0

u0−→ Z1
u1−→ . . .

un−1−→ Zn of IVMε states, where Zi+1 is the result of executing the
procedure OnUpdate(ui,Zi) from Figure 4, for 0 ≤ i < n. Let ci denote the actual
execution cost of OnUpdate(ui,Zi). For some Γ > 0, we can decompose each ci as:

ci = capply
i + cmajor

i + cminor
i + Γ, for 0 ≤ i < n,

where capply
i , cmajor

i , and cminor
i are the actual costs of the subprocedures ApplyUpdate,

MajorRebalancing, and MinorRebalancing, respectively, in OnUpdate. If update ui
causes no major rebalancing, then cmajor

i = 0; similarly, if ui causes no minor rebalancing,
then cminor

i = 0. These actual costs admit the following worst-case upper bounds:

capply
i ≤ γNmax{ε,1−ε}

i (by Proposition 9),

cmajor
i ≤ γN1+min{ε,1−ε}

i (by Proposition 11), and

cminor
i ≤ γN ε+max{ε,1−ε}

i (by Proposition 12),

where γ is a constant derived from their asymptotic bounds, and Ni is the threshold base of
Zi. The actual costs of major and minor rebalancing can be superlinear in the database size.

The crux of this proof is to show that assigning a sublinear amortized cost ĉi to each
update ui accumulates enough budget to pay for such expensive but less frequent rebalancing
procedures. For any sequence of n updates, our goal is to show that the accumulated
amortized cost is no smaller than the accumulated actual cost:

n−1∑
i=0

ĉi ≥
n−1∑
i=0

ci. (2)

ICDT 2019

4:14 Counting Triangles under Updates in Worst-Case Optimal Time

The amortized cost assigned to an update ui is ĉi = ĉapply
i + ĉmajor

i + ĉminor
i + Γ, where

ĉapply
i = γN

max{ε,1−ε}
i , ĉmajor

i = 4γNmin{ε,1−ε}
i , ĉminor

i = 2γNmax{ε,1−ε}
i , and

Γ and γ are the constants used to upper bound the actual cost of OnUpdate. In contrast to
the actual costs cmajor

i and cminor
i , the amortized costs ĉmajor

i and ĉminor
i are always nonzero.

We prove that such amortized costs satisfy Inequality (2). Since ĉapply
i ≥ capply

i for
0 ≤ i < n, it suffices to show that the following inequalities hold:

(amortizing major rebalancing)
n−1∑
i=0

ĉmajor
i ≥

n−1∑
i=0

cmajor
i and (3)

(amortizing minor rebalancing)
n−1∑
i=0

ĉminor
i ≥

n−1∑
i=0

cminor
i . (4)

We prove Inequalities (3) and (4) by induction on the length n of the update sequence.

Major rebalancing.
Base case: We show that Inequality (3) holds for n = 1. The preprocessing stage sets
N0 = 2 · |D0|+ 1. If the initial database D0 is empty, then N0 = 1 and u0 triggers major
rebalancing (and no minor rebalancing). The amortized cost ĉmajor

0 = 4γNmin{ε,1−ε}
0 = 4γ

suffices to cover the actual cost cmajor
0 ≤ γN

1+min{ε,1−ε}
0 = γ. If the initial database is

nonempty, u0 cannot trigger major rebalancing (i.e., violate the size invariant) because⌊ 1
4N0

⌋
=
⌊ 1

2 |D0|
⌋
≤ |D0| − 1 (lower threshold) and |D0|+ 1 < N0 = 2 · |D0|+ 1 (upper

threshold); then, ĉmajor
0 ≥ cmajor

0 = 0. Thus, Inequality (3) holds for n = 1.
Inductive step: Assumed that Inequality (3) holds for all update sequences of length up
to n− 1, we show it holds for update sequences of length n. If update un−1 causes no
major rebalancing, then ĉmajor

n−1 = 4γNmin{ε,1−ε}
n−1 ≥ 0 and cmajor

n−1 = 0, thus Inequality (3)
holds for n. Otherwise, if applying un−1 violates the size invariant, the database size
|Dn| is either

⌊ 1
4Nn−1

⌋
− 1 or Nn−1. Let Zj be the state created after the previous

major rebalancing or, if there is no such step, the initial state. For the former (j > 0),
the major rebalancing step ensures |Dj | = 1

2Nj after doubling and |Dj | = 1
2Nj −

1
2

or |Dj | = 1
2Nj − 1 after halving the threshold base Nj ; for the latter (j = 0), the

preprocessing stage ensures |Dj | = 1
2Nj −

1
2 . The threshold base Nj changes only with

major rebalancing, thus Nj = Nj+1 = . . . = Nn−1. The number of updates needed to
change the database size from |Dj | to |Dn| (i.e., between two major rebalancing) is at
least 1

4Nn−1 since min{ 1
2Nj − 1− (

⌊ 1
4Nn−1

⌋
− 1), Nn−1 − 1

2Nj} ≥
1
4Nn−1. Then,

n−1∑
i=0

ĉmajor
i ≥

j−1∑
i=0

cmajor
i +

n−1∑
i=j

ĉmajor
i (by induction hypothesis)

=
j−1∑
i=0

cmajor
i +

n−1∑
i=j

4γNmin{ε,1−ε}
n−1 (Nj = . . . = Nn−1)

≥
j−1∑
i=0

cmajor
i + 1

4Nn−1 4γNmin{ε,1−ε}
n−1 (at least 1

4Nn−1 updates)

=
j−1∑
i=0

cmajor
i + γN

1+min{ε,1−ε}
n−1

≥
j−1∑
i=0

cmajor
i + cmajor

n−1 =
n−1∑
i=0

cmajor
i (cmajor

j = . . . = cmajor
n−2 = 0).

Thus, Inequality (3) holds for update sequences of length n.

A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:15

Minor rebalancing. When the degree of a value in a partition changes such that the heavy
or light part condition no longer holds, minor rebalancing moves the affected tuples between
the heavy and light parts of the partition. To prove Inequality (4), we decompose the cost of
minor rebalancing per relation and data value of its partitioning variable.

cminor
i =

∑
a∈Dom(A)

cR,ai +
∑

b∈Dom(B)

cS,bi +
∑

c∈Dom(C)

cT,ci and

ĉminor
i =

∑
a∈Dom(A)

ĉR,ai +
∑

b∈Dom(B)

ĉS,bi +
∑

c∈Dom(C)

ĉT,ci

We write cR,ai and ĉR,ai to denote the actual and respectively amortized costs of minor
rebalancing caused by update ui, for relation R and an A-value a. If update ui is of the form
δR = {(α, β) 7→ m} and causes minor rebalancing, then cR,αi = cminor

i ; otherwise, cR,αi = 0.
If update ui is of the form δR = {(α, β) 7→ m}, then ĉR,αi = ĉminor

i regardless of whether ui
causes minor rebalancing or not; otherwise, ĉR,αi = 0. The actual costs cS,bi and cT,ci and the
amortized costs ĉS,bi and ĉT,ci are defined similarly.

We prove that for the partition of R and any α ∈ Dom(A) the following inequality holds:

n−1∑
i=0

ĉR,αi ≥
n−1∑
i=0

cR,αi . (5)

Due to the symmetry of the triangle query, Inequality (4) follows directly from Inequality (5).
We prove Inequality (5) for an arbitrary α ∈ Dom(A) by induction on the length n of the

update sequence.
Base case: We show that Inequality (5) holds for n = 1. Assume that update u0 is of
the form δR = {(α, β) 7→ m}; otherwise, ĉR,α0 = cR,α0 = 0, and Inequality (5) follows
trivially for n = 1. If the initial database is empty, u0 triggers major rebalancing but
no minor rebalancing, thus ĉR,α0 = 2γNmax{ε,1−ε}

0 ≥ cR,α0 = 0. If the initial database is
nonempty, each relation is partitioned using the threshold N ε

0 . For update u0 to trigger
minor rebalancing, the degree of the A-value α in Rh or Rl has to either decrease from
dN ε

0e to
⌈ 1

2N
ε
0
⌉
− 1 (heavy to light) or increase from dN ε

0e − 1 to
⌈ 3

2N
ε
0
⌉
(light to heavy).

The former happens only if dN ε
0e = 1 and update u0 removes the last tuple with the

A-value α from Rh, thus no minor rebalancing is needed; the latter cannot happen since
update u0 can increase |σA=αRl| to at most dN ε

0e, and dN ε
0e <

⌈ 3
2N

ε
0
⌉
. In any case,

ĉR,α0 ≥ cR,α0 , which implies that Inequality (5) holds for n = 1.
Inductive step: Assumed that Inequality (5) holds for all update sequences of length up
to n− 1, we show it holds for update sequences of length n. Consider that update un−1
is of the form δR = {(α, β) 7→ m} and causes minor rebalancing; otherwise, ĉR,αn−1 ≥ 0 and
cR,αn−1 = 0, and Inequality (5) follows trivially for n. Let Zj be the state created after the
previous major rebalancing or, if there is no such step, the initial state. The threshold
changes only with major rebalancing, thus Nj = Nj+1 = . . . = Nn−1. Depending on
whether there exist minor rebalancing steps since state Zj , we distinguish two cases:
Case 1: There is no minor rebalancing caused by an update of the form δR = {(α, β′) 7→

m′} since state Zj ; thus, cR,αj = . . . = cR,αn−2 = 0. From state Zj to state Zn, the
number of tuples with the A-value α either decreases from at least

⌈
N ε
j

⌉
to
⌈ 1

2N
ε
n−1
⌉
−1

(heavy to light) or increases from at most
⌈
N ε
j

⌉
− 1 to

⌈ 3
2N

ε
n−1
⌉
(light to heavy). For

this change to happen, the number of updates needs to be greater than 1
2N

ε
n−1 since

Nj = Nn−1 and min{
⌈
N ε
j

⌉
− (
⌈ 1

2N
ε
n−1
⌉
− 1),

⌈ 3
2N

ε
n−1
⌉
− (
⌈
N ε
j

⌉
− 1)} > 1

2N
ε
n−1. Then,

ICDT 2019

4:16 Counting Triangles under Updates in Worst-Case Optimal Time

n−1∑
i=0

ĉR,αi ≥
j−1∑
i=0

cR,αi +
n−1∑
i=j

ĉR,αi (by induction hypothesis)

=
j−1∑
i=0

cR,αi +
n−1∑
i=j

2γNmax{ε,1−ε}
n−1 (Nj = . . . = Nn−1)

>

j−1∑
i=0

cR,αi + 1
2N

ε
n−12γNmax{ε,1−ε}

n−1 (more than 1
2N

ε
n−1 updates)

≥
j−1∑
i=0

cR,αi + cR,αn−1 =
n−1∑
i=0

cR,αi (cR,αj = . . . = cR,αn−2 = 0).

Case 2: There is at least one minor rebalancing step caused by an update of the form
δR = {(α, β′) 7→ m′} since state Zj . Let Z` denote the state created after the
previous minor rebalancing caused by an update of this form; thus, cR,α` = . . . =
cR,αn−2 = 0. The minor rebalancing steps creating Z` and Zn move tuples with the
A-value α between Rh and Rl in opposite directions. From state Z` to state Zn,
the number of such tuples either decreases from

⌈ 3
2N

ε
l

⌉
to
⌈ 1

2N
ε
n−1
⌉
− 1 (heavy to

light) or increases from
⌈ 1

2N
ε
l

⌉
− 1 to

⌈ 3
2N

ε
n−1
⌉
(light to heavy). For this change to

happen, the number of updates needs to be greater than N ε
n−1 since Nl = Nn−1 and

min{
⌈ 3

2N
ε
l

⌉
− (
⌈ 1

2N
ε
n−1
⌉
− 1),

⌈ 3
2N

ε
n−1
⌉
− (
⌈ 1

2N
ε
l

⌉
− 1)} > N ε

n−1. Then,
n−1∑
i=0

ĉR,αi ≥
`−1∑
i=0

cR,αi +
n−1∑
i=`

ĉR,αi (by induction hypothesis)

=
`−1∑
i=0

cR,αi +
n−1∑
i=`

2γNmax{ε,1−ε}
n−1 (Nj = . . . = Nn−1)

>

`−1∑
i=0

cR,αi +N ε
n−12γNmax{ε,1−ε}

n−1 (more than N ε
n−1 updates)

>

`−1∑
i=0

cR,αi + cR,αn−1 =
n−1∑
i=0

cR,αi (cR,α` = . . . = cR,αn−2 = 0).

Cases 1 and 2 imply that Inequality (5) holds for update sequences of length n.

This shows that Inequality (2) holds when the amortized cost of OnUpdate(ui,Zi) is

ĉi = γN
max{ε,1−ε}
i + 4γNmin{ε,1−ε}

i + 2γNmax{ε,1−ε}
i + Γ, for 0 ≤ i < n,

where Γ and γ are constants. The amortized cost ĉmajor
i of major rebalancing is 4γNmin{ε,1−ε}

i ,
and the amortized cost ĉminor

i of minor rebalancing is 2γNmax{ε,1−ε}
i . From the size invariant⌊ 1

4Ni
⌋
≤ |Di| < Ni follows that |Di| < Ni < 4(|Di| + 1) for 0 ≤ i < n, where |Di| is the

database size before update ui. This implies that for any database D, the amortized major re-
balancing time is O(|D|min{ε,1−ε}), the amortized minor rebalancing time is O(|D|max{ε,1−ε}),
and the overall amortized update time of IVMε is O(|D|max{ε,1−ε}). J

Given ε ∈ [0, 1], IVMε maintains the triangle count query in O(|D|max{ε,1−ε}) amortized
update time while using O(|D|1+min{ε,1−ε}) space. It thus defines a tradeoff between time
and space parameterized by ε, as shown in Figure 1. IVMε achieves the optimal amortized
update time O(|D| 12) at ε = 1

2 , for which the space is O(|D| 32).

A. Kara, H.Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang 4:17

5 Conclusion and Future Work

This paper introduces IVMε, an incremental maintenance approach to counting triangles
under updates that exhibits a space-time tradeoff such that the space-time product is
quadratic in the size of the database. IVMε can trade space for update time. The amortized
update time can be as low as the square root of the database size, which is worst-case
optimal conditioned on the Online Matrix-Vector Multiplication (OMv) conjecture. The
space requirements of IVMε can be improved to linear while keeping the amortized update
time optimal by using a refined partitioning that takes into account the degrees of data
values for both variables (instead of one variable only) in each relation [13]. IVMε captures
classical and factorized IVM as special cases with suboptimal, linear update time [13].

There are worst-case optimal algorithms for join queries in the static setting [17]. In
contrast, IVMε is worst-case optimal for the count aggregate over the triangle join query in the
dynamic setting. The latter setting poses challenges beyond the former. First, the optimality
argument for static join algorithms follows from their runtime being linear(ithmic) in their
output size; this argument does not apply to our triangle count query, since its output is a
scalar and hence of constant size. Second, optimality in the dynamic setting requires a more
fine-grained argument that exploits the skew in the data for different evaluation strategies,
view materialization, and delta computation; in contrast, there are static worst-case optimal
join algorithms that do not need to exploit skew, materialize views, nor delta computation.

This paper opens up a line of work on dynamic worst-case optimal query evaluation algo-
rithms. The goal is a complete characterization of the complexity of incremental maintenance
for arbitrary functional aggregate queries over various rings [1]. Different rings can be used
as the domain of tuple multiplicities (or payloads). We used here the ring (Z,+, ·, 0, 1) of
integers to support counting. The relational data ring supports payloads with listing and
factorized representations of relations, and the degree-m matrix ring supports payloads with
gradients used for learning linear regression models [19].

Towards the aforementioned goal, we would first like to find a syntactical characterization
of all queries that admit incremental maintenance in (amortized) sublinear time. Using known
(first-order, fully recursive, or factorized) incremental maintenance techniques, cyclic and even
acyclic joins require at least linear update time. Our intuition is that this characterization
is given by a notion of diameter of the query hypergraph. This class strictly contains the
q-hierarchical queries, which admit constant-time updates [4].

Minor variants of IVMε can be used to maintain the counting versions of any query built
using three relations, the 4-path query, and the Loomis-Whitney queries in worst-case optimal
time [13]. The same conditional lower bound on the update time shown for the triangle
count applies for most of the mentioned queries, too. This leads to the striking realization
that, while in the static setting the counting versions of the cyclic query computing triangles
and the acyclic query computing paths of length 3 have different complexities, O(|D| 32) and
O(|D|), and pose distinct computational challenges, they share the same complexity and
can use a very similar approach in the dynamic setting. A further IVMε variant allows the
constant-delay enumeration of all triangles after each update, while preserving the same
optimal amortized update time as for counting triangles [13]. These variants exploit the
fact that our amortization technique is agnostic to the query to maintain and the update
mechanism. It relies on two prerequisites. First, rebalancing is performed by moving tuples
between relation parts. Second, the number of moved tuples per rebalancing is asymptotically
no more than the number of updates performed since the previous rebalancing.

ICDT 2019

4:18 Counting Triangles under Updates in Worst-Case Optimal Time

References
1 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: Questions Asked Frequently. In

PODS, pages 13–28, 2016.
2 N. Alon, R. Yuster, and U. Zwick. Finding and Counting Given Length Cycles. Algorithmica,

17(3):209–223, 1997.
3 Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in Streaming Algorithms, with an

Application to Counting Triangles in Graphs. In SODA, pages 623–632, 2002.
4 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive Queries

Under Updates. In PODS, pages 303–318, 2017.
5 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs Under Updates

and in the Presence of Integrity Constraints. In ICDT, pages 8:1–8:19, 2018.
6 Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and

Christian Sohler. Counting Triangles in Data Streams. In PODS, pages 253–262, 2006.
7 Rada Chirkova and Jun Yang. Materialized Views. Found. & Trends DB, 4(4):295–405, 2012.
8 Graham Cormode and Hossein Jowhari. A Second Look at Counting Triangles in Graph

Streams (Corrected). Theor. Comput. Sci., 683:22–30, 2017.
9 Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately Counting Triangles in

Sublinear Time. In FOCS, pages 614–633, 2015.
10 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.

Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector
Multiplication Conjecture. In STOC, pages 21–30, 2015.

11 Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The Dynamic Yannakakis Algo-
rithm: Compact and Efficient Query Processing Under Updates. In SIGMOD, pages 1259–1274,
2017.

12 Hossein Jowhari and Mohammad Ghodsi. New Streaming Algorithms for Counting Triangles
in Graphs. In COCOON, pages 710–716, 2005.

13 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting Triangles
under Updates in Worst-Case Optimal Time. CoRR, abs/1804.02780, 2018. arXiv:1804.02780.

14 Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel Lupei,
and Amir Shaikhha. DBToaster: Higher-Order Delta Processing for Dynamic, Frequently
Fresh Views. VLDB J., 23(2):253–278, 2014.

15 Paraschos Koutris, Semih Salihoglu, and Dan Suciu. Algorithmic Aspects of Parallel Data
Processing. Found. & Trends DB, 8(4):239–370, 2018.

16 Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better Algorithms for Counting
Triangles in Data Streams. In PODS, pages 401–411, 2016.

17 Hung Q. Ngo. Worst-Case Optimal Join Algorithms: Techniques, Results, and Open Problems.
In PODS, pages 111–124, 2018.

18 Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew Strikes Back: New Developments in the
Theory of Join Algorithms. SIGMOD Record, 42(4):5–16, 2013.

19 Milos Nikolic and Dan Olteanu. Incremental View Maintenance with Triple Lock Factorization
Benefits. In SIGMOD, pages 365–380, 2018.

20 Thomas Schwentick and Thomas Zeume. Dynamic Complexity: Recent Updates. SIGLOG
News, 3(2):30–52, 2016.

21 Virginia Vassilevska Williams. On Some Fine-Grained Questions in Algorithms and Complexity.
In ICM, volume 3, pages 3431–3472, 2018.

22 Thomas Zeume. The Dynamic Descriptive Complexity of k-Clique. Inf. Comput., 256:9–22,
2017.

http://arxiv.org/abs/1804.02780

A Formal Framework for Complex Event
Processing
Alejandro Grez
Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile
ajgrez@uc.cl

Cristian Riveros
Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile
cristian.riveros@uc.cl

Martín Ugarte
Millennium Institute for Foundational Research on Data, Santiago, Chile
martin@martinugarte.com

Abstract
Complex Event Processing (CEP) has emerged as the unifying field for technologies that require
processing and correlating distributed data sources in real-time. CEP finds applications in diverse
domains, which has resulted in a large number of proposals for expressing and processing complex
events. However, existing CEP languages lack from a clear semantics, making them hard to
understand and generalize. Moreover, there are no general techniques for evaluating CEP query
languages with clear performance guarantees.

In this paper we embark on the task of giving a rigorous and efficient framework to CEP. We
propose a formal language for specifying complex events, called CEL, that contains the main features
used in the literature and has a denotational and compositional semantics. We also formalize the
so-called selection strategies, which had only been presented as by-design extensions to existing
frameworks. With a well-defined semantics at hand, we discuss how to efficiently process complex
events by evaluating CEL formulas with unary filters. We start by studying the syntactical properties
of CEL and propose rewriting optimization techniques for simplifying the evaluation of formulas.
Then, we introduce a formal computational model for CEP, called complex event automata (CEA),
and study how to compile CEL formulas with unary filters into CEA. Furthermore, we provide
efficient algorithms for evaluating CEA over event streams using constant time per event followed
by constant-delay enumeration of the results. Finally, we gather the main results of this work to
present an efficient and declarative framework for CEP.

2012 ACM Subject Classification Information systems → Data streams; Theory of computation →
Data structures and algorithms for data management; Theory of computation → Database query
languages (principles); Theory of computation → Automata extensions

Keywords and phrases Complex event processing, streaming evaluation, constant delay enumeration

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.5

Acknowledgements Cristian and Alejandro have been funded by FONDECYT grant 11150653, and
together with Martín they were partially supported by the Millennium Institute for Foundational
Research on Data (IMFD). M. Ugarte also acknowledges support from the Brussels Captial Region –
Innoviris (project SPICES). We also thank the anonymous referees for their helpful comments.

1 Introduction

Complex Event Processing (CEP) has emerged as the unifying field of technologies for
detecting situations of interest under high-throughput data streams. In scenarios like Network
Intrusion Detection [39], Industrial Control Systems [29] or Real-Time Analytics [42], CEP

© Alejandro Grez, Cristian Riveros, and Martín Ugarte;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ajgrez@uc.cl
mailto:cristian.riveros@uc.cl
mailto:martin@martinugarte.com
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 A Formal Framework for Complex Event Processing

systems aim to efficiently process arriving data, giving timely insights for implementing
reactive responses to complex events. Prominent examples of CEP systems from academia
and industry include SASE [49], EsperTech [1], Cayuga [26], TESLA/T-Rex [22, 23], among
others (see [24] for a survey). The main focus of these systems has been in practical issues
like scalability, fault tolerance, and distribution, with the objective of making CEP systems
applicable to real-life scenarios. Other design decisions, like query languages, are generally
adapted to match computational models that can efficiently process data (see for example
[50]). This has produced new data management and optimization techniques, generating
promising results in the area [49, 1].

Unfortunately, as has been claimed several times [27, 51, 22, 11] CEP query languages
lack a simple and denotational semantics, which makes them difficult to understand, extend
or generalize. Their semantics are generally defined either by examples [36, 4, 21], or
by intermediate computational models [49, 44, 40]. Although there are frameworks that
introduce formal semantics (e.g. [26, 15, 7, 22, 8]), they do not meet the expectations to pave
the foundations of CEP languages. For instance, some of them have unintuitive behavior
(e.g. sequencing is non-associative), or are severely restricted (e.g. nesting operators is
not supported). One symptom of this problem is that iteration, which is fundamental in
CEP, has not yet been defined successfully as a compositional operator. Since iteration is
difficult to define and evaluate, it is usually restricted by not allowing nesting or reuse of
variables [49, 26]. As a result of these problems, CEP languages are generally cumbersome.

The lack of simple denotational semantics makes query languages also difficult to evaluate.
A common factor in CEP systems is to find sophisticated heuristics [50, 22] that cannot be
replicated in other frameworks. Further, optimization techniques are usually proposed at
the architecture level [37, 26, 40], which does not allow for a unifying optimization theory.
Many CEP frameworks use automata-based models [26, 15, 7] for query evaluation, but these
models are usually complicated [40, 44], informally defined [26] or non-standard [22, 5]. In
practice this implies that, although finite state automata is a recurring approach in CEP,
there is no general evaluation strategy with clear performance guarantees.

Given this scenario, the goal of this paper is to give solid foundations to CEP systems
in terms of query language and query evaluation. Towards these goals, we first provide
a formal language that allows for expressing the most common features of CEP systems,
namely sequencing, filtering, disjunction, and iteration. We introduce complex event logic
(CEL), a logic with well-defined compositional and denotational semantics. We also formalize
the so-called selection strategies, an important notion of CEP that is usually discussed
directly [50, 26] or indirectly [15] in the literature but has not been formalized at the
language level.

We then focus on the evaluation of CEL. We propose a formal evaluation framework
that considers three building blocks: (1) syntactic techniques for rewriting CEL queries, (2)
a well-defined intermediate evaluation model, and (3) efficient translations and algorithms
to evaluate this model. Regarding the rewriting techniques, we introduce the notions of
well-formed and safe formulas in CEL, and show that these restrictions are relevant for query
evaluation. Further, we give a general result on rewriting CEL formulas into the so-called
LP-normal form, a normal form for dealing with unary filters. For the intermediate evaluation
model, we introduce a formal computational model for the regular fragment of CEL, called
complex event automata (CEA). We show that this model is closed under I/O-determinization
and provide translations for CEL formulas with unary filters into CEA. More important, we
show an efficient algorithm for evaluating CEA with clear performance guarantees: constant
time per tuple followed by constant-delay enumeration of the output. Finally, we bring
together our results to present a formal framework for evaluating CEL.

A. Grez, C. Riveros, and M. Ugarte 5:3

Related work. Active Database Management Systems (ADSMS) and Data Stream Manage-
ment Systems (DSMS) process data streams, and thus they are usually associated with CEP
systems. Both technologies aim to execute relational queries over dynamic data [19, 2, 9]. In
contrast, CEP systems see data streams as a sequence of events where the arrival order is
the guide for finding patterns inside streams (see [24] for a comparison between ADSMS,
DSMS, and CEP). Therefore, DSMS query languages (e.g. CQL [10]) are incomparable with
our framework since they do not focus on CEP operators like sequencing and iteration.

Query languages for CEP are usually divided into three approaches [24, 11]: logic-based,
tree-based and automata-based models. Logic-based models have their roots in temporal
logic or event calculus, and usually have a formal, declarative semantics [8, 12, 20] (see [13]
for a survey). However, this approach does not include iteration as an operator or it does not
model the output explicitly. Furthermore, their evaluation techniques rely on logic inference
mechanisms which are radically different from our approach. Tree-based models [38, 35, 1]
have also been used for CEP but their language semantics is usually non-declarative and
their evaluation techniques are based on cost-models, similar to relational database systems.

Automata-based models are close to what we propose in this paper. Previous proposals
(e.g. SASE[5], NextCEP[44], DistCED[40]) do not rely in a denotational semantics; their
output is defined by intermediate automata models. This implies that either iteration cannot
be nested [5] or its semantics is confusing [44]. Other proposals (e.g. CEDR[15], TESLA[22],
PBCED[7]) are defined with a formal semantics but they do not include iteration. An
exception is Cayuga[25], but its language does not allow reusing variables and sequencing is
non-associative, which results in an unintuitive semantics. Our framework is comparable to
these systems, but provides a well-defined language that is compositional, allowing arbitrary
nesting of operators. Moreover, we present the first evaluation of CEP queries that guarantees
constant time per event and constant-delay enumeration of the output.

Finally, there has been some research in theoretical aspects of CEP, e.g. in axiomatization
of temporal models [48], privacy [32], and load shedding [31]. This literature does not study
the semantics and evaluation of CEP and, therefore, is orthogonal to our work.

Organization. We give an intuitive introduction to CEP and our framework in Section 2.
In Section 3 and 4 we formally present our logic and selection strategies. The syntactic
structure of the logic is studied in Section 5. The computational model and compilation of
formulas are studied in Section 6. In Section 7 we develop efficient evaluation techniques and
in Section 8 we present a framework summarizing our results. Future work is discussed in
Section 9. Due to space limitations all proofs are deferred to the journal version.

2 Events in action

We start by presenting the main features and challenges of CEP. The examples used in this
section will also serve throughout the paper as running examples.

In a CEP setting, events arrive in a streaming fashion to a system that must detect certain
patterns [24]. For the purpose of illustration assume there is a stream produced by wireless
sensors positioned in a farm, whose main objective is to detect fires. As a first scenario,
assume that there are three sensors, and each of them can measure both temperature (in
Celsius degrees) and relative humidity (as the percentage of vapor in the air). Each sensor is
assigned an id in {0, 1, 2}. The events produced by the sensors consist of the id of the sensor
and a measurement of temperature or humidity. In favor of brevity, we write T (id, tmp) for

ICDT 2019

5:4 A Formal Framework for Complex Event Processing

type H T H H T T T H H . . .
id 2 0 0 1 1 0 1 1 0 . . .

value 25 45 20 25 40 42 25 70 18
index 0 1 2 3 4 5 6 7 8 . . .

Figure 1 A stream S of events measuring temperature and humidity. “value” contains degrees
and humidity for T - and H- events, respectively.

an event reporting temperature tmp from sensor with id id, and similarly H(id, hum) for
events reporting humidity. Figure 1 depicts such a stream: each column is an event and the
value row is the temperature or humidity if the event is of type T or H, respectively.

The patterns to be detected are generally specified by domain experts. For the sake of
illustration, assume that the position of sensor 0 is particularly prone to fires, and it has been
detected that a temperature measurement above 40 degrees Celsius followed by a humidity
measurement of less than 25% represents a fire with high probability. Let us intuitively
explain how we can express this as a pattern (also called a formula) in our framework:

ϕ1 = (T AS x ; H AS y) FILTER (x.tmp > 40 ∧ y.hum <= 25 ∧ x.id = 0 ∧ y.id = 0)

This formula is asking for two events, one of type temperature (T) and one of type humidity
(H). The events of type temperature and humidity are given names x and y, respectively, and
the two events are filtered to select only those pairs (x, y) representing a high temperature
followed by a low humidity measured by sensor 0.

What should the evaluation of ϕ1 over the stream in Figure 1 return? A first important
remark is that event streams are noisy, and one does not expect the events matching a
formula to be contiguous in the stream. Then, a CEP engine needs to be able to dismiss
irrelevant events. The semantics of the sequencing operator (;) will thus allow for arbitrary
events to occur in between the events of interest. A second remark is that in CEP the set of
events matching a pattern, called a complex event, is particularly relevant to the end user.
Every time that a formula matches a portion of the stream, the final user should retrieve the
events that compose that portion of the stream. This means that the evaluation of a formula
over a stream should output a set of complex events. In our framework, each complex event
will be the set of indexes (stream positions) of the events that witness the matching of a
formula. Specifically, let S[i] be the event at position i of the stream S. What we expect for
the output of formula ϕ1 consists of sets {i, j} such that S[i] is of type T , S[j] is of type H,
i < j, and they satisfy the conditions expressed after the FILTER. By inspecting Figure 1,
we can see that the pairs satisfying these conditions are {1,2}, {1,8}, and {5,8}.

Formula ϕ1 illustrates the two most elemental features of CEP, namely sequencing and
filtering [24, 9, 50, 2, 17]. But although it detects a set of possible fires, it restricts the
order in which the two events occur: the temperature must be measured before the humidity.
Naturally, this could prevent the detection of a fire in which the humidity was measured
first. This motivates the introduction of disjunction, another common feature in CEP
engines [24, 9]. To illustrate, we extend ϕ1 by allowing events to appear in arbitrary order.

ϕ2 = [(T AS x ; H AS y) OR (H AS y ; T AS x)] FILTER

(x.tmp > 40 ∧ y.hum <= 25 ∧ x.id = 0 ∧ y.id = 0)

The OR operator allows for any of the two patterns to be matched. The result evaluation ϕ2
over S (Figure 1) is the same as the evaluation of ϕ1 plus the complex event {2,5}.

A. Grez, C. Riveros, and M. Ugarte 5:5

The previous formulas show how CEP systems raise alerts when a certain complex event
occurs. However, from a wider scope the objective of CEP is to retrieve information of interest
from streams. For example, assume that we want to see how does temperature change in the
location of sensor 1 when there is an increase of humidity. A problem here is that we do not
know a priori the amount of temperature measurements; we need to capture an unbounded
amount of events. The iteration operator + (a.k.a. Kleene closure) [24, 9, 30] is introduced
in most CEP frameworks for solving this problem. This operator introduces many difficulties
in the semantics of CEP languages. For example, since events are not required to occur
contiguously, the nesting of + is particularly tricky and most frameworks simply disallow
this (see [49, 10, 26]). Coming back to our example, the formula for measuring temperatures
whenever an increase of humidity is detected by sensor 1 is:

ϕ3 = [H AS x ; (T AS y FILTER y.id = 1)+ ; H AS z]
FILTER (x.hum < 30 ∧ z.hum > 60 ∧ x.id = 1 ∧ z.id = 1)

Intuitively, variables x and z witness the increase of humidity from less than 30% to more
than 60%, and y captures temperature measures between x and z. Note that the filter for y
is included inside the + operator. Some frameworks allow to declare variables inside a + and
filter them outside that operator (e.g. [49]). Although it is possible to define the semantics
for that syntax, this form of filtering makes the definition of nesting + difficult. Another
semantic subtlety of the + operator is the association of y to an event. Given that we want
to match the event (T AS y FILTER y.id = 1) an unbounded number of times: how should
the events associated to y occur in the complex events generated as output? Associating
different events to the same variable during evaluation has proven to make the semantics of
CEP languages hard to extend. In Section 3, we introduce a semantics that allows nesting +
and associate variables (inside + operators) to different events across repetitions.

Let us now explain the evaluation of ϕ3 over S (Figure 1). The only two humidity events
satisfying the top-most filter are S[3] and S[7], and the events in between that satisfy the
inner filter are S[4] and S[6]. As expected, {3, 4, 6, 7} is part of the output. However, there
are other complex events in the output. Since, as discussed, there might be irrelevant events
between relevant ones, the semantics of + must allow for skipping arbitrary events. This
implies that the complex events {3,6,7} and {3,4,7} are also part of the output.

The previous discussion raises an interesting question: are users interested in all complex
events? Are some complex events more informative than others? Coming back to the output
of ϕ3 ({3, 6, 7}, {3, 4, 7} and {3, 4, 6, 7}), one can easily argue that the largest complex event
is more informative since all events are contained in it. The complex events output by ϕ1
deserve a more thorough analysis. In this scenario, the pairs that have the same second
component (e.g., {1,8} and {5,8}) represent a fire occurring at the same place and time, so
one could argue that only one of the two is necessary. For cases like above, it is common
to find CEP systems that restrict the output by using so-called selection strategies (see for
example [49, 50, 22]). Selection strategies are a fundamental feature of CEP. Unfortunately,
they have only been presented as heuristics applied to particular computational models, and
thus their semantics are given by algorithms and are hard to generalize. A special mention
deserves the next selection strategy (called skip-till-next-match in [49, 50]) which models
the idea of outputting only those complex events that can be generated without skipping
relevant events. Although the semantics of next has been mentioned in previous papers (e.g
[15]), it is usually underspecified [49, 50] or complicates the semantics of other operators [26].
In Section 4, we formally define a set of selection strategies including next.

ICDT 2019

5:6 A Formal Framework for Complex Event Processing

Before formally presenting our framework, we illustrate one more common feature of CEP,
namely correlation. Correlation is introduced by filtering events with predicates that involve
more than one event. For example, consider that we want to see how does temperature
change at some location whenever there is an increase of humidity, like in ϕ3. What we need
is a pattern where all the events are produced by the same sensor, but that sensor is not
necessarily sensor 1. This is achieved by the following pattern:

ϕ4 = [H AS x; (T AS y FILTER y.id = x.id)+;H AS z]
FILTER (x.hum < 30 ∧ z.hum > 60 ∧ x.id = z.id)

Notice that here the filters contain the predicates x.id = y.id and x.id = z.id that force all
events to have the same id. Although this might seem simple, the evaluation of formulas that
correlate events introduces new challenges. Intuitively, ϕ4 is more complex because the id of
x must be remembered in order to compare it with future incoming events. This behavior
is clearly not “regular” and it will not be captured by a finite state model [33, 43]. In this
paper, we study and characterize the regular core of CEP-systems. In sections 6 and 8 we
focus on formulas without correlation. As we will see, the formal analysis of this fragment
already presents non-trivial challenges, which is why we defer the analysis of formulas like
ϕ4 for future work. It is important to mention that the semantics of our language (including
selection strategies) is general and includes more involved filters like correlation.

3 A query language for CEP

Having discussed the common operators and features of CEP, we proceed to formally introduce
CEL (Complex Event Logic), our pattern language for capturing complex events.

Schemas, Tuples and Streams. Let A be a set of attribute names and D a set of values. A
database schema R is a finite set of relation names, where each R ∈R is associated to a tuple
of attributes in A denoted by att(R). If R is a relation name, then an R-tuple is a function
t ∶ att(R)→D. The type of an R-tuple t is R, and denote this by type(t) = R. For any relation
name R, tuples(R) denotes the set of all possible R-tuples, i.e., tuples(R) = {t ∶ att(R)→D}.
Similarly, for any database schema R, tuples(R) = ⋃R∈R tuples(R).

Given a schema R, an R-stream S is an infinite sequence S = t0t1 . . . where ti ∈ tuples(R).
When R is clear from the context, we refer to S simply as a stream. Given a stream
S = t0t1 . . . and a position i ∈ N, the i-th element of S is denoted by S[i] = ti, and the
sub-stream titi+1 . . . of S is denoted by Si. Note that we consider that the time of each event
is given by its index, and defer a more elaborated model (like [48]) for future work.

Let X be a set of variables. Given a schema R, a predicate of arity n is an n-ary relation
P over tuples(R), i.e. P ⊆ tuples(R)n. An atom is an expression P (x̄) where P is an n-ary
predicate and x̄ ∈ Xn. As usual, we express predicates as formulas over attributes, and use x.a
to reffer to the attribute a of the tuple represented by x. For example, P (x) ∶= x.hum < 30
is an atom and P is the predicate of all tuples that have a humidity attribute of less than
30. We consider that checking if a tuple t is in a predicate P takes time O(∣t∣), and that
every atom P (x̄) has constant size (and thus the size of a formula is independent of the
type of predicates). We assume a fixed set of predicates P (i.e. defined by the CEP system).
Moreover, we assume that P is closed under intersection, union, and complement, and
P contains the predicate PR(x) ∶= type(x) = R for checking if a tuple is an R-tuple for
every R ∈R.

A. Grez, C. Riveros, and M. Ugarte 5:7

CEL syntax. Now we proceed to give the syntax of what we call the core of CEL (core-CEL
for short), a logic inspired by the operations described in the previous section. This language
contains the most essential CEP features. The set of formulas in core-CEL, or core formulas
for short, is given by the following grammar:

ϕ ∶= R AS x ∣ ϕ FILTER P (x̄) ∣ ϕ OR ϕ ∣ ϕ ; ϕ ∣ ϕ+

where R is a relation name, x is a variable in X and P (x̄) is an atom in P. For example, all
formulas in Section 2 are CEL formulas. Throughout the paper we use ϕ FILTER (P (x̄) ∧
Q(ȳ)) or ϕ FILTER (P (x̄) ∨Q(ȳ)) as syntactic sugar for (ϕ FILTER P (x̄)) FILTER Q(ȳ) or
(ϕ FILTER P (x̄)) OR (ϕ FILTER Q(ȳ)), respectively. Unlike existing frameworks, we do not
restrict the syntax, allowing for arbitrary nesting (in particular of +).

CEL semantics. We proceed to define the semantics of core formulas, for which we need to
introduce some further notation. A complex event C is defined as a non-empty and finite
set of indices. As mentioned in Section 2, a complex event contains the positions of the
events that witness the matching of a formula over a stream, and moreover, they are the
final output of evaluating a formula over a stream. We denote by ∣C ∣ the size of C and by
min(C) and max(C) the minimum and maximum element of C, respectively. Given two
complex events C1 and C2, C1 ⋅C2 denotes the concatenation of two complex events, that is,
C1 ⋅C2 ∶= C1 ∪C2 whenever max(C1) < min(C2) and is undefined otherwise.

In core-CEL formulas, variables are only used to filter and select particular events, i.e.
they are not retrieved as part of the output. As examples in Section 2 suggest, we are only
concerned with finding the events that compose the complex events, and not which position
corresponds to which variable. The reason behind this is that the operator + allows for
repetitions, and therefore variables under (possibly nested) + operators would have a special
meaning, particularly for filtering. This discussion motivates the following definitions. Given
a formula ϕ we denote by var(ϕ) the set of all variables mentioned in ϕ (including filters),
and by vdef(ϕ) all variables defined in ϕ by a clause of the form R AS x. Furthermore,
vdef+(ϕ) denotes all variables in vdef(ϕ) that are defined outside the scope of all + operators.
For example, for ϕ = (T AS x ; (H AS y)+) FILTER z.id = 1 we have that var(ϕ) = {x, y, z},
vdef(ϕ) = {x, y}, and vdef+(ϕ) = {x}. Finally, a valuation is a function ν ∶ X→ N. Given a
finite set of variables U ⊆ X and two valuations ν1 and ν2, the valuation ν1[ν2/U] is defined
by ν1[ν2/U](x) = ν2(x) if x ∈ U and by ν1[ν2/U](x) = ν1(x) otherwise.

We are ready to define the semantics of a core-CEL formula ϕ. Given a complex event
C and a stream S, we say that C is in the evaluation of ϕ over S under valuation ν

(C ∈ ⟦ϕ⟧(S, ν)) if one of the following conditions holds:
ϕ = R AS x, C = {ν(x)}, and type(S[ν(x)]) = R.
ϕ = ψ FILTER P (x1, . . . , xn), C ∈ ⟦ψ⟧(S, ν) and (S[ν(x1)], . . . , S[ν(xn)]) ∈ P .
ϕ = ψ1 OR ψ2 and C ∈ ⟦ψ1⟧(S, ν) or C ∈ ⟦ψ2⟧(S, ν).
ϕ = ψ1 ; ψ2 and there are C1 ∈ ⟦ψ1⟧(S, ν) and C2 ∈ ⟦ψ2⟧(S, ν) such that C = C1 ⋅C2.
ϕ = ψ+ and there exists ν′ such that C ∈ ⟦ψ⟧(S, ν[ν′/U]) or C ∈ ⟦ψ ; ψ+⟧(S, ν[ν′/U]),
where U = vdef+(ψ).

There are a couple of important remarks here. First, the valuation ν can be defined over
a superset of the variables mentioned in the formula. This is important for sequencing (;)
because we require the complex events from both sides to be produced with the same valuation.
Second, when we evaluate a subformula of the form ψ+, we carry the value of variables
defined outside the subformula. For example, the subformula (T AS y FILTER y.id = x.id)+
of ϕ4 does not define the variable x. However, from the definition of the semantics we see

ICDT 2019

5:8 A Formal Framework for Complex Event Processing

that x will be already assigned (because R AS x occurs outside the subformula). This is
precisely where other frameworks fail to formalize iteration, as without this construct it is
not easy to correlate the variables inside + with the ones outside, as we illustrate with ϕ4.

As previously discussed, in core-CEL variables are just used for comparing attributes
with FILTER, but are not relevant for the final output. In consequence, we say that C
belongs to the evaluation of ϕ over S (denoted C ∈ ⟦ϕ⟧(S)) if there is a valuation ν such
that C ∈ ⟦ϕ⟧(S, ν). As an example, the complex events presented in Section 2 are indeed the
outputs of ϕ1 to ϕ3 over the stream in Figure 1.

4 Selection strategies

Matching complex events is a computationally intensive task. As the examples in Section 2
suggest, the main reason behind this is that the amount of complex events can grow
exponentially in the size of the stream, forcing systems to process large numbers of candidate
outputs. In order to speed up the matching processes, it is common to restrict the set
of results [18, 49, 50]. Unfortunately, most proposals in the literature restrict outputs
by introducing heuristics to particular computational models without describing how the
semantics are affected. For a more general approach, we introduce selection strategies (or
selectors) as unary operators over core-CEL formulas. Formally, we define four selection
strategies called strict (STRICT), next (NXT), last (LAST) and max (MAX). STRICT and NXT
are motivated by previously introduced operators [49] under the name of strict-contiguity
and skip-till-next-match, respectively. LAST and MAX are useful selection strategies from a
semantic point of view. We define each selection strategy below, giving the motivation and
formal semantics.

STRICT. As the name suggest, STRICT or strict-contiguity keeps only the complex events
that are contiguous in the stream. To motivate this, recall that formula ϕ1 in Section 2
detects complex events composed by a temperature above 40 degrees followed by a humidity
of less than 25%. As already argued, in general one could expect other events between x
and y. However, it could be the case that this pattern is of interest only if the events occur
contiguously in the stream, or perhaps the stream has been preprocessed by other means and
irrelevant events have been thrown out already. For this purpose, STRICT reduces the set of
outputs selecting only strictly consecutive complex events. Formally, for any CEL formula ϕ
we have that C ∈ ⟦STRICT(ϕ)⟧(S, ν) holds if C ∈ ⟦ϕ⟧(S, ν) and for every i, j ∈ C, if i < k < j
then k ∈ C (i.e., C is an interval). In our running example, STRICT(ϕ1) would only produce
{1,2}, although {1,8} and {5,8} are also outputs for ϕ1 over S.

NEXT. The second selector, NXT, is similar to the previously proposed operator skip-till-
next-match [49]. The motivation behind this operator comes from a heuristic that consumes
a stream skipping those events that cannot participate in the output, but matching patterns
in a greedy manner that selects only the first event satisfying the next element of the query.
In [49] the authors gave the definition of this strategy just as

“a further relaxation is to remove the contiguity requirements: all irrelevant events
will be skipped until the next relevant event is read” (*).

In practice, skip-till-next-match is defined by an evaluation algorithm that greedily adds
an event to the output whenever a sequential operator is used, or adds as many events as
possible whenever an iteration operator is used. The fact that the semantics is only defined

A. Grez, C. Riveros, and M. Ugarte 5:9

by an algorithm requires a user to understand the algorithm to write meaningful queries. In
other words, this operator speeds up the evaluation by sacrificing the clarity of the semantics.

To overcome the above problem, we formalize the intuition behind (*) based on a special
order over complex events. As we will see later, this allows to speed up the evaluation
process as much as skip-till-next-match while providing clear and intuitive semantics. Let
C1 and C2 be complex events. The symmetric difference between C1 and C2 (C1 △C2) is
the set of all elements either in C1 or C2 but not in both. We say that C1 ≤next C2 if either
C1 = C2 or min(C1 △C2) ∈ C2. For example, {5,8} ≤next {1,8} since the minimum element
in {5,8}△ {1,8} = {1,5} is 1, which is in {1,8}. Note that this is intuitively similar to
skip-till-next-match, as we are selecting the first relevant event. An important property is
that the ≤next-relation forms a total order among complex events, implying the existence of
a minimum and a maximum over any finite set of complex events.

I Lemma 1. ≤next is a total order between complex events.

We can define now the semantics of NXT: for a CEL formula ϕ we have C ∈ ⟦NXT(ϕ)⟧(S, ν)
if C ∈ ⟦ϕ⟧(S, ν) and for every complex event C ′ ∈ ⟦ϕ⟧(S, ν), if max(C) = max(C ′) then
C ′ ≤next C. In other words, C must be the ≤next-maximum match among all matches that
end in max(C). In our running example, we have that {1,8} matches NXT(ϕ1) but {5,8}
does not. Furthermore, {3, 4, 6, 7} matches NXT(ϕ4) while {3, 4, 7} and {3, 6, 7} do not. Note
that we compare outputs that have the same final position. This way, complex events are
discarded only when there is a preferred complex event triggered by the same last event.

LAST. The NXT selector is motivated by the computational benefit of skipping irrelevant
events in a greedy fashion. However, from a semantic point of view it might not be what a
user wants. For example, if we consider again ϕ1 and stream S (Section 2), we know that
every complex event in NXT(ϕ1) will have event 1. In this sense, the NXT strategy selects the
oldest complex event for the formula. We argue here that a user might actually prefer the
opposite, i.e. the most recent explanation for the matching of a formula. This is the idea
captured by LAST. Formally, the LAST selector is defined exactly as NXT, but changing the
order ≤next by ≤last: if C1 and C2 are two complex events, then C1 ≤last C2 if either C1 = C2
or max(C1 △C2) ∈ C2. For example, {1,8} ≤last {5,8}. In our running example, LAST(ϕ1)
would select the most recent temperature and humidity that explain the matching of ϕ1 (i.e.
{5,8}), which might be a better explanation for a possible fire. Surprisingly, we show in
Section 7 that LAST enjoys the same good computational properties as NXT, even though it
does not come from a greedy heuristic like NXT does.

MAX. A more ambitious selection strategy is to keep the maximal complex events in terms
of set inclusion, which could be naturally more useful because these complex events are the
most informative. Formally, given a CEL formula ϕ we say that C ∈ ⟦MAX(ϕ)⟧(S, ν) holds iff
C ∈ ⟦ϕ⟧(S, ν) and for all C ′ ∈ ⟦ϕ⟧(S, ν), if max(C) = max(C ′) then C ⊆ C ′. Coming back to
ϕ1, the MAX selector will output both {1,8} and {5,8}, given that both complex events are
maximal in terms of set inclusion. On the contrary, formula ϕ3 produced {3,6,7}, {3,4,7},
and {3, 4, 6, 7}. Then, MAX(ϕ3) will only produce {3, 4, 6, 7} as output, which is the maximal
complex event. It is interesting to note that if we evaluate both NXT(ϕ3) and LAST(ϕ3) over
the stream we will also get {3, 4, 6, 7} as the only output, illustrating that NXT and LAST also
yield complex events with maximal information.

We have formally presented the foundations of a language for recognizing complex events,
and how to restrict the outputs of this language in meaningful manners. Next we study
practical aspects of the CEL syntax that impact how efficiently can formulas be evaluated.

ICDT 2019

5:10 A Formal Framework for Complex Event Processing

5 Syntactic analysis of CEL

We now study the syntactic form of CEL formulas. We define well-formed and safe formulas,
which are syntactic restrictions that characterize semantic properties of interest. Then, we
define a convenient normal form and show that any formula can be rewritten in this form.

Syntactic restrictions of formulas. Although CEL has well-defined semantics, there are
some formulas whose semantics can be unintuitive. Consider for example the formula
ϕ5 = (H AS x) FILTER (y.tmp ≤ 30). Here, x will be naturally bound to the only element in
a complex event, but y will not add a new position to the output. By the semantics of CEL,
a valuation ν for ϕ5 must assign a position for y that satisfies the filter, but such position is
not restricted to occur in the complex event. Moreover, y is not necessarily bound to any of
the events seen up to the last element, and thus a complex event could depend on future
events. For example, if we evaluate ϕ5 over our running example S (Figure 1), we have that
{2} ∈ ⟦ϕ5⟧(S), but this depends on the event at position 6. This means that to evaluate
this formula we potentially need to inspect events that occur after all events composing the
output complex event have been seen, an arguably undesired situation.

To avoid this problem, we introduce the notion of well-formed formulas. As the previous
example illustrates, this requires defining where variables are bound by a subformula of the
form R AS x. The set of bound variables of a formula ϕ is denoted by bound(ϕ) and is
recursively defined as follows:

bound(R AS x) = {x} bound(ψ FILTER P (x̄)) = bound(ψ)
bound(ψ1 OR ψ2) = bound(ψ1) ∩ bound(ψ2) bound(ψ+) = ∅

bound(ψ1 ; ψ2) = bound(ψ1) ∪ bound(ψ2) bound(SEL(ψ)) = bound(ψ)

where SEL is any selection strategy. We say that a CEL formula ϕ is well-formed if for every
subformula of the form ψ FILTER P (x̄) and every x ∈ x̄, there is another subformula ψx such
that x ∈ bound(ψx) and ψ is a subformula of ψx. This definition allows for including filters
with variables defined in a wider scope. For example, formula ϕ4 in Section 2 is well-formed
although it has the not-well-formed formula (T AS y FILTER y.id = x.id)+ as a subformula.

One can argue that it would be desirable to restrict the users to only write well-formed
formulas. Indeed, the well-formed property can be checked efficiently by a syntactic parser
and users should understand that all variables in a formula must be correctly defined. Given
that well-formed formulas have a well-defined variable structure, in the future we restrict our
analysis to well-formed formulas.

Another issue for CEL is that the reuse of variables can easily produce unsatisfiable
formulas. For example, the formula ψ = T AS x ; T AS x is not satisfiable (i.e. ⟦ψ⟧(S) = ∅
for every S) because variable x cannot be assigned to two different positions in the stream.
However, we do not want to be too conservative and disallow the reuse of variables in
the whole formula (otherwise formulas like ϕ2 in Section 2 would not be permitted). This
motivates the notion of safe CEL formulas. We say that a CEL formula is safe if for every
subformula of the form ϕ1 ; ϕ2 it holds that vdef+(ϕ1) ∩ vdef+(ϕ2) = ∅. For example, all
CEL formulas in this paper are safe except for the formula ψ above.

The safe notion is a mild restriction to help evaluating CEL, and can be easily checked
during parsing time. However, safe formulas are a subclass of CEL and it could be the case
that they do not capture the full language. We show that this is not the case. Formally, we
say that two CEL formulas ϕ and ψ are equivalent, denoted by ϕ ≡ ψ, if ⟦ϕ⟧(S) = ⟦ψ⟧(S)
for every stream S.

A. Grez, C. Riveros, and M. Ugarte 5:11

I Theorem 2. Given a core-CEL formula ϕ, there is a safe formula ϕ′ such that ϕ ≡ ϕ′ and
∣ϕ′∣ is at most exponential in ∣ϕ∣.

By this result, we can restrict our analysis to safe formulas without loss of generality.
Unfortunately, we do not know if the exponential size of ϕ′ is unavoidable. We conjecture
that this is the case, but we do not know yet the corresponding lower bound.

LP-normal form. Now we study how to rewrite CEL formulas to simplify the evaluation of
unary filters. Intuitively, filter operators in a CEL formula can become difficult to handle for
a query engine. To illustrate this, consider again formula ϕ1 in Section 2. Syntactically, this
formula states “find an event x followed by an event y, and then check that they satisfy the
filter conditions”. However, we would like an execution engine to only consider those events
x with id = 0 that represent temperature above 40 degrees. Only afterwards the possible
matching events y should be considered. In other words, formula ϕ1 can be restated as:

ϕ′1 = [(T AS x) FILTER (x.tmp > 40 ∧ x.id = 0)];
[(H AS y) FILTER (y.hum <= 25 ∧ y.id = 0)]

This example motivates defining the locally parametrized normal form (LP normal form).
Let U be the set of all predicates P ∈ P of arity 1 (i.e. P ⊆ tuples(R)). We say that a formula
ϕ is in LP-normal form if, for every subformula ϕ′ FILTER P (x̄) of ϕ with P ∈ U, it holds
that x̄ = {x} and ϕ′ = R AS x for some R and x. In other words, all filters containing unary
predicates are applied directly to the definitions of their variables. For instance, formula ϕ′1
is in LP-normal form while formulas ϕ1 and ϕ2 are not. Note that non-unary predicates are
not restricted, and they can be used anywhere in the formula.

One can easily see that having formulas in LP-normal form would be an advantage for
an evaluation engine, because it can filter out some events as soon as they arrive. However,
formulas that are not in LP-normal form can still be very useful for declaring patterns. To
illustrate this, consider the formula:

ϕ6 = (T AS x); ((T AS y FILTER x.temp ≥ 40) OR (H AS y FILTER x.temp < 40))

Here, the FILTER operator works like a conditional statement: if the x-temperature is greater
than 40, then the following event should be a temperature, and a humidity event otherwise.
This type of conditional statements can be very useful, but also hard to evaluate. Fortunately,
the next result shows that one can always rewrite a formula into LP-normal form, incurring
in the worst case in an exponential blow-up in the size of the formula.

I Theorem 3. Let ϕ be a CEL formula. Then, there is a CEL formula ψ in LP-normal
form such that ϕ ≡ ψ, and ∣ψ∣ is at most exponential in ∣ϕ∣.

The importance of this result and Theorem 2 will become clear in the next sections,
where we show that safe formulas in LP-normal form have good properties for evaluation.
Similar to Theorem 2, we do not know if the exponential blow-up is unavoidable and leave
this for future work.

6 A computational model for CEL

In this section, we introduce a formal computational model for evaluating CEL formulas
called complex event automata (CEA for short). Similar to classical database management
systems (DBMS), it is useful to have a formal model that stands between the query language

ICDT 2019

5:12 A Formal Framework for Complex Event Processing

and the evaluation algorithms, in order to simplify the analysis and optimization of the whole
evaluation process. There are several examples of DBMS that are based on this approach like
regular expressions and finite state automata [33, 6], and SQL and relational algebra [3, 41].
Here, we propose CEA as the intermediate evaluation model for CEL and show later how to
compile any (unary) CEL formula into a CEA.

As its name suggests, complex event automata (CEA) are an extension of Finite State
Automata (FSA). The first difference from FSA comes from handling streams instead of words.
A CEA is said to run over a stream of tuples, unlike FSA which run over words of a certain
alphabet. The second difference arises directly from the first one by the need of processing
tuples, which can have infinitely many different values, in contrast to the finite input alphabet
of FSA. To handle this, our model is extended the same way as a Symbolic Finite Automata
(SFA) [47]. SFAs are finite state automata in which the alphabet is described implicitly by a
boolean algebra over the symbols. This allows automata to work with a possibly infinite
alphabet and, at the same time, use finite state memory for processing the input. CEA are
extended analogously, which is reflected in transitions labeled by unary predicates over tuples.
The last difference addresses the need to generate complex events instead of boolean answers.
A well known extension for FSA are Finite State Transducers [16], which are capable of
producing an output whenever an input element is read. Our computational model follows
the same approach: CEA are allowed to generate and output complex events when reading a
stream.

Recall from Section 5 that U is the subset of unary predicates of P. Let ●, ○ be two
symbols. A complex event automaton (CEA) is a tuple A = (Q,∆, I, F) where Q is a finite
set of states, ∆ ⊆ Q × (U × {●, ○}) ×Q is the transition relation, and I,F ⊆ Q are the set
of initial and final states, respectively. Given a stream S = t0t1 . . ., a run ρ of A over S is
a sequence of transitions: ρ ∶ q0

P0/m0ÐÐ→ q1
P1/m1ÐÐ→ ⋯ Pn/mnÐÐ→ qn+1 such that q0 ∈ I, ti ∈ Pi and

(qi, Pi,mi, qi+1) ∈ ∆ for every i ≤ n. We say that ρ is accepting if qn+1 ∈ F and mn = ●. We
denote by Runn(A, S) the set of accepting runs of A over S of length n. Further, events(ρ)
is the set of positions where the run marks S, namely events(ρ) = {i ∈ [0, n] ∣ mi = ●}.
Intuitively this means that when a transition is taken, if the transition has the ● symbol then
the current position of the stream is included in the output (similar to the execution of a
transducer). Note that we require the last position of an accepting run to be marking, as
otherwise an output could depend on future events (see the discussion about well-formed
formulas in Section 5). Given a stream S and n ∈ N, we define the set of complex events of
A over S at position n as ⟦A⟧n(S) = {events(ρ) ∣ ρ ∈ Runn(A, S)} and the set of all complex
events as ⟦A⟧(S) = ⋃n ⟦A⟧n(S). Note that ⟦A⟧(S) can be infinite, but ⟦A⟧n(S) is finite.

Consider as an example the CEA A depicted in Figure 2. In this CEA, each transition
P (x)∣● marks one H-tuple and each transition P ′(x)∣● marks a T -tuple with temperature
bigger than 40. Note also that the transitions labelled by TRUE ∣○ allow A to arbitrarily skip
tuples of the stream. Then, for every stream S, ⟦A⟧(S) represents the set of all complex
events that begin and end with an H-tuple and also contain some of the T -tuples with
temperature higher than 40.

It is important to stress that CEA are designed to be an evaluation model for the
unary fragment of CEL (a formal definition is presented in the next paragraph). Several
computational models have been proposed for complex event processing [26, 40, 49, 44], but
most of them are informal and non-standard extensions of finite state automata. In our
framework, we want to take a step back compared to previous proposals and define a simple
but powerful model that captures the regular core of CEL. Intuitively, formulas like ϕ1, ϕ2
and ϕ3 in Section 2 can be evaluated using a bounded amount of memory. In contrast,

A. Grez, C. Riveros, and M. Ugarte 5:13

q1 q2 q3
P (x) ∣ ●

TRUE ∣ ○ P ′(x) ∣ ● TRUE ∣ ○

P (x) ∣ ●

Figure 2 A CEA that can generate an unbounded amount of complex events. Here P (x) ∶=

type(x) = H and P ′(x) ∶= type(x) = T ∧ x.temp > 40.

formula ϕ4 needs unbounded memory to store candidate events seen in the past, and thus,
it calls for a more sophisticated model (e.g. data automata [45]). Of course one would like
to have a full-fledged model for CEL, but to this end we must first understand the regular
fragment. A computational model for the whole CEP logic is left as future work.

Compiling unary CEL into CEA. We now show how to compile a well-formed and unary
CEL formula ϕ into a CEA Aϕ. Formally, we say a CEL formula ϕ is equivalent to a CEA A
if ⟦ϕ⟧(S) = ⟦A⟧(S) for every stream S. A CEL formula ϕ is unary if for every subformula of
ϕ of the form ϕ′ FILTER P (x̄), it holds that P (x̄) is a unary predicate (i.e. P (x̄) ∈ U). For
example, formulas ϕ1, ϕ2, and ϕ3 in Section 2 are unary, but formula ϕ4 is not (the predicate
y.id = x.id is binary). As motivated in Section 2 and 5, despite their apparent simplicity
unary formulas already present non-trivial computational challenges (see Section 7).

I Theorem 4. For every well-formed formula ϕ in unary core-CEL, there is a CEA Aϕ

equivalent to ϕ. Furthermore, Aϕ is of size at most linear in ∣ϕ∣ if ϕ is safe and in LP-normal
form, and at most double exponential in ∣ϕ∣ otherwise.

The proof of Theorem 4 is closely related with the safeness condition and the LP-normal form
presented in Section 5. The construction first converts ϕ into an equivalent CEL formula ϕ′
in LP-normal form (Theorem 3) and then builds an equivalent CEA from ϕ′. Unfortunately,
there is an exponential blow-up for converting ϕ into LP-normal form. However, we show
that the output is of linear size if ϕ′ is safe, and of exponential size otherwise, suggesting
that restricting the language to safe formulas allows for more efficient evaluation.

We have described the compilation process without considering selection strategies. To
include them, we extend our notation and allow selection strategies to be applied over CEA.
Given a CEA A, a selection strategy SEL ∈ {STRICT,NXT,LAST,MAX} and stream S, the set of
outputs ⟦SEL(A)⟧(S) is defined analogously to ⟦SEL(ϕ)⟧(S) for a formula ϕ. Then, we say
that a CEA A1 is equivalent to SEL(A2) if ⟦A1⟧(S) = ⟦SEL(A2)⟧(S) for every stream S.

I Theorem 5. Let SEL be a selection strategy. For any CEA A, there is a CEA ASEL

equivalent to SEL(A). Furthermore, the size of ASEL is, with respect to the size of A, at most
linear if SEL = STRICT, and at most exponential otherwise.

At first this result might seem unintuitive, specially in the case of NXT, LAST and MAX. It
is not immediate (and rather involved) to show that there exists a CEA for these strategies
because they need to track an unbounded number of complex events using finite memory.
Still, this can be done with an exponential blow-up in the number of states.

Theorem 5 concludes our study of the compilation of unary CEL into CEA. We have
shown that not only is CEA able to evaluate CEL formulas, but it can also be exploited
to evaluate selections strategies. We conclude this section by introducing the notion of
I/O-determinism that will be crucial for our evaluation algorithms in the next section.

ICDT 2019

5:14 A Formal Framework for Complex Event Processing

I/O-deterministic CEA. To evaluate CEA in practice we will focus on the class of the
so-called I/O-deterministic CEA (for Input/Output deterministic). A CEA A = (Q,∆, I, F)
is I/O-deterministic if ∣I ∣ = 1 and for any two transitions (p,P1,m1, q1) and (p,P2,m2, q2),
either P1 and P2 are mutually exclusive (i.e. P1 ∩ P2 = ∅), or m1 ≠ m2. Intuitively, this
notion imposes that given a stream S and a complex event C, there is at most one run over
S that generates C (thus the name referencing the input and the output). In contrast, the
classic notion of determinism would allow for at most one run over the entire stream.

I/O-deterministic CEA are important because they allow for a simple and efficient
evaluation algorithm (discussed in Section 7). But for this algorithm to be useful, we need
to make sure that every CEA can be I/O determinized. Formally, we say that two CEA A1
and A2 are equivalent (denoted A1 ≡ A2) if for every stream S we have ⟦A1⟧(S) = ⟦A2⟧(S).

I Proposition 6. For every CEA A there is an I/O-deterministic CEA A′ such that A ≡
A′, and A′ is of size at most exponential over ∣A∣. That is, CEA are closed under I/O-
determinization.

This result and the compilation process allow us to evaluate any CEL formula by means
of I/O-deterministic CEA without loss of generality.

7 Algorithms for evaluating CEA

In this section we show how to efficiently evaluate CEA. We start by formalizing the notion
of efficient evaluation in CEP, which has not been formalized before in the CEP literature.

Efficiency in CEP. Defining a notion of efficiency for CEP is challenging since we would like
to compute complex events in one pass and using a restricted amount of resources. Streaming
algorithms [34, 28] are a natural starting point as they usually restrict the time allowed
to process each tuple and the space needed to process the first n items of a stream (e.g.,
constant or logarithmic in n). However, an important difference is that in CEP the arrival
of a single event might generate an exponential number of complex events as output. To
overcome this problem, we propose to divide the evaluation in two parts: (1) consuming new
events and updating the internal memory of the system and (2) generating complex events
from the internal memory of the system. We require both parts to be as efficient as possible.
First, (1) should process each event in a time that does not depend on the number of events
seen in the past. Second, (2) should not spend any time processing and instead it should be
completely devoted to generating the output. To formalize this notion, we assume that there
is a special instruction yieldS that returns the next element of a stream S. Then, given a
function f ∶ N → N, a CEP evaluation algorithm with f -update time is an algorithm that
evaluates a CEA A over a stream S such that:
1. between any two calls to yieldS , the time spent is bounded by O(f(∣A∣) ⋅ ∣t∣), where t is

the tuple returned by the first of such calls, and
2. maintains a data structure D in memory, such that after calling yieldS n times, the set

⟦A⟧n(S) can be enumerated from D with constant delay.
The notion of constant-delay enumeration was defined in the database community [46, 14]
precisely for defining efficiency whenever generating the output might use considerable time.
Formally, it requires the existence of a routine Enumerate that receives D as input and
outputs all complex events in ⟦A⟧n(S) without repetitions, while spending a constant amount
of time before and after each output. Naturally, the time to generate a complex event C
must be linear in ∣C ∣. We remark that 1. is a natural restriction imposed in the streaming
literature [34], while 2. is the minimum requirement if an arbitrarily large set of arbitrarily
large outputs must be produced [46].

A. Grez, C. Riveros, and M. Ugarte 5:15

Parser
(Th. 2)

Query
Rewrite
(Th. 3)

Compilation
(Th. 4, 5)

Evaluation
(Th. 6, 7)

Complex
EventsCEL

Stream

WF and safe LP-normal form CE automaton

Figure 3 Evaluation framework for CEL.

Note that the update time O(f(∣A∣) ⋅ ∣t∣) is linear in ∣t∣ if we consider that A is fixed.
Since this is the case in practice (i.e. the automaton is generally small with respect to the
stream, and does not change during evaluation), this amounts to constant update time when
measured under data complexity (tuples can also be considered of constant size).

Efficient evaluation of CEA. Having a good notion of efficiency, we proceed to show how
to evaluate CEA efficiently. As it was previously discussed in Section 6, I/O deterministic
CEA are specially designed for having CEP evaluation algorithms with linear update time.
Furthermore, given that any CEA can be I/O-determinized (Proposition 6), this implies a
CEP evaluation algorithm to evaluate any CEA. Unfortunately, the determinization procedure
has an exponential blow-up in the size of the automaton, increasing the update time when
the automaton is not I/O deterministic.

I Theorem 7. For every I/O-deterministic CEA A, there is a CEP evaluation algorithm
with ∣A∣-update time. Furthermore, if A is any CEA, there is a CEP evaluation algorithm
with 2∣A∣-update time.

We can further extend the CEP evaluation algorithm for I/O-deterministic CEA to any
selection strategies by using the results of Theorem 5. However, by naively applying Theorem 5
and then I/O-determinizing the resulting automaton, we will have a double exponential
blow-up. By doing the compilation of the selection strategies and the I/O-determinization
together, we can lower the update time. Moreover, and rather surprisingly, we can evaluate
NXT and LAST without determinizing the automaton, and therefore with linear update time.

I Theorem 8. Let SEL be a selection strategy. For any CEA A, there is a CEP evaluation
algorithm for SEL(A). Furthermore, the update time is ∣A∣ if SEL ∈ {NXT,LAST}, 2∣A∣ if
SEL = STRICT and 4∣A∣ if SEL = MAX.

8 An evaluation framework for CEL

Having all the building blocks, we put all the results in perspectives and show how to evaluate
unary CEL formulas. In Figure 3, we show the evaluation cycle of a CEL formula in our
framework and how all the results and theorems fit together. To explain this framework,
consider a unary CEL formula ϕ (possibly with selection strategies). The process starts in the
parser module, where we check if ϕ is well-formed and safe. These conditions are important
to ensure that ϕ is satisfiable and make a correct use of variables. Note that a CEP system
could translate unsafe formulas (Theorem 2), incurring however in an exponential blow-up..

The next module rewrites a well-formed and safe formula ϕ into LP-normal form by using
the rewriting process of Theorem 3. In the worst case this produces an exponentially larger
formula. To avoid this, in many cases one can apply local rewriting rules [3, 41]. For example,
in Section 2 we converted ϕ1 into ϕ′1 by applying a filter push, avoiding the exponential

ICDT 2019

5:16 A Formal Framework for Complex Event Processing

blow-up of Theorem 3. Unfortunately, we cannot apply this over formulas like ϕ6 in Section 5.
Nevertheless, formulas like ϕ6 are rather uncommon in practice and local rewriting rules will
usually produce LP-formulas of polynomial size.

The third module receives a formula in LP-normal form and builds a CEA Aϕ of
polynomial size (Theorem 4 and 5). Then, the last module runs Aϕ over the stream by
using our CEP evaluation procedure for I/O deterministic CEA (Theorem 7). If there is no
selection strategy, Aϕ must be determinized before running the CEP evaluation algorithm.
In the worst case, this determinization is exponential in Aϕ, nevertheless, in practice the
size of Aϕ is rather small. If a selection strategy SEL is used, we can use the algorithms of
Theorem 8 for evaluating SEL(Aϕ), having a similar update time than evaluating Aϕ alone.
It is worth mentioning that evaluating NXT(Aϕ) or LAST(Aϕ) has even better performance
than evaluating Aϕ directly, given that the update time is linear in the size of Aϕ.

9 Future work

This paper settles new foundations for CEP systems, stimulating new research directions. In
particular, a natural next step is to study the evaluation of non-unary CEL formulas. This
requires new insight in rewriting formulas and a more powerful computational model with
CEP evaluation algorithms. Another relevant problem is to understand the expressive power
of different fragments of CEL and the relationship between the different operators. In this
same direction, we envision as future work a generalization of the concept behind selection
strategies, together with a thorough study of their expressive power.

Finally, we have focused on the fundamental features of CEP languages, leaving other
features outside to keep the language and analysis simple. These features include correlation,
time windows, aggregation, consumption policies, among others. We plan to extend CEL
gradually with these features to establish a more complete and formal framework for CEP.

References
1 Esper Enterprise Edition website. Accessed on 2018-01-05. URL: http://www.espertech.com/.
2 D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Hatoun,

A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and S. Zdonik.
Aurora: A Data Stream Management System. In SIGMOD, 2003.

3 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases: the logical level.
Addison-Wesley, 1995.

4 Asaf Adi and Opher Etzion. Amit-the situation manager. VLDB Journal, 2004.
5 Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient pattern

matching over event streams. In SIGMOD, 2008.
6 Alfred V. Aho. Algorithms for Finding Patterns in Strings. In Handbook of Theoretical

Computer Science. Elsevier, 1990.
7 Mert Akdere, Uǧur Çetintemel, and Nesime Tatbul. Plan-based complex event detection

across distributed sources. VLDB, 2008.
8 Darko Anicic, Paul Fodor, Sebastian Rudolph, Roland Stühmer, Nenad Stojanovic, and Rudi

Studer. A rule-based language for complex event processing and reasoning. In RR, 2010.
9 Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa,

Justin Rosenstein, and Jennifer Widom. STREAM: The Stanford Stream Data Manager
(Demonstration Description). In SIGMOD, 2003.

10 Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous Query Language:
Semantic Foundations and Query Execution. The VLDB Journal, 2006.

http://www.espertech.com/

A. Grez, C. Riveros, and M. Ugarte 5:17

11 Alexander Artikis, Alessandro Margara, Martin Ugarte, Stijn Vansummeren, and Matthias
Weidlich. Complex Event Recognition Languages: Tutorial. In DEBS, pages 7–10. ACM, 2017.

12 Alexander Artikis, Marek Sergot, and Georgios Paliouras. An event calculus for event
recognition. IEEE Transactions on Knowledge and Data Engineering, 27(4):895–908, 2015.

13 Alexander Artikis, Anastasios Skarlatidis, François Portet, and Georgios Paliouras. Logic-based
event recognition. The Knowledge Engineering Review, 27(4):469–506, 2012.

14 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive Queries
and Constant Delay Enumeration. In CSL, 2007.

15 Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and Mingsheng Hong. Consistent
Streaming Through Time: A Vision for Event Stream Processing. In CIDR, 2007.

16 Jean Berstel. Transductions and context-free languages. Springer-Verlag, 2013.
17 Alejandro Buchmann and Boris Koldehofe. Complex event processing. IT-Information

Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik,
2009.

18 Jan Carlson and Björn Lisper. A resource-efficient event algebra. Science of Computer
Programming, 2010.

19 Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A Scalable
Continuous Query System for Internet Databases. In SIGMOD, 2000.

20 Federico Chesani, Paola Mello, Marco Montali, and Paolo Torroni. A logic-based, reactive
calculus of events. Fundamenta Informaticae, 105(1-2):135–161, 2010.

21 Gianpaolo Cugola and Alessandro Margara. Raced: an adaptive middleware for complex event
detection. In Middleware, 2009.

22 Gianpaolo Cugola and Alessandro Margara. TESLA: a formally defined event specification
language. In DEBS, 2010.

23 Gianpaolo Cugola and Alessandro Margara. Complex Event Processing with T-REX. The
Journal of Systems and Software, 2012.

24 Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream
to complex event processing. ACM Computing Surveys (CSUR), 2012.

25 Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White. A
general algebra and implementation for monitoring event streams. Technical report, Cornell
University, 2005.

26 Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker White.
Towards expressive publish/subscribe systems. In EDBT, 2006.

27 Antony Galton and Juan Carlos Augusto. Two approaches to event definition. In DEXA,
2002.

28 Lukasz Golab and M Tamer Özsu. Issues in data stream management. Sigmod Record, 2003.
29 Mikell P Groover. Automation, production systems, and computer-integrated manufacturing.

Prentice Hall, 2007.
30 Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman. On supporting kleene

closure over event streams. In ICDE 2008, pages 1391–1393. IEEE, 2008.
31 Yeye He, Siddharth Barman, and Jeffrey F. Naughton. On Load Shedding in Complex Event

Processing. In ICDT, pages 213–224, 2014.
32 Yeye He, Siddharth Barman, Di Wang, and Jeffrey F Naughton. On the complexity of

privacy-preserving complex event processing. In PODS, pages 165–174, 2011.
33 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.
34 Elena Ikonomovska and Mariano Zelke. Algorithmic Techniques for Processing Data Streams.

Dagstuhl Follow-Ups, 2013.
35 Mo Liu, Elke Rundensteiner, Kara Greenfield, Chetan Gupta, Song Wang, Ismail Ari, and

Abhay Mehta. E-cube: multi-dimensional event sequence analysis using hierarchical pattern
query sharing. In SIGMOD, pages 889–900, 2011.

ICDT 2019

5:18 A Formal Framework for Complex Event Processing

36 D Luckham. Rapide: A language and toolset for simulation of distributed systems by partial
orderings of events, 1996.

37 Masoud Mansouri-Samani and Morris Sloman. GEM: A generalized event monitoring language
for distributed systems. Distributed Systems Engineering, 1997.

38 Yuan Mei and Samuel Madden. Zstream: a cost-based query processor for adaptively detecting
composite events. In SIGMOD, pages 193–206. ACM, 2009.

39 Biswanath Mukherjee, L Todd Heberlein, and Karl N Levitt. Network intrusion detection.
IEEE network, 1994.

40 Peter Pietzuch, Brian Shand, and Jean Bacon. A framework for event composition in distributed
systems. In Middleware, 2003.

41 Raghu Ramakrishnan and Johannes Gehrke. Database management systems (3 ed.). McGraw-
Hill, 2003.

42 BS Sahay and Jayanthi Ranjan. Real time business intelligence in supply chain analytics.
Information Management & Computer Security, 2008.

43 Jacques Sakarovitch. Elements of automata theory. Cambridge University Press, 2009.
44 Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. Distributed complex

event processing with query rewriting. In DEBS, 2009.
45 Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL,

2006.
46 Luc Segoufin. Enumerating with constant delay the answers to a query. In ICDT 2013, pages

10–20, 2013.
47 Margus Veanes. Applications of symbolic finite automata. In CIAA, 2013.
48 Walker White, Mirek Riedewald, Johannes Gehrke, and Alan Demers. What is next in event

processing? In PODS, pages 263–272, 2007.
49 Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing over

streams. In SIGMOD, 2006.
50 Haopeng Zhang, Yanlei Diao, and Neil Immerman. On complexity and optimization of

expensive queries in complex event processing. In SIGMOD, 2014.
51 Detlef Zimmer and Rainer Unland. On the semantics of complex events in active database

management systems. In ICDE, 1999.

A Formal Framework for Probabilistic Unclean
Databases
Christopher De Sa
Cornell University, Ithacan, NY, USA
cdesa@cs.cornell.edu

Ihab F. Ilyas
University of Waterloo, Waterloo, ON, Canada
ilyas@uwaterloo.ca

Benny Kimelfeld
Technion - Israel Institute of Technology, Haifa, Israel
bennyk@cs.technion.ac.il

Christopher Ré
Stanford University, Stanford, CA, USA
chrismre@cs.stanford.edu

Theodoros Rekatsinas
University of Wisconsin - Madison, Madison, WI, USA
thodrek@cs.wisc.edu

Abstract
Most theoretical frameworks that focus on data errors and inconsistencies follow logic-based reasoning.
Yet, practical data cleaning tools need to incorporate statistical reasoning to be effective in real-world
data cleaning tasks. Motivated by empirical successes, we propose a formal framework for unclean
databases, where two types of statistical knowledge are incorporated: The first represents a belief of
how intended (clean) data is generated, and the second represents a belief of how noise is introduced
in the actual observed database. To capture this noisy channel model, we introduce the concept
of a Probabilistic Unclean Database (PUD), a triple that consists of a probabilistic database that
we call the intention, a probabilistic data transformator that we call the realization and captures
how noise is introduced, and an observed unclean database that we call the observation. We define
three computational problems in the PUD framework: cleaning (infer the most probable intended
database, given a PUD), probabilistic query answering (compute the probability of an answer tuple
over the unclean observed database), and learning (estimate the most likely intention and realization
models of a PUD, given examples as training data). We illustrate the PUD framework on concrete
representations of the intention and realization, show that they generalize traditional concepts
of repairs such as cardinality and value repairs, draw connections to consistent query answering,
and prove tractability results. We further show that parameters can be learned in some practical
instantiations, and in fact, prove that under certain conditions we can learn a PUD directly from a
single dirty database without any need for clean examples.

2012 ACM Subject Classification Theory of computation→ Data modeling; Theory of computation
→ Incomplete, inconsistent, and uncertain databases

Keywords and phrases Unclean databases, data cleaning, probabilistic databases, noisy channel

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.6

Related Version https://arxiv.org/abs/1801.06750

Funding Ihab F. Ilyas: This work was supported by NSERC under a Discovery Grant.
Benny Kimelfeld: This work was supported by the Israel Science Foundation (ISF) Grant 1295/15.
Theodoros Rekatsinas: This work was supported by the Wisconsin Alumni Association, Amazon
under an ARA Award, and by NSF under grant IIS-1755676.

© Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and Theodoros Rekatsinas;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cdesa@cs.cornell.edu
mailto:ilyas@uwaterloo.ca
mailto:bennyk@cs.technion.ac.il
mailto:chrismre@cs.stanford.edu
mailto:thodrek@cs.wisc.edu
https://doi.org/10.4230/LIPIcs.ICDT.2019.6
https://arxiv.org/abs/1801.06750
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 A Formal Framework for Probabilistic Unclean Databases

1 Introduction

Managing errors and inconsistency in databases is traditionally viewed as a challenge of a
logical nature. It is typical that errors in a database are defined with respect to integrity
constraints that capture normative aspects of downstream applications. The aim of integrity
constraints is to guarantee the consistency of data used by these applications. Typically,
an unclean database is defined as a database J that violates the underlying set of integrity
constraints. In turn, a repair of a database J is a clean database I wherein all integrity
constraints hold, and is obtained from J by a set of operations (e.g., deletions of tuples or
updates of tuple values) that feature some form of non-redundancy [4, 2].

Various computational problems around unclean databases have been investigated in
prior work [4, 28, 32, 29]. Past theoretical research has established fundamental results that
concentrate on tractability boundaries for repair-checking and consistent query answering [2,
15, 26]. In their majority, these works adopt a deterministic interpretation of data repairs
and cast all repairs equally likely. These theoretical developments have inspired practical
tools that aim to automate data cleaning [7, 43, 12, 42, 20]. The majority of proposed
methods assume as input a set of integrity constraints and use those to identify possible
repairs via search-based procedures. To prioritize across possible repairs during search, the
proposed methods rely on the notion of minimality [11, 23, 30]. Informally, minimality states
that given two candidate sets of repairs, the one with fewer changes with respect to the
original database is preferable. The use of minimality as an operational principle to find data
repairs is a practical artifact that is used to limit the search space. These approaches to data
cleaning suffer from two major drawbacks: First, they do not permit concrete statements
about the “likelihood” of possible repairs. Consequently, they categorize query answers to a
limited set of validity labels (e.g., certain, possible, and impossible); these labels might be
unsuitable for downstream applications. Second, combinatorial principles such as minimality,
while desired, do not entail the richness of the arguments and evidences (e.g., statistical
features of data) that are needed to reason about and generate correct repairs.

Effective data cleaning needs to incorporate statistical reasoning. Our recent work on
HoloClean [34] casts data repairing as a statistical learning and inference problem and reasons
about a most probable repair instead of a minimal repair. Our study shows that HoloClean
obtains more accurate data cleaning results than competing minimality-based data cleaning
tools for a diverse array of real-world data cleaning scenarios [34]. HoloClean uses training
data to learn a probabilistic model for how clean data is generated and how data errors are
injected. HoloClean’s model follows the noisy channel model [22], the de-facto probabilistic
framework used in natural language tasks, such as spell checking and speech recognition, to
reason about noisy data. To the best of our knowledge, existing theoretical frameworks for
data cleaning do not capture this type of probabilistic reasoning.

Goals. We aim to establish a formal framework for probabilistic unclean databases (PUD)
that adopts a statistical view of database cleaning. We do so by following the aforementioned
noisy channel paradigm of HoloClean. Within the PUD framework, we formalize fundamental
computational problems: cleaning, query answering, and learning. With that, we aim to draw
connections between theoretical database research and important aspects of practical systems.
In particular, our goal is to open the way for analyses and algorithms with theoretical
guarantees for such systems. We argue that our framework is basic enough to allow for
nontrivial theoretical advances, as illustrated by our preliminary results that (a) draw
connections to traditional deterministic concepts, and (b) devise algorithms for special cases.

C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 6:3

Probabilistic unclean databases. We view an unclean database as if a clean database I
had been “distorted” via a noisy channel into a dirty database J ; we aim to establish a model
of this channel. Given the observed unclean database J , we seek the true database I from
which J is produced. This model adopts Bayesian inference: out of all possible I, we seek the
one for which the probability, given J , is highest. Following Bayes’ rule, our objective is to
find arg maxI Pr(I) · Pr(J |I). This objective decomposes in two parts: (1) the prior model
for a clean database captured by Pr(I), and (2) the channel or error model characterized
by Pr(J |I). To capture that, we define a Probabilistic Unclean Database (PUD) as a triple
(I,R, J?) where: (1) I, referred to as the intention model, is a distribution that produces
intended clean databases; (2) R, referred to as the realization model, is a function that maps
each clean database I to a distribution RI that defines how noise is introduced into I; and
(3) J? is an observed unclean database. The distribution I defines the prior Pr(I) over clean
databases, while the distribution RI defines the aforementioned noisy channel Pr(J |I).

Computational problems. We define and study three computational problems in the PUD
framework: (1) data cleaning, where given a PUD (I,R, J), we seek to compute a database
I that maximizes the probability I(I) ×RI(J); (2) probabilistic query answering, that is,
the problem of evaluating a query Q over a PUD following the traditional possible tuple
semantics [13, 40]; and (3) learning a PUD, where we consider parametric representations IΞ
and RΘ of the intention and realization models, and seek to estimate the parameter vectors
Ξ∗ and Θ∗ that maximize the likelihood of training data.

Preliminary analysis. PUDs allow for different instantiations of the intention and realization
models. To establish preliminary complexity and convergence results, we focus on specific
instantiations of the intention and realization models. We study intention models that can
describe the distribution of tuple values as well as both soft and hard integrity constraints.
We also focus on simple noise models. We study (1) realizations that introduce new tuples,
hence, the clean database is a subset of the observed unclean database, and (2) realizations
that update table cells, hence, the clean database is obtained via value repairs over the
observed unclean database.

We present PUD instantiations for which solving the data cleaning problem has polynomial-
time complexity. For instance, we show that in the presence of only one key constraint,
soft or hard, data cleaning in PUDs can be solved in polynomial time. This result extends
results for deterministic repairs that focus on hard integrity constraints to weak (soft) key
constraints (e.g., two people are unlikely to, but might, have the same first and last name).
Here, the most probable repair under the PUD framework may violate weak key constraints.
We also draw connections between data cleaning in the PUD framework and minimal repairs.
We identify conditions under which data cleaning in the PUD framework is equivalent to
cardinality repairs [32] and optimal V-repairs [23]. For PUD learning, we consider both
supervised and unsupervised learning. In the former case, we are given intension-realization
pairs, and in the former, we are given only realizations (i.e., dirty databases). Our results
discuss convexity and gradient computation for the optimization problem underlying the
learning problem.

Our PUD model can be viewed as a generalization of the approach of Gribkoff et al. [19],
who view the dirty database as a tuple-independent probabilistic database [13], and seek the
most-probable database that satisfies a set of underlying integrity constraints (e.g., functional
dependencies). In contrast, our modeling allows for arbitrary distributions over the intention,
including ones with weak constraints that we discuss later on. Interestingly, our PUD model

ICDT 2019

6:4 A Formal Framework for Probabilistic Unclean Databases

goes in the reverse direction of the operational approach of Calautti et al. [10], who view
the dirty database as a deterministic object and its cleaning (rather than the error) as a
probabilistic process (namely a Markov chain of repairing operations).

Vision. This paper falls within the bigger vision of bridging database theory with learning
theory as outlined in a recent position article [1]. We aim to draw connections between the
rich theory on inconsistency management by the database community, and fundamentals of
statistical learning theory with emphasis on structured prediction [5]. Structured prediction
typically focuses on problems where, given a collection of observations, one seeks to predict
the most likely assignment of values to structured objects. In most practical structured
prediction problems, structure is encoded via logic-based constraints [18] in a way similar to
how consistency is enforced in data cleaning. It is our hope that this paper will commence a
line of work towards theoretical developments that take the benefit of both worlds, and will
lead to new techniques that are both practical and rooted in strong foundations.

Organization. We begin with preliminary definitions in Section 2. In Section 3 we present
the concept of PUDs. We present the three fundamental computational problems in Section 4,
and describe preliminary results in Sections 5 and 6. We conclude with a discussion in
Section 7. For space limitations, all proofs are in the extended version of our paper [36].

2 Preliminaries

We first introduce concepts, definitions and notation that we need throughout the paper.

Schemas and databases. A relation signature is a sequence α = (A1, . . . , Ak) of distinct
attributes Ai, where k is the arity of α. A (relational) schema S has a finite set of relation
symbols, and it associates each relation symbol R with a signature that we denote by sigS(R),
or just sig(R) if S is clear from the context. We assume an infinite domain Const of constants.
Let S be a schema, and let R be a relation symbol of S. A tuple t over R is a sequence
(c1, . . . , ck) of constants, where k is the arity of sig(R). If t = (c1, . . . , ck) is a tuple over R
and sig(R) = (A1, . . . , Ak), then we refer to the value cj as t.Aj (where j = 1, . . . , k). We
denote by tuples(R) the set of all tuples over R.

In our databases, tuples have unique record identifiers. Formally, a table r over R is
associated with a finite set ids(r) of identifiers, and it maps each identifier i to a tuple r[i]
over R. A database I over S consists of a table RI over each relation symbol R of S, such
that no two occurrences of tuples have the same identifier; that is, if R1 and R2 are distinct
relation symbols in S, then ids(RI1) and ids(RI2) are disjoint sets. We denote by ids(I) the
union of the sets ids(RI) over all relation symbols R of S. If i ∈ ids(RI), then we may refer
to the tuple RI [i] simply as I[i].

A cell of a database I is a pair (i, A), where i ∈ ids(RI) for a relation symbol R, and A
is an attribute inside sig(R). We denote the cell (i, A) also by i.A, and we denote by cells(I)
the set of all cells of I.

Let I and J be databases over the same schema S. We say that I is a subset of J if I can
be obtained from J by deleting tuples, that is, ids(RI) ⊆ ids(RJ) for all relation symbols R
of S (hence, ids(I) ⊆ ids(J)) and I[i] = J [i] for all i ∈ ids(I). We say that I is an update of
J if I can be obtained from J by changing attribute values, that is, ids(RJ) = ids(RI) for
all relation symbols R of S.

C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 6:5

A query Q over a schema S is associated with fixed arity, and it maps every database D
over S into a finite set Q(D) of tuples of constants over the fixed arity.

Integrity constraints. Various types of logical conditions are used for declaring integrity
constraints, including Functional Dependencies (FDs), conditional FDs [7], Denial Constraints
(DCs) [17], referential constraints [14], and so on. In this paper, by integrity constraint over
a schema S we refer to a general expression ϕ of the form ∀x1, . . . , xm[γ(x1, . . . , xm)], where
γ(x1, . . . , xm) is a safe expression in Tuple Relational Calculus (TRC) over S. For example,
an FD R : A→ B is expressed here as the integrity constraint

∀x, y [(x ∈ Ry ∈ R)→ (x.A = y.A→ x.B = y.B)] .

A violation of ϕ = ∀x1, . . . , xm[γ(x1, . . . , xm)] in the database I is a sequence i1, . . . , im of
tuple identifiers in ids(I) such that I violates γ(I[i1], . . . , I[im]), and we denote by V (ϕ, I)
the set of violations of ϕ in I. We say that I satisfies ϕ if I has no violations of ϕ, that
is, V (ϕ, I) is empty. Finally, I satisfies a set Φ of integrity constraints if I satisfies every
integrity constraint ϕ in Φ.

Minimum repairs. Traditionally, database repairs are defined over inconsistent databases,
where inconsistencies are manifested as violations of integrity constraints. A repair is a
consistent database that is obtained from the inconsistent one by applying a minimal change,
and we recall two types of repairs: subset (obtained by deleting tuples) and update (obtained
by changing values). Moreover, the repairing operations may be weighted by tuple weights
(in the first case) and cell weights (in the second case).

Formally, let S be a schema, Φ a set of integrity constraints over S, and J a database
that does not necessarily satisfy Φ. A consistent subset (resp., consistent update) of J is a
subset (resp., update) I of J such that I satisfies Φ. A minimum subset repair of J w.r.t. a
weight function w : ids(J) → [0,∞) is a consistent subset I of J that minimizes the sum∑

i∈ids(J)\ids(I) w(i). As a special case, a cardinality repair of J is a minimum subset repair
w.r.t. a constant weight (e.g., w(i) = 1), that is, a consistent subset with a maximal number of
tuples. A minimum update repair of J w.r.t. a weight function w : cells(J)× Const→ [0,∞)
is a consistent update I of J that minimizes the sum

∑
i.A∈cells(I) w(i.A, I[i].A).

Probabilistic databases. A probabilisitic database is a probability distribution over ordinary
databases. As a representation system, our model is a generalization of the Tuple-Independent
probabilistic Database (TID) wherein each tuple might either exist (with an associated
probability) or not [13, 40]. In our model, each tuple comes from a general probability
distribution over tuples (where inexistence is one of the options). This allows us to incorporate
beliefs about the likelihood of tuples and cell values.

We now give the formal definition. Let S be a schema. A generalized TID is a database
K that is defined similarly to an ordinary database over S, except that instead of a tuple,
the entry RK[i] is a discrete probability distribution over the set tuples(R) ∪ {⊥}, where
the special value ⊥ denotes that no tuple is generated. Hence, for every tuple t over R,
the probability that RK[i] produces t is given by RK[i](t), or just K[i](t); moreover, the
number K[i](⊥) is the probability that no tuple is generated for the identifier i. Therefore,
K defines a probability distribution over databases I over S such that ids(I) ⊆ ids(K) and
the probability K(I) of a database I is defined as follows:

K(I) def=
∏

i∈ids(I)

K[i](I[i]) ×
∏

i∈ids(K)\ids(I)

K[i](⊥)

ICDT 2019

6:6 A Formal Framework for Probabilistic Unclean Databases

Table 1 Main symbols used in the framework.

S A schema.
U A PUD (I,R, J?).
I An intention model (probabilistic database).
R A realization model, maps every I into a probabilistic database RI .
J? An observed unclean database.
R◦I Distribution over pairs (I, J) given by R◦I (I, J) = I(I) · RI(J).
U? A probabilistic database given by U?(I ′) = Pr(I,J)∼R◦I(I = I ′ | J = J?).

(D, τ, J?) A parfactor/subset PUD.
(D, κ, J?) A parfactor/update PUD.
D A parfactor database (K,Φ, w) with w : Φ→ (0,∞).
K A generalized tuple-independent database (generalized TID).
Φ A set of integrity constraints ϕ.
τ Maps i ∈ ids(RD) to a discrete distribution τ [i] over tuples(R) ∪ {⊥}.
κ Maps (i, t) ∈ ids(RD)× tuples(R) to a discrete distribution κ[i, t] over tuples(R).

We incorporate weak integrity constraints by adopting the standard concept of parametric
factors (or parfactors for short), which has been used in the soft keys of Jha et al. [21] and
the PrDB model of Sen et al. [38], and which can be viewed as a special case of the Markov
Logic Network (MLN) [35]. Under this concept, each constraint ϕ is associated with a weight
w(ϕ) > 0 and each violation of ϕ contributes a factor of exp(−w(ϕ)) to the probability of a
random database I. Formally, a parfactor database over a schema S is a triple D = (K,Φ, w),
where K is a generalized TID, Φ is a finite set of integrity constraints, both over S, and
w : Φ→ (0,∞) is a weight function over Φ. The probability D(I) of a database I is defined
as follows.

D(I) def= 1
Z
× K(I) × exp

−∑
ϕ∈Φ

w(ϕ)× |V (ϕ, I)|

Recall that V (ϕ, I) the set of violations of ϕ in I. The number Z is a normalization factor
(also called the partition function) that normalizes the sum of probabilities to one:

Z
def=

∑
I

K(I) × exp

−∑
ϕ∈Φ

w(ϕ)× |V (ϕ, I)|

Observe that the above sum is over a countable domain, since we assume that every RK[i]
is discrete (hence, there are countably many random databases I). Since we normalize the
probability, it is not really necessarily for K to be normalized, as D would be a probability
distribution even if K is not normalized. In fact, in our analysis, we will not make the
assumption that K is normalized.

3 Probabilistic Unclean Databases

We introduce the Probabilistic Unclean Database (PUD) framework and describe examples of
PUD instantiations that correspond to data cleaning applications in the HoloClean system [34].
In our framework, a PUD consists of three components following a noisy-channel model:
(1) an intention model for generating clean databases, (2) a noisy realization model that
can distort the intended clean database, and (3) an observed unclean database. The formal
definition follows.

C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 6:7

(A) Schema,
and Constraints

Integrity Constraints

FD: Zip Code City, State
PK: Business ID

Zip CodeState

Business Listing

City
Business

ID

(B) The Unclean Database Generation Process

t1
t2
t3

Zip Code

53703
53703

53703EVP Coffee WIMadison
Graft WIMadison

MadisonPorter WI

StateCity
Business

ID

Constraints

Tuple Identifiers

Intentional Model I Sample of clean intended data I

Realizer
Model RR

Chicago 60609t4 ILGraft

t1
t2
t3

Zip Code

53703
53703

53703EVP Coffee WIMadison
Graft WIVerona

MadisonPorter WI

StateCityBusiness
ID

Dirty data instance J

�

J⇤
K

Tuple
Probability

Error model

!

Figure 1 Overview of the PUD framework.

I Definition 1. Let S be a schema. A PUD (over S) is a triple U = (I,R, J?) where:
1. I is a probabilistic database, referred to as the intention model;
2. R, referred to as the realization model, is a function that maps each database I to a

probabilistic database RI ;
3. J? is a database referred to as the observed or unclean database.

I Example 2. Figure 1 illustrates a high-level example of the PUD framework. We use a
running example from business listings. Figure 1(A) depicts the schema S of the example.
The constraints include a primary key and a functional dependency. Figure 1(B) depicts
the unclean database generation process. Intention I outputs a valid database I with three
tuples. The realizer R takes as input this database I, injects the new tuple t4 and updates
the City value of tuple t2 from “Madison” to “Verona.”

A PUD U = (I,R, J?) defines a probability distribution, denoted R◦I, over pairs (I, J).
Conditioning on J = J?, the PUD U also defines a probability distribution, denoted U?, over
intentions I (i.e., a probabilistic database). In the generative process of R◦I, we sample the
intention I from I, and then we sample J from the realization RI . Hence, the probability of
(I, J) is given by

R◦I (I, J) def= I(I) · RI(J) .

In the probabilistic database U?, the probability of each candidate intention I ′ is given by

U?(I ′) def= Pr(I,J)∼R◦I(I = I ′ | J = J?) = R◦I (I ′, J?)∑
I R◦I (I, J?)

that is, the probability conditioned on the random J being J?. For this distribution to be
well defined, we require J? to have a nonzero probability; that is, there exists I such that
R◦I (I, J?) > 0. Table 1 lists the main symbols in the framework, along with their meaning.

3.1 Example Instantiations of PUDs
Our definition of a PUD is abstract, and not associated with any specific representation
model. We now present concrete instantiations of PUD representations. These instantiations
are probabilistic generalizations of the (deterministic) concepts of subset repairs [32, 2]
and update repair [23, 30], respectively. More precisely, in both instantiations, the PUD
U = (I,R, J?) is such that I is represented as a parfactor database D (as defined in Section 2)
and J? is an ordinary database (as expected); the two differ in the representation of the
realization model R. In the first instantiation, R is allowed to introduce new random tuples
(hence, the intended database is a subset of the unclean one) and in the second, R is allowed
to randomly change tuples (hence, the intended database is an update of the unclean one).
Formally, let S be a schema.

ICDT 2019

6:8 A Formal Framework for Probabilistic Unclean Databases

Intended Database

t1
t2
t3

Zip Code

53703
53703

53703EVP Coffee WIMadison
Graft WIMadison

MadisonPorter WI

StateCity
Business

ID

t1
t2
t3

53703
53703

53703EVP Coffee WIMadison
Graft WIMadison

MadisonPorter WI

Zip CodeStateCity
Business

ID

Dirty Database
under Subset Realizer

53703EVP Coffee
WIMadison 53703EVP Coffee 53703

t1
t2
t3

Zip Code

53704
53703

53703EVP Coffee WIadison
Graft WIMadison

MadisonPorter WI

StateCity
Business

ID

Dirty Database
under Update Realizer

Figure 2 Examples of a subset realizer and an update realizer.

A parfactor/subset PUD is a triple (D, τ, J?) where D is a parfactor database, τ maps every
identifier i ∈ ids(RD), where R ∈ S, to a discrete distribution τ [i] over tuples(R) ∪ {⊥},
and J? is an ordinary database. As usual, ⊥ means that no tuple is generated.
A parfactor/update PUD is a triple (D, κ, J?) where D is a parfactor database, κ maps
every identifier i ∈ ids(RD) and tuple t ∈ tuples(R), where R ∈ S, to a discrete
distribution κ[i, t] over tuples(R), and J? is an ordinary database.

In a parfactor/subset PUD U = (D, τ, J?), the probability R◦I (I, J) is then defined as
follows. If I is not a subset of J , then R◦I (I, J) = 0; otherwise:

R◦I (I, J) def= D(I)×
∏

i∈ids(J)\
ids(I)

τ [i](J [i])×
∏

i∈ids(D)\
ids(J)

τ [i](⊥)

That is, R◦I (I, J) is the probability of I (i.e., D(I)), multiplied by the probability that
each new tuple of J is produced by τ (i.e., τ [i](J [i])), multiplied by the probability that each
tuple identifier i missing in J is indeed not produced (i.e., τ [i](⊥)).

In a parfactor/update PUD U = (D, κ, J?), the probability R◦I (I, J) is then defined as
follows. If I is not an update of J , then R◦I (I, J) = 0; otherwise:

R◦I (I, J) def= D(I)×
∏

i∈ids(I)

κ[i, I[i]](J [i])

That is, R◦I (I, J) is the probability of I (i.e., D(I)), multiplied by the probability that κ
changes each tuple I[i] to J [i] (i.e., κ[i, I[i]](J [i])).

I Example 3. Figure 2 shows the intended database from Example 2 and two unclean
versions obtained by a subset realizer and an update realizer. The subset realizer introduces
a duplicate, while the update realizer introduces two typos. These correspond to two types
of common errors in relational data. Our PUD framework can naturally model such cases.

In Section 5, we discuss connections between these PUD instantiations and the determin-
istic models. Finally, in Section 6, we provide more concrete cases of PUD instantiations.

4 Computational Problems

We define three computational problems over PUDs that are motivated by the need to clean
and query unclean data, and learn the intention and realization models from observed data.

Data Cleaning. Given a PUD (I,R, J?), we wish to compute a Most Likely Intention
(MLI) database I, given the observed unclean database J?. We refer to this problem as data
cleaning in PUDs.

C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 6:9

I Definition 4 (Cleaning). Let S be a schema and R a representation system for PUDs. The
problem (S,R)-cleaning is that of computing an MLI of a given PUD U = (I,R, J?), that
is, computing a database I such that the probability U?(I) is maximal (or, equivalently, the
probability R◦I (I, J?) is maximal).

Probabilistic query answering. A PUD defines a probabilistic database – a probability
space over the intensions I. The problem of Probabilistic Query Answering (PQA) is that
of evaluating a query over this probabilistic database. We adopt the standard semantics of
query evaluation over probabilistic databases [13, 40], where the confidence in an answer
tuple is its marginal probability.

I Definition 5 (PQA). Let S be a schema, Q a query over S, and R a representation system
for PUDs. The problem (S, Q,R)-PQA is the following. Given a PUD U and a tuple a,
compute the confidence of a, that is, the probability PrI∼U?(a ∈ Q(I)).

For now, we assume that both I and R are fully specified. We next define the problem
of learning models I and R using training (potentially labeled) data.

PUD learning. For a PUD (I,R, J?), the models I and R are typically represented using
numeric parameters. For example, the parameters of a parfactor/subset PUD (D, τ, J?) are
those needed to represent D (e.g., the weights of the constraints), and the parameters that
define the distributions over the tuples in both D and τ . By a parametric intention we refer
to an intension model IΞ with a vector Ξ of uninitialized parameters, and by IΞ/c we denote
the actual intention model where Ξ is assigned the values in the vector c. Similarly, by a
parametric realization we refer to a realization model RΘ with a vector Θ of uninitialized
parameters, and by RΘ/d we denote the actual realization model where Θ is set to d.

Following the concept of maximum likelihood estimation, the goal in learning is to find
the parameters that best explain (i.e., maximize the probability) of the training examples.
In the supervised variant, we are given examples of both unclean databases and their clean
versions; in the unsupervised variant, we are given only unclean databases.

I Definition 6 (Learning). Let S be a schema, and R a representation system for parametric
intensions and realizations. In the following problems we are given, as part of the input, the
parametric intention and realization models IΞ and RΘ, respectively.

In the supervised (S,R)-learning problem, we are also given a collection (Ij , Jj)nj=1 of
database pairs (intention-realization examples), and the goal is to find parameter values c
and d that maximize

∏n
j=1R◦I (Ij , Jj) for I = IΞ/c and R = RΘ/d.

In the unsupervised (S,R)-learning problem, we are also given a collection (Jj)nj=1 of
databases (realization examples), and the goal is to find parameter values c and d that
maximize

∏n
j=1R◦I (Jj) for I = IΞ/c and R = RΘ/d, where R◦I (Jj) is the marginal

probability of Jj, that is,
∑
I R◦I (I, Jj).

Note that the summation in the unsupervised variant is over the sample space of the
intention model I. While the reader might be concerned about the source of many examples
(Ij , Jj) and Jj in the phrasing of the learning problems, it is oftentimes the case that a single
large example (I, J) (or just J in the unsupervised variant) can be decomposed into many
smaller examples. This depends on the independence assumptions in the parametric models
IΞ and RΘ as we discuss in Section 6.1. In the next sections, we give preliminary results on
the introduced problems, focusing on parfactor/subset and parfactor/update PUDs.

ICDT 2019

6:10 A Formal Framework for Probabilistic Unclean Databases

5 Cleaning and Querying Unclean Data

In this section, we draw connections between data cleaning in the PUD framework (MLIs)
and traditional minimum repairs. We also give preliminary results on the complexity of
cleaning. Finally, we draw a connection between probabilistic query answering and certain
answers.

5.1 Generalizing Minimum Repairs
We now show that the concept of an MLI in parfactor/subset PUDs generalizes the concept of
a minimum subset repair, and the concept of an MLI in parfactor/update PUDs generalizes
the concept of an optimal update repair. Minimum subset repairs correspond to MLIs of
PUDs with hard (or heavy) constraints. Minimum update repairs correspond to MLIs over
PUDs that assume both hard (or heavy) constraints and assumptions of independence among
the attributes. From the viewpoint of computational complexity, this means that finding
an exact MLI is not easier than finding a minimum repair, which is often computationally
hard [30]. Therefore, we should aim for approximation guarantees (which have clear semantics
in the probabilistic setting) if we wish to avoid restricting the generality of the input.

Subset repairs and parfactor/subset PUDs. Recall that in parfactor/subset PUDs (as
defined in Section 3.1), every intention I with a nonzero probability is a subset of the
observed unclean database J?. In particular, every MLI is subset of J?. Our first result
relates cleaning in parfactor/subset PUDs to the traditional minimum subset (or cardinality)
repairs. This result states, intuitively, that the notion of an MLI in a parfactor/subset PUD
coincides with the notion of a minimum subset repair if the weight of the formulas is high
enough and the probability of introducing error is small enough.

I Theorem 7. Let (D, τ, J?) be a parfactor/subset PUD with D = (K,Φ, w). For i ∈ ids(J?),
assume that K[i](⊥) > 0 and τ [i](J?[i]) > 0, let q(i) = K[i](J?[i])/(K[i](⊥) · τ [i](J?[i])), and
assume that q(i) ≥ 1. There is a number M such that if w(ϕ) > M for all ϕ ∈ Φ then the
following are equivalent for all I ⊆ J?:
1. I is an MLI.
2. I is a minimum subset repair of J? w.r.t. the weight function w(i) = log(q(i)).
Note that in the theorem, q(i) is the ratio between K[i](J?[i]), namely the probability that
K produces the ith tuple of J?, and K[i](⊥) · τ [i](J?[i]), namely the probability that K does
not generate the ith tuple of J? but τ does.

Next, we draw a similar connection between minimum update repairs and MLIs of
parfactor/update PUDs.

Update repairs and parfactor/update PUDs. We now turn our attention to update repairs.
Recall that in a parfactor/update PUD (defined in Section 3.1), the intended clean database
I is assumed to be an update of the observed unclean database J?. We establish a result
analogous to Theorem 7, stating conditions under which MLIs for parfactor/update PUDs
coincide with traditional minimum update repairs.

Let S be a schema, and let U = (D, κ, J?) be a parfactor/update PUD with D = (K,Φ, w).
We say that U is attribute independent if K and κ feature probabilistic independence among
the attributes. More precisely, if i ∈ RD for R ∈ S with sig(R) = (A1, . . . , Ak), then we
assume that K[i](a1, . . . , ak) can be written as K[i](a1, . . . , ak) =

∏k
j=1KAj [i](aj) and, for t =

C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 6:11

(b1, . . . , bk), that κ[i, t](a1, . . . , ak) can be written as κ[i, t](a1, . . . , ak) =
∏k
j=1 κAj [i, bj](aj).

In particular, the choice of the value aj depends only on bj and not on other values bj′ .
The following theorem states that the concept of an MLI of a parfactor/update PUD

coincides with the concept of a minimum update repair when the PUD is attribute independent
and, moreover, the weight of the integrity constraints is high.

I Theorem 8. Let U = (D, τ, J?) be an attribute-independent parfactor/update PUD with
D = (K,Φ, w) such that U?(I) > 0 for at least one consistent update I of J?. There is a
number M such that if w(ϕ) > M for all ϕ ∈ Φ, then the following statements are equivalent
for all I ⊆ J?:
1. I is an MLI.
2. I is a minimum update repair w.r.t. the weight function

w(i.A, a) = − log(KA[i](a) · κA[i, a](J?[i].A)) .

Note that KA[i](a) · κA[i, a](J?[i].A) is the probability that a is produced by K for the cell
i.A, and that a is then changed to J?[i].A via κ. Also note that in the case where this
product is zero, we slightly abuse the notation by assuming that the weight is infinity.

5.2 Complexity of Cleaning with Key Constraints
We now present a complexity result on computing an MLI of a parfactor/subset PUD in
the presence of key constraints. The following theorem states that in the case of a single
key constraint per relation (which is the common setup, e.g., for the analysis of certain
query answering [26, 3, 24]), an MLI can be found in polynomial time. Note that we do not
make any assumption about the parameters; in particular, it may be the case that an MLI
violates the key constraints since the constraints are weak. Regarding the representation of
the probability spaces K and τ , the only assumption we make is that, given a tuple t, the
probabilities K[i](t) and τ [i](t) can be computed in polynomial time.

I Theorem 9. Let (D, τ, J?) be a parfactor/subset PUD with D = (K,Φ, w). If Φ consists
of (at most) one key constraint per relation, and no relation of J? has duplicate tuples, then
an MLI can be computed in polynomial time.

It is left for future investigation to seek additional constraints (e.g., functional depen-
dencies) for which an MLI can be found in polynomial time. Note that Theorem 7 implies
that (under conventional complexity assumptions) we cannot generalize the polynomial-time
result to all sets of functional dependencies, since finding a minimum subset repair might be
computationally hard [32, 30].

5.3 Probabilistic Query Answering
For probabilisitic query answering, we again focus on the parametric/subset PUDs, and now
we draw a connection to consistent query answering over the cardinality repairs. Recall that
a consistent answer for a query Q over an inconsistent database J is a tuple t that belongs
to Q(I) for every cardinality repair I of J .

Let S be a schema, J? a database, and Φ a set of integrity constraints. Let M = |ids(J?)|.
The uniform parfactor/subset PUD for J? and Φ with the parameters p and u, denoted
Up,u(J?,Φ) or just Up,u if J? and Φ are clear from the context, is the parfactor/subset PUD
(D, τ, J?) with D = (K,Φ, w) such that the following hold.

ICDT 2019

6:12 A Formal Framework for Probabilistic Unclean Databases

For all R ∈ S we have ids(RK) = ids(RJ?) and K[i](x) = 1/M for every tuple identifier i
and argument x in RK ∪ {⊥}. The remaining mass (required to reaching 1) is given to
an arbitrary tuple outside of J?.
w(ϕ) = u for every ϕ ∈ Φ.
τ [i](⊥) = p, and τ [i](t) = (1− p)/M for every identifier i and tuple t in RK. Again, the
remaining mass is given to an arbitrary tuple outside of J?.

Observe that D is defined in such a way that every subset I of J? has the same prior
probability K(I), namely 1/M |J?|.

The following theorem states that, for Up,u, the consistent answers are precisely the
answers whose probability approaches one when all of the following hold: (1) the probability
of introducing error (i.e., 1− p) approaches zero; and (2) the weight of the weak constraints
(i.e., u) approaches infinity, that is, the constraints strengthen towards hardness.

I Theorem 10. Let J? be a database, Φ a set of integrity constraints, Q a query, and t a
tuple. The following are equivalent:
1. t is a consistent answer over the cardinality repairs.
2. limp−→1 limw−→∞ PrI∼U?p,u(t ∈ Q(I)) = 1.
Therefore, Theorem 10 sheds light on the role that the consistent answers have in probabilisitic
query answering over parfactor/subset PUDs.

6 Learning Probabilistic Unclean Databases

We now give preliminary results on PUD learning, focusing on parfactor/update PUDs. We
begin by describing the setup we consider in this section and the representation system R
we use to describe the parametric intention and realization models IΞ and RΘ.

6.1 Setup
To discuss the learning of parameters, we need to specify the actual parametric model we
assume. Let S be a schema, and let U = (D, κ, J?) be a parfactor/update PUD with D =
(K,Φ, w). Since we restrict the discussion to parfactor/update PUDs, we assume (without
loss of generality) that the identifiers in D are exactly those in J?, that is, ids(D) = ids(J?).

In our setup, K of D and κ of U are expressed in a parametric form that allows us to
define the parametric intention and realization models IΞ and RΘ as Gibbs distributions.
We refer to these as Gibbs parfactor/update PUD models, and define them as follows.

Parametric intention. To specify K, we assume that for each relation symbol R ∈ S, the
probability K[i](t), with i ∈ ids(RD), is expressed in the form of an exponential distribution
K[i](t) = exp

(∑
f∈F wff(t)

)
where each f ∈ F is an arbitrary function (feature) over t,

and each weight wf is a real number.
For example, a feature f ∈ F may be a function that takes as input a tuple and returns

a value in {−1, 1}. An example feature f can state that f(t) = 1 if t[gender] = female and,
otherwise, f(t) = −1. Another example is f [t] = 1 if t[zip] starts with 53 and t[state] = WI,
and otherwise f [t] = −1. Additional examples of such features include the ones used in our
prior work on HoloClean [34] to capture the co-occurrence probability of attribute value
pairs. Each weight wf corresponds to a parameter of the model. An assignment to these
weights gives as a probability distribution, similarly to probabilistic graphical models [25].

The parameter vector Ξ of the parametric intention model IΞ consists of two sets of
parameters: the weights wf for each feature f ∈ F , and the weights w(ϕ), which we write as
wϕ for uniformity of presentation, for each constraint ϕ ∈ Φ. Thus, the overall parametric
intention model IΞ is expressed as a parametric Gibbs distribution.

C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 6:13

We will take a special interest in the case where the integrity constraints are unary, which
means that they have the form ∀x[γ(x)], where γ is quantifier free; hence, a unary constraint
is a statement about a single tuple. Examples of unary constraints are restricted cases of
conditional functional dependencies [7, 16]. An example of such a constraint can be “age
smaller than 10 cannot co-occur with a salary greater than $100k.”

Parametric realization. We consider a parametric realization model that is similar to the
parametric intention model presented above, which is again a parametric Gibbs distribution.
For each relation symbol R ∈ S and every pair (t, t′) ∈ tuples(R)× tuples(R), the probability
κ[i, t](t′), with i ∈ ids(D), is expressed in the form of the Gibbs distribution κ[i, t](t′) =

1
Zκ(t) exp

(∑
g∈G wgg(t, t′)

)
, where G is the set of features, and each g is an arbitrary function

(feature) over (t, t′), each weight wg is a real number, and Zκ(t) is a normalization constant
defined as Zκ(t) =

∑
t′∈tuples(R) exp

(∑
g∈G wgg(t, t′)

)
. Hence, we get a parametric model

for the probability distribution κ.
As an example, a feature function g(t, t′) may capture spelling errors: g(t, t′) = 1 if t′[city]

can be obtained by deleting one character from t[city], and otherwise, g(t, t′) = −1. The
parameter vector Θ of the parametric realization model RΘ consists of the set of weights wg
for each feature g ∈ G.

Assumptions. We make two assumption here. First, we assume that the attributes of all
relation symbols in S take values over a finite and given set. This means that for each relation
symbol R ∈ S, tuples(R) is also finite and given as input. Second, all features describing K
and κ can be computed efficiently, that is, in polynomial time in the size of the input.

Obtaining examples for learning. For supervised learning, we require a training collection
(Ij , Jj)nj=1 and for unsupervised learning, a training collection (Jj)nj=1. We would like to
make the case that, oftentimes, a single large example can be broken down into many small
examples. Recall that in our setup (Gibbs parfactor/update PUDs), cross-tuple correlations
can be introduced only by the integrity constraints in Φ. Consider, for instance, the case
where all constraints in Φ are unary. Then, we get tuple-independent parfactor/update PUDs,
and each tuple identifier i can become an example database: (I[i], J [i]) in the supervised case,
and J [i] in the unsupervised case. For general constraints, cross-tuple correlations exist, and
each example (Ij , Jj) and (Jj) can be obtained by taking correlated groups of tuples from J?

by considering different values for the attributes participating in each constraint ϕ ∈ Φ. The
number of tuples contained in each example depends on the constraints. This is a standard
practice with parameterized probabilistic models as the ones we consider here [31].

6.2 Supervised Learning
We begin by considering supervised (S,R)-learning. All results presented in this section
build upon standard tools from statistical learning. We are given a collection (Ij , Jj)nj=1 of
intention-realization examples, and the goal is to find parameter values c and d that maximize
the likelihood of pairs (Ij , Jj)nj=1, that is,

∏n
j=1R◦I (Ij , Jj) for I = IΞ/c and R = RΘ/d.

To facilitate the analysis, we write this objective function as a sum over terms by consid-
ering the negative log-likelihood l(Ξ = c,Θ = d; (Ij , Jj)nj=1) = − log

∏n
j=1R◦I (Ij , Jj) =

−
∑n
j=1 logR◦I (Ij , Jj), and seek parameter values c and d that minimize it. For parfac-

tor/update PUDs we have that R◦I (I, J) = D(I)×
∏
i∈ids(I) κ[i, I[i]](J [i]) where D(I) =

K(I) × 1/Z × exp(−
∑
ϕ∈Φ w(ϕ) × |V (ϕ, I)|). For the Gibbs parfactor/update PUD, c

ICDT 2019

6:14 A Formal Framework for Probabilistic Unclean Databases

corresponds to an assignment of parameters wf describing K and parameters wϕ = w(ϕ)
for the constraints ϕ ∈ Φ. Similarly, d corresponds to an assignment of parameters wg
describing κ. We use Z(c) to denote the partition function Z under the parameters c. We
have:

l(c,d; (Ij , Jj)nj=1) =−
n∑
j=1

log

K(Ij ; c) × exp

−∑
ϕ∈Φ

wϕ × |V (ϕ, Ij)|

+ n logZ(c)

−
n∑
j=1

∑
i∈ids(Ij)

log (κ[i, I[i]; d](Jj [i])) (1)

where K(Ij ; c) denotes that K is parametrized by c and κ[i, I[i]; d] denotes that κ is
parametrized by d.

Our goal becomes to minimize the expression in (1). It is well-known from the ML
literature that there is no analytical solution to such minimization problems, and one needs
to use iterative gradient-based methods [25]. We investigate whether gradient-based methods
can indeed find a global minimum, and whether computing the gradient of this objective
during each iteration is tractable. For the first question, the answer is positive.

I Proposition 11. l(Ξ = c,Θ = d; (Ij , Jj)nj=1) is a convex function of (Ξ,Θ).

This proposition implies that the optimization objective for supervised learning has only global
optima. Hence, it is guaranteed that any gradient-based optimization method will converge
to a global optimum. Next, we study when the gradient of l(Ξ = c,Θ = d; (Ij , Jj)nj=1) with
respect to c and d can be computed efficiently.

To compute the gradient of l(Ξ = c,Θ = d; (Ij , Jj)nj=1), one has to compute ∂
∂cl

logZ(c).
To compute this derivative a full inference step is required [25]. This is because computing
this gradient amounts to computing the expected value for each feature (corresponding to
each parameter cl) according to the distribution defined by c [25, Proposition 20.2]. However,
marginal inference is often #P-hard [18]. In our setup, the constraints in Φ correspond to
features, and it is not clear whether the gradient can be efficiently computable. In general,
one can still estimate the aforementioned gradient by using approximate inference methods
such as Markov Chain Monte Carlo (MCMC) methods [9, 39] or belief propagation [41]. While
effective in practice, these methods do not come with guarantees on the quality of the obtained
solution. Next, we focus on an instance of PUD learning where exact inference is tractable
(linear on tuples(R)), hence, we can compute the exact gradients of the aforementioned
optimization objective efficiently.

Tuple independence. We focus on Gibbs parfactor/update PUD models where all con-
straints in Φ are unary. Here, (Ij , Jj)nj=1 corresponds to a collection of n examples, each of
which having one tuple identifier. We use Ij [0] and Jj [0] to denote the tuples in the example
(Ij , Jj). In the extended version of our paper [36], we show that the negative log-likelihood
l(Ξ = c,Θ = d; (Ij , Jj)nj=1) factorizes as l(c,d; (Ij , Jj)nj=1) =

∑n
j=1 l

′(c,d; Ij [0], Jj [0]), where
each l′(c,d; Ij [0], Jj [0]) is a convex function of Ξ and Θ (see the extended version of our
paper [36]). Moreover, we show that the gradient of each l′(c,d; Ij [0], Jj [0]) can be evaluated
in time linear to tuples(R) where R is the relation corresponding to the tuple identifier
associated with example (Ij , Jj) (see the extended version of our paper [36]). Hence, we get
the following.

C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 6:15

I Theorem 12. Given a training collection (Ij , Jj)nj=1 and a Gibbs parfactor/update PUD
model with unary constraints, the exact gradient of l(Ξ = c,Θ = d; (Ij , Jj)nj=1) can be
evaluated in O(n ·maxR∈S |tuples(R)|) time.

The above theorem implies that convex-optimization techniques such as stochastic gradient
descent [8] can be used to scale to large PUD learning instances (i.e., for large n).

A question that arises is about the number of examples (i.e., n) required to learn a PUD
model. To answer this question, we study the convergence of supervised (S,R)-learning
for Gibbs parfactor/update PUD models with unary constraints. For that, we view the
collection (Ij , Jj)nj=1 as independent and identically distributed (i.i.d.) examples, drawn
from a distribution that corresponds to a Gibbs parfactor/update PUD model with unary
constraints and true parameters c? and d?. By the law of large numbers, the Maximum
Likelihood Estimates (MLE) c and d are guaranteed to converge to c? and d? in probability.
This means that for arbitrarily small ε > 0 we have that P (|c− c?| > ε)→ 0 as n→∞. The
same holds for d. Moreover, we show that the MLE c and d satisfy the property of asymptotic
normality [27]. Intuitively, asymptotic normality states that the estimator not only converges
to the unknown parameter, but it converges fast enough at a rate of 1/

√
n. This implies

that to achieve the error ε for c and d, one only needs n = O(ε−2) training examples.

I Theorem 13. Consider a training collection (Ij , Jj)nj=1 drawn i.i.d. from a Gibbs parfac-
tor/update PUD model with unary constraints and true parameters c? and d?. The maximum
likelihood estimates c and d satisfy asymptotic normality, that is,
√
n (c− c?)→ N

(
0,Σ2

c?
)
as n→∞ and

√
n (d− d?)→ N

(
0,Σ2

d?
)
as n→∞

where Σ2
c? and Σ2

d? are the asymptotic variance of the estimates c and d.

Note that both the multivariate Gaussian distribution N (µ,Σ2) and the asymptotic variance
are defined in classic statistics literature [27].

6.3 Unsupervised Learning
We now present preliminary results for unsupervised (S,R)-learning. We are given a
training collection (Jj)nj=1 and seek to find c and d that minimize the negative log-likelihood
l(Ξ = c,Θ = d; (Jj)nj=1) = −

∑n
j=1 log

∑
I R◦I (I, Jj). Again, there is no analytical solution

for finding optimal c and d. Hence, one needs to use iterative gradient-based approaches,
and again the questions of convexity and gradient computation arise. In the general case,
this function is not necessarily convex. Hence, gradient-based methods are not guaranteed to
converge to a global optimum. However, one can still solve the corresponding optimization
problem using non-convex optimization methods [6]. Nevertheless, we show next that when
realizers do not introduce too much error, we can establish guarantees.

Low-noise condition. Consider a Gibbs parfactor/update PUD model. We say that a PUD
defined by IΞ/c and RΘ/d satisfies the low-noise condition with probability p if the realizer
introduces an error with probability at most p. That is, for all intensions I and identifiers
i ∈ ids(I), it is the case that Pr(J [i] = I[i] | I) ≥ 1− p. We have the following.

I Theorem 14. Consider a Gibbs parfactor/update PUD model where Ξ takes values from
a compact convex set. Given a training collection (Jj)nj=1, there exists a fixed probability
p > 0 such that, under the low-noise condition with probability p, the negative log-likelihood
l(Ξ = c,Θ = d; (Jj)nj=1) is a convex function of Ξ.

ICDT 2019

6:16 A Formal Framework for Probabilistic Unclean Databases

Hence, in certain cases, it is possible to find a global optimum of the overall negative
log-likelihood. For that, the low-noise condition should hold with probability p that is also
bounded, that is, it cannot be arbitrarily large. We can show that, if the low-noise condition
holds with probability p, it is indeed bounded for Gibbs parfactor/update PUDs with unary
constraints (see the extended version of our paper [36]). We then find a global optimum
as follows. We assume a simple parametric realization RΘ, that is, a model for which we
can efficiently perform grid search over the space of parameter values d. To find the global
optimum for the negative log-likelihood, we solve a series of convex optimization problems
over Ξ for different fixed Θ = d. For each of these problems, we are guaranteed to find a
corresponding global optimum c, and by performing a grid search we are guaranteed to find
the overall global optima c and d. This approach has been shown to converge for similar
simple non-convex problems [37, 33].

Finally, similarly to supervised learning, the negative log-likelihood for fixed Θ = d
decomposes into a sum of convex losses over (Jj)ni=1 where each example Jj contains a
single tuple. We use Jj [0] to denote that tuple. We have that l(Ξ = c,Θ = d, (Jj)nj=1) =∑n
j=1 l

′(c,d; Jj [0]) where d is fixed. We show that the gradient of each l′(c,d; J [0]) can be
evaluated in polynomial time to tuples(R) where R is the relation corresponding to the tuple
identifier associated with the example (Jj).

It is left for future work to find sufficient conditions for p to be bounded for PUD models
with more general constraints, as well as the complexity and convergence aspects.

7 Concluding Remarks

Taking inspiration from our experience with the HoloClean system [34], we introduced the
concept of Probabilistic Unclean Databases (PUDs), a framework for unclean data that
follows a noisy channel approach to model how errors are introduced in data. We defined
three fundamental problems in the framework: cleaning, probabilistic query answering, and
PUD learning (parameter estimation). We introduced PUD instantiations that generalize the
deterministic concepts of subset repairs and update repairs, presented preliminary complexity,
convergence, and learnability results.

This paper opens up many research directions for future exploration. One is to investigate
the complexity of cleaning in more general configurations than the ones covered here.
Moreover, in cases where probabilistic cleaning is computationally hard, it is of natural
interest to find approximate repairs that have a probability (provably) close to the maximum.
Another direction is the complexity of probabilistic query answering and approximation
thereof, starting with the most basic constraints (e.g., primary keys) and queries (e.g.,
determine the marginal probability of a fact). Finally, an important direction is to devise
learning algorithms for cases beyond the ones we discussed here. In particular, it is of high
importance to understand when we can learn parameters without training data, based only
on the given dirty database, under more general noisy realization models than the ones
discussed in this paper.

References
1 Serge Abiteboul, Marcelo Arenas, Pablo Barceló, Meghyn Bienvenu, Diego Calvanese, Claire

David, Richard Hull, Eyke Hüllermeier, Benny Kimelfeld, Leonid Libkin, Wim Martens, Tova
Milo, Filip Murlak, Frank Neven, Magdalena Ortiz, Thomas Schwentick, Julia Stoyanovich,
Jianwen Su, Dan Suciu, Victor Vianu, and Ke Yi. Research Directions for Principles of Data
Management (Abridged). SIGMOD Record, 45(4):5–17, 2016. doi:10.1145/3092931.3092933.

http://dx.doi.org/10.1145/3092931.3092933

C. De Sa, I. F. Ilyas, B. Kimelfeld, C. Ré, and T. Rekatsinas 6:17

2 Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases: algorithms
and complexity. In ICDT, pages 31–41. ACM, 2009.

3 Periklis Andritsos, Ariel Fuxman, and Renée J. Miller. Clean Answers over Dirty Databases:
A Probabilistic Approach. In ICDE, page 30. IEEE Computer Society, 2006.

4 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent Query Answers in
Inconsistent Databases. In PODS, pages 68–79. ACM, 1999. doi:10.1145/303976.303983.

5 Gükhan H. Bakir, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, Ben Taskar,
and S. V. N. Vishwanathan. Predicting Structured Data (Neural Information Processing). The
MIT Press, 2007.

6 Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.
7 Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis.

Conditional Functional Dependencies for Data Cleaning. In ICDE, pages 746–755. IEEE, 2007.
8 Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

2004.
9 N. E. Breslow and D. G. Clayton. Approximate Inference in Generalized Linear Mixed Models.

Journal of the American Statistical Association, 88(421):9–25, 1993.
10 Marco Calautti, Leonid Libkin, and Andreas Pieris. An Operational Approach to Consistent

Query Answering. In PODS, pages 239–251. ACM, 2018.
11 Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tuple

deletions. Information and Computation, 197(1):90–121, 2005.
12 Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Holistic Data Cleaning: Putting Violations into

Context. In ICDE, pages 458–469, 2013.
13 Nilesh N. Dalvi and Dan Suciu. Efficient Query Evaluation on Probabilistic Databases. In

VLDB, pages 864–875. Morgan Kaufmann, 2004.
14 C. J. Date. Referential Integrity. In VLDB, pages 2–12. VLDB Endowment, 1981.
15 Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. Dichotomies in the Complexity of

Preferred Repairs. In PODS, pages 3–15, New York, NY, USA, 2015. ACM.
16 Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional Functional

Dependencies for Capturing Data Inconsistencies. ACM Trans. Database Syst., 33(2):6:1–6:48,
June 2008.

17 Terry Gaasterland, Parke Godfrey, and Jack Minker. An Overview of Cooperative Answering.
J. Intell. Inf. Syst., 1(2):123–157, 1992.

18 Amir Globerson, Tim Roughgarden, David Sontag, and Cafer Yildirim. How Hard is Inference
for Structured Prediction? In ICML, pages 2181–2190. JMLR.org, 2015.

19 Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. The Most Probable Database Problem.
In BUDA, 2014.

20 Ihab F. Ilyas. Effective Data Cleaning with Continuous Evaluation. IEEE Data Eng. Bull.,
39:38–46, 2016.

21 Abhay Kumar Jha, Vibhor Rastogi, and Dan Suciu. Query evaluation with soft-key constraints.
In PODS, pages 119–128, 2008.

22 Daniel Jurafsky and James H. Martin. Speech and Language Processing (2Nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009.

23 Solmaz Kolahi and Laks V. S. Lakshmanan. On approximating optimum repairs for functional
dependency violations. In ICDT, volume 361, pages 53–62. ACM, 2009.

24 Phokion G. Kolaitis and Enela Pema. A dichotomy in the complexity of consistent query
answering for queries with two atoms. Inf. Process. Lett., 112(3):77–85, 2012.

25 Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques -
Adaptive Computation and Machine Learning. The MIT Press, 2009.

26 Paraschos Koutris and Jef Wijsen. Consistent Query Answering for Self-Join-Free Conjunctive
Queries Under Primary Key Constraints. ACM Trans. Database Syst., 42(2):9:1–9:45, 2017.

27 Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

ICDT 2019

http://dx.doi.org/10.1145/303976.303983

6:18 A Formal Framework for Probabilistic Unclean Databases

28 Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In PODS, pages 233–246,
New York, NY, USA, 2002. ACM.

29 Leonid Libkin. Incomplete Data: What Went Wrong, and How to Fix It. In PODS, pages
1–13, New York, NY, USA, 2014. ACM.

30 Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing Optimal Repairs for Functional
Dependencies. In PODS, pages 225–237. ACM, 2018.

31 Ben London, Bert Huang, Ben Taskar, and Lise Getoor. Collective Stability in Structured
Prediction: Generalization from One Example. In Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pages 828–836, 17–19 June 2013.

32 Andrei Lopatenko and Leopoldo E. Bertossi. Complexity of Consistent Query Answering
in Databases Under Cardinality-Based and Incremental Repair Semantics. In ICDT, pages
179–193, 2007.

33 Cong Ma, Kaizheng Wang, Yuejie Chi, and Yuxin Chen. Implicit Regularization in Nonconvex
Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix
Completion and Blind Deconvolution. arXiv preprint, 2017. arXiv:1711.10467.

34 Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. HoloClean: Holistic Data
Repairs with Probabilistic Inference. PVLDB, 10(11), 2017.

35 Matthew Richardson and Pedro Domingos. Markov Logic Networks. Mach. Learn., 62(1-
2):107–136, February 2006.

36 Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and Theodoros Rekatsinas.
A Formal Framework For Probabilistic Unclean Databases. CoRR, abs/1801.06750, 2018.
arXiv:1801.06750.

37 Christopher De Sa, Christopher Ré, and Kunle Olukotun. Global Convergence of Stochastic
Gradient Descent for Some Non-convex Matrix Problems. In ICML, volume 37 of JMLR Pro-
ceedings, pages 2332–2341. JMLR.org, 2015. URL: http://jmlr.org/proceedings/papers/
v37/sa15.html.

38 Prithviraj Sen, Amol Deshpande, and Lise Getoor. PrDB: managing and exploiting rich
correlations in probabilistic databases. VLDB J., 18(5):1065–1090, 2009.

39 Sameer Singh, Michael Wick, and Andrew McCallum. Monte Carlo MCMC: Efficient Inference
by Approximate Sampling. In MNLP-CoNLL, pages 1104–1113. Association for Computational
Linguistics, 2012.

40 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases.
Morgan & Claypool Publishers, 1st edition, 2011.

41 Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. Tree-reweighted belief
propagation algorithms and approximate ML estimation via pseudo-moment matching. In
AISTATS, January 2003.

42 Jiannan Wang and Nan Tang. Towards dependable data repairing with fixing rules. In
SIGMOD, pages 457–468. ACM, 2014.

43 Mohamed Yakout, Ahmed K Elmagarmid, Jennifer Neville, Mourad Ouzzani, and Ihab F Ilyas.
Guided data repair. PVLDB, 4(5):279–289, 2011.

http://arxiv.org/abs/1711.10467
http://arxiv.org/abs/1801.06750
http://jmlr.org/proceedings/papers/v37/sa15.html
http://jmlr.org/proceedings/papers/v37/sa15.html

On the Expressive Power of Linear Algebra on
Graphs
Floris Geerts
University of Antwerp, Antwerp, Belgium
http://adrem.uantwerpen.be/floris.geerts
floris.geerts@uantwerpen.be

Abstract
Most graph query languages are rooted in logic. By contrast, in this paper we consider graph
query languages rooted in linear algebra. More specifically, we consider MATLANG, a matrix query
language recently introduced, in which some basic linear algebra functionality is supported. We
investigate the problem of characterising equivalence of graphs, represented by their adjacency
matrices, for various fragments of MATLANG. A complete picture is painted of the impact of the
linear algebra operations in MATLANG on their ability to distinguish graphs.

2012 ACM Subject Classification Information systems → Query languages; Mathematics of com-
puting → Graph theory; Theory of computation → Logic

Keywords and phrases matrix query languages, graph queries, graph theory, logics

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.7

Related Version Full version: https://arxiv.org/abs/1812.04379.

1 Introduction

Motivated by the importance of linear algebra for machine learning on big data [7, 8, 12, 46, 51]
there is a current interest in languages that combine matrix operations with relational query
languages in database systems [22, 35, 40, 41, 43]. Such hybrid languages raise many
interesting questions from a database theoretical point of view. It seems natural, however, to
first consider query languages for matrices alone. These are the focus of this paper.

More precisely, we continue the investigation of the expressive power of the matrix query
language MATLANG, recently introduced as an analog for matrices of the relational algebra
on relations [9]. Intuitively, queries in MATLANG are built-up by composing several linear
algebra operations. The language MATLANG was shown to be subsumed by aggregate logic
with only three non-numerical variables. Conversely, MATLANG can express all queries from
graph databases to binary relations that can be expressed in first-order logic with three
variables. The four-variable query asking if a graph contains a four-clique, however, is not
expressible [9].

In this paper, we further zoom in on the expressive power of MATLANG on graphs.
In particular, we investigate when two graphs are equivalent relative to some fragment of
MATLANG. These fragments are defined by allowing only certain linear algebra operations
in the queries and are denoted by ML(L), with L the list of allowed operations. A total of six
(sensible) fragments are considered and ML(L)-equivalence of graphs, i.e., their agreement
on all sentences in ML(L), is characterised. Our results are as follows.

For starters, we have the fragment ML(· , tr) that allows for matrix multiplication (·) and
trace (tr) computation (i.e., taking the sum of diagonal elements of a matrix). Equivalence
of graphs relative to ML(· , tr) coincides with being co-spectral, or equivalently, to having
the same number of closed walks of any length (Section 5).

© Floris Geerts;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://adrem.uantwerpen.be/floris.geerts
mailto:floris.geerts@uantwerpen.be
https://doi.org/10.4230/LIPIcs.ICDT.2019.7
https://arxiv.org/abs/1812.04379
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On the Expressive Power of Linear Algebra on Graphs

Another fragment, ML(· , ∗,1), allows for matrix multiplication, conjugate transposition
(∗) and the introduction of the vector 1, consisting of all ones. Here, equivalence coincides
with having the same number of (not necessarily closed) walks of any length (Section 6).
When allowing both tr and 1, equivalence relative to ML(· , tr,1) coincides, not surprisingly,
to having the same number of closed and non-closed walks of any length (Section 6).
More interesting is the fragment ML(· , ∗,1, diag), which also allows for the operation
diag(·) that turns a vector into a diagonal matrix with that vector on its diagonal. In
this case, equivalence coincides with having a so-called common equitable partition, or
equivalently, to C2-equivalence. Here, C2 denotes the two-variable fragment of C, the
extension of first-order logic with counting (Section 7).
The combination of tr with diag results in a stronger notion of equivalence: Graphs
are equivalent relative to ML(· , tr,1, diag) when they are C2-equivalent and co-spectral
(Section 7).
Finally, equivalence relative to MATLANG is shown to correspond to C3-equivalence, the
three-variable fragment of C (Section 8). This is in agreement with the results from
Brijder et al. [9] mentioned earlier.

We remark that each of these fragments can be extended with addition and scalar multiplica-
tion at no increase in distinguishing power. We exhibit examples separating all fragments.

The characterisations are shown in a purely algebraic way, without relying on simulations
in logic. Underlying are reductions of ML(L)-equivalence of graphs to similarity notions of
their adjacency matrices. For example, it is known that two graphs G and H are C2-equivalent
if and only if they are fractionally isomorphic [48, 53, 54]. This means that the adjacency
matrices AG of G and AH of H satisfy AG ·S = S ·AH for some doubly stochastic matrix
S. As another example, C3-equivalence of graphs corresponds to AG ·O = O ·AH for some
orthogonal matrix O that is also an isomorphism between the cellular algebras of G and
H [20]. We provide similar characterisations for all our matrix query language fragments.
It is worth pointing out that beyond MATLANG, Ck-equivalence, for k ≥ 4, can also be
characterised in terms of solutions to linear problems [3, 29, 44].

Moreover, whenever possible, we also provide characterisations in terms of spectral
properties of graphs. A wealth of results exists in spectral graph theory on what information
can be obtained from the adjacency matrix, or from other matrices like the Laplacian, of
a graph [10, 16, 26]. We rely quite a bit on known results in that area. Nevertheless, we
believe that the connections made in this paper are of interest in their own right. They relate
combinatorial and spectral graph invariants by means of query languages. We refer to work
by Fürer [24, 25] for more examples of the power of graph invariants and to Dawar et al. [20]
for connections between logic, combinatorial and spectral invariants.

Although links to logics such as C2 and C3 are made, the connection between MATLANG,
rank logics and fixed-point logics with counting, as studied in the context of the descriptive
complexity of linear algebra [18, 17, 19, 27, 30, 34], is yet to be explored. Similarly for
connections to logic-based graph query languages [2, 5].

2 Background

We denote the set of real numbers by R and the set of complex numbers by C. The set of
m× n-matrices over the real (resp., complex) numbers is denoted by Rm×n (resp., Cm×n).
Vectors are elements of Rm×1 (or Cm×1). The entries of an m × n-matrix A are denoted
by Aij , for i = 1, . . . ,m and j = 1, . . . , n. The entries of a vector v are denoted by vi, for
i = 1, . . . ,m. We often identify R1×1 with R, and C1×1 with C. The following classes of

F. Geerts 7:3

matrices are of interest in this paper: square matrices (elements in Rn×n or Cn×n), symmetric
matrices (such that Aij = Aji for all i and j), doubly stochastic matrices (Aij ∈ R, Aij ≥ 0,∑n
j=1Aij = 1 and

∑m
i=1Aij = 1 for all i and j), doubly quasi-stochastic matrices (Aij ∈ R,∑n

j=1Aij = 1 and
∑m
i=1Aij = 1 for all i and j), and orthogonal matrices (O ∈ Rn×n,

Ot ·O = I = O ·Ot, where Ot denotes the transpose of O obtained by switching rows and
columns, · denotes matrix multiplication, and I is the identity matrix in Rn×n).

We only need a couple of notions of linear algebra. We refer to the textbook by Axler [4]
for more background. An eigenvalue of a matrix A is a scalar λ in C for which there is
a non-zero vector v satisfying A ·v = λv. Such a vector is called an eigenvector of A for
eigenvalue λ. The eigenspace of an eigenvalue is the vector space obtained as the span of a
maximal set of linear independent eigenvectors for this eigenvalue. Here, the span of a set of
vectors just refers to the set of all linear combinations of vectors in that set. A set of vectors
is linear independent if no vector in that set can be written as a linear combination of other
vectors. The dimension of an eigenspace is the minimal number of eigenvectors that span
the eigenspace.

We will only consider undirected graphs without self-loops. Let G = (V,E) be such
a graph with vertices V = {1, . . . , n} and unordered edges E ⊆ {{i, j} | i, j ∈ V }. The
order of G is simply the number of vertices. Then, the adjacency matrix of a graph G of
order n, denoted by AG, is an n × n-matrix whose entries (AG)ij are set to 1 if and only
if {i, j} ∈ E, all other entries are set to 0. The matrix AG is a symmetric real matrix
with zeroes on its diagonal. The spectrum of an undirected graph can be represented as

spec(G) =
(
λ1 λ2 · · · λp
m1 m2 · · · mp

)
, where λ1 < λ2 < · · · < λp are the distinct real eigenvalues

of the adjacency matrix AG of G, and where m1,m2, . . . ,mp denote the dimensions of the
corresponding eigenspaces. Two graphs are said to be co-spectral if they have the same
spectrum. We introduce other relevant notions throughout the paper.

3 Matrix Query Languages

As described in Brijder et al. [9], matrix query languages can be formalised as compositions of
linear algebra operations. Intuitively, a linear algebra operation takes a number of matrices
as input and returns another matrix. Examples of operations are matrix multiplication,
conjugate transposition, computing the trace, just to name a few. By closing such operations
under composition “matrix query languages” are formed. More specifically, for linear
algebra operations op1, . . . , opk the corresponding matrix query language is denoted by
ML(op1, . . . , opk) and consists of expressions formed by the following grammar:

e := X | op1
(
e1, . . . , ep1

)
| · · · | opk

(
e1, . . . , epk

)
,

where X denotes a matrix variable which serves to indicate the input to expressions and pi
denotes the number of inputs required by operation opi. We focus on the case when only a
single matrix variable X is present. The treatment of multiple variables is left for future
work.

The semantics of an expression e(X) in ML(op1, . . . , opk) is defined inductively, relat-
ive to an assignment ν of X to a matrix ν(X) ∈ Cm×n, for some dimensions m and n.
We denote by e

(
ν(X)

)
the result of evaluating e(X) on ν(X). As expected, we define

opi(e1(X), . . . , epi
(X))(ν(X)) := opi

(
e1(ν(X)), . . . , epi

(ν(X))
)
for linear algebra operation

opi. In Table 1 we list the operations constituting the basis matrix query language MATLANG,
introduced in Brijder et al. [9]. In the table we also show their semantics. We note that

ICDT 2019

7:4 On the Expressive Power of Linear Algebra on Graphs

Table 1 Linear algebra operations (supported in MATLANG [9]) and their semantics. In the first
operation, for Aji ∈ C, A∗

ji denotes complex conjugation. In the last operation, Ω =
⋃

k>0 Ωk, where
Ωk consists of functions f : Ck → C.

conjugate transposition (op(e) = e∗)
e(ν(X)) = A ∈ Cm×n e(ν(X))∗ = A∗ ∈ Cn×m (A∗)ij = A∗

ji

one-vector (op(e) = 1(e))
e(ν(X)) = A ∈ Cm×n 1(e(ν(X)) = 1 ∈ Cm×1 1i = 1
diagonalization of a vector (op(e) = diag(e))
e(ν(X)) = A ∈ Cm×1 diag(e(ν(X)) = diag(A) ∈ Cm×m diag(A)ii = Ai,

diag(A)ij = 0, i 6= j

matrix multiplication (op(e1, e2) = e1 ·e2)
e1(ν(X)) = A ∈ Cm×n

e1(ν(X)) ·e2(ν(X)) = C ∈ Cm×o Cij =
∑n

k=1 Aik ×Bkj
e2(ν(X)) = B ∈ Cm×o

matrix addition (op(e1, e2) = e1 + e2)
ei(ν(X)) = A(i) ∈ Cm×n e1(ν)(X) + e2(ν(X)) = B ∈ Cm×n Bij = A

(1)
ij +A

(2)
ij

scalar multiplication (op(e) = c× e, c ∈ C)
e(ν(X)) = A ∈ Cm×n c× e(ν(X)) = B ∈ Cm×n Bij = c×Aij

trace (op(e) = tr(e))
e(ν(X)) = A ∈ Cm×m tr(e(ν(X)) = c ∈ C c =

∑m

i=1 Aii

e(ν(X)) = A ∈ Cm×1 tr(e(ν(X)) = c ∈ C c =
∑m

i=1 Ai

pointwise function application (op(e1, . . . , ep) = apply[f](e1, . . . , ep)), f : Cp → C ∈ Ω
ei(ν(X)) = A(i) ∈ Cm×n apply[f]

(
e1(ν(X)), . . . , ep(ν(X))

)
= B ∈ Cm×n Bij = f(A(1)

ij , . . . , A
(p)
ij)

restrictions on the dimensions are in place to ensure that operations are well-defined. Using
a simple type system one can formalise a notion of well-formed expressions which guarantees
that the semantics of such expressions is well-defined [9]. We only consider well-formed
expressions from here on.
I Remark 3.1. The list of operations in Table 1 differs slightly from the list presented in
Brijder et al. [9]: We explicitly mention scalar multiplication (×) and addition (+), and the
trace operation (tr), all of which can be expressed in MATLANG. Hence, MATLANG and
ML(· , ∗, tr,1, diag,+,×, apply[f], f ∈ Ω) are equivalent.

4 Expressive Power

As mentioned in the introduction, we are interested in the expressive power of matrix query
languages. In this paper, we consider sentences in these languages. We define an expression
e(X) in ML(op1, . . . , opk) to be a sentence if e(ν(X)) returns a 1×1-matrix for any assignment
ν of X. We note that the type system of MATLANG allows to check whether an expression
in ML(L) is a sentence (see Brijder et al. [9] for more details). Having defined sentences, a
notion of equivalence naturally follows.

I Definition 4.1. Two matrices A and B in Cm×n are said to be ML(op1, . . . , opk)-equivalent,
denoted by A ≡ML(op1,...,opk) B, if and only if e(A) = e(B) for all sentences e(X) in
ML(op1, . . . , opk).

In other words, equivalent matrices cannot be distinguished by sentences in the matrix query
language under consideration. Equivalence with regards to sentences resembles the standard
notion of equivalence used in logic.

F. Geerts 7:5

We aim to characterise equivalence for various matrix query languages. We will, however,
not treat this problem in full generality and instead, to gain intuition, start by considering
adjacency matrices of undirected graphs. The corresponding notion of equivalence on graphs
is defined, as expected:

I Definition 4.2. Two graphs G and H of the same order are said to be ML(op1, . . . , opk)-
equivalent, denoted by G ≡ML(op1,...,opk) H, if and only if their adjacency matrices are
ML(op1, . . . , opk)-equivalent.

I Remark 4.3. One could imagine defining equivalence with regards to arbitrary expressions,
i.e., expressions in MATLANG that are not necessarily sentences. Such a notion would be
too strong, however. Indeed, requiring that e(AG) = e(AH) for arbitrary expressions e(X)
would imply that AG = AH and hence G = H.

In the following sections we consider graph equivalence for various fragments, starting
from simple fragments only supporting a couple of operations, up to the full MATLANG
matrix query language.

5 Expressive Power of the Matrix Query Language ML(· , tr)

The smallest fragment we consider is ML(· , tr). This is a very restrictive fragment since the
only sentences that one can express are of the form (i) #cwalkk(X) := tr(Xk), where Xk

stands for the kth power of X, i.e., X multiplied k times with itself, and (ii) products of
such sentences. We note that, when evaluated on an adjacency matrix AG, #cwalkk(AG)
counts the number of closed walks of length k in G.

Indeed, the entries of the powers AkG of adjacency matrix AG are known to correspond to
the number of walks of length k in G. Recall that a walk of length k in a graph G = (V,E)
is a sequence (v0, v1, . . . , vk) of vertices of G such that consecutive vertices are adjacent in
G, i.e., {vi−1, vi} ∈ E for all i = 1, . . . , k. Furthermore, a closed walk is a walk that starts in
and ends at the same vertex. Hence, #cwalkk(AG) =

∑
i(AkG)ii indeed counts closed walks

of length k in G. Closed walks of length 0 correspond, as usual, to vertices in G.
The following characterisations are known to hold.

I Proposition 5.1 ([10, 16]). Let G and H be two graphs of the same order. The following
are equivalent:

G and H have the same total number of closed walks of length k, for all k ≥ 0,
tr(AkG) = tr(AkH) for all k ≥ 0,
G and H are co-spectral, and
there exists a real orthogonal matrix O such that AG ·O = O ·AH .

I Example 5.2. The graphs G1 () and H1 () are the smallest pair (in terms of number of
vertices) of non-isomorphic co-spectral graphs of the same order [13]. Note that the isolated
vertex in G1 ensures that G1 and H1 have the same number of vertices (and thus the same
number of closed walks of length 0).
A characterisation of ML(· , tr)-equivalence now easily follows.

I Proposition 5.3. For two graphs G and H of the same order, G ≡ML(· , tr) H if and only
if there exists a real orthogonal matrix O such that AG ·O = O ·AH if and only if G and H
have the same number of closed walks of any length.

Proof. By definition, if G ≡ML(· , tr) H, then e(AG) = e(AH) for any sentence e(X) in
ML(· , tr). This holds in particular for the sentences #cwalkk(X) := tr(Xk) in ML(· , tr), for

ICDT 2019

7:6 On the Expressive Power of Linear Algebra on Graphs

k ≥ 1. That is, G ≡ML(· , tr) H implies that tr(AkG) = tr(AkH) for all k ≥ 1. Since G and H
are of the same order and A0

G = A0
H = I (by convention), tr(A0

G) = tr(A0
H) = tr(I) = n.

From the previous proposition it then follows that there exists an orthogonal matrix O such
that AG ·O = O ·AH .

For the converse, assume that AG ·O = O ·AH for some orthogonal matrix O. We already
remarked that sentences in ML(· , tr) are products of sentences of the form #cwalkk(X) :=
tr(Xk). It now suffices to observe that tr(P ·A ·P−1) = tr(A) for any matrix A and any
invertible matrix P . In particular, tr(AkG) = tr(Ot ·AkG ·O) = tr(Ot ·O ·AkH) = tr(AkH). J

From an expressiveness point of view, it tells that ML(· , tr)-equivalence of two graphs
implies that their adjacency matrices share the same rank, characteristic polynomial, determ-
inant, eigenvalues, and their algebraic multiplicities, geometric multiplicities of eigenvalues,
just to name a few.

Given that the trace operation is a linear mapping, i.e., tr(cA+ dB) = ctr(A) + dtr(B) for
matrices A and B and complex numbers c and d, one would expect that matrix addition (+)
and scalar multiplication (×) can be added to ML(· , tr) without an increase in expressiveness.
Indeed, one can rewrite sentences in ML(· , tr,+,×) as a linear combination of sentences in
ML(· , tr). Combined with the linearity of tr(·), Proposition 5.3 can be extended as follows.

I Corollary 5.4. For two graphs G and H of the same order, we have that G ≡ML(· , tr) H if
and only if G ≡ML(· , tr,+,×) H.

We can further strengthen Corollary 5.4 by allowing the application of any function
f : Cp → C in Ω, provided that apply[f](e1, . . . , ep) is only allowed when each ei is a sentence.
That is, we only allow pointwise function applications on “scalars”. The restriction of such
function applications is denoted by applys[f], for f ∈ Ω. Indeed, G ≡ML(· , tr,+,×) H implies
that e(AG) = e(AH) for any sentence e(X) in ML(· , tr,+,×). Clearly, when ei(AG) = ei(AH)
for all i = 1, . . . , p, applys[f](e1(AG), . . . , ep(AG)) = applys[f](e1(AH), . . . , ep(AH)).

I Corollary 5.5. For two graphs G and H of the same order, G ≡ML(· , tr,+,×) H if and only
if G ≡ML(· , tr,+,×,applys[f],f∈Ω) H.

Finally, we can also add conjugate transposition (∗) without increasing the expressive
power, provided that we mildly restrict the class Ω of pointwise functions. More precisely, we
assume that Ω is closed under complex conjugation in the sense that for every f ∈ Ω also the
composition ∗ and f is in Ω. This assumption, together with standard properties of complex
conjugation and conjugate transposition (in particular, (A ·B)∗ = B∗ ·A∗, (A∗)∗ = A and
linearity) and using the fact that adjacency matrices of undirected graphs are symmetric,
allows one to rewrite expressions in ML(· , ∗, tr,+,×, applys[f], f ∈ Ω) such that ∗ is only
applied on scalars. As a consequence, any expression in ML(· , ∗, tr,+,×, applys[f], f ∈ Ω) is
equivalent to an expression in ML(· , tr,+,×, applys[f], f ∈ Ω).

I Corollary 5.6. Let Ω be a class of pointwise functions that is closed under complex
conjugation. Then, for two graphs G and H of the same order, G ≡ML(· , tr,+,×,applys[f],f∈Ω) H

if and only if G ≡ML(· ,∗, tr,+,×,applys[f],f∈Ω) H.

As a consequence, the graphs G1 () and H1 () from Example 5.2 cannot be distinguished
by sentences in ML(· , ∗, tr,+,×, applys[f], f ∈ Ω).

As we will see later, including any other operation from Table 1, such as 1(·), diag(·) or
pointwise function applications on vector or matrices, requires additional constraints on the
orthogonal matrix O linking AG with AH .
I Remark 5.7. Corollaries 5.4, 5.5 and 5.6 hold for any fragment that we will consider.

F. Geerts 7:7

6 The Impact of the 1(·) Operation

The 1(·) operation, which returns the all-ones vector 11, allows to extract other information
from graphs than just the number of closed walks. Indeed, consider the sentences

#walkk(X) := (1(X))∗ ·Xk ·1(X) and #walk′k(X) := tr(Xk ·1(X)),

in ML(· , ∗,1) and ML(· , tr,1), respectively. When applied on adjacency matrix AG of a graph
G, #walkk(AG) (and also #walk′k(AG)) returns the number of (not necessarily closed) walks
in G of length k. In relation to the previous section, co-spectral graphs do not necessarily
have the same number of walks of any length. Similarly, graphs with the same number of
walks of any length are not necessarily co-spectral.

I Example 6.1. It can be verified that the co-spectral graphs G1 () and H1 () of
Example 5.2 have 16 versus 20 walks of length 2, respectively. As a consequence, ML(· , ∗,1)
and ML(· , tr,1) can distinguish G1 from H1 by means of the sentences #walk2(X) and
#walk′2(X), respectively. By contrast, the graphs G2 () and H2 () are not co-
spectral, yet have the same number of walks of any length. It is easy to see that G2 and H2
are not co-spectral (apart from verifying that their spectra are different): H2 has 12 closed
walks of length 3 (because of the triangles), whereas G2 has none. We argue below why they
have the same number of walks. As a consequence, ML(· , tr) (and thus also ML(· , tr,1)) can
distinguish G2 and H2. It follows from Proposition 6.6 below that these graphs cannot be
distinguished by ML(· , ∗,1).

Graphs sharing the same number of walks of any length have been investigated before
in spectral graph theory [14, 15, 32, 49]. To state a spectral characterisation, the so-called
main spectrum of a graph needs to be considered. The main spectrum of a graph is the set
of eigenvalues whose eigenspace is not orthogonal to the 1 vector. More formally, for an
eigenvalue λ and corresponding eigenspace, represented by a matrix V whose columns are
eigenvectors of λ that span its eigenspace, the main angle βλ of λ’s eigenspace is 1√

n
‖V t ·1‖2,

where ‖·‖2 is the Euclidean norm. Hence, main eigenvalues are those with a non-zero main
angle. Two graphs are said to be co-main if they have the same set of main eigenvalues and
corresponding main angles. Intuitively, the importance of the orthogonal projection on 1
stems from the observation that #walkk(AG) can be expressed as

∑
i λ

k
i β

2
λi

where the λi’s
are eigenvalues of AG. Clearly, only those eigenvalues λi for which βλi

> 0 matter when
computing #walkk(AG). This results in the following characterisation.

I Proposition 6.2 (Theorem 1.3.5 in Cvetković et al. [16]). Two graphs G and H of the same
order are co-main if and only if they have the same total number of walks of length k, for
every k ≥ 0.

Furthermore, the following proposition follows implicitly from the proof of Theorem 3 in
van Dam et al. [56] (and is also shown in Theorem 1.2 in Dell et al. [21] in the context of
distinguishing graphs by means of homomorphism vectors).

I Proposition 6.3. Two graphs G and H of the same order have the same total number of
walks of length k, for every k ≥ 0, if and only if there is a doubly quasi-stochastic matrix Q
such that AG ·Q = Q ·AH , i.e., such that AG ·Q = Q ·AH , Q ·1 = 1 and Qt ·1 = 1 hold.

1 We use 1 to denote the all ones vector (of appropriate dimension) and use 1(·) (with brackets) for the
corresponding all ones operator.

ICDT 2019

7:8 On the Expressive Power of Linear Algebra on Graphs

I Example 6.4 (Continuation of Example 6.1). Consider the subgraph G3 () of G2 and

the subgraph H3 () of H2. We have that AG3 ·Q = Q ·AH3 for

AG3 =

0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0

, AH3 =

0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0

, Q =

0 0 1
2 0 0 1

2
0 0 0 1

2
1
2 0

1
2 0 0 0 1

2 0
0 1

2 0 0 0 1
2

0 1
2

1
2 0 0 0

1
2 0 0 1

2 0 0

,

and hence by Proposition 6.3, G3 and H3 have the same number of walks on any length.

As it turns out, the values of the sentences #walkk(AG) mentioned earlier, that count the
number of walks of length k in G, fully determine the value of any sentence in ML(· , ∗,1).

I Lemma 6.5. Let G and H be two graphs of the same order. Then, G ≡ML(· ,∗,1) H if and
only if #walkk(AG) = #walkk(AH) for all k ≥ 1.

The proof involves an analysis of expressions in ML(· , ∗,1). We may thus conclude from
Proposition 6.3 and Lemma 6.5 that:

I Proposition 6.6. For two graphs G and H of the same order, G ≡ML(· ,∗,1) H if and only
if there exists a doubly quasi-stochastic matrix Q such that AG ·Q = Q ·AH if and only if G
and H have the same number of walks of any length.

When it comes to ML(· , tr,1), we know from Propositions 5.1 and 5.3 that G ≡ML(· , tr,1) H

implies that G and H are co-spectral. Combined with Proposition 6.2 and the fact that the
sentence #walk′k(X) counts the number of walks of length k, we have that G ≡ML(· , tr,1) H

implies that G and H are co-spectral and co-main. The following is known about such
graphs.

I Proposition 6.7 ([38, 56]). Two co-spectral graphs G and H of the same order are co-main
if and only if there exists an orthogonal matrix O such that AG ·O = O ·AH and O ·1 = 1.

In other words, G ≡ML(· , tr,1) H implies the existence of an orthogonal matrix O such
that O ·1 = 1 (i.e., O is also doubly quasi-stochastic) and AG ·O = O ·AH . An analysis of
expressions in ML(· , tr,1) shows that the converse also holds.

I Proposition 6.8. For two graphs G and H of the same order, G ≡ML(· , tr,1) H if and only
if there exists an orthogonal matrix O such that AG ·O = O ·AH and O ·1 = 1 if and only if
G and H have the same number of closed walks and the same number of walks of any length.

An alternative characterisation (also in van Dam et al. [56]) is that G and H are co-
spectral and co-main if and only if both G and H and their complement graphs Ḡ and H̄
are co-spectral. Here, the complement graph Ḡ of G is the graph with adjacency matrix
given by J −AG − I, where J is the all ones matrix, and similarly for H̄.

I Example 6.9 (Continuation of Example 6.1). Consider the subgraph G4 () of G2 and the

subgraph H4 () of H2. These are known to be the smallest non-isomorphic co-spectral
graphs with co-spectral complements [31]. From Proposition 6.8 it then follows that G4 and
H4 have the same number of walks of any length. Combined with our earlier observation in
Example 6.4 that also G3 and H3 have this property, we may conclude that G2 = G3 ∪G4

() and H2 = H3 ∪ H4 () have the same number of walks of any length, as
anticipated in Example 6.1.

F. Geerts 7:9

We remark that as a consequence of Propositions 6.6 and 6.8, G ≡ML(· , tr,1) H implies
that G ≡ML(· ,∗,1) H. We already mentioned in Example 6.1 that the graphs G2 () and

H2 () show that the converse does not hold.
As before, we observe that addition, scalar multiplication, conjugate transposition and

pointwise function application on scalars can be included at no increase in expressiveness.

I Corollary 6.10. Let G and H be two graphs of the same order. Then,
G ≡ML(· ,∗,1,+,×,applys[f],f∈Ω) H if and only if G ≡ML(· ,∗,1) H, and
G ≡ML(· , ∗, tr,1,+,×,applys[f],f∈Ω) H if and only if G ≡ML(· , tr,1) H,

where Ω is assumed to be closed under complex conjugation.

7 The Impact of the diag(·) Operation

We next consider the operation diag(·) which takes a vector as input and returns a diagonal
matrix with the input vector on its diagonal. The smallest fragments in which vectors
(and sentences) can be defined are ML(· , tr,1) and ML(· , ∗,1). Therefore, in this section we
consider equivalence with regards to ML(· , tr,1, diag) and ML(· , ∗,1, diag).

Using diag(·) we can again extract new information from graphs.

I Example 7.1. Consider graphs G4 () and H4 (). In G4 we have vertices of degrees
0 and 2, and in H4 vertices of degrees 1, 2 and 3. We will count the number of vertices of
degree 3. To this aim consider the sentence #3degr(X) given by(

1
6

)
× 1(X)∗ ·

(
diag(X ·1(X)) · diag(X ·1(X)− 1(X)) · diag(X ·1(X)− 2× 1(X))

)
·1(X),

in which we, for convenience, allow addition and scalar multiplications. Each of the subex-
pressions diag(X ·1(X)− d× 1(X)), for d = 0, 1 and 2, sets the diagonal entry corresponding
to vertex v to 0 when v has degree d. By taking the product of these diagonal matrices,
entries that are set to 0 will remain zero in the resulting diagonal matrix. This implies
that the only non-zero diagonal entries are those corresponding to vertices of degree dif-
ferent from 0, 1 and 2. In other words, only for vertices of degree 3 the diagonal entries
carry a non-zero value, i.e., value 3(3− 1)(3− 2). By appropriately rescaling by the factor
1
6 = 1

3(3−1)(3−2) , the diagonal entries for the degree three vertices are set to 1, and then
summed up. Hence, #3degr(X) indeed counts the number vertices of degree three in G4 and
H4. Since #3degr(AG4) = [0] 6= [1] = #3degr(AH4) we can distinguish these graphs.

The use of the diagonal matrices and their products as in our example sentence #3degr(X)
can be generalised to obtain information about so-called iterated degrees of vertices in graphs,
e.g., to identify and/or count vertices that have a number of neighbours each of which have
neighbours of specific degrees. Such iterated degree information is closely related to equitable
partitions of graphs (see e.g., Scheinerman et al. [50]). We phrase our results in terms of
such partitions instead of iterated degree sequences.

7.1 Equitable Partitions
Formally, an equitable partition V = {V1, . . . , V`} of G is partition of the vertex set of G
such that for all i, j = 1, . . . , ` and v, v′ ∈ Vi, deg(v, Vj) = deg(v′, Vj). Here, deg(v, Vj) is the
number of vertices in Vj that are adjacent to v. In other words, an equitable partition is such
that the graph is regular within each part, and is bi-regular between any two different parts.

ICDT 2019

7:10 On the Expressive Power of Linear Algebra on Graphs

A graph always has a trivial equitable partition: simply treat each vertex as a part by its
own. Most interesting is the coarsest equitable partition of a graph, i.e., the unique equitable
partition for which any other equitable partition of the graph is a refinement thereof [50].
Two graphs G and H are said to have a common equitable partition if there exists an
equitable partition V = {V1, . . . , V`} of G and an equitable partition W = {W1, . . . ,W`}
of H such that (a) the sizes of the parts agree, i.e., |Vi| = |Wi| for each i = 1, . . . , `,
and (b) deg(v, Vj) = deg(w,Wj) for any v ∈ Vi and w ∈ Wi and any i, j = 1, . . . , `. We
note that, due to condition (b) the trivial partitions of graphs do not always result in a
common equitable partition. In other words, not every two graphs (of the same order) have
a common equitable partition. Proposition 7.2 below characterises when they do have a
common partition. Equitable partitions naturally arise as the result of the colour refinement
procedure [6, 28, 57], also known as the 1-dimensional Weisfeiler-Lehman algorithm, used as
a subroutine in graph isomorphism solvers. Furthermore, there is a close connection to the
study of fractional isomorphisms of graphs [50, 53], already mentioned in the introduction.
We recall: two graphs G and H are said to be fractional isomorphic if there exists a doubly
stochastic matrix S such that AG ·S = S ·AH . Furthermore, a logical characterisation of
graphs with a common equitable partition exists.

I Proposition 7.2 ([53], [36]). Let G and H be two graphs of the same order. Then, G and
H are fractional isomorphic if and only if G and H have a common equitable partition if
and only if G ≡C2 H.

I Example 7.3. The matrix linking the adjacency matrices of G3 () and H3 () in
Example 6.4 is in fact a doubly stochastic matrix (all its entries are either 0 or 1

2). Hence,
G3 and H3 have a common equitable partition, which in this case consists of a single part
consisting of all vertices. This generally holds for graphs that are k-regular (meaning, each
vertex is adjacent to k vertices) for the same k [48, 50]. By contrast, graphs G2 () and

H2 () do not have a common equitable partition. Indeed, fractional isomorphic graphs
must have the same degree sequence [50], which does not hold for G2 and H2. For the same
reason, G1 () and H1 (), and G4 () and H4 () are not fractional isomorphic.

To related equitable partitions to ML(· , tr,1, diag)- and ML(· , ∗,1, diag)-equivalence, we
show that the presence of diag(·) allows to formulate a number of expressions, denoted by
eqparti(X), for i = 1, . . . , `, that together extract the coarsest equitable partition from a
given graph.

In the following, L can be either {· , tr,1, diag} or {· , ∗,1, diag}. Furthermore, we denote by
L+ the extension of L with linear combinations (i.e., + and ×), pointwise function applications
on scalars (i.e., applys[f], f ∈ Ω) and conjugate transposition (∗). The corresponding matrix
query languages are denoted by ML(L) and ML(L+), respectively.

We start by reducing the problem of ML(L+)-equivalence to ML(L)-equivalence.

I Lemma 7.4. Let G and H be two graphs of the same order. Then, G ≡ML(L) H if and
only if G ≡ML(L+) H.

This lemma is verified by showing that expressions in ML(L+) can be seen as linear combin-
ations of expressions in ML(L), in an analogous way as in the proof of Corollary 6.10. For
example, it is clear that #3degr(X) can be written as such a linear combination.

We next relate G ≡ML(L+) H and common equitable partitions of G and H.

I Proposition 7.5. Let G and H be two graphs of the same order. Then, G ≡ML(L+) H

implies that G and H have a common equitable partition.

F. Geerts 7:11

Proof. We show that the algorithm cgcr(AG), described in Kersting et al. [39], which
computes the coarsest equitable partition of a graph can be simulated by expressions in
ML(L+). To describe a partition V = {V1, . . . , V`} of the vertex set of G we use indicator
vectors. More precisely, we define 1Vi as the n× 1-vector which has a “1” for those entries
corresponding to vertices in Vi and has all its other entries set to “0”. It is clear that we
can also recover partitions from indicator vectors. The simulation of cgcr(AG) results in a
number of expressions, denoted by eqparti(X) for i = 1, . . . , `, in ML(L+) that depend on G
and such that the set {eqparti(AG)} consists of indicator vectors of the coarsest equitable
partition of G. Since the algorithm cgcr(AG) is phrased in linear algebra terms [39], its
simulation follows easily. Underlying this simulation is the use of products of diagonal
matrices as a means of taking conjunctions of indicator vectors, similar to the propagation of
zeroes used in #3degr(X).

The expressions eqparti(X) are constructed based on G. Next, using our assumption
G ≡ML(L+) H, we show that the vectors eqparti(AH), for i = 1, . . . , `, also correspond to the
coarsest equitable partition of H. This is done in a number of steps:
1. We verify that each eqparti(AH) is also an indicator vector containing the same number

of 1’s as eqparti(AG).
2. We verify that any distinct pair of indicator vectors in {eqparti(AH)} have no common

entry holding value “1”. This implies that the set {eqparti(AH)} also represents a partition.
3. Finally, we verify that the set {eqparti(AH)} corresponds to an equitable partition of H

which, together with the partition corresponding to {eqparti(AG)}, witnesses that G and
H have a common equitable partition. Since {eqparti(AG)} is an equitable partition,

diag(eqparti(AG)) ·AG · diag(eqpartj(AG)) = deg(v, Vj)× diag(eqparti(AG)),

for some v ∈ Vi. Here,V = {V1, . . . , V`} denotes the equitable partition corresponding to in-
dicator vectors {eqparti(AG)}. Then, G ≡ML(L+) H implies that diag(eqparti(AH)) ·AH ·
diag(eqpartj(AH)) is the diagonal matrix deg(v, Vj)× diag(eqparti(AH)). Hence, we have
that deg(w,Wj) = deg(w′,Wj), for any w,w′ ∈ Wi, and furthermore, deg(v, Vj) =
deg(w,Wj). Here, we denote by W = {W1, . . . ,W`} the partition corresponding to
{eqparti(AH)}.

All combined, we may conclude that G and H have indeed a common equitable partition. J

7.2 Characterisations
For ML(· , ∗,1, diag,+,×, applys[f], f ∈ Ω) we also have the converse.

I Proposition 7.6. Let G and H be two graphs of the same order. If G and H have a common
equitable partition, then e(AG) = e(AH) for any sentence e(X) in ML(· ,∗ ,1, diag,+,×,
applys[f], f ∈ Ω).

Proof. Let V = {V1, . . . , V`} and W = {W1, . . . ,W`} be the common coarsest equitable
partitions of G and H, respectively. Denote by {1Vi

} and {1Wi
}, for i = 1, . . . , `, the

corresponding indicator vectors. We know from Proposition 7.2 that there exists a doubly
stochastic matrix S such that AG ·S = S ·AH . In fact, S can be assumed to have a block
structure in which the only non-zero blocks are those relating 1Vi and 1Wi [50]. As a
consequence, 1Vi

= S ·1Wi
and 1t

Vi
·S = 1t

Wi
for i = 1, . . . , `. The key insight in the proof

is that when e(AG) is an n × 1-vector, it can be written as a linear combination of 1Vi ’s,

ICDT 2019

7:12 On the Expressive Power of Linear Algebra on Graphs

say
∑
ai × 1Vi . Moreover, also e(AH) =

∑
ai × 1Wi . As a consequence, e(AG) = S ·e(AH)

meaning that e(AG) is just a permutation of e(AH). For this to hold, it is essential that we
work with equitable partitions common to G and H. For example, if e(X) := X ·1(X) then

e(AG) = AG ·1 =
∑̀
i=1

AG ·1Vi =
∑̀
i,j=1

deg(vi, Vj)× 1Vi

=
∑̀
i,j=1

deg(wi,Wj)× (S ·1Wi
) = S ·e(AH),

for some vi ∈ Vi and wi ∈Wi. The challenging case in the proof is when e(X) := diag(e′(X)).
Based on the decomposition of n× 1-vectors and the block structure of S, we have

diag(e′(AG)) ·S =
∑̀
i=1

ai × diag(1Vi
) ·S =

∑̀
i=1

ai × (S · diag(1Wi
)) = S · diag(e′(AH)),

which allows to prove that AG ·S = S ·AH implies that e(AG) = e(AH) for all sentences in
our fragment. J

All combined, we obtain the following characterisation.

I Theorem 7.7. Let G and H be two graphs of the same order. Then, G ≡ML(· ,∗,1,diag) H

if and only if G ≡ML(· ,∗,1,diag,+,×,applys[f],f∈Ω) H if and only if there is a doubly stochastic
matrix S such that AG ·S = S ·AH if and only if G ≡C2 H.

As a consequence, following Example 7.3, sentences in ML(· ,∗ ,1, diag) can distinguish
G1 () and H1 (), G2 () and H2 (), G4 () and H4 (), but cannot

distinguish G3 () and H3 ().
We next turn our attention to ML(· , tr,1, diag)- and ML(· , ∗, tr,1, diag,+,×, applys[f], f ∈

Ω)-equivalence. Theorem 5.3 implies that G and H are co-spectral and we thus need to
combine the existence of a common equitable partition with the existence of an orthogonal
matrix O such that AG ·O = O ·AH . We remark that we cannot simply require O to be
doubly stochastic as this would imply that O is a permutation matrix2, which in turn would
imply that G and H are isomorphic, contradicting that our fragments cannot go beyond
C3-equivalence, as we see later.

A characterisation is obtained inspired by a characterisation of simultaneous equivalence
of the so-called 1-dimensional Weisfeiler-Lehman closure of adjacency matrices [52]. Let
V = {V1, . . . , V`} and W = {W1, . . . ,W`} be common equitable partitions of G and H.
Following Thüne [52], we say that an orthogonal matrix O such that AG ·O = O ·AH is
compatible with V and W if O can be block partitioned into ` orthogonal matrices Oi of size
|Vi| such that 1Vi

= O ·1Wi
, for all i = 1, . . . , `. Given this notion, we have the following

characterisation.

I Theorem 7.8. Let G and H be graphs of the same order. Then the following holds:
G ≡ML(· , tr,1,diag) H if and only if G ≡ML(· ,∗, tr,1,diag,+,×,applys[f],f∈Ω) H if and only if G and
H have a common equitable partition, say V and W, and furthermore AG ·O = O ·AH for
some orthogonal matrix O that is compatible with V and W.

2 This is an immediate consequence of the Birkhoff-von Neumann Theorem which states that any doubly
stochastic matrix lies in the convex hull of permutation matrices [45].

F. Geerts 7:13

Proof. If G ≡ML(· ,∗, tr,1,diag,+,×,applys[f],f∈Ω) H, then for any k, tr(e(AG)k) = tr(e(AH)k)
for any expression e(X) such that e(AG) (and thus also e(AH)) is an n × n-matrix. As
argued in Thüne [52] this implies the existence of a single orthogonal matrix O such that
AG ·O = O ·AH and e(AG) ·O = O ·e(AH). (The proof relies on Specht’s Theorem which
relates the existence of an orthogonal matrix simultaneously linking sets of matrices to trace
equality conditions [37].) In particular, diag(eqparti(AG)) ·O = O · diag(eqparti(AH)), for
i = 1, . . . , `, where eqparti(X) are the expressions computing the equitable partition given in
the proof of Proposition 7.5. Lemma 6 in Thüne [52] shows that O must be compatible with
the common equitable partitions represented by eqparti(AG) and eqparti(AH).

For the converse, we argue as in Proposition 7.6, using orthogonal matrices (which
preserve the trace operation) instead of doubly stochastic matrices. J

Note that G ≡ML(· ,tr,1,diag) H implies G ≡ML(· ,∗,1,diag) H. The converse does not hold.

I Example 7.9. Consider G3 () and H3 (). These graphs are fractional isomorphic
but are not co-spectral. Hence, G3 6≡ML(· , tr,1,diag) H3 since ML(· , tr,1, diag)-equivalence
implies co-spectrality. On the other hand, G5 () and H5 () are co-spectral regular
graphs [55], with co-spectral complements, which cannot be distinguished by ML(· , tr,1, diag).

A close inspection of the proofs of Proposition 7.6 and Theorem 7.8, shows that G ≡ML(L+)
H implies that for any expression e(X) in ML(L+) such that e(AG) (and thus also e(AH))
is an n× 1-vector, e(AG) is a permutation of e(AH). Indeed, both can be written as linear
combinations of indicator vectors, e(AG) in terms of 1Vi

’s and e(AH) in terms of 1Wi
’s, using

the same coefficients. This implies that we can allow pointwise function applications on
vectors and scalars, denoted by applyv[f], f ∈ Ω, at no increase in expressiveness.

I Corollary 7.10. Let G and H be two graphs of the same order. We have that G ≡ML(L) H

if and only if G ≡ML(L+∪{applyv[f],f∈Ω}) H.

I Remark 7.11. An equitable partition can be defined without the diag(·) operation, provided
that function applications on vectors are allowed. Hence, the same story holds when first
adding pointwise function applications on vectors to ML(· , ∗,1) and ML(· , tr,1), rather than
first adding diag(·) like we did in this section.

8 The Impact of Pointwise Functions on Matrices

We conclude by considering pointwise function applications on matrices, the only operation
from Table 1 that we did not consider yet. As we will see shortly, pointwise multiplication
of matrices, also known as the Schur-Hadamard product, is what results in an increase in
expressive power. We denote the Schur-Hadamard product by the binary operator ◦, i.e.,
(A ◦B)ij = AijBij for matrices A and B.

I Example 8.1. We recall that in expression #3degr(X) in Example 7.1, products of diagonal
matrices resulted in the ability to zoom in on vertices that carry specific degree information.
When diagonal matrices are concerned, the product of matrices coincides with pointwise
multiplication of the vectors on the diagonals. Allowing pointwise multiplication on matrices
has the same effect, but now on edges in graphs. As an example, suppose that we want to
count the number of “triangle paths” in G, i.e., paths (v0, . . . , vk) of length k in G such that
each edge (vi−1, vi) on the path is part of a triangle. This can be done by expression

#∆pathsk(X) := 1(X)∗ ·((apply[f>0](X2 ◦X))k ·1(X),

ICDT 2019

7:14 On the Expressive Power of Linear Algebra on Graphs

where f>0(x) = 1 if x 6= 0 and f>0(x) = 0 otherwise 3. Indeed, when evaluated on adjacency
matrix AG, A2

G ◦AG extracts from A2
G only those entries corresponding to paths (u, v, w) of

length 2 such that (u,w) is an edge as well, i.e., it identifies edges involved in triangles. Then,
apply[f>0](A2

G◦AG) sets all non-zero entries to 1. By considering the kth power of this matrix
and summing up all its entries, the number of triangle paths is obtained. It can be verified that
for graphs G5 () and H5 (), #∆paths2(AG5) = [160] 6= [132] = #∆paths2(AH5)
and hence, they can be distinguished when the Schur-Hadamard product is available. Recall
that all previous fragments could not distinguish between these two graphs.

In fact, in ML(· , ∗, tr,1, diag,+,×, ◦) we can compute the coarsest stable edge colouring
of a graph G = (V,E) which arises as the result of applying the edge colouring algorithm
by Weisfeiler-Lehman [6, 11, 47, 57]. Initially, an edge colouring χ0 : V × V → {0, 1, 2} is
defined such that χ0(v, v) = 2, χ0(v, w) = 1 if {v, w} ∈ E, and χ0(v, w) = 0 for v 6= w and
{v, w} 6∈ E. Such a colouring naturally induces a partitioning Πχ0 of V × V . A colouring
χ : V × V → C for some set of colours C is called stable if and only if for any two pairs
(v1, v2) and (v′1, v′2) in V × V ,

χ(v1, v2) = χ(v′1, v′2)⇔ L2(v1, v2) = L2(v′1, v′2),

where for a pair (v, v′) ∈ V × V and pairs (c, d) of colours in C,

L2(v, v′) := {(c, d, pc,dv,v′) | p
c,d
v,v′ 6= 0} and pc,dv,v′ := |{v′′ ∈ V | χ(v, v′′) = c, χ(v′′, v′) = d}|.

In other words, L2(v, v′) lists the number of triangles (v, v′, v′′) in which (v, v′′) has colour c
and (v′′, v) has colour d, for each pair of colours. Such a stable edge colouring χ is called
coarsest when the corresponding edge partition Πχ is the coarsest stable edge partition. That
is, Πχ refines Πχ0 , χ is stable and any other colouring satisfying these conditions results in a
finer partition than Πχ.

Two graphs G = (V,E) and H = (W,F) are said to be indistinguishable by edge
colouring, denoted by G ≡2WL H, if the following holds. Let ΠχG

= {E1, . . . , E`} and
ΠχH

= {F1, . . . , F`} be the edge partitions corresponding to stable edge colourings χG and
χH of H. Then, G ≡2WL H if there is a bijection ı : ΠχG

→ ΠχH
such that Ei and Fı(i) have

the same colour and the same number of entries carrying value 1.
In the seminal paper by Cai, Fürer and Immerman [11], the following was shown.

I Theorem 8.2. Let G and H be two graphs of the same order. Then, G ≡2WL H if and
only if G ≡C3 H.

We have the following characterisation of ML(· , ∗, tr,1, diag,+,×, ◦)-equivalence.

I Theorem 8.3. Let G and H be two graphs of the same order, then G ≡ML(· ,∗, tr,1,diag,+,×,◦)
H if and only if G ≡C3 H.

Proof. We only have space here to sketch the proof. The proof is not that different from
the one used in the context of equitable partitions. Let G = (V,E) and H = (W,F) be
two graphs. First, we simulate algorithm 2-stab(AG) [6], that computes the coarsest stable
edge colouring, by expressions stabcoli(X), for i = 1, . . . , `, in ML(· , ∗, tr,1, diag,+,×, ◦).
Each stabcoli(AG) is an indicator matrix representing the part of the partition Π of V × V

3 The use of apply[f>0](·) is just for convenience and can be simulated when evaluated on given instances
using · , +, × and ◦.

F. Geerts 7:15

corresponding to a specific colour. Based on well-known properties of these indicator matrices
(they form standard basis of the cellular or coherent algebra associated with G [33]), we
show that G ≡ML(· ,∗, tr,1,diag,+,×,◦) H implies that {stabcoli(AH)} also represent a partition
of W × W corresponding to the coarsest stable colouring of H. Finally, G and H are
shown to be indistinguishable by edge colouring, based on the partitions {stabcoli(AG)} and
{stabcoli(AH)}. Hence, by Theorem 8.2, G ≡ML(· ,∗, tr,1,diag,+,×,◦) H implies G ≡C3 H.

For the converse, we use that G ≡2WL H implies that there exists an orthogonal matrix O
such that AG ·O = O ·AH and furthermore, the mapping Y 7→ O ·Y ·Ot is an isomorphism
between the cellular algebras of G and H. In particular, it commutes with the Schur-
Hadamard product [23]. This is crucial to show that e(AG) = e(AH) for all sentences
e(X) ∈ ML(· , ∗, tr,1, diag,+,×, ◦). J

I Remark 8.4. We can do some simplification in ML(· , ∗, tr,1, diag,+,×, ◦). Indeed, the
trace operator can be simulated by tr(e(X)) = 1(X)∗ ·(e(X) ◦ diag(1(X))) ·1(X) and can
hence be omitted. Moreover, diag(·) can be replaced by a simpler operator, denoted
by Id, which returns the identity matrix of the same dimensions as the input. Indeed,
diag(e(X)) = (e(X) ·1(X)∗) ◦ Id(X). We can thus work with ML(· , ∗,1, Id,+,×, ◦) instead.
I Remark 8.5. Similar to Corollary 7.10, we can allow any pointwise function application on
matrices. This follows from the proof of Theorem 8.3 in which it is shown that for expressions
ei(X), for i = 1, . . . , p, such that each ei(AG) (and thus also each ei(AH)) is an n×n-matrix,
ei(AG) =

∑
a

(i)
j ×stabcolj(AG) and e(AH) =

∑
a

(i)
j ×stabcoli(AH), for scalars a(i)

j ∈ C. This
implies that apply[f]

(
e1(AG), . . . , ep(AG)

)
=
∑
f(a(1)

j , . . . , a
(p)
j) × stabcolj(AG), and simil-

arly, apply[f]
(
e1(AH), . . . , ep(AH)

)
=
∑
f(a(1)

j , . . . , a
(p)
j)× stabcolj(AH) As a consequence,

apply[f]
(
e1(AG), . . . , ep(AG)

)
·O = O · apply[f]

(
e1(AH), . . . , ep(AH)

)
for the orthogonal mat-

rix O in the proof of Theorem 8.3. This suffices to show that e(AG) = e(AH) for any
sentence e(X) in ML(· , ∗, tr,1, diag,+,×, apply[f], f ∈ Ω), or in other words, for any sentence
in MATLANG.
I Remark 8.6. The orthogonal matrix O in the proof of Theorem 8.3 can be taken to be
compatible with the common equitable partitions of G and H, just as in Theorem 7.8. This
follows from the fact that the diagonal indicator matrices diag(eqparti(AG)) are part of the
indicator matrices that constitute the basis of the cellular algebra of G [6].
I Remark 8.7. An almost direct consequence of Theorem 8.3 is that G ≡2WL H implies that
G and H have the same number of (simple) cycles of length 7. This was known to hold
for cycles of length ` = 1, 2, . . . , 6, and known not to hold for cycles of length greater than
7 [25]. The case ` = 7 was left open in Fürer [25]. In view of Theorem 8.3 it suffices to show
that we can count cycles of length ` = 1, 2, . . . , 7 in MATLANG. This, however, is a direct
consequence of the formulas for counting cycles given in Noga et al. [1]. Indeed, a close
inspection of these formulas reveals that only limited linear algebra functionality is required
and hence they can be formulated in MATLANG. Although formulas exist for counting cycles
of length greater than 7, they require to count the number of 4-cliques, which is not possible
in MATLANG.

9 Concluding Remarks

We have characterised ML(L)-equivalence for undirected graphs and clearly identified what
additional distinguishing power each of the operations has. That natural characterisations
can be obtained once more attests that MATLANG is an adequate matrix language. Although
motivated by the increased interest in integrating linear algebra functionality in database

ICDT 2019

7:16 On the Expressive Power of Linear Algebra on Graphs

management systems, the presented results are primarily of theoretical interest. As such,
they do not directly translate into effective procedures for evaluating or optimising linear
algebra inside database systems.

We conclude with some avenues for further investigation. Although some of the results
generalise to directed graphs (with asymmetric adjacency matrices), an extension to the case
when queries can have multiple inputs seems challenging. The generalisation beyond graphs,
i.e., for arbitrary matrices, is wide open. Of interest may also be to connect ML(L)-equivalence
to fragments of first-order logic (without counting). A possible line of attack could be to work
over the boolean semiring instead of over the complex numbers (see Grohe and Otto [29] for
a similar approach). More general semirings could open the way for modelling and querying
labeled graphs using matrix query languages.

We also note that MATLANG was extended in Brijder et al. [9] with an operator inv
that computes the inverse of a matrix, if it exists, and returns the zero matrix otherwise.
The extension, MATLANG + inv, was shown to be more expressive than MATLANG. For
example, connectedness of graphs can be checked by a single sentence in MATLANG + inv.
Of course, we here consider equivalence of graphs. Even when considering a “classical”
logic like FO3, the three-variable fragment of first-order logic, G ≡FO3 H implies that G is
connected if and only if H is connected. Translated to our setting, for any fragment ML(L)
in which G ≡ML(L) H implies that the Laplacian diag(AG ·1)−AG of G is co-spectral with
the Laplacian of diag(AH ·1)−AH of H, G ≡ML(L) H implies that G is connected if and only
if H is connected. It even implies that G and H must have the same number of connected
components, as this is determined by the multiplicity of the eigenvalue 0 of the Laplacian [10].
Nevertheless, we can also consider equivalence of graphs relative to MATLANG + inv. We
observe, however, that the inverse of a matrix can be computed using + and ×, by the
Cayley-Hamilton Theorem [4], given the coefficients of the characteristic polynomial of the
adjacency matrix. These coefficients can be computed using +, × and tr. For fragments
supporting · , +, × and tr, the operator inv thus does not add distinguishing power. It is
unclear what the impact is of inv for smaller fragments such as ML(· , ,1) and ML(· , ∗,1, diag).

To relate our notion of equivalence more closely to the expressiveness questions studied in
Brijder et al. [9], it may be interesting to investigate notions of locality of ML(L) expressions,
as this underlies the inexpressibility of connectivity of MATLANG [42]. It would be nice if
this can be achieved in purely algebraic terms, without relying on locality notions in logic.

To conclude, MATLANG was also extended with an eigen operator which returns a matrix
whose columns consist of eigenvectors spanning the eigenspaces [9]. Since the choice of
eigenvectors is not unique, this results in a non-deterministic semantics. We leave it for
future work to study the equivalence of graphs relative to deterministic fragments support-
ing the eigen operator, i.e., such that the result of expressions does not depend on the
eigenvectors returned. As a starting point one could, for example, force determinism by
considering a certain answer semantics. That is, if e(X) is an expression using eigen(X),
one can define cert(e(AG)) :=

⋂
V e(AG, V), where V ranges over all bases of the eigen-

spaces. Distinguishability with regards to such a certain answer semantics demands further
investigation.

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.
2 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Domagoj

Vrgoč. Foundations of Modern Query Languages for Graph Databases. ACM Comput. Surv.,
50(5):68:1–68:40, 2017. doi:10.1145/3104031.

http://dx.doi.org/10.1007/BF02523189
http://dx.doi.org/10.1145/3104031

F. Geerts 7:17

3 Albert Atserias and Elitza N. Maneva. Sherali-Adams Relaxations and Indistinguishability in
Counting Logics. SIAM J. Comput., 42(1):112–137, 2013. doi:10.1137/120867834.

4 Sheldon Axler. Linear Algebra Done Right. Springer, third edition, 2015. doi:10.1007/
978-3-319-11080-6.

5 Pablo Barceló. Querying Graph Databases. In Proceedings of the 32nd ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS, pages 175–188, 2013.
doi:10.1145/2463664.2465216.

6 Oliver Bastert. Stabilization procedures and applications. PhD thesis, Technical
University Munich, Germany, 2001. URL: http://nbn-resolving.de/urn:nbn:de:bvb:
91-diss2002070500045.

7 Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Evfimievski,
Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick R. Reiss, Prithviraj
Sen, Arvind C. Surve, and Shirsih Tatikonda. SystemML: Declarative machine learning on
Spark. Proceedings of the VLDB Endowment, 9(13):1425–1436, 2016. doi:10.14778/3007263.
3007279.

8 Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexandre V. Evfi-
mievski, and Niketan Pansare. On Optimizing Operator Fusion Plans for Large-scale Machine
Learning in SystemML. Proceedings of the VLDB Endowment, 11(12):1755–1768, 2018.
doi:10.14778/3229863.3229865.

9 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag. On the Expressive
Power of Query Languages for Matrices. In 21st International Conference on Database Theory,
ICDT, pages 10:1–10:17, 2018. doi:10.4230/LIPIcs.ICDT.2018.10.

10 Andries E. Brouwer and Willem H. Haemers. Spectra of Graphs. Universitext. Springer, 2012.
doi:10.1007/978-1-4614-1939-6.

11 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

12 Lingjiao Chen, Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. Towards Linear
Algebra over Normalized Data. Proceedings of the VLDB Endowment, 10(11):1214–1225, 2017.
doi:10.14778/3137628.3137633.

13 Dragoš M. Cvetković. GRAPHS AND THEIR SPECTRA. Publikacije Elektrotehničkog
fakulteta. Serija Matematika i fizika, 354/356:1–50, 1971. URL: http://www.jstor.org/
stable/43667526.

14 Dragoš M. Cvetković. The main part of the spectrum, divisors and switching of graphs. Publ.
Inst. Math. (Beograd) (N.S.), 23(37):31–38, 1978. URL: http://elib.mi.sanu.ac.rs/files/
journals/publ/43/6.pdf.

15 Dragoš M. Cvetković, Peter Rowlinson, and Slobodan Simić. Eigenspaces of Graphs.
Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1997.
doi:10.1017/CBO9781139086547.

16 Dragoš M. Cvetković, Peter Rowlinson, and Slobodan Simić. An Introduction to the Theory
of Graph Spectra. London Mathematical Society Student Texts. Cambridge University Press,
2009. doi:10.1017/CBO9780511801518.

17 Anuj Dawar. On the Descriptive Complexity of Linear Algebra. In Proceedings of the 15th
International Workshop on Logic, Language, Information and Computation, WoLLIC, pages
17–25, 2008. doi:10.1007/978-3-540-69937-8_2.

18 Anuj Dawar, Martin Grohe, Bjarki Holm, and Bastian Laubner. Logics with Rank Operators.
In Proceedings of the 24th Annual IEEE Symposium on Logic In Computer Science, LICS,
pages 113–122, 2009. doi:10.1109/LICS.2009.24.

19 Anuj Dawar and Bjarki Holm. Pebble games with algebraic rules. Fund. Inform., 150(3-4):281–
316, 2017. doi:10.3233/FI-2017-1471.

ICDT 2019

http://dx.doi.org/10.1137/120867834
http://dx.doi.org/10.1007/978-3-319-11080-6
http://dx.doi.org/10.1007/978-3-319-11080-6
http://dx.doi.org/10.1145/2463664.2465216
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss2002070500045
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss2002070500045
http://dx.doi.org/10.14778/3007263.3007279
http://dx.doi.org/10.14778/3007263.3007279
http://dx.doi.org/10.14778/3229863.3229865
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.10
http://dx.doi.org/10.1007/978-1-4614-1939-6
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.14778/3137628.3137633
http://www.jstor.org/stable/43667526
http://www.jstor.org/stable/43667526
http://elib.mi.sanu.ac.rs/files/journals/publ/43/6.pdf
http://elib.mi.sanu.ac.rs/files/journals/publ/43/6.pdf
http://dx.doi.org/10.1017/CBO9781139086547
http://dx.doi.org/10.1017/CBO9780511801518
http://dx.doi.org/10.1007/978-3-540-69937-8_2
http://dx.doi.org/10.1109/LICS.2009.24
http://dx.doi.org/10.3233/FI-2017-1471

7:18 On the Expressive Power of Linear Algebra on Graphs

20 Anuj Dawar, Simone Severini, and Octavio Zapata. Descriptive Complexity of Graph Spectra.
In Proceedings of the 23rd International Workshop on Logic, Language, Information and
Computation, WoLLIC, pages 183–199, 2016. doi:10.1007/978-3-662-52921-8_12.

21 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Lehman. In
45th International Colloquium on Automata, Languages, and Programming, ICALP, pages
40:1–40:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.40.

22 Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and Berthold Reinwald.
Compressed linear algebra for large-scale machine learning. The VLDB Journal, pages 1–26,
2017. doi:10.1007/s00778-017-0478-1.

23 Shmuel Friedland. Coherent algebras and the graph isomorphism problem. Discrete Applied
Mathematics, 25(1):73–98, 1989. doi:10.1016/0166-218X(89)90047-4.

24 Martin Fürer. On the power of combinatorial and spectral invariants. Linear Algebra and its
Applications, 432(9):2373–2380, 2010. doi:10.1016/j.laa.2009.07.019.

25 Martin Fürer. On the Combinatorial Power of the Weisfeiler-Lehman Algorithm. In Dimitris
Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors, Algorithms and Complexity, pages
260–271. Springer, 2017. doi:10.1007/978-3-319-57586-5_22.

26 Chris Godsil and Gordon F. Royle. Algebraic Graph Theory, volume 207 of Graduate Texts in
Mathematics. Springer, 2001. doi:10.1007/978-1-4613-0163-9.

27 Erich Grädel and Wied Pakusa. Rank Logic is Dead, Long Live Rank Logic! In 24th
EACSL Annual Conference on Computer Science Logic, CSL, pages 390–404, 2015. doi:
10.4230/LIPIcs.CSL.2015.390.

28 Martin Grohe, Kristian Kersting, Martin Mladenov, and Erkal Selman. Dimension Reduction
via Colour Refinement. In 22th Annual European Symposium on Algorithms, ESA, pages
505–516, 2014. doi:10.1007/978-3-662-44777-2_42.

29 Martin Grohe and Martin Otto. Pebble games and linear equations. The Journal of Symbolic
Logic, 80(3):797–844, 2015. doi:10.1017/jsl.2015.28.

30 Martin Grohe and Wied Pakusa. Descriptive complexity of linear equation systems and
applications to propositional proof complexity. In 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS, pages 1–12, 2017. doi:10.1109/LICS.2017.8005081.

31 Willem H. Haemers and Edward Spence. Enumeration of cospectral graphs. European J.
Combin., 25(2):199–211, 2004. doi:10.1016/S0195-6698(03)00100-8.

32 Frank Harary and Allen J. Schwenk. The spectral approach to determining the number of
walks in a graph. Pacific J. Math., 80(2):443–449, 1979. URL: https://projecteuclid.org:
443/euclid.pjm/1102785717.

33 Donald G. Higman. Coherent algebras. Linear Algebra and its Applications, 93:209–239, 1987.
doi:10.1016/S0024-3795(87)90326-0.

34 Bjarki Holm. Descriptive Complexity of Linear Algebra. PhD thesis, University of Cambridge,
2010.

35 Dylan Hutchison, Bill Howe, and Dan Suciu. LaraDB: A Minimalist Kernel for Linear
and Relational Algebra Computation. In Proceedings of the 4th ACM SIGMOD Workshop
on Algorithms and Systems for MapReduce and Beyond, BeyondMR, pages 2:1–2:10, 2017.
doi:10.1145/3070607.3070608.

36 Neil Immerman and Eric Lander. Describing Graphs: A First-Order Approach to Graph
Canonization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of
Juris Hartmanis on the Occasion of His Sixtieth Birthday, pages 59–81. Springer, 1990.
doi:10.1007/978-1-4612-4478-3_5.

37 Naihuan Jing. Unitary and orthogonal equivalence of sets of matrices. Linear Algebra and its
Applications, 481:235–242, 2015. doi:10.1016/j.laa.2015.04.036.

38 Charles R Johnson and Morris Newman. A note on cospectral graphs. Journal of Combinatorial
Theory, Series B, 28(1):96–103, 1980. doi:10.1016/0095-8956(80)90058-1.

http://dx.doi.org/10.1007/978-3-662-52921-8_12
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.40
http://dx.doi.org/10.1007/s00778-017-0478-1
http://dx.doi.org/10.1016/0166-218X(89)90047-4
http://dx.doi.org/10.1016/j.laa.2009.07.019
http://dx.doi.org/10.1007/978-3-319-57586-5_22
http://dx.doi.org/10.1007/978-1-4613-0163-9
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.390
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.390
http://dx.doi.org/10.1007/978-3-662-44777-2_42
http://dx.doi.org/10.1017/jsl.2015.28
http://dx.doi.org/10.1109/LICS.2017.8005081
http://dx.doi.org/10.1016/S0195-6698(03)00100-8
https://projecteuclid.org:443/euclid.pjm/1102785717
https://projecteuclid.org:443/euclid.pjm/1102785717
http://dx.doi.org/10.1016/S0024-3795(87)90326-0
http://dx.doi.org/10.1145/3070607.3070608
http://dx.doi.org/10.1007/978-1-4612-4478-3_5
http://dx.doi.org/10.1016/j.laa.2015.04.036
http://dx.doi.org/10.1016/0095-8956(80)90058-1

F. Geerts 7:19

39 Kristian Kersting, Martin Mladenov, Roman Garnett, and Martin Grohe. Power Iterated Color
Refinement. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
AAAI’14, pages 1904–1910. AAAI Press, 2014. URL: https://www.aaai.org/ocs/index.
php/AAAI/AAAI14/paper/view/8377.

40 Andreas Kunft, Alexander Alexandrov, Asterios Katsifodimos, and Volker Markl. Bridging
the Gap: Towards Optimization Across Linear and Relational Algebra. In Proceedings of
the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond,
BeyondMR, pages 1:1–1:4, 2016. doi:10.1145/2926534.2926540.

41 Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Tilmann Rabl, and Volker Markl.
BlockJoin: Efficient Matrix Partitioning Through Joins. Proceedings of the VLDB Endowment,
10(13):2061–2072, 2017. doi:10.14778/3151106.3151110.

42 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.

43 Shangyu Luo, Zekai J. Gao, Michael Gubanov, Luis L. Perez, and Christopher Jermaine.
Scalable Linear Algebra on a Relational Database System. SIGMOD Rec., 47(1):24–31, 2018.
doi:10.1145/3277006.3277013.

44 Peter N. Malkin. Sherali–Adams relaxations of graph isomorphism polytopes. Discrete
Optimization, 12:73–97, 2014. doi:10.1016/j.disopt.2014.01.004.

45 Albert W. Marshall, Ingram Olkin, and Barry C. Arnold. Inequalities: Theory of Majorization
and its Applications. Springer, 2011. doi:10.1007/978-0-387-68276-1.

46 Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. In-Database
Factorized Learning. In Proceedings of the 11th Alberto Mendelzon International Workshop on
Foundations of Data Management and the Web, AMW, 2017. URL: http://ceur-ws.org/
Vol-1912/paper21.pdf.

47 Martin Otto. Bounded Variable Logics and Counting: A Study in Finite Models, volume 9 of
Lecture Notes in Logic. Cambridge University Press, 2017. doi:10.1017/9781316716878.

48 Motakuri V. Ramana, Edward R. Scheinerman, and Daniel Ullman. Fractional isomorphism of
graphs. Discrete Mathematics, 132(1-3):247–265, 1994. doi:10.1016/0012-365X(94)90241-0.

49 Peter Rowlinson. The main eigenvalues of a graph: A survey. Applicable Analysis and Discrete
Mathematics, 1(2):455–471, 2007. URL: http://www.jstor.org/stable/43666075.

50 Edward R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory: a Rational Approach
to the Theory of Graphs. John Wiley & Sons, 1997. URL: https://www.ams.jhu.edu/ers/
wp-content/uploads/sites/2/2015/12/fgt.pdf.

51 Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning Linear Regression Models
over Factorized Joins. In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD, pages 3–18, 2016. doi:10.1145/2882903.2882939.

52 Mario Thüne. Eigenvalues of matrices and graphs. PhD thesis, University of Leipzig, 2012.
53 Gottfried Tinhofer. Graph isomorphism and theorems of Birkhoff type. Computing, 36(4):285–

300, 1986. doi:10.1007/BF02240204.
54 Gottfried Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30(2):253–264,

1991. doi:10.1016/0166-218X(91)90049-3.
55 Edwin R. van Dam and Willem H. Haemers. Which graphs are determined by their spec-

trum? Linear Algebra and its Applications, 373:241–272, 2003. doi:10.1016/S0024-3795(03)
00483-X.

56 Erwin R. van Dam, Willem H. Haemers, and Jack H. Koolen. Cospectral graphs and
the generalized adjacency matrix. Linear Algebra and its Applications, 423(1):33–41, 2007.
doi:10.1016/j.laa.2006.07.017.

57 Boris Weisfeiler. On Construction and Identification of Graphs. Number 558 in Lecture Notes
in Mathematics. Springer-Verlag Berlin Heidelberg, 1976. doi:10.1007/BFb0089374.

ICDT 2019

https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8377
https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8377
http://dx.doi.org/10.1145/2926534.2926540
http://dx.doi.org/10.14778/3151106.3151110
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1145/3277006.3277013
http://dx.doi.org/10.1016/j.disopt.2014.01.004
http://dx.doi.org/10.1007/978-0-387-68276-1
http://ceur-ws.org/Vol-1912/paper21.pdf
http://ceur-ws.org/Vol-1912/paper21.pdf
http://dx.doi.org/10.1017/9781316716878
http://dx.doi.org/10.1016/0012-365X(94)90241-0
http://www.jstor.org/stable/43666075
https://www.ams.jhu.edu/ers/wp-content/uploads/sites/2/2015/12/fgt.pdf
https://www.ams.jhu.edu/ers/wp-content/uploads/sites/2/2015/12/fgt.pdf
http://dx.doi.org/10.1145/2882903.2882939
http://dx.doi.org/10.1007/BF02240204
http://dx.doi.org/10.1016/0166-218X(91)90049-3
http://dx.doi.org/10.1016/S0024-3795(03)00483-X
http://dx.doi.org/10.1016/S0024-3795(03)00483-X
http://dx.doi.org/10.1016/j.laa.2006.07.017
http://dx.doi.org/10.1007/BFb0089374

Fragments of Bag Relational Algebra:
Expressiveness and Certain Answers
Marco Console
School of Informatics, University of Edinburgh, United Kingdom
console.marco@gmail.com

Paolo Guagliardo
School of Informatics, University of Edinburgh, United Kingdom
paolo.guagliardo@ed.ac.uk

Leonid Libkin
School of Informatics, University of Edinburgh, United Kingdom
libkin@inf.ed.ac.uk

Abstract
While all relational database systems are based on the bag data model, much of theoretical research
still views relations as sets. Recent attempts to provide theoretical foundations for modern data
management problems under the bag semantics concentrated on applications that need to deal
with incomplete relations, i.e., relations populated by constants and nulls. Our goal is to provide a
complete characterization of the complexity of query answering over such relations in fragments of
bag relational algebra.

The main challenges that we face are twofold. First, bag relational algebra has more operations
than its set analog (e.g., additive union, max-union, min-intersection, duplicate elimination) and
the relationship between various fragments is not fully known. Thus we first fill this gap. Second,
we look at query answering over incomplete data, which again is more complex than in the set
case: rather than certainty and possibility of answers, we now have numerical information about
occurrences of tuples. We then fully classify the complexity of finding this information in all the
fragments of bag relational algebra.

2012 ACM Subject Classification Theory of computation → Database theory; Theory of computa-
tion → Database query languages (principles); Theory of computation → Incomplete, inconsistent,
and uncertain databases; Information systems → Relational database query languages; Information
systems → Structured Query Language

Keywords and phrases bag semantics, relational algebra, expressivity, certain answers, complexity

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.8

Funding Work supported by EPSRC grants M025268 and N023056.

Acknowledgements The authors thank Etienne Toussaint and the referees for their helpful comments.

1 Introduction

While all relational database management systems (DBMSs) use bags as the basis of their
data model, much of relational database theory uses a model based on sets, thus disallowing
repetitions of tuples. The presence of duplicates in real-life databases is a very important
consideration that is reflected in practically all aspects of data management, such as querying,
storing, and accessing data [15, 30]. Theoretical research has raised this issue several times.
By the early 1990s there was agreement on what the standard collection of bag relational
algebra operations is [4], and in the mid 1990s their expressiveness and complexity were
thoroughly studied [18, 26], albeit in the context of the model of nested relations, or complex
objects, which was the research focus back then [9, 10]. Around the same time it was noticed
that the well developed theory of query optimization, especially for conjunctive queries, does

© Marco Console, Paolo Guagliardo, and Leonid Libkin;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:console.marco@gmail.com
https://orcid.org/0000-0003-0756-5787
mailto:paolo.guagliardo@ed.ac.uk
mailto:libkin@inf.ed.ac.uk
https://doi.org/10.4230/LIPIcs.ICDT.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

not apply to bag semantics [11], and despite many attempts and partial results [23, 12], the
key problem of the decidability of such optimizations remains unsolved [24]. Other languages,
in particular those with aggregates and fixpoints in the spirit of Datalog, have been studied
under bag semantics as well [7, 13, 26].

More recently, bag semantics has been considered in modern data management applications
that combine traditional databases and reasoning tasks. In [20], fundamental problems of
data integration and data exchange are studied under bag semantics and are shown to differ
rather drastically from their set semantics counterparts. In [28], a similar program is carried
out for ontology based data access (OBDA), where an ontology supplements information
provided by a relational database in which duplicates are allowed. What is common to these
applications is that in both of them one needs to query incomplete data, that is, databases
with null values. The standard approach to querying such databases, which is used in data
integration, data exchange, and OBDA applications, is based on the classical notion of certain
answers [22].

However, when it comes to bags, the notion of certain answers becomes more complex
than under set semantics. In general, an incomplete database D represents a collection JDK
= {D1, D2, . . .} of complete databases, obtained by interpreting incomplete data in D. A
tuple ā is a certain answer to a query q if it is in q(D′) for every D′ ∈ JDK; see [1, 22]. Under
bag semantics, we have more information: for each tuple, we know the number #

(
ā, q(D′)

)
of occurrences of ā in q(D′). Thus, as D′ ranges over JDK, we have a range of numbers that
define an interval between

min(ā, q,D) = min
D′∈JDK

#
(
ā, q(D′)

)
and max(ā, q,D) = max

D′∈JDK
#
(
ā, q(D′)

)
Under set semantics, min(D, q, ā) = 1 means that ā is a certain answer to q on D, and

max(D, q, ā) = 1 means that ā is a possible answer. On sets, these can be easily checked for
positive relational algebra, but it is hard (coNP-complete and NP-complete, respectively)
for full relational algebra [2]. This tells us that, in terms of relational algebra operations,
selection, projection, Cartesian product and union are easy, but difference makes things hard.
Our goal is to paint a similar picture for bags. The problems that we face are:
1. there are more operations that are included in bag relational algebra, and we have less

understanding of them;
2. even for basic operations, there is very little knowledge of the complexity of answering

queries over incomplete data.
We now explain these points in more detail.

Bag algebra fragments

Under set semantics, we have well understood fragments of relational algebra: SPC (select-
project-Cartesian product) queries, positive relational algebra RA+ that adds union, and
full relational algebra RA that adds difference. Moreover, intersection is expressible as the
natural join of two relations over the same attributes. Under bag semantics, however, the
situation is different:

SPC queries follow their set-theoretic analogs except that they keep duplicates.
For union, there are several options: either the additive union, that adds up multiplicities
(and corresponds to UNION ALL in SQL), or the set theoretic union (SQL’s UNION), or the
max-union which takes the maximum number of occurrences of a tuple.
There are two standard notions of intersection: the set-theoretic one (SQL’s INTERSECT),
or the one taking the minimum number of occurrences of a tuple (SQL’s INTERSECT ALL).
Neither of them is the join of two relations any more.

M. Console, P. Guagliardo, and L. Libkin 8:3

RA+ = SPC{]}

RA+{∪}

RA+{∩}

RA+{∪,∩} RA+{−}SPC

SPC{∩}

SPC{∪}

Figure 1 Summary of the results. An edge indicates a more expressive fragment. Adding duplicate
elimination makes every fragment more expressive, and incomparable with RA+{−}. Extending
RA+{−} with duplicate elimination results in a fragment that has the expressive power of full RA.
The shaded area includes the fragments for which computing the minimum occurrences of certain
answers is tractable, while this is intractable whenever duplicate elimination is added. Computing
the maximum number of occurrences is intractable for all fragments.

There are also two versions of the difference operator, corresponding to SQL’s EXCEPT
and EXCEPT ALL: the former removes duplicates, and the latter keeps them.
Finally, there is the duplicate elimination operation, that corresponds to SQL’s DISTINCT.

The language RA of bag relational algebra then has the following operations [4, 18, 26]:
multiplicity-preserving versions of selection, projection and Cartesian product, which form
the class of SPC queries;
additive union] that adds up multiplicities of tuples; together with SPC queries it forms
the positive relational algebra RA+;
max-union ∪ that keeps the maximum number of occurrences of a tuple;
min-intersection ∩ that keeps the minimum number of occurrences of a tuple;
difference − that subtracts the number of occurrences of a tuple up to zero, i.e., #(ā, R−
R′) = max

(
#(ā, R)−#(ā, R′), 0

)
;

duplicate elimination ε that turns a bag into a set.

To understand how query answering behaves in these fragments, we first need to under-
stand their relative expressiveness. It might appear that these questions have already been
answered in [17, 26]. However, this was done in the context of nested relations, and the results
used the power of nesting in an essential way. For the usual bag algebra with non-nested
relations, as implemented in all DBMSs, these basic results are surprisingly lacking. Thus, as
our first task, we shall produce a full picture of the expressiveness of bag relational algebra
fragments (which will indeed be different from the known results in the nested case).

Incomplete information and bags

There is a much bigger variety of relational algebra fragments for bags, but little is known
about finding min(ā, q,D) and max(ā, q,D) for queries in those fragments. We know that min
is easy to compute for RA+ queries and that for full RA the problem is computationally hard:
checking whether min(ā, q,D) ≥ n is NP-complete [2, 14]. Checking whether max(ā, q,D) ≥
n is NP-complete even for SPC queries [14]. The complexity of actually computing min and
max (or, in terms of a decision problem, checking whether min(D, q,D) = n, and likewise
for max) is still open.

Outline of the results

Our main results are summarized in Figure 1.

ICDT 2019

8:4 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

Expressiveness. We characterize the relative expressive power of RA fragments, as shown
in the diagram. Furthermore, adding duplicate elimination to a fragment that does not
have it results in a language that is strictly more expressive (than the original fragment),
and incomparable with RA+{−}. The relative expressiveness of bag operations is indeed
different from what was known in the nested relational case [17, 18, 26]. For example, over
nested relations, adding min-intersection to the analog of RA+ suffices to express max-
union, but in the usual relational algebra over bags these two operations are incomparable
in their expressiveness.

Complexity of min. For fragments in the shaded area, computing min(D, q, ā) is tractable,
and it can be done by evaluating the query naively on the incomplete database. For all
fragments outside the shaded area, and all fragments with duplicate elimination (from
SPC{ε} to the full RA), the complexity is intractable: checking whether min(ā, q,D) θ n
is NP-complete when θ is ≤, coNP-complete when θ is ≥, and DP-complete when θ is
=. Recall that DP is the class of problems that are the intersection of an NP problem
and a coNP problem [29].

Complexity of max. For all the fragments, inside and outside the shaded area, and with or
without duplicate elimination, computing max is intractable: checking max(D, q, ā) θ n is
NP-complete when θ is ≥, coNP-complete when θ is ≤, and DP-complete when θ is =.

Organization

Bag relational algebra is defined in Section 2, and the relative expressive power of its fragments
is studied in Section 3. Query answering over bags with nulls is discussed in Section 4, and
its complexity is classified in Section 5. Concluding remarks are given in Section 6.

2 Bag Relational Algebra

We now describe the standard operations of bag relational algebra and provide their semantics
[4, 17, 18, 26]. A bag is a collection of elements with associated multiplicities (numbers of
occurrences); if an element b occurs n times in a bag B, we write #(b, B) = n. If #(b, B) = 0,
it means that b does not occur in B. Sets are just a special case when #(b, B) ∈ {0, 1}.

In a database D, each k-ary relation name R of the schema is associated with a bag RD
of k-tuples; we will omit the superscript D whenever it is clear from the context. We assume
that the attributes of a k-ary relation are 1, . . . , k, i.e., we adopt the unnamed perspective [1].

Syntax

The syntax of relational algebra (RA) expressions is defined as follows:

e, e′ ::= R (base relations)
| σi=j(e) (selection)
| πα(e) (projection)
| e× e′ (Cartesian product)
| e] e′ (additive union)
| e ∪ e′ (max-union)
| e ∩ e′ (intersection)
| e− e′ (difference)
| ε(e) (duplicate elimination)

M. Console, P. Guagliardo, and L. Libkin 8:5

where i and j in σi=j(e) are positive integers, and α in πα(e) is a possibly empty tuple of
positive integers.

The arity of RA expressions is defined as follows: for base relations, it is given by the
schema; for σi=j(e) and ε(e), it is the arity of e; for πα(e), it is the arity of α; for e× e′, it is
the sum of the arities of e and e′; for e ? e′ with ? ∈ {∪,],∩,−}, it is the arity of e.

We then say that an RA expression is well-formed w.r.t. a schema if: it mentions only
relation names from the schema; i and j in σi=j(e) are less than or equal to the arity of e;
the elements of α in πα(e) are less than or equal to the arity of e; the expressions e and e′

in e ? e′, with ? ∈ {∪,],∩,−}, have the same arity. In the rest of the paper, we implicitly
assume that we are always working with well-formed RA expressions.

Semantics

We give the semantics of (well-formed) RA expressions e by inductively defining the quantity
#(ā, e,D), which is the number of occurrences of a tuple ā (of appropriate arity) in the result
of applying e to a database D. This is done as follows:

#(ā, R, D) = #
(
ā, RD

)
#(ā, σi=j(e), D) =

{
#(ā, e,D) if ā.i = ā.j

0 otherwise

#(ā, πα(e), D) =
∑

ā′ : πα(ā′)=ā

#(ā′, e,D)

#
(
āā′, e× e′, D

)
= #

(
ā, e,D

)
· #
(
ā′, e′, D

)
#(ā, e] e′, D) = #(ā, e,D) + #(ā, e′, D)
#(ā, e ∪ e′, D) = max

{
#(ā, e,D), #(ā, e′, D)

}
#(ā, e ∩ e′, D) = min

{
#(ā, e,D), #(ā, e′, D)

}
#(ā, e− e′, D) = max

{
#(ā, e,D)−#(ā, e′, D), 0

}
#(ā, ε(e), D) = min

{
#(ā, e,D), 1

}
where ā.i denotes the i-th element of ā, πi1,...,in(ā) is the tuple (ā.i1, . . . , ā.in), and the tuples
ā and ā′ in the rule for e× e′ have the same arity as e and e′, respectively.

Then, for an expression e and a database D, we define e(D) as the bag of tuples ā of the
same arity as e so that #

(
ā, e(D)

)
= #(ā, e,D).

Fragments

The two main fragments of RA we consider are SPC, consisting of selection (σ), projection
(π) and Cartesian product (×), and RA+, which is SPC extended with additive union (]).
Given a fragment L of RA, we write L{op1, . . . , opn} to denote the fragment obtained by
adding the RA operations op1, . . . , opn to L. Thus, for instance, RA+ is SPC{]}.

A query is a mapping q from databases to bags of tuples. We always assume that queries
are generic, that is, invariant under permutations of the domain [1]. A query q is expressible
in a fragment L of RA if there is an expression e in that fragment so that e(D) = q(D) for
every database D.

Then, given two fragments L and L′, we say that L′ is at least as expressive as L, and
write L ⊆ L′, if every query expressible in L is also expressible in L′. We say that L′ is more
expressive than L, and write L (L′, if L′ is at least as expressive as L and there is a query
that is expressible in L′ but not in L. Notice that if L′ has all the operations of L, then L′

is at least as expressive as L.

ICDT 2019

8:6 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

3 Expressive Power of Bag Relational Algebra Fragments

In this section, we study the relative expressiveness of RA fragments. We present the results
that justify the edges in Figure 1, along with additional results that are not explicitly captured
in that diagram.

We start by showing that extending positive relational algebra with max-union or inter-
section results in a more expressive fragment.

I Proposition 1. RA+ (RA+{?} for ? ∈ {∪,∩}.

Proof sketch. We only need to show that there exists a query that is expressible in RA+{?}
but not in RA+. To this end, consider a schema consisting of two nullary (i.e., of arity 0)
relation symbols R and S, and suppose that R ? S is expressible in RA+, i.e., there exists an
RA+ expression e equivalent to R ? S. For a database D, let m = |RD| and n = |SD|; then,
|e(D)| = f?(m,n), where f∪ = max and f∩ = min, and it is expressible by a polynomial
pe ∈ N[m,n], because e ∈ RA+ [16]. For n0 ∈ N, define the polynomial p ∈ N[m] such that
p(m) = pe(m,n0). When ? = ∪, we choose n0 = deg(pe) to derive a contradiction of the fact
that p̃(m) = d is the unique polynomial of degree at most d that interpolates the d+ 1 data
points (0, d), . . . , (d, d). When ? = ∩, we choose n0 > 0 to derive a contradiction of the fact
that p is strictly increasing in the interval [0,+∞), since its coefficients are in N. J

The proof of Proposition 1 also applies to show the following.

I Corollary 2. SPC (SPC{?} for ? ∈ {∪,∩}.

We now show that additive union increases the expressive power of SPC{∩} and SPC{∪}.

I Proposition 3. SPC{?} (RA+{?} for ? ∈ {∪,∩}.

Proof sketch. On databases with nullary relations of size 1, every SPC{?} expression with
? ∈ {∩,∪} can only yield a (nullary) relation of size 1, while there are RA+ expressions (e.g.,
R]R where R is a base relation) whose results size on such databases is greater than 1. J

In particular, the proof of Proposition 3 also applies to show the following.

I Corollary 4. SPC (RA+.

Next, we show that ∪ increases the expressive power of RA+{∩}, and ∩ increases the
expressive power of RA+{∪}. In turn, this implies that ∪ and ∩ are incomparable operations.

I Proposition 5. RA+{?} (RA+{∪,∩} for ? ∈ {∪,∩}.

Proof sketch.
RA+{∪} (RA+{∩,∪}

We show that, on a schema consisting of two nullary relation symbols R and S, e = R∩S
is not expressible in RA+{∪}. To this end, let e′ be an RA+{∪} expression over R and S.
Then, |e′(D)| is given by a function in the variables m = |RD| and n = |SD| consisting of
sum, product and max. When e′ mentions R, for all databases D where m > n we have
that |e′(D)| ≥ m > n = |e(D)|. When e′ mentions S, for all databases D where m < n

we have that |e′(D)| ≥ n > m = |e(D)|. Therefore e′ cannot be equivalent to e.

M. Console, P. Guagliardo, and L. Libkin 8:7

RA+{∩} (RA+{∩,∪}

We show that, on a schema consisting of two nullary relation symbols R and S, e = R∪S
is not expressible in RA+{∩}. To this end, let e′ be an RA+{∩} expression over R and S.
It can be shown that e′ can be equivalently rewritten to e1∩· · ·∩ek where each ei is an RA+

expression. Note that this applies only for nullary relations, which suffices for our purposes,
but it does not hold in general. Then, for every database D with m = |RD| and n = |SD|,
we have that |e(D)| = max(m,n) = min(p1, . . . , pk) = |e′(D)|, where pi ∈ N+[m,n]. Now,
let n0 be an integer greater than 1; then, max(m,n0) = min(p′

1, . . . , p
′
k) where each p′

i is
a polynomial in N+[m] such that p′

i(m) = pi(m,n0). One of these polynomials must be
the straight line p(m) = m, which leads to a contradiction for m < n0. J

I Corollary 6. L{∪} and L{∩} are incomparable, for L ∈ {SPC,RA+}.

Finally, we show that with additive union and difference one can express both intersection
and max-union, therefore RA+{−} is the most expressive fragment of RA without duplicate
elimination.

I Proposition 7. RA+{∩,∪} (RA+{−}.

Proof sketch. To show that every e ∈ RA+{∩,∪} can be expressed in RA+{−}, we proceed
by induction: the base case is when e is an RA+ expression, which is trivially in RA+{−};
in the inductive step, we use the fact that, for every x, y ∈ N, min(x, y) = x´ (y ´ x) and
max(x, y) = x+ (y´x), where x´ y = max(x− y, 0) is the monus operation. That RA+{−}
is more expressive than RA+{∩,∪} then follows from the fact that every query expressible
in RA+{∩,∪} is monotone, while in RA+{−} one can express non-monotone queries. J

Then, obviously, we immediately get the following.

I Corollary 8. RA+{−, ε} and RA have the same expressive power.

We conclude this section by showing that adding duplicate elimination to a fragment
that does not already have it increases its expressive power.

I Proposition 9. L (L{ε} for every fragment L of RA without duplicate elimination.

Proof sketch. On databases with non-empty nullary relations of even size, every L expression
can only yield a (nullary) relation of even size, whereas duplication elimination allows one to
obtain, from such databases, relations of size 1. J

4 Certain Answers under Bag Semantics

Dealing with incomplete information is a recurring topic in many different areas of logic and
computer science. In database theory, the main way to deal with the lack of information is
via incomplete databases. Intuitively, an incomplete database D is a compact representation
of a possibly infinite collection JDK of complete databases, which define the semantics of D.

In this paper, we use incomplete databases with marked (or labeled) nulls. This model
of incompleteness is very common in the database literature [1, 22] and naturally occurs in
many different scenarios, e.g., in data exchange and integration (cf. [6, 8, 25]). In this model
databases are populated by constants and nulls, coming from two disjoint and countably
infinite sets denoted by Const and Null, respectively. More formally, a k-ary relation is a finite
bag of k-ary tuples over Const ∪ Null. A database D then maps each k-ary relation symbol
R in the schema to a k-ary bag relation RD. Given a database D = {RD1 , . . . , RDn }, we write

ICDT 2019

8:8 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

Const(D) and Null(D) for the set of constants and nulls occurring in the RDi s, respectively.
The active domain of D is the set Const(D) ∪Null(D), denoted by adom(D). We say that D
is complete if Null(D) = ∅.

The semantics JDK of a database D is defined by means of valuations. A valuation v is
a map v : Null(D)→ Const, and the result of applying v to D is the complete database vD
obtained by replacing each null ⊥ ∈ Null(D) with v(⊥). Observe that applying v to each
relation RD in D preserves multiplicities, i.e., for each relation name R in the schema and
each tuple c̄ ∈ RvD the following equality holds: #

(
c̄, RvD

)
=
∑

ā : vā=c̄
#
(
ā, RD

)
. The set JDK is

defined as JDK = {vD | v is a valuation}.
When relations are sets, the standard way to answer a query q on an incomplete database

D is to compute certain answers, i.e., tuples that are in q(D) for every D′ ∈ JDK, and possible
answers, i.e., tuples that are in q(D) for some D′ ∈ JDK. When relations are bags, however,
one must also take multiplicities into account. In what follows, this is done by computing the
minimum and maximum number of occurrences of a tuple in the answers across all databases
in JDK (cf. [14]). Let D be a database, let q be a relational algebra expression of arity n,
and let ā ∈ Const(D)n be a tuple of constants, we define min(ā, q,D) and max(ā, q,D) as
follows:

min(ā, q,D) = min
vD∈JDK

#
(
ā, q(vD)

)
; max(ā, q,D) = max

vD∈JDK
#
(
ā, q(vD)

)
(1)

Intuitively, min(ā, q,D) and max(ā, q,D) are extensions of certain and possible answers
to bag databases. Indeed, min(ā, q,D) ≥ 1 if and only if ā is in q(D′) for every D′ ∈ JDK
(and thus it is a certain answer), and max(ā, q,D) ≥ 1 if ā is in q(D′) for some D′ ∈ JDK
(and thus it is a possible answer).

Thus, from now on we assume min(ā, q,D) and max(ā, q,D) as our standard notion of
query answers and study their complexity. More specifically, we will focus on data complexity,
that is, computing min(ā, q,D) and max(ā, q,D) for a fixed query q. Depending on the type
of comparison we use, several decision problems arise from the computation of min and max.
These decision problems are defined as follows.

Problem: MINθ[q], for θ ∈ {>,=, <}
and a query q of arity n.

Inputs: an incomplete database D,
a tuple ā ∈ Const(D)n,
a non-negative integer k.

Question: is min(ā, q,D) θ k?

Problem: MAXθ[q], for θ ∈ {>,=, <}
and a query q of arity n.

Inputs: an incomplete database D,
a tuple ā ∈ Const(D)n,
a non-negative integer k.

Question: is max(ā, q,D) θ k?

Whether the number k is represented in unary or binary form does not matter: the results
will be the same regardless. All tractability results are shown assuming binary representation,
and all matching hardness results will be proved for the case when k is represented in unary.
The choice of inequalities, i.e, < vs ≤ or > vs ≥, is not important: since k is an integer, ≤ k
is the same condition as < k + 1.

As for the case of certain and possible answers, the complexity of the above problems
depends on the fragment of RA in which the query q is expressed. While for some of these
fragments the problems can be proved to be intractable, there are fragments of RA for which
computing min(ā, q,D) is tractable and can actually be done via naive evaluation. The naive
evaluation of a query q of arity n on a bag database D is defined as the bag obtained by
assuming that each null value in Null(D) is a distinct constant and evaluating q directly
over D. In what follows, we will denote by naive(ā, q,D) the number of occurrences of a

M. Console, P. Guagliardo, and L. Libkin 8:9

tuple ā ∈ Const(D)n in the result of the naive evaluation of an RA query q on an incomplete
database D. It is well known that naive(ā, q,D) can be computed in DLogSpace in data
complexity [18, 26].

5 Complexity of Certain Answers

We now turn our attention to the complexity of evaluating bag relational algebra expressions
on incomplete databases, that is, solving the problems MINθ[q] and MAXθ[q] for queries in
various fragments of RA. As already explained, these problems are natural bag analogs of
the notions of certainty and possibility over set databases.

In Section 5.1, we first provide upper and lower bounds for full RA. When the relation θ is
< or >, the results are easily derivable from the results for the set case in [2]; we complement
them with the exact complexity for equality.

Then, in Section 5.2, we focus on the problem MINθ[q] and prove the exact tractability
boundary shown in Figure 1. We start by showing that in all of the fragments up to RA+{∩},
the value of min can be computed by naive evaluation of queries, which extends a result in [14].
We then show that outside this fragment the problem is intractable, namely NP-complete for
<, coNP-complete for >, and DP-complete for =. In particular, we show that the problem
is intractable for all fragments containing SPC{∪}, and all fragments containing SPC{ε}.

Next, in Section 5.3, we look at MAXθ[q]. It was shown in [14] that for > the problem
is NP-complete, even for very simple queries. Here, we complete the picture and settle the
case for =, even when q is a query that simply returns a relation from the database.

Finally, in Section 5.4, we discuss what happens with more complex selection conditions
in queries.

5.1 Upper and lower bounds for full RA
Before delving into the complexity of the different fragments of RA, we briefly look at the
complexity of evaluating general expressions. First, observe that RA queries are generic, i.e.,
invariant under permutations of the domain. In the bag case, this is stated as follows.

I Proposition 10. Let D and D′ be complete databases, let ρ be a bijection between adom(D)
and adom(D′) such that D′ = ρ(D), and let q ∈ RA be a query of arity n. Then, #(ā, q,D) =
#(ρā, q,D′) for every tuple ā ∈ adom(D)n.

Intuitively, this tells us that we need to take into account only finitely many valuations in order
to compute the values in (1). Upper bounds of NP, coNP, and DP follow straightforwardly.

I Proposition 11. Let q be an expression in RA. Then:
MIN<[q] and MAX>[q] are in NP;
MIN>[q] and MAX<[q] are in coNP;
MIN=[q] and MAX=[q] are in DP.

Proof sketch. Due to Proposition 10, in order to compute min and max we need to take into
account only a limited number of valuations. Like in the set case [2], for a given database D
we need to take into account only those valuations whose range consists of Const(D) and a
new distinct constant for each null in Null(D). Moreover, evaluating RA expressions over
complete bag semantics databases is in DLogSpace in data complexity. J

For general RA expressions, all of these problems are complete in their respective classes.

ICDT 2019

8:10 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

I Proposition 12. Let q be an expression in RA. Then:
MIN<[q] and MAX>[q] are NP-hard;
MIN>[q] and MAX<[q] are coNP-hard;
MIN=[q] and MAX=[q] are DP-hard.

Proof sketch. The results for < and > follows directly from the fact that set databases can
be simulated by bag databases. Hence, the hardness results presented in [2] apply. For =, we
can show a reductions from a very well known DP-complete problem (see, e.g., Theorem 20
for the case of MIN=[q] and Theorem 25 for the case of MAX=[q]). J

Despite these high bounds, one may expect that some fragments of RA will behave better;
this is what we investigate next.

5.2 Computing min

We now look at computing certain answers to bag queries, that is, values min(ā, q,D). The
usual naive evaluation works for queries in the RA+{∩} fragment. Outside it, the decision
version of the problem, MIN<[q], is intractable for every fragment, and for each such fragment
the complexity is exactly the same. We now prove these facts.

5.2.1 Naive evaluation for RA+{∩}

While computing min is hard in the general case, there exists a large fragment of RA for
which min can be computed via naive evaluation. In the set case this fragment is well known
to be positive relational algebra [22] consisting of selection, projection, Cartesian product,
and union. Notice that over sets the intersection of two relations is expressible by join, but
over bags this is no longer the case. It turns out that the good behavior of join with respect
to certain answers extends to bags, when we add intersection explicitly. Indeed, for RA+{∩},
one can compute min simply by using naive evaluation.

I Theorem 13. Let q be an RA+{∩} expression of arity n, let D be a database, and let
ā ∈ Const(D)n. Then, min(ā, q,D) = naive(ā, q,D).

Proof sketch. One can show that for every valuation v of Null(D) we have∑
b̄ : vb̄=vā

naive(b̄, q,D) ≤ #(vā, q, vD) .

Since the number of occurrences of a tuple ā in a relation is always a non-negative integer,
we have naive(ā, q,D) ≤ #(ā, q, vD). The claim then follows from the fact that whenever
naive(ā, q,D) = k there exists a valuation v of Null(D) such that #(ā, q, vD) = k. J

From the fact that bag relational algebra queries are in DLogSpace with respect to data
complexity [18, 26], we then immediately get the following.

I Corollary 14. For expressions q ∈ RA+{∩}, the problems MIN<[q], MIN>[q] and MIN=[q]
are all in DLogSpace.

M. Console, P. Guagliardo, and L. Libkin 8:11

5.2.2 Hardness for SPC{∪} and fragments with duplicate elimination

We now show that RA+{∩} is the best fragment for which we can compute certain answers
efficiently under bag semantics. From the diagram in Figure 1, it suffices to prove that the
problem is intractable for SPC{∪}, as well as for all fragments with duplicate elimination.
This is what we do here; in fact we shall see that in all of these fragments, the intractable
complexity will be exactly the same, namely NP-complete, coNP-complete, or DP-complete,
when θ is <, or >, or =.

Technical tools

To prove these results, we use reductions from two well-known decision problems: satisfiability
(SAT) and satisfiability-unsatisfiability (SAT-UNSAT) of propositional formulae in conjunctive
normal form (CNF). Recall that a k-CNF formula φ is the conjunction of clauses, where each
clause is a disjunction of at most k literals, i.e., variables or their negations. In what follows,
we assume k-CNF formulae with exactly k distinct literals in each clause. In our scenario,
this can be done without loss of generality. We write Var(φ) for the set of variables of φ, and
|φ| for the number of clauses of φ. The formula φ is satisfiable if there exists an assignment
for Var(φ) that satisfies all the clauses of φ. We let k-SAT refer to the problem of checking
whether a CNF formula is satisfiable; this problem is well known to be NP-complete for
k ≥ 3. Given two k-CNF formulae φ and ψ, SAT-UNSAT is the problem of checking whether
φ is satisfiable while ψ is not. For two given formulae φ, ψ ∈ k-CNF, for k ≥ 3, checking
whether φ is satisfiable and ψ is not satisfiable is DP-complete [29].

For our reductions, we will use two additional technical tools: an encoding of k-CNF
formulae as relations and a CNF formula with specific properties. Let φ be a propositional
k-CNF formula whose clauses are c1, . . . , cn. Assume an injection ρ from Var(φ) to Null, for
each x ∈ Var(φ), the tuples ūtx and ūfx are defined respectively as (0, ρ(x)) and (ρ(x), 1).

We next associate a relation Ri with each clause ci, for i ∈ {1, . . . , n}. To this end, we
assume a linear ordering over Var(φ). Consider a truth assignment τ for the variables of
ci, i.e., a mapping from the k variables used in ci to true and false that makes ci true. For
each such assignment τ , we add to the relation Ri a single occurrence of the tuple (ū1 . . . ūk),
where each ūj is equal to ūtxj if τ(xj) = true and to ūfxj if τ(xj) = false, and the variables
are considered in the ordering we assumed on Var(φ). Finally, we define Rφ as

⊎n
i=1Ri.

Observe that the number of tuples in each Ri is exactly 2k, hence the total number of
tuples in Rφ is at most |φ| · 2k. When k is fixed, the size of Rφ is polynomial with respect to
the size of φ. Relations Rφ enjoy the following property that will be central in our proofs.

I Lemma 15. Let φ be a k-CNF formula. There exists a truth assignment of Var(φ) that
satisfies exactly m clauses of φ if and only if there exits a valuation v of Null(Rφ) such that
range(v) ⊆ {0, 1} and #

(
(0, 1)k, vRφ

)
= m.

Proof sketch. First, one can show that for each clause ci of φ and for every valuation v

of Null(Ri) there is at most one occurrence of (0, 1)k in vRi. Observe now that, for each
ū ∈ Ri, vū = (0, 1)k means that either v

(
ρ(x)

)
= 1 for a positive literal x appearing in ci, or

v
(
ρ(x)

)
= 0 for a negative literal ¬x appearing in ci. If there exists a valuation v of Null(Rφ)

such that range(v) ⊆ {0, 1} and #
(
(0, 1)k, vRφ

)
= m, the following truth assignment satisfies

m clauses of φ: τ(x) = true if v(ρ(x)) = 1, and τ(x) = false otherwise. Suppose now that a
truth assignment τ for Var(φ) that satisfies m clauses of φ exists. The valuation v for Null(D)
is such that #

(
(0, 1)k, vRφ

)
= m: v

(
ρ(x)

)
= 1 if τ(x) = true, and v

(
ρ(x)

)
= 0 otherwise. J

ICDT 2019

8:12 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

Our second technical tool is a formula h(f, g) derived from two k-CNF formulae

f =
n∧
i=1

(
f1
i ∨ · · · ∨ fki

)
and g =

m∧
i=1

(
g1
i ∨ · · · ∨ gki

)
where each f ji and gji is a literal. Let x and y be two propositional variables not appearing
in Var(f) ∪ Var(g); then, h(f, g) is the following (k + 1)-CNF formula:

n∧
i=1

(
f1
i ∨ · · · ∨ fki ∨ x

)
∧

m∧
i=1

(
g1
i ∨ · · · ∨ gki ∨ ¬x

)
∧

m∧
i=1

(
g1
i ∨ · · · ∨ gki ∨ ¬y

)
∧ (x)∧ (¬x∨ y)

The formula h(f, g) can be used to check whether f is satisfiable while g is not, due to
the following property.

I Lemma 16. Let f and g be two k-CNF formulae. Then f is satisfiable and g is unsatisfiable
if and only if the maximum number of clauses of h(f, g) that can be satisfied by a single truth
assignment is exactly |h(f, g)| − 1.

The SPC{∪} case

We now look at the complexity of handling the max-union operator ∪. Somewhat unexpec-
tedly, adding ∪ to SPC gives rise to a substantial increase in the complexity of computing
min; recall that in the set case, adding union is harmless and preserves the property that
certain answers can be found by naive evaluation. To prove this claim, we will use reductions
from SAT and SAT-UNSAT.

Let φ be a k-CNF formula, and let Dφ denote the database {DR, DT } where DR is Rφ
(i.e., the encoding of CNF formulae presented earlier) and DT contains an occurrence of
(0, 1)k for each clause in φ, that is, #

(
(0, 1)k, DT

)
= |φ|.

For reductions, we use the query q = π∅(R∪T). Note that we project onto the empty set
of attributes, so the only possible answers for q are either the empty bag, or bags containing
one or more occurrences of the empty tuple ().

To prove our claims, we first need to prove the following result.

I Proposition 17. For every k-CNF formula φ, the database Dφ has the following properties:
1. There exists a truth assignment for Var(φ) that satisfies exactly m clauses of φ if and only

if there exits a valuation v for Null(Dφ) such that range(v) ⊆ {0, 1} and #
(
(), q, vDφ

)
=(

(2k + 1) · |φ|
)
−m.

2. For every valuation v of Null(Dφ) there exists a valuation v′ for Null(Dφ) such that
range(v′) ⊆ {0, 1} and #

(
(), q, vDφ

)
≥ #

(
(), q, v′Dφ

)
.

Proof sketch. The first property can be proved using Lemma 15. For the second, observe
that #

(
(), q, vDφ

)
depends on the number of occurrences of (0, 1)k in vRφ. J

With these notions in place, we are now ready to present the main results of this section.
We start by proving that MIN<[q] is NP-hard.

I Theorem 18. The problem MIN<[q] is NP-hard for q = π∅(R ∪ T).

Proof sketch. To prove the claim, we show a reduction from SAT. Let φ be a 3-CNF formula.
From Proposition 17, we get min

(
(), q,Dφ

)
= 9|φ| −m, where m is the maximum number of

clauses of φ that can be satisfied by the same truth assignment. To obtain the reduction,
simply observe that satisfiability of φ means that all the |φ| clauses of φ can be satisfied with
the same truth assignment. In light of this, we can conclude that φ is satisfiable if and only
if min

(
(), q,Dφ

)
< 9|φ| − |φ|+ 1 = 8|φ|+ 1. In turn, this gives the desired reduction. J

M. Console, P. Guagliardo, and L. Libkin 8:13

The complexity of MIN>[q] follows directly from Theorem 18, being MIN<[q] the comple-
ment of MIN>[q].

I Corollary 19. There exists a query q ∈ SPC{∪} such that MIN>[q] is coNP-hard.

We now turn our attention to MIN=[q] and show that this problem is hard for q ∈ SPC{∪}.

I Theorem 20. The problem MIN=[q] is DP-hard for q = π∅(R ∪ T).

Proof sketch. To prove the claim we discuss a reduction from SAT-UNSAT. Let f and g be
two 3-CNF formulae, let h(f, g) be the formula defined earlier, and let Dh be the encoding
of h(f, g) defined above. Using Proposition 17, one can prove that exactly |h(f, g)| − 1
clauses of h(f, g) can be satisfied by the same truth assignment if and only if there exists a
valuation v of Null(Dh) such that #

(
(), q, vDh

)
= 16|h(f, g)|+1 and there exists no valuation

v′ of Null(Dh) such that #(v′Dh, q, ()) ≤ 16|h(f, g)|. By Lemma 16, this implies that f is
satisfiable and g is unsatisfiable if and only if min

(
(), q,Dh

)
= 16|h(f, g)|+ 1, proving the

claim. J

Handling duplicate elimination

In terms of tractability, no fragment survives the addition of duplicate elimination. In this
section, we will show that the decision problems for all fragments from SPC{ε} to the full
relational algebra are NP-complete, coNP-complete, and DP-complete for <, > and =,
respectively. To prove this, we will use reductions from SAT and SAT-UNSAT.

Let φ be a k-CNF formula, and let Dφ = {DS} be the database where the relation DS is
defined as follows. Let Ri be the relation encoding the i-th clause of φ, as described at the
beginning of this section; then define the relation R′

i = ({i} ×Ri)] {
(
i, (0, 1)k

)
}, where {i}

and {
(
i, (0, 1)k

)
} are bags containing one occurrence of the tuples (i) and (i, 0, 1, . . . , 0, 1︸ ︷︷ ︸

2k

),

respectively. We define DS =
⊎
iR

′
i. Notice that the size of DS is at most (2k + 1) · |φ|.

In the proofs we use the very simple SPC{ε} query q = π∅
(
ε(S)

)
, whose output is either

the empty set or the set {()} containing the empty tuple.
To prove our complexity results we need the following proposition.

I Proposition 21. For every k-CNF formula φ, the database Dφ has the following properties:
1. There exists an assignment for Var(φ) that satisfies m clauses of φ if and only if there

exists a valuation v of Null(Dφ) such that range(v) ⊆ {0, 1} and #
(
(), q, vDφ

)
=
(
(2k +

1) · |φ|
)
−m.

2. For every valuation v of Null(Dφ) there is a valuation v′ of Null(Dφ) such that range(v′) ⊆
{0, 1} and #

(
(), q, vDφ

)
≥ #

(
(), q, v′Dφ

)
.

Proof sketch. The first property can be proved using Lemma 15. For the second, observe
that #

(
(), q, vDφ

)
depends on the number of occurrences of (0, 1)k in vRφ. J

Using Proposition 21 we can prove the main results of this section. We start with the
complexity of MIN<[q].

I Theorem 22. The problem MIN<[q] is NP-hard for q = π∅(ε(S)).

Proof sketch. To prove the claim we show a reduction from SAT. Let φ be a 3-CNF formula
and let Dφ be the database encoding φ defined above. Using Proposition 21, we can prove
that min

(
(), q,Dφ

)
= 9|φ| −m, where m is the maximum number of clauses of φ that can

be satisfied by the same truth assignment. To obtain the reduction, observe that if φ is

ICDT 2019

8:14 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

satisfiable then |φ| of its clauses can be satisfied by the same truth assignment. In turn,
this proves that φ is satisfiable if and only if min

(
(), q,Dφ

)
< 9|φ| − |φ|+ 1 = 8|φ|+ 1. The

desired reduction follows. J

The complexity of MIN>[q] follows directly from Theorem 22.

I Corollary 23. There exists a query q ∈ SPC{ε} such that MIN>[q] is coNP-hard.

We now look at MIN=[q] and prove the desired lower bound for q ∈ SPC{ε}.

I Theorem 24. The problem MIN=[q] is DP-hard for q = π∅(ε(S)).

Proof sketch. To prove the claim, we argue that there exists a reduction from SAT-UNSAT
to MIN=[q] when q = π∅(ε(S)). Let f and g be two 3-CNF formulae, let h(f, g) be the
formula defined in the previous sections, and let Dh be the encoding of h(f, g) as relation
defined above. Using Proposition 21, one can prove that |h(f, g)| − 1 clauses of h(f, g) can
be satisfied by the same truth assignment if and only if there exists a valuation v of Null(Dh)
such that #

(
(), q, vDh

)
= 16|h(f, g)|+ 1 and there exists no valuation v′ of Null(Dh) such

that #
(
(), q, v′Dh

)
≤ 16|h(f, g)|. Due to Lemma 16, this implies that f is satisfiable and g is

not satisfiable if and only if min((), q,Dh) = 16|h(f, g)|+ 1. In turn, this proves the desired
reduction. J

5.3 Computing max: hardness for simple queries
Computing max is hard already for very simple queries: in fact, MAX>[q] is NP-complete
for queries that simply return a base relation in the database [14]. Here we complete the
picture and prove that solving MAX=[q] for the same queries is complete for DP. To this
end, we will show a reduction from SAT-UNSAT to MAX=[q].

Let φ be a k-CNF formula, and let Dφ be the database consisting of the single relation
DR = Rφ, which is the encoding of φ defined earlier. Using this simple construction we can
prove the following.

I Theorem 25. The problem MAX=[q] is DP-hard even for a query q that returns a base
relation in the database.

Proof sketch. To prove the claim, we discuss a reduction from SAT-UNSAT. Let f and g
be two 3-CNF formulae, and let h(f, g) be the 4-CNF formula defined earlier. Consider the
database Dh defined above and assume that the query q returns R. First, one can prove that
for every valuation v of Null(Dh) there exists a valuation v′ such that range(v′) ⊆ {0, 1} and
#
(
(0, 1)k, R, vDh

)
≤ #

(
(0, 1)k, R, v′Dh

)
. From this considerations and Lemma 15, one can

prove that exactly |h(f, g)|−1 clauses of h(f, g) can be satisfied by the same truth assignment
if and only if there exists a valuation v of Null(Dh) such that #

(
(0, 1)4, R, vDh

)
= |h(f, g)|−1

and there exists no valuation v′ of Null(Dh) such that #
(
(0, 1)4, R, v′Dh

)
≥ |h(f, g)|. Due

to Lemma 16, f is satisfiable and g is unsatisfiable if and only if max((0, 1)k, R,Dh

)
=

|h(f, g)| − 1. In turn, this proves the desired reduction. J

5.4 Complex selection conditions
In our definition of relational algebra, we assumed that selection conditions are equalities
i = j. More generally, one can define these conditions by the grammar

c := (i = j) | c ∧ c | c ∨ c | ¬c

M. Console, P. Guagliardo, and L. Libkin 8:15

allowing arbitrary Boolean combinations. We briefly describe how more complex conditions
affect our results.

If we simply add conjunction, that is, selection conditions are conjunctions of equalities,
nothing changes at all. This is because the cascade of selections rule, σc∧c′(e) = σc

(
σc′(e)

)
,

applies under bag semantics as well.
If disjunction is added, it might appear at first that this is the same as adding max-union,

because σc∨c′(e) = σc(e)∪σc′(e). As far as finding certain answers is concerned, the fragment
SPC{∪} is intractable, so it appears that adding disjunction to selection conditions, under
bag semantics, might lead to intractability. However, this is not the case: adding disjunction
to selections is weaker than adding max-union, and preserves tractability.

I Proposition 26. Let q be a query in RA+ or arity n where selection conditions are
positive Boolean combinations of equalities. Then, MIN<[q] and MIN>[q] can be solved in
DLogSpace. More precisely, for every database D and every tuple ā ∈ Const(D)n, the value
min(ā, q,D) can be computed by naive evaluation: min(D, q, ā) = naive(D, q, ā).

For conditions that are unrestricted Boolean combinations of equalities, the problem
becomes intractable, even when these are added to the positive fragment.

I Proposition 27. In the extension of RA+ that allows arbitrary Boolean combinations of
equalities as selection conditions, there exist queries q such that MIN<[q] is NP-complete,
MIN>[q] is coNP-complete, and MIN=[q] is DP-complete.

6 Conclusions

We have provided two complete classifications: of the expressive power of fragments of bag
relational algebra, and of the complexity of computing certain and possible answers in those
fragments. For the complexity of certain answers, we have a dichotomy: either they can be
computed efficiently by naive evaluation, or their complexity is intractable, which means
NP-complete, or coNP-complete, or DP-complete (depending on how the problem is turned
into a decision problem).

Directions for future work are motivated by the recent work on bag semantics in data
management applications where incompleteness naturally occurs, such as data exchange [20]
and OBDA [28]. Notice that we have primarily concentrated on the closed-world semantics,
which as of late has been actively studied in those contexts; see, e.g., [3, 5, 19, 21, 27]. Thus
we believe our results could be relevant to understanding the complexity of these applications
under the closed-world assumption. As another direction for future work, we would like to
study the complexity of finding certain and possible answers in the fragments of bag relational
algebra under the open-world assumption. The general case is of course undecidable, but the
picture for the fragments studied here is not clear. Finally, we would like to use our results
as the starting point for the study of answering queries with grouping and aggregation over
incomplete data, as such queries rely on bag semantics.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.
2 Serge Abiteboul, Paris Kanellakis, and Gösta Grahne. On the representation and querying of

sets of possible worlds. Theoretical Computer Science, 78(1):158–187, 1991.
3 Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Simkus. Polynomial Datalog Rewritings

for Expressive Description Logics with Closed Predicates. In IJCAI, pages 878–885, 2016.

ICDT 2019

8:16 Fragments of Bag Relational Algebra: Expressiveness and Certain Answers

4 Joseph Albert. Algebraic Properties of Bag Data Types. In VLDB, pages 211–219, 1991.
5 Giovanni Amendola, Nicola Leone, Marco Manna, and Pierfrancesco Veltri. Enhancing

Existential Rules by Closed-World Variables. In IJCAI, pages 1676–1682, 2018.
6 Marcelo Arenas, Pablo Barceló, Leonid Libkin, and Filip Murlak. Foundations of Data

Exchange. Cambridge University Press, 2014.
7 Leopoldo E. Bertossi, Georg Gottlob, and Reinhard Pichler. Datalog: Bag Semantics via Set

Semantics. CoRR, abs/1803.06445, 2018. arXiv:1803.06445.
8 Meghyn Bienvenu and Magdalena Ortiz. Ontology-Mediated Query Answering with Data-

Tractable Description Logics. In Reasoning Web, pages 218–307, 2015.
9 Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. Principles of Programming

with Complex Objects and Collection Types. Theor. Comput. Sci., 149(1):3–48, 1995.
10 R. G. G. Cattell. The Object Database Standard: ODMG-93. Morgan Kaufmann, 1993.
11 Surajit Chaudhuri and Moshe Y. Vardi. Optimization of Real Conjunctive Queries. In PODS,

pages 59–70, 1993.
12 Sara Cohen. Equivalence of queries combining set and bag-set semantics. In PODS, pages

70–79, 2006.
13 Latha S. Colby and Leonid Libkin. Tractable Iteration Mechanisms for Bag Languages. In

ICDT, pages 461–475, 1997.
14 Marco Console, Paolo Guagliardo, and Leonid Libkin. On Querying Incomplete Information

in Databases under Bag Semantics. In IJCAI, pages 993–999. ijcai.org, 2017.
15 C. J. Date and Hugh Darwen. A Guide to the SQL Standard. Addison-Wesley, 1996.
16 Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In PODS,

pages 31–40. ACM, 2007.
17 Stéphane Grumbach, Leonid Libkin, Tova Milo, and Limsoon Wong. Query languages for

bags: expressive power and complexity. SIGACT News, 27(2):30–44, 1996.
18 Stéphane Grumbach and Tova Milo. Towards Tractable Algebras for Bags. J. Comput. Syst.

Sci., 52(3):570–588, 1996.
19 André Hernich. Answering Non-Monotonic Queries in Relational Data Exchange. Logical

Methods in Computer Science, 7(3), 2011.
20 André Hernich and Phokion G. Kolaitis. Foundations of information integration under bag

semantics. In LICS, pages 1–12. IEEE Computer Society, 2017.
21 André Hernich, Leonid Libkin, and Nicole Schweikardt. Closed world data exchange. ACM

Trans. Database Syst., 36(2):14:1–14:40, 2011.
22 Tomasz Imielinski and Witold Lipski. Incomplete information in relational databases. Journal

of the ACM, 31(4):761–791, 1984.
23 T. S. Jayram, Phokion G. Kolaitis, and Erik Vee. The containment problem for real conjunctive

queries with inequalities. In PODS, pages 80–89, 2006.
24 Phokion G. Kolaitis. The Query Containment Problem: Set Semantics vs. Bag Semantics. In

AMW, 2013.
25 Maurizio Lenzerini. Data integration: a theoretical perspective. In PODS, pages 233–246,

2002.
26 Leonid Libkin and Limsoon Wong. Query Languages for Bags and Aggregate Functions. J.

Comput. Syst. Sci., 55(2):241–272, 1997.
27 Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-Mediated Queries with Closed

Predicates. In IJCAI, pages 3120–3126, 2015.
28 Charalampos Nikolaou, Egor V. Kostylev, George Konstantinidis, Mark Kaminski, Bern-

ardo Cuenca Grau, and Ian Horrocks. The Bag Semantics of Ontology-Based Data Access. In
IJCAI, pages 1224–1230, 2017.

29 Christos H. Papadimitriou and Mihalis Yannakakis. The Complexity of Facets (and Some
Facets of Complexity). J. Comput. Syst. Sci., 28(2):244–259, 1984.

30 Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill,
2003.

http://arxiv.org/abs/1803.06445

Categorical Range Reporting with Frequencies
Arnab Ganguly
Dept. of Computer Science, University of Wisconsin, Whitewater, USA
gangulya@uww.edu

J. Ian Munro
Cheriton School of Computer Science, University of Waterloo, Canada
imunro@uwaterloo.ca

Yakov Nekrich
Cheriton School of Computer Science, University of Waterloo, Canada
yakov.nekrich@googlemail.com

Rahul Shah
Dept. of Computer Science, Baton Rouge, USA
rahul@csc.lsu.edu

Sharma V. Thankachan
Dept. of Computer Science, University of Central Florida
sharma.thankachan@ucf.edu

Abstract
In this paper, we consider a variant of the color range reporting problem called color reporting with
frequencies. Our goal is to pre-process a set of colored points into a data structure, so that given a
query range Q, we can report all colors that appear in Q, along with their respective frequencies.
In other words, for each reported color, we also output the number of times it occurs in Q. We
describe an external-memory data structure that uses O(N(1 + log2 D/ logN)) words and answers
one-dimensional queries in O(1 +K/B) I/Os, where N is the total number of points in the data
structure, D is the total number of colors in the data structure, K is the number of reported colors,
and B is the block size.

Next we turn to an approximate version of this problem: report all colors σ that appear in the
query range; for every reported color, we provide a constant-factor approximation on its frequency.
We consider color reporting with approximate frequencies in two dimensions. Our data structure
uses O(N) space and answers two-dimensional queries in O(logB N + log∗B +K/B) I/Os in the
special case when the query range is bounded on two sides. As a corollary, we can also answer
one-dimensional approximate queries within the same time and space bounds.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Data Structures, Range Reporting, Range Counting, Categorical Range
Reporting, Orthogonal Range Query

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.9

1 Introduction

Orthogonal range query is a fundamental problem in computational geometry and data
structures, with a large number of applications in database theory, information retrieval, and
text mining. In this problem, we want to pre-process a set of points so that later, given a
query rectangle Q, we can report some desired information about the points contained in Q.
Typical examples of this information are: the maximum (or minimum) value of a point in
the range (in this case we associate a numeric value to each point), the most-frequent value
in the range (or mode), the median value, the number of points in the range, etc.

© Arnab Ganguly, J. Ian Munro, Yakov Nekrich, Rahul Shah, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 9; pp. 9:1–9:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gangulya@uww.edu
mailto:imunro@uwaterloo.ca
mailto:yakov.nekrich@googlemail.com
mailto:rahul@csc.lsu.edu
mailto:sharma.thankachan@ucf.edu
https://doi.org/10.4230/LIPIcs.ICDT.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Categorical Range Reporting with Frequencies

In the colored (or categorical) orthogonal range reporting problem, every point is assigned
a color (category). Given a query range Q, we must report distinct categories of points in the
query range. Typically, we want to avoid reporting the same category many times. For this
reason, colored variants of the range reporting problem are considered to be more difficult.
In the orthogonal range counting problem, we keep the set of points in a data structure so
that, given a query range Q, we can count the number of points in Q.

In this paper, we consider a variant of color range reporting queries that combines color
reporting with counting: given a query range Q, we report all colors that appear in Q;
additionally, for each color within Q, we also report the number of its occurrences in Q.
Henceforth, such queries are called color reporting with frequencies. We also consider an
approximate variant: all colors in a query range Q are reported; for each color σ, which
appears Kσ times in Q, we find a constant factor approximation for Kσ.

We describe two data structures – one for color reporting with exact frequencies in one
dimension and the other for color reporting with approximate frequencies in two dimensions,
which are the first of their kind in the external memory model.

1.1 Applications to Databases
Situations where we need to report distinct categories of objects in a query range arise
frequently in database applications. Suppose we have a database of employees, and we want
to identify all employees whose salary lies in the range $40,000 – $80,000. This problem
corresponds to one-dimensional point reporting queries. Now suppose that we want to report
different job positions, such that at least one employee holding this position earns between
$40,000 and $80,000. This problem corresponds to one-dimensional color reporting queries.
In many cases, we may be interested in a more involved query: group all employees who earn
between $40,000 and $80,000 according to their job positions, then list all groups and the
number of employees in each group. This problem can be modeled by (one-dimensional) color
reporting queries with frequencies. Furthermore we may be satisfied if we obtain approximate
numbers of employees for every group. In this case, it is sufficient to answer the approximate
variant of the color reporting query with frequencies.

Another prominent application of color range queries is in databases containing a collection
of texts (documents). Given a query pattern Q, we want to report all documents that contain
Q at least once; for each such document, we want to estimate how many occurrences of Q it
contains. Such a query can be reduced to a color reporting query with frequencies.

1.2 Model of Computation
We study the color reporting with (approximate) frequencies problems in the external memory
model. Here, the storage is divided into a main (or internal) memory of limited size and
a large (potentially unbounded) external disk. We can perform arithmetic operations on
data that is stored in the main memory. The data structure, however, does not fit into
main memory and must be stored on the external disk. Using one I/O operation, we can
read a contiguous block of B words from disk into the main memory or write a block of B
words from main memory into the external disk. The main memory is much faster than the
external memory; hence, all main memory operations are considered free and the algorithm
complexity is measured in the number of I/O operations.

We remark that when we answer a reporting query in the external memory model, it is
preferable to report Θ(B) objects (points, colors) with one I/O operation. Design of methods
that fully exploit this property of the external memory model poses an additional challenge.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:3

1.3 Notation
Throughout this paper, N is the total number of points, where each point is associated with
a color. We denote by D the number of distinct colors. The number of colors in the answer
to a query is denoted by K. The number of points with color σ in the answer to a query
(or the frequency of σ) is denoted by Kσ. We assume that a word consists of Θ(logN) bits.
Unless specified otherwise, the space usage is measured in words of Θ(logN) bits.

1.4 Previous and Related Work
Due to its importance, both in theory and in practice, the problem of reporting distinct colors
of points in a range has received considerable attention. Both one-dimensional and multi-
dimensional color (or categorical) range reporting were considered in the literature [13, 7, 11,
12, 8, 18, 19, 14, 23]. Other variants of this problem, such as top-k color reporting [14, 20],
color maxima queries [25], color stabbing queries [10] were also studied.

Gupta et al. [11] present a main memory data structure that uses linear-space (i.e.,
O(N)-word) and answers one-dimensional colored range reporting queries in O(logN +K)
time. Muthukrishnan [18] showed that the query time can be improved to O(1 +K) if points
are in the rank space, i.e., point coordinates are integers 1, 2, . . . , N . Later, Nekrich and
Vitter [24] removed the rank space assumption, without any penalty in space or time.

In the external memory model, one-dimensional color reporting is usually solved by
reducing it to three-sided point reporting (i.e., to a special case of two-dimensional point
reporting when the query range is bounded on three sides). Arge et al. [3] described a
linear-space solution that supports queries in O(logB N +K/B) I/Os. Nekrich [21] described
an O(N)-word data structure that supports queries in O(log logB U +K/B) I/Os when point
coordinates are bounded by U . If point coordinates are bounded by N , another O(N)-space
data structure from [21] supports queries in O(log(h)

2 N +K/B) I/Os, where h is a positive
constant and log(h)N denotes the logarithm function iterated h times.1 Larsen and Pagh [15]
showed that one-dimensional queries can be answered in O(1 + K/B) I/Os using O(N)
words if point coordinates are bounded by N . They also studied the related problem of
reporting the top-k colors, where each color is associated with a static weight and the k
highest weighted colors within the query range have to be reported. Nekrich and Vitter [24]
demonstrated that one-dimensional color reporting queries can be answered in O(1 +K/B)
I/Os even if point coordinates are arbitrary integers. Patil et al. [25] considered another
variant of color reporting in one-dimension, called colored range maxima queries; here, one
has to report the points corresponding to k distinct colors within the query range having
the highest y-coordinate values. They presented multiple data structures with different
space-and-time trade-offs, such as an O(N)-word data structure with O(log∗N + k/B) query
time2 and an O(N log∗N)-word data structure with optimal O(1 + k/B) query time.

Although this problem has been studied extensively and optimal results for many colored
range reporting problems were achieved, limited progress has been made for the color range
reporting with frequencies problem. Gupta, Janardan, and Smid [11] presented an internal
memory data structure that answers a query in O(logN + K) time and uses O(N logN)
space; see the type-2 counting problem in [11]. If we combine a result of Muthukrishnan [18]
with an idea of Sadakane [29], we can obtain an O(N)-word data structure for reporting
colored points and their frequencies in the rank space in O(1 +K) time. However, this result

1 log(h) N = log(log(h−1) N) for h > 1 and log(1) N = logN
2 log∗N is the smallest number i such that log(i) N ≤ 2

ICDT 2019

9:4 Categorical Range Reporting with Frequencies

Table 1 Our Results.

Query Type Space Time

1D/2D Two-sided with Constant Appx O(N) words O(log∗B + logB N +K/B) I/Os

1D One-sided Exact O(N) words O(1 +K/B) I/Os

1D Two-sided Exact O(N(1 + log2 D/ logN)) words O(1 +K/B) I/Os

is not efficient in the external memory model, where the desired dependency on the output
size is O(f(N) +K/B) for some small function f(N). To the best of our knowledge, there is
no previous solution that exploits the properties of the external memory model. In contrast,
the standard color reporting (without frequencies) can be solved in optimal O(1 + K/B)
time and O(N) space in external memory [15, 24]. In this paper, we bridge this gap.

In the related approximate range counting problem, we must approximate the number of
point within the query range. Chan and Wilkinson [9] presented an O(N log logN)-word
data structure that answers approximate two-dimensional queries in O(log logN) time. The
previous paper by Nekrich [22] achieved a better approximation factor, compared to [9], at
the cost of higher space usage. In another paper, Nekrich [23] presented an O(N)-space data
structure that supports approximate point counting queries on an N ×N grid in O(1) I/Os,
when the query range is bounded on three sides.

The second problem that we study combines color reporting with approximate point
counting problem: we report all colors within the query range and provide a constant factor
approximation for the frequency of each color. We primarily study the problem from the
perspective of dominance reporting in two-dimensions, i.e., the query range is bounded on
two sides; see e.g., [1] for a catalog on dominance queries. Straightforward reductions from
this two-dimensional dominance problem can be used to answer a (two-sided) color reporting
query with approximate frequencies in one dimension.

1.5 Our Results

Unless specified otherwise, we assume that points are in the rank space, i.e., point coordinates
are integers 1, 2, . . . , N . More general scenarios can be reduced to this special case at the
cost of increasing the query time by a small additive factor: if points are integers 1, . . . , U
for a parameter U , then the query cost increases by O(log2 logB U); if point coordinates can
assume arbitrary values, the query cost increases by O(logB N).

We first consider the problem of reporting colors and their frequencies for a two-sided
query in 2D, which is commonly referred to as dominance query [1] in 2D. We present a
linear-space data structure that answers a constant-factor 2-sided approximate-frequency
query: given a query range [−∞, α]× [−∞, β], we report all colors in the query range, and
for every reported color σ, we also provide an estimate kσ on the number of its occurrences
in the range. Let δ > 1 be a constant that is fixed at the construction time and can be
arbitrarily close to 1. For every color σ in the range, we obtain an integer index i, such that
δi ≤ kσ ≤ δi+1. The total cost of a query is O(log2(N/B)+K/B) I/Os. Our data structure is
based on a reduction to the problem of identifying all two-dimensional rectangles that contain
a query point [4, 27] (rectangle stabbing problem), and uses O(N) space. Then, we improve
the time to O(logB N + log∗B +K/B) I/Os, still using linear space. As a straightforward
corollary, we answer one-dimensional 2-sided queries with the same space-time trade-offs.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:5

Additionally, we present an O(Nd log2 D
logN e)-word data structure that answers 1-dimensional

2-sided color reporting queries with exact frequencies in optimal O(1+K/B) I/Os. We remark
that the space is O(N) words if the number of colors is not too large, i.e., when D ≤ 2

√
logN .

This result is based on an O(N)-space data structure that answers 1-dimensional 1-sided
color reporting queries with exact frequencies in optimal O(1 +K/B) I/Os.

Our results are presented in Table 1.

1.6 Map
We begin in Section 2 by reducing 2-sided approximate-frequency queries in 2D to rectangle
stabbing queries (also known as orthogonal point enclosure). This leads to a simple linear
space data structure. In Section 3, we improve this result to achieve our claimed I/O
complexity without increasing the space usage. Section 4 explains how to use this data
structure for answering approximate-frequency queries in one dimension. In Section 5, we
present our data structure for reporting colors with exact frequencies in one dimension.
Finally, we conclude in Section 6 with a couple of unanswered problems.

2 2D Color Dominance with Approximate Frequencies

In this section, we focus on answering two-dimensional colored dominance queries with
approximate frequencies. Specifically, we consider the following:

I Definition 1. Given a collection of two-dimensional colored points, we define FREQ(α, β, σ)
to be the number of 2d points pi = (xi, yi) satisfying xi ≤ α, yi ≤ β, and the color of pi is σ.

I Problem 2. Given N colored points in 2d, answer an APPX2D(α, β) query: report all
distinct colors σ1, σ2, . . . , σK with values f1, f2, . . . , fK such that for each reported color σi,

FREQ(α, β, σi) 6= 0, and
FREQ(α, β, σi) ≤ fi ≤ δ · FREQ(α, β, σi)

We prove the following theorem in this section.

I Theorem 3. There exists an O(N)-word data structure that answers APPX2D(α, β) queries
in O(log2 N

B +K/B) I/Os.

2.1 Shallow Cutting
We heavily rely on the concept of shallow cutting that has been used extensively in range
reporting problems [1, 2, 17, 27, 28]. Consider a color σ and let Nσ be the total number of
points of color σ. We call a point a σ-point if it is of color σ.

An h-shallow cutting for a parameter h can be constructed as follows. We start sweeping
a vertical line V from x = −∞ until we reach a σ-point such that the total number of
σ-points encountered so far is δh. Now start sweeping a horizontal line H from y =∞ until
we reach the highest σ-point among these δh σ-points. Let c1 be the point of intersection of
the sweeping lines at this point. Let Rh1 be the region bounded by the sweeping lines; note
that Rh1 is two-sided and has δh number of σ-points.

Now again start sweeping V to the right, until the region, say Rh′

1 , bounded by V and H
contains δh+1 points. Let c′1 be the point of intersection of the sweeping lines at this point.
Start sweeping H downwards until the region, say Rh2 , bounded by V and H again contains

ICDT 2019

9:6 Categorical Range Reporting with Frequencies

H
V

Rh
1

H
V

Rh′

1

V

H
Rh

2

δh

δh

δh

δh

δh

δh+1

δh+1

δh+1

δh+1

c′1c1

c′2c2

c3 c′3

c4

c5

c′4

δh+1 σ-pointsδh σ-points

δh σ-points

Figure 1 Illustration of Shallow Cutting and the resultant staircase structure.

δh−1

δh

δh+1

δh

red-rectangle
A type-h

δh+1

δh+1

(a,b)

Any point stabbing this rectangle
dominates ≥ δh and ≤ δh+2

number of red-points

δh+2

Figure 2 Illustration of Rectangular Tessellation.

δh points. Let c2 be the new point of intersection of V and H. We repeat this process until
V reaches the rightmost σ-point within the region bounded by V and H, following which H
is swept down so that the last two-sided region contains δh many σ-points.

We denote by Rh1 ,Rh2 , . . . , type-h σ-regions; likewise, type-h regions refers to the collection
of type-h σ-regions over all possible colors σ. The points c1, c′1, c2, c′2, . . . are referred to as
the corner points of this “staircase structure”. We also refer to this staircase structure as the
skyline of the regions. See Figure 1.

The following lemma will play a crucial role in proving our space bounds.

I Lemma 4. The number of type-h regions is O(N/δh).

Proof. Refer to Figure 1. It is easy to see that every time a new region Rhi is created from
Rhi−1, we read δh+1 − δh many new σ-points. Hence, we create at most Nσ

(δh+1−δh) = Nσ
(δ−1)δh

σ-regions, which is O(Nσ/δh). Thus, the number of type-h σ-regions is O(Nσ/δh). The
lemma follows trivially. J

2.2 Tessellation Using Rectangles
Let us consider the shallow cutting outlined in the previous section. For each color σ, we
carry out the shallow cutting for every h ∈

[
1, dlogδ Ne

]
, thereby breaking the xy-plane into

various σ-regions – type-1 σ-regions, type-2 σ-regions, · · · , type-(logδ N) σ-regions.
We now present the following important lemma (see Figure 3).

I Lemma 5. A type-h σ-region is contained within a type-(h+ 1) σ-region.

Proof. Refer to Figure 3. It shows the situation when a type-h σ-region is not contained in
a type-(h+ 1) σ-region. Since the number of σ-points dominated by both B and D is δh+1,
there are no σ-points either to the left of the segment AD, or below the segment CD, or
within the rectangle ABCD. But then our construction is incorrect and the points D and C
must have coincided with A and B respectively. The claim follows by contradiction. J

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:7

D

A B

C

δh+1

points

empty

empty

empty

δh+1

δh+1

δh+2

δh+1

δh+1

δh+2

δh

δh A B

CD

Figure 3 Illustration of Lemma 5. A type-h region is contained withing a type-(h+ 1) region.

Based on the above lemma, the “staircase structure” of the (h+ 1)-shallow cutting lies to
the right and above of the staircase structure for the h-shallow cutting.

Let us consider a point p in the plane such that it is contained in a type-(h+ 1) σ-region
but not contained in a type-h σ-region. This, as we shall see in more details in the next
subsection, gives an estimate of the number of σ-points that are dominated by p. Our
main idea is to associate such a point p with an approximate count of the σ-points that are
dominated by it. Obviously, we cannot associate each point separately; hence, we break the
xy-plane between a type-h and a type-(h+ 1) region into several (yet appropriately bounded)
rectangles. Specifically, consider the corner points of a type-h σ-region. We draw vertical
lines from these points onto the skyline of the type-(h−1) and type-(h+1) σ-regions, thereby
breaking the plane into several rectangles. See Figure 2.

We call each rectangle a type-h σ-rectangle if it is contained in a type-(h+ 1) σ-region
but not within a type-(h) σ-region. As before, type-h rectangles refers to the collection of
type-h σ-rectangles over all possible colors σ. Using Lemma 4, we can show that the number
of type-h rectangles for a fixed h is O(N/δh). The following lemma is obtained by summing
over h = 1, 2, . . . , dlogδ Ne.

I Lemma 6. The total number of rectangles is O(N).

2.3 Rectangle Stabbing
A rectangle is said to be stabbed by a point if it contains the point within its boundaries.
The rectangle tessellation structure described in the previous section immediately leads to
the following important lemma.

I Lemma 7. If a type-h σ-rectangle is stabbed by (α, β), then the following inequality holds:

δh ≤ FREQ(α, β, σ) ≤ δh+2

Proof. Consider the shallow cutting in Figure 2. Since the point (α, β) stabs a type-h
σ-rectangle, it is contained within a type-(h + 1) σ-region. Thus, the number of σ-points
dominated by any point on the skyline of a type-(h+ 1) σ-region is at most δh+2. Hence,
FREQ(α, β, σ) ≤ δh+2. To prove the other inequality, we observe in Figure 2 that any point
within a type-(h+ 1) σ-region dominates at most δh σ-points of a type-h σ-region. Hence,
FREQ(α, β, σ) ≥ δh, as required. J

ICDT 2019

9:8 Categorical Range Reporting with Frequencies

Intuitively, looking at the lemma above, it follows that in order to answer an APPX2D(α, β)
query, it suffices to report all the type-h σ-rectangles that are stabbed by (α, β) for all possible
choices of σ and appropriate choices of h in each case. This is because if a type-h σ-rectangle
is stabbed by a point (α, β), we have the following:

there exists a σ-point dominated by (α, β), which follows simply from the way in which
the rectangles are constructed, and
δh ≤ FREQ(α, β, σ) ≤ δh+2, using Lemma 7

We notice that for each particular color there is at most one stabbed rectangle of that
color. Therefore for each color, our task is to find the rectangle of that color (if any) that is
stabbed by (α, β); for each stabbed rectangle, report its color and an appropriate real value
which gives an approximation of FREQ(α, β, σ).

To this end, we collect all the rectangles of all possible colors and store them in the
following external-memory rectangle-stabbing data structure in [4].

I Fact 8 (Theorem 4, [4]). Given M rectangles, there exists an O(M) space data structure
that can report all rectangles stabbed by an input point in O(log2(M/B)+occ/B) I/Os, where
occ is the output size.

With each type-h σ-rectangle, say Rhσ, we store its corresponding color σ, and the value
COUNT(Rhσ) = δh+2.

Using Fact 8 and Lemma 6, the total space is O(N) words.

2.4 Wrapping Up
To answer APPX2D(α, β), we query the data structure of Fact 8 and report all the stabbed
rectangles along with their color and COUNT(·) values. The query time is O(log2(N/B) +
K/B), as desired.

Note that each color is reported exactly once, because only one rectangle of a particular
color is stabbed; hence, we are left to show that for a reported type-h σ-rectangle Rhσ,
COUNT(Rhσ) gives us a desired approximation of FREQ(α, β, σ).

First we note that COUNT(Rhσ) ≥ FREQ(α, β, σ)
Revisiting Lemma 7, we see that

FREQ(α, β, σ) ≥ δh = COUNT(Rhσ)
δ2 =⇒ COUNT(Rhσ) ≤ δ2 · FREQ(α, β, σ)

By choosing
√
δ (instead of δ) during construction, we obtain

COUNT(Rhσ) ≤ δ · FREQ(α, β, σ)

which leads to our desired approximation ratio. (Note that space and time bounds are
only affected by a constant factor.) This completes the proof of Theorem 3.

3 Improvement via Bootstrapping

In this section, we set out to improve the query time of Theorem 3, still using linear space.
More specifically, we prove the following theorem.

I Theorem 9. There exists an O(N)-word data structure that answers APPX2D(α, β) queries
in O(logB N + log∗B +K/B) I/Os.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:9

boundary boundary boundary boundary
h-slabh-slab(h− 1)-slab (h− 1)-slab

level-h rectangle ∈ S ′′
h

level-h rectangle ∈ S ′′′
h

level-h rectangle ∈ S ′
h

Figure 4 Illustration of type-h rectangles and the sets S ′h, S ′′h , and S′′′h .

3.1 Framework and Overview
In order to prove Theorem 9, we need to improve the log2(N/B) factor in the I/O complexity
of Theorem 3. Unfortunately, as shown by Arge, Samoladas, and Yi [4], it is not possible to
achieve o(log2(N/B)) query complexity for the rectangle stabbing problem in two dimensions
if the data structure uses linear space. However, in our case, we are able to circumvent the
lower bound of [4] because rectangles have some additional special properties. Our approach
is based on a hierarchical subdivison of the plane into vertical slabs. The subdivision is based
on two parameters:

∆h = B(log(h)(N/B))4 and Kh = B(log(h)(N/B))2

A slab boundary is a vertical line through x = i + 0.5 for some integer i ∈ [1, N] and
slab is the region between two slab-boundaries. The entire xy-plane is a level-0 slab. For
h = 1, 2, 3, . . . , log∗N , we divide each level-(h− 1) slab into level h-slabs, so that

the number of level-h slabs within any level-(h− 1) slab is O(∆h−1/∆h)
the number of rectangles completely covered by any level-h slab is O(∆h).

A rectangle is a level-h rectangle if it crosses at least one boundary of a level-h slab, but
is completely contained within a level-(h− 1) slab. See Figure 4.

Throughout this section we will denote by Si the i-slab that contains the query point (α, β)
for i = 1, 2, . . . , log∗ n. Consider a particular h. Suppose that a point (α, β) stabsK rectangles,
where K ≥ Kh. All the level-h rectangles are contained in the (h−1)-slab Sh−1. If we keep all
level-h rectangles contained in Sh−1 in the data structure of Fact 8, then all level-h rectangles
stabbed by (α, β) are reported in O(log2(∆h−1/B) +K/B) = O(Kh/B +K/B) = O(K/B)
I/Os. This case is considered in detail in Section 3.2.

The main difficulty is in reporting level-h rectangles for values of h, such that K < Kh.
In this case, described in Section 3.3, we follow a different strategy. We keep all level-h
rectangles that span the slab Sh (i.e., rectangles that intersect Sh but have all four corners
outside of Sh) in a separate data structure and use it to report all level-h rectangles that
are stabbed by (α, β). Since (α, β) is within Sh, we only need to look for rectangles whose
y-projection contains β. In the general case, this approach would require too much space: a

ICDT 2019

9:10 Categorical Range Reporting with Frequencies

level-h rectangle can span a large number of h-slabs and we would have to keep it in a data
structure for every slab. Fortunately in our case, rectangles satisfy a so-called monotonic
property, defined in Observation 15. Due to this property, we only need to store o(∆h) “lowest”
spanning rectangles for every h-slab. Any point above those “lowest” rectangles is guaranteed
to stab at least Kh rectangles. Additionally, we also need to classify rectangles into heavy
and light ones, according to the frequencies of regions represented by these rectangles. A
detailed description is provided in Section 3.3.2. We consider separately the case of the
level-h rectangles that intersect but do not span Sh. Queries on such rectangles can be
reduced to three-dimensional dominance queries; see Section 3.3.1.

In the description above, we assumed that the value of K is known. Computing the
value of K is rather straightforward – simply report the colors of all points dominated by
(α, β). Using the result of Patil et al. [25], we can report all colors (and compute K) in
O(log∗N +K/B) I/Os using an O(N) space data structure.

3.2 Handling Case 1: K ≥ Kh

For h = 1, 2, 3, . . . and for each level-(h− 1) slab D, we create a rectangle stabbing structure
of Fact 8 over all level-h rectangles that are completely within D. By our choice of parameters,
the number of such rectangles is O(∆h−1). By definition of level-h rectangles, every rectangle
is stored in one data structure; hence, the total space is O(N) words.

To report all level-h rectangles stabbed by (α, β), we first identify the level-(h− 1) slab
Dh−1 that is stabbed by the point (α, β) using the following lemma.

I Lemma 10. For any h ∈ [1, log∗N], we can identify the level-(h− 1) slab that is stabbed
by a point in O(1) I/Os by using an O(N) space data structure.

Proof. For each h, maintain a bit vector Bh[1, N], such that Bh[i] = 1 iff i+ 0.5 is a level-h
slab boundary. Additionally, associate an o(N)-bit structure for constant rank/select support
on Bh [26]. Clearly, the level-h slab stabbed by (α, β) is the one that starts at t+ 0.5, where
t is the rightmost position ≤ β, such that Bh[t] = 1. The number of I/Os required is O(1).
The total space is O(N log∗N) bits, which is O(N) words. J

Now, we consider a query over the rectangle stabbing structure associated with Dh−1.
Suppose the number of rectangles reported is occh−1. Then, the number of I/Os required is

O(log2(∆h−1/B) + occh−1/B) i.e., O((Kh + occh−1)/B)

Therefore the total number of I/Os over all values of h, where K ≥ Kh, is

O

(1
B

∑
h,K≥Kh

(Kh + occh−1)
)

i.e., O(log∗N +K/B)

In summary, we have the following lemma.

I Lemma 11. If Kh ≤ K, then all level-h rectangles that are stabbed by a point (α, β) can
be retrieved in O(log∗N +K/B) I/Os by using an O(N) space data structure.

3.3 Handling Case 2: K < Kh

Let Sh be the set of all level-h rectangles intersecting with a level-h slab, say Dh. Note
that by definition, they all are completely within a level-(h − 1) slab, say Dh−1, hence
|Sh| = O(∆h−1). We divide Sh into three disjoint sets, Sh = S ′h ∪S ′′h ∪S ′′′h , defined as follows.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:11

1. S ′h: rectangles in Sh with both right corners inside Dh and both left corners outside Dh.
2. S ′′h : rectangles in Sh with both left corners inside Dh and both right corners outside Dh.
3. S ′′′h : rectangles in Sh with all 4 corners outside Dh.

See Figure 4. We will answer stabbing queries for every subset of Sh separately.

3.3.1 Handling S ′h and S ′′h
We show how to find the rectangles that belong to S ′h and are stabbed by (α, β); the rectangles
in S ′′h can be found in a symmetric way.

Observe that since the right corners of any rectangle in S ′h are within the slab, a rectangle
[xl, xr]× [yb, yt] is stabbed when α ≤ xr and yb ≤ β ≤ yt. Based on this intuition, we recall
the following three-dimensional dominance reporting structure of Afshani [1].

I Fact 12. Given M three-dimensional points, there exists an O(M) space data structure
that can report all the occ points dominated by a query point q in O(logBM + occ/B) I/Os.

Using the above result, we prove the following lemma.

I Lemma 13. We can report all rectangles from sets S ′h and S ′′h , 1 ≤ h ≤ log∗N , stabbed by
a query point (α, β) in O(log∗N + logB N +K/B) I/Os using an O(N) space data structure.

Proof. Based on the data structure in Fact 12, we represent a rectangle R = [xl, xr]× [yb, yt]
in S ′h as a three-dimensional point (−xr, yb,−yt). The rectangle is stabbed by (α, β) iff
(−α, β,−β) dominates (−xr, yb,−yt). For each h ∈ [1, log∗N], we maintain two dominance
structures – one for the rectangles in S ′h and another for the rectangles in S ′′h . The total
space over all levels is O(N). Since |S ′h ∪ S ′′h | = O(∆h), if the number of rectangles reported
at level h is occh, the number of I/Os is

O

(
logB(∆h) + occh

B

)
i.e., O

(
1 + logB(log(h)N) + occh

B

)
The total number of I/Os for h = 1, 2, . . . , log∗N is O(log∗N + logB N + K

B). J

3.3.2 Handling S ′′′h

What remains is to show how to obtain the rectangles in S ′′′h stabbed by the query. The idea
is to divide S ′′′h into two carefully selected subsets:

a set Hh of heavy rectangles
a set Lh of light rectangles

Heavy Rectangles. The set Hh contains all rectangles R in S ′′′h with COUNT(R) ≥
∆h−1

B
,

where COUNT(R) is the frequency associated with R. We have the following lemma.

I Lemma 14. For any h ∈ [1, log∗N], the number of heavy rectangles in Hh is O(B).

Proof. Consider a level-h σ-rectangle R = [x′, x′′]× [y′, y′′]. Let COUNT(R) = f . Then, the
number of σ-points in [x′, x′′] is Θ(f), which follows from our shallow cutting construction.
Therefore within a level-(h − 1) slab D, the number of points is ∆h−1 and the number of
level-h heavy rectangles completely within D is bounded by ∆h−1/f = O(B). J

ICDT 2019

9:12 Categorical Range Reporting with Frequencies

`

Dh

1

2

3

45

6

Figure 5 Example of Lh for Kh = 3. Rectangles spanning Dh with bottom segment below `

(i.e., 1, 2, 3, and 4) are included in Lh. Every point within Dh and above ` stabs at least Kh many
rectangles.

We can store these rectangles in space
∑
h

(
N
∆h
·B
)

= O(N). When a query is answered,

we load all the rectangles in Hh into the internal memory using O(1) I/Os, and then examine
them in the internal memory to find the ones stabbed by (α, β). Hence, the total number of
I/Os over all h is bounded by O(log∗N).

Light Rectangles. To create the set Lh ⊆ S′′′h of light rectangles, we sweep a horizontal
line ` from −∞ in the positive y-direction. Every time when ` crosses the bottom line of a
rectangle from S′′′h , we add its color to the set of colors, say Ch. We stop when Ch contains
Kh distinct colors (or when ` reaches the highest rectangle in S′′′h). See Figure 5. Then
Lh is the set of all rectangles R in S ′′′h with color c ∈ Ch and the COUNT(R) < ∆h−1/B.
Recall that COUNT(R) is the frequency associated with a rectangle R, and they are of
the form δ, δ2, Therefore, the number of rectangles having a color from Ch, which
is associated with a particular COUNT(·) is dlogδ(∆h−1/B)e. Hence, the size of Lh is
|Lh| = Kh · logδ(∆h−1/B) = O(B(log(h) n)3).

Since every rectangle in Lh spans Dh, for our purposes they can be represented by their
projections on the y-axis, i.e., x-coordinates can be ignored. To check whether a rectangle
[xl, xr]× [yb, yt] in Lh is stabbed by (α, β), it suffices to check whether yb ≤ β ≤ yt. We can
find all [yb, yt] stabbed by β in O(logB |Lh|) I/Os [5].

Hence, all rectangles in Lh that are stabbed by (α, β) can be obtained in

O

(
logB |Lh|+

occh
B

)
= O

(
1 + logB(log(h) n) + occh

B

)
I/Os, where occh is the number of such rectangles. Therefore the total number of I/Os
summed over h ∈ [1, log∗N] is O(log∗N + logB N +K/B) as desired.

The total space needed to store all sets Lh is

O

(∑
h

nKh

∆h
· log ∆h−1

B

)
= O

(∑
h

N

log(h) N
B

)
= O(N)

Now we will show that it is sufficient to examine rectangles in Lh if K < Kh.

I Observation 15 (Monotonic Stabbing). If a point (x, y) stabs a rectangle with color c, then
any point (x, y′), where y′ > y, stabs a rectangle with color c. Hence, the output (colors) of a
stabbing query (x, y) is a subset of the output of a stabbing query (x, y′) for y′ > y.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:13

Let yh denote the final y-coordinate of ` (i.e., the position of ` when Ch contains Kh

colors, see Fig. 5). If a rectangle R ∈ S′′′h stabs a point (x, y) ∈ Dh and y ≤ yh, then R ∈ Lh.
Consider an arbitrary point (x, y) ∈ Dh with y ≥ yh. For every color in c ∈ Ch, there is
a point (x, y′) ∈ Dh such that y′ ≤ yh and (x, y′) stabs a rectangle of color c. Hence, by
Observation 15, (x, y) also stabs a rectangle of color c. Therefore any point (x, y) ∈ Dh, such
that y ≥ yh, stabs at least Kh different rectangles. We obtain the following lemma.

I Lemma 16. We can report all rectangles from sets S′′′h , 1 ≤ h ≤ log∗N , that are stabbed by
a query point (α, β) in O(log∗N + logB N +K/B) I/Os using an O(N) space data structure.

3.4 Wrapping Up
Combining Lemmas 11, 13 and 16, the total space is O(N) words and the total number
of I/Os needed is O(log∗N + logB N +K/B), which is O(log∗B + logB N +K/B).3 This
completes the proof of Theorem 9.

4 1D Approximate Color Reporting

We now consider the following query: reporting colors in one dimension with their approximate
frequencies, i.e., we report all the colors within the query range [α, β]; however, instead of
reporting the exact frequency fexact for a color σ that lies in the query range, we report a real
value fσ such that fexact ≤ fσ ≤ δ · fexact, where δ > 1 is an arbitrary small constant. We
reduce these queries to APPX2D(α, β) queries in 2D discussed in Sections 2 and 3: represent a
1D point x as (−x, x) in 2D; an approximate color frequency query in one dimension, denoted
by APPX1D(α, β), is answered using the query APPX2D(−α, β). Hence, the following is an
immediate consequence of Theorem 9.

I Theorem 17. Given N one-dimensional colored points, we can answer an APPX1D(α, β)
query in O(log∗B + logB N +K/B) I/Os using an O(N) space data structure.

5 1D Exact Color Reporting

In this section, we answer one-dimensional color reporting queries with exact frequencies.

I Problem 18. Given N one-dimensional colored points, answer an EXACT1D(α, β) query
defined as: report all distinct colors σ1, σ2, . . . , σK , with associated values FREQ(α, β, σ1),
FREQ(α, β, σ2), . . ., FREQ(α, β, σK), such that for each σi, there exists a σi-point xi satisfying
α ≤ xi ≤ β. Here, FREQ(α, β, σi) is the number of σi-points in [α, β].

First, we describe a data structure for storing partially persistent lists, which will be
heavily used for answering these queries. Then, we present a data structure that answers
one-sided queries, i.e., either α = 1 or β = N . This result is based on storing selected points
and their colors in a persistent list; we achieve optimal space usage and query cost for this
special case. Then, we show how the same data structure can be used to answer general
queries; however the query cost is proportional to the total number of colors. Next, we
show how the optimal query cost for two-sided queries can be achieved by a data structure
that needs O(N logD) space. We then show how to reduce the space usage by presenting
an O(Nd log2 D

logN e)-space data structure that answers an EXACT1D(α, β) query in optimal
O(1 +K/B) I/Os; see Theorem 23.

3 If logN > B, then log N
log B > log N

log log N > log∗N > log∗B. If logN < B, then log∗N = O(log∗B).

ICDT 2019

9:14 Categorical Range Reporting with Frequencies

1 1 1

1

1 1 1

3 2 1

2

1 1 1

3

1 1 1

3 3 2

4

1 1 1

2 4 1

3 3 2

5

1 1 1

2 4 1

3 3 2

4 5 1

6

Figure 6 An example of a persistent list L for a set of five points such that color(1) = 1,
color(2) = 3, color(3) = 3, color(4) = 2, and color(5) = 4. Each version of the list is shown separately.
Every entry of L contains a color σ, a point x, and its rank rank(x) (in this order). Versions
1, 2, 4, 5, 6 correspond to points 1, 2, 3, 4, 5. We remark that the total space used by L is 6 · const.

5.1 Partially Persistent Lists
Our solution makes use of the data structure for offline partially persistent linked list problem.
In this problem, we maintain a linked list L under insertions and deletions: an arbitrary
list entry can be deleted and a new entry can be inserted at any position of the list. We
assume that L is originally empty and the sequence of updates is known in advance. The
t-th update creates a new version of the list with timestamp t.

We can traverse the list (or a prefix of the list) for any timestamp t: given t, we can
report all list entries that were in the list at time t. Also, given t and a value a, we can
report all list entries that are smaller than a and that were in the list at time t. Such queries
can be supported in O(1 + K/B) I/Os, where K is the number of reported entries. The
space needed to store a persistent list is O(r) words or O(r log r) bits, where r is the total
number of updates. The persistent list can be implemented using e.g., the partially persistent
B-tree [6]; we refer to [16], Section 4, for a more detailed description.

5.2 1-sided Queries
A one-sided query is of the form [1, β] or [α,N]. Define the rank of a point p as the number
of points that are smaller than or equal to p and have the same color:

rank(p) = |{p′ | p′ ≤ p and color(p′) = color(p) }|

We use a persistent list L in order to answer one-sided queries. (See Figure 6.) Every
entry of L stores a color and entries are sorted by their colors in increasing order. An entry
of L also contains some point p and its rank, rank(p). The list L is organized as follows.
Originally L is empty. All points from a set X are traversed in the left-to-right order. When
a point x is reached, we update the list L as follows. If L already contains an entry e

for color(x), we remove e from L. Then we insert a new entry e′ of color color(x) into an
appropriate position (i.e., in sorted order) in L. The entry e′ contains the point x and
rank(x). Thus, the list L is updated one or two times for every point in X and the total
number of entries in L is O(N). In addition to L, we keep a table V [1 . . . N]; its i-th entry
V [i] contains the index of the version of L after the point i was inserted.

Suppose that we want to report all colors that occur in a range [1, α] and output the
number of occurrences for each color. We traverse the j-th version Lj of L where j = V [α].
For every entry e of Lj , we report its color and the rank of the point p stored in e.

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:15

This brings us to the following result.

I Theorem 19. There exists an O(N) space data structure, using which we can answer
EXACT1D(1, β) in O(1 + K

B) I/Os.

We can use the same persistent list L in order to answer two-sided queries. Unfortunately
the query cost is significantly higher.

I Lemma 20. There exists an O(N)-space data structure, using which we can answer
EXACT1D(α, β) in O(1 +D/B) I/Os.

Proof. We use the persistent list L and the array V defined earlier. Suppose we want to
answer a query on a range [α, β]. We identify the versions f and l of L that correspond to
α− 1 and β, i.e., f = V [α− 1] and l = V [β]. By definition, both Lf and Ll contain exactly
one entry for every color σ that occurs in [1, α − 1] and [1, β] respectively. Let ef and el
denote entries of color σ in Lf and Ll respectively. If ef and el contain the same point x,
then x < α and σ does not occur in [α, β]. If ef and el contain two different points, pf and pl
respectively, then σ occurs rank(pl)− rank(pf) times in [α, β]. Finally if there is no entry ef
in Lf , then the leftmost occurrence of σ lies in [α, β]. In this case, σ occurs rank(pl) times.

The values of rank(pl) and rank(pf) for all relevant colors can be computed as follows. We
simultaneously generate versions Lf and Ll of L and merge them into a new (non-persistent)
list T . Entries of T are sorted by color and T contains at most two entries of the same color.
When T is available, we can retrieve values of pl and pf (resp. the value of pl is ef does not
exist) for at least B/2 colors σ with one I/O operation. Hence, we can compute the number
of occurrences for at least B/2 colors with O(1) I/Os. The total cost of our procedure is
O(q/B), where q denotes the number of entries in T . Since q ≤ D, our algorithm answers an
EXACT1D(α, β) query in O(1 +D/B) I/Os. J

5.3 Answering in Optimal I/Os
We use the data structure of Lemma 20 as a building block. For i = 1, 2, . . . , log(D/B), we
divide the set of points into i-chunks so that each chunk, except the last one, contains B · 2i
distinct colors. The last chunk contains at least B · 2i and at most B · 2i+1 distinct colors.
For any particular i, we use Ci,j to denote the jth i-chunk. For every i-chunk, we keep the
data structure of Lemma 20 that answers queries in O(2i) I/Os. We also store the data
structure of Lemma 20 for every two consecutive i-chunks Ci,j ∪ Ci,j+1.

Consider a query [α, β]. We find the smallest i such that there is no i-chunk Ci,j that
is entirely contained in [α, β]. Then, the interval [α, β] intersects at most two i-chunks.
Suppose that [α, β] is contained in one chunk Ci,j . Then we report all colors in [α, β] and
the number of their occurrences in O((B · 2i)/B) I/Os using the result of Lemma 20. If
i = 1, the query cost is O((B · 2)/B) = O(1) I/Os. If i > 1, the interval [α, β] contains at
least one (i − 1)-chunk and the number of distinct colors in [α, β] is K ≥ B · 2i−1. Hence
the query cost is O(2i) = O(K/B) I/Os. Now suppose that [α, β] intersects two chunks,
Ci,j and Ci,j+1. In this case, we answer a query using the data structure for the chunk pair
Ci,j ∪ Ci,j+1. By the same argument as above, the total query cost is O(K/B) I/Os.

It remains to show how we can find the desired minimum i and the chunks Ci,j and
Ci,j+1. For i = 1, 2, . . . , log∗ n, we keep boundaries of i-chunks in a bit vector of size O(n).
Using Bi and the data structure from [26], we can find the i-chunks that contain α and β
in O(1) time. In order to find, Ci,j and Ci,j+1 we proceed as follows. Using Br we find
r-chunks Cr,fr and Cr,lr that contain α and β respectively for r = 1, 2, . . . , i; we stop when
fi = li or fi + 1 = li. The total cost of finding the chunks is O(i) = O(K/B + 1).

ICDT 2019

9:16 Categorical Range Reporting with Frequencies

We get the following result.

I Theorem 21. There exists an O(N logD)-space data structure that answers a query
EXACT1D(α, β) in optimal O(1 +K/B) I/Os.

5.4 Reducing Space Usage
I Lemma 22. Consider a subset of the input points containing d distinct colors. If α and β
lie within the boundaries of this subset, by using an O

(
N(logD + logN

D)
)
-bit data structure,

we can answer an EXACT1D(α, β) query in O(1 + d/B) I/Os.

Proof. Let P ′ be the subset of the set of points. We divide the set of points into sub-chunks
Ci of size D2 each (except for the last sub-chunk that can contain up to 2D2 points). If P ′
contain less than 2D2 points, all points are in the same sub-chunk. For every sub-chunk we
keep the data structure of Lemma 20. Since each sub-chunk contains D2 points and the color
of every point can be specified with logD bits, the space usage of a sub-chunk data structure
is O(D2 logD) bits. If there is more than one sub-chunk, we keep a global data structure
G that contains O(N/D) elements. We implement G as a persistent list that is similar to
the structure of Lemma 20. However our modified list contains at most D elements for each
sub-chunk. We traverse sub-chunks of P ′ in the left-to-right order. For each sub-chunk Ci,
we perform O(D) updates on G. For every color σ that occurred in Ci, the following updates
are performed. If G already contains an entry eo of color σ we remove eo from G. Then, we
insert a new entry e of color σ into G; e contains the rightmost point xσ of color σ in Ci and
the rank of xσ, rank(xσ).

Consider a query [α′, β′] such that α′ and β′ are boundaries of sub-chunks Cf and Cl.
Let iα = Vg[f − 1] and iβ = Vg[l] denote the versions of G that correspond to sub-chunks
Cf−1 and Cl respectively. We can answer a query on [α′, β′] by essentially the same method
that is used in Lemma 20. We generate versions Giα and Gi∵ and merge them into a list
TG. Since Giα contain at most one entry of every color, TG contains at most two entries of
the same color. Let pf (σ) denote the rightmost occurrence of σ in [1, α′ − 1] (i.e., pf (σ) is
the rightmost occurrence of σ in the sub-chunk Cf−1 or in some sub-chunk to the left of
Cf−1) and pl(σ) denotes the rightmost occurrence of σ in [1, β′] (i.e., pl(σ) is the rightmost
occurrence of σ in sub-chunks C1, C2, . . . , Cl). The color σ occurs rank(pl(σ))− rank(pf (σ))
times in [α′, β′] (or rank(pl(σ)) times if pf (σ) does not exist). We can retrieve at least B/2
values of rank(pf (σ)) and rank(pl(σ)) with one I/O operation. The total cost of a query is
O(1 + d/B) because the list TG contains at most 2d entries.

Now we consider an EXACT1D(α, β) query restricted to the boundaries of P ′. Suppose
that α ∈ Cf and β ∈ Cl. If α and β are in the same sub-chunk, we use the data structure for
that sub-chunk to answer the query. Otherwise we decompose [α, β] into at most three parts,
[α, β] = [α, α′ − 1] ∪ [α′, β′] ∪ [β′ + 1, β] so that [α′, β′] = ∪l−1

i=f+1Ci. The intervals [α, α′ − 1]
and [β′+ 1, β] are in sub-chunks Cf and Cl respectively. We answer extended color reporting
queries on [α, α′ − 1], [α′, β′], and [β′ + 1, β]. An answer to each query is stored in a list of
colors Ti, 1 ≤ i ≤ 3. The entries of Ti are sorted by color in increasing order. For an entry of
color σ in a list Ti, we store the frequency of σ in the corresponding interval. We merge lists
Ti into a global list T in O(1 + d/B) I/Os. Then we traverse the resulting list and obtain
the frequencies of all colors in [α, β] in O(1 + d/B) I/Os.

The persistent list G uses O(Nd logN
D e) bits of space. All chunk data structures require

O(N logD) bits. Hence the total space is O
(
N(logD + logN

D)
)
bits. J

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:17

I Theorem 23. There exists an O(Nd log2 D
logN e)-space data structure that answers an

EXACT1D(α, β) query in optimal O(1 +K/B) I/Os.

Proof. We divide the set of points into chunks as described in Theorem 21, and then use
Lemma 22 for each chunk. Since each point is contained in logD chunks, the total space
occupied is O(N(logD+ d logN

D e) logD) = O(N(log2D+ logN)) bits or O(Nd log2 D
logN e) words.

A query is answered in O(1 +K/B) I/Os as explained in the proof of Theorem 21. J

6 Conclusion

We leave the following questions unanswered. First, can we obtain a data structure that
answers one-dimensional color reporting queries with approximate frequencies in optimal
O(1 +K/B) I/Os? Although such a data structure with O(N log∗N) space seems feasible,
techniques do not seem to generalize to the more general case of two-dimensional dominance
queries. Second, an interesting question is whether the approximation factor δ can be
provided during query time, as opposed to the current approach of having to provide it
during construction time. Additionally, we leave the question of reporting colors with exact
frequency in case of 2D dominance unanswered. Finally, it would be interesting if one could
generalize 2D dominance to the more general 3-sided/4-sided queries.

References
1 Peyman Afshani. On Dominance Reporting in 3D. In ESA, pages 41–51, 2008.
2 Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical Decomposition of Shallow Levels

in 3-Dimensional Arrangements and Its Applications. SIAM J. Comput., 29(3):912–953, 1999.
doi:10.1137/S0097539795295936.

3 Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On Two-Dimensional Indexability and
Optimal Range Search Indexing. In Proc. 18th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), pages 346–357, 1999. doi:10.1145/303976.
304010.

4 Lars Arge, Vasilis Samoladas, and Ke Yi. Optimal External Memory Planar Point Enclosure.
Algorithmica, 54(3):337–352, 2009. doi:10.1007/s00453-007-9126-2.

5 Lars Arge and Jeffrey Scott Vitter. Optimal External Memory Interval Management. SIAM
J. Comput., 32(6):1488–1508, 2003. doi:10.1137/S009753970240481X.

6 Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter Widmayer. An
Asymptotically Optimal Multiversion B-Tree. VLDB J., 5(4):264–275, 1996. doi:10.1007/
s007780050028.

7 Panayiotis Bozanis, Nectarios Kitsios, Christos Makris, and Athanasios K. Tsakalidis. New
Upper Bounds for Generalized Intersection Searching Problems. In Proc. 22nd International
Colloquium on Automata, Languages and Programming (ICALP), pages 464–474, 1995. doi:
10.1007/3-540-60084-1_97.

8 Panayiotis Bozanis, Nectarios Kitsios, Christos Makris, and Athanasios K. Tsakalidis. New
Results on Intersection Query Problems. Comput. J., 40(1):22–29, 1997. doi:10.1093/comjnl/
40.1.22.

9 Timothy M. Chan and Bryan T. Wilkinson. Adaptive and Approximate Orthogonal Range
Counting. In Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 241–251, 2013. doi:10.1137/1.9781611973105.18.

10 Arnab Ganguly, Wing-Kai Hon, and Rahul Shah. Stabbing Colors in One Dimension. In
2017 Data Compression Conference, DCC 2017, Snowbird, UT, USA, April 4-7, 2017, pages
280–289, 2017. doi:10.1109/DCC.2017.44.

ICDT 2019

http://dx.doi.org/10.1137/S0097539795295936
http://dx.doi.org/10.1145/303976.304010
http://dx.doi.org/10.1145/303976.304010
http://dx.doi.org/10.1007/s00453-007-9126-2
http://dx.doi.org/10.1137/S009753970240481X
http://dx.doi.org/10.1007/s007780050028
http://dx.doi.org/10.1007/s007780050028
http://dx.doi.org/10.1007/3-540-60084-1_97
http://dx.doi.org/10.1007/3-540-60084-1_97
http://dx.doi.org/10.1093/comjnl/40.1.22
http://dx.doi.org/10.1093/comjnl/40.1.22
http://dx.doi.org/10.1137/1.9781611973105.18
http://dx.doi.org/10.1109/DCC.2017.44

9:18 Categorical Range Reporting with Frequencies

11 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Further Results on Generalized In-
tersection Searching Problems: counting, Reporting, and Dynamization. Journal of Algorithms,
19(2):282–317, 1995. doi:10.1006/jagm.1995.1038.

12 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Algorithms for Generalized Halfspace
Range Searching and Other Intersection Searching Problems. Comput. Geom., 6:1–19, 1996.
doi:10.1016/0925-7721(95)00012-7.

13 Ravi Janardan and Mario A. Lopez. Generalized intersection searching problems. International
Journal of Computational Geometry and Applications, 3(1):39–69, 1993.

14 Marek Karpinski and Yakov Nekrich. Top-K Color Queries for Document Retrieval. In Proc.
22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 401–411, 2011.
URL: http://www.siam.org/proceedings/soda/2011/SODA11_032_karpinskim.pdf.

15 Kasper Green Larsen and Rasmus Pagh. I/O-efficient data structures for colored range and
prefix reporting. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 583–592, 2012. URL: http://portal.acm.org/citation.cfm?id=2095165{&}CFID=
63838676{&}CFTOKEN=79617016.

16 Kasper Green Larsen and Freek van Walderveen. Near-Optimal Range Reporting Structures
for Categorical Data. In Proc. 24th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 256–276, 2013.

17 Jiří Matoušek. Reporting Points in Halfspaces. In Proc. 32nd Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 207–215, 1991. doi:10.1109/SFCS.1991.185370.

18 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc. 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002. doi:
10.1145/545381.545469.

19 Alexandros Nanopoulos and Panayiotis Bozanis. Categorical Range Queires in Large Databases.
In Proc. 8th International Symposium on Advances in Spatial and Temporal Databases, (SSTD),
pages 122–139, 2003. doi:10.1007/978-3-540-45072-6_8.

20 Gonzalo Navarro and Yakov Nekrich. Top-k document retrieval in optimal time and lin-
ear space. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1066–1077, 2012. URL: http://portal.acm.org/citation.cfm?id=2095200{&}CFID=
63838676{&}CFTOKEN=79617016.

21 Yakov Nekrich. External Memory Range Reporting on a Grid. In Proc. 18th International
Symposium on Algorithms and Computation (ISAAC), pages 525–535, 2007. doi:10.1007/
978-3-540-77120-3_46.

22 Yakov Nekrich. Data Structures for Approximate Orthogonal Range Counting. In Proc. 20th
International Symposium on Algorithms and Computation (ISAAC), pages 183–192, 2009.
doi:10.1007/978-3-642-10631-6_20.

23 Yakov Nekrich. Efficient range searching for categorical and plain data. ACM Trans. Database
Syst., 39(1):9, 2014. doi:10.1145/2543924.

24 Yakov Nekrich and Jeffrey Scott Vitter. Optimal Color Range Reporting in One Dimension.
In Proc. 21st Annual European Symposium Algorithms (ESA), pages 743–754, 2013. doi:
10.1007/978-3-642-40450-4_63.

25 Manish Patil, Sharma V. Thankachan, Rahul Shah, Yakov Nekrich, and Jeffrey Scott Vitter.
Categorical range maxima queries. In Proc. 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS), pages 266–277, 2014. doi:10.1145/2594538.
2594557.

26 Mihai Patrascu. Succincter. In Proc. 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 305–313, 2008. doi:10.1109/FOCS.2008.83.

27 Saladi Rahul. Improved Bounds for Orthogonal Point Enclosure Query and Point Location
in Orthogonal Subdivisions in R3. In Proc.26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 200–211, 2015. doi:10.1137/1.9781611973730.15.

http://dx.doi.org/10.1006/jagm.1995.1038
http://dx.doi.org/10.1016/0925-7721(95)00012-7
http://www.siam.org/proceedings/soda/2011/SODA11_032_karpinskim.pdf
http://portal.acm.org/citation.cfm?id=2095165{&}CFID=63838676{&}CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095165{&}CFID=63838676{&}CFTOKEN=79617016
http://dx.doi.org/10.1109/SFCS.1991.185370
http://dx.doi.org/10.1145/545381.545469
http://dx.doi.org/10.1145/545381.545469
http://dx.doi.org/10.1007/978-3-540-45072-6_8
http://portal.acm.org/citation.cfm?id=2095200{&}CFID=63838676{&}CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095200{&}CFID=63838676{&}CFTOKEN=79617016
http://dx.doi.org/10.1007/978-3-540-77120-3_46
http://dx.doi.org/10.1007/978-3-540-77120-3_46
http://dx.doi.org/10.1007/978-3-642-10631-6_20
http://dx.doi.org/10.1145/2543924
http://dx.doi.org/10.1007/978-3-642-40450-4_63
http://dx.doi.org/10.1007/978-3-642-40450-4_63
http://dx.doi.org/10.1145/2594538.2594557
http://dx.doi.org/10.1145/2594538.2594557
http://dx.doi.org/10.1109/FOCS.2008.83
http://dx.doi.org/10.1137/1.9781611973730.15

A. Ganguly, J. I. Munro, Y. Nekrich, R. Shah, and S. V. Thankachan 9:19

28 Saladi Rahul. Approximate Range Counting Revisited. In Proc. 33rd International Symposium
on Computational Geometry (SoCG), pages 55:1–55:15, 2017. doi:10.4230/LIPIcs.SoCG.
2017.55.

29 Kunihiko Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms, 5(1):12–22, 2007. doi:10.1016/j.jda.2006.03.011.

ICDT 2019

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.55
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.55
http://dx.doi.org/10.1016/j.jda.2006.03.011

Approximating Distance Measures for the Skyline
Nirman Kumar
Department of Computer Science, University of Memphis, TN, USA
nkumar8@memphis.edu

Benjamin Raichel
Department of Computer Science, University of Texas at Dallas, TX, USA
benjamin.raichel@utdallas.edu

Stavros Sintos
Department of Computer Science, Duke University, Durham, NC, USA
ssintos@cs.duke.edu

Gregory Van Buskirk
Department of Computer Science, University of Texas at Dallas, TX, USA
greg.vanbuskirk@utdallas.edu

Abstract
In multi-parameter decision making, data is usually modeled as a set of points whose dimension is
the number of parameters, and the skyline or Pareto points represent the possible optimal solutions
for various optimization problems. The structure and computation of such points have been well
studied, particularly in the database community. As the skyline can be quite large in high dimensions,
one often seeks a compact summary. In particular, for a given integer parameter k, a subset of k
points is desired which best approximates the skyline under some measure. Various measures have
been proposed, but they mostly treat the skyline as a discrete object. By viewing the skyline as
a continuous geometric hull, we propose a new measure that evaluates the quality of a subset by
the Hausdorff distance of its hull to the full hull. We argue that in many ways our measure more
naturally captures what it means to approximate the skyline.

For our new geometric skyline approximation measure, we provide a plethora of results. Specific-
ally, we provide (1) a near linear time exact algorithm in two dimensions, (2) APX-hardness results
for dimensions three and higher, (3) approximation algorithms for related variants of our problem,
and (4) a practical and efficient heuristic which uses our geometric insights into the problem, as well
as various experimental results to show the efficacy of our approach.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Skyline, Pareto optimal, Approximation, Hardness, Multi-criteria decision
making

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.10

Related Version The full version of the paper is available online at [22], http://utdallas.edu/
~benjamin.raichel/stair.pdf.

Funding B. Raichel and G. Van Burskirk are partially supported by NSF CRII Award 1566137 and
CAREER Award 1750780. S. Sintos is supported by NSF under grants CCF-15-13816, CCF-15-46392,
and IIS-14-08846, by an ARO grant W911NF-15-1-0408, and by BSF Grant 2012/229 from the
U.S.-Israel Binational Science Foundation.

1 Introduction

When deciding which entry to return from a database where entries have multiple parameters,
one must consider various criteria all at once. For example, given a collection of possible
hotels, one seeks a hotel which costs less, is nearest to the desired location, and has a high
rating. Typically one cannot optimize all these criteria simultaneously, though one would

© Nirman Kumar, Benjamin Raichel, Stavros Sintos, and Gregory Van Buskirk;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 10; pp. 10:1–10:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nkumar8@memphis.edu
mailto:benjamin.raichel@utdallas.edu
mailto:ssintos@cs.duke.edu
mailto:greg.vanbuskirk@utdallas.edu
https://doi.org/10.4230/LIPIcs.ICDT.2019.10
http://utdallas.edu/~benjamin.raichel/stair.pdf
http://utdallas.edu/~benjamin.raichel/stair.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Approximating Distance Measures for the Skyline

never make a selection for which there is an alternative that is better in every way (i.e.,
cheaper, closer, and higher rated). This naturally leads to the definition of so called staircase
or skyline points,1 for which there are no strictly better alternatives, and each of which is a
possible optimal solution depending on how the criteria are weighted.

Formally, we model our input as a set of n points P in Rd. Given two points p, q ∈ Rd,
we say p dominates q, written p � q, if pi ≤ qi for all i, where pi (resp. qi) denotes the ith
coordinate of p (resp. q). Then the staircase points of P , denoted S(P), is the subset of
points p ∈ P such that p is not dominated by any point in P \ {p}.

While the staircase points model the set of possible solutions for various multi-criteria
objectives, in many situations one desires a small subset of these points which well represent
the tradeoffs in the solution space. For example, one may wish to present the user with a
short list of search results to choose from. Moreover, the staircase might be large, particularly
for high dimensional data sets, thus making a compact description highly desirable from a
computational perspective. Here we propose a new measure to evaluate how well a subset of
points approximates the staircase. Our work differs from previous attempts to define such
a measure since rather than viewing S(P) as a discrete point set, instead we consider it as
defining a continuous hull. Namely, we define the staircase hull of P , denoted SH(P), as
the set of all points in Rd that are dominated by some point in P . Then for some integer
parameter k, we seek the subset of at most k points Q ⊆ P such that the distance between
SH(Q) and SH(P) is minimized. To measure the distance between the two hulls we use the
standard geometric notion of Hausdorff distance, which roughly speaking for two sets is
defined as the maximum of all the distances from a point in one set to the closest point in
the other set. For our problem we prove that this is equivalent to minimizing the maximum
distance from any point in P to SH(Q). We argue that our geometric perspective in many
ways better captures what it means to approximate the staircase. Moreover, our measure has
additional advantages such as being translation invariant. In addition to defining this new
measure, we provide a number of algorithmic, hardness, approximation, and experimental
results as detailed below.

Previous work. Skyline/staircase points have been extensively used and studied, particularly
in the database community (see for example [8]). In particular, it is known that for a set P
of n points in Rd, S(P) can be computed in O(n(logn+ logd−2 n)) worst case time [24] for
any d or in O(n logd−3 n log logn) for d ≥ 4 [17]. In [12] they show a randomized algorithm
for computing the S(P) in O(n logd−3) time for d ≥ 4. There have also been a number of
previous works on approximating the best subset of k input points to represent the skyline
under various measures. Lin et al. [25] considered selecting k points so as to dominate the
maximum possible number of points from P . This is an instance of the standard maximum
coverage problem, for which the greedy algorithm achieves a 1− 1/e approximation (to the
number of dominated points). Later, Tao et al. [34] considered representing the skyline by a
k-center clustering of the points in S(P), that is, minimize the maximum distance of a point
in S(P) to the chosen subset, for which there are several standard 2-approximation algorithms
to the optimal clustering radius. Koltun and Papadimitriou [21] consider what they call
approximately dominating representatives (ADR), where a subset Q ⊆ P is an ε-ADR if
for every p ∈ P there is some q ∈ Q such that (1− ε)q dominates p (their actual definition

1 In the title/abstract we use the term “skyline”, more common in database papers, however in the rest
of the paper we favor the term “staircase”, common in computational geometry. In economics the term
“Pareto” is often used.

N. Kumar, B. Raichel, S. Sintos, and G. Van Buskirk 10:3

differs slightly as they define dominating with the reverse inequality). Rather than focusing
on minimizing the error radius as in our case and in [34], instead [21] keeps ε fixed and
attempts to minimize k. As this variant is an instance of the well known Set-Cover problem,
the greedy algorithm achieves an O(logn) approximation. In all three papers [25, 34, 21],
among other things the authors give an exact polynomial time solution in 2 dimensions, and
argue the problem is hard for dimensions 3 and higher. Several other measures have also
been considered. Søholm et al. [33] select points so as to cover the maximum total area
possible, giving an algorithm for the 2D case and some experimental results. Note they define
dominance with the reverse inequality and so area is with respect to the coordinate axes,
while in our case it would require defining some bounding box for the data. Magnani et al.
[26] define a measure which combines two quantities which they call significance and diversity
(where the user must specify the relative importance of each), and provide a hardness proof
and experimental results.

More generally, there have been many other previously defined notions of compact
approximate representations of the data, perhaps most notably the notion of clustering
[36]. The so called k-regret minimizing set is a recent method of finding representative data
points, which is used to approximate top-k queries [28, 13, 3, 11, 6, 23]. In the geometry
community the notion of coresets, which are small subsets of the input approximately
preserving some specified geometric property, has been widely studied [2]. Related to our
notion of approximating the staircase hull, the case of approximating the convex hull [7]
and the conic hull [9] was previously considered. These hull approximations more generally
relate to a number of different types of matrix factorizations used in areas such as machine
learning, including non-negative matrix factorization, CUR decomposition, and finding the
top-k singular vectors. Note that points on the convex and conic hull boundaries are in
general determined by a combination of multiple hull vertices. For the staircase hull we argue
that each boundary point in some sense is determined by a single hull vertex, leading to
stronger results as the problem can be modeled with asymmetric k-center.

Our results. As discussed above, here we introduce a new measure for approximating the
staircase. Specifically, we seek the subset of k points Q ⊆ P such that the Hausdorff distance
between SH(Q) and SH(P) is minimized, which we refer to as the k-staircase problem. In
addition to introducing this new measure we have the following results:
1. In Section 3 we show that the k-staircase problem is APX-hard for any dimension d ≥ 3.

In particular, we give a simple argument to show it is hard to approximate within√
2 +
√

3 ≈ 1.932 for d ≥ 4, and for d = 3 a more involved proof shows it is hard to
approximate within a factor of

√
2+
√

3
2+
√

2 ≈ 1.0455.
2. Despite being hard to approximate for d ≥ 3, in Section 4 we show that in two dimensions

it can be solved optimally in O(n log3 n) time.
3. In Section 2 we argue the k-staircase problem can actually be seen as an instance

of the well known asymmetric k-center problem. In Section 5 this is used to give
approximation algorithms for the k-staircase problem. In particular, in Section 5.1 we
propose an O(log∗(n)) approximation running in O(n2(d+log2 n)) time, and an O(log∗(k))
approximation running in polynomial time.

4. In Section 5.2, we show that if one is allowed to pick 2k rather than k points, then by
making use of Well Separated Pair Decompositions (WSPD), for any fixed dimension
d we can get a faster O(knpolylogn) time algorithm which still achieves an O(log∗(n))
approximation for the k-staircase problem. This is the only result where we assume d is
fixed. (The algorithm works for any d, though the approximation and time degrade.)

ICDT 2019

10:4 Approximating Distance Measures for the Skyline

5. In Section 6 we propose a new heuristic for the k-staircase problem which is based on
finding what we call relaxed CCV2 points. Such points have nice symmetric geometric
properties, and we argue that any point set always contains at least one such point.
While certain contrived worst case examples make it difficult to provide worst case
guarantees, we show experimentally in Section 6.1 that approximating the staircase hull
using relaxed CCV points consistently gives a smaller amount of error than the guaranteed
O(log∗(n))-approximation algorithm of [30]. Moreover, our heuristic is simple, easy to
implement, and fast, thus making it quite practical. Finally, in Section 6.2, we compare
our measure to several others by using NBA player statistics to predict NBA All Star
teams. Not only does our measure always select the most all star players, but also it is
inversely proportional to the number of selected players, while for other measures the
correspondence is less consistent.

Due to space limitations, some of the proofs can be found in the full version of the paper [22].
The Hausdorff distance uses the standard L2 norm for distances between points, however,

it can be generalized to any Lp norm.3 Intuitively, the L1 norm focuses on the average value
over the dimensions, while L∞ focuses on the dimension which is largest. We argue our
algorithmic results hold for any Lp norm, thus allowing the user to tune the dial between
these two extremes in order to best suit a given application.

a

b c d

Figure 1.1 For k = 2, our solution is a and b, k-center a or b and c or d, max cover a or b and c.

Understanding and comparing measures. As mentioned above, one of the main ways in
which our measure differs from [25] and [34] is that it considers the staircase as defining
a continuous hull rather than a discrete point set. In particular, consider the simple four
point example shown in Figure 1.1. For k = 2, in the maximum coverage measure of [25] the
optimal solution contains either a or b along with the point c. For the k-center clustering
measure of [34] the optimal solution contains exactly one of a or b and exactly one of c or d.
On the other hand, for our measure the optimal solution contains points a and b. Arguably a
and b represent real tradeoffs between the horizontal and vertical coordinate values, whereas
c and d have a negligible advantage in the vertical coordinate over b but are far worse in the
horizontal coordinate. In other words, when considering the discrete points, c and d are far
from a and b. However, when considering the continuous hulls, c and d are very close to the
hull SH({a, b}), yet b has a larger distance to the hull SH({a, c}).

There are several additional nice properties of our measure. First, it is natural from
a geometric perspective as it is just the standard geometric notion of Hausdorff distance
between two objects. Second, it is translation invariant, i.e., the optimal solution does not

2 The notion of CCV points, which stands for “center capturing vertex”, was introduced in [30] to solve
the asymmetric k-center problem approximately.

3 Here we use the standard Lp notation, though later we use Lα as p is often used to denote a point.

N. Kumar, B. Raichel, S. Sintos, and G. Van Buskirk 10:5

change if all points are translated by the same amount (where the amount in each coordinate
can differ). This is also true of the measures in [25] and [34], however, it is not the case for
[33] and [21], making it difficult to compare their measure to ours as theirs strongly depends
on the choice of origin. A number of other properties, such as scale invariance or stability,
have been used to characterize previous approaches for approximating the staircase. In the
full version of the paper [22] we provide a table and description comparing our measure with
others, showing the tradeoffs of these various properties. Rather than focusing on any one of
these properties, here we advocate the benefit of taking into account the continuous hull, and
give some partial justification of this approach with our experimental results in Section 6.

In order to maximize the benefit of our measure, there are several preprocessing steps
that one may wish to take. First observe that depending on what the coordinate values
represent, in some coordinates one might desire a larger value and in others a smaller one
(e.g. hotel rating vs. price). To handle this one can negate all values in coordinates for which
large values are better, and then translation invariance implies we can shift the points to
remove negative values (if so desired). Translation invariance also implies one can translate
the point set such that in each coordinate the minimum value of any data point is zero. Also,
note that if one scales the data by the same factor in every coordinate then the optimal
solution does not change, hence one can scale so the data points lie in the unit hypercube
if so desired. On the other hand our measure is sensitive to scaling by different values in
each coordinate, and this fact can be used to encode our preferences over the coordinates.
Specifically, if one scales such that the maximum value is exactly 1 in each coordinate then
this attempts to put each coordinate on equal footing. Alternatively, if one knows certain
attributes are more important than others, one can weight the scaling differently in each
coordinate to take this into account. Note that all this can easily be done in linear time.

2 Problem Statement and Connection to Asymmetric K-center

2.1 Definitions and problem statement

Given points p, q ∈ Rd, we say p dominates q, written p � q, if pi ≤ qi for all i, where pi
(resp. qi) denotes the ith coordinate of p (resp. q). For a point set P ⊂ Rd, let S(P) denote
the set of staircase points of P , which is the set of points p ∈ P such that p is not dominated
by any point in P \ {p}. Finally, let SH(P) denote the staircase hull of P , which is the
subset of points in Rd dominated by some point in P . Notice that S(P) ⊂ P ⊂ SH(P) and
SH(P) = SH(S(P)) as dominance is transitive.

Let dα(x, y) = ||x− y||α denote the distance between x, y ∈ Rd with respect to the Lα
norm4, where α ≥ 1. For (closed) sets X,Y ⊂ Rd, let dα(X,Y) = minx∈X,y∈Y ||x − y||α
be the distance between point sets X and Y with respect to the Lα norm. If X is a
singleton {x}, let dα(x, Y) denote dα(X,Y). For point sets X and Y , let dHα(X,Y) = max{
maxx∈X dα(x, Y),maxy∈Y dα(y,X)} denote the Hausdorff distance with respect to the Lα
norm, between X and Y . Typically, we consider the case where Y ⊆ X; here dHα(X,Y) =
maxx∈X dα(x, Y).

I Problem 1 (k-staircase problem). Given a set of n points P ⊂ Rd and a parameter k, find
a subset Q ⊆ P with |Q| ≤ k which minimizes dHα(SH(P),SH(Q)).

4 The Lα norm is defined for α ≥ 1, as ||u||α =
(∑d

j=1 |uj |
α
)1/α.

ICDT 2019

10:6 Approximating Distance Measures for the Skyline

For Q ⊆ P , the value r = dHα(SH(P),SH(Q)) is the radius of Q. Throughout the paper,
we say that Q r-covers P when dHα(SH(P),SH(Q)) ≤ r. For an optimal solution Q∗ to
Problem 1, we use r∗ to denote its corresponding optimal radius. A subset Q ⊆ P of size k
is called a c-approximation for Problem 1 if the radius of Q is at most cr∗.

2.2 Properties and asymmetric k-center
Above we defined the notions of dominance, staircase points, and the staircase hull. In
this section we provide further definitions and properties, to ultimately reduce Problem 1
to the well known asymmetric k-center problem, which we now define. Then, using the
O(log∗ n)-approximation algorithm for the asymmetric k-center problem [30], in Section 5
we can show how to approximate the k-staircase problem.

I Problem 2 (Asymmetric k-center). Given a set of n points P , with a corresponding
asymmetric distance function f : P × P → R≥0, and a parameter k, find a subset Q ⊆ P of
at most k points which minimizes maxp∈P f(Q, p) = maxp∈P minq∈Q f(q, p).

In the above definition, by an asymmetric distance function we mean a function f :
P × P → R≥0 which satisfies the directed triangle inequality: for any three points a, b, c ∈ P
we have f(a, c) ≤ f(a, b) + f(b, c). However, f may not be symmetric, i.e., in general
f(a, b) 6= f(b, a), and thus it is not a metric.

To reduce Problem 1 to Problem 2, we need to provide a number of definitions and
structural properties. First, observe that the staircase hull is the union of a set of regions
determined by individual points of P (unlike the convex hull for example). Using SH(p) to
denote the subset of points in Rd dominated by p, we observe that SH(P) =

⋃
p∈P SH(p).

Next, we introduce some useful notation that we use throughout the paper. For a
vector u = (u1, . . . , ud) ∈ Rd define ||u||−α =

(∑
uj<0 |uj |

α)1/α, and ||u||+α =
(∑

uj≥0 u
α
j

)1/α.
Observe that, ||u||−α = || − u||+α and ||u||+α = || − u||−α .

We first provide a simple expression for the distance from a point p = (p1, . . . , pd) ∈ Rd
to the region SH(q) of another point q = (q1, . . . , qd).

I Lemma 3. For any points p, q ∈ Rd, we have that, dα(p, SH(q)) = ||q − p||+α .

Proof. The region SH(q) is the set of points (x1, . . . , xd) ∈ Rd such that xj ≥ qj for
j = 1, . . . , d. The Lα distance from p to x to the power of α is (||x−p||α)α =

∑d
j=1 |xj−pj |α.

It is easy to see that to minimize this expression over SH(q) one should take the point
(x1, . . . , xd) which has xj = pj for all j such that pj > qj and one should let xj = qj
otherwise. The result follows. J

The above implies that for any two points p and q, one can define a natural notion
of directed distance (or equivalently asymmetric distance) from p to q, namely ~dα(p, q) =
dα(q,SH(p)). Note the change in the order of the arguments. Alternatively one could define
the directed distance from p to q as dα(p,SH(q)), which is natural when viewing p as traveling
to SH(q). However, our definition is more natural when considering how well SH(p) covers q,
ultimately helping relate our problem to the asymmetric k-center problem.

By Lemma 3, we have that,

~dα(p, q) = dα(q,SH(p)) = ||p− q||+α = ||q − p||−α =

 ∑
j:qj<pj

|qj − pj |α
1/α

.

We say that p r-covers q when ~dα(p, q) ≤ r.
A fundamental inequality obeyed by our directed distances is the following:

N. Kumar, B. Raichel, S. Sintos, and G. Van Buskirk 10:7

I Lemma 4. Let x be a point dominated by y, i.e., x ∈ SH(y). Then, for any point p we
have that, ~dα(p, x) ≤ ~dα(p, y), and ~dα(y, p) ≤ ~dα(x, p).

Proof. We only prove the first inequality, as the proof of the second is similar. We have that
(||x−p||−α)α =

∑
j:xj<pj |xj−pj |

α. Since x ∈ SH(y) we have that for all j = 1, . . . , d, yj ≤ xj .
For any j where xj < pj clearly yj < pj as well, and moreover, |yj − pj |α ≥ |xj − pj |α. Thus,
(||x − p||−α)α ≤ (||y − p||−α)α. It follows that, (~dα(p, x))α = (||x − p||−α)α ≤ (||y − p||−α)α =
(~dα(p, y))α ⇒ ~dα(p, x) ≤ ~dα(p, y). J

The above lemma can now be used to show that our directed distances satisfy the directed
triangle inequality, a fact not immediately apparent from our distance formula (Lemma 3),
and which we require later in order to apply previous results for asymmetric k-center.

I Lemma 5. The directed distance function ~dα(·, ·) obeys the directed triangle inequality.
That is, for any three points a, b, c ∈ Rd we have ~dα(a, c) ≤ ~dα(a, b) + ~dα(b, c).

Proof. Let z be the closest point in SH(b) to c, i.e., z = argminx∈SH(b) dα(c, x), and let z′ be
the closest point in SH(a) to z, i.e., z′ = argminx∈SH(a) dα(z, x). Then,

~dα(a, c) ≤ dα(c, z′) ≤ dα(c, z) + dα(z, z′) = ~dα(b, c) + ~dα(a, z) ≤ ~dα(b, c) + ~dα(a, b).

The first inequality holds because z′ ∈ SH(a) and ~dα(a, c) = dα(c,SH(a)). The second
inequality holds because the Lα norm satisfies the triangle inequality. The third equality
follows from the definition of z and z′. Since z is dominated by b, by Lemma 4 we have that
~dα(a, z) ≤ ~dα(a, b) so the result follows. J

We now argue that for any subset Q ⊆ P in Problem 1, minimizing dHα(SH(P),SH(Q))
can instead be thought of as minimizing the distance from the finite point set P to the hull
SH(Q). Thus as SH(Q) =

⋃
q∈Q SH(q), this in turn allows us to think of the problem as

selecting Q so as to minimize directed distances from P to Q, i.e., a clustering problem.
For a point set Q and a point x, in the following we use the notation ~dα(Q, x) =

minq∈Q~dα(q, x) = minq∈Q dα(x, SH(q)). Observe that minq∈Q dα(x, SH(q)) = dα(x, SH(Q)),
and hence ~dα(Q, x) = dα(x, SH(Q)).

I Lemma 6. For Q⊆P , dHα(SH(P),SH(Q))=maxp∈P dα(p, SH(Q))=maxp∈S(P)dα(p,SH(Q)).

Proof. Note that S(Q) ⊆ S(P) since Q ⊆ P , and so

dHα(SH(P),SH(Q)) = max
p∈SH(P)

dα(p,SH(Q)).

As S(P) ⊆ P ⊆ SH(P) we therefore have

dHα(SH(P),SH(Q)) ≥ max
p∈P

dα(p, SH(Q)) ≥ max
p∈S(P)

dα(p,SH(Q)).

For the other direction, for any point p ∈ P , let f(p) ∈ S(P) be any point that dominates p.
For any point q ∈ Q, it follows by Lemma 4 that ~dα(q, p) ≤ ~dα(q, f(p)) and as such taking
the minimum over Q we get that ~dα(Q, p) ≤ ~dα(Q, f(p)). Now taking the maximum over
p ∈ P we get that

max
p∈P

dα(p,SH(Q))=max
p∈P

~dα(Q, p)≤max
p∈P

~dα(Q, f(p))≤ max
p∈S(P)

~dα(Q, p)= max
p∈S(P)

dα(p,SH(Q)).

Similarly, because for each point x ∈ SH(P) there is some point p ∈ P dominating x we can
argue that dHα(SH(P),SH(Q)) ≤ maxp∈P dα(p,SH(Q)). J

ICDT 2019

10:8 Approximating Distance Measures for the Skyline

Note we can assume that any optimal solution Q to Problem 1 lies on the staircase S(P),
since otherwise we can choose a dominating point on S(P) for each point of Q, defining a new
set Q′ such that SH(Q′) ⊇ SH(Q) and so maxp∈S(P) dα(p,SH(Q′)) ≤ maxp∈S(P) dα(p,SH(Q)).
Thus the above implies that in Problem 1 we can consider the original input P as consisting
entirely of staircase points (i.e., S(P) = P), since otherwise as an initial step we can throw
out all non-staircase points. Moreover, since dHα(SH(P),SH(Q)) = maxp∈P dα(p,SH(Q))
= maxp∈P ~dα(Q, p), the above implies Problem 1 can easily be seen as an instance of
asymmetric k-center, for our asymmetric distance function ~dα(·, ·).

3 Hardness

In this section we mention APX-hardness results for the k-staircase problem for d ≥ 3 using
the L2 norm. For the L∞ norm, the hardness proof by Koltun and Papadimitriou [21] can
be used to show that the problem is NP-hard, but there is no known APX-hardness proof.

Our main result for all d ≥ 4 is,

I Theorem 7. The k-staircase problem for the L2 norm is NP-hard to approximate in Rd,
for any d ≥ 4, within a factor better than

√
2 +
√

3 ≈ 1.932.

Proof. Since the results hold only for the L2 norm, we skip the subscript 2 from the
statements. We show the following claim which is required to establish the gap-preserving
nature of a reduction from the k-center problem in R2 to the k-staircase problem in R4. We
prove that there is a mapping φ : R2 → R4, such that for any two points p, q ∈ R2 we have
that, ‖p− q‖ = ~d(φ(p), φ(q)) = ~d(φ(q), φ(p)).

The mapping φ is defined by φ((x, y)) = (x,−x, y,−y). Given p = (px, py) and q =
(qx, qy), we have that ‖p− q‖ =

√
(px − qx)2 + (py − qy)2. Now, φ(p)−φ(q) = (px− qx, qx−

px, py−qy, qy−py). If px 6= qx, exactly one of px−qx and qx−px is greater than 0. A similar
statement is true for py − qy, qy − py. Thus, ||φ(p)− φ(q)||+ =

√
(px − qx)2 + (py − qy)2. If

px = qx, then neither of (px − qx)2, (qx − px)2 appear in the expression for ||φ(p)− φ(q)||+
but there is no contribution to ‖p− q‖ from the x-coordinate as well. A similar statement is
true for the y-coordinate. Thus, ~d(φ(p), φ(q)) = ||φ(p)− φ(q)||+ = ‖p− q‖. An analogous
argument shows that ‖p− q‖ = ||φ(p) − φ(q)||− = ||φ(q) − φ(p)||+ = ~d(φ(q), φ(p)) as well.
The claim follows.

The k-center problem in R2 is polynomial time reducible to the k-staircase problem in
R4. Indeed, for a set P of n points in R2 we consider the set P ′ = {φ(p) : p ∈ P} ⊂ R4.
Clearly P ′ can be constructed in O(n) time. Moreover, our claim implies that for any (at
most) k points p1, . . . , pk ∈ P which give a clustering radius R, the corresponding points
φ(p1), . . . , φ(pk) will give a value of R for the clustering radius in the k-staircase problem
for P ′. (Interestingly note that in fact all the mapped points lie on the staircase.) The
minimum clustering radii thus are equal. Any APX-hardness result for the k-center problem
in R2 can be combined with this polynomial time reduction to give the same hardness for
the k-staircase problem in R4. Feder and Greene [16] proved that the k-center problem in
R2 cannot be approximated to a factor better than (1+

√
7)

2 ≈ 1.823. There is also such a
result by Mentzer [27], although it is not that well known. Mentzer shows that the k-center
problem in R2 is hard to approximate within a factor of

√
2 +
√

3 ≈ 1.932. Using Mentzer’s
result [27] we conclude the result of the theorem. J

N. Kumar, B. Raichel, S. Sintos, and G. Van Buskirk 10:9

For d = 3, a non-trivial approximate embedding argument and Mentzer’s result [27] implies,

I Theorem 8. The k-staircase problem for the L2 norm is NP-hard to approximate in R3

within a factor better than
√

2+
√

3√
2+
√

2
≈ 1.0455.

The proof of the last theorem can be found in [22].
Finally, we would like to point out the paper by Chuzhoy et al. [14], who showed that

the asymmetric k-center problem is hard to approximate up to a factor log∗ n−Θ(1) unless
NP ⊆ DTIME(nlog logn). An interesting open question is if their reduction can be used to
show that our k-staircase problem is hard to approximate by a factor better than log∗ n. The
authors construct a complicated graph for their reduction. In order to use their construction
we would have to embed their graph to the Euclidean space, such that i) the nodes are
represented by points on the staircase, and ii) capture their (directed) graph distances with
our geometric directed distances. Because of the complexity of their graph we could not find
such a geometric embedding, and hence we leave it as an open problem. For details see the
full version of the paper [22].

4 Exact Algorithm in 2D

In this section we present a polynomial time exact algorithm for the k-staircase problem in 2
dimensions for any Lα norm with α ≥ 1.

I Theorem 9. Given a set of n points P ⊂ R2, an integer parameter k ≤ n, and a real
parameter α ≥ 1, a set Q ⊆ P of size at most k can be computed in O(n log3 n) time, such
that dHα(SH(P),SH(Q)) is minimized.

Intuitively, the staircase problem is easier in 2D because of the ordering of the points along
the x and the y axis: If the x-coordinate of p ∈ S(P) is smaller than the x-coordinate of
q ∈ S(P), then the y-coordinate of p is larger than the y-coordinate of q. Let p1, p2 denote
the x, y-coordinates of a point p and let p, q ∈ S(P) be two points in the staircase such
that p1 ≥ q1 and p2 ≤ q2. Then, for any α, β ≥ 1 we have that ~dα(p, q) = ||p − q||+α =(
(p1 − q1)α

)1/α = p1 − q1 =
(
(p1 − q1)β

)1/β = ~dβ(p, q). Thus, all the norms are equivalent,
and so without loss of generality, in what follows, α = 1. We now describe our algorithm.
Assume that we have a procedure Cover(P, r), which given a radius r ≥ 0 returns a set
Qr ⊆ S(P) of minimum size satisfying dHα(SH(P),SH(Qr)) ≤ r. Notice that by definition
r∗ is the minimum value of r such that |Qr| ≤ k. Since r∗ is one of the Θ(n2) distances
~d(pi, pj), we could run a binary search over all possible distances to find r∗. For a given
distance r we would need to decide if r < r∗ or r ≥ r∗. To do this, we use Cover(P, r) and
check if the set Qr it returns has |Qr| ≤ k. A naive implementation of this algorithm would
enumerate all the Θ(n2) distances, sort them, and do the binary search over them, but this
would clearly take at least quadratic time. We now show how to implement the algorithm in
near-linear time.

Imagine an array containing all the Θ(n2) distances in sorted order. As remarked above,
we cannot directly compute this array in near-linear time. However we do not need access
to the entire array. A typical query during binary search is : “return the m-th element of
this array”. Assume that finding the m-th smallest distance among the points in S(P), and
the procedure Cover(·), both take O(npolylog(n)) time. Then, all the O(logn) distance
queries for the binary search and all the calls to Cover(·) would take O(n polylog(n)) time.
Following this scheme, we now present an algorithm with overall O(n log3 n) running time.

ICDT 2019

10:10 Approximating Distance Measures for the Skyline

Algorithm 1: Cover(P, r).
Input :P, r
Output :Qr ⊆ P with |Qr| ≤ kr and

dHα(SH(P), SH(Qr)) ≤ r
1 V = ∅
2 for p ∈ S(P) do
3 Vp = {q | ~d(p, q) ≤ r, q ∈ S(P)}
4 V = V ∪ {Vp}
5 F = Min_Set_Cover(S(P), V)
6 Q = {p | Vp ∈ F}
7 Return Q

𝑎

𝑏

𝑐

𝑝

𝑑

𝑒

𝑓

𝐼𝑝

𝑟

𝑟

Figure 4.1 The interval Ip is defined by the
x-coordinate of point b and of point e.

The procedure Cover(P, r). Let kr be the smallest size of a set of centers Qr such that
dHα(SH(P),SH(Qr)) ≤ r. The pseudocode of Cover(P, r) can be seen in Algorithm 1.

Correctness. For each point p ∈ S(P), the set Vp contains the points that are covered by
p within radius r. Then we solve the min-set-cover instance where the elements are the
points in S(P) and V is the family of sets. If the solution to the min-set-cover is optimal,
the correctness of the algorithm follows.

Even though min-set-cover is an NP-hard problem, some special instances can be solved
optimally in polynomial time. We show that the set system (S(P), V) can be mapped to a set
system where the elements are points on a line and the sets are intervals intersected with the
point set. This special case of the min-set-cover problem is the well known unweighted interval
point cover problem (IPCP) and for n intervals and n points it can be solved optimally in
O(n logn) time [4, 35, 20]. The mapping of points is simple. For a point p = (p1, p2) it is
just the projection of p to p1 on the x-axis. Let P1 denote this projected set of points. The
following lemma shows that the set of points q for which ~dα(p, q) ≤ r corresponds to an
interval on the x-axis.

I Lemma 10. Let p, q, z ∈ S(P). If q1 is between p1 and z1 and ~dα(p, z) ≤ r then ~dα(p, q) ≤ r.

Proof. We show it for the case where p1 ≤ q1 ≤ z1, since the case of z1 ≤ q1 ≤ p1 is similar.
Since p, q, z ∈ S(P) and p1 ≤ q1 ≤ z1, it also holds that p2 ≥ q2 ≥ z2. We have that
~dα(p, z) = p2 − z2 ≤ r. We conclude that ~dα(p, q) = p2 − q2 ≤ p2 − z2 ≤ r. J

The interval Ip for a point p can be computed as follows. The left end-point is just p1− r
but we can clip it to a point in P1 by doing a successor search for p1 − r among the set of
points P1. The right end-point corresponds to the x-coordinate q1 of a point q = (q1, q2)
such that q1 ≥ p1 and is the largest value such that p2 − q2 ≤ r. To compute this we can do
a predecessor search for p2 + r in the projection of points P2 on the y-axis. Once we find this
point q2, the left end-point of Ip is determined by q1. In Figure 4.1, we show an example
of the interval Ip for a point p. Using the above construction and Lemma 10 we can argue
that each set Vp corresponds to an interval Ip on the x-axis and hence the set cover instance
defined by (S(P), V) is an instance of the IPCP.

Complexity of Cover(P, r). We can compute the staircase S(P) of P in O(n logn) time.
The (sorted) projected point sets P1, P2 as above can be constructed in additional O(n)
time. For each point p the set Vp is specified by the interval Ip which needs two predecessor

N. Kumar, B. Raichel, S. Sintos, and G. Van Buskirk 10:11

searches. Thus each such interval can be computed in O(logn) time. The min-set-cover
for the IPCP instance can be computed in O(n logn) time. Thus, overall Cover(P, r) takes
O(n logn) time.

Search over the possible radii. Let Z = n(n − 1) denote the total number of distances
~dα(p, q) between points p, q ∈ P . As remarked above, given m with 1 ≤ m ≤ Z, we need a
method to compute the m-th smallest distance in this set. We now show how to do this
in near-linear time, more specifically, O(n log2 n) time. We first discuss another problem
which will be used. Let A,B be two sorted arrays of real numbers with length M each.
A classic exercise is to compute the m-th smallest element in the union of the two arrays
in sublinear time and it is well known that it can be computed in O(logM) time. The C
implementation of such an algorithm can be found in [22]. This algorithm makes at most
O(logM) comparisons between the elements of A,B. The set R of all the Z distances ~dα(p, q)
can be written as the union of two sets Ax and Ay defined as, Ax = {p1 − q1 | p1 ≥ q1}, and
Ay = {p2 − q2 | p2 ≥ q2}. Notice that |Ax| = |Ay| = Z/2, so let M = Z/2. So, our goal is to
compute the m-th smallest element of Ax ∪ Ay. To use the algorithm just mentioned, we
need access to the i-th smallest element of Ax (or a similar query for Ay). Fortunately, we do
not need to explicitly compute Ax, Ay. In [31, 32] the authors show that the i-th smallest L1
distance of n points on a line can be computed in O(n logn) time. The distances in Ax, Ay
can be seen as the L1 distances among the projections of S(P) on the two axes, namely,
among the points of P1 and P2. Since the algorithm of [31, 32] needs to run at most O(logM)
times, the m-th smallest distance in R can be computed in O(n logn logM) = O(n log2 n)
time. The pseudocode of the overall procedure described above is given in [22].

Overall complexity. The O(logn) iterations of the procedure Cover(P, r) take O(n log2 n)
time overall, and the O(logn) queries for the m-th smallest distance overall take O(n log3 n)
time. This is the dominating term in the running time.

5 Approximate K-Staircase

In this section we give approximation algorithms for the k-staircase problem. First, we show
a general algorithm that runs in quadratic time, and then we give a faster approximation
algorithm for fixed d.

5.1 An approximation algorithm
In Section 2 we showed that the k-staircase problem is a special case of the asymmetric
k-center problem. Previously, [30] gave an O(log∗ n)-approximation for the asymmetric
k-center problem, so this immediately implies an O(log∗ n) approximation for Problem 1 for
any Lα norm. The proof of the next theorem can be found in [22].

I Theorem 11. There is an O(log∗(n))-approximation algorithm for the k-staircase problem
with O(n2(d+ log2 n)) running time.

One can also parameterize on the value of k, in which case [5] provided an O(log∗ k)-
approximation. Their algorithm requires solving O(logn) linear programs, so while their
algorithm runs in polynomial time, the precise asymptotic time was not stated.

I Theorem 12. There exists an O(log∗(k))-approximation algorithm for the k-staircase
problem that runs in polynomial time.

ICDT 2019

10:12 Approximating Distance Measures for the Skyline

The O(log∗ n)-approximation algorithm of [30] can be implemented by performing a binary
search over all the Θ(n2) inter-point distances. For a value r, deciding if r < r∗ or r ≥ r∗

requires solving a set cover problem. (This is similar to what we do for the exact algorithm
in 2D in Section 4, except that the set cover instance in general is not solved exactly but
only approximately.) In general, even constructing the set cover instance can take quadratic
time, and thus approximately solving the entire problem in near-linear time seems difficult.
We next use several geometric ideas to come up with a faster bi-criteria approximation
(approximation on both k and radius) for any Lα norm, if d is fixed.

5.2 A faster approximation algorithm for fixed d
In this subsection we show a faster approximation algorithm for the k-staircase problem if
the dimension d is fixed. Because of the space limit, here we only give a brief overview of
our approach. In [22] we provide all the details and the proofs of our method. The main
result of this section is the following theorem.

I Theorem 13. Given a set of n points P ⊂ Rd, for constant d, and an integer parameter
k ≤ n, a set Q ⊆ P of size at most 2k can be computed in O(kn polylog(n)) time, such that
dHα(SH(P),SH(Q)) = O(r∗α log∗ n), where r∗α = minQ⊆P,|Q|≤k dHα(SH(P),SH(Q)).

Our approach is to first get a fast approximation algorithm for the L∞ norm and then
argue that the same solution is a good approximation for any Lα. Intuitively, this will work
due to the known inequality, ‖p− q‖∞ ≤ ‖p− q‖α ≤ d1/α ‖p− q‖∞, for any p, q ∈ Rd and
any α ≥ 1, i.e., the L∞ and any Lα norm differ by a factor that depends only on d and α.
Next, we only focus on the L∞ norm and we denote r∗ = minQ⊆P,|Q|≤k dH∞(SH(P),SH(Q))
(unlike in the other sections where we use r∗ as the optimum distance for any Lα norm).

Our algorithm follows the structure of the algorithm in [30] for the asymmetric k center
problem, which has two parts5: 1) A decider, such that given a distance r it either returns r is
less than r∗ or it returns a set Q ⊆ P which is an O(log∗ n)-approximation. Their algorithm
recursively solves many instances of the set cover problem using the greedy approximation
algorithm [15]. Notice that a center in the asymmetric k-center problem covers a set of points
within distance r so a set cover instance is indeed an intuitive way to model their problem.
2) A search over all O(n2) pair distances to find the smallest one where the decider returns
an O(log∗ n)-approximation.

Both 1) and 2) can be made faster because we are focusing on the L∞ norm for our
k-staircase problem. 1) The sets defined by the set cover instances in [30] correspond to
half-open boxes in Rd for the L∞ norm. Using geometric data structures, like range trees [1],
we can thus run the greedy algorithm for the set cover problem without explicitly constructing
the set cover instances, i.e., without finding the points in P contained in each half-open
box. 2) Instead of computing the quadratic number of all pairwise directed distances, we use
the notion of Well-Separated Pair Decomposition (WSPD) [10, 18, 19, 29]. For a set of n
points in Rd, for fixed d, a WSPD can approximate all pairwise Euclidean distances with a
near-linear number of distances. Unfortunately, our distance function ~d∞(·, ·) is not a metric
and as such the known WSPD constructions are not useful. The main idea we use is to
project the points to all d-axes separately, and construct the WSPD for each of the projected
point sets. The key observation allowing us to construct such WSPDs is that for L∞ the r∗
distance is one of the pairwise distances among the projected 1-dimensional points.

5 The authors in [30] do not present it this way, however it makes our algorithm easier to explain.

N. Kumar, B. Raichel, S. Sintos, and G. Van Buskirk 10:13

We note that our algorithm finds a set Q with at most 2k points. In order to guarantee at
most k points with an approximation factor of O(log∗ n) in [30] they make use of the notion
of so called CCV points. These are defined and extended in the next section to get a heuristic
that works very well in practice. Finally, note that our algorithm works for any dimension d.
If d is not a constant, however, then we have an O(d1/αr∗α log∗ n)-approximation algorithm
that runs in O(poly(d)nk logpoly(d) n) time, where poly(d) is a linear polynomial of d.

6 A practical heuristic

Here we present a fast heuristic for the k-staircase problem, and provide experimental results
showing its efficacy on both real and synthetic data. For simplicity, we present the result
only for the L2 norm and in the full version of the paper [22] we describe how to extend it to
any Lα. Missing proofs of all lemmas in this section can be found in [22].

We first provide some intuition for our heuristic. As in the previous sections we look for
r∗ and the set of k centers using binary search. For a query radius r, we need to be able to
decide if r < r∗, or r ≥ r∗. The heuristic attempts to test this, by adapting an approach to
solve the standard symmetric k-center problem. The algorithm for the symmetric k-center
problem is iterative, and in each iteration it picks some arbitrary center p and removes
all points in a ball of radius 2r around p. If the procedure stops within k iterations then
clearly r∗ ≤ 2r. Otherwise r∗ > r, because if r∗ ≤ r, then one can argue in each iteration
this procedure entirely removes at least one optimal cluster which has not been completely
covered yet. To see this, let pi be the center that the algorithm selected in the ith round.
Let oi be the center from the optimal solution covering pi. (Since pi still exists, oi’s cluster
has not been fully covered yet.) All remaining points in oi’s cluster are within distance r∗
from oi, which is within r∗ from pi, and hence all remaining points are covered by the 2r
ball around pi if r ≥ r∗. If distances are asymmetric, however, this argument breaks since
while pi is within distance r∗ from oi, this does not imply oi is within r∗ from pi. To deal
with asymmetry, [30] defined the notion of center capturing vertices (CCV), where a point p
is CCV(r) if whenever the distance from another point to p is less than r, then the distance
from p to that point is also at most r. That is, at the resolution of the radius r, the distances
involving that point look symmetric. If we could always find a CCV(r) point among the
remaining ones, then by the directed triangle inequality the argument would still be valid.
However, for general asymmetric distance functions such CCV points may not exist, so we
define a new relaxed notion of CCV points allowing imbalance in the directed distances.

I Definition 14 (λ-CCV(r)). Given a point set P ⊂ Rd, and real numbers r ≥ 0, λ > 0,
p ∈ P is a λ-CCV(r) point, if for all q ∈ P with ~d2(q, p) ≤ r it is also true that ~d2(p, q) ≤ λr.

Note that a 1-CCV(r) point is the same as a CCV(r) point in [30]. Also note that if we can
always find a λ-CCV(r) point rather than a CCV(r) point as desired above we will end up
with a (1 + λ) rather than 2 approximation. If r is clear from the context, a CCV(r) (resp.
λ-CCV(r)) point is denoted as a CCV (resp. λ-CCV) point. Ultimately our new heuristic
works by selecting appropriate λ-CCV points. It is not clear whether such points even exist,
however, the following lemma confirms that there is a point that is a

√
d− 1-CCV(r) point

for any radius r, and further, such a point can be found easily (in O(dn) time). For any
u ∈ Rd define its weight as w(u) = u1 + u2 + . . .+ ud.

I Lemma 15. For any point set P ⊂ Rd with n points, the point p ∈ P with minimum
weight w(p) is a

√
d− 1-CCV(r) point for any distance r ≥ 0.

ICDT 2019

10:14 Approximating Distance Measures for the Skyline

Algorithm 2: MinWeight(P, k, r).
Input :P , k, r
Output :Either “r < r∗” or a set

Q ⊆ P with
|Q| ≤ k such that
dH2(SH(P),SH(Q)) ≤
(1 +

√
d− 1)r

1 X ← P , Q← ∅
2 while |Q| ≤ k AND X 6= ∅ do
3 p = argminp∈X w(p)
4 Q← Q ∪ {p}
5 X ← X \ {q ∈ X |~d2(p, q) ≤

(1 +
√
d− 1)r}

6 if |Q| > k then
7 Return “r < r∗”
8 else
9 Return Q

0 20 40 60 80 100
k

0.1

0.2

0.3

0.4

Er
ro

r

ElNino
Log*(n)-approx
MinWeight
Furthest

0 20 40 60 80 100
k

0.2

0.4

0.6

Er
ro

r

Colors

10 20 30 40 50
k

0.1

0.2

0.3

0.4

Er
ro

r

BB

0 50 100 150 200
k

0.0

0.1

0.2

0.3

0.4

Er
ro

r

AirData

0 20 40 60 80 100
k

0.2

0.3

0.4

0.5

0.6

Er
ro

r

AntiCor-Var=0.05

0 20 40 60 80 100
k

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

AntiCor-Var=0.1

0 20 40 60 80 100
k

0.1

0.2

0.3

0.4

Er
ro

r

AntiCor-Var=0.15

0 20 40 60 80 100
k

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Uniform

Figure 6.1 Approximation error for L2 norm.

The decision procedure. To recollect, let r∗ be the optimum radius for Problem 1 on a
given set P of n points. Our aim is to build a decision procedure which we later use to do a
binary search for r∗. Specifically, Algorithm 2 shows a fast procedure MinWeight(P, k, r),
which either outputs “r < r∗” or returns a set Q with |Q| ≤ k. We were not able to argue
that the procedure is always correct when “r < r∗” is output, hence the term “heuristic”,
though the experiments below show that in practice this does not at all seem to be an issue.
On the other hand if a set Q is output, we have the following.

I Lemma 16. If MinWeight(P, k, r) returns a set Q⊆P , then |Q|≤k and dH2(SH(P),SH(Q))
≤ (1 +

√
d− 1)r. The algorithm runs in O(dnk) time.

To see the obstacle in arguing that the algorithm is correct when “r < r∗” is output, let Z be
an optimal r∗ radius solution to Problem 1. We would like to argue that every point z ∈ Z is
at most

√
d− 1r∗ from one of the chosen points, as this would imply a (1 +

√
d− 1)r∗ radius

covering. However, the issue is that the points we choose in each iteration are
√
d− 1-CCV

with respect to only the remaining points (Lemma 15), for any r. Specifically, consider a
point p which is r∗-covered by a point oi in the optimum solution. It is possible that oi may
cause p to not be a

√
d− 1-CCV. However, if oi was removed in some earlier iteration, then

later p may become a
√
d− 1-CCV point. This could be a problem, as in the worst case it

means it is possible that oi is not
√
d− 1r∗-covered by p, and hence all points r∗-covered by

oi are not (1 +
√
d− 1)r∗-covered by p, as we would like to argue.

N. Kumar, B. Raichel, S. Sintos, and G. Van Buskirk 10:15

6.1 Experiments
This section compares the performance of three algorithms: the heuristic MinWeight, the
log∗(n) asymmetric k-center algorithm ([30]) which we call Log∗(n)-approx, and another
greedy algorithm Furthest described below. We test on several real and synthetic datasets
and use the approximation measure defined in Problem 2 with the asymmetric distance
function ~d2(·, ·). Additionally, in [22], we compare MinWeight and Log∗(n)-approx to the
optimal solution (found by brute force) for small synthetic datasets.

All algorithms are implemented in Python on 64-bit machine with 4 3500 MHz cores and
16GB of RAM with Ubuntu 17.10.

Although we do not report running times, the simplicity of MinWeight (Algorithm 2)
should be noted. There are k iterations that consist of two steps: greedily choose a point
to add to the solution; remove all points within some radius of that point. Not only do
both steps take O(dn) time, but they are easily parallelized. Though we don’t claim optimal
implementations, we mention MinWeight always ran faster than Log∗(n)-approx.

Implementation details.
Log∗(n): The authors in [30] simply try all n2 distance pairs to find the optimal radius r∗.

As this is impractical for large datasets, both algorithms (MinWeight and Log∗(n)-approx)
instead do a binary search over all distance pairs of the staircase points. Specifically,
if the returned set of either algorithm for a given radius is larger than k, we drop the
smaller distances; otherwise, we drop the larger distances.

MinWeight: As MinWeight can possibly find a solution of size k on a radius r < r∗, the
binary search might choose a path where future guesses of r yield no solutions. We store
the most recent solution so that if this happens, we can use the stored solution.

Furthest: This is a simple greedy algorithm that iteratively adds the point furthest from the
current solution set. That is, given an input set P and a solution set Qi in round i, it
adds arg maxp∈P~d2(Qi, p) to Qi to obtain Qi+1 (and repeats until i = k). This algorithm
does not require searching for an optimal radius r∗.

Datasets. For the experiments we use five of the most common datasets that have been used
in other papers related to finding representative points or staircase queries ([3, 6, 8, 13, 28, 34]).
More specifically, we use the following datasets.
BB: This is a commonly used ([3, 6, 13]) basketball dataset where each point is a player

and the attributes are five statistics: points, rebounds, blocks, assists and fouls. There
are 21,961 points in 5-d with 200 points on the staircase.

ElNino: Oceanographic data from the Pacific Ocean, with attributes such as surface temper-
ature, water temperature, and wind speed. There are 178,080 points in 5-d, with 1,183
points on the staircase. This dataset was used in [3, 13] for finding representative points.

AirData: On-time flight data published by the US Department of Transportation, contained
in the AirData dataset [6]. Information gathered from 14 carriers flying in January 2015
includes departure delay, taxi in, taxi out, air time, distance, actual elapsed time, and
arrival delay. This set has 458,311 points in 7-d, with 6,439 points on the staircase.

Colors: The Colors data set is also commonly used for evaluating staircase and regret sets
[28]. The data derives from the HSV color space of a color image, and includes the
standard deviation, skewness, and mean of each H, S, and V in the space.

AntiCor: This is a synthetic dataset of anti-correlated points. There are 100,000 points in
5-d that are generated as described in [8]. We test on different values (0.05, 0.1, 0.15) of
the variance (Var) that determines the position of the plane. For Var=0.05, there are

ICDT 2019

10:16 Approximating Distance Measures for the Skyline

7,941 staircase points; for Var=0.1, 1,275 staircase points; and for Var=0.15, 529 staircase
points.

Uniform: This synthetic dataset has points sampled uniformly from the unit hypercube
which is described in [8]. There are 200,000 points in 7-d with 6,585 points on the
staircase.

Results. In each experiment (see Figure 6.1), MinWeight outperforms the other algorithms
by at least 50% which suggests that, at least in practice, MinWeight does not erroneously
return “r < r∗”. Indeed, when the input set does not have the structure mentioned after
Lemma 16 (where multiple points of an optimal solution are removed in one iteration),
MinWeight achieves a (1 +

√
d− 1)-approximation. Even with a (1 +

√
d− 1)-approximation,

MinWeight seems to exceed expectations compared against the Log∗(n)-approx. We observed
that after the binary search, MinWeight would consistently reach a final guess of r that was
2-4 times smaller than Log∗(n)-approx. One difference between the two algorithms that could
explain this is the fact that MinWeight updates its set of

√
d− 1-CCV points with respect

to the remaining points in each iteration. Specifically, a point which is not
√
d− 1-CCV(r)

can become
√
d− 1-CCV(r) in a later iteration. This indicates that, compared against the

‘static’ CCV point set in Log∗(n)-approx, there are better points to be chosen conditioned
on some set of the previous

√
d− 1-CCV(r) points.

6.2 Comparison of algorithms on real data
There are several well known algorithms which attempt to output a set of representative
points on the skyline. Comparing the outputs of these algorithms is tricky, as each tries to
optimize a different metric. In an attempt at an objective method of comparison, we look
at these algorithms and measures on a real data set. Specifically, we look at NBA player
statistics over several seasons and use the various staircase algorithms to predict potential
all star players in each season (a selection of outstanding players made by the US National
Basketball Association). As discussed below, our algorithm consistently selects the most
potential all stars, and moreover our error measure appears to most closely track how many
potential all stars are selected. Specifically, we compare our Hausdorff measure and our
algorithm MinWeight with the measures and the algorithms of the three most cited papers
for staircase representation, namely, KolPap [21], k-center [34], and Max-cover [25].

The dataset. For this experiment, we used the Basketball season data set that contains the
statistics of each NBA player for each regular season. We use the statistics of each player for
five seasons, 2004-2005, . . . , 2008-2009. For each player we keep six statistics: total points,
number of rebounds, number of assists, number of steals, number of blocks, and the ratio of
field goals made over the number of attempted field goals.

The experiment. For each of the five seasons, we run the algorithms MinWeight, KolPap,
k-center, and Max-cover and record the k = 10 representative players returned, respectively.

The comparison method. Notice that each algorithm returns a set of 10 players S. Each
algorithm is attempting to optimize a different measure of error, thus in order to evaluate
the quality of the returned set S, we need some neutral method which is different from all
the metrics. Towards this end, we define a function B(S) attempting to capture how “good”
the set S is, where B(S) = |T ∩ S|, and T is the set of 50 players selected by NBA experts as

N. Kumar, B. Raichel, S. Sintos, and G. Van Buskirk 10:17

the best in a season that fans could vote to participate in the NBA All Star game.6 Namely,
B(S) returns the number of players in S that were selected as potential players for the NBA
All Star game. Such a set of players T always contains the “best” players as selected by NBA
experts so we feel it is a fair way to compare the results of the algorithms, so we consider T
as the ground truth. Since the notion of skyline approximation is more natural and better
suited for users, another possible or even better evaluation would have been by running a
real user study.

Assessment of the metric itself. We also obtain some evidence that our metric is somewhat
more desirable than the other metrics. Ideally, we would like to have an error function F (S)
(to be optimized by an algorithm) such that if B(S1) ≥ B(S2) then F (S1) ≤ F (S2), i.e., the
better the set is, the smaller the error becomes, or in other words the error has an inverse
relationship with the quality of the solution.

Format of Table 6.1. To evaluate an algorithm which returns a set S, we show in the table
the intersection B(S) = |T ∩ S| of S with the ground truth, as well as the error of S for all
measures under consideration. So each entry of the table for algorithm X and season Y

presents data in the format B(S)[a, b, c, d] where S is the set returned by X and a is the
error of S in the Hausdorff distance (our measure), b is the error as per the metric of KolPap,
c is the error as per the metric of k-center, and d is the error as per the metric of Max-Cover
(the number of uncovered items in P by S).

Table 6.1 Statistics and errors by using different measures and algorithms for k = 10.

2004-2005 2005-2006 2006-2007 2007-2008 2008-2009
MinWeight 8[0.1, 0.25, 0.9, 15] 9[0.18, 0.52, 0.76, 32] 8[0.17, 0.25, 0.79, 31] 8[0.12, 0.67, 0.72, 16] 8[0.09, 0.33, 0.63, 22]
KolPap 7[0.16, 0.18, 0.88, 17] 7[0.22, 0.33, 0.62, 16] 7[0.17, 0.25, 0.79, 30] 6[0.3, 0.34, 0.74, 66] 8[0.14, 0.23, 0.8, 9]
k-center 7[0.34, 0.51, 0.48, 27] 5[0.31, 1.2, 0.50, 57] 5[0.43, 0.75, 0.55, 68] 6[0.34, 0.93, 0.51, 19] 6[0.22, 0.71, 0.49, 49]

Max-cover 7[0.32, 0.44, 0.77, 2] 5[0.39, 0.69, 0.69, 4] 6[0.44, 0.75, 0.67, 1] 6[0.38, 0.59, 0.52, 1] 5[0.37, 0.48, 0.66, 3]

Analysis of the results. From Table 6.1 we can derive the following conclusions: (I) The
MinWeight algorithm always returns better results (based on the function B), and (II) the
Hausdorff error has an inverse relationship with the quality of the result B(S). We obtain
several data points to test this relationship. For a fixed season, the various algorithms return
some set S.We plot the points (B(S), error) for each algorithm using the set S it returns
and for the errors under the different metrics. If we look at the errors for a fixed measure,
the Hausdorff distance error measure satisfies the inverse relationship in almost all the cases.
The rest of the measures defined by the previous works do not seem to have this desirable
inverse relationship. In the full version of the paper [22] we show the results for k = 15 and
we provide more figures showing the relationship of the quality B(S) with the error measures.

7 Conclusions

Our work suggests several directions for future research. As shown, the k-staircase problem is
an instance of the asymmetric k-center problem and this implies an O(log∗ n)-approximation.
However, it is an open question whether we can exploit the geometric properties of the

6 We use https://www.basketball-reference.com/allstar/ to get the players selected by the experts.

ICDT 2019

https://www.basketball-reference.com/allstar/

10:18 Approximating Distance Measures for the Skyline

problem to improve the approximation. In particular, can we get an f(d)-approximation
for the k-staircase problem, where f(d) is a function only depending on the dimension?
The practical success of our heuristic and the properties discussed in Section 6 gives some
indication this may be possible. Even if this is not possible, one could consider whether
relaxing the constraint on having exactly k points to O(k) points helps, i.e., whether a
bi-criteria approximation is possible. Alternatively, one can consider if there is an O(log∗ k)-
approximation for the k-staircase problem that does not require solving multiple LP’s [5].

References
1 Pankaj K. Agarwal. Range Searching. In Handbook of Discrete and Computational Geometry,

Second Edition., pages 809–837. CRC, 2004. doi:10.1201/9781420035315.ch36.
2 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric approximation

via coresets. Combinatorial and computational geometry, 52:1–30, 2005.
3 Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. Efficient Algorithms for

k-Regret Minimizing Sets. In 16th International Symposium on Experimental Algorithms, SEA
2017, June 21-23, 2017, London, UK, pages 7:1–7:23, 2017. doi:10.4230/LIPIcs.SEA.2017.7.

4 Mugurel Ionut Andreica, Eliana-Dina Tirsa, Cristina Teodora Andreica, Romulus Andreica,
and Mihai Aristotel Ungureanu. Optimal geometric partitions, covers and K-centers. arXiv
preprint arXiv:0908.3652, 2009.

5 Aaron Archer. Two O (log* k)-Approximation Algorithms for the Asymmetric k-Center
Problem. In Integer Programming and Combinatorial Optimization, 8th International IPCO
Conference, Utrecht, The Netherlands, June 13-15, 2001, Proceedings, pages 1–14, 2001.
doi:10.1007/3-540-45535-3_1.

6 Abolfazl Asudeh, Azade Nazi, Nan Zhang, and Gautam Das. Efficient Computation of Regret-
ratio Minimizing Set: A Compact Maxima Representative. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, pages 821–834, 2017. doi:10.1145/3035918.3035932.

7 Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. Sparse Approximation via Generating
Point Sets. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 548–557, 2016.
doi:10.1137/1.9781611974331.ch40.

8 Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The Skyline Operator. In
Proceedings of the 17th International Conference on Data Engineering, April 2-6, 2001,
Heidelberg, Germany, pages 421–430, 2001. doi:10.1109/ICDE.2001.914855.

9 Greg Van Buskirk, Benjamin Raichel, and Nicholas Ruozzi. Sparse Approximate Conic Hulls.
In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 2531–
2541, 2017. URL: http://papers.nips.cc/paper/6847-sparse-approximate-conic-hulls.

10 Paul B. Callahan and S. Rao Kosaraju. A Decomposition of Multidimensional Point Sets with
Applications to k-Nearest-Neighbors and n-Body Potential Fields. J. ACM, 42(1):67–90, 1995.
doi:10.1145/200836.200853.

11 Wei Cao, Jian Li, Haitao Wang, Kangning Wang, Ruosong Wang, Raymond Chi-Wing
Wong, and Wei Zhan. k-Regret Minimizing Set: Efficient Algorithms and Hardness. In 20th
International Conference on Database Theory, ICDT 2017, March 21-24, 2017, Venice, Italy,
pages 11:1–11:19, 2017. doi:10.4230/LIPIcs.ICDT.2017.11.

12 Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal range searching on
the RAM, revisited. In Proceedings of the 27th ACM Symposium on Computational Geometry,
Paris, France, June 13-15, 2011, pages 1–10, 2011. doi:10.1145/1998196.1998198.

13 Sean Chester, Alex Thomo, S. Venkatesh, and Sue Whitesides. Computing k-Regret Minimizing
Sets. PVLDB, 7(5):389–400, 2014. doi:10.14778/2732269.2732275.

http://dx.doi.org/10.1201/9781420035315.ch36
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.7
http://dx.doi.org/10.1007/3-540-45535-3_1
http://dx.doi.org/10.1145/3035918.3035932
http://dx.doi.org/10.1137/1.9781611974331.ch40
http://dx.doi.org/10.1109/ICDE.2001.914855
http://papers.nips.cc/paper/6847-sparse-approximate-conic-hulls
http://dx.doi.org/10.1145/200836.200853
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.11
http://dx.doi.org/10.1145/1998196.1998198
http://dx.doi.org/10.14778/2732269.2732275

N. Kumar, B. Raichel, S. Sintos, and G. Van Buskirk 10:19

14 Julia Chuzhoy, Sudipto Guha, Eran Halperin, Sanjeev Khanna, Guy Kortsarz, Robert Krau-
thgamer, and Joseph Naor. Asymmetric k-center is log* n-hard to approximate. J. ACM,
52(4):538–551, 2005. doi:10.1145/1082036.1082038.

15 Vasek Chvátal. A Greedy Heuristic for the Set-Covering Problem. Math. Oper. Res., 4(3):233–
235, 1979. doi:10.1287/moor.4.3.233.

16 Tomás Feder and Daniel H. Greene. Optimal Algorithms for Approximate Clustering. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 434–444, 1988. doi:10.1145/62212.62255.

17 Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and Related
Techniques for Geometry Problems. In Proceedings of the 16th Annual ACM Symposium on
Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 135–143, 1984.
doi:10.1145/800057.808675.

18 Sariel Har-Peled. Geometric approximation algorithms, volume 173. American mathematical
society Boston, 2011.

19 Sariel Har-Peled and Manor Mendel. Fast Construction of Nets in Low-Dimensional Met-
rics and Their Applications. SIAM J. Comput., 35(5):1148–1184, 2006. doi:10.1137/
S0097539704446281.

20 Refael Hassin and Arie Tamir. Improved complexity bounds for location problems on the real
line. Operations Research Letters, 10(7):395–402, 1991.

21 Vladlen Koltun and Christos H. Papadimitriou. Approximately Dominating Representatives.
In Database Theory - ICDT 2005, 10th International Conference, Edinburgh, UK, January
5-7, 2005, Proceedings, pages 204–214, 2005. doi:10.1007/978-3-540-30570-5_14.

22 Nirman Kumar, Benjamin Raichel, Stavros Sintos, and Gregory Van Buskirk. Approximating
Distance Measures for the Skyline. http://utdallas.edu/~benjamin.raichel/stair.pdf.

23 Nirman Kumar and Stavros Sintos. Faster Approximation Algorithm for the k-Regret Min-
imizing Set and Related Problems. In Proceedings of the Twentieth Workshop on Algorithm
Engineering and Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018.,
pages 62–74, 2018. doi:10.1137/1.9781611975055.6.

24 H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On Finding the Maxima of a Set of
Vectors. J. ACM, 22(4):469–476, 1975. doi:10.1145/321906.321910.

25 Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. Selecting Stars: The k Most
Representative Skyline Operator. In Proceedings of the 23rd International Conference on Data
Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages
86–95, 2007. doi:10.1109/ICDE.2007.367854.

26 Matteo Magnani, Ira Assent, and Michael L. Mortensen. Taking the Big Picture: representative
skylines based on significance and diversity. VLDB J., 23(5):795–815, 2014. doi:10.1007/
s00778-014-0352-3.

27 S. Mentzer. Approximability of Metric Clustering Problems. preprint on researchgate.net,
2016. URL: https://www.researchgate.net/publication/242489373_Approximability_
of_Metric_Clustering_Problems.

28 Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J. Lipton, and Jun (Jim)
Xu. Regret-Minimizing Representative Databases. PVLDB, 3(1):1114–1124, 2010. doi:
10.14778/1920841.1920980.

29 Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks. Cambridge University
Press, 2007.

30 Rina Panigrahy and Sundar Vishwanathan. An O (log* n) Approximation Algorithm for the
Asymmetric p-Center Problem. J. Algo., 27(2):259–268, 1998. doi:10.1006/jagm.1997.0921.

31 J. Salowe. Selection Problems in Computational Geometry. PhD thesis, Rutgers University,
1987.

32 Jeffrey S. Salowe. L-Infinity Interdistance Selection by Parametric Search. Inf. Process. Lett.,
30(1):9–14, 1989. doi:10.1016/0020-0190(89)90166-X.

ICDT 2019

http://dx.doi.org/10.1145/1082036.1082038
http://dx.doi.org/10.1287/moor.4.3.233
http://dx.doi.org/10.1145/62212.62255
http://dx.doi.org/10.1145/800057.808675
http://dx.doi.org/10.1137/S0097539704446281
http://dx.doi.org/10.1137/S0097539704446281
http://dx.doi.org/10.1007/978-3-540-30570-5_14
http://utdallas.edu/~benjamin.raichel/stair.pdf
http://dx.doi.org/10.1137/1.9781611975055.6
http://dx.doi.org/10.1145/321906.321910
http://dx.doi.org/10.1109/ICDE.2007.367854
http://dx.doi.org/10.1007/s00778-014-0352-3
http://dx.doi.org/10.1007/s00778-014-0352-3
https://www.researchgate.net/publication/242489373_Approximability_of_Metric_Clustering_Problems
https://www.researchgate.net/publication/242489373_Approximability_of_Metric_Clustering_Problems
http://dx.doi.org/10.14778/1920841.1920980
http://dx.doi.org/10.14778/1920841.1920980
http://dx.doi.org/10.1006/jagm.1997.0921
http://dx.doi.org/10.1016/0020-0190(89)90166-X

10:20 Approximating Distance Measures for the Skyline

33 Malene Søholm, Sean Chester, and Ira Assent. Maximum Coverage Representative Skyline. In
Proceedings of the 19th International Conference on Extending Database Technology, EDBT
2016, Bordeaux, France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016., pages
702–703, 2016. doi:10.5441/002/edbt.2016.95.

34 Yufei Tao, Ling Ding, Xuemin Lin, and Jian Pei. Distance-Based Representative Skyline. In
Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29
2009 - April 2 2009, Shanghai, China, pages 892–903, 2009. doi:10.1109/ICDE.2009.84.

35 Stan PM Van Hoesel and Albert PM Wagelmans. On the p-coverage problem on the real line.
Statistica Neerlandica, 61(1):16–34, 2007.

36 Rui Xu and Donald C. Wunsch II. Survey of clustering algorithms. IEEE Trans. Neural
Networks, 16(3):645–678, 2005. doi:10.1109/TNN.2005.845141.

http://dx.doi.org/10.5441/002/edbt.2016.95
http://dx.doi.org/10.1109/ICDE.2009.84
http://dx.doi.org/10.1109/TNN.2005.845141

Index-Based, High-Dimensional, Cosine Threshold
Querying with Optimality Guarantees
Yuliang Li
Megagon Labs, Mountain View, California, USA
UC San Diego, San Diego, California, USA

Jianguo Wang
UC San Diego, San Diego, California, USA

Benjamin Pullman
UC San Diego, San Diego, California, USA

Nuno Bandeira
UC San Diego, San Diego, California, USA

Yannis Papakonstantinou
UC San Diego, San Diego, California, USA

Abstract
Given a database of vectors, a cosine threshold query returns all vectors in the database having
cosine similarity to a query vector above a given threshold. These queries arise naturally in many
applications, such as document retrieval, image search, and mass spectrometry. The present paper
considers the efficient evaluation of such queries, providing novel optimality guarantees and exhibiting
good performance on real datasets. We take as a starting point Fagin’s well-known Threshold
Algorithm (TA), which can be used to answer cosine threshold queries as follows: an inverted
index is first built from the database vectors during pre-processing; at query time, the algorithm
traverses the index partially to gather a set of candidate vectors to be later verified against the
similarity threshold. However, directly applying TA in its raw form misses significant optimization
opportunities. Indeed, we first show that one can take advantage of the fact that the vectors can be
assumed to be normalized, to obtain an improved, tight stopping condition for index traversal and
to efficiently compute it incrementally. Then we show that one can take advantage of data skewness
to obtain better traversal strategies. In particular, we show a novel traversal strategy that exploits
a common data skewness condition which holds in multiple domains including mass spectrometry,
documents, and image databases. We show that under the skewness assumption, the new traversal
strategy has a strong, near-optimal performance guarantee. The techniques developed in the paper
are quite general since they can be applied to a large class of similarity functions beyond cosine.

2012 ACM Subject Classification Theory of computation → Data structures and algorithms for
data management; Theory of computation → Database query processing and optimization (theory);
Information systems → Nearest-neighbor search

Keywords and phrases Vector databases, Similarity search, Cosine, Threshold Algorithm

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.11

Related Version A full version of the paper is available at https://arxiv.org/abs/1812.07695.

Acknowledgements We are very grateful to Victor Vianu who helped us significantly improve the
presentation of the paper. We also thank the anonymous reviewers for the very constructive and
helpful comments. This work was supported in part by the National Science Foundation (NSF)
under awards BIGDATA 1447943 and ABI 1759980, and by the National Institutes of Health (NIH)
under awards P41GM103484 and R24GM127667.

© Yuliang Li, Jianguo Wang, Benjamin Pullman, Nuno Bandeira, and Yannis Papakonstantinou;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2019.11
https://arxiv.org/abs/1812.07695
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Cosine Threshold Querying with Optimality Guarantees

1 Introduction

Given a database of vectors, a cosine threshold query asks for all database vectors with
cosine similarity to a query vector above a given threshold.

This problem arises in many applications including document retrieval [11], image
search [24], recommender systems [26] and mass spectrometry. For example, in mass
spectrometry, billions of spectra are generated for the purpose of protein analysis [1, 25, 33].
Each spectrum is a collection of key-value pairs where the key is the mass-to-charge ratio of
an ion contained in the protein and the value is the intensity of the ion. Essentially, each
spectrum is a high-dimensional, non-negative and sparse vector with ∼2000 dimensions where
∼100 coordinates are non-zero.

Cosine threshold queries play an important role in analyzing such spectra repositories.
Example questions include “is the given spectrum similar to any spectrum in the database?”,
spectrum identification (matching query spectra against reference spectra), or clustering
(matching pairs of unidentified spectra) or metadata queries (searching for public datasets
containing matching spectra, even if obtained from different types of samples). For such
applications with a large vector database, it is critically important to process cosine threshold
queries efficiently – this is the fundamental topic addressed in this paper.

I Definition 1 (Cosine Threshold Query). Let D be a collection of high-dimensional, non-
negative vectors; q be a query vector; θ be a threshold 0 < θ ≤ 1. Then the cosine threshold
query returns the vector set R = {s|s ∈ D, cos(q, s) ≥ θ}. A vector s is called θ-similar to
the query q if cos(q, s) ≥ θ and the score of s is the value cos(q, s) when q is understood
from the context.

Observe that cosine similarity is insensitive to vector normalization. We will therefore
assume without loss of generality that the database as well as query consist of unit vectors
(otherwise, all vectors can be normalized in a pre-processing step).

In the literature, cosine threshold querying is a special case of Cosine Similarity Search
(CSS) [31, 3, 26], where other aspects like approximate answers, top-k queries and similarity
join are considered. Our work considers specifically CSS with exact, threshold and single-
vector queries, which is the case of interest to many applications.

Because of the unit-vector assumption, the scoring function cos computes the dot product
q ·s. Without the unit-vector assumption, the problem is equivalent to inner product threshold
querying, which is of interest in its own right. Related work on cosine and inner product
similarity search is summarized in Section 5.

In this paper we develop novel techniques for the efficient evaluation of cosine threshold
queries. We take as a starting point the well-known Threshold Algorithm (TA), by Fagin et
al. [16], because of its simplicity, wide applicability, and optimality guarantees. A review of
the classic TA is provided in the full version of the paper.

A TA-like baseline index and algorithm and its shortcomings. The TA algorithm can be
easily adapted to our setting, yielding a first-cut approach to processing cosine threshold
queries. We describe how this is done and refer to the resulting index and algorithm as the
TA-like baseline. Note first that cosine threshold queries use cos(q, s), which can be viewed
as a particular family of functions F (s) = s · q parameterized by q, that are monotonic in s
for unit vectors. However, TA produces the vectors with the top-k scores according to F (s),
whereas cosine threshold queries return all s whose score exceeds the threshold θ. We will
show how this difference can be overcome straightforwardly.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:3

1 2 3 4 5 6 7 8 9 10
s1
s2

0.3 0.20.1 0.4 0.2

0.5 0.7 0.5

0.2 0.1 0.6 0.5

0.6 0.4

0.5 0.60.3 0.4

s3
s4
s5
s6

0.8 0.3 0.20.3
...

0.4

0.5 0.5 0.4

0.3 0.5

0.7

0.4

𝑳𝟏
s1 0.8

s3 0.3
s5 0.7

s4 0.2

𝐿$
s5 0.6

s1 0.3
s3 0.1

s2 0.5

𝐿%

s3 0.4

s4 0.6
s6 0.5

0.8 0.50.3query

s1 0.4
s3 0.2

s2 0.7

s4 0.1

𝐿&𝐿'
s3 0.5
s6 0.4

Figure 1 An example of cosine threshold query with six 10-dimensional vectors. The missing
values are 0’s. We only need to scan the lists L1, L3, and L4 since the query vector has non-
zero values in dimension 1, 3 and 4. For θ = 0.6, the gathering phase terminates after each
list has examined three entries (highlighted) because the score for any unseen vector is at most
0.8 × 0.3 + 0.3 × 0.3 + 0.5 × 0.2 = 0.43 < 0.6. The verification phase only needs to retrieve from
the database those vectors obtained during the gathering phase, i.e., s1, s2, s3 and s5, compute the
cosines and produce the final result.

A baseline index and algorithm inspired by TA can answer cosine threshold queries exactly
without a full scan of the vector database for each query. In addition, the baseline algorithm
enjoys the same instance optimality guarantee as the original TA. This baseline is created as
follows. First, identically to the TA, the baseline index consists of one sorted list for each
of the d dimensions. In particular, the i-th sorted list has pairs (ref(s), s[i]), where ref(s) is
a reference to the vector s and s[i] is its value on the i-th dimension. The list is sorted in
descending order of s[i].1

Next, the baseline, like the TA, proceeds into a gathering phase during which it collects
a complete set of references to candidate result vectors. The TA shows that gathering can
be achieved by reading the d sorted lists from top to bottom and terminating early when
a stopping condition is finally satisfied. The condition guarantees that any vector that
has not been seen yet has no chance of being in the query result. The baseline makes a
straightforward change to the TA’s stopping condition to adjust for the difference between
the TA’s top-k requirement and the threshold requirement of the cosine threshold queries. In
particular, in each round the baseline algorithm has read the first b entries of each index.
(Initially it is b = 0.) If it is the case that cos(q, [L1[b], . . . , Ld[b]]) < θ then it is guaranteed
that the algorithm has already read (the references to) all the possible candidates and thus
it is safe to terminate the gathering phase, see Figure 1 for an example. Every vector s that
appears in the j-th entry of a list for j < b is a candidate.

In the next phase, called the verification phase, the baseline algorithm (again like TA)
retrieves the candidate vectors from the database and checks which ones actually score above
the threshold.

For inner product queries, the baseline algorithm’s gathering phase benefits from the
same d · OPT instance optimality guarantee as the TA. Namely, the gathering phase will
access at most d ·OPT entries, where OPT is the optimal index access cost. More specifically,
the notion of OPT is the minimal number of sequential accesses of the sorted inverted index
during the gathering phase for any TA-like algorithm applied to the specific query and index
instance.

There is an obvious optimization: Only the k dimensions that have non-zero values in
the query vector q should participate in query processing – this leads to a k ·OPT guarantee
for inner product queries.2 But even this guarantee loses its practical value when k is a large

1 There is no need to include pairs with zero values in the list.
2 This optimization is equally applicable to the TA’s problem: Scan only the lists that correspond to

ICDT 2019

11:4 Cosine Threshold Querying with Optimality Guarantees

Table 1 Summary of theoretical results for the near-convex case.

Stopping Condition Traversal Strategy
Baseline This work Baseline This work

Inner Product Tight m · OPT OPT + c

Cosine Not tight Tight NA OPT(θ − ε) + c

number. In the mass spectrometry scenario k is ∼100. In document similarity and image
similarity cases it is even higher.

For cosine threshold queries, the k · OPT guarantee no longer holds. The baseline fails
to utilize the unit vector constraint to reach the stopping condition faster, resulting in an
unbounded gap from OPT because of the unnecessary accesses (see Appendix C of the full
version).3 Furthermore, the baseline fails to utilize the skewing of the values in the vector’s
coordinates (both of the database’s vectors and of the query vector) and the linearity of the
similarity function. Intuitively, if the query’s weight is concentrated on a few coordinates,
the query processing should overweight the respective lists and may, thus, reach the stopping
condition much faster than reading all relevant lists in tandem.

We retain the baseline’s index and the gathering-verification structure which characterizes
the family of TA-like algorithms. The decision to keep the gathering and verification stages
separate is discussed in Section 2. We argue that this algorithmic structure is appropriate
for cosine threshold queries, because further optimizations that would require merging the
two phases are only likely to yield marginal benefits. Within this framework, we reconsider
1. Traversal strategy optimization: A traversal strategy determines the order in which the

gathering phase proceeds in the lists. In particular, we allow the gathering phase to
move deeper in some lists and less deep in others. For example, the gathering phase may
have read at some point b1 = 106 entries from the first list, b2 = 523 entries from the
second list, etc. Multiple traversal strategies are possible and, generally, each traversal
strategy will reach the stopping condition with a different configuration of [b1, b2, . . . , bn].
The traversal strategy optimization problem asks that we efficiently identify a traversal
path that minimizes the access cost

∑d
i=1 bi. To enable such optimization, we will allow

lightweight additions to the baseline index.
2. Stopping condition optimization: We reconsider the stopping condition so that it takes

into account (a) the specifics of the cos function and (b) the unit vector constraint.
Moreover, since the stopping condition is tested frequently during the gathering phase, it
has to to be evaluated very efficiently. Notice that optimizing the stopping condition is
independent of the traversal strategy or skewness assumptions about the data.

Contributions and summary of results.
We present a stopping condition for early termination of the index traversal (Section
3). We show that the stopping condition is complete and tight, informally meaning
that (1) for any traversal strategy, the gathering phase will produce a candidate set
containing all the vectors θ-similar to the query, and (2) the gathering terminates as
soon as no more θ-similar vectors can be found (Theorem 7). In contrast, the stopping
condition of the (TA-inspired) baseline is complete but not tight (Theorem 27 in the full
version). The proposed stopping condition takes into account that all database vectors

dimensions that actually affect the function F .
3 Notice, the unit vector constraint enables inference about the collective weight of the unseen coordinates

of a vector.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:5

are normalized and reduces the problem to solving a special quadratic program (Equation
1) that guarantees both completeness and tightness. While the new stopping condition
prunes further the set of candidates, it can also be efficiently computed in O(log d) time
using incremental maintenance techniques.
We introduce the hull-based traversal strategies that exploit the skewness of the data
(Section 4). In particular, skewness implies that each sorted list Li is “mostly convex”,
meaning that the shape of Li is approximately the lower convex hull constructed from
the set of points of Li. This technique is quite general, as it can be extended to the class
of decomposable functions which have the form F (s) = f1(s[1]) + . . . + fd(s[d]) where
each fi is non-decreasing.4 Consequently, we provide the following optimality guarantee
for inner product threshold queries: The number of accesses executed by the gathering
phase (i.e.,

∑d
i=1 bi) is at most OPT + c (Theorem 16 and Corollary 18), where OPT is

the number of accesses by the optimal strategy and c is the max distance between two
vertices in the lower convex hull. Experiments show that in multiple real-world cases, c is
a very small fraction of OPT.
Despite the fact that cosine and its tight stopping condition are not decomposable, we show
that the hull-based strategy can be adapted to cosine threshold queries by approximating
the tight stopping condition with a carefully chosen decomposable function. We show
that when the approximation is at most ε-away from the actual value, the access cost is
at most OPT(θ− ε) + c (Theorem 20) where OPT(θ− ε) is the optimal access cost on the
same query q with the threshold lowered by ε and c is a constant similar to the above
decomposable cases. Experiments show that the adjustment ε is very small in practice,
e.g., 0.1. We summarize these new results in Table 1.

The paper is organized as follows. We introduce the algorithmic framework and basic
definitions in Section 2. Section 3 and 4 discuss the technical developments as we mentioned
above. Finally, we discuss related work in Section 5 and conclude in Section 6.

2 Algorithmic Framework

In this section, we present a Gathering-Verification algorithmic framework to facilitate
optimizations in different components of an algorithm with a TA-like structure. We start
with notations summarized in Table 2.

To support fast query processing, we build an index for the database vectors similar to
the original TA. The basic index structure consists of a set of 1-dimensional sorted lists
(a.k.a inverted lists in web search [11]) where each list corresponds to a vector dimension and
contains vectors having non-zero values on that dimension, as mentioned earlier in Section 1.
Formally, for each dimension i, Li is a list of pairs {(ref(s), s[i]) | s ∈ D ∧ s[i] > 0} sorted in
descending order of s[i] where ref(s) is a reference to the vector s and s[i] is its value on the
i-th dimension. In the interest of brevity, we will often write (s, s[i]) instead of (ref(s), s[i]).
As an example in Figure 1, the list L1 is built for the first dimension and it includes 4 entries:
(s1, 0.8), (s5, 0.7), (s3, 0.3), (s4, 0.2) because s1, s5, s3 and s4 have non-zero values on the
first dimension.

Next, we show the Gathering-Verification framework (Algorithm 1) that operates on the
index structure. The framework has two phases: gathering and verification.

4 The inner product threshold problem is the special case where fi(s[i]) = qi · s[i].

ICDT 2019

11:6 Cosine Threshold Querying with Optimality Guarantees

Table 2 Notation.

D the vector database
d the number of dimen-

sions
s (bold font) a data vector
q (bold font) a query vector
s[i] or si the i-th dimensional

value of s
|s| the L1 norm of s
‖s‖ the L2 norm of s
θ the similarity threshold
cos(p,q) the cosine of p and q
Li the inverted list of the

i-th dimension
b = (b1, . . . , bd) a position vector
Li[bi] the bi-th value of Li

L[b] the vector (L1[b1], . . . ,
Ld[bd])

Algorithm 1: Gathering-Verification Frame-
work.

input : (D, {Li}1≤i≤d, q, θ)
output : R the set of θ-similar vectors
/* Gathering phase */

1 Initialize b = (b1, . . . , bd) = (0, . . . , 0);
// ϕ(·) is the stopping condition

2 while ϕ(b) = false do
// T (·) is the traversal strategy to

determine which list to access
next

3 i← T (b);
4 bi ← bi + 1;
5 Put the vector s in Li[bi] to the candidate

pool C;
/* Verification phase */

6 R← {s|s ∈ C ∧ cos(q, s) ≥ θ};
7 return R;

Gathering phase (line 1 to line 5). The goal of the gathering phase is to collect a complete
set of candidate vectors while minimizing the number of accesses to the sorted lists. The
algorithm maintains a position vector b = (b1, . . . , bd) where each bi indicates the current
position in the inverted list Li. Initially, the position vector b is (0, . . . , 0). Then it traverses
the lists according to a traversal strategy that determines the list (say Li) to be accessed
next (line 3). Then it advances the pointer bi by 1 (line 4) and adds the vector s referenced
in the entry Li[bi] to a candidate pool C (line 5). The traversal strategy is usually stateful,
which means that its decision is made based on information that has been observed up to
position b and its past decisions. For example, a strategy may decide that it will make the
next 20 moves along dimension 6 and thus it needs state in order to remember that it has
already committed to 20 moves on dimension 6.

The gathering phase terminates once a stopping condition is met. Intuitively, based on
the information that has been observed in the index, the stopping condition checks if a
complete set of candidates has already been found.

Next, we formally define stopping conditions and traversal strategies. As mentioned
above, the input of the stopping condition and the traversal strategy is the information that
has been observed up to position b, which is formally defined as follows.

I Definition 2. Let b be a position vector on the inverted index {Li}1≤i≤d of a database D.
The partial observation at b, denoted as L(b), is a collection of lists {L̂i}1≤i≤d where for
every 1 ≤ i ≤ d, L̂i = [Li[1], . . . , Li[bi]].

I Definition 3. Let L(b) be a partial observation and q be a query with similarity threshold
θ. A stopping condition is a boolean function ϕ(L(b),q, θ) and a traversal strategy is
a function T (L(b),q, θ) whose domain is [d]5. When clear from the context, we denote them
simply by ϕ(b) and T (b) respectively.

Verification phase (line 6). The verification phase examines each candidate vector s seen
in the gathering phase to verify whether cos(q, s) ≥ θ by accessing the database. Various

5 [d] is the set {1, . . . , d}

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:7

techniques [31, 4, 26] have been proposed to speed up this process. Essentially, instead of
accessing all the d dimensions of each s and q to compute exactly the cosine similarity, these
techniques decide θ-similarity by performing a partial scan of each candidate vector. We
review these techniques, which we refer to as partial verification, in Appendix B. Additionally,
as a novel contribution, we show that in the presence of data skewness, partial verification
can have a near-constant performance guarantee (Theorem 25 of the full version) for each
candidate.

I Theorem 4 (Informal). For most skewed vectors, θ-similarity can be computed at constant
time.

Remark on optimizing the gathering phase. Due to these optimization techniques, the
number of sequential accesses performed during the gathering phase becomes the dominating
factor of the overall running time. This reason behind is that the number of sequential
accesses is strictly greater than the number of candidates that need to be verified so reducing
the sequential access cost also results in better performance of the verification phase. In
practice, we observed that the sequential cost is indeed dominating: for 1,000 queries on 1.2
billion vectors with similarity threshold 0.6, the sequential gathering time is 16 seconds and
the verification time is only 4.6 seconds. Such observation justifies our goal of designing a
traversal strategy with near-optimal sequential access cost, as the dominant cost concerns
the gathering stage.

Remark on the suitability of TA-like algorithms. One may wonder whether algorithms
that start the gathering phase NOT from the top of the inverted lists may outperform the
best TA-like algorithm. In particular, it appears tempting to start the gathering phase
from the point closest to qi in each inverted list and traverse towards the two ends of each
list. Appendix E of the full version proves why this idea can lead to poor performance.
In particular, we prove that in a general setting, the computation of a tight and complete
stopping condition (formally defined in Definition 5 and 6) becomes np-hard since it needs to
take into account constraints from two pointers (forward and backward) for each inverted list.
Furthermore, in many applications, the data skewing leads to small savings from pruning the
top area of each list, since the top area is sparsely populated - unlike the densely populated
bottom area of each list. Thus it is not justified to use an expensive gathering phase algorithm
for small savings.

Section 5.1 reviews additional prior work ideas [31, 32] that avoid traversing some
top/bottom regions of the inverted index. Such ideas may provide additional optimizations
to TA-like algorithms in variations and/or restrictions of the problem (e.g., a restriction that
the threshold is very high) and thus they present future work opportunities in closely related
problems.

3 Stopping condition

In this section, we introduce a fine-tuned stopping condition that satisfies the tight and
complete requirements to early terminate the index traversal.

First, the stopping condition has to guarantee completeness (Definition 5), i.e. when the
stopping condition ϕ holds on a position b, the candidate set C must contain all the true
results. Note that since the input of ϕ is the partial observation at b, we must guarantee
that for all possible databases D consistent with the partial observation L(b), the candidate
set C contains all vectors in D that are θ-similar to the query q. This is equivalent to require

ICDT 2019

11:8 Cosine Threshold Querying with Optimality Guarantees

that if a unit vector s is found below position b (i.e. s does not appear above b), then s is
NOT θ-similar to q. We formulate this as follows.

I Definition 5 (Completeness). Given a query q with threshold θ, a position vector b on
index {Li}1≤i≤d is complete iff for every unit vector s, s < L[b] implies s ·q < θ. A stopping
condition ϕ(·) is complete iff for every b, ϕ(b) = True implies that b is complete.

The second requirement of the stopping condition is tightness. It is desirable that the
algorithm terminates immediately once the candidate set C contains a complete set of
candidates, such that no additional unnecessary access is made. This can reduce not only
the number of index accesses but also the candidate set size, which in turn reduces the
verification cost. Formally,

I Definition 6 (Tightness). A stopping condition ϕ(·) is tight iff for every complete position
vector b, ϕ(b) = True.

It is desirable that a stopping condition be both complete and tight. However, as we
shown in Appendix C of the full version, the baseline stopping condition ϕBL =

(
q ·L[b] < θ

)
is complete but not tight as it does not capture the unit vector constraint to terminate as
soon as no unseen unit vector can satisfy s ·q ≥ θ. Next, we present a new stopping condition
that is both complete and tight.

To guarantee tightness, one can check at every snapshot during the traversal whether the
current position vector b is complete and stop once the condition is true. However, directly
testing the completeness is impractical since it is equivalent to testing whether there exists a
real vector s = (s1, . . . , sd) that satisfies the following following set of quadratic constraints:

(a)
d∑

i=1
si · qi ≥ θ, (b) si ≤ Li[bi], ∀ i ∈ [d], and (c)

d∑
i=1

s2
i = 1. (1)

We denote by C(b) (or simply C) the set of Rd points defined by the above constraints. The
set C(b) is infeasible (i.e. there is no satisfying s) if and only if b is complete, but directly
testing the feasibility of C(b) requires an expensive call to a quadratic programming solver.
Depending on the implementation, the running time can be exponential or of high-degree
polynomial [10]. We address this challenge by deriving an equivalently strong stopping
condition that guarantees tightness and is efficiently testable:

I Theorem 7. Let τ be the solution of the equation
∑d

i=1 min{qi · τ, Li[bi]}2 = 1 and

MS(L[b]) =
d∑

i=1
min{qi · τ, Li[bi]} · qi (2)

called the max-similarity. The stopping condition ϕTC(b) = (MS(L[b]) < θ) is tight and
complete.

Proof. The tight and complete stopping condition is obtained by applying the Karush-Kuhn-
Tucker (KKT) conditions [23] for solving nonlinear programs. We first formulate the set of
constraints in (1) as an optimization problem over s:

maximize
d∑

i=1
si · qi subject to

d∑
i=1

s2
i = 1 and si ≤ Li[bi], ∀i ∈ [d] (3)

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:9

So checking whether C is feasible is equivalent to verifying whether the maximal
∑d

i=1 si ·qi is
at least θ. So it is sufficient to show that

∑d
i=1 si ·qi is maximized when si = min{qi ·τ, Li[bi]}

as specified above.
The KKT conditions of the above maximization problem specify a set of necessary

conditions that the optimal s needs to satisfy. More precisely, let

L(s, µ, λ) =
d∑

i=1
siqi −

d∑
i=1

µi(Li[bi]− si)− λ
(

d∑
i=1

s2
i − 1

)

be the Lagrangian of (3) where λ ∈ R and µ ∈ Rd are the Lagrange multipliers. Then,

I Lemma 8 (derived from KKT). The optimal s in (3) satisfies the following conditions:

∇sL(s, µ, λ) = 0 (Stationarity)
µi ≥ 0, ∀ i ∈ [d] (Dual feasibility)
µi(Li[bi]− si) = 0, ∀ i ∈ [d] (Complementary slackness)

in addition to the constraints in (3) (called the Primal feasibility conditions).

By the Complementary slackness condition, for every i, if µi 6= 0 then si = Li[bi]. If µi = 0,
then from the Stationarity condition, we know that for every i, qi + µi − 2λ · si = 0 so
si = qi/2λ. Thus, the value of si is either Li[bi] or qi/2λ.

If Li[bi] < qi/2λ then since si ≤ Li[bi], the only possible case is si = Li[bi]. For
the remaining dimensions, the objective function

∑d
i=1 si · qi is maximized when each si is

proportional to qi, so si = qi/2λ. Combining these two cases, we have si = min{qi/2λ, Li[bi]}.
Thus, for the λ that satisfies

∑d
i=1 min{qi/2λ, Li[bi]}2 = 1, the objective function

∑d
i=1 si ·

qi is maximized when si = min{qi/2λ, Li[bi]} for every i. The theorem is obtained by letting
τ = 1/2λ. J

Remark of ϕTC. The tight stopping condition ϕTC computes the vector s below L(b) with
the maximum cosine similarity MS(L[b]) with the query q. At the beginning of the gathering
phase, bi = 0 for every i so MS(L[b]) = 1 as s is not constrained. The cosine score is
maximized when s = q where τ = 1. During the gathering phase, as bi increases, the upper
bound Li[bi] of each si decreases. When Li[bi] < qi for some i, si can no longer be qi. Instead,
si equals Li[bi], the rest of s increases proportional to q and τ increases. During the traversal,
the value of τ monotonically increases and the score s(L[b]) monotonically decreases. This
is because the space for s becomes more constrained by L(b) as the pointers move deeper in
the inverted lists.

Testing the tight and complete condition ϕTC requires solving τ in Theorem (7), for which
a direct application of the bisection method takes O(d) time. We show a novel efficient
algorithm (Appendix D) in the full version of the paper based on incremental maintenance
which takes only O(log d) time for each test of ϕTC.

I Theorem 9. The stopping condition ϕTC(b) can be incrementally computed in O(log d)
time.

4 Near-Optimal Traversal Strategy

Given the inverted lists index and a query, there can be many stopping positions that are
both complete and tight. To optimize the performance, we need a traversal strategy that
reaches one such position as fast as possible. Specifically, the goal is to design a traversal

ICDT 2019

11:10 Cosine Threshold Querying with Optimality Guarantees

strategy T that minimizes |b| =
∑d

i=1 bi where b is the first position vector satisfying the
tight and complete stopping condition if T is followed. Minimizing |b| also reduces the
number of collected candidates, which in turn reduces the cost of the verification phase. We
call |b| the access cost of the strategy T . Formally,

I Definition 10 (Access Cost). Given a traversal strategy T , we denote by {bi}i≥0 the
sequence of position vectors obtained by following T . The access cost of T , denoted by
cost(T), is the minimal k such that ϕTC(bk) = True. Note that cost(T) also equals |bk|.

I Definition 11 (Instance Optimality). Given a database D with inverted lists {Li}1≤i≤d,
a query vector q and a threshold θ, the optimal access cost OPT(D,q, θ) is the minimum∑d

i=1 bi for position vectors b such that ϕTC(b) = True. When it is clear from the context,
we simply denote OPT(D,q, θ) as OPT(θ) or OPT.

At a position b, a traversal strategy makes its decision locally based on what has been
observed in the inverted lists up to that point, so the capability of making globally optimal
decisions is limited. As a result, traversal strategies are often designed as simple heuristics,
such as the lockstep strategy in the baseline approach. The lockstep strategy has a d · OPT
near-optimal bound which is loose in the high-dimensionality setting.

In this section, we present a traversal strategy for cosine threshold queries with tighter
near-optimal bound by taking into account that the index values are skewed in many realistic
scenarios. We approach the (near-)optimal traversal strategy in two steps.

First, we consider the simplified case with the unit-vector constraint ignored so that
the problem is reduced to inner product queries. We propose a general traversal strategy
that relies on convex hulls pre-computed from the inverted lists during indexing. During
the gathering phase, these convex hulls are accessed as auxiliary data during the traversal
to provide information on the increase/decrease rate towards the stopping condition. The
hull-based traversal strategy not only makes fast decisions (in O(log d) time) but is near-
optimal (Corollary 18) under a reasonable assumption. In particular, we show that if the
distance between any two consecutive convex hull vertices of the inverted lists is bounded by
a constant c, the access cost of the strategy is at most OPT + c. Experiments on real data
show that this constant is small in practice.

The hull-based traversal strategy is quite general, as it applies to a large class of functions
beyond inner product called the decomposable functions, which have the form

∑d
i=1 fi(si)

where each fi is a non-decreasing real function of a single dimension si. Obviously, for a
fixed query q, the inner product q · s is a special case of decomposable functions, where each
fi(si) = qi · si. We show that the near-optimality result for inner product queries can be
generalized to any decomposable function (Theorem 16).

Next, in Section 4.4, we consider the cosine queries by taking the normalization constraint
into account. Although the function MS(·) used in the tight stopping condition ϕTC is not
decomposable so the same technique cannot be directly applied, we show that the hull-based
strategy can be adapted by approximating MS(·) with a decomposable function. In addition,
we show that with a properly chosen approximation, the hull-based strategy is near-optimal
with a small adjustment to the input threshold θ, meaning that the access cost is bounded
by OPT(θ − ε) + c for a small ε (Theorem 20). Under the same experimental setting, we
verify that ε is indeed small in practice.

4.1 Decomposable Functions
We start with defining the decomposable functions for which the hull-based traversal strategies
can be applied:

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:11

I Definition 12 (Decomposable Function). A decomposable function F (s) is a d-dimensional
real function where F (s) =

∑d
i=1 fi(si) and each fi is a non-decreasing real function.

Given a decomposable function F , the corresponding stopping condition is called a
decomposable condition, which we define next.

IDefinition 13 (Decomposable Condition). A decomposable condition ϕF is a boolean function
ϕF (b) =

(
F (L[b]) < θ

)
where F is a decomposable function and θ is a fixed threshold.

When the unit vector constraint is lifted, the decomposable condition is tight and complete
for any scoring function F and threshold θ. As a result, the goal of designing a traversal
strategy for F is to have the access cost as close as possible to OPT when the stopping
condition is ϕF .

4.2 The max-reduction traversal strategy

To illustrate the high-level idea of the hull-based approach, we start with a simple greedy
traversal strategy called the Max-Reduction traversal strategy TMR(·). The strategy works
as follows: at each snapshot, move the pointer bi on the inverted list Li that results in the
maximal reduction on the score F (L[b]). Formally, we define

TMR(b) = argmax
1≤i≤d

(F (L[b])− F (L[b + 1i])) = argmax
1≤i≤d

(fi(Li[bi])− fi(Li[bi + 1]))

where 1i is the vector with 1 at dimension i and 0’s else where. Such a strategy is reasonable
since one would like F (L[b]) to drop as fast as possible, so that once it is below θ, the
stopping condition ϕF will be triggered and terminate the traversal.

It is obvious that there are instances where the max-reduction strategy can be far from
optimal, but is it possible that it is optimal under some assumption? The answer is positive:
if for every list Li, the values of fi(Li[bi]) are decreasing at decelerating rate, then we can
prove that its access cost is optimal. We state this ideal assumption next.

I Assumption 1 (Ideal Convexity). For every inverted list Li, let ∆i[j] = fi(Li[j])−fi(Li[j+
1]) for 0 ≤ j < |Li|.6 The list Li is ideally convex if the sequence ∆i is non-increasing, i.e.,
∆i[j + 1] ≤ ∆i[j] for every j. Equivalently, the piecewise linear function passing through the
points {(j, fi(Li[j]))}0≤j≤|Li| is convex for each i. A database D is ideally convex if every
Li is ideally convex.

An example of an inverted list satisfying the above assumption is shown in Figure 2(a).
The max-reduction strategy TMR is optimal under the ideal convexity assumption:

I Theorem 14 (Ideal Optimality). Given a decomposable function F , for every ideally convex
database D and every threshold θ, the access cost of TMR is exactly OPT.

We prove Theorem 14 with a simple greedy argument (see Appendix F for more details):
each move of TMR always results in the globally maximal reduction in the scoring function as
guaranteed by the convexity condition.

6 Recall that Li[0] = 1.

ICDT 2019

11:12 Cosine Threshold Querying with Optimality Guarantees

fi (Li[j])

O j

(a) Convex (b) Near-convex

jO

fi (Li[j])

(c) Constructing Li[j]
~

jO

Li[j]
~

Figure 2 Convexity and near-convexity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

L
[i

]

i

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

L
[i

]

i

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

L
[i

]

i

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

L
[i

]

i

(a) list L0 (b) list L1 (c) list L2 (d) list L3

Figure 3 The skewed inverted lists in mass spectrometry.

4.3 The hull-based traversal strategy
Theorem 14 provides a strong performance guarantee but the ideal convexity assumption
is usually not true on real datasets. Without the ideal convexity assumption, the strategy
suffers from the drawback of making locally optimal but globally suboptimal decisions. The
pointer bi to an inverted list Li might never be moved if choosing the current bi only results
in a small decrease in the score F (L[b]), but there is a much larger decrease several steps
ahead. As a result, the TMR strategy has no performance guarantee in general.

In most practical scenarios that we have seen, we can bring the traversal strategy TMR
to practicality by considering a relaxed version of Assumption 1. Informally, instead of
assuming that each list fi(Li) forms a convex piecewise linear function, we assume that
fi(Li) is “mostly” convex, meaning that if we compute the lower convex hull [14] of fi(Li),
the gap between any two consecutive vertices on the convex hull is small.7 Intuitively, the
relaxed assumption implies that the values at each list are decreasing at “approximately”
decelerating speed. It allows list segments that do not follow the overall deceleration trend,
as long as their lengths are bounded by a constant. We verified this property in the mass
spectrometry dataset as illustrated in Figure 3, a document dataset, and an image dataset
(see Appendix I of the full version for details).

I Assumption 2 (Near-Convexity). For every inverted list Li, let Hi be the lower convex hull of
the set of 2-D points {(j, fi(Li[j]))}0≤j≤|Li| represented by a set of indices Hi = {j1, . . . , jn}
where for each 1 ≤ k ≤ n, (jk, fi(Li[jk])) is a vertex of the convex hull. The list Li is
near-convex if for every k, jk+1 − jk is upper-bounded by some constant c. A database D is
near-convex if every inverted list Li is near-convex with the same constant c, which we refer
to as the convexity constant.

I Example 15. Intuitively, the near-convexity assumption captures the case where each
fi(Li) is decreasing with approximately decelerating speed, so the number of points between
two convex hull vertices should be small. For example, when fi is a linear function, the list
Li shown in Figure 2(b) is near-convex with convexity constant 2 since there is at most 1
point between each pair of consecutive vertices of the convex hull (dotted line). In the ideal
case shown in Figure 2(a), the constant is 1 when the decrease between successive values is
strictly decelerating.

7 We denote by fi(Li) the list [fi(Li[0]), fi(Li[1]), . . .] for every Li.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:13

Imitating the max-reduction strategy, for every pair of consecutive indices jk, jk+1 in

Hi and for every index j ∈ [jk, jk+1), let ∆̃i[j] = fi(Li[jk])− fi(Li[jk+1])
jk+1 − jk

. Since the

(jk, fi(Li[jk]))’s are vertices of a lower convex hull, each sequence ∆̃i is non-decreasing. Then
the hull-based traversal strategy is simply defined as

THL(b) = argmax
1≤i≤d

(∆̃i[bi]). (4)

Remark on data structures. In a practical implementation, to answer queries with scoring
function F using the hull-based strategy, the lower convex hulls need to be ready before
the traversal starts. If F is a general function unknown a priori, the convex hulls need
to be computed online which is not practical. Fortunately, when F is the inner product
F (s) = q · s parameterized by the query q, each convex hull Hi is exactly the convex hull
for the points {(j, Li[j])}0≤i≤|Li| from Li. This is because the slope from any two points

(j, fi(Li[j])) and (k, fi(Li[k])) is qiLi[j]− qiLi[k]
j − k

, which is exactly the slope from (j, Li[j])

and (k, Li[k]) multiplied by qi. So by using the standard convex hull algorithm [14], Hi can
be pre-computed in O(|Li|) time. Then the set of the convex hull vertices Hi can be stored
as inverted lists and accessed for computing the ∆̃i’s during query processing. In the ideal
case, Hi can be as large as |Li| but is much smaller in practice.

Moreover, during the traversal using the strategy THL, choosing the maximum ∆̃i[bi] at
each step can be done in O(log d) time using a max heap. This satisfies the requirement that
the traversal strategy is efficiently computable.

Near-optimality results. We show that the hull-based strategy THL is near-optimal under
the near-convexity assumption.

I Theorem 16. Given a decomposable function F , for every near-convex database D and
every threshold θ, the access cost of THL is strictly less than OPT + c where c is the convexity
constant.

When the assumption holds with a small convexity constant, this near-optimality result
provides a much tighter bound compared to the d · OPT bound in the TA-inspired baseline.
This is achieved under data assumption and by keeping the convex hulls as auxiliary data
structure, so it does not contradict the lower bound results on the approximation ratio [16].

Proof. Let B = {bi}i≥0 be the sequence of position vectors generated by THL. We call a
position vector b a boundary position if every bi is the index of a vertex of the convex hull
Hi. Namely, bi ∈ Hi for every i ∈ [d]. Notice that if we break ties consistently during the
traversal of THL, then in between every pair of consecutive boundary positions b and b′ in
B, THL(b) will always be the same index. We call the subsequence positions {bi}l≤i<r of
B where bl = b and br = b′ a segment with boundaries (bl,br). We show the following
lemma.

I Lemma 17. For every boundary position vector b generated by THL, we have F (L[b]) ≤
F (L[b∗]) for every position vector b∗ where |b∗| = |b|.

Intuitively, the above lemma says that if the traversal of THL reaches a boundary position b,
then the score F (L[b]) is the minimal possible score obtained by any traversal sequence of
at most |b| steps. We prove Lemma 17 by generalizing the greedy argument in the proof of
Theorem 14. More details can be found in Appendix G of the full version.

ICDT 2019

11:14 Cosine Threshold Querying with Optimality Guarantees

...L1 L2 L3 Ld

bl

br

bOPT

Figure 4 (bl, br): the two boundary positions surrounding the stopping position bstop of THL;
bOPT: the optimal stopping position; It is guaranteed that (1) |bstop| − |bl| < |br| − |bl| ≤ c and (2)
|bl| < |bOPT|.

Lemma 17 is sufficient for Theorem 16 because of the following. Suppose bstop is the
stopping position in B, which means that bstop is the first position in B that satisfies ϕF and
the access cost is |bstop|. Let {bi}l≤i<r be the segment that contains bstop. Given Lemma 17,
Theorem 16 holds trivially if bstop = bl. It remains to consider the case bstop 6= bl. Since the
traversal does not stop at bl, we have F (L[bl]) ≥ θ. By Lemma 17, bl is the position with
minimal F (L[·]) obtained in |bl| steps so |bl| ≤ OPT. Since |bstop| − |bl| < |br| − |bl| ≤ c,
we have that |bstop| < OPT + c. We illustrate this in Figure 4. J

Since the baseline stopping condition ϕBL is tight and complete for inner product queries,
one immediate implication of Theorem 16 is that

I Corollary 18 (Informal). The hull-based strategy THL for inner product queries is near-
optimal.

Verifying the assumption. We demonstrate the practical impact of the near-optimality
result in real mass spectrometry datasets. The same experiment is repeated on a document
and an image dataset (see Appendix I of the full version). The near-convexity assumption
requires that the gap between any two consecutive convex hull vertices has bounded size,
which is hard to achieve in general. According to the proof of Theorem 16, for a given query,
the difference from the optimal access cost is at most the size of the gap between the two
consecutive convex hull vertices containing the last move of the strategy (the bl and br in
Figure 4). The size of this gap can be much smaller than the global convexity constant c, so
the overall precision can be much better in practice. We verify this by running a set of 1,000
real queries on the dataset8. The gap size is 163.04 in average, which takes only 1.3% of the
overall access cost of traversing the indices. This indicates that the near-optimality guarantee
holds in the mass spectrometry dataset. Similar results are obtained in a document and
an image dataset, where the gap size takes only 7.9% and 0.4% of the overall access cost
respectively.

4.4 The traversal strategy for cosine
Next, we consider traversal strategies which take into account the unit vector constraint
posed by the cosine function, which means that the tight and complete stopping condition
is ϕTC introduced in Section 3. However, since the scoring function MS in ϕTC is not
decomposable, the hull-based technique cannot be directly applied. We adapt the technique
by approximating the original MS with a decomposable function F̃ . Without changing the

8 https://proteomics2.ucsd.edu/ProteoSAFe/index.jsp

https://proteomics2.ucsd.edu/ProteoSAFe/index.jsp

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:15

stopping condition ϕTC, the hull-based strategy can then be applied with the convex hull
indices constructed with the approximation F̃ . In the rest of this section, we first generalize
the result in Theorem 16 to scoring functions having decomposable approximations and show
how the hull-based traversal strategy can be adapted. Next, we show a natural choice of the
approximation for MS with practically tight near-optimal bounds. Finally, we discuss data
structures to support fast query processing using the traversal strategy.

We start with some additional definitions.

I Definition 19. A d-dimensional function F is decomposably approximable if there exists a
decomposable function F̃ , called the decomposable approximation of F , and two non-negative
constants ε1 and ε2 such that F̃ (s)− F (s) ∈ [−ε1, ε2] for every vector s.

When applied to a decomposably approximable function F , the hull-based traversal
strategy THL is adapted by constructing the convex hull indices and the {∆̃i}1≤i≤d using the
approximation F̃ . The following can be obtained by generalizing Theorem 16:

I Theorem 20. Given a function F approximable by a decomposable function F̃ with
constants (ε1, ε2), for every near-convex database D wrt F̃ and every threshold θ, the access
cost of THL is strictly less than OPT(θ − ε1 − ε2) + c where c is the convexity constant.

Proof. Recall that bl is the last boundary position generated by THL that does not satisfy the
tight stopping condition for F (which is ϕTC when F is MS) so F (L[bl]) ≥ θ. It is sufficient
to show that for every vector b∗ where |b∗| = |bl|, F (L[b∗]) ≥ θ − ε1 − ε2 so no traversal
can stop within |bl| steps, implying that the final access cost is no more than |bl|+ c which
is bounded by OPT(θ − ε1 − ε2) + c.

By Lemma 17, we know that for every such b∗, F̃ (L[b∗]) ≥ F̃ (L[bl]). By definition of
the approximation F̃ , we know that F (L[b∗]) ≥ F̃ (L[b∗])− ε1 and F̃ (L[bl]) ≥ F (L[bl])− ε2.
Combined together, for every b∗ where |b∗| = |bl|, we have

F (L[b∗]) ≥ F̃ (L[b∗])− ε1 ≥ F̃ (L[bl])− ε1 ≥ F (L[bl])− ε1 − ε2 ≥ θ − ε1 − ε2.

This completes the proof of Theorem 20. J

Choosing the decomposable approximation. By Theorem 20, it is important to choose an
approximation F̃ of MS with small ε1 and ε2 for a tight near-optimality result. By inspecting
the formula (2) of MS, one reasonable choice of F̃ can be obtained by replacing the term τ

with a fixed constant τ̃ . Formally, let

F̃ (L[b]) =
d∑

i=1
min{qi · τ̃ , Li[bi]} · qi (5)

be the decomposable approximation of MS where each component is a non-decreasing function
fi(x) = min{qi · τ̃ , x} · qi for i ∈ [d].

Ideally, the approximation is tight if the constant τ̃ is close to the final value of τ which is
unknown in advance. We argue that when τ̃ is properly chosen, the approximation parameter
ε1 + ε2 is very small. With a detailed analysis in Appendix H, we obtain the following upper
bound of ε:

ε ≤ max{0, τ̃ − 1/MS(L[bl])}+ MS(L[bl])− F̃ (L[bl]). (6)

ICDT 2019

11:16 Cosine Threshold Querying with Optimality Guarantees

=0.6 =0.7 =0.8 =0.9
0

200

400

600

800
#

Q
ue

ri
es

Range of :
[0, 0.04)
[0.04, 0.08)
[0.08, 0.12)
[0.12, 0.16)
>= 0.16

Figure 5 The distribution of ε.
jO

Li[j]

qi ∙ 𝜏
~

jO

Li[j]

qi ∙ 𝜏
~

Figure 6 The construction of convex hull H̃i.

Verifying the near-optimality. Next, we verify that the above upper bound of ε is small in
practice. We ran the same set of queries as in Section 4.3 and show the distribution of ε’s
upper bounds in Figure 5. We set τ̃ = 1/θ for all queries so the first term of (6) becomes zero.
Note that more aggressive pruning can yield better ε, but it is not done here for simplicity.
Overall, the fraction of queries with an upper bound <0.12 (the sum of the first 3 bars for
all θ) is 82.5% and the fraction of queries with ε > 0.16 is 0.5%. Similar to the case with
inner product queries, the average of the convexity constant c is 193.39, which is only 4.8%
of the overall access cost.

Remark on data structures. Similar to the inner product case, it is necessary that the
convex hulls for THL can be efficiently obtained without a full computation when a query
comes in. For every i ∈ [d], we let H̃i be the convex hull for the i-th component fi of F̃
and Hi be the convex hull constructed directly from the original inverted list Li. Next, we
show that each H̃i can be efficiently obtained from Hi during query time so we only need to
pre-compute the Hi’s.

We observe that when Li[bi] ≥ qi · τ̃ , fi(Li[bi]) equals a fixed value q2
i · τ̃ otherwise is

proportional to Li[bi]. As illustrated in Figure 6 (left), the list of values {fi(Li[j])}j≥0 is
essentially obtained by replacing the Li[j]’s greater than qi · τ̃ with qi · τ̃ .

The following can be shown using properties of convex hulls:

I Lemma 21. For every i ∈ [d], the convex hull H̃i is a subset of Hi where an index jk of
Hi is in H̃i iff k = 1 or(

qi · τ̃ − Li[jk]
)
/ jk ≥

(
Li[jk]− Li[jk+1]

)
/ (jk+1 − jk). (7)

Lemma 21 provides an efficient way to obtain each convex hull H̃i from the pre-computed
Hi’s. When a query q is given, we perform a binary search on each Hi to find the first
jk ∈ Hi that satisfies (7). Then H̃i is the set of indices {0, jk, jk+1 . . . }. We illustrate the
construction in Figure 6 (right).

Suppose that the maximum size of all Hi is h. The computation of the H̃i’s adds an extra
O(d log h) of overhead to the query processing time, which is insignificant in practice since h
is likely to be much smaller than the size of the database.

5 Related work

In this section, we present the main related work and defer the additional related work
(e.g., dimensionality reduction, mass spectrometry search, inner product queries) to the full
version.

5.1 Cosine similarity search
The cosine threshold querying studied in this work is a special case of the cosine similarity
search (CSS) problem [7, 3, 4] mentioned in Section 1. We first survey the techniques
developed for CSS.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:17

LSH. A widely used technique for cosine similarity search is locality-sensitive hash (LSH) [27,
5, 20, 22, 30]. The main idea of LSH is to partition the whole database into buckets using a
series of hash functions such that similar vectors have high probability to be in the same
bucket. However, LSH is designed for approximate query processing, meaning that it is
not guaranteed to return all the true results. In contrast, this work focuses on exact query
processing which returns all the results.

TA-family algorithms. Another technique for cosine similarity search is the family of TA-like
algorithms. Those algorithms were originally designed for processing top-k ranking queries
that find the top k objects ranked according to an aggregation function (see [21] for a survey).
We have summarized the classic TA algorithm [16], presented a baseline algorithm inspired
by it, and explained its shortcomings in Section 1. The Gathering-Verification framework
introduced in Section 2 captures the typical structure of the TA-family when applied to our
setting.

The variants of TA (e.g., [18, 6, 15, 12]) can have poor or no performance guarantee for
cosine threshold queries since they do not fully leverage the data skewness and the unit vector
condition. For example, Güntzer et al. developed Quick-Combine [18]. Instead of accessing all
the lists in a lockstep strategy, it relies on a heuristic traversal strategy to access the list with
the highest rate of changes to the ranking function in a fixed number of steps ahead. It was
shown in [17] that the algorithm is not instance optimal. Although the hull-based traversal
strategy proposed in this paper roughly follows the same idea, the number of steps to look
ahead is variable and determined by the next convex hull vertex. Thus, for decomposable
functions, the hull-based strategy makes globally optimal decisions and is near-optimal under
the near-convexity assumption, while Quick-Combine has no performance guarantee because
of the fixed step size even when the data is near-convex.

COORD. Teflioudi et al. proposed the COORD algorithm based on inverted lists for
CSS [32, 31]. The main idea is to scan the whole lists but with an optimization to prune
irrelevant entries using upper/lower bounds of the cosine similarity with the query. Thus,
instead of traversing the whole lists starting from the top, it scans only those entries within
a feasible range. We can also apply such a pruning strategy to the Gathering-Verification
framework by starting the gathering phase at the top of the feasible range. However, there
is no optimality guarantee of the algorithm. Also the optimization only works for high
thresholds (e.g., 0.95), which are not always the requirement. For example, a common and
well-accepted threshold in mass spectrometry search is 0.6, which is a medium-sized threshold,
making the effect of the pruning negligible.

Partial verification. Anastasiu and Karypis proposed a technique for fast verification of
θ-similarity between two vectors [3] without a full scan of the two vectors. We can apply
the same optimization to the verification phase of the Gathering-Verification framework.
Additionally, we prove that it has a novel near-constant performance guarantee in the presence
of data skewness.

Other variants. There are several studies focusing on cosine similarity join to find out all
pairs of vectors from the database such that their similarity exceeds a given threshold [7, 3, 4].
However, this work is different since the focus is comparing to a given query vector q rather
than join. As a result, the techniques in [7, 3, 4] are not directly applicable: (1) The inverted
index is built online instead of offline, meaning that at least one full scan of the whole data

ICDT 2019

11:18 Cosine Threshold Querying with Optimality Guarantees

is required, which is inefficient for search. (2) The index in [7, 3, 4] is built for a fixed query
threshold, meaning that the index cannot be used for answering arbitrary query thresholds
as concerned in this work. The theoretical aspects of similarity join were discussed recently
in [2, 20].

5.2 Euclidean distance threshold queries
The cosine threshold queries can also be answered by techniques for distance threshold queries
(the threshold variant of nearest neighbor search) in Euclidean space. This is because there
is a one-to-one mapping between the cosine similarity θ and the Euclidean distance r for
unit vectors, i.e., r = 2 sin(arccos(θ)/2). Thus, finding vectors that are θ-similar to a query
vector is equivalent to finding the vectors whose Euclidean distance is within r. Next, we
review exact approaches for distance queries while leaving the discussion of approximate
approaches in the full version.

Tree-based indexing. Several tree-based indexing techniques (such as R-tree, KD-tree,
Cover-tree [8]) were developed for range queries (so they can also be applied to distance
queries), see [9] for a survey. However, they are not scalable to high dimensions (say thousands
of dimensions as studied in this work) due to the well known dimensionality curse issue [34].

Pivot-based indexing. The main idea is to pre-compute the distances between data vectors
and a set of selected pivot vectors. Then during query processing, use triangle inequalities to
prune irrelevant vectors [13, 19]. However, it does not scale in high-dimensional space as
shown in [13] since it requires a large space to store the pre-computed distances.

Clustering-based (or partitioning-based) methods. The main idea of clustering is to
partition the database vectors into smaller clusters of vectors during indexing. Then during
query processing, irrelevant clusters are pruned via the triangle inequality [29, 28]. Clustering
is an optimization orthogonal to the proposed techniques, as they can be used to process
vectors within each cluster to speed up the overall performance.

6 Conclusion

In this work, we proposed optimizations to the index-based, TA-like algorithms for answering
the cosine threshold queries, which lie at the core of numerous applications. The novel
techniques include a complete and tight stopping condition computable incrementally in
O(log d) time and a family of convex hull-based traversal strategies with near-optimality
guarantees for a larger class of decomposable functions beyond cosine. With these techniques,
we show near-optimality first for inner-product threshold queries, then extend the result to the
full cosine threshold queries using approximation. These results are significant improvements
over a baseline approach inspired by the classic TA algorithm. In addition, we have verified
with experiments on real data the assumptions required by the near-optimality results.

References
1 Ruedi Aebersold and Matthias Mann. Mass-spectrometric exploration of proteome structure

and function. Nature, 537:347–355, 2016.
2 Thomas Dybdahl Ahle, Rasmus Pagh, Ilya Razenshteyn, and Francesco Silvestri. On the

Complexity of Inner Product Similarity Join. In PODS, pages 151–164, 2016.

Y. Li, J. Wang, B. Pullman, N. Bandeira, and Y. Papakonstantinou 11:19

3 David C. Anastasiu and George Karypis. L2AP: Fast cosine similarity search with prefix L-2
norm bounds. In ICDE, pages 784–795, 2014.

4 David C. Anastasiu and George Karypis. PL2AP: Fast parallel cosine similarity search. In
IA3, pages 8:1–8:8, 2015.

5 Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and Optimal LSH for Angular Distance. In NIPS, pages 1225–1233, 2015.

6 Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and Gerhard Weikum.
IO-Top-k: Index-access Optimized Top-k Query Processing. In VLDB, pages 475–486, 2006.

7 Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling Up All Pairs Similarity
Search. In WWW, pages 131–140, 2007.

8 Alina Beygelzimer, Sham Kakade, and John Langford. Cover Trees for Nearest Neighbor. In
ICML, pages 97–104, 2006.

9 Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in High-dimensional
Spaces: Index Structures for Improving the Performance of Multimedia Databases. CSUR,
33(3):322–373, 2001.

10 Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

11 Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. Efficient
Query Evaluation Using a Two-level Retrieval Process. In CIKM, pages 426–434, 2003.

12 Nicolas Bruno, Luis Gravano, and Amélie Marian. Evaluating top-k queries over Web-accessible
databases. In ICDE, pages 369–380, 2002.

13 Lu Chen, Yunjun Gao, Baihua Zheng, Christian S. Jensen, Hanyu Yang, and Keyu Yang.
Pivot-based Metric Indexing. PVLDB, 10(10):1058–1069, 2017.

14 Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. Computational
Geometry: Introduction. Springer, 2008.

15 Prasad M Deshpande, Deepak P, and Krishna Kummamuru. Efficient Online top-K Retrieval
with Arbitrary Similarity Measures. In EDBT, pages 356–367, 2008.

16 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Algorithms for Middleware.
In PODS, pages 102–113, 2001.

17 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for middleware.
JCSS, 66(4):614–656, 2003.

18 Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kiebling. Optimizing Multi-Feature Queries for
Image Databases. In VLDB, pages 419–428, 2000.

19 Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. PREFER: A system for the
efficient execution of multi-parametric ranked queries. In SIGMOD, pages 259–270, 2001.

20 Xiao Hu, Yufei Tao, and Ke Yi. Output-optimal Parallel Algorithms for Similarity Joins. In
PODS, pages 79–90, 2017.

21 Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A Survey of Top-k Query Processing
Techniques in Relational Database Systems. CSUR, 40(4):1–58, 2008.

22 Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In ICDT, pages 604–613, 1998.

23 Harold W Kuhn and Albert W Tucker. Nonlinear programming. In Traces and Emergence of
Nonlinear Programming, pages 247–258. Springer, 2014.

24 B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In
ICCV, pages 2130–2137, 2009.

25 Henry Lam, Eric W. Deutsch, James S. Eddes, Jimmy K. Eng, Nichole King, Stephen E. Stein,
and Ruedi Aebersold. Development and validation of a spectral library searching method for
peptide identification from MS/MS. Proteomics, 7(5), 2007.

26 Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. FEXIPRO: Fast and Exact
Inner Product Retrieval in Recommender Systems. In SIGMOD, pages 835–850, 2017.

27 Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge
University Press, 2011.

ICDT 2019

11:20 Cosine Threshold Querying with Optimality Guarantees

28 Sharadh Ramaswamy and Kenneth Rose. Adaptive Cluster Distance Bounding for High-
Dimensional Indexing. TKDE, 23(6):815–830, 2011.

29 Hanan Samet. Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc., 2005.

30 Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and Efficiency in High Dimensional
Nearest Neighbor Search. In SIGMOD, pages 563–576, 2009.

31 Christina Teflioudi and Rainer Gemulla. Exact and Approximate Maximum Inner Product
Search with LEMP. TODS, 42(1):5:1–5:49, 2016.

32 Christina Teflioudi, Rainer Gemulla, and Olga Mykytiuk. LEMP: Fast Retrieval of Large
Entries in a Matrix Product. In SIGMOD, pages 107–122, 2015.

33 Mingxun Wang and Nuno Bandeira. Spectral Library Generating Function for Assessing
Spectrum-Spectrum Match Significance. Journal of Proteome Research, 12(9):3944–3951, 2013.

34 Roger Weber, Hans-Jörg Schek, and Stephen Blott. A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. In VLDB, pages 194–205,
1998.

An Experimental Study of the Treewidth of
Real-World Graph Data
Silviu Maniu
LRI, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
silviu.maniu@lri.fr

Pierre Senellart
DI ENS, ENS, CNRS, PSL University, Paris, France
Inria Paris, France
LTCI, Télécom ParisTech, Paris, France
pierre@senellart.com

Suraj Jog
University of Illinois at Urbana–Champaign, Urbana-Champaign, USA
sjog2@illinois.edu

Abstract
Treewidth is a parameter that measures how tree-like a relational instance is, and whether it can
reasonably be decomposed into a tree. Many computation tasks are known to be tractable on
databases of small treewidth, but computing the treewidth of a given instance is intractable. This
article is the first large-scale experimental study of treewidth and tree decompositions of real-world
database instances (25 datasets from 8 different domains, with sizes ranging from a few thousand to
a few million vertices). The goal is to determine which data, if any, can benefit of the wealth of
algorithms for databases of small treewidth. For each dataset, we obtain upper and lower bound
estimations of their treewidth, and study the properties of their tree decompositions. We show in
particular that, even when treewidth is high, using partial tree decompositions can result in data
structures that can assist algorithms.

2012 ACM Subject Classification Theory of computation → Logic and databases

Keywords and phrases Treewidth, Graph decompositions, Experiments, Query processing

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.12

Related Version An extended version of this paper is available at http://arxiv.org/abs/1901.
06862.

Acknowledgements We are grateful to Antoine Amarilli and Mikaël Monet for feedback on parts of
this paper.

1 Introduction and Related Work

A number of data management tasks related to query evaluation are computationally
intractable when rich query languages or complex tasks are involved, even when the query is
assumed to be fixed (that is, when we consider data complexity [60]). For example:

query evaluation of Boolean monadic second-order (MSO) queries is hard for every level
of the polynomial hierarchy [4];
unless P = NP, there is no polynomial-time enumeration or counting algorithm for
first-order (FO) queries with free second-order variables [57, 29];
computing the probability of conjunctive queries (CQs) over tuple-independent databases,
a very simple model of probabilistic databases, is #P-hard [25];

© Silviu Maniu, Pierre Senellart, and Suraj Jog;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:silviu.maniu@lri.fr
mailto:pierre@senellart.com
mailto:sjog2@illinois.edu
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
http://arxiv.org/abs/1901.06862
http://arxiv.org/abs/1901.06862
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 An Experimental Study of the Treewidth of Real-World Graph Data

unless P = NP, there is no polynomial-time algorithm to construct a deterministic
decomposable negation normal form (d-DNNF) representation of the Boolean provenance
of some CQ [25, 40]; furthermore, there is no polynomial bound on the size of a structured
d-DNNF representation of the Boolean provenance of unions of conjunctive queries with
disequalities [11, Theorem 33].

Other problems yield complexity classes usually considered tractable, such as AC0 for
Boolean FO query evaluation [1], but may still result in impractical running times on large
database instances.

To face this intractability and practical inefficiency, one possible approach has been to
determine conditions on the structure of databases that ensure tractability, often through a
series of algorithmic meta-theorems [44]. This has led, for instance, to the introduction of the
notions of locally tree-decomposable structures for near-linear-time evaluation of Boolean FO
queries [33], or to that of structures of bounded expansion for constant-delay enumeration of
FO queries [41].

Treewidth. A particularly simple and widely used way to restrict database instances that
ensures a wide class of tractability results is to bound the treewidth of the instance (this is
actually a special case of both notions of locally tree-decomposable and bounded expansion).
Treewidth [56] is a graph-theoretic parameter that characterizes how tree-like a graph, or
more generally a relational instance, is, and hence whether it can be reasonably transformed
into a tree structure (a tree decomposition). Indeed:

query evaluation of MSO queries is linear-time over bounded-treewidth structures [24, 32];
counting [13] and enumeration [14, 7] of MSO queries on bounded-treewidth structures is
linear-time;
computing the probability of MSO queries over a bounded-treewidth tuple-independent
database is linear-time assuming constant-time rational arithmetic [8];
a linear-sized structured d-DNNF representation of the provenance of any MSO query
over bounded-treewidth databases can be computed in linear-time [9, 11].

These results mostly stem from the fact that, on trees, MSO queries can be rewritten to tree
automata [58], though this process is non-elementary in general (which impacts the combined
complexity [60], but not the data complexity). We can see these results as fixed-parameter
tractability, with a complexity in O(f(|Q|, k)× |D|) where |D| is the size of the database, k
its treewidth, |Q| the size of the query, and f some computable function. Note that another
approach for tractability, out of the scope of this paper, is to restrict the queries instead of
the instances, e.g., by enforcing low treewidth on the queries [37] or on the provenance of
the queries [39].

Such results have been, so far, of mostly theoretical interest – mainly due to the high
complexity of the function f of |Q| and k. However, algorithms that exploit the low treewidth
of instances have been proposed and successfully applied to real-world and synthetic data:
for shortest path queries in graphs [62, 54], distance queries in probabilistic graphs [47],
or ad-hoc queries compiled to tree automata [50]. In other domains, low treewidth is an
indicator for efficient evaluation of quantified Boolean formulas [55].

Sometimes, treewidth even seems to be the sole criterion that may render an intractable
problem tractable, under some technical assumptions: [45] shows that, unless the exponential-
time hypothesis is false, MSO2 query evaluation is intractable over subinstance-closed families
of instances of treewidth strongly unbounded poly-logarithmically; [34, 9] show that MSO query
evaluation is intractable over subinstance-closed families of instances of treewidth that are
densely unbounded poly-logarithmically (a weaker notion); [9] shows that counting MSO query

S. Maniu, P. Senellart, and S. Jog 12:3

results is intractable over subinstance-closed families of instances of unbounded treewidth
that are treewidth-constructible (an even weaker notion, simply requiring large-treewidth
instances to be efficiently constructible, see [9, Definition 4.1]); finally, [8, 9] shows that
one can exhibit FO queries whose probability evaluation is polynomial-time on structures
of bounded treewidth, but #P-hard on any treewidth-constructible family of instances of
unbounded treewidth.

For this reason, and because of the wide variety of problems that become tractable on
bounded-treewidth instances, treewidth is an especially important object of study.

Treewidth of real-world databases. If there is hope for practical applicability of treewidth-
based approaches, one needs to answer the following two questions: Can one efficiently
compute the treewidth of real-world databases? and What is the treewidth of real-world data?
The latter question is the central problem addressed in this paper.

The answer to the former is that, unfortunately, treewidth cannot reliably be computed
efficiently in practice. Indeed, computing the treewidth of a graph is an NP-hard problem [13]
and, in practice, exact computation of treewidth is possible only for very small instances,
with no more than dozens of vertices [18]. An additional theoretical result is that, given
a width w, it is possible to check whether a graph has treewidth w and produce a tree
decomposition of the graph in linear time [17]; however, the large constant terms make this
procedure impractical. Known exact treewidth computation algorithms [18] may be usable
on small graphs, but they are impossible to apply for our purposes. Indeed, in [18], the
largest graph for which algorithms finished running had a mere 40 vertices.

A more realistic approach is to compute estimations of treewidth, i.e., an interval formed
of a lower bound and an upper bound on the treewidth. Upper bound algorithms (surveyed
in [19]) use multiple approaches for estimation, which all output a tree decomposition. One
particularly important class of methods for generating tree decompositions relies on elimina-
tion orderings, that also appear in junction tree algorithms used in belief propagation [46].
For lower bounds (surveyed in [20]), where no decomposition can be obtained, one can
use degree-based or minor-based measures on graphs, which themselves act as proxies for
treewidth.

Some upper bound and lower bound algorithms have been implemented and experimented
with in [59, 19, 12, 20]. However, in all cases these algorithms were evaluated on graphs
that are either very small (of the order of dozens of vertices), as in [59], or on slightly
larger synthetic graphs (with up to 1 000 vertices) generated with exact treewidth values in
mind, as in [19, 20]. The main purpose of these experiments was to evaluate the estimators’
performance. Recently, the PACE challenge has had a track dedicated to the estimation
of treewidth [26]: exact treewidth on relatively small graphs, upper bounds on treewidth
on larger graphs. Local improvements of upper bounds have been also evaluated on small
graphs in [31]. Since all these works aim at comparing estimation algorithms, they do not
investigate the actual treewidth of real-world data.

Another relevant work is [3], which studied the core-periphery structure of social net-
works, by building tree decompositions via node elimination ordering heuristics, but without
establishing any treewidth bounds. In this work, we use the same heuristics to compute
bounds on treewidth.

Finally, there have been some work on analyzing properties of real-world queries. Queries
are usually much smaller than database instances, but it turns out that they are also much
simpler in structure: [53] shows that an astounding 99.99% of conjunctive patterns present
in a SPARQL query log are acyclic, i.e., of treewidth 1. [22] similarly showed that the

ICDT 2019

12:4 An Experimental Study of the Treewidth of Real-World Graph Data

overwhelming majority of graph pattern queries in SPARQL query logs had treewidth 1, less
than 0.003% had treewidth 2, and a single one (out of more than 15 million) had treewidth 3.
We shall see that the situation is much different with the treewidth of database instances.
Note that, in many settings, low-treewidth of queries does not suffice for tractability: in
probabilistic databases, for instance, #P-hardness holds even for acyclic queries [25].

Contributions. In this experimental study, our contributions are twofold.
First, using previously studied algorithms for treewidth estimation, we set out to find

classes of real-world data that may exhibit relatively low values of treewidth, thus identifying
potential cases in which treewidth-based approaches are of practical interest. For this, after
formally defining tree decompositions and treewidth (Section 2), we select the algorithms that
are able to deal with large-scale data instances, for both lower- and upper-bound estimations
(Section 3). Our aim here is not to propose new algorithms for treewidth estimation, and
not to exhaustively evaluate existing treewidth estimation algorithms, but rather to identify
algorithms that can give acceptable treewidth estimation values in reasonable time, in order
to apply them to real-world data. Then, we use these algorithms to obtain lower and upper
bound intervals on treewidth for 25 databases from 8 different domains (Section 4). We
mostly consider graph data, for which the notion of treewidth was initially designed (the
treewidth of an arbitrary relational instance is simply defined as that of its Gaifman graph).
The graphs we consider, all obtained from real-world applications, have between several
thousands and several millions of vertices. To the best of our knowledge, this is the first
comprehensive study of the treewidth of real-world data of large scale from a variety of
application domains.

Our finding is that, generally, the treewidth is too large to be able to use treewidth-based
algorithms directly with any hope of efficiency.

Second, from this finding, we investigate how a relaxed (or partial) decomposition can
be used on real-world graphs. In short, we no longer look for complete tree decompositions;
instead, we allow the graph to be only partially decomposed. In complex networks, there
often exists a dense core together with a tree-like fringe structure [52]; it is hence possible
to decompose the fringe into a tree, and to place the rest of the graph in a dense “root”.
It has been shown that this approach can improve the efficiency of some graph algorithms
[62, 5, 47]. In Section 5, we analyze its behavior on real-world graphs. We conclude the
paper in Section 6 with a discussion of lessons learned, as to which real-world data admit
(full or partial) low-treewidth tree decompositions, and how this impacts query evaluation
tasks.

Due to lack of space, some details and additional experiments can be found in an extended
version of this article [48].

2 Preliminaries on Treewidth

To make the concepts in the following clear, we start by formally introducing the concept of
treewidth. Following the original definitions in [56], we first define a tree decomposition:

I Definition 1 ((Tree Decomposition)). Given an undirected graph G = (V,E), where V
represents the set of vertices (or nodes) and E ⊆ V ×V the set of edges, a tree decomposition
is a pair (T,B) where T = (I, F) is a tree and B : I → 2V is a labeling of the nodes of T by
subsets of V (called bags), with the following properties:
1.

⋃
i∈I B(i) = V ;

2. ∀(u, v) ∈ E, ∃i ∈ I s.t. {u, v} ⊆ B(i); and

S. Maniu, P. Senellart, and S. Jog 12:5

1

4

6

5
3

2

7

1

5

2

3
4

5

7
6

3
5

2
3

a

b

c d

Figure 1 Example undirected, unlabeled, graph (left) and decomposition of width 3 (right).

3. ∀v ∈ V , {i ∈ I | v ∈ B(i)} induces a subtree of T .

Intuitively, a tree decomposition groups the vertices of a graph into bags so that they
form a tree-like structure, where a link between bags is established when there exists common
vertices in both bags.

I Example 2. Figure 1 illustrates such a decomposition. The resulting decomposition is
formed of 4 bags, each containing a subset of the nodes in the graph. The bags containing
node 3 (in bold) form a connected subtree of the tree decomposition.

Based on the number of vertices in a bag, we can define the concept of treewidth:

I Definition 3 ((Treewidth)). Given a graph G = (V,E) the width of a tree decomposition
(T,B) is equal to maxi∈I(|B(i)| − 1). The treewidth of G, w(G), is equal to the minimal
width of all tree decompositions of G.

It is easy to see that an isolated point has treewidth 0, a tree treewidth 1, a cycle
treewidth 2, and a (k + 1)-clique (a complete graph of k nodes) treewidth k.

I Example 4. The width of the decomposition in Figure 1 is 3. This tells us the graph
has a treewidth of at most 3. The treewidth of this graph is actually exactly 3: indeed,
the 4-clique, which has treewidth 3, is a minor of the graph in Figure 1 (it is obtained by
removing nodes 1 and 7, and by contracting the edges between 3 and 6 and 5 and 6), and
treewidth never increases when taking a minor (see, for instance, [38]).

As previously mentioned, the treewidth of an arbitrary relational instance is defined as
that of its Gaifman graph, the graph whose vertices are constants of the instances and where
there is an edge between two vertices if they co-occur in the same fact. We will therefore
implicitly represent relational database instances by their Gaifman graphs in what follows.

We are now ready to present algorithms for lower and upper bounds on treewidth.

3 Treewidth Estimation

The objective of our experimental evaluation is to obtain reasonable estimations of treewidth,
using algorithms with reasonable execution time on real-world graphs.

Once we know we do not have the luxury of an exact computation of the treewidth, we
are left with estimations of the range of possible treewidths, between a lower bound and
an upper bound. For the purposes of this experimental survey, we restrict ourselves to the
most efficient estimation algorithms from the literature. We refer the reader to [19] and [20],
respectively, for a more complete survey of treewidth upper and lower bound estimation
algorithms on synthetic data.

ICDT 2019

12:6 An Experimental Study of the Treewidth of Real-World Graph Data

1

4

6

5
3

2

7
7 425361

Figure 2 Graph triangulation for the graph of Figure 1 (left) and its elimination ordering (right).

Treewidth Upper Bounds. As we have defined, the treewidth is the smallest width among
all possible tree decompositions. In other words, the width of any decomposition of a graph is
an upper bound of the actual treewidth of that graph. A treewidth upper bound estimation
algorithm can thus be seen as an algorithm to find a decomposition whose width is as close
as possible to the treewidth of the graph. To understand how one can do that, we need
to introduce the classical concept of elimination ordering and to explain its connection to
treewidth.

We start by introducing triangulations of graphs, which transform a graph G into a
graph G∆ that is chordal:

I Definition 5. A chordal graph is a graph G such that every cycle in G of at least four
vertices has a chord – an edge between two non-successive vertices in the cycle.

A triangulation (or chordal completion) of a graph G is a minimal chordal supergraph
G∆ of G: a graph obtained from G by adding a minimal set of edges to obtain a chordal
graph.

I Example 6. The graph in Figure 1 is not chordal, since, for example, the cycle 3–4–5–6–3
does not have a chord. If one adds an edge between 3 and 5, as in Figure 2 (left), one can
verify that the resulting graph is chordal, and thus a triangulation of the graph of Figure 1.

One way to obtain triangulations of graphs is elimination orderings. An elimination
ordering ω of a graph G = (V,E) of n nodes is an ordering of the vertices of G, i.e., it can be
seen as a bijection from V onto {1, . . . , n}. From this ordering, one obtains a triangulation
by applying sequentially the following elimination procedure for each vertex v: first, edges
are added between remaining neighbors of v as needed so that they form a clique, then v is
eliminated (removed) from the graph. For every elimination ordering ω, G along with all
edges added to G in the elimination procedure forms a graph, denoted G∆

ω . This graph is
chordal (indeed, we know that the two neighbors of the first node of any cycle we encounter
in the elimination ordering have been connected by a chord by the elimination procedure).
It is also a supergraph of G, and it can be shown it is a minimal chordal supergraph, i.e., a
triangulation of G.

I Example 7. Figure 2 (right) shows a possible elimination ordering (7, 1, 6, 3, 5, 2, 4) of the
graph of Figure 1. The elimination procedure adds a single edge, when processing node 6,
between nodes 3 and 5. The resulting triangulation is the graph on the left of Figure 2.

Elimination orderings are connected to treewidth by the following result:

S. Maniu, P. Senellart, and S. Jog 12:7

I Theorem 8. [19] Let G = (V,E) a graph, and k 6 n. The following are equivalent:
1. G has treewidth k.
2. G has a triangulation G∆, such that the maximum clique in G∆ has size k + 1.
3. There exists an elimination ordering ω such that the maximum clique size in G∆

ω is k+ 1.

Obtaining the treewidth of the graph is thus equivalent to finding an optimal elimination
ordering. Moreover, constructing a tree decomposition from an elimination ordering is a
natural process: each time a vertex is processed, a new bag is created containing the vertex
and its neighbors. Note that, in practice, we do not need to compute the full elimination
ordering: we can simply stop when we know that the number of remaining vertices is lower
that the largest clique found thus far.

I Example 9. In the triangulation of Figure 2 (left), corresponding to the elimination
ordering on the right, the maximum clique has size 4: it is induced by the vertices 2, 3, 4, 5.
This proves the existence of a tree decomposition of width 3. Indeed, it is exactly the tree
decomposition in Figure 1 (right): bag d is constructed when 7 is eliminated, bag a when 1
is eliminated, bag c when 6 is eliminated, and finally bag b when 3 is eliminated.

Finding a “good” upper bound on the treewidth can thus be done by finding a “good”
elimination ordering. This is still an intractable problem, of course, but there are various
heuristics for generating elimination orderings leading to good treewidth upper bounds. One
important class of such elimination ordering heuristics are the greedy heuristics. Intuitively,
the elimination ordering is generated in an incremental manner: each time a new node
has to be chosen in the elimination procedure, it is chosen using a criterion based on its
neighborhood. In our study, we have implemented the following greedy criteria (with ties
broken arbitrarily):

Degree. The node with the minimum degree is chosen. [49, 16]
FillIn. The node with the minimum needed “fill-in” (i.e., the minimum number of
missing edges for its neighbors to form a clique) is chosen. [19]
Degree+FillIn. The node with the minimum sum of degree and fill-in is chosen.

I Example 10. The elimination ordering of Figure 2 (right) is an example of the use of
Degree+FillIn. Indeed, 7 is first chosen, with value 1, then 1 with value 2, then 6 with
value 2+ 1 = 3. After that, the order is arbitrary since 2, 3, 4, and 5 form a clique (and thus
have initial value 3).

Previous studies [59, 42, 19] have found these greedy criteria give the closest estimations
of the real treewidth. An alternative way of generating an elimination ordering is based
on maximum cardinality search [42, 19]; however, it is both less precise than the greedy
algorithms – due to its reliance on how the first node in the ordering is chosen – and slower
to run.

Treewidth Lower Bounds. In contrast to upper bounds, obtaining treewidth lower bounds
is not constructive. In other words, lower bounds do not generate decompositions; instead,
the estimation of a lower bound is made by computing other measures on a graph, that
are a proxy for treewidth. In this study, we implement algorithms using three approaches:
subgraph-based bounds, minor-based bounds, and bounds obtained by constructing improved
graphs.

Given a graph G = (V,E), let δ(G) be its lowest degree, and δ2(G) > δ(G) its second
lowest degree (i.e., the degree of the second vertex when ordered by degree). It is known
that δ2(G) is itself a lower bound on the treewidth [43]. This, however, is too coarse an

ICDT 2019

12:8 An Experimental Study of the Treewidth of Real-World Graph Data

estimation, and we need better bounds. We shall use two degeneracy measures of the graphs.
The first, the degeneracy of G, δD(G), is the maximum value of δ(H) over all subgraphs H
of G. Similarly, the δ2-degeneracy, δ2D(G), of a graph is the maximum value of δ2(H) over
all subgraphs H.

We have the following lemma:

I Lemma 11. [20] Let G = (V,E) be a graph, and W ⊆ V be a set of vertices. The treewidth
of the subgraph of G induced by W is at most the treewidth of G.

A corollary of the above lemma is that the values δD(G) and δ2D(G) are themselves
lower bounds of treewidth:

I Corollary 12. [20] For every graph G, the treewidth of G is at least δ2D(G) > δD(G).

To compute δD(G) and δ2D(G) exactly, the following natural algorithms can be used
[43, 20]: repeatedly remove a vertex of smallest degree – or smallest except for some fixed
node v, respectively – from the graph, and keep the maximum value thus encountered. As
in [20], we refer to these algorithms as Mmd (Maximum Minimum Degree) and Delta2D,
respectively. Ties are broken arbitrarily.

I Example 13. Let us apply the Mmd algorithm to the graph of Figure 1 (left). The
algorithm may remove, in order, 7 (degree 1), 1 (degree 2), 6 (degree 2), 3 (degree 2), 5
(degree 2), 4 (degree 1), 2 (degree 0). This gives a lower bound of 2 on the treewidth, which
is not tight as we saw.

An equivalent of Lemma 11 on treewidth also holds for minors of a graph G: if H is a
minor of G, then the treewidth of H is at most the treewidth of G [38]. A minor H of a
graph G is a graph obtained by allowing, in addition to edge and node deletion as when
taking subgraphs, edge contractions. Then the concepts of contraction degeneracy, δC(G),
and δ2-contraction degeneracy, δ2C(G), are defined analogously to δD(G) and δ2D(G) by
considering all minors instead of all subgraphs:

I Lemma 14. [20] For every graph G, the treewidth of G is at least δ2C(G) > δC(G).

Unfortunately, computing δC(G) or δ2C(G) is NP-hard [21]; hence, only heuristics can
be used. One such heuristic for δC(G) is a simple change to the Mmd algorithm, called
Mmd+ [21, 36]: at each step, instead of removing a vertex, a neighbor is chosen and the
corresponding edge is contracted. Choosing a neighbor node to contract requires some
heuristic also; in line with previous studies, in this study we choose the neighbor node that
has the least overlap in neighbors – this is called the least-c heuristic [63].

Finally, another approach to treewidth lower bounds that we consider are improved
graphs, an approach that can be used in combination with any of the lower bound estimation
algorithms presented so far. Consider a graph G and an integer k and the following operation:
while there are non-adjacent vertices v and w that have at least k + 1 common neighbors,
add the edge (v, w) to the improved graph G′. The resulting graph G′ is the (k+ 1)-neighbor
improved graph of G. Using these improved graphs can lead to a lower bound on treewidth:
the (k + 1)-neighbor improved graph G′ of a graph G having at most treewidth k also has
treewidth at most k.

To use this property, one can start from an already computed estimation k of a lower
bound (by using Mmd, Mmd+, or Delta2D for example) and then repeatedly generate
a (k + 1)-neighbor improved graph, estimate a new lower bound on treewidth, and repeat
the process until the graph cannot be improved. This algorithm is known as Lbn in the

S. Maniu, P. Senellart, and S. Jog 12:9

literature [23], and can be combined with any other lower bound estimation algorithm. A
refinement of Lbn, that alternates improvement and contraction steps, Lbn+, has also been
proposed [21].

I Example 15. Let us illustrate the use of Lbn together with Mmd on the graph of Figure 1
(left). As shown in Example 13, a first run of Mmd yields k = 2. We compute a 3-neighbor
improved graph for G by adding an edge between nodes 3 and 5 (that share neighbors 2, 4, 6).
Now, running Mmd one more time yields the possible sequence 7 (degree 1), 1 (degree 2),
6 (degree 2), 3 (degree 3), 5 (degree 2), 4 (degree 1), 2 (degree 0). We thus obtain a lower
bound of 3 on the treewidth, which is this time tight.

4 Estimation Results

We now present our main experimental study, first introducing the 25 datasets we are
considering, then upper and lower bound results, running time and estimators, and an aside
discussion of the treewidth of synthetic networks. All experiments were made on a server
using an 8-core Intel Xeon 1.70GHz CPU, having 32GB of RAM, and using 64bit Debian
Linux. All datasets were given at least two weeks to finish, after which the algorithms were
stopped and the best lower and upper bounds were recorded.

Datasets. For our study, we have evaluated the treewidth estimation algorithms on 25
datasets from 8 different domains (see Appendix A of [48] for descriptions of how they were
obtained): infrastructure networks (road networks, public transportation, power grid), social
networks (explicit as in social networking sites, or derived from interaction patterns), web-like
networks, a communication network, data with a hierarchical structure (genealogy trees),
knowledge bases, traditional OLTP data, as well as a biological interaction network.

Table 1 summarizes the datasets, their size, and the best treewidth estimations we
have been able to compute. For reproducibility purposes, all datasets, along with the code
that has been used to compute the treewidth estimations, can be freely downloaded from
https://github.com/smaniu/treewidth/.

Upper Bounds. We show in Figure 3 the results of our estimation algorithms. Lower values
mean better treewidth estimations. Focusing on the upper bounds only (red circular points),
we notice that, in general, FillIn does give the smallest upper bound of treewidth, in line
with previous findings [20]. Interestingly, the Degree heuristic is quite competitive with the
other heuristics. This fact, coupled with its lower running time, means that it can be used
more reliably in large graphs. Indeed, as can be seen in the figure, on some large graphs only
the Degree heuristic actually finished at all; this means that, as a general rule, Degree
seems the best fit for a quick and relatively reliable estimation of treewidth.

We plot both the absolute values of the estimations in Figure 3a, but also their relative
values (in Figure 3b, representing the ratio of the estimation over the number of nodes
in the graph), to allow for an easier comparison between networks. The absolute value,
while interesting, does not yield an intuition on how the bounds can differ between network
types. If we look at the relative values of treewidth, it becomes clear that infrastructure
networks have a treewidth that is much lower than other networks; in general they seem to
be consistently under one thousandth of the original size of the graph. This suggests that,
indeed, this type of network may have properties that make them have a lower treewidth.
For the other types of networks, the estimations can vary considerably: they can go from
one hundredth (e.g., Math) to one tenth (e.g., WikiTalk) of the size of the graph.

ICDT 2019

https://github.com/smaniu/treewidth/

12:10 An Experimental Study of the Treewidth of Real-World Graph Data

Table 1 Datasets and summary of lower and upper bounds. Bounds with a ∗ are partial (the
decomposition process was interrupted before it finished).

Dataset Lower Upper
type name nodes edges width width

infrastructure Ca 1 965 206 2 766 607 5 252
Pa 1 088 092 1 541 898 5 333
Tx 1 379 917 1 921 660 5 189

Bucharest 189 732 223 143 21 139
HongKong 321 210 409 038 32 145

Paris 4 325 486 5 395 531 55 521
London 2 099 114 2 588 544 57 507

Stif 17 720 31 799 28 86
USPowerGrid 4 941 6 594 10 18

social Facebook 4 039 88 234 142 247
Enron 36 692 183 831 257 1 989

WikiTalk 2 394 385 4 659 565 1 113 12 843
CitHeph 34 546 420 877 469 9 498

Stack-TCS 25 232 69 026 143 717
Stack-Math 1 132 468 2 853 815 850 11 100
LiveJournal 3 997 962 34 681 189 360 919 532∗

web Wikipedia 252 335 2 427 434 1 007 19 876
Google 875 713 4 322 051 621 17 571

communication Gnutella 65 586 147 892 244 9 374

hierarchy Royal 3 007 4 862 11 24
Math 101 898 105 131 56 515

ontology Yago 2 635 315 5 216 293 836 79 059∗

DbPedia 7 697 211 30 622 392 28 538 805∗

database Tpch 1 381 291 79 352 127 699 124 316∗

biology Yeast 2 284 6 646 54 255

As further explained in Appendix B of [48], the bounds obtained here on infrastruc-
ture networks are consistent with a conjectured O(3

√
n) bound on the treewidth of road

networks [27]. One relevant property is their low highway dimension [2], which helps with
routing queries and decomposition into contraction hierarchies. Even more relevant to our
results is the fact that they tend to be “almost planar”. More specifically, they are k-planar:
each edge can allow up to k crossing in their plane embedding. It has been shown in [28] that
k-planar graphs have treewidth O(

√
(k + 1)n), a relatively low treewidth that is consistent

with our results.

The treewidth of hierarchical networks is surprisingly high, but not for trivial reasons:
in both Royal and Math, largest cliques have size 3. More complex structures (cousin
marriages, scientific communities) impact the treewidth, along with the fact that treewidth
cannot exploit the property that both networks are actually DAGs.

In upper bound algorithms, ties are broken arbitrarily which causes a non-deterministic
behavior. We show in Appendix C of [48] that variations due to this non-determinism is of
little significance.

S. Maniu, P. Senellart, and S. Jog 12:11

100

101

102

103

104

105

106

C
a Pa Tx

Buc
ha

re
st

H
on

gK
on

g
Par

is

Lo
nd

on Stif

Pow
er

G
rid

Fac
eb

oo
k

Enr
on

W
ik
IT

al
k

C
itH

ep
h

Sta
ck

TC
S

Sta
ck

M
at

h

Li
ve

Jo
ur

na
l

W
ik
ip
ed

ia

G
oo

gl
e

G
nu

te
lla

R
oy

al

M
at

h
Yag

o

D
bP

ed
ia

Tpc
h

Yea
st

w
id

th

Degree
FillIn

Degree+FillIn
MMD

MMD+
Delta2D

(a) absolute values.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

C
a Pa Tx

Buc
ha

re
st

H
on

gK
on

g
Par

is

Lo
nd

on Stif

Pow
er

G
rid

Fac
eb

oo
k

Enr
on

W
ik
IT

al
k

C
itH

ep
h

Sta
ck

TC
S

Sta
ck

M
at

h

Li
ve

Jo
ur

na
l

W
ik
ip
ed

ia

G
oo

gl
e

G
nu

te
lla

R
oy

al

M
at

h
Yag

o

D
bP

ed
ia

Tpc
h

Yea
st

p
ro

p
o
rt

io
n
 o

f
g
ra

p
h

Degree
FillIn

Degree+FillIn
MMD

MMD+
Delta2D

(b) relative values.

Figure 3 Treewidth estimation of different algorithms (logarithmic scale).

Lower Bounds. Figure 3 also reports on the lower bound estimations (blue rectangular
points). Now, higher values represent a better estimation. The same differentiation between
infrastructure networks and the other networks holds in the case of lower bounds – treewidth
lower bounds are much lower in comparison with other networks. We observe that the
variation between upper and lower bound estimations can be quite large. Generally, we find
that degree-based estimators, Mmd and Delta2D, give bounds that are very weak. The
contraction-based estimator, Mmd+, however, consistently seems to give the best bounds of
treewidth, and returns lower bounds that are much larger than the degree-based estimations.

Interestingly, in the case of the networks Ca, Pa, and Tx, the values returned for Mmd+
and Mmd are always 5 and 3, respectively. This has been remarked on in [21] – there exist
instances where heuristics of lower bounds perform poorly, giving very low lower bounds. In
our case, this only occurs for some road networks, all coming from the same data source, i.e.,
the DIMACS challenge on shortest paths.

In Figure 3, we have not plotted the estimations resulting from Lbn and Lbn+. The
reason is that we have found that these algorithms do not generally give any improvement
in the estimation of the lower bounds. Specifically, we have found an improvement only
in two datasets for the Delta2D heuristic: for Facebook from 126 originally to 157 for
Lbn(Delta2D) and 159 for Lbn+(Delta2D); and for Stack-TCS from 27 originally to
30 for Lbn+(Delta2D). In all cases, however, Mmd+ is always competitive by itself.

Running Time. The complexity of different estimation algorithms (see Appendix D of [48]),
varies a lot, ranging from quasi-linear for low-treewidth to cubic time. Even if all of the
algorithms exhibit polynomial complexity, the cost can become quickly prohibitive, even for

ICDT 2019

12:12 An Experimental Study of the Treewidth of Real-World Graph Data

graphs of relatively small sizes; indeed, not all algorithms finished on all datasets within
the time bound of two weeks of computation time: indeed, only the fastest algorithms for
each bound – Degree and Mmd respectively – finish processing all datasets. In some cases,
for upper bounds, even Degree timed out – in this case, we took the value found at the
moment of the time-out; this still represents an upper bound. The datasets for which this
occurred are LiveJournal, Yago, DbPedia, and Tpch.1

Phase Transitions in Synthetic Networks. We have seen that graphs other than the
infrastructure networks have treewidth values that are relatively high. An interesting
question that these results lead to is: is it the case for all relatively complex networks, or is
it a particularity of the chosen datasets?

To give a possible answer to this, we have evaluated the treewidth of a range of synthetic
graph models and their parameters:

Random. This synthetic network model due to Erdős and Rényi [30] is an entirely random
one: given n nodes and a parameter p ∈ (0, 1], each possible edge between the n nodes is
added with probability p. We have generated several network of n = 10 000 nodes, and
with values of p ranging from 10−5 to 10−3.

Preferential Attachment. This network model [6] is a generative model, and aims to simulate
link formation in social networks: each time a new node is added to the network, it
attaches itself to m other nodes, each link being formed with a probability proportional
to the number of neighbors the existing node already has. We have generated graphs of
n = 10 000 nodes, with the parameter m varying between 1 and 20.

Small-World. The model [61] generates a small-world graph by the following process: first,
the n nodes are organized in a ring graph where each node is connected withm other nodes
on each side; finally, each edge is rewired (its endpoints are changed) with probability p.
In the experiments, we have generated graphs of n = 10 000, with p = {0.1, 0.2, 0.5} and
m ranging between 1 and 20.

Our objective with evaluating treewidth on these synthetic instances is to evaluate whether
some parameters of these models lead to lower treewidth values, and if so, in which model the
“phase transition” occurs, i.e., when a low-treewidth regime gives way to a high-treewidth
one. For our purpose, and for reasons we explain in Section 5, we consider a treewidth under√
n to be low.
Our first finding – see Figure 4 – is that the high-treewidth regime arrives very early,

relative to the parameter values. For random graphs, only relatively small value of p allow
for a low treewidth; for small-world and preferential attachment only trivial values of m allow
low-treewidth – and, even so, it is usually 1 or 2, possibly due to the fact that the graph,
in those cases, is composed of several small connected components, i.e., the well-known
subcritical regime of random graphs [15]. The low-treewidth regime for random networks
seems to be limited to values immediately after p = 1

n ; after this point, the treewidth is high,
in line with findings of a linear dependency between graph size and treewidth in random
graphs [35]. Moreover, we notice that there is no smooth transition for preferential attachment
and small world networks; the treewidth jumps from very low values to high treewidth values.
This is understandable in scale-free networks – resulting from the preferential attachment

1 We show in Figure 9 of Appendix D of [48] the full running time results for the upper and lower bound
algorithms.

S. Maniu, P. Senellart, and S. Jog 12:13

 1

 10

 100

 1000

 10000

 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001

w
id

th

p

upper
lower

(a) random.

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

w
id

th

m

upper
lower

(b) preferential attachment.

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

w
id

th

m

upper
lower

(c) small world.

Figure 4 Lower and upper bounds of treewidth in synthetic networks, as a function of generator
parameters. The blue line represent the low width regime, where treewidth is less than 100.

model – where a few hubs may exist with degrees that are comparable to the number of
nodes in the graph. Comparatively, random networks exhibit a smoother progression – one
can clearly see the shift from trivial values of treewidth, to relatively low values, and to high
treewidth values. Finally, the gap between lower bound and upper bound tends to increase
with the parameter; that is, however, not surprising since all three model graphs tend to
have more edges with larger parameter values.

5 Partial Decompositions

Our results show that, in practice, the treewidths of real networks are quite high. Even in the
case of road networks, having relatively low treewidths, their value can go in the hundreds,
rendering most algorithms whose time is exponential time in the treewidth (or worse)
unusable. In practical applications, however, we can still adapt treewidth-based approaches
for obtaining data structures – not unlike indexes – which can help with some important
graph queries like shortest distances and paths [62, 5] or probability estimations [47, 10].

The manner in which treewidth decomposition can be used starts from a simple observation
made in studies on complex graphs, that is, that they tend to exhibit a tree-like fringe and
a densely connected core [52, 51]. The tree-like fringe precisely corresponds to bounded-
treewidth parts of the network. This yields an easy adaptation of the upper bound algorithms
based on node ordering: given a parameter w representing the highest treewidth the fringe
can be, we can run any greedy decomposition algorithm (Degree, FillIn, DegreeFillIn)
until we only find nodes of degree w+ 1, at which point the algorithm stops. At termination,
we obtain a data structure formed of a set of treewidth w elements (w-trees) interfacing
through cliques that have size at most w + 1 with a core graph. The core graph contains all
the nodes not removed in the bag creation process, and has unbounded treewidth. Figure 5
illustrates the notion of partial decompositions.

The resulting structure can be thought of as a partial decomposition (or relaxed decom-
position), a concept introduced in [62, 5] in the context of answering shortest path queries,
and used in [47] for probabilistic distance queries. A partial decomposition can be extremely
useful. The tree-like fringe can be used to quickly precompute answers to partial queries (e.g.,
precompute distances in the graph). Once the precomputation is done, these (partial) answers
are added to the core graph, where queries can be answered directly. If the resulting core
graph is much smaller than the original graph, the gains in running time can be considerable,
as shown in [62, 5, 47]. Hence, the objective of our experiments in this section is to check
how feasible partial decompositions are.

ICDT 2019

12:14 An Experimental Study of the Treewidth of Real-World Graph Data

core

w-tree (w=3)
w-tree (w=4)

w-
tre

e
(w

=1
)

fringe

Figure 5 An abstract view of partial decompositions. Partial decompositions are formed of a
core graph, which interfaces with w-trees through w-cliques (the fringe).

An interesting aspect of greedy upper bound algorithms is that they generate at any
point a partial decomposition, with width equal to the highest degree encountered in the
greedy ordering so far. The algorithm can then be stopped at any width, and the size of the
resulting partial decomposition can be measured.

To evaluate this, we track here the size of the core graph, in terms of edges. We do this
because most algorithms on graphs have a complexity that is directly related to the number
of edges in the graph. As we discussed in the previous section, we aim that the size of the
core graph to be as small as possible. Another aspect to keep in mind is the number of edges
that are added by the fill-in process during the decomposition: each time a node of degree w
is removed, at most w(w−1)

2 edges are added to the graph. Finally, for a graph of treewidth k,
the decomposition contains a root of size at most k2 edges. Hence, to ensure that the core
graph is smaller than the original graph we aim for the treewidth to be

√
n. As we saw in

Section 4, this is only rarely the case, and it is more likely to occur in infrastructure networks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

re
la

ti
v
e
 s

iz
e

width

Degree
FillIn

Degree+FillIn
original

(a) Pa.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

re
la

ti
v
e
 s

iz
e

width

Degree
FillIn

Degree+FillIn
original

(b) Paris.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500

re
la

ti
v
e
 s

iz
e

width

Degree
FillIn

Degree+FillIn
original

(c) Enron.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600 700 800

re
la

ti
v
e
 s

iz
e

width

Degree
FillIn

Degree+FillIn
original

(d) Stack-TCS.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

re
ls

iz
e

width

Degree
original

(e) Wikipedia.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

re
ls

iz
e

width

Degree
original

(f) Google.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

re
la

ti
v
e
 s

iz
e

width

Degree
FillIn

Degree+FillIn
original

(g) Royal.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 100 200 300 400 500 600 700

re
la

ti
v
e
 s

iz
e

width

Degree
FillIn

Degree+FillIn
original

(h) Math.

Figure 6 Relative sizes of core graphs in partial decompositions, after all bags of a given size
have been removed in the decomposition.

S. Maniu, P. Senellart, and S. Jog 12:15

Indeed, if we plot the core graph size in the partial decompositions of infrastructure
networks (Figures 6a, 6b), we see that their size is only a fraction of the original size. We
see a large drop in the size for low widths; this is logical, since the fill-in process does not
add edges for w = 1 and w = 2. After this point, the size is relatively stable, and can go as
low as 10% of the original size. In this sense, infrastructure networks seem the best fit for
indexes based on decompositions, and represents further confirmation of the good behavior
of these networks for hierarchical decompositions.

This desired decomposition behavior no longer occurs for social networks (Figures 6c,
6d) and the other networks in our dataset (Figures 6e, 6f). In this case, the decomposition
becomes too large and even unwieldy – for some networks, the decomposition started filling
the main memory of our computers (32 GB of RAM); for other networks, they did not finish
in reasonable time (i.e., a few days of computation). For most of these networks, the resulting
treewidth is much larger than our desired bound of at most

√
n); this results in core graph

sizes that can be hundreds of times larger than the original size. The only exceptions are
hierarchical networks, Royal and Math (Figures 6g, 6h), which are after all supposed to be
close to a tree – despite having a relatively high treewidth (remember Figure 3b), partial
decompositions work well on them. See Appendix E of [48] for full results.

In practice, however, we do not need to compute full decompositions. For usable indexes,
we may want to stop at low treewidths, which allow exact computing. This may be useful
for graphs whose decompositions have large core graphs. Indeed (see Appendix G of [48] for
details), by stopping at width between 5 and 10, it is often possible to significantly reduce
the original size of the graph, even in cases where core graphs are large, such as the Google
graph.

Such partial decompositions are an extremely promising tool: on databases where partial
decomposition result in a core graph of reduced size, efficient algorithms can be run on the
fringe, exploiting its low treewidth, while more costly algorithms are used on the core, which
has reduced size. Combining results from the fringe and the core graph can be a challenging
process, however, which is worth investigating for separate problems. As a start, we have
shown in [47] how to exploit partial decompositions to significantly improve the running time
of source-to-target queries in probabilistic graphs.

6 Discussion

In this article, we have estimated the treewidth of a variety of graph datasets from different
domains, and we have studied the running time and effectiveness of estimation algorithms.
This study was motivated by the central role treewidth plays in many theoretical work
attacking query evaluation tasks that are otherwise intractable, where low treewidths are an
indicator for low complexity.

Our study on the algorithms for estimation leads to results that may seem surprising. For
upper bounds, we discovered that greedy treewidth estimators, based on elimination orderings,
provide the best cost–estimation trade-off; they also have the advantage of outputting readily-
usable tree decompositions. In the case of lower bounds, we discovered that degeneracy-based
bounds display the best behavior; moreover, the algorithms which aim to improve the bounds
(LBN and LBN+) only very rarely do so.

In terms of treewidth estimations, we have discovered that, generally, the treewidth of
real-world graphs is quite large. With few exceptions, most of the graphs we have tested in
this study are scale-free. This may partly explain our findings – scale-free networks exhibit
a number of high-degree, or hub, nodes that force high values for the treewidth. The few

ICDT 2019

12:16 An Experimental Study of the Treewidth of Real-World Graph Data

exceptions to this rule are infrastructure networks, where treewidths are comparatively lower.
Indeed, we were able to reproduce a O(3

√
n) bound on the treewidth of road networks. We

conjecture these relatively low bounds are explained by characteristics of infrastructure
networks: specifically, they are similar to very sparse random networks.

Even in the case of infrastructure networks, the absolute value of treewidth still renders
algorithms that are exponential in the treewidth impractical. However, one of the main lesson
of this work is that it is still possible to exploit the structure of such datasets, by computing
partial tree decompositions: following the approach of Section 5, it is often possible to
decompose a dataset into a fringe of low treewidth and a smaller core of high treewidth. This
has been used in [47], but for a very specific (and limited) application: connectivity queries
in probabilistic graphs.

In brief, though low-treewidth data guarantees a wealth of theoretical results on the
tractability of various data management tasks, this is unexploitable in most real-world
datasets, which do not have low enough treewidth. One direction is of course to find
relaxations of the treewidth notion, such as in [33, 41]. But since low treewidth is sometimes
the only notion that ensures tractability [45, 34, 9], other approaches are needed; a promising
one lies in the notion of partial tree decompositions. We believe future work in database
theory should study in more detail the nature of partial tree decompositions, how to obtain
optimal or near-optimal partial decompositions, and how to exploit them for improving
the efficiency of a wide range of data management problems, from query evaluation, to
enumeration, probability estimation, or knowledge compilation.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Addison-Wesley,

1995.
2 Ittai Abraham, Amos Fiat, Andrew V Goldberg, and Renato F Werneck. Highway dimension,

shortest paths, and provably efficient algorithms. In SODA, 2010.
3 Aaron B. Adcock, Blair D. Sullivan, and Michael W. Mahoney. Tree decompositions and social

graphs. Internet Mathematics, 12(5), 2016.
4 M. Ajtai, R. Fagin, and L. J. Stockmeyer. The Closure of Monadic NP. JCSS, 60(3), 2000.
5 Takuya Akiba, Christian Sommer, and Ken-ichi Kawarabayashi. Shortest-Path Queries for

Complex Networks: Exploiting Low Tree-width Outside the Core. In EDBT, 2012.
6 Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev.

Mod. Phys., 74, 2002.
7 Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A Circuit-Based Approach

to Efficient Enumeration. In ICALP, 2017.
8 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance Circuits for Trees and

Treelike Instances. In ICALP, 2015.
9 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable Lineages on Treelike Instances:

Limits and Extensions. In PODS, 2016.
10 Antoine Amarilli, Silviu Maniu, and Mikaël Monet. Challenges for Efficient Query Evaluation

on Structured Probabilistic Data. In SUM, 2016.
11 Antoine Amarilli, Mikaël Monet, and Pierre Senellart. Connecting Width and Structure in

Knowledge Compilation. In ICDT, pages 6:1–6:17, 2018. doi:10.4230/LIPIcs.ICDT.2018.6.
12 Eyal Amir. Approximation Algorithms for Treewidth. Algorithmica, 56(4):448–479, 2010.
13 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskuworski. Complexity of finding embed-

dings in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8(2), 1987.
14 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear

delay. In CSL, volume 4207, 2006.

http://webdam.inria.fr/Alice/pdfs/all.pdf
http://dx.doi.org/10.4230/LIPIcs.ICDT.2018.6

S. Maniu, P. Senellart, and S. Jog 12:17

15 Albert-László Barabási and Márton Pósfai. Network science. Cambridge University Press,
2016.

16 Anne Berry, Pinar Heggernes, and Geneviève Simonet. The Minimum Degree Heuristic and the
Minimal Triangulation Process. Graph-Theoretic Concepts in Computer Science, 2880(Chapter
6), 2003.

17 Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of Small
Treewidth. SIAM J. Comput., 25(6), 1996.

18 Hans L. Bodlaender, Fedor V Fomin, Arie M C A Koster, Dieter Kratsch, and Dimitrios M
Thilikos. On exact algorithms for treewidth. ACM TALG, 9(1), 2012.

19 Hans L. Bodlaender and Arie M C A Koster. Treewidth Computations I. Upper Bounds.
Information and Computation, 208(3), 2010.

20 Hans L. Bodlaender and Arie M C A Koster. Treewidth Computations II. Lower Bounds.
Information and Computation, 209(7), 2011.

21 Hans L. Bodlaender, Arie M. C. A. Koster, and Thomas Wolle. Contraction and Treewidth
Lower Bounds. In ESA, 2004.

22 Angela Bonifati, Wim Martens, and Thomas Timm. An Analytical Study of Large SPARQL
Query Logs. PVLDB, 11(2), 2017.

23 François Clautiaux, Jacques Carlier, Aziz Moukrim, and Stéphane Nègre. New Lower and
Upper Bounds for Graph Treewidth. In WEA, 2003.

24 Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite
Graphs. Inf. Comput., 85(1), 1990.

25 Nilesh N. Dalvi and Dan Suciu. The dichotomy of conjunctive queries on probabilistic
structures. In PODS, 2007.

26 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
Parametrized Algorithms and Computation Experiments Challenge: The Second Iteration. In
IPEC, 2017.

27 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction Hierarchies.
Journal of Experimental Algorithmics, 21(1), 2016.

28 Vida Dujmović, David Eppstein, and David R Wood. Structure of Graphs with Locally
Restricted Crossings. SIAM J. Discrete Maths, 31(2), 2017.

29 Arnaud Durand and Yann Strozecki. Enumeration Complexity of Logical Query Problems
with Second-order Variables. In CSL, 2011.

30 Paul Erdős and Alfréd Rényi. On Random Graphs I. Publicationes Mathematicae (Debrecen),
6, 1959.

31 Johannes K. Fichte, Neha Lodha, and Stefan Szeider. SAT-Based Local Improvement for
Finding Tree Decompositions of Small Width. In Serge Gaspers and Toby Walsh, editors,
Theory and Applications of Satisfiability Testing – SAT 2017, 2017.

32 Jörg Flum, Markus Frick, and Martin Grohe. Query evaluation via tree-decompositions. J.
ACM, 49(6), 2002.

33 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable
structures. J. ACM, 48(6), 2001.

34 Robert Ganian, Petr Hliněnỳ, Alexander Langer, Jan Obdržálek, Peter Rossmanith, and
Somnath Sikdar. Lower bounds on the complexity of MSO1 model-checking. JCSS, 1(80),
2014.

35 Yong Gao. Treewidth of Erdős–Rényi random graphs, random intersection graphs, and
scale-free random graphs. Discrete Applied Mathematics, 160(4–5), 2012.

36 Vibhav Gogate and Rina Dechter. A Complete Anytime Algorithm for Treewidth. In UAI,
2004.

37 Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the Evaluation of Conjunctive
Queries Tractable? In STOC, 2001.

38 Daniel John Harvey. On Treewidth and Graph Minors. PhD thesis, The University of
Melbourne, 2014.

ICDT 2019

12:18 An Experimental Study of the Treewidth of Real-World Graph Data

39 Abhay Jha and Dan Suciu. On the Tractability of Query Compilation and Bounded Treewidth.
In ICDT, 2012.

40 Abhay Kumar Jha and Dan Suciu. Knowledge Compilation Meets Database Theory: Compiling
Queries to Decision Diagrams. Theory Comput. Syst., 52(3), 2013.

41 Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of structures
with bounded expansion. In PODS, 2013.

42 Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques.
The MIT Press, 2009.

43 Arie M. C. A. Koster, Thomas Wolle, and Hans L. Bodlaender. Degree-Based Treewidth
Lower Bounds. In WEA, 2005.

44 Stephan Kreutzer. Algorithmic Meta-Theorems. CoRR, abs/0902.3616, 2009.
45 Stephan Kreutzer and Siamak Tazari. Lower bounds for the complexity of monadic second-order

logic. In LICS, 2010.
46 S. L. Lauritzen and D. J. Spiegelhalter. Local Computations with Probabilities on Graphical

Structures and Their Application to Expert Systems. Journal of the Royal Statistical Society
Series B (Methodological), 50(2), 1988.

47 Silviu Maniu, Reynold Cheng, and Pierre Senellart. An Indexing Framework for Queries on
Probabilistic Graphs. ACM Trans. Database Syst., 42(2), 2017.

48 Silviu Maniu, Pierre Senellart, and Suraj Jog. An Experimental Study of the Treewidth of
Real-World Graph Data (Extended Version). arXiv.org, 2019. arXiv:1901.06862.

49 Harry M. Markowitz. The Elimination Form of the Inverse and Its Application to Linear
Programming. Management Science, 3(3), 1957.

50 Mikaël Monet. Probabilistic Evaluation of Expressive Queries on Bounded-Treewidth Instances.
In SIGMOD PhD Symposium, 2016.

51 M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social networks.
In Proceedings of the National Academy of Sciences, 2002.

52 Mark E. J. Newman, Steven H. Strogatz, and Duncan J. Watts. Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E, 64, July 2001.

53 François Picalausa and Stijn Vansummeren. What are real SPARQL queries like? In SWIM,
2011.

54 Léon Planken, Mathijs de Weerdt, and Roman van der Krogt. Computing All-Pairs Shortest
Paths by Leveraging Low Treewidth. Journal of Artificial Intelligence Research, 43, 2012.

55 Luca Pulina and Armando Tacchella. An Empirical Study of QBF Encodings: from Treewidth
Estimation to Useful Preprocessing. Fundamenta Informaticae, 102:391–427, 2010.

56 Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory,
Ser. B, 36(1), 1984.

57 S. Saluja, K.V. Subrahmanyam, and M.N. Thakur. Descriptive Complexity of #P Functions.
JCSS, 50(3), 1995.

58 James W. Thatcher and Jesse B. Wright. Generalized Finite Automata Theory with an
Application to a Decision Problem of Second-Order Logic. Math. Systems Theory, 2(1), 1968.

59 Thomas van Dijk, Jan-Pieter van den Heuvel, and Wouter Slob. Computing treewidth with
LibTW. Technical report, University of Utrecht, 2006.

60 M. Y. Vardi. The Complexity of Relational Query Languages (Extended Abstract). In STOC,
1982.

61 D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature, 393,
1998.

62 Fang Wei. TEDI: efficient shortest path query answering on graphs. In SIGMOD, 2010.
63 Thomas Wolle. Computational aspects of treewidth: Lower bounds and network reliability.

PhD thesis, Utrecht University, 2005.

http://arxiv.org/abs/1901.06862

Recursive Programs for Document Spanners
Liat Peterfreund1

Technion, Haifa 32000, Israel
liatpf@cs.technion.ac.il

Balder ten Cate
Google, Inc., Mountain View, CA 94043, USA
balder.tencate@gmail.com

Ronald Fagin
IBM Research – Almaden, San Jose, CA 95120, USA
fagin@us.ibm.com

Benny Kimelfeld
Technion, Haifa 32000, Israel
bennyk@cs.technion.ac.il

Abstract
A document spanner models a program for Information Extraction (IE) as a function that takes as
input a text document (string over a finite alphabet) and produces a relation of spans (intervals
in the document) over a predefined schema. A well-studied language for expressing spanners is
that of the regular spanners: relational algebra over regex formulas, which are regular expressions
with capture variables. Equivalently, the regular spanners are the ones expressible in non-recursive
Datalog over regex formulas (which extract relations that constitute the extensional database). This
paper explores the expressive power of recursive Datalog over regex formulas. We show that such
programs can express precisely the document spanners computable in polynomial time. We compare
this expressiveness to known formalisms such as the closure of regex formulas under the relational
algebra and string equality. Finally, we extend our study to a recently proposed framework that
generalizes both the relational model and the document spanners.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Informa-
tion systems → Relational database model; Information systems → Data model extensions

Keywords and phrases Information Extraction, Document Spanners, Polynomial Time, Recursion,
Regular Expressions, Datalog

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.13

Funding Liat Peterfreund: Supported by the Technion Hiroshi Fujiwara Cyber Security Research
Center and the Israel Cyber Bureau and by the Israel Science Foundation (ISF) Grant 1295/15.
Benny Kimelfeld: Supported by the Israel Science Foundation (ISF) Grant 1295/15.

1 Introduction

The abundance and availability of valuable textual resources position text analytics as
a standard component in data-driven workflows. To facilitate the incorporation of such
resources, a core operation is the extraction of structured data from text, a classic task known
as Information Extraction (IE). This task arises in a large variety of domains, including
healthcare analysis [28], social media analysis [4], customer relationship management [2],
and machine log analysis [12]. IE also plays a central role in cross-domain computational
challenges such as Information Retrieval [30] and knowledge-base construction [26, 27, 15, 29].

1 The work was done while the author was at IBM Research – Almaden.

© Liat Peterfreund, Balder ten Cate, Ronald Fagin, and Benny Kimelfeld;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liatpf@cs.technion.ac.il
mailto:balder.tencate@gmail.com
mailto:fagin@us.ibm.com
mailto:bennyk@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.ICDT.2019.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Recursive Programs for Document Spanners

Rule-based IE is incorporated in commercial systems and academic prototypes for text
analytics, either as a standalone extraction language or within machine-learning models.
IBM’s SystemT [20] exposes an SQL-like declarative language, AQL (Annotation Query
Language), for programming IE. Conceptually, AQL supports a collection of “primitive”
extractors of relations from text (e.g., tokenizer, dictionary lookup, part-of-speech tagger
and regular-expression matcher), together with a relational algebra for manipulating these
relations. Similarly, in Xlog [25], user-defined functions are used as primitive extractors, and
non-recursive Datalog is, again, allowed for relation manipulation. In DeepDive [26, 24], rules
are used to generate features that are translated into the factors of a statistical model with
machine-learned parameters. Feature declaration combines, once again, primitive extractors
of relations alongside relational operators on these relations. In addition to the above,
different Datalog-like formalisms for IE were previously suggested and studied, including
monadic Datalog over trees as web-page languages [13], and a framework for annotating CSV
documents [3].

The framework of document spanners (or just spanners for short) [7] captures the above
IE methodology: a spanner is a function that extracts from a document a relation over
text intervals, called spans, using either a primitive extractor (e.g., a regular expression)
or a relational query on top of primitive extractors. More formally, by a document we
refer to a string s over a finite alphabet, and a span of s represents a substring of s by its
start and end positions. A spanner is a function P that maps every string s into a relation
P (s), over a fixed schema SP , over the spans of s. The most studied spanner language is
that of the regular spanners: primitive extraction is via regex formulas, which are regular
expressions with capture variables, and relational manipulation is via positive relational
algebra: projection, natural join, and union (while difference is expressible and not explicitly
needed) [7]. Equivalently, the regular spanners are the ones expressible in non-recursive
Datalog, where regex formulas are playing the role of the Extensional Data Base (EDB),
that is, the input database [8].

By adding string-equality selection on span variables, Fagin et al. [7] establish the extended
class of core spanners, viewed as the core language for AQL. A syntactically different language
for spanners is SpLog, which is based on the existential theory of concatenation, and was
shown by Freydenberger [9] to have precisely the expressiveness of core spanners. Such
spanners can express more than regular spanners. A simple example is the spanner that
extracts from the input s all spans x and y such that the string sx spanned by x is equal to
the string sy spanned by y. The class of core spanners does not behave as well as that of the
regular spanners; for instance, core spanners are not closed under difference, while regular
spanners are. Fagin et al. [7] prove this by showing that no core spanner extracts all spans x
and y such that sx is not a substring of sy. The proof is based on the core simplification
lemma: every core spanner can be represented as a regular spanner followed by a sequence of
string equalities and projections. The same technique has been used for showing that no
core spanner extracts all pairs x and y of spans having the same length [7].

In this paper we explore the power of recursion in expressing spanners. The motivation
came from the SystemT developers, who have interest in recursion for various reasons, such
as programming basic natural-language parsers by means of context-free grammars [19].
Specifically, we consider the language RGXlog of spanners that are defined by means of
Datalog where, again, regex formulas play the role of EDB relations, but this time recursion
is allowed. More precisely, given a string s, the regex formulas extract EDB relations from
s, and a designated relation Out captures the output of the program. Observe that such
a program operates exclusively over the domain of spans of the input string. In particular,

L. Peterfreund, B. ten Cate, R. Fagin, and B. Kimelfeld 13:3

the output is a relation over spans of s, and hence, RGXlog is yet another representation
language for spanners. As an example, the following program emits all pairs x and y of spans
of equal lengths. (See Section 3 for the formal definition of the syntax and semantics.)

I EqL(x, y)←〈x{ε}〉, 〈y{ε}〉
I EqL(x, y)←〈x{x′{.∗}.}〉, 〈y{y′{.∗}.}〉,EqL(x′, y′)

The first rule states that two empty spans have same length. The second rule states that two
spans x and y have equal lengths if they are obtained by adding a single symbol (represented
by dot) to spans x′ and y′, respectively, of equal lengths.

We explore the expressiveness of RGXlog. Without recursion, RGXlog captures precisely
the regular spanners [8]. With recursion, several observations are quite straightforward. First,
we can write a program that determines whether x and y span the same string. Hence, we
have string equality without explicitly including the string-equality predicate. It follows that
every core spanner can be expressed in RGXlog. Moreover, RGXlog can express more than
core spanners, an example being expressing that two spans have the same length (which
the above program shows can be expressed in RGXlog, but which, as said earlier, is not
expressible by a core spanner [7]). What about upper bounds? A clear upper bound is
polynomial time: every RGXlog program can be evaluated in polynomial time (under data
complexity, where the spanner is fixed and the input consists of only the string), and hence,
RGXlog can express only spanners computable in polynomial time.

We begin our investigation by diving deeper into the relationship between RGXlog and
core spanners. The inexpressiveness results to date are based on the aforementioned core
simplification lemma [7]. The proof of this lemma heavily relies on the absence of the
difference operator in the algebra. In fact, Freydenberger and Holldack [10] showed that it is
unlikely that in the presence of difference, there is a result similar to the core simplification
lemma. So, we extend the algebra of core spanners with the difference operator, and call
a spanner of this extended language a generalized core spanner. We then ask whether (a)
every generalized core spanner can be expressed in RGXlog (whose syntax is positive and
excludes difference/negation), and (b) RGXlog can express only generalized core spanners.

The answer to the first question is positive. We establish a negative answer to the second
question by deploying the theory of Presburger arithmetic [23]. Specifically, we consider
Boolean spanners on a unary alphabet. Each such spanner can be viewed as a predicate over
natural numbers: the lengths of the strings that are accepted (evaluated to true) by the
spanner. We prove that every predicate expressible by a Boolean generalized core spanner is
also expressible in Presburger arithmetic (first-order theory of the natural numbers with the
addition (+) binary function and the constant 0 and 1). Yet, we show a very simple RGXlog
program that expresses a predicate that is not expressible in Presburger arithmetic, namely
being a power of two [17].

We prove that RGXlog can express every spanner computable in polynomial time. Formally,
recall that a spanner is a function P that maps an input string s into a relation P (s), over
a fixed schema SP , over the spans of s. We prove that the following are equivalent for a
spanner P : (a) P is expressible in RGXlog, and (b) P is computable in polynomial time. As
a special case, Boolean RGXlog captures exactly the polynomial-time languages.

Related formalisms that capture polynomial time include the Range Concatenation
Grammars (RCG) [5]. In RCG, the grammar defines derivation rules for reducing the input
string into the empty string; if reduction succeeds, then the string is accepted. Unlike
context-free and context-sensitive grammars, RCGs have predicate names in addition to
variables and terminals – this allows us to maintain connections between different parts

ICDT 2019

13:4 Recursive Programs for Document Spanners

of the input string. Another formalism that captures polynomial time is the multi-head
alternating automata [16], which are finite state machines with several cursors that can
perform alternating transitions. Though related, these results do not seem to imply our
results on document spanners.

We prove equivalence to polynomial time via a result by Papadimitriou [22], stating that
semipositive Datalog (i.e., Datalog where only EDB relations can be negated) can express
every database property computable in polynomial time, under certain assumptions: (a) the
property is invariant under isomorphism, (b) a successor relation that defines a linear order
over the domain is accessible as an EDB, and (c) the first and last elements in the database
are accessible as constants (or single-element EDBs). We show that in the case of RGXlog,
we get all of these for free, due to the fact that our EDBs are regex formulas. Specifically, in
string logic (over a finite alphabet), isomorphism coincides with identity, negation of EDBs
(regex formulas) are expressible as EDBs (regex formulas), and we can express a linear order
by describing a successor relation along with its first and last elements.

Interestingly, our construction shows that, to express polynomial time, it suffices to use
regex formulas with only two variables. In other words, binary regex formulas already capture
the entire expressive power. Can we get away with only unary regex formulas? Using past
results on monadic Datalog [14] and non-recursive RGXlog [7] we conclude a negative answer –
Boolean RGXlog with unary regex formulas can express precisely the class of Boolean regular
spanners. In fact, we can characterize explicitly the class of spanners expressible by RGXlog
with unary regex formulas.

Lastly, we analyze recursive Datalog programs in a framework that generalizes both the
relational and the spanner model. The framework, introduced by Nahshon, Peterfreund
and Vansummeren [21] and referred to as Spannerlog〈RGX〉, aims to establish a unified
query language for combining structured and textual data. In this framework, the input and
output databases consist of relations that have two types of attributes: strings and spans.
In the associated Datalog program, we refer to the relations of the input database as EDB
relations (that is, extensional) and to those of the output database as IDB relations (that
is, intensional, or inferred). The body of a Datalog rule may have three types of atoms:
EDB, IDB, and regex formulas over string attributes. We prove that Spannerlog〈RGX〉 with
stratified negation, restricted to string EDB relations, can express precisely the queries that
are computable in polynomial time.

The remainder of the paper is organized as follows. We provide basic definitions and
terminology in Section 2, and introduce RGXlog in Section 3. In Section 4, we illustrate
RGXlog in the context of a comparison with (generalized) core spanners. Our main result
(equivalence to polynomial time) is proved in Section 5. We describe the generalization of
our main result to Spannerlog〈RGX〉 in Section 6, and conclude in Section 7.

2 Preliminaries

We first introduce the basic terminology and notation that we use throughout the paper.

2.1 Document Spanners
We begin with the basic terminology from the framework of document spanners [7].

Strings and spans. We fix a finite alphabet Σ of symbols. A string s is a finite sequence
σ1 · · ·σn over Σ (i.e., each σi ∈ Σ). We denote by Σ∗ the set of all strings over Σ. A language
over Σ is a subset of Σ∗. A span identifies a substring of s by specifying its bounding indices.

L. Peterfreund, B. ten Cate, R. Fagin, and B. Kimelfeld 13:5

C a i n ␣ s o n ␣ o f ␣ A d a m , ␣ A b e l ␣ s o n ␣ o f ␣ A d a m , ␣ E n o c h ␣ s o n ␣ o f ␣ C a i n , ␣
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Figure 1 The input string s in our running example.

Formally, a span of s has the form [i, j〉 where 1 ≤ i ≤ j ≤ n + 1. If [i, j〉 is a span of s,
then s[i,j〉 denotes the substring σi · · ·σj−1. Note that s[i,i〉 is the empty string, and that
s[1,n+1〉 is s. Note also that the spans [i, i〉 and [j, j〉, where i 6= j, are different, even though
s[i,i〉 = s[j,j〉 = ε where ε stands for the empty string. We denote by Spans the set of all spans
of all strings, that is, all expressions [i, j〉 where 1 ≤ i ≤ j. By Spans(s) we denote the set
spans of string s (and in this case we have j ≤ n+ 1).

I Example 1. In all of the examples throughout the paper, we use the alphabet Σ that
consists of the lowercase and capital letters from the English alphabet (i.e., a, . . . , z and
A, . . . , Z), the comma symbol “,”, and the symbol “␣” that stands for whitespace. Figure 1
depicts an example of a prefix of a string s. (For convenience, it also depicts the position of
each of the characters in s.) Observe that the spans [13, 17〉 and [31, 35〉 are different, yet
they span the same substring, that is, s[13,17〉 = s[31,35〉 = Adam.

Document spanners. We assume an infinite collection Vars of variables such that Vars and
Σ are disjoint. Let s be a string and V ⊂ Vars a finite set of variables. A (V, s)-record2 is a
function r : V → Spans(s) that maps the variables of V to spans of s. A (V, s)-relation is a set
of (V, s)-records. A document spanner (or just spanner for short) is a function P that maps
strings s to (V, s)-relations P (s), for a predefined finite set V of variables that we denote
by Vars(P). As a special case, a Boolean spanner is a spanner P such that Vars(P) = ∅; in
this case, P (s) can be either the singleton that consists of the empty function, a situation
denoted by P (s) = true, or the empty set, a situation denoted by P (s) = false. A Boolean
spanner P recognizes the language {s ∈ Σ∗ | P (s) = true} .

By a spanner representation language, or simply spanner language for short, we refer to a
collection L of finite expressions p that represent a spanner. For instance, we next define
the spanner language RGX of regex formulas. For an expression p in a spanner language,
we denote by JpK the spanner that is defined by p, and by Vars(p) the variable set Vars(JpK).
Hence, for a string s we have that JpK(s) is a (Vars(p), s)-relation. We denote by JLK the
class of all spanners JpK definable by expressions p in L.

Regex formulas. A regex formula is a representation of a spanner by means of a regular
expression with capture variables. It is defined by γ := ∅ | ε | σ | γ ∨ γ | γ · γ | γ∗ | x{γ}.
Here, ε stands for the empty string, σ ∈ Σ, and the alternative beyond regular expressions
is x{γ} where x is a variable in Vars. We denote the set of variables that occur in γ by
Vars(γ). Intuitively, every match of a regex formula in an input string s yields an assignment
of spans to the variables of γ. A crucial assumption we make is that the regex formula
is functional [7], which intuitively means that every match assigns precisely one span to
each variable in Vars(γ). For example, the regex formula a∗ · x{a · b∗} · a is functional, but
a∗ · (x{a · b})∗ · a is not; similarly, (x{a}) ∨ (b · x{a}) is functional, but (x{a}) ∨ (b · a) is
not. A regex formula γ defines a spanner, where the matches produce the (V, s)-records for

2 Fagin et al. [7] refer to (V, s)-records as (V, s)-tuples; we use “record” to avoid confusion with the concept
of “tuple” that we later use in ordinary relations.

ICDT 2019

13:6 Recursive Programs for Document Spanners

V = Vars(γ). We refer the reader to Fagin et al. [7] for the precise definition of functionality,
including its polynomial-time verification, and for the precise definition of the spanner JγK
represented by γ. As previously said, we denote by RGX the spanner language of (i.e., the
set of all) regex formulas.

Throughout the paper, we use the following abbreviations when we define regex formulas.
We use “.” instead of “∨σ∈Σσ” (e.g., we use “.∗” instead of “(∨σ∈Σσ)∗”). For convenience,
we put regex formulas in brackets and write 〈γ〉 (using angular instead of ordinary brackets)
to denote that γ can occur anywhere in the document; that is, 〈γ〉 := [.∗ γ .∗].

I Example 2. Following are examples of regex formulas that we use later on.
γtoken(x) := 〈 ␣ x{(a− zA− Z)∗} (␣ ∨ ,) 〉
γcap(x) := 〈 ␣ x{(A− Z)(a− zA− Z)∗} (␣ ∨ ,) 〉
γprnt(x, y) := 〈y{.∗}␣son␣of␣x{.∗}〉

The regex formula γtoken(x) extracts the spans of tokens (defined simplistically for presentation
sake), γcap(x) extracts capitalized tokens, and γprnt(x, y) extracts spans separated by ␣son␣of␣
(where prnt stands for “parent”). For illustration, applying JγcapK to s of Figure 1 results in
a set of ({x}, s)-records that includes the record r that maps x to [19, 23〉.

2.2 Spanner Algebra
The algebraic operators union, projection, natural join, and difference are defined in the
usual way, for all spanners P1 and P2 and strings s, as follows. For a (V, s)-record r and
Y ⊆ V , we denote by r

↼
Y the (Y, s)-record obtained by restricting r to the variables in Y .

We say that P1 and P2 are union compatible if Vars(P1) = Vars(P2).

Union: Assuming P1 and P2 are union compatible, the union P = P1 ∪P2 is defined by
Vars(P) := Vars(P1) with P (s) := P1(s) ∪ P2(s).
Projection: For Y ⊆ Vars(P1), the projection P = πY P1 is defined by Vars(P) := Y

with P (s) = {r

↼

Y | r ∈ P1(s)}.
Natural join: Let Vi := Vars(Pi) for i ∈ {1, 2}. The (natural) join P = (P1 ./ P2) is
defined by Vars(P) := Vars(P1) ∪ Vars(P2) with P (s) consisting of all (V1 ∪ V2, s)-records
r such that there exist r1 ∈ P1(s) and r2 ∈ P2(s) with r

↼

V1 = r1 and r

↼

V2 = r2.
Difference: Assuming P1 and P2 are union compatible, the difference P = P1 \ P2 is
defined by Vars(P1 \ P2) := Vars(P1) with P (s) := P1(s) \ P2(s).
String-equality selection: For variables x and y in Vars(P1), the string-equality
selection P := ζ=

x,yP1 is defined by Vars(P) := Vars(P1) with P (s) consisting of all records
r ∈ P1(s) such that sr(x) = sr(y).

If L is a spanner language and O is a set of operators in a spanner algebra, then LO

denotes the spanner language obtained by closing L under the operations of O.

2.3 Regular and (Generalized) Core Spanners
Following Fagin et al. [7], we define a regular spanner to be one definable in RGX{∪,π,./},
that is, a spanner P such that P = JpK for some p in RGX{∪,π,./}. Similarly, we define a core
spanner to be a spanner definable in RGX{∪,π,./,ζ

=}.

I Example 3. Consider the regex formulas of Example 2. We can take their join and
obtain a regular spanner: γprnt(x, y) ./ γcap(x) ./ γcap(y). This spanner extracts a set of
({x, y}, s)-records r such that r maps x and y to strings that begin with a capital letter and
are separated by ␣son␣of␣. Assume we wish to extract a binary relation that holds the

L. Peterfreund, B. ten Cate, R. Fagin, and B. Kimelfeld 13:7

tuples (x, y) such that the span x spans the name of the grandparent of y. (For simplicity, we
assume that the name is a unique identifier of a person.) For that, we can define the following
core spanner on top of the regex formulas from Example 2: πx,wζ=

y,z

(
γprnt(x, y) ./ γprnt(z, w)

)
.

We denote this spanner by γgrpr(x,w).

Note that we did not include difference in the definition of regular and core spanners; this
does not matter for the class of regular spanners, since it is closed to difference (i.e., a spanner
is definable in RGX{∪,π,./,\} if and only if it is definable in RGX{∪,π,./}), but it matters for
the class of core spanners, which is not closed under difference [7]. We define a generalized
core spanner to be a spanner definable in RGX{∪,π,./,ζ

=,\}. We study the expressive power of
the class of generalized core spanners in Section 4.

I Example 4. Recall the definition of γgrpr(x,w) from Example 3. The generalized core
spanner γcap(w) \ (πwγgrpr(x,w)) finds all spans of capitalized words w such that the text
has no mentioning of any grandparent of w.

2.4 Span Databases
We also use the terminology and notation of ordinary relational databases, with the exception
that database values are all spans. (In Section 6 we allow more general values in the database.)
More formally, a relation symbol R has an associated arity that we denote by arity(R), and
a span relation over R is a finite set of tuples t ∈ Spansarity(R) over R. We denote the ith
element of a tuple t by ti. A (relational) signature R is a finite set {R1, . . . , Rn} of relation
symbols. A span database D over a signature R := {R1, . . . , Rn} consists of span relations
RDi over the Ri. We call RDi the instantiation of Ri by D.

3 RGXlog: Datalog over Regex Formulas

In this section, we define the spanner language RGXlog, pronounced “regex-log,” that
generalizes regex formulas to (possibly recursive) Datalog programs.

LetR be a signature. By an atom overR we refer to an expresion of the form R(x1, . . . , xk)
where R ∈ R is a k-ary relation symbol and each xi is a variable in Vars. Note that a variable
can occur more than once in an atom (i.e., we may have xi = xj for some i and j with i 6= j),
and we do not allow constants in atoms. A RGXlog program is a triple 〈I,Φ,Out(x)〉 where:
I is a signature referred to as the IDB signature;
Φ is a finite set of rules of the form ϕ ← ψ1, . . . , ψm, where ϕ is an atom over I, and
each ψi is either an atom over I or a regex formula;
Out ∈ I is a designated output relation symbol;
x is a sequence of k distinct variables in Vars, where k is the arity of Out.

If ρ is the rule ϕ← ψ1, . . . , ψm, then we call ϕ the head of ρ and ψ1, . . . , ψm the body of ρ.
Each variable in ϕ is called a head variable of ρ. We make the standard assumption that
each head variable of a rule occurs at least once in the body of the rule.

We now define the semantics of evaluating a RGXlog program over a string. Let Q =
〈I,Φ,Out(x)〉 be a RGXlog program, and let s be a string. We evaluate Q on s using the
usual fixpoint semantics of Datalog, while viewing the regex formulas as extensional-database
(EDB) relations. More formally, we view a regex formula γ as a logical assertion over
assignments to Vars(γ), stating that the assignment forms a tuple in JγK(s). The span
database with signature I that results from applying Q to s is denoted by Q(s), and it is
the minimal span database that satisfies all rules, when viewing each left arrow (←) as a
logical implication with all variables being universally quantified.

ICDT 2019

13:8 Recursive Programs for Document Spanners

Next, we define the semantics of RGXlog as a spanner language. Let Q = 〈I,Φ,Out(x)〉
be a RGXlog program. As a spanner, the program Q constructs D = Q(s) and emits the
relation OutD as assignments to x. More precisely, suppose that x = x1, . . . , xk. The
spanner P = JQK is defined as follows.

Vars(P) := {x1, . . . , xk}.
Given s and D = Q(s), the set P (s) consists of all records ra obtained from tuples
a = (a1, . . . , ak) ∈ OutD by setting ra(xi) = ai.

Finally, recursive and non-recursive RGXlog programs are defined similarly to ordinary
Datalog (e.g., using the acyclicity of the dependency graph over the IDB predicates).

I Example 5. In the following and later examples of programs, we use the cursor sign I
to indicate where a rule begins. Importantly, for brevity we use the following convention:
Out(x) is always the left hand side of the last rule.

I Ancstr(x, z)← γprnt(x, z)
I Ancstr(x, y)← Ancstr(x, z), γprnt(z, y)

By our convention, Out(x) is Ancstr(x, y). This program returns the transitive closure of
the relation obtained by applying the regex formula γprnt(x, z) from Example 2.

4 Comparison to Core Spanners

We begin the exploration of the expressive power of RGXlog by a comparison to the class
of core spanners and the class of generalized core spanners. We first recall the following
observation by Fagin et al. [8] for later reference.

I Proposition 6 ([8]). The class of spanners definable by non-recursive RGXlog is precisely
the class of regular spanners, namely JRGX{∪,π,./}K.

In addition to RGXlog being able to express union, projection and natural join, the
following program shows that RGXlog can express the string-equality selection, namely ζ=.

I StrEq(x, y)← 〈x{ε}〉, 〈y{ε}〉
I StrEq(x, y)← 〈x{σx̃{.∗}}〉, 〈y{σỹ{.∗}}〉,StrEq(x̃, ỹ)

Here, the second rule is repeated for every alphabet letter σ. (Note that we are using the
assumption that the alphabet is finite.) It thus follows that every core spanner is definable
in RGXlog. The other direction is false. As an example, no core spanner extracts all spans x
and y such that sx is not a substring of sy [7], or all pairs x and y of spans having the same
length [8]. In the following example, we construct a RGXlog program that extracts both of
these relationships.

I Example 7. In the following program, rules that involve σ and τ are repeated for all
letters σ and τ such that σ 6= τ , and the ones that involve only σ are repeated for every σ.

I Len=(x, y)← 〈x{ε}〉, 〈y{ε}〉
I Len=(x, y)← 〈x{.x̃{.∗}}〉, 〈y{.ỹ{.∗}}〉,Len=(x̃, ỹ)
I Len>(x, y)← 〈x{.+ỹ{.∗}}〉,Len=(ỹ, y)
I NotPrfx(x, y)← 〈x{σ.∗}〉, 〈y{ε} ∨ y{τ.∗}〉
I NotPrfx(x, y)← 〈x{σx̃{.∗}}〉, 〈y{σỹ{.∗}}〉,NotPrfx(x̃, ỹ)
I NotCntd(x, y)← Len>(x, y)
I NotCntd(x, y)← NotPrfx(x, y), 〈y{.ỹ{.∗}}〉,NotCntd(x, ỹ)

The program defines the following relations:

L. Peterfreund, B. ten Cate, R. Fagin, and B. Kimelfeld 13:9

Len=(x, y) contains all spans x and y of the same length.
Len>(x, y) contains all spans x and y such that x is longer than y.
NotPrfx(x, y) contains all spans x and y such that sx is not a prefix of sy. The rules
state that sx is not a prefix of sy if sx is nonempty but sy is empty, or the two begin with
different letters, or the two begin with the same letter but the rest of sx is not a prefix of
the rest of sy.
NotCntd(x, y) contains all spans x and y such that sx is not contained in sy. The rules
state that this is the case if x is longer than y, or both of the following hold: sx is not a
prefix of sy, and sx is not contained in the suffix of sy following the first symbol.

In particular, the program defines both equal-length and non-containment relationships.

The impossibility proofs of Fagin et al. [7, 8] are based on the core simplification lemma [7],
which states that every core spanner can be represented as a regular spanner, followed by
a sequence of string-equality selections (ζ=) and projections (π). In turn, the proof of this
lemma relies on the absence of the difference operator in the algebra. See Freydenberger and
Holldack [10] for an indication of why a result similar to the core simplification lemma is not
likely to hold in the presence of difference. Do things change when we consider generalized
core spanners, where difference is allowed? To be precise, we are interested in two questions:
1. Can RGXlog express every generalized core spanner?
2. Is it true that every spanner definable in RGXlog is a generalized core spanner?
In the next section, we show that the answer to the first question is yes. In the remainder of
this section, we show that the answer to the second question is no.

We begin by constructing the following RGXlog program, which defines a Boolean is
spanner that returns true if and only if the length of the input s is a power of two.

I Pow2(x)← 〈x{.}〉
I Pow2(x)← 〈x{x1{.∗}x2{.∗}}〉,Pow2(x1),Len=(x1, x2)
I Out()← [x{.∗}],Pow2(x)

We prove the following.

I Theorem 8. There is no Boolean generalized core spanner that determines whether the
length of the input string is a power of two.

Hence, we get a negative answer to the second question. In the remainder of this section, we
discuss the proof of Theorem 8. We need to prove that no generalized core spanner recognizes
precisely all strings whose length is a power of two.

Let a be a letter, and La the language of all strings s that consist of 2n occurrences of
a for n ≥ 0, that is: La

def= {s ∈ a∗ | |s| is a power of 2}. We will restrict our discussion to
generalized core spanners that accept only strings in a∗, and show that no such spanner
recognizes La. This is enough, since every generalized core spanner S can be restricted into
a∗ by joining S with the regex formula [a∗]. For simplicity, we will further assume that our
alphabet consists of only the symbol a. Then, a language L is identified by a set of natural
numbers – the set of all numbers m such that am ∈ L. We denote this set by N(L).

Presburger Arithmetic (PA) is the first-order theory of the natural numbers with the
addition (+) binary function and the constants 0 and 1 [23]. For example, the relationship
x > y is expressible by the PA formula ∃z[x = y + z + 1] and by the PA formula x 6=
y ∧ ∃z[x = y + z]. As another example, the set of all even numbers x is definable by the PA
formula ∃y[x = y + y]. When we say that a set A of natural numbers is definable in PA we
mean that there is a unary PA formula ϕ(x) such that A = {x ∈ N | ϕ(x)}.

ICDT 2019

13:10 Recursive Programs for Document Spanners

It is known that being a power of two is not definable in PA [17]. Theorem 8 then follows
from the next theorem.

I Theorem 9. A language L ⊆ {a}∗ is recognizable by a Boolean generalized core spanner if
and only if N(L) is definable in PA.

5 Equivalence to Polynomial Time

While RGXlog programs output relations (which are sets of tuples), the result of evaluating a
spanner on s is given as a set of (V, s)-records. Therefore, to compare the expressiveness of
RGXlog programs and spanners, in what follows we implicitly treat tuples as records and
vice-versa as described now. We assume that there is a fixed predefined order on Vars (e.g.,
the lexicographic order on the variables’ names) and denote the i’th element in this order by
vi. A tuple t ∈ Spansn is viewed as the record whose domain is {v1, . . . , vn} that maps each
vi to ti; a (V, s)-record r is viewed as the tuple whose i’th element equals the value of r on v
where v is the i’th variable of V according to the fixed predefined order on Vars.

An easy consequence of existing literature [11, 1] is that every RGXlog program can be
evaluated in polynomial time (as usual, under data complexity). Indeed, the evaluation
of a RGXlog program P can be done in two steps: (1) materialize the regex atoms on the
input string s and get relations over spans, and (2) evaluate P as an ordinary Datalog
program over an ordinary relational database, treating the regex formulas as the names of
the corresponding materialized relations. The first step can be completed in polynomial
time [11], and so can the second [1]. Quite remarkably, RGXlog programs capture precisely
the spanners computable in polynomial time.

I Theorem 10. A spanner is definable in RGXlog if and only if it is computable in polynomial
time.

In the remainder of this section, we discuss the proof of Theorem 10. The proof of the
“only if” direction is described right before the theorem. To prove the “if” direction, we need
some definitions and notation.

Definitions. We apply ordinary Datalog programs to databases over arbitrary domains,
in contrast to RGXlog programs that we apply to strings, and that involve databases over
the domain of spans. Formally, we define a Datalog program as a quadruple (E , I,Φ,Out)
where E and I are disjoint signatures referred to as the EDB (input) and IDB signatures,
respectively, Out is a designated output relation symbol in I, and Φ is a finite set of Datalog
rules.3 As usual, a Datalog rule has the form ϕ← ψ1, . . . , ψm, where ϕ is an atomic formula
over I and ψ1, . . . , ψm are atomic formulas over E and I. We again require each variable in
the head ϕ to occur in the body ψ1, . . . , ψm. In this paper, we restrict Datalog programs to
ones without constants; that is, an atomic formula ψi is of the form R(x1, . . . , xk) where R is
a k-ary relation symbol and the xi are (not necessarily distinct) variables. An input for a
Datalog program Q is an instance D over E that instantiates every relation symbol of E with
values from an arbitrary domain. The active domain of an instance D, denoted adom(D), is
the set of constants that occur in D.

3 Note that unlike RGXlog, here there is no need to specify variables for Out. This is because a spanner
evaluates to assignments of spans to variables, which we need to relate to Out, whereas a Datalog
program evaluates to an entire relation, which is Out itself.

L. Peterfreund, B. ten Cate, R. Fagin, and B. Kimelfeld 13:11

An ordered signature E is a signature that includes three distinguished relation symbols: a
binary relation symbol Succ, and two unary relation symbols First and Last. An ordered
instance D is an instance over an ordered signature E such that Succ is interpreted as a
successor relation of some linear (total) order over adom(D), and First and Last determine
the first and last elements in this linear order, respectively.

A semipositive Datalog program P , or Datalog⊥ program in notation, is a Datalog
program in which the EDB atoms (i.e., atoms over EDB relation symbols) can be negated.
We make the safety assumption that in each rule ρ, every variable that appears in the head
of ρ is either (1) a variable appearing in a positive (i.e., non-negated) atom of the body of
the rule, or (2) in Vars(γ) for a regex formula γ that appears in the body of the rule. For an
instance D over E , we denote by P (D) the database with the signature I that results from
applying P on D.

A query Q over a signature E is associated with a fixed arity arity(Q) = k, and it maps
an input database D over E into a relation Q(D) ⊆ (adom(D))k. As usual, Q is Boolean if
k = 0. We say that Q respects isomorphism if for all isomorphic databases D1 and D2 over
E , and for all isomorphisms ϕ : adom(D1)→ adom(D2) between D1 and D2, it is the case
that ϕ(Q(D1)) = Q(D2).

Proof idea for Theorem 10. We now discuss the proof of the “if” direction. The proof
is based on Papadimitriou’s theorem [22], stating a close connection between semipositive
Datalog and polynomial time:

I Theorem 11 ([22, 6]). Let E be an ordered signature and let Q be a query over E such
that Q respects isomorphism. Then Q is computable in polynomial time if and only if Q is
computable by a Datalog⊥ program.

Our proof continues as follows. Let S be a spanner that is computable in polynomial
time. We translate S into a RGXlog program P in two main steps. In the first step, we
translate S into a Datalog⊥ program PS by an application of Theorem 11. In the second
step, we translate PS into P . To realize the first step of the construction, we need to encode
our input string by a database, since PS operates over databases (and not over strings). To
use Theorem 11, we need to make sure that this encoding is computable in polynomial time,
and that it is invariant under isomorphism, that is, the encoding allows to restore the string
even if replaced by an isomorphic database. To realize the second step of the construction,
we need to bridge several differences between RGXlog and Datalog⊥. First, the former takes
as input a string, and the latter a database. Second, the latter assumes an ordered signature
while the former does not involve any order. Third, the former does not allow negation while
in the latter EDB atoms can be negated.

For the first step of our translation, we use a standard representation (which we shall
explain shortly) of a string as a logical structure and extend it with a total order on its active
domain. Note that we have to make sure that the active domain contains the output domain
(i.e., all spans of the input string). We define Rord to be an ordered signature with the unary
relation symbols Rσ for each σ ∈ Σ, in addition to the required Succ, First and Last. Let
s = σ1 · · ·σn be an input string. We define an instance Ds over Rord by materializing the
relations as follows.

Each relation Rσ consists of all tuples ([i, i+ 1〉) such that σi = σ.
Succ consists of the pairs ([i, i′〉, [i, i′+ 1〉) and all pairs ([i, n+ 1〉, [i+ 1, i+ 1〉) whenever
the involved spans are legal spans of s.
First and Last consist of [1, 1〉, and [n+ 1, n+ 1〉, respectively.

ICDT 2019

13:12 Recursive Programs for Document Spanners

I Comment 12. Observe that we view the linear order as the lexicographic order over the
spans. The only difference from the usual lexicographic order on ordered pairs (i, j) in that
for spans, we must have i ≤ j. The successor relation Succ is inferred from this order.

An encoding instance (or just encoding) D is an instance over Rord that is isomorphic
to Ds for some string s. In this case, we say that D encodes s. Note that the entries of an
encoding are not necessarily spans. Nevertheless, every encoding encodes a unique string.
The following lemma is straightforward.

I Lemma 13. Let D be an instance over Rord. The following hold:
1. Whether D is an encoding can be determined in polynomial time.
2. If D is an encoding, then there are unique string s and isomorphism ι such that D encodes

s and ι(Ds) = D; moreover, both s and ι are computable in polynomial time.

Let S be a spanner. We define a query QS over Rord as follows. If the input database D
is an encoding and s and ι are as in Lemma 13, then QS(D) = ι(JSK(s)); otherwise, QS(D)
is empty. To apply Theorem 11, we make an observation.

I Observation 14. The query QS respects isomorphism, and moreover, is computable in
polynomial time whenever S is computable in polynomial time.

We can now apply Theorem 11 on QS :

I Lemma 15. If S is computable in polynomial time, then there exists a Datalog⊥ program
P ′ over Rord such that P ′(D) = QS(D) for every instance D over Rord.

The second step of the translation simulates the Datalog⊥ program P ′ using a RGXlog
program. With RGXlog, we can construct Ds from s with the following rules:

I Rσ(x)← 〈x{σ}〉 I Succ(x1, x2)← 〈x2{x1{.∗} .}〉 ∨ [.∗x2{ . x1{ε} .∗}]
I First(x)← [x{ε}.∗] I Last(x)← [.∗x{ε}]

Indeed, if we evaluate the above RGXlog rules on a string s, we get exactly Ds. Note that
rules in Datalog⊥ that do not involve negation can be viewed as RGXlog rules. However,
since RGXlog do not allow negation, we need to include the negated EDBs as additional
EDBs. Nevertheless, we can negate EDBs without explicit negation, because regular spanners
are closed under difference and complement [7]. We therefore conclude the following lemma.

I Lemma 16. If P ′ is a Datalog⊥ program over Rord, then there exists a RGXlog program
P such that P (s) = P ′(Ds) for every string s.

To summarize the proof of the “if” direction of Theorem 10, let S be a spanner computable
in polynomial time. We defined QS to be such that QS(Ds) = JSK(s) for all s. Lemma 15
implies that there exists a Datalog⊥ program P ′ such that P ′(Ds) = QS(Ds) for all s. By
Lemma 16, there exists a RGXlog program P such that P (s) = P ′(Ds) for all s. Therefore,
P is the required RGXlog program such that P (s) = S(s) for all s.

5.1 RGXlog over Monadic Regex Formulas
Our proof of Theorem 10 showed that RGXlog programs over binary regex formulas (i.e.,
regex formulas with two variables) suffice to capture every spanner that is computable in
polynomial time. Next, we show that if we allow only monadic regex formulas (i.e., regex
formulas with one variable), then we strictly decrease the expressiveness. We call such
programs regex-monadic programs. We can characterize the class of spanners expressible by
regex-monadic programs, as follows.

L. Peterfreund, B. ten Cate, R. Fagin, and B. Kimelfeld 13:13

I Theorem 17. Let S be a spanner. The following are equivalent:
1. S is definable as a regex-monadic program.
2. S is definable as a RGXlog program where all the rules have the form

Out(x1, . . . , xk)← γ1(x1), . . . , γk(xk), γ()

where each γi(xi) is a unary regex formula and γ is a Boolean regex formula.

Note that in the second part of Theorem 17, the Boolean γ() can be omitted whenever
k > 0, since γ() can be compiled into γk(xk). To prove the theorem, we use a result by
Levy et al. [18], stating that recursion does not add expressive power when every relation in
the EDB is unary. This theorem implies that every spanner definable as a regex-monadic
program is regular. We then draw the following direct consequence on Boolean programs.

I Corollary 18. A language is accepted by a Boolean regex-monadic program if and only if it
is regular.

For non-Boolean spanners, we can use Theorem 17 to show that regex-monadic programs
are strictly less expressive than regular spanners. For instance, we can show that the relation
“the span x contains the span y” is not expressible as a regex-monadic program, although it
is clearly regular. Therefore, we conclude the following.

I Corollary 19. The class of regex-monadic programs is strictly less expressive than the class
of regular spanners.

6 Extension to a Combined Relational/Textual Model

In this section, we extend our main Theorem (Theorem 10) to Spannerlog – a data and query
model introduced by Nahshon et al. [21] that unifies and generalizes relational databases
and spanners by considering relations over both strings and spans.

6.1 Spannerlog
The fragment of Spannerlog that we consider is referred to by Nahshon et al. [21] as
Spannerlog〈RGX〉, and we abbreviate it as simply Spl〈RGX〉. A mixed signature is a collection
of mixed relation symbols R that have two types of attributes: string attributes and span
attributes. We denote by [R]str and [R]spn the sets of string attributes and span attributes of
R, respectively, where an attribute is represented by its corresponding index. Hence, [R]str
and [R]spn are disjoint and [R]str ∪ [R]spn = {1, . . . , arity(R)}. A mixed relation over R is a
set of tuples (a1, . . . , am) where m is the arity of R and each a` is a string in Σ∗ if ` ∈ [R]str
and a span [i, j〉 if ` ∈ [R]spn. A mixed instance D over a mixed signature consists of a
mixed relation RD for each mixed relation symbol R. A query Q over a mixed signature E is
associated with a mixed relation symbol RQ, and it maps every mixed instance D over E
into a mixed relation Q(D) over RQ.

A mixed signature whose attributes are all string attributes (in all of the mixed relation
symbols) is called a span-free signature. A mixed relation over a relation symbol whose
attributes are all string (respectively, span) attributes is called a string relation (respectively,
span relation). To emphasize the difference between mixed signatures (respectively, mixed
relation symbols, mixed relations) and the signatures that do not involve types (which we
have dealt with up to this section), we often relate to the latter as standard signatures
(respectively, standard relation symbols, standard relations).

ICDT 2019

13:14 Recursive Programs for Document Spanners

Geneo:
Cain␣son␣of ␣Adam,␣Abel␣son␣of␣Adam,␣Enoch␣son␣of␣Cain,␣Irad␣...
Obed␣son␣of␣Ruth,␣Obed␣son␣of␣Boaz,␣Jesse␣son␣of␣Obed,␣David␣...

Figure 2 The input for the program in Example 20.

We consider queries defined by Spl〈RGX〉 programs, which are defined as follows. We
assume two infinite and disjoint sets Varsstr and Varsspn of string variables and span variables,
respectively. To distinguish between the two, we mark a string variable with an overline
(e.g., x). By a string term we refer to an expression of the form x or xy, where x is a string
variable and y is a span variable. In Spl〈RGX〉, an atom over an m-ary relation symbol R
is an expression of the form R(τ1, . . . , τm) where τ` is a string term if ` ∈ [R]str or a span
variable if ` ∈ [R]spn. A regex atom is an expression of the form 〈τ〉[γ] where τ is a string
term and γ is a regex formula. Unlike RGXlog, in which there is a single input string, in
Spl〈RGX〉 a regex atom 〈τ〉[γ] indicates that the input for γ is τ . We allow regex formulas to
use only span variables. An Spl〈RGX〉 program is a quadruple 〈E , I,Φ,Out〉 where:
E is a mixed signature referred to as the EDB signature;
I is a mixed signature referred to as the IDB signature;
Φ is a finite set of rules of the form ϕ← ψ1, . . . , ψm where ϕ is an atom over I and each
ψi is an atom over I, an atom over E , or a regex atom;
Out ∈ I is a designated output relation symbol.

We require the rules to be safe in the following sense: (a) every head variable occurs at least
once in the body of the rule, and (b) every string variable x in the rule occurs, as a string
term, in at least one relational atom (over E or I) in the rule.

We extend Spl〈RGX〉 with stratified negation in the usual way: the set of relation symbols
in E ∪ I is partitioned into strata I0, I1, . . . , Im such that I0 = E , the body of each rule
contains only relation symbols from strata that precede or the same as that of the head,
and negated atoms in the body are from strata that strictly precede that of the head. In
this case, safe rules are those for which every head variable occurs at least once in a positive
atom in the body of the rule and every string variable x in the rule occurs, as a string term,
in at least one positive relational atom (over E or I) in the rule.

The semantics of an Spl〈RGX〉 program (with stratified negation) is similar to the semantics
of RGXlog programs (with the standard interpretation of stratified negation in Datalog).
Given a mixed instance D over E , the Spl〈RGX〉 program P = 〈E , I,Φ,Out〉 computes the
mixed instance P (D) over I and emits the mixed relation Out of P (D). A query Q over E
is definable in Spl〈RGX〉 if there exists an Spl〈RGX〉 program P = 〈E , I,Φ,Out〉 such that
OutP (D) = Q(D) for all mixed instances D over E .

I Example 20. Following is an Spl〈RGX〉 program over the mixed signature of the instance
of Figure 2. As usual, Out is the relation symbol in the head of the last rule, here NonRltv.

Ancstr(x̄, y, x̄, z)←Geneo(x̄) , 〈x̄〉γprnt(y, z)
Ancstr(w̄, y, x̄, z)←Ancstr(w̄, y, v̄, y′) , Geneo(x̄) , 〈x̄〉γprnt(z′, z) , StrEq(x̄z′ , v̄y′)

Rltv(w̄, y, x̄, z)←Ancstr(v̄, y′, w̄, y) , Ancstr(ū, z′, x̄, z,) , StrEq(v̄y′ , ūz′)
NonRltv(w̄, y, x̄, z)←Geneo(w̄) , 〈w̄〉γprsn(y) , Geneo(x̄) , 〈x̄〉γprsn(z), ¬Rltv(w̄, y, x̄, z)

The relation Geneo in Figure 2 contains strings that describe (partial) family trees. We
assume for simplicity that every name that occurs in such a string is a unique identifier.
The regex formulas γprsn(x) and γprnt(y, z) are the same as γcap(x) and γprnt(y, z) defined in
Example 2, respectively. The first two rules of the program extract the relation Ancstr

L. Peterfreund, B. ten Cate, R. Fagin, and B. Kimelfeld 13:15

that has four attributes: the first and third are string attributes and the second and fourth
are span attributes. The first (respectively, third) attribute is the “context” string of the
second (respectively, fourth) span attribute. Observe the similarity to the corresponding
definition in Example 5. Here, unlike Example 5, we need also to save the context string of
each of the spans, and hence, we need two additional attributes. The second and third rules
use the relation StrEq that holds pairs (w̄y, x̄z) such that w̄y and x̄z are identical. This
relation can be expressed in Spl〈RGX〉 similarly to RGXlog, as described in Section 4.

After evaluating the program, the relation Ancstr holds tuples (w̄, y, x̄, z) such that w̄y
is an ancestor of x̄z. The relation Rltv holds tuples (w̄, y, x̄, z) such that according to the
information stored in Geneo, w̄y is a relative of x̄z (i.e., they share a common ancestor).
The relation NonRltv holds tuples (w̄, y, x̄, z) such that w̄y is not a relative of x̄z.

6.2 Equivalence to Polynomial Time
Let E be a span-free signature, and D an instance over E . We define the extended active
domain of D, in notation adom+(D), to be the union of the following two sets: (a) the set
of all strings that appear in D, as well as all of their substrings; and (b) the set of all spans
of strings of D.

Note that for every query Q definable as an Spl〈RGX〉 program P = 〈E , I,Φ,Out〉, and
every input database D over E , we have adom(Q(D)) ⊆ adom+(D), that is, every output
string is a substring of some string in D, and every output span is a span of some string in
D. Our result in this section states that, under this condition, we can express in Spl〈RGX〉
with stratified negation every query Q computable in polynomial time.

I Theorem 21. Let Q be a query over a span-free signature E, with the property that
adom(Q(D)) ⊆ adom+(D) for all instances D over E. The following are equivalent:
1. Q is computable in polynomial time.
2. Q is computable in Spl〈RGX〉 with stratified negation.

We remark that Theorem 21 can be extended to general mixed signatures E if we assume
that every span mentioned in the input database D is within the boundary of some string in
D. We also remark that Theorem 21 is incorrect without negation, and this can be shown
using standard arguments of monotonicity. In addition, since we use negation, in order to
prevent ambiguity we use the stratified semantics.

Proof idea. We now discuss the proof idea of Theorem 21. The direction 2 → 1 is
straightforward, so we discuss only the direction 1→ 2. Let Q be a query over a span-free
signature E , with the property that adom(Q(D)) ⊆ adom+(D) for all instances D over
E . Assume that Q is computable in polynomial time. We need to construct an Spl〈RGX〉
program P with stratified negation for computing Q. We do so in two steps. In the first
step, we apply Theorem 10 to get a (standard) Datalog⊥ program P ′ that simulates Q. Yet,
P ′ does not necessarily respect the typing conditions of Spl〈RGX〉 with respect to the two
types string and span. So, in the second step, we transform P ′ to an Spl〈RGX〉 program P

as desired. Next, we discuss each step in more detail.

First step. In order to produce the Datalog⊥ program P ′, some adaptation is required to
apply Theorem 10. First, we need to deal with the fact that the output of Q may include
values that are not in the active domain of the input (namely, spans and substrings). Second,
we need to establish a linear order over the active domain. Third, we need to assure that the
query that Theorem 10 is applied on respects isomorphism. To solve the first problem, we

ICDT 2019

13:16 Recursive Programs for Document Spanners

extend the input database D with relations that contain every substring and every span of
every string in D. This can be done using Spl〈RGX〉 rules with regex atoms. For the second
problem, we construct a linear order over the domain of all substrings and spans of strings of
D, again using Spl〈RGX〉 rules. For this part, stratified negation is needed. For the third
problem, we show how our extended input database allows us to restore D even if all values
(strings and spans) are replaced with other values by applying an injective mapping.

Second step. In order to transform P ′ into a “legal” Spl〈RGX〉 program P that obeys
the typing of attributes and variables, we do the following. First, we replace every IDB
relation symbol R with every possible typed version of R by assigning types to attributes.
Semantically, we view the original R as the union of all of its typed versions. Second, we
replace every rule with every typed version of the rule by replacing relation symbols with
their typed versions. Third, we eliminate rules that treat one or more variable inconsistently,
that is, the same variable is treated once as a string variable and once as a span variable.
The following example demonstrates the steps described above:

I Example 22. Let us consider the Datalog⊥ program that contains the rule R(x, y) ←
S(x), T (y, z). The relation atom R(x, y) has four different typed versions, such as the
following.

Rstr,str(x, y) wherein both attributes are string attributes.
Rspn,str(x, y) wherein the first attribute is a span attribute and the second is a string
attribute.

The rule R(x, y)← S(x), T (y, z) has 25 different typed versions, one for each “type assign-
ment” for its variables, such as the following.

Rstr,str(x, y)← Sstr(x), Tstr,str(y, z)
Rspn,str(x, y)← Sstr(x), Tstr,str(y, z)

Note that the second rule is type inconsistent due to the variable x that is regarded as a
span variable in the head atom and as a string variable in the atom Sstr(x), and thus it is
eliminated.

Finally, we prove that this replacement preserves the semantics of the program.

7 Conclusions

We studied RGXlog, namely, Datalog over regex formulas. We proved that this language
expresses precisely the spanners computable in polynomial time. RGXlog is more expressive
than the previously studied language of core spanners and, as we showed here, more expressive
than even the language of generalized core spanners. We also observed that it takes very
simple binary regex formulas to capture the entire expressive power. Unary regex formulas,
on the other hand, do not suffice: in the Boolean case, they recognize precisely the regular
languages, and in the non-Boolean case, they produce a strict subset of the regular spanners.
Finally, we extended the equivalence result to Spl〈RGX〉 with stratified negation over mixed
instances, a model that generalizes both the relational model and the document spanners.

The expressive power of RGXlog is somewhat mysterious, since we do not yet have a good
understanding of how to phrase some simple polynomial-time programs naturally in RGXlog.
The constructive proof simulates the corresponding polynomial-time Turing machine, and
does not lend itself to program clarity. For instance, is there a natural program for computing
the complement of the transitive closure of a binary relation encoded by the input? An
interesting future work is to investigate this aspect by studying the complexity of translating
simple formalisms, such as generalized core spanners, into RGXlog.

L. Peterfreund, B. ten Cate, R. Fagin, and B. Kimelfeld 13:17

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.
2 Jitendra Ajmera, Hyung-Il Ahn, Meena Nagarajan, Ashish Verma, Danish Contractor, Stephen

Dill, and Matthew Denesuk. A CRM system for social media: challenges and experiences. In
WWW, pages 49–58. ACM, 2013.

3 Marcelo Arenas, Francisco Maturana, Cristian Riveros, and Domagoj Vrgoc. A framework for
annotating CSV-like data. PVLDB, 9:876–887, 2016.

4 Edward Benson, Aria Haghighi, and Regina Barzilay. Event Discovery in Social Media Feeds.
In ACL, pages 389–398. The Association for Computer Linguistics, 2011.

5 Pierre Boullier. From Contextual Grammars to Range Concatenation Grammars. Electr.
Notes Theor. Comput. Sci., 53:41–52, 2001.

6 Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and
expressive power of logic programming. ACM Comput. Surv., 33(3):374–425, 2001.

7 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document Spanners:
A Formal Approach to Information Extraction. J. ACM, 62(2):12, 2015.

8 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Declarative Cleaning
of Inconsistencies in Information Extraction. ACM Trans. Database Syst., 41(1):6:1–6:44, 2016.

9 Dominik D. Freydenberger. A Logic for Document Spanners. In ICDT, volume 68 of LIPIcs,
pages 13:1–13:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

10 Dominik D. Freydenberger and Mario Holldack. Document Spanners: From Expressive Power
to Decision Problems. In ICDT, volume 48 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 17:1–17:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

11 Dominik D. Freydenberger, Benny Kimelfeld, and Liat Peterfreund. Joining Extractions of
Regular Expressions. CoRR, abs/1703.10350, 2017. arXiv:1703.10350.

12 Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution Anomaly Detection in
Distributed Systems through Unstructured Log Analysis. In ICDM, pages 149–158. IEEE
Computer Society, 2009.

13 Georg Gottlob and Christoph Koch. Monadic Datalog and the Expressive Power of Languages
for Web Information Extraction. J. ACM, 51(1):74–113, January 2004.

14 Alon Y. Halevy, Inderpal Singh Mumick, Yehoshua Sagiv, and Oded Shmueli. Static analysis
in Datalog extensions. J. ACM, 48(5):971–1012, 2001.

15 Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2: A
spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell., 194:28–61,
2013.

16 K. N. King. Alternating Multihead Finite Automata. Theor. Comput. Sci., 61:149–174, 1988.
17 Christopher C. Leary. A Friendly Introduction to Mathematical Logic. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1st edition, 1999.
18 Alon Y. Levy, Inderpal Singh Mumick, Yehoshua Sagiv, and Oded Shmueli. Equivalence,

Query-Reachability, and Satisfiability in Datalog Extensions. In Catriel Beeri, editor, PODS,
pages 109–122. ACM Press, 1993.

19 Roger Levy and Christopher D. Manning. Deep Dependencies from Context-Free Statistical
Parsers: Correcting the Surface Dependency Approximation. In ACL, pages 327–334. ACL,
2004.

20 Yunyao Li, Frederick Reiss, and Laura Chiticariu. SystemT: A declarative information
extraction system. In ACL, pages 109–114. ACL, 2011.

21 Yoav Nahshon, Liat Peterfreund, and Stijn Vansummeren. Incorporating information extraction
in the relational database model. In WebDB, page 6. ACM, 2016.

22 Christos H. Papadimitriou. A note on the expressive power of Prolog. Bulletin of the EATCS,
26:21–22, 1985.

ICDT 2019

http://arxiv.org/abs/1703.10350

13:18 Recursive Programs for Document Spanners

23 M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du Premier
Congrès des Mathématiciens des Pays Slaves, pages 92–101, Warszawa, 1929.

24 Christopher De Sa, Alexander Ratner, Christopher Ré, Jaeho Shin, Feiran Wang, Sen Wu, and
Ce Zhang. DeepDive: Declarative knowledge base construction. SIGMOD Record, 45(1):60–67,
2016.

25 Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakrishnan. Declarative
Information Extraction Using Datalog with Embedded Extraction Predicates. In VLDB, pages
1033–1044, 2007.

26 Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher Ré.
Incremental Knowledge Base Construction Using DeepDive. PVLDB, 8(11):1310–1321, 2015.

27 Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A core of semantic
knowledge. In WWW, pages 697–706. ACM, 2007.

28 Hua Xu, Shane P. Stenner, Son Doan, Kevin B. Johnson, Lemuel R. Waitman, and Joshua C.
Denny. MedEx: a medication information extraction system for clinical narratives. JAMIA,
17(1):19–24, 2010. doi:10.1197/jamia.M3378.

29 Alexander Yates, Michele Banko, Matthew Broadhead, Michael J. Cafarella, Oren Etzioni,
and Stephen Soderland. TextRunner: Open information extraction on the web. In ACL-HLT,
pages 25–26. ACL, 2007.

30 Huaiyu Zhu, Sriram Raghavan, Shivakumar Vaithyanathan, and Alexander Löser. Navigating
the intranet with high precision. In WWW, pages 491–500. ACM, 2007.

http://dx.doi.org/10.1197/jamia.M3378

Parallel-Correctness and Parallel-Boundedness for
Datalog Programs
Frank Neven
Hasselt University and transnational University of Limburg, The Netherlands

Thomas Schwentick
Dortmund University, Germany

Christopher Spinrath
Dortmund University, Germany

Brecht Vandevoort1

Hasselt University and transnational University of Limburg, The Netherlands

Abstract
Recently, Ketsman et al. started the investigation of the parallel evaluation of recursive queries in the
Massively Parallel Communication (MPC) model. Among other things, it was shown that parallel-
correctness and parallel-boundedness for general Datalog programs is undecidable, by a reduction from
the undecidable containment problem for Datalog. Furthermore, economic policies were introduced
as a means to specify data distribution in a recursive setting. In this paper, we extend the latter
framework to account for more general distributed evaluation strategies in terms of communication
policies. We then show that the undecidability of parallel-correctness runs deeper: it already holds
for fragments of Datalog, e.g., monadic and frontier-guarded Datalog, with a decidable containment
problem, under relatively simple evaluation strategies. These simple evaluation strategies are defined
w.r.t. data-moving distribution constraints. We then investigate restrictions of economic policies
that yield decidability. In particular, we show that parallel-correctness is 2EXPTIME-complete
for monadic and frontier-guarded Datalog under hash-based economic policies. Next, we consider
restrictions of data-moving constraints and show that parallel-correctness and parallel-boundedness
are 2EXPTIME-complete for frontier-guarded Datalog. Interestingly, distributed evaluation no
longer preserves the usual containment relationships between fragments of Datalog. Indeed, not
every monadic Datalog program is equivalent to a frontier-guarded one in the distributed setting. We
illustrate the latter by considering two alternative settings where in one of these parallel-correctness
is decidable for frontier-guarded Datalog but undecidable for monadic Datalog.

2012 ACM Subject Classification Theory of computation → Database theory

Keywords and phrases Datalog, distributed databases, distributed evaluation, decision problems,
complexity

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.14

1 Introduction

Modern data management systems like Spark [6, 30] and Hadoop [5] embrace massive
parallelism to speed up query processing over large volumes of data. The latter inspired
an extensive line of research on the foundations of parallel query evaluation which mostly
focused on join queries (e.g., [2, 3, 10, 23, 24]). These investigations can be cast within the
massively parallel communication model [10] (MPC) where query evaluation proceeds in
multiple rounds and where each round consists of a computation and a communication step.
In the computation step, every server operates on its local data in isolation, whereas in the
communication step data is exchanged between the servers. The Hypercube algorithm [3,17]

1 PhD Fellow of the Research Foundation – Flanders (FWO)

© Frank Neven, Thomas Schwentick, Christopher Spinrath, and Brecht Vandevoort;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2019.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

which can compute any multiway join in one round was shown to play a fundamental role
in several of the above mentioned papers. Ameloot et al. [4] introduced a framework to
reason about such Hypercube-style single-round algorithms. The authors considered the
problem of parallel-correctness asking whether one can always be sure that the corresponding
single-round algorithm computes the query result correctly, no matter the actual data,
starting from a particular distribution policy. Parallel-correctness and related problems were
studied for conjunctive queries (with and without negation) and under set as well as bag
semantics [4, 18,22].

The relevance of Datalog as a query language for expressing recursive queries has only
gained in importance in the last decade (e.g,[1, 7, 20,28,29]). Ketsman, Albarghouthi, and
Koutris [22] started the investigation of the parallel evaluation of Datalog queries in the
multi-round MPC model. To this end, economic policies were introduced as a means to specify
data reshuffling in a recursive setting where intermediate derived facts can be communicated
between servers. So, in addition to specifying the initial distribution of extensional database
facts, economic policies also determine which servers can produce and consume intensional
database facts during evaluation of a Datalog program. Among other things, the authors
showed that parallel-correctness and parallel-boundedness (the problem that asks whether a
Datalog program can be evaluated in a bounded number of evaluation rounds) for general
Datalog programs is undecidable. For this, a reduction from the undecidable containment
problem for Datalog was used.

In this paper, we revisit the parallel-correctness and parallel-boundedness problem for
Datalog programs. We start by establishing that the undecidability of parallel-correctness
runs deeper than the containment problem. We show that parallel-correctness is already
undecidable under relatively simple distributed evaluation strategies for fragments of Datalog
with a decidable containment problem: monadic and frontier-guarded Datalog. Here, monadic
Datalog is the variant of Datalog where intensional predicates have arity at most one, whereas
in frontier-guarded Datalog every rule should contain an extensional predicate mentioning
all the variables occurring in the head of the rule (c.f., e.g., [8, 9, 13]).

With this undecidability result as a guideline, we focus in this paper on settings for which
the above mentioned decision problems become decidable. We start by presenting a generic
framework for the distributed evaluation of Datalog within the multi-round MPC model.
This framework allows for more general evaluation strategies than the economic policies
of [22]. In brief, for a given Datalog program P , its parallel evaluation is determined by a
policy pair (δ, ρ) consisting of an initial distribution policy δ and a communication policy ρ.
A database instance is first distributed according to δ assigning extensional database facts to
the computation servers. Then the computation proceeds in rounds consisting of two steps:
in the first step each server recursively evaluates the same program P over its local database,
and in the second step all derived intensional database facts are communicated according to
the communication policy ρ. In their most general form, communication policies are triples
of the form (f , k, `) indicating that when a fact f is derived on server k it is sent to server `.

Since in practice, data distribution is typically done using hash-partitioning (e.g.,[10, 25,
31]), we consider hash-based policies as initial distribution policies δ. For communication
policies ρ we consider two approaches: economic hash-based policies and communication
policies defined through data-moving constraints. The former is an instantiation of the
framework of [22] with hash-partitioning while the latter is a declarative approach based on
distribution constraints as introduced in [19], but used here in a much more restricted form
to specify relocation of facts in between rounds of computation.

The contributions of this paper can be summarized as follows:

F. Neven, T. Schwentick, C. Spinrath, and B. Vandevoort 14:3

1. We introduce in Section 3 a general framework for the specification of distributed
evaluation strategies for Datalog programs.

2. In Section 4 we first show that parallel-correctness for monadic Datalog and frontier-
guarded Datalog is undecidable for communication policies defined by simple data-moving
distribution constraints. We then study decidable cases for parallel-correctness and
show that parallel-correctness is 2ExpTime-complete for monadic Datalog and frontier-
guarded Datalog under hash-based communication policies, and that parallel-correctness
is 2ExpTime-complete for frontier-guarded Datalog under communication policies defined
by a restriction of data-moving distribution constraints.

3. The upper bounds in Section 4 rely on a fine-grained analysis of the complexity of the
containment problem for frontier-guarded Datalog in terms of the number of variables,
the number of rules and the size of the rules (Proposition 11). This analysis is based on
a proof by Bourhis, Krötzsch, and Rudolph [13] and is carried out in Section 5.

4. We show in Section 6 that parallel-boundedness is 2ExpTime-complete for frontier-
guarded Datalog and communication policies defined by the same kind of data-moving
distribution constraints as for parallel-correctness.

5. In Section 7 we show that the results on parallel-correctness do not change if we restrict
each server to derive only facts that it can communicate (similar to [21]), and that there
is a family of communication policies for which parallel-correctness of frontier-guarded
Datalog is decidable whereas parallel-correctness of monadic Datalog is undecidable.

The latter results in Section 7 show that the usual ability to transform programs from
monadic Datalog into frontier-guarded Datalog can break drastically in a distributed setting,
which we find quite surprising.

We are aware that 2ExpTime upper bounds are far from practical tractability. Still, this
is the best we can hope for as containment of a Datalog fragment easily reduces to parallel-
correctness for that fragment and containment for both monadic as well as frontier-guarded
Datalog is complete for 2ExpTime [9, 11,13].

Related work is addressed throughout the paper at the places where it is most relevant.
Due to space limitations, many proofs are delegated to the full version of the paper which
we plan to publish at arXiv by the time of the conference. We are grateful to Gaetano Geck
for inspiring discussions on the subject of this paper.

2 Preliminaries

Datalog. We assume a fixed database schema S throughout the paper. An instance G is a
finite set of facts over S. We use standard notions, including ar(R) for the arity of a relation
name R, R(x̄) for an atom (with variables in x̄), R(t̄) for a fact (with domain elements in t̄)
val(G) for the set of domain elements in G, and I|S for the set of facts in I over S ⊆ S.

A Datalog rule τ is usually written2 as R(x̄)← S1(ȳ1), . . . , Sn(ȳn). By headτ and bodyτ
we refer to its head and body, respectively. By vars(τ) and vars(A), we denote the set of
all variables in τ and in an atom A, respectively. A Datalog program P is a finite set of
Datalog rules. By edb(P), idb(P) and out(P), we denote the extensional, intensional and
output relation names of P , respectively. P is monadic if the arity of every relation in
idb(P) is at most one. It is frontier-guarded, if every rule τ is frontier-guarded, that is, if
there is an edb-atom in bodyτ that contains all the variables from headτ . We denote the
class of monadic and frontier-guarded Datalog programs with mon-Datalog and fg-Datalog,
respectively. The semantics of Datalog programs is defined in the usual way.

2 We only consider Datalog programs without constant symbols.

ICDT 2019

14:4 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

I Example 1. Let Er(x, y) denote red edges and let Es(x, y) denote sea blue edges. The
following monadic program Pmon computes all nodes reachable from a starting node x
(indicated by Start(x)) by a path containing only red and a path containing only sea blue
edges:

R(x)← Start(x) S(x)← Start(x) Out(x)← R(x), S(x)
R(x)← R(y), Er(y, x) S(x)← S(y), Es(y, x)

Let Imon = {Start(1), Er(1, 3), Er(1, 4), Es(1, 2), Es(2, 3)}, then P (Imon)|out(P) = {Out(1),
Out(3)}.

Networks and Distributed Databases. We model a network of database servers as a finite
set N of servers. A distributed instance D = (G, I) consists of a global instance G over
S and a family I = (Ik)k∈N of local instances over S, one for each server of N such that⋃
k∈N Ik = G. We also denote G by global(D). We write f@k for a fact f in Ik. For two

distributed instances D = (G, I) and D′ = (G′, I′) we write D ⊆ D′, if G ⊆ G′ and Ik ⊆ I ′k
for every k ∈ N . We emphasise that we do not allow facts to be “skipped”. That is, every
global fact should occur somewhere as a local fact.

3 Framework

We adapt the MPC model [10] and define a generic framework that allows us to reason about
Datalog programs in distributed settings. The framework is based on policy pairs (δ, ρ),
consisting of a (partial) specification of the initial data distribution δ and a communication
policy ρ over the same network. Policy pairs allow to specify initial distributions and
communication of facts independently and in different ways (thus extending the framework
of [21]). We then define the hash-based initial distributions that we use and provide several
concrete ways to define communication policies: hash-based and constraint-based. We also
define the parallel-correctness problem.

As mentioned before, we reason about Datalog programs relative to policy pairs (δ, ρ),
where δ is a distribution policy and ρ a communication policy. These terms are defined next.
We require that the distribution of EDB-facts is only described by δ and that communication
policies are restricted to IDB-facts.

In general, a distribution policy δ over a network N is a function mapping global instances
G to distributed instances D = (G, I) over N . A distributed instance D = (G, I) over N
is valid with respect to a distribution policy δ over N if δ(G) ⊆ D. Thus, we allow that D
distributes facts to more servers than required by δ. This is because we do not understand δ
as a specification of a communication round but rather as a constraint that is met at the
beginning of the evaluation of a Datalog program. However, the definition ensures that the
global instance of δ(G) is just G. We define the specific (hash-based) distribution policies
used in this paper below in Section 3.2.

For a network N and a (global) database G, a communicated fact (f , k, `) consists of a fact
f ∈ G and two servers k and ` of N and has the intended meaning that f is communicated
from k to `. A communication policy ρ for a Datalog program P over N is a monotone
mapping that assigns to every distributed instance D = (G, I) over S ∪ idb(P) and N a set
of communicated facts. Here, monotonicity means that ρ(D) ⊆ ρ(D′) whenever D ⊆ D′.
The communication policies studied in this paper are defined in Section 3.3.

F. Neven, T. Schwentick, C. Spinrath, and B. Vandevoort 14:5

3.1 Distributed Evaluation of Datalog Programs

A communication policy ρ induces a distributed multi-round evaluation strategy for P over
D = (G, I) as follows.3 Each round consists of a computation and a communication phase.
By Di = (Gi, Ii) we denote the distributed instance after the i-th communication phase. The
initial instance D0 is just D. Then, for i ≥ 1, the following phases are performed:

Computation: Every server computes the local fixpoint of P over its local instance. That
is, D′ = (G′,J) where G′ =

⋃
k∈N Jk and, for each k ∈ N , Jk = P (Ii−1

k).
Communication: For each (f , k, `) ∈ ρ(D′), f is copied from k to `. That is, for each
` ∈ N , Ii` = J` ∪ {f | (f , k, `) ∈ ρ(D′), f ∈ Jk}. Then, Di = (Gi, Ii) where Gi =

⋃
k∈N I

i
k.

The evaluation terminates when a global fixpoint is reached. We note that this fixpoint always
exists. By [P, ρ](D), we denote the union of all facts found at any server in this fixpoint. By
[P, ρ](D)|out(P) we denote the output of the query computed by P on D according to ρ.

We note that our setting differs slightly from [21]. We provide more details in Section 7
and show that it does not have any influence on our results for parallel-correctness.

I Example 2. Consider Pmon and Imon from Example 1. Let Dmon = (Imon, I) be defined
over the network N = [1, 4] with four servers and let I1 = {Start(1), Er(1, 3), Er(1, 4)},
I2 = {Start(1), Es(1, 2), Es(2, 3)} and I3 = I4 = ∅. That is, Start-facts are duplicated over
server 1 and 2, while red edges are sent to server 1 and sea blue edges to server 2. Let ρ
be the communication policy that maps a distributed database D′ = (G′, I′) to the set of
triples {(R(i), 1, f(i)) | R(i) ∈ I ′1} ∪ {(S(i), 2, f(i)) | S(i) ∈ I ′2} with f a function mapping
each value i to ((i− 1) mod 4) + 1. So, when server 1 derives a fact R(c), it is sent to server
f(c). A fact S(c) derived on server 2 is also sent to server f(c). The distributed computation
then proceeds as follows. Only newly added IDB facts are shown in each round. Underlined
facts are received through communication.

I1
1 = {R(1), R(3), R(4), S(1)}, I1

2 = {S(1), S(2), S(3)}, I1
3 = {R(3), S(3)}, I1

4 = {R(4)}

I2
1 = {Out(1)}, I2

2 = ∅, I2
3 = {Out(3)}, I2

4 = ∅

I3
1 = ∅, I3

2 = ∅, I3
3 = ∅, I3

4 = ∅

A global fixpoint is reached in the third iteration.

Now we can formally define parallel-correctness for Datalog programs and policy pairs.

I Definition 3 (Parallel-Correctness). Let P be a Datalog program and (δ, ρ) a policy pair,
consisting of a distribution policy δ and a communication policy ρ for P over the same
network. We call P parallel-correct w.r.t. (δ, ρ), if [P, ρ](D)|out(P) = P (global(D))|out(P), for
every distributed instance D that is valid with respect to δ. A program P is parallel-correct
w.r.t. a family F of policy pairs if it is parallel-correct w.r.t. every policy pair in F .

For classes P of Datalog programs, and C of families of policy pairs, Para-Correct(P, C)
denotes the decision problem that asks, for a program P ∈ P and a family F ∈ C, whether
P is parallel-correct with respect to F .

Since all our evaluation strategies are sound (i.e., [P, ρ](D)|out(P) ⊆ P (global(D))|out(P)),
and communication strategies are monotone, parallel-correctness can be decided by testing
parallel-completeness (i.e., P (global(D))|out(P) ⊆ [P, ρ](D)|out(P)).

3 We recall that we do not view the distribution policy δ as a specification of a communication round.

ICDT 2019

14:6 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

3.2 Distribution Policies
As mentioned before, we only consider hash-based distribution policies for the specification
of initial distrbutions.

Let H = (h1, . . . , hp) be a tuple of hash functions over some network N , where, for each
i, hi : Uαi → 2N − {∅}, for some arity αi and with U the set of domain elements. A hash
policy scheme Z is a set of triples (R, i, b̄) such that R is a relation symbol, i is a number
and b̄ ∈ [1, ar(R)]n for some n ≥ 0. We say that Z is consistent if for all triples (R, i, b̄) and
(S, i, c̄) it holds |b̄| = |c̄|. We only consider consistent hash policy schemes. We say that Z is
compatible with H, if |b̄| = αi, for every triple (R, i, b̄).

If Z is consistent and compatible with H, the two induce the distribution policy δZ,H
that maps every fact R(ū) to the set of servers k, for which there is a triple (R, i, b̄) ∈ Z such
that k ∈ hi(v̄), where v̄ = πb̄(ū) is the projection of ū to b̄. Formally, πb̄(ā) is (ab1 , . . . , abαi).
By F(Z) we denote the family of such distribution policies δZ,H .

We note that δZ,H is fact-based, in the sense that it maps each fact over S to a set of
servers from N , independent of the other facts in G. Like [21] we only consider fact-based
distribution policies for the specification of initial distributions.

I Example 4. Recall Imon as defined in Example 1. Consider the hash policy scheme
Z = {(Start, 1, ()), (Start, 2, ()), (Er, 1, ()), (Es, 2, ())}. Then Z is consistent and is compatible
with any tupleH = (h1, h2) of hash functions where both h1 and h2 are nullary. LetN = [1, 4].
Furthermore, let h1 map the empty tuple to 1 and let h2 map the empty tuple to 2. Then
δZ,H(Imon) = Dmon where Dmon is as defined in Example 2. We refer to Example 5 and 6
below for more involved hash policy schemes.

3.3 Communication Policies
In this paper, we study two ways to specify communication policies. We first consider policies
that are based on hash-based distribution policies and afterwards policies that are specified
with the help of distribution constraints.

In [21] the communication policies that controlled the evaluation of Datalog programs,
were called economic policies. An economic policy ρ is induced by a pair (π, γ) of fact-based
distribution policies. Here, π is referred to as the production policy determining which servers
are allowed to derive IDB-facts whereas γ is the consumption policy determining which
servers can consume which IDB- and EDB-facts. Such a pair defines a communication policy
in which each fact f induces the set {f} × π(f)× γ(f) of communicated facts.

Hash-Based Communication. If Z1, Z2 are hash policy schemes such that Z1 ∪ Z2 is
consistent and compatible with a tuple H of hash functions, they induce a communication
policy ρZ1,Z2,H as ρπ,γ where π = δZ1,H and γ = δZ2,H . So, hash-based communication
policies are an instantiation of economic policies. If Z,Z1, Z2 are hash policy schemes such
that Z ∪ Z1 ∪ Z2 is consistent4, F(Z,Z1, Z2) denotes the set of policy pairs (δZ,H , ρZ1,Z2,H),
where H is any tuple of hash functions with which Z,Z1, Z2 are compatible. We denote
by Hash-Hash the class of families that are defined in this way by triples Z,Z1, Z2 of hash
policy schemes. We note that economic policies and hash-based communication policies
are fact-based in the sense that they map S-facts f to sets of communicated facts (f , k, `),
independent of other facts.

4 Further on, we will simply say that Z,Z1, Z2 are consistent.

F. Neven, T. Schwentick, C. Spinrath, and B. Vandevoort 14:7

I Example 5. Consider the hash policy scheme Z as described in Example 4. Let Z1 =
{(R, 1, ()), (S, 2, ())} and Z2 = {(R, 3, (1)), (S, 3, (1))}. Then, Z, Z1, Z2 are consistent.
Consider now the tuple H = (h1, h2, h3) of hash functions, where h1 and h2 are as in
Example 4, and h3 is a unary hash function mapping each value i onto ((i− 1) mod 4) + 1.
Clearly, Z, Z1 and Z2 are compatible with H, and ρZ1,Z2,H = ρ, where ρ is as defined in
Example 2. For δZ,H as defined in Example 4, Pmon is parallel-correct w.r.t. (δZ,H , ρZ1,Z2,H).
Furthermore, this holds for every tuple H of hash functions with which Z, Z1, Z2 are
compatible. Or equivalently, Pmon is parallel-correct w.r.t. F(Z,Z1, Z2).

Constraint-Based Communication. We next introduce a constraint-based formalism to
define communication policies. We make use of the formalism of distribution constraints as
introduced in [19]. It is important to note that the distribution constraints in [19] are far more
general and are targeted at specifying classes of distributions (including co-partitionings).
They are in particular based on distributed tuple- and equality-generating dependencies.
Here, we use the formalism of distribution constraints to define the communication of facts
between servers and only consider so-called data-moving distribution constraints. In the
terminology of [19] they are data-collecting and do not refer to the global database.

A distributed atom A@κ consists of an atom A and a server variable κ. A distribution
constraint is a rule of the form σ = A → K for a set of distributed atoms A forming its
body and a distributed atom K forming its head. We denote headσ = K and bodyσ = A,
respectively. We further assume in this paper that bodyσ contains a distributed atom of the
form B@κ when headσ = A@κ, that is, using the same server variable κ as in the head. We
denote by vars(σ) and nvars(σ) the set of data and server variables occurring in σ.

A distribution constraint is data-moving when the atom occurring in the distributed atom
in the head also occurs in a distributed atom in the body.5 That is, when its head equals
A@κ then its body contains a distributed atom of the form A@λ (possibly κ = λ). This will
then imply that the atom A will be sent from server λ to server κ.

A valuation for σ over a distributed instance D with network N , is a mapping V which
maps server variables to servers, and the other variables to domain values. For a distributed
atom A′ = A@κ, we write V (A′) ∈ D if V (A) ∈ IV (κ). Each set Σ of data-moving distribution
constraints over S induces for every network N a communication policy ρΣ,N as follows: for
each distributed instance D over N , (f , k, `) is in ρΣ,N (D) if there is a valuation V and a
constraint σ ∈ Σ such that V (bodyσ) ⊆ D, V (headσ) = f@` and f@k ∈ V (bodyσ).

Let Σ be a set of data-moving distribution constraints and let Z be a hash policy. By
F(Z,Σ) we denote the set of all policy pairs (δZ,H , ρΣ,N), where H is a tuple of hash functions
over N and Z is compatible with H. By Hash-Constraints we denote the class of families
F(Z,Σ), where Z is a hash policy and Σ is a set of data-moving distribution constraints.

I Example 6. Consider the following set Σ of data-moving distribution constraints:

R(y)@κ,Er(y, x)@λ→ R(y)@λ, S(y)@κ,Es(y, x)@λ→ S(y)@λ.

Intuitively, for an arbitrary networkN , the induced communication policy ρΣ,N communicates
each fact R(y) to every server containing a matching fact Er(y, x). Analogously, S(y) is sent
to every server containing at least one Es(y, x).

5 While data-moving constraints are similar to VWL of [1], it is not the case that WL can express all
distribution constraints: node-generating constraints can not be defined (c.f., [19]).

ICDT 2019

14:8 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

Next, consider the hash policy scheme Z = {(Start, 1, (1)), (Er, 1, (2)), (Es, 1, (2))}, and
let Pmon be as in Example 1. Then Pmon is parallel-correct w.r.t. every (δZ,H , ρΣ,N) where
N is a network and H is a tuple consisting of a single unary hash function h1 over N with
which Z is compatible. In other words, Pmon is parallel-correct w.r.t. F(Z,Σ).

Notice in particular that Σ does not have a constraint enforcing R(c) and S(c) to end up
on the same server, as this already follows from Z and Pmon. Indeed, every derivation of R(c)
is witnessed by either Start(c) or some Er(b, c), and every derivation of S(c) is witnessed by
Start(c) or some Es(b, c). By construction of Z, these facts are always distributed onto the
same set of servers h1(b). As a result, every R(c) and corresponding S(c) are always derived
on the same set of servers h1(c).

4 Parallel-Correctness

In this section, we first show that for the fragments mon-Datalog and fg-Datalog with a
decidable containment problem, parallel-correctness is undecidable for relatively simple
distribution policies. Then we study settings where deciding parallel-correctness becomes
decidable for mon-Datalog and fg-Datalog.

The following result sharpens the undecidability result for parallel-correctness for Datalog
in [22], since it states undecidability for fragments of Datalog for which the containment
problem is decidable.

I Theorem 7. Para-Correct(fg-Datalog, Hash-Constraints) and
Para-Correct(mon-Datalog, Hash-Constraints) are undecidable.

The proof is by reduction from the halting problem of deterministic Minsky machines
that is well-known to be undecidable (cf., e.g., [27]). The reduction yields a monadic and
frontier-guarded Datalog program and therefore serves for both stated results.

We now turn to restrictions with decidable parallel-correctness. All our upper bounds
rely on the fact that to decide parallel-correctness for all allowed distributed instances and
communication policies it suffices to study distributed instances (and communication policies)
that distribute facts in a maximally scattered way.

We first make this notion of scatteredness more precise and then present our results on
parallel-correctness for Hash-Hash and Hash-MConstraints (a fragment of Hash-Constraints to
be defined below) in the two subsequent subsections.

We say that a tuple H = (h1, . . . , hp) of hash functions scatters a global instance G if,
hi(ā) ∩ hj(b̄) = ∅, for all i 6= j and all tuples ā ∈ val(G)αi , b̄ ∈ val(G)αj , and
hi(ā) ∩ hi(b̄) = ∅, for all tuples ā, b̄ ∈ val(G)αi with ā 6= b̄.

A distribution policy δZ,H scatters G if H scatters G. Thus, if δZ,H scatters G then two
facts R(ā) and R′(ā′) meet at some server, if and only if there is some i and triples (R, i, b̄)
and (R′, i, b̄′) such that πb̄(ā) = πb̄′(ā′). Similarly, a pair (δZ,H , ρZ1,Z2,H) scatters G if H
scatters G. For a global instance G and a hash policy scheme Z, we define the canonical
scattered instance δZ,H(G) where for each i ≤ p and ā ∈ val(G)αi , hi(ā) = {(i, ā)}.

4.1 Parallel-Correctness for Hash-Hash
The main result of this section is the following:

I Theorem 8. Para-Correct(fg-Datalog, Hash-Hash) and
Para-Correct(mon-Datalog, Hash-Hash) are 2ExpTime-complete.

F. Neven, T. Schwentick, C. Spinrath, and B. Vandevoort 14:9

The lower bound is, in both cases, by a reduction from the containment problem for
monadic Datalog, which is known to be 2ExpTime-hard [11].

Towards the upper bound, the following lemma shows that it suffices to restrict attention
to scattering policies to establish parallel-correctness.

I Lemma 9. Let P be a Datalog program and Z,Z1, Z2 consistent hash policy schemes. Then
P is parallel-correct w.r.t. F(Z,Z1, Z2) if and only if for all (δ, ρ) ∈ F(Z,Z1, Z2) and all
global instances G that are scattered by (δ, ρ), it holds that [P, ρ](δ(G))|out(P) = P (G)|out(P).

Next we show that over scattered instances the distributed evaluation of mon-Datalog
and fg-Datalog programs can be simulated by fg-Datalog programs over the global instance.

I Lemma 10. For every frontier-guarded or monadic Datalog program P and family
F(Z,Z1, Z2) of hash-based policy pairs, a frontier-guarded datalog program P ′ can be con-
structed such that for every pair (δ, ρ) from F and for every global instance G, for which (δ, ρ)
scatters G, it holds P ′(G)|idb(P) = [P, ρ](δ(G))|idb(P). Furthermore, the number of variables
and the length of the rules in P ′ is polynomial in the size of P , Z, Z1 and Z2 and the number
of rules of P ′ is at most exponential.

Proof. We first construct a Datalog program P ′′ that has the claimed equivalence property
and afterwards we “guard” it. The program P ′′ uses one relation symbol Ri of arity αi+ar(R)
for every relation symbol R from P and every i ≤ p occurring in the hash policy schemes.
Furthermore it has four kinds of rules:

For every triple (R, i, b̄) in Z, P1 has a rule Ri(v̄; x̄) ← R(x̄), where x̄ is a tuple of
mutually different variables, and v̄ = πb̄(x̄) is the projection of x̄ to b̄.
For each rule R(x̄) ← S1(ȳ1), . . . , Sn(ȳn) of P there is an indexed version Ri(v̄; x̄) ←
S1
i (v̄; ȳ1), . . . , Sni (v̄; ȳn), where v̄ is a tuple of pairwise distinct variables.

For every triple (R, i, b̄) in Z1 and every triple (R, j, c̄) in Z2 there is a rule Ri(v̄; x̄)←
Rj(w̄; x̄), where x̄ is a tuple of mutually different variables, v̄ is the projection of x̄ to b̄,
and w̄ is the projection of x̄ to c̄.
Finally, for each IDB-relation of P and every i, there is a rule R(x̄)← Ri(v̄; x̄), where v̄
and x̄ are (disjoint) tuples of mutually different variables.

Let (δ, ρ) and G be as in the statement of the lemma. We argue that P ′′(G)|idb(P) =
[P, ρ](δ(G))|idb(P). First of all, the rules of the first kind basically define δ(G), where a fact
Ri(c̄, ā) corresponds to R(ā) being at server (i, c̄). The second set of rules mimics the local
evaluation of Datalog rules at each such server. The third set of rules accounts for the
communication of IDB-facts according to ρ. Finally, the last set of rules produces the output
tuples. We show in the full paper how P ′′ can be guarded. J

The two lemmas show that testing for parallel-correctness reduces to testing of equivalence
of fg-Datalog programs over global databases. Notice that we need both reductions in the
previous lemma, as we show in Section 7 that monadic Datalog can not always be rewritten
into an equivalent frontier-guarded Datalog program in the distributed setting.

As a final step, we need the following result, which already follows from the construction
in [13, Theorem 7] but has a refined statement about the complexity with respect to the
number of program rules. A proof sketch can be found in Section 5.

I Proposition 11 ([13]). The containment problem for Datalog programs (on the left-hand
side) and frontier-guarded Datalog programs (on the right-hand side) is decidable in time

doubly exponential in the number of variables in P and P ′,
doubly exponential in the maximal size of a rule of P and P ′, and
singly exponential in the number of rules of P and P ′.

ICDT 2019

14:10 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

Now we are ready to give a proof sketch for the upper bound in Theorem 8. The proof of
the lower bound is given in the full version of this paper.

Proof of Theorem 8, upper bound. Let P be a mon-Datalog or fg-Datalog program and
Z,Z1, Z2 consistent hash policy schemes. Let P ′ be the fg-Datalog program that can be
constructed thanks to Lemma 10. By combing Lemma 10 with Lemma 9 it follows that P is
parallel-correct for F(Z,Z1, Z2) if and only if P and P ′ are equivalent.

The containment problem (and therefore the equivalence problem) for frontier-guarded
Datalog is known to be in 2ExpTime [13]. Since the size of P ′ is at most exponential in
the size of P , Z, and Σ, and both programs are frontier-guarded, a triply exponential upper
bound follows. However, only the number of rules of P ′ might be non-polynomial in P ,
Z,Z1, Z2, but the number of variables and the size of each rule is polynomial. Therefore, by
Proposition 11 the desired 2ExpTime upper bound follows. J

4.2 Parallel-Correctness for Hash-MConstraints
Given the undecidability of Para-Correct(fg-Datalog, Hash-Constraints), we study in this
subsection a restriction of distribution constraints that yields decidable parallel-correctness
for fg-Datalog with the same complexity as Para-Correct(fg-Datalog, Hash-Hash).

The restriction has two ingredients. First, we require that to test whether a fact f should
be communicated from a server to some other server, no other data values than those in f
need to be communicated. In particular, for constraints, in which the body has only two
node variables λ and κ, for the sending and the receiving server, we want to enable λ and
κ to test “their” atoms independently, only communicating f . To this end, we say that
a data-moving distribution constraint σ has guarded communication if whenever its body
contains atoms A1@κ1 and A2@κ2, with κ1 6= κ2, then vars(A1) ∩ vars(A2) ⊆ vars(headσ).
The second ingredient of our restriction is a kind of linearity condition for the proof trees
that result from computations. A set Σ of data-moving distribution constraints is modest if
all its constraints have guarded communication and for every σ ∈ Σ, there is exactly6 one
atom in the body with a relation symbol that occurs in the head of some constraint of Σ. By
Hash-MConstraints we denote the class of families F(Z,Σ), where Z is a hash policy and Σ
is a modest set of data-moving distribution constraints. The main result of this subsection is
the following theorem.

I Theorem 12. Para-Correct(fg-Datalog, Hash-MConstraints) is 2ExpTime-complete.

The lower bound is by a reduction from the containment problem for frontier-guarded Datalog,
which is known to be 2ExpTime-hard (cf. [9, 13]).

The approach for the upper bound is very similar to that for Theorem 8. Let P be a
Datalog program, D = (G, I) be a distributed database over network N , and Σ a set of
data-moving distribution constraints. We use proof trees for facts that are produced in a
distributed evaluation in the straightforward way by combining proof trees for Datalog facts
with proof trees for communicated facts, whose communication is specified by some tgd. For
a tree t, we denote its set of nodes by nodes(t), its root by root(t), and its set of leaves by
fringe(t). We denote the set of children of a node v by childrent(v). Moreover, for a set F of
facts and a server k, we denote by F@k the set {f@k | f ∈ F}.

6 Clearly, this is the atom A@λ required by the definition of data-moving.

F. Neven, T. Schwentick, C. Spinrath, and B. Vandevoort 14:11

I Definition 13. A proof tree t for a distributed fact f@k with respect to a Datalog program
P and a set Σ of data-moving constraints is a tree, in which every node v is labelled by a
distributed fact7 factt(v), and which has the following properties:

factt(root(t)) = f@k;
for every inner node v labelled g@`, there is either

a rule τ ∈ P and a valuation V for τ such that V (headτ) = g and V (bodyτ)@` =
{factt(w) | w ∈ childrent(v)}, or (computed facts)
a constraint σ ∈ Σ and a valuation V for σ such that V (headσ) = g@` and V (bodyσ) =
{factt(w) | w ∈ childrent(v)}. (communicated facts)

We call such a proof tree computation-free, if all its inner nodes are witnessed by constraints
from Σ.

I Definition 14. A class P of Datalog programs and a class C of distribution constraints have
the polynomial communication property if there is a polynomial q such that the following
holds, for each program P ∈ P and each finite set Σ ⊆ C: if a distributed fact has a
computation-free proof tree with respect to P and Σ, and with a set F of leaf facts, then there
is such a proof tree of size at most q(|P |, |Σ|) (with leaf facts from F).

I Lemma 15. The class of Datalog programs and the class of modest distribution constraints
have the polynomial communication property.

The following lemma shows that it suffices to restrict attention to scattering policies to
establish parallel-correctness.

I Lemma 16. Let P be a Datalog program, Z be a hash policy scheme, and Σ be a set of
data-moving distribution constraints. Then P is parallel-correct w.r.t. F(Z,Σ) if and only
if for all (δ, ρ) ∈ F(Z,Σ) and all global instances G that are scattered by δ, it holds that
[P, ρ](δ(G))|out(P) = P (G)|out(P).

The last step in the upper bound proof is the following lemma, similar to Lemma 10,
showing that over scattered instances, a fg-Datalog program over the global instance can
simulate distributed evaluation. As before, parallel-correctness can thus be reduced to testing
equivalence of fg-Datalog programs.

I Lemma 17. For every frontier-guarded Datalog program P , hash policy scheme Z, and set
Σ of data-moving distribution constraints, which has the polynomial communication property,
a frontier-guarded Datalog program P ′ can be constructed such that for every (δ, ρ) ∈ F(Z,Σ)
and every global instance G that is scattered by δ, it holds [P, ρ](δ(G))|out(P) = P ′(G)|out(P).
Furthermore, the number of variables and the length of the rules in P ′ is polynomial in the
size of P , Z, and Σ and the number of rules of P ′ is at most exponential.

Proof sketch. Similarly as in the proof of Lemma 10, we first construct an intermediate
program P ′′ which is actually a sub-program of the one constructed there. However, P ′′
does not have any rules for the communication phases, therefore the second step takes care
of communication and guarding.

As in the proof of Lemma 10, the program P ′′ uses one relation symbol Ri of arity
αi + ar(R), for every relation symbol R from P and every i ≤ p occurring in the hash policy
scheme Z. Furthermore, it has frontier-guarded versions of three kinds of rules:

7 We omit the subscript t, if it is clear from the context.

ICDT 2019

14:12 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

For every triple (R, i, b̄) in Z, P1 has a rule Ri(v̄; x̄) ← R(x̄), where x̄ is a tuple of
mutually different variables, and v̄ is the projection of x̄ to b̄.
For each rule R(x̄) ← S1(ȳ1), . . . , Sn(ȳn) of P , there is an indexed version Ri(v̄, x̄) ←
S1
i (v̄, ȳ1), . . . , Sni (v̄, ȳn), where v̄ is a tuple of pairwise distinct variables.

For each rule R(x̄) ← S1(ȳ1), . . . , Sn(ȳn) of P , there is a second version R(x̄) ←
S1
i (v̄, ȳ1), . . . , Sni (v̄, ȳn).

As before, the rules of the first kind basically define the canonical scattered instance of G
with respect to Z, where a fact Ri(c̄, ā) corresponds to R(ā) being at server (i, c̄), and the
second set of rules mimics the local evaluation of Datalog rules at each such server. The rules
of the third kind are responsible for the production of output facts. They can be guarded
similarly as in Lemma 10.

However, these rules do not account yet for the redistribution of facts during the com-
munication phases. In a nutshell, we replace IDB-atoms by sets of leaf (IDB- and EDB-)
atoms of computation-free subtrees of a proof tree. Thanks to the polynomial communication
property these sets only have polynomial size. The rules of P ′ result from P ′′ by replacing,
in all possible ways, some IDB-atoms in bodies by such (polynomial-size) sets of atoms
accounting for communication. J

5 The Containment Problem for Frontier-Guarded Datalog

In this section we prove Proposition 11 which states an upper bound for the complexity
of the containment problem for frontier-guarded Datalog. In principle, it was shown in
[13, Theorem 7], but we need that the upper bound is at most singly exponential in the
number of rules of the two programs.

Each Datalog program P induces a (possibly infinite) set C(P) of conjunctive queries
(CQs) in a natural way by finite “unravellings” of P . It is well-known that for two Datalog
programs P, P ′ it holds P ⊆ P ′ if and only if8 each CQ from C(P) is contained in some CQ
from C(P ′) [26], which in turn is equivalent to the existence of a homomorphism from every
CQ in C(P ′) to some CQ from C(P) [14]. The idea in [13], going back to [16], is to use tree
automata to test the existence of such homomorphisms. This approach requires to encode
CQs by trees over a finite alphabet, even though the number of variables in CQs from C(P)
and C(P ′) can be unlimited. The idea is to encode CQs by symbolic trees in which different,
unconnected occurrences of the same variable can represent different variables in a CQ.

The main step of the proof constructs from two fg-Datalog programs P, P ′ an alternating
two-way tree automaton APvP ′ for the set TPvP ′ of symbolic proof trees representing CQs
resulting from P that are contained in CQs resulting from P ′. In the following, we define
symbolic proof trees and, afterwards, we give a high-level description of APvP ′ in terms of a
2-player game on symbolic proof trees t (for P) and consider its size.

I Definition 18. A symbolic proof tree for a Datalog program P is a tree in which every
node v is labelled by a rule instantiation headv ← bodyv of a rule of P induced by a variable
substitution s : vars ⇀ vars, and which has the following properties.9

For every node v of t, bodyv |idb(P) = {headw | w ∈ childrent(v)} where bodyv |idb(P) is the
set of all the IDB-atoms in bodyv.
All variables that occur in bodyv but not in headv, do not occur in the label of the parent
of v.

We note that, in particular, for every leaf v of t, bodyv only contains EDB-atoms.

8 The result is only stated for finite unions in [26] but the proof is just the same for countable unions.
9 This definition does not yet yield a finite alphabet, but this issue will be addressed below.

F. Neven, T. Schwentick, C. Spinrath, and B. Vandevoort 14:13

With each symbolic proof tree t we associate a CQ q[t] which is the CQ obtained from t in
the obvious way, but replacing variable x in t in each x-connected component by a different
fresh variable. With a set T of symbolic proof trees we associate a (possibly infinite) set q[T]
of CQs via q[T] = {q[t] | t ∈ T}. Thanks to [15] we can assume that in every symbolic proof
tree t of every Datalog program P with n variables only variables among x1, . . . , x2n occur.
For a Datalog program P we denote by TP the set of symbolic proof trees t for P over set
{x1, . . . , x2n} of variables (which we fix for each program P). TP is a tree language over a
(finite) alphabet. More precisely, the alphabet size is at most polynomial in the number of
rules of P and exponential in the number of variables occurring in P (i.e. the number of
substitutions).

To test containment of P in P ′ it now suffices to test whether TP ⊆ TPvP ′ , where the
tree language TPvP ′ is defined as

TPvP ′ = {t ∈ TP | there is a tree t′ ∈ TP ′ s.t. q[t] ⊆ q[t′]}.

We show the following result, which is a slight refinement of a result in [13] in which the
complexity in terms of the number of rules in P is better suited for our purposes.

I Proposition 19. For each Datalog program P and frontier-guarded Datalog program P ′

one can construct a two-way alternating tree automaton APvP ′ for TPvP ′ of size
exponential in the number of variables in P and P ′,
exponential in the maximal size of a rule of P and P ′, and
polynomial in the number of rules of P and P ′.

To decide containment of P in P ′ one can construct a non-deterministic automaton for
the complement of TPvP ′ from APvP ′ in size exponential in the size of APvP ′ . Then P is
contained in P ′ if and only if the intersection (of the language) of the resulting automaton
with an automaton for TP is empty. Altogether this proves Proposition 11.

Our proof of Proposition 19 uses a direct construction of the automatonAPvP ′ constructed
in [13] for fg-Datalog, avoiding some technical complications in [13] caused by the more
general Guarded Queries. However, we describe APvP ′ only in terms of a 2-player game on
symbolic proof trees t for P . The players are Arthur and Morgana. Morgana’s task is to
show that t is in TPvP ′ and if she succeeds, she wins. Arthur’s task is to challenge her proof.
We only need to consider the game for trees from TP since other trees are not relevant for
the further processing. For that purpose, Morgana builds up a tree t′ ∈ TP ′ and a (partial)
homomorphism. During the game, both players can traverse the tree t in a two-way fashion
but t′ is only “traversed” top-down along a single path.

After each round, there is a current node v and a pair (h,M) where h is a partial
mapping h : var(τ ′)→ {x1, . . . , x2|var(P)|} and M ⊆ bodyτ ′ , for some rule instantiation τ ′ of
P ′. Intuitively, M consists of the atoms of q[t′], induced by τ ′, that still have to be mapped
into q[t] and h is a partial homomorphism that has to be extended by Morgana to do so.

In the first round, Morgana chooses a rule τ ′ of P ′ and a (partial) mapping h which maps
the head of τ ′ to the head of roott (i.e. the head of q[t]). Thus, M = bodyτ ′ . In all further
rounds, there are three possible cases.

Case 1 |M | > 1: If there is a subset M ′ (M such that var(M ′) ∩ var(M −M ′) ⊆ dom(h),
i.e. if h is defined for all variables occurring in M ′ and its complement, Arthur chooses
M ′ or M −M ′ and the new state is (h′,M ′) or (h′,M −M ′) where h′ is the restriction
to var(M ′) or var(M −M ′), respectively. Otherwise, Morgana has to extend the mapping

ICDT 2019

14:14 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

h to another variable x in M as follows. Morgana has to choose a (possibly new) current
node v′ of the input tree t such that all nodes on the path from v to v′ contain all
variables10 of h(M). Then she has to choose a variable appearing at v′ for h(x).

Case 2 |M | = 1 and var(M) 6⊆ dom(h): Morgana needs to extend the mapping h to all
variables in the remaining atom B ∈M . To this end, she has to choose a node v′ such
that all nodes on the path from v to v′ contain all variables of h(B). Then she has to
extend h such that it maps all remaining variables of M to variables at v′.

Case 3 |M | = 1 and var(M) ⊆ dom(h): Morgana chooses a node v′ such that all nodes on
the path from v to v′ contain all variables of h(B) where B is the remaining atom in M .
Case 3.1 B is extensional: Morgana wins if the image h(B) is in the label of v′, otherwise

she loses.
Case 3.2 B is intensional: Morgana has to choose a rule instantiation τ ′ ∈ P ′ whose

head equals B and a guard atom C of τ ′. Then she extends, if necessary, h to all
variables occurring in C (but not in B). If h(C) is not at v′, Morgana loses. Otherwise,
the game continues at v′ with the homomorphism h′ that is the restriction of h to C
and the atom set bodyτ ′ .

Due to lack of space we omit the formal definition of APvP ′ and even the formal definition
of alternating two-way tree automata. However, it should be clear that the game can be
translated into such an automaton whose states basically consist of pairs (h,M) where M ⊆
bodyτ ′ for a rule instantiation τ ′ of P ′ and a partial mapping h : var(τ ′)→ {x1, . . . , x2|var(P)|}.
In particular, the number of states is at most exponential in the number of variables of P
and P ′ (i.e. the number of partial mappings h), exponential in the size of the rules in P ′,
and polynomial in the number of rules of P ′ (choices for M).

6 Parallel-Boundedness

In this section, we study parallel boundedness of Datalog programs in our distributed setting.

I Definition 20 (Parallel-Boundedness). A Datalog program P is parallel-bounded w.r.t. a
family F of policy pairs if there is an r ∈ N such that for all policy pairs (δ, ρ) ∈ F and all
distributed instances D valid w.r.t. δ, no new output facts are computed on any server after
r rounds in the distributed evaluation of P on D w.r.t. ρ.

We note that our definition of parallel-boundedness is more generous than the one in [21],
since there the requirement is that no facts whatsoever are produced any more. Of course,
complexity upper bounds for our notion translate to the notion of [21].

For classes P of Datalog programs, and C of families of policy pairs, Para-Bound(P, C)
denotes the decision problem that asks, for a program P ∈ P and a family F ∈ C, whether P
is parallel-bounded and parallel-correct with respect to F . Parallel-boundedness for programs
that are not parallel-correct does not seem meaningful.

Our objective in this section is to decide parallel-boundedness for frontier-guarded Datalog
programs and families of policy pairs in Hash-MConstraints.

I Theorem 21. Para-Bound(fg-Datalog,Hash-MConstraints) is 2ExpTime-complete.

Similarly to the lower bound proof for parallel-correctness (cf. Theorem 12), the lower bound
is by a reduction from the containment problem for monadic Datalog, which is known to be
2ExpTime-hard [11].

10Recall that non-connected occurrences of a variable in t correspond to different variables in q[t].

F. Neven, T. Schwentick, C. Spinrath, and B. Vandevoort 14:15

Towards the upper bound, let in the following P be a fg-Datalog program, Z a hash policy
scheme and Σ a set of data-moving distribution constraints, such that P and Σ have the
polynomial communication property. The starting point for the upper bound is the rewriting
of P,Z,Σ into a fg-Datalog program P ′ from Lemma 17 which simulates the distributed
evaluation of P on scattered instances. We show first that the consideration of scattered
instances suffices also for parallel-boundedness.

I Lemma 22. Let P be a Datalog program, Z a hash policy scheme, and Σ be a set of
data-moving distribution constraints such that P is parallel-correct w.r.t. F(Z,Σ). Then P
is parallel-bounded w.r.t. F(Z,Σ) if and only if there is an r ∈ N such that for all policy
pairs (δS, ρS) ∈ F and all distributed instances DS scattered by δS, no new output facts are
computed on any server after r rounds in the distributed evaluation of P on DS w.r.t. ρS.

The program P ′ has two kinds of rules: communication-prone rules that incorporate
communication steps and communication-free rules. The body of each communication-prone
rule consists of the leaves of some partial proof tree. With each body atom A, the number of
communication steps in which A is sent in this proof tree can be computed when the rule
is generated and symbolic proof trees corresponding to P ′ can be extended to carry these
numbers as weights.

Then P is parallel-bounded w.r.t. F(Z,Σ) if and only if there is some constant r such
that for each symbolic proof tree t ∈ TP , there is a tree t′ ∈ TP ′ such that q[t] ⊆ q[t′] and
along each (root-to-leaf) path of t′ the sum of the communication weights is at most r.
Thus, testing parallel-boundedness asks for an extension of the approach of Section 5 which
constructed an alternating automaton APvP ′ for the set of trees t ∈ TP that are “captured”
by trees t′ ∈ TP ′ . Now we are asking for a tree t′ that respects the path bound. Since r is
not known in advance, the “communication count” can not be incorporated into the states
of APvP ′ . However, there is an extension of tree automata that was invented for exactly
this kind of situation: cost automata. For our purposes, we need a cost automaton that has
one counter which can be incremented but neither be decremented nor reset to zero. A cost
automaton A is limited if there is some number s such that in each run of A the counter
stays below s.

I Proposition 23. For each frontier-guarded Datalog program P , hash policy scheme Z, and
set Σ of modest distribution constraints such that P is parallel-correct w.r.t. F(Z,Σ), one
can construct an alternating two-way tree cost automaton A that uses only a single counter,
which is never reset, such that A is limited if and only if P is parallel-bounded w.r.t. F(Z,Σ).
Furthermore, A has size (and can be constructed in time) exponential in P .

The final step is then to decide whether A is limited which is decidable in exponential
time thanks to the following result by [12]. In particular, Propositions 23 and 24 imply the
upper bound of Theorem 21.

I Proposition 24 ([12]). The limitedness problem for alternating two-way tree cost automata
with a single counter that is never reset, is decidable in exponential time.

Proof idea for Proposition 23. Let P ′ be the program constructed in Lemma 17 for P , Z,
and Σ. Similarly as in Section 5, we describe the cost automaton A in terms of a 2-player
game on symbolic proof trees t for P ′.

The rules of the game are almost exactly as in the game underlying AP ′vP ′ . We assign a
value to each play, which is the sum of the weights of the IDB-atoms of communication-prone
rules in t′ that are visited in that play.11 Morgana’s task is to minimize the value of the

11We recall that a play can move arbitrarily in t but evolves along a path of t′.

ICDT 2019

14:16 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

play, while Arthur’s task is to maximize it. Correspondingly, in the semantics of A the value
for t is maximized over Arthur’s moves and minimized over Morgana’s moves. There is one
difference to the rules for AP ′vP ′ : in situations where Morgana would lose immediately,
Arthur is allowed to increment the counter arbitrarily. Altogether, the constructed cost
automaton A is limited if and only if P is parallel-bounded.

The size of A is the same as for APvP ′ , i.e. polynomial in the number of rules of P ′ and
at most exponential in the number of variables of P ′ and the maximal length of a rule in P ′.
Thus, it has size exponential in the original program P (cf. Lemma 17). J

7 Variants of the Framework

The precise formalisation of our framework leaves a lot of freedom and it is a fair question
how “stable” our results are. To shed some light on this question, we consider in this section
two slightly different settings for distributed evaluation strategies for Datalog. The answers
that we get are not entirely unambiguous.

We call the first alternative the locally restrained setting. It was actually used in [21].
It requires that during each local fixpoint computation, every server only derives facts that
it can communicate to other servers according to the communication policy.12 It turns out
that our results on parallel-correctness are not affected by this difference in the setting.

I Proposition 25.
(a) In the locally restrained setting, Para-Correct(fg-Datalog, Hash-Hash) and

Para-Correct(mon-Datalog, Hash-Hash) are in 2ExpTime.
(b) In the locally restrained setting, Para-Correct(fg-Datalog, Hash-MConstraints) is in

2ExpTime.

The second variant attempts to restrict communication by disallowing servers to send
facts that they did not derive themselves through a local computation. We refer to this
variant as the non-transitive communication setting.

Interestingly, although this variant does not alter our result for frontier-guarded Datalog,
it has a huge effect on parallel-correctness for monadic Datalog.

I Proposition 26.
(a) In the non-transitive communication setting

Para-Correct(fg-Datalog, Hash-Constraints) is in 2ExpTime.
(b) In the non-transitive communication setting

Para-Correct(mon-Datalog, Hash-Constraints) is undecidable.

In a nutshell, the difference between frontier-guarded Datalog and monadic Datalog in the
non-transitive communication setting can be explained as follows. The reduction in the proof
of Proposition 26b (stemming from the proof of Theorem 7) simulates a Minsky machine
by repeated redistribution of facts. Although non-transitive communication only allows to
send facts that were derived locally, for mon-Datalog this can be overcome by copy rules.
Although copy rules are also allowed in fg-Datalog, they need to be guarded by EDB-atoms
there, and this might change the semantics in a distributed setting.

In particular this setting shows that in a parallel setting it can happen that the usual
“semantical inclusion” of monadic Datalog in frontier-guarded Datalog by rewriting programs

12Although it might seem useless to restrict local computation, this setting allows a more fine-grained
control over the workload for each server if for example all servers start with the complete database.

F. Neven, T. Schwentick, C. Spinrath, and B. Vandevoort 14:17

of the former kind into programs of the latter kind fails to hold and monadic Datalog can
indeed behave worse than frontier-guarded Datalog. The next example illustrates why this
rewriting does not always work in a distributed setting.

I Example 27. Every monadic Datalog program can be rewritten into an equivalent (w.r.t.
evaluation over a global database) frontier-guarded one by adding suitable guards [13].
Consider the program Pmon from Example 1. Then the rule Out(x) ← R(x), S(x) is not
frontier-guarded but can be replaced by the following set of frontier-guarded rules:

Out(x)← R(x), S(x),Start(x) Out(x)← R(x), S(x), Es(x, y)
Out(x)← R(x), S(x), Er(x, y) Out(x)← R(x), S(x), Es(y, x)
Out(x)← R(x), S(x), Er(y, x)

We denote the such obtained program by P ′mon. Then for every global database G, Pmon(G) =
P ′mon(G), but [Pmon, ρ](Dmon) 6= [P ′mon, ρ](Dmon) for Dmon and ρ as defined in Example 2.
Indeed, I3 can never output Out(3) as that server contains none of the required EDB-facts.
The difference between the global and distributed evaluation is that in the former all guards
are present in the global database while this does not necessarily hold true for all servers in
the distributed evaluation.

8 Conclusion

While most effort has been devoted to study correctness properties in the simpler setting
of the single-round MPC model (e.g., [4, 18,22]), to date only Ketsman, Albarghouthi, and
Koutris [21] considered correctness w.r.t. the multi-round MPC model (for Datalog). We
continue in their footsteps by presenting a more general framework in terms of communication
policies for the distributed evaluation of Datalog. We provide decidable instances for the
parallel-correctness and parallel-boundedness problem for Datalog. Even though the obtained
complexities are far from tractable, we do feel that they contribute to not only the study of
reasoning for parallel Datalog but also for parallel queries in the multi-round MPC model
in general. Indeed, while a most natural direction for future work is to investigate more
tractable settings for Datalog, we are eager to explore communication policies to study the
evaluation of non-recursive queries, like join queries, in the multi-round setting. In addition,
we plan to investigate data-moving distribution constraints further, trying to characterize
the class of distributed evaluations that extensions and restrictions of those can define. We
also would like to explore how they can be efficiently evaluated, which is not obvious as such
constraints can refer to multiple servers.

An important insight resulting from our investigations is the central role scattered
instances play w.r.t. parallel-correctness and parallel-boundedness, and how they can be
encoded into Datalog programs if they are defined through hash partitioning. It allowed to
translate our reasoning problems for the distributed setting to static analysis problems for
traditional Datalog, a topic that has received quite some attention in the literature.

References

1 Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Émilien Antoine. A rule-based
language for web data management. In Principles of Database Systems, pages 293–304, 2011.

2 Foto N. Afrati, Manas R. Joglekar, Christopher Ré, Semih Salihoglu, and Jeffrey D. Ullman.
GYM: A multiround distributed join algorithm. In International Conference on Database
Theory, ICDT 2017, pages 4:1–4:18, 2017.

ICDT 2019

14:18 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

3 Foto N. Afrati and Jeffrey D. Ullman. Optimizing Multiway Joins in a Map-Reduce Environ-
ment. IEEE Transactions on Knowledge and Data Engineering, 23(9):1282–1298, 2011.

4 Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. Parallel-
Correctness and Transferability for Conjunctive Queries. Journal of the ACM, 64(5):36:1–36:38,
2017. doi:10.1145/3106412.

5 Apache Hadoop. https://hadoop.apache.org/.
6 Apache Spark. https://spark.apache.org/.
7 Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic,

Todd L. Veldhuizen, and Geoffrey Washburn. Design and Implementation of the LogicBlox
System. In ACM SIGMOD International Conference on Management of Data, SIGMOD 2015,
pages 1371–1382, 2015.

8 Vince Bárány, Balder ten Cate, and Martin Otto. Queries with Guarded Negation. Proceedings
of the Very Large Database Endowment, 5(11):1328–1339, 2012.

9 Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded Negation. In International
Colloquium on Automata, Languages, and Programming, ICALP 2011, pages 356–367, 2011.

10 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication Steps for Parallel Query
Processing. Journal of the ACM, 64(6):40:1–40:58, 2017.

11 Michael Benedikt, Pierre Bourhis, and Pierre Senellart. Monadic Datalog Containment. In
International Colloquium on Automata, Languages, and Programming, ICALP 2012, pages
79–91, 2012.

12 Michael Benedikt, Balder Ten Cate, Thomas Colcombet, and Michael Vanden Boom. The
complexity of boundedness for guarded logics. In Logic in Computer Science, LICS 2015,
pages 293–304, 2015.

13 Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. Reasonable Highly Expressive
Query Languages. In International Joint Conference on Artificial Intelligence, IJCAI 2015,
pages 2826–2832, 2015.

14 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In STOC, pages 77–90, 1977.

15 Surajit Chaudhuri and Moshe Y Vardi. On the equivalence of recursive and nonrecursive
datalog programs. Journal of Computer and System Sciences, 54(1):61–78, 1997.

16 Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable
Optimization Problems for Database Logic Programs (Preliminary Report). In Proceedings of
the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA, pages 477–490, 1988. doi:10.1145/62212.62259.

17 Sumit Ganguly, Avi Silberschatz, and Shalom Tsur. A Framework for the Parallel Processing
of Datalog Queries. In ACM SIGMOD International Conference on Management of Data,
SIGMOD 1990, pages 143–152, 1990.

18 Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. Parallel-Correctness and
Containment for Conjunctive Queries with Union and Negation. In International Conference
on Database Theory, ICDT 2016, pages 9:1–9:17, 2016.

19 Gaetano Geck, Frank Neven, and Thomas Schwentick. Distribution Constraints: a Declarative
Framework for Reasoning about Data Distributions. Manuscript, 2018.

20 Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu, Paraschos Koutris,
Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk, Jingjing Wang, Andrew Whitaker,
Shengliang Xu, Magdalena Balazinska, Bill Howe, and Dan Suciu. Demonstration of the Myria
Big Data Management Service. In ACM SIGMOD International Conference on Management
of Data, SIGMOD 2014, pages 881–884, 2014.

21 Bas Ketsman, Aws Albarghouthi, and Paraschos Koutris. Distribution Policies for Datalog. In
International Conference on Database Theory, ICDT 2018, pages 17:1–17:22, 2018.

22 Bas Ketsman, Frank Neven, and Brecht Vandevoort. Parallel-Correctness and Transferability
for Conjunctive Queries under Bag Semantics. In International Conference on Database
Theory, ICDT 2018, pages 18:1–18:16, 2018.

http://dx.doi.org/10.1145/3106412
https://hadoop.apache.org/
https://spark.apache.org/
http://dx.doi.org/10.1145/62212.62259

F. Neven, T. Schwentick, C. Spinrath, and B. Vandevoort 14:19

23 Bas Ketsman and Dan Suciu. A Worst-Case Optimal Multi-Round Algorithm for Parallel
Computation of Conjunctive Queries. In Principles of Database Systems, PODS 2017, pages
417–428, 2017.

24 Paraschos Koutris, Paul Beame, and Dan Suciu. Worst-Case Optimal Algorithms for Parallel
Query Processing. In International Conference on Database Theory, ICDT 2016, pages
8:1–8:18, 2016.

25 M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems, Third
Edition. Springer, 2011.

26 Yehoshua Sagiv and Mihalis Yannakakis. Equivalences Among Relational Expressions with the
Union and Difference Operators. J. ACM, 27(4):633–655, 1980. doi:10.1145/322217.322221.

27 Mark V. Sapir. Minsky Machines and Algorithmic Problems. In Fields of Logic and Compu-
tation II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, volume
9300 of Lecture Notes in Computer Science, pages 273–292. Springer, 2015.

28 Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo
Zaniolo. Big Data Analytics with Datalog Queries on Spark. In ACM SIGMOD International
Conference on Management of Data, SIGMOD 2016, pages 1135–1149, 2016.

29 Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous and Fault-Tolerant
Recursive Datalog Evaluation in Shared-Nothing Engines. Proceedings of the Very Large
Database Endowment, 8(12):1542–1553, 2015.

30 Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Shark: SQL and Rich Analytics at Scale. In ACM SIGMOD International Conference
on Management of Data, SIGMOD 2013, pages 13–24, 2013.

31 Erfan Zamanian, Carsten Binnig, and Abdallah Salama. Locality-aware Partitioning in Parallel
Database Systems. In ACM SIGMOD International Conference on Management of Data,
SIGMOD 2015, pages 17–30, 2015.

ICDT 2019

http://dx.doi.org/10.1145/322217.322221

The First Order Truth Behind Undecidability of
Regular Path Queries Determinacy
Grzegorz Głuch
Institute of Computer Science, University of Wrocław, Poland

Jerzy Marcinkowski
Institute of Computer Science, University of Wrocław, Poland

Piotr Ostropolski-Nalewaja
Institute of Computer Science, University of Wrocław, Poland

Abstract
In our paper [Głuch, Marcinkowski, Ostropolski-Nalewaja, LICS ACM, 2018] we have solved an
old problem stated in [Calvanese, De Giacomo, Lenzerini, Vardi, SPDS ACM, 2000] showing that
query determinacy is undecidable for Regular Path Queries. Here a strong generalisation of this
result is shown, and – we think – a very unexpected one. We prove that no regularity is needed:
determinacy remains undecidable even for finite unions of conjunctive path queries.

2012 ACM Subject Classification Information systems → Graph-based database models

Keywords and phrases database theory, query, view, determinacy, recursive path queries

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.15

Related Version https://arxiv.org/abs/1808.07767

Funding Supported by the Polish National Science Centre (NCN) grant 2016/23/B/ST6/01438.

1 Introduction

Query determinacy problem (QDP)

Imagine there is a database D we have no direct access to, and there are views of this D
available to us, defined by some set of queries Q = {Q1, Q2, . . . Qk} (where the language of
queries from Q is a parameter of the problem). And we are given another query Q0. Will
we be able, regardless of D, to compute Q0(D) only using the views Q1(D), . . . Qk(D)? The
answer depends on whether the queries in Q determine1 query Q0. Stating it more precisely,
the Query Determinacy Problem is2:

The instance of the problem is a set of queries Q = {Q1, . . . Qk}, and another query Q0.
The question is whether Q determines Q0, which means that for (♣) each two structures
(database instances) D1 and D2 such that Q(D1) = Q(D2) for each Q ∈ Q, it also holds
that Q0(D1) = Q0(D2).

QDP is seen as a very natural static analysis problem in the area of database theory. It is
important for privacy (when we don’t want the adversary to be able to compute the query)
and for (query evaluation plans) optimisation (we don’t need to access again the database as
the given views already provide enough information). And, as a very natural static analysis
problem, it has a 30 years long history as a research subject – the oldest paper we were able

1 Or, using the language of [6], [5] [9] and [8], whether Q are lossless with respect to Q0.
2 More precisely, the problem comes in two different flavors, “finite” and “unrestricted”, depending on
whether the (♣) “each” ranges over finite structures only, or all structures, including infinite.

© Grzegorz Głuch, Jerzy Marcinkowski, and Piotr Ostropolski-Nalewaja;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2019.15
https://arxiv.org/abs/1808.07767
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

to trace, where QDP is studied, is [20], where decidability of QDP is shown for the case
where Q0 is a conjunctive query (CQ) and also the set Q consists of a single CQ.

But this is not a survey paper, so let us just point a reader interested in the history of
QDP to Nadime Francis’s thesis [14], which is a very good read indeed.

1.1 The context
As we said, this is a technical paper not a survey paper. But still, we need to introduce the
reader to the technical context of our results. And, from the point of view of this introduc-
tion, there are two lines of research which are interesting: decidability problems of QDP for
positive fragments of SQL (conjunctive queries and their unions) and for fragments of the lan-
guage of Regular Path Queries (RPQs) – the core of most navigational graph query languages.

QDP for fragments of SQL

A lot of progress was done in this area in two past decades. The paper [21] was the first to
present a negative result. QDP was shown there to be undecidable if unions of conjunctive
queries are allowed in Q and Q0. The proof is moderately hard, but the queries are high
arity (by arity of a query we mean the number of free variables) and hardly can be seen as
living anywhere close to database practice.

In [22] it was proved that determinacy is also undecidable if the elements of Q are
conjunctive queries and Q0 is a first order sentence (or the other way round). Another
somehow related (although no longer contained in the first order/SQL paradigm) negative
result is presented in [12]: determinacy is shown there to be undecidable if Q is a DATALOG
program and Q0 is a conjunctive query. Finally, closing the classification for the traditional
relational model, it was shown in [17] and [18] that QDP is undecidable for Q0 and the
queries in Q being conjunctive queries. The queries in [17] and [18] are quite complicated
(the Turing machine there is encoded in the arities of the queries), and again hardly resemble
anything practical.

On the positive side, [22] shows that the problem is decidable for conjunctive queries if
each query from Q has only one free variable.

Then, in [2] decidability was shown for Q and Q0 being respectively a set of conjunctive
path queries and a path query. (see Section 3 for the definition). This is an important result
from the point of view of the current paper, and the proof in [2], while not too difficult, is very
nice – it gives the impression of deep insight into the real reasons why a set of conjunctive
path queries determines another conjunctive path query.

The result from [2] begs for generalisations, and indeed it was generalised in [23] to the
scenario where Q is a set of conjunctive path queries but Q0 is any conjunctive query.

QDP for Regular Path Queries

A natural extension of QDP to the graph database scenario is considered here. In this
scenario, the underlying data is modelled as graphs, in which nodes are objects, and edge
labels define relationships between those objects. Querying such graph-structured data has
received much attention recently, due to numerous applications, especially for social networks.

There are many more or less expressive query languages for such databases (see [3]).
The core of all of them (the SQL of graph databases) is RPQ – the language of Regular
Path Queries. RPQ queries ask for all pairs of objects in the database that are connected
by a specified path, where the natural choice of the path specification language, as [26]

G. Głuch, J. Marcinkowski, and P. Ostropolski-Nalewaja 15:3

elegantly explains, is the language of regular expressions. This idea is at least 30 years old
(see for example [11], [10]) and considerable effort was put to create tools for reasoning about
regular path queries, analogous to the ones we have in the traditional relational databases
context. For example [1] and [4] investigate decidability of the implication problem for path
constraints, which are integrity constraints used for RPQ optimisation. Containment of
conjunctions of regular path queries has been proved decidable in [7] and [13], and then, in
more general setting, in [19] and [24].

Naturally, query determinacy problem has also been stated, and studied, for Regular
Path Queries. This line of research was initiated in [6], [5], [9] and [8], and it was in [9] where
the central problem of this area – decidability of QDP for RPQ – was first stated (called
there “losslessness for exact semantics”).

On the positive side, the previously mentioned result of Afrati [2] can be seen as a special
case, where each of the regular languages defining the queries only consists of one word
(conjunctive path queries considered in [2] constitute in fact the intersection of CQ and RPQ).
Another positive result is presented in [15], where “approximate determinacy” is shown to be
decidable if the query Q0 is (defined by) a single-word regular language (a conjunctive path
query), and the languages defining the queries in Q0 and Q are over a single-letter alphabet.
See how difficult the analysis is here – despite a lot of effort (the proof of the result in [15]
invokes ideas from [2] but is incomparably harder) even a subcase (for a single-word regular
language) of a subcase (unary alphabet) was only understood “approximately”.

On the negative side, in [16], we showed (solving the problem from [9]), that QDP is
undecidable for full RPQ.

1.2 Our contribution
The main result of this paper, and – we think – quite an unexpected one, is the following
strong generalisation of the main result from [16]:

I Theorem 1.1. Answering Determinacy question for Finite Regular Path Queries is unde-
cidable in unrestricted and finite case (for necessary definitions see Section 3).

To be more precise, we show that the problem, both in the “finite” and the “unrestricted”
versions, is undecidable.

It is, we believe, interesting to see that this negative result falls into both lines of research
outlined above. Finite Regular Path Queries are of course a subset of RPQ, where star is
not allowed in the regular expressions (only concatenation and plus are), but on the other
hand they are also Unions of Conjunctive Path Queries, so unlike general RPQs are first
order queries and they also fall into the SQL category.

Our result shows that the room for generalising the positive result from [2] is quite limited.
What we however find most surprising is the discovery that it was possible to give a negative
answer to the question from [9], which had been open for 15 years, without talking about
RPQs at all – undecidability is already in the intersection of RPQs and (positive) SQL.
I Remark. [3] makes a distinction between “simple paths semantics” for Recursive Path
Queries and “all paths semantics”. As all the graphs we produce in this paper are acyclic
(DAGs), all our results hold for both semantics.

Organization of the paper.

In short Section 3 we introduce (very few) notions and some notations we need to use.
Sections 4–14 of this paper are devoted to the proof of Theorem 1.1.

ICDT 2019

15:4 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

In Section 4 we first follow the ideas from [16] defining the red-green signature. Then
we define the game of Escape and state a crucial lemma (Lemma 4.2), asserting that this
game really fully characterises determinacy for Regular Path Queries. This part follows in
the footsteps of [16], but with some changes: in [16] Escape is a solitary game, and here we
prefer to see it as a two-player one.

At this point we will have the tools ready for proving Theorem 1.1. In Section 5 we
explain what is the undecidable problem we use for our reduction, and in Section 6 we present
the reduction. In Sections 7 – 14 we use the characterisation provided by Lemma 4.2 to
prove correctness of this reduction. Due to the space constraint, we try to explain the main
ideas and formulate all the crucial lemmas in the main body of the paper, but the proofs of
the lemmas can be found in the full paper.

2 How this paper relates to [16]

This paper builds on top of the technique developed in [16] to prove undecidability of
QDP-RPQ for any languages, including infinite.

From the point of view of the high-level architecture the two papers do not differ much.
In both cases, in order to prove that if some computational device rejects its input then
the respective instance of QDP-RPQ (or QDP-FRPQ) is positive (there is determinacy) we
use a game argument. In [16] this game is solitary. The player, called Fugitive, constructs
a structure/graph database (a DAG, with source a and sink b). He begins the game by
choosing a path D0 from a to b, which represents a word from some regular language G(Q0).
Then, in each step he must “satisfy requests”– if there is a path from some v to w in the
current structure, representing a word from some (*) regular language Q then he must add
a path representing a word from another language Q′ connecting these v and w. He loses
when, in this process, a path from a to b from yet another language R(Q0) is created. In this
paper this game is replaced by a two-player game. But this is a minor difference. There are
however two reasons why the possibility of using infinite languages is crucial in [16]. Due to
these reasons, while, as we said, the general architecture of the proof of the negative result in
this paper is the same as in [16], the implementation of this architecture is almost completely
different here.

The first reason is as follows. Because of the symmetric nature of the constraints, the
language Q (in (*) above) is always almost the same as language Q′ (they only have different
“colors”, but otherwise are equal). For this reason it is not at all clear how to force Fugitive
to build longer and longer paths. This is a problem for us, as to be able to encode something
undecidable we need to produce structures of unbounded size. One can think that paths of
unbounded length translate to potentially unbounded length of Turing machine tape.

In order to solve this problem we use – in [16] – a language G(Q0). It is an infinite
language and – in his initial move – Fugitive could choose/commit to a path of any length
he wished so that the length of the path did not need to increase in the game. But now we
only have finite languages, so also G(Q0) must be finite and we needed to invent something
completely different.

The second reason is in R(Q0). This – one can think – is the language of “forbidden
patterns” – paths from a to b that Fugitive must not construct. If he does, it means that he
“cheats”. But now again, R(Q0) is finite. So how can we use it to detect Fugitive’s cheating
on paths no longer than the longest one in R(Q0)? This at first seemed to us to be an
impossible task.

But it wasn’t impossible. The solution to both aforementioned problems is in the
complicated machinery of languages producing edges labelled with x and y.

G. Głuch, J. Marcinkowski, and P. Ostropolski-Nalewaja 15:5

3 Preliminaries and notations

Determination

For a set of queries Q = {Q1, Q2, . . . , Qk} and another query Q0, we say that Q determines
Q0 if and only if: ∀D1,D2 Q(D1) = Q(D2) → Q0(D1) = Q0(D2), where Q(D1) = Q(D2) is
defined as ∀Q∈Q Q(D1) = Q(D2). Query determinacy comes in two versions: unrestricted
and finite, depending on whether we allow or disallow infinite structures D to be considered.
When we speak about determinacy without specifying explicitly it’s version, we assume the
unrestricted case of the problem.

Structures

When we say “structure” we always mean a directed graph with edges labelled with letters
from some signature/alphabet Σ. In other words every structure we consider is a relational
structure D over some signature Σ consisting of binary predicate names. Letters D, M, G
and H are used to denote structures. Ω is used for a set of structures. Every structure we
consider will contain two distinguished constants a and b. For two structures G and G′ over
Σ, with sets of vertices V and V ′, a function h : V → V ′ is called a homomorphism if for each
two vertices 〈u, v〉 connected by an edge with label e ∈ Σ in G there is an edge connecting
〈h(u), h(v)〉, with the same label e, in G′.

Conjunctive path queries

Given a set of binary predicate names Σ and a word w = a1a2 . . . an over Σ∗ we define a
(conjunctive) path query w(v0, vn) as a conjunctive query:

∃v1,...,vn−1a1(v0, v1) ∧ a2(v1, v2) ∧ . . . an(vn−1, vn).

We use the notation w[v0, vn] to denote the canonical structure (“frozen body”) of query
w(v0, vn) – the structure consisting of elements v0, v1, . . . vn and atoms a1(v0, v1), a2(v1, v2),
. . . an(vn−1, vn).

Regular path queries

For a regular language Q over Σ we define a query, which is also denoted by Q, as Q(u, v) =
∃w∈Qw(u, v)

In other words such a query Q looks for a path in the given graph labelled with any word
from Q and returns the endpoints of that path. Clearly, if Q is a finite regular language
(finite regular path query), then Q(u, v) is a union of conjunctive queries.

We use letters Q and L to denote regular languages and Q and L to denote sets of regular
languages. The notation Q(D) has the natural meaning: Q(D) = {〈u, v〉 |D |= Q(u, v)}.

4 Red-Green Structures and Escape

In this section we will provide crucial tool for our proof. First we will introduce red-green
structures. Such a structure will consist of two structures each with distinct colour. One can
think that we take two databases and then colour one green and another red and then look
at them as a whole. This notion is very useful for two coloured Chase technique from [17]
and [18] that has evolved into Game of Escape in [16] and is also present in this paper.

ICDT 2019

15:6 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

4.1 Red-green signature and Regular Constraints
For a given alphabet (signature) Σ let ΣG and ΣR be two copies of Σ one written with “green
ink” and another with “red ink”. Let Σ̄ = ΣG ∪ ΣR.

For any word w from Σ∗ let G(w) and R(w) be copies of this word written in green and
red respectively. For a regular language L over Σ let G(L) and R(L) be copies of this same
regular language but over ΣG and ΣR respectively. Also for any structure D over Σ let G(D)
and R(D) be copies of this same structure D but with labels of edges recolored to green
and red respectively. For a pair of regular languages L over Σ and L′ over Σ′ we define the
Regular Constraint (RC) L→ L′ as a formula ∀u,vL(u, v)⇒ L′(u, v).

We use the notation D |= t to say that an RC t is satisfied in D. Also, we write D |= T

for a set T of RCs when for each t ∈ T it is true that D |= t.
For a graph D and an RC t = L→ L′ let rq(t,D) (as “requests”) be the set of all triples

〈u, v, L→ L′〉 such that D |= L(u, v) and D 6|= L′(u, v). For a set T of RCs by rq(T,D) we
mean the union of all sets rq(t,D) such that t ∈ T . Requests are there in order to be satisfied:

Algorithm 1 Function Add used to satisfy requests.
function Add
arguments:

Structure D
RC L→ L′

pair 〈u, v〉 such that 〈u, v, L→ L′〉 ∈ rq(L→ L′,D)
body:

1: Take a word w = a0a1 . . . an from L′ and create a new path
w[u, v] = a0(u, s1), a1(s1, s2), . . . , an(sn−1, v) where s1, s2, . . . , sn−1 are new vertices

2: return D ∪ w[u, v].

Notice that the result Add(D,L → L′, 〈u, v〉) depends on the choice of w ∈ L′. So the
procedure is non-deterministic.

For a regular language L we define L→ = G(L)→ R(L) and L← = R(L)→ G(L). All
regular constraints we are going to consider are either L→ or L←. For a regular language L
we define L↔ = {L→, L←} and for a set L of regular languages we define: L↔ =

⋃
L∈L L

↔.

Requests of the form 〈u, v, t〉 for some RC t of the form L→ (L←) are generated by G(L)
(resp. by R(L)). Requests that are generated by G(L) or R(L) are said to be generated by L.

The following lemma is straightforward to prove and characterises determinacy in terms
of regular constraints:

I Lemma 4.1. A set Q of regular path queries over Σ does not determine (does not finitely
determine) a regular path query Q0, over the same alphabet, if and only if there exists a
structure M (resp. a finite structure) and a pair of vertices u, v ∈M such that M |= Q↔ and
M |= (G(Q0))(u, v) but M 6|= (R(Q0))(u, v−).

Any structure M, as above, will be called a counterexample. One can think of M as a pair
of structures, being green and red parts of M. Note that those two structures both agree on
Q but don’t on Q0, thus proving that Q does not determine Q0.

4.2 The game of Escape
Here we present the essential tool for our proof. One can note that the game of Escape is
very simmilar to the well known Chase technique. This is indeed the case, as one can think
about RCs as of Tuple Generating Dependencies (TGDs) from the Chase. Divergence from

G. Głuch, J. Marcinkowski, and P. Ostropolski-Nalewaja 15:7

standard Chase comes from “nondeterminism” that is inherent part of RCs (request can be
satisfied by any word from a language) phenomenon not present in TGDs.

An instance Escape(Q0, Q) of a game called Escape, played by two players called Fugitive
and Crocodile, is:

A finite regular language Q0 of forbidden paths over Σ.
A set Q of finite regular languages over Σ,

The rules of the game are:
First Fugitive picks the initial position of the game as D0 = (G(w))[a, b] for some w ∈ Q0.
Suppose Dβ is the current position of some play before move β+1 and let Sβ = rq(Q↔,Dβ).
Then, in move β + 1, Crocodile picks one request 〈u, v, t〉 ∈ Sβ and then Fugitive can
move to any position of the form:

Dβ+1 := Add(Dβ , t, 〈u, v〉)

For a limit ordinal λ the position Dλ is defined as
⋃
β<λ

Dβ .

If rq(Q↔,Di) is empty then for each j > i the structures Dj and Di are equal.
Fugitive loses when for a final position Dω2 =

⋃
β<ω2

Dβ it is true that Dω2 |= (R(Q0))(a, b),

otherwise he wins. Obviously if there is some β < ω2 such that Dβ |= (R(Q0))(a, b) then
the result of the game is already known (Fugitive loses), but technically the game still
proceeds.

Notice that we want the game to last ω2 steps. This is not really crucial (if we were careful
ω steps would be enough) but costs nothing and will simplify presentation in Section 10.

Obviously, different strategies of both players may lead to different final positions.
Now we can state the crucial Lemma, that connects the game of Escape and QDP-RPQ:

I Lemma 4.2. For an instance of QDP-RPQ consisting of regular language Q0 over Σ and
a set of regular languages Q over Σ the two conditions are equivalent:
(i) Q does not determine Q0,
(ii) Fugitive has a winning strategy in Escape(Q0, Q).

The proof of this Lemma can be found in the full paper.
We should mention here that all the notions of Section 4 are similar to those of [16] but

are not identical. The most notable difference is in the definition of the game of Escape, as
it is no longer a solitary game, as it was in [16].

This makes the analysis slightly harder here, but pays off in Sections 7 – 14.

5 Source of undecidability

In this section we will define tiling problem that we will reduce to QDP-FRPQ. In order to
prove undecidability for both finite and unrestricted case we will build our tiling problem
upon notion of recursively inseparable sets.

I Definition 5.1 (Recursively inseparable sets). Sets A and B are called recursively insepar-
able when each set C, called a separator, such that A ⊆ C and B ∩C = ∅, is undecidable [25].

ICDT 2019

15:8 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

(0, 4) (4, 4)

(0, 0) (4, 0)

Figure 1 Finite square grid.

It is well known that:

I Lemma 5.2. Let T be the set of all Turing Machines. Then sets Tacc = {φ ∈ T |φ(ε) = 1}
and Trej = {φ ∈ T |φ(ε) = 0} are recursively inseparable. By φ(ε) we mean the returned value
of the Turing Machine φ that was run on an empty tape.

I Definition 5.3 (Square Grids). For a k ∈ N let [k] be the set {i ∈ N|0 ≤ i ≤ k}. A square
grid is a directed graph 〈V,E〉 where V = [k]× [k] for some natural k > 0 or V = N× N. E
is defined as E(〈i, j〉, 〈i+ 1, j〉) and E(〈i, j〉, 〈i, j + 1〉) for each relevant i, j ∈ N.

I Definition 5.4 (Our Grid Tiling Problem (OGTP)). An instance of this problem is a set
of shades S having at least two elements (gray,black ∈ S) and a set F ⊆ {V,H} × S ×
{V,H}×S of forbidden pairs 〈c, d〉 where c, d ∈ {V,H}×S. Let the set of all these instances
be called I.

I Definition 5.5. A proper shading3 is an assignment of shades to edges of some square
grid G (see Figure 1) such that:
(a1) each horizontal edge of G has a label from {H} × S.
(a2) each vertical edge of G has a label from {V } × S.
(b1) bottom-left horizontal edge is shaded gray4.
(b2) upper-right vertical edge (if it exists) is shaded black.
(b3) G contains no forbidden paths of length 2 labelled by 〈c, d〉 ∈ F .

We define two subsets of instances of OGTP:
A = {I ∈ I|there exists a proper shading of some finite square grid }.
B = {I ∈ I|there is no proper shading of any square grid }.

By a standard argument, using Lemma 5.2, one can show that:

I Lemma 5.6. Sets A and B of instances of OGTP are recursively inseparable.

In Section 6 we will construct a function R (R like Reduction) from I (instances of OGTP)
to instances of QPD-FRPQ that will satisfy the following:

3 We would prefer to use the term “coloring” instead, but we already have colors, red and green, and they
shouldn’t be confused with shades.

4 We think of (0, 0) as the bottom-left corner of a square grid. By ‘right’ we mean a direction of the
increase of the first coordinate and by ‘up’ we mean a direction of increase of the second coordinate.

G. Głuch, J. Marcinkowski, and P. Ostropolski-Nalewaja 15:9

I Lemma 5.7. For any instance I = 〈S,F〉 of OGTP and for 〈Q, Q0〉 = R(I):
(i) If I ∈ A then Q does not finitely determine Q0.
(ii) If I ∈ B then Q determines Q0.
Now the need for notion of recursive inseparability should be clear. Imagine, for the sake

of contradiction, that we have an algorithm ALG deciding determinacy in either finite or
unrestricted case. Then, in both cases, algorithm ALG ◦R would separate A and B, which
contradicts the recursive inseparability of A and B (Lemma 5.6). That will be enough to
prove Theorem 1.1.

6 The function R

Now we define a function R, as specified in Section 5, from the set of instances of OGTP to
the set of instances of QDP-FRPQ. Suppose an instance 〈S,F〉 of OGTP is given. We will
construct an instance 〈Q, Q0〉 = R(〈S,F〉) of QDP-FRPQ. The edge alphabet (signature) will
be: Σ = {αC , αW , xC , xW , yC , yW , $C , $W , ω}∪Σ0 where Σ0 = {A,B}×{H,V }×{W,C}×S.
We think of H and V as orientations – Horizontal and Vertical. W and C stand for warm
and cold. It is worth reminding at this point that relations from Σ̄ will – apart from shade,
orientation and temperature – have also a color, red or green.

I Notation 6.1. We will denote (l, o, t, s) ∈ Σ0 as (lts o).
Symbol • and empty space are to be understood as wildcards. This means, for example,

that (As H) denotes the set {(AW
s H), (AC

s H)} and (•Ws H) denotes {(AW
s H), (BW

s H)}.
Symbols from (•W) and {αW , xW , yW , $W } will be called warm and symbols from (•C)

and {αC , xC , yC , $C} will be called cold.

Now we define Q and Q0. Let Qgood be a set of 15 languages:

1. ω
2. αC + αW

3. xC + xW

4. yC + yW

5. $C + $W
6. (BC

V) + (BW
V)

7. (BW
H) + (BC

H)
8. (AW

V) + (AC
V)

9. (AC
H) + (AW

H)
10. (BW

H)(AW
V) + (BC

V)(AC
H)

11. (AC
H)(BC

V) + (AW
V)(BW

H)
12. xC

(
(AC

H)+(BC
H)+(AC

V)+(BC
V)
)
+xC +xW

13.
(
(AC

H)+(BC
H)+(AC

V)+(BC
V)
)
yC+yC+yW

14. xW + xC + xC(AC
H)(BC

V)
15. yW + $C + (AC

H)(BC
V)yC + (BC

V)yC

Let Qbad be a set of languages:
1. αWxW (•Ws d)(•Ws′ d′)yWω for each forbidden pair 〈(d, s), (d′, s′)〉 ∈ F .
2. αWxW (BW

shade V)$Wω for each shade ∈ S \ {black}.

Finally, let Qugly be a set of languages: 1. αCΣ≤4(•W)Σ≤4ω, 2. αWΣ≤4(•C)Σ≤4ω and
3. αCxC(BC

V)(BC
V)yCω. Where Σ≤4 is language over Σ of words shorter than 5.

We write Qigood, Qibad, Qiugly to denote the i-th language of the corresponding group. Now
we can define: Q := Qgood ∪Qbad ∪Qugly

The sense of the construction will (hopefully) become clear later, but we can already say
something about the structure of the defined languages.

Languages from Qgood serve as a building blocks during the game of Escape, they are
used solely to build a shaded square grid structure, that will correspond to some tiling of
square grid. On the other hand the languages from Qbad and Qugly serve as a “stick” during
play. It will become clear later that whenever Fugitive has to answer a request generated by

ICDT 2019

15:10 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

one of languages in Qbad or Qugly it is already too late for him to win. More precisely every
request generated by Qbad is due to Fugitive assigning shades to grid in a forbidden manner
and leads to Fugitive’s swift demise. Similarly requests generated by Qugly make Fugitive to
use “right” building blocks from Qgood, by forcing that edge is red if and only if it is warm
(this will be thoroughly explained in Section 8), or else he will loose. Third language from
Qugly ensures that there won’t be two consecutive (BC

V) symbols in the structure, it is a
feature used exclusively in proof of Lemma 11.1.

Finally, define Qstart := αCxC(AC
gray H)(BC

V)yCω, and let:

Q0 := Qstart +
⊕

L∈Qugly

L+
⊕

L∈Qbad

L

Intuitively, we need to put the languages Qbad and Qugly into Q0 so that they can serve
as aforementioned “sticks” such that whenever Fugitive makes a mistake he loses. Recall
that Fugitive loses when he writes a red word from Q0 connecting the beginning and the end
of the starting structure. On the other side, this creates a problem regarding the starting
structure (now Fugitive can pick a word from Qbad or Qugly to start from instead of a word
from Qstart), but fortunately it can be dealt with and will be resolved in Section 8.

7 Structure of the proof of Lemma 5.7

The rest of the paper will be devoted to the proof of Lemma 5.7 (restated):

I Lemma 7.1. For any instance I = 〈S,F〉 of OGTP and for 〈Q, Q0〉 = R(I):
(i) If I ∈ A then Q does not finitely determine Q0.
(ii) If I ∈ B then Q determines Q0.
Proof of claim (i) – which will be presented in the end of Section 14 – will be straightforward

once the reader grasps the (slightly complicated) constructions that will emerge in the proof
of claim (ii).

For the proof of claim (ii) we will employ Lemma 4.2, showing that if the instance 〈S,F〉
has no proper shading then Crocodile does have a winning strategy in Escape(Q, Q0) (where
〈Q, Q0〉 = R(〈S,F〉)). As we remember from Section 4.2, in such a game Fugitive will first
choose, as the initial position of the game, a structure D0 = w[a, b] for some w ∈ G(Q0).
Then, in each step, Crocodile will pick a request in the current structure (current position of
the game) D and Fugitive will satisfy this request, creating a new (slightly bigger) current D.
Fugitive will win if he will be able to play forever (by which, formally speaking, we mean ω2

steps, for more details see Section 4.2), or until all requests are satisfied, without satisfying
(in the constructed structure) the query (R(Q0))(a, b). While talking about the strategy of
Fugitive we will use the words “must not” and “must” as shorthands for “or otherwise he will
quickly lose the game”. The expression “Fugitive is forced to” will also have this meaning.

Analysing a two-player game (proving that certain player has a winning strategy) sounds
like a complicated task: there is this (infinite) alternating tree of positions, whose structure
somehow needs to be translated into a system of lemmas. In order to prune this game tree
our plan is first to notice that in his strategy Fugitive must obey the following principles:
(I) The structure D0 resulting from his initial move must be (G(w))[a, b] for some w ∈

Qstart.
(II) He must not allow any green edge with warm label and any red edge with cold label

to appear in D.
(III) He must never allow any path labelled by a word from the language G(Qbad)∪R(Qbad)

to occur between vertices a and b.

G. Głuch, J. Marcinkowski, and P. Ostropolski-Nalewaja 15:11

Then we will assume that Fugitive’s play indeed follows the three principles and we will
present a strategy for Crocodile which will be winning against Fugitive. From the point of
view of Crocodile’s operational objectives this strategy comprises three stages.

In each of these stages Crocodile’s operational goal will be to force Fugitive to build
some specified structure (where, of course all the specified structures will be superstructures
of D0). In the first stage Fugitive will be forced to build a structure called P1 (defined in
Section 9). In the second stage the specified structures will be called Pm and P$

m (each
defined in Section 9) and in the third stage Fugitive will be forced to construct one of the
structures Gm or Lkm (defined in Section 12)

During the three stages of his play Crocodile will only pick requests from the languages in
Qgood. These languages, as we said before, are shade-insensitive, so we can imagine Crocodile
playing in a sort of shade filtering glasses. Of course Fugitive, when responding to Crocodile’s
requests, will need to commit on the shades of the symbols he will use, but Crocodile’s actions
will not depend on these shades.

The shades will however play their part after the end of the third stage. Assuming that
the original instance of OGTP has no proper shading, we will get that, at this moment,
R(Qbad)(a, b) already holds true in the structure Fugitive was forced to construct. This will
end the proof of (ii).

8 Principles of the Game

The rules of the game of Escape are such that Fugitive loses when he builds a path (from a

to b) labelled with w ∈ R(Q0). So – when trying to encode something – one can think of
words in Q0 as of some sort of forbidden patterns. And thus one can think of Q0 as of a
tool detecting that Fugitive is cheating and not really building a valid computation of the
computing device we encode. Having this in mind the reader can imagine why the words
from languages from the sets Qbad and Qugly, which clearly are all about suspiciously looking
patterns, are all in Q0.

But another rule of the game is that at the beginning Fugitive picks his initial position
D0 as a path (from a to b) labelled with some w ∈ G(Q0), so it would be nice to think of
Q0 as of initial configurations of this computing device. The fact that the same object is
playing the set of forbidden patterns and, at the same time, the set of initial configurations
is a problem. We solved it by having languages from Qugly ∪Qbad both in Q and in Q0:

I Lemma 8.1 (Principle I). Fugitive must choose to start the Escape game
from D0 = G(w)[a, b] for some w ∈ Qstart.

Notice that, from the point of view of the shades-blind Crocodile the words in Qstart are
indistinguishable and thus Fugitive only has one possible choice of D0. Proof of this Lemma
can be found in the full paper.

From now on we assume that Fugitive obeys Principle I. This implies that for some
w ∈ Qstart structure G(w)[a, b] is contained in all subsequent structures D at each step of
the game.

Now we will formalise the intuition about languages from Qugly as forbidden patterns.
We start with an observation that simplifies reasoning in the proof of Principle II.

I Observation 8.2. For some vertices u, v in the current structure D if there is a green (red)
edge between them then Crocodile can force Fugitive to draw a red (green) edge between u
and v.

Proof. It is possible due to languages 1− 9 in Qgood. J

ICDT 2019

15:12 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

I Definition 8.3. A P2-ready5 structure D is a structure satisfying the following:
D0 is a substructure of D;
there are only two edges incident to a: 〈a, a′〉 with label G(αC) and 〈a, a′〉 with label
R(αW);
all edges labeled with αC and αW are between a and a′;
there are only two edges incident to b: 〈b′, b〉 with label G(ω) and 〈b′, b〉 with label R(ω);
all edges labeled with ω are between b′ and b;
for each v ∈ D \ {a, b} there is a directed path in D, of length at most 4, from a′ to v and
there is a directed path in D, of length at most 4, from v to b′.

I Lemma 8.4 (Principle II). Suppose that, after Fugitive’s move, the current structure D is
a P2-ready structure. Then neither a green edge with label from (•W) nor a red edge with
label from (•C) may appear in D.

The proof of this Lemma can be found in the full paper.

I Lemma 8.5 (Principle III). Fugitive must not allow any path labelled with a word from
R(Qbad) ∪G(Qbad) to occur in the current structure D between vertices a and b.

The proof of this Lemma can be found in the full paper.

9 The paths Pm and P$
m

I Definition 9.1. (See Figure 2, please use a color printer if you can) Pm, for m ∈ N+, is a
directed graph (V,E) where V = {a, a′, b′, b} ∪ {vi : i ∈ [0, 2m]} and the edges E are labelled
with symbols from Σ \ Σ0 or with symbols of the form (lto), where – like before – l ∈ {A,B},
o ∈ {H,V } and t ∈ {W,C}. Each label has to also be either red or green. Notice that there
is no s ∈ S here: the labels we now use are sets of symbols from Σ̄ like in Notation 6.1: we
watch the play in Crocodile’s shade filtering glasses.

The edges of Pm are as follows:
Vertex a′ is a successor of a and vertex b is a successor of b′. For each i ∈ [2m] the
successors of vi are vi+1 (if it exists) and b′ and the predecessors of vi are vi−1 (if it
exists) and a′. From each node there are two edges to each of its successors, one red and
one green, and there are no other edges.
Each Cold edge (labelled with a symbol in (•C)) is green.
Each Warm edge (labelled with a symbol in (•W)) is red.
Each edge 〈v2i, v2i+1〉 is from (AH).
Each edge 〈v2i+1, v2i+2〉 is from (BV).
Each edge 〈a′, vi〉 is labelled by either xC or xW .
Each edge 〈vi, b′〉 is labelled by either yC or yW .
Edges 〈a, a′〉 with label G(αC) and 〈a, a′〉 with label R(αW) are in E.
Edges 〈b′, b〉 with label G(ω) and 〈b′, b〉 with label R(ω) are in E.

I Definition 9.2. P$
m for m ∈ N+ is Pm with two additional edges: 〈v2m, b

′〉 ∈ E, with
label G($C), and 〈v2m, b

′〉 ∈ E, with label R($W).

5 Meaning “ready for Principle II”.

G. Głuch, J. Marcinkowski, and P. Ostropolski-Nalewaja 15:13

Figure 2 P1 (left) and P$
3 (right).

One may notice6 that D0 is a substructure of both Pm and P$
m, and that:

I Exercise 9.3. For any m, the only requests generated by Qgood in P$
m are those generated

by Q10
good and Q11

good.

I Exercise 9.4. Each Pm and each P$
m is a P2-ready structure.

10 Stage I

Recall that untill the end of Section 13 we watch, analyse Fugitive’s and Crocodile’s play in
shade filtering glasses. And we assume that Fugitive obeys Principle I and III.

I Definition 10.1 (Crocodile’s strategy). The sequence of languages S = (l1, l2, . . . , ln), for
some n ∈ N, defines a strategy for Crocodile as follows: If S = (l) ++S′ (where ++ denotes
sequence concatenation) then Crocodile demands Fugitive to satisfy requests generated by l
one by one (in any order) until (it can take infinitely many steps) there are no more requests
generated by l in the current structure. Then7 Crocodile proceeds with strategy S′.

Now we define a set of strategies for Crocodile. All languages that will appear in these
strategies are from Qgood so instead of writing Qigood we will just write i. Let:

Scolor := (3, 4, 5, 6, 7, 8, 9),
Scycle := (15, 14) ++Scolor ++ (12, 13) ++Scolor,
Sstart := (1, 2) ++Scycle.

Recall that D0 is Fugitive’s initial structure (consisting of green edges only), as demanded
by Principle I.

I Lemma 10.2. Crocodile’s strategy (1, 2) applied to the current structure D0 forces Fugitive
to add R(αW)[a, a′] and R(ω)[b′, b].

The proof of this Lemma can be found in full paper.
A careful reader could ask here: “Why did we need to work so hard to prove that the

newly added red edge must be warm. Don’t we have Principle II which says that red edges

6 Not all anonymous reviewers equally appreciated our decision to use the “exercise” environment in this
paper. In our opinion proving some simple facts themselves, rather than skipping the proofs, can help
the readers to develop intuitions needed to understand what is to come in the paper. We discussed this
issue with several colleagues and none of them felt that using this environment is arrogant.

7 For this “then” to make sense we need the total number of moves of the game to be ω2 rather than ω.

ICDT 2019

15:14 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

must always be warm and green must be cold?”. But we cannot use Principle II here: the
structure is not P2-ready yet. Read the proof of Principle II again to notice that this red
αW between a and a′ is crucial there. And this is what Stage I is all about: it is here where
Crocodile forces Fugitive to construct a structure which is P2-ready. From now on all the
current structures will be P2-ready and Fugitive will indeed be a slave of Principle II.

The following Lemma explains the role of Scolor and is a first cousin of Observation 8.2:

I Lemma 10.3 (Scolor). Strategy Scolor applied to a P2-ready D forces Fugitive to create a
P2-ready D′ such that:

Sets of vertices of D and D′ are equal.
There are no requests generated by Q1−9

good in D′, which means that each edge has its
counterpart (incident to the same vertices) of the opposite color and temperature.

The proof of this Lemma can be found in the full paper.

I Lemma 10.4. Strategy Sstart applied to D0 forces Fugitive to build P1.

The proof of this Lemma can be found in the full paper.

11 Stage II

Note that from now on Fugitive must obey all Principles.
Now we imagine that P1 has already been created and we proceed with the analysis to

the later stage of the Escape game where either Pm+1 or P$
k for some k ≤ m will be created.

Let us define {Sk} inductively for k ∈ N+ in the following fashion:
S1 := Sstart,
Sk := Sk−1 ++Scycle for k > 1.

I Lemma 11.1. For all m ∈ N+ strategy Sm applied to D0 forces Fugitive to build a structure
isomorphic, depending on his choice, either Pm+1 or P$

k for some k ≤ m.

The proof of this Lemma can be found in the full paper.

12 The grids Gm and partial grids Lk
m

I Definition 12.1. Gm, for m ∈ N+, is a directed graph (V,E) where:
V = {a, a′, b′, b}∪ {vi,j : i, j ∈ [0,m]} and the edges E are labelled (as in Pm) with Σ \Σ0

or one of the symbols of the form (lto), which means that the shade filtering glasses are still
on.

The edges of Gm are as follows:
Vertex a′ is a successor of a, b is a successor of b′. All vi,j are successors of a′ and the
successors of each vi,j are vi+1,j , vi,j+1 (when they exist) and b′. From each node there
are two edges to each of its successors, one red and one green. There are no other edges.
Each cold edge, labelled with a symbol in (•C), is green.
Each warm edge, labelled with a symbol in (•W), is red.
Each edge 〈vi,j , vi+1,j〉 is horizontal – its label is from (•H).
Each edge 〈vi,j , vi,j+1〉 is vertical – its label is from (•V).
The label of each edge leaving vi,j, with i+ j even, is from (A), the label of each edge
leaving vi,j, with i+ j odd, is from (B).
Each edge 〈a′, vi〉 is labeled by either xC or xW .
Each edge 〈vi, b′〉 is labeled by either yC or yW .

G. Głuch, J. Marcinkowski, and P. Ostropolski-Nalewaja 15:15

Figure 3 G4 (left). Smaller picture in the top-right corner explains how different line styles on
the main picture map to Σ0 (please use a color printer if you can).

Figure 4 L$ 3
6 (left) and L1

6 (right).

Edges 〈a, a′〉 with label G(αC) and 〈a, a′〉 with label R(αW) are in E.
Edges 〈b′, b〉 with label G(ω) and 〈b′, b〉 with label R(ω) are in E.

I Definition 12.2. Let Lkm = (V ′, E′), for m, k ∈ N+ where k ≤ m, is a subgraph of Gm =
(V,E) induced by the set V ′ ⊆ V of vertices defined as V ′ = {a, a′, b′, b} ∪ {vi,j : i, j ∈ [0,m];
| i − j | ≤ k }.

I Definition 12.3. Let G$
m for m ∈ N+ is Gm with two edges added: 〈vm,m, b′〉 with label

G($C) and 〈vm,m, b′〉 with label R($W).

I Definition 12.4. Let L$ k
m for m ∈ N+, k ∈ N+ ∪ {0}, k ≤ m is Lkm with two edges added:

〈vm,m, b′〉 with label G($C) and 〈vm,m, b′〉 with label R($W).

B Fact 12.5. For all m: Lmm is equal to Gm and L$ m
m is equal to G$

m.

I Exercise 12.6. Languages from Qgood or Qugly do not generate requests in any G$
m.

13 Stage III

Now we imagine that either Pm+1 or P$
k for some k ≤ m was created as the current position

in a play of the game of Escape and we proceed with the analysis to the later stage of the
play, where either Gm+1 or G$

k will be created.

I Lemma 13.1. For any m ∈ N+ Crocodile can force Fugitive to build a structure isomorphic,
depending on Fugitive’s choice, to either Gm+1 or to G$

k for some k ≤ m.

ICDT 2019

15:16 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

Notice that by Exercise 12.5, in order to prove Lemma 13.1 it is enough to prove that for
any m ∈ N+ Crocodile can force Fugitive to build a structure isomorphic to either Lm+1

m+1 or
to L$ k

k for some k ≤ m.
As we said, we assume that Crocodile already forced Fugitive to build a structure

isomorphic to either Pm+1 or to P$
k for some k ≤ m. Rename each vi in this Pm+1 (or P$

k)
as vi,i. If the structure which was built is Pm+1 we will show a strategy leading to Lm+1

m+1
and when P$

k was built, we will show a strategy leading to L$ k
k.

Now we define a sequence of strategies Sklayer, which, similarly to strategies for building
P• • consist only of languages from Qgood, so instead of writing Qigood we will just write i.

Let:
Sodd := (11) ++Scolor ++ (12, 13) ++Scolor,
Seven := (10) ++Scolor ++ (12, 13) ++Scolor,

Sklayer :=

[], if k = 0
Sk−1
layer ++Sodd if k odd
Sk−1
layer ++Seven otherwise

Proofs of the following four Lemmas can be found in the full paper.

I Lemma 13.2. For all k ∈ N strategy S1
layer applied to the current structure P$

k forces
Fugitive to build L$ 1

k.

I Lemma 13.3. For all k,m ∈ N, k < m strategy Sodd (for k + 1 odd) and Seven (for k + 1
even) applied to L$ k

m forces Fugitive to build L$ k+1
m .

I Lemma 13.4. For all k,m ∈ N, k < m strategy S1
layer applied to Pk forces Fugitive to

build L1
k, strategy Sodd (for k + 1 odd) and Seven (for k + 1 even) applied to Lkm forces

Fugitive to build Lk+1
m .

I Lemma 13.5. For all m ∈ N strategy Smlayer forces Fugitive to build L$ m
m from P$

m and
Lmm from Pm.

I Observation 13.6. By Exercise 12.5 Lemma 13.5 proves Lemma 13.1.

14 And now we finally see the shades again

Now we are ready to finish the proof of Lemma 5.7. First assume the original instance of Our
Grid Tiling Problem has no proper shading. The following is straightforward from König’s
Lemma by noticing that if there were arbitrary grids with proper shading, then there would
be an infinite one:

I Lemma 14.1. If an instance I of OGTP has no proper shading then there exist natural m
such that for any k ≥ m a square grid of size k has no shading that satisfies conditions (a1),
(a2), (b1) and (b3) of proper shading.

Let m be the value from Lemma 14.1. By Lemma 13.1 Crocodile can force Fugitive to
build a structure isomorphic to either Gm+1 or G$

k for some k ≤ m. Now suppose the play
ended, in some final position H isomorphic to one of these structures. We take off our glasses,
and not only we still see this H, but now we also see the shades, with each edge (apart from
edges labeled with α, ω, x, y and $) having one of the shades from S. Now concentrate on
the red edges labeled with (•W) of H. They form a grid, with each vertical edge labeled with
V , each horizontal edge labeled with H, and with each edge labeled with a shade from S.
Now we consider two cases:

G. Głuch, J. Marcinkowski, and P. Ostropolski-Nalewaja 15:17

If Gm+1 was built then clearly condition (b3) of Definition 5.5 is unsatisfied. But this
implies that a path labeled with a word from one of the languages Qbad occurs in H
between a and b, which is in breach with Principle III because of language Q1

bad.
If G$

k for k ≤ m was built then clearly condition (b2) or (b3) of Definition 5.5 is
unsatisfied. This is because we assumed that there is no proper shading. But this implies
that a path labeled with a word from one of the languages Qbad occurs in H between a
and b, which is in breach with Principle III because of language Q1

bad.
This ends the proof of Lemma 5.7 (ii).

For the proof of Lemma 5.7 (i) assume the original instance 〈S,F〉 of Our Grid Tiling
Problem has a proper shading – a labeled grid of side length m. Call this grid G.

Recall that G$
m satisfies all regular constraints from Q↔good and from Q↔ugly (Exercise 12.6).

Now copy the shades of the edges of G to the respective edges of G$
m. Call this new structure

(G$
m with shades added) M. It is easy to see that M constitutes a counterexample, as in

Lemma 4.1.

References
1 Serge Abiteboul and Victor Vianu. Regular Path Queries with Constraints. In Proceedings of

the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
PODS ’97, pages 122–133, New York, NY, USA, 1997. ACM. doi:10.1145/263661.263676.

2 Foto N. Afrati. Determinacy and query rewriting for conjunctive queries and views. Theoretical
Computer Science, 412(11):1005–1021, 2011. doi:10.1016/j.tcs.2010.12.031.

3 Pablo Barceló. Querying graph databases. In PODS, 2013.
4 Peter Buneman, Wenfei Fan, and Scott Weinstein. Path Constraints in Semistructured

Databases. Journal of Computer and System Sciences, 61(2):146–193, 2000. doi:10.1006/
jcss.2000.1710.

5 D. Calvanese, G. de Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query processing and
constraint satisfaction. In Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer
Science (Cat. No.99CB36332), pages 361–371, June 2000. doi:10.1109/LICS.2000.855784.

6 D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Answering regular path queries
using views. In Proceedings of 16th International Conference on Data Engineering (Cat.
No.00CB37073), pages 389–398, February 2000. doi:10.1109/ICDE.2000.839439.

7 Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the Decidability of Query
Containment Under Constraints. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS ’98, pages 149–158, New York,
NY, USA, 1998. ACM. doi:10.1145/275487.275504.

8 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Rewriting
of Regular Expressions and Regular Path Queries. In Proceedings of the Eighteenth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’99, pages
194–204, New York, NY, USA, 1999. ACM. doi:10.1145/303976.303996.

9 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Lossless
Regular Views. In Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS ’02, pages 247–258, New York, NY, USA,
2002. ACM. doi:10.1145/543613.543646.

10 Mariano P. Consens and Alberto O. Mendelzon. GraphLog: a Visual Formalism for Real Life
Recursion. In PODS, 1990.

11 Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. A Graphical Query Language
Supporting Recursion. In Proceedings of the 1987 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’87, pages 323–330, New York, NY, USA, 1987. ACM.
doi:10.1145/38713.38749.

ICDT 2019

http://dx.doi.org/10.1145/263661.263676
http://dx.doi.org/10.1016/j.tcs.2010.12.031
http://dx.doi.org/10.1006/jcss.2000.1710
http://dx.doi.org/10.1006/jcss.2000.1710
http://dx.doi.org/10.1109/LICS.2000.855784
http://dx.doi.org/10.1109/ICDE.2000.839439
http://dx.doi.org/10.1145/275487.275504
http://dx.doi.org/10.1145/303976.303996
http://dx.doi.org/10.1145/543613.543646
http://dx.doi.org/10.1145/38713.38749

15:18 The First Order Truth Behind Undecidability of Regular Path Queries Determinacy

12 Wenfei Fan, Floris Geerts, and Lixiao Zheng. View determinacy for preserving selected
information in data transformations. Inf. Syst., 37:1–12, 2012.

13 Daniela Florescu, Alon Levy, and Dan Suciu. Query Containment for Conjunctive Queries with
Regular Expressions. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, PODS ’98, pages 139–148, New York, NY,
USA, 1998. ACM. doi:10.1145/275487.275503.

14 Nadime Francis. Vues et requetes sur les graphes de donnees: determinabilite et reecritures.
PhD thesis, Ecole Normale Superieure de Cacha, 2015.

15 Nadime Francis. Asymptotic Determinacy of Path Queries Using Union-of-Paths Views.
Theory of Computing Systems, 61:156–190, 2016.

16 Grzegorz Gluch, Jerzy Marcinkowski, and Piotr Ostropolski-Nalewaja. Can One Escape Red
Chains?: Regular Path Queries Determinacy is Undecidable. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages 492–501, New York,
NY, USA, 2018. ACM. doi:10.1145/3209108.3209120.

17 Tomasz Gogacz and Jerzy Marcinkowski. The Hunt for a Red Spider: Conjunctive Query
Determinacy Is Undecidable. In Proceedings of the 2015 30th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), LICS ’15, pages 281–292, Washington, DC, USA, 2015.
IEEE Computer Society. doi:10.1109/LICS.2015.35.

18 Tomasz Gogacz and Jerzy Marcinkowski. Red Spider Meets a Rainworm: Conjunctive Query
Finite Determinacy Is Undecidable. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’16, pages 121–134, New York, NY,
USA, 2016. ACM. doi:10.1145/2902251.2902288.

19 V. Juge and Moshe Vardi. On the containment of Datalog in Regular Datalog. Technical
report, Rice University, 2009.

20 Per-Åke Larson and H. Z. Yang. Computing Queries from Derived Relations. In Proceedings
of the 11th International Conference on Very Large Data Bases - Volume 11, VLDB ’85, pages
259–269. VLDB Endowment, 1985. URL: http://dl.acm.org/citation.cfm?id=1286760.
1286784.

21 Alan Nash, Luc Segoufin, and Victor Vianu. Determinacy and Rewriting of Conjunctive Queries
Using Views: A Progress Report. In Thomas Schwentick and Dan Suciu, editors, Database
Theory – ICDT 2007, pages 59–73, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

22 Alan Nash, Luc Segoufin, and Victor Vianu. Views and Queries: Determinacy and Rewriting.
ACM Trans. Database Syst., 35(3):21:1–21:41, July 2010. doi:10.1145/1806907.1806913.

23 Daniel Pasailă. Conjunctive Queries Determinacy and Rewriting. In Proceedings of the 14th
International Conference on Database Theory, ICDT ’11, pages 220–231, New York, NY, USA,
2011. ACM. doi:10.1145/1938551.1938580.

24 Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular Queries on Graph Databases.
Theor. Comp. Sys., 61(1):31–83, July 2017. doi:10.1007/s00224-016-9676-2.

25 Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT Press,
Cambridge, MA, USA, 1987.

26 Moshe Y. Vardi. A Theory of Regular Queries. In Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’16, pages 1–9, New
York, NY, USA, 2016. ACM. doi:10.1145/2902251.2902305.

http://dx.doi.org/10.1145/275487.275503
http://dx.doi.org/10.1145/3209108.3209120
http://dx.doi.org/10.1109/LICS.2015.35
http://dx.doi.org/10.1145/2902251.2902288
http://dl.acm.org/citation.cfm?id=1286760.1286784
http://dl.acm.org/citation.cfm?id=1286760.1286784
http://dx.doi.org/10.1145/1806907.1806913
http://dx.doi.org/10.1145/1938551.1938580
http://dx.doi.org/10.1007/s00224-016-9676-2
http://dx.doi.org/10.1145/2902251.2902305

Datalog: Bag Semantics via Set Semantics
Leopoldo Bertossi
RelationalAI Inc., USA
Carleton University, Ottawa, Canada
Member of the “Millenium Institute for Foundational Research on Data” (IMFD, Chile)
bertossi@scs.carleton.ca

Georg Gottlob
University of Oxford, UK
TU Wien, Austria
georg.gottlob@cs.ox.ac.uk

Reinhard Pichler
TU Wien, Austria
pichler@dbai.tuwien.ac.at

Abstract
Duplicates in data management are common and problematic. In this work, we present a translation
of Datalog under bag semantics into a well-behaved extension of Datalog, the so-called warded
Datalog±, under set semantics. From a theoretical point of view, this allows us to reason on bag
semantics by making use of the well-established theoretical foundations of set semantics. From a
practical point of view, this allows us to handle the bag semantics of Datalog by powerful, existing
query engines for the required extension of Datalog. This use of Datalog± is extended to give
a set semantics to duplicates in Datalog± itself. We investigate the properties of the resulting
Datalog± programs, the problem of deciding multiplicities, and expressibility of some bag operations.
Moreover, the proposed translation has the potential for interesting applications such as to Multiset
Relational Algebra and the semantic web query language SPARQL with bag semantics.

2012 ACM Subject Classification Information systems → Query languages; Theory of computation
→ Logic; Theory of computation → Semantics and reasoning

Keywords and phrases Datalog, duplicates, multisets, query answering, chase, Datalog±

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.16

Related Version A full version of the paper is available at http://arxiv.org/abs/1803.06445.

Acknowledgements Many thanks to Renzo Angles and Claudio Gutierrez for information on their
work on SPARQL with bag semantics; and to Wolfgang Fischl for his help testing some queries in
SQL DBMSs. We appreciate the useful comments received from the reviewers. Part of this work
was done while L. Bertossi was spending a sabbatical at the DBAI Group of TU Wien with support
from the “Vienna Center for Logic and Algorithms” and the Wolfgang Pauli Society. This author is
grateful for their support and hospitality, and specially to G. Gottlob for making the stay possible.
He was also supported by NSERC Discovery Grant #06148. The work of G. Gottlob was supported
by the Austrian Science Fund (FWF):P30930 and the EPSRC programme grant EP/M025268/1
VADA. The work of R. Pichler was supported by the Austrian Science Fund (FWF):P30930.

1 Introduction

Duplicates are a common feature in data management. They appear, for instance, in the
result of SQL queries over relational databases or when a SPARQL query is posed over RDF
data. However, the semantics of data operations and queries in the presence of duplicates is
not always clear, because duplicates are handled by bags or multisets, but common logic-based
semantics in data management are set-theoretical, making it difficult to tell apart duplicates

© Leopoldo Bertossi, Georg Gottlob, and Reinhard Pichler;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 16; pp. 16:1–16:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bertossi@scs.carleton.ca
mailto:georg.gottlob@cs.ox.ac.uk
mailto:pichler@dbai.tuwien.ac.at
https://doi.org/10.4230/LIPIcs.ICDT.2019.16
http://arxiv.org/abs/1803.06445
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Datalog: Bag Semantics via Set Semantics

through the use of sets alone. To address this problem, a bag semantics for Datalog programs
was proposed in [21], what we refer to as the derivation-tree bag semantics (DTB semantics).
Intuitively, two duplicates of the same tuple in an intentional predicate are accepted as such
if they have syntactically different derivation trees. The DTB semantics was used in [2] to
provide a bag semantics for SPARQL.

The DTB semantics follows a proof-theoretic approach, which requires external, meta-level
reasoning over the set of all derivation trees rather than allowing for a query language that
inherently collects those duplicates. The main goal of this paper is to identify a syntactic
class of extended Datalog programs, such that: (a) it extends classical Datalog with stratified
negation and has a classical model-based semantics, (b) for every program in the class with
a bag semantics, another program in the same class can be built that has a set-semantics
and fully captures the bag semantics of the initial program, (c) it can be used in particular
to give a set-semantics for classical Datalog with stratified negation with bag semantics.

To this end, we show that the DTB semantics of a Datalog program can be represented
by means of its transformation into a Datalog± program [8, 10], in such a way that the
intended model of the former, including duplicates, can be characterized as the result of
the duplicate-free chase instance for the latter. The crucial idea of our translation from
bag semantics into set semantics (of Datalog±) is the introduction of tuple ids (tids) via
existentially quantified variables in the rule heads. Different tids of the same tuple will allow
us to identify usual duplicates when falling back to a bag semantics for the original Datalog
program. We establish the correspondence between the DTB semantics and ours. This
correspondence is then extended to Datalog with stratified negation. We thus recover full
relational algebra (including set difference) with bag semantics in terms of a well-behaved
query language under set semantics.

The programs we use for this task belong to warded Datalog± [17]. This is a particularly
well-behaved class of programs in that it properly extends Datalog, has a tractable conjunctive
query answering (CQA) problem, and has recently been implemented in a powerful query
engine, namely the VADALOG System [6, 7]. None of the other well-known classes of
Datalog± share these properties: for instance, guarded [8], sticky and weakly-sticky [11]
Datalog± only allow restricted forms of joins and, hence, do not cover Datalog. On the
other hand, more expressive languages, such as weakly frontier guarded Datalog± [5], lose
tractability of CQA. Warded Datalog± has been successfully applied to represent a core
fragment of SPARQL under certain OWL 2 QL entailment regimes [16], with set semantics
though [17] (see also [3, 4]), and it looks promising as a general language for specifying
different data management tasks [6]. We then go one step further and also express the bag
semantics of Datalog± by means of the set semantics of Datalog±.

Structure and main results. In Section 2, we recall some basic notions. In Section 7, we
conclude and discuss some future extensions. Our main results are detailed in Sections 3 – 6:

Our translation of Datalog with bag semantics into warded Datalog± with set semantics,
which will be referred to as program-based bag (PBB) semantics, is presented in Section
3. We also show how this translation can be extended to Datalog with stratified negation.
In Section 4, we study the transformation from bag semantics into set semantics for
Datalog± itself. We thus carry over both the DTB semantics and the PBB semantics to
Datalog± with a form of stratified negation, and establish the equivalence of these two
semantics also for this extended query language. Moreover, we verify that the Datalog±
programs resulting from our transformation are warded whenever the programs to start

L. Bertossi, G. Gottlob, and R. Pichler 16:3

with belong to this class.
In Section 5, we study crucial decision problems related to multiplicities. Above all, we
are interested in the question if a given tuple has finite or infinite multiplicity. Moreover,
in case of finiteness, we want to compute the precise multiplicity. We show that these
tasks can be accomplished in polynomial time (data complexity).
In Section 6, we apply our results on Datalog with bag semantics to Multiset Relational
Algebra (MRA). We also discuss alternative semantics for multiset-intersection and
multiset-difference, and the difficulties to capture them with our Datalog± approach.

2 Preliminaries

We assume familiarity with the relational data model, conjunctive queries (CQs), in particular
Boolean conjunctive queries (BCQs); classical Datalog with minimal-model semantics, and
Datalog with stratified negation with standard-model semantics, denoted Datalog¬s (see [1]
for an introduction). An n-ary relational predicate P has positions: P [1], . . . , P [n]. With
Pos(P) we denote the set of positions of predicate P ; and with Pos(Π) the set of positions of
(predicates in) a program Π.

2.1 Derivation-Tree Bag (DTB) Semantics for Datalog and Datalog¬s

We follow [21], where tuples are colored to tell apart duplicates of a same element in the
extensional database (EDB), via an infinite, ordered list C of colors c1, c2, For a multiset
M , e ∈ M if mult(e,M) > 0 holds, where mult(e,M) denotes the multiplicity of e in M .
In this case, the n copies of e are denoted by e:1, . . . , e:n, indicating that they are colored
with c1, . . . , cn, respectively. So, col(e) := {e:1, . . . , e:n} becomes a set. A multiset M1 is
(multi)contained in multiset M2, when mult(e,M1) ≤ mult(e,M2) for every e ∈ M1. For a
multiset M , col(M) :=

⋃
e∈M col(e), which is a set. For a “colored” set S, col−1(S) produces

a multiset by stripping tuples from their colors.

I Example 1. For M = {a, a, a, b, b, c}, col(a) = {a:1, a:2, a:3}, and col(M) = S = {a:1, a:2, a:
3, b:1, b:2, c:1}. The inverse operation, the decoloration, gives, for instance: col−1(a:2) := a;
and col−1(S) := {a, a, a, b, b, c}, a multiset.

We consider Datalog programs Π with multiset predicates and multiset EDBs D. A
derivation tree (DT) for Π wrt. D is a tree with labeled nodes and edges, as follows:
1. For an EDB predicate P and h ∈ col(P (D)), a DT for col−1(h) contains a single node

with label h.
2. For each rule of the form ρ : H ← A1, A2, . . . , Ak; with k > 0, and each tuple
〈T1, . . . , Tk〉 of DTs for the atoms 〈d1, . . . , dk〉 that unify with 〈A1, A2, . . . , Ak〉 with mgu
θ, generate a DT for Hθ with Hθ as the root label, 〈T1, . . . , Tk〉 as the children, and ρ as
the label for the edges from the root to the children. We assume that these children are
arranged in the order of the corresponding body atoms in rule ρ.

For a DT T , we define Atoms(T) as col−1 of the root when T is a single-node tree, and the
root-label of T , otherwise. For a set of DTs T: Atoms(T) :=

⊎
{Atoms(T) | T ∈ T}, which is

a multiset containing D. Here, we write
⊎

to denote the multi-union of (multi)sets that keeps
all duplicates. If DT(Π, col(D)) is the set of (syntactically different) DTs, the derivation-tree
bag (DTB) semantics for Π is the multiset DTBS(Π, D) := Atoms(DT(Π, col(D))) (cf. [18]
for an equivalent, provenance-based bag semantics for Datalog.)

I Example 2. Consider the program Π = {ρ1, ρ2, ρ3} and multiset EDB D = {Q(1, 2, 3),
Q(1, 2, 5), Q(2, 3, 4), Q(2, 3, 4), T (4, 1, 2), T (4, 1, 2)}, where ρ1, ρ2, ρ3 are defined as follows:

ICDT 2019

16:4 Datalog: Bag Semantics via Set Semantics

P (1, 2)
e
e
ee

%
%

%%
ρ1

R(1, 2)

ρ2

Q(1, 2, 3) :1

ρ1

S(1, 2)

ρ3

T (4, 1, 2) :1

P (1, 2)
e
e
ee

%
%

%%
ρ1

R(1, 2)

ρ2

Q(1, 2, 5) :1

ρ1

S(1, 2)

ρ3

T (4, 1, 2) :1

P (1, 2)
e
e
ee

%
%

%%
ρ1

R(1, 2)

ρ2

Q(1, 2, 3) :1

ρ1

S(1, 2)

ρ3

T (4, 1, 2) :2

Figure 1 Three (out of four) derivation-trees for P (1, 2) in Example 2.

ρ1 : P (x, y)← R(x, y), S(x, y); ρ2 : R(x, y)← Q(x, y, z); ρ3 : S(x, y)← T (z, x, y).
Here, col(D) = {Q(1, 2, 3):1, Q(1, 2, 5):1, Q(2, 3, 4):1, Q(2, 3, 4):2, T (4, 1, 2):1, T (4, 1, 2):2}.
In total, we have 16 DTs: (a) 6 single-node trees with labels in col(D) (b) 6 depth-two,
linear trees (root to the left, i.e. rotated in −90◦): R(1, 2)− ρ2 −Q(1, 2, 3):1. R(1, 2)− ρ2 −
Q(1, 2, 5):1. R(2, 3)− ρ2 −Q(2, 3, 4):1. R(2, 3)− ρ2 −Q(2, 3, 4):2. S(1, 2)− ρ3 − T (4, 1, 2):1.
S(1, 2)− ρ3 − T (4, 1, 2):2. (c) 4 depth-three trees for P (1, 2), three of which are displayed in
Figure 1. The 16 different DTs in DT(Π, col(D)) give rise to DTBS(Π, D) = D ∪ {R(1, 2),
R(1, 2), R(2, 3), R(2, 3), S(1, 2), S(1, 2), P (1, 2), P (1, 2), P (1, 2), P (1, 2)}.

In [22], a bag semantics for Datalog¬s was introduced via derivation-trees (DTs), extending
the DTB semantics in [21] for (positive) Datalog. This extension applies to Datalog programs
with stratified negation that are range-restricted and safe, i.e. a variable in a rule head or in
a negative literal must appear in a positive literal in the body of the same rule. If Π is a
Datalog¬s program with multiset predicates and multiset EDB D, a derivation tree for Π
wrt. D is as for Datalog programs, but with condition 2. modified as follows:
2’. Now let ρ be a rule of the form ρ : H ← A1, A2, . . . , Ak,¬B1, . . .¬B`; with k > 0 and

` ≥ 0. Let the predicate of H be of some stratum i and let the predicates of B1, . . . , B`
be of some stratum < i. Assume that we have already computed all derivation trees for
(atoms with) predicates up to stratum i− 1. Then, for each tuple 〈T1, . . . , Tk〉 of DTs for
the atoms 〈d1, . . . , dk〉 that unify with 〈A1, A2, . . . , Ak〉 with mgu θ, such that there is no
DT for any of the atoms B1θ, . . . , B`θ, generate a DT for Hθ with Hθ as the root label
and 〈T1, . . . , Tk,¬B1θ, . . . ,¬B`θ〉 as the children, in this order. Furthermore, all edges
from the root to its children are labelled with ρ.

Analogously to the positive case, now for a range-restricted and safe program Π in Datalog¬s
and multiset EDB D, we write DTBS(Π, D) to denote the derivation-tree based bag semantics.

I Example 3 (ex. 2 cont.). Consider now the EDB D′ = {Q(1, 2, 3), Q(1, 2, 5), Q(2, 3, 4),
Q(2, 3, 4), T (4, 1, 2)} (with one duplicate of T (4, 1, 2) removed from D), and modify Π to
Π′ = {ρ′1, ρ2, ρ3} with ρ′1 : P (x, y) ← R(x, y),¬S(x, y) (i.e., ρ′1 now encodes multiset
difference). Then, predicates Q,R, S, T are on stratum 0 and P is on stratum 1. The DTs

L. Bertossi, G. Gottlob, and R. Pichler 16:5

for atoms with predicates from stratum 0 are as in Example 2 with two exceptions: there is
now only one single-node DT for T (4, 1, 2) and only one DT for S(1, 2).

For ground atoms with predicate P , we now only get two DTs producing P (2, 3) – derived
via two copies of R(2, 3), which in turn stem from the two copies of Q(2, 3, 4) in the EDB. In
contrast, P (1, 2) cannot be derived from either of the copies of R(1, 2) obtained from either
Q(1, 2, 3) or Q(1, 2, 5) in the EDB because S(1, 2) has a DT.

In total, we have 12 different DTs in DT(Π′, col(D′)) with DTBS(Π′, D′) = D′ ∪ {R(1, 2),
R(1, 2), R(2, 3), R(2, 3), S(1, 2), P (2, 3), P (2, 3)}. Notice that the DT semantics interprets
the difference in rule ρ′1 as “all or nothing”: when computing P (x, y), a single DT for S(x, y)
“kills” all the DTs for R(x, y) (cf. Section 6). For example, P (1, 2) is not derived despite the
fact that we have two copies of R(1, 2) and only one of S(1, 2).

2.2 Warded Datalog±

Datalog± was introduced in [9] as an extension of Datalog, where the “+” stands for the
new ingredients, namely: tuple-generating dependencies (tgds), written as existential rules of
the form ∃z̄P (x̄′, z̄) ← P1(x̄1), . . . , Pn(x̄n), with x̄′ ⊆

⋃
i x̄i, and z̄ ∩

⋃
i x̄i = ∅; as well as

equality-generating dependencies (egds) and negative constraints. In this work we ignore
egds and constraints. The “−“ in Datalog± stands for syntactic restrictions on rules to
ensure decidability of CQ answering.

We consider three sets of term symbols: C, B, and V containing constants, labelled nulls
(also known as blank nodes in the semantic web context), and variables, respectively. Let
T denote an atom or a set of atoms. We write var(T) and nulls(T) to denote the set of
variables and nulls, respectively, occurring in T . In a DB, typically an EDB D, all terms are
from C. In an instance, we also allow terms to be from B. For a rule ρ, body(ρ) denotes the
set of atoms in its body, and head(ρ), the atom in its head. A homomorphism h from a set
X of atoms to a set X ′ of atoms is a partial function h : C ∪B ∪V→ C ∪B ∪V such that
h(c) = c for all c ∈ C and P (h(t1), . . . , h(tk)) ∈ X ′ for every atom P (t1, . . . , tk) ∈ X.

We say that a rule ρ ∈ Π is applicable to an instance I if there exists a homomorphism
h from body(ρ) to I. In this case, the result of applying ρ to I is an instance I ′ = I ∪
{h′(head(ρ))}, where h′ coincides with h on var(body(ρ)) and h′ maps each existential
variable in the head of ρ to a fresh labelled null not occurring in I. For such an application
of ρ to I, we write I〈ρ, h〉I ′. Such an application of ρ to I is called a chase step. The chase
is an important tool in the presence of existential rules. A chase sequence for a DB D and a
Datalog± program Π is a sequence of chase steps Ii〈ρi, hi〉Ii+1 with i ≥ 0, such that I0 = D

and ρi ∈ Π for every i (also denoted Ii ρi,hi Ii+1). For the sake of readability, we sometimes
only write the newly generated atoms of each chase step without repeating the old atoms.
Also the subscript ρi, hi is omitted if it is clear from the context. A chase sequence then
reads I0 A1 A2 A3 . . . with Ii+1 \ Ii = {Ai+1}.

The final atoms of all possible chase sequences for DB D and Π form an instance referred
to as Chase(D,Π), which can be infinite. We denote the result of all chase sequences up to
length d for some d ≥ 0 as Chased(D,Π). The chase variant assumed here is the so-called
oblivious chase [8, 19], i.e., if a rule ρ ∈ Π ever becomes applicable with some homomorphism
h, then Chase(D,Π) contains exactly one atom of the form h′(head(ρ)) such that h′ extends
h to the existential variables in the head of ρ. Intuitively, each rule is applied exactly once
for every applicable homomorphism.

Consider a DB D and a Datalog± program Π (the former the EDB for the latter). As
a logical theory, Π ∪D may have multiple models, but the model M = Chase(D,Π) turns
out to be a correct representative for the class of models: for every BCQ Q, Π ∪D |= Q

ICDT 2019

16:6 Datalog: Bag Semantics via Set Semantics

iff M |= Q [14]. There are classes of Datalog± that, even with an infinite chase, allow for
decidable or even tractable CQA in the size of the EDB. Much effort has been made in
identifying and characterizing interesting syntactic classes of programs with this property
(see [8] for an overview). In this direction, warded Datalog± was introduced in [3, 4, 17], as
a particularly well-behaved fragment of Datalog±, for which CQA is tractable. We briefly
recall and illustrate it here, for which we need some preliminary notions.

A position p in Datalog± program Π is affected if: (a) an existential variable appears in
p, or (b) there is ρ ∈ Π such that a variable x appears in p in head(ρ) and all occurrences
of x in body(ρ) are in affected positions. Aff(Π) and NonAff(Π) denote the sets of affected,
resp. non-affected, positions of Π. Intuitively, Aff(Π) contains all positions where the chase
may possibly introduce a null.

I Example 4. Consider the following program:

∃z1 R(y1, z1) ← P (x1, y1) (1)
∃z2 P (x2, z2) ← S(u2, x2, x2), R(u2, y2) (2)

∃z3 S(x3, y3, z3) ← P (x3, y3), U(x3). (3)

By the first case, R[2], P [2], S[3] are affected. By the second case, R[1], S[2] are affected.
Now that S[2], S[3] are affected, also P [1] is. We thus have Aff(Π) = {P [1], P [2], R[1], R[2],
S[2], S[3]} and NonAff(Π) = {S[1], U [1]}.

For a rule ρ ∈ Π, and a variable x: (a) x ∈ body(ρ) is harmless if it appears at least once
in body(ρ) at a position in NonAff(Π). Harmless(ρ) denotes the set of harmless variables
in ρ. Otherwise, a variable is called harmful. Intuitively, harmless variables will always be
instantiated to constants in any chase step, whereas harmful variables may be instantiated
to nulls. (b) x ∈ body(ρ) is dangerous if x /∈ Harmless(ρ) and x ∈ head(ρ). Dang(ρ) denotes
the set of dangerous variables in ρ. These are the variables which may propagate nulls into
the atom created by a chase step.

I Example 5 (ex. 4 cont.). x1 and y1 are both harmful but only y1 is dangerous for (1); u2
is harmless, x2 is dangerous, y2 is harmful but not dangerous for (2); x3 is harmless and y3
is dangerous for (3).

Now, a rule ρ ∈ Π is warded if either Dang(ρ) = ∅ or there exists an atom A ∈ body(ρ), the
ward, such that (1) Dang(ρ) ⊆ var(A) and (2) var(A) ∩ var(body(ρ) \ {A}) ⊆ Harmless(ρ).
A program Π is warded if every rule ρ ∈ Π is warded.

I Example 6 (ex. 5 cont.). Rule (1) is trivially warded with the single body atom as the
ward. Rule (2) is warded by S(u2, x2, x2): variable x2 is the only dangerous variable and
u2 (the only variable shared by the ward with the rest of the body) is harmless. Actually,
the other body atom R(u2, y2) contains the harmful variable y2; but it is not dangerous and
not shared with the ward. Finally, rule (3) is warded by P (x3, y3); the other atom U(x3)
contains no affected variable. Since all rules are warded, the program Π is warded.

Datalog± can be extended with safe, stratified negation in the usual way, similarly as
stratified Datalog [1]. The resulting Datalog±,¬s can also be given a chase-based semantics [10].
The notions of affected/non-affected positions and harmless/harmful/dangerous variables
carry over to a Datalog±,¬s program Π by considering only the program Πpos obtained from
Π by deleting all negated body atoms. For warded Datalog±, only a restricted form of
stratified negation is allowed – so-called stratified ground negation. This means that we

L. Bertossi, G. Gottlob, and R. Pichler 16:7

require for every rule ρ ∈ Π: if ρ contains a negated atom P (t1, . . . , tn), then every ti must
be either a constant (i.e, ti ∈ C) or a harmless variable. Hence, negated atoms can never
contain a null in the chase. We write Datalog±,¬sg for programs in this language.

The class of warded Datalog±,¬sg programs extends the class of Datalog¬s programs.
Warded Datalog±,¬sg is expressive enough to capture query answering of a core fragment of
SPARQL under certain OWL 2 QL entailment regimes [16], and this task can actually be
accomplished in polynomial time (data complexity) [3, 4]. Hence, Datalog±,¬sg constitutes a
very good compromise between expressive power and complexity. Recently, a powerful query
engine for warded Datalog±,¬sg has been presented [6, 7], namely the VADALOG system.

3 Datalog±-Based Bag Semantics for Datalog¬s

We now provide a set-semantics that represents the bag semantics for a Datalog program
Π with a multiset EDB D via the transformation into a Datalog± program Π+ over a set
EDB D+ obtained from D. For this, we assume w.l.o.g., that the set of nulls, B, for a
Datalog± program is partitioned into two infinite ordered sets I = {ι1, ι2, . . .}, for unique,
global tuple identifiers (tids), and N = {η1, η2, . . .}, for usual nulls in Datalog± programs.
Given a multiset EDB D and a program Π, instead of using colors and syntactically different
derivation trees, we will use elements of I to identify both the elements of the EDB and the
tuples resulting from applications of the chase.

For every predicate P (. . .), we introduce a new version P (. ; . . .) with an extra, first
argument (its 0-th position) to accommodate a tid, which is a null from I. If an atom P (ā)
appears in D as n duplicates, we create the tuples P (ι′1; ā), . . . , P (ι′n; ā), with the ι′i pairwise
different nulls from I as tids, and not used to identify any other element of D. We obtain a
set EDB D+ from the multiset EDB D. Given a rule in Π, we introduce tid-variables (i.e.
appearing in the 0-th positions of predicates) and existential quantifiers in the rule head, to
formally generate fresh tids when the rule applies. More precisely, a rule in Π of the form
ρ : H(x̄) ← A1(x̄1), A2(x̄2), . . . , Ak(x̄k), with k > 0, x̄ ⊆ ∪ix̄i, becomes the Datalog±
rule ρ+ : ∃z H(z; x̄)← A1(z1; x̄1), A2(z2; x̄2), . . . , Ak(zk; x̄k), with fresh, different variables
z, z1, . . . , zk. The resulting Datalog± program Π+ can be evaluated according to the usual
set semantics on the set EDB D+ via the chase: when the instantiated body A1(ι′1; ā1),
A2(ι′2; ā2), . . . , Ak(ι′k; āk) of rule ρ+ becomes true, then the new tuple H(ι; ā) is created, with
ι the first (new) null from I that has not been used yet, i.e., the tid of the new atom.

I Example 7 (ex. 2 cont.). The EDB D from Example 2 becomes

D+ = {Q(ι1; 1, 2, 3), Q(ι2; 1, 2, 5), Q(ι3; 2, 3, 4), Q(ι4; 2, 3, 4), T (ι5; 4, 1, 2), T (ι6; 4, 1, 2)};1

and program Π becomes Π+ = {ρ+
1 , ρ

+
2 , ρ

+
3 } with ρ

+
1 : ∃uP (u;x, y)← R(u1;x, y), S(u2;x, y);

ρ+
2 : ∃uR(u;x, y)← Q(u1;x, y, z); ρ+

3 : ∃uS(u;x, y)← T (u1; z, x, y).

The following is a 3-step chase sequence of D+ and Π+: {Q(ι1; 1, 2, 3), T (ι4; 4, 1, 2)} ρ+
2

R(ι7; 1, 2) ρ+
3
S(ι11; 1, 2) ρ+

1
P (ι13; 1, 2).

Analogously to the depth-two and depth-three trees in Example 2, the chase produces
10 new atoms. In total, we get: Chase(Π+, D+) = D+ ∪ {R(ι7; 1, 2), R(ι8; 1, 2), R(ι9; 2, 3),
R(ι10; 2, 3), S(ι11; 1, 2), S(ι12; 1, 2), P (ι13; 1, 2), P (ι14; 1, 2), P (ι15; 1, 2), P (ι16; 1, 2)}.

1 Notice that this set version of D can also be created by means of Datalog± rules. For example, with
the rule ∃zQ(z; x, y, v)← Q(x, y, v) for the EDB predicate Q.

ICDT 2019

16:8 Datalog: Bag Semantics via Set Semantics

In order to extend the PBB Semantics to Datalog¬s, we have to extend our transformation
of programs Π into Π+ to rules with negated atoms. Consider a rule ρ of the form:

ρ : H(x̄) ← A1(x̄1), . . . , Ak(x̄k),¬B1(x̄k+1), . . . ,¬B`(x̄k+`), (4)

with, x̄k+1, . . . , x̄k+` ⊆
⋃k
i=1 x̄i; we transform it into the following two rules:

ρ+ : ∃zH(z; x̄) ← A1(z1; x̄1), . . . , Ak(zk; x̄k),¬Auxρ1(x̄k+1), . . . ,¬Auxρ` (x̄k+`),
Auxρi (x̄k+i) ← Bi(zi; x̄k+i), i = 1, . . . , `. (5)

The introduction of auxiliary predicates Auxi is crucial since adding fresh variables directly
to the negated atoms would yield negated atoms of the form ¬Bi(zk+i; x̄k+i) in the rule
body, which make the rule unsafe. The resulting Datalog±,¬s program is from the desired
class Datalog±,¬sg:

I Theorem 8. Let Π be a Datalog¬s program and let Π+ be the transformation of Π into a
Datalog±,¬s program. Then, Π+ is a warded Datalog±,¬sg program.

Operation col−1 of Section 2 inspires de-identification and multiset merging operations.
Sometimes we use double braces, {{. . .}}, to emphasize that the operation produces a multiset.

I Definition 9. For a set D of tuples with tids, DI(D) and SP(D), for de-identification and
set-projection, respectively, are: (a) DI(D) := {{P (c̄) | P (t; c̄) ∈ D for some t}}, a multiset;
and (b) SP(D) := {P (c̄) | P (t; c̄) ∈ D for some t}, a set.

I Definition 10. Given a Datalog¬s program Π and a multiset EDB D, the program-based
bag semantics (PBB semantics) assigns to Π ∪D the multiset:

PBBS(Π, D) := DI(Chase(Π+, D+)) = {{P (ā) | P (t; ā) ∈ Chase(Π+, D+)}}.

The main results in this section are the correspondence of PBB semantics and DTB
semantics and the relationship of both with classical set semantics of Datalog:

I Theorem 11. For a Datalog¬s program Π with a multiset EDB D, DTBS(Π, D) =
PBBS(Π, D) holds.

Proof Idea. The theorem is proved by establishing a one-to-one correspondence between
DTs in DT(Π, col(D)) with a fixed root atom P (c̄) and (minimal) chase-derivations of P (c̄)
from D+ via Π+. This proof proceeds by induction on the depth of the DTs and length of
the chase sequences. J

I Corollary 12. Given a Datalog (resp. Datalog¬s) program Π and a multiset EDB D, the set
SP(Chase(Π+, D+)) is the minimal model (resp. the standard model) of the program Π ∪
SP(D).

4 Bag Semantics for Datalog±,¬sg

In the previous section, we have seen that warded Datalog± (possibly extended with stratified
ground negation) is well suited to capture the bag semantics of Datalog in terms of classical set
semantics. We now want to go one step further and study the bag semantics for Datalog±,¬sg
itself. Note that this question makes a lot of sense given the results from [4], where it is
shown that warded Datalog±,¬sg captures a core fragment of SPARQL under certain OWL2
QL entailment regimes and the official W3C semantics of SPARQL is a bag semantics.

L. Bertossi, G. Gottlob, and R. Pichler 16:9

4.1 Extension of the DTB Semantics to Datalog±,¬sg

The definition of a DT-based bag semantics for Datalog±,¬sg is not as straightforward as
for Datalog¬s, since atoms in a model of D ∪Π for a (multiset) EDB D and Datalog±,¬sg
program Π may have labelled nulls as arguments, which correspond to existentially quantified
variables and may be arbitrarily chosen. Hence, when counting duplicates, it is not clear
whether two atoms differing only in their choice of nulls should be treated as copies of each
other or not. We therefore treat multiplicities of atoms analogously to multiple answers to
single-atom queries, i.e., the multiplicity of an atom P (t1, . . . , tk) wrt. EDB D and program
Π corresponds to the multiplicity of answer (t1, . . . , tk) to the query Q = P (x1, . . . , xk) over
the database D and program Π. In other words, we ask for all instantiations (t1, . . . , tk) of
(x1, . . . , xk) such that P (t1, . . . , tk) is true in every model of D ∪ Π. It is well known that
only ground instantiations (on C) can have this property (see e.g. [14]). Hence, below, we
restrict ourselves to considering duplicates of ground atoms containing constants from C only
(in this section we are not using tid-positions 0). In the rest of this section, unless otherwise
stated, “ground atom” means instantiated on C; and programs belong to Datalog±,¬sg.

In order to define the multiplicity of a ground atom P (t1, . . . , tk) wrt. a (multiset) EDB
D and a warded Datalog±,¬sg program Π, we adopt the notion of proof tree used in [4, 11],
which generalizes the notion of derivation tree to Datalog±,¬sg. We consider first positive
Datalog± programs. A proof tree (PT) for an atom A (possibly with nulls) wrt. (a set)
EDB D and Datalog± program Π is a node- and edge-labelled tree with labelling function
λ, such that: (1) The nodes are labelled by atoms over C ∪B. (2) The edges are labelled
by rules from Π. (3) The root is labelled by A. (4) The leaf nodes are labelled by atoms
from D. (5) The edges from a node N to its child nodes N1, . . . , Nk are all labelled with
the same rule ρ. (6) The atom labelling N corresponds to the result of a chase step where
body(ρ) is instantiated to {λ(N1), . . . , λ(Nk)} and head(ρ) becomes λ(N) when instantiating
the existential variables of head(ρ) with fresh nulls. (7) If M ′ (resp. N ′) is the parent node
of M (resp. N) such that nulls(λ(M ′))\nulls(λ(M)) and nulls(λ(N ′))\nulls(λ(N)) share at
least one null, then the entire subtrees rooted at M ′ and at N ′ must be isomorphic (i.e., the
same tree structure and the same labels). (8) If, for two nodes M and N , λ(M) and λ(N)
share a null v, then there exist ancestors M ′ of M and N ′ of N such that M ′ and N ′ are
siblings corresponding to two body atoms A and B of rule ρ with x ∈ var(A) and x ∈ var(B)
for some variable x and ρ is applied with some substitution γ which sets γ(x) = v; moreover,
v occurs in the labels of the entire paths from M ′ to M and from N ′ to N . A proof tree
for Example 13 below is shown in Figure 2, left. As with derivation trees, we assume that
siblings in the proof tree are arranged in the order of the corresponding body atoms in the
rule ρ labelling the edge to the parent node (cf. Section 2.1).

Intuitively, a PT is a tree-representation of the derivation of an atom by the chase. The
parent/child relationship in a PT corresponds to the head/body of a rule application in
the chase. Condition (7) above refers to the case that a non-ground atom is used in two
different rule applications within the chase sequence. In this case, the two occurrences of this
atom must have identical proof sub-trees. A PT can be obtained from a chase-derivation by
reversing the edges and unfolding the chase graph into a tree by copying some of the nodes [4].
By definition of the chase in Section 2.2, it can never happen that the same null is created by
two different chase steps. Note that the nulls in nulls(λ(M ′)) \ nulls(λ(M)) (and, likewise in
nulls(λ(N ′)) \ nulls((λ(N))) are precisely the newly created ones. Hence, if λ(M ′) and λ(N ′)
share such a null, then λ(M ′) and λ(N ′) are the same atom and the subtrees rooted at these
nodes are obtained by unfolding the same subgraph of the chase graph. Condition (8) makes
sure that we use the same null v in a PT only if this is required by a join condition of some

ICDT 2019

16:10 Datalog: Bag Semantics via Set Semantics

Figure 2 Proof tree (left) and witness (right) for atom Q(a, c) in Examples 13 and 20.

rule ρ; otherwise nulls are renamed apart.

I Example 13. Let Π = {ρ1, . . . , ρ5} be the Datalog± program with ρ1 : Q(x,w)← R(x, y),
S(y, z), T (x,w); ρ2 : ∃z R(x, z) ← P (x, y); ρ3 : ∃z S(x, z) ← R(w, x), T (w, y); ρ4 :
T (x, y)← P (x, y); ρ5 : T (x, y)← P (x, z), T (z, y). This program belongs to Datalog±,¬sg,
and – although not necessary to build a proof tree for it – we notice that it is also warded:
Aff(Π) = {R[2], S[2], S[1]}; and all other positions are not affected. Rule ρ3 is warded with
ward R(w, x) (where x is the only dangerous variable in this rule). All other rules are trivially
warded because they have no dangerous variables.

Now let D = {P (a, b), P (b, c), P (a, d), P (d, c)}. A possible proof tree for Q(a, c) is shown
in Figure 2 on the left. It is important to note that nodes N2 and N6 introducing labelled
null u are labelled with the same atom and give rise to identical subtrees. Of course, R(a, u)
could also result from a chase step applying ρ2 to P (a, d). However, this would generate
a null different from u and, subsequently, the nulls in R(a,_) and S(_, v) (in N2 and N3)
would be different, and rule ρ1 could not be applied anymore. In contrast, the nodes N4
and N7 with label T (a, c) span different subtrees. This is desired: there are two possible
derivations for each occurrence of atom T (a, c) in the PT.

Here we deviate slightly from the definition of PTs in [4], in that we allow the same ground
atom to have different derivations. This is needed to detect duplicates and to make sure
that PTs in fact constitute a generalization of the derivation trees in Section 2.1. Moreover,
condition (8) is needed to avoid non-isomorphic PTs by “unforced” repetition of nulls (i.e.,
identical nulls that are not required by a join condition further up in the tree). Analogous
to the generalization in Section 2.1 of DTs for Datalog to DTs for Datalog¬s, it is easy to
generalize proof trees to Datalog±,¬sg. Here it is important that we only allow stratified
ground negation. Hence, analogously to DTs for Datalog¬s, we allow negated ground atoms
¬A to occur as node labels of leaf nodes in a PT, provided that the positive atom A has no
PT. Moreover, it is no problem to allow also multiset EDBs since, as in Section 2.1, we can
keep duplicates apart by means of a coloring function col.

Finally, we can define proof trees T and T ′ as equivalent, denoted T ≡ T ′, if one is
obtained from the other by renaming of nulls. We can thus normalize PTs by assuming that
nulls in node labels are from some fixed set {u1, u2 . . . } and that these nulls are introduced
in the labels of the PT by some fixed-order traversal (e.g., top-down, left-to-right).

For a PT T , we define Atoms(T) as col−1 of the root when T is a single-node tree, and

L. Bertossi, G. Gottlob, and R. Pichler 16:11

the root-label of T , otherwise. For a set of PTs T: Atoms(T) :=
⊎
{Atoms(T) | T ∈ T},

which is a multiset that multi-contains D. If PT(Π, col(D)) is the set of normalized,
non-equivalent PTs, the proof-tree bag (PTB) semantics for Π is the multiset PTBS(Π, D) :=
Atoms(PT(Π, col(D))). For a ground atom A, mult(A,PTBS(Π, D)) denotes the multiplicity
of A in the multiset PTBS(Π, D).

I Example 14 (ex. 13 cont.). To compute PTBS(Π, D) for Π and D from Example 13, we
have to determine all proof trees of all ground atoms derivable from Π and D. In Figure 2,
we have already seen one proof tree for Q(a, c); and we have observed that the sub-proof
tree of R(a, u) rooted at nodes N2 and N6 could be replaced by a child node with label
P (a, d) (either both subtrees or none has to be changed). In total, the ground atom Q(a, c)
has 8 different proof trees wrt. Π and D (multiplying the 2 possible derivations of atom
R(a, u) with 4 derivations for the two occurrences of the atom T (a, c) in nodes N4 and
N7). The other ground atoms derivable from Π and D are T (a, c) (with 2 possible PTs
as discussed in Example 13) and the atoms T (i, j) for each P (i, j) in D. Hence, we have
PTBS(Π, D) = D ∪ {T (a, b), T (b, c), T (a, d), T (d, a), T (a, c), T (a, c), Q(a, c), . . . , Q(a, c)}.

Clearly, every Datalog¬s program is a special case of a warded Datalog±,¬sg program. It
is easy to verify that the PTB semantics indeed generalizes the DTB semantics:

I Proposition 15. Let Π be a Datalog¬s program and D an EDB (possibly with duplicates).
Then DTBS(Π, D) = PTBS(Π, D) holds.

4.2 Extension of the PBB Semantics to Datalog±,¬sg

We now extend also the PBB semantics to Datalog±,¬sg programs Π. First, in all pre-
dicates of Π, we add position 0 to carry tid-variables. Then every rule ρ ∈ Π of the
form ρ : ∃ȳH(ȳ, x̄) ← A1(x̄1), A2(x̄2), . . . , Ak(x̄k), with k > 0, x̄ ⊆ ∪ix̄i, becomes
the rule ρ+ : ∃z∃ȳ H(z; ȳ, x̄) ← A1(z1; x̄1), A2(z2; x̄2), . . . , Ak(zk; x̄k), with fresh, dif-
ferent variables z, z1, . . . , zk. Now consider a rule ρ ∈ Π of the form ρ : ∃ȳH(ȳx̄) ←
A1(x̄1), . . . , Ak(x̄k),¬B1(x̄k+1), . . . ,¬B`(x̄k+`), with x̄k+1, . . . , x̄k+` ⊆

⋃k
i=1 x̄i; we trans-

form it into the following two rules:

ρ′ : ∃z∃ȳH(z; ȳ, x̄) ← A1(z1; x̄1), . . . , Ak(zk; x̄k),¬Auxρ1(x̄k+1), . . . ,¬Auxρ` (x̄k+`), (6)
Auxρi (x̄k+i) ← Bi(zi; x̄k+i), i = 1, . . . , `.

Analogously to Theorem 8, the resulting program also belongs to Datalog±,¬sg. Finally,
as in Section 3, the ground atoms in the multiset EDB D are extended in D+ by nulls
from I = {ι1, ι2, . . . } as tids in position 0 to keep apart duplicates. For an instance I,
we write I↓ to denote the set of atoms in I such that all positions except for position 0
(the tid) carry a ground term (from C). Analogously to Definition 10, we then define the
program-based bag semantics (PBB semantics) of a Datalog±,¬sg program Π and multiset
EDB D as PBBS(Π, D) := DI(Chase(Π+, D+)↓) = {{P (ā) | P (ā) is ground and P (t; ā) ∈
Chase(Π+, D+)}}. For a ground atom A (here, without nulls or tids), mult(A,PBBS(Π, D))
denotes the multiplicity of A in the multiset PBBS(Π, D).

I Example 16 (ex. 13 and 14 cont.). The transformations of Datalog±,¬sg program Π and
multiset EDBD from Example 13 areD+ = {P (ι1, a, b), P (ι2, b, c), P (ι3, a, d), P (ι4, d, c)} and
Π+ = {ρ+

1 , ρ
+
2 , ρ

+
3 , ρ

+
4 , ρ

+
5 } with: ρ+

1 : (∃u)Q(u, x, w) ← R(v1, r, y), S(v2, y, z), T (v3, x, w);
ρ+

2 : (∃u, z)R(u, x, z) ← P (v, x, y); ρ+
3 : (∃u, z)S(u, x, z) ← R(v1, w, x), T (v2, w, y); ρ+

4 :
(∃u)T (u, x, y)← P (v, x, y); ρ+

5 : (∃u)T (u, x, y)← P (v1, x, z), T (v2, z, y).

ICDT 2019

16:12 Datalog: Bag Semantics via Set Semantics

Applying program Π+ to instance D+ gives, for example, the following chase sequence
for deriving the atoms T (ι5, d, c), T (ι7, a, c), T (ι8, b, c), Q(ι11, a, c), which correspond to the
ground atoms in the proof tree in Figure 2, left: D+ ρ+

4
T (ι5, d, c) ρ+

2
R(ι6, a, u) ρ+

5
T (ι7, a, c) ρ+

4
T (ι8, b, c) ρ+

3
S(ι9, u, v) ρ+

5
T (ι10, a, c) ρ+

1
Q(ι11, a, c). Implicitly, we

thus also turn the PTs rooted at N4, N7, and N9 into chase sequences. In total, we get in
PBBS(Π, D) precisely the atoms and multiplicities as in PTBS(Π, D) for Example 14.

In principle, the above transformation Π+ and the PBB semantics are applicable to any
program Π in Datalog±,¬sg. However, in the first place, we are interested in warded programs
Π. It is easy to verify that wardedness of Π carries over to Π+:

I Proposition 17. If Π is a warded Datalog±,¬sg program, then so is Π+.

Proof Idea. The key observation is that the only additional affected positions in Π+ are the
tids at position 0. However, the variables at these positions occur only once in each rule and
are never propagated from the body to the head. Hence, they do not destroy wardedness. J

We conclude this section with the analogous result of Theorem 11:

I Theorem 18. For ground atoms A, mult(A,PTBS(Π, D)) = mult(A,PBBS(Π, D)). Hence,
for a warded Datalog±,¬sg program Π and multiset EDB D, PTBS(Π, D) = PBBS(Π, D).

5 Decidability and Complexity of Multiplicity

For Datalog¬s programs, the following problems related to duplicates have been investigated:
FFE: Given a program Π, a database D, and a predicate P , decide if every derivable
ground P -atom has a finite number of DTs.
FEE: Given a program Π and a predicate P , decide if every derivable ground P -atom
has a finite number of DTs for every database D.

It has been shown in [22] that FFE is decidable (even in PTIME data complexity), whereas
FEE is undecidable. We extend this study by considering warded Datalog±,¬sg instead of
Datalog¬s, and by computing the concrete multiplicities in case of finiteness. We thus study
the following problems:

FINITENESS: For fixed warded Datalog±,¬sg program Π: Given a multiset database D
and a ground atom A, does A have finite multiplicity, i.e., is mult(A,PBBS(Π, D)) finite?
MULTIPLICITY: For fixed warded Datalog±,¬sg program Π: Given a multiset database
D and a ground atom A, compute the multiplicity of A, i.e. mult(A,PBBS(Π, D)).

We will show that both problems defined above can be solved in polynomial time (data
complexity). In case of the FINITENESS problem, we thus generalize the result of [22] for
the FFE problem from Datalog¬s to Datalog±,¬sg. In case of the MULTIPLICITY problem,
no analogous result for Datalog or Datalog¬s has existed before. The following example
illustrates that, even if Π is a Datalog program with a single rule, we may have exponential
multiplicities. Hence, simply computing all DTs or (in case of Datalog±) all PTs is not a
viable option if we aim at polynomial time complexity.

I Example 19. Let D = {E(a0, a1), E(a1, a2), . . . , E(an−1, an)} ∪ {P (a0, a1), C(b0), C(b1)}
for n ≥ 1 and let Π = {ρ} with ρ : P (x, y) ← P (x, z), E(z, y), C(w). Intuitively, E can be
considered as an edge relation and P is the corresponding path relation for paths starting at
a0. The C-atom in the rule body (together with the two C-atoms in D) has the effect that
there are always 2 possible derivations to extend a path. It can be verified by induction over

L. Bertossi, G. Gottlob, and R. Pichler 16:13

i, that atom P (a0, ai) has 2i−1 possible derivations from D via Π. In particular, P (a0, an)
has multiplicity 2n−1.

Note that, if we add atom E(a1, a1) to D (i.e., a self-loop, so to speak), then every
atom P (a0, ai) with i ≥ 1 has infinite multiplicity. Intuitively, the infinitely many different
derivation trees correspond to the arbitrary number of cycles through the self-loop E(a1, a1)
for a path from a0 to ai.

Our PTIME-membership results will be obtained by appropriately adapting the tractab-
ility proof of CQA for warded Datalog± in [4], which is based on the algorithm ProofTree for
deciding if D ∪Π |= P (c̄) holds for database D, warded Datalog± program Π, and ground
atom P (c̄). That algorithm works in ALOGSPACE (data complexity), i.e., alternating
logspace, which coincides with PTIME [12]. It assumes Π to be normalized in such a way
that each rule in Π is either head-grounded (i.e., each term in the head is a constant or a
harmless variable) or semi-body-grounded (i.e., there exists at most one body atom with
harmful variables). Algorithm ProofTree starts with ground atom P (c̄) and applies resolution
steps until the database D is reached. It thus proceeds as follows:

If P (c̄) ∈ D, then accept. Otherwise, guess a head-grounded rule ρ ∈ Π whose head can
be matched to P (c̄) (denoted as ρB P (c̄)). Guess an instantiation γ on the variables in
the body of ρ so that γ(head(ρ)) = P (c̄). Let S = γ(body(ρ)).
Partition S into {S1, . . . ,Sn}, such that each null occurring in S occurs in exactly one
Si, and each set Si is chosen subset-minimal with this property. The purpose of these
sets Si of atoms is to keep together, in the parallel universal computations of ProofTree,
the nulls in S until the atom in which they are created is known.
Universally select each set S ′ ∈ {S1, . . . ,Sn} and “prove” it: If S ′ consists of a single
ground atom P ′(c̄′), then call ProofTree recursively for D, Π, P ′(c̄′). Otherwise, do the
following:
(1) For each atom A ∈ S ′, guess rule ρA with ρA BA and guess variable instantiation γA
on the variables in the body of ρA such that A = γA(head(ρA)).
(2) The set

⋃
A∈S′ γA(body(ρA)) is partitioned as above and each component of this

partition is proved in a parallel universal computation.

The key to the ALOGSPACE complexity of algorithm ProofTree is that the data structure
propagated by this algorithm fits into logarithmic space. This data structure is given by a
pair (S,RS), where S is a set of atoms (such that |S| is bounded by the maximum number
of body atoms of the rules in Π) and RS is a set of pairs (z, x), where z is a null occurring
in S and x is either an atom A (meaning that null z was created when the application of
some rule ρ generated the atom A containing this null z) or the symbol ε (meaning that we
have not yet found such an atom A). A witness for a successful computation of ProofTree
is then given by a tree with existential and universal nodes, with an existential node N
consisting of a pair (S,RS); a universal node N indicates the guessed rule ρA together with
the instantiation γA for each atom A ∈ S at the (existential) parent node of N . The child
nodes of each universal node N are obtained by partitioning

⋃
A∈S γA(body(A)) as described

above and computing the corresponding set RS . At the root, we thus have an existential
node labelled (S,RS) = ({P (c̄)}, ∅). Each leaf node is a universal node labelled with (B, ∅)
for some ground atom B ∈ D. Hence, such a node corresponds to an accept-state.

I Example 20. Recall Π and D from Example 13. A proof tree of ground atom Q(a, c) is
shown in Figure 2 on the left. On the right, we display the witness of the corresponding
successful computation of ProofTree. Note that witnesses have a strict alternation of
existential and universal nodes. In the witness in Figure 2, we have merged each existential

ICDT 2019

16:14 Datalog: Bag Semantics via Set Semantics

node and its unique universal child node to make the correspondence between a PT and a
witness yet more visible. In particular, on each depth level of the trees, we have exactly the
same set of atoms (with the only difference, that in the witness these atoms are grouped
together to sets S by null-occurrences). In this simple example, only node M23 contains such
a group of atoms, namely the atoms from the nodes N2 and N3 in the PT.

In order not to overburden the figure, we have left out the setsRS carrying the information
on the introduction of nulls. In this simple example, the only node with a non-empty set
RS is M6, with RS = {(u,R(a, u)}, i.e. we have to pass on the information that the null
u in node M23 was introduced by applying some rule (namely ρ2) which generated the
atom R(a, u). We thus ensure (when proceeding from node M6 to node M10) that null u is
introduced in the same way as before.

The information from the universal node below each existential node is displayed in
the second line of each node: here we have pairs consisting of the guessed rule ρ plus the
guessed instantiation γ for each atom in the corresponding set S (as mentioned above, S is a
singleton in all nodes except for M23). For instance, γ1 in node M1 denotes the substitution
γ1 = {x ← a, y ← u, z ← v, w ← c}. Only in node M23, we have 2 pairs (ρ2, γ2), (ρ3, γ3)
with γ2 = {x ← a, y ← b} and γ3 = {w ← a, x ← u, y ← c}. Note that the subscripts i of
the γi’s in Figure 2 are to be understood local to the node. For instance, the two different
applications of rule ρ4 in nodes M9 and M12 are with the instantiations γ4 = {x← b, y ← c}
(in M9) and γ4 = {x← d, y ← c} (in M12), respectively.

The above example illustrates the close relationship between PTs T and witnesses W of
the ProofTree algorithm. However, our goal is a one-to-one correspondence, which requires
further measures: for witness trees, we thus assume from now on (as in Example 20) that each
existential node is merged with its unique universal child node and that nulls are renamed
apart: that is, whenever nulls are introduced by a resolution step of ProofTree, then all nulls
in nulls(γ(body(ρ))) \ nulls(γ(head(ρ))) must be fresh (that is, they must not occur elsewhere
in W). Moreover, we eliminate redundant information from PTs and witnesses by pruning
repeated subtrees: let N be a node in a PT T such that some null is introduced via atom A

in λ(N), and let N be closest to the root with this property, then prune all other subtrees
below all nodes M 6= N with λ(M) = A. Likewise, if a node in a witness W contains an
atom A and the pair (z,A) in RS , then we omit the resolution step for A. We refer to the
reduced PT of T as T ∗ and to the reduced witness of W as W∗. For instance, in the PT in
Figure 2, we delete the node N10 because the information on how to derive atom R(a, u) is
already contained in the subtree rooted at node N2. Likewise, in the witness in Figure 2,
we omit the resolution step for atom R(a, u) in node M6, because, in this node, we have
RS = {(u,R(a, u)}. Hence, it is known from some resolution step “above” that u must be
introduced via this atom and its derivation is checked elsewhere. We thus delete M10.

It is straightforward to construct a reduced witness W∗ from a given reduced PT T ∗, and
vice versa. We refer to these constructions as T 2W and W2T , respectively: Given T ∗, we
obtain W∗ by a top-down traversal of T ∗ and merging siblings if they share a null. Moreover,
if the label at a child node in T ∗ was created by applying rule ρ with substitution γ, then we
add (ρ, γ) to the node label in W∗. Finally, if such a rule application generates a new null z,
then we add (z, γ(head(ρ)) to RS of every child node which still contains null z. Conversely,
we obtain T ∗ from a reduced witness W∗ by a bottom-up traversal of W∗, where we turn
every node labelled with k atoms into k siblings, each labelled with one of these atoms. The
edge labels ρ in T ∗ are obtained from the corresponding (ρ, γ) labels in the node in W∗. In
summary, we have:

L. Bertossi, G. Gottlob, and R. Pichler 16:15

I Lemma 21. There is a one-to-one correspondence between reduced proof trees T ∗ for a
ground atom P (c̄) and reduced witnesses W∗ for its successful ProofTree computations. More
precisely, given T ∗, we get a reduced witness as T 2W(T ∗); given W∗, we get a reduced PT
as W2T (W∗) with W2T (T 2W(T ∗)) = T ∗ and T 2W(W2T (W∗)) =W∗.

So far, we have only considered warded Datalog±, without negation. However, this
restriction is inessential. Indeed, by the definition of warded Datalog±,¬sg, negated atoms can
never contain a null in the chase. Hence, one can easily get rid of negation (in polynomial time
data complexity) by computing for one stratum after the other the answer Q(Π, D) to query
Q with Q ≡ P (x1, . . . , xn), i.e., all ground atoms P (a1, . . . , an) with Π ∪D |= P (a1, . . . , an).
We can then replace all occurrences of ¬P (t1, . . . , tn) in any rule of Π by the positive atom
P ′(t1, . . . , tn) (for a new predicate symbol P ′) and add to the instance all ground atoms
P ′(a1, . . . , an) with (a1, . . . , an) 6∈ Q(D,Π). Hence, all our results proved in this section for
warded Datalog± also hold for warded Datalog±,¬sg.

Clearly, there is a one-to-one correspondence between proof trees PT T and their reduced
forms T ∗. Hence, together with Lemma 21, we can compute the multiplicities by computing
(reduced) witness trees. This allows us to obtain the results below:

I Theorem 22. Let Π be a warded Datalog±,¬sg program and D a database (possibly with
duplicates). Then there exists a bound K which is polynomial in D, s.t. for every ground
atom A:
1. A has finite multiplicity if and only if all reduced witness trees of A have depth ≤ K.
2. If A has infinite multiplicity, then there exists at least one reduced witness tree of A whose

depth is in [K + 1, 2K].

Proof Idea. Recall that the data structure propagated by the ProofTree algorithm consists
of pairs (S,RS). We call pairs (S,RS) and (S ′,RS′) equivalent if one can be obtained from
the other by renaming of nulls. The bound K corresponds to the maximum number of
non-equivalent pairs (S,RS) over the given signature and domain of D. By the logspace
bound on this data structure, there can only be polynomially many (w.r.t. D) such pairs.
For the first claim of the theorem, suppose that a (reduced) witness tree W∗ has depth
greater than K; then there must be a branch with two nodes N and N ′ with equivalent pairs
(S,RS) and (S ′,RS′). We get infinitely many witness trees by arbitrarily often iterating the
path between N and N ′. J

In principle, Theorem 22 suffices to prove decidability of FINITENESS and design an
algorithm for the MULTIPLICITY: just chase database D with the transformed warded
Datalog program Π+ up to depth 2K. If the desired ground atom A extended by some
tid is generated at a depth greater than K, then conclude that A has infinite multiplicity.
Otherwise, the multiplicity of A is equal to the number of atoms of the form (ι;A) in the
chase result. However, this chase of depth 2K may produce an exponential number of atoms
and hence take exponential time. Below we show that we can in fact do significantly better:

I Theorem 23. For warded Datalog±,¬sg programs, both the FINITENESS problem and the
MULTIPLICITY problem can be solved in polynomial time.

Proof Idea. A decision procedure for the FINITENESS problem can be obtained by modi-
fying the ALOGSPACE algorithm ProofTree from [4] in such a way that we additionally
“guess” a branch in the witness tree with equivalent labels. The additional information thus
needed also fits into logspace.

ICDT 2019

16:16 Datalog: Bag Semantics via Set Semantics

The MULTIPLICITY problem can be solved in polynomial time by a tabling approach to
the ProofTree algorithm. We thus store for each (non-equivalent) value of (S,RS) how many
(reduced) witness trees it has and propagate this information upwards for each resolution
step encoded in the (reduced) witness tree. J

6 Multiset Relational Algebra (MRA)

Following [20, 21], we consider multisets (or bags)M and elements e (from some domain) with
non-negative integer multiplicities, mult(e,M) (recall from Section 2.1 that, by definition,
e ∈ M iff mult(e,M) ≥ 1). Now consider multiset relations R,S. Unless stated otherwise,
we assume that R,S contain tuples of the same arity, say n. We define the following multiset
operations of MRA: the multiset union,], is defined by R] S := T , with mult(e, T) :=
mult(e,R) + mult(e, S). Multiset selection, σm

C (R), with a condition C, is defined as the
multiset T containing all tuples in R that satisfy C with the same multiplicities as in R.
For multiset projection πm

k̄
(R), we get the multiplicities mult(e, πm

k̄
(R)) by summing up the

multiplicities of all tuples in R that, when projected to the positions k̄ = 〈i1, . . . , ik〉, produce
e. For the multiset (natural) join R onmS, the multiplicity of each tuple t is obtained as the
product of multiplicities of tuples from R and of tuples from S that join to t.

For the multiset difference, two definitions are conceivable: Majority-based, or “monus”
difference (see e.g. [15]), given by R 	 S := T , with mult(e, T) := max{mult(e,R) −
mult(e, S), 0}. There is also the “all-or-nothing” difference: R⊗ S := T , with mult(e, T) :=
mult(e,R) if e /∈ S and mult(e, T) := 0, otherwise. Following [22], we have only considered
⊗ so far (implicitly, starting with Datalog¬s, in Section 2.1). The multiset intersection
∩m is not treated or used in any of [2, 20, 21, 22]. Extending the DTB semantics from
[21] to ∩m would treat it as a special case of the join, which may be counter-intuitive,
e.g., {a, a, b} ∩m {a, a, a, c} := {a, a, a, a, a, a}. Alternatively, we could define “minority-
based” intersection R ∩mb S, which returns each element with its minimum multiplicity, e.g.,
{a, a, b} ∩mb {a, a, a, c} := {a, a}.

We consider MRA with the following basic multiset operations: multiset union], multiset
projection πm

k̄
, multiset selection σm

C , with C a condition, multiset (natural) join onm, and
(all-or-nothing) multiset difference ⊗. We can also include duplicate elimination in MRA,
which becomes operation DI of Definition 9 when using tids. Being just a projection in
the latter case, it can be represented in Datalog. For the moment, we consider multiset-
intersection as a special case of multiset (natural) join onm. It is well known that the basic,
set-oriented relational algebra operations can all be captured by means of (non-recursive)
Datalog¬s programs (cf. [1]). Likewise, one can capture MRA by means of (non-recursive)
Datalog¬s programs with multiset semantics (see e.g. [2]). Together with our transformation
into set semantics of Datalog±,¬sg, we thus obtain:

I Theorem 24. The Multiset Relational Algebra (MRA) can be represented by warded
Datalog±,¬sg with set semantics.

As a consequence, the MRA operations can still be performed in polynomial-time (data
complexity) via Datalog±,¬sg. This result tells us that MRA – applied at the level of an
EDB with duplicates – can be represented in warded Datalog, and uniformly integrated
under the same logical semantics with an ontology represented in warded Datalog.

We now retake multiset-intersection (and later also multiset-difference), which appears as
∩m and ∩mb. The former does not offer any problem for our representation in Datalog± as
above, because it is a special case of multiset join. In contrast, the minority-based intersection,

L. Bertossi, G. Gottlob, and R. Pichler 16:17

∩mb, is more problematic.2 First, the DTB semantics does not give an account of it in terms
of Datalog that we can use to build upon. Secondly, our Datalog±-based formulation of
duplicate management with MRA operations is set-theoretic. Accordingly, to investigate the
representation of the bag-based operation ∩mb by means of the latter, we have to agree on a
set-based reformulation ∩mb. We propose for it a tid-based (set) representation, because tid
creation becomes crucial to make it a deterministic operation. Accordingly, for multi-relations
P and R with the same arity n (plus 1 for tids), we define:

P ∩mb Q := {(i; ā) | (i; ā) ∈
{
P if |π0(σ1..n=ā(P))| ≤ |π0(σ1..n=ā(Q))|
Q otherwise }. (7)

Here, we only assume that tids are local to a predicate, i.e. they act as values for a surrogate
key. Intuitively, we keep for each tuple in the result the duplicates that appear in the relation
that contains the minimum number of them. Here, π0 denotes the projection on the 0-th
attribute (for tids), and σ1..n=ā is the selection of those tuples which coincide with ā on
the next n attributes. This operation may be non-commutative when equality holds in
the first case of (7) (e.g. {〈1; a〉} ∩mb {〈2; a〉} = {〈1; a〉} 6= {〈2; a〉} = {〈2; a〉} ∩mb {〈1; a〉}).
Most importantly, it is non-monotonic: if any of the extensions of P or Q grows, the result
may not contain the previous result,3 e.g. {〈1; a〉} ∩mb {〈2; a〉} = {〈1; a〉} 6⊇ {〈2; a〉} =
({〈1; a〉} ∪ {〈3; a〉}) ∩mb {〈2; a〉}. (It is still non-monotonic under the DTB semantics.) We
get the following inexpressibility results:

I Proposition 25. The minority-based intersection with duplicates ∩mb as in (7) cannot be
represented in Datalog, (positive) Datalog±, or FO predicate logic (FOL). The same applies
to the majority-based (monus) difference, 	.

Proof Idea. By the non-monotonicity of ∩mb, it is clear for Datalog and (positive) Datalog±.
For the inexpressibility in FOL, the key idea is that with the help of ∩mb or 	 we could
express the majority quantifier, which is known to be undefinable in FOL [24, 25]. J

I Proposition 26. The minority-based intersection with duplicates ∩mb as in (7) cannot be
represented in Datalog¬s. The same applies to the majority-based difference, 	.

Proof Idea. It can be shown that if a logic is powerful enough to express any of ∩mb or 	,
then we could express in this logic – for sets A and B – that |A| = |B rA| holds. However,
the latter property cannot even be expressed in the logic Lω∞ω under finite structures [13,
sec. 8.4.2] and this logic extends Datalog¬s. J

7 Conclusions and Future Work

We have proposed the specification of the bag semantics of Datalog in terms of warded
Datalog± with set semantics and we have also extended this specification to the bag semantics
of warded Datalog±,¬sg itself. Our work underlines that warded Datalog± is indeed a well-
chosen fragment of Datalog±: it provides a mild extension of Datalog by the restricted use
of existentially quantified variables in the rule heads, which suffices to capture certain forms
of ontological reasoning [3, 17] and, as we have seen here, the bag semantics of Datalog.

2 The majority-based union operation on bags, that returns, e.g. {{a, a, b, c}} ∪mab {{a, b, b}} :=
{{a, a, b, b, c}} should be equally problematic.

3 We could redefine (7) by introducing new tids, i.e. tuples (f(i), ā), for each tuple (i, ā) in the condition
in (7), with some function f of tids. The f(i) could be the next tid values after the last one used so far
in a list of them. The operation defined in this would still be non-monotonic.

ICDT 2019

16:18 Datalog: Bag Semantics via Set Semantics

Further extensions of this system, above all to SPARQL with bag semantics based on
previous Datalog rewritings [2, 23] are under way. Another interesting direction for future
work is to investigate further inexpressibility issues such as, e.g., whether warded Datalog±,¬sg
is expressive enough to capture ∩mb and 	. This work will also include the development of
tools to address (in)expressibility results in Datalog±, with or without negation.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley,

1994.
2 Renzo Angles and Claudio Gutiérrez. The Multiset Semantics of SPARQL Patterns. In Proc.

ISWC 2016, volume 9981 of LNCS, pages 20–36, 2016. doi:10.1007/978-3-319-46523-4_2.
3 Marcelo Arenas, Georg Gottlob, and Andreas Pieris. Expressive languages for querying the

semantic web. In Proc. PODS’14, pages 14–26. ACM, 2014. doi:10.1145/2594538.2594555.
4 Marcelo Arenas, Georg Gottlob, and Andreas Pieris. Expressive languages for querying the

semantic web. ACM Trans. Database Syst. (to appear), 2018.
5 Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with

existential variables: Walking the decidability line. Artif. Intell., 175(9-10):1620–1654, 2011.
doi:10.1016/j.artint.2011.03.002.

6 Luigi Bellomarini, Georg Gottlob, Andreas Pieris, and Emanuel Sallinger. Swift Logic
for Big Data and Knowledge Graphs. In Proc. IJCAI 2017, pages 2–10. ijcai.org, 2017.
doi:10.24963/ijcai.2017/1.

7 Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The Vadalog System: Datalog-based
Reasoning for Knowledge Graphs. PVLDB, 11(9):975–987, 2018.

8 Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the Infinite Chase: Query Answering
under Expressive Relational Constraints. J. Artif. Intell. Res., 48:115–174, 2013.

9 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a unified approach to
ontologies and integrity constraints. In Proc. ICDT 2009, volume 361 of ACM International
Conference Proceeding Series, pages 14–30. ACM, 2009.

10 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework
for tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012. doi:10.1016/j.
websem.2012.03.001.

11 Andrea Calì, Georg Gottlob, and Andreas Pieris. Towards more expressive ontology languages:
The query answering problem. Artif. Intell., 193:87–128, 2012. doi:10.1016/j.artint.2012.
08.002.

12 Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981. doi:10.1145/322234.322243.

13 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 2nd edition, 1999.
14 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:

semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005. doi:10.1016/j.
tcs.2004.10.033.

15 Floris Geerts and Antonella Poggi. On database query languages for K-relations. J. Applied
Logic, 8(2):173–185, 2010. doi:10.1016/j.jal.2009.09.001.

16 Birte Glimm, Chimezie Ogbuji, Sandro Hawke, Ivan Herman, Bijan Parsia, Axel Polleres, and
Andy Seaborne. SPARQL 1.1 Entailment Regimes. W3C Recommendation 21 march 2013,
W3C, 2013. URL: https://www.w3.org/TR/sparql11-entailment/.

17 Georg Gottlob and Andreas Pieris. Beyond SPARQL under OWL 2 QL Entailment Regime:
Rules to the Rescue. In Proc. IJCAI 2015, pages 2999–3007. AAAI Press, 2015. URL:
http://ijcai.org/Abstract/15/424.

18 Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In Proc.
PODS’07, pages 31–40. ACM, 2007. doi:10.1145/1265530.1265535.

http://dx.doi.org/10.1007/978-3-319-46523-4_2
http://dx.doi.org/10.1145/2594538.2594555
http://dx.doi.org/10.1016/j.artint.2011.03.002
http://dx.doi.org/10.24963/ijcai.2017/1
http://dx.doi.org/10.1016/j.websem.2012.03.001
http://dx.doi.org/10.1016/j.websem.2012.03.001
http://dx.doi.org/10.1016/j.artint.2012.08.002
http://dx.doi.org/10.1016/j.artint.2012.08.002
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1016/j.tcs.2004.10.033
http://dx.doi.org/10.1016/j.tcs.2004.10.033
http://dx.doi.org/10.1016/j.jal.2009.09.001
https://www.w3.org/TR/sparql11-entailment/
http://ijcai.org/Abstract/15/424
http://dx.doi.org/10.1145/1265530.1265535

L. Bertossi, G. Gottlob, and R. Pichler 16:19

19 David S. Johnson and Anthony C. Klug. Testing Containment of Conjunctive Queries
under Functional and Inclusion Dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.
doi:10.1016/0022-0000(84)90081-3.

20 Michael J. Maher and Raghu Ramakrishnan. Déjà Vu in Fixpoints of Logic Programs. In
Proc. NACLP 1989, pages 963–980. MIT Press, 1989.

21 Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The Magic of Duplicates
and Aggregates. In Proc. VLDB 1990, pages 264–277. Morgan Kaufmann, 1990. URL:
http://www.vldb.org/conf/1990/P264.PDF.

22 Inderpal Singh Mumick and Oded Shmueli. Finiteness Properties of Database Queries. In
Proc. ADC ’93, pages 274–288. World Scientific, 1993.

23 Axel Polleres and Johannes Peter Wallner. On the relation between SPARQL1.1 and Answer
Set Programming. Journal of Applied Non-Classical Logics, 23(1-2):159–212, 2013. doi:
10.1080/11663081.2013.798992.

24 Johan van Benthem and Kees Doets. Higher-Order Logic. In Dov M. Gabbay and Franz
Guenthner, editors, Handbook of Philosophical Logic, Vol. I, Synthese Library, Vol. 164, pages
275–329. D. Reidel Publishing Company, 1983.

25 Dag Westerståhl. Quantifiers in Formal and Natural. In Dov M. Gabbay and Franz Guenthner,
editors, Handbook of Philosophical Logic, Vol. 14, pages 223–338. Springer, 2007.

ICDT 2019

http://dx.doi.org/10.1016/0022-0000(84)90081-3
http://www.vldb.org/conf/1990/P264.PDF
http://dx.doi.org/10.1080/11663081.2013.798992
http://dx.doi.org/10.1080/11663081.2013.798992

Oblivious Chase Termination: The Sticky Case
Marco Calautti
School of Informatics, University of Edinburgh, UK
mcalautt@inf.ed.ac.uk

Andreas Pieris
School of Informatics, University of Edinburgh, UK
apieris@inf.ed.ac.uk

Abstract
The chase procedure is one of the most fundamental algorithmic tools in database theory. A key
algorithmic task is uniform chase termination, i.e., given a set of tuple-generating dependencies
(tgds), is it the case that the chase under this set of tgds terminates, for every input database?
In view of the fact that this problem is undecidable, no matter which version of the chase we
consider, it is natural to ask whether well-behaved classes of tgds, introduced in different contexts
such as ontological reasoning, make our problem decidable. In this work, we consider a prominent
decidability paradigm for tgds, called stickiness. We show that for sticky sets of tgds, uniform
chase termination is decidable if we focus on the (semi-)oblivious chase, and we pinpoint its exact
complexity: PSpace-complete in general, and NLogSpace-complete for predicates of bounded
arity. These complexity results are obtained via graph-based syntactic characterizations of chase
termination that are of independent interest.

2012 ACM Subject Classification Theory of computation → Database constraints theory; Theory
of computation → Logic and databases

Keywords and phrases Chase procedure, tuple-generating dependencies, stickiness, termination,
computational complexity

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.17

Funding Calautti and Pieris are funded by the EPSRC grant EP/S003800/1 “EQUID”, and the
EPSRC programme grant EP/M025268/ “VADA”.

1 Introduction

The chase procedure (or simply chase) is a fundamental algorithmic tool that has been
successfully applied to several database problems such as containment of queries under
constraints [1], checking logical implication of constraints [3, 17], computing data exchange
solutions [10], and query answering under constraints [5], to name a few. The chase procedure
accepts as an input a database D and a set Σ of constraints and, if it terminates, its result
is a finite instance DΣ that is a universal model of D and Σ, i.e., is a model that can be
homomorphically embedded into every other model of D and Σ. In other words, DΣ acts as
a representative of all the other models of D and Σ. This is the reason for the ubiquity of
the chase in database theory, as discussed in [8]. Indeed, many key database problems can
be solved by simply exhibiting a universal model.

A prominent class of constraints that can be naturally treated by the chase procedure is
the class of tuple-generating dependencies (tgds), i.e., sentences of the form

∀x̄∀ȳ (φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) ,

where φ and ψ are conjunctions of atoms. Given a database D and a set Σ of tgds, the
chase adds new atoms to D (possibly involving null values that act as witnesses for the
existentially quantified variables) until the final result satisfies Σ. For example, given the
database D = {R(c)}, and the tgd ∀x(R(x)→ ∃y P (x, y)∧R(y)), the database atom triggers

© Marco Calautti and Andreas Pieris;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 17; pp. 17:1–17:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mcalautt@inf.ed.ac.uk
mailto:apieris@inf.ed.ac.uk
https://doi.org/10.4230/LIPIcs.ICDT.2019.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Oblivious Chase Termination: The Sticky Case

the tgd, and the chase will add in D the atoms P (c,⊥1) and R(⊥1) in order to satisfy it,
where ⊥1 is a (labeled) null representing some unknown value. However, the new atom
R(⊥1) triggers again the tgd, and the chase is forced to add the atoms P (⊥1,⊥2), R(⊥2),
where ⊥2 is a new null. The result of the chase is the instance

{R(c), P (c,⊥1)} ∪
⋃
i>0
{R(⊥i), P (⊥i,⊥i+1)},

where ⊥1,⊥2, . . . are nulls.
The above example shows that the chase procedure may not terminate, even for very

simple databases and sets of tgds. This fact motivated a long line of research on identifying
subclasses of tgds that ensure the termination of the chase procedure, no matter how the
input database looks like. A prime example is the class of weakly-acyclic sets of tgds [10],
which is the standard language for data exchange purposes, and guarantees the termination
of the semi-oblivious and restricted (a.k.a. standard) chase. A similar formalism, called
constraints with stratified-witness, has been proposed in [9]. Inspired by weak-acyclicity, the
notion of rich-acyclicity has been proposed in [16], which guarantees the termination of the
oblivious chase. Many other sufficient conditions for chase termination can be found in the
literature; see, e.g., [8, 9, 13, 15, 18, 19] – this list is by no means exhaustive, and we refer
the reader to [14] for a comprehensive survey.

With so much effort spent on identifying sufficient conditions for the termination of the
chase procedure, the question that immediately comes up is whether a sufficient condition
that is also necessary exists. In other words, given a set Σ of tgds, is it possible to decide
whether, for every database D, the chase on D and Σ terminates? This question has been
addressed in [11], and has been shown that the answer is negative, no matter which version
of the chase we consider, namely the oblivious, semi-oblivious and restricted chase. The
problem remains undecidable even if the database is known; this has been established in [8]
for the restricted chase, and it was observed in [18] that the same proof shows undecidability
also for the (semi-)oblivious chase.

The undecidability proof given in [11] constructs a sophisticated set of tgds that goes
beyond existing well-behaved classes of tgds that enjoy certain syntactic properties, which in
turn ensure useful model-theoretic properties. This has been already observed in [4], where it
is shown that the chase termination problem is decidable if we focus on the (semi-)oblivious
version of the chase, and classes of tgds based on the notion of guardedness. Guardedness is
one of the main decidability paradigms that gives rise to robust tgd-based languages [2, 5, 6]
that capture important database constraints and lightweight description logics. The key
model-theoretic property of guarded-based languages, which explains their robust behaviour,
is the tree-likeness of the underlying universal models [5]. On the other hand, there are
interesting statements that are inherently non-tree-like, and thus not expressible via guarded-
based languages. Such a statement consists of the tgds

∀x∀y(R(x, y) → ∃z R(y, z) ∧ P (z)) ∀x∀y(P (x) ∧ P (y) → S(x, y)),

which compute the cartesian product of a unary relation that stores infinitely many elements.
The inability of guarded-based tgds to express non-tree-like statements like the one above,

has motivated a long line of research on isolating well-behaved classes of tgds that go beyond
tree-like models and guardedness. The main decidability paradigm obtained from this effort
is known as stickiness [7]. The key idea underlying stickiness can be described as follows:
variables that appear more than once in the left-hand side of a tgd, known as the body of the
tgd, should be inductively propagated (or “stick”) to every atom in the right-hand side of

M. Calautti and A. Pieris 17:3

the tgd; more details are given in Section 2. It is easy to verify that the above non-tree-like
statement is trivially sticky since none of the body variables occurs more than once. The
crucial question that comes up is the following: given a sticky set Σ of tgds, is it possible to
decide whether the chase terminates for every input database?

The main goal of this work is to study the chase termination problem for sticky sets of
tgds, and give a definite answer to the above fundamental question. In fact, we focus on the
(semi-)oblivious versions of the chase, and we show that deciding termination for sticky sets
of tgds is decidable, and provide precise complexity results: PSpace-complete in general,
and NLogSpace-complete for predicates of bounded arity. Although the (semi-)oblivious
versions of the chase are considered as non-standard ones, they have certain advantages
that classify them as important algorithmic tools, and thus they deserve our attention. In
particular, unlike the restricted chase, the application of a tgd does not require checking
if the right-hand side of the tgd is already satisfied by the instance, and this guarantees
technical clarity and efficiency; for a more thorough discussion on the advantages of the
oblivious and semi-oblivious chase see [5, 18].

Summary of Contributions. Our results can be summarized as follows:
In Section 4, we provide a semantic characterization of non-termination of the oblivious
and semi-oblivious chase under sticky sets of tgds via the existence of path-like infinite
chase derivations, which forms the basis for our decision procedure.
By exploiting the above semantic characterization, we then provide, in Section 5, a
syntactic characterization of chase termination via graph-based conditions. To this end,
we extend recent syntactic characterizations from [4] of the termination of the oblivious
and semi-oblivious chase under constant-free linear tgds (tgds with one body atom), to
linear tgds with constants. The transition from constant-free tgds to tgds with constants
turned out to be more challenging than expected.
Finally, in Section 6, by exploiting the graph-based syntactic characterization from the
previous section, we establish the precise complexity of our problem: PSpace-complete
in general, and NLogSpace-complete for predicates of bounded arity.

2 Preliminaries

We consider the disjoint countably infinite sets C, N, and V of constants, (labeled) nulls,
and (regular) variables (used in dependencies), respectively. A fixed lexicographic order
is assumed on (C ∪N) such that every null of N follows all constants of C. We refer to
constants, nulls and variables as terms. Let [n] = {1, . . . , n}, for any integer n ≥ 1.

Relational Databases. A schema S is a finite set of relation symbols (or predicates) with
associated arity. We write R/n to denote that R has arity n > 0. A position R[i] in S, where
R/n ∈ S and i ∈ [n], identifies the i-th argument of R. An atom over S is an expression of
the form R(t̄), where R/n ∈ S and t̄ is an n-tuple of terms. We write var(α) for the set of
variables occurring in an atom α; this notation naturally extends to sets of atoms. A fact
is an atom whose arguments consist only of constants. An instance over S is a (possibly
infinite) set of atoms over S that contain constants and nulls, while a database over S is a
finite set of facts over S. The active domain of an instance I, denoted dom(I), is the set of
all terms, i.e., constants and nulls, occurring in I.

ICDT 2019

17:4 Oblivious Chase Termination: The Sticky Case

Substitutions and Homomorphisms. A substitution from a set T of terms to a set T ′ of
terms is a function h : T → T ′ defined as follows: ∅ is a substitution (empty substitution),
and if h is a substitution, then h ∪ {t 7→ t′}, where t ∈ T and t′ ∈ T ′, is a substitution. The
restriction of h to a subset S of T , denoted h|S , is the substitution {t 7→ h(t) | t ∈ S}. A
homomorphism from a set A of atoms to a set B of atoms is a substitution h from the set of
terms in A to the set of terms in B such that (i) t ∈ C implies h(t) = t, i.e., h is the identity
on C, and (ii) R(t1, . . . , tn) ∈ A implies h(R(t1, . . . , tn)) = R(h(t1), . . . , h(tn)) ∈ B.

Tuple-Generating Dependencies. A tuple-generating dependency σ is a sentence

∀x̄∀ȳ (φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄)) ,

where x̄, ȳ, z̄ are tuples of variables of V, while φ(x̄, ȳ) and ψ(x̄, z̄) are conjunctions of atoms
(possibly with constants). For brevity, we write σ as φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄), and use comma
instead of ∧ for joining atoms. We refer to φ(x̄, ȳ) and ψ(x̄, z̄) as the body and head of σ,
denoted body(σ) and head(σ), respectively. The frontier of the tgd σ, denoted fr(σ), is the
set of variables x̄, i.e., the variables that appear both in the body and the head of σ. The
schema of a set Σ of tgds, denoted sch(Σ), is the set of predicates in Σ. We also write
const(Σ) for the set of constants occurring in Σ. An instance I satisfies a tgd σ as the one
above, written I |= σ, if the following holds: whenever there exists a homomorphism h such
that h(φ(x̄, ȳ)) ⊆ I, then there exists h′ ⊇ h|x̄ such that h′(ψ(x̄, z̄)) ⊆ I. Note that, by abuse
of notation, we sometimes treat a conjunction of atoms as a set of atoms. The instance I
satisfies a set Σ of tgds, written I |= Σ, if I |= σ for each σ ∈ Σ.

One of the main syntactic paradigms for tgds is stickiness [7]. The key property underlying
this condition is as follows: variables that appear more than once in the body of a tgd should
be inductively propagated (or “stick”) to every head atom. This is graphically illustrated as

×
 T(x,y,z) → ∃w S(y,w)

 R(x,y), P(y,z) → ∃w T(x,y,w)

 T(x,y,z) → ∃w S(x,w)

 R(x,y), P(y,z) → ∃w T(x,y,w)

where the first set of tgds is sticky, while the second is not. The formal definition is based on
an inductive procedure that marks the variables that may violate the property described
above. Roughly, during the base step of this procedure, a variable that appears in the body
of a tgd but not in every head atom is marked. Then, the marking is inductively propagated
from head to body. Stickiness requires every marked variable to appear only once in the
body of a tgd. The formal definition follows. Let Σ be a set of tgds; w.l.o.g., we assume that
the tgds in Σ do not share variables. Given an atom R(t̄) and a variable x in t̄, pos(R(t̄), x)
is the set of positions in R(t̄) at which x occurs. Let σ ∈ Σ and x a variable in the body of
σ. We inductively define when x is marked in Σ:

If x does not occur in every atom of head(σ), then x is marked in Σ.
Assuming that head(σ) contains an atom of the form R(t̄) and x ∈ t̄, if there exists σ′ ∈ Σ
that has in its body an atom of the form R(t̄′), and each variable in R(t̄′) at a position
of pos(R(t̄), x) is marked in Σ, then x is marked in Σ.

The set Σ is sticky if there is no tgd that contains two occurrences of a variable that is
marked in Σ. We denote by S the class of sticky finite sets of tgds. Let us clarify that we
work with finite sets of tgds only. Thus, in the rest of the paper, a set of tgds is always finite.

M. Calautti and A. Pieris 17:5

The Tgd Chase Procedure. The tgd chase procedure (or simply chase) takes as an input
a database D and a set Σ of tgds, and constructs a (possibly infinite) instance I such that
I ⊇ D and I |= Σ. A crucial notion is that of trigger for a set of tgds on some instance.
Consider a set Σ of tgds and an instance I. A trigger for Σ on I is a pair (σ, h), where σ ∈ Σ
and h is a homomorphism such that h(body(σ)) ⊆ I. An application of (σ, h) to I returns
the instance J = I ∪ h′(head(σ)), where h′ ⊇ h|fr(σ) is such that (i) for each existentially
quantified variable z of σ, h′(z) ∈ N does not occur in I and follows lexicographically all
nulls in I, and (ii) for each pair (z, w) of distinct existentially quantified variables of σ,
h′(z) 6= h′(w). Such a trigger application is denoted as I〈σ, h〉J .

The main idea of the chase is, starting from a database D, to exhaustively apply triggers
for the given set Σ of tgds on the instance constructed so far. However, the choice of the
next trigger to be applied is crucial since it gives rise to different variations of the chase
procedure. In this work, we focus on the oblivious [5] and the semi-oblivious [12, 18] chase.

Oblivious. A finite sequence I0, I1, . . . , In of instances, where n ≥ 0, is said to be a terminating
oblivious chase sequence of I0 w.r.t. a set Σ of tgds if: (i) for each 0 ≤ i < n, there
exists a trigger (σ, h) for Σ on Ii such that Ii〈σ, h〉Ii+1; (ii) for each 0 ≤ i < j < n,
assuming that Ii〈σi, hi〉Ii+1 and Ij〈σj , hj〉Ij+1, σi = σj implies hi 6= hj , i.e., hi and hj
are different homomorphisms; and (iii) there is no trigger (σ, h) for Σ on In such that
(σ, h) 6∈ {(σi, hi)}0≤i<n. In this case, the result of the chase is the (finite) instance In.
An infinite sequence I0, I1, . . . of instances is said to be a non-terminating oblivious chase
sequence of I0 w.r.t. Σ if: (i) for each i ≥ 0, there exists a trigger (σ, h) for Σ on Ii such
that Ii〈σ, h〉Ii+1; (ii) for each i, j > 0 such that i 6= j, assuming that Ii〈σi, hi〉Ii+1 and
Ij〈σj , hj〉Ij+1, σi = σj implies hi 6= hj ; and (iii) for each i ≥ 0, and for every trigger
(σ, h) for Σ on Ii, there exists j ≥ i such that Ij〈σ, h〉Ij+1; this is the fairness condition,
and guarantees that all the triggers eventually will be applied. The result of the chase is⋃
i≥0 Ii.

Semi-oblivious. This is a refined version of the oblivious chase, which avoids the application
of some superfluous triggers. Roughly, given a tgd σ, for the semi-oblivious chase,
two homomorphisms h and g that agree on the frontier of σ, i.e., h|fr(σ) = g|fr(σ), are
indistinguishable. To formalize this, we first define the binary relation ∼σ on the set of
all possible substitutions from the terms in body(σ) to (C ∪N), denoted Sσ, as follows:
h ∼σ g iff h|fr(σ) = g|fr(σ). It is easy to verify that ∼σ is an equivalence relation on
Sσ. A (terminating or non-terminating) oblivious chase sequence I0, I1, . . . is called
semi-oblivious if the following holds: for every i, j ≥ 0 such that i 6= j, assuming that
Ii〈σi, hi〉Ii+1 and Ij〈σj , hj〉Ij+1, σi = σj = σ implies hi 66∼σ hj , i.e., hi and hj belong to
different equivalence classes.

Henceforth, we write o-chase and so-chase for oblivious and semi-oblivious chase, re-
spectively. A useful notion that we are going to use in our proofs is the so-called chase
relation [7], which essentially describes how the atoms generated during the chase depend
on each other. Fix a non-terminating ?-chase sequence s = (Ii)i≥0, where ? ∈ {o, so}, of a
database D w.r.t. a set Σ of tgds, and assume that for each i ≥ 0, Ii〈σi, hi〉Ii+1, i.e., Ii+1
is obtained from Ii via the application of the trigger (σi, hi) to Ii. The chase relation of s,
denoted ≺s, is a binary relation over

⋃
i≥0 Ii such that α ≺s β iff there exists i ≥ 0 such that

α ∈ hi(body(σi)) and β ∈ Ii+1 \ Ii.

ICDT 2019

17:6 Oblivious Chase Termination: The Sticky Case

3 Chase Termination Problem

It is well-known that due to the existentially quantified variables, a ?-chase sequence, where
? ∈ {o, so}, may be infinite. This is true even for very simple settings: it is easy to verify
that the only ?-chase sequence of D = {R(a, b)} w.r.t. the set Σ consisting of the single tgd
R(x, y) → ∃z R(y, z) is non-terminating. The question that comes up is, given a set Σ of
tgds, whether we can check that, for every database D, all or some (semi-)oblivious chase
sequences of D w.r.t. Σ are terminating. Before formalizing the above problem, let us recall
the following central classes of tgds:

CT?∀∀ =
{

Σ
∣∣∣∣ for every database D,

every ?-chase sequence of D w.r.t. Σ is terminating

}

CT?∀∃ =
{

Σ
∣∣∣∣ for every database D,

there exists a terminating ?-chase sequence of D w.r.t. Σ

}
The main problems tackled in this work are defined as follows, where C is a class of tgds:

PROBLEM : CT?
∀∀(C)

INPUT : A set Σ ∈ C of tgds.
QUESTION : Is Σ ∈ CT?

∀∀?

PROBLEM : CT?
∀∃(C)

INPUT : A set Σ ∈ C of tgds.
QUESTION : Is Σ ∈ CT?

∀∃?

It is well-known that CTo
∀∀ = CTo

∀∃ ⊂ CTso
∀∀ = CTso

∀∃ [12]. This immediately implies that,
after fixing the version of the chase in consideration, i.e., oblivious or semi-oblivious, the
above decision problems are equivalent. Henceforth, for a class C of tgds, we simply refer to
the problem CT?∀(C), and we write CT?∀ for the classes CT?∀∀ and CT?∀∃, where ? ∈ {o, so}.

We know that our main problem is undecidable if we consider arbitrary tgds. In fact,
assuming that TGD denotes the class of arbitrary tgds, we have that:

I Theorem 1. For ? ∈ {o, so}, CT?∀(TGD) is undecidable.

The above result has been shown in [11]. However, the employed set of tgds for showing
this result is far from being sticky. This led us to ask whether CT?∀(S) is decidable. This is a
non-trivial problem, and pinpointing its complexity is the main goal of this work.

Some Useful Results. Before proceeding with the complexity analysis, let us recall a couple
of technical results that would allow us to significantly simplify our later analysis.

It would be useful to have a special database that gives rise to a non-terminating chase
sequence if it exists. Interestingly, such a database exists, which is known as the critical
database for a set of tgds [18]. Formally, given a set Σ of tgds, the critical database for Σ is

cr(Σ) =

{R(c, . . . , c) | R ∈ sch(Σ)},where c ∈ C is a fixed constant if const(Σ) = ∅,

{R(c1, . . . , cn) | R ∈ sch(Σ) and (c1, . . . , cn) ∈ const(Σ)n} if const(Σ) 6= ∅.

In other words, cr(Σ) consists of all the atoms that can be formed using the predicates
and the constants in Σ; if Σ is constant-free, then we consider an arbitrary constant of C.
The following result from [18] shows that cr(Σ) is indeed the desired database:

I Proposition 2. Consider a set Σ of tgds. For ? ∈ {o, so}, Σ 6∈ CT?∀ iff there exists a
non-terminating ?-chase sequence of cr(Σ) w.r.t. Σ.

M. Calautti and A. Pieris 17:7

Even though we can focus on the critical database and check whether it gives rise to a
non-terminating chase sequence s, the main difficulty is to ensure that s enjoys the fairness
condition. Interestingly, as it has been recently shown in [4], we can neglect the fairness
condition, which significantly simplifies the required analysis. To formalize this result, we
need to recall the notion of the infinite chase derivation, which is basically a non-terminating
chase sequence without the fairness condition. Fix ? ∈ {o, so}. We define �?σ as 6=, if ? = o,
and 6∼σ, if ? = so. An infinite ?-chase derivation of a database D w.r.t. a set Σ of tgds is
an infinite sequence (Ii)i≥0 of instances, where I0 = D, such that: (i) for each i ≥ 0, there
exists a trigger (σi, hi) for Σ in Ii with Ii〈σi, hi〉Ii+1, and (ii) for each i 6= j, σi = σj = σ

implies hi �?σ hj . The following holds:

I Proposition 3. Consider a database D and a set Σ of tgds. For ? ∈ {o, so}, the following
are equivalent:

1. There is a non-terminating ?-chase sequence of D w.r.t. Σ.

2. There is an infinite ?-chase derivation of D w.r.t. Σ.

By combining Propositions 2 and 3, we immediately get the following useful result:

I Corollary 4. Consider a set Σ of tgds. For ? ∈ {o, so}, Σ 6∈ CT?∀ iff there exists an infinite
?-chase derivation of cr(Σ) w.r.t Σ.

4 Semantic Characterization of Chase Non-Termination

We proceed to characterize the non-termination of the (semi-)oblivious chase under sticky
sets of tgds. In particular, we show that if a sticky set Σ of tgds does not belong to CT?∀, for
? ∈ {o, so}, then we can always isolate a linear infinite ?-chase derivation δ` of cr(Σ) w.r.t. Σ.
Roughly, linearity means that there is an infinite simple path α0, α1, α2 . . . in the chase
relation of δ` such that α0 ∈ cr(Σ) and αi is constructed during the i-th trigger application,
while all the atoms that are needed to construct this path, and are not already on the path,
are atoms of cr(Σ). Notice that the chase relation of a ?-chase derivation is defined in the
same way as the chase relation of a ?-chase sequence.

I Definition 5. Consider a set Σ of tgds. For ? ∈ {o, so}, an infinite ?-chase derivation
δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ, where Ii〈σi, hi〉Ii+1 for i ≥ 0, is called linear if there exists an
infinite sequence of distinct atoms (αi)i≥0 such that the following hold:

α0 ∈ cr(Σ).

For each i ≥ 0, αi+1 ∈ Ii+1 \ Ii, and there exists β ∈ body(σi) such that hi(β) = αi and
hi(body(σi) \ {β}) ⊆ cr(Σ).

A simple example that illustrates the notion of linear infinite o-chase derivation follows:

I Example 6. Let Σ be the sticky set consisting of the tgd

σ = P (x, y, z), R(y, w)→ ∃v P (z, y, v), R(y, v).

ICDT 2019

17:8 Oblivious Chase Termination: The Sticky Case

Consider the infinite o-chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ, where

I0 = {P (c, c, c), R(c, c)} 〈σ, h0 = {x 7→ c, y 7→ c, z 7→ c, w 7→ c}〉
I1 = I0 ∪ {P (c, c,⊥1), R(c,⊥1)} 〈σ, h1 = {x 7→ c, y 7→ c, z 7→ ⊥1, w 7→ c}〉

I2 = I1 ∪ {P (⊥1, c,⊥2), R(c,⊥2)} 〈σ, h2 = {x 7→ ⊥1, y 7→ c, z 7→ ⊥2, w 7→ c}〉
...

Ii+1 = Ii ∪ {P (⊥i, c,⊥i+1), R(c,⊥i+1)} 〈σ, hi+1 = {x 7→ ⊥i, y 7→ c, z 7→ ⊥i+1, w 7→ c}〉
...

Let α0 = P (c, c, c), α1 = P (c, c,⊥1), and αi = P (⊥i−1, c,⊥i) for i > 1. It is easy to verify
that δ is linear due to (αi)i≥0. Indeed, α0 ∈ cr(Σ), and for every i ≥ 0, αi belongs to Ii+1 \ Ii,
while hi(P (x, y, z)) = αi and hi(R(y, w)) = R(c, c) ∈ cr(Σ).

We are now ready to present the main characterization of non-termination of the oblivious
and semi-oblivious chase under sticky sets of tgds via linear infinite ?-chase derivations.

I Theorem 7. Consider a set Σ ∈ S of tgds. For ? ∈ {o, so}, Σ 6∈ CT?∀ iff there exists a
linear infinite ?-chase derivation of cr(Σ) w.r.t. Σ.

By Corollary 4, it suffices to show the following: the existence of an infinite ?-chase
derivation of cr(Σ) w.r.t. Σ implies the existence of a linear infinite ?-chase derivation of
cr(Σ) w.r.t. Σ. This is a rather involved result, which is established in two main steps:
1. We show that the existence of an infinite ?-chase derivation of cr(Σ) w.r.t. Σ implies the

existence of an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ such that the chase relation
of δ contains a special path rooted at an atom of cr(Σ), called continuous. Intuitively,
continuity ensures the continuous propagation of a new null on the path in question.

2. By exploiting the existence of a continuous path, we construct a linear infinite ?-chase
derivation of cr(Σ) w.r.t. Σ. In fact, due to stickiness, we can convert an infinite suffix P
of the continuous path in ≺δ, together with all the atoms that are needed to generate the
atoms on P via a single trigger application, into a linear infinite ?-chase derivation δ`
of cr(Σ) w.r.t. Σ. As we shall see, stickiness helps us to ensure that δ` is linear, while
continuity allows us to show that δ` is infinite.

We proceed to give some more details for the above two steps. Although we keep the
following discussion informal, we give enough evidence for the validity of Theorem 7.

4.1 Existence of a Continuous Path
Let us first make the notion of the path in the chase relation of a derivation more precise.
Given an infinite ?-chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ, a finite δ-path is a finite
sequence of atoms (αi)0≤i≤n such that α0 ∈ I0 and αi ≺δ αi+1. Analogously, we can define
infinite δ-paths, which are infinite sequences of atoms rooted at an atom of I0.

The intention underlying continuity is to ensure the continuous propagation of a new null
on a path. Roughly, a δ-path (αi)0≤i≤n is continuous via a sequence of indices (`i)0≤i≤m,
with `0 < · · · < `m, if `0 = 1, `m = n, and, for each i ∈ {0, . . . ,m}, a new null is invented
in α`i that is necessarily propagated up to the atom α`i+1 in case ? = so (resp., the atom
before α`i+1 in case ? = o). An infinite δ-path (αi)i≥0 is continuous if there exists an infinite
sequence of indices (`i)i≥0, with `0 < `1 < · · · , such that every finite δ-path (αi)0≤i≤`j , for
j ≥ 0, is continuous via (`i)0≤i≤`j . Here is a simple example that illustrates this notion.

M. Calautti and A. Pieris 17:9

I Example 8. Consider the sticky set Σ = {σ1, σ2, σ3}, where

σ1 = S(x) → ∃y∃z P (x, y, z), R(y, z)
σ2 = P (x, y, z), R(y, w) → P (w, y, z)
σ3 = P (x, y, z), R(y, w) → ∃v P (z, y, v), R(y, v).

Notice that σ3 is the tgd used in Example 6. It is easy to verify that there exists an infinite
o-chase derivation δ of cr(Σ) w.r.t. Σ such that the following is part of ≺δ; a black edge from
α to β labeled by σ means that (α, β) belongs to ≺δ due to a trigger that involves the tgd σ:

S(c)

R(⊥1,⊥2)

P(c,⊥1,⊥2)

R(⊥1,⊥3)

P(⊥2,⊥1,⊥3)

σ1

σ1

σ3

σ3

σ3

σ3

R(⊥1,⊥4)

P(⊥3,⊥1,⊥3)

σ3

σ2

σ2

σ3

R(⊥1,⊥5)

P(⊥4,⊥1,⊥3)

σ3

σ2

σ2

σ3

R(⊥1,⊥6)

P(⊥3,⊥1,⊥6)

σ3

σ3

σ3

σ3

…

It can be verified that the path with P -atoms in the figure is a continuous infinite δ-path.
Let us explain the reason. The first atom in which a null is invented is P (c,⊥1,⊥2), with
⊥1,⊥2 being the new nulls, and continuity is satisfied since the next atom invents a null, that
is, ⊥3. Now, since the null ⊥3 is propagated (this is indicated via the red dashed arrows) up
to the atom before the next null generator P (⊥3,⊥1,⊥6), continuity is satisfied. In the rest
of the path the same pattern is repeated, and thus continuity is globally satisfied. In fact,
the pattern that we can extract is the following

S(c)

R(⊥1,⊥2)

P(c,⊥1,⊥2)

R(⊥1,⊥3)

P(⊥2,⊥1,⊥3)

σ1

σ1

σ3

σ3

σ3

σ3

R(⊥1,⊥4)

P(⊥3,⊥1,⊥3)

σ3

σ2

σ2

σ3

R(⊥1,⊥5)

P(⊥4,⊥1,⊥3)

σ3

σ2

σ2

σ3

R(⊥1,⊥6)

P(⊥3,⊥1,⊥6)

σ3

σ3

σ3

σ3

…

P(c,⊥1,⊥2) P(⊥2,⊥1,⊥3) P(⊥3,⊥1,⊥3) P(⊥4,⊥1,⊥3)S(c)

P(⊥3,⊥1,⊥6) P(⊥6,⊥1,⊥6) P(⊥7,⊥1,⊥6)

P(⊥6,⊥1,⊥9) P(⊥9,⊥1,⊥9) P(⊥10,⊥1,⊥9) …

where the continuous propagation of a new null (red arrows) can be easily observed.

We can show, via a graph-theoretic argument, that the existence of an infinite ?-chase
derivation of cr(Σ) w.r.t. Σ implies the existence of an infinite ?-chase derivation of cr(Σ)
w.r.t. Σ that admits a continuous infinite path. Let us briefly explain the key idea underlying
this result. If we know that an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ exists, then
we can construct an infinite ?-chase derivation δ′ = (Ii)i≥0 of cr(Σ) w.r.t. Σ (by essentially
rearranging the triggers of δ in order to obtain a derivation of a convenient form) such that
the following statement holds:

there exists an infinite directed acyclic rooted graph G = (N ∪ {•}, E, λ) of finite degree,
where • is the root, N ⊆

⋃
i≥0 Ii, every node of N is reachable from •, and λ labels the edges

of E with finite sequences of atoms from
⋃
i≥0 Ii, such that, for every finite path •, v1, . . . , vn,

for n ≥ 1, with λ(•, v1) = (αij)0≤j≤m1−1, and λ(vi−1, vi) = (αij)0≤j≤mi−1,((
αij
)

0≤j≤mi−1

)
1≤i≤n

= (αi)0≤i≤(m1+···+mn)−1

is a continuous δ′-path via (`i)0≤i≤n−1, where `0 = 1 and `i = `i−1 +mi+1, for i ∈ [n− 1].

ICDT 2019

17:10 Oblivious Chase Termination: The Sticky Case

By applying König’s lemma1 on G, we get that G contains an infinite simple path P =
•, v1, v2, We claim that P ′ = λ(•, v1), λ(v1, v2), . . . is a continuous δ′-path, which estab-
lishes the claim. By contradiction, assume that P ′ is not a continuous δ′-path. This implies
that there exists a finite prefix •, v1, . . . , vn′ of P such that λ(•, v1), λ(v1, v2), . . . , λ(vn′−1, vn′)
is not a continuous δ′-path via (`i)0≤i≤n′−1 – this is the sequence of indices used in the above
statement – which contradicts the fact that the label of every finite path •, v1, . . . , vn, for
n ≥ 1, is a continuous finite δ′-path via (`i)0≤i≤n−1.

4.2 From Continuous Paths to Linear Infinite Derivations
We now discuss that the existence of an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ such
that a continuous infinite δ-path exists implies the existence of a linear infinite ?-chase
derivation δ` of cr(Σ) w.r.t. Σ. Starting from δ, we are going to construct a sequence of
instances that leads to the desired derivation δ`. The construction proceeds in three steps:

Useful part of δ. We first isolate a useful part of the ?-chase derivation δ = (Ii)i≥0. Recall
that there exists a continuous infinite δ-path P = (αi)i≥0. By stickiness, there exists j ≥ 0
such that αj is the last atom on P in which a term t becomes sticky. The latter means that
the first time t participates in a join is during the trigger application that generates αj , and
thus t occurs in (or sticks to) every atom of {αi}i≥j . Let k ≥ j be the integer such that αk
is the first atom on P after αj in which a new null is invented. The useful part of δ that we
are going to focus on is the infinite sequence of atoms (αi)i≥k, which we call the backbone,
and the atoms of

⋃
i≥0 Ii, which we call side atoms, that are needed to generate the atoms

on the backbone via a single trigger application. In other words, for a backbone atom α,
if α is obtained via the trigger (σ, h) for Σ on instance Ii, for some i ≥ 0, then the atoms
h(body(σ)), excluding the backbone atoms, are side atoms.

I Example 9. Consider again the set Σ ∈ S from Example 8. As discussed above, there
exists an infinite o-chase derivation δ of cr(Σ) w.r.t. Σ such that a continuous infinite δ-path
exists (see the figures above). The useful part of δ is as shown below

S(c)

R(⊥1,⊥2)

P(c,⊥1,⊥2)

R(⊥1,⊥3)

P(⊥2,⊥1,⊥3)

R(⊥1,⊥4)

P(⊥3,⊥1,⊥3)

R(⊥1,⊥5)

P(⊥4,⊥1,⊥3)

R(⊥1,⊥6)

P(⊥3,⊥1,⊥6)

…

backbone

side atoms

Observe that the last atom on the continuous path in which a term becomes sticky is
P (⊥2,⊥1,⊥3); in fact, the sticky term is ⊥1, which is the only sticky term on the continuous
path. It happened that P (⊥2,⊥1,⊥3) invents also a new null, that is, ⊥3, and therefore the
suffix of the continuous path that starts at P (⊥2,⊥1,⊥3) is the backbone. It is now easy to
verify that all the other atoms, apart from S(c), indeed contribute in the generation of a
backbone atom via a single trigger application.

1 König’s lemma is a well-known result from graph theory that states the following: for an infinite directed
rooted graph, if every node is reachable from the root, and every node has finite out-degree, then there
exists an infinite directed simple path from the root.

M. Calautti and A. Pieris 17:11

Renaming step. We proceed to rename some of the nulls that occur in backbone atoms or
side atoms. In particular, for every null ⊥ occurring in a side atom α, we apply the following
renaming steps; fix a constant c ∈ dom(cr(Σ)): (i) every occurrence of ⊥ in α is replaced by c,
and (ii) every occurrence of ⊥ in a backbone atom β that is propagated from α to β is replaced
by c. For a backbone or side atom α, let ρ(α) be the atom obtained from α after globally
applying the above renaming steps. We now define the sequence of instances δ′ = (Ji)i≥0 as
follows: J0 = {ρ(α) | α is a side atom } ⊆ cr(Σ) and Ji = Ji−1 ∪ {ρ(αk+i−1)} ∪H, where H
is the set of atoms that are generated together with αk+i−1 (since we can have a conjunction
of atoms in the head of a tgd) after renaming the nulls that do not occur in ρ(αk+i−1) to c.
Notice that H is empty in case of single-head tgds. It is crucial to observe that a new null
generated in a backbone atom never participates in a join. This is because the first backbone
atom αk comes after the atom αj , which is the last atom on P in which a term becomes
sticky. This fact allows us to modify triggers from δ in order to construct, for every i ≥ 0, a
trigger (σi, hi) such that Ji〈σi, hi〉Ji+1.

I Example 10. We consider again our running example. Before renaming the nulls that
appear in side atoms, we first need to understand how nulls are propagated from side atoms
to backbone atoms during the chase. This is depicted in the following figure

S(c)

R(⊥1,⊥2)

P(c,⊥1,⊥2)

R(⊥1,⊥3)

P(⊥2,⊥1,⊥⊥⊥⊥3)

R(⊥1,⊥4)

P(⊥3,⊥1,⊥⊥⊥⊥3)

R(⊥1,⊥5)

P(⊥4,⊥1,⊥⊥⊥⊥3)

R(⊥1,⊥6)

P(⊥⊥⊥⊥3,⊥1,⊥⊥⊥⊥6)

…

S(c)

R(c,c)

P(c,c,c)

R(c,c)

P(c,c,⊥⊥⊥⊥3)

R(c,c)

P(c,c,⊥⊥⊥⊥3)

R(c,c)

P(c,c,⊥⊥⊥⊥3)

R(c,c)

P(⊥3,c,⊥⊥⊥⊥6)

…

Notice that the boldfaced occurrences of the nulls ⊥3,⊥6, . . . are not propagated from side
atoms, but generated on the backbone, and thus will not be renamed. Let us recall that
the existence of such nulls is guaranteed by continuity. By applying the renaming step, i.e.,
by replacing every null in a side atom with the constant c, and then propagating it to the
backbone as indicated above, we get the sequence of instances J0 = {R(c, c), P (c, c, c)} ⊆
cr(Σ), J1 = J0 ∪ {P (c, c,⊥3), R(c,⊥3)}, J2 = J1 ∪ {P (c, c,⊥3)}, J3 = J2 ∪ {P (c, c,⊥3)},
J4 = J3 ∪ {P (⊥3, c,⊥6), R(c,⊥6)}, Observe that, due to stickiness, none of the nulls
⊥3,⊥6, . . . generated on the backbone participates in a join. This means that the renaming
step preserves all the joins, and thus, by adapting triggers from δ, we can devise a valid
trigger for each pair (Ji, Ji+1) of instances.

Pruning step. At this point, one may be tempted to think that δ′ = (Ji)i≥0, with
Ji〈σi, hi〉Ji+1 for i ≥ 0, is the desired linear infinite ?-chase derivation of cr(Σ) w.r.t. Σ.
It is easy to verify that we have the infinite sequence of atoms (ρ(αi))i≥k−1 such that
ρ(αk−1) ∈ cr(Σ) since αk−1 is a side atom, and for each i ≥ k−1, Ji−k+2 ⊇ Ji−k+1∪{ρ(αi+1)},
and there exists β ∈ body(σi) such that hi(βi) = αi and hi(body(σi)\{β}) ⊆ cr(Σ). However,
we cannot conclude yet that δ′ is the desired derivation for the following two reasons:
1. triggers may repeat, i.e., we may have i 6= j such that σi = σj = σ and hi �?σ hj , where
�?σ is = (resp., ∼σ) if ? = o (resp., ? = so), and

2. we may have i 6= j such that ρ(αi) = ρ(αj), i.e., the sequence of atoms (ρ(αi))i≥k−1 does
not consist of distinct atoms.

ICDT 2019

17:12 Oblivious Chase Termination: The Sticky Case

This can be easily fixed by pruning the subderivation between the two repeated triggers
or atoms. But since this pruning step may be applied infinitely many times, the question
that comes up is whether the obtained ?-chase derivation δ′′ is infinite. Interestingly, this is
the case due to continuity. Since the backbone (αi)i≥k is part of a continuous δ-path, we
conclude that two repeated triggers or atoms are necessarily between two atoms α and β
in which new nulls are invented. The fact that we have infinitely many pairs of such atoms
on the backbone, we immediately conclude that after the pruning step the obtained ?-chase
derivation is infinite. Thus, δ′′ is a linear infinite ?-chase derivation of J0 w.r.t. Σ. Since
J0 ⊆ cr(Σ), we can easily construct a linear infinite ?-chase derivation δ` of cr(Σ) w.r.t. Σ by
simply adding to J0 the set of atoms cr(Σ) \ J0, and the claim follows.

I Example 11. Coming back to our running example, it can be seen that the sequence of
instances devised in Example 10 is not the desired linear derivation due to repeated triggers
and atoms. However, after applying the pruning step, we get the sequence of instances

J ′0 = J0, J ′1 = J1, J ′2 = J ′1∪{P (⊥3, c,⊥6), R(c,⊥6)}, J ′3 = J ′2∪{P (⊥6, c,⊥9), R(c,⊥9)},

Now, it is easy to verify that after adding the atom S(c) in J ′0, we get (modulo null renaming)
the linear infinite o-chase derivation of cr(Σ) w.r.t. Σ given in Example 6.

5 Graph-Based Characterization of Chase Termination

In this section, we characterize the termination of the (semi-)oblivious chase for sticky sets of
tgds via graph-based conditions. More precisely, we show that a set Σ ∈ S belongs to CT?∀ iff
a linearized version of it, i.e., a set of linear tgds obtained from Σ, enjoys a condition similar
to rich-acyclicity [16], if ? = o, and weak-acyclicity [10], if ? = so. Recall that linear tgds are
tgds with only one body atom [6]; we write L for the class of linear tgds. The proof of the
above result proceeds in two steps:
1. We first show that the given sticky set Σ of tgds can be rewritten into a set of linear

tgds, while this rewriting preserves chase termination. This heavily relies on Theorem 7,
which establishes that non-termination of the (semi-)oblivious chase coincides with the
existence of a linear infinite chase derivation of cr(Σ) w.r.t. Σ.

2. We then extend recent characterizations from [4], which are based on extensions of
rich-acyclicity and weak-acyclicity, of the termination of the (semi-)oblivious chase under
constant-free linear tgds in order to deal with constants in the tgds. Although in other
contexts, e.g., query answering under tgds, the transition from constant-free tgds to
tgds with constants is relatively straightforward, in the context of chase termination the
constants in the tgds cause additional complications that must be carefully treated.

We proceed to give more details for the above two steps.

5.1 Linearization
Before presenting the linearization procedure, we need to introduce some auxiliary notions.
Given a tgd σ and an atom α ∈ body(σ), let Vα,σ = var(body(σ) \ {α}), that is, the set of
body variables of σ that do not occur only in α. Moreover, given a set Σ of tgds, a tgd
σ ∈ Σ, and an atom α ∈ body(σ), let MΣ

α,σ = {h | h : Vα,σ → dom(cr(Σ))}, i.e., the set of all
possible mappings from the variables of Vα,σ to the constants occurring in cr(Σ).

M. Calautti and A. Pieris 17:13

I Definition 12. Consider a set Σ of tgds. The linearization of a tgd σ ∈ Σ (w.r.t. Σ) of
the form φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄), denoted Lin(σ), is the set of linear tgds⋃

α∈φ(x̄,ȳ)

⋃
h∈MΣ

α,σ

{h(α)→ ∃z̄ h(ψ(x̄, z̄))}.

The linearization of Σ is defined as Lin(Σ) =
⋃
σ∈Σ Lin(σ).

The linearization procedure converts a tgd σ into a set of linear tgds by keeping only one
atom α from body(σ), while the variables in body(σ) \ {α} are instantiated with constants
from cr(Σ) in all the possible ways. Theorem 7 allows us to show that this procedure preserves
the termination of the (semi-)oblivious chase whenever the input set of tgds is sticky.

I Theorem 13. Consider a set Σ ∈ S of tgds. For ? ∈ {o, so}, Σ ∈ CT?∀ iff Lin(Σ) ∈ CT?∀.

The (⇒) direction is almost immediate. Let us focus on the (⇐) direction. Firstly, let us
clarify that it suffices to show Theorem 13 for normalized sets of tgds, i.e., tgds with only
one atom in the head. This holds since Σ ∈ CT?∀ iff Norm(Σ) ∈ CT?∀, and Lin(Σ) ∈ CT?∀ iff
Lin(Norm(Σ)) ∈ CT?∀, where Norm(Σ) is the normalized version of Σ obtained by applying the
standard normalization procedure; see, e.g., [7]. Assume that Σ 6∈ CT?∀. By Theorem 7, there
exists a linear infinite ?-chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ, where Ii〈σi, hi〉Ii+1
for i ≥ 0. In other words, there exists an infinite sequence of distinct atoms (αi)i≥0 such
that: (i) α0 ∈ cr(Σ), and (ii) for each i ≥ 0, αi+1 ∈ Ii+1 \ Ii, and there exists βi ∈ body(σi)
such that hi(βi) = αi and hi(body(σi) \ {βi}) ⊆ cr(Σ). Let Σ′ be the set of linear tgds
{gi(βi) → gi(head(σi))}i≥0, where gi is the restriction of hi over Vβi,σi . Since Σ′ ⊆ Lin(Σ),
it suffices to show that Σ′ 6∈ CT?∀. To this end, we are going to construct an infinite ?-chase
derivation δ′ of cr(Σ′) ⊆ cr(Σ) w.r.t. Σ′. The derivation δ′ is obtained from δ by replacing
each trigger (σi, hi), for i ≥ 0, with (σ′i, h′i), where σ′i is the linear tgd gi(βi)→ gi(head(σi))
that belongs to Σ′, while h′i is the restriction of hi to the terms occurring in body(σ′i). It
remains to show that δ′ is indeed a valid infinite ?-chase derivation of cr(Σ′) w.r.t. Σ′, which
boils down to showing that, for every i 6= j ≥ 0, σ′i = σ′j = σ implies h′i �?σ h′j , where �o

σ is 6=,
and �so

σ is 6∼σ. Towards a contradiction, assume that there exists i 6= j such that σ′i = σ′j = σ

but h′i �?σ h′j does not hold. This implies that αi = αj since we consider single-head tgds.
But this contradicts the fact that αi 6= αj .

5.2 Acyclicity Conditions
We proceed to extend the characterizations of the termination of the (semi-)oblivious chase
under constant-free linear tgds established in [4]. The goal is to show that, given a set of tgds
Σ ∈ L, which may contain constants, Σ ∈ CTo

∀ iff Σ is critically-richly-acyclic, and Σ ∈ CTso
∀

iff Σ critically-weakly-acyclic, where critical-rich- and critical-weak-acyclicity are appropriate
extensions of rich- and weak-acyclicity proposed in [4]. These notions rely on the dependency
graph of a set of tgds, which we now recall. We assume a fixed order on the head-atoms
of tgds. For a tgd σ with head(σ) = α1, . . . , αk, we write (σ, i) for the single-head tgd, i.e.,
the tgd with only one atom in its head, obtained from σ by keeping only the atom αi, and
the existentially quantified variables in αi. Recall that pos(α, x) is the set of positions in α
at which x occurs. Analogously, we write pos(body(σ), x) for the set of positions at which
the variable x occurs in the body of σ. We also write pos(sch(Σ)) for the set of positions of
sch(Σ), i.e., the set {R[i] | R/n ∈ sch(Σ) and i ∈ {1, . . . , n}}.

ICDT 2019

17:14 Oblivious Chase Termination: The Sticky Case

I Definition 14. The dependency graph of a set Σ of tgds is a labeled directed multigraph
dg(Σ) = (N,E, λ), where N = pos(sch(Σ)), λ : E → Σ × N, and E contains only the
following edges. For each σ ∈ Σ with head(σ) = α1, . . . , αk, for each x ∈ fr(σ), and for each
π ∈ pos(body(σ), x):

For each i ∈ [k], and for each π′ ∈ pos(αi, x), there is a normal edge e = (π, π′) ∈ E with
λ(e) = (σ, i).
For each existentially quantified variable z in σ, for each i ∈ [k], and for each π′ ∈
pos(αi, z), there is a special edge e = (π, π′) ∈ E with λ(e) = (σ, i).

A normal edge (π, π′) keeps track of the fact that a term may propagate from π to π′
during the chase. Moreover, a special edge (π, π′′) keeps track of the fact that the propagation
of a value from π to π′ also creates a null at position π′′. As we shall see, the dependency
graph is appropriate when we consider the semi-oblivious chase. For the oblivious chase,
we need an extended version of it. The extended dependency graph of Σ, denoted edg(Σ),
is obtained from dg(Σ) by simply adding special labeled edges from the positions where
non-frontier variables occur to the positions where existentially quantified variables occur.

Two well-known classes of tgds, introduced in the context of data exchange, that guarantee
the termination of the oblivious and semi-oblivious chase are rich-acyclicity and weak-
acyclicity, respectively. A set Σ is richly-acyclic (resp., weakly-acyclic) if there is no cycle
in edg(Σ) (resp., dg(Σ)) that contains a special edge. It would be very useful if, whenever
we focus on linear tgds, rich- and weak-acyclicity are also necessary conditions for the
termination of the oblivious and semi-oblivious chase, respectively. Unfortunately, this is not
the case. A simple counterexample follows:

I Example 15. Consider the set Σ of linear tgds consisting of R(x, x) → ∃z R(z, x). In
dg(Σ) = edg(Σ) there is a cycle that contains a special edge. However, for ? ∈ {o, so}, there
is only one ?-chase sequence of cr(Σ) w.r.t. Σ that is terminating; thus, Σ ∈ CT?∀.

As it has been shown in [4], there is an extension of rich- and weak-acyclicity, called
critical-rich- and critical-weak-acyclicity, that whenever we focus on linear tgds provides a
necessary and sufficient condition for the termination of the oblivious and semi-oblivious
chase, respectively. However, the analysis performed in [4] considers only tgds without
constants, while after the linearization of a sticky set Σ of tgds, even if Σ is constant-free,
the obtained set Lin(Σ) contains at least one constant. Thus, in order to be able to apply
critical-rich- and critical-weak-acyclicity on Lin(Σ), we first need to appropriately extend
these notions to linear tgds with constants.

A crucial notion underlying critical-rich- and critical-weak-acyclicity is the notion of
compatibility among two single-head linear tgds. Intuitively, if a single-head linear tgd σ1 is
compatible with a single-head linear tgd σ2, then the atom obtained during the chase by
applying σ1 may trigger σ2. It is clear that the presence of constants in the tgds affects
the way that we define compatibility. We assume the reader is familiar with the notion of
unification. Given two atoms α, β, we write mgu(α, β) for their most general unifier. For
brevity, we write Πσ

t for the set of positions pos(body(σ), t), i.e., the set of positions at which
the term t occurs in the body of σ. We also write term(α,Π), where α is an atom, and Π a
set of positions, for the set of terms occurring in α at positions of Π.

IDefinition 16. Consider two single-head linear tgds σ1 and σ2. We say that σ1 is compatible
with σ2 if the following hold:
1. head(σ1) and body(σ2) unify.
2. For each x ∈ var(body(σ2)), either term(head(σ1),Πσ2

x) = {z} for some existentially
quantified variable z in σ1, or term(head(σ1),Πσ2

x) ⊆ fr(σ1) ∪ {c} for some constant c.
3. For each c ∈ const(body(σ2)), term(head(σ1),Πσ2

c) ⊆ fr(σ1) ∪ {c}.

M. Calautti and A. Pieris 17:15

Having the notion of compatibility among two single-head linear tgds in place, we can
recall the resolvent of a sequence σ1, . . . , σn of single-head linear tgds, which is in turn a
single-head tgd. Roughly, such a resolvent mimics the behavior of the sequence σ1, . . . , σn
during the chase. Notice that the existence of such a resolvent is not guaranteed, but if it
exists, this implies that we may have a sequence of trigger applications that involve the tgds
σ1, . . . , σn in this order. In such a case, we call the sequence σ1, . . . , σn active.

I Definition 17. The resolvent of a sequence σ1, . . . , σn of single-head linear tgds, denoted
[σ1, . . . , σn], is inductively defined as follows; for brevity, we write ρ for [σ1, . . . , σn−1]:
1. [σ1] = σ1;
2. [σ1, . . . , σn] = γ(body(ρ)) → γ(head(σn)), where γ = mgu(head(ρ), body(σn)), if ρ 6= ♦

and ρ is compatible with σn; otherwise, [σ1, . . . , σn] = ♦.
The sequence σ1, . . . , σn is called active if [σ1, . . . , σn] 6= ♦.

At this point, one may think that the right extension of rich- and weak-acyclicity, which
will provide a necessary condition for the termination of the oblivious and semi-oblivious
chase under linear tgds, is to allow cycles with special edges in the underlying dependency
graph as long as the corresponding sequence of single-head tgds, which can be extracted from
the edge labels, is not active. This is not enough. If a cycle with a special edge is labeled
with an active sequence, then we can conclude that it will be traversed at least once during
the chase. However, it is not guaranteed that it will be traversed infinitely many times.

I Example 18. Consider the set Σ of linear tgds consisting of

σ1 = R(x, y, z) → P (x, y, z) σ2 = P (x, y, x) → ∃z R(y, z, x).

In dg(Σ) = edg(Σ) there is an active cycle that contains a special edge; e.g., C =
R[2], P [2], R[2], which corresponds to the sequence of tgds σ1, σ2. It is easy to see that
[σ1, σ2] 6= ♦, and thus C is active. Despite the existence of an active cycle that contains a
special edge, we can show that Σ ∈ CT?∀, where ? ∈ {o, so}.

A cycle that is labeled with an active sequence σ1, . . . , σn, and contains a special edge,
will be certainly traversed infinitely many times if the resolvent of the sequence ρ, . . . , ρ of
length k, where ρ = [σ1, . . . , σn], exists, for every k > 0. Interestingly, for ensuring the latter
condition, it suffices to consider sequences of length at most (ω + 1), where ω is the arity of
the predicate of body(σ1). This brings us to critical sequences. For brevity, we write σk for
the sequence σ, . . . , σ of length k.

I Definition 19. A sequence σ1, . . . , σn of single-head linear tgds is critical if σ1, . . . , σn is
active, and [σ1, . . . , σn]ω+1 is active, where ω is the arity of the predicate of body(σ1).

We can now recall critical-rich- and critical-weak-acyclicity. They are essentially rich-
and weak-acyclicity, with the difference that a cycle in the underlying graph is “dangerous”,
not only if it contains a special edge, but if it is also labeled with a critical sequence.

I Definition 20. Consider a set Σ ∈ L of tgds, and let G = (N,E, λ) be either edg(Σ) or
dg(Σ). A cycle v0, v1, . . . , vn, v0 in G is critical if λ(v0, v1), λ(v1, v2), . . . , λ(vn, v0) is critical.
We say that Σ is critically-richly-acyclic (resp., critically-weakly-acyclic), if no critical cycle
in edg(Σ) (resp., dg(Σ)) contains a special edge.

The desired result follows:

ICDT 2019

17:16 Oblivious Chase Termination: The Sticky Case

I Theorem 21. Consider a set Σ ∈ L of tgds. The following hold:
Σ ∈ CTo

∀ iff Σ is critically-richly-acyclic.
Σ ∈ CTso

∀ iff Σ is critically-weakly-acyclic.

The “if” directions of the above result are shown by giving proofs similar to the ones given
in [16] and [10] for showing that rich-acyclicity and weak-acyclicity guarantees the termination
of the oblivious and restricted chase, respectively. The interesting direction is the “only if”
direction. By Corollary 4, it suffices to show that if Σ is not critically-richly-acyclic (resp.,
critically-weakly-acyclic), then there exists an infinite o-chase (resp., so-chase) derivation of
cr(Σ) w.r.t. Σ. This is a non-trivial result that requires a couple of auxiliary lemmas.

The equality type of an atom is a set of equalities among positions, as well as among
positions and constants, that describes its shape. Formally, for an atom α = R(t1, . . . , tn),
the equality type of α is eqtype(α) = {R[i] = R[j] | ti = tj} ∪ {R[i] = c | c ∈ C and ti = c}.
For a linear tgd σ, we write eqtype(σ) for the equality type of the atom body(σ). The next
result establishes a useful connection between active sequences and equality types:

I Lemma 22. Consider a single-head linear tgd σ such that σi is active, for some i > 1,
and eqtype([σi−1]) = eqtype([σi]). Then, σi+1 is active, and eqtype([σi]) = eqtype([σi+1]).

Despite the fact that the above lemma has been already shown in [4] for constant-free tgds,
it turned out that the proof from [4] cannot be easily extended to tgds with constants. Thus,
we had to devise a completely new proof that exploits further properties of the resolvent of a
sequence σ, . . . , σ. In fact, we show via an inductive argument that [σi] = [[σi−1], σ] is the
same (modulo variable renaming) as [σ, [σi−1]], which in turn allows us to easily establish
Lemma 22. Having the connection between active sequences and equality types provided
by Lemma 22, we show the next lemma, which states that critical cycles can be traversed
infinitely many times during the chase.

I Lemma 23. Consider a critical sequence σ1, . . . , σn of single-head linear tgds. For every
k > 0, [σ1, . . . , σn]k is active.

As for Lemma 22, even though the above result has been shown in [4] for constant-free
tgds, we had to provide a new proof in order to deal with the constants in the tgds. Let us
briefly explain how Lemma 23 is shown. For brevity, let ρ = [σ1, . . . , σn]. Since σ1, . . . , σn
is critical, by definition we get that ρω+1 is active, where ω is the arity of the predicate
of body(σ1). The crucial step is to also show that eqtype([ρω]) = eqtype([ρω+1]). Then, by
iteratively applying Lemma 22, we obtain that ρk is active for every k > ω + 1. Since ρω+1

is active, we can conclude that ρk is active for every 1 ≤ k ≤ ω + 1, and Lemma 23 follows.
We can show via an inductive argument that an active sequence σ1, . . . , σn of single-head

linear tgds mimics the sequence of trigger applications that involve the tgds σ1, . . . , σn (in
this order), starting from an atom in the critical instance; in particular, the ground version
of body([ρω+1]). This fact and Lemma 23 allow us to show that a critical cycle of minimal
length in the (extended) dependency graph that contains a special edge, gives rise to an
infinite o-chase (so-chase) derivation of cr(Σ) w.r.t. Σ, and Theorem 21 follows.

It is now easy to see that Theorems 13 and 21 establish the main result of this section:

I Corollary 24. Consider a set Σ ∈ S of tgds. The following hold:
Σ ∈ CTo

∀ iff Lin(Σ) is critically-richly-acyclic.
Σ ∈ CTso

∀ iff Lin(Σ) is critically-weakly-acyclic.

M. Calautti and A. Pieris 17:17

6 Complexity of Chase Termination

In this final section, we pinpoint the complexity of the ?-chase termination problem under
sticky sets of tgds. In particular, we establish the following complexity result:

I Theorem 25. For ? ∈ {o, so}, CT?∀(S) is PSpace-complete, and NLogSpace-complete
for predicates of bounded arity. The lower bounds hold even for tgds without constants.

Upper Bounds. The problem CT?∀ under constant-free linear tgds is PSpace-complete, in
general, and NLogSpace-complete for predicates of bounded arity [4]. However, despite
the fact that, by Corollary 24, we can reduce CT?∀(S) to CT?∀(L), we cannot directly exploit
the complexity results from [4] for two reasons: (i) the linearized version of Σ contains at
least one constant, while the results from [4] apply only to constant-free tgds, and (ii) the
linearization procedure takes exponential time, in general, and polynomial time in the case of
bounded-arity predicates; thus, we cannot explicitly compute the set Lin(Σ), and then check
for critical-rich- and critical-weak-acyclicity. Therefore, a more refined procedure is needed.

We focus on the complement of our problem, i.e., given a set Σ ∈ S of tgds, we want to
check whether Σ 6∈ CT?∀. By Corollary 24, it suffices to show that Lin(Σ) is not critically-
richly-acyclic, if ? = o, and not critically-weakly-acyclic, if ? = so. The latter problems can
be seen as a generalization of the standard graph reachability problem. Indeed, we need to
check whether there exists a node v in the (extended) dependency graph of Lin(Σ) that is
reachable from itself via a critical cycle that contains a special edge. However, as discussed
above, we cannot explicitly construct Lin(Σ) and its (extended) dependency graph G. Instead,
the above reachability check should be performed on a compact representation of G, which is
the set Σ itself. We show that this check can be performed via a non-deterministic procedure
that uses O(ω log(ω · |sch(Σ)|) + ω log(ω ·m · |Σ|)) space, where ω is the maximum arity over
all predicates in Σ, and m is the maximum number of atoms occurring in a tgd of Σ.

Lower Bounds. The PSpace-hardness is shown by providing a polynomial time reduction
from the acceptance problem of a deterministic polynomial space Turing machine M . Such a
reduction can be easily devised if we are allowed to join a variable in the body of a tgd and
then lose it, or if we can use constants in the body of a tgd. In this case, a configuration of M
can be straightforwardly encoded in a single predicate Config of polynomial arity. However,
if we want the set of tgds to be sticky and constant-free, then we need a more clever encoding
for a configuration of M , which increases the arity of Config, but only polynomially.

The NLogSpace-hardness is inherited from [4], where it is shown that CT?∀(L) is
NLogSpace-hard, even for tgds that are constant-free, each body variable occurs only
once (i.e., stickiness is trivially satisfied), and only unary and binary predicates are used.

7 Conclusions

We have shown that the uniform (semi-)oblivious chase termination problem for sticky sets of
tgds is decidable, and obtained precise complexity results. This is done by first characterizing
the termination of the (semi-)oblivious chase for sticky sets of tgds via graph-based conditions
that are of independent interest. In particular, to check whether the oblivious (resp., semi-
oblivious) chase terminates for a sticky set Σ of tgds, we simply need to linearize it, i.e.,
convert it, via an easy procedure, into a set Lin(Σ) of linear tgds, and then check whether
Lin(Σ) enjoys an acyclicity condition in the spirit of rich-acyclicity (resp., weak-acyclicity).
The next natural step is to concentrate on the restricted (a.k.a. standard) version of the
chase, which makes the problem even more challenging due to its non-deterministic behaviour
that cannot be captured via static graph-based conditions.

ICDT 2019

17:18 Oblivious Chase Termination: The Sticky Case

References
1 Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Efficient Optimization of a Class of

Relational Expressions. ACM Trans. Database Syst., 4(4):435–454, 1979.
2 Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with

existential variables: Walking the decidability line. Artif. Intell., 175(9-10):1620–1654, 2011.
3 Catriel Beeri and Moshe Y. Vardi. A Proof Procedure for Data Dependencies. J. ACM,

31(4):718–741, 1984.
4 Marco Calautti, Georg Gottlob, and Andreas Pieris. Chase Termination for Guarded Existential

Rules. In PODS, pages 91–103, 2015.
5 Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the Infinite Chase: Query Answering

under Expressive Relational Constraints. J. Artif. Intell. Res., 48:115–174, 2013.
6 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework

for tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012.
7 Andrea Calì, Georg Gottlob, and Andreas Pieris. Towards more expressive ontology languages:

The query answering problem. Artif. Intell., 193:87–128, 2012.
8 Alin Deutsch, Alan Nash, and Jeff B. Remmel. The Chase Revisisted. In PODS, pages

149–158, 2008.
9 Alin Deutsch and Val Tannen. Reformulation of XML Queries and Constraints. In ICDT,

pages 225–241, 2003.
10 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:

semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.
11 Tomasz Gogacz and Jerzy Marcinkowski. All-Instances Termination of Chase is Undecidable.

In ICALP, pages 293–304, 2014.
12 Gösta Grahne and Adrian Onet. Anatomy of the Chase. Fundam. Inform., 157(3):221–270,

2018.
13 Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina Magka,

Boris Motik, and Zhe Wang. Acyclicity Notions for Existential Rules and Their Application
to Query Answering in Ontologies. J. Artif. Intell. Res., 47:741–808, 2013.

14 Sergio Greco, Cristian Molinaro, and Francesca Spezzano. Incomplete Data and Data Depend-
encies in Relational Databases. Morgan & Claypool Publishers, 2012.

15 Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. Stratification Criteria and Rewriting
Techniques for Checking Chase Termination. PVLDB, 4(11):1158–1168, 2011.

16 André Hernich and Nicole Schweikardt. CWA-solutions for data exchange settings with target
dependencies. In PODS, pages 113–122, 2007.

17 David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing Implications of Data
Dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979.

18 Bruno Marnette. Generalized schema-mappings: from termination to tractability. In PODS,
pages 13–22, 2009.

19 Michael Meier, Michael Schmidt, and Georg Lausen. On Chase Termination Beyond Stratific-
ation. PVLDB, 2(1):970–981, 2009.

A Single Approach to Decide Chase Termination
on Linear Existential Rules
Michel Leclère
University of Montpellier, CNRS, Inria, LIRMM, France
leclere@lirmm.fr

Marie-Laure Mugnier
University of Montpellier, CNRS, Inria, LIRMM, France
mugnier@lirmm.fr

Michaël Thomazo
Inria, DI ENS, ENS, CNRS, PSL University, France
michael.thomazo@inria.fr

Federico Ulliana
University of Montpellier, CNRS, Inria, LIRMM, France
ulliana@lirmm.fr

Abstract

Existential rules, long known as tuple-generating dependencies in database theory, have been
intensively studied in the last decade as a powerful formalism to represent ontological knowledge in
the context of ontology-based query answering. A knowledge base is then composed of an instance
that contains incomplete data and a set of existential rules, and answers to queries are logically
entailed from the knowledge base. This brought again to light the fundamental chase tool, and
its different variants that have been proposed in the literature. It is well-known that the problem
of determining, given a chase variant and a set of existential rules, whether the chase will halt on
any instance, is undecidable. Hence, a crucial issue is whether it becomes decidable for known
subclasses of existential rules. In this work, we consider linear existential rules with atomic head, a
simple yet important subclass of existential rules that generalizes inclusion dependencies. We show
the decidability of the all-instance chase termination problem on these rules for three main chase
variants, namely semi-oblivious, restricted and core chase. To obtain these results, we introduce a
novel approach based on so-called derivation trees and a single notion of forbidden pattern. Besides
the theoretical interest of a unified approach and new proofs for the semi-oblivious and core chase
variants, we provide the first positive decidability results concerning the termination of the restricted
chase, proving that chase termination on linear existential rules with atomic head is decidable for
both versions of the problem: Does every chase sequence terminate? Does some chase sequence
terminate?

2012 ACM Subject Classification Theory of computation → Logic; Computing methodologies →
Knowledge representation and reasoning

Keywords and phrases Chase, Tuple Generating Dependencies, Existential rules, Decidability

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.18

Related Version https://arxiv.org/abs/1810.02132

Acknowledgements We thank the reviewers for their insightful comments, as well as Antoine Amarilli
for Example 21, which is simpler than a previous example and shows that the fairness issue already
occurs with binary predicates.

© Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo, and Federico Ulliana;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 18; pp. 18:1–18:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leclere@lirmm.fr
mailto:mugnier@lirmm.fr
mailto:michael.thomazo@inria.fr
mailto:ulliana@lirmm.fr
https://doi.org/10.4230/LIPIcs.ICDT.2019.18
https://arxiv.org/abs/1810.02132
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 A Single Approach to Decide Chase Termination on Linear Existential Rules

1 Introduction

The chase procedure is a fundamental tool for solving many issues involving tuple-generating
dependencies, such as data integration [21], data-exchange [11], query answering using views
[16] or query answering on probabilistic databases [24]. In the last decade, tuple-generating
dependencies raised a renewed interest under the name of existential rules for the problem
known as ontology-based query answering. In this context, the aim is to query a knowledge
base (I,Σ), where I is an instance and Σ is an ontology given as a set of existential rules
(see e.g. the survey chapters [5, 23]). In more classical database terms, this problem can
be recast as querying an instance I under open-world assumption, provided with a set
of constraints Σ, which are tuple-generating dependencies. The chase is a fundamental
tool to solve dependency-related problems as it allows one to compute a (possibly infinite)
universal model of (I,Σ), i.e., a model that can be homomorphically mapped to any other
model of (I,Σ). Hence, the answers to a conjunctive query (and more generally to any kind
of query closed by homomorphism) over (I,Σ) can be defined by considering solely this
universal model.

Several variants of the chase have been introduced, and we focus in this paper on the
main ones: semi-oblivious [22] (aka Skolem [22]), restricted [3, 11] (aka standard [25]) and
core [9]. Any chase variant starts from an instance and exhaustively performs a sequence
of non-redundant rule applications according to a redundancy criterion which characterizes
the variant itself. The built sequence is required to be fair, i.e., no rule application deemed
non-redundant can be indefinitely left out. It is well known that all the above variants
produce homomorphically equivalent results but obey increasingly stronger redundancy
criteria, hence terminate for increasingly larger subclasses of existential rules.

The question of whether a chase variant terminates on all instances for a given set of
existential rules is known to be undecidable when there is no restriction on the kind of rules
[1, 12]. A number of sufficient syntactic conditions for termination have been proposed in
the literature for the semi-oblivious chase (see e.g. [25, 15, 27] for syntheses), as well as
for the restricted chase [8] (note that the latter paper also defines a sufficient condition
for non-termination). However, only few positive results exist regarding the termination
of the chase on specific classes of rules. Decidability was shown for the semi-oblivious
chase on guarded-based rules (linear rules, and their extension to (weakly-)guarded rules)
[4]. Decidability of the core chase termination on guarded rules for a fixed instance was
shown in [17].

In this work, we provide new insights on the chase termination problem for linear
existential rules with atomic head, a simple yet important subclass of guarded existential
rules, which generalizes inclusion dependencies [10] and some practical ontological languages
[6]. When we are interested in the ontology-based query answering problem, we note that
linear rules are first-order rewritable, hence answering conjunctive queries on linear rule
knowledge bases can be solved by query rewriting [1, 13, 18]. However, it is well known that
the size and the unusual form of the rewritten query may lead to practical efficiency issues.
Hence, the materialization of ontological inferences in the data is often an effective alternative
to query rewriting, provided that some chase algorithm terminates. Finally, having the choice
of how to process a set of linear rules extends the applicability of query answering techniques
that combine query rewriting and materialization [1].

Precisely, the question of whether a chase variant terminates on all instances for a set of
linear existential rules with atomic head is studied in two fashions:

does every chase sequence terminate?
does some chase sequence terminate?

M. Leclère, M.-L. Mugnier, M. Thomazo, and F. Ulliana 18:3

It is well-known that these two questions have the same answer for the semi-oblivious and
the core chase variants, but not for the restricted chase. Indeed, this last one may admit
both terminating and non-terminating sequences over the same knowledge base. We show
that the termination problem is decidable for linear existential rules with atomic head, no
matter which version of the problem and which chase variant we consider.

We study chase termination by exploiting in a novel way a graph structure, namely the
derivation tree, which was originally introduced to solve the ontology-based (conjunctive)
query answering problem for the family of greedy-bounded treewidth sets of existential rules
[2, 28], a class that generalizes guarded-based rules and in particular linear rules. We first use
derivation trees to show the decidability of the termination problem for the semi-oblivious
and restricted chase variants, and then generalize them to entailment trees to show the
decidability of termination for the core chase. For every chase variant we consider, we adopt
the same high-level procedure: starting from a finite set of canonical instances (representative
of all possible instances), we build a (set of) tree structures for each canonical instance, while
forbidding the occurrence of a specific pattern, that we call unbounded-path witness. The
structures that we build are finite thanks to this forbidden pattern, and this allows us to
decide if the chase terminates on the associated canonical instance. By doing so, we obtain
a uniform approach to study the termination of several chase variants, which we believe
to be of theoretical interest per se. In particular, some important differences in the chase
behaviors become more visible. The derivation tree is moreover a simple structure, which
makes the algorithms built on it effectively implementable. Let us also point out that our
approach is constructive: if the chase terminates on a given instance, the algorithm that
decides termination actually computes the result of the chase (or a superset of it in the case
of the core chase), otherwise it pinpoints a forbidden pattern responsible for non-termination.

Besides providing new theoretical tools to study chase termination for linear existential
rules with atomic head, we obtain the following results:

a new proof of the decidability of the semi-oblivious chase termination, building on
different objects than the previous proof provided in [4]; we show that our algorithm
provides the same complexity upper-bound;

the decidability of the restricted chase termination, for both versions of the problem, i.e.,
termination of all chase sequences and termination of some chase sequence; to the best
of our knowledge, these are the first positive results on the decidability of the restricted
chase termination;

a new proof of the decidability of the core chase termination, with different objects than
previous work reported in [17]; although this latter paper solves the question of the core
chase termination given a fixed instance, the results actually allow to infer the decidability
of the all-instance version of the problem (still on linear rules), by noticing that only a
finite number of instances need to be considered (see the next section).

The paper is organized as follows. After introducing some preliminary notions (Section 2),
we define the main components of our framework, namely derivation trees and unbounded-
path witnesses (Section 3). We build on these objects to prove the decidability of the
semi-oblivious and restricted chase termination (Section 4). Finally, we generalize derivation-
trees to entailment trees and use them to prove the decidability of the core chase termination
(Section 5). Detailed proofs are provided in [19]. A previous version of this work was
presented as an extended abstract in [20].

ICDT 2019

18:4 A Single Approach to Decide Chase Termination on Linear Existential Rules

2 Preliminaries

We consider a logical vocabulary composed of a finite set of predicates and an infinite set
of constants. An atom α has the form r(t1, . . . , tn) where r is a predicate of arity n and
the ti are terms (i.e., variables or constants). We denote by terms(α) (resp. vars(α)) the
set of terms (resp. variables) in α and extend the notations to a set of atoms. A ground
atom does not contain any variable. It is convenient to identify (the existential closure of) a
conjunction of atoms with the set of these atoms. A set of atoms is atomic if it contains a
single atom. An instance is a set of (non-necessarily ground) atoms, which is finite unless
otherwise specified. Abusing terminology, we will often see an instance as its isomorphic
model.

Given two sets of atoms S and S′, a homomorphism from S′ to S is a substitution
π of vars(S′) by terms(S) such that π(S′) ⊆ S. It holds that S |= S′ (where |= denotes
classical logical entailment) iff there is a homomorphism from S′ to S. An endomorphism of
S is a homomorphism from S to itself. A set of atoms is a core if it admits only injective
endomorphisms. Any finite set of atoms is logically (or: homomorphically) equivalent to
one of its subsets that is a core, and this core is unique up to isomorphism (i.e., bijective
variable renaming). Given sets of atoms S and S′, we say that S′ folds onto S if there is a
homomorphism π from S′ \S to S such that π is the identity on vars(S). The homomorphism
π is called a folding. In particular, it is well-known that any set of atoms folds onto its core.

An existential rule (or simply rule) is of the form σ = ∀x∀y [body(x,y)→ ∃z head(x, z)]
where x,y and z are pairwise disjoint tuples of variables, body(x,y) and head(x, z) are
non-empty conjunctions of atoms respectively on x ∪ y and x ∪ z, called the body and the
head of the rule, and also denoted by body(σ) and head(σ). The variables of z are called
existential variables. The variables of x form the frontier of σ, which is also denoted by fr(σ).
For brevity, we will omit universal quantifiers in the examples. A knowledge base (KB) is of
the form K = (I,Σ), where I is an instance and Σ is a finite set of existential rules.

A rule σ = body(σ)→ head(σ) is applicable to an instance I if there is a homomorphism
π from body(σ) to I. The pair (σ, π) is called a trigger for I. The result of the application of
σ according to π on I is the instance I ′ = I ∪ πs(head(σ)), where πs extends π by assigning
a distinct fresh variable (also called a null) to each existential variable.1 We also say that I ′
is obtained by firing the trigger (σ, π) on I. By π|fr(σ) we denote the restriction of π to the
domain fr(σ).

I Definition 1 (Derivation). A Σ-derivation (or simply derivation when Σ is clear from the
context) from an instance I = I0 to an instance In is a sequence I0, (σ1, π1), I1 . . . , (σn, πn), In,
such that for all 1 ≤ i ≤ n: σi ∈ Σ, (σi, πi) is a trigger for Ii−1, Ii is obtained by firing
(σi, πi) on Ii−1, and Ii 6= Ii−1. The notion of derivation can be naturally extended to an
infinite sequence.

Note that the condition Ii 6= Ii−1 in the above definition implies that all triggers in a
derivation produce distinct atoms. We briefly introduce below the main chase variants and
refer to [25] for a detailed presentation.

The semi-oblivious chase prevents several applications of the same rule through the same
mapping of its frontier. Given a derivation from I0 to Ii, a trigger (σ, π) for Ii is said to
be active according to the semi-oblivious criterion, if (1) there is no trigger (σj , πj) in the

1 The “s” superscript stands for safe, as newly introduced variables are fresh, hence cannot be confused
with already existing variables.

M. Leclère, M.-L. Mugnier, M. Thomazo, and F. Ulliana 18:5

derivation with σ = σj and π|fr(σ) = πj|fr(σj) and (2) the extension of Ii with (σ, π) remains a
derivation, i.e., π(head(σ)) 6⊆ Ii. The restricted chase performs a rule application only if the
added set of atoms is not redundant with respect to the current instance. Given a derivation
from I0 to Ii, a trigger (σ, π) for Ii is said to be active according to the restricted criterion
if π cannot be extended to a homomorphism from (body(σ) ∪ head(σ)) to Ii (equivalently,
πs(head(σ)) does not fold onto Ii). We say that a (possibly infinite) derivation is a semi-
oblivious (resp. restricted) derivation if it is built by firing only active triggers according to
the semi-oblivious (resp. restricted) criterion. A (possibly infinite) derivation is fair if no
firing of an active trigger is indefinitely delayed; formally: if some Ii in the derivation admits
an active trigger (σ, π), then there is j > i such that, either Ij is obtained by firing (σ, π) on
Ij−1, or (σ, π) is not an active trigger anymore on Ij . A terminating derivation is a finite
fair derivation (in other words, a finite derivation that does not admit any active trigger on
its final instance). A semi-oblivious (resp. restricted) chase sequence is a fair semi-oblivious
(resp. restricted) derivation. Hence, a chase sequence is terminating if and only if it is finite.

In its original definition [9], the core chase proceeds in a breadth-first manner, and, at
each step, first fires in parallel all active triggers according to the restricted chase criterion,
then computes the core of the result. Alternatively, to bring the definition of the core chase
closer to the above definitions of the semi-oblivious and restricted chases, one can define
a core derivation as a possibly infinite sequence I0, (σ1, π1), I1, . . ., alternating instances
and triggers, such that each (σi, πi) is an active trigger on Ii−1 according to the restricted
criterion, and Ii is obtained from Ii−1 by first firing (σi, πi), then computing the core of
the result. Then, a core chase sequence is a fair core derivation. An instance admits a
terminating core chase sequence in that sense if and only if the core chase as originally
defined terminates on that instance.

For the three chase variants, a chase sequence defines a (possibly infinite) universal model
of the KB, but only the core chase stops if and only if the KB has a finite universal model.

It is well-known that, for the semi-oblivious and the core chase, if there is a terminating
chase sequence from an instance I then all chase sequences from I are terminating. This is
not the case for the restricted chase, since the order in which rules are applied has an impact
on termination, as illustrated by Example 2.

I Example 2. Let Σ = {σ1, σ2}, with σ1 = p(x, y)→ ∃z p(y, z) and σ2 = p(x, y)→ p(y, y).
Let I = p(a, b). The KB (I,Σ) has a finite universal model, for example, I∗ = {p(a, b), p(b, b)}.
The semi-oblivious chase does not terminate on I as σ1 is applied indefinitely, while the
core chase terminates after one breadth-first step and returns I∗. The restricted chase has
a terminating sequence, for example I0 = I, (σ2, {x 7→ a, y 7→ b}), I1 = I∗, but it also has
infinite sequences, for instance sequences that apply always σ1 before σ2 on a given atom.

We study the following problems for the semi-oblivious, restricted and core chase variants:
(All-instance) all-sequence termination: Given a set of rules Σ, is it true that, for any
instance, all chase sequences are terminating?
(All-instance) one-sequence termination: Given a set of rules Σ, is it true that, for any
instance, there is a terminating chase sequence?

Note that, according to the terminology of [14], these problems can be recast as deciding
whether, for a chase variant, a given set of rules belongs to the class CT∀∀ or CT∀∃,
respectively.

An existential rule is called linear if its body is atomic, see e.g., [6]. As often done, we
moreover restrict linear rules to atomic heads (and still use the name linear rules). Linear
rules generalize inclusion dependencies [10] by allowing several occurrences of the same

ICDT 2019

18:6 A Single Approach to Decide Chase Termination on Linear Existential Rules

variable in an atom. They also generalize positive inclusions in the description logic DL-LiteR
(the formal basis of the web ontological language OWL 2 QL) [7], which can be seen as
inclusion dependencies restricted to unary and binary predicates.

Note that the restriction of existential rules to rules with an atomic head is often made in
the literature, considering that any existential rule with a complex head can be decomposed
into several rules with an atomic head, by introducing a fresh predicate for each rule. However,
while this translation preserves the termination of the semi-oblivious chase, it is not the case
for the restricted and the core chases. Hence, considering linear rules with a complex head
would require to extend the techniques developed in this paper.

To simplify the presentation, we assume in the following that each rule frontier is of size
at least one. This assumption is made without loss of generality. 2

We first point out that the termination problem on linear rules can be recast by considering
solely atomic instances (as already remarked in several contexts).

I Proposition 3. Let Σ be a set of linear rules. The semi-oblivious (resp. restricted, core)
chase terminates on all instances if and only if it terminates on all atomic instances.

We will furthermore rely on the following notion of the type of an atom.

I Definition 4 (Type of an atom). The type of an atom α = r(t1, . . . , tn), denoted by type(α),
is the pair (r,P) where P is the partition of {1, . . . , n} induced by term equality (i.e., i and j
are in the same class of P iff ti = tj).

There are finitely (more specifically, exponentially) many types for a given vocabulary.
When two atoms α and α′ have the same type, there is a natural mapping from α to
α′, denoted by ϕα→α′ , and defined as follows: it is a bijective mapping from terms(α) to
terms(α′), that maps the i-th term of α to the i-th term of α′. Note that ϕα→α′ may not be
an isomorphism, as constants from α may not be mapped to themselves. However, if (σ, π)
is a trigger for {α}, then (σ, ϕα→α′ ◦ π) is a trigger for {α′}, as there are no constants in the
considered rules.

Together with Proposition 3, this implies that one can check all-instance all-sequence
termination by checking all-sequence termination on a finite set of instances, called canonical
instances: for each type, we take exactly one canonical instance that has this type.

We will consider different kinds of tree structures, which have in common to be trees of bags.

I Definition 5 (Tree of bags). A tree of bags is a rooted tree whose nodes, called bags,3 are
labeled by an atom. For any bag B, we define the following notations:

atom(B) is the label of B;
terms(B) = terms(atom(B)) is the set of terms of B;
terms(B) is divided into two sets of terms, those generated in B, denoted by generated(B),
and those shared with its parent, denoted by shared(B); precisely, terms(B) = shared(B)∪
generated(B), shared(B) ∩ generated(B) = ∅, and if B is the root of T , then

2 For instance, it can always be ensured by adding a position to all predicates, which is filled by the same
fresh constant in the initial instance and by a new frontier variable in each rule. E.g. let c0 be the
new constant, then an instance atom of the form p(a, b) would become p(c0, a, b) and a rule of the form
p(x, y) → ∃z1∃z2 q(z1, z2) would become p(u, x, y) → ∃z1∃z2 q(u, z1, z2), where u is a variable. This
translation does not change the behavior of any chase variant.

3 The trees of bags that we consider are tree decompositions [26], hence the term “bag”, which is classical
in this setting.

M. Leclère, M.-L. Mugnier, M. Thomazo, and F. Ulliana 18:7

generated(B) = terms(B) (hence shared(B) = ∅), otherwise B has a parent Bp and
generated(B) = terms(B) \ terms(Bp) (hence, shared(B) = terms(Bp) ∩ terms(B)).

Last, we denote by atoms(T) the set of atoms that label the bags in T .

Finally, we recall some classical mathematical notions. A subsequence S′ of a sequence
S is a sequence that can be obtained from S by deleting some (or no) elements without
changing the order of the remaining elements. The arity of a tree is the maximal number
of children for a node. A prefix T ′ of a tree T is a tree that can be obtained from T by
repeatedly deleting some (or no) leaves of T .

3 Derivation Trees

A classical tool to reason about the chase is the so-called chase graph (see e.g., [6]), which
is the directed graph consisting of all atoms that appear in the considered derivation, and
with an arrow from a node n1 to a node n2 iff n2 is created by a rule application on n1 and
possibly other atoms. 4 In the specific case of KBs of the form (I,Σ), where I is an atomic
instance and Σ a set of linear rules, the chase graph is a tree. We recall below its definition
in this specific case, in order to emphasize its differences with another tree, called derivation
tree, on which we will actually rely.

I Definition 6 (Chase Graph for Linear Rules). Let I0 = {α} be an atomic instance, Σ be a
set of linear rules, and S = I0, (σ1, π1), I1, . . . , (σn, πn), In be a semi-oblivious Σ-derivation.
The chase graph (also called chase tree) assigned to S is a tree of bags built as follows:

the set of bags is in bijection with In via the labeling function atom();
the set of edges is in bijection with the set of triggers in S and is built as follows: for
each trigger (σi, πi) in S, there is an edge (B,B′) with atom(B) = πi(body(σi)) and
atom(B′) = πsi (head(σi)).

I Example 7. Let I0 = q(a) and Σ = {σ1, σ2} where σ1 = q(x) → ∃y∃z∃t p(x, y, z, t)
and σ2 = p(x, y, z, t) → p(x, z, t, y). Let S = I0, (σ1, π1), I1, (σ2, π2), I3, (σ2, π3), I3 with
π1 = {x 7→ a}, πs1(head(σ1)) = p(a, y0, z0, t0), π2 = {x 7→ a, y 7→ y0, z 7→ z0, t 7→ t0} and
π3 = {x 7→ a, y 7→ z0, z 7→ t0, t 7→ y0}. The chase graph associated with S is a path of four
nodes as pictured in Figure 1.

To check termination of a chase variant on a given KB (with an atomic instance), the
general idea is to build a tree of bags associated with the chase on this KB in such a way
that the occurrence of some forbidden pattern indicates that a path of unbounded length
can be developed, hence the chase does not terminate. The forbidden pattern is composed of
two distinct nodes such that one is an ancestor of the other and, intuitively speaking, these
nodes “can be extended in similar ways”, which leads to an arbitrarily long path that repeats
the pattern.

Two atoms with the same type admit the same rule triggers, however, within a derivation,
the same rule applications cannot necessarily be performed on both of them because of the
presence of other atoms (this is already true for datalog rules, since the same atom is never
produced twice). Hence, on the one hand we will specialize the notion of type, into that of a
sharing type, and, on the other hand, adopt another tree structure, called a derivation tree,
in which two nodes with the same sharing type have the required similar behavior.

4 Note that the chase graph in [9] is a different notion.

ICDT 2019

18:8 A Single Approach to Decide Chase Termination on Linear Existential Rules

q(a)

p(a, y0, z0, t0)

p(a, z0, t0, y0)

p(a, t0, y0, z0)

B0

B1

B2

B3

Chase Graph

q(a)

p(a, y0, z0, t0)

p(a, z0, t0, y0) p(a, t0, y0, z0)

B0

B1

B2 B3

Derivation Tree

Figure 1 Chase Graph and Derivation Tree of Example 7.

I Definition 8 (Sharing Type). Given a tree of bags, the sharing type of a bag B is a pair
(type(atom(B)), P) where P is the set of positions in atom(B) in which a term of shared(B)
occurs. We denote the fact that two bags B and B′ have the same sharing type by B ≡st B′.

We can now specify the forbidden pattern that we will consider: it is a pair of two distinct
nodes with the same sharing type, such that one is an ancestor of the other.

I Definition 9 (Unbounded-Path Witness). An unbounded-path witness (UPW) in a deriva-
tion tree is a pair of distinct bags (B,B′) such that B and B′ have the same sharing type
and B is an ancestor of B′.

As explained below on Example 7, the chase graph is not the appropriate tool to use this
forbidden pattern as a witness of chase non-termination.

I Example 7 (continued). B1, B2 and B3 in the chase graph of Figure 1 have the same
classical type, t = (p, {{1}, {2}, {3}, {4}}). The sharing type of B1 is (t, {1}), while B2 and
B3 have the same sharing type (t, {1, 2, 3, 4}). B2 and B3 fulfill the condition of the forbidden
pattern, however it is easily checked that any derivation that extends this derivation is finite.

Derivation trees were introduced as a tool to define the greedy bounded treewidth set (gbts)
family of existential rules [2, 28]. A derivation tree is associated with a derivation, however
it does not have the same structure as the chase graph. The fundamental reason is that,
when a rule σ is applied to an atom α via a homomorphism π, the newly created bag is not
necessarily attached in the tree as a child of the bag labeled by α. Instead, it is attached as
a child of the highest bag in the tree labeled by an atom that contains π(fr(σ)), the image
by π of the frontier of σ (note that π(fr(σ)) remains the set of terms shared between the
new bag and its parent). This highest bag is unique. It is also the first created bag that
contains π(fr(σ)).

In the following definition, a derivation tree is not associated with any derivation, but
with a semi-oblivious derivation, which has the advantage of yielding trees with bounded
arity. This is appropriate to study the termination of the semi-oblivious chase, and later the
restricted chase, as a restricted derivation is a specific semi-oblivious derivation.

I Definition 10 (Derivation Tree). Let I0 = {α} be an atomic instance, Σ be a set of
linear rules, and S = I0, (σ1, π1), I1, . . . , (σn, πn), In be a semi-oblivious Σ-derivation. The
derivation tree assigned to S is a tree T of bags built as follows:

the root of the tree, B0, is such that atom(B0) = α;

M. Leclère, M.-L. Mugnier, M. Thomazo, and F. Ulliana 18:9

for each trigger (σi, πi), 0 < i ≤ n, let Bi be the bag such that atom(Bi) = πsi (head(σi)).
Let j be the smallest integer such that πi(fr(σi)) ⊆ terms(Bj): then Bi is added as a child
to Bj.

By extension, we say that a derivation tree T is associated with α and Σ if there exists a
semi-oblivious Σ-derivation S from α such that T is assigned to S.

I Example 7 (continued). The derivation tree associated with S is represented in Figure 1.
Bags have the same sharing types in the chase tree and in the derivation tree. However, we
can see here that they are not linked in the same way: B3 was a child of B2 in the chase
tree, it becomes a child of B1 in the derivation tree. Hence, the forbidden pattern cannot be
found anymore in the tree.

Note that every non-root bag B shares at least one term with its parent (since the rule
frontiers are not empty), furthermore this term is generated in its parent (otherwise B would
have been added at a higher level in the tree).

4 Semi-Oblivious and Restricted Chase Termination

We now use derivation trees and sharing types to characterize the termination of the semi-
oblivious chase. The fundamental property of derivation trees that we exploit is that, when
two nodes have the same sharing type, the considered (semi-oblivious) derivation can always
be extended so that these nodes have the same number of children, and in turn these children
have the same sharing type. We first specify the notion of bag copy.

I Definition 11 (Bag Copy). Let T and T ′ be (possibly equal) trees of bags. Let B be a bag
of T and B′ be a bag of T ′ such that B ≡st B′. Let Bc be a child of B. A copy of Bc under
B′ is a bag B′c such that atom(B′c) = ϕs(atom(Bc)), where ϕs is a substitution of terms(Bc)
defined as follows:

if t ∈ shared(Bc), then ϕs(t) = ϕatom(B)→atom(B′)(t), where ϕatom(B)→atom(B′) is the
natural mapping from atom(B) to atom(B′);
if t ∈ generated(Bc), then ϕs(t) is a fresh new variable.

Let Te be obtained from a derivation tree T by adding a copy of a bag: strictly speaking,
Te may not be a derivation tree in the sense that there may be no derivation to which it can
be assigned, as illustrated by Example 12. Intuitively, some rule applications that would
allow to produce the copy may be missing. However, there is some derivation tree of which
Te is a prefix (intuitively, one can add bags to Te to obtain a derivation tree). That is why
the following proposition considers more generally prefixes of derivation trees.

I Example 12. Let Σ = {σ1, σ2, σ3} with:
σ1 : r(x, y) → ∃z s(y, z) σ2 : s(x, y) → ∃z t(y, z) σ3 : t(x, y) → ∃z s(x, z)

Figure 2 pictures the result of copying a bag in a derivation tree T associated with a
Σ-derivation: T has bags B0, B1, B2 and B3; then the bag B3 is copied under itself yielding
B′3 (this copy is possible as B1 and B3 have the same sharing type and B3 is a child of B1).
The obtained tree structure is not a derivation tree, as s(z3, z4) cannot be generated by
applying a rule on the instance associated with T , however it could be completed to yield a
derivation tree.

I Proposition 13. Let T be a prefix of a derivation tree, B and B′ be two bags of T such
that B ≡st B′, and Bc be a child of B. Let B′c be a copy of Bc under B′. Then: (a) it holds
that Bc ≡st B′c, and (b) the tree obtained from T by adding B′c under B′, if no copy of Bc
already exists under B′, is a prefix of a derivation tree.

ICDT 2019

18:10 A Single Approach to Decide Chase Termination on Linear Existential Rules

r(a, b)B0

s(b, z1)B1

t(z1, z2)B2 s(z1, z3) B3

s(z3, z4) B′3

Figure 2 Copy Operation and Derivation Trees.

The size of a derivation tree without UPW is bounded, since its arity is bounded and its
depth is bounded by the number of sharing types. It remains to show that a derivation tree
that contains a UPW can be extended to an arbitrarily large derivation tree. We recall that
a similar property would not hold for the chase tree, as witnessed by Example 7.

I Proposition 14. There exists an arbitrary large derivation tree associated with α and
Σ if and only if there exists a derivation tree associated with α and Σ that contains an
unbounded-path witness.

The previous proposition yields a characterization of the existence of an infinite semi-
oblivious derivation. At this point, one may notice that an infinite semi-oblivious derivation
is not necessarily fair. However, from this infinite derivation one can always build a fair
derivation by inserting missing triggers. Obviously, this operation has no effect on the
termination of the semi-oblivious chase. More precaution will be required for the restricted
chase.

One obtains an algorithm to decide termination of the semi-oblivious chase for a given
set of rules: for each canonical instance, build a semi-oblivious derivation and the associated
derivation tree by applying rules until a UPW is created (in which case the answer is no) or
all possible rule applications have been performed; if no instance has returned a negative
answer, the answer is yes.

I Corollary 15. The all-sequence termination problem for the semi-oblivious chase on linear
rules is decidable.

This algorithm can be modified to run in polynomial space (which is optimal [4]), by
guessing a canonical instance and a UPW of its derivation tree.

I Proposition 16. The all-sequence termination problem for the semi-oblivious chase on
linear rules is in PSpace.

We now consider the restricted chase. To this aim, we call restricted derivation tree
associated with α and Σ a derivation tree associated with a restricted Σ-derivation from α.

We first point out that Proposition 13 is not true anymore for a restricted derivation tree,
as the order in which rules are applied matters. This is illustrated by the next example.

I Example 17. Consider a restricted tree that contains bags B and B′ with the same sharing
type, labeled by atoms q(t, u) and q(v, w) respectively, where the second term is generated.
Consider the following rules (the same as in Example 2):

σ1 : q(x, y)→ ∃z q(y, z) σ2 : q(x, y)→ q(y, y)

M. Leclère, M.-L. Mugnier, M. Thomazo, and F. Ulliana 18:11

Assume B has a child Bc labeled by q(u, z0) obtained by an application of σ1, and B′
has a child B′1 labeled by q(w,w) obtained by an application of σ2. It is not possible to
extend this tree by copying Bc under B′. Indeed, the corresponding application of σ1 does
not comply with the restricted chase criterion: it would produce an atom of the form q(w, z1)
that folds onto q(w,w).

We thus prove a weaker proposition by considering that B′ is a leaf in the restricted
derivation tree.

I Proposition 18. Let T be a prefix of a restricted derivation tree, B and B′ be two bags
of T such that B ≡st B′ and B′ is a leaf. Let Bc be a child of B and B′c be a copy of Bc
under B′. Then: (a) Bc ≡st B′c and (b) the tree obtained from T by adding the copy B′c of
Bc under B′ is a prefix of a restricted derivation tree.

The previous proposition allows us to obtain a variant of Proposition 14 adapted to the
restricted chase: 5

I Proposition 19. There exists an arbitrary large restricted derivation tree associated with
α and Σ if and only if there exists a restricted derivation tree associated with α and Σ that
contains an unbounded-path witness.

It is less obvious than in the case of the semi-oblivious chase that the existence of an
infinite derivation entails the existence of an infinite fair derivation. However, this property
still holds:

I Proposition 20. For linear rules, every (infinite) non-terminating restricted derivation is
a subsequence of a fair restricted derivation (i.e., a restricted chase sequence).

We point out that the previous property is not true anymore if linear rules are extended
to non-atomic heads, as illustrated by the next example (in which only binary atoms are
used).

I Example 21. Let Σ = {σ1 : r(x, y) → r(x, x); σ2 : r(x, y) → s(x, x); σ3 : r(x, y) →
∃z r(x, z) ∧ s(z, x) ∧ s(y, z)}. Starting from the instance r(a, b), one builds an infinite
restricted derivation that repeatedly applies σ3, ignoring the two other rules. In order to
turn this derivation into a fair derivation, one should at some point perform the applications
of σ1 and σ2 to the initial instance, which produce the atoms r(a, a) and s(a, a). However, as
soon as these atoms are produced, all triggers involving σ3 are deactivated. Actually, there
is no infinite fair restricted Σ-derivation from r(a, b).

Similarly to Proposition 14 for the semi-oblivious chase, Proposition 19 provides an
algorithm to decide termination of the restricted chase. The difference is that it is not
sufficient to build a single derivation for a given canonical instance; instead, all possible
restricted derivations from this instance have to be built (note that the associated restricted
derivation trees are finite for the same reasons as before, and there is obviously a finite
number of them). Hence, we obtain:

I Corollary 22. The all-sequence termination problem for the restricted chase on linear rules
is decidable.

5 Actually, a weak version of Proposition 13 where B′ is a leaf would be sufficient to prove Proposition 14.
However, the interest of Proposition 13 is to pinpoint an important difference between the semi-oblivious
and restricted chase behaviors.

ICDT 2019

18:12 A Single Approach to Decide Chase Termination on Linear Existential Rules

p(x, y)

1

q(y)

3

r(y, x)

2

r(y, z0)

4

p(z0, z1)

5

6

7

p(x, y)

1

q(y)

2

r(y, x)

Figure 3 Finite versus Infinite Derivation Tree for Example 25.

A rough analysis of the proposed algorithm provides a co-N2ExpTime upper-bound
for the complexity of the problem, by guessing a derivation that is of length at most double
exponential, and checking whether there is a UPW in the corresponding derivation tree.

We now prove the decidability of the one-sequence termination problem. Note that a
restricted derivation tree T that contains a UPW is a witness of the existence of an infinite
restricted chase sequence, but does not prove that every restricted chase sequence that
extends T is infinite. However, we prove that, if all restricted derivation trees contain a
UPW, then there is no terminating restricted chase sequence.

I Proposition 23. There exists a finite fair restricted derivation (i.e., a terminating restricted
chase sequence) associated with α and Σ if and only if there exists one whose associated
derivation tree does not contain any UPW.

Proof sketch. We show that the derivation tree of the shortest finite fair restricted derivation
cannot contain a UPW. This is done by contradiction: we assume there is a UPW in the
associated derivation tree of the shortest finite fair restricted derivation, and we choose a
UPW (B,B′), such that B′ is a deepest bag among all UPWs. We create a new derivation
that is equal to the original one up to the creation of B, then (1) copy the subtree rooted
in B′ under B and (2) perform “similarly” the missing rule applications so as to restore a
fair restricted derivation. We show that during step (2) at least one trigger of the original
derivation becomes inactive, which yields a strictly shorter fair restricted derivation. J

An algorithm to decide the existence of a finite restricted chase sequence for any instance
is as follows: for any canonical instance, build all restricted derivations until either (i) there
is a UPW in their associated derivation tree or (ii) there is no active trigger. Output Yes if
and only if for all instances, there is a least one restricted derivation that halts because of
the second condition. Such a derivation is of size at most double exponential, and we obtain
a N2ExpTime upper bound for the complexity of the one-sequence termination problem.

I Corollary 24. The one-sequence termination problem for the restricted chase on linear
rules is decidable.

Importantly, the previous algorithms are naturally able to consider solely some type of
restricted derivations, i.e., build only derivation trees associated with such derivations, which
is of theoretical but also of practical interest. Indeed, implementations of the restricted chase
often proceed by building breadth-first derivations (which are intrinsically fair when they

M. Leclère, M.-L. Mugnier, M. Thomazo, and F. Ulliana 18:13

are infinite), or variants of these. As witnessed by the next example, the termination of all
breadth-first fair derivations is a strictly weaker requirement than the termination of all fair
sequences, in the sense that the restricted chase terminates on more sets of rules.

I Example 25. Consider the following set of rules:
σ1 = p(x, y)→ q(y) σ2 = p(x, y)→ r(y, x)
σ3 = q(y)→ ∃z r(y, z) σ4 = r(x, y)→ ∃z p(y, z)
All breadth-first (fair) restricted derivations terminate, whatever the initial instance

is. Remark that every application of σ1 is followed by an application of σ2 in the same
breadth-first step, which prevents the application of σ3. However, there is a fair restricted
derivation that does not terminate (and this is even true for any instance). Indeed, an
application of σ2 can always be delayed, so that it comes too late to prevent the application
of σ3. See Figure 3: on the left, a finite derivation tree associated with a breadth-first
derivation from instance p(x, y); on the right, an infinite derivation tree associated with a
(non-breadth-first) fair infinite derivation from the same instance. The numbers on edges
give the order in which bags are created.

We conclude this section by noting that the previous Example 25 may give the (wrong)
intuition that, given a set of rules, it is sufficient to consider breadth-first fair derivations to
decide if there exists a terminating sequence. The following example shows that it is not the
case: here, no breadth-first chase sequence is terminating, while there exists a terminating
chase sequence for the given instance.

I Example 26. Let Σ = {σ1, σ2, σ3} with σ1 = p(x, y) → ∃z p(y, z), σ2 = p(x, y) → h(y),
and σ3 = h(x)→ p(x, x). In this case, for every instance, there is a terminating restricted
chase sequence, where the application of σ2 and σ3 prevents the indefinite application of σ1.
However, starting from I = {p(a, b)}, by applying rules in a breadth-first fashion one obtains
a non-terminating restricted chase sequence, since σ1 and σ2 are always applied in parallel
from the same atom, before applying σ3.

As for the all-sequence termination problem, the algorithm may restrict the derivations
of interest to specific kinds.

5 Core Chase Termination

We now consider the termination of the core chase on linear rules. Keeping the same approach,
we prove that the finiteness of the core chase is equivalent to the existence of a finite tree of
bags whose set of atoms is a minimal universal model. We call this a (finite) complete core.
To bound the size of a complete core, we show that it cannot contain an unbounded-path
witness. However, we cannot rely on derivation trees: indeed, there are linear sets of rules
for which no derivation tree forms a complete core, as shown in Example 27. We will thus
introduce a more general tree structure, namely entailment trees.

I Example 27. Let us consider the following rules:
s(x) → ∃y∃z p(y, z, x) p(y, z, x) → ∃v q(y, v, x) q(y, v, x) → p(y, v, x)

Let I = {s(a)}. The first rule applications yield a derivation tree T which is a path of
bags B0, B1, B2, B3 respectively labeled by the following atoms:

s(a), p(y0, z0, a), q(y0, v0, a) and p(y0, v0, a)

ICDT 2019

18:14 A Single Approach to Decide Chase Termination on Linear Existential Rules

s(a)

p(y0, z0, a)

q(y0, v0, a)

p(y0, v0, a)

B0

B1

B2

B3

Derivation Tree An Entailment Tree

ϕ

s(a)

q(y0, v0, a)

p(y0, v0, a)

B0

B2

B3

Figure 4 Derivation tree and entailment tree for Example 27.

T is represented on the left of Figure 4. Let A be this set of atoms. First, note that A
is not a core: indeed it is equivalent to its strict subset A′ defined by {B0, B2, B3} with a
homomorphism π that maps atom(B1) to atom(B3). Trivially, A′ is a core since it does not
contain two atoms with the same predicate. Second, note that any further rule application
on T is redundant, i.e., generates a set of atoms equivalent to A (and A′). Hence, A′ is a
complete core. However, there is no derivation tree that corresponds to A′. There is even no
prefix of a derivation tree that corresponds to it (which ruins the alternative idea of building
a prefix of a derivation tree that would be associated with a complete core). In particular,
note that {B0, B1, B2} is indeed a core, but it is not complete.

The following notion of twins will be used in the definition of entailment trees to ensure
that they have a bounded arity.

I Definition 28. Two bags B and B′ of a tree of bags are twins if they have the same sharing
type, the same parent Bp and if the natural mapping ϕatom(B)→atom(B′) is the identity on the
terms of atom(Bp).

In the following definition of entailment tree, we use the notation α1 → α2, where αi is
an atom, to denote the rule ∀X(α1 → ∃Y α2) with X = vars(α1) and Y = vars(α2) \X.

I Definition 29 (Entailment Tree). An entailment tree associated with α and Σ is a tree of
bags T such that:
1. Br, the root of T , is such that Σ |= α→ atom(Br) and Σ |= atom(Br)→ α;
2. For any bag Bc child of a node B, the following holds: (i) terms(Bc) ∩ generated(B) 6= ∅

(ii) The terms in generated(Bc) are variables that do not occur outside the subtree of T
rooted in Bc (iii) Σ |= atom(B)→ atom(Bc).

3. There is no pair of twins.

If α is a ground atom, then Br is simply labeled by α. Otherwise, it may happen that α
does not belong to the result of the core chase (e.g., α = p(x, y), with x and y variables, and
Σ = {p(x, y)→ p(x, x)}), hence Point 1.

First note that an entailment tree is independent from any derivation (in particular,
fairness is not an issue). The main difference with a derivation tree is that it employs a more
general parent-child relationship, that relies on entailment rather than on rule application,
hence the name entailment tree. Intuitively, with respect to a derivation tree, one is allowed
to move a bag B higher in the tree, provided that it contains at least one term generated in its
new parent Bp; then, the terms of B that are not shared with Bp are freshly renamed. Finally,

M. Leclère, M.-L. Mugnier, M. Thomazo, and F. Ulliana 18:15

since the problem of whether an atom is entailed by a linear existential rule knowledge base
is decidable (precisely PSpace-complete [5], even in the case of atomic instances), one can
actually generate all non-twin children of a bag. As a bag can only have a bounded number
of non-twin children, we are guaranteed to keep a tree of bounded arity.

Derivation trees are entailment trees, but not necessarily conversely. A crucial distinction
between these two structures is the following statement, which does not hold for derivation
trees, as illustrated by Example 27.

I Proposition 30. If the core chase associated with α and Σ is finite, then there exists an
entailment tree T such that the set of atoms associated with T is a complete core.

I Example 27 (continued). The tree defined by the path of bags B0, B2, B3 is an entailment
tree, represented on the right of Figure 4, which defines a complete core.

Differently from the semi-oblivious case, we cannot conclude that the chase does not
terminate as soon as a UPW is built, because the associated atoms may later be mapped
to other atoms, which would remove the UPW. Instead, starting from the initial bag, we
recursively add bags that do not generate a UPW (for instance, we can recursively add
all such non-twin children to a leaf). Once the process terminates (the non-twin condition
and the absence of UPW ensure that it does), we check that the obtained set of atoms C
is complete (i.e., is a model of the KB): for that, it suffices to perform each possible rule
application on C and check if the resulting set of atoms is equivalent to C (i.e., maps by
homomorphism to C). See Algorithm 1. The set C may not be a core, but it is complete iff
it contains a complete core.

We now focus on the key properties of entailment trees associated with complete cores.
We first introduce the notion of redundant bags, which captures some cases of bags that
cannot appear in a finite core. As witnessed by Example 27, this is not a characterization:
B1 is not redundant (according to Definition 31 below), but cannot belong to a complete
core.

I Definition 31 (Redundancy). Given an entailment tree, a bag Bc child of B is redundant
if there exists an atom β (that may not belong to the tree) with (i) Σ |= atom(B) → β;
(ii) there is a homomorphism from atom(Bc) to β that is the identity on shared(Bc); (iii)
|terms(β) \ terms(B)| < |terms(Bc) \ terms(B)|.

Note that Bc may be redundant even if the “cause” for redundancy, i.e., β, is not in
the tree yet. The role of this notion in the proofs is as follows: we show that if a complete
entailment tree contains a UPW then it contains a redundant bag, and that a complete core
cannot contain a redundant bag, hence a UPW. To prove this, we rely on Proposition 32
below, which is the counterpart for entailment trees of Proposition 13: performing a bag
copy from an entailment tree results in an entailment tree (the notion of prefix is not needed,
since a prefix of an entailment tree is an entailment tree) and keeps the properties of the
copied bag.

I Proposition 32. Let B be a bag of an entailment tree T and B′ be a bag of an entailment
tree T ′ such that B ≡st B′. Let Bc be a child of B. Let B′c be a copy of Bc under B′. Then:
(a) it holds that Bc ≡st B′c, (b) the tree obtained from T by adding B′c under B′, if no copy
of Bc already exists under B′, is an entailment tree, and (c) B′c is redundant if and only if
Bc is redundant.

In light of this, the copy of a bag can be naturally extended to the copy of the whole
subtree rooted in a bag, which is a crucial element in the proof of Proposition 33 below.

ICDT 2019

18:16 A Single Approach to Decide Chase Termination on Linear Existential Rules

I Proposition 33. A complete core contains neither (i) a redundant bag, nor (ii) an
unbounded-path witness.

From Propositions 30 and 33, we conclude that Algorithm 1 decides the all-sequence
termination problem for the core chase.

I Corollary 34. The all-sequence termination problem for the core chase on linear rules is
decidable.

Algorithm 1: Deciding core chase termination.
Input :A set of linear rules
Output : true if and only if the core chase terminates on all instances

1 for each canonical atom α do
2 Let T be the entailment tree restricted to a single root bag labeled by α;
3 while a bag B can be added to T without creating twins nor a UPW do
4 add B to T
5 for (σ, π) such that σ is applicable to atoms(T) by π do
6 if atoms(T) 6|= atoms(T) ∪ πs(head(σ)); // homomorphism check
7 then
8 return false

9 return true

A rough complexity analysis of this algorithm yields a 2ExpTime upper bound for the
termination problem. Indeed, the exponential number of (sharing) types yields a bound on
the number of canonical instances to be checked, the arity of the tree, as well as the length
of a path without UPW in the tree, and each edge can be generated with a call to a PSpace
oracle.

Finally, note that for predicates of arity at most two, it would still be possible to rely on
derivation trees (instead of entailment trees), provided that the initial instance is ground.
Indeed, in this specific case, the core of a (finite) derivation tree is a prefix of this tree (note
that Example 27 uses predicates of arity three). Then, we can incrementally build a prefix of
derivation tree until no bag can be added without creating a UPW, and, as in the higher
arity case, check if the built tree is complete.

6 Concluding Remarks

We have shown the decidability of all-instance chase termination over atomic-head linear rules
for three main chase variants (semi-oblivious, restricted, core) following a novel approach
based on derivation trees, and their generalization to entailment trees, and a single notion of
forbidden pattern. As far as we know, these are the first decidability results for the restricted
chase, on both versions of the termination problem (i.e., all-sequence and one-sequence
termination). The simplicity of the structures and algorithms makes it realistic to implement
them.

We leave for future work the study of the precise complexity of the termination problems.
A straightforward analysis of the complexity of the algorithms that decide the termination of
the restricted and core chases yields upper bounds, however we believe that a finer analysis
of the properties of sharing types would provide tighter upper bounds. It is an open question
whether our results can be extended to more complex classes of existential rules, i.e., linear
rules with a complex head, which is relevant for the termination of the restricted and core

M. Leclère, M.-L. Mugnier, M. Thomazo, and F. Ulliana 18:17

chases, and more expressive classes from the guarded family. Concerning the extension
to complex-head rules, the difficulty is that an infinite restricted derivation may not be
transformable into a fair restricted derivation. Concerning the extension to more expressive
classes, derivation trees were precisely defined to represent derivations with guarded rules
and their extensions (i.e., greedy bounded treewidth sets), hence they seem to be a promising
tool to study chase termination on that family, at least for the one-instance version of the
problem, i.e., given a knowledge base. To consider the all-instance termination problem, a
preliminary issue would be whether a finite set of canonical instances can be defined.

References
1 Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with

existential variables: Walking the decidability line. Artif. Intell., 175(9-10):1620–1654, 2011.
doi:10.1016/j.artint.2011.03.002.

2 Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël Thomazo. Walk-
ing the Complexity Lines for Generalized Guarded Existential Rules. In Toby Walsh, editor,
IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 712–717. IJCAI/AAAI, 2011.
doi:10.5591/978-1-57735-516-8/IJCAI11-126.

3 Catriel Beeri and Moshe Y. Vardi. The Implication Problem for Data Dependencies. In Shimon
Even and Oded Kariv, editors, Automata, Languages and Programming, 8th Colloquium, Acre
(Akko), Israel, July 13-17, 1981, Proceedings, volume 115 of Lecture Notes in Computer Science,
pages 73–85. Springer, 1981. doi:10.1007/3-540-10843-2_7.

4 Marco Calautti, Georg Gottlob, and Andreas Pieris. Chase Termination for Guarded Existential
Rules. In Tova Milo and Diego Calvanese, editors, Proceedings of the 34th ACM Symposium
on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 -
June 4, 2015, pages 91–103. ACM, 2015. doi:10.1145/2745754.2745773.

5 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog Extensions for Tractable
Query Answering over Ontologies. In Roberto De Virgilio, Fausto Giunchiglia, and Letizia
Tanca, editors, Semantic Web Information Management - A Model-Based Perspective, pages
249–279. Springer, 2009. doi:10.1007/978-3-642-04329-1_12.

6 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework
for tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012. doi:10.1016/j.
websem.2012.03.001.

7 Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite
Family. J. Autom. Reasoning, 39(3):385–429, 2007. doi:10.1007/s10817-007-9078-x.

8 David Carral, Irina Dragoste, and Markus Krötzsch. Detecting Chase (Non)Termination for
Existential Rules with Disjunctions. In Carles Sierra, editor, Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pages 922–928. ijcai.org, 2017. doi:10.24963/ijcai.2017/128.

9 Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In Maurizio Lenzerini
and Domenico Lembo, editors, Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2008, June 9-11, 2008,
Vancouver, BC, Canada, pages 149–158. ACM, 2008. doi:10.1145/1376916.1376938.

10 Ronald Fagin. A Normal Form for Relational Databases That Is Based on Domians and Keys.
ACM Trans. Database Syst., 6(3):387–415, 1981. doi:10.1145/319587.319592.

11 Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005. doi:10.1016/j.
tcs.2004.10.033.

ICDT 2019

http://dx.doi.org/10.1016/j.artint.2011.03.002
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-126
http://dx.doi.org/10.1007/3-540-10843-2_7
http://dx.doi.org/10.1145/2745754.2745773
http://dx.doi.org/10.1007/978-3-642-04329-1_12
http://dx.doi.org/10.1016/j.websem.2012.03.001
http://dx.doi.org/10.1016/j.websem.2012.03.001
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.24963/ijcai.2017/128
http://dx.doi.org/10.1145/1376916.1376938
http://dx.doi.org/10.1145/319587.319592
http://dx.doi.org/10.1016/j.tcs.2004.10.033
http://dx.doi.org/10.1016/j.tcs.2004.10.033

18:18 A Single Approach to Decide Chase Termination on Linear Existential Rules

12 Tomasz Gogacz and Jerzy Marcinkowski. All-Instances Termination of Chase is Undecidable. In
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer
Science, pages 293–304. Springer, 2014. doi:10.1007/978-3-662-43951-7_25.

13 Georg Gottlob, Giorgio Orsi, and Andreas Pieris. Query Rewriting and Optimization for
Ontological Databases. ACM Trans. Database Syst., 39(3):25:1–25:46, 2014. doi:10.1145/
2638546.

14 Gösta Grahne and Adrian Onet. Anatomy of the Chase. Fundam. Inform., 157(3):221–270,
2018. doi:10.3233/FI-2018-1627.

15 Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina Magka,
Boris Motik, and Zhe Wang. Acyclicity Notions for Existential Rules and Their Application to
Query Answering in Ontologies. J. Artif. Intell. Res., 47:741–808, 2013. doi:10.1613/jair.
3949.

16 Alon Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294, 2001.
doi:10.1007/s007780100054.

17 André Hernich. Computing universal models under guarded TGDs. In Alin Deutsch, editor,
15th International Conference on Database Theory, ICDT ’12, Berlin, Germany, March 26-29,
2012, pages 222–235. ACM, 2012. doi:10.1145/2274576.2274600.

18 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo. Sound, complete
and minimal UCQ-rewriting for existential rules. Semantic Web, 6(5):451–475, 2015. doi:
10.3233/SW-140153.

19 Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo, and Federico Ulliana. A Single
Approach to Decide Chase Termination on Linear Existential Rules. CoRR, abs/1602.05828,
2018. arXiv:1810.02132.

20 Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo, and Federico Ulliana. A Single
Approach to Decide Chase Termination on Linear Existential Rules. In Magdalena Ortiz and
Thomas Schneider, editors, Proceedings of the 31st International Workshop on Description
Logics co-located with 16th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2018), Tempe, Arizona, US, October 27th - to - 29th, 2018., volume 2211
of CEUR Workshop Proceedings. CEUR-WS.org, 2018. URL: http://ceur-ws.org/Vol-2211/
paper-45.pdf.

21 Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In Lucian Popa, Serge
Abiteboul, and Phokion G. Kolaitis, editors, Proceedings of the Twenty-first ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5, Madison, Wis-
consin, USA, pages 233–246. ACM, 2002. doi:10.1145/543613.543644.

22 Bruno Marnette. Generalized schema-mappings: from termination to tractability. In Jan
Paredaens and Jianwen Su, editors, Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2009, June 19 - July 1, 2009,
Providence, Rhode Island, USA, pages 13–22. ACM, 2009. doi:10.1145/1559795.1559799.

23 Marie-Laure Mugnier and Michaël Thomazo. An Introduction to Ontology-Based Query
Answering with Existential Rules. In Reasoning Web. Reasoning on the Web in the Big
Data Era - 10th International Summer School 2014, Athens, Greece, September 8-13, 2014.
Proceedings, pages 245–278, 2014. doi:10.1007/978-3-319-10587-1_6.

24 Dan Olteanu, Jiewen Huang, and Christoph Koch. SPROUT: lazy vs. eager query plans
for tuple-independent probabilistic databases. In Yannis E. Ioannidis, Dik Lun Lee, and
Raymond T. Ng, editors, Proceedings of the 25th International Conference on Data Engineering,
ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China, pages 640–651. IEEE Computer
Society, 2009. doi:10.1109/ICDE.2009.123.

25 Adrian Onet. The chase procedure and its applications. PhD thesis, Con-
cordia University, Canada, 2012. URL: https://pdfs.semanticscholar.org/6b1b/
327a989d3d8e2488f645488063f391391b89.pdf.

http://dx.doi.org/10.1007/978-3-662-43951-7_25
http://dx.doi.org/10.1145/2638546
http://dx.doi.org/10.1145/2638546
http://dx.doi.org/10.3233/FI-2018-1627
http://dx.doi.org/10.1613/jair.3949
http://dx.doi.org/10.1613/jair.3949
http://dx.doi.org/10.1007/s007780100054
http://dx.doi.org/10.1145/2274576.2274600
http://dx.doi.org/10.3233/SW-140153
http://dx.doi.org/10.3233/SW-140153
http://arxiv.org/abs/1810.02132
http://ceur-ws.org/Vol-2211/paper-45.pdf
http://ceur-ws.org/Vol-2211/paper-45.pdf
http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1145/1559795.1559799
http://dx.doi.org/10.1007/978-3-319-10587-1_6
http://dx.doi.org/10.1109/ICDE.2009.123
https://pdfs.semanticscholar.org/6b1b/327a989d3d8e2488f645488063f391391b89.pdf
https://pdfs.semanticscholar.org/6b1b/327a989d3d8e2488f645488063f391391b89.pdf

M. Leclère, M.-L. Mugnier, M. Thomazo, and F. Ulliana 18:19

26 Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-Width.
J. Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

27 Swan Rocher. Querying Existential Rule Knowledge Bases: Decidability and Complexity. (In-
terrogation de Bases de Connaissances avec Règles Existentielles : Décidabilité et Complexité).
PhD thesis, University of Montpellier, France, 2016. URL: https://tel.archives-ouvertes.
fr/tel-01483770.

28 Michaël Thomazo. Conjunctive Query Answering Under Existential Rules - Decidability,
Complexity, and Algorithms. PhD thesis, Montpellier 2 University, France, 2013. URL:
https://tel.archives-ouvertes.fr/tel-00925722.

ICDT 2019

http://dx.doi.org/10.1016/0196-6774(86)90023-4
https://tel.archives-ouvertes.fr/tel-01483770
https://tel.archives-ouvertes.fr/tel-01483770
https://tel.archives-ouvertes.fr/tel-00925722

Additive First-Order Queries
Gerald Berger
TU Wien, Austria

Martin Otto
TU Darmstadt, Germany

Andreas Pieris
University of Edinburgh, Scotland

Dimitri Surinx
Hasselt University, Belgium

Jan Van den Bussche
Hasselt University, Belgium

Abstract
A database query q is called additive if q(A ∪ B) = q(A) ∪ q(B) for domain-disjoint input databases
A and B. Additivity allows the computation of the query result to be parallelised over the connected
components of the input database. We define the “connected formulas” as a syntactic fragment
of first-order logic, and show that a first-order query is additive if and only if it expressible by a
connected formula. This characterisation specializes to the guarded fragment of first-order logic.
We also show that additivity is decidable for formulas of the guarded fragment, establish the
computational complexity, and do the same for positive-existential formulas. Our results hold when
restricting attention to finite structures, as is common in database theory, but also hold in the
unrestricted setting.

2012 ACM Subject Classification Information systems → Query languages

Keywords and phrases Expressive power

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.19

1 Introduction

Motivated by cloud computing and big data, in the past few years, there has been interest in
logical characterisations of queries that can be answered using parallelism [11]. An attractive
class of queries that was identified is formed by those that “distribute over components” [3].
These queries can be faithfully answered by the following three-step strategy: first, partition
the input database in any way that does not split connected components; second, evaluate
the query separately on each part, thus allowing some degree of parallelism; third, collect the
final result by taking the union of all partial results. Equivalently, over finite databases, a
query q for which this works correctly is additive, meaning that q(A ∪B) = q(A) ∪ q(B) for
any two domain-disjoint databases A and B. An added bonus is that the two partial results
Q(A) and Q(B) are disjoint. Apart from the relevance to distributed computing, additivity
is also a useful notion in the analysis of expressive power of query languages [20, 21].

Additivity is a semantic property that is undecidable for queries given, say, as Datalog
programs, or as first-order logic formulas. It is therefore desirable to match additivity to
a syntactic restriction in the query language. This was done successfully in the setting of
Datalog programs, where it is a natural idea to restrict rule bodies so that they must be
connected. It is then relatively straightforward to show that a Datalog query is additive
if and only if it can be computed by a Datalog program with connected rule bodies. This
program was successfully carried out for a range of Datalog variants, such as Datalog extended

© Gerald Berger, Martin Otto, Andreas Pieris, Dimitri Surinx, and Jan Van den Bussche;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Additive First-Order Queries

with stratified or well-founded negation, or value invention [3, 4], as well as for unions of
conjunctive queries, and ontology-mediated querying with conjunctive queries over linear,
guarded, or sticky tuple-generating dependencies [6].

The case of first-order queries (equivalently, relational algebra queries), however, has
remained open until now. In this paper we define a syntactical notion of connectedness
for first-order logic formulas, as well as for relational algebra expressions. In a connected
relational algebra expression, equijoins are allowed, but cartesian products are not. Connected
first-order logic formulas are defined similarly. Queries expressible by connected formulas are
always additive. We show that the converse holds as well: if a first-order formula ϕ expresses
an additive query, then ϕ is equivalent to a connected formula. A similar result then follows
for relational algebra expressions.

Results of this kind are colloquially known as expressive completeness results, charac-
terisation theorems, or preservation theorems [2, 18]. For example, modal characterisation
theorems link bisimulation-invariant first-order formulas (in one free variable) to formulas in
modal logics [23, 17, 14, 15, 16]. Indeed, the proof of our result starts from ideas that were
developed to prove modal characterisation theorems over finite structures as well as over
all structures. As a consequence, also our result holds over finite structure as well as over
all structures.

In a second part of the paper, we consider the guarded fragment (GF) of first-order
logic [5]. GF was originally introduced as a first-order generalisation of modal logic that
preserves good properties such as the tree model property, the finite model property, and a
decidable satisfiability problem. Satisfiability for GF is 2ExpTime-complete in general and
ExpTime-complete for bounded arity [9].

When restricting attention to queries returning guarded tuples, the guarded fragment
corresponds to the semijoin algebra [12]. Such queries are always additive. We complement
this picture and show that a guarded formula ϕ expresses an additive query if and only if ϕ
is equivalent to a connected guarded formula. We will see that additivity is decidable for GF
as well, by a reduction to satisfiability. While our reduction preserves bounded arity, it is
unfortunately exponential, so we only obtain a 2ExpTime upper bound, even for bounded
arity. By a very simple reduction from satisfiability, additivity for GF is 2ExpTime-complete
in general and ExpTime-hard for bounded arity.

Finally, we will consider positive-existential (PE) first-order formulas. Such formulas
have the same expressive power as unions of conjunctive queries (UCQ) [1]. In earlier work
[6], additivity for UCQs was shown to be NP-complete. In this paper we complement this
result and show that additivity for PE formulas is ΠP

2 -complete. The pattern that seems to
emerge here is that additivity has the same complexity as containment.

2 Preliminaries

From the outset, we assume a supply of relation names, where each relation name has an
associated arity (a natural number). We use R/k to denote that the relation name R has
arity k. In this paper we do not consider nullary relation names, as their presence corrupts
the intuitive notion of domain-disjointness which will play an important role in this work
(see Section 3).

We further assume an infinite domain dom of atomic data elements called constants. A
fact is of the form R(a1, . . . , ak) where a1, . . . , ak are constants and R/k is a relation name.
We call R the predicate of the fact.

A database schema (or schema for short) is a finite set of relation names. An instance
of a schema S is a nonempty set of facts with predicates from S. The set of all constants
appearing in an instance A is called the active domain of A and denoted by adom(A).

G. Berger, M. Otto, A. Pieris, D. Surinx, and J. Van den Bussche 19:3

I Remark (Finite vs unrestricted instances). In database theory it is common and natural to
restrict attention to finite instances. Our results will hold in restriction to finite instances, as
well as in the unrestricted setting where we allow all instances.

Let S be a schema, and let k be a natural number. A k-ary query over S is a function
that maps each instance A of S to a k-ary relation on adom(A). Note that a nullary query
(k = 0) has only two possible results, {()} and ∅, which can be interpreted as the boolean
values true and false respectively. Thus nullary queries capture the notion of boolean or
yes/no query.

A standard language for expressing queries is the relational algebra [22]. To fix notation,
we define it formally [13]. Note that we only consider equality selections and equijoins;
the extension of our work to selection and join predicates involving constants, order, or
arithmetic, is an interesting direction for further research.

I Definition 1. The expressions of the relational algebra (RA) over a schema S are generated
as follows:

Each relation name R ∈ S is a relational algebra expression. Its arity comes from S.
If E1, E2 ∈ RA have arity n, then also E1 ∪ E2 (union) and E1 − E2 (difference) belong
to RA and are of arity n.
If E ∈ RA has arity n and i1, . . . , ik ∈ {1, . . . , n}, then πi1,...,ik

(E) (projection) belongs
to RA and is of arity k.
If E ∈ RA has arity n and i, j ∈ {1, . . . , n}, then σi=j(E) (selection) belongs to RA and
is of arity n.
If E1, E2 ∈ RA have arities n and m, respectively, then E1 × E2 (cartesian product)
belongs to RA and is of arity n+m.

The semantics is well known; we recall it for the sake of completeness. Let A be an
instance of S.

If E is a relation name R then E(A) := {ā | R(ā) ∈ A}.
If E is E1∪E2, or E1−E2, or E1×E2, then E(A) := E1(A)∪E2(A), or E1(A)−E2(A),
or E1(A)× E2(A), respectively.
If E is πi1,...,ik

(E1) then E(A) := {(ai1 , . . . , aik
) | ā ∈ E1(A)}.

If E is σi=j(E1) then E(A) := {ā ∈ E1(A) | ai = aj}.

The relational algebra is equivalent in expressive power to the language of first-order
logic (FO) [22, 1]. To match RA as formalised above, we use FO with equality but without
constants. An FO formula ϕ with free variables x1, . . . , xk expresses the k-ary query that
maps an instance A to the set of all k-tuples (α(x1), . . . , α(xk)), where α is a valuation from
{x1, . . . , xk} to adom(A) such that A, α |= ϕ. Here, A is viewed as a structure with domain
adom(A), so we employ the active-domain semantics for first-order logic. We denote the
resulting relation by ϕ(A). In particular, sentences (formulas without free variables) express
nullary queries.

Notation.
To indicate an ordering of the free variables of ϕ, we will use the notation ϕ(x1, . . . , xk).
We will use FO to denote the class of queries expressible in FO.

3 Additive queries

Let q be a query over schema S. We call q additive if q(A ∪ B) = q(A) ∪ q(B) for any
two S-instances A and B that are domain-disjoint, meaning that adom(A) is disjoint from
adom(B). Note that, formally, this definition applies equally well to boolean (nullary)

ICDT 2019

19:4 Additive First-Order Queries

queries. Interpreting {()} as true and ∅ as false, as we will always do, the condition
q(A ∪ B) = q(A) ∪ q(B) can be equivalently read as “q(A ∪ B) is true if and only if q(A) is
true or q(B) is true”.

Notation. When we write A = B + C we will mean that A = B ∪ C and B and C are
domain-disjoint.

I Example 2. Consider queries about two binary relations R and T , expressed in RA.
1. The selection σ1=2(R) is clearly additive.
2. The join π1,2,4σ2=3(R× T) is additive.
3. The union R ∪ T and the difference R− T are additive.

In order to give examples of queries that are not additive, it is useful to introduce the
following definitions and lemma.

I Definition 3 ([3]). A strict component of an instance A is an instance C such that
A = C + B for some instance B, and C is minimal with this property. (Recall that instances
are nonempty.) We now say that an instance C is a component of an instance A, if C is a
strict component of A, or if C equals A and A has no strict components.

I Definition 4. Let A be an instance and let t be a tuple of elements of adom(A). We call t
mixed with respect to A, if t contains elements from (at least) two different components of A.

I Lemma 5. Let q be an additive query and let A be an instance. Then q(A) does not
contain any mixed tuples (with respect to A).

Proof. Suppose t ∈ q(A) contains elements from two distinct components B and C (and
possibly more). Write A = B+ C +D. Then t ∈ q(B)∪ q(C)∪ q(D). However, t cannot be in
q(B) since q(B) is a relation on adom(B) and t contains elements from adom(C). For similar
reasons, t can neither be in q(C) nor in q(D). We have arrived at a contradiction. J

We can now follow up Example 2 with some negative examples.

I Example 6.
1. Let E be the cartesian product R × T . Then E is not additive. Indeed, consider
A = {R(a, a), T (b, b)}. Then (a, a, b, b) ∈ E(A) is a mixed tuple, contradicting Lemma 5.

2. Let ϕ(x, y, z) be the FO query R(x, y)∨T (y, z). Then ϕ is not additive. Indeed, consider
A = {R(a, b), T (c, d)}. Then (a, b, c) ∈ ϕ(A) is a mixed tuple, again contradicting
Lemma 5.

3. Let ϕ be the boolean FO query ¬∃z R(z, z). Then ϕ is not additive. Indeed, consider
A = {R(a, b)} and B = {R(c, c)}. Then ϕ(A) is true, but ϕ(A ∪ B) is false. Note that ϕ
does not return mixed tuples, yet is not additive.

3.1 Queries that distribute over components
A notion closely related to additivity is that of distributing over components [3]. A query q
is said to distribute over components if q(A) equals the union of q(C) over all components C
of A.

Let us denote the class of additive queries by ADD and the class of queries distributing
over components by DIST. Clearly, DIST implies ADD. Over instances that have only finitely
many components, the converse implication is quite clear as well. Over infinite instances,
the converse implication can still be shown quite simply, but only for non-boolean queries.

We summarise the situation as follows. Let ADD∗ be the class of additive queries that
are not nullary, and similarly for DIST∗.

G. Berger, M. Otto, A. Pieris, D. Surinx, and J. Van den Bussche 19:5

I Proposition 7. In restriction to finite instances, ADD = DIST. In the unrestricted setting,
ADD∗ = DIST∗.

Proof. The only part that is not immediately clear is that ADD implies DIST for non-boolean
queries in the unrestricted setting. To show this, let q be an additive non-boolean query,
and let A be an instance. We need to verify that q(A) equals the union of q(C) over all
components C of A. For the inclusion from right to left, take a component C and write
A = C + B. Then q(C) ⊆ q(C) ∪ q(B) = q(A).

For the inclusion from left to right, let t ∈ q(A). By Lemma 5, t consists of elements
from a single component C of A. Moreover, since q is non-boolean, t is nonempty. Write
A = C + B. Thus t ∈ q(C) ∪ q(B). However, t cannot be in q(B) since B is domain-disjoint
from C. Hence t ∈ q(C) as desired. J

Actually, over infinite instances, ADD does not imply DIST for boolean queries. Indeed,
the boolean query “does the instance have infinitely many components?” is in ADD but not
in DIST. Within FO, however, the equivalence between ADD and DIST does hold. This will
follow from our result on additive boolean FO queries (Proposition 14).

4 The first-order case

In this section we introduce the connected formulas as a syntactical restriction on FO
formulas. Our main result will be that a query expressible in FO is additive if and only if it
is expressible by a connected FO formula. A similar result will then follow for the relational
algebra. We will conclude the section with a very simple reduction from satisfiability to
additivity.

4.1 Connected FO
Connected FO formulas are generated according to the following syntax rules:

Every atomic formula is connected.
If ϕ is connected then ∃y ϕ, for any variable y, is also connected.
If ϕ and ψ are connected and they share at least one free variable, then ϕ ∧ ψ is also
connected.
If ϕ and ψ are connected and have exactly the same free variables (possibly none), then
ϕ ∨ ψ is also connected.
If ϕ and ψ are connected, ψ has at least one free variable, and ϕ has all the free variables
of ψ, then ϕ ∧ ¬ψ is also connected.

I Example 8. Revisiting Examples 2 and 6, we see that the positive examples are expressible
by connected formulas: the selection example by R(x, y) ∧ x = y; the equijoin by R(x, y) ∧
T (y, z); the union and difference by R(x, y) ∨ T (x, y) and R(x, y) ∧ ¬T (x, y), respectively.

We also see that the negative examples are not connected formulas: the formula R(x, y)∧
T (u, v) for cartesian product violates the conjunction rule; the formula R(x, y) ∨ T (y, z)
violates the disjunction rule; and the formula ¬∃z R(z, z) violates the negation rule.

It is readily verified that connected FO queries are always additive. Our main result in
this section is that the converse holds as well. Let CFO denote the queries expressible by a
connected FO formula. We establish:

I Theorem 9. FO ∩ADD = CFO.

ICDT 2019

19:6 Additive First-Order Queries

4.2 Non-boolean queries
Our theorem is proven separately for formulas with free variables, and for sentences. In this
subsection we handle the case with free variables.

We need to recall the basic notions concerning the locality of first-order logic [8]. The
Gaifman graph of an instance A, denoted by G(A), is the undirected graph with adom(A)
as the set of nodes; there is an edge between distinct nodes a and b if a and b occur together
in some fact in A. The distance between a and b in G(A) is denoted by dA(a, b), or simply
d(a, b) if A is understood. For any natural number `, the set {b ∈ adom(A) | d(a, b) ≤ `} is
denoted by BA(a, `) or B(a, `) if A is understood (B for “ball”). The notation B(ā, `), for
a tuple ā = a1, . . . , ak, denotes the union of B(ai, `) for i = 1, . . . , k. The restriction of A
to B(ā, `) is denoted by NA(ā, `) (N for “neighbourhood”). A k-ary formula ϕ(x̄) is called
`-local if for every instance A and every k-tuple ā over adom(A), we have

ā ∈ ϕ(A) ⇔ ā ∈ ϕ(NA(ā, `)).

We say that a formula is local if it is `-local for some `.
We are now ready to state an important lemma. In modal characterisation theorems,

one considers unary FO formulas over unary and binary relations that are invariant under
bisimulation [23]. Invariance under bisimulation implies invariance under disjoint sums [15].
Additivity is the natural generalisation of invariance under disjoint sums to higher-arity
queries. In earlier work, one of us showed, by a detailed Ehrenfeucht-Fraïssé game argument,
that unary FO formulas, invariant under disjoint sums, are always local [16, Lemma 3.5].
We have carefully verified that the exact same argument also works for formulas about
higher-arity relations and with multiple free variables. We thus obtain:

I Lemma 10. Let ϕ be an additive FO formula and let q be its quantifier rank. Then ϕ is
2q-local.

By the above lemma, all subformulas of ϕ(x̄) may be assumed to talk about elements
y that belong to B(x̄, 2q). Moreover, by Lemma 5 we already know that the values of the
free variables x̄ must come from the same component. This is not quite enough, however,
to express y ∈ B(x̄, 2q) by a connected FO formula; for that we need a finite upper bound
on the diameter of the tuple of (valuations of) free variables that holds uniformly over all
instances. This is provided by the following:

I Proposition 11. Let ϕ be an additive FO formula of quantifier rank q. Assume (a1, . . . , an)
is in ϕ(A). Then dA(ai, aj) ≤ (n− 1)2q for all i, j ∈ {1, . . . , n}.

Proof. Let ā = a1, . . . , an and let ` = 2q. Suppose to the contrary that d(ai, aj) > (n− 1)`.
Then there exists a partition {I, J} of {1, . . . , n} such that d(ā|I , ā|J) > `. Here, d(ā|I , ā|J)
naturally stands for the minimum of d(ai, aj) for i ∈ I and j ∈ J .

Let us make a domain-disjoint copy f(A) of A by using a bijection f : adom(A)→ B for
some set B disjoint from adom(A). Take q additional domain-disjoint copies of A, which we
denote by q · A. Define the tuple b̄ = b1, . . . , bn by

bi =
{
ai if i ∈ I,
f(ai) if i ∈ J .

Consider the instance C = A + f(A) + q · A. Since ā ∈ ϕ(A) and ϕ is additive, also
ā ∈ ϕ(C). Using an Ehrenfeucht-Fraïssé game argument, inspired on the original proof of
Lemma 10, we obtain that b̄ ∈ ϕ(C). This contradicts the additivity of ϕ, since b̄ is a mixed
tuple with respect to C (Lemma 5). J

G. Berger, M. Otto, A. Pieris, D. Surinx, and J. Van den Bussche 19:7

Our final lemma is the following:

I Lemma 12. Let x̄ be a nonempty list of variables. Let ϕ be a formula, with free variables
among x̄, so that each quantifier in ϕ is of the form ∃y ∈ B(x̄′, `) with y /∈ x̄, and x̄′ a
nonempty subtuple of x̄. Let δ be a connected formula with exactly x̄ as free variables. Then
ϕ ∧ δ can be rewritten as a connected formula.

Proof. It is readily verified that predicates of the form d(x, y) ≤ m can be expressed by
connected formulas. The lemma can be proven by a straightforward structural induction. J

I Example 13. Let us illustrate Lemma 12 with ϕ being ∃y ∈ B(x1, x2, 3)¬S(y), and δ

being R(x1, x2). The formula ϕ ∧ δ can be rewritten into the connected formula

∃y
(
(¬S(y) ∧ d(x1, y) ≤ 3 ∧R(x1, x2)) ∨ (¬S(y) ∧ d(x2, y) ≤ 3 ∧R(x1, x2))

)
.

We now have all ingredients to prove that every additive FO formula ϕ with at least
one free variable can be rewritten as a connected formula. Let x̄ = x1, . . . , xn be the list
of free variables of ϕ. By Lemma 10, we may assume that each quantifier in ϕ is of the
form ∃y ∈ B(x̄, `). We may always assume that y /∈ x̄ simply by choosing another bound
variable. Furthermore, by Proposition 11, ϕ is equivalent to ϕ∧ δ, where δ is the conjunction
of d(x1, xi) ≤ (n− 1)` for i = 2, . . . , n. (If n = 1, set δ to x1 = x1.) Hence, by Lemma 12, ϕ
is equivalent to a connected formula as desired.

4.3 Boolean queries
The argument in the previous subsection relies on the presence of at least one free variable
to connect everything inside the formula. So, to prove Theorem 9 for sentences, we need a
separate argument. Interestingly, this argument will then only work for sentences and not
with free variables. However, in the next section, we will be able to adapt the argument at
least to guarded formulas, with or without free variables.

Recall that a simple local sentence is a sentence of the form ∃xϕ where ϕ is local [15].
By Lemma 12, such sentences can be rewritten in connected form (use x = x for δ). Since a
disjunction of connected sentences is again connected, the following proposition proves all we
need.

I Proposition 14. Every additive FO sentence can be rewritten as a finite disjunction of
simple local sentences.

Proof. Let ϕ be an additive sentence. The formula ϕ∗ that is (x = x)∧ϕ is invariant under
disjoint copies, by which we mean the following. For an instance A, let q · A denote an
instance consisting of q domain-disjoint copies of A. Then, for any a ∈ adom(A) and any q,
we have a ∈ ϕ∗(A) iff a ∈ ϕ∗(A+ q · A). Over unary and binary relations, it was already
proven that any formula in one free variable, invariant under disjoint copies, is equivalent
to a boolean combination of simple local sentences and local formulas [15, Proposition 19].
That proof goes through verbatim for higher-arity relations as well. It follows that ϕ ≡ ∃xϕ∗
is equivalent to a boolean combination of simple local sentences.

So we now assume that ϕ is a boolean combination, in disjunctive normal form, over a
finite set Σ of simple local sentences. We may assume that each clause is complete, meaning
that it either contains σ or ¬σ for every σ ∈ Σ. We may also assume that each clause is
satisfiable. We will identify ϕ with the set of its clauses.

ICDT 2019

19:8 Additive First-Order Queries

The plan of the proof is to first get rid of negations, then of conjunctions, leaving a
disjunction as desired. For the first step, let Γ denote the set of all satisfiable complete
clauses over Σ. For two clauses γ1 and γ2 in Γ, we write γ1 ≤ γ2 if every σ ∈ Σ that occurs
positively in γ1 also occurs positively in γ2. We claim the following monotonicity property:

Let γ1 ∈ ϕ and let γ2 ∈ Γ such that γ1 ≤ γ2. Then also γ2 ∈ ϕ.

In proof, let A and B be domain-disjoint instances such that A |= γ1 and B |= γ2. Since
A |= ϕ, by additivity also A+ B |= ϕ, so A+ B |= γ for some γ ∈ ϕ. We verify that γ = γ2.
Consider any σ ∈ Σ.

If σ occurs positively in γ2, then B |= σ, so also A + B |= σ. Hence, σ cannot occur
negated in γ, i.e., σ occurs positively also in γ.
If σ occurs negated in γ2, then also in γ1, so neither A |= σ nor B |= σ holds, and thus
A+ B |= ¬σ. Hence, σ cannot occur positively in γ, i.e., σ occurs negated also in γ.

By the monotonicity property, we can simplify ϕ so that it is now a disjunction of
conjunctions, each conjunction over some finite subset of Σ. We will naturally view ϕ as a
set of subsets of Σ. We may also assume that ϕ is simplified further so that every γ ∈ ϕ
is minimal, meaning that replacing γ by a strict subset γ′ (γ would yield a sentence not
equivalent to ϕ.

Now assume, for the sake of contradiction, that some γ ∈ ϕ has at least two elements.
Then we can split γ = γ1∪γ2 in two disjoint nonempty subsets. By the minimality assumption,
there exist instances A and B such that A |= γ1 ∧ ¬ϕ, and B |= γ2 ∧ ¬ϕ. (Here, we view
each γi as the conjunction of its elements.) By additivity, A+ B |= ¬ϕ. However, clearly
A+ B |= γ, whence A+ B |= ϕ, a contradiction. J

4.4 Some consequences
Connected RA. We can give an analogue to Theorem 9 for RA instead of FO. Call an
RA expression connected if every cartesian product subexpression of the form e1 × e2 occurs
in the context of a selection subexpression of the form σi=j(e1 × e2), with i ∈ {1, . . . , n}
and j ∈ {n + 1, . . . , i + m}, where n and m are the arities of e1 and e2 respectively. In
other words, in connected RA, pure cartesian products are disallowed, but equijoins are still
allowed. Denote the queries expressible by connected RA expressions by CRA. It is clear
that CRA queries are always additive. Again we have the converse:

I Corollary 15. RA ∩ADD = CRA.

Indeed, it is well known that RA can be translated into FO, so, by Theorem 9, all we need to
show is that CFO can be translated back into CRA. The translation from FO to RA given
by Ullman [22] can be easily adapted to this effect.

Finite vs infinite. Theorem 9 holds in restriction to finite instances, as well as over all
instances, but the two settings still need to be kept separate. CFO formulas are always
additive, over all instances. This, however, should not lull the reader into believing that an
FO formula that is additive over finite instances is also additive over all instances. Indeed,
our results only show that such a formula is equivalent to a CFO formula over finite instances.

An example of an FO sentence over a binary relation R that is additive over finite
instances but not in general, expresses that R consists of two total orders, over two disjoint
sets, each order without a maximum.

G. Berger, M. Otto, A. Pieris, D. Surinx, and J. Van den Bussche 19:9

4.5 Reduction from satisfiability

It is expected that additivity of FO formulas is an undecidable property. There is actually
an extremely simple reduction from unsatisfiability. The proof of the correctness of this
reduction, while short, is not entirely trivial and given in the Appendix.

I Proposition 16. Let ϕ be an FO sentence over schema S and let S and T be two unary
relation names not in S. Then ϕ is unsatisfiable if and only if ϕ∧∃xS(x)∧∃y T (y) is additive.

Over all instances, the additive FO formulas are recursively enumerable; this actually
follows from our theorem, but can also be seen by a direct reduction from additivity to
unsatisfiability. We will see this reduction later when showing decidability of validity for
guarded formulas. Over finite instances, the additive FO formulas are clearly co-r.e.

5 The guarded case

In this section we specialise Theorem 9 to the guarded fragment. We also show that additivity
for guarded formulas is decidable and 2ExpTime-complete.

5.1 Guarded and connected formulas

We recall the syntax of the guarded fragment [5], which we denote by GF.
Every atomic formula is guarded.
If ϕ and ψ are guarded, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ.
If α is an atomic formula, ψ is a guarded formula such that all free variables of ψ occur
in α, and ȳ is a subtuple of the free variables of α, then ∃ȳ(α ∧ ψ) is guarded.

Let us denote the class of queries expressible by guarded formulas by GF, and the class
of queries expressible by formulas that are both guarded and connected by CGF. We will
establish:

I Theorem 17. GF ∩ADD = CGF.

Towards the proof, we introduce:

I Definition 18. The relaxed version of CGF, denoted by CGF+, is defined as follows:
1. Every atomic formula is in CGF+.
2. If ϕ and ψ are in CGF+, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ϕ ∧ ¬ψ, on condition that the

rules for building connected formulas (Section 4.1) are satisfied.
3. If α is an atomic formula, and ψ is a boolean combination of CGF+ formulas, all with

at least one free variable, and all free variables of ψ occur in α, then both α ∧ ψ and
∃ȳ(α ∧ ψ) belong to CGF+, with ȳ a subtuple of the free variables of α.

I Example 19. The sentence ϕ: ∃x, y (R(x, y) ∧ (S(x) ∨ T (y))) belongs to CGF+, but it is
not connected due to the subformula S(x) ∨ T (y). However, ϕ can be equivalently rewritten
as ∃x, y(R(x, y) ∧ S(x)) ∨ ∃x, y(R(x, y) ∧ T (y)) which is in CGF.

In general we note:

I Lemma 20. Every CGF+ formula is equivalent to a CGF formula.

ICDT 2019

19:10 Additive First-Order Queries

We also introduce a subclass of CGF+ formulas, which we call the simple guarded formulas.
These are the formulas that can be generated using only syntax rules 1 and 3 of CGF+

(Definition 18). Simple guarded formulas are useful building blocks. First of all, they are
additive. They are q-local if q is their quantifier rank. Furthermore we have the following
lemma:

I Lemma 21. Every GF formula is equivalent to a boolean combination of simple guarded
formulas.

So, we can start the proof of Theorem 17 with an additive boolean combination ϕ of
simple guarded formulas, in disjunctive normal form. Within each clause ψ, we identify the
pseudopositive part as the part consisting of all positive literals, plus all negative literals with
a single free variable. The remainder of the clause is called the negative part. We will denote
the pseudopositive part of a clause ψ by ψpp and the negative part by ψneg.

We may assume that ϕ has been simplified so that it has no redundancies in the
following sense:
(A) If we would remove a subpart of the pseudopositive part of some clause, the resulting

formula would not be logically equivalent to ϕ.
(B) If we would remove an entire clause, the resulting formula would again not be logically

equivalent to ϕ.
(C) No clause contains a negated literal ¬η such that η is a sentence that logically implies ϕ.
If, after these simplifications, we end up with an empty disjunction, then the original ϕ
expresses the n-ary empty query, with n the number of free variables of ϕ. It is a simple
exercise to express this query in CGF.

The plan of the proof is as follows. Each step relies on the additivity of ϕ; the steps are
proven in the given order.
Claim 1: The pseudopositive part of each clause is connected.
Claim 2: In each clause, the free variables of the negative part are included in those of the

pseudopositive part.
Claim 3: No clause can have negated literals that are sentences.
Claim 4: All clauses have the same free variables.
The result is a CGF+ formula and we are done by Lemma 20.

5.2 Complexity of additivity for GF
We show:

I Theorem 22. Additivity of guarded formulas is 2ExpTime-complete.

Since satisfiability for guarded formulas is 2ExpTime-hard [9], the hardness follows
directly from the simple reduction from satisfiability to additivity given by Proposition 16.
Conversely, the membership in 2ExpTime is shown by a reduction from validity to unsatisfi-
ability, which we next describe.

Consider an arbitrary guarded formula ϕ over a schema S. We will construct a guarded
formula ϕ′ over a larger schema S+ such that ϕ is additive iff ϕ′ is unsatisfiable. Specifically,
S+ = S ∪ {U1, U2}, for two fresh unary relation names U1 and U2.

Satisfiability for guarded formulas of size n over relations of maximum arity a is decidable
in time 2O(n)·2a log a [10]. If n is the size of ϕ, our formula ϕ′ will have size 2O(n) but the
arity does not change. Hence, we will obtain that additivity is in 2ExpTime as desired.

G. Berger, M. Otto, A. Pieris, D. Surinx, and J. Van den Bussche 19:11

The high-level idea underlying the reduction can be sketched as follows. From ϕ, we
construct guarded formulas ϕ+ and ϕ∨ such that ϕ is additive iff ϕ+ and ϕ∨ are equivalent
over consistent instances (the definitions follow). A crucial property of consistency is that it
can be checked via a guarded sentence ϕcons. Therefore, ϕ is additive iff ϕcons |= ϕ+ ↔ ϕ∨

iff ϕcons ∧ ¬(ϕ+ ↔ ϕ∨) is unsatisfiable, while ϕcons ∧ ¬(ϕ+ ↔ ϕ∨) is guarded.

The formula ϕ+. We inductively define a translation ·+ that converts ϕ into a formula ϕ+

over S+ as follows:
1. If ϕ = R(x1, . . . , xn) for some R ∈ S, then

ϕ+ := (R(x1, . . . , xn) ∧
∧

1≤i≤n

U1(xi)) ∨ (R(x1, . . . , xn) ∧
∧

1≤i≤n

U2(xi)).

2. If ϕ = (x = y), then ϕ+ := (x = y).
3. The translation ·+ commutes with the boolean connectives, i.e., (ψ ∧ χ)+ := ψ+ ∧ χ+,

(ψ ∨ χ)+ := ψ+ ∨ χ+, and (¬ψ)+ := ¬ψ+.
4. If ϕ = ∃y ψ, then ϕ+ := ∃y ψ+.

Strictly speaking, the formula ϕ+ may not be guarded. However, it is readily transformed
into a guarded formula of size 2O(|ϕ|), where |ϕ| denotes the size of ϕ. In what follows, for
brevity, we write ϕ+ for the exponentially sized rewritten guarded formula.

The formula ϕ∨. For k = 1, 2, we define ϕk as the formula obtained from ϕ by relativising
all quantifiers and free variables to Uk. The latter means that quantifiers are of the form
∃x ∈ Uk, and for every free variable x we have a conjunct Uk(x). A guarded existential
formula ∃y1, . . . , yl(α ∧ ψ) can be relativised as ∃y1, . . . , yl(α ∧ Uk(y1) ∧ · · · ∧ Uk(yl) ∧ ψ),
which is still guarded. The formula ϕ∨ is then defined as the (guarded) formula ϕ1 ∨ ϕ2.

Consistency. An S+-instance A+ is consistent if it admits a partition (A1,A2) such that:
1. A1 is an (S ∪ {U1})-instance and A2 is an (S ∪ {U2})-instance.
2. adom(A1) ∩ adom(A2) = ∅.
3. {a | U1(a) ∈ A1} = adom(A1) and {b | U2(b) ∈ A2} = adom(A2).

So, consistent instances describe pairs of domain-disjoint instances. Applied to a consistent
instance (A1,A2), we see that ϕ+ returns ϕ(A1 ∪ A2), while ϕ∨ returns ϕ(A1) ∪ ϕ(A2).
Hence we obtain:

I Lemma 23. The following are equivalent:
1. ϕ is additive.
2. For every consistent S+-instance A+, ϕ+(A+) = ϕ∨(A+).

It remains to show that consistency can be checked via a guarded formula, which will
give us the desired reduction. In fact, consistency can be checked via the formula

ϕcons := ¬∃x(U1(x) ∧ U2(x)) ∧ ∃xU1(x) ∧ ∃xU2(x) ∧ ψ1 ∧ ψ2 ∧ χ,

where, for k = 1, 2, and assuming that S = {R1, . . . , Rn} (and Ri is ni-ary),

ψk := ∀x (Uk(x)→
n∨

i=1
∃y1, . . . , yni−1(Ri(x, y1, . . . , yni−1)

∨Ri(y1, x, y2, . . . , yni−1)
∨ · · · ∨Ri(y1, . . . , yni−1, x))),

ICDT 2019

19:12 Additive First-Order Queries

and

χ :=
∧

n
i=1∀x1, . . . , xni

(Ri(x1, . . . , xni
)→ ((U1(x1) ∧ · · · ∧ U1(xni

))
∨ (U2(x1) ∧ · · · ∧ U2(xni

)))

The above formula can be easily transformed in a guarded formula. We now obtain, as
announced, that ϕ is additive if and only if ϕcons |= ϕ+ ↔ ϕ∨.

I Remark. At the end of Section 4.4 we gave an example of an FO formula additive over
finite instances but not over all instances. Since GF has the finite model property, the above
reduction to unsatisfiability implies that a GF formula that is additive over finite instances
is automatically additive over all instances.

6 The positive-existential case

In this final section, we concentrate on queries expressed via positive-existential (PE) first-
order formulas, i.e., formulas that use only ∧, ∨, and existential quantification. As always
we also use PE to denote the class of all queries expressible in this manner.

It is well-known [1] that PE has the same expressive power as the class of unions of
conjunctive queries (UCQ), i.e., disjunctive FO-formulas of the form

∨
1≤i≤n ϕi(x̄), with

ϕi(x̄) = ∃ȳ (αi,1 ∧ · · · ∧ αi,mi), where each αi,j is an atomic formula. Formulas of the form
ϕi(x̄) are called conjunctive queries. In earlier work [6], two of us already showed that
UCQ ∩ADD = CUCQ, where CUCQ refers to the connected UCQs. As a consequence, also
PE ∩ADD = CPE, where CPE refers to the connected PE formulas.

In this section, we focus on the complexity of deciding additivity for PE formulas. For
UCQs, additivity was already shown to be NP-complete [6]. Unfortunately, in general, it
takes exponential time to convert a PE formula into a union of conjunctive queries. Thus,
the naive algorithm provides only an exponential time upper bound, which is not optimal.
We can, however, show that our problem lies at the second level of the polynomial hierarchy:

I Theorem 24. Additivity of PE formulas is ΠP
2 -complete. The lower bound holds even over

unary and binary relations.

Towards the proof, let us first introduce some useful notions. A component of a conjunctive
query ϕi(x̄) = ∃ȳ (α1 ∧ · · · ∧ αn) is a connected formula ψ = ∃ȳ (αi1 ∧ · · · ∧ αim

), where
{i1, . . . , im} ⊆ {1, . . . , n}, such that, for every j ∈ {1, . . . , n} \ {i1, . . . , im}, the formula
αi1 ∧ · · · ∧ αim ∧ αj is not connected anymore. Given two formulas ϕ(x̄) and ψ(x̄) over
a schema S, we say that ϕ is contained in ψ, written ϕ ⊆ ψ, if ϕ(A) ⊆ ψ(A) for every
S-instance A. We need the following:

I Lemma 25 ([6]). Consider a union of conjunctive queries ϕ(x̄) of the form
∨

1≤i≤n ϕi(x̄).
The following are equivalent:

ϕ is additive;
for each i ∈ {1, . . . , n}, there exists a component ψ(x̄) of ϕi(x̄) such that ψ ⊆ ϕ.

Consider an arbitrary PE-formula ϕ. Even though we cannot efficiently convert ϕ into an
equivalent union of conjunctive queries

∨
1≤i≤n ϕi, we can non-deterministically construct a

disjunct ϕi in polynomial time. This fact, together with Lemma 25, leads to the following
non-deterministic algorithm for checking whether ϕ is not additive:

G. Berger, M. Otto, A. Pieris, D. Surinx, and J. Van den Bussche 19:13

1. Non-deterministically construct a disjunct ϕi of the union of conjunctive queries obtained
after converting ϕ into an equivalent union of conjunctive queries.

2. Compute the set C of all the components of ϕi.
3. If, for each ψ ∈ C, it holds that ψ 6⊆ ϕ, then accept; otherwise, reject.

It is easy to verify, due to Lemma 25, that ϕ is not additive iff the above procedure
accepts. Observe now that steps 1 and 2 are feasible in polynomial time. Finally, during
step 3, we need to check polynomially many times for non-containment of a conjunction of
atomic formulas, i.e., a conjunctive query, into a PE-formula. The latter is feasible in coNP.
Thus, the obtained upper bound for non-additivity is NPNP = ΣP

2 , as needed.
It remains to establish that additivity for PE-formulas is ΠP

2 -hard. This is shown by a
reduction from the problem of containment for PE-sentences, i.e., given two PE-sentences
ϕ and ψ, to decide whether ϕ ⊆ ψ, which is ΠP

2 -hard [19]. Actually, this problem remains
ΠP

2 -hard even if the left-hand side formula is connected, and the relation symbols have arity
at most two; this is implicit from the work by Bienvenu et al. [7].

Given a connected PE-formula ϕ, and an arbitrary PE-formula ψ, we can show that
ϕ ⊆ ψ iff the PE-formula ϕ ∧ P (xϕ) ∧ ψ is additive, where xϕ is an existentially quantified
variable in ϕ, and P a fresh relation name. This shows that additivity for PE-formulas is
ΠP

2 -hard even for unary and binary relations.

7 Conclusion

We conclude with a few directions for further research.
1. Investigate the complexity, in terms of formula length, of the shortest connected formula

equivalent to an additive formula.
2. Our reduction from additivity to unsatisfiability for GF formulas is exponential. However,

the GF formula that is produced has exponential length only to get rid of disjunctive
guards. If disjunctive guards would be allowed, the reduction would be polynomial and
would preserve bounded arity. We conjecture that additivity for GF formulas of bounded
arity is actually in ExpTime, and plan to investigate this in the near future.

3. Also, our reduction from additivity to unsatisfiability works in general, for FO formulas,
and for other reasonable logics. It is interesting to apply the reduction to other decidable
logics, and see if the reduction produces a formula in the same logic. For example, our
reduction also works for FO2, thus additivity for FO2 formulas is decidable.

4. Give a short classical model-theoretic proof, e.g., involving the compactness theorem,
that every FO formula, additive over all structures, is equivalent to a CFO formula.

5. Our version for additivity is rather strict in the context of distributed computation.
Considering classes of queries that distribute over other kinds of partitions for instances
is an interesting line for future research.

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 N. Alechina and Y. Gurevich. Syntax vs semantics on finite structures. In J. Mychielski,

G. Rozenberg, and A. Salomaa, editors, Structures in Logic and Computer Science, volume
1261 of Lecture Notes in Computer Science, pages 14–33. Springer, 1997.

3 T.J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Weaker forms of monotonicity for declarative
networking: A more fine-grained answer to the CALM-conjecture. ACM Transactions on
Database Systems, 40(4):article 21, 2016.

ICDT 2019

19:14 Additive First-Order Queries

4 T.J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Datalog queries distributing over compo-
nents. ACM Transactions on Computational Logic, 18:article 5, 2017.

5 H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded fragments of
predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.

6 G. Berger and A. Pieris. Ontology-mediated queries distributing over components. In S. Kamb-
hampati, editor, Proceedings 25th International Joint Conference on Artificial Intelligence,
pages 943–949. IJCAI/AAAI Press, 2016.

7 M. Bienvenu, C. Lutz, and F. Wolter. Query containment in description logics reconsidered.
In G. Brewka, T. Eiter, and S.A. McIlraith, editors, Principles of Knowledge Representation
and Reasoning: Proceedings 13th KR. AAAI Press, 2012.

8 H. Gaifman. On local and nonlocal properties. In Proceedings of the Herbrand symposium
(Marseilles, 1981), volume 107 of Studies in Logic and the Foundations of Mathematics.
North-Holland, 1982.

9 E. Grädel. On the restraining power of guards. Journal of Symbolic Logic, 64(4):1719–1742,
1999.

10 E. Grädel and I. Walukiewicz. Guarded fixed point logic. In Proceedings 14th Annual IEEE
Symposium on Logic in Computer Science, pages 45–54, 1999.

11 J.M. Hellerstein. The declarative imperative: Experiences and conjectures in distributed logic.
SIGMOD Record, 39(1):5–19, 2010.

12 D. Leinders, M. Marx, J. Tyszkiewicz, and J. Van den Bussche. The semijoin algebra and the
guarded fragment. Journal of Logic, Language and Information, 14:331–343, 2005.

13 D. Leinders and J. Van den Bussche. On the complexity of division and set joins in the
relational algebra. J. Comput. Syst. Sci., 73(4):538–549, 2007.

14 M. Otto. Elementary proof of the van Benthem-Rosen characterization theorem. Fachbereich
Informatik online preprint 2342, TU Darmstadt, 2004. URL: http://www3.mathematik.
tu-darmstadt.de/fb/mathe/preprints.html.

15 M. Otto. Modal and guarded characterisation theorems over finite transition systems. Annals
of Pure and Applied Logic, 130:173–205, 2004.

16 M. Otto. Bisimulation invariance and finite structures. In Z. Chatzidakis, P. Koepke, and
W. Pohlers, editors, Logic Colloquium ’02, volume 27 of Lecture Notes in Logic, pages 276–298.
Cambridge University Press, 2006.

17 E. Rosen. Modal logic over finite structures. Journal of Logic, Language and Information,
5:427–439, 1997.

18 E. Rosen. Some aspects of model theory and finite structures. Bulletin of Symbolic Logic,
8:380–403, 2002.

19 Y. Sagiv and M. Yannakakis. Equivalence among Relational Expressions with the Union and
Difference Operators. J. ACM, 27(4):633–655, 1980.

20 D. Surinx, J. Van den Bussche, and D. Van Gucht. The primitivity of operators in the
algebra of binary relations under conjunctions of containments. In Proceedings 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, 2017.

21 D. Surinx, J. Van den Bussche, and D. Van Gucht. A framework for comparing query languages
in their ability to express boolean queries. In Foundations of Information and Knowledge
Systems, pages 360–378, 2018.

22 J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Computer
Science Press, 1988.

23 J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, Naples, 1983.

http://www3.mathematik.tu-darmstadt.de/fb/mathe/preprints.html
http://www3.mathematik.tu-darmstadt.de/fb/mathe/preprints.html

Characterizing Tractability of Simple
Well-Designed Pattern Trees with Projection
Stefan Mengel
CNRS, CRIL UMR 8188, Lens, France
mengel@cril.fr

Sebastian Skritek
Faculty of Informatics, TU Wien, Vienna, Austria
skritek@dbai.tuwien.ac.at

Abstract
We study the complexity of evaluating well-designed pattern trees, a query language extending
conjunctive queries with the possibility to define parts of the query to be optional. This possibility
of optional parts is important for obtaining meaningful results over incomplete data sources as it is
common in semantic web settings.

Recently, a structural characterization of the classes of well-designed pattern trees that can
be evaluated in polynomial time was shown. However, projection – a central feature of many
query languages – was not considered in this study. We work towards closing this gap by giving a
characterization of all tractable classes of simple well-designed pattern trees with projection (under
some common complexity theoretic assumptions). Since well-designed pattern trees correspond to
the fragment of well-designed {AND, OPTIONAL}-SPARQL queries this gives a complete description
of the tractable classes of queries with projections in this fragment that can be characterized by the
underlying graph structures of the queries.

2012 ACM Subject Classification Theory of computation → Database query languages (principles);
Theory of computation → Database query processing and optimization (theory)

Keywords and phrases SPARQL, well-designed pattern trees, query evaluation, FPT, characterizing
tractable classes

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.20

Related Version An extended version of the paper is available at https://arxiv.org/abs/1712.
08939.

Funding Sebastian Skritek: Supported by the Austrian Science Fund (FWF): P30930-N35.

1 Introduction

Well-designed pattern trees (wdPTs) are a query formalism well-suited to deal with the ever
increasing amount of incomplete data. Well-designed pattern trees over SPARQL triple
patterns are equivalent to the class of well-designed {AND, OPTIONAL}-SPARQL queries [19]
and were in fact originally introduced as a formalism to more easily study SPARQL queries.
By replacing triple patterns with relational atoms, wdPTs can also be seen as an extension of
Conjunctive Queries (CQs): a wdPT is a rooted tree where each node represents a conjunction
of atoms, and the tree structure represents a nesting of optional matching. The idea is to
start evaluating the CQ at the root and to iteratively extend the retrieved results as much
as possible by the results of the CQs in the other nodes. This allows wdPTs to return partial
answers in case that not the complete query can be mapped into the database – unlike CQs
which in such a situation return no answer.

Well-designed pattern trees and the corresponding SPARQL fragment represent an
important class of SPARQL queries and have been studied intensively within the last decade
[19, 16, 2, 21, 20, 14, 3, 1, 22]. Thus many properties of and problems related to these

© Stefan Mengel and Sebastian Skritek;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mengel@cril.fr
mailto:skritek@dbai.tuwien.ac.at
https://doi.org/10.4230/LIPIcs.ICDT.2019.20
https://arxiv.org/abs/1712.08939
https://arxiv.org/abs/1712.08939
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

from(fn, origin), to(fn, dest)

contact(ct, cd) avail_seats(fn, sn)

D = {from(1, “LHR”), to(1, “LIS”),
from(2, “LHR”), to(2, “LIS”),
contact(email, “e@ma.il”),
avail_seats(2, “1A”)}

Figure 1 The wdPT p and database D from Example 1.

queries are now well understood. For example, the evaluation problem for wdPTs (i.e.,
given a wdPT, a database and a mapping, is this mapping an answer to the wdPT over the
database) is coNP-complete for projection free wdPTs [19] and Σ2P-complete in the presence
of projection [16]. However, certain tractable classes of wdPTs have been identified [3]. The
main idea there is to extend known tractability conditions for CQs to wdPTs. However, the
question of characterizing exactly the classes of wdPTs for which tractable query evaluation is
possible – and thus the question how good the approach of extending tractability conditions
of CQs to wdPTs is – has been largely ignored. Only very recently, this question was
addressed for wdPTs without projection, and a characterization of the classes for which query
evaluation is in PTIME was given [22]. Notably, as also observed for Boolean Conjunctive
Queries [12, 11], for wdPTs without projection these classes coincide with the ones for which
evaluation is in FPT.

However, [22] does not touch projection, an essential and central feature of query languages.
Thus the question “What are all tractable classes of wdPTs with projection?” remains open.
We work towards closing this gap.

One observation consistently made in all the aforementioned work on wdPTs is that
problems become much more complex once projection is included. This is true for both, the
computational complexity of the problems (e.g., as mentioned, for the evaluation problem it
increases from coNP- to Σ2P-completeness; for classical query containment, the NP-complete
problem becomes even undecidable [21]) as well as for establishing these results.

This is because of the particular semantics of well-designed SPARQL with projection.
For wdPTs without projection, given some database, the set of answers consist of all variable
mappings such that there exists a subtree of the wdPT satisfying the following conditions:
first, it must contain the root node of the tree. Second, the set of variables occurring in the
subtree must be the same as the domain of the mapping. Third, the mapping must map each
atom in the subtree into the database, and fourth, no extension of the mapping is allowed
to map all atoms of any child node of any node in the subtree into the database. This is
illustrated by the following example (a precise definition is given in Section 2).

I Example 1. Figure 1 shows a wdPT p with three nodes where the top node represents
the root of the tree, having two child nodes as depicted. At its root node, the query is
looking for information on flights: flight number, origin and destination. This information
should be extended by some contact information (left child), and information on available
seats on the flight (right child) in case any of this information is available. Observe that the
two extensions are independent of each other. The equivalent SPARQL query (replacing
relational atoms by triple patterns) would be

{{?fn from ?origin . ?fn to ?dest} OPTIONAL {?ct contact ?cd}}
OPTIONAL {?fn avail_seats ?sn}

For the database instance D also shown in the figure, the mapping µ with µ(fn) = 1,
µ(origin) = “LHR”, µ(dest) = “LIS”, µ(ct) = email, and µ(cd) = “e@ma.il” is an answer
to p over D. This is because of the subtree of p consisting of the root node and the left

S. Mengel and S. Skritek 20:3

child. It can be checked that it satisfies all four conditions. For the fourth condition, just
observe that there exists no extension of µ that maps avail_seats(fn, sn) into D. Because of
the fourth condition, the mapping ν with ν(fn) = 2, ν(origin) = “LHR”, ν(dest) = “LIS”,
ν(ct) = email, and ν(cd) = “e@ma.il” is no solution, because this mapping can be extended
by ν(sn) = “1A” in a way that maps avail_seats(fn, sn) also into D.

Thus, without projection, the only hard part in deciding whether some mapping is a solution
is to check for the existence of an extension, since this basically includes a homomorphism
test. However, for wdPTs with projection, a mapping is a solution if there exists an extension
of this mapping to some subset of the existential variables in the tree, such that the extended
mapping is a solution to the wdPT considered without projection.

I Example 2. Consider the wdPT from Example 1, but now assume that the flight number
fn is an existential variable and thus not part of the output. Then µ with µ(origin) =
“LHR”, µ(dest) = “LIS”, µ(ct) = email, and µ(cd) = “e@ma.il” is a solution because of the
extension µ(fn) = 1. Observe that the extension µ(fn) = 2 does not witness µ to be a
solution, since, as already discussed before, this mapping is not maximal.

As a consequence, beside testing some mapping for maximality, as a second source of hardness,
different mappings on the existential variables have to be taken into account.

Besides the already mentioned increased complexity of many problems, it was also
observed that for wdPTs with projection it is no longer the case that the classes for which
query evaluation is in PTIME and in FPT coincide [15]. Thus, in this setting, the choice of
the tractability notion makes a difference when describing all tractable classes.

We choose to study the complexity of query evaluation in the model of parameterized
complexity where, as usual, we take the size of the query as the parameter. As already argued
in [18], this model allows for a more fine-grained analysis than the classical perspectives of
data- and query complexity. In parameterized complexity, query answering is considered
tractable, formally in FPT, if, after a preprocessing that only depends on the query, the actual
evaluation can be done in polynomial time [9, 10]. Parameterized complexity has found many
applications in the complexity of query evaluation problems, see e.g. [12, 11, 17, 4, 22].

In our efforts to better understand the tractability frontier for wdPTs, we provide a
complete characterization of the tractable classes of simple wdPTs, i.e., wdPTs where no
two atoms share the same relation symbol. Because of the relationship between wdPTs
and well-designed {AND, OPTIONAL}-SPARQL queries, this immediately gives a complete
description of the tractable classes of well-designed {AND, OPTIONAL}-SPARQL queries
with projection that can be characterized by only considering the graph structures of the
queries, similar e.g. to the work of [12, 4]. We note that the results showing the existence
of classes of wdPTs for which the evaluation problem is NP-hard but in FPT can be easily
extended to simple wdPTs. Moreover, our tractability criteria are not restricted to simple
wdPTs. In fact, the same tractability criteria can also directly be applied to give tractable
classes of non-simple wdPTs. However, in this case, there are classes of queries that do not
satisfy our tractability criteria and are still tractable. Thus, the restriction to simple wdPTs
is crucial for the lower bounds.

Summary of results and organization of the paper. We study the following decision
problem: Given a wdPT, a database, and a mapping, is the mapping a solution of the wdPT
over the database? This is the standard formulation of the evaluation problem usually studied
(cf. [16, 13, 22, 3]). It reveals the influence of the optional query parts on the evaluation
problem, which is lost e.g. when considering Boolean queries. Instead of just SPARQL

ICDT 2019

20:4 Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

triple patterns, we consider the more general case of wdPTs with arbitrary relational atoms
where we always assume that the classes of queries we consider have bounded arity. Our
main result is a characterization of the classes of simple wdPTs with projection that allow
fixed-parameter tractable query evaluation.

After some preliminaries in Section 2, we define two tractability conditions in Section 3.
By comparing these conditions with the tractability criterion from [22], we discuss how
they describe the additional complexity introduced by projection. Note that some of the
conditions provided here have precursors in [3] and [15] that had to be carefully refined to
provide a fine-grained complexity analysis.

In Section 4 we prove that the two tractability conditions imply FPT membership of the
evaluation problem by presenting an algorithm that exploits these conditions.

In Section 5 we then show that both tractability conditions are indeed necessary for a
class of simple wdPTs to be tractable. That is, we show that if either of them is not satisfied
by a class of wdPTs, the evaluation problem for this class is either W[1]- or coW[1]-hard.

In Section 6, we discuss our results and also potential extensions of the tractability
conditions to conclude the paper.

2 Preliminaries

Basics. Let Const and Var be two disjoint countable infinite sets of constants and variables,
respectively. A relational schema σ is a set {R1, . . . , Rn} of relation symbols Ri, each having
an assigned arity ri ≥ 0. A relational atom Ri(~v) over σ consists of a relation symbol Ri ∈ σ
and a tuple ~v ∈ (Const ∪ Var)ri . For an atom τ = Ri(~v), let dom(τ) denote the set of
variables and constants occurring in τ . This extends to sets R = {τ1, . . . , τm} of atoms as
dom(R) =

⋃m
i=1 dom(τi). Furthermore, var(τ) = dom(τ) ∩ Var and var(R) = dom(R) ∩ Var.

Observe that, by slight abuse of notation, we use operators ∪,∩, \ also between sets V and
tuples ~v of variables and constants. For example, var(τ) = ~v ∩ Var. We call a set of atoms
simple if no relation symbol appears more than once in it.

Similarly, for a mapping µ we denote with dom(µ) the set of elements on which µ is
defined. For a mapping µ and a set V ⊆ Var, we use µ|V to describe the restriction of µ to
the variables in dom(µ) ∩ V. We say that a mapping µ is an extension of a mapping ν if
µ|dom(ν) = ν, and that two mappings are compatible if they agree on the shared variables.

For a set A of atoms and a set A ⊆ dom(A), we write A \ A to denote the restriction of
A to dom(A) \ A. That is, we substitute every atom R(~v) ∈ A by an atom Rs(~v′), where ~v′
is obtained from ~v by removing elements of A, and s is the list of the removed positions.

A database D over σ is a finite set of atoms over σ with var(D) = ∅. For a database D
and relation symbol R we denote by RD the set of all atoms in D with relation symbol R.

Homomorphisms and Conjunctive Queries. A homomorphism h between two sets A and
B of atoms over σ is a mapping h : dom(A)→ dom(B) such that for all atoms R(~v) ∈ A we
have R(h(~v)) ∈ B, and such that h(x) 6= x is only allowed if x ∈ var(A) (we thus restrict the
definition of homomorphisms to var(A), the extension to constants via the identity mapping
is implicit). We write h : A→ B to denote a homomorphism h from A to B.

We write CQs q as Ans(~x)← B, where the body B = {R1(~v1), . . . , Rm(~vm)} is a set of
atoms and ~x are the free variables. A Boolean CQ (BCQ) is a CQ with no free variables.
We define var(q) = var(B). The existential variables are implicitly given by var(B) \ ~x. The
result q(D) of q over a database D is the set of tuples {h(~x) | h : B→ D}.

S. Mengel and S. Skritek 20:5

Graphs. We consider only undirected, simple graphs G = (V,E) with standard notations
but sometimes write t ∈ G to refer to a node t ∈ V (G). A graph G2 is a subgraph of a graph
G1 if V (G2) ⊆ V (G1) and E(G2) ⊆ E(G1). A tree is a connected, acyclic graph. A subtree
is a connected, acyclic subgraph. A rooted tree T is a tree with one node r ∈ T marked as
its root. Given two nodes t, t̂ ∈ T , we say that t̂ is an ancestor of t if t̂ lies on the path
from r to t. Likewise, t̂ is the parent node of t (t is a child of t̂) if t̂ is an ancestor of t and
{t, t̂} ∈ E(T). For a subtree T ′ of T , a node t ∈ T is a child of T ′ if t /∈ T ′ and t̂ ∈ T ′ for
the parent node t̂ of t. We write ch(T ′) for the set of all children of T ′. For a node t ∈ T the
set of nodes on the path from r to the parent node of t is denoted by branch(t). Moreover,
cbranch(t) = branch(t) ∪ {t}.

A tree decomposition of a graph G = (V,E) is a pair (T, ν), where T is a tree and
ν : V (T)→ 2V , that satisfies the following: (1) For each u ∈ V the set {s ∈ V (T) | u ∈ ν(s)}
is a connected subset of V (T), and (2) each edge of E is contained in at least one of the sets
ν(s), for s ∈ V (T). The width of (T, ν) is (max {|ν(s)| | s ∈ V (T)})− 1. The treewidth of G
is the minimum width of its tree decompositions.

For a set A of atoms, the Gaifman graph of A is the graph G = (V,E) with V = {vi |
vi ∈ var(A)} and E contains an edge {vi, vj} if vi and vj occur together in some atom in A.
The treewidth of a set of atoms is the treewidth of its Gaifman graph.

Well-designed pattern trees (wdPTs). A pattern tree (short: PT) p over a relational
schema σ is a tuple (T, λ,X) where T is a rooted tree and λ maps each node t ∈ T to a set
of relational atoms over σ. We may write ((T, r), λ,X) to emphasize that r is the root node
of T . The set X of variables denotes the free variables of the PT. For a PT (T, λ,X) and
a subtree T ′ of T , let λ(T ′) =

⋃
t∈V (T ′) λ(t). We may write var(t) instead of var(λ(t)), and

var(T ′) instead of var(λ(T ′)). We further define fvar(t) = var(t) ∩ X as the free variables in t.
Again this definition extends naturally to subtrees T ′ of T . We call a PT (T, λ,X) projection
free if X = var(T) and may write (T, λ) to emphasize a PT to be projection free. The size
|p| of a pattern tree is

∑
t∈V (T) |λ(t)|.

Well-designed PTs restrict the distribution of variables among their nodes.

I Definition 3 (Well-Designed Pattern Tree (wdPT)). A PT (T, λ,X) is well-designed if for
every variable y ∈ var(T), the set of nodes of T where y appears is connected.

As an immediate consequence of this restriction, in a wdPT p = (T, λ,X), for every variable
y ∈ var(T) there exists a unique node t ∈ T such that y ∈ var(t) and all nodes t′ ∈ T with
y ∈ var(t′) are descendants of t.

Evaluating a wdPT p with free variables X over a database D returns a set p(D) of
mappings µ : V → dom(D) with V ⊆ X . We follow the characterization of p(D) in terms of
maximal subtrees [16], but borrow the term pp-solution from [13].

I Definition 4 (pp-solution). For a wdPT p = ((T, r), λ) and a database D, a mapping
µ : V → dom(D) (with V ⊆ var(T)) is a potential partial solution (pp-solution) to p over D
if there is a subtree T ′ of T containing r such that µ : λ(T ′)→ D.

The semantics of wdPTs can now be defined in terms of maximal pp-solutions.

I Definition 5 (Semantics of wdPTs). Let p = (T, λ,X) be a wdPT, and let p′ = (T, λ, var(T)),
i.e., the projection-free wdPT retrieved from p by considering all of its variables as free, and
let D be a database. The set p′(D) contains all pp-solutions µ to p′ over D such that there
exists no pp-solution µ′ to p′ over D that is a proper extension of µ.

The set p(D) is then defined as p(D) = {µ|X | µ ∈ p′(D)}.

ICDT 2019

20:6 Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

ai(yi) : 1 ≤ i ≤ k
b1(x1)

b2(x2), c1(y1, z1), c2(y2, z1) cliqueij(yi, yj) : 1 ≤ i < j ≤ k
d1(x1, u1), d2(u1, u2), d3(u2, y1), d4(u3, y1)

b3(x3, u1), b4(u1, x4), d5(x1, u3, u1) b5(y2, x5), c3(x5, u2), c4(u2, z2)

r

t1

t3

t2

t4

Figure 2 The well-designed pattern tree of Example 6.

I Example 6. Consider the PT p = (T, λ,X) depicted in Figure 2, where k may be any
integer with k ≥ 2, and X = {x1, x2, x3, x4, x5}. All variable occurrences in p are connected,
thus it is well-designed. If for example the atom a2(y2) was missing in the root node, the
tree would not be well-designed because of the occurrences of y2 in both, t1 and t2.

Consider a database D that, for each atom R(~v) in λ(T) contains one atom R(1, . . . , 1)
(i.e., with the value 1 at each position) and in addition the atoms d1(1, 2), d2(2, 2), and
d3(2, 1). Then p(D) = {µ1, µ2} where dom(µ1) = {x1, . . . , x5}, dom(µ2) = {x1, x2}, and
µi(x) = 1 for i ∈ {1, 2} and all x ∈ dom(µi). This is because of the following extensions
µ′1 and µ′2 of µ1 and µ2, respectively. For µ′1, we have dom(µ′1) = var(T) and µ′1(x) = 1 for
all x ∈ dom(µ′1), and for µ′2 we have dom(µ′2) = var(λ({r, t1, t2})) with µ′2(x) = 1 for all
x ∈ dom(µ′2) except for u1 and u2, for which µ′2(ui) = 2. Observe that µ′2 maps r, t1, and t2
into D, but cannot be extended to neither t3 nor t4.

Parameterized complexity. We only give a bare-bones introduction to parameterized com-
plexity and refer the reader to [8] for more details. Let Σ be a finite alphabet. A parameteriz-
ation of Σ∗ is a polynomial time computable mapping κ : Σ∗ → N. A parameterized problem
over Σ is a pair (L, κ) where L ⊆ Σ∗ and κ is a parameterization of Σ∗. We refer to x ∈ Σ∗
as the instances of a problem, and to the numbers κ(x) as the parameters.

A parameterized problem E = (L, κ) belongs to the class FPT of fixed-parameter tractable
problems if there is an algorithm A deciding L, a polynomial pol, and a computable function
f : N→ N such that the running time of A on every input x ∈ Σ∗ is at most f(κ(x)) ·pol(|x|).

In this paper, for classes P of wdPTs, we study the problem p-Eval(P) defined below.

p-Eval(P)

INSTANCE: A wdPT p ∈ P, a database D, and a mapping µ.
PARAMETER: |p|
QUESTION: Does µ ∈ p(D) hold?

We always assume that the arity of all atoms of the queries in P is bounded by a constant,
i.e., that there is a constant c (possibly depending on P) such that no atom in the queries in
P has an arity of more than c.

Let E = (L, κ) and E′ = (L′, κ′) be parameterized problems. An FPT-reduction from E

to E′ is a mapping R : Σ∗ → (Σ′)∗ such that (1) for all x ∈ Σ∗ we have x ∈ L if and only if
R(x) ∈ L′, (2) there is a computable function f and a polynomial pol such that R(x) can be
computed in time f(κ(x)) · pol(|x|), and (3) there is a computable function g : N→ N such
that κ′(R(x)) ≤ g(κ(x)) for all x ∈ Σ∗.

Of the rich parameterized hardness theory, we will only use the classes W[1] and coW[1] of
parameterized problems. To keep this introduction short, we define a parameterized problem

S. Mengel and S. Skritek 20:7

(L, κ) to be W[1]-hard if there is a W[1]-hard problem (L′, κ′) that FPT-reduces to (L, κ).
We define (L, κ) to be coW[1]-hard if its complement is W[1]-hard. It is generally conjectured
that FPT 6= W[1] and thus in particular W[1]-hard problems and coW[1]-hard problems are
not in FPT. We will take the hardness results for problems (L′, κ′) from the literature. One
important such problem is the homomorphism problem p-HOM(C) for a class C of sets of
atoms. Its input is one set A ∈ C of atoms and another set B of atoms, and the question is
whether there exists a homomorphism h : A→ B. The parameter is the size of A.

I Theorem 7 ([12]). Let C be a decidable class of simple sets of atoms. Then p-HOM(C) is
in FPT if there exists some constant c such that the treewidth of each set in C is bounded by
c, and W[1]-hard otherwise.

3 Tractability Conditions

In this section we will introduce our tractability criteria which we tailor towards simple wdPTs
to simplify the presentation. While, as mentioned, our criteria also apply to arbitrary wdPTs,
they are not optimal in this case. In fact, in the extended version we show generalizations of
these conditions that, for general wdPTs, describe more tractable classes.

We start with the definition of what we consider as simple pattern trees. Basically, in a
simple pattern tree, no relation symbol is allowed to occur more than once.

I Definition 8 (Simple PTs). A PT p = (T, λ,X) over σ is a simple pattern tree if λ(T) is
simple and λ(t) ∩ λ(t′) = ∅ for all t, t′ ∈ T with t 6= t′.

Our overall idea of solving p-Eval(P) is as follows: given a wdPT p, a database D, and
a mapping µ, construct a set of CQs q with free variables ~x and associated databases D′ such
that µ ∈ p(D) if and only if for at least one of these CQs q the tuple µ(~x) is in q(D′). We
give two tractability criteria ensuring that the algorithm is in FPT. Intuitively, one condition
guarantees that deciding µ(~x) ∈ q(D′) is in PTIME, while both conditions in combination
guarantee that D′ can be computed efficiently.

We will state the tractability conditions with respect to a class P of wdPTs. So in the
remainder of this section let P be an arbitrary but fixed class of wdPTs.

We start with some additional notation and results. One effect introduced by projections
is that some nodes of wdPTs may not be relevant for the results in the following sense as
already observed in [16].

I Definition 9 (Relevant Nodes). Let p = (T, λ,X) be a wdPT. A node t ∈ T is relevant if
there exists a database D such that p(D) 6= p′(D) where p′ is constructed from p by removing
from T the subtree rooted in t. We use relv(T) to denote the set of relevant nodes in T .

In [16], the authors introduced a normal form excluding non-relevant nodes. Here, in order
to make our results more explicit, we do not follow this approach but allow wdPTs to contain
non-relevant nodes. Luckily, it follows from [16] that these nodes can be easily detected.

I Proposition 10. Let p = (T, λ,X) be a wdPT. Then a node t ∈ T is relevant if and only
if fvar(T ′) \ fvar(t̂) 6= ∅, where T ′ is the subtree of T rooted in t and t̂ is the parent node of t.

In what is to follow, the variables that are shared between a node and its parent node
will be of crucial importance. To this end, we make the following definition.

I Definition 11 (Interface I(t) of a Node). Let (T, λ,X) be a wdPT, t ∈ T (but not the root
node), and t̂ the parent node of t. The interface I(t) of t is the set I(t) = var(t) ∩ var(t̂).
The interface of the root node r is I(r) = ∅.

ICDT 2019

20:8 Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

It was already remarked e.g. in [3] and [15] that restrictions on the number of variables
shared between different sets of nodes can be used to define tractable classes. The above
definition however differs slightly from the notion of interfaces in these works. E.g., in [15],
the interface of a node describes the set of variables shared between the node and any of its
neighbors, while here it is restricted to the variables shared with its parent node.

Restrictions on the size of node interfaces turn out to be quite coarse, and we provide more
fine grained tractability criteria here. To this end, we recall the notion of an S-component
from [7]: let G = (V,E) be a graph, and S ⊆ V . Then let K be the set of connected
components of G[V \ S], and for each K ∈ K, let SK ⊆ S be the set of nodes in S that have
(in G) an edge to some node in K, i.e., SK = {v ∈ S | {v, v′} ∈ E for some v′ ∈ K}. The
set of S-components of G now is the set {G[K ∪ SK] | K ∈ K}.

For a set S of variables, the notion of S-components extends to sets of atoms in the
obvious way via the Gaifman graph. We will thus talk about S-components of sets of atoms.

I Definition 12 ([15] Node Components). Let p = (T, λ,X) be a wdPT and t ∈ T . The set
of node components NCt of t is a set of set of atoms, defined as the union of:
1. The set {{τ} | τ ∈ λ(t) and var(τ) ⊆ I(t)} consisting of singleton sets for every atom

τ ∈ λ(t) which contains only “interface variables”, i.e., variables from I(t).
2. The set of all I(t)-components of λ(t).
In the following, node components of type (1) are those containing single atoms, while node
components of type (2) are sets of possibly several atoms.

I Example 13. Recall the wdPT p from Example 6 and consider the node t2. It contains the
following node components: each atom cliqueij(yi, yj) forms a node component of type (1)
since all variables yi occur also in r. In addition, there are two node components of type (2):
the sets {d1(x1, u1), d2(u1, u2), d3(u2, y1)} and {d4(u3, y1)}. Observe that while all atoms di
(1 ≤ i ≤ 4) are within the same connected component of the Gaifman graph, they are not in
the same node component, since y1 separates the connected component into two parts.

To understand why node components are essential for our results, recall that solutions
to wdPTs must be maximal, i.e., they map some subtree into the database, but cannot be
extended to map some child node of this subtree into the database as well. But such an
extension to a node does not exist if and only if the mapping cannot be extended to one
of the node components. Thus instead of testing extensions to the complete node at once
(which might be intractable), we test the maximality of a mapping independently for each
node component (which might be tractable). This is possible because for all variables shared
between any two node components, the values are already determined by the mapping to be
extended. Extensions to different node components are thus independent of each other.

For node components, we are in particular interested in the contained interface variables.

I Definition 14 (Interface of a Node Component). For a wdPT (T, λ,X) and a node t ∈ T ,
the interface of a node component S ∈ NCt is It(S) = (I(t) ∩ var(S)), and the existential
interface is I∃t (S) = It(S) \ X .

We are now ready to formulate our first tractability condition.

Tractability condition (a): There is a constant c, such that for each p = (T, λ,X) ∈ P ,
the treewidth of S\It(S) is bounded by c for all t ∈ relv(T) (with t 6= r) and all S ∈ NCt.

Intuitively, condition (a) guarantees that for each node component S, given some mapping
on the variables in its interface, one can decide in polynomial time whether this mapping can
be extended to map all atoms in the node component into a given database. This is because
once a mapping on It(S) is given, these variables can be treated as constants.

S. Mengel and S. Skritek 20:9

I Example 15. To demonstrate the situation after introducing condition (a), let pk be the
wdPT p from Example 6 parameterized by k, let P = {pk | k ≥ 2}, and let T ′ = T [{r, t1, t2}].
Assume, for some k ≥ 2, in order to test if some mapping is a solution to pk, we would like to
verify whether some mapping µ′ with dom(µ′) = var(T ′) is a maximal pp-solution. Deciding
whether it is a pp-solution is easy, and because P satisfies tractability condition (a), testing
if there exists in both, t3 and t4 a node component to which µ′ cannot be extended is feasible
in polynomial time as well. In fact, NCt3 = {{b3(x3, u1)}, {b4(u1, x4)}, {d5(x1, u3, u1)}}
and NCt4 = {{b5(y2, x5), c3(x5, u2)}, {c4(u2, z2)}} (this holds for every pk ∈ P). However,
there may exist an exponential number of pp-solutions on T ′ (T ′ contains k + 4 existential
variables). Thus testing one mapping on var(T ′) after the other is not feasible.

One way to overcome the problem sketched in the example is to not have two separate
tests for being a pp-solution and being maximal. To combine these tests, we first compute
for each node component the set of mappings on its interface variables that do not extend to
the component, and then require pp-solutions to be consistent with these mappings.

It turns out that this idea can be encoded as an evaluation problem for CQs. One
important step in this encoding is to introduce new relations, one for each node component,
that store those mappings on the interface variables that cannot be extended to the component.
In order for the resulting CQ evaluation problem to be in polynomial time, we require two
properties. First, the resulting CQs must be from some tractable fragment of CQ evaluation,
and, second, the size of the newly added relations must be at most polynomial. One way to
achieve this second goal is to restrict the arity of these relations. Tractability for the CQ
evaluation problem holds exactly if the class of resulting CQs is of bounded treewidth. As it
turns out, this restriction also implies a bound on the arity of the new relations, and thus
represents our second tractability condition.

To formalize the construction, we introduce the notion of a component interface atom.
For a wdPT (T, λ,X), a subtree T ′ of T , a node t ∈ ch(T ′), and node component S ∈ NCt,
let the interface atom be an atom R(~v) where ~v contains the variables in I∃t (S) and R is a
fresh relation symbol. For a node component S, we use cia(S) to refer to the corresponding
interface atom R(~v). Observe that these definitions imply cia(S) = R() in case I∃t (S) = ∅.

The intuition for cia(S) is that for each node component, we get one atom that covers
exactly the variables in I∃t (S). The free variables in the interface can be excluded from the
considerations since a fixed value is provided for them as part of the input.

I Example 16. Recall again the wdPT from Example 6 and consider the node t1. It contains
two node components: S1 = {b2(x2)} and S2 = {c1(y1, z1), c2(y2, z1)}. Observe that whether
S1 can be mapped into some database D is completely independent of the interface variables.
Thus cia(S1) = RS1(). However, for S2 the values of y1 and y2 influence whether S2 may be
mapped. Thus we get cia(S2) = RS2(y1, y2). In case of the node component {d5(x1, u3, u1)}
of t3, observe that we can assume some fixed value µ(x1), and thus can reduce the atom
d5(µ(x1), u3, u1) according to this value, and get as interface atom d

x1=µ(x1)
5 (u3, u1).

Since we are looking for one pp-solution that cannot be extended to any child node,
combining the two tests as sketched means that we must test all children simultaneously
instead of individually. However, since each CQ tests only one node component for each child,
we need one CQ for each possible combination, leading to our second tractability condition.

Tractability condition (b): There is a constant c such that for every well-designed
pattern tree p = ((T, r), λ,X) ∈ P and every subtree T ′ of T containing r, the treewidth of
(λ(T ′)∪

⋃n
i=1{cia(Si)})\fvar(T ′) is bounded by c for every (S1, . . . ,Sn) ∈ NCt1×· · ·×NCtn

where {t1, . . . , tn} = ch(T ′) ∩ relv(T).

ICDT 2019

20:10 Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

The following example breaks down condition (b) to demonstrate its intuition.

I Example 17. Recall the setting in Example 15, as well as the database instance D and
the mappings µ2 and µ′2 from Example 6. Assume that, in order to show that µ2 ∈ pk(D)
for any k ≥ 2, we are looking for a pp-solution for T ′ that does not extend neither to the
node component S1 = {b3(x3, u1)} of t3 (and thus not to λ(t3)), nor to the node component
S2 = {b5(y2, x5), c3(x5, u2)} of t4 (and thus not to λ(t4)). The idea is to construct a CQ
Ans(x1, x2)← λ(T ′)∪ {R1(u1), R2(y2, u2)}, where R1(u1) and R2(y2, u2) are the component
interface atoms for S1 and S2, respectively. Observe that this query has exactly the structure
described in condition (b), illustrating the motivation for the definition of this condition.
Also, because of the cliqueij-atoms, P does not satisfy tractability condition (b).

The query is evaluated over the instance D extended by relations for R1 and R2. As
mentioned, these relations contain all values that cannot be extended to map S1 and S2 into
D, respectively. For S1, we get {R1(2)} (since b3(1, 1) ∈ D, thus a mapping assigning 1 to
u1 could be extended to map S1 into D), and for S2 we get {R2(1, 2), R2(2, 1), R2(2, 2)}.

Now the mapping µ′2 witnesses the fact that (1, 1) ∈ q(D), and thus µ′2 is a maximal
pp-solution also witnessing µ2 ∈ pk(D).

The main result of this paper is that the conditions (a) and (b) characterize exactly the
classes of simple wdPTs which can be evaluated efficiently.

I Theorem 18. Assume that FPT 6= W[1], and let P be a decidable class of simple wdPTs
of bounded arity. Then the following statements are equivalent.
1. The tractability conditions (a) and (b) hold for P.
2. p-Eval(P) is in FPT.

We will show the upper bound of Theorem 18 in Section 4, where we describe how the
different ideas described so far can be combined to an FPT algorithm, while the lower bounds
will be shown in Section 5.

But before we turn to the proof of Theorem 18, let us interpret the result in the setting
without projections to better understand the influence of projection. First note that in
that case, by Definition 14, we have I∃t (S) = ∅ for every t ∈ T and every S ∈ NCt.
Thus all atoms cia(S) (for any node component S) are of arity 0 as are all atoms in
(λ(T ′) ∪

⋃n
i=1{cia(Si)}) \ fvar(T ′). Tractability condition (b) is therefore void in this setting,

leaving only (a) as a useful condition in the projection free case. This immediately implies
the following corollary.

I Corollary 19. Assume that FPT 6= W[1], and let P be a decidable class of simple wdPTs
of bounded arity without projections. Then p-Eval(P) is in FPT if and only if tractability
condition (a) holds for P.

We remark that Corollary 19 could also be inferred as a special case of the main result of [22].
Stating the corollary explicitly here lets us better understand the role of projection for our
problem: in fact, the role of condition (a) is essentially to deal with the complexity that we
already have without projection, while condition (b) is necessary to deal with the additional
source of hardness that is introduced by projections and does not appear without them.

Since it will simplify the discussion in the upcoming sections, we conclude the section
by explicitly working out the third tractability condition already mentioned above in the
discussion towards tractability condition (b). As described there, at some point we extend a
given database by relations for the atoms cia(S) that contain for the corresponding node
component all mappings on its existential interface that cannot be extended to a mapping

S. Mengel and S. Skritek 20:11

Algorithm 1 EvalFPT(p = ((T, r), λ,X), D, µ).
1: T = T [relv(T)] . Remove all nodes from T that are not relevant
2: for all subtrees T ′ of T with fvar(T ′) = dom(µ) and r ∈ T ′ do
3: Let {t1, . . . , tn} = ch(T ′)
4: for all (S1, . . . ,Sn) ∈ NCt1 × · · · × NCtn do
5: q = “Ans(~x)← λ(T ′) ∪ {cia(S1), . . . , cia(Sn)}” . Let ~x contain all x ∈ fvar(T ′)
6: D′ = D ∪

⋃n

i=1{Ri(ν(~vi)) | ν ∈ stop(Si,D)} . Assume cia(Si) = Ri(~vi)
7: if µ(~x) ∈ q(D′) then exit(YES)
8: exit(NO)

on the whole node component. To guarantee that all these relations are of polynomial size,
we restrict the number of variables in the existential interfaces of the node components by
some constant c. We formalize this notion in terms of a suitable width measure.

I Definition 20 (Component Width). Let p = (T, λ,X) be a wdPT, t ∈ T , and S ∈ NCt.
The width of the node component S is |I∃t (S)|. For a node t ∈ T , the component width of t
is the maximum width over all node components S of t. The component width of p is the
maximum component width over all t ∈ relv(T).

By the definition of the treewidth of a set of atoms – specifically by the fact that in the
Gaifman graph all variables occurring together in an atom form a clique – and the fact that
for the existential interface of each node component its variables occur together in some
cia(S)-atom, the number of variables in any existential interface is bound by the treewidth
of the CQs defined in condition (b). Thus, we get the following corollary.

I Corollary 21. Let P be a class of wdPTs that satisfies tractability condition (b) for some
constant c. Then, for every p ∈ P, the component width of p is at most c+ 1.

4 The FPT algorithm

Having defined the tractability conditions, we now show how they are used in the FPT-
algorithm for p-Eval(P) outlined in Algorithm 1.

The missing ingredient of Algorithm 1 that we have not yet introduced is stop(S,D) for a
node component S and a database D which we explain now. Recall that we said earlier that
the intention of the node components is to ensure a mapping to be maximal not by testing
for extensions to the complete node, but to do these tests for smaller, independent units.

The idea how to realize this is to store in D′ for each node component S those variable
assignments ν to the variables in its existential interface such that there exists no extension
ν′ : S→ D of ν ∪ µ. These are the values stored in stop(Si,D).

In more detail, for a wdPT ((T, r), λ,X), a subtree T ′ of T containing r, a child node
t ∈ ch(T ′), node component S ∈ NCt, a database D, and a mapping µ : fvar(T ′) →
dom(D), consider the set extend(S,D) = {η : I∃t (S) → dom(D) | there exists η′ : S →
D extending η and µ|var(S)}. So extend contains exactly those mappings on I∃t (S) that
can be extended in a way that is compatible with µ and maps S into D. We thus set
stop(S,D) = {ν : I∃t (S)→ dom(D) | ν /∈ extend(S,D)}.

With this in place, we describe the idea of Algorithm 1. Recall that, given µ, we have
to find a mapping µ′ extending µ that is (1) a pp-solution, and (2) maximal. Because of
the existential variables, there may be exponentially many subtrees T ′ of T containing r
with fvar(T ′) = dom(µ), each being a potential candidate for witnessing (1) and (2). After
removing all irrelevant nodes in line 1 (they might make evaluation unnecessarily hard), we
thus check each of these subtrees (line 2).

ICDT 2019

20:12 Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

If the required mapping µ′ exists, then, as discussed earlier, for each child node of T ′
there exists at least one node component to which µ′ cannot be extended. Not knowing which
node components these are, the algorithm iterates over all possible combinations (line 4). In
lines 5–7, the algorithm now checks whether there exists an extension of µ that maps all of
λ(T ′) into D (ensured by adding λ(T ′) to q), but none of the node components S1, . . . ,Sn.
The latter property is equivalent to asking that µ′ must assign a value to the existential
interface variables of each Si that cannot be extended. This is guaranteed by adding the
atoms cia(Si) to q and providing in D′ exactly the values from stop(Si,D).

In order to see that this indeed gives an FPT algorithm in case tractability conditions
(a) and (b) are satisfied, note that condition (b) ensures that the arity of each of the new
relations for the atoms cia(S) is at most c + 1 (cf. Corollary 21). Thus the size of these
relations (and thus the number of possible mappings in stop(S,D)) is at most |dom(D)|(c+1).
Next, condition (a) ensures that for each mapping ν : I∃t (S)→ dom(D) deciding membership
in stop(S,D) is in PTIME. Observe that the variables in It(S) are not considered in the
computation of the treewidth since a fixed value is provided for them, thus they can be
treated as constants. Finally, condition (b) also ensures that the test in line 7 is feasible in
polynomial time. Again, since a fixed value is provided for the domain of µ, these variables
can be treated as constants.

We note that the algorithm is an extension and refinement of the FPT algorithm presented
in [15]. An inspection of [15] reveals that the conditions provided there imply our tractability
conditions (a) and (b), but there is no implication in the other direction. In fact, our conditions
explicitly describe the crucial properties of their restrictions that make the problem to be in
FPT. From Algorithm 1 we thus derive the following result.

I Theorem 22. Let P be a decidable class of wdPTs. If the tractability conditions (a) and
(b) hold for P, then p-Eval(P) can be solved in FPT.

The correctness of the algorithm follows immediately from the previous discussion. For the
runtime, in addition to what was already discussed, the number of loop-iterations in lines 2
and 4 is bounded by a function in the size of p, which is the parameter for the problem.

5 Optimality of the Tractability Conditions

We now show that both tractability criteria are necessary, and thus finish the proof of
Theorem 18. We provide individual results for both conditions. In addition, we show that
also the bound on the component width is necessary (and not just a side effect), which will
turn out to be a useful result for proving that tractability condition (b) is necessary.

I Lemma 23. Let P be a decidable class of simple wdPTs of bounded arity such that
tractability condition (a) is not satisfied. Then p-Eval(P) is coW[1]-hard.

Proof. For a wdPT p ∈ P , let the relevant components set rcs(p) contain all the sets S\It(S)
as defined in tractability condition (a). Moreover, let rcs(P) =

⋃
p∈P rcs(p). We will – by an

FPT-reduction – reduce p-HOM(rcs(P)) to the complement of p-Eval(P). The result then
follows from Theorem 7, as rcs(P) does not have bounded treewidth by assumption.

Consider an instance E,F of p-HOM(rcs(P)). In a first step, find p = ((T, r), λ,X) ∈ P,
a node t ∈ relv(T) such that t 6= r, and a node component S ∈ NCt such that E = S \ It(S).
They exist by assumption and, since P is decidable, can be computed.

Since t is relevant, either for t′ = t or some descendant t′ of t we have fvar(t′) \
fvar(branch(t′)) 6= ∅. Among all possible candidates, pick some t′ at a minimal distance to t.

S. Mengel and S. Skritek 20:13

We next define a database D over the set of relation symbols in p. For the description
of D, for all relation symbols R occurring in any atom R(~v) ∈ λ(T), we will assume that ~v
contains only variables, i.e. elements from Var. We implicitly assume that for all positions
where ~v contains a constant, all atoms in RD contain the same constant as in ~v. Recall that
we deal with simple wdPTs, thus each relation symbol occurs at most once within λ(T). In
the following, let d ∈ Const be some fresh value not occurring in dom(F).

For each relation symbol R mentioned outside of λ(cbranch(t′)), let RD = ∅.
For each relation symbol R mentioned in λ(branch(t)), let RD = {R(d, . . . , d)}.
For each relation symbol R mentioned in λ(cbranch(t′) \ branch(t)) \ S, let k be the arity

of R and RD = {R(~v) | ~v ∈ (dom(F) ∪ {d})k}.
For each relation symbol R mentioned in S, observe that there exists a relation symbol R′

in E that was derived from R when computing S \ It(S). The idea is now to use RD to
simulate R′F by padding the additional fields with d. Thus let k be the arity of R, let m
be the arity of R′, let {i1, . . . , i`} ⊆ {1, . . . , k} be those positions of R containing values
from It(S), and {o1, . . . , om} = {1, . . . , k} \ {i1, . . . , i`} those positions of R that contain
values from var(S) \ It(S). Then, for every R′(ao1 , . . . , aom

) ∈ F, let RD contain the atom
R(b1, . . . , bk) where, for 1 ≤ α ≤ k, we have bα = aoj

if α = oj for some 1 ≤ j ≤ m and
bα = d if α = ij for some 1 ≤ j ≤ `. This completes the definition of D.

Finally, we define the mapping µ as µ(x) = d for all x ∈ fvar(branch(t)).
With the description of the reduction complete, we claim that µ ∈ p(D) if and only if

there is no homomorphism from E to F. We prove this property in two steps. First, we show
that µ ∈ p(D) only depends on whether µ can be extended to t or not. After this we show
that such an extension of µ exists if and only if there is a homomorphism h : E→ F.

First, observe that the only possible extension µ′ of µ such that µ′(τ) ∈ D for every
τ ∈ λ(branch(t)) is µ′ mapping every variable in var(branch(t)) to d. Moreover, for all nodes
t′′ 6= t in ch(branch(t)) the mapping µ′ cannot be extended to λ(t′′), since for all relation
symbols R mentioned in λ(t′′) we have RD = ∅. Thus µ′ is a pp-solution, and is a maximal
pp-solution if and only if there exists no extension µ′′ of µ′ with µ′′(τ) ∈ D for all τ ∈ λ(t).

Clearly, if µ′ is a maximal pp-solution, then µ ∈ p(D). To see that µ /∈ p(D) if µ′ is not
a maximal pp-solution, assume that there exists the above mentioned extension µ′′ of µ′.
Then µ′′ can be obviously extended to µ′′′ with µ′′′(τ) ∈ D for all τ ∈ cbranch(t′) since for
all atoms on (cbranch(t′) \ cbranch(t)) ∪ {t′}, every possible atom over dom(D) is contained
in D. Since dom(µ′′′) contains at least one free variable not in dom(µ′), this shows µ /∈ p(D).

It thus remains to show that the extension µ′′ of µ′ exists if and only if there is a
homomorphism h : E→ F. To see that this is the case, observe that by construction every
such homomorphism h in combination with µ′ gives a mapping from S into D, and vice
versa, every mapping µ : S→ D restricted to dom(E) gives the desired homomorphism. For
the remaining atoms in λ(t) \ S, observe that every possible mapping sends them into D,
since D again contains every possible atom for these relations. J

To simplify the proof that tractability condition (b) is necessary, we first show that having
bounded component width is a necessary condition on its own.

I Lemma 24. Let P be a decidable class of simple wdPTs of bounded arity. If there does
not exist some constant c such that for every p ∈ P the component width is bounded by c,
then p-Eval(P) is coW[1]-hard.

Proof. The proof is an FPT-reduction of the problem of model checking FO sentences φk
of the form φk = ∀x1 . . . ∀xk∃y

∧k
i=1 Ei(xi, y). Model checking for this class of sentences,

parameterized by their size, is W[1]-hard [5]. Thus consider a formula φk and a database E.

ICDT 2019

20:14 Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

First, compute a wdPT p = (T, λ,X) ∈ P with a component width of at least k.
W.l.o.g. we assume that p contains only binary atoms: Since we assume a bounded arity,
binary atoms can be easily encoded into atoms of higher arity. Consider the relevant node
t ∈ T and a node component S ∈ NCt such that the component width of S is at least k. Since
we assume relations to be of some bounded arity, S cannot be of type (1) (Definition 12).
W.l.o.g. we thus assume that S is of type (2).

Since t is relevant, either for t′ = t or some descendant t′ of t we have fvar(t′) \
fvar(branch(t′)) 6= ∅. Choose one such t′ at a minimal distance to t.

For the description of the atoms in D for a relation symbol R occurring in an atom
R(~v) ∈ λ(T), we will assume that ~v contains only variables, i.e. elements from Var. We
implicitly assume that for all positions where ~v contains a constant, all the atoms in RD

contain the same constant as in ~v. Recall that we are dealing with simple wdPTs, thus each
relation symbol R occurs at most once within λ(T).

For each relation symbol R mentioned outside of λ(cbranch(t′)), let RD = ∅.
For each relation symbol R mentioned in λ(cbranch(t′)) \ S, let ` be the arity of R and

RD = {R(~v) | ~v ∈ dom(E)`}.
For the relation symbols R mentioned in S, proceed as follows. Choose k interface

variables v1, . . . , vk ∈ It(S). Let L = var(S) \ var(branch(t)) be the “local variables” of S.
Observe that S being a node component of type (2) implies L 6= ∅. This is because of
var(S) ∩ var(branch(t)) = It(S), and the fact that to be a node component of type (2), in
the Gaifman graph, all variables in It(S) must be connected to some variable from the node
component that is not in It(S). Thus there must exist at least one “local variable”. By the
same reasoning, for each of the variables vi, there must exist at least one atom Ri(vi, zi)
or Ri(zi, vi) for some zi ∈ L. We will assume Ri(vi, zi) in the following, the other case is
analogous. Now for each vi, fix one such atom. Based on this, we define the following atoms
to be contained in D:

For each of the selected atoms Ri(vi, zi), let RD
i = EE

i , i.e., we let Ri simulate exactly Ei.
For every atom R(z, z′) ∈ S such that z, z′ ∈ L, define RD = {R(d, d) | d ∈ dom(E)}. For
the remaining atoms R(z, z′) ∈ S, define RD = {R(a, b) | a, b ∈ dom(E)}.

Finally, µ is an arbitrary mapping fvar(branch(t))→ dom(E).
It now follows by the same arguments as in the proof of Lemma 23 that we have µ /∈ p(D)

if and only if for every extension µ′ of µ to var(branch(t)), there exists an extension ν of µ′
such that ν(τ) ∈ D for all τ ∈ S.

To complete this proof, we thus only need to show that such an extension exists if and
only if φk is satisfied. First, assume that φk is satisfied. Then, for all z ∈ L, define ν(z) to be
the value of y in φk. This clearly maps S into D. Next, assume that φk is not satisfied. Then
there exists some assignment to x1, . . . , xk such that no suitable value for y exists. Then for
the mapping µ′ assigning exactly those values to the selected interface variables v1, . . . , vk,
there exists no extension of µ′ to S. This is because L defines a connected component in the
Gaifman graph and because the definition of D forces all variables in L that occur together
in some atom in S to be mapped to the same value by µ′. Thus µ′ has to map all “local
variables” in S to the same value, which would provide a suitable value for y, leading to a
contradiction. This concludes the proof. J

I Lemma 25. Let P be a decidable class of simple wdPTs of bounded arity such that
tractability condition (b) is not satisfied. Then p-Eval(P) is either coW[1]- or W[1]-hard.

Proof. First, assume that there exist some constant that is, for all p ∈ P, an upper bound
on the component width. Otherwise, p-Eval(P) is coW[1]-hard by Lemma 24. In particular,
we may thus assume that all relations in all instances of (λ(T ′) ∪

⋃n
i=1{cia(Si)}) \ fvar(T ′)

for all p ∈ P are of bounded arity.

S. Mengel and S. Skritek 20:15

Let solcheck(P) be the class of all sets of atoms (λ(T ′) ∪
⋃n
i=1{cia(Si)}) \ fvar(T ′) for P

as defined in tractability condition (b). We reduce p-HOM(solcheck(P)) to p-Eval(P) via
an FPT reduction. The result then follows directly by Theorem 7, since if (b) is false then
solcheck(P) has unbounded treewidth. The rest of this proof gives the desired reduction.

Let E,F be an instance of p-HOM(solcheck(P)). We construct a wdPT p, a database D,
and a mapping µ such that µ ∈ p(D) if and only if there is a homomorphism from E to F.

First of all, find a p = ((T, r), λ,X) ∈ P and a subtree T ′ of T containing r such that
E = (λ(T ′)∪

⋃n
i=1{cia(Si)})\fvar(T ′) for some combination (S1, . . . ,Sn) ∈ NCt1×· · ·×NCtn

where {t1, . . . , tn} = ch(T ′) ∩ relv(T). To define a database D and a mapping µ such that
µ ∈ p(D) if and only if a homomorphism from E to F exists, we need to define the following
sets of nodes first. Let K = ch(T ′) ∩ relv(T) = {t1, . . . , tn}. For each ti ∈ K, we define
the set Ni of nodes as follows. If fvar(ti) \ fvar(branch(ti)) 6= ∅ (i.e., ti contains some
“new” free variable), then Ni = ∅. Otherwise, let si ∈ T be a descendant of ti such that
fvar(si) \ fvar(branch(ti)) 6= ∅ and such that this property holds for no other node s′i ∈ T on
the path from ti to si. Then Ni = cbranch(si) \ cbranch(ti). Finally, let N =

⋃n
i=1 Ni. Now

all notions are in place to describe the database D. While doing so, we implicitly assume
that for all positions where an atom R(~v) of p contains a constant, all the atoms in RD

contain the same constant as in ~v. I.e., we only describe the values for “variable positions”
of ~v. Recall that we are dealing with simple wdPTs, thus each relation symbol R occurs at
most once within λ(T).

For all atoms R(~y) ∈ λ(T) \ (λ(T ′)∪ λ(K)∪ λ(N)), let RD = ∅, i.e., for all atoms neither
in T ′ nor in any of the relevant child nodes of T ′ (or their extensions to some node with a
“new” free variable), no matching values exist in the database.

For all atoms R(~y) ∈ λ(T ′), we want to use them to simulate in D the relations in F.
Observe that for each such atom, there exists an atom R′(~z) ∈ E that was derived from R(~y)
by removing the free variables fvar(T ′). Thus, for each atom R′(~a) ∈ R′F, we add one atom
R(~b) to RD where ~b contains a fixed domain value d ∈ dom(F) at all positions ~y contains a
free variable, and the corresponding value from ~a where the variable also occurs in R′(~z′).
I.e., RD is designed in such a way that all variables x ∈ fvar(T ′) can only be mapped to d.

The definition for the atoms in K is more involved. Consider some ti ∈ K. Let ~v
contain the existential interface variables of the node component Si ∈ NCti selected for the
construction of E, and assume cia(Si) = Rcia(~v).

For all atoms R(~y) ∈ λ(ti) \ Si, set RD = {R(~a) | ~a ∈ dom(F)k} where k is the arity of
R. For the atoms in Si, we distinguish between Si being of type (1) or of type (2).

If Si is of type (1), i.e., Si is of the form Si = {R(~y)} for some R(~y) ∈ λ(ti), define
RD = {R(~a) | ~a ∈ dom(F)k and Rcia(~a~v) /∈ F}, where ~a~v is the restriction of ~a to those
positions in ~y with variables from ~v (and thus not containing variables from fvar(T ′)).

If Si is of type (2), we distinguish two types of variables: those that occur in It(Si), and
those that do not appear in any node t′ ∈ branch(ti). We call these latter variables new
variables and use as their domain the set dom(F)|~v|, i.e., the set of all possible assignments
of values from F to the variables in ~v from Rcia(~v). We assume that the encoding of the
assignments ~a ∈ dom(F)|~v| is such that we can look up the value that is given to a variable
vi ∈ ~v by ~a. For the remaining variables in var(Si), i.e., the variables not in ~v, we will use
values from dom(F). For each atom R(~y) ∈ Si, the values in RD are defined as follows:

Let ~z = ~y ∩ (var(Si) \ ~v) (because Si is of type (2), ~z \ fvar(T ′) 6= ∅). Then RD contains
an atom for each tuple satisfying all of the following four properties.
1. All variables in fvar(T ′) get the value d.
2. All the variables in ~z \ fvar(T ′) get assigned the same value. Denote this value by a, and

recall that a represents an assignment ~a ∈ dom(F)|~v|.

ICDT 2019

20:16 Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

3. For all vi ∈ ~v ∩ ~y, the value of vi is consistent with the vector ~a represented by a.
4. We have Rcia(~a) /∈ F.
Because their arity is assumed to be bounded, all these relations can be constructed in
polynomial time. To conclude the definition of D, for all atoms R(~y) ∈ λ(N), set RD =
{R(~a) | ~a ∈ dom(D)k}, where k is the arity of R and dom(D) is implicitly defined to consist
of all values mentioned in the definition of D.

Finally, let µ be the mapping defined on all variables x ∈ fvar(T ′) as µ(x) = d. To prove
µ ∈ p(D) if and only if homomorphism E→ F exists, we first show the following claim.

B Claim 26. Let Rcia(~v) be an interface atom and Si the corresponding interface component.
Then, for a mapping µ′ : ~v → dom(F), we have that Rcia(µ′(~v)) ∈ F if and only if there is no
extension µ′′ of µ′ ∪ µ to var(λ(ti)) that maps all atoms in Si into D (since Si ⊆ λ(ti), this
implies that there exists no extension µ′′ of µ′ ∪ µ that maps λ(ti) into D).

Proof. For node components of type (1), the claim is immediate. So let us assume for the
rest of the proof that Si is of type (2).

First let Rcia(µ′(~v)) ∈ F. Let us assume an arbitrary extension µ′′ of µ′ ∪ µ to var(Si). If
µ′′ does not satisfy conditions 1., 2., and 3. for all R(~y) ∈ Si, then clearly for this particular
atom there exists no atom in D to which it can be mapped by µ′′. We may thus assume
that µ′′ satisfies the first three conditions for all atoms R(~y) ∈ Si. Then all variables in
var(Si) \ (~v ∪ fvar(T ′)) take the same value under µ′′, and this value corresponds exactly
to the tuple µ′(~v). But then µ′′ does not satisfy condition 4. for any R(~y) ∈ Si since
Rcia(µ′(~v)) ∈ RF

cia by assumption. Thus RD does not contain any atom onto which µ′′ could
map R(~y) and thus µ′′ cannot exist which completes the first direction.

For the other direction, assume that no extension µ′′ of µ′∪µ maps all atoms in Si into D.
Then this is in particular true for those assignments satisfying conditions 1., 2., and 3. Note
that every such assignment maps all variables in ~z \ fvar(T ′) to the same value, representing
a mapping on ~v. Also, µ′′|~v = µ′. Since µ′′ fails to map Si into D because of 4., we get that
Rcia(µ′(~v)) ∈ RF

cia, which completes the proof of the claim. C

We continue the proof that µ ∈ p(D) if and only if a homomorphism E→ F exists. First
observe that µ ∈ p(D) if and only if on the one hand there is an extension µ′ of µ to var(T ′)
that maps all atoms in λ(T ′) into D (of course, in general every subtree T ′′ containing the
root node of T with fvar(T ′′) = dom(µ) is a potential candidate, but given the construction
of D, the subtree T ′ is the only possible candidate) and, on the other hand, for all ti ∈ K,
we have that there does not exist an extension of µ′ onto λ(ti) ∪ λ(Ni). (In fact, extending
the mapping to any descendant of ti that contains some additional free variable would work.
However, the only nodes with non-empty relations in D are those mentioned in N .)

By the construction of D for atoms in λ(N), for every ti ∈ K it follows immediately that
there exists an extension of µ′ onto λ(ti) ∪ λ(Ni) if and only if there exists an extension to
λ(ti). This is because for the atoms in λ(N) the database D contains all possible atoms,
thus every extension µ′′ of µ′ onto λ(ti) can be further extended to all atoms in λ(Ni).

Note that the existence of an extension of µ′ onto λ(ti) is, by Claim 26, equivalent to µ′
sending Rcia(~v) into F. So µ ∈ p(D) if and only if there is a homomorphism from E into F.
This completes the proof. J

S. Mengel and S. Skritek 20:17

6 Relationship with SPARQL and Conclusion

Our results give a fine understanding of the tractable classes of wdPTs in the presence of
projection. In particular they show the different sources of hardness. As laid out in the
introduction, there is a strong relationship between well-designed SPARQL queries and
wdPTs: For every well-designed SPARQL query, an equivalent well-designed pattern tree
can be computed in polynomial time, and vice versa, in a completely syntactic way.

Note that our characterization of tractable classes unfortunately cannot be immediately
translated to well-designed SPARQL queries. This is because our characterization only
applies to classes of simple well-designed pattern trees. However, RDF triples and SPARQL
triple patterns, in the relational model, are usually represented with a single (ternary) relation.
Thus, there is no direct translation to and from simple (well-designed) pattern trees. As a
consequence, our result does not imply an immediate characterization of the tractable classes
of well-designed {AND, OPTIONAL}-SPARQL queries.

Nevertheless, our results also give interesting insights to SPARQL with projections. First,
Algorithm 1 directly applies to queries in which relation symbols appear several times and thus
in particular for well-designed pattern trees resulting from the translation of well-designed
SPARQL queries. Moreover, our result determines completely the tractable classes that
can be characterized by analyzing only the underlying graph structure of the queries, i.e.,
the Gaifman graph. Indeed, since simple queries can simulate all other queries sharing the
same Gaifman graph by duplicating relations, Gaifman graph based techniques have exactly
the same limits as simple queries. Thus, our work gives significant information on limits of
tractability for SPARQL queries in the same way as e.g. [12, 4, 5] did in similar contexts.

Let us mention one major stumbling block towards a characterization of non-simple
well-designed pattern trees with projections: In the proof of Lemma 24, we have used a
reduction from quantified conjunctive queries. Unfortunately, the tractable classes for the
non-simple fragment for that problem is not well understood which limits our result to simple
queries since we are using the respective results from [5]. Note that we might have been able
to give a more fine-grained result in sorted logics by using [6], but since this would, in our
opinion, not have been very natural in our setting, we did not pursue this direction. Thus a
better understanding of non-simple pattern trees would either need progress on quantified
conjunctive queries or a reduction from another problem that is better understood.

One prominent operator of SPARQL that we did not consider is UNION, whose corres-
pondence in pattern trees are sets of pattern trees, so-called pattern forests. While the
extension to simple pattern forests is immediate (since no two trees share any relation
symbols), it is not clear how to approach the possible repetition of relation symbol within
different trees in forests of simple pattern trees in combination with projection.

Finally, another interesting class of queries are weakly well-designed pattern trees. While
the tractability conditions can be easily adapted to provide FPT algorithms for these queries,
providing a characterization of the tractable classes is much harder due to the fact that
relevant nodes need not have a descendant introducing a “new” free variable.

References

1 Marcelo Arenas, Gonzalo I. Diaz, and Egor V. Kostylev. Reverse Engineering SPARQL Queries.
In Proc. WWW 2016, pages 239–249. ACM, 2016.

2 Marcelo Arenas and Jorge Pérez. Querying semantic web data with SPARQL. In Proc. PODS
2011, pages 305–316. ACM, 2011.

ICDT 2019

20:18 Characterizing Tractability of Simple Well-Designed Pattern Trees with Projection

3 Pablo Barceló, Markus Kröll, Reinhard Pichler, and Sebastian Skritek. Efficient Evaluation
and Static Analysis for Well-Designed Pattern Trees with Projection. ACM Trans. Database
Syst., 43(2):8:1–8:44, 2018.

4 Hubie Chen. The tractability frontier of graph-like first-order query sets. In Thomas A.
Henzinger and Dale Miller, editors, Proc. CSL-LICS 2014, pages 31:1–31:9. ACM, 2014.

5 Hubie Chen and Víctor Dalmau. Decomposing Quantified Conjunctive (or Disjunctive)
Formulas. In Proc. LICS 2012, pages 205–214. IEEE Computer Society, 2012.

6 Hubie Chen and Dániel Marx. Block-Sorted Quantified Conjunctive Queries. In Fedor V.
Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Proc. ICALP 2013,
volume 7966 of Lecture Notes in Computer Science, pages 125–136. Springer, 2013.

7 Arnaud Durand and Stefan Mengel. Structural Tractability of Counting of Solutions to
Conjunctive Queries. Theory of Computing Systems, pages 1–48, 2014.

8 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

9 Martin Grohe. The Parameterized Complexity of Database Queries. In Peter Buneman, editor,
Proc. PODS 2001, pages 82–92. ACM, 2001.

10 Martin Grohe. Parameterized Complexity for the Database Theorist. SIGMOD Record,
31(4):86–96, 2002.

11 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1), 2007.

12 Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of conjunctive
queries tractable? In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors,
Proc. STOC 2001, pages 657–666. ACM, 2001.

13 Mark Kaminski and Egor V. Kostylev. Beyond Well-designed SPARQL. In Proc. ICDT 2016,
volume 48 of LIPIcs, pages 5:1–5:18. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2016.

14 Egor V. Kostylev, Juan L. Reutter, and Martín Ugarte. CONSTRUCT queries in SPARQL.
In Proc. ICDT 2015, volume 31 of LIPIcs, pages 212–229. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2015.

15 Markus Kröll, Reinhard Pichler, and Sebastian Skritek. On the Complexity of Enumerating
the Answers to Well-Designed Pattern Trees. In Proc. ICDT 2016, volume 48 of LIPIcs, pages
22:1–22:18. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

16 Andrés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. Static analysis and
optimization of semantic web queries. ACM Trans. Database Syst., 38(4):25, 2013.

17 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. In Leonard J. Schulman, editor, Proc. STOC 2010, pages 735–744. ACM, 2010.

18 Christos H. Papadimitriou and Mihalis Yannakakis. On the Complexity of Database Queries.
J. Comput. Syst. Sci., 58(3):407–427, 1999.

19 Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3), 2009.

20 François Picalausa and Stijn Vansummeren. What are real SPARQL queries like? In Proc.
SWIM 2011, page 7. ACM, 2011.

21 Reinhard Pichler and Sebastian Skritek. Containment and equivalence of well-designed
SPARQL. In Proc. PODS 2014, pages 39–50. ACM, 2014.

22 Miguel Romero. The Tractability Frontier of Well-designed SPARQL Queries. In Proc. PODS
2018, pages 295–306. ACM, 2018.

Boolean Tensor Decomposition for Conjunctive
Queries with Negation
Mahmoud Abo Khamis
RelationalAI, Berkeley, USA

Hung Q. Ngo
RelationalAI, Berkeley, USA

Dan Olteanu
Department of Computer Science, University of Oxford, UK

Dan Suciu
Department of Computer Science and Engineering, University of Washington, USA

Abstract
We propose an approach for answering conjunctive queries with negation, where the negated relations
have bounded degree. Its data complexity matches that of the InsideOut and PANDA algorithms
for the positive subquery of the input query and is expressed in terms of the fractional hypertree
width and the submodular width respectively. Its query complexity depends on the structure of
the conjunction of negated relations; in general it is exponential in the number of join variables
occurring in negated relations yet it becomes polynomial for several classes of queries.

This approach relies on several contributions. We show how to rewrite queries with negation on
bounded-degree relations into equivalent conjunctive queries with not-all-equal (NAE) predicates,
which are a multi-dimensional analog of disequality (6=). We then generalize the known color-coding
technique to conjunctions of NAE predicates and explain it via a Boolean tensor decomposition of
conjunctions of NAE predicates. This decomposition can be achieved via a probabilistic construction
that can be derandomized efficiently.

2012 ACM Subject Classification Theory of computation → Database query processing and opti-
mization (theory); Information systems → Database query processing

Keywords and phrases color-coding, combined complexity, negation, query evaluation

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.21

Related Version An extended online version of this work includes the missing proofs [1], see
https://arxiv.org/abs/1712.07445.

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 682588. This project is also supported in part by
NSF grants AITF-1535565 and III-1614738.

Acknowledgements The authors would like to thank the anonymous reviewers for their suggestions
that helped improve the readability of this paper.

1 Introduction

This paper considers the problem of answering conjunctive queries with negation of the form

Q(XF)← body ∧
∧
S∈E

¬RS(XS), (1)

where body is the body of an arbitrary conjunctive query, XF = (Xi)i∈F denotes a tuple of
variables (or attributes) indexed by a set F of positive integers, and E is the set of hyperedges

© Mahmoud Abo Khamis, Hung Q. Ngo, Dan Olteanu, and Dan Suciu;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICDT.2019.21
https://arxiv.org/abs/1712.07445
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Boolean Tensor Decomposition for Conjunctive Queries with Negation

of a multi-hypergraph1 H = (V, E). Every hyperedge S ∈ E corresponds to a bounded-degree
relation RS on attributes XS . For instance, the equality (=) relation is a bounded-degree
(binary) relation, because every element in the active domain has degree one; the edge relation
E of a graph with bounded maximum degree is also a bounded-degree relation. Section 2
formalizes this notion of bounded degree.

We exemplify using three Boolean queries2 over a directed graph G = ([n], E) with n
nodes and N = |E| edges: the k-walk query3, the k-path query, and the induced (or chordless)
k-path query. They have the same body and encode graph problems of increasing complexity:

W ←E(X1, X2) ∧ E(X2, X3) ∧ · · · ∧ E(Xk, Xk+1).

P ←E(X1, X2) ∧ E(X2, X3) ∧ · · · ∧ E(Xk, Xk+1) ∧
∧

i,j∈[k+1]
i+1<j

Xi 6= Xj . (2)

I ←E(X1, X2) ∧ E(X2, X3) ∧ · · · ∧ E(Xk, Xk+1) ∧
∧

i,j∈[k+1]
i+1<j

(¬E(Xi, Xj) ∧Xi 6= Xj)). (3)

The hypergraph H for the k-walk query W is empty since it has no negated relations. This
query can be answered in O(kN logN) time using for instance the Yannakakis dynamic pro-
gramming algorithm [34]. The k-path query P has the hypergraph H = ([k+1], {(i, j) | i, j ∈
[k + 1], i + 1 < j}). It can be answered in O(kkN logN)-time [30] and even better in
2O(k)N logN -time using the color-coding technique [8]. The induced k-path query I has the
hypergraph H similar to that of P , but every edge (i, j) has now multiplicity two due to the
negated edge relation and also the disequality. This query is W[2]-hard [10]. However, if the
graph G has a maximal degree that is bounded by some constant d, then the query can be
answered in O(f(k, d) ·N logN)-time for some function f that depends exponentially on k
and d [30]. Our results imply the above complexities for the three queries.

1.1 Main Contribution

In this paper we propose an approach to answering conjunctive queries with negation on
bounded-degree relations of arbitrary arities. Our approach is the first to exploit the bounded
degree of the negated relations. The best known algorithms for positive queries such as
InsideOut [2] and PANDA [3] can also answer queries with negation, albeit with much higher
complexity since already one negation can increase their worst-case runtime. For example,
the Boolean path queries with a disequality between the two end points takes linear time with
our approach, but quadratic time with existing approaches [2, 3]. The data complexity of our
approach matches that of InsideOut and PANDA for the positive subquery Q(XF)← body. To
lower its query complexity, we use a range of techniques including color-coding, probabilistic
construction of Boolean tensor decompositions, and derandomization of this construction.

I Theorem 1.1. Any query Q of the form (1), where for each S ∈ E the relation RS
has bounded degree and f(·) is a function of Q, can be answered over a database of size
N in time O(f(Q) · logN · (N fhtwF (body) + |output|)) using a reduction to InsideOut and
O(f(Q) · (poly(logN) ·N subwF (body) + logN · |output|)) using a reduction to PANDA.

1 In a multi-hypergraph, each hyperedge S can occur multiple times. All hypergraphs in this paper are
multi-hypergraphs.

2 We denote Boolean queries Q(XF) where F = ∅ by Q instead of Q(). We also use [n] = {1, . . . , n}.
3 Unlike a path, in a walk some vertices may repeat.

M. Abo Khamis, H.Q. Ngo, D. Olteanu, and D. Suciu 21:3

The complexities of InsideOut [2] and PANDA [3] depend on the fractional hypertree width
fhtw [17] and respectively the submodular width subw [23]. The widths fhtwF and subwF
are fhtw and respectively subw computed on the subset of hypertree decompositions of the
positive subquery of Q for which the set F of free variables form a connected subtree. The
dependency of the function f on the structure of Q, and in particular on the hypergraph H
of the negated relations in Q, is an important result of this paper.

Theorem 1.1 draws on three contributions:
1. A rewriting of queries of the form (1) into equivalent conjunctive queries with not-all-equal

predicates, which are a multi-dimensional analog of disequality 6= (Proposition 4.3);
2. A generalization of color-coding [8] from cliques of disequalities to arbitrary conjunctions

of not-all-equal predicates; and
3. An alternative view of color coding via Boolean tensor decomposition of conjunctions

of not-all-equal predicates (Lemma 5.1). This decomposition admits a probabilistic
construction that can be derandomized efficiently (Corollary 5.7).

Contribution 1 (Section 4) gives a rewrite of the query Q into an equivalent disjunction
of queries Qi of the form (cf. Proposition 4.3)

Qi(XF)← bodyi ∧
∧
S∈Ei

NAE(ZS).

For each query Qi, bodyi may be different from body in Q, since fresh variables ZS and
unary predicates may be introduced. Its fractional hypertree and submodular widths remain
however at most that of body. We thus rewrite the conjunction of the negated relations into
a much simpler conjunction of NAE predicates without increasing the data complexity of Q.
The number of such queries Qi depends exponentially on the arities and the degrees of the
negated relations, which is the reason why we need the constant bound on these degrees.

Contribution 2 (Section 5) is based on the observation that a conjunction of NAE predicates
can be answered by an adaptation of the color-coding technique [8], which has been used so
far for checking cliques of disequalities. The crux of this technique is to randomly color each
value in the active domain with one color from a set whose size is much smaller than the
size of the active domain, and to use these colors instead of the values themselves to check
the disequalities. We generalize this idea to conjunctions of NAE predicates and show that
such conjunctions can be expressed equivalently as disjunctions of simple queries over the
different possible colorings of the variables in these queries.

Contribution 3 (Section 5) explains color coding by providing an alternative view of
it: Color coding is a (Boolean) tensor decomposition of the (Boolean) tensor defined by
the conjunction

∧
S NAE(ZS). As a tensor,

∧
S NAE(ZS) is a multivariate function over

variables in the set U =
⋃
S ZS . The tensor decomposition rewrites it into a disjunction of

conjunctions of univariate functions over individual variables Zi (Lemma 5.1). That is,∧
S

NAE(ZS) ≡
∨
j∈[r]

∧
i∈U

f
(j)
i (Zi),

where r is the (Boolean tensor) rank of the tensor decomposition, and for each j ∈ [r], the
inner conjunction

∧
i∈U f

(j)
i (Zi) can be thought of as a rank-1 tensor of inexpensive Boolean

univariate functions f (j)
i (·) (∀i ∈ U). The key advantages of this tensor decomposition

are that (i) the addition of univariate conjuncts to bodyi does not increase its (fractional
hypertree and submodular) width and (ii) the dependency of the rank r on the database
size N is only a logN factor. Lemma 5.1 shows that the rank r depends on two quantities:

ICDT 2019

21:4 Boolean Tensor Decomposition for Conjunctive Queries with Negation

r = P (G, c) · |F|. The first is the chromatic polynomial of the hypergraph of
∧
S NAE(ZS)

using c colors. The second is the size of a family of hash functions that represent proper
c-colorings of homomorphic images of the input database. The number c of needed colors
is at most the number |U | of variables in

∧
S NAE(ZS). We show it to be the maximum

chromatic number of a hypergraph defined by any homomorphic image of the database.
We give a probabilistic construction of the tensor decomposition that generalizes the

construction used by the color-coding technique. It selects a color distribution dependent
on the query structure, which allows the rank of

∧
S NAE(ZS) to take a wide range of

query complexity asymptotics, from polynomial to exponential in the query size. This is
more refined than the previously known bound [8], which amounts to a tensor rank that is
exponential in the query size. We further derandomize this construction by adapting ideas
from derandomization for k-restrictions [6] (with k being related to the Boolean tensor rank).

Section 6 shows how to use the Boolean tensor decomposition in conjunction with
InsideOut [2] and PANDA [3] to evaluate queries of the form (1) with the complexity given
by Theorem 1.1. The query complexity captured by the function f is given by the number
of NAE predicates and the rank of the tensor decomposition of their conjunction.

2 Preliminaries

In this paper we consider arbitrary conjunctive queries with negated relations of the form (1).
We make use of the following naming convention. Capital letters with subscripts such as Xi

or Aj denote variables. For any set S of positive integers, XS = (Xi)i∈S denote a tuple of
variables indexed by S. Given a relation R over variables XS and J ⊆ S, πJR denotes the
projection of R onto variables XJ , i.e., we write πJR instead of πXJ

R. If Xi is a variable,
then the corresponding lower-case xi denotes a value from the active domain Dom(Xi) of Xi.
Bold-face xS = (xi)i∈S denotes a tuple of values in

∏
i∈S Dom(Xi).

We associate a hypergraph H(R) with a relation R(XS) as follows. The vertex set is
{(i, v) | i ∈ S, v ∈ Dom(Xi)}. Each tuple xS = (xi)i∈S ∈ R corresponds to a (hyper)edge
{(i, xi)|i ∈ S}. H(R) is a |S|-uniform hypergraph (all hyperedges have size |S|).

2.1 Hypergraph coloring and bounded-degree relations

Hypergraph coloring. Let G = (U,A) denote a multi-hypergraph and k be a positive integer.
A proper c-coloring of G is a mapping h : U → [c] such that for every edge S ∈ A, there exists
u, v ∈ S with u 6= v such that h(u) 6= h(v). The chromatic polynomial P (G, c) of G is the
number of proper c-colorings of G [18]. A vertex (edge) coloring of G is an assignment of colors
to the vertices (edges) of G so that no two adjacent vertices (incident edges) have the same
color. The chromatic number χ(G) and the chromatic index χ′(G) are the smallest numbers
of colors needed for a vertex coloring and respectively an edge coloring of G. Coloring a
(hyper)graph is equivalent to coloring it without singleton edges.

Bounded-degree relation. The maximum degree of a vertex in a hypergraph G = (U,A) is
denoted by ∆(G): ∆(G) = maxv∈U |{S ∈ A | v ∈ S}|. For a relation RS(XS), its maximum
degree ∆(H(RS)) is the maximum number of tuples in RS with the same value for a variable
X ∈ XS : ∆(H(RS)) = max i∈S

v∈Dom(Xi)
|{xS ∈ RS | xi = v}|. We will use a slightly different

notion of degree of a relation denoted by deg(RS), which also accounts for the arity |S| of
the relation RS . Proposition 2.3 connects the two notions.

M. Abo Khamis, H.Q. Ngo, D. Olteanu, and D. Suciu 21:5

I Definition 2.1 (Matching). A k-ary relation M(XS) is called a (k-dimensional) matching
if for every two tuples xS ,x′S ∈M , either xS = x′S, i.e., xS and x′S are the same tuple, or
it holds that xi 6= x′i,∀i ∈ S.

I Definition 2.2 (Degree). The degree of a relation RS(XS), denoted by deg(RS), is the
smallest integer d for which RS can be written as the disjoint union of d matchings. The
degree deg(RS) is bounded if there is a constant dS such that deg(RS) ≤ dS.

It is easy to see that deg(RS) = χ′(H(RS)). If RS is a binary relation, then H(RS) is
a bipartite graph and deg(RS) = χ′(H(RS)) = ∆(H(RS)). This follows from König’s line
coloring theorem [20], which states that the chromatic index of a bipartite graph is equal
to its maximum degree. When the arity k is higher than two, to the best of our knowledge
there does not exist such a nice characterization of the chromatic index of RS in terms of
the maximum degree of individual vertices in the graph, although there has been some work
on bounding the chromatic index of (linear) uniform hypergraphs [5, 22, 13, 29, 29]. In our
setting, we are willing to live with sub-optimal decomposition of a bounded-degree relation
into matchings as long as it can be done in linear time.

I Proposition 2.3. Let RS(XS) denote a k-ary relation of size N and ` = ∆(H(RS)). Then:
` ≤ deg(RS) ≤ k(`− 1) + 1;
We can compute in O(N)-time disjoint k-ary matchings M1, . . . ,Mk`−k+1 such that
RS =

⋃k(`−1)+1
j=1 Mj.

Proof. The fact that ` ≤ deg(RS) is obvious. To show that deg(RS) ≤ k(` − 1) + 1, note
that any edge in H(RS) is adjacent to at most k(`− 1) other edges of H(RS), hence greedy
coloring can color the edges of H(RS) in time O(N) using k(`− 1) + 1 colors. J

The two notions of degree of a relation are thus equivalent up to a constant factor given
by the arity of the relation.

2.2 FAQ, width parameters, and corresponding algorithms
I Definition 2.4 (The FAQ problem [2]). The input to FAQ is a set of functions and the
output is a function which is a series of aggregations (e.g. sums) over the product of input
functions. In particular, the input to FAQ consists of the following:

A multi-hypergraph H = (V = [n], E).
Each vertex i ∈ V = [n] corresponds to a variable Xi over a discrete domain Dom(Xi).
For each hyperedge S ∈ E, there is a corresponding input function (also called a factor)
ψS :

∏
i∈S Dom(Xi)→ D for some fixed D.

A number f ∈ [n]. Let F := [f]. Variables in XF are called free variables, while variables
in X[n]−F are called bound variables.
For each i ∈ [n]− F , there is a commutative semiring (D,

⊕(i)
,
⊗

). (All the semirings
share the same D and

⊗
but can potentially have different

⊕(i)).4
The FAQ problem is to compute the following function ϕ(xF) :

∏
i∈F Dom(Xi)→ D

ϕ(xF) :=
(f+1)⊕
xf+1

. . .

(n)⊕
xn

⊗
S∈E

ψS(xs). (4)

4 More generally, instead of (D,⊕(i),⊗) being a semiring, we also allow some ⊕
(i)

to be identical to ⊗.

ICDT 2019

21:6 Boolean Tensor Decomposition for Conjunctive Queries with Negation

Consider the conjunctive query Q(XF) ←
∧
S∈E RS(XS) where XF is the set of

free variables. The FAQ framework models each input relation RS as a Boolean func-
tion ψS(xS), called a “factor”, in which ψS(xS) = true iff xS ∈ RS . Then, computing
the output Q(XF) is equivalent to computing the Boolean function ϕ(xF) defined as
ϕ(xF) =

∨
xf+1
· · ·
∨
xn

∧
S∈E ψS(xS). Instead of Boolean functions, this expression can be

defined in SumProd form over functions on a commutative semiring (D,⊕,⊗):

ϕ(xF) =
⊕
xf+1

· · ·
⊕
xn

⊗
S∈E

ψS(xS). (5)

The semiring ({true, false},∨,∧) was used for Q above.
We next define tree decompositions and the fhtw and subw parameters. We refer the

reader to the recent survey by Gottlob et al. [15] for more details and a historical context.
In what follows, the hypergraph H should be thought of as the hypergraph of the input
FAQ query, although the notions of tree decomposition and width parameters are defined
independently of queries.

A tree decomposition of a hypergraph H = (V, E) is a pair (T, χ), where T is a tree and
χ : V (T)→ 2V maps each node t of the tree to a subset χ(t) of vertices such that:
(a) Every hyperedge S ∈ E is a subset of some χ(t), t ∈ V (T) (i.e. every edge is covered by

some bag);
(b) For every vertex v ∈ V, the set {t | v ∈ χ(t)} is a non-empty (connected) sub-tree of T .

This is called the running intersection property.
The sets χ(t) are often called the bags of the tree decomposition. Let TD(H) denote the set
of all tree decompositions of H. When H is clear from context, we use TD for brevity.

I Definition 2.5 (F -connex tree decomposition [9, 32]). Given a hypergraph H = (V, E) and
a set F ⊆ V, a tree decomposition (T, χ) of H is F -connex if there is a subset V ′ ⊆ V (T)
that forms a connected subtree of T and satisfies

⋃
t∈V ′ χ(t) = F . We use TDF to denote the

set of all F -connex tree decompositions of H. (Note that when F = ∅, TDF = TD.)

To define width parameters, we use the polymatroid characterization from [3]. A function
f : 2V → R+ is called a (non-negative) set function on V. A set function f on V is modular
if f(S) =

∑
v∈S f({v}) for all S ⊆ V, it is monotone if f(X) ≤ f(Y) whenever X ⊆ Y ⊆ V,

and it is submodular if f(X ∪ Y) + f(X ∩ Y) ≤ f(X) + f(Y) for all X,Y ⊆ V . A monotone,
submodular set function h : 2V → R+ with h(∅) = 0 is called a polymatroid. Let Γn denote
the set of all polymatroids on V = [n].

Given a hypergraph H = (V, E), define the set of edge dominated set functions, denoted
by EDH or ED when H is clear from the context, as follows:

ED := {h | h : 2V → R+, h(S) ≤ 1,∀S ∈ E}. (6)

We can now define the submodular width and fractional hypertree width of a given hypergraph
H (or of a given FAQ query with hypergraph H): 5

fhtw(H) := min
(T,χ)∈TD

max
h∈ED∩Γn

max
t∈V (T)

h(χ(t)), fhtwF (H) := min
(T,χ)∈TDF

max
h∈ED∩Γn

max
t∈V (T)

h(χ(t)),

subw(H) := max
h∈ED∩Γn

min
(T,χ)∈TD

max
t∈V (T)

h(χ(t)), subwF (H) := max
h∈ED∩Γn

min
(T,χ)∈TDF

max
t∈V (T)

h(χ(t)).

5 Although this definition for fhtw differs from the original one [17, 15], the two definitions have been
shown to be equivalent [3].

M. Abo Khamis, H.Q. Ngo, D. Olteanu, and D. Suciu 21:7

It is known that subw(H) ≤ fhtw(H), and there are classes of hypergraphs with bounded
subw and unbounded fhtw [23]. Furthermore, fhtw is strictly less than other width notions
such as (generalized) hypertree width and tree width.

I Theorem 2.6 ([2]). Given an FAQ ϕ over a single semiring with hypergraph H = (V, E)
and free variables F ⊆ V over a database of size N , the InsideOut algorithm can answer ϕ in
time O(|E| · |V|2 · logN · (N fhtwF (H) + |output|)).

I Theorem 2.7 ([3]). Given an FAQ ϕ over the Boolean semiring with hypergraph H = (V, E)
and free variables F ⊆ V over a database of size N , the PANDA algorithm can answer ϕ in
time O(|V| · 22|V| · (poly(logN) ·N subwF (H) + logN · |output|)).

3 Example

We illustrate our approach using the following Boolean query6:

C ← R(X,Y), S(Y, Z),¬T (X,Z) (7)

where all input relations have sizes upper bounded by N and thus the active domain of any
variable X has size at most N . The query C can be answered trivially in time O(N2) by
joining R and S first, and then, for each triple (x, y, z) in the join, by verifying whether
(x, z) /∈ T with a (hash) lookup. Suppose we know that the degree of relation T is less than
two. Can we do better than O(N2) in that case? The answer is YES.

Rewriting to not-all-equal predicates

By viewing T as a bipartite graph of maximum degree two, it is easy to see that T can
be written as a disjoint union of two relations M1(X,Z) and M2(X,Z) that represent
matchings in the following sense: for any i ∈ [2], if (x, z) ∈Mi and (x′, z′) ∈Mi, then either
(x, z) = (x′, z′) or x 6= x′ and z 6= z′. Let Dom(Z) denote the active domain of the variable
Z. Define, for each i ∈ [2], a singleton relation Wi(Z) ← Dom(Z) ∧ ¬(πZMi)(Z). Clearly,
|Wi| ≤ N and given Mi, Wi can be computed in O(N) preprocessing time. For each i ∈ [2],
create a new variable Xi with domain Dom(Xi) = Dom(X). Then,

¬Mi(X,Z) ≡Wi(Z) ∨ ∃Xi

[
Mi(Xi, Z) ∧ NAE(X,Xi)

]
. (8)

The predicate NAE stands for not-all-equal: It is the negation of the conjunction of pairwise
equality on its variables. For arity two as in the rewriting of ¬Mi(X,Z), NAE(X,Xi) stands
for the disequality X 6= Xi.

From T = M1∨M2 and (8), we can rewrite the original query C from (7) into a disjunction
of Boolean conjunctive queries without negated relations but with one or two extra existential
variables that are involved in disequalities (6=): C ≡

∨
i∈[4] Ci, where

C1 ←R(X,Y) ∧ S(Y, Z) ∧W1(Z) ∧W2(Z).
C2 ←R(X,Y) ∧ S(Y, Z) ∧W1(Z) ∧M2(X2, Z) ∧X 6= X2.

C3 ←R(X,Y) ∧ S(Y, Z) ∧W2(Z) ∧M1(X1, Z) ∧X 6= X1.

C4 ←R(X,Y) ∧ S(Y, Z) ∧M1(X1, Z) ∧M2(X2, Z) ∧X 6= X1 ∧X 6= X2.

6 If R, S, and T would record direct train connections between cities, then this query would ask whether
there exists a pair of cities with no direct train connection but with connections via another city.

ICDT 2019

21:8 Boolean Tensor Decomposition for Conjunctive Queries with Negation

It takes linear time to compute the matching decomposition of T into M1 and M2 since:
(1) the relation T is a bipartite graph with degree at most two, and it is thus a union of
even cycles and paths; and (2) we can traverse the cycles and paths and add alternative
edges to M1 and M2. In general, when the maximum degree is higher and when T is not a
binary predicate, Proposition 2.3 shows how to decompose a relation into high-dimensional
matchings efficiently. The number of queries Ci depends exponentially on the arities and
degrees of the negated relations.

Boolean tensor decomposition

The acyclic query C1 can be answered in O(N logN) time using for instance InsideOut [2];
this algorithm first sorts the input relations in time O(N logN). The query C2 can be
answered as follows. Let ∀i ∈ [logN], fi : Dom(X)→ {0, 1} denote the function such that
fi(X) is the ith bit of X in its binary representation. Then, by noticing that

X 6= X2 ≡
∨

b∈{0,1}

∨
i∈[logN]

fi(X) = b ∧ fi(X2) 6= b (9)

we can break up the query C2 into the disjunction of 2 logN acyclic queries of the form

Cb,i2 ← R(X,Y) ∧ S(Y, Z) ∧W1(Z) ∧M2(X2, Z) ∧ fi(X) = b ∧ fi(X2) 6= b. (10)

For a fixed b, both fi(X) = b and fi(X2) 6= b are singleton relations on X and X2, respectively.
Then, C2 can be answered in time O(N log2 N). The same applies to C3. We can use the
same trick to answer C4 in time O(N log3 N). However, we can do better than that by
observing that when viewed as a Boolean tensor in (9), the disequality tensor has the Boolean
rank bounded by O(logN). In order to answer C4 in time O(N log2 N), we will show that the
three-dimensional tensor (X 6= X1) ∧ (X 6= X2) has the Boolean rank bounded by O(logN)
as well. To this end, we extend the color-coding technique. We can further shave off a logN
factor in the complexities of C2, C3, and C4, as explained in Section 6.

Construction of the Boolean tensor decomposition

We next explain how to compute a tensor decomposition for the conjunction of disequalities
in C4. We show that there exists a family F of functions f : Dom(X)→ {0, 1} satisfying the
following conditions:
(i) |F| = O(log |Dom(X)|) = O(logN),
(ii) For every triple (x, x1, x2) ∈ Dom(X)3 for which x 6= x1 ∧ x 6= x2, there is a function

f ∈ F such that f(x) 6= f(x1) ∧ f(x) 6= f(x2), and
(iii) F can be constructed in time O(N logN).
We think of each function f as a “coloring” that assigns a “color” in {0, 1} to each element
of Dom(X). Assuming (i) to (iii) hold, it follows that

X 6= X1 ∧X 6= X2 ≡
∨

(c,c1,c2)

∨
f∈F

f(X) = c ∧ f(X1) = c1 ∧ f(X2) = c2, (11)

where (c, c1, c2) ranges over all triples in {0, 1}3 such that c 6= c1 and c 6= c2. Given this
Boolean tensor decomposition, we can solve C4 in time O(N log2 N).

We prove (i) to (iii) using a combinatorial object called the disjunct matrices. These
matrices are the central subject of combinatorial group testing [24, 12].

M. Abo Khamis, H.Q. Ngo, D. Olteanu, and D. Suciu 21:9

I Definition 3.1 (k-disjunct matrix). A t×N binary matrix A = (aij) is called a k-disjunct
matrix if for every column j ∈ [N] and every set S ⊆ [N] such that |S| ≤ k and j /∈ S, there
exists a row i ∈ [t] for which aij = 1 and aij′ = 0 for all j′ ∈ S.

It is known that for every integer k <
√
N , there exists a k-disjunct matrix (or equivalently

a combinatorial group testing [24]) with t = O
(
k2 logN

)
rows that can be constructed in

time O(k2N logN) [31]. (If k ≥
√
N , we can just use the identity matrix.) In particular,

for N = |Dom(X)| and k = 2, a 2-disjunct matrix A = (aij) of size O(logN) × N can
be constructed in time O(N logN). From the matrix we define the function family F by
associating a function fi to each row i of the matrix, and every member x ∈ Dom(X) to a
distinct column jx of the matrix. Define fi(x) = ai,jx and (i)–(iii) straightforwardly follow.

4 Untangling bounded-degree relations

In this section we introduce a rewriting of queries of the form (1) into queries with so-called
not-all-equal predicates, under the assumption that the relation RS(XS) for every hyperedge
S ∈ E has bounded degree deg(RS).

I Definition 4.1 (Not-all-equal). Let k ≥ 2 be an integer, and S be a set of k integers. The
relation NAEk(XS), or NAE(XS) for simplicity, holds true iff not all variables in XS are
equal: NAE(XS) = ¬

∧
{i,j}∈(S2)Xi = Xj .

The disequality (6=) relation is exactly NAE2. The negation of a matching is connected
to NAE predicates as follows.

I Proposition 4.2. Let M(XS) be a k-ary matching, where k = |S| ≥ 2. For any i, j ∈ S,
define the unary relation Wi(Xi)← Dom(Xi) ∧ ¬(πiM)(Xi) and the binary relation Mij =
πi,jM . For any ` ∈ S, it holds that

¬M(XS) ≡

 ∨
i∈S\{`}

Wi(Xi)

∨∃YS\{`}
NAE(X`,YS\{`}) ∧

∧
j∈S\{`}

M`j(Yj , Xj)

 . (12)
Proof. The intuition for this rewriting is as follows. A value xi ∈ Dom(Xi) occurs in at
most one tuple in the matching M . Therefore, any value in a tuple determines the rest of
the tuple. The rewriting in (12) first turns every tuple in M into a tuple whose values are
all the same, i.e., all-equal values. The negation of M consists of tuples with at least two
different values, i.e., not-all-equal values.

We next prove that the rewriting is correct.
In one direction, consider a tuple xS /∈M , i.e., ¬M(xS) holds, and suppose xi /∈Wi for

all i ∈ S \ {`}. This means, for every i ∈ S \ {`}, there is a unique tuple t(i) = (t(i)j)j∈S ∈M
such that xi = t

(i)
i . Define yj = t

(j)
` for all j ∈ S \ {`}. The tuple yS\{`} satisfies

(yj , xj) = (t(j)` , t
(j)
j) ∈M`j , for all j ∈ S \ {`}. Moreover, one can verify that NAE(x`,yS\{`})

holds. In particular, if yj = x` for all j ∈ S \ {`}, then all tuples t(j) ∈M are the same tuple
(since M is a matching) and that tuple is xS . Hence xS ∈M which is a contradiction.

Conversely, suppose there exists a tuple (xS ,yS\{`}) satisfying the right hand side
of (12). If xi ∈ Wi for any i ∈ S \ {`}, then xS /∈ M , i.e., xS satisfies the left hand side
of (12). Now, suppose xi /∈ Wi for all i ∈ S \ {`}. Suppose to the contrary that xS ∈ M .
Then, for all j ∈ S \ {`} we have yj = x` since M`j(yj , xj) must hold. This means that
NAE(x`,yS\{`}) = ¬ ∧j∈S\{`} x` = yj does not hold. This contradicts our hypothesis. J

ICDT 2019

21:10 Boolean Tensor Decomposition for Conjunctive Queries with Negation

We use the connection to NAE predicates to decompose a query containing a conjunction
of negated bounded-degree relations into a disjunction of positive terms, as given next by
Proposition 4.3. We call this rewriting untangling.

Let fhtwF and subwF denote the fractional hypertree width and respectively the sub-
modular width of the conjunctive query Q(XF) ← body (These notions are defined in
Section 2.2).

I Proposition 4.3. Let Q be the query defined in Eq. (1): Q(XF)← body∧
∧
S∈E ¬RS(XS).

We can compute in linear time a collection of B hypergraphs Hi = (Vi, Ei) such that

Q(XF) ≡
∨
i∈[B]

Qi(XF), where ∀i ∈ [B] : Qi(XF)← bodyi ∧
∧
S∈Ei

NAE(ZS), (13)

and bodyi is the body of a conjunctive query satisfying

fhtwF (bodyi) ≤ fhtwF (body), and subwF (bodyi) ≤ subwF (body).

Furthermore, the number B of queries is bounded by B ≤
∏
S∈E(|S|)

|S|(deg(RS)−1)+1.

Proof. From Proposition 2.3, each relation RS(XS) can be written as a disjoint union of
DS ≤ |S|(deg(RS)− 1) + 1 matchings M `

S , ` ∈ [DS]. These matchings can be computed in
linear time. Hence, the second half of the body of query Q can be rewritten equivalently as∧

S∈E

¬RS(XS) ≡
∧
S∈E

¬
∨

`∈[DS]

M `
S(XS) ≡

∧
S∈E
`∈[DS]

¬M `
S(XS).

To simplify notation, let E1 denote the multiset of edges obtained from E by duplicating the
edge S ∈ E exactly DS times. Furthermore, for the `-th copy of S, associate the matching
M `
S with the copy of S in E1; use MS to denote the matching corresponding to that copy.

Then, we can write Q equivalently Q(XF)← body ∧
∧
S∈E1

¬MS(XS).
For each S ∈ E1, fix an arbitrary integer `S ∈ S. From Proposition 4.2, the negation of

MS can be written as

¬MS(XS) ≡
(∨
i∈S\{`S}

WS
i (Xi)

)
∨∃Y S

S\{`S}

[∧
j∈S\{`S}

(π`S ,jMS)(Y Sj , Xj)∧NAE(X`S ,Y
S
S\{`S})

]
,

where WS
i is a unary relation on variable Xi, and Y S

S\{`S} = (Y Si)i∈S\{`S} is a tuple of fresh
variables, only associated with (the copy of) S. In particular, if S and S′ are two distinct
items in the multiset E1, then Y Si and Y S′i are two distinct variables.

Each negated term ¬MS(XS) is thus expressed as a disjunction of |S| positive terms.
We can then express the conjunction of |E1| negated terms as the disjunction of

∏
S∈E1

|S|
conjunctions. For this, define a collection of tuples T =

∏
S∈E1

S. In particular, every
member T ∈ T is a tuple T = (tS)S∈E1

where tS ∈ S. The second half of the body of query
Q can be rewritten equivalently as∧

S∈E

¬RS(XS) ≡
∧
S∈E1

¬MS(XS)

≡
∧
S∈E1

 ∨
i∈S\{`S}

WS
i (Xi) ∨ ∃Y S

S\{`S}
[∧
j∈S\{`S}

(π`S ,jMS)(Y Sj , Xj) ∧ NAE
(
X`S ,Y

S
S\{`S}

)]
≡
∨
T∈T

∧
S∈E1
tS 6=`S

WS
tS (XtS) ∧

∧
S∈E1
tS=`S

∃Y S
S\{`S}

[∧
j∈S\{`S}

(π`S ,jMS)(Y Sj , Xj) ∧ NAE
(
X`S ,Y

S
S\{`S}

)]

M. Abo Khamis, H.Q. Ngo, D. Olteanu, and D. Suciu 21:11

The original query Q is equivalent to the disjunction

Q(XF) ≡
∨
T∈T

QT (XF)

of up to
∏
S∈E1

|S| queries QT defined by

body ∧
∧
S∈E1
tS 6=`S

WS
tS (XtS) ∧

∧
S∈E1
tS=`S

j∈S\{`S}

(π`S ,jMS)(Y Sj , Xj)

︸ ︷︷ ︸
bodyi

∧
∧
S∈E1
tS=`S

NAE
(
X`S ,Y

S
S\{`S}

)
(14)

In the above definition of QT , let us denote all but the last conjunction of NAE predicates
by bodyi. It holds that fhtwF (bodyi) ≤ fhtwF (body), and subwF (bodyi) ≤ subwF (body) [1].
We now turn to the conjunction of NAE predicates in (14). Since each S ∈ E is repeated at
most |S|(deg(RS)− 1) + 1 times in E1, it follows that the number

∏
S∈E1

|S| of conjunctive
queries QT is at most

∏
S∈E |S|

|S|(deg(RS)−1)+1. J

5 Boolean tensor decomposition

Thanks to the untangling result in Proposition 4.3, we only need to concentrate on answering
queries of the form (13). To deal with the conjunction of NAE predicates, this section describes
the construction of a Boolean tensor decomposition of a conjunction

∧
S∈A NAE(XS) of NAE

predicates. The multi-hypergraph of this conjunction has the query variables as vertices and
the NAE predicates as hyperedges.

I Lemma 5.1. Let G = (U,A) be the multi-hypergraph of a conjunction
∧
S∈A NAE(XS), N

an upper bound on the domain sizes for variables (Xi)i∈U , and c a positive integer. Suppose
there exists a family F of functions f : [N]→ [c] satisfying the following property

for any proper N -coloring h : U → [N] of G there exists a function f ∈ F (15)
such that f ◦ h is a proper c-coloring of G.

Then, the following holds:∧
S∈A

NAE(XS) ≡
∨
g

∨
f∈F

∧
i∈U

f(Xi) = g(i), (16)

where g ranges over all proper c-colorings of G. In particular, the Boolean tensor rank of the
left-hand side of (16) is bounded by r = P (G, c) · |F|.

Proof. Let xU denote any tuple satisfying the LHS of (16). Define h : U → [N] by setting
h(i) = xi. Then h is a proper N -coloring of G, which means there exists f ∈ F such that
g = f ◦ h is a proper c-coloring of G. Then the conjunct on the RHS corresponding to this
particular pair (g, f) is satisfied.

Conversely, let xU denote any tuple satisfying the RHS of (16). Then, there is a pair
(g, f) whose corresponding conjunct on the RHS of (16) is satisfied, i.e., f(xi) = g(i) for all
i ∈ U . Recall that g is a proper c-coloring of G. If there exists S ∈ A such that NAE(xS)
does not hold, then xi = xj for all i, j ∈ S, implying g(i) = f(xi) = f(xj) = g(j) for all
i, j ∈ S, contradicting the fact that g is a proper coloring.

For the Boolean tensor rank statement, note that (16) is a Boolean tensor decomposition
of the formula

∧
S∈A NAE(XS), because f(Xi) = g(i) is a unary predicate on variable Xi.

This predicate is of size bounded by N . J

ICDT 2019

21:12 Boolean Tensor Decomposition for Conjunctive Queries with Negation

To explain how Lemma 5.1 can be applied, we exemplify two techniques, showing the intimate
connections of our Boolean tensor decomposition problem to combinatorial group testing
and perfect hashing.

I Example 5.2 (Connection to group testing). Consider the case when the graph G is a k-star,
i.e., a tree with a center vertex and k leaf vertices. Let A be a O(k2 logN) × N binary
k-disjunct matrix, which can be constructed in time O(kN logN) (This is due to known
results on k-restriction and error codes, recalled in the extended paper [1]). We can assume
k <
√
N to avoid triviality. Consider a family F of functions f : [N]→ {0, 1} constructed as

follows: there is a function f for every row i of A, where f(j) = aij , for all j ∈ [N]. The
family F has size O(k2 logN). We show that F satisfies condition (15). Let h : U → [N]
denote any coloring of the star. Let j ∈ [N] be the color h assigns to the center, and S be
the set of colors assigned to the leaf nodes. Clearly j /∈ S. Hence, there is a function f ∈ F
for which f(j) = 1 and f(j′) = 0 for all j′ ∈ S, implying f ◦ h is a proper 2-coloring of G.

A consequence of our observation is that for a k-star G the conjunction
∧
S∈A NAE(XS)

has Boolean rank bounded by O(k2 logN).

I Example 5.3 (Connection to perfect hashing). Consider now the case when the graph G is
a k-clique. Let F denote any (N, c, k)-perfect hash family, i.e., a family of hash functions
from [N] → [c] such that for every subset S ⊆ [N] of size k, there is a function f in the
family for which its image is also of size k. It is easy to see that this hash family satisfies (15).
From [6], it is known that we can construct in polytime an (N, k2, k)-perfect hash family of
size O(k4 logN). However, it is not clear what the runtime exponent of their construction
is. What we need for our application is that the construction should run in linear data
complexity and in polynomial query complexity. We use a result from [31] to exhibit such a
construction in Theorem 5.6; furthermore, our hash family has size only O(k2 logN).

We next construct the smallest family F satisfying Lemma 5.1. We first bound the size of
F using the probabilistic method [7] and then specify how to derandomize the probabilistic
construction of F to obtain a deterministic algorithm. For this, we need some terminology.

Every coloring h : U → [N] of G = (U,A) induces a homomorphic image h(G) =
(h(U), h(A)), which is the graph on vertex set h(U) and edge set h(A) defined by

h(U) = {h(v) | v ∈ U} ⊆ [N], h(A) =
{
h(S) = {h(v) | v ∈ S} | S ∈ A

}
⊆ 2[N].

Here, we overload notation to allow h range over sets and graphs. Let col(G, N) denote
the set of proper N -colorings h of G. Each such proper N -coloring is a homomorphic
image of G. Define c as the maximum chromatic number over all homomorphic images of
G: c = maxh∈col(G,N) χ(h(G)). For a given h ∈ col(G, N), let g : h(U) → [c] be a proper
c-coloring of h(G). The multiplicity of a color i ∈ [c] is the number of vertices colored i by
g. The signature of g is the vector µ(g) = (µi)i∈[c], where µi is the multiplicity of color i.
Let Tc(h) denote the collection of all signatures of proper c-colorings of h(G). For a given
signature µ = (µ1, . . . , µc) ∈ Tc(h), let n(µ, h) denote the number of proper c-colorings of
h(G) whose signature is µ.

I Example 5.4. Suppose G is the k-clique and c = k. Then, every proper k-coloring of h(G)
has signature µ = 1k = (1, 1, . . . , 1): Tc(h) has only one member, but n(1, h) = k!. If G is
the k-star then c = 2 and for any h ∈ col(G, N), h(G) is an `-star for some ` ∈ [k]. Then,
T2(h) has two signatures: µ = (`, 1) and µ′ = (1, `); furthermore, n(µ, h) = n(µ′, h) = 1.

I Definition 5.5 (Strongly Explicit Construction). A family F of functions f : [N]→ [c] is
said to be strongly explicit if there is an algorithm that, given an index to a function f in F
and a number j ∈ [N], returns f(j) in poly(log |F|, logN)-time.

M. Abo Khamis, H.Q. Ngo, D. Olteanu, and D. Suciu 21:13

The next theorem gives two upper bounds on the size of a family of hash functions
satisfying (15) that we use to define the rank of our Boolean tensor decomposition: The first
bound is for such families in general, whereas the second is for strongly explicit families that
we can use effectively.

I Theorem 5.6. Let G = (U,A) be a multi-hypergraph, c = maxh∈col(G,N) χ(h(G)), and
p = (p1, . . . , pc) ∈ Rc+ be a fixed non-negative real vector such that ‖p‖1 = 1. Define

θ(p) = min
h∈col(G,N)

∑
µ∈Tc(h)

n(µ, h)
c∏
i=1

pµii (17)

Then, the following hold:
(a) There exists a family F of functions f : [N]→ [c] satisfying (15) such that

|F| ≤
⌈

lnP (G, N)
θ(p)

⌉
≤ |U | logN

θ(p) . (18)

(b) There is a strongly explicit family F ′ of functions f : [N]→ [c] satisfying (15) such that

|F ′| = O

(
|U |3 · log |U | · logN

θ(p)

)
. (19)

The next corollary follows immediately from Lemma 5.1 and Theorem 5.6.

I Corollary 5.7. Let G = (U,A) be a multi-hypergraph, c = maxh∈col(H,N) χ(h(G)), and

θ∗ = max
p:‖p‖1=1,p≥0

θ(p), (20)

where θ(p) is defined in (17). The following hold:
(a) The Boolean rank of the function

∧
F∈A NAE(XF) is upper bounded by P (G,c)·lnP (G,N)

θ∗ .
(b) Given p, there is a strongly explicit Boolean tensor decomposition of

∧
F∈A NAE(XF)

whose rank is upper bounded by P (G, c) · |U |
3·log |U |·logN

θ(p) .

To apply the above result, we need to specify p to maximize θ(p). We do not know
how to compute the optimizer p∗ in closed form. We next discuss several observations that
allow us to bound θ∗ from below or compute it exactly. In the following, for any tuple
µ = (µ1, . . . , µ`) of positive integers, let Kµ denote the complete `-partite graph defined as
follows. For every i ∈ [`] there is an independent set Ii of size µi. All independent sets are
disjoint. The vertex set is

⋃
i∈[`] Ii and the vertices not belonging to the same independent

set are connected. Without loss of generality, we assume µ1 ≥ · · · ≥ µ` when specifying the
graph Kµ. For example, K1k is the k-clique, and K(k,1) is the k-star.

I Proposition 5.8. The following hold:
(a) Given a multi-hypergraph G = (U,A) with |U | = k and c = maxh∈col(G,N) χ(h(G)), it

holds that θ∗ ≥ 1
cc ≥

1
kk
.

(b) Suppose G = Kµ for some positive integer tuple µ = (µ1, . . . , µ`), where µ1 ≥ · · · ≥ µ` ≥
1. Let S` denote the set of all permutations of [`], and FP(µ) denote the number of
permutations π ∈ S` for which µi = µπ(i),∀i ∈ [`]. Then,

θ∗ = max
p

∑
π∈S`

∏̀
i=1

p
µπ(i)
i ≥

∑
π∈S`

∏̀
i=1

(
µi
‖µ‖1

)µπ(i)

≥ FP(µ)
∏̀
i=1

(
µi
‖µ‖1

)µi
. (21)

ICDT 2019

21:14 Boolean Tensor Decomposition for Conjunctive Queries with Negation

I Corollary 5.9. Let ` ∈ [k] be an integer. Let µ = (k− `,1`). Then, when G = Kµ we have

θ∗ ≥ `!
k`

(
k − `
k

)k−`
≥ `!
e`

1
k`
,

where e = 2.7.. is the base of the natural log. In particular, G is a (k − 1)-star when ` = 1
and the bound is θ∗ ≥ 1

ek . When ` = k, then G is a k-clique and the bound is θ∗ = k!/kk.

For any constant ` ∈ [k], the bound for θ∗ is Ω(1/k`); in particular, the lower bound for θ∗
ranges anywhere between Ω(1/k), Ω(1/k2), up to Ω(k!/kk). There is a spectrum of these
bounds, leading to a spectrum of Boolean tensor ranks for our decomposition.

I Example 5.10. From (18) and the above corollary, it follows that when G is a k-star,
the corresponding Boolean rank is bounded by O(k2 logN), matching the group testing
connection from Example 5.2. The reason is twofold. We need two colors to color a k-star
and the chromatic polynomial of a k-star using two colors is two. The size of the family F of
hash functions is upper bounded by |U | logN

θ∗ where θ∗ is at least 1
ek and |U | = k + 1. Then,

|F| ≤ e · k · (k + 1) logN = O(k2 logN). This matches the tailor-made construction from
Example 5.2. However, our strongly explicit construction in Theorem 5.6(b) yields a slightly
larger Boolean tensor decomposition of rank O(k4 log k logN).

When applying part (b) of Proposition 5.8 to the problem of detecting k-paths in a graph,
i.e., the query P in the introduction, we obtain the Boolean rank O(k

k+3

k! · log k · logN).
This is because (1) we would need two colors and the chromatic polynomial for the k-path
hypergraph using two colors is two, and (2) the size of the family of strongly explicit functions
is O((k+1)3 log(k+1) logN

θ∗) with θ∗ = k!/kk.

6 How to use the tensor decomposition

Sections 4 and 5 introduced two rewriting steps. The first step transforms a conjunctive
query with negation of the form (1) into a disjunction of conjunctive queries with NAE
predicates of the form (13). The second step transforms a conjunction of NAE predicates
into a disjunction of conjunctions of one-variable-conditions of the form (16). The first step
exploited the bounded degrees of the negated relations to bound from above the number of
disjuncts and independently of the database size. The second step uses a generalization of
the color-coding technique to further rewrite a conjunction of NAE predicates into a Boolean
tensor decomposition whose rank depends on the structure of the multi-hypergraph of the
conjunction. Both rewriting steps preserve the equivalence of the queries.

In this section, we show that the query obtained after the two rewriting steps can be
evaluated efficiently. This query has the form Q(XF)←

∨
j∈[B] Qj(XF) where ∀j ∈ [B]:

Qj(XF)←
∨

g∈col(Gj ,cj)

∨
f∈Fj

 ∧
S∈Ej

RS(XS) ∧
∧
i∈Uj

f(Xi) = g(i)

︸ ︷︷ ︸

Q
(g,f)
j

(XF)

(22)

In particular, we will show that the data complexity of any conjunctive query with negation
of the form (1) is the same as for its positive subquery Q(XF)← body.

The subsequent development in this section uses the InsideOut algorithm and the FAQ
framework (see Section 2.2 and [2]). For each j ∈ [B], we distinguish two multi-hypergraphs
for the query Qj(XF): Hj = (Vj , Ej) and associated relations (RS)S∈Ej for

∧
S∈Ej RS(XS);

M. Abo Khamis, H.Q. Ngo, D. Olteanu, and D. Suciu 21:15

and Gj = (Uj ,Aj) for
∧
i∈Uj f(Xi) = g(i), where Uj ⊆ Vj . For the rest of this section,

we will fix some j ∈ [B] and drop the subscript j for brevity. In particular, we will use
H = (V, E),G = (U,A),F to denote Hj = (Vj , Ej),Gj = (Uj ,Aj),Fj respectively.

A better semiring for shaving off a logN factor

Let r = P (G, c) · |F| denote the Boolean tensor rank in the decomposition (16). If we
were only interested in bounding the rank, we can use the bound on |F| from Part (a) of
Theorem 5.6. However, for the purpose of using the Boolean tensor decomposition in an
algorithm, we have to be able to explicitly and efficiently construct the family F of functions.
We thus need to use the bound on |F| from Part (b) of Theorem 5.6. To facilitate the
explanations below, define w = |F|/ logN so that the Boolean rank is decomposed into
r = P (G, c) · w · logN ; that is, w = |U |3·log |U |

θ(p) from Part (b) of Theorem 5.6.
By Theorem 2.6, we can answer query (22) by running r instantiations of InsideOut, each

of which computes Q(g,f)
j for some fixed pair (g, f), and then take the disjunction of Q(g,f)

j

over g and f . The runtime is

O(P (G, c) · w · (|E|+ |U |) · |V |2 · (logN)2 · (N fhtwF (H) + |output|)). (23)

The atoms f(Xi) = g(i) are singleton factors, i.e., factors on one variable, and thus do not
increase the fractional hypertree width or the submodular width of the query.

These r instantiations of InsideOut are run on sum-product instances over the Boolean
semiring. We can however reformulate the problem as sum-product over a different semiring,
which helps reduce the runtime. The new semiring (D,⊕,⊗,0,1) is defined as follows.
The domain D is set to D = {0, 1}r, the collection of all r-bit vectors. The “addition”
and “multiplication” operators ⊕ and ⊗ are bit-wise max and min (essentially, bit-wise
∨ and ∧). The additive identity is 0 = 0r, the r-bit all-0 vector. The multiplicative
identity is 1 = 1r, the r-bit all-1 vector. To each input relation RS , we associate a function
ψS(XS) :

∏
i∈S Dom(Xi)→D, where ψS(xS) = 1 if xS ∈ RS and 0 otherwise. Also, define

|U | extra singleton factors ψi : Dom(Xi)→D (∀i ∈ U), where

ψi(xi) = (bg,f)g∈col(G,c),f∈F , where bg,f =
{

1 if f(xi) = g(i)
0 if f(xi) 6= g(i).

(24)

I Proposition 6.1. The query (22) is equivalent to the following SumProd expression

ϕ(xF) =
⊕
x|F |+1

· · ·
⊕
x|V |

⊗
S∈E

ψS(xS)⊗
⊗
i∈U

ψi(xi). (25)

The runtime of InsideOut for the expression ϕ(xF) is

O(P (G, c) · w · (|E|+ |U |) · |V |2 · logN · (N fhtwF (H) + |output|)). (26)

Proof. For any xF , we have Q(xF) = true iff ϕ(xF) 6= 0. This is because for each xF , the
value ϕ(xF) ∈ D is an r-bit vector where each bit represents the answer to Q(g,f)

j (XF) for
some pair (g, f) (There are exactly r = P (G, c) · |F| such pairs).

The runtime of InsideOut follows from the observation that each operation ⊕ or ⊗ can be
done in O(r/ logN)-time, because those are bit-wise ∨ or ∧ and the r-bit vector can be stored
in O(r/ logN) words in memory. Bit-wise ∨ and ∧ of two words are done in O(1)-time. J

We can further lower the data complexity of our approach using PANDA (See Section 2.2
and [3]). By Theorem 2.7, the complexity from (26) becomes:

O(P (G, c) · w · |V | · 22|V | · (poly(logN) ·N subwF (H) + logN · |output|)). (27)

ICDT 2019

21:16 Boolean Tensor Decomposition for Conjunctive Queries with Negation

The data complexity for conjunctive queries with negation

We are now ready to prove Theorem 1.1. From Proposition 4.3, we untangle Q into a disjunc-
tion of B different queries Qj for j ∈ [B] of the form (13) where B ≤

∏
S∈E(|S|)|S|(dS−1)+1 =

O(1) in data complexity. From (16), each of these queries is equivalent to query (22). For
a fixed g ∈ col(G, c) and f ∈ F , the inner conjunction Q(g,f)

j (XF) in (22) has at most the
widths fhtwF and subwF of body in the original query (1). Query (22) can be solved in
time (26) using InsideOut or (27) using PANDA.

7 Related Work

Color-coding. The color-coding technique [8] underlies existing approaches to answering
queries with disequalities [27, 9, 21], the homomorphic embedding problem [14], and motif
finding and counting in computational biology [4]. This technique has been originally
proposed for checking cliques of inequalities. It is typically used in conjunction with a
dynamic programming algorithm, whose analysis involves combinatorial arguments that
make it difficult to apply and generalize to problems beyond the path query from Eq. (2). For
example, it is unclear how to use color coding to recover the Plehn and Voigt result [30] for
the induced path query from Eq. (3). In this paper, we generalize the technique to arbitrary
conjunctions of NAE predicates and from graph coloring to hypergraph coloring.

Queries with disequalities. Our work also generalizes prior work on answering queries with
disequalities, which are a special case of queries with negated relations of bounded degree.

Papadimitriou and Yannakakis [27] showed that any acyclic join query Q with an arbitrary
set of disequalities on k variables can be evaluated in time 2O(k log k) · |D| · |Q(D)| · log2 |D|
over any database D. This builds on, yet uses more colors than the color-coding technique.

Bagan et al [9] extended this result to free-connex acyclic queries; they also shaved off a
log |D| factor by using a RAM model of computation differently from ours, where sorting
can be done in linear time.

Koutris et al [21] introduced a practical algorithm for conjunctive queries with disequalities:
Given a select-project-join (SPJ) plan for the conjunctive query without disequalities, the
disequalities can be solved uniformly using an extended projection operator. The reliance
on SPJ plans is a limitation, since it is known that such plans are suboptimal for join
processing [25] and are inadequate to achieve the fhtw and subw complexity bounds. Our
approach uses the InsideOut [2] and PANDA [3] query evaluation algorithms and inherits
their low data complexity, thus achieving both bounds as stated in Theorem 1.1.

Differently from prior work and in line with our work, Koutris et al [21] also investigated
query structures for which the combined complexity becomes polynomial: This is the case for
queries whose augmented hypergraphs have bounded treewidth (an augmented hypergraph
is the hypergraph of the skeleton conjunctive query extended with one hyperedge per
disequality). Koutris et al [21] further proposed an alternative query answering approach
that uses the probabilistic construction of the original color-coding technique coupled with
any query evaluation algorithm. When restricted to queries with disequalities, our query
complexity analysis is more refined than [21] as the number of colors used in our generalization
of color-coding is sensitive to the query structure.

Tensor decomposition. Our Boolean tensor decomposition for conjunctions of NAE predi-
cates draws on the general framework of tensor decomposition used in signal processing and
machine learning [19, 33]. It is a special case of sum-product decomposition and a powerful

M. Abo Khamis, H.Q. Ngo, D. Olteanu, and D. Suciu 21:17

tool. Typical dynamic programming algorithms solve subproblems by combining relations
and eliminating variables [34, 26, 2]. The sum-product decomposition is the dual approach
that decomposes a formula and introduces new variables. The PANDA algorithm [3] achieves
a generalization of the submodular width by rewriting a conjunction as a sum-product over
tree decompositions. By combining PANDA with our Boolean tensor decomposition, we can
answer queries with negation in time defined by the submodular width.

While close in spirit to k-restrictions [6], our approach to derandomization of the con-
struction of the Boolean tensor decomposition is different since we would like to execute
it in time defined by the fhtw-bound for computing body. Our derandomization uses a
code-concatenation technique where the outer-code is a linear error-correcting code on the
Gilbert-Varshamov boundary [31] that can be constructed in linear time. As a byproduct, the
code enables an efficient construction of an (N, k2, k)-perfect hash family of size O(k2 logN).
To the best of our knowledge, the prior constructions yield families of size O(k4 logN) [6].

Data sparsity. We connect two notions of sparsity in this work. One is the bounded degree
of the input relations that are negated in the query. There are notions of sparsity beyond
bounded degree, cf. [28] for an excellent and comprehensive course on sparsity. The most
refined sparsity notion is that of nowhere denseness [16], which characterizes the input
monotone graph classes on which FO model checking is fixed-parameter tractable. We leave
as future work the generalization of our work to queries with negated nowhere-dense relations.

The second notion of sparsity used in this work is given by the Boolean tensor rank of
the Boolean tensor decomposition of the conjunction of NAE predicates. We note that the
relation represented by such a conjunction is not necessarily nowhere dense.

8 Concluding remarks

In this paper, we studied the complexity of answering conjunctive queries with negation on
relations of bounded degree. We give an approach that matches the data complexity of the
best known query evaluation algorithms InsideOut [2] and PANDA [3].

An intriguing venue of future research is to further lower the query complexity of our
approach. Proposition 5.8 presented lower bounds on θ∗ that are dependent on the structure
of the multi-hypergraph G of the input query. It is an intriguing open problem to give a
lower bound on θ∗ that is dependent on some known parameter of G. The extended version
of this paper [1] discusses two further ideas on how to reduce the query complexity:

Cast coloring as a join of “coloring predicates” and apply the InsideOut algorithm on the
resulting query with the coloring predicates taken into account; and

Exploit symmetry to answer the k-path query in time 2O(k)N logN [8] instead of
O(kkN logN).

Our approach extends immediately to unions of conjunctive queries with negated relations
and of degree bounds on the positive relations. In the latter case, we can achieve a runtime
depending on the degree-aware version of the submodular width [3].

We finally note that our Boolean tensor decomposition technique cannot be generalized to
more powerful semirings such as the sum-product semiring over the reals due to an intrinsic
computational difficulty: The counting version of the (induced) k-path query from Section 1
is #W[1]-hard [11, 14].

ICDT 2019

21:18 Boolean Tensor Decomposition for Conjunctive Queries with Negation

References
1 Mahmoud Abo Khamis, Hung Q. Ngo, Dan Olteanu, and Dan Suciu. Boolean Tensor

Decomposition for Conjunctive Queries with Negation. CoRR, abs/1712.07445, 2017. arXiv:
1712.07445.

2 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: Questions Asked Frequently. In
PODS, pages 13–28, 2016.

3 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What Do Shannon-type Inequalities,
Submodular Width, and Disjunctive Datalog Have to Do with One Another? In PODS, pages
429–444, 2017.

4 Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Trans. Information Theory, 38(2):509–516, 1992.

5 Noga Alon and Jeong Han Kim. On the degree, size, and chromatic index of a uniform
hypergraph. J. Combin. Theory Ser. A, 77(1):165–170, 1997.

6 Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of sets for k-
restrictions. ACM Trans. Algorithms, 2(2):153–177, 2006.

7 Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.
8 Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. J. ACM, 42(4):844–856, 1995.
9 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive Queries

and Constant Delay Enumeration. In CSL, pages 208–222, 2007.
10 Yijia Chen and Jörg Flum. On Parameterized Path and Chordless Path Problems. In CCC,

pages 250–263, 2007.
11 Yijia Chen, Marc Thurley, and Mark Weyer. Understanding the Complexity of Induced

Subgraph Isomorphisms. In ICALP, pages 587–596, 2008.
12 Ding-Zhu Du and Frank K. Hwang. Combinatorial group testing and its applications, volume 12

of Series on Applied Mathematics. World Scientific Publishing Co. Inc., second edition, 2000.
13 V. Faber. Linear Hypergraph Edge Coloring. ArXiv e-prints, 2016. arXiv:1603.04938.
14 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2006.
15 Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. Hypertree Decompo-

sitions: Questions and Answers. In PODS, pages 57–74, 2016.
16 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding First-Order Properties of

Nowhere Dense Graphs. J. ACM, 64(3):17:1–17:32, 2017.
17 Martin Grohe and Dániel Marx. Constraint Solving via Fractional Edge Covers. ACM Trans.

Alg., 11(1):4, 2014.
18 Tommy R. Jensen and Bjarne Toft. Graph coloring problems. Wiley-Interscience Series

in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1995. A
Wiley-Interscience Publication.

19 Tamara G. Kolda and Brett W. Bader. Tensor Decompositions and Applications. SIAM Rev.,
51(3):455–500, 2009.

20 D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre.
Math. Ann., 77:453–465, 1916.

21 Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu. Answering Conjunctive Queries
with Inequalities. Theory Comput. Syst., 61(1):2–30, 2017.

22 Valentas Kurauskas and Katarzyna Rybarczyk. On the chromatic index of random uniform
hypergraphs. SIAM J. Discrete Math., 29(1):541–558, 2015.

23 Dániel Marx. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive
Queries. J. ACM, 60(6):42:1–42:51, November 2013. doi:10.1145/2535926.

24 Hung Q. Ngo and Ding-Zhu Du. A Survey on Combinatorial Group Testing Algorithms with
Applications to DNA Library Screening. In DIMACS, volume 55, pages 171–182. Amer. Math.
Soc., 2000.

http://arxiv.org/abs/1712.07445
http://arxiv.org/abs/1712.07445
http://arxiv.org/abs/1603.04938
http://dx.doi.org/10.1145/2535926

M. Abo Khamis, H.Q. Ngo, D. Olteanu, and D. Suciu 21:19

25 Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew Strikes Back: New Developments in the
Theory of Join Algorithms. In SIGMOD Rec., pages 5–16, 2013.

26 Dan Olteanu and Jakub Závodnỳ. Size Bounds for Factorised Representations of Query
Results. TODS, 40(1):2:1–2:44, 2015.

27 Christos H. Papadimitriou and Mihalis Yannakakis. On the Complexity of Database Queries.
J. Comput. Syst. Sci., 58(3):407–427, 1999.

28 Michał Pilipczuk and Sebastian Siebertz. Sparsity. Technical report, University of Warsaw,
December 2017. URL: https://www.mimuw.edu.pl/~mp248287/sparsity/.

29 Nicholas Pippenger and Joel Spencer. Asymptotic behavior of the chromatic index for
hypergraphs. J. Combin. Theory Ser. A, 51(1):24–42, 1989.

30 Jürgen Plehn and Bernd Voigt. Finding Minimally Weighted Subgraphs. In Graph-Theoretic
Concepts in Computer Science, pages 18–29, 1990.

31 Ely Porat and Amir Rothschild. Explicit Nonadaptive Combinatorial Group Testing Schemes.
IEEE Trans. Information Theory, 57(12):7982–7989, 2011.

32 Luc Segoufin. Enumerating with Constant Delay the Answers to a Query. In ICDT, pages
10–20, 2013.

33 Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Pa-
palexakis, and Christos Faloutsos. Tensor Decomposition for Signal Processing and Machine
Learning. Trans. Sig. Proc., 65(13):3551–3582, 2017.

34 Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In VLDB, pages 82–94, 1981.

ICDT 2019

https://www.mimuw.edu.pl/~mp248287/sparsity/

Constant-Delay Enumeration for Nondeterministic
Document Spanners
Antoine Amarilli
LTCI Paris, France
Télécom ParisTech, France
Université Paris-Saclay, France

Pierre Bourhis
CNRS Lille, CRIStAL UMR 9189, France
Inria Lille, France

Stefan Mengel
CNRS, CRIL UMR 8188, Lens, France

Matthias Niewerth
University of Bayreuth, Germany

Abstract

We consider the information extraction framework known as document spanners, and study the
problem of efficiently computing the results of the extraction from an input document, where the
extraction task is described as a sequential variable-set automaton (VA). We pose this problem in
the setting of enumeration algorithms, where we can first run a preprocessing phase and must then
produce the results with a small delay between any two consecutive results. Our goal is to have
an algorithm which is tractable in combined complexity, i.e., in the sizes of the input document
and the VA; while ensuring the best possible data complexity bounds in the input document
size, i.e., constant delay in the document size. Several recent works at PODS’18 proposed such
algorithms but with linear delay in the document size or with an exponential dependency in size of
the (generally nondeterministic) input VA. In particular, Florenzano et al. suggest that our desired
runtime guarantees cannot be met for general sequential VAs. We refute this and show that, given a
nondeterministic sequential VA and an input document, we can enumerate the mappings of the VA
on the document with the following bounds: the preprocessing is linear in the document size and
polynomial in the size of the VA, and the delay is independent of the document and polynomial in
the size of the VA. The resulting algorithm thus achieves tractability in combined complexity and
the best possible data complexity bounds. Moreover, it is rather easy to describe, in particular for
the restricted case of so-called extended VAs.

2012 ACM Subject Classification Information systems → Information extraction; Theory of com-
putation → Formal languages and automata theory; Theory of computation → Database query
processing and optimization (theory)

Keywords and phrases enumeration, spanners, automata

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.22

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.09320.

Funding Pierre Bourhis: Supported by the DeLTA ANR project (ANR-16-CE40-0007).
Matthias Niewerth: Supported by grant number MA 4938/4–1 from the Deutsche Forschungsgemein-
schaft.

© Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 22; pp. 22:1–22:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7977-4441
https://orcid.org/0000-0001-5699-0320
https://orcid.org/0000-0003-1386-8784
https://orcid.org/0000-0003-2032-5374
https://doi.org/10.4230/LIPIcs.ICDT.2019.22
https://arxiv.org/abs/1807.09320
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Constant-Delay Enumeration for Nondeterministic Document Spanners

1 Introduction

Information extraction from text documents is an important problem in data management.
One approach to this task has recently attracted a lot of attention: it uses document spanners,
a declarative logic-based approach first implemented by IBM in their tool SystemT [26] and
whose core semantics have then been formalized in [10]. The spanner approach uses variants
of regular expressions (e.g. regex formulas with variables), compiles them to variants of
finite automata (e.g., variable-set automata, for short VAs), and evaluates them on the input
document to extract the data of interest. After this extraction phase, algebraic operations like
joins, unions and projections can be performed. The formalization of the spanner framework
in [10] has led to a thorough investigation of its properties by the theoretical database
community [13, 15, 21, 14, 11].

We here consider the basic task in the spanner framework of efficiently computing the
results of the extraction, i.e., computing without duplicates all tuples of ranges of the
input document (called mappings) that satisfy the conditions described by a VA. As many
algebraic operations can also be compiled into VAs [15], this task actually solves the whole
data extraction problem for so-called regular spanners [10]. While the extraction task is
intractable for general VAs [13], it is known to be tractable if we impose that the VA is
sequential [15, 11], which requires that all accepting runs actually describe a well-formed
mapping; we will make this assumption throughout our work. Even then, however, it may
still be unreasonable in practice to materialize all mappings: if there are k variables to extract,
then mappings are k-tuples and there may be up to nk mappings on an input document of
size n, which is unrealistic if n is large. For this reason, recent works [21, 11, 15] have studied
the extraction task in the setting of enumeration algorithms: instead of materializing all
mappings, we enumerate them one by one while ensuring that the delay between two results
is always small. Specifically, [15, Theorem 3.3] has shown how to enumerate the mappings
with delay linear in the input document and quadratic in the VA, i.e., given a document d
and a functional VA A (a subclass of sequential VAs), the delay is O(|A|2 × |d|).

Although this result ensures tractability in both the size of the input document and
the automaton, the delay may still be long as |d| is generally very large. By contrast,
enumeration algorithms for database tasks often enforce stronger tractability guarantees
in data complexity [27, 30], in particular linear preprocessing and constant delay (when
measuring complexity in the RAM model with uniform cost measure [1]). Such algorithms
consist of two phases: a preprocessing phase which precomputes an index data structure in
linear data complexity, and an enumeration phase which produces all results so that the
delay between any two consecutive results is always constant, i.e., independent from the
input data. It was recently shown in [11] that this strong guarantee could be achieved when
enumerating the mappings of VAs if we only focus on data complexity, i.e., for any fixed VA,
we can enumerate its mappings with linear preprocessing and constant delay in the input
document. However, the preprocessing and delay in [11] are exponential in the VA because
they first determinize it [11, Propositions 4.1 and 4.3]. This is problematic because the VAs
constructed from regex formulas [10] are generally nondeterministic.

Thus, to efficiently enumerate the results of the extraction, we would ideally want to have
the best of both worlds: ensure that the combined complexity (in the sequential VA and in the
document) remains polynomial, while ensuring that the data complexity (in the document)
is as small as possible, i.e., linear time for the preprocessing phase and constant time for
the delay of the enumeration phase. However, up to now, there was no known algorithm
to satisfy these requirements while working on nondeterministic sequential VAs. Further, it
was conjectured that such an algorithm is unlikely to exist [11] because the related task of
counting the number of mappings is SpanL-hard for such VAs.

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth 22:3

The question of nondeterminism is also unsolved for the related problem of enumerating
the results of monadic second-order (MSO) queries on words and trees: there are several
approaches for this task where the query is given as an automaton, but they require the
automaton to be deterministic [6, 2] or their delay is not constant in the input document [19].
Hence, also in the context of MSO enumeration, it is not known whether we can achieve
linear preprocessing and constant delay in data complexity while remaining tractable in the
(generally non-deterministic) automaton. The result that we will show in the present paper
will imply that we can achieve this for MSO queries on words when all free variables are
first-order, with the query being represented as a generally non-deterministic sequential VA,
or as a sequential regex-formula with capture variables: note that an extension to trees is
investigated in our follow-up work [4].

Contributions. In this work, we show that nondeterminism is in fact not an obstacle to
enumerating the results of document spanners: we present an algorithm that enumerates
the mappings of a nondeterministic sequential VA in polynomial combined complexity while
ensuring linear preprocessing and constant delay in the input document. This answers the
open question of [11], and improves on the bounds of [15]. More precisely, we show:

I Theorem 1.1. Let 2 ≤ ω ≤ 3 be an exponent for Boolean matrix multiplication. Let A be
a sequential VA with variable set V and with state set Q, and let d be an input document.
We can enumerate the mappings of A on d with preprocessing time in O((|Q|ω+1 + |A|)× |d|)
and with delay O(|V| × (|Q|2 + |A| × |V|2)), i.e., linear preprocessing and constant delay in
the input document, and polynomial preprocessing and delay in the input VA.

The existence of such an algorithm is surprising but in hindsight not entirely unexpected:
remember that, in formal language theory, when we are given a word and a nondeterministic
finite automaton, then we can evaluate the automaton on the word with tractable combined
complexity by determinizing the automaton “on the fly”, i.e., computing at each position
of the word the set of states where the automaton can be. Our algorithm generalizes this
intuition, and extends it to the task of enumerating mappings without duplicates: we first
present it for so-called extended sequential VAs1, a variant of sequential VAs introduced
in [11], before generalizing it to sequential VAs. Our overall approach is to construct a kind
of product of the input document with the extended VA, similarly to [11]. We then use
several tricks to ensure the constant delay bound despite nondeterminism; in particular we
precompute a jump function that allows us to skip quickly the parts of the document where
no variable can be assigned. The resulting algorithm is rather simple and has no large hidden
constants. Note that our enumeration algorithm does not contradict the counting hardness
results of [11, Theorem 5.2]: while our algorithm enumerates mappings with constant delay
and without duplicates, we do not see a way to adapt it to count the mappings efficiently.
This is similar to the enumeration and counting problems for maximal cliques: we can
enumerate maximal cliques with polynomial delay [28], but counting them is #P-hard [29].

To extend our result to sequential VAs that are not extended, one possibility would
be to convert them to extended VAs, but this necessarily entails an exponential blowup
[11, Proposition 4.2]. We avoid this by adapting our algorithm to work with non-extended
sequential VAs directly. Our idea for this is to efficiently enumerate at each position the
possible sets of markers that can be assigned by the VA: we do so by enumerating paths

1 Note that, contrary to what the terminology suggests, VAs are not special cases of extended VAs.
Further, while extended VAs can be converted in PTIME to VAs, the converse is not true as there are
extended VAs for which the smallest equivalent VA has exponential size [11].

ICDT 2019

22:4 Constant-Delay Enumeration for Nondeterministic Document Spanners

in the VA, relying on the fact that the VA is sequential so these paths are acyclic. The
challenge is that the same set of markers can be captured by many different paths, but we
explain how we can explore efficiently the set of distinct paths with a technique known as
flashlight search [20, 25]: the key idea is that we can efficiently determine which partial sets
of markers can be extended to the label of a path (Lemma 6.4).

Of course, our main theorem (Theorem 1.1) implies analogous results for all spanner
formalisms that can be translated to sequential VAs. In particular, spanners are not usually
written as automata by users, but instead given in a form of regular expressions called
regex-formulas, see [10] for exact definitions. As we can translate sequential regex-formulas to
sequential VAs in linear time [10, 15, 21], our results imply that we can also evaluate them:

I Corollary 1.2. Let 2 ≤ ω ≤ 3 be an exponent for Boolean matrix multiplication. Let
ϕ be a sequential regex-formula with variable set V, and let d be an input document. We
can enumerate the mappings of ϕ on d with preprocessing time in O(|ϕ|ω+1 × |d|) and with
delay O(|V| × (|ϕ|2 + |ϕ| × |V|2)), i.e., linear preprocessing and constant delay in the input
document, and polynomial preprocessing and delay in the input regex-formula.

Another direct application of our result is for so-called regular spanners which are unions
of conjunctive queries (UCQs) posed on regex-formulas, i.e., the closure of regex-formulas
under union, projection and joins. We again point the reader to [10, 15] for the full definitions.
As such UCQs can in fact be evaluated by VAs, our result also implies tractability for such
representations, as long as we only perform a bounded number of joins:

I Corollary 1.3. For every fixed k ∈ N, let k-UCQ denote the class of document spanners
represented by UCQs over functional regex-formulas with at most k applications of the
join operator. Then the mappings of a spanner in k-UCQ can be enumerated with linear
preprocessing and constant delay in the document size, and with polynomial preprocessing
and delay in the size of the spanner representation.

Paper structure. In Section 2, we formally define spanners, VAs, and the enumeration
problem that we want to solve on them. In Sections 3–5, we prove our main result (Theo-
rem 1.1) for extended VAs, where the sets of variables that can be assigned at each position
are specified explicitly. We first describe in Section 3 the main part of our preprocessing
phase, which converts the extended VA and input document to a mapping DAG whose
paths describe the mappings that we wish to enumerate. We then describe in Section 4
how to enumerate these paths, up to having precomputed a so-called jump function whose
computation is explained in Section 5. Last, we adapt our scheme in Section 6 for sequential
VAs that are not extended. We conclude in Section 7.

2 Preliminaries

Document spanners. We fix a finite alphabet Σ. A document d = d0 · · · dn−1 is just a
word over Σ. A span of d is a pair [i, j〉 with 0 ≤ i ≤ j ≤ |d| which represents a substring
(contiguous subsequence) of d starting at position i and ending at position j − 1. To describe
the possible results of an information extraction task, we will use a finite set V of variables,
and define a result as a mapping from these variables to spans of the input document.
Following [11, 21] but in contrast to [10], we will not require mappings to assign all variables:
formally, a mapping of V on d is a function µ from some domain V ′ ⊆ V to spans of d. We
define a document spanner to be a function assigning to every input document d a set of
mappings, which denotes the set of results of the extraction task on the document d.

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth 22:5

Variable-set automata. We will represent document spanners using variable-set automata
(or VAs). The transitions of a VA can carry letters of Σ or variable markers, which are either
of the form x` for a variable x ∈ V (denoting the start of the span assigned to x) or ax
(denoting its end). Formally, a variable-set automaton A (or VA) is then defined to be an
automaton A = (Q, q0, F, δ) where the transition relation δ consists of letter transitions of
the form (q, a, q′) for q, q′ ∈ Q and a ∈ Σ, and of variable transitions of the form (q, x`, q′) or
(q,ax, q′) for q, q′ ∈ Q and x ∈ V . A configuration of a VA is a pair (q, i) where q ∈ Q and i
is a position of the input document d. A run σ of A on d is then a sequence of configurations

(q0, i0) σ1−→ (q1, i1) σ2−→ · · · σm−−→ (qm, im)

where i0 = 0, im = |d|, and where for every 1 ≤ j ≤ m:
Either σj is a letter of Σ, we have ij = ij−1 + 1, we have dij−1 = σj , and (qj−1, σj , qj) is
a letter transition of A;
Or σj is a variable marker, we have ij = ij−1, and (qj−1, σj , qj) is a variable transition
of A. In this case we say that the variable marker σj is read at position ij .

As usual, we say that a run is accepting if qm ∈ F . A run is valid if it is accepting, every
variable marker is read at most once, and whenever an open marker x` is read at a position
i then the corresponding close marker ax is read at a position i′ with i ≤ i′. From each
valid run, we define a mapping where each variable x ∈ V is mapped to the span [i, i′〉 such
that x` is read at position i and ax is read at position i′; if these markers are not read then
x is not assigned by the mapping (i.e., it is not in the domain V ′). The document spanner of
the VA A is then the function that assigns to every document d the set of mappings defined
by the valid runs of A on d: note that the same mapping can be defined by multiple different
runs. The task studied in this paper is the following: given a VA A and a document d,
enumerate without duplicates the mappings that are assigned to d by the document spanner
of A. The enumeration must write each mapping as a set of pairs (m, i) where m is a variable
marker and i is a position of d.

Sequential VAs. We cannot hope to efficiently enumerate the mappings of arbitrary VAs
because it is already NP-complete to decide if, given a VA A and a document d, there are
any valid runs of A on d [13]. For this reason, we will restrict ourselves to so-called sequential
VAs [21]. A VA A is sequential if for every document d, every accepting run of A of d is
also valid: this implies that the document spanner of A can simply be defined following the
accepting runs of A. If we are given a VA, then we can test in NL whether it is sequential
[21, Proposition 5.5], and otherwise we can convert it to an equivalent sequential VA (i.e.,
that defines the same document spanner) with an unavoidable exponential blowup in the
number of variables (not in the number of states), using existing results:

I Proposition 2.1. Given a VA A on variable set V, letting k := |V| and r be the number
of states of A, we can compute an equivalent sequential VA A′ with 3kr states. Conversely,
for any k ∈ N, there exists a VA Ak with 1 state on a variable set with k variables such that
any sequential VA equivalent to Ak has at least 3k states.

Proof. This can be shown exactly like [13, Proposition 12] and [12, Proposition 3.9]. In
short, the upper bound is shown by modifying A to remember in the automaton state which
variables have been opened or closed, and by re-wiring the transitions to ensure that the
run is valid: this creates 3k copies of every state because each variable can be either unseen,
opened, or closed. For the lower bound, [12, Proposition 3.9] gives a VA for which any
equivalent sequential VA must remember the status of all variables in this way. J

ICDT 2019

22:6 Constant-Delay Enumeration for Nondeterministic Document Spanners

All VAs studied in this work will be sequential, and we will further assume that they
are trimmed in the sense that for every state q there is a document d and an accepting run
of the VA where the state q appears. This condition can be enforced in linear time on any
sequential VA: we do a graph traversal to identify the accessible states (the ones that are
reachable from the initial state), we do another graph traversal to identify the co-accessible
states (the ones from which we can reach a final state), and we remove all states that are not
accessible or not co-accessible. We will implicitly assume that all sequential VAs have been
trimmed, which implies that they cannot contain any cycle of variable transitions (as such a
cycle would otherwise appear in a run, which would not be valid).

Extended VAs. We will first prove our results for a variant of sequential VAs introduced
by [11], called sequential extended VAs. An extended VA on alphabet Σ and variable set V is
an automaton A = (Q, q0, F, δ) where the transition relation δ consists of letter transitions
as before, and of extended variable transitions (or ev-transitions) of the form (q,M, q′) where
M is a possibly empty set of variable markers. Intuitively, on ev-transitions, the automaton
reads multiple markers at once. Formally, a run σ of A on d = d0 · · · dn−1 is a sequence of
configurations (defined like before) where letter transitions and ev-transitions alternate:

(q0, 0) M0−−→ (q′0, 0) d0−→ (q1, 1) M1−−→ (q′1, 1) d1−→ · · · dn−1−−−→ (qn, n) Mn−−→ (q′n, n)

where (q′i, di, qi+1) is a letter transition of A for all 0 ≤ i < n, and (qi,Mi, q
′
i) is an

ev-transition of A for all 0 ≤ i ≤ n where Mi is the set of variable markers read at position i.
Accepting and valid runs are defined like before, and the extended VA is sequential if all
accepting runs are valid, in which case its document spanner is defined like before.

Our definition of extended VAs is slightly different from [11] because we allow ev-transitions
that read the empty set to change the automaton state. This allows us to make a small
additional assumption to simplify our proofs: we require that the states of extended VAs are
partitioned between ev-states, from which only ev-transitions originate (i.e., the qi above),
and letter-states, from which only letter transitions originate (i.e., the q′i above); and we
impose that the initial state is an ev-state and the final states are all letter-states. Note
that transitions reading the empty set move from an ev-state to a letter-state, like all other
ev-transitions. Our requirement can be imposed in linear time on any input extended VA by
rewriting each state to one letter-state and one ev-state, and re-wiring the transitions and
changing the initial/final status of states appropriately. This rewriting preserves sequentiality
and guarantees that any path in the rewritten extended VA must alternate between letter
transitions and ev-transitions. Hence, we implicitly make this assumption on all extended
VAs from now on.

I Example 2.2. The top of Figure 1 represents a sequential extended VA A0 to extract
email addresses. To keep the example readable, we simply define them as words (delimited
by a space or by the beginning or end of document) which contain one at-sign “@” preceded
and followed by a non-empty sequence of non-“@” characters. In the drawing of A0, the
initial state q0 is at the left, and the states q10 and q12 are final. The transitions labeled
by Σ represent a set of transitions for each letter of Σ, and the same holds for Σ′ which we
define as Σ′ := Σ \ {@, ␣}.

It is easy to see that, on any input document d, there is one mapping of A0 on d per
email address contained in d, which assigns the markers x` and ax to the beginning and
end of the email address, respectively. In particular, A0 is sequential, because any accepting
run is valid. Note that A0 happens to have the property that each mapping is produced by
exactly one accepting run, but our results in this paper do not rely on this property.

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth 22:7

q0

start

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12
∅ Σ

∅

␣

{`x}

{̀ x} Σ′
∅

Σ′

@ ∅
Σ′

∅

{a x} ␣
∅

Σ

a

␣

a

@

b

␣

b

@

c

(q0,0) (q1,0)

(q2,1)

(q2,2)

(q2,3)

(q2,4)

(q2,5)

(q2,6)

(q2,7)

(q2,8)

(q2,9)

(q1,1)

(q1,2)

(q1,3)

(q1,4)

(q1,5)

(q1,6)

(q1,7)

(q1,8)

(q1,9)

(q4,0)

(q5,1) (q6,1)

(q3,2) (q4,2)

(q5,3) (q6,3)

(q7,4) (q8,4)

(q8,5) (q9,5) (q10,5)

(q11,6)

(q11,7)

(q11,8)

(q11,9)

(q12,6)

(q12,7)

(q12,8)

(q12,9)

(q3,6) (q4,6)

(q5,7) (q6,7)

(q7,8) (q8,8)

(q8,9) (q9,9) (q10,9)

vf

∅
ε

∅

∅

∅

∅

∅

∅

∅

∅

∅

{(x ,̀0)}

ε

∅

ε

ε

ε

ε

ε

ε

ε

ε

ε

{(x`,3)}

ε

∅

ε

∅

ε

∅ {(a x,5)}

ε

∅

ε

∅

ε

∅

ε

∅

ε

ε

{(x ,̀6)}

ε

∅

ε

∅

ε

∅ {(a x,9)}

ε

Figure 1 Example sequential extended VA A0 to extract e-mail addresses (see Example 2.2) and
example mapping DAG on an example document (see Examples 3.3, 3.6, 3.7, and 3.10).

Matrix multiplication. The complexity bottleneck for some of our results will be the
complexity of multiplying two Boolean matrices, which is a long-standing open problem, see
e.g. [16] for a recent discussion. When stating our results, we will often denote by 2 ≤ ω ≤ 3
an exponent for Boolean matrix multiplication: this is a constant such that the product of
two r-by-r Boolean matrices can be computed in time O(rω). For instance, we can take
ω := 3 if we use the naive algorithm for Boolean matrix multiplication, and it is obvious that
we must have ω ≥ 2. The best known upper bound is currently ω < 2.3728639, see [17].

3 Computing Mapping DAGs for Extended VAs

We start our paper by studying extended VAs, which are easier to work with because the set
of markers that can be assigned at every position is explicitly written as the label of a single
transition. We accordingly show Theorem 1.1 for the case of extended VAs in Sections 3–5.
We will then cover the case of non-extended VAs in Section 6.

ICDT 2019

22:8 Constant-Delay Enumeration for Nondeterministic Document Spanners

To show Theorem 1.1 for extended VAs, we will reduce the problem of enumerating the
mappings captured by A to that of enumerating path labels in a special kind of directed
acyclic graph (DAG), called a mapping DAG. This DAG is intuitively a variant of the product
of A and of the document d, where we represent simultaneously the position in the document
and the corresponding state of A. We will no longer care in the mapping DAG about the
labels of letter transitions, so we will erase these labels and call these transitions ε-transitions.
As for the ev-transitions, we will extend their labels to indicate the position in the document
in addition to the variable markers. We first give the general definition of a mapping DAG:

I Definition 3.1. A mapping DAG consists of a set V of vertices, an initial vertex v0 ∈ V ,
a final vertex vf ∈ V , and a set of edges E where each edge (s, x, t) has a source vertex
s ∈ V , a target vertex t ∈ V , and a label x that may be ε (in which case we call the edge an
ε-edge) or a finite (possibly empty) set of pairs (m, i), where m is a variable marker and i is
a position. These edges are called marker edges. We require that the graph (V,E) is acyclic.
We say that a mapping DAG is normalized if every path from the initial vertex to the final
vertex starts with a marker edge, ends with an ε-edge, and alternates between marker edges
and ε-edges.

The mapping µ(π) of a path π in the mapping DAG is the union of labels of the marker
edges of π: we require of any mapping DAG that, for every path π, this union is disjoint.
Given a set U of vertices of G, we writeM(U) for the set of mappings of paths from a vertex
of U to the final vertex; note that the same mapping may be captured by multiple different
paths. The set of mappings captured by G is thenM(G) :=M({v0}).

Intuitively, the ε-edges will correspond to letter transitions of A (with the letter being
erased, i.e., replaced by ε), and marker edges will correspond to ev-transitions: their labels
are a possibly empty finite set of pairs of a variable marker and position, describing which
variables have been assigned during the transition. We now explain how we construct a
mapping DAG from A and from a document d, which we call the product DAG of A and d:

I Definition 3.2. Let A = (Q, q0, F, δ) be a sequential extended VA and let d = d0 · · · dn−1
be an input document. The product DAG of A and d is the normalized mapping DAG whose
vertex set is Q× {0, . . . , n} ∪ {vf} with vf := (•, n+ 1) for some fresh value •. Its edges are:

For every letter-transition (q, a, q′) in δ, for every 0 ≤ i < |d| such that di = a, there is
an ε-edge from (q, i) to (q′, i+ 1);
For every ev-transition (q,M, q′) in δ, for every 0 ≤ i ≤ |d|, there is a marker edge from
(q, i) to (q′, i) labeled with the (possibly empty) set {(m, i) | m ∈M}.
For every final state q ∈ F , an ε-edge from (q, n) to vf .

The initial vertex of the product DAG is (q0, 0) and the final vertex is vf .

Note that, contrary to [11], we do not contract the ε-edges but keep them throughout our
algorithm.

I Example 3.3. The mapping DAG for our example sequential extended VA A0 on the
example document a␣a@b␣b@c is shown on Figure 1, with the document being written at
the left from top to bottom. The initial vertex of the mapping DAG is (q0, 0) at the top left
and its final vertex is vf at the bottom. We draw marker edges horizontally, and ε-edges
diagonally. To simplify the example, we only draw the parts of the mapping DAG that are
reachable from the initial vertex. Edges are dashed when they cannot be used to reach the
final vertex.

It is easy to see that this construction satisfies the definition:

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth 22:9

B Claim 3.4. The product DAG of A and d is a normalized mapping DAG.

Proof sketch. The mapping DAG is acyclic and normalized because its edges follow the
transitions of the extended VA, which we had preprocessed to distinguish letter-states and
ev-states. Paths in the mapping DAG cannot contain multiple occurrences of the same label,
because the labels in the mapping DAG include the position in the document. C

Further, the product DAG clearly captures what we want to enumerate. Formally:

B Claim 3.5. The set of mappings of A on d is exactly the set of mappingsM(G) captured
by the product DAG G.

I Example 3.6. The set of mappings captured by the example product DAG on Figure 1 is
{{(x`, 3), (ax, 5)}, {(x`, 6), (ax, 9)}}, and this is indeed the set of mappings of the example
extended VA A0 on the example document.

Our task is to enumerateM(G) without duplicates, and this is still non-obvious: because
of nondeterminism, the same mapping in the product DAG may be witnessed by exponentially
many paths, corresponding to exponentially many runs of the nondeterministic extended
VA A. We will present in the next section our algorithm to perform this task on the product
DAG G. To do this, we will need to preprocess G by trimming it, and introduce the notion
of levels to reason about its structure.

First, we present how to trim G. We say that G is trimmed if every vertex v is both
accessible (there is a path from the initial vertex to v) and co-accessible (there is a path
from v to the final vertex). Given a mapping DAG, we can clearly trim in linear time by two
linear-time graph traversals. Hence, we will always implicitly assume that the mapping DAG
is trimmed. If the mapping DAG may be empty once trimmed, then there are no mappings
to enumerate, so our task is trivial. Hence, we assume in the sequel that the mapping DAG
is non-empty after trimming. Further, if V = ∅ then the only possible mapping is the empty
mapping and we can produce it at that stage, so in the sequel we assume that V is non-empty.

I Example 3.7. For the mapping DAG of Figure 1, trimming eliminates the non-accessible
vertices (which are not depicted) and the non-co-accessible vertices (i.e., those with incoming
dashed edges).

Second, we present an invariant on the structure of G by introducing the notion of levels:

I Definition 3.8. A mapping DAG G is leveled if its vertices v = (q, i) are pairs whose
second component i is a nonnegative integer called the level of the vertex and written level(v),
and where the following conditions hold:

For the initial vertex v0 (which has no incoming edges), the level is 0;
For every ε-edge from u to v, we have level(v) = level(u) + 1;
For every marker edge from u to v, we have level(v) = level(u). Furthermore, all pairs
(m, i) in the label of the edge have i = level(v).

The depth D of G is the maximal level. The width W of G is the maximal number of vertices
that have the same level.

The following is then immediate by construction:

B Claim 3.9. The product DAG of A and d is leveled, and we have W ≤ |Q| and D = |d|+ 2.

I Example 3.10. The example mapping DAG on Figure 1 is leveled, and the levels are
represented as horizontal layers separated by dotted lines: the topmost level is level 0 and
the bottommost level is level 10.

ICDT 2019

22:10 Constant-Delay Enumeration for Nondeterministic Document Spanners

In addition to levels, we will need the notion of a level set:

I Definition 3.11. A level set Λ is a non-empty set of vertices in a leveled normalized
mapping DAG that all have the same level (written level(Λ)) and which are all the source of
some marker edge. The singleton {vf} of the final vertex is also considered as a level set.

In particular, letting v0 be the initial vertex, the singleton {v0} is a level set. Further, if
we consider a level set Λ which is not the final vertex, then we can follow marker edges from
all vertices of Λ (and only such edges) to get to other vertices, and follow ε-edges from these
vertices (and only such edges) to get to a new level set Λ′ with level(Λ′) = level(Λ) + 1.

4 Enumeration for Mapping DAGs

In the previous section, we have reduced our enumeration problem for extended VAs on
documents to an enumeration problem on normalized leveled mapping DAGs. In this section,
we describe our main enumeration algorithm on such DAGs and show the following:

I Theorem 4.1. Let 2 ≤ ω ≤ 3 be an exponent for Boolean matrix multiplication. Given
a normalized leveled mapping DAG G of depth D and width W , we can enumerate M(G)
(without duplicates) with preprocessing O(|G|+D×Wω+1) and delay O(W 2× (r+ 1)) where
r is the size of each produced mapping.

Remember that, as part of our preprocessing, we have ensured that the leveled normalized
mapping DAG G has been trimmed. We will also preprocess G to ensure that, given any
vertex, we can access its adjacency list (i.e., the list of its outgoing edges) in some sorted
order on the labels, where we assume that ∅-edges come last. This sorting can be done in
linear time on the RAM model [18, Theorem 3.1], so the preprocessing is in O(|G|).

Our general enumeration algorithm is then presented as Algorithm 1. We explain the
missing pieces next. The function Enum is initially called with Λ = {v0}, the level set
containing only the initial vertex, and with mapping being the empty set.

Algorithm 1 Main enumeration algorithm.
1: procedure enum(G,Λ,mapping)
2: Λ′ := Jump(Λ)
3: if Λ′ is the singleton {vf} of the final vertex then
4: Output(mapping)
5: else
6: for (locmark,Λ′′) in NextLevel(Λ′) do
7: enum(G,Λ′′, locmark ∪mapping)

For simplicity, let us assume for now that the Jump function just computes the identity,
i.e., Λ′ := Λ. As for the call NextLevel(Λ′), it returns the pairs (locmark,Λ′′) where:

The label set locmark is an edge label such that there is a marker edge labeled with
locmark that starts at some vertex of Λ′
The level set Λ′′ is formed of all the vertices w at level level(Λ′) + 1 that can be reached
from such an edge followed by an ε-edge. Formally, a vertex w is in Λ′′ if and only if
there is an edge labeled locmark from some vertex v ∈ Λ to some vertex v′, and there is
an ε-edge from v′ to w.

Remember that, as the mapping DAG is normalized, we know that all edges starting at
vertices of the level set Λ′ are marker edges (several of which may have the same label); and
for any target v′ of these edges, all edges that leave v′ are ε-edges whose targets w are at the
level level(Λ′) + 1.

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth 22:11

It is easy to see that the NextLevel function can be computed efficiently:

I Proposition 4.2. Given a leveled trimmed normalized mapping DAG G with widthW , and a
level set Λ′, we can enumerate without duplicates all the pairs (locmark,Λ′′) ∈ NextLevel(Λ′)
with delay O(W 2 × |locmark|) in an order such that locmark = ∅ comes last if it is returned.

Proof. We simultaneously go over the sorted lists of the outgoing edges of each vertex of Λ′,
of which there are at most W , and we merge them. Specifically, as long as we are not done
traversing all lists, we consider the smallest value of locmark (according to the order) that
occurs at the current position of one of the lists. Then, we move forward in each list until
the list is empty or the edge label at the current position is no longer equal to locmark, and
we consider the set Λ′2 of all vertices v′ that are the targets of the edges that we have seen.
This considers at most W 2 edges and reaches at most W vertices (which are at the same
level as Λ′), and the total time spent reading edge labels is in O(|locmark|), so the process
is in O(W 2 × |locmark|) so far. Now, we consider the outgoing edges of all vertices v′ ∈ Λ′2
(all are ε-edges) and return the set Λ′′ of the vertices w to which they lead: this only adds
O(W 2) to the running time because we consider at most W vertices v′ with at most W
outgoing edges each. Last, locmark = ∅ comes last because of our assumption on the order of
adjacency lists. J

The design of Algorithm 1 is justified by the fact that, for any level set Λ′, the setM(Λ′)
can be partitioned based on the value of locmark. Formally:

B Claim 4.3. For any level set Λ of G which is not the final vertex, we have:

M(Λ) =
⋃

(locmark,Λ′′)∈NextLevel(Λ)

locmark ∪M(Λ′′) . (1)

Furthermore, this union is disjoint, non-empty, and none of its terms is empty.

Thanks to this claim, we could easily prove by induction that Algorithm 1 correctly
enumeratesM(G) when Jump is the identity function. However, this algorithm would not
achieve the desired delay bounds: indeed, it may be the case that NextLevel(Λ′) only
contains locmark = ∅, and then the recursive call to Enum would not make progress in
constructing the mapping, so the delay would not generally be linear in the size of the
mapping. To avoid this issue, we use the Jump function to directly “jump” to a place in
the mapping DAG where we can read a label different from ∅. Let us first give the relevant
definitions:

I Definition 4.4. Given a level set Λ in a leveled mapping DAG G, the jump level JL(Λ)
of Λ is the first level j ≥ level(Λ) containing a vertex v′ such that some v ∈ Λ has a path
to v′ and such that v′ is either the final vertex or has an outgoing edge with a label which
is 6= ε and 6= ∅. In particular we have JL(Λ) = level(Λ) if some vertex in Λ already has an
outgoing edge with such a label, or if Λ is the singleton set containing only the final vertex.

The jump set of Λ is then Jump(Λ) := Λ if JL(Λ) = level(Λ), and otherwise Jump(Λ)
is formed of all vertices at level JL(Λ) to which some v ∈ Λ have a directed path whose last
edge is labeled ε. This ensures that Jump(Λ) is always a level set.

The definition of Jump ensures that we can jump from Λ to Jump(Λ) when enumerating
mappings, and it will not change the result because we only jump over ε-edges and ∅-edges:

B Claim 4.5. For any level set Λ of G, we haveM(Λ) =M(Jump(Λ)).

ICDT 2019

22:12 Constant-Delay Enumeration for Nondeterministic Document Spanners

Claims 4.3 and 4.5 imply that Algorithm 1 is correct with this implementation of Jump:

I Proposition 4.6. Enum({v0}, ε) correctly enumeratesM(G) (without duplicates).

What is more, Algorithm 1 now achieves the desired delay bounds, as we will show. Of
course, this relies on the fact that the Jump function can be efficiently precomputed and
evaluated. We only state this fact for now, and prove it in the next section:

I Proposition 4.7. Given a leveled mapping DAG G with width W , we can preprocess G
in time O(D ×Wω+1) such that, given any level set Λ of G, we can compute the jump set
Jump(Λ) of Λ in time O(W 2).

We can now conclude the proof of Theorem 4.1 by showing that the preprocessing and
delay bounds are as claimed. For the preprocessing, this is clear: we do the preprocessing in
O(|G|) presented at the beginning of the section (i.e., trimming, and computing the sorted
adjacency lists), followed by that of Proposition 4.7. For the delay, we claim:

B Claim 4.8. Algorithm 1 has delay O(W 2 × (r + 1)), where r is the size of the mapping of
each produced path. In particular, the delay is independent of the size of G.

Proof sketch. The time to call Jump is in O(W 2) by Proposition 4.7, and the time spent to
move to the next iteration of the for loop with a label set locmark is in time O(W 2×|locmark|)
using Proposition 4.2: now the operations in the loop body run in constant time if we represent
mapping as a linked list so that we do not have to copy it when making the recursive call.
As Proposition 4.2 ensures that ∅ comes last, when producing the first solution, we make at
most r+ 1 calls to produce a solution of size r, and the time is in O(W 2× (r+ 1)). We adapt
this argument to show that each successive solution is also produced within that bound: note
that when we use ∅ in the for loop (which does not contribute to r) then the next call to
Enum either reaches the final vertex or uses a non-empty set which contributes to r. What
is more, as ∅ is considered last, the corresponding call to Enum is tail-recursive, so we can
ensure that the size of the stack (and hence the time to unwind it) stays ≤ r + 1. C

Memory usage. We briefly discuss the memory usage of the enumeration phase, i.e., the
maximal amount of working memory that we need to keep throughout the enumeration
phase, not counting the precomputation phase. Indeed, in enumeration algorithms the
memory usage can generally grow to be very large even if one adds only a constant amount
of information at every step. We will show that this does not happen here, and that the
memory usage throughout the enumeration remains polynomial in A and constant in the
input document size.

All our memory usage during enumeration is in the call stack, and thanks to tail recursion
elimination (see the proof of Claim 4.8) we know that the stack depth is at most r + 1,
where r is the size of the produced mapping as in the statement of Theorem 4.1. The local
space in each stack frame must store Λ′ and Λ′′, which have size O(W), and the status
of the enumeration of NextLevel in Proposition 4.2, i.e., for every vertex v ∈ Λ′, the
current position in its adjacency list: this also has total size O(W), so the total memory
usage of these structures over the whole stack is in O((r+ 1)×W). Last, we must also store
the variables mapping and locmark, but their total size of the variables locmark across the
stack is clearly r, and the same holds of mapping because each occurrence is stored as a
linked list (with a pointer to the previous stack frame). Hence, the total memory usage is
O((r + 1)×W), i.e., O((|V|+ 1)× |Q|) in terms of the extended VA.

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth 22:13

5 Jump Function

The only missing piece in the enumeration scheme of Section 4 is the proof of Proposition 4.7.
We first explain the preprocessing for the Jump function, and then the computation scheme.

Preprocessing scheme. Recall the definition of the jump level JL(Λ) and jump set Jump(Λ)
of a level set Λ (Definition 4.4). We assume that we have precomputed in O(|G|) the mapping
level associating each vertex v to its level level(v), as well as, for each level i, the list of the
vertices v such that level(v) = i.

The first part of the preprocessing is then to compute, for every individual vertex v, the
jump level JL(v) := JL({v}), i.e., the minimal level containing a vertex v′ such that v′ is
reachable from v and v′ is either the final vertex or has an outgoing edge which is neither an
ε-edge nor an ∅-edge. We claim:

B Claim 5.1. We can precompute in O(D ×W 2) the jump level JL(v) of all vertices v of G.

Proof sketch. We do the computation along a reverse topological order: we have JL(vf) :=
level(vf) for the final vertex vf , we have JL(v) := level(v) if v has an outgoing edge which is
not an ε-edge or an ∅-edge, and otherwise we have JL(v) := minv→w JL(w). C

The second part of the preprocessing is to compute, for each level i of G, the reachable
levels Rlevel(i) := {JL(v) | level(v) = i}, which we can clearly do in linear time in the number
of vertices of G, i.e., in O(D ×W). Note that the definition clearly ensures that we have
|Rlevel(i)| ≤W .

I Example 5.2. In Figure 1, the jumping level for nodes (q1, 3) and (q2, 3) is 6 and the
jumping level for nodes (q5, 3) and (q6, 3) is 5. Hence, the set of reachable levels Rlevel(3) for
level 3 is {5, 6}.

Last, the third step of the preprocessing is to compute a reachability matrix from each
level to its reachable levels. Specifically, for any two levels i < j of G, let Reach(i, j) be the
Boolean matrix of size at most W ×W which describes, for each (u, v) with level(u) = i and
level(v) = j, whether there is a path from u to v whose last edge is labeled ε. We can’t afford
to compute all these matrices, but we claim that we can efficiently compute a subset of them,
which will be enough for our purposes:

B Claim 5.3. We can precompute in time O(D ×Wω+1) the matrices Reach(i, j) for all
pairs of levels i < j such that j ∈ Rlevel(i).

Proof sketch. We compute them in decreasing order on i: the matrix Reach(i, i+ 1) can be
computed in time O(W ×W) from the edge relation, and matrices Reach(i, j) with j > i+ 1
can be computed in time O(Wω) as the product of Reach(i, i + 1) and Reach(i + 1, j):
note that Reach(i + 1, j) has been precomputed because j ∈ Rlevel(i) easily implies that
j ∈ Rlevel(i+ 1). C

Evaluation scheme. We can now describe our evaluation scheme for the jump function.
Given a level set Λ, we wish to compute Jump(Λ). Let i be the level of Λ, and let j be JL(Λ)
which we compute as minv∈Λ JL(v). If j = i, then Jump(Λ) = Λ and there is nothing to
do. Otherwise, by definition there must be v ∈ Λ such that JL(v) = j, so v witnesses that
j ∈ Rlevel(i), and we know that we have precomputed the matrix Reach(i, j). Now Jump(Λ)
are the vertices at level j to which the vertices of Λ (at level i) have a directed path whose
last edge is labeled ε, which we can simply compute in time O(W 2) by unioning the lines
that correspond to the vertices of Λ in the matrix Reach(i, j).

ICDT 2019

22:14 Constant-Delay Enumeration for Nondeterministic Document Spanners

This concludes the proof of Proposition 4.7 and completes the presentation of our scheme
to enumerate the set captured by mapping DAGs (Theorem 4.1). Together with Section 3,
this proves Theorem 1.1 in the case of extended sequential VAs.

6 From Extended Sequential VAs to General Sequential VAs

In this section, we adapt our main result (Theorem 1.1) to work with sequential non-extended
VAs rather than sequential extended VAs. Remember that we cannot tractably convert non-
extended VAs into extended VAs [11, Proposition 4.2], so we must modify our construction in
Sections 3–5 to work with sequential non-extended VAs directly. Our general approach will be
the same: compute the mapping DAG and trim it like in Section 3, then precompute the jump
level and jump set information as in Section 5, and apply the enumeration scheme of Section 4.
The difficulty is that non-extended VAs may assign multiple markers at the same word
position by taking multiple variable transitions instead of one single ev-transition. Hence,
when enumerating all possible values for locmark in Algorithm 1, we need to consider all
possible sequences of variable transitions. The challenge is that there may be many different
transitions sequences that assign the same set of markers, which could lead to duplicates
in the enumeration. Thus, our goal will be to design a replacement to Proposition 4.2 for
non-extended VAs, i.e., enumerate possible values for locmark at each level without duplicates.

We start as in Section 3 by computing the product DAG G of A and of the input document
d = d0 · · · dn−1 with vertex set Q × {0, . . . , n} ∪ {vf} with vf := (•, n + 1) for some fresh
value •, and with the following edge set:

For every letter-transition (q, a, q′) of A, for every 0 ≤ i < |d| such that di = a, there is
an ε-edge from (q, i) to (q′, i+ 1);
For every variable-transition (q,m, q′) of A (where m is a marker), for every 0 ≤ i ≤ |d|,
there is an edge from (q, i) to (q′, i) labeled with {(m, i)}.
For every final state q ∈ F , an ε-edge from (q, n) to vf .

The initial vertex of G is (q0, 0) and the final vertex is vf . Note that the edge labels are now
always singleton sets or ε; in particular there are no longer any ∅-edges.

We can then adapt most of Claim 3.4: the product DAG is acyclic because all letter-
transitions make the second component increase, and because we know that there cannot be
a cycle of variable-transitions in the input sequential VA A (remember that we assume VAs
to be trimmed). We can also trim the mapping DAG in linear time as before, and Claim 3.5
also adapts to show that the resulting mapping DAG correctly captures the mappings that
we wish to enumerate. Last, as in Claim 3.9, the resulting mapping DAG is still leveled,
the depth D (number of levels) is still |d|+ 2, and the width W (maximal size of a level) is
still ≤ |Q|; we will also define the complete width Wc of G in this section as the maximal
size, over all levels i, of the sum of the number of vertices with level i and of the number
of edges with a source vertex having level i: clearly we have Wc ≤ |A|. The main change
in Section 3 is that the mapping DAG is no longer normalized, i.e., we may follow several
marker edges in succession (staying at the same level) or follow several ε-edges in succession
(moving to the next level each time). Because of this, we change Definition 3.11 and redefine
level sets to mean any non-empty set of vertices that are at the same level.

We then reuse the enumeration approach of Section 4 and 5. Even though the mapping
DAG is no longer normalized, it is not hard to see that with our new definition of level sets we
can reuse the jump function from Section 5 as-is, and we can also reuse the general approach
of Algorithm 1. However, to accommodate for the different structure of the mapping DAG,

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth 22:15

we will need a new definition for NextLevel: instead of following exactly one marker edge
before an ε-edge, we want to be able to follow any (possibly empty) path of marker edges
before an ε-edge. We formalize this notion as an S+-path:

I Definition 6.1. For S+ a set of labels, an S+-path in the mapping DAG G is a path of
|S+| edges that includes no ε-edges and where the labels of the path are exactly the elements
of S+ in some arbitrary order. Recall that the definition of a mapping DAG ensures that
there can be no duplicate labels on the path, and that the start and end vertices of an S+-path
must have the same level because no ε-edge is traversed in the path.

For Λ a level set, NextLevel(Λ) is the set of all pairs (S+,Λ′′) where:
S+ is a set of labels such that there is an S+-path that goes from some vertex v of Λ to
some vertex v′ which has an outgoing ε-edge;
Λ′′ is the level set containing exactly the vertices w that are targets of these ε-edges, i.e.,
there is an S+-path from some vertex v ∈ Λ to some vertex v′, and there is an ε-edge
from v′ to w.

Note that these definitions are exactly equivalent to what we would obtain if we converted
A to an extended VA and then used our original construction. This directly implies that
the modified enumeration algorithm is correct (i.e., Proposition 4.6 extends). In particular,
the modified algorithm still uses the jump pointers as computed in Section 5 to jump over
positions where the only possibility is S+ = ∅, i.e., positions where the sequential VA
make no variable-transitions. The only thing that remains is to establish the delay bounds,
for which we need to enumerate NextLevel efficiently without duplicates (and replace
Proposition 4.2). To present our method for this, we will introduce the alphabet size B as
the maximal number, over all levels j of the mapping DAG G, of the different labels that can
occur in marker edges between vertices at level j; in our construction this value is bounded
by the number of different markers, i.e., B ≤ 2 |V|. We can now state the claim:

I Theorem 6.2. Given a leveled trimmed mapping DAG G with complete width Wc and
alphabet size B, and a level set Λ′, we can enumerate without duplicates all the pairs
(S+,Λ′′) ∈ NextLevel(Λ′) with delay O(Wc×B2) in an order such that S+ = ∅ comes last
if it is returned.

With this runtime, the delay of Theorem 4.1 becomes O((r+ 1)× (W 2 +Wc ×B2)), and
we know that Wc ≤ |A|, that W ≤ |Q|, that r ≤ |V|, and that B ≤ 2 |V|; so this leads to the
overall delay of O(|V| × (|Q|2 + |A| × |V|2)) in Theorem 1.1.

The idea to prove Theorem 6.2 is to use a general approach called flashlight search [20, 25]:
we will use a search tree on the possible sets of labels on V to iteratively construct the set S+

that can be assigned at the current position, and we will avoid useless parts of the search tree
by using a lemma to efficiently check if a partial set of labels can be extended to a solution.
To formalize the notion of extending a partial set, we will need the notion of S+/S−-paths:

I Definition 6.3. For S− and S+ two disjoint sets of labels, an S+/S−-path in the mapping
DAG G is a path of edges that includes no ε-edges, that includes no edges with a label in S−,
and where every label of S+ is seen exactly once along the path.

Note that, when S+ ∪ S− contains all labels used in G, then the notions of S+/S−-path
and S+-path coincide, but if G contains some labels not in S+ ∪ S− then an S+/S−-path is
free to use them or not, whereas an S+-path cannot use them. The key to prove Theorem 6.2
is to efficiently determine if S+/S−-paths exist: we formalize this as a lemma which we will
apply to the mapping DAG G restricted to the current level (in particular removing ε-edges):

ICDT 2019

22:16 Constant-Delay Enumeration for Nondeterministic Document Spanners

I Lemma 6.4. Let G be a mapping DAG with no ε-edges and let V be its vertex set. Given
a non-empty set Λ′ ⊆ V of vertices of G and given two disjoint sets of labels S+ and S−,
we can compute in time O(|G| × |S+|) the set Λ′2 ⊆ V of vertices v such that there is an
S+/S−-path from one vertex of Λ′ to v.

Proof sketch. We first delete all edges from G with a label in S−, add a fresh source vertex s0,
and remove all vertices that are not reachable from s0. We then follow a topological sort
of G to annotate each vertex v with the maximal set of labels of S+ that can be seen along
paths from s0 to v: and we use a failure annotation ∅ when there are two such paths that
can see two incomparable sets of labels of S+. Indeed, as we argue, when this happens the
vertex v can never be part of an S+/S−-path because the definition of G imposes that each
edge label occurs at most once on any path, so the partial paths from s0 to v can never be
completed with all missing labels from S+. Hence, we can compute our set Λ′2 simply by
returning all the vertices annotated by the whole set S+. J

We can now use Lemma 6.4 to prove Theorem 6.2:

Proof sketch of Theorem 6.2. We restrict our attention to the level level(Λ′) of the mapping
DAG G that contains the input level set Λ′: in particular we remove all ε-edges. The resulting
mapping DAG has size at most Wc, and we call K the set of labels that it uses, whose
cardinality is at most the alphabet size B of G. We fix some arbitrary order on K. Now,
let us consider the full decision tree TK on K following this order: it is a complete binary
tree of height |K|, each internal node at depth 0 ≤ r < |K| has two children reflecting on
whether we take the r-th label of K or not, and each leaf n corresponds to a subset of K
built according to the choices described on the path from the root of TK to n. Our algorithm
will explore TK to find the sets S+ of labels that we must enumerate for Λ′ and G.

More precisely, we wish to determine the leaves of TK that correspond to a set S+ such
that there is an S+-path in G from a vertex of Λ′ to a vertex with an outgoing ε-edge: we
call this a good leaf. The naive way to find the good leaves would be to test them one after
the other, but this would not ensure a good delay bound. Instead, we use the notion of
S+/S−-paths to only explore the relevant parts of TK. Following this idea, we say that an
internal node n at depth 0 ≤ r < |K| of TK is good if there is an S+/S− path from a vertex
of Λ′ to a vertex with an outgoing ε-edge, where S+ and S− respectively contain the labels
of K that we decided to take and those that we decided not to take when going from the root
of TK to n. Note that S+, S− is a partition of the r first labels of K that uniquely defines n.

We can now use Lemma 6.4 as an oracle to determine, given any node n of the tree,
whether n is good in this sense or not. This oracle makes it possible to find the good leaves
of TK efficiently, by starting at the root of TK and doing a depth-first exploration of good
nodes of the tree. We build TK on-the-fly while doing so, to avoid materializing irrelevant
parts of the tree. The exploration is guaranteed to find all good leaves, because the root of
the tree is always good, and because the ancestors of a good leaf are always good. Further, it
ensures that we always find one new good leaf after at most O(|K|) invocations of Lemma 6.4,
because whenever we are at a good node then it must have a good child and therefore, by
induction, a good descendant that is a leaf. We will find this leaf in our depth-first search
with a number of oracle calls that is at most linear in the height of TK. Together with the
delay bound of Lemma 6.4, this yields the claimed delay bound of O(|Wc| ×B2).

Last, it is clear that whenever we have found a good leaf corresponding to a set S+, then
we can compute the new level set Λ′′ that we must return together with S+, with the same
delay bound. Indeed, we can simply do this by post-processing the set of vertices returned
by the corresponding invocation of Lemma 6.4. J

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth 22:17

Memory usage. The recursion depth of Algorithm 1 on general sequential VAs is unchanged,
and we can still eliminate tail recursion for the case locmark = ∅ as we did in Section 4.

The local space must now include the local space used by the enumeration scheme of
NextLevel, of which there is an instance running at every level on the stack. We need to
remember our current position in the binary search tree: assuming that the order of labels is
fixed, it suffices to remember the current positive set Pn plus the last label in the order on K
that we use, with all other labels being implicitly in Nn. This means that we store one label
per level (the last label), plus the positive labels, so their total number in the stack is at
most the total number of markers, i.e., O(|V|). Hence the structure of Theorem 6.2 has no
effect on the memory usage.

The space usage must also include the space used for one call to the construction of
Lemma 6.4, only one instance of which is running at every given time. This space usage
is clearly in O(|Q| × |V |), so this additive term has again no impact on the memory usage.
Hence, the memory usage of our enumeration algorithm is the same as in Section 4, i.e.,
O((r + 1)×W), or O((|V|+ 1)× |Q|) in terms of the VA.

7 Conclusion

We have shown that we can efficiently enumerate the mappings of sequential variable-set
automata on input documents, achieving linear-time preprocessing and constant-delay in
data complexity, while ensuring that preprocessing and delay are polynomial in the input
VA even if it is not deterministic. This result was previously considered as unlikely by [11],
and it improves on the algorithms in [15]: with our algorithm, the delay between outputs
does not depend on the input document, whereas it had a linear dependency on the size of
the input document in [15].

We will consider different directions for future works. A first question is how to cope
with changes to the input document without recomputing our enumeration index structure
from scratch. This question has been recently studied for other enumeration algorithms,
see e.g. [3, 7, 8, 9, 19, 23, 24], but for atomic update operations: insertion, deletion, and
relabelings of single nodes. However, as spanners operate on text, we would like to use bulk
update operations that modify large parts of the text at once: cut and paste operations,
splitting or joining strings, or appending at the end of a file and removing from the beginning,
e.g., in the case of log files with rotation. It may be possible to show better bounds for these
operations than the ones obtained by modifying each individual letter [24, 19].

A second question is to generalize our result from words to trees, but this is challenging:
the run of a tree automaton is no longer linear in just one direction, so it is not easy to skip
parts of the input similarly to the jump function of Section 5, or to combine computation
that occurs in different branches. We believe that these difficulties can be solved and that a
similar result can be shown for trees, but that the resulting algorithm is far more complex:
this point, and the question of updates, are explored in our follow-up work [4].

Finally, it would be interesting to implement our algorithms and evaluate them on
real-world data similarly to the work in [5, 22]. We believe that our techniques are rather
simple and easily implementable, at least in the case of extended VAs. Moreover, since
there are no large hidden constants in any of our constructions, we feel that they might
be feasible in practice. Nevertheless, an efficient implementation would of course have to
optimize implementation details that we could gloss over in our theoretical analysis since
they make no difference in theory but might change practical behavior substantially.

ICDT 2019

22:18 Constant-Delay Enumeration for Nondeterministic Document Spanners

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis of computer

algorithms. Addison-Wesley, 1974.
2 Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based approach

to efficient enumeration. In ICALP, 2017. arXiv:1702.05589.
3 Antoine Amarilli, Pierre Bourhis, and Stefan Mengel. Enumeration on trees under relabelings.

In ICDT, 2018. arXiv:1709.06185.
4 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration

on Trees with Tractable Combined Complexity and Efficient Updates. Under review, 2019.
arXiv:1812.09519.

5 Marcelo Arenas, Francisco Maturana, Cristian Riveros, and Domagoj Vrgoc. A framework for
annotating CSV-like data. PVLDB, 9(11), 2016. URL: http://www.vldb.org/pvldb/vol9/
p876-arenas.pdf, doi:10.14778/2983200.2983204.

6 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In CSL, 2006.

7 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive Queries
under Updates. In PODS, 2017. arXiv:1702.06370.

8 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD Queries
Under Updates on Bounded Degree Databases. In ICDT, 2017. arXiv:1702.08764.

9 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs under Updates
and in the Presence of Integrity Constraints. In ICDT, 2018. arXiv:1709.10039.

10 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document Spanners:
A Formal Approach to Information Extraction. J. ACM, 62(2), 2015. URL: https://pdfs.
semanticscholar.org/8df0/ad1c6aa0df93e58071b8afe3371a16a3182f.pdf, doi:10.1145/
2699442.

11 Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and Domagoj
Vrgoc. Constant Delay Algorithms for Regular Document Spanners. In PODS, 2018. arXiv:
1803.05277.

12 Dominik D. Freydenberger. A Logic for Document Spanners. Unpublished extended version.
URL: http://ddfy.de/sci/splog.pdf.

13 Dominik D. Freydenberger. A Logic for Document Spanners. In ICDT, 2017. URL: http:
//drops.dagstuhl.de/opus/volltexte/2017/7049/, doi:10.4230/LIPIcs.ICDT.2017.13.

14 Dominik D. Freydenberger and Mario Holldack. Document Spanners: From Expressive Power
to Decision Problems. Theory Comput. Syst., 62(4), 2018. doi:10.1007/s00224-017-9770-0.

15 Dominik D. Freydenberger, Benny Kimelfeld, and Liat Peterfreund. Joining Extractions of
Regular Expressions. In PODS, 2018. arXiv:1703.10350.

16 François Le Gall. Improved output-sensitive quantum algorithms for Boolean ma-
trix multiplication. In SODA, 2012. URL: https://pdfs.semanticscholar.org/91a5/
dd90ed43a6e8f55f8ec18ceead7dd0a6e988.pdf.

17 François Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC, 2014. arXiv:
1401.7714.

18 Étienne Grandjean. Sorting, linear time and the satisfiability problem. Annals of Mathematics
and Artificial Intelligence, 16(1), 1996.

19 Katja Losemann and Wim Martens. MSO queries on trees: Enumerating answers un-
der updates. In CSL-LICS, 2014. URL: http://www.theoinf.uni-bayreuth.de/download/
lics14-preprint.pdf.

20 Arnaud Mary and Yann Strozecki. Efficient Enumeration of Solutions Produced by Closure
Operations. In STACS, 2016. URL: http://drops.dagstuhl.de/opus/volltexte/2016/
5753/.

21 Francisco Maturana, Cristian Riveros, and Domagoj Vrgoc. Document Spanners for Extracting
Incomplete Information: Expressiveness and Complexity. In PODS, 2018. arXiv:1707.00827.

http://icalp17.mimuw.edu.pl/
http://arxiv.org/abs/1702.05589
http://arxiv.org/abs/1709.06185
http://arxiv.org/abs/1812.09519
http://www.vldb.org/pvldb/vol9/p876-arenas.pdf
http://www.vldb.org/pvldb/vol9/p876-arenas.pdf
http://dx.doi.org/10.14778/2983200.2983204
http://arxiv.org/abs/1702.06370
http://arxiv.org/abs/1702.08764
http://arxiv.org/abs/1709.10039
https://pdfs.semanticscholar.org/8df0/ad1c6aa0df93e58071b8afe3371a16a3182f.pdf
https://pdfs.semanticscholar.org/8df0/ad1c6aa0df93e58071b8afe3371a16a3182f.pdf
http://dx.doi.org/10.1145/2699442
http://dx.doi.org/10.1145/2699442
http://arxiv.org/abs/1803.05277
http://arxiv.org/abs/1803.05277
http://ddfy.de/sci/splog.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7049/
http://drops.dagstuhl.de/opus/volltexte/2017/7049/
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.13
http://dx.doi.org/10.1007/s00224-017-9770-0
http://arxiv.org/abs/1703.10350
https://pdfs.semanticscholar.org/91a5/dd90ed43a6e8f55f8ec18ceead7dd0a6e988.pdf
https://pdfs.semanticscholar.org/91a5/dd90ed43a6e8f55f8ec18ceead7dd0a6e988.pdf
http://arxiv.org/abs/1401.7714
http://arxiv.org/abs/1401.7714
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf
http://drops.dagstuhl.de/opus/volltexte/2016/5753/
http://drops.dagstuhl.de/opus/volltexte/2016/5753/
http://arxiv.org/abs/1707.00827

A. Amarilli, P. Bourhis, S. Mengel, and M. Niewerth 22:19

22 Andrea Morciano. Engineering a runtime system for AQL. Master’s thesis, Politecnico di
Milano, 2017. URL: https://www.politesi.polimi.it/bitstream/10589/135034/1/2017_
07_Morciano.pdf.

23 Matthias Niewerth. MSO queries on trees: Enumerating answers under updates using forest
algebras. In LICS, 2018. doi:10.1145/3209108.3209144.

24 Matthias Niewerth and Luc Segoufin. Enumeration of MSO Queries on Strings with Constant
Delay and Logarithmic Updates. In PODS, 2018. URL: http://www.di.ens.fr/~segoufin/
Papers/Mypapers/enum-update-words.pdf.

25 Ronald C. Read and Robert E. Tarjan. Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees. Networks, 5(3), 1975.

26 IBM Research. SystemT, 2018. URL: https://researcher.watson.ibm.com/researcher/
view_group.php?id=1264.

27 Luc Segoufin. A glimpse on constant delay enumeration (Invited talk). In STACS, 2014. URL:
https://hal.inria.fr/hal-01070893/document.

28 Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and I Shirakawa. A New Algorithm for
Generating All the Maximal Independent Sets. SIAM J. Comput., 6, September 1977.
doi:10.1137/0206036.

29 L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2),
1979. URL: https://www.sciencedirect.com/science/article/pii/0304397579900446.

30 Kunihiro Wasa. Enumeration of enumeration algorithms. CoRR, 2016. arXiv:1605.05102.

ICDT 2019

https://www.politesi.polimi.it/bitstream/10589/135034/1/2017_07_Morciano.pdf
https://www.politesi.polimi.it/bitstream/10589/135034/1/2017_07_Morciano.pdf
http://dx.doi.org/10.1145/3209108.3209144
http://www.di.ens.fr/~segoufin/Papers/Mypapers/enum-update-words.pdf
http://www.di.ens.fr/~segoufin/Papers/Mypapers/enum-update-words.pdf
https://researcher.watson.ibm.com/researcher/view_group.php?id=1264
https://researcher.watson.ibm.com/researcher/view_group.php?id=1264
https://hal.inria.fr/hal-01070893/document
http://dx.doi.org/10.1137/0206036
https://www.sciencedirect.com/science/article/pii/0304397579900446
http://arxiv.org/abs/1605.05102

Consistent Query Answering for Primary Keys in
Logspace
Paraschos Koutris
University of Wisconsin-Madison, WI, USA
paris@cs.wisc.edu

Jef Wijsen
University of Mons, Belgium
jef.wijsen@umons.ac.be

Abstract
We study the complexity of consistent query answering on databases that may violate primary key
constraints. A repair of such a database is any consistent database that can be obtained by deleting
a minimal set of tuples. For every Boolean query q, CERTAINTY(q) is the problem that takes a
database as input and asks whether q evaluates to true on every repair. In [Koutris and Wijsen, ACM
TODS, 2017], the authors show that for every self-join-free Boolean conjunctive query q, the problem
CERTAINTY(q) is either in P or coNP-complete, and it is decidable which of the two cases applies.
In this paper, we sharpen this result by showing that for every self-join-free Boolean conjunctive
query q, the problem CERTAINTY(q) is either expressible in symmetric stratified Datalog (with
some aggregation operator) or coNP-complete. Since symmetric stratified Datalog is in L, we thus
obtain a complexity-theoretic dichotomy between L and coNP-complete. Another new finding of
practical importance is that CERTAINTY(q) is on the logspace side of the dichotomy for queries q
where all join conditions express foreign-to-primary key matches, which is undoubtedly the most
common type of join condition.

2012 ACM Subject Classification Information systems → Relational database model; Information
systems → Inconsistent data; Information systems → Incomplete data; Information systems →
Integrity checking

Keywords and phrases conjunctive queries, consistent query answering, Datalog, primary keys

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.23

Related Version A full version of this paper is available on arXiv [22], https://arxiv.org/abs/
1810.03386.

1 Motivation

Consistent query answering (CQA) with respect to primary key constraints is the following
problem. Given a database db that may violate its primary key constraints, define a repair
as any consistent database that can be obtained by deleting a minimal set of tuples from db.
For every Boolean query q, the problem CERTAINTY(q) takes a database as input and asks
whether q evaluates to true on every repair of db. In this paper, we focus on CERTAINTY(q)
for queries q in the class sjfBCQ, the class of self-join-free Boolean conjunctive queries. For
all Boolean first-order queries q, CERTAINTY(q) is in coNP and can thus be solved by
expressive formalisms like answer set programming [27] and binary integer programming [18].
These solutions, however, are likely to be inefficient when CERTAINTY(q) also belongs to a
lower complexity class. In particular, given a query q in sjfBCQ, it is decidable [20] whether
CERTAINTY(q) is in the low complexity class FO. Moreover, if CERTAINTY(q) is in FO,
then it is possible to construct a first-order query for solving CERTAINTY(q), which is also
called a consistent first-order rewriting for q. This construction is detailed in [20, Section 5]
and has already been implemented [30].

© Paraschos Koutris and Jef Wijsen;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:paris@cs.wisc.edu
mailto:jef.wijsen@umons.ac.be
https://doi.org/10.4230/LIPIcs.ICDT.2019.23
https://arxiv.org/abs/1810.03386
https://arxiv.org/abs/1810.03386
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 CQA for Primary Keys in Logspace

In [20], the authors also show that for every query q in sjfBCQ, the problem CERTAINTY(q)
is either in P or coNP-complete, and it is decidable (in polynomial time in the size of q)
which of the two cases applies. The authors show how to construct a polynomial-time
algorithm for CERTAINTY(q) when it does not lie on the coNP-hard side of the dichotomy.
Unfortunately, unlike for consistent first-order rewritings, this construction is complex and
does not tell us what language would be appropriate for implementing CERTAINTY(q) when
it is in P \ FO. In this paper, we improve this situation: we show that if CERTAINTY(q) is
in P, then it can be implemented in symmetric stratified Datalog, which has deterministic
logspace data complexity [10]. We thus sharpen the complexity dichotomy of [20] as follows:
for every query q in sjfBCQ, CERTAINTY(q) is either in L or coNP-complete. It is significant
that Datalog is used as a target language, because this allows using optimized Datalog engines
for solving CERTAINTY(q) whenever the problem lies on the logspace side of the dichotomy.
Rewriting into Datalog is generally considered a desirable outcome when consistent first-order
rewritings do not exist (see, e.g., [5, page 193]). It is also worth noting that the SQL:1999
standard introduced linear recursion into SQL, which has been implemented in varying ways
in existing DBMSs [31]. Since the Datalog programs in this paper use only linear recursion,
they may be partially or fully implementable in these DBMSs.

Throughout this paper, we use the term consistent database to refer to a database that
satisfies all primary-key constraints, while the term database refers to both consistent and
inconsistent databases. This is unlike most database textbooks, which tend to say that
databases must always be consistent. The following definition introduces the main focus of
this paper; the complexity dichotomy of Theorem 2 is the main result of this paper.

I Definition 1. Let q be a Boolean query. Let L be some logic. A consistent L rewriting
for q is a Boolean query P in L such that for every database db, P is true in db if and
only if q is true in every repair of db. If q has a consistent L rewriting, then we say that
CERTAINTY(q) is expressible in L.

I Theorem 2. For every self-join-free Boolean conjunctive query q, CERTAINTY(q) is either
coNP-complete or expressible in SymStratDatalogmin (and thus in L).

The language SymStratDatalogmin will be defined in Section 3; informally, the superscript
min means that the language allows selecting a minimum (with respect to some total
order) from a finite set of values. Since CERTAINTY(q) is L-complete for some queries
q ∈ sjfBCQ, the logspace upper bound in Theorem 2 is tight. The proof of Theorem 2 relies
on novel constructs and insights developed in this paper. Compared to [20], significant new
contributions are the notion of garbage set and the helping Lemmas 11 and 22.

Our second significant result in this paper focuses on consistent query answering for
foreign-to-primary key joins. In Section 9, we define a subclass of sjfBCQ that captures
foreign-to-primary key joins, which is undoubtedly the most common type of join. We
show that CERTAINTY(q) lies on the logspace side of the dichotomy for all queries q in this
class. Thus, for the most common type of joins and primary key constraints, CQA is highly
tractable, a result that goes against a widely spread belief that CQA would be impractical
because of its high computational complexity.

Organization Section 2 discusses related work. Section 3 defines our theoretical framework,
including the notion of attack graph. To guide the reader through the technical development,
Section 4 provides a high-level outline of where we are heading in this paper, including
examples of the different graphs used. Section 5 introduces a special subclass of sjfBCQ, called
saturated queries, and shows that each problem CERTAINTY(q) can be first-order reduced to

P. Koutris and J. Wijsen 23:3

some CERTAINTY(q′) where q′ is saturated. Section 6 introduces the notion of M-graph, a
graph at the schema-level, and its data-level instantiation, called ↪→-graph. An important
result, Lemma 11, relates cycles in attack graphs to cycles in M-graphs, for saturated queries
only. Section 7 introduces the notion of garbage set for a subquery. Informally, garbage sets
contain facts that can never make the subquery hold true, and thus can be removed from
the database without changing the answer to CERTAINTY(q). Section 8 focuses on cycles in
the M-graph of a query, and shows that garbage sets for such cycles can be computed and
removed in symmetric stratified Datalog. At the end of Section 8, we have all ingredients for
the proof of our main theorem. Finally, Section 9 shows that foreign-to-primary key joins fall
on the logspace side of the dichotomy. The proofs of lemmas and theorems appear in [22].

2 Related Work

Consistent query answering (CQA) starts from the seminal work by Arenas, Bertossi, and
Chomicki [2], and is the topic of a monograph by Bertossi [7]. The term CERTAINTY(q) was
coined in [33] to refer to CQA for Boolean queries q on databases that violate primary keys, one
per relation, which are fixed by q’s schema. The complexity classification of CERTAINTY(q)
for all q ∈ sjfBCQ started with the ICDT 2005 paper of Fuxman and Miller [13, 14], and
has attracted much research since then. These previous works (see [35] for a survey) were
generalized by [19, 20], where it was shown that the set {CERTAINTY(q) | q ∈ sjfBCQ}
exhibits a P-coNP-complete dichotomy. Furthermore, it was shown that membership of
CERTAINTY(q) in FO is decidable for queries q in sjfBCQ. The current paper culminates this
line of research by showing that the dichotomy is actually between L and coNP-complete,
and – even stronger – between expressibility in symmetric stratified Datalog (with some
aggregation operator) and coNP-complete.

The complexity of CERTAINTY(q) for self-join-free conjunctive queries with negated atoms
was studied in [21]. Little is known about CERTAINTY(q) beyond self-join-free conjunctive
queries. For UCQ (i.e., unions of conjunctive queries, possibly with self-joins), Fontaine [12]
showed that a P-coNP-complete dichotomy in the set {CERTAINTY(q) | q is a Boolean query
in UCQ} implies Bulatov’s dichotomy theorem for conservative CSP [9]. This relationship
between CQA and CSP was further explored in [26]. The complexity of CQA for aggregation
queries with respect to violations of functional dependencies has been studied in [3].

The counting variant of CERTAINTY(q), which is called #CERTAINTY(q), asks to de-
termine the number of repairs that satisfy some Boolean query q. In [28], the authors show a
FP-#P-complete dichotomy in {#CERTAINTY(q) | q ∈ sjfBCQ}. For conjunctive queries q
with self-joins, the complexity of #CERTAINTY(q) has been established for the case that all
primary keys consist of a single attribute [29]. In recent years, CQA has also been studied
beyond the setting of relational databases, in ontology-based knowledge bases [8, 23] and in
graph databases [6].

3 Preliminaries

We assume an infinite total order (dom,≤) of constants. We assume a set of variables
disjoint with dom. If ~x is a sequence containing variables and constants, then vars(~x) denotes
the set of variables that occur in ~x. A valuation over a set U of variables is a total mapping
θ from U to dom. At several places, it is implicitly understood that such a valuation θ is
extended to be the identity on constants and on variables not in U . If V ⊆ U , then θ[V]
denotes the restriction of θ to V . If θ is a valuation over a set U of variables, x is a variable
(possibly x /∈ U), and a is a constant, then θ[x 7→a] is the valuation over U ∪ {x} such that
θ[x 7→a](x) = a and for every variable y such that y 6= x, θ[x 7→a](y) = θ(y).

ICDT 2019

23:4 CQA for Primary Keys in Logspace

Atoms and key-equal facts Each relation name R of arity n, n ≥ 1, has a unique primary
key which is a set {1, 2, . . . , k} where 1 ≤ k ≤ n. We say that R has signature [n, k] if R has
arity n and primary key {1, 2, . . . , k}. Elements of the primary key are called primary-key
positions, while k + 1, k + 2, . . . , n are non-primary-key positions. For all positive integers
n, k such that 1 ≤ k ≤ n, we assume denumerably many relation names with signature [n, k].
Every relation name has a unique mode, which is a value in {c, i}. Informally, relation names
of mode c will be used for consistent relations, while relations that may be inconsistent
will have a relation name of mode i. We often write Rc to make clear that R is a relation
name of mode c. Relation names of mode c will be a convenient tool in the theoretical
development, but they also constitute a useful modeling primitive that can be put at the
disposal of end-users with domain knowledge [16].

If R is a relation name with signature [n, k], then we call R(s1, . . . , sn) an R-atom (or
simply atom), where each si is either a constant or a variable (1 ≤ i ≤ n). Such an atom is
commonly written as R(~x, ~y) where the primary-key value ~x = s1, . . . , sk is underlined and
~y = sk+1, . . . , sn. An R-fact (or simply fact) is an R-atom in which no variable occurs. Two
facts R1(~a1,~b1), R2(~a2,~b2) are key-equal, denoted R1(~a1,~b1) ∼ R2(~a2,~b2), if R1 = R2 and
~a1 = ~a2.

We will use letters F,G,H for atoms. For an atom F = R(~x, ~y), we denote by key(F) the
set of variables that occur in ~x, and by vars(F) the set of variables that occur in F , that is,
key(F) = vars(~x) and vars(F) = vars(~x)∪ vars(~y). We sometimes blur the distinction between
relation names and atoms. For example, if F is an atom, then the term F -fact refers to a
fact with the same relation name as F .

Databases, blocks, and repairs A database schema is a finite set of relation names. All
constructs that follow are defined relative to a fixed database schema. A database is a finite
set db of facts using only the relation names of the schema such that for every relation name
R of mode c, no two distinct R-facts of db are key-equal.

A relation of db is a maximal set of facts in db that all share the same relation name. A
block of db is a maximal set of key-equal facts of db. A block of R-facts is also called an
R-block. If A is a fact of db, then block(A,db) denotes the block of db that contains A. If
A = R(~a,~b), then block(A,db) is also denoted by R(~a,~∗). A database db is consistent if no
two distinct facts of db are key-equal (i.e., if no block of db contains more than one fact). A
repair of db is a maximal (with respect to set inclusion) consistent subset of db. We write
rset(db) for the set of repairs of db.

Boolean conjunctive queries A Boolean query is a mapping q that associates a Boolean
(true or false) to each database, such that q is closed under isomorphism [24]. We write
db |= q to denote that q associates true to db, in which case db is said to satisfy q. A
Boolean query q can be viewed as a decision problem that takes a database as input and asks
whether db satisfies q. In this paper, the complexity class FO stands for the set of Boolean
queries that can be defined in first-order logic with equality and constant symbols (which are
interpreted as themselves), but without other built-in predicates or function symbols.

A Boolean conjunctive query is a finite set q = {R1(~x1, ~y1), . . . , Rn(~xn, ~yn)} of atoms,
without equality or built-in predicates. We denote by vars(q) the set of variables that occur
in q. The set q represents the first-order sentence

∃u1 · · · ∃uk

(
R1(~x1, ~y1) ∧ · · · ∧Rn(~xn, ~yn)

)
,

where {u1, . . . , uk} = vars(q). This query q is satisfied by a database db if there exists a
valuation θ over vars(q) such that for each i ∈ {1, . . . , n}, Ri(~a,~b) ∈ db with ~a = θ(~xi) and
~b = θ(~yi).

P. Koutris and J. Wijsen 23:5

We say that a Boolean conjunctive query q has a self-join if some relation name occurs
more than once in q. If q has no self-join, then it is called self-join-free. We write sjfBCQ
for the class of self-join-free Boolean conjunctive queries. If q is a query in sjfBCQ with an
R-atom, then, by an abuse of notation, we sometimes write R to mean the R-atom of q.

Let θ be a valuation over some set X of variables. For every Boolean conjunctive query q,
we write θ(q) for the query obtained from q by replacing all occurrences of each x ∈ X∩vars(q)
with θ(x); variables in vars(q) \X remain unaffected (i.e., θ is understood to be the identity
on variables not in X).

Atoms of mode c The mode of an atom is the mode of its relation name (a value in {c, i}).
If q is a query in sjfBCQ, then qcons is the set of all atoms of q that are of mode c.

Functional dependencies Let q be a Boolean conjunctive query. A functional dependency
for q is an expression X → Y where X,Y ⊆ vars(q). Let V be a finite set of valuations over
vars(q). We say that V satisfies X → Y if for all θ, µ ∈ V, if θ[X] = µ[X], then θ[Y] = µ[Y].
Let Σ be a set of functional dependencies for q. We write Σ |= X → Y if for every set V of
valuations over vars(q), if V satisfies each functional dependency in Σ, then V satisfies X → Y .
Note that the foregoing conforms with standard dependency theory if variables are viewed
as attributes, and valuations as tuples. As with standard functional dependencies, every set
of functional dependencies for q is logically equivalent to a set of functional dependencies
for q with singleton right-hand sides.

Consistent query answering Let q be a query in sjfBCQ. We define CERTAINTY(q) as the
decision problem that takes as input a database db, and asks whether every repair of db
satisfies q.

The genre of a fact Let q be a query in sjfBCQ. For every fact A whose relation name
occurs in q, we denote by genreq(A) the (unique) atom of q that has the same relation name
as A. From here on, if db is a database that is given as an input to CERTAINTY(q), we
will assume that each relation name of each fact in db also occurs in q. Therefore, for every
A ∈ db, genreq(A) is well defined. Of course, this assumption is harmless.

Attack graph Let q be a query in sjfBCQ. We define K(q) as the following set of functional
dependencies: K(q) := {key(F)→ vars(F) | F ∈ q}. For every atom F ∈ q, we define F+,q as
the set of all variables x ∈ vars(q) satisfying K(q \ {F})∪K(qcons) |= key(F)→ x. Informally,
the term K(qcons) is the set of all functional dependencies that arise in atoms of mode c.
Clearly, if F has mode c, then K(q \ {F}) ∪ K(qcons) = K(q); and if F has mode i, then
K(q \ {F})∪K(qcons) = K(q \ {F}). The attack graph of q is a directed graph whose vertices
are the atoms of q. There is a directed edge from F to G (F 6= G), denoted F q

 G, if there
exists a sequence

F0
x1
a F1

x2
a F2 · · ·

x`

a F` (1)

such that F0 = F , F` = G, and for each i ∈ {1, . . . , `}, Fi is an atom of q and xi is a variable
satisfying xi ∈ (vars(Fi−1) ∩ vars(Fi)) \ F+,q. The sequence (1) is also called a witness for
F

q
 G. An edge F q

 G is also called an attack from F to G; we also say that F attacks
G. Informally, an attack from an atom R(~x, ~y) to an atom S(~u, ~w) indicates that, given
a valuation over vars(~x), the values for ~u that make the query true depend on the values
chosen for ~y.

ICDT 2019

23:6 CQA for Primary Keys in Logspace

R(x, y)

S(y, z)

T1(z, w)

T2(z, w) T c(z, w)

U(y, z, w, x)

R(x, y)

S(y, z)

T1(z, w)

T2(z, w) T c(z, w)

U(y, z, w, x)

Attack Graph. M-Graph.

Figure 1 Attack graph (left) and M-graph (right) of the same query q1 = {R(x, y), S(y, z),
U(y, z, w, x), T1(z, w), T2(z, w), T c(z, w)}. It can be verified that all attacks are weak and that the
query is saturated. The attack graph has an initial strong component containing three atoms (R, S,
and U). As predicted by Lemma 11, the subgraph of the M-graph induced by {R,S, U} is cyclic.

An attack on a variable x ∈ vars(q) is defined as follows: F q
 x if F q∪{N(x)}

 N(x) where
N is a fresh relation name of signature [1, 1]. Informally, x is attacked in q if N(x) has an
incoming attack in the attack graph of q ∪ {N(x)}.

I Example 3. Let q1 = {R(x, y), S(y, z), U(y, z, w, x), T1(z, w), T2(z, w), T c(z, w)}. Using

relation names for atoms, we have R+,q1 = {x}. A witness for R q1 U is R
y

a U . The attack
graph of q1 is shown in Fig. 1.

An attack F q
 G is weak if K(q) |= key(F)→ key(G); otherwise it is strong. A cycle in

the attack graph is strong if at least one attack in the cycle is strong. It has been proved [20,
Lemma 3.6] that if the attack graph contains a strong cycle, then it contains a strong cycle
of length 2. The main result in [20] can now be stated.

I Theorem 4 ([20]). For every query q in sjfBCQ,
if the attack graph of q is acyclic, then CERTAINTY(q) is in FO;
if the attack graph of q is cyclic but contains no strong cycle, then CERTAINTY(q) is
L-hard and in P; and
if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-complete.

Furthermore, it can be decided in quadratic time in the size of q which of these three cases
applies.

Sequential proof Let q be a query in sjfBCQ. Let Z → w be a functional dependency for q
with a singleton right-hand side (where set delimiters { and } are omitted). A sequential
proof for Z → w is a (possibly empty) sequence F1, F1, . . . , F` of atoms in q such that for
every i ∈ {1, . . . , `}, key(Fi) ⊆ Z ∪

(⋃i−1
j=1 vars(Fj)

)
and w ∈ Z ∪ (

⋃`
j=1 vars(Fj)). Clearly,

if w ∈ vars(Fk) for some k < `, then such a sequential proof can be shortened by omitting
the atoms Fk+1, . . . , F`. Sequential proofs mimic the computation of a closure of a set of
attributes with respect to a set of functional dependencies; see, e.g., [1, p. 165].

P. Koutris and J. Wijsen 23:7

Notions from graph theory We adopt some terminology from [4]. A directed graph is
strongly connected if there is a directed path from any vertex to any other. The maximal
strongly connected subgraphs of a graph are vertex-disjoint and are called its strong compon-
ents. If S1 and S2 are strong components such that an edge leads from a vertex in S1 to a
vertex in S2, then S1 is a predecessor of S2 and S2 is a successor of S1. A strong component
is called initial if it has no predecessor. For a directed graph, we define the length of a
directed path as the number of edges it contains. A directed path or cycle without repeated
vertices is called elementary. If G is a graph, then V (G) denotes the vertex set of G, and
E(G) denotes the edge set of G.

Symmetric stratified Datalog We assume that the reader is familiar with the syntax and
semantics of stratified Datalog. A stratified Datalog program is linear if in the body of each
rule there is at most one occurrence of an IDB predicate of the same stratum (but there may
be arbitrarily many occurrences of IDB predicates from lower strata). Assume that some
stratum of a linear stratified Datalog program contains a recursive rule

L0 ← L1, L2, . . . , Lm,¬Lm+1, . . . ,¬Ln

such that L1 is an IDB predicate of the same stratum. Then, since the program is linear,
each predicate among L2, . . . , Ln is either an EDB predicate or an IDB predicate of a lower
stratum. Such a rule has a symmetric rule:

L1 ← L0, L2, . . . , Lm,¬Lm+1, . . . ,¬Ln.

A stratified Datalog program is symmetric if it is linear and the symmetric of any recursive
rule is also a rule of the program.

It is known (see, for example, [15, Proposition 3.3.72]) that linear stratified Datalog is
equivalent to Transitive Closure Logic. The data complexity of linear stratified Datalog
is in NL (and is complete for NL). A symmetric Datalog program can be evaluated in
logarithmic space [10] and cannot express directed reachability [11].

We will assume that given a (extensional or intentional) predicate P of some arity 2`, we
can express the following query (let ~x = 〈x1, . . . , x`〉, ~y = 〈y1, . . . , y`〉, and ~z = 〈z1, . . . , z`〉):

{~x, ~y | P (~x, ~y) ∧ ∀z1 · · · ∀z` (P (~x, ~z)→ ~y ≤` ~z)}, (2)

where ≤` is a total order on dom`. Informally, the above query groups by the ` leftmost
positions, and, within each group, takes the smallest (with respect to ≤`) value for the
remaining positions. Such a query will be useful in Section 8.3, where P encodes an equivalence
relation on a finite subset of dom`, and the query (2) allows us to deterministically choose
a representative in each equivalence class. The order ≤` can be first-order defined as the
lexicographical order on dom` induced by the linear order on dom. For example, for ` = 2,
the lexicographical order is defined as (y1, y2) ≤2 (z1, z2) if y1 < z1 ∨ ((y1 = z1) ∧ (y2 ≤ z2)).
Nevertheless, our results do not depend on how the order ≤` is defined. Moreover, all queries
in our study will be order-invariant in the sense defined in [17]. The order is only needed in
the proof of Lemma 25 to pick, in a deterministic way, an identifier from a set of candidate
identifiers. In Datalog, we use the following convenient syntax for (2):

Answer(~x,min(~y))←P (~x, ~y).

Such a rule will always be non-recursive. Most significantly, if we extend a logspace fragment
of stratified Datalog with queries of the form (2), the extended fragment will also be in

ICDT 2019

23:8 CQA for Primary Keys in Logspace

R(x, y) S(y, z)

T (z, x)

(a) M-graph.

R(a1, b1) S(b1, c1)

T (c1, a1)

R(a2, b2)S(b2, c2)

R(a1, b2)

T (c1, a2)

T (c2, a1)

S(b2, c1)

(b)
C3
↪→-graph.

{R(a1, b1), R(a1, b2)}
{S(b1, c1)}

{T (c1, a1), T (c1, a2)}

{R(a2, b2)}
{S(b2, c2), S(b2, c1)}

{T (c2, a1)}

(c) Block-quotient graph.

Figure 2 Examples of three different graphs used in this paper: M-graph, ↪→-graph, block-quotient
graph.

logspace. Therefore, assuming queries of the form (2) is harmless for our complexity-theoretic
purposes. We use SymStratDatalog for symmetric stratified Datalog, and SymStratDatalogmin

for symmetric stratified Datalog that allows queries of the form (2). The need for the min
operator will occur in the proof of Lemma 25.

4 The Main Theorem and an Informal Guide of its Proof

In this paper, we prove the following main result.

I Theorem 5 (Main Theorem). For every query q in sjfBCQ,
if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-complete;
and
if the attack graph of q contains no strong cycle, then CERTAINTY(q) is expressible in
SymStratDatalogmin (and is thus in L).

The above result is stronger than Theorem 2, since it provides an effective criterion for the
dichotomy between coNP-completeness and expressibility in symmetric stratified Datalog.

Before we delve into the proof in the next sections, we start with a guided tour that
introduces our approach in an informal way. The focus of this paper is a deterministic
logspace algorithm for CERTAINTY(q) whenever CERTAINTY(q) is in P but not in FO

P. Koutris and J. Wijsen 23:9

(assuming P 6= coNP). In what follows, by a logspace algorithm, we will always mean a
deterministic logspace algorithm. An exemplar query is C3 := {R(x, y), S(y, z), T (z, x)},
which can be thought of as a cycle of length 3. For the purpose of this example, let q be a
query in sjfBCQ that includes C3 as a subquery (i.e., C3 ⊆ q).

An important novel notion in this paper is the M-graph of a query (see Section 6). The
M-graph of C3 is shown in Fig. 2a. Informally, a directed edge from an atom F to an atom
G, denoted F M−→ G, means that every variable that occurs in the primary key of G occurs
also in F . In Fig. 2a, we have T (z, x) M−→ R(x, y), because R’s primary key (i.e., x) occurs in
the T -atom; there is no edge from R(x, y) to T (z, x) because z does not occur in the R-atom.
Intuitively, one can think of edges in the M-graph as foreign-to-primary key joins. In what
follows, we focus on cycles in the M-graph, called M-cycles. As we will see later on, such
M-cycles will occur whenever the attack graph of a query is cyclic but contains no strong
attack cycles.

Figure 2b shows an instantiation of the M-graph, called
C3
↪→-graph (see Definitions 12

and 18), whose vertices are obtained by replacing variables with constants in R(x, y), S(y, z),
or T (z, x). We write A

C3
↪→ B to denote an edge from fact A to fact B. Each triangle in the

C3
↪→-graph of Fig. 2b instantiates the query C3; for example, the inner triangle is equal to θ(C3)
where θ is the valuation such that θ(xyz) = a1b2c1. We call such a triangle a 1-embedding
(see Definition 18). Significantly, some edges are not part of any triangle. For example, the
edge S(b1, c1)

C3
↪→ T (c1, a2) is not in a triangle, but is present because the primary key of

T (c1, a2) occurs in S(b1, c1).
Let db be a database that is input to CERTAINTY(q) such that db contains (but is

not limited to) all facts of Fig. 2b. Since C3 is a subquery of q, db will typically contain
other facts with relation names in q \C3. Furthermore, db can contain R-facts, S-facts, and
T -facts not shown in Fig. 2b. Then, db has at least 23 = 8 repairs, because Fig. 2b shows
two R-facts with primary key a1, two S-facts with primary key b2, and two T -facts with
primary key c1. Consider now the outermost elementary cycle (in thick lines) of length 6,
i.e., the cycle using the vertices in r := {R(a1, b1), S(b1, c1), T (c1, a2), R(a2, b2), S(b2, c2),
T (c2, a1)}, which will be called a 2-embedding in Definition 18 (or an n-embedding with
n = 2). One can verify that r does not contain distinct key-equal facts and does not satisfy
C3 (because the subgraph induced by r has no triangle). Let o be the database that contains
r as well as all facts of db that are key-equal to some fact in r. A crucial observation is that
if db \ o has a repair that falsifies q, then so has db (the converse is trivially true). Indeed,
if s is a repair of db \ o that falsifies q, then s∪ r is a repair of db that falsifies q. Intuitively,
we can add r to s without creating a triangle in the

C3
↪→-graph (i.e., without making C3 true,

and thus without making q true), because the facts in r form a cycle on their own and contain
no outgoing

C3
↪→-edges to facts in s. In Section 7, the set o will be called a garbage set: its

facts can be thrown away without changing the answer to CERTAINTY(q). Note that the
C3
↪→-graph of Fig. 2b contains other elementary cycles of length 6, which, however, contain
distinct key-equal facts: for example, the cycle with vertices R(a1, b1), S(b1, c1), T (c1, a1),
R(a1, b2), S(b2, c2), T (c2, a1) contains both R(a1, b1) and R(a1, b2).

Garbage sets thus arise from cycles in the
C3
↪→-graph that (i) do not contain distinct

key-equal facts, and (ii) are not triangles satisfying C3. To find such cycles, we construct
the quotient graph of the

C3
↪→-graph with respect to the equivalence relation “is key-equal to.”

Since the equivalence classes with respect to “is key-equal to” are the blocks of the database,
we call this graph the block-quotient graph (Definition 23). The block-quotient graph for
our example is shown in Fig. 2c. The vertices are database blocks; there is an edge from

ICDT 2019

23:10 CQA for Primary Keys in Logspace

block b1 to b2 if the
C3
↪→-graph contains an edge from some fact in b1 to some fact in b2.

The block-quotient graph contains exactly one elementary directed cycle of length 6 (thick
lines); this cycle obviously corresponds to the outermost cycle of length 6 in the

C3
↪→-graph. A

core result (Lemma 22) of this article is a logspace algorithm for finding elementary cycles in
the block-quotient graph whose lengths are strict multiples of the length of the underlying
M-cycle. In our example, since the M-cycle of C3 has length 3, we are looking for cycles in the
block-quotient graph of lengths 6, 9, 12, . . . Note here that, since the

C3
↪→-graph is tripartite,

the length of any cycle in it must be a multiple of 3. Our algorithm can be encoded in
symmetric stratified Datalog. This core algorithm is then extended to compute garbage sets
(Lemma 24) for M-cycles.

In our example, C3 is a subquery of q. In general, M-cycles will be subqueries of larger
queries. The facts that belong to the garbage set for an M-cycle can be removed, but the
other facts must be maintained for computations on the remaining part of the query, and
are stored in a new schema that replaces the relations in the M-cycle with a single relation
(see Section 8.3). In our example, this new relation has attributes for x, y, and z, and stores
all triangles that are outside the garbage set for C3.

We can now sketch our approach for dealing with queries q such that CERTAINTY(q)
is in P \ FO. Lemma 11 tells us that such a query q will have an M-cycle involving two
or more atoms of mode i. The garbage set of this M-cycle is then computed, and the facts
not in the garbage set will be stored in a single new relation of mode i that replaces the
M-cycle. In this way, CERTAINTY(q) is reduced to a new problem CERTAINTY(q′), where
q′ contains less atoms of mode i than q. Lemma 25 shows that this new problem will be in
P, and that our reduction can be expressed in symmetric stratified Datalog. We can repeat
this reduction until we arrive at a query q′′ such that CERTAINTY(q′′) is in FO.

To conclude this guided tour, we point out the role of atoms of mode c in the computation
of the M-graph, which was not illustrated by our running example. In the M-graph of Fig. 1
(right), we have S(y, z) M−→ U(y, z, w, x), even though w does not occur in the S-atom. The
explanation is that the query also contains the consistent relation T c(z, w), which maps
each z-value to a unique w-value. So even though w does not occur as such in S(y, z), it
is nevertheless uniquely determined by z. It is thus important to identify all relations of
mode c, which is the topic of the next section.

5 Saturated Queries

In this section, we show that we can safely extend a query q with new consistent relations.
To achieve this, we need to identify a particular type of functional dependencies for q, which
are called internal. Internal functional dependencies are used to define saturated queries.

I Definition 6. Let q be a query in sjfBCQ. Let Z → w be a functional dependency for q.
We say that Z → w is internal to q if the following two conditions are satisfied:
1. there exists a sequential proof for K(q) |= Z → w such that no atom in the sequential

proof attacks a variable in Z ∪ {w}; and
2. for some F ∈ q, Z ⊆ vars(F).
We say that q is saturated if for every functional dependency σ that is internal to q, we have
K(qcons) |= σ.

P. Koutris and J. Wijsen 23:11

I Example 7. Assume q = {S1(z, u), S2(u,w), R1(z, u′), R2(u′, w), T1(u, v), T2(v, w)}. By
using relation names as a shorthand for atoms, we have that 〈S1, S2〉 is a sequential proof
for K(q) |= z → w in which neither S1 nor S2 attacks z or w, Indeed, S1 attacks neither z
nor w because z, w ∈ S1

+,q. S2 attacks no variable because vars(S2) ⊆ S2
+,q. It follows that

the functional dependency z → w is internal to q.

The next key lemma shows that we can assume without loss of generality that every
internal functional dependency Z → w is satisfied, i.e., that every Z-value is mapped to
a unique w-value. Therefore, whenever Z → w is internal, we can safely extend q with a
new consistent relation N c(Z,w) that materializes the mapping from Z-values to w-values.
Continuing the above example, we would extend q by adding a fresh atom N c(z, w).

I Lemma 8. For every query q in sjfBCQ, it is possible to compute a query q′ in sjfBCQ
with the following properties:
1. there exists a first-order reduction from CERTAINTY(q) to CERTAINTY(q′);
2. if the attack graph of q contains no strong cycle, then the attack graph of CERTAINTY(q′)

contains no strong cycle; and
3. q′ is saturated.

6 M-Graphs and ↪→-Graphs

In this section, we introduce the M-graph of a query q in sjfBCQ, which is a generalization of
the notion of Markov-graph introduced in [20] (hence the use of the letter M). An important
new result, Lemma 11, expresses a relationship between attack graphs and M-graphs. Finally,
we define ↪→-graphs, which can be regarded as data-level instantiations of M-graphs.

I Definition 9. Let q be a query in sjfBCQ (which need not be saturated). The M-graph of
q is a directed graph whose vertices are the atoms of q. There is a directed edge from F to
G (F 6= G), denoted F M−→ G, if K(qcons) |= vars(F) → key(G). A cycle in the M-graph is
called an M-cycle.

Note that if all relation names in q have mode i, then F M−→ G implies key(G) ⊆ vars(F).
M-Graphs are technically easier to deal with than the Markov-graphs [20] on which they are
inspired. In fact, Markov-graphs were in [20] only defined for queries containing no atoms of
mode i with a composite primary key. Therefore, atoms with composite primary keys had
first to be massaged into the form required by Markov graphs. This drawback is resolved by
the new notion of M-graph.

I Example 10. The notion of M-graph is illustrated by Fig. 1. We have K(q1
cons) = {z → w}.

Since K(q1
cons) |= vars(S)→ key(U), the M-graph has a directed edge from S to U .

The following lemma tells us about how the existence of M-cycles goes hand in hand with
weak attack cycles. This relationship is important because, on the one hand, our logspace
algorithm for CERTAINTY(q), with q ∈ sjfBCQ, is centered on the existence of M-cycles, and,
on the other, it must apply whenever all cycles in q’s attack graph are weak. The notion of
saturated query is also needed here, because the lemma fails for queries that are not saturated.
The lemma generalizes Lemma 7.13 in [20]. Note that the lemma only considers strong
components of the attack graph that are initial, which will be sufficient for our purposes.

I Lemma 11. Let q be a query in sjfBCQ such that q is saturated and the attack graph of q
contains no strong cycle. Let S be an initial strong component in the attack graph of q with
|S| ≥ 2. Then, the M-graph of q contains a cycle all of whose atoms belong to S.

ICDT 2019

23:12 CQA for Primary Keys in Logspace

S y z

I 1
I 2
I 3

T c z w

1 a

2 b

U y z w x

I 1 a χ

I 2 b χ

R x y

χ I

S(I, 1)

S(I, 2)

S(I, 3)

U(I, 1, a, χ)

U(I, 2, b, χ)

R(χ, I)

Figure 3 Left: Database that is input to CERTAINTY(q1) for the query q1 in Fig. 1. The relations
for T1 and T2, which are identical to the relation for T c, have been omitted. Right: The ↪→-graph
from which, for readability reasons, T1-facts, T2-facts, and T c-facts have been omitted.

Given a query q, every database that instantiates the schema of q naturally gives rise to
an instantiation of the M−→-edges in q’s M-graph, in a way that is captured by the following
definition.

I Definition 12. The following notions are defined relative to a query q in sjfBCQ and a
database db. The ↪→-graph of db is a directed graph whose vertices are the atoms of db.
There is a directed edge from A to B, denoted A ↪→ B, if there exists a valuation θ over vars(q)
and an edge F M−→ G in the M-graph of q such that θ(q) ⊆ db, A = θ(F), and B ∼ θ(G).
A cycle in the ↪→-graph is also called a ↪→-cycle. In spoken language, the ↪→-graph may be
called the instantiated M-graph.

The notion of ↪→-graph is illustrated by Fig. 3. The following lemma states that if the
↪→-graph of a database db has a directed edge from some fact A to some G-fact B, then A
has outgoing edges to all the facts of block(B,db), and to no other G-facts.

I Lemma 13. Let q ∈ sjfBCQ and let db be a database. Let A,B ∈ db and F,G ∈ q.
1. if A ↪→ B, then A ↪→ B′ for all B′ ∈ block(B,db);
2. if A ↪→ B and A ↪→ B′ and genreq(B) = genreq(B′), then B ∼ B′.

7 Garbage Sets

Let db be a database that is an input to CERTAINTY(q) with q ∈ sjfBCQ. In this section, we
show that it is generally possible to downsize db by deleting blocks from it without changing
the answer to CERTAINTY(q). That is, if the downsized database has a repair falsifying q,
then so does the original database (the converse holds trivially true). Intuitively, the deleted
blocks can be considered as “garbage” for the problem CERTAINTY(q).

I Definition 14. The following definition is relative to a fixed query q in sjfBCQ. Let q0 ⊆ q.
Let db be a database. We say that a subset o of db is a garbage set for q0 in db if the
following conditions are satisfied:
1. for every A ∈ o, we have that genreq(A) ∈ q0 and block(A,db) ⊆ o; and
2. there exists a repair r of o such that for every valuation θ over vars(q), if θ(q) ⊆ (db \ o)∪r,

then θ(q0) ∩ r = ∅ (and thus θ(q0) ∩ o = ∅).

P. Koutris and J. Wijsen 23:13

The first condition in the above definition says that the relation names of facts in o must
occur in q0, and that every block of db is either included in or disjoint with o. The second
condition captures the crux of the definition and was illustrated in Section 4.

We now show a number of useful properties of garbage sets that are quite intuitive. In
particular, by Lemma 15, there exists a unique maximum (with respect to ⊆) garbage set for
q0 in db, which will be called the maximum garbage set for q0 in db.

I Lemma 15. Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. If o1 and
o2 are garbage sets for q0 in db, then o1 ∪ o2 is a garbage set for q0 in db.

I Lemma 16. Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. Let o be a
garbage set for q0 in db. Then, every repair of db satisfies q if and only if every repair of
db \ o satisfies q (i.e., db and db \ o agree on their answer to CERTAINTY(q)).

I Lemma 17. Let q be a query in sjfBCQ, and let q0 ⊆ q. Let db be a database. Let o be a
garbage set for q0 in db. Then, every garbage set for q0 in db \ o is empty if and only if o
is the maximal garbage set for q0 in db.

8 Garbage Sets for M-Cycles

In this section, we bring together notions of the two preceding sections. We focus on queries
q in sjfBCQ whose M-graph has a cycle C. From here on, if C is an elementary cycle in the
M-graph of some query q in sjfBCQ, then the subset of q that contains all (and only) the
atoms of C, is also denoted by C.

Section 8.1 shows a procedural characterization of the maximal garbage set for C.
Section 8.2 shows that the maximal garbage set for C can be computed in symmetric
stratified Datalog. Finally, Section 8.3 shows a reduction, expressible in symmetric stratified
Datalog, that replaces C with a single atom.

8.1 Characterizing Garbage Sets for M-Cycles
We define how a given M-cycle C of length k can be instantiated by cycles in the ↪→-graph,
called embeddings, whose lengths are multiples of k.

I Definition 18. Let q be a query in sjfBCQ. Let db be a database. Let C be an elementary
directed cycle in the M-graph of q. The cycle C naturally induces a subgraph of the ↪→-graph,
as follows: the vertex set of the subgraph contains all (and only) the facts A of db such that
genreq(A) is an atom in C; there is a directed edge from A to B, denoted A C

↪→ B, if A ↪→ B

and the cycle C contains a directed edge from genreq(A) to genreq(B).
Let k be the length of C. Obviously, the length of every C

↪→-cycle must be a multiple of k.
Let n be a positive integer. An n-embedding of C in db (or simply embedding if the value n
is not important) is an elementary C

↪→-cycle of length nk containing no two distinct key-equal
facts. A 1-embedding of C in db is said to be relevant if there exists a valuation θ over
vars(q) such that θ(q) ⊆ db and θ(q) contains every fact of the 1-embedding; otherwise the
1-embedding is said to be irrelevant.

Let C and q be as in Definition 18, and let db be a database. There exists an intimate
relationship between garbage sets for C in db and different sorts of embeddings.

Let A ∈ db such that genreq(A) belongs to C. If A belongs to some relevant 1-embedding
of C in db, then A will have an outgoing edge in the C

↪→-graph. If A does not belong to
some relevant 1-embedding of C in db, then A will have no outgoing edge in the C

↪→-graph,
and block(A,db) is a garbage set for C in db by Definition 14 (choose o = block(A,db)
and r = {A}).

ICDT 2019

23:14 CQA for Primary Keys in Logspace

Every irrelevant 1-embedding of C in db gives rise to a garbage set. To illustrate this
case, let C = {R(x, y, z), S(y, x, z)}. Assume that R(a, b, 1) C

↪→ S(b, a, 2) C
↪→ R(a, b, 1) is

a 1-embedding of C in db. This 1-embedding is irrelevant, because 1 6= 2. It can be
easily seen that R(a, ∗, ∗) ∪ S(b, ∗, ∗) is a garbage set for q in db.
Every n-embedding of C in db with n ≥ 2 gives rise to a garbage set. This was illustrated
in Section 4 by means of the outermost cycle of length 6 in Fig. 2b, which is a 2-embedding
of {R(x, y), S(y, z), T (z, x)}.

These observations lead to the following lemma which provides a procedural characterization
of the maximal garbage set for C in a given database.

I Lemma 19. Let q be a query in sjfBCQ. Let C = F0
M−→ F1

M−→ · · · M−→ Fk−1
M−→ F0 be

an elementary cycle of length k (k ≥ 2) in the M-graph of q. Let db be a database. Let o be
a minimal (with respect to ⊆) subset of db satisfying the following conditions:
1. the set o contains every fact A of db with genreq(A) ∈ {F0, . . . , Fk−1} such that A has

zero outdegree in the C
↪→-graph;

2. the set o contains every fact that belongs to some irrelevant 1-embedding of C in db;
3. the set o contains every fact that belongs to some n-embedding of C in db with n ≥ 2;
4. Recursive condition: if o contains some fact of a relevant 1-embedding of C in db, then

o contains every fact of that 1-embedding; and
5. Closure under “is key-equal to”: if o contains some fact A, then o includes block(A,db).
Then, o is the maximal garbage set for C in db.

I Corollary 20. Let C be an elementary cycle in the M-graph of a query q in sjfBCQ. Let S
be a strong component in the C

↪→-graph of a database db. If some fact of S belongs to the
maximal garbage set for C in db, then every fact of S belongs to the maximal garbage set
for C in db.

8.2 Computing Garbage Sets for M-Cycles
In this section, we translate Lemma 19 into a Datalog program that computes, in deterministic
logspace, the maximal garbage set for an M-cycle C. The main computational challenge lies in
condition 3 of Lemma 19, which adds to the maximal garbage set all facts belonging to some
n-embedding with n ≥ 2, where the value of n is not upper bounded. Such n-embeddings can
obviously be computed in nondeterministic logspace by using directed reachability in the C

↪→-
graph. This section shows a trick that allows doing the computation by using only undirected
reachability, which, by the use of Reingold’s algorithm [32], will lead to an algorithm that
runs in deterministic logspace.

By Corollary 20, instead of searching for n-embeddings, n ≥ 2, it suffices to search for
strong components of the C

↪→-graph containing such n-embeddings. These strong components
can be recognized by a first-order reduction to the following problem, called LONGCYCLE(k),
which is in logspace by Lemma 22.

I Definition 21. A k-circle-layered graph [25] is a k-partite directed graph G = (V,E)
where edges only exist between adjacent partitions. More formally, the vertices of G can be
partitioned into k groups such that V = V0 ∪ V1 ∪ · · · ∪ Vk−1 and Vi ∩ Vj = ∅ if i 6= j. The
only edges from a partition Vi go to the partition V(i+1) mod k.

For every positive integer k, LONGCYCLE(k) is the following problem.
Problem LONGCYCLE(k)
Instance A connected k-circle-layered graph G = (V,E) such that every edge of E belongs to

a directed cycle of length k.
Question Does G have an elementary directed cycle of length at least 2k?

P. Koutris and J. Wijsen 23:15

I Lemma 22. For every positive integer k, LONGCYCLE(k) is in L and can be expressed in
SymStratDatalog.

Proof (Sketch). Let G = (V,E) be an instance of LONGCYCLE(k). A cycle of length k in
G is called a k-cycle. Let Ĝ be the undirected graph whose vertices are the k-cycles of G;
there is an undirected edge between two vertices if their k-cycles have an element in common.
The full proof in [22] shows that G has an elementary directed cycle of length ≥ 2k if and
only if one of the following conditions is satisfied:

for some n such that 2 ≤ n ≤ 2k− 3, G has an elementary directed cycle of length nk; or
Ĝ has a chordless undirected cycle (i.e., a cycle without cycle chord) of length ≥ 2k.

The first condition can be tested in FO; the second condition can be reduced to an undirected
connectivity problem, which is in logspace [32] and can be expressed in SymStratDatalog. J

To use Lemma 22, we take a detour via the quotient graph of the C
↪→-graph relative to

the equivalence relation “is key-equal to.”

I Definition 23. Let q be a query in sjfBCQ. Let db be a database. Let C be an elementary
directed cycle of length k ≥ 2 in the M-graph of q. The block-quotient graph is the quotient
graph of the C

↪→-graph of db with respect to the equivalence relation ∼. 1

The block-quotient graph of a database can obviously be constructed in FO. The
strong components of the C

↪→-graph that contain some n-embedding of C, n ≥ 2, can then
be recognized in logspace by executing the algorithm for LONGCYCLE(k) on the block-
quotient graph.

I Lemma 24. Let q be a query in sjfBCQ. Let C be an elementary cycle of length k (k ≥ 2)
in the M-graph of q. There exists a program in SymStratDatalog that takes a database db as
input and returns, as output, the maximal garbage set for C in db.

8.3 Elimination of M-Cycles
Given a database db, the Datalog program of Lemma 24 allows us to compute the maximal
garbage set o for C in db. The C

↪→-graph of db′ := db \o will be a set of strong components,
all initial, each of which is a collection of relevant 1-embeddings of C in db′. The following
Lemma 25 introduces a reduction that encodes this C

↪→-graph by means of a fresh atom
T (u, ~w), where vars(~w) = vars(C) and u is a fresh variable. Whenever θ(q) ⊆ db′ for some
valuation θ over vars(q), the reduction will add to the database a fact T (cid, θ(~w)) where
cid is an identifier for the strong component (in the C

↪→-graph) that contains θ(C). The
construction is illustrated by Fig. 4. The following lemma captures this reduction and states
that it (i) is expressible in SymStratDatalogmin, and (ii) does not result in an increase of
computational complexity.

I Lemma 25. Let q be a query in sjfBCQ. Let C = F0
M−→ F1

M−→ · · · M−→ Fk−1
M−→ F0

with k ≥ 2 be an elementary cycle in the M-graph of q. Let u be a variable such that
u 6∈ vars(q). Let T be an atom with a fresh relation name such that key(T) = {u} and
vars(T) = vars(C) ∪ {u}. Let p be a set containing, for every i ∈ {1, . . . , k}, an atom Ni of
mode c with a fresh relation name such that key(Ni) = key(Fi) and vars(Ni) = key(Fi) ∪ {u}.
Then,

1 The quotient graph of a directed graph G = (V,E) with respect to an equivalence relation ≡ on V is a
directed graph whose vertices are the equivalence classes of ≡; there is a directed edge from class A to
class B if E has a directed edge from some vertex in A to some vertex in B.

ICDT 2019

23:16 CQA for Primary Keys in Logspace

R(a, 1, α)

R(b, 1, β)

R(b, 2, β)

R(c, 3, β)

S(1, a, α)

S(1, b, β)

S(2, b, β)

S(3, c, β)

T u x y z

a a 1 α

a b 1 β

a b 2 β

c c 3 β

N c
1 x u

a a

b a

c c

N c
2 y u

1 a

2 a

3 c

Figure 4 Left: Two strong components in the C
↪→-graph of a database for an M-cycle R(x, y, z) M−→

S(y, x, z) M−→ R(x, y, z). The maximal garbage set is empty. Right: Encoding of the relevant 1-
embeddings in each strong component. The u-values a and c are used to identify the strong
components, and are chosen as the smallest x-values in each strong component.

1. there exists a reduction from CERTAINTY(q) to CERTAINTY((q \ C) ∪ {T} ∪ p) that is
expressible in SymStratDatalogmin; and

2. if the attack graph of q contains no strong cycle and some initial strong component of
the attack graph contains every atom of {F0, F1, . . . , Fk−1}, then the attack graph of
(q \ C) ∪ {T} ∪ p contains no strong cycle either.

Proof (Crux). The crux in the proof of the first item is the deterministic choice of u-values
for T -blocks. In Fig. 4, for example, the T -block encoding the top strong component uses
u = a, and the T -block encoding the bottom strong component uses u = c. These u-values
are the smallest x-values in the strong components, which can be obtained by the query (2)
introduced in Section 3. In the example, we assumed a = min{a, b} and c = min{c}. J

The proof of the main theorem, Theorem 5, is now fairly straightforward and is given in
full detail in [22]. Informally, let q be a saturated query in sjfBCQ such that the attack graph
of q has no strong attack cycles. If q contains an atom of mode i without incoming attacks,
then this atom is rewritten in first-order logic, in the form defined by [34, Definition 8.3];
otherwise some M-cycle, which exists by Lemma 11, is eliminated in the way previously
described in this section. In either case, the remaining smaller query will have a consistent
SymStratDatalogmin rewriting.

9 Joins on Primary Keys

It is common that the join condition in a join of two tables expresses a foreign-to-primary
key match, i.e., the columns (called the foreign key) of one table reference the primary key
of another table. In our setting, we have primary keys but no foreign keys. Nevertheless,
foreign keys can often be inferred from the query. For example, in the following query, the
variable d in Movies references the primary key of Directors:

{Movies(m, t, ‘1963’, d),Directors(d, ‘Hitchcock’, b)}.

Given relation schemas Movies(M#,Title,Year,Director) and Directors(D#,Name,BirthYear),
this query asks whether there exists a movie released in 1963 and directed by Hitchcock.

P. Koutris and J. Wijsen 23:17

The key-join property that we define below captures this common type of join. Informally,
a query has the key-join property if whenever two atoms have a variable in common, then
their set of shared variables is either equal to the set of primary-key variables of one of the
atoms, or contains all primary-key variables of both atoms.

I Definition 26. We say that a query q in sjfBCQ has the key-join property if for all F,G ∈ q,
either vars(F) ∩ vars(G) ∈ {∅, key(F), key(G)} or vars(F) ∩ vars(G) ⊇ key(F) ∪ key(G).

Theorem 27 shows that if some query q in sjfBCQ has the key-join property, then
CERTAINTY(q) falls on the logspace side of the dichotomy of Theorem 5.

I Theorem 27. For every query q in sjfBCQ that has the key-join property, CERTAINTY(q)
is expressible in SymStratDatalogmin (and is thus in L).

It is worth noting that many of the queries covered by Theorem 27 have an acyclic attack
graph as well, and thus even have a consistent first-order rewriting.

10 Conclusion

The main result of this paper is a theorem stating that for every query q in sjfBCQ (i.e.,
the class of self-join-free Boolean conjunctive queries), CERTAINTY(q) is coNP-complete
or expressible in SymStratDatalogmin (and thus in L). Since there exist queries q ∈ sjfBCQ
such that CERTAINTY(q) is L-complete, the logspace upper bound in Theorem 2 is tight.
The theorem thus culminates a long line of research that started with the ICDT 2005 paper
of Fuxman and Miller [13]. The outcome of this research is the following theorem.

I Theorem 28. For every self-join-free Boolean conjunctive query q,
if the attack graph of q is acyclic, then CERTAINTY(q) is in FO;
if the attack graph of q is cyclic but contains no strong cycle, then CERTAINTY(q) is
L-complete and expressible in SymStratDatalogmin; and
if the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-complete.

An intriguing open problem is to extend these complexity results to Boolean conjunct-
ive queries with self-joins and to UCQ. Progress in the latter problem may deepen our
understanding of relationships between CQA and CSP, which were first discovered in [12].

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent Query Answers in

Inconsistent Databases. In ACM PODS, pages 68–79, 1999. doi:10.1145/303976.303983.
3 Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Xin He, Vijay Raghavan, and Jeremy P.

Spinrad. Scalar aggregation in inconsistent databases. Theor. Comput. Sci., 296(3):405–434,
2003. doi:10.1016/S0304-3975(02)00737-5.

4 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A Linear-Time Algorithm for
Testing the Truth of Certain Quantified Boolean Formulas. Inf. Process. Lett., 8(3):121–123,
1979. doi:10.1016/0020-0190(79)90002-4.

5 Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017. URL: http://www.cambridge.org/de/academic/
subjects/computer-science/knowledge-management-databases-and-data-mining/
introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97.

ICDT 2019

http://webdam.inria.fr/Alice/
http://dx.doi.org/10.1145/303976.303983
http://dx.doi.org/10.1016/S0304-3975(02)00737-5
http://dx.doi.org/10.1016/0020-0190(79)90002-4
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97

23:18 CQA for Primary Keys in Logspace

6 Pablo Barceló and Gaëlle Fontaine. On the data complexity of consistent query answering over
graph databases. J. Comput. Syst. Sci., 88:164–194, 2017. doi:10.1016/j.jcss.2017.03.015.

7 Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011. doi:10.2200/
S00379ED1V01Y201108DTM020.

8 Meghyn Bienvenu and Camille Bourgaux. Inconsistency-Tolerant Querying of Description
Logic Knowledge Bases. In Jeff Z. Pan, Diego Calvanese, Thomas Eiter, Ian Horrocks,
Michael Kifer, Fangzhen Lin, and Yuting Zhao, editors, Reasoning Web: Logical Foundation
of Knowledge Graph Construction and Query Answering - 12th International Summer School
2016, Aberdeen, UK, September 5-9, 2016, Tutorial Lectures, volume 9885 of Lecture Notes in
Computer Science, pages 156–202. Springer, 2016. doi:10.1007/978-3-319-49493-7_5.

9 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans.
Comput. Log., 12(4):24:1–24:66, 2011. doi:10.1145/1970398.1970400.

10 László Egri, Benoit Larose, and Pascal Tesson. Symmetric Datalog and Constraint Satisfaction
Problems in Logspace. In LICS, pages 193–202, 2007. doi:10.1109/LICS.2007.47.

11 László Egri, Benoit Larose, and Pascal Tesson. Directed st-Connectivity Is Not Expressible in
Symmetric Datalog. In ICALP, pages 172–183, 2008. doi:10.1007/978-3-540-70583-3_15.

12 Gaëlle Fontaine. Why is it Hard to Obtain a Dichotomy for Consistent Query Answering? In
LICS, pages 550–559, 2013. doi:10.1109/LICS.2013.62.

13 Ariel Fuxman and Renée J. Miller. First-Order Query Rewriting for Inconsistent Databases.
In ICDT, pages 337–351, 2005. doi:10.1007/978-3-540-30570-5_23.

14 Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent databases. J.
Comput. Syst. Sci., 73(4):610–635, 2007. doi:10.1016/j.jcss.2006.10.013.

15 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y. Vardi,
Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Texts in Theor-
etical Computer Science. An EATCS Series. Springer, 2007. doi:10.1007/3-540-68804-8.

16 Sergio Greco, Fabian Pijcke, and Jef Wijsen. Certain Query Answering in Partially Con-
sistent Databases. PVLDB, 7(5):353–364, 2014. URL: http://www.vldb.org/pvldb/vol7/
p353-greco.pdf, doi:10.14778/2732269.2732272.

17 Martin Grohe and Thomas Schwentick. Locality of order-invariant first-order formulas. ACM
Trans. Comput. Log., 1(1):112–130, 2000. doi:10.1145/343369.343386.

18 Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. Efficient Querying of Inconsistent
Databases with Binary Integer Programming. PVLDB, 6(6):397–408, 2013. URL: http:
//www.vldb.org/pvldb/vol6/p397-tan.pdf, doi:10.14778/2536336.2536341.

19 Paraschos Koutris and Jef Wijsen. The Data Complexity of Consistent Query Answering for
Self-Join-Free Conjunctive Queries Under Primary Key Constraints. In PODS, pages 17–29,
2015. doi:10.1145/2745754.2745769.

20 Paraschos Koutris and Jef Wijsen. Consistent Query Answering for Self-Join-Free Conjunctive
Queries Under Primary Key Constraints. ACM Trans. Database Syst., 42(2):9:1–9:45, 2017.
doi:10.1145/3068334.

21 Paraschos Koutris and Jef Wijsen. Consistent Query Answering for Primary Keys and
Conjunctive Queries with Negated Atoms. In PODS, pages 209–224, 2018. doi:10.1145/
3196959.3196982.

22 Paraschos Koutris and Jef Wijsen. Consistent Query Answering for Primary Keys in Logspace.
CoRR, abs/1810.03386, 2018. arXiv:1810.03386.

23 Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio
Savo. Inconsistency-tolerant query answering in ontology-based data access. J. Web Sem.,
33:3–29, 2015. doi:10.1016/j.websem.2015.04.002.

24 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07003-1.

http://dx.doi.org/10.1016/j.jcss.2017.03.015
http://dx.doi.org/10.2200/S00379ED1V01Y201108DTM020
http://dx.doi.org/10.2200/S00379ED1V01Y201108DTM020
http://dx.doi.org/10.1007/978-3-319-49493-7_5
http://dx.doi.org/10.1145/1970398.1970400
http://dx.doi.org/10.1109/LICS.2007.47
http://dx.doi.org/10.1007/978-3-540-70583-3_15
http://dx.doi.org/10.1109/LICS.2013.62
http://dx.doi.org/10.1007/978-3-540-30570-5_23
http://dx.doi.org/10.1016/j.jcss.2006.10.013
http://dx.doi.org/10.1007/3-540-68804-8
http://www.vldb.org/pvldb/vol7/p353-greco.pdf
http://www.vldb.org/pvldb/vol7/p353-greco.pdf
http://dx.doi.org/10.14778/2732269.2732272
http://dx.doi.org/10.1145/343369.343386
http://www.vldb.org/pvldb/vol6/p397-tan.pdf
http://www.vldb.org/pvldb/vol6/p397-tan.pdf
http://dx.doi.org/10.14778/2536336.2536341
http://dx.doi.org/10.1145/2745754.2745769
http://dx.doi.org/10.1145/3068334
http://dx.doi.org/10.1145/3196959.3196982
http://dx.doi.org/10.1145/3196959.3196982
http://arxiv.org/abs/1810.03386
http://dx.doi.org/10.1016/j.websem.2015.04.002
http://dx.doi.org/10.1007/978-3-662-07003-1

P. Koutris and J. Wijsen 23:19

25 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight Hardness for
Shortest Cycles and Paths in Sparse Graphs. In ACM-SIAM SODA, pages 1236–1252, 2018.
doi:10.1137/1.9781611975031.80.

26 Carsten Lutz and Frank Wolter. On the Relationship between Consistent Query Answering
and Constraint Satisfaction Problems. In ICDT, pages 363–379, 2015. doi:10.4230/LIPIcs.
ICDT.2015.363.

27 Mónica Caniupán Marileo and Leopoldo E. Bertossi. The consistency extractor system: Answer
set programs for consistent query answering in databases. Data Knowl. Eng., 69(6):545–572,
2010. doi:10.1016/j.datak.2010.01.005.

28 Dany Maslowski and Jef Wijsen. A dichotomy in the complexity of counting database repairs.
J. Comput. Syst. Sci., 79(6):958–983, 2013. doi:10.1016/j.jcss.2013.01.011.

29 Dany Maslowski and Jef Wijsen. Counting Database Repairs that Satisfy Conjunctive Queries
with Self-Joins. In ICDT, pages 155–164, 2014. doi:10.5441/002/icdt.2014.18.

30 Fabian Pijcke. Theoretical and Practical Methods for Consistent Query Answering in the
Relational Data Model. PhD thesis, University of Mons, 2018.

31 Piotr Przymus, Aleksandra Boniewicz, Marta Burzanska, and Krzysztof Stencel. Recursive
Query Facilities in Relational Databases: A Survey. In FGIT, pages 89–99, 2010. doi:
10.1007/978-3-642-17622-7_10.

32 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.
doi:10.1145/1391289.1391291.

33 Jef Wijsen. On the first-order expressibility of computing certain answers to conjunctive queries
over uncertain databases. In PODS, pages 179–190, 2010. doi:10.1145/1807085.1807111.

34 Jef Wijsen. Certain conjunctive query answering in first-order logic. ACM Trans. Database
Syst., 37(2):9:1–9:35, 2012. doi:10.1145/2188349.2188351.

35 Jef Wijsen. A Survey of the Data Complexity of Consistent Query Answering under Key
Constraints. In FoIKS, pages 62–78, 2014. doi:10.1007/978-3-319-04939-7_2.

ICDT 2019

http://dx.doi.org/10.1137/1.9781611975031.80
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.363
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.363
http://dx.doi.org/10.1016/j.datak.2010.01.005
http://dx.doi.org/10.1016/j.jcss.2013.01.011
http://dx.doi.org/10.5441/002/icdt.2014.18
http://dx.doi.org/10.1007/978-3-642-17622-7_10
http://dx.doi.org/10.1007/978-3-642-17622-7_10
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1145/1807085.1807111
http://dx.doi.org/10.1145/2188349.2188351
http://dx.doi.org/10.1007/978-3-319-04939-7_2

Learning Definable Hypotheses on Trees
Emilie Grienenberger
ENS Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
emilie.grienenberger@ens-cachan.fr

Martin Ritzert
RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
ritzert@informatik.rwth-aachen.de

Abstract
We study the problem of learning properties of nodes in tree structures. Those properties are
specified by logical formulas, such as formulas from first-order or monadic second-order logic. We
think of the tree as a database encoding a large dataset and therefore aim for learning algorithms
which depend at most sublinearly on the size of the tree. We present a learning algorithm for
quantifier-free formulas where the running time only depends polynomially on the number of training
examples, but not on the size of the background structure. By a previous result on strings we know
that for general first-order or monadic second-order (MSO) formulas a sublinear running time cannot
be achieved. However, we show that by building an index on the tree in a linear time preprocessing
phase, we can achieve a learning algorithm for MSO formulas with a logarithmic learning phase.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases monadic second-order logic, trees, query learning

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.24

Funding Martin Ritzert: This work is supported by the German research council (DFG) Research
Training Group 2236 UnRAVeL.

1 Introduction

In this paper we study the algorithmic complexity of learning properties of nodes in directed
labeled trees using a declarative framework introduced by Grohe and Turán [18]. Let T be
such a tree with nodes V (T). We call T the background tree of our learning problem. The
tree T encodes the background knowledge of the learning problem and thus provides the
information on which the classification of the nodes u ∈ V (T) can be based. In our setting a
(boolean) classifier is a function H : V (T)→ {+,−} that estimates whether a given node
admits a certain property. A learning algorithm gets a training set S ⊆ V (T) × {+,−},
that is a set of pairs (u, c) of positive and negative examples, and the background tree
T as input and returns a classifier HS : V (T) → {+,−} as its hypothesis. We say that
learning was successful if the hypothesis HS is consistent with S which means that for every
(u, c) ∈ S we have that HS(u) = c. Achieving consistency with S can be seen as the extreme
case of minimizing the training error, i.e. the number of (u, c) ∈ S such that HS(u) 6= c.
Minimizing the training error, also called empirical risk minimization, results in provably
good generalization behavior in the PAC learning model (see [6]). For those generalization
results, we use that logical formulas on trees admit bounded VC-dimension (shown by Grohe
and Turán [18]) and that any consistent learner can be turned into a PAC learner by an
appropriate training set S (see [6]). We give more details on the connection to PAC learning
in Section 2.3.

© Emilie Grienenberger and Martin Ritzert;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emilie.grienenberger@ens-cachan.fr
mailto:ritzert@informatik.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.ICDT.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Learning Definable Hypotheses on Trees

An example of a simple property a node can admit is having an ancestor with label b.
This property can be expressed by the logical formula ϕ(x) = ∃y (y < x) ∧Rb(y). We aim to
learn properties which can be defined by logical formulas with parameters based on positive
and negative examples over tree-structured data such as web pages, XML databases and
JSON files.
I Example 1. Given a large website such as a news portal. The document object model
(DOM) of a website is the tree of elements which form the website. Many websites contain a
number of ads and some of them are not trivially detectable. A learning algorithm could
then estimate the property of a position in the DOM to be part of some ad.

The output of a learning algorithm would then be a formula that distinguishes nodes
belonging to the content of the web page from those belonging to ads. Those formulas could
then be used as a basis for new simpler or better filter rules.

In Example 1, the user could select parts of a web page, which he sees as advertisement
and then let the learning algorithm produce a classifier which is consistent with his choice.
In this paper we will not go into detail of how we get our training set but instead only talk
about finding consistent hypotheses for a given training set.

We consider learning algorithms that return classifiers based on logical formulas, especially
quantifier-free formulas and formulas from monadic second-order logic. In our logical
framework, a classifier consists of a formula ϕ(x ; ȳ) and an instantiation v̄ of the free
variables ȳ. This formula ϕ has two types of free variables; we refer to x as the instance
variable and to ȳ = (y1, . . . , y`) as parameter variables, where ` ∈ N. The background
structure T is the (fixed) background knowledge that encodes the context of a node which is
to be classified. The parameters of ϕ, which can be seen as constants the formula is allowed
to use for the classification, are taken from V (T). In Example 1, a classifier would consist
of a logical formula and a number of positions in the DOM of the web page. The formula
ϕ(x ; ȳ) together with an `-tuple v̄ ∈ V (T)` of parameters then defines a binary classifier
Jϕ(x ; v̄)KT : V (T)→ {+,−} over the tree T as follows. An instance u ∈ V (T) is classified
as positive if T � ϕ(u, v̄) such that we have Jϕ(x ; v̄)KT (u) = +. Correspondingly we have
Jϕ(x ; v̄)KT (u′) = − for any u′ ∈ V (T) with T 2 ϕ(u′, v̄). We call such a classifier where ϕ is
an MSO formula an MSO definable hypothesis.

We assume the background tree T to be very large, which means large enough that
just reading it sequentially takes long, while the logical formula returned by the learning
algorithm is assumed to be small for every real-world query. This implies two strategies.
First, we use a data complexity view for the analysis considering the tree T and the training
set S as data and the hypothesis class parameterized by ` (and an additional parameter q
introduced later) as a constant, such that the complexity results are only given in terms of T
and S. Essentially this means that the influence of the formula is considered to be constant.
Second, we are interested in finding algorithms which run in sublinear time in the size of T .
As such sublinear algorithms are unable to read the whole background tree T , we model the
exploration of T using oracles. Those oracles allow the learning algorithm to explore the
tree by following edges, starting from the training examples in S. This is formally defined in
Section 2.

In general there are no consistent sublinear learning algorithms for first-order and monadic
second-order formulas over trees. In [16] the authors have shown that for learning first-order
formulas over words, linear time is necessary. The same counterexample can also be used
for trees, showing that linear time is again necessary. For structures of bounded degree,
there exists a sublinear learning algorithm for first-order formulas (see [17]). This result
is not applicable in our setting, as the ancestor relation ≤ in the signature of our trees
induces unbounded degree (the degree of the root is |V (T)| − 1 as it is an ancestor of every
other node).

E. Grienenberger and M. Ritzert 24:3

1.1 Our Results
In our formal setting, we consider learnability on trees for monadic second-order logic and the
quantifier-free fragment of first-order logic. We show that in contrast to the corresponding
case on strings (see [16]), even the relatively simple task of learning quantifier-free formulas on
trees needs at least linear time. This is due to the need to synthesize appropriate parameters,
a task which can involve searching for the largest common ancestor of two nodes. We
show that this is really the core of the problem by giving a sublinear learning algorithm for
quantifier-free formulas in Section 3 where we exploit an additional oracle providing access
to the largest common ancestor of two nodes.

As we know that there is no sublinear learning algorithm for MSO formulas on trees,
we investigate whether the necessary linear computation depends on the training examples.
This hardness still holds if the learning algorithm is allowed to return more parameters,
as long as the complete training set can not be encoded in those parameters. It turns out
that it is possible to build an auxiliary structure in linear time which can then be used for
sublinear learning. We present an algorithm which builds such an index structure without
knowledge of the training set in linear time and then uses logarithmic time to output a
consistent hypothesis. The algorithm builds on the results on strings (see [16]) as well as
known techniques for evaluating MSO formulas under updates (see [5]), combining them
in a non-trivial way to a learning algorithm for MSO formulas. The linear indexing phase
in the learning algorithm cannot be avoided since already for first-order formulas on words
it is necessary to invest at least linear time in O(|T |) to find a consistent hypothesis. The
following theorem is the main result of this paper.

I Theorem 2. There is a consistent MSO learning algorithm on trees which uses linear
indexing time O(|T |) and logarithmic learning time O(|S| log |T |).

As an application of our indexing algorithm we describe an online learning algorithm that
computes an index in O(|T |) and then, for a sequence of examples, updates its MSO-definable
hypothesis in time O(log2(T)) per example. That is, in this setting the examples arrive
one-by-one and we are able to maintain a consistent hypothesis in polylogarithmic time in
the background structure.

1.2 Related work
The field of inductive logic programming (see for example [10, 22, 24, 25, 26]) is very close
to our framework. In both cases the aim is to infer logical formulas from positive and
negative examples such that the logical formula is consistent with the training examples.
The main difference to our setting is that in the ILP framework the background knowledge
is also encoded in logic (a so called background theory), while we use a structure to encode
background knowledge. In our setting, facts such as gender and age of a person or the issuing
institute of a credit card are represented using nodes for person and credit card, as well as
unary relations to describe their attributes. Naturally facts which involve multiple entities
can be represented by edges. Our framework is able to represent such facts as long as the
union of all binary relations still describes a tree or forest while in the ILP setting there is
no such restriction. The other important difference is that ILP focuses on first-order logic
(and there especially Horn-formulas), while in this paper we work with monadic second-order
logic (MSO) which is strictly more expressive than first-order logic. There is a number of
other logical frameworks for machine learning, mainly originating from the field of formal
verification and databases. Examples are given by [1, 8, 23, 14, 20, 36].

ICDT 2019

24:4 Learning Definable Hypotheses on Trees

Another related field, which is based on the query by example strategy, is to learn XPATH
queries as in [32]. There, unary relations defined by an XPATH expression are learned for
arbitrary training sets. The main difference to our setting is that we use MSO formulas,
which are in general more expressive than XPATH statements and then restrict the maximal
complexity of our formulas.

The field of automata learning and learning of regular languages is also to some degree
similar to our setting, especially since we are also applying automata based techniques.
There are numerous negative results such as [2, 15, 28, 21, 4]. Of the positive results in that
area [3, 30, 27, 13], most of them use an active framework where a teacher iteratively gives
counterexamples until the hypothesis is correct. In our framework a consistent hypothesis
for a training set is sought and that training set is known from the beginning. Even though
our classification problem can be encoded as a learning problem for regular tree languages,
their results seem technically unrelated to ours.

2 Preliminaries

In this paper we work with logical formulas from the quantifier-free fragment of first-order
logic and formulas from monadic second-order logic. Quantifier-free formulas only consist of
boolean combinations of atomic properties, while monadic second-order logic (MSO) extends
first-order logic (FO) by quantification over sets of nodes. As an example, take the MSO
formula ∃X∀z Xz which is always satisfied as there is always a set X containing all elements
of the structure. It is known that a set of trees can be recognized by a deterministic bottom-up
tree automaton (DTA) A if and only if it can be characterized by an MSO sentence Φ and
both A and Φ can be computed from each other. For a more detailed description of MSO
and tree automata we refer to [33].

In this paper we consider labeled trees as background structures. The most prominent
examples for trees in a database context are the tree-structured data exchange formats XML
and JSON. Formally a labeled tree T = (V (T), E1, E2, R1, . . . , Rr,≤) is a structure with
vertex set V (T) and binary edge relations E1 and E2 encoding the first and second child
of a node in a binary tree, or in case of unranked trees, the first child and the next sibling
of each node. The unary relations R1, . . . Rr define the label of each node and for every
a, b ∈ V (T) we have a ≤ b if a is an ancestor of b. In this paper we use formulas over the
alphabet σ = {E1, E2,≤, R1, . . . , Rr} which means that in a formula we can access the tree
structure using E1 and E2 as well as the labels of each node using R1, . . . Rr. A fragment of
an XML document (focusing on persons) could look like the following.

<person name="A. Turing" birthday="1912-06-23">
<interest>computer science</interest>
<interest>marathon running</interest>
...

</person>

A formula has access to all tags occurring in the XML document. In the above XML fragment,
the labels are given by the unary relations ‘person’,‘name’,‘birthday’,‘interest’.
Adding additional content-based labels such as ‘computer scientist’ or ‘runner’ to the
set of unary relations allows to write formulas that depend on the content of nodes. Without
such content-based labels a formula could only use structural properties and define sets such
as all persons with at least three interests and two friends.

E. Grienenberger and M. Ritzert 24:5

u1

u2

u4,+ u5

u9

u13,+ u14

u10,−

u15,+ u16 u17

u6

u11

u3,−

u7 u8,−

u12

Figure 1 A tree with positive (green) and negative (red) example nodes.

2.1 Learning Model
We consider the model of supervised learning where the input to a learning algorithm is a
training set (or training sequence) S ⊆ V (T)×{+,−}. Each example (u, c) ∈ S consists of a
node u and its classification c. We assume that S is non-contradicting, that is if (u, c) ∈ S,
then (u,¬c) /∈ S. For the tree given in Figure 1 we define the training set:

S = {(u3,−), (u4,+), (u8,−), (u10,−), (u13,+), (u15,+)}

As already defined in the introduction, a definable hypothesis Jϕ(x ; v̄)KT assigns + to
every position u ∈ V (T) with T � ϕ(u, v̄) and − otherwise. Let ϕ(x ; y) = ∃z(E(x, z) ∧
E(z, y)) ∧ x 6= y accepting all positions with a distance of 2 from the position of y (T
contains no self-loops). In the example from Figure 1 we have Jϕ(x ; u5)KT (u) = + if
and only if u ∈ {u1, u4, u6, u13, u14, u15, u16, u17}. This hypothesis is consistent with S as
it accepts all positive and none of the negative examples from S. The formula ψ(x) =
∃ zE1(z, x) defines another consistent hypothesis with Jψ(x)KT (u) = + if and only if u ∈
{u2, u4, u7, u9, u11, u12, u13, u15}.

The quantifier rank qr(ϕ) of a formula ϕ is the maximal nesting depth of quantifiers in ϕ.
As every set S+ ⊆ V (T) is definable by a (long enough) MSO formula ϕ, we restrict our
study to sets which are definable by formulas ϕ(x ; y1, . . . y`) with qr(ϕ) ≤ q where q and `
are considered to be part of the problem. Restricting q and ` reduces the risk of overfitting
as such restricted formulas can only memorize a bounded number of positions and thus, on
larger training sets, have to exploit more general patterns in the data.

Our framework naturally admits two different learning problems. In model learning we
assume that there is a consistent classifier Jϕ(x ; v̄)KT with v̄ ∈ V (T)` and qr(ϕ) ≤ q, but
only q and ` are given to the learning algorithm. This reflects the assumption that there is a
simple, as expressed by the choice of q and `, but unknown pattern behind the classification
of the training examples from S. In parameter learning the formula ϕ of a consistent classifier
Jϕ(x ; v̄)KT is fixed. The learning algorithm is not allowed to modify ϕ and has to find a
consistent parameter setting v̄ ∈ V (T)`. This variant reflects the case where we have a
general idea about how the solution looks like, but are missing the details. Counterintuitively,
parameter learning is the harder problem: the restriction to a specific formula ϕ might
impose (unnecessary) restrictions on the parameters. An edifying example is the parameter
learning problem on a background structure T with a singleton unary relation R, using
the formula ϑ(x ; y) = R(y) and a training set S = {(u,+)} for an arbitrary u ∈ V (T). In
this example, for any fixed traversal strategy of the learning algorithm on V (T), the single
possible parameter can be placed in the position which is evaluated last. For the associated
model learning problem, a possible solution would be to return the formula ψ(x) = true
without parameters, which defines a hypothesis consistent with S. In the example given

ICDT 2019

24:6 Learning Definable Hypotheses on Trees

Figure 2 From left to right: Exploration of a tree using neighborhood queries starting from an
example node. The dark blue node is the one on which the neighborhood query has been performed
last.

in Figure 1, a learning algorithm for the model learning problem would be free to choose
between any consistent hypothesis, such as the example formulas ϕ(x ; u5) and ψ(x) given
above. In the parameter learning problem with the formula ϕ(x ; y), the (only) consistent
output is the assignment y = u5.

In practice, whenever we want to evaluate a definable hypothesis Jϕ(x ; v̄)KT , we have
to solve an instance of the model checking problem for the formula ϕ over the structure T .
For the case of a fixed MSO formula ϕ(x ; ȳ) on a tree T , there is an evaluation strategy in
O(|T |) using tree automata, see for example [33], while a quantifier-free formula ϑ can be
evaluated in time O(|ϑ|).

2.2 Access Model
A sublinear learning algorithm is unable to read the whole background structure during its
computation. We therefore model the access to the background structure by oracles.

Relation Oracles. For a k-ary relation R, the corresponding oracle returns on input of
ū ∈ V (T)k whether ū ∈ R holds in T .

Neighborhood Oracle. On input of a node u ∈ V (T), returns the 1-neighborhood of u in T .

In a binary tree, the 1-neighborhood N of a node u consists of u, its parent and its child
nodes. In the unranked case N(u) consists of u as well as its left and right sibling, first
child and parent. This access model is called local access as the tree can only be explored
by following edges. Directly jumping to the closest node that is in a relation R or to the
last child of an unranked node is not possible in this access model. In practice, those oracles
can be implemented using random access on the background tree T . A learning algorithm
using local access starts with all nodes occurring in the training set S and then explores the
background tree T using the neighborhood and relation oracles. Figure 2 illustrates how the
learning algorithm can explore the background tree using subsequent neighborhood queries
on the topmost node. The neighborhood queries return the vertices, while the relation queries
clarify directions and labels.

2.3 PAC learning
It is known that under certain simplicity restrictions, a consistent learner generalizes well to
new and potentially unseen examples. For a probably approximately correct (PAC) learning
algorithm we have that for every ε and δ there is a size s ∈ N of the training set S such that
the error of the hypothesis under new examples is bounded by ε with a confidence level of 1−δ.
This is made formal in Equation (1). Let c∗ : V (T)→ {+,−} be the function that assigns the
correct classification to every node u ∈ V (T). Let the training set S ∈ 2V (T)×{+,−} be a set
of t examples (u, c∗(u)) chosen independently and identically distributed (i.i.d.) according to

E. Grienenberger and M. Ritzert 24:7

u

v

u1
+

u2
+

u3
+ · · ·

ul+1
+

v′

ul+2
−

ul+3
−

ul+4
− · · ·

u2l+2
−

. .
.

. .
.

. .
.

.

. .
.

..
. . . .

m

`+ 1 `+ 1

Figure 3 Sketch of the tree Tm parameterized by m and ` used in Lemma 4. Substituting the
nodes v and v′ by balanced binary trees results in the actual tree Tm.

a fixed distribution D. Let (u, c∗(u)) ∼ D and S ∼ D denote the random choices according
to D. Let HS : V (T) → {+,−} be the hypothesis returned by the learning algorithm on
input of the training set S. Then the PAC criterion is given by

Pr
S∼D

(
Pr

(u,c)∼D
(HS(u) 6= c∗(u)) ≤ ε

)
≥ 1− δ (1)

where the outer probability (the confidence) PrS∼D is taken over the training set S for which
the learning algorithm produces a hypothesis HS . The inner probability is the expected
error of the hypothesis HS for an example chosen according to the distribution D. For more
details on the PAC learning model, we refer to [34].

There is a very general result from learning theory that shows that for any hypothesis
class with bounded Vapnik-Chervonenkis (VC) dimension a consistent learner can be turned
into a PAC learning algorithm by providing a large enough training set (see [35] or [6]). For
the case of MSO definable hypotheses on trees, the VC dimension is bounded (see [18]).
Hence, there is a sufficient size s of S, depending polynomially on 1

ε and 1
δ , to satisfy the

PAC criterion. Using the algorithms from our Theorems 5 and 6, each providing a consistent
learning algorithm for learning formulas on trees, we have the following corollary.

I Corollary 3. There are (efficient) PAC learning algorithms for of learning quantifier-free
formulas and monadic second-order formulas over trees.

The running time of those PAC learning algorithms follows directly from the corresponding
theorems. A PAC learning algorithm is called efficient if the dependence of the running time
on the number of training examples is polynomial which is the case in Theorem 5 and 6.

3 Quantifier-free formulas

The class of quantifier-free formulas Φσ[n] with n free variables over the signature σ is defined
as the fragment of first-order logic without quantifiers. This means that every formula
ϕ(x̄) ∈ Φσ[n] can only compare the free variables using a boolean combination of atomic
properties from σ. We exploit this limitation to obtain a learning algorithm for quantifier-free
formulas which runs in constant time with respect to T under a slightly relaxed notion of
local access. We start by showing that there is no sublinear learning algorithm using the
notion of local access as defined in Section 2.

I Lemma 4. For every ` ∈ N, there is no consistent learning algorithm using local access
that, given a binary tree T and a training set, returns a consistent hypothesis Jϕ(x ; v̄)KT with
ϕ ∈ Φσ[`+ 1] in time o(|T |).

ICDT 2019

24:8 Learning Definable Hypotheses on Trees

Proof sketch. Let L be such a sublinear learning algorithm. Consider the family of trees
(Tm)m∈N shown in Figure 3 with ` fixed to the number of parameters used in the formulas re-
turned by L. We define the training set S = {(u1,+), . . . (u`+1,+), (u`+2,−), . . . , (u2`+2,−)}
containing 2`+ 2 examples. In Figure 3, the positions of the nodes ui are indicated by their
classifications + or −. The size of Tm is linear in m for any fixed ` and therefore we can
choose m such that the running time of L on Tm is smaller than m. This is possible since L
runs in time o(|Tm|).

The formula ϕ(x;y) = y < x with parameter v as indicated in Figure 3 is consistent with S.
Let ψ(x ; ȳ) ∈ Φσ[`+ 1] be the formula and v1, . . . , v` ∈ V (Tm) the parameters returned by L
on input Tm and S. Each parameter vi is an ancestor to exactly one example from S as the
algorithm may only return nodes as parameters it has seen during the computation and every
leaf is an example node. Every quantifier-free formula can only compare the free variables (x
and ȳ) directly using relations from σ. Therefore, independent of ψ, every parameter has
the same effect on every example but (possibly) the one below the parameter. Since there
are ` + 1 positive and negative examples, at least one of them will be misclassified which
proves the lemma. Intuitively this holds as all paths locally look identical and the algorithm
is unable to detect on which side of the tree an example lies. J

In the following we extend the notion of local access to cope with the globality of the
ancestor relation.

3.1 Extended local access
Our next result states that synthesizing the parameters for quantifier-free formulas is really
the core of the linear complexity. Extended local access extends local access by a common
ancestor oracle:
Common Ancestor Oracle. On input of two nodes u and v, it returns the lowest node w

such that w ≤ u and w ≤ v (their lowest common ancestor)

The consistent parameter v for the counterexample from Theorem 4 can easily be found
using extended local access. This is generalized in the following theorem showing that for
quantifier-free formulas the gap between linear time and sublinear learnability is due to the
computation of common ancestors. Let ` ∈ N be an integer.

I Theorem 5. There is a learning algorithm that, on input of a tree T and a training set S,
outputs a consistent hypothesis Jϕ(x ; v̄)KT , where ϕ ∈ Φσ[1 + `] and v̄ ∈ V (T)` for binary
trees and ϕ ∈ Φσ[1 + 2`] (v̄ ∈ V (T)2`) for unranked trees. This algorithm uses extended local
access and runs in time O

(
|S|2 + |S|`|S|

)
.

Note that for unranked trees we consider the alphabet σ = {E1, E2,≤,�}. The additional
relation � is a partial order, defined as the reflexive transitive closure of E2. It strictly
increases the expressive power of quantifier-free formulas and accounts for need of additional
parameters.

Proof sketch. We only sketch the proof for binary trees here. The extension to unranked
trees uses the same general idea, but the candidate set for the parameters is slightly different.

The proof uses the concepts of sufficient sets and relative positions. Given a signature
σ. Then v1 and v2 share the same relative position if for every binary R ∈ σ and every
x ∈ S we have that R(x, v1) ≡ R(x, v2) and R(v1, x) ≡ R(v2, x). A sufficient set W ⊆ V (T)
for a training set S and a set of formulas Φ (such as all quantifier-free formulas) is a set
of nodes such that whenever there is a consistent hypothesis Jϕ(x ; v̄)KT with ϕ ∈ Φ and

E. Grienenberger and M. Ritzert 24:9

v̄ ∈ V (T)`, then there exists another consistent hypothesis Jψ(x ; v̄′)KT with ψ ∈ Φ and
v̄′ ∈W `. This means that we can restrict ourself to search for consistent parameters from
such a sufficient set. For the case of quantifier-free formulas, a set W is sufficient for S if
it contains a representative for every possible relative position. Let W be defined by first
closing S under lowest common ancestors and then taking the 2-neighborhood of that set.
Then W is linear in |S| since we consider binary trees and W is sufficient which can be shown
by a simple case-distinction.

The learning algorithm then uses a brute-force process and tests every possible quantifier-
free formula for every parameter setting v̄ ∈ W ` for consistency. It is bound to find a
consistent hypothesis since W is a sufficient set. The set W can be computed in time O(|S|2),
and each evaluation of a quantifier-free formula uses constant time, resulting in the total
runtime of O

(
|S|2 + |S|`|S|

)
. J

4 Monadic Second-Order Logic

In this section we consider learning of unary MSO formulas on trees. The ordering relation ≤
used in the previous chapter can be expressed in MSO, thus we do not include it in the
signature here. That is we have a binary tree T and want to learn a unary relation R ⊆ V (T)
using an MSO formula ϕ(x ; y1, . . . , y`) and ` parameters v1, . . . , v` ∈ V (T). We aim for
simple concepts and therefore restrict the number of parameters ` and the quantifier rank q
of ϕ. Let MSO[q, `+ 1] be the class of MSO formulas with `+ 1 free variables and quantifier
rank up to q. Note that the class MSO[q, `+ 1] is finite up to equivalence for every fixed q
and `, such that we can iterate over all formulas from this set to find a consistent one.

We present an algorithm that separates the task of analyzing the background structure
and building an index from the task of finding a consistent hypothesis based on that index.
Formally, we have an indexing phase in which the algorithm has local access to the tree T , but
not to the training set S, and produces an index I(T). In the learning phase, the algorithm
gets S and has local access to T and I(T). Based on that input, it produces a formula ϕ(x ; ȳ)
and a parameter configuration v̄ such that Jϕ(x ; v̄)KT is consistent with S. We call such an
algorithm an indexing algorithm, the time needed to build the index indexing time and the
time for the actual search of a consistent hypothesis based on that index search time. Note
that such an algorithm is especially useful when performing multiple similar learning tasks
on the same data as the index could be reused in that case. We show the following theorem
which implies Theorem 2 stated in the introduction.

I Theorem 6. Let q, ` ∈ N be fixed. Given a tree T and a training set S that is consistent
with an MSO formula ϑ(x ; ȳ) ∈ MSO[q, ` + 1], it is possible to find a consistent formula
ϕ(x ; ȳ) ∈ MSO[q, ` + 1] that is consistent with S in indexing time O(|T |) (without access
to S) and search time O(|S| log |T |).

Technically, we only consider binary trees, however, the results also extend to unranked
trees as there exist MSO interpretations between those classes increasing the quantifier-rank
of the resulting formula by 1.

4.1 Decomposing trees into strings
In order to apply techniques based on monoid structures we introduce the notion of path
decompositions. Given a tree T = (V (T), E(T),≤) and a partition P1, . . . , Pp of V (T). Let
T [Pi] be the induced substructure of Pi on T defined by restricting V (T), E(T) and ≤ to

ICDT 2019

24:10 Learning Definable Hypotheses on Trees

ur

u′
P2

w

Figure 4 Heavy path decomposition of a tree, solid lines indicate the different heavy paths, the
cut-off subtree of ur is shown in blue and the dependent subtree of w is shown by the orange shape.

the elements from Pi. We consider the case that each induced substructure T [Pi] is a string
which implies that ≤ restricted to Pi is a (non-reflexive) total order. Let furthermore T [u]≤
be defined as T [{w | u ≤ w}], that is we restrict T to the induced subtree rooted at u.

One special case of decompositions into strings are heavy path decompositions introduced
by Harel et al. [19]. We say that a node u ∈ V (T) is at least as heavy as v ∈ V (T) if
|{w | u ≤ w}| ≥ |{w | v ≤ w}|. That means that the heavier element is the one which is
the root of the larger induced subtree. Using this definition, we can define the heavy path
decomposition as follows.

The heavy path of T at u ∈ V (T) is a path (u0, u1, . . . , u`) such that u0 = u, the node u`
is a leaf and ui is the leftmost child of ui−1 that is at least as heavy as all other children
of ui−1 for every i ≤ `. Let T be a binary tree and P = (u0, . . . , u`) a heavy path. Then
the cut-off subtree at a node ui ∈ P with a child u′ 6∈ P is T [u′]≤. The dependent subtree
of a substring w ⊆ P consists of w and the union of the cut-off subtrees for every u ∈ w.
Note that the notions of dependent subtrees and cut-off subtrees refer to binary trees only.
The heavy path decomposition hp(T) = {P1, . . . , Pp} of T is constructed by first computing
P1 as the heavy path of T at its root and then recursively computing the heavy paths of
the cut-off subtrees for each u ∈ P1. In Figure 4 the heavy path decomposition of a tree is
shown. In this figure the blue box includes the cut-off subtree or the root ur, the node u′ is
the cut-off child of ur and the orange shape contains the dependent subtree of the string w.
We use the following property of this decomposition in our algorithm.

I Lemma 7 ([5]). Every path from the root of T to a node u ∈ V (T) touches at most log |T |
different heavy paths of the heavy path decomposition hp(T).

4.2 DFAs simulating DTAs
We now describe how we can use path decompositions such as hp(T) and deterministic finite
automata (DFAs) to simulate a tree automaton A on T as shown in [5].

Let T be a tree, hp(T) = {P1, . . . , Pp} its heavy path decomposition and A a tree
automaton with states Q. Let ρ be the run of A on T and Q′ = Q ∪̇ {q0}. We define a DFA
A and a function fρ : V (T)→ Σ×Q′ × {L,R} extending the labels of V (T) by annotations
about the state and direction of the cut-off subtree. Those extended labels from fρ allow us
to run a DFA A on hp(T) which simulates the tree automaton A on T .

I Lemma 8. Let ρ be the run of the DTA A on T and T ′ the tree we get from applying fρ
to every node of T . Then we have for every u ∈ Pi that A is in state q after reading T ′[Pi]
up to position u, if and only if ρ(u) = q.

E. Grienenberger and M. Ritzert 24:11

q4

q1 q4

q3

q2 q3

q1

q1 q1

(c, q1, L)

(a, q0, L) (b, q1, R)

(a, q3, R)

(b, q0, L) (c, q0, L)

(a, q1, R)

(a, q0, L) (a, q0, L)

ρ(T) : fρ(T) :

Figure 5 Applying the label transformation fρ to hp(T) for some tree T .

To match the evaluation order of bottom-up tree automata, the constructed DFA reads
the paths T ′[Pi] in reversed order, that is starting from the leaves and running towards the
root of T . The function fρ makes use of the run ρ of A on T and is defined as follows. For a
leaf u with label a in T we have fρ(u) = (a, q0,L). For an inner node u ∈ Pi with label a
and children u′ ∈ Pi and u′′ 6∈ Pi where u′′ is a right child of u we have fρ(u) = (a, ρ(u′′),R)
and correspondingly (a, ρ(u′′),L) if u′′ was a left child of u. Intuitively fρ stores the state of
the DTA A on the cut-off subtree at u in the label of u. Figure 5 shows an example for fρ
given a tree T and a run ρ of a DTA on T .

Let A = (Q,Σ, δ, F) be a deterministic bottom-up tree automaton and
hp(T) = {P1, . . . , Pp} the heavy path decomposition of T . We assume that the transi-
tion relation δ of A is split into δ0 : Σ→ Q for leaf nodes and δ2 : Σ×Q×Q→ Q for inner
nodes. We now define the DFA A = (Q′,Σ × Q′ × {L,R}, δ′, q0, F) where Q′ = Q ∪̇ {q0}
with Q,Σ and F taken from A. The transition relation δ′ of the DFA A is defined as follows:

δ′(q0, (a, q0, d)) = δ0(a) for all a ∈ Σ, d ∈ {L,R}
δ′(p, (a, q,L)) = δ2(a, q, p) for all a ∈ Σ, p, q ∈ Q
δ′(p, (a, q,R)) = δ2(a, p, q) for all a ∈ Σ, p, q ∈ Q

Lemma 8 holds as at every position u ∈ Pi the DFA A has access to the same information
as A through the extended alphabet.

Let <hp be the partial order showing dependence between heavy paths of hp(T). That is,
we have Pj <hp Pi if Pj is part of the dependent subtree of Pi. For every node u ∈ Pi with
cut-off child u′ ∈ Pj , the state ρ(u′) only depends on Pj with Pj <hp Pi such that we can
recursively compute ρ using A on hp(T) together with Lemma 8. We say that A accepts a
tree T if it accepts the string T [P1] where P1 ∈ hp(T) contains the root of T .

4.3 Monoids and factorization trees
A monoidM = {M, ·M , 1M} consists of a set of elementsM and an associative multiplication
operator ·M with neutral element 1M . We usually refer to the monoidM by its set of elements
M and write m1m2 or m1 ·m2 for m1 ·M m2. A monoid morphism h : M →M ′ is a function
that translates a monoid in a consistent way, meaning that we have h(m1 ·m2) = h(m1)·h(m2)
and h(1M) = 1M ′ .

The free monoidMfree = {Σ∗, ·free, ε} consists of all finite strings over Σ with concatenation
as multiplication and the empty word ε as neutral element. A language L over Σ is finitely
monoid recognizable if there is a finite monoid M , a monoid morphism h : Mfree →M and a
subset F ⊆ M such that w ∈ L if and only if h(w) ∈ F . A language L is finitely monoid
recognizable, if and only if it is regular [29]. The transition monoid M of a DFA A with

ICDT 2019

24:12 Learning Definable Hypotheses on Trees

state space Q is defined as functions m : Q→ Q with composition as multiplication, and the
identity as neutral element. The corresponding monoid morphism hM maps a string w ∈ Σ∗
to the function m : Q→ Q modelling the effect of reading w on the states of A. A monoid
element m is productive if there are m′,m′′ with m′ ·m ·m′′ ∈ F . For further details on the
equivalence between finite monoids and DFAs see for example [11, 7].

Every path Pi ∈ hp(T) induces a string T [Pi] over Σ which we interpret as an element of
the free monoid over the tree alphabet Σ. In the following we will not explicitly distinguish
between the path Pi, the corresponding string T [Pi] and the monoid element.

A factorization tree of a sequence of monoid elements s = m1,m2, . . . ,mn from a monoid
M is a tree Fs where each node u ∈ V (Fs) is labeled by an element mu from M and the
sequence of leaf labels is s. For each inner node u ∈ V (Fs) labeled by mu with children
u1, . . . , ui which are labeled by mu1 , . . . ,mui

we have mu = mu1mu2 · · ·mui
. By choosing a

balanced binary tree for Fs we get a factorization tree of height dlog |s|e. An alternative
are Simon factorization trees, where each node u is either a leaf, a binary node or satisfies
the property that all child nodes u1, . . . , un of u share the same idempotent label mu with
mu = mu ·mu.

I Theorem 9 (Simon [31]). For every sequence s = [m1,m2, . . . ,mn] of monoid elements
from M , there is a Simon factorization tree of height at most 3|M |. This factorization tree
can be computed in time n · poly(|M |).

In a set of updates U = {(i1,m1), . . . , (is,ms)} with ij ∈ N and mj ∈ M each tuple
consists of an index and the new monoid element for this index. Applying U to a sequence of
monoid elements s results a sequence sU with sU [ij] = mj for j ∈ {1, . . . , s} and sU [j] = s[j]
for all j 6∈ {i1, . . . , is} where s[i] denotes the ith element of the sequence s. We use the
following lemma from [16] to apply such updates in Simon factorization trees.

I Lemma 10 ([16]). Given a Simon factorization tree F of height h over a sequence s
of elements from M and a set U of updates. There is an algorithm returning a Simon
factorization tree of height 2h+ 3|M | for the updated sequence sU in time O(|U |h+ |U ||M |).

4.4 Constructing the necessary monoids and monoid morphisms
In the following we construct and analyze the monoid structure used in the learning algorithm
in Section 4.5. Let let T be a tree over Σ and T1 the same tree over Σ1 = Σ× 2{y1,...,y`} ×
{?, N, P} including information about the free variables of a formula ψ(P,N, ȳ) in the labels.
Let Σ2 = Σ1 ×Q′ × {L,R} be the alphabet from Section 4.2 which extends Σ1 in order to
work with string automata instead of tree automata. Let fρ : V (T) → Σ2 be the labeling
function used in Lemma 8 and T2 the tree that results from T by relabeling its nodes using fρ.
Note that the concrete states Q′, and therefore the whole construction, depend on the formula
ψ that performs the consistency check.

I Lemma 11. Let ϕ(x ; ȳ) be an MSO formula and A a tree automaton for ϕ with states Q.
Let T be a tree over Σ with hp(T) = {P1, . . . , Pn} and S a training set. Then there is

an alphabet Σ3,
a construction transforming T to a tree T3 over Σ3 depending on A

a monoid M̂ with a set F ⊆ M̂ of final elements
and a monoid morphism ĥ : Σ∗3 → M̂

such that: ĥ(T3[P1]) ∈ F if and only if there exists v̄ ∈ V (T)` such that Jϕ(x ; v̄)KT is
consistent with S.

E. Grienenberger and M. Ritzert 24:13

Proof. We start by defining the formula ψ(P,N, ȳ) which checks for a given training set
S, split into positive (P) and negative examples (N), whether for some parameter vector
v̄ ∈ V (T)` the hypothesis Jϕ(x ; v̄)KT is consistent with S:

ψ(P,N, ȳ) = ∀x(P (x)→ ϕ(x, ȳ)) ∧ (N(x)→ ¬ϕ(x, ȳ)).

The computation of the final monoid M̂ uses the following intermediate constructions.
1. DTA A on Σ1 = Σ× 2{y1,...,y`} × {?, N, P}
2. DFA A on Σ2 = Σ× 2{y1,...,y`} × {?, N, P} ×Q× {L,R}
3. Transition monoidM for A with final elements F ⊆M and monoid morphism h : Σ2→M
4. Monoid morphism h′ : Σ′2 →M with Σ′2 = Σ× 2{y1,...,y`} × {?, N, P} ×M× {L,R}
5. Monoid M̂ = 2M with elements m̂ ⊆ M for every m̂ ∈ M̂ and monoid morphism

ĥ : Σ3 = Σ× {?, N, P} × M̂ × {L,R} → M̂

The first step from ψ to the tree automaton A is a standard construction (see e.g. [9]) that
involves extending the tree alphabet Σ by unary relations for the free variables of ψ resulting
in the alphabet Σ1 = Σ×{P,N, ?}× 2{y1,...,y`}. The second step in the construction consists
of a translation from a DTA with states Q to a DFA with states Q′ = Q ∪̇ {q0} which uses
the construction from Lemma 8. The constructed DFA A is able to simulate a run of A on
the tree T2 over the alphabet Σ2 = Σ1 ×Q′ × {L,R} where T2 = T but the labels are given
by fρ from Lemma 8. The monoidM computed in the third step is the transition monoid
of A (for the construction see e.g. [33]), h : Σ2 →M is the corresponding monoid morphism
and F ⊆ M is the set of accepting monoid elements. In the fourth step we construct the
monoid morphism h′ that works on Σ′2 = Σ×2{y1,...,y`}×{?, N, P}×M×{L,R}; that is, we
substitute the component containing for every node u the state qu of A on the cut-off subtree
by a monoid element mu ∈M. Essentially this step works as we can extract the state qu on
the cut-off subtree at u from the monoid element mu and then call the morphism h. With
M and h′ we can check whether the hypothesis Jϕ(x ; v̄)KT for some v̄ ∈ V (T)` is consistent
with the training set S.

In the fifth and last step we construct the monoid M̂ and the monoid morphism ĥ based
onM and h′ such that ĥ can be used to check whether there is a consistent set v̄ ∈ V (T)` of
parameters. We then use ĥ and M̂ in the actual learning algorithm. Let M̂ = (2M, ·M̂, {1M})
be a structure with multiplication m̂1 ·M̂ m̂2 = {m1 ·M m2 | m1 ∈ m̂1,m2 ∈ m̂2}. M̂ is
a monoid as it is closed under multiplication and {1M} ∈ M̂ is neutral for ·M̂ because
1M ∈ M is the neutral element ofM. Let Σ3 := Σ × {P,N, ?} × 2M × {L,R}. The final
monoid morphism ĥ : Σ∗3 → M̂ is given using the morphism h′. For (a, m̂, d) ∈ Σ3 with
a ∈ Σ× {P,N, ?} and d ∈ {L,R} we let

ĥ((a, m̂, d)) =
{
h′((a, ȳ,m, d)

∣∣∣ ȳ ∈ 2{y1,...,y`},m∈ m̂
}
.

For a given position u ∈ V (T) labeled (a, m̂, d) ∈ Σ3, the definition of ĥ can be read as
calling h′ for every possible distribution of parameters in the cut-off subtree indicated by
m ∈ m̂ and every choice of parameters ȳ for that position. For a word w ∈ Σ∗3 we split the
word into its positions w1, . . . , wn and compute the product m̂ =

∏n
i=1 ĥ(wi) of the monoid

elements of those. This is possible since ĥ is a monoid morphism from the free monoid to M̂.
Note that the interpretation with the cut-off subtrees only makes sense for strings w = T3[Pi]
defined by heavy paths or substrings of such a w.

Let w be the string from the heavy path P1 containing the root of T . Since ĥ tests all
possible distributions of parameters in the dependent subtree, we know that if ĥ(w) ∩ F 6= ∅
then there is a consistent parameter setting. Correspondingly there is no consistent parameter
setting if m̂r ∩ F = ∅. J

ICDT 2019

24:14 Learning Definable Hypotheses on Trees

We now categorize the elements fromM constructed in the third step of the proof of
Lemma 11. Since A only accepts trees in which every parameter, indicated by a unary
relation, is assigned exactly once we get that every productive monoid element m ∈ M
contains the information which parameters have been read. This holds as otherwise there
was an accepted tree where a single parameter has been assigned multiple times or not at
all. Thus we can assign a set of parameters to every productive monoid element. We now
formalize this idea.

I Lemma 12. There is a function p :M→ 2{y1,...,y`} ∪{⊥} that assigns a set ȳ ∈ 2{y1,...,y`}

of parameters to each productive monoid element fromM in a consistent way. That is, for a
tree T and a substring w of a path in hp(T) with h′(w) = m, exactly the parameters p(m)
occur in the dependent subtree of w.

4.5 Algorithms
Using the monoidsM and M̂ as well as the monoid morphism ĥ from Lemma 11, we can
compute a consistent parameter setting v̄ for a given formula ϕ(x ; ȳ) and a training set S.
This proves Theorem 6. The presented algorithm is split in three parts, where the first
part is done independent of S in the indexing phase of the algorithm. The remaining two
parts, updating according to S and tracing the parameters, together make up the search
phase of the indexing algorithm. The indexing part is linear in |T |, while the search phase
takes time O((|S| + `) log |T |) where the summands are for the updating and the tracing
algorithm respectively. We assume that the underlying formula ϕ is fixed and therefore
ignore the factors depending only on ϕ but have argued that those can be non-elementary
due to exploding statespaces of the constructed automata.

The indexing algorithm

The indexing algorithm starts by computing the monoid M̂ from ϕ as described in Lemma 11
as well as the heavy path decomposition hp(T). It outputs the set of Simon factorization trees
over M̂ for each Pi from hp(T) computed by the algorithm from [31]. Technically, the order
of the computation of the factorization trees has to be consistent with the dependence relation
<hp as a label au ∈ Σ3 of a node u ∈ V (T) contains the monoid element m̂ ∈ M̂ of the
cut-off subtree at u. As the computation of M̂ only depends on ϕ, the overall computation
is dominated by the computation of the factorization trees in |T | · poly(|M̂|).

The update algorithm

In the update part of the learning algorithm we add the information from S to the set of
Simon factorization trees computed in the indexing part of the algorithm. The updates
are performed bottom-up, that is we change the labels in the leafs each factorization tree
belonging to positions from S and then propagate this information towards the root of T .
The presented algorithm works in two stages: an outer stage that collects all updates for
each heavy path and an inner stage that actually performs the update.

The outer stage orchestrates the update process by computing the set of updates UPi
for

every Pi ∈ hp(T). The set UPi
consists of updates for every u ∈ Pi occurring in S as well as

(possible) updates from paths Pj with Pj <hp Pi due to previous updates. Updates originating
from S change the component {P,N, ?} of Σ3 while updates induced from changes in the
cut-off subtree of u ∈ Pi change the monoid element m̂ in the label of u. By updating the
factorization trees in an order consistent with <hp every heavy path needs up be updated at

E. Grienenberger and M. Ritzert 24:15

most once. The inner algorithm which actually performs the update is taken from Lemma 10.
As every path from a node to the root touches at most logarithmically many heavy paths as
stated in Lemma 7, the total runtime of the update part is in O(|S| log |T |).

The tracing algorithm

The tracing algorithm gets the updated set of factorization trees F = FP1 , . . . , FPn
and

computes a set of parameters v̄ such that Jϕ(x ; ȳ)KT is consistent with S. Let P1 contain the
root of T . The algorithm works in a top down manner, that is it starts in the root of FP1 and
traces the parameters downwards using Lemma 12. We again divide the algorithm into an
inner and an outer algorithm where the inner algorithm traces the parameters similar to [16]
in a single factorization tree and the outer algorithm orchestrates the search within F .

Let m̂r ∈ M̂ be the monoid element reached in the root of FP1 . The tracing starts by
choosing the (initial) local target mr ∈ m̂r ∩F for the root of FP1 . Within each factorization
tree FPi

at a position u with local target mu we select monoid elements m1,m2 from the
children u1, u2 of u such that m1m2 = mu using a brute-force test. The tracing continues for
those ui where p(mi) 6= ∅ with mi as local target at ui until the leaves of FPi

are reached and
outputs pairs (u,mu) ∈ V (T)×M with p(mu) 6= ∅. Then the outer part of the algorithm
decides which of the parameters p(mu) are placed in Pi and which are further traced in cut-off
subtrees with Pj <hp Pi. The algorithm then selects a target monoid element m ∈ M for
the root of FPj and calls the inner tracing algorithm until every parameter is placed in some
heavy path (which happens eventually as T is finite). The choice of the target monoid element
m for the root of FPj

is done by testing at the node u ∈ Pi every possibility of reachable
monoid m in the cut-off subtree while fixing the remaining parameters K = p(mu) \ p(m) at
u. This check is possible since the label of u contains a monoid element m̂u that consists of
all reachable monoid elements in the cut-off subtree of u.

The parameter configuration v̄ found this way is consistent with S as it is computed
in a way that h′(T2[P1]) = mr ∈ F which is accepted. For each parameter yi, the inner
algorithm uses constant time within each factorization tree and is called at most log |S|
times by Lemma 7 stating that every path from a node u to the root ur touches at most
log |S| heavy paths. Together with the indexing and update algorithm this is means that
we can find a consistent parameter setting v̄ for ϕ in indexing time O(|T |) and search time
O(log |T | · |S|).

5 Online learning of MSO formulas

For Theorem 6 we assumed that after an indexing phase the complete training set S is known
and the learning task is to find a hypothesis consistent with S. We now lift this result to an
online setting where we again have a linear indexing phase and then on input of new batch
of examples Si the algorithm updates its hypothesis H such that Hi is consistent with all
examples S =

⋃
i Si it has seen so far. This online setting allows examples to arrive over

time which is natural for many tasks with human interaction. Note that the algorithm can
also handle label updates of the nodes as both types of updates induce a label change in the
tree T . Label changes are a common type of update in a database setting since updating the
attributes of an already present entity can be modeled by an update of the entity’s label.

An online learning algorithm is an algorithm that takes as input a background structure T ,
an index I(T) and a sequence S = (u1, c1), (u2, c2), . . . of training examples and outputs for
every i ≤ |S| a hypothesis Hi = Jϕ(x ; v̄)KT consistent with Si = {(u1, c1), . . . , (xi, ci)}.

ICDT 2019

24:16 Learning Definable Hypotheses on Trees

I Theorem 13. Let q, ` ∈ N. There is an indexing algorithm A that, given a tree T computes
an index A(T) and an online learning algorithm B that, given T, I(T), and an MSO[q, `+ 1]-
realizable sequence S = (u1, c1), . . . for T , maintains a consistent hypothesis Hi = Jϕ(x ; v̄)KT
for every i ∈ N such that A runs in time O(|T |) and B runs in time O(log2(|T |)) per update.

This can be achieved by substituting Simon factorization trees by the conceptually simpler
binary factorization trees in the construction. This implies two main differences. First, we
can update labels arbitrarily often without changing the structure of the factorization tree
(which does not hold for Simon factorization trees due to the idempotent elements). Second,
the height of each factorization tree is logarithmic in its length, i.e. at most logarithmic
in T . Therefore it takes logarithmic time to update each path and since a single update may
involve updating logarithmically many paths this results in a runtime of O(|Si| log2(|T |)) per
update.

6 Conclusion

We considered the setting of learning quantifier-free and MSO formulas on trees. All learning
algorithms provided in this paper search for consistent hypotheses, thus they can be turned
into PAC learning algorithms by providing a large enough training set.

We assumed the background structures to be huge and therefore have been researching
sublinear algorithms which access to the background structures through the local access
oracles. The first result is that even for quantifier free formulas there is no sublinear learning
algorithm. However, there is a sublinear learning algorithm when given access to the largest
common ancestor of two nodes. Our main result is a learning algorithm for unary MSO
formulas which uses a linear indexing phase to build up an auxiliary structure (the index)
and admits a logarithmic learning time with local access to that index.

Further research questions might include lifting the result to higher dimensions where
examples consist of pairs or tuples of nodes instead of single positions in the tree. Another
direction of research could be to extend our results for tree-like structures. For structures
of bounded tree-width the approach could use a similar structure as the one from [12]. A
slightly different research question would be to look for approximate solutions where only a
certain (relative) amount of examples needs to be consistent. Such approaches could also
deal with faulty examples, which occur quite regularly in practice.

References
1 A. Abouzied, D. Angluin, C.H. Papadimitriou, J.M. Hellerstein, and A. Silberschatz. Learning

and verifying quantified boolean queries by example. In R. Hull and W. Fan, editors, Proceedings
of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pages 49–60, 2013.

2 D. Angluin. On the Complexity of Minimum Inference of Regular Sets. Information and
Control, 39(3):337–350, 1978.

3 D. Angluin. Learning Regular Sets from Queries and Counterexamples. Information and
Computation, 75(2):87–106, 1987.

4 D. Angluin. Negative Results for Equivalence Queries. Machine Learning, 5:121–150, 1990.
5 A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation of XML documents.

ACM Trans. Database Syst., 29(4):710–751, 2004.
6 A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. Journal of the ACM (JACM), 36:929–965, 1989.
7 M. Bojańczyk. Algorithms for regular languages that use algebra. SIGMOD Record, 41(2):5–14,

2012.

E. Grienenberger and M. Ritzert 24:17

8 A. Bonifati, R. Ciucanu, and S. Staworko. Learning Join Queries from User Examples. ACM
Trans. Database Syst., 40(4):24:1–24:38, 2016.

9 J Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960.

10 W.W. Cohen and C.D. Page. Polynomial Learnability and Inductive Logic Programming:
Methods and Results. New generation Computing, 13:369–404, 1995.

11 T. Colcombet. Green’s Relations and Their Use in Automata Theory. In Language and
Automata Theory and Applications - 5th International Conference, LATA 2011, Tarragona,
Spain, May 26-31, 2011. Proceedings, volume 6638 of Lecture Notes in Computer Science,
pages 1–21. Springer, 2011.

12 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990.

13 F. Drewes and J. Högberg. Learning a regular tree language from a teacher. In Developments
in Language Theory, pages 279–291. Springer, 2003.

14 P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning invariants using decision trees and
implication counterexamples. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 499–512, 2016.

15 E.M. Gold. Complexity of Automaton Identification from Given Data. Information and
Control, 37(3):302–320, 1978.

16 M. Grohe, C. Löding, and M. Ritzert. Learning MSO-definable hypotheses on strings. In
International Conference on Algorithmic Learning Theory, ALT 2017, 15-17 October 2017,
Kyoto University, Kyoto, Japan, pages 434–451, 2017.

17 M. Grohe and M. Ritzert. Learning first-order definable concepts over structures of small
degree. In Proceedings of the 32nd ACM-IEEE Symposium on Logic in Computer Science,
2017.

18 M. Grohe and G. Turán. Learnability and definability in trees and similar structures. Theory
of Computing Systems, 37(1):193–220, 2004.

19 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
siam Journal on Computing, 13(2):338–355, 1984.

20 C. Jordan and L. Kaiser. Machine Learning with Guarantees using Descriptive Complexity
and SMT Solvers. ArXiv (CoRR), 1609.02664 [cs.LG], 2016. arXiv:1609.02664.

21 M.J. Kearns and L.G. Valiant. Cryptographic Limitations on Learning Boolean Formulae and
Finite Automata. Journal of the ACM, 41(1):67–95, 1994.

22 J.-U. Kietz and S. Dzeroski. Inductive Logic Programming and Learnability. SIGART Bulletin,
5(1):22–32, 1994.

23 C. Löding, P. Madhusudan, and D. Neider. Abstract Learning Frameworks for Synthesis. In
M. Chechik and J.-F. Raskin, editors, Proceedings of the 22nd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, volume 9636 of Lecture
Notes in Computer Science, pages 167–185. Springer Verlag, 2016.

24 S. Muggleton. Inductive logic programming. New Generation Computing, 8(4):295–318, 1991.
25 S.H. Muggleton, editor. Inductive Logic Programming. Academic Press, 1992.
26 S.H. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and methods. The

Journal of Logic Programming, 19-20:629–679, 1994.
27 J. Oncina and P. García. Identifying regular languages in polynomial time. In Proceedings

of the International Workshop on Structural and Syntactic Pattern Recognition, volume 5 of
Machine Perception and Artificial Intelligence, pages 99—-108. World Scientific, 1992.

28 L. Pitt and M.K. Warmuth. The Minimum Consistent DFA Problem Cannot be Approximated
within any Polynomial. Journal of the ACM, 40(1):95–142, 1993.

29 M.O. Rabin and D.Scott. Finite Automata and Their Decision Problems. IBM Journal of
Research and Development, 3:114–125, 1959.

ICDT 2019

http://arxiv.org/abs/1609.02664

24:18 Learning Definable Hypotheses on Trees

30 R.L. Rivest and R.E. Schapire. Inference of Finite Automata Using Homing Sequences. In
Machine Learning: From Theory to Applications, volume 661 of Lecture Notes in Computer
Science, pages 51–73. Springer, 1993.

31 I. Simon. Factorization Forests of Finite Height. Theoretical Computer Science, 72(1):65–94,
1990.

32 Sławek Staworko and Piotr Wieczorek. Learning twig and path queries. In Proceedings of the
15th International Conference on Database Theory, pages 140–154. ACM, 2012.

33 W. Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, pages 389–456. Springer-Verlag, 1997.

34 L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.
35 V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events

to their probabilities. Theory of Probability and its Applications, 16:264–280, 1971.
36 Y. Weiss and S. Cohen. Reverse Engineering SPJ-Queries from Examples. In Proceedings

of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 151–166. ACM, 2017.

	p000-Frontmatter
	Preface
	Organization
	External Reviewers
	Authors
	ICDT 2019 Test of Time Award

	p001-Olteanu
	p001-ZZZ-Blank
	p002-Getoor
	p002-ZZZ-Blank
	p003-Krotzsch
	Introduction
	Preliminaries
	Universal Models and the Chase
	Chase Termination
	Termination of the Skolem Chase
	Termination of the Standard and Core Chase

	The Weakness of the Terminating Skolem Chase
	Beyond the Skolem Chase
	Beyond Polynomial Time
	Conclusion

	p003-ZZZ-Blank
	p004-Kara
	Introduction
	Existing Incremental View Maintenance (IVM) Approaches
	Our Contribution

	Preliminaries
	IVM^epsilon: Adaptive Maintenance of the Triangle Count
	Preprocessing Stage
	Processing a Single-Tuple Update
	Space Complexity

	Rebalancing Partitions
	Proof of Theorem 3

	Conclusion and Future Work

	p005-Grez
	Introduction
	Events in action
	A query language for CEP
	Selection strategies
	Syntactic analysis of CEL
	A computational model for CEL
	Algorithms for evaluating CEA
	An evaluation framework for CEL
	Future work

	p006-DeSa
	Introduction
	Preliminaries
	Probabilistic Unclean Databases
	Example Instantiations of PUDs

	Computational Problems
	Cleaning and Querying Unclean Data
	Generalizing Minimum Repairs
	Complexity of Cleaning with Key Constraints
	Probabilistic Query Answering

	Learning Probabilistic Unclean Databases
	Setup
	Supervised Learning
	Unsupervised Learning

	Concluding Remarks

	p007-Geerts
	Introduction
	Background
	Matrix Query Languages
	Expressive Power
	Expressive Power of the Matrix Query Language ML(.,tr)
	The Impact of the 1(.) Operation
	The Impact of the diag(.) Operation
	Equitable Partitions
	Characterisations

	The Impact of Pointwise Functions on Matrices
	Concluding Remarks

	p007-ZZZ-Blank
	p008-Console
	Introduction
	Bag Relational Algebra
	Expressive Power of Bag Relational Algebra Fragments
	Certain Answers under Bag Semantics
	Complexity of Certain Answers
	Upper and lower bounds for full RA
	Computing min
	Naive evaluation for RA^+ {cap}
	Hardness for SPC {cup} and fragments with duplicate elimination

	Computing max: hardness for simple queries
	Complex selection conditions

	Conclusions

	p009-Ganguly
	Introduction
	Applications to Databases
	Model of Computation
	Notation
	Previous and Related Work
	Our Results
	Map

	2D Color Dominance with Approximate Frequencies
	Shallow Cutting
	Tessellation Using Rectangles
	Rectangle Stabbing
	Wrapping Up

	Improvement via Bootstrapping
	Framework and Overview
	Handling Case 1: K >= K_h
	Handling Case 2: K < K_h
	Handling S_h' and S_h''
	Handling S_h'''

	Wrapping Up

	1D Approximate Color Reporting
	1D Exact Color Reporting
	Partially Persistent Lists
	1-sided Queries
	Answering in Optimal I/Os
	Reducing Space Usage

	Conclusion

	p009-ZZZ-Blank
	p010-Kumar
	Introduction
	Problem Statement and Connection to Asymmetric K-center
	Definitions and problem statement
	Properties and asymmetric k-center

	Hardness
	Exact Algorithm in 2D
	Approximate K-Staircase
	An approximation algorithm
	A faster approximation algorithm for fixed d

	A practical heuristic
	Experiments
	Comparison of algorithms on real data

	Conclusions

	p011-Li
	Introduction
	Algorithmic Framework
	Stopping condition
	Near-Optimal Traversal Strategy
	Decomposable Functions
	The max-reduction traversal strategy
	The hull-based traversal strategy
	The traversal strategy for cosine

	Related work
	Cosine similarity search
	Euclidean distance threshold queries

	Conclusion

	p012-Maniu
	Introduction and Related Work
	Preliminaries on Treewidth
	Treewidth Estimation
	Estimation Results
	Partial Decompositions
	Discussion

	p013-Peterfreund
	Introduction
	Preliminaries
	Document Spanners
	Spanner Algebra
	Regular and (Generalized) Core Spanners
	Span Databases

	RGXlog: Datalog over Regex Formulas
	Comparison to Core Spanners
	Equivalence to Polynomial Time
	RGXlog over Monadic Regex Formulas

	Extension to a Combined Relational/Textual Model
	Spannerlog
	Equivalence to Polynomial Time

	Conclusions

	p014-Neven
	Introduction
	Preliminaries
	Framework
	Distributed Evaluation of Datalog Programs
	Distribution Policies
	Communication Policies

	 Parallel-Correctness
	Parallel-Correctness for Hash-Hash
	Parallel-Correctness for Hash-MConstraints

	The Containment Problem for Frontier-Guarded Datalog
	Parallel-Boundedness
	Variants of the Framework
	Conclusion

	p014-ZZZ-Blank
	p015-Gluch
	Introduction
	The context
	 Our contribution

	How this paper relates to Gluch et al., 2018
	Preliminaries and notations
	Red-Green Structures and Escape
	Red-green signature and Regular Constraints
	The game of Escape

	Source of undecidability
	The function {R}
	Structure of the proof of Lemma 5.7
	Principles of the Game
	The paths P_m and ^{$} P_m
	Stage I
	Stage II
	The grids G_m and partial grids L^{k}_{m}
	Stage III
	And now we finally see the shades again

	p016-Bertossi
	Introduction
	Preliminaries
	Derivation-Tree Bag (DTB) Semantics for Datalog and Datalog^{neg s}
	Warded Datalog^{+/-}

	Datalog^+/–Based Bag Semantics for Datalog^{neg s}
	Bag Semantics for Datalog^{+/-,neg sg}
	Extension of the DTB Semantics to Datalog^{+/-, neg sg}
	Extension of the PBB Semantics to Datalog^{+/-,neg sg}

	Decidability and Complexity of Multiplicity
	Multiset Relational Algebra (MRA)
	Conclusions and Future Work

	p016-ZZZ-Blank
	p017-Calautti
	Introduction
	Preliminaries
	Chase Termination Problem
	Semantic Characterization of Chase Non-Termination
	Existence of a Continuous Path
	From Continuous Paths to Linear Infinite Derivations

	Graph-Based Characterization of Chase Termination
	Linearization
	Acyclicity Conditions

	Complexity of Chase Termination
	Conclusions

	p018-Leclere
	Introduction
	Preliminaries
	Derivation Trees
	Semi-Oblivious and Restricted Chase Termination
	Core Chase Termination
	Concluding Remarks

	p018-ZZZ-Blank
	p019-Berger
	Introduction
	Preliminaries
	Additive queries
	Queries that distribute over components

	The first-order case
	Connected FO
	Non-boolean queries
	Boolean queries
	Some consequences
	Reduction from satisfiability

	The guarded case
	Guarded and connected formulas
	Complexity of additivity for GF

	The positive-existential case
	Conclusion

	p020-Mengel
	Introduction
	Preliminaries
	Tractability Conditions
	The FPT algorithm
	Optimality of the Tractability Conditions
	Relationship with SPARQL and Conclusion

	p021-AboKhamis
	Introduction
	Main Contribution

	Preliminaries
	Hypergraph coloring and bounded-degree relations
	FAQ, width parameters, and corresponding algorithms

	Example
	Untangling bounded-degree relations
	Boolean tensor decomposition
	How to use the tensor decomposition
	Related Work
	Concluding remarks

	p021-ZZZ-Blank
	p022-Amarilli
	Introduction
	Preliminaries
	Computing Mapping DAGs for Extended VAs
	Enumeration for Mapping DAGs
	Jump Function
	From Extended Sequential VAs to General Sequential VAs
	Conclusion

	p022-ZZZ-Blank
	p023-Koutris
	Motivation
	Related Work
	Preliminaries
	The Main Theorem and an Informal Guide of its Proof
	Saturated Queries
	M-Graphs and hookrightarrow-Graphs
	Garbage Sets
	Garbage Sets for M-Cycles
	Characterizing Garbage Sets for M-Cycles
	Computing Garbage Sets for M-Cycles
	Elimination of M-Cycles

	Joins on Primary Keys
	Conclusion

	p023-ZZZ-Blank
	p024-Grienenberger
	Introduction
	Our Results
	Related work

	Preliminaries
	Learning Model
	Access Model
	PAC learning

	Quantifier-free formulas
	Extended local access

	Monadic Second-Order Logic
	Decomposing trees into strings
	DFAs simulating DTAs
	Monoids and factorization trees
	Constructing the necessary monoids and monoid morphisms
	Algorithms

	Online learning of MSO formulas
	Conclusion

