
35th International Symposium
on Computational Geometry

SoCG 2019, June 18–21, 2019, Portland, Oregon, USA

Edited by

Gill Barequet
Yusu Wang

LIPIcs – Vo l . 129 – SoCG 2019 www.dagstuh l .de/ l ip i c s

Editors

Gill Barequet
Technion – Israel Inst. of Technology, Haifa, Israel
barequet@cs.technion.ac.il

Yusu Wang
The Ohio State University, Ohio, USA
yusu@cse.ohio-state.edu

ACM Classification 2012
Theory of computation → Computational geometry; Theory of computation → Design and analysis of
algorithms; Mathematics of computing → Combinatorics; Mathematics of computing → Graph algorithms

ISBN 978-3-95977-104-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-104-7.

Publication date
June, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SoCG.2019.0

ISBN 978-3-95977-104-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:barequet@cs.technion.ac.il
mailto:yusu@cse.ohio-state.edu
https://www.dagstuhl.de/dagpub/978-3-95977-104-7
https://www.dagstuhl.de/dagpub/978-3-95977-104-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.SoCG.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-104-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Foreword
Gill Barequet and Yusu Wang . 0:xi

Conference Organization
. 0:xiii–0:xiv

Additional Reviewers
. 0:xv–0:xvi

Invited Talk

A Geometric Data Structure from Neuroscience
Sanjoy Dasgupta . 1:1–1:1

Some Geometric and Computational Challenges Arising in Structural Molecular
Biology

Bruce R. Donald . 2:1–2:2

Regular Paper

A New Lower Bound for Semigroup Orthogonal Range Searching
Peyman Afshani . 3:1–3:14

Independent Range Sampling, Revisited Again
Peyman Afshani and Jeff M. Phillips . 4:1–4:13

An Efficient Algorithm for Generalized Polynomial Partitioning and Its
Applications

Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl 5:1–5:14

Efficient Algorithms for Geometric Partial Matching
Pankaj K. Agarwal, Hsien-Chih Chang, and Allen Xiao . 6:1–6:14

Connecting the Dots (with Minimum Crossings)
Akanksha Agrawal, Grzegorz Guśpiel, Jayakrishnan Madathil, Saket Saurabh, and
Meirav Zehavi . 7:1–7:17

General Techniques for Approximate Incidences and Their Application to the
Camera Posing Problem

Dror Aiger, Haim Kaplan, Efi Kokiopoulou, Micha Sharir, and Bernhard Zeisl . . . 8:1–8:14

Circumscribing Polygons and Polygonizations for Disjoint Line Segments
Hugo A. Akitaya, Matias Korman, Mikhail Rudoy, Diane L. Souvaine, and
Csaba D. Tóth . 9:1–9:17

Morphing Contact Representations of Graphs
Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, Giordano Da Lozzo, and
Vincenzo Roselli . 10:1–10:16

When Convexity Helps Collapsing Complexes
Dominique Attali, André Lieutier, and David Salinas . 11:1–11:15

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Optimal Algorithm for Geodesic Farthest-Point Voronoi Diagrams
Luis Barba . 12:1–12:14

Upward Book Embeddings of st-Graphs
Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo,
Tamara Mchedlidze, and Maurizio Patrignani . 13:1–13:22

Bounded Degree Conjecture Holds Precisely for c-Crossing-Critical Graphs
with c ≤ 12

Drago Bokal, Zdeněk Dvořák, Petr Hliněný, Jesús Leaños, Bojan Mohar, and
Tilo Wiedera . 14:1–14:15

Preconditioning for the Geometric Transportation Problem
Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov 15:1–15:14

The One-Way Communication Complexity of Dynamic Time Warping Distance
Vladimir Braverman, Moses Charikar, William Kuszmaul, David P. Woodruff, and
Lin F. Yang . 16:1–16:15

Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance
Karl Bringmann, Marvin Künnemann, and André Nusser . 17:1–17:21

Polyline Simplification has Cubic Complexity
Karl Bringmann and Bhaskar Ray Chaudhury . 18:1–18:16

A Spanner for the Day After
Kevin Buchin, Sariel Har-Peled, and Dániel Oláh . 19:1–19:15

Computing Shapley Values in the Plane
Sergio Cabello and Timothy M. Chan . 20:1–20:19

On the Metric Distortion of Embedding Persistence Diagrams into Separable
Hilbert Spaces

Mathieu Carrière and Ulrich Bauer . 21:1–21:15

Convex Polygons in Cartesian Products
Jean-Lou De Carufel, Adrian Dumitrescu, Wouter Meulemans, Tim Ophelders,
Claire Pennarun, Csaba D. Tóth, and Sander Verdonschot . 22:1–22:17

Smallest k-Enclosing Rectangle Revisited
Timothy M. Chan and Sariel Har-Peled . 23:1–23:15

Dynamic Geometric Data Structures via Shallow Cuttings
Timothy M. Chan . 24:1–24:13

Lower Bounds for Electrical Reduction on Surfaces
Hsien-Chih Chang, Marcos Cossarini, and Jeff Erickson . 25:1–25:16

Maintaining the Union of Unit Discs Under Insertions with Near-Optimal
Overhead

Pankaj K. Agarwal, Ravid Cohen, Dan Halperin, and Wolfgang Mulzer 26:1–26:15

Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs
Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and
Arnaud de Mesmay . 27:1–27:16

Contents 0:vii

The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances
Anne Driemel, Jeff M. Phillips, and Ioannis Psarros . 28:1–28:16

Dual Circumference and Collinear Sets
Vida Dujmović and Pat Morin . 29:1–29:17

A Product Inequality for Extreme Distances
Adrian Dumitrescu . 30:1–30:12

Topological Data Analysis in Information Space
Herbert Edelsbrunner, Žiga Virk, and Hubert Wagner . 31:1–31:14

Cubic Planar Graphs That Cannot Be Drawn On Few Lines
David Eppstein . 32:1–32:15

Counting Polygon Triangulations is Hard
David Eppstein . 33:1–33:17

Topologically Trivial Closed Walks in Directed Surface Graphs
Jeff Erickson and Yipu Wang . 34:1–34:17

Packing Disks into Disks with Optimal Worst-Case Density
Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer . 35:1–35:19

Semi-Algebraic Colorings of Complete Graphs
Jacob Fox, János Pach, and Andrew Suk . 36:1–36:12

Chunk Reduction for Multi-Parameter Persistent Homology
Ulderico Fugacci and Michael Kerber . 37:1–37:14

The Crossing Tverberg Theorem
Radoslav Fulek, Bernd Gärtner, Andrey Kupavskii, Pavel Valtr, and Uli Wagner . 38:1–38:13

Z2-Genus of Graphs and Minimum Rank of Partial Symmetric Matrices
Radoslav Fulek and Jan Kynčl . 39:1–39:16

An Experimental Study of Forbidden Patterns in Geometric Permutations by
Combinatorial Lifting

Xavier Goaoc, Andreas Holmsen, and Cyril Nicaud . 40:1–40:16

Journey to the Center of the Point Set
Sariel Har-Peled and Mitchell Jones . 41:1–41:14

Preprocessing Ambiguous Imprecise Points
Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann . . . 42:1–42:16

Rods and Rings: Soft Subdivision Planner for R3 × S2

Ching-Hsiang Hsu, Yi-Jen Chiang, and Chee Yap . 43:1–43:17

3-Manifold Triangulations with Small Treewidth
Kristóf Huszár and Jonathan Spreer . 44:1–44:20

Algorithms for Metric Learning via Contrastive Embeddings
Diego Ihara, Neshat Mohammadi, and Anastasios Sidiropoulos 45:1–45:14

Exact Computation of the Matching Distance on 2-Parameter Persistence Modules
Michael Kerber, Michael Lesnick, and Steve Oudot . 46:1–46:15

SoCG 2019

0:viii Contents

Probabilistic Smallest Enclosing Ball in High Dimensions via Subgradient
Sampling

Amer Krivošija and Alexander Munteanu . 47:1–47:14

A Weighted Approach to the Maximum Cardinality Bipartite Matching Problem
with Applications in Geometric Settings

Nathaniel Lahn and Sharath Raghvendra . 48:1–48:13

The Unbearable Hardness of Unknotting
Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, and Martin Tancer 49:1–49:19

On Grids in Point-Line Arrangements in the Plane
Mozhgan Mirzaei and Andrew Suk . 50:1–50:11

On Weak ε-Nets and the Radon Number
Shay Moran and Amir Yehudayoff . 51:1–51:14

Dynamic Planar Point Location in External Memory
J. Ian Munro and Yakov Nekrich . 52:1–52:15

Efficient Algorithms for Ortho-Radial Graph Drawing
Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf . 53:1–53:14

On the Chromatic Number of Disjointness Graphs of Curves
János Pach and István Tomon . 54:1–54:17

Computing Persistent Homology of Flag Complexes via Strong Collapses
Jean-Daniel Boissonnat and Siddharth Pritam . 55:1–55:15

Ham-Sandwich Cuts and Center Transversals in Subspaces
Patrick Schnider . 56:1–56:15

Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges
Yufei Tao and Yu Wang . 57:1–57:14

DTM-Based Filtrations
Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi,
Raphaël Tinarrage, and Yuhei Umeda . 58:1–58:15

A Divide-and-Conquer Algorithm for Two-Point L1 Shortest Path Queries in
Polygonal Domains

Haitao Wang . 59:1–59:14

Near-Optimal Algorithms for Shortest Paths in Weighted Unit-Disk Graphs
Haitao Wang and Jie Xue . 60:1–60:13

Searching for the Closest-Pair in a Query Translate
Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan . 61:1–61:15

On the Complexity of the k-Level in Arrangements of Pseudoplanes
Micha Sharir and Chen Ziv . 62:1–62:15

Contents 0:ix

Multimedia Exposition

Packing Geometric Objects with Optimal Worst-Case Density
Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Sebastian Morr, and
Christian Scheffer . 63:1–63:6

Properties of Minimal-Perimeter Polyominoes
Gill Barequet and Gil Ben-Shachar . 64:1–64:4

A Manual Comparison of Convex Hull Algorithms
Maarten Löffler . 65:1–65:2

Fréchet View – A Tool for Exploring Fréchet Distance Algorithms
Peter Schäfer . 66:1–66:5

SoCG 2019

Foreword

The 35th International Symposium on Computational Geometry (SoCG) was held in Portland,
Oregon, United States, June 18-21, 2019, as part of the Computational Geometry Week.
Altogether, 166 papers have been submitted to SoCG 2019. After a thorough review process,
in which each paper has been evaluated by three or more independent reviewers, the Program
Committee accepted 60 papers for presentation at SoCG. These proceedings contain extended
abstracts of the accepted papers, limited to 500 lines plus references. If any supporting
material (e.g., proofs or experimental details) does not fit in the line limit, the full paper is
available at a public repository, which is referenced in the extended abstract.

The Best Paper Award goes to the paper “Almost tight lower bounds for hard cutting
problems in embedded graphs” by Vincent Cohen-Addad, Éric Colin de Verdière, Dániel
Marx, and Arnaud de Mesmay. The Best Student Presentation Award will be determined
and announced at the symposium, based on ballots cast by the attendees.

A selection of papers, recommended by the Program Committee, have been invited
to forthcoming special issues of Discrete & Computational Geometry and the Journal of
Computational Geometry, dedicated to the best papers of the symposium.

In addition to the technical papers, there were four submissions to the multimedia
exposition. All submissions were reviewed, and all four were accepted for presentation. One
submission was split into two parts, hence, five multimedia segments were eventually accepted.
The extended abstracts that describe these submissions are included in this proceedings
volume. The multimedia content can be found at http://www.computational-geometry.org.

We thank the authors of all submitted papers and multimedia presentations. We are
most grateful to the members of the SoCG Program Committee, the Multimedia Committee,
and 275 additional reviewers for their dedication and expertise that ensured the high quality
of the papers in these proceedings. We would also like to thank the Proceedings Chair,
Matias Korman, for his meticulous work preparing the final proceedings. Many other people
contributed to the success of SoCG 2019 and the entire CG Week. We especially thank the
local organizers, all members of the Workshop and YRF Committees, and the Computational
Geometry Steering Committee.

Gill Barequet
Program Committee, co-chair

Technion—Israel Inst. of Technology

Yusu Wang
Program Committee, co-chair
The Ohio State University

Christiane Schmidt
Multimedia Committee, chair

Linköping University

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.computational-geometry.org
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Conference Organization

SoCG Program Committee

Hee-Kap Ahn, Pohang Univ. of Science and Technology, South Korea
Alexandr Andoni, Columbia University, USA
Sunil Arya, Hong Kong Univ. of Science and Technology, China
Gill Barequet (co-chair), Technion—Israel Inst. of Technology, Israel
Mark de Berg, TU Eindhoven, Netherlands
Prosenjit Bose, Carleton University, Canada
Frédéric Cazals, INRIA Sophia Antipolis-Méditerrané, France
Tamal K. Dey, The Ohio State University, USA
Kyle Fox, Univ. of Texas at Dallas, USA
Joachim Gudmundsson, Univ. of Sydney, Australia
Chaya Keller, Ben Gurion University, Israel
Stephen Kobourov, Univ. of Arizona, USA
Francis Lazarus, CNRS Grenoble, France
Clément Maria, INRIA Sophia Antipolis-Méditerranée, France
Tillmann Miltzow, Utrecht University, Netherlands
Zuzana Patáková, Inst. of Science and Technology, Austria
Amit Patel, Colorado State University, USA
Raimund Seidel, Saarland University, Germany
Christian Sohler, TU Dortmund, Germany, and Google, Switzerland
Noam Solomon, Harvard University, USA
Subhash Suri, Univ. of California at Santa Barbara, USA
Kasturi Varadarajan, Univ. of Iowa, USA
Birgit Vogtenhuber, Graz Univ. of Technology, Austria
Bei Wang, Univ. of Utah, USA
Yusu Wang (co-chair), The Ohio State University, USA

SoCG Proceedings Chair

Matias Korman, Tufts University, USA

Multimedia Program Committee

Aaron T. Becker, Univ. of Houston, USA
Michael Biro, Univ. of Connecticut, USA
Michael Hemmer. Google X Lab, USA
Linda Kleist, TU Braunschweig, Germany
Wolfgang Mulzer, FU Berlin, Germany
Valentin Polishchuk, Linköping University, Sweden
Christiane Schmidt (chair), Linköping University, Sweden
Adam Sheffer, CUNY Baruch College, USA

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv Conference Organization

Workshop Program Committee

Maike Buchin, Technical University Dortmund, Germany
Olivier Devillers (chair), Loria, France
Ileana Streinu, Smith College, USA
Alexander Wolff, Universität Würzburg, Germany

Young Researchers Forum Program Committee

Kyle Fox, UT Dallas, USA
Radoslav Fulek, IST Austria, Austria
Jie Gao, Stony Brook University, USA
Panos Giannopoulos, Middlesex University, United Kingdom
Irina Kostitsyna, TU Eindhoven, Netherlands
Steve Oudot (chair), INRIA, France
Jeff Phillips, Univ. of Utah, USA
Christian Sohler, TU Dortmund, Germany and Google Zürich, Switzerland
Jonathan Spreer, Univ. of Sydney, Australia

Local Organizing Committee

John Hershberger, Mentor Graphics, a Siemens Business, USA
Bala Krishnamoorthy, Washington State University, USA
Amir Nayyeri, Oregon State University, USA
Gordon Wilfong, Nokia Bell Labs, USA
William Maxwell (webmaster), Oregon State University, USA

Steering Committee (2018-)

Mark de Berg, TU Eindhoven, Netherlands
Erin Chambers (Secretary), Saint Louis University, USA
Michael Hoffmann, ETH Zürich, Switzerland
Joe Mitchell (Treasurer), State University of New York at Stony Brook, USA
Bettina Speckmann, TU Eindhoven, Netherlands
Monique Teillaud (Chair), INRIA Nancy - Grand Est, France

Additional Reviewers

Mikkel Abrahamsen
Michal Adamaszek
Henry Adams
Peyman Afshani
Oswin Aichholzer
José Luis Álvarez
Eric Andres
Patrizio Angelini
Boris Aronov
Alan Arroyo
Andrei Asinowski
Dominique Attali
Yakov Babichenko
Jasine Babu
Sang Won Bae
Ainesh Bakshi
Martin Balko
Sayan Bandyapadhyay
Aritra Banik
Imre Barany
Luis Barba
Ulrich Bauer
Gil Ben-Shachar
Sergey Bereg
Marcin Bieńkowski
Carla Binucci
Håvard Bakke Bjerkevik
Thomas Bläsius
Jean-Daniel Boissonnat
Édouard Bonnet
Karl Bringmann
Mickaël Buchet
Kevin Buchin
Johnatahn Bush
Sergio Cabello
Jean Cardinal
Paz Carmi
Jean-Lou De Carufel
Jérémie Chalopin
Erin Chambers
Hubert T.-H. Chan
Timothy M. Chan
Hsien-Chih Chang
Yi-Jun Chang
Steven Chaplick

Chao Chen
Siu-Wing Cheng
Victor Chepoi
Augustin Chevallier
Man-Kwun Chiu
Jongmin Choi
Aruni Choudhary
Tobias Christiani
Josef Cibulka
Vincent Cohen-Addad
David Cohen-Steiner
Éric Colin de Verdière
David Conlon
Radu Curticapean
Marco Cuturi
Ovidiu Daescu
Sanjoy Dasgupta
Minati De
Vincent Despré
Olivier Devillers
Emilio Di Giacomo
Michael Dinitz
Gabor Domokos
Anne Driemel
Guillaume Ducoffe
Vida Dujmovic
Adrian Dumitrescu
Christian Duncan
Patrick Eades
Herbert Edelsbrunner
Alon Efrat
Marek Eliáš
Ioannis Emiris
David Eppstein
Jeff Erickson
Esther Ezra
Ruy Fabila-Monroy
Brittany Terese Fasy
Sándor Fekete
Marek Filakovský
Guilherme D. da Fonseca
Pierre Fraigniaud
Tobias Friedrich
Radoslav Fulek
Jie Gao

Luisa Gargano
Mereke van Garderen
Alexey Glazyrin
Marc Glisse
Xavier Goaoc
Omer Gold
Douglas Gonçalves
Lee-Ad Gottlieb
Nicolas Grelier
Bernd Gärtner
Masahiro Hachimori
Dan Halperin
Sariel Har-Peled
Lenwood Heath
John Hershberger
Michael Hoffmann
Andreas Holmsen
Ivor van der Hoog
Zengfeng Huang
Alfredo Hubard
Clemens Huemer
Kristóf Huszár
John Iacono
Tanmay Inamdar
Ravi Janardan
Dominik Kaaser
Haim Kaplan
Matthew Katz
Phillip Keldenich
Nathan Keller
Michael Kerber
Jisu Kim
Mincheol Kim
Woojin Kim
Rolf Klein
Linda Kleist
Fabian Klute
Christian Konrad
Matias Korman
Grigorios Koumoutsos
Marc van Kreveld
Klaus Kriegel
Amer Krivosija
Neeraj Kumar
Andrey Kupavskii

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Additional Reviewers

Jan Kynčl
Marvin Künnemann
Claudia Landi
Elmar Langetepe
Silvio Lattanzi
Hung Le
Erik Jan van Leeuwen
David Letscher
Joshua Levine
Leo Liberti
Andre Lieutier
Chih-Hung Liu
Roi Livni
Daniel Lokshtanov
Anna Lubiw
Ben Lund
Maarten Löffler
Sepideh Mahabadi
Mehdi Makhul
Dorian Mazauric
Alex McCleary
Saeed Mehrabi
Piotr Micek
Samuel Micka
Matúš Mihalák
Joshua Mirth
Joseph Mitchell
Bojan Mohar
Debajyoti Mondal
Pat Morin
Dmitriy Morozov
Guy Moshkovitz
David Mount
Wolfgang Mulzer
Elizabeth Munch
Alexander Munteanu
Nabil Mustafa
Abhinandan Nath
Amir Nayyeri
Frank Nielsen
Bengt J. Nilsson
Martin Nöllenburg
Eunjin Oh
Steve Oudot
Peter Palfrader
Irene Parada
Nikos Parotsidis
Salman Parsa

Pavel Paták
Aduri Pavan
Lehilton L.C. Pedrosa
Xavier Pennec
Gabriel Peyre
Jeff Phillips
Vincent Pilaud
Alexander Pilz
Rom Pinchasi
Sylvain Pion
Valentin Polishchuk
Ioannis Psarros
Sergey Pupyrev
Dömötör Pálvölgyi
Miao Qiao
Kent Quanrud
Luis Rademacher
Sharath Raghvendra
Benjamin Raichel
Rajiv Raman
Alexander Ravsky
Saurabh Ray
André van Renssen
Bruce Richter
Oliver Roche-Newton
Günter Rote
Eva Rotenberg
Natan Rubin
Aviad Rubinstein
Paweł Rzążewski
Eric Samperton
Kanthi Sarpatwar
Nadja Scharf
Anna Schenfisch
Lena Schlipf
Christiane Schmidt
Patrick Schnider
Hendrik Schrezenmaier
Benjamin Schweinart
Chris Schwiegelshohn
Eric Sedgwick
Micha Sharir
Don Sheehy
Chan-Su Shin
Aaron Sidford
Anastasios Sidiropoulos
Rodrigo Silveira

Luís Fernando Schultz Xavier
da Silveira

Francesco Silvestri
Primoz Skraba
Michiel Smid
Shakhar Smorodinsky
Pablo Soberón
Jonathan Spreer
Frank Staals
Anastasios Stefanou
Fabian Stehn
Raphael Steiner
Andrew Suk
Narayanaswamy

Sundararajan
Peter Synak
Martin Tancer
Raphaël Tinarrage
Csaba Tóth
Géza Tóth
Christopher Tralie
Katharine Turner
Torsten Ueckerdt
Ryuhei Uehara
Seeun William Umboh
Pavel Valtr
Antoine Vigneron
Magnus Wahlström
Erik Waingarten
Bartosz Walczak
Haitao Wang
Osamu Watanabe
Rémi Watrigant
Oren Weimann
Gordon Wilfong
Charles Wolf
Sampson Wong
David Woodruff
Ge Xia
Jinhui Xu
Ke Yi
Yelena Yuditsky
Norbert Zeh
Meirav Zehavi
Shira Zerbib
Peilin Zhong
Sandra Zilles

A Geometric Data Structure from Neuroscience
Sanjoy Dasgupta
Department of Computer Science and Engineering,
University of California San Diego, CA, USA
http://cseweb.ucsd.edu/~dasgupta/
dasgupta@eng.ucsd.edu

Abstract
An intriguing geometric primitive, “expand-and-sparsify”, has been found in the olfactory system of
the fly and several other organisms. It maps an input vector to a much higher-dimensional sparse
representation, using a random linear transformation followed by winner-take-all thresholding.

I will show that this representation has a variety of formal properties, such as locality preservation,
that make it an attractive data structure for algorithms and machine learning. In particular,
mimicking the fly’s circuitry yields algorithms for similarity search and for novelty detection that
have provable guarantees as well as having practical performance that is competitive with state-of-
the-art methods.

This talk is based on work with Saket Navlakha (Salk Institute), Chuck Stevens (Salk Institute),
and Chris Tosh (Columbia).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Data structures design and analysis

Keywords and phrases Geometric data structure, algorithm design, neuroscience

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.1

Category Invited Talk

© S. Dasgupta;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://cseweb.ucsd.edu/~dasgupta/
mailto:dasgupta@eng.ucsd.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Some Geometric and Computational Challenges
Arising in Structural Molecular Biology
Bruce R. Donald
Department of Computer Science, Department of Chemistry, and Department of Biochemistry
Duke University and and Duke University Medical Center, Durham, NC, USA
www.cs.duke.edu/brd/
brd+socg19@cs.duke.edu

Abstract
Computational protein design is a transformative field with exciting prospects for advancing both
basic science and translational medical research. New algorithms blend discrete and continuous
geometry to address the challenges of creating designer proteins. I will discuss recent progress in
this area and some interesting open problems.

I will motivate this talk by discussing how, by using continuous geometric representations within
a discrete optimization framework, broadly-neutralizing anti-HIV-1 antibodies were computationally
designed that are now being tested in humans – the designed antibodies are currently in eight
clinical trials, one of which is Phase 2a (NCT03721510). These continuous representations model the
flexibility and dynamics of biological macromolecules, which are an important structural determinant
of function.

However, reconstruction of biomolecular dynamics from experimental observables requires
the determination of a conformational probability distribution. These distributions are not fully
constrained by the limited geometric information from experiments, making the problem ill-posed
in the sense of Hadamard. The ill-posed nature of the problem comes from the fact that it has no
unique solution. Multiple or even an infinite number of solutions may exist. To avoid the ill-posed
nature, the problem must be regularized by making (hopefully reasonable) assumptions.

I will present new ways to both represent and visualize correlated inter-domain protein motions
(see the figure above). We use Bingham distributions, based on a quaternion fit to circular moments
of a physics-based quadratic form. To find the optimal solution for the distribution, we designed an
efficient, provable branch-and-bound algorithm that exploits the structure of analytical solutions to
the trigonometric moment problem. Hence, continuous conformational PDFs can be determined
directly from NMR measurements. The representation works especially well for multi-domain
systems with broad conformational distributions. For more information please see Y. Qi et al. [1].

Ultimately, this method has parallels to other branches of geometric computing that balance
discrete and continuous representations, including physical geometric algorithms, robotics, compu-
tational geometry, and robust optimization. I will advocate for using continuous distributions for
protein modeling, and describe future work and open problems.

© Bruce R. Donald;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 2; pp. 2:1–2:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

www.cs.duke.edu/brd/
mailto:brd+socg19@cs.duke.edu
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Geometric and Computational Challenges

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Geometric computing, combutational biology, Continuous Interdomain
Orientation Distributions of Protein Conformations

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.2

Category Invited Talk

Related Version Y. Qi et al. [1]

References
1 Yang Qi, Jeffrey W. Martin, Adam W. Barb, François Thélot, Anthony K. Yan, Bruce R.

Donald∗, and Terrence G. Oas∗. Continuous interdomain orientation distributions reveal
components of binding thermodynamics. Journal of Molecular Biology, 430(18, Part B):3412 –
3426, 2018. doi:10.1016/j.jmb.2018.06.022.

∗Corresponding Authors

https://doi.org/10.4230/LIPIcs.SoCG.2019.2
http://dx.doi.org/10.1016/j.jmb.2018.06.022

A New Lower Bound for Semigroup Orthogonal
Range Searching
Peyman Afshani
Aarhus University, Denmark
peyman@cs.au.dk

Abstract
We report the first improvement in the space-time trade-off of lower bounds for the orthogonal range
searching problem in the semigroup model, since Chazelle’s result from 1990. This is one of the very
fundamental problems in range searching with a long history. Previously, Andrew Yao’s influential
result had shown that the problem is already non-trivial in one dimension [14]: using m units of
space, the query time Q(n) must be Ω(α(m,n) + n

m−n+1) where α(·, ·) is the inverse Ackermann’s
function, a very slowly growing function. In d dimensions, Bernard Chazelle [9] proved that the
query time must be Q(n) = Ω((logβ n)d−1) where β = 2m/n. Chazelle’s lower bound is known to
be tight for when space consumption is “high” i.e., m = Ω(n logd+ε n).

We have two main results. The first is a lower bound that shows Chazelle’s lower bound was
not tight for “low space”: we prove that we must have mQ(n) = Ω(n(logn log logn)d−1). Our lower
bound does not close the gap to the existing data structures, however, our second result is that
our analysis is tight. Thus, we believe the gap is in fact natural since lower bounds are proven for
idempotent semigroups while the data structures are built for general semigroups and thus they
cannot assume (and use) the properties of an idempotent semigroup. As a result, we believe to close
the gap one must study lower bounds for non-idempotent semigroups or building data structures for
idempotent semigroups. We develope significantly new ideas for both of our results that could be
useful in pursuing either of these directions.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Theory of computation → Computational geometry

Keywords and phrases Data Structures, Range Searching, Lower bounds

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.3

Related Version A full version of the paper is available at [1], https://arxiv.org/abs/1903.07967.

Funding Peyman Afshani: supported by DFF (Det Frie Forskningsräd) of Danish Council for
Indepndent Reserach under grant ID DFF−7014−00404.

1 Introduction

Orthogonal range searching in the semigroup model is one of the most fundamental data
structure problems in computational geometry. In the problem, we are given an input set
of points to store in a data structure where each point is associated with a weight from a
semigroup G and the goal is to compute the (semigroup) sum of all the weights inside an
axis-aligned box given at the query time. Disallowing the “inverse” operation in G makes
the data structure very versatile as it is then applicable to a wide range of situations (from
computing weighted sum to computing the maximum or minimum inside the query). In
fact, the semigroup variant is the primary way the family of range searching problems are
introduced, (see the survey [4]).

Here, we focus only on static data structures. We use the convention that Q(n), the query
time, refers to the worst-case number of semigroup additions required to produce the query
answer S(n), space, refers to the number of semigroup sums stored by the data structure.
By storage, denoted by S+(n), we mean space but not counting the space used by the input,

© Peyman Afshani;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peyman@cs.au.dk
https://doi.org/10.4230/LIPIcs.SoCG.2019.3
https://arxiv.org/abs/1903.07967
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 A New Lower Bound for Semigroup Orthogonal Range Searching

i.e., S(n) = n+ S+(n). So we can talk about data structures with sublinear space, e.g., with
0 storage the data structure has to use the input weights only, leading to the worst-case
query time of n.

1.1 The Previous Results
Orthogonal range searching is a fundamental problem with a very long history. The problem
we study is also very interesting from a lower bound point of view where the goal is to
understand the fundamental barriers and limitations of performing basic data structure
operations. Such a lower bound approach was initiated by Fredman in early 80s and in a
series of very influential papers (e.g., see [10, 11, 12]). Among his significant results, was the
lower bound [11, 12] that showed a sequence of n insertions, deletions, and queries requires
Ω(n logn) time to run.

Arguably, the most surprising result of these early efforts was given by Andrew Yao
who in 1982 showed that even in one dimension, the static case of the problem contains
a very non-trivial, albeit small, barrier. In one dimension, the problem essentially boils
down to adding numbers: store an input array A of n numbers in a data structure s.t., we
can add up the numbers from A[i] to A[j] for i and j given at the query time. The only
restriction is that we should use only additions and not subtractions (otherwise, the problem
is easily solved using prefix sums). Yao’s significant result was that answering queries requires
Ω(α(S(n), n) + n/S+(n)) additions, where α(·, ·) is the inverse Ackermann function. This
bound implies that if one insists on using O(n) storage, the query bound cannot be reduced
to constant, but even using a miniscule amount of extra storage (e.g., a log∗ log∗ n factor
extra storage) can reduce the query bound to constant. Furthermore, using a bit less than
n storage, e.g., by a log∗ log∗ n factor, will once again yield a more natural (and optimal)
bound of n/S+(n). Despite its strangeness, it turns out there are data structures that can
match the exact lower bound (see also [5]). After Tarjan’s famous result on the union-find
problem [13], this was the second independent appearance of the inverse Ackermann function
in the history of algorithms and data structures.

Despite the previous attempts, the problem is still open even in two dimensions. At
the moment, using range trees [7, 8] on the 1D structures is the only way to get two or
higher dimensional results. In 2D for instance, we can have S+(n) = O(n/ logn) with
query bound Q(n) = O(log3 n), or S+(n) = O(n) with query bound Q(n) = O(log2 n), or
S+(n) = O(n logn) with query bound O(α(cn, n) logn), for any constant c. In general and
in d dimensions, we can build a structure with S+(n) = O(n logd−1 n) units of storage and
with Q(n) = O(α(cn, n) logd−1 n) query bound, for any constant c. We can reduce the space
complexity by any factor t by increasing the query bound by another factor t. Also, strangely,
if t is asymptotically larger than α(n, n), then the inverse Ackermann term in the query bound
disappears. Nonetheless, a surprising result of Chazelle [9] shows that the reverse is not true:
the query bound must obey Q(n) = Ω((logS(n)/n n)d−1) which implies using polylogarithmic
extra storage only reduces the query bound by a (log logn)d−1 factor. Once again, using
range tree with large fan out, one can build a data structure that uses O(n log2d−2+ε n)
storage, for any positive constant ε, and achieves the query bound of O((loglogn n)d−1). This,
however leaves a very natural and important open problem: Is Chazelle’s lower bound the
only barrier? Is it possible to achieve O(n) space and O(logd−1 n) query time?

Idempotence and random point sets. A semigroup is idempotent if for every x ∈ G, we
have x+ x = x. All the previous lower bounds are in fact valid for idempotent semigroups.
Furthermore, Chazelle’s lower bound uses a uniform (or randomly placed) set of points
which shows the lower bound does not require pathological or fragile input constructions.

P. Afshani 3:3

Furthermore, his lower bound also holds for dominance ranges, i.e., d-dimensional boxes in
the form of (−∞, a1]×· · ·× (−∞, ad]. These little perks result in a very satisfying statement:
problem is still difficult even when G is “nice” (idempotent), and when the point set is “nice”
(uniformly placed) and when the queries are simple (“dominance queries”).

1.2 Our Results
We show that for any data structure that uses S+(n) storage and has query bound of Q(n),
we must have S+(n) ·Q(n) = Ω(n(logn log logn)d−1). This is the first improvement to the
storage-time trade-off curve for the problem since Chazelle’s result in 1990. It also shows
that Chazelle’s lower bound is not the only barrier. Observe that our lower bound is strong
at a different corner of parameter space compared to Chazelle’s: ours is strongest when
storage is small whereas Chazelle’s is strongest when the storage is large. Furthermore, we
also keep most of the desirable properties of Chazelle’s lower bound: our lower bound also
holds for idempotent semigroups and uniformly placed point sets. However, we have to
consider more complicated queries than just dominance queries which ties to our second
main result. We show that our analysis is tight: given a “uniformly placed” point set and an
idempotent semigroup G, we can construct a data structure that uses O(n) storage and has
the query bound of O((logn log logn)d−1). As a corollary, we provide an almost complete
understanding of orthogonal range searching queries with respect to a uniformly placed point
set in an idempotent semigroup.

Challenges. Our results and specially our lower bound require significantly new ideas. To
surpass Chazelle’s lower bound, we need to go beyond dominance queries which requires
wrestling with complications that ideas such as range trees can introduce. Furthermore, in
our case, the data structure can actually improve the query time by a factor f by spending
a factor f extra space. This means, we are extremely sensitive to how the data structure
can “use” its space. As a result, we need to capture the limits of how intelligently the data
structure can spend its budge of “space” throughout various subproblems.

Implications. It is natural to conjecture that the uniformly randomly placed point set
should be the most difficult point set for orthogonal queries. Because of this, we conjecture
that our lower bounds are almost tight. This opens up a few very interesting open problems.
See Section 5.

2 Preliminaries

The Model of Computation. Let P be an input set of n points with weights from a
semigroup G. Our model of computation is the same as the one used by the previous lower
bounds, e.g., [9]. There has been quite some work dedicated to building a proper model
for lower bounds in the semigroup model. We will not delve into those details and we only
mention the final consequences of the efforts. The data structure stores a number of sums
where each sum s is the sum of the weights of a subset sP ⊂ P . With a slight abuse of the
notation, we will use s to refer both to the sum as well as to the subset sP . The number of
stored sums is the space complexity of the data structure. If a sum contains only one point,
then we call it a singleton and we use S+(n) to denote the storage occupied by sums that
are not singletons. Now, consider a query range r containing a subset rP = r

⋂
P . The query

algorithm must find k stored subsets s1, . . . , sk such that rP = ∪ki=1si. For a given query r,
the smallest such integer k is the query bound of the query. The query bound of the data

SoCG 2019

3:4 A New Lower Bound for Semigroup Orthogonal Range Searching

structure is the worst-case query bound of any query. Observe that the data structure does
not disallow covering any point more than once and in fact, for idempotent semigroups this
poses no problem. All the known lower bounds work in this way, i.e., they allow covering a
point inside the query multiple times. However, if the semigroup is not idempotent, then
covering a point more than once could lead to incorrect results. Since data structures work
for general semigroups, they ensure that s1, . . . , sk are disjoint.

Definitions and Notations. A d-dimensional dominance query is determined by one point
(x1, . . . , xd) and it is defined as (−∞, x1]× · · · × (−∞, xd].

I Definition 1. We call a set P ⊂ Rd well-distributed if the following properties hold:
(i) P is contained in the d-dimensional unit cube. (ii) The volume of any rectangle that
contains k ≥ 2 points of P is at least εdk/|P | for some constant εd that only depends on the
dimension. (iii) Any rectangle that has volume v, contains at most dv|P |/εde points of P .

I Lemma 2 ([2, 9, 3]). For any constant d and any given value of n, there exists a well-
distributed point set in Rd containing Θ(n) points.

3 The Lower Bound

This section is devoted to the proof of our main theorem which is the following.

I Theorem 3. If P is a well-distributed point set of n points in Rd, any data structure that
uses S+(n) storage, and answers (2d− 1)-sided queries in Q(n) query bound requires that
S+(n) ·Q(n) = Ω(n(logn log logn)d−1).

Let Q be the unit cube in Rd. Throughout this section, the input point set is a set P of
n well-distributed points in Q. Let D be a data structure that answers semigroup orthogonal
range searching queries on P .

3.1 Definitions and Set up
We consider queries that have two boundaries in dimensions 1 to d − 1 but only have an
upper bound in dimension d. For simplicity, we rename the axes such that the d-th axis is
denoted by Y and the first d− 1 axes are denoted by X1, . . . , Xd−1. Thus, each query is in
the form of [x′1, x1]× . . . [x′d−1, xd−1]× (−∞, y]. The point (x1, . . . , xd−1, y) is defined as the
dot of q and is denoted by Dot(q). For every 1 ≤ i ≤ d− 1, the line segment that connects
Dot(q) to the point (x1, . . . , xi−1, x

′
i, xi+1, . . . , xd−1, y) is called the i-th marker of q and it

is denoted by ti(s).

The tree Ti. For each dimension i = 1, . . . , d− 1, we define a balanced binary tree Ti of
height h = logn as follows. Informally, we cut Q into 2h congruent boxes with hyperplanes
perpendicular to axis Xi which form the leaves of Ti. To be more specific, every node in Ti is
assigned a box r(v) ⊂ Q. The root of Ti is assumed to have depth 0 and it is assigned Q. For
every node v, we divide r(v) into two congruent “left” and “right” boxes with a hyperplane
`(v), perpendicular to Xi axis. The left box is assigned to left child of v and similarly the
right box is assigned to the right child of v. We do not do this if r(v) has volume less than
1/n; these nodes become the leaves of T . Observe that all trees Ti, 1 ≤ i ≤ d− 1 have the
same height h. The volume of r(v) for a node v at depth j is 2−j .

P. Afshani 3:5

Embedding the problem in R2d−1. The next idea is to embed our problem in R2d−1.
Consistent with the previous notation, the first d axes are X1, . . . , Xd−1 and Y . We label
the next axis Z1, . . . , Zd−1. We now represent Ti geometrically as follows. Consider h the
height of Ti. For each i, 1 ≤ i ≤ d− 1, we now define a representative diagram Γi which
is a axis-aligned decomposition of the unit (planar) square Qi in a coordinate system where
the horizontal axis is Xi and the vertical axis is Zi. As the first step of the decomposition,
cut Qi into h equal-sized sub-rectangles using h− 1 horizontal lines. Next, we will further
divide each sub-rectangle into small regions and we will assign every node v of Ti to one of
these regions. This is done as follows. The root v of Ti is assigned the topmost sub-rectangle
as its region, γ(v). Assume v is assigned a rectangle γ(v) as its region. We create a vertical
cut starting from the middle point of the lower boundary of γ(v) all the way down to the
bottom of the rectangle Qi. The children of v are assigned to the two rectangles that lie
immediately below γ(v). See Figure 1.

v
γ(v)

(xi, zi)
Ti

Xi

Zi

ti(s)

Figure 1 A tree and its representative diagram. The region of a node v is highlighted in grey.

Placing the Sums. Consider a semigroup sum s stored by the data structure D. Our
lower bound will also apply to semigroups that are idempotent which means without loss of
generality, we can assume that our semigroup is idempotent. As a result, we can assume
that each semigroup sum s stored by the data structure has the same shape as the query.
Let b(s) be the smallest box that is unbounded from below (along the Y axis) that contains
all the points of s. If s does not include a point, p, inside b(s), we can just p to s. Any query
that can use s must contain the box b(s) which means adding p to s can only improve things.
Each sum s is placed in one node of Ti for every 1 ≤ i ≤ d− 1. The details of this placement
are as follows.

A node vi in Ti stores any sum s such that the i-th marker of s, ti(s), intersects `(vi) with
v being the highest node with this property. Geometrically, this is equivalent to the following:
we place s at a node v if γ(v) is the lowest region that fully contains the segment ti(s) (or to
be precise, the projection of ti(s) onto the ZiXi plane). For example, in Figure 1(right), the
sum s is placed at v in Ti since ti(s), the green line segment, is completely inside γ(v) with
v being the lowest node of this property. Remember that s is placed at some node in each
tree Ti, 1 ≤ i ≤ d− 1 (i.e., it is placed d− 1 times in total).

Notations and difficult queries. We will adopt the convention that random variables are
denoted with bold math font. The difficult query is a 2d− 1 sided query chosen randomly
as follows. The query is defined as [x′1,x1]× · · · × [x′d−1,xd−1]× (−∞,y] where x′i,xi and
y are also random variables (to be described). y is chosen uniformly in [0, 1]. To choose
the remaining coordinates, we do the following. We place a random point (xi, zi) uniformly

SoCG 2019

3:6 A New Lower Bound for Semigroup Orthogonal Range Searching

inside the representative plane Γi (i.e., choose xi and zi uniformly in [0, 1]). Let vi be the
random variable denoting the node in Ti s.t., region γ(vi) contains the point (xi, zi). x′i is
the Xi-coordinate of the left boundary of γ(vi). Let `i be the depth of vi in Ti. We denote
the point (x1, . . . ,xd−1,y) by q and denote the 2d − 1 sided query by Domv1,...,vd−1(q).
See Figure 1(right). Note that a query Domv1,...,vd−1(q) is equivalent to a dominance query
defined by point q in r(v1)∩· · ·∩ r(vd−1). To simplify the presentation and to stop redefining
these concepts, we will reserve the notations introduced in this paragraph to only represent
the concepts introduced here.

I Observation 4. A necessary condition for being able to use a sum s to answer
Domv1,...,vd−1(q) is that s is stored at the subtree of vi, for every 1 ≤ i ≤ d− 1.

Proof. Due to how we have placed the sums, the sums stored at the ancestors of vi contain
at least one point that lies outside r(vi) and since Dom(q) is entirely contained inside r(vi)
those sums cannot be used to answer the query. J

Subproblems. Consider a query Dom(q) = Domv1,...,vd−1(q). We now define subproblems
of Dom(q). A subproblem is represented by an array of d−1 integral indices j = (j1, . . . , jd−1)
and it is denoted as j-subproblem. The state of j-subproblem of a query Domv1,...,vd−1(q)
could either be undefined, or it could refer to covering a particular subset of points inside the
query. In particular, given Dom(q), a j-subproblem is undefined if for some 1 ≤ i ≤ d− 1,
there is no node ui ∈ Ti with the following properties: ui has depth `i + ji, ui has a right
sibling u′i with r(u′i) containing the query point q. See Figure 2. However, if such nodes ui
exist for all 1 ≤ i ≤ d− 1, then the j-subproblem of Dom(q) is well-defined and it refers
to the problem of covering all the points inside the region Dom(q) ∩ r(u1) ∩ · · · ∩ r(ud−1);
observe that this is equivalent to covering all the points inside the region r(u1)∩ · · · ∩ r(ud−1)
that have Y -coordinate at most y. Further observe that for ui to exist in Ti, it needs to pass
two checks: (check I) `i + ji ≤ h as otherwise, there are no nodes with depth `i + ji and
(check II) a node ui at depth `i + ji has a right sibling u′i with r(u′i) containing q. The
nodes u1, . . . , ud−1 are called the defining nodes of the j-subproblem. Thus, the random
variable vi defines the random variable ui where ui could be either undefined or it could be
a node in Ti. Clearly, the distribution of ui is independent of the distributions of uj and vj
for i 6= j as ui only depends on vi.

I Observation 5. Consider a well-defined j = (j1, . . . , jd−1) subproblem of a query
Domv1,...,vd−1(q) and its defining nodes u1, . . . , ud−1. To solve the j-subproblem (i.e., to
cover the points inside the subproblem), the data structure can use a sum s only if for every
1 ≤ i ≤ d−1, we either have case (i) where s is stored at ancestors of ui but not the ancestors
of vi or case (ii) where s is stored at the subtree of ui. If a sum s violates one of these two
conditions for some i, then it cannot be used to answer the j-subproblem. See Figure 2.

Proof. See the full paper for the proof [1]. J

3.2 The Main Lemma
In this subsection, we prove a main lemma which is the heart of our lower bound proof.
To describe this lemma, we first need the following notations. Consider a well-defined
j-subproblem of a query Domv1,...,vd−1(q) where ji ≤ h

2 for 1 ≤ i ≤ d− 1. As discussed, this
subproblem corresponds to covering all the points in the region r(u1) ∩ · · · ∩ r(ud−1) whose
Y -coordinate is below y, the Y -coordinate of point q; thus, the j-subproblem of the query

P. Afshani 3:7

vi

ui u′i

...

...
case (i)

case (ii)

(xi, zi)

Xi

Zi

ui

γ(vi)

u′i

Figure 2 ui is a defining node. The blue line segments correspond to ti(s) of a sum s that is
placed in the subtree of ui. The green ones correspond to those placed at ancestors of ui but not at
ancestors of vi. The red ones correspond to sums that cannot be used to answer the subproblem.

(xi, zi)

Xi

Zi

ti(s)

ui
ti(s

′)

Figure 3 The extensions of two sums that can be used to answer a subproblem.

can be represented as the problem of covering all the points inside the box [a1, b1]× · · · ×
[ad−1, bd−1]× (−∞, y] where ai and bi correspond to the left and the right boundaries of the
slab r(ui). Let 0 < λ be a parameter. Consider the region [a1, b1]×· · ·×[ad−1, bd−1]×[y−β, y]
in which β is chosen such that the region contains λ points; as our pointset is well-distributed,
this implies that the volume of the region is Θ(λ/n). We call this region the λ-top box.
The λ-top, denoted by Top(j, λ), is then the problem of covering all the points inside the
λ-top box of the j-subproblem. With a slight abuse of the notation, we will use Top(j, λ)
to refer also to the set of points inside the λ-top box. If there are not enough points in
the λ-top box, the λ-top is undefined, otherwise, it is well-defined. These of course also
depend on the query but we will not write the dependency on the query as it will clutter the
notation. Furthermore, observe that when the query is random, then Top(j, λ) becomes a
random variable which is either undefined or it is some subset of points.

Extensions of sums. Due to technical issues, we slightly extend the number of points each
sum covers. Consider a sum s stored at a subtree of vi such that s can be used to answer
the j-subproblem. By Observation 4, s is either placed at the subtree of ui or on the path
connecting vi to ui. We extend the Xi range of the sum s (i.e., the projection of s on the
Xi) to include the left and the right boundary of the node ui along the Xi-dimension. We
do this for all d− 1 first dimensions to obtain an extension e(s) of sum s. We allow the data
structure to cover any point in e(s) using s.

SoCG 2019

3:8 A New Lower Bound for Semigroup Orthogonal Range Searching

I Lemma 6 (The Main Lemma). Consider a j = (j1, . . . , jd−1) subproblem of a random query
Domv1,...,vd−1(q), for 1 ≤ ji ≤ h/2. Let λ = δhd−1

j1j2...jd−1
· n
S+(A) where δ is a small enough

constant and S+(A) is the storage of the data structure. Let Sj be the set of sums s such that
(i) s is contained inside the query Domv1,...,vd−1(q), and (ii) e(s) covers at least C points
from Top(j, λ), meaning, |e(s) ∩ Top(j, λ)| ≥ C where C is a large enough constant.

With Ω(1) probability, the j-subproblem and the Top(j, λ) are well-defined. Furthermore
conditioned on both of these being well-defined, with probability 1 − O(

√
δ/εd), the nodes

v1, · · · ,vd−1 will be sampled as nodes v1, · · · , vd−1, s.t., the following holds: E[
∑
s∈Sj
|e(s)∩

Top(j, λ)|] < |Top(j,λ)|
C′ where the expectation is over the random choices of y and C ′ is

another large constant.

Let us give some intuition on what this lemma says and why it is critical for our lower
bound. For simplicity assume S+(A) = n and assume we sample v1, · · · ,vd−1 as the first
step, and and then sample y as the last step. The above lemma implies that if we focus on
one particular subproblem, the sums in the data structure cannot cover too many points;
to see this consider the following. The lemma first says that after the first step, with
positive constant probability, j-subproblem and Top(j, λ) are well-defined. Furthermore, here
is a very high chance that our random choices will “lock us” in a “doomed” state, after
sampling v1, · · · , vd−1. Then, when considering the random choices of y, sums that cover
at least C points in total cover a very small fraction of the points. As a result, we will
need Ω(λ/C) = Ω(δ logd−1 n

Cj1j2...jd−1
) sums to cover the points inside the λ-top of the subproblem.

Summing these values over all possible subproblems, ji, 1 ≤ ji ≤ h/2, 1 ≤ i ≤ d − 1 will
create a lot of Harmonic sums of the type

∑h/2
x=1 x = O(log logn) which will eventually lead to

our lower bound. In particular, we will have
∑
ji,1≤ji≤h/2 Ω(hd−1

j1j2...jd−1
) = (logn log logn)d−1.

There is however, one very big technical issue that we will deal with later: a sum can cover
very few points from each subproblem but from very many subproblems! Without solving
this technical issue, we only get the bound maxji,1≤ji≤h/2 Ω(hd−1

j1j2...jd−1
) = (logn)d−1 which

offers no improvements over Chazelle’s lower bound. Thus, while solving this technical issue
is important, nonetheless, it is clear that the lemma we will prove in this section is also very
critical.

As this subsection is devoted to the proof of the above lemma, we will assume that we
are considering a fixed j-subproblem and thus the indices j1, . . . , jd−1 are fixed.

3.2.1 Notation and Setup
By Observation 5, only a particular set of sums can be used to answer the j-subproblem of a
query. Consider a sum s that can be used to answer the subproblem of some query. By the
observation, we must have that s must either satisfy case (i) or case (ii) for every tree Ti,
1 ≤ i ≤ d− 1. Over all indices i, 1 ≤ i ≤ d− 1, they describe 2d−1 = O(1) different cases.
This means that we can partition Sj into 2d−1 different equivalent classes s.t., for any two
sums s1 and s2 in an equivalent class, either they both satisfy case (i) or they both satisfy
case (ii) in Observation 5 and for any dimension i. Since 2d−1 is a constant, it suffices to
show that our lemma holds when only considering sums of particular equivalent class. In
particular, let S′j be the subset of eligible sums that all belong to one equivalent class. Now,
it suffices to show that E[

∑
s∈S′

j
|e(s) ∩ Top(j, λ)|] < |Top(j,λ)|

2dC′
. since summing these over

all 2d−1 equivalent classes will yield the lemma. Furthermore, w.l.o.g and by renaming the
X-axes, we can assume that there exists a fixed value t, 0 ≤ t ≤ d− 1, such that for every
sum s ∈ S′j, for dimensions 1 ≤ i ≤ t, s satisfies case (i) in Ti and for t < i ≤ d − 1, s is
within case (ii). Note that if t = 0, then it implies that we have no instances of case (i) and
for t = d− 1 we have no instances of case (ii).

P. Afshani 3:9

The probability distribution of subproblems. To proceed, we need to understand the
distribution of the subproblems. This is done by the following observation.

I Observation 7. Consider a j = (j1, . . . , jd−1) subproblem of a random query
Domv1,...,vd−1(q) defined by random variables u1, . . . ,ud−1. We can make the following
observations. (i) the distribution of the random variable ji + `i is uniform among the integers
ji + 1, . . . , h+ ji. (ii) With probability ji/h, ui will be undefined because it fails (Check I).
(iii) If (Check I) does not fail for ui, there is exactly 0.5 probability that ui is undefined. (iv)
For a fixed ji, the probability distribution, µi, of ui is as follows: with probability 1− 1−ji/h

2 ,
ui is undefined. Otherwise, ui is a node in Ti sampled in the following way: sample a
random integer (depth) `′ uniformly among integers in ji + 1, . . . , h and select a random node
uniformly among all the nodes at depth `′ that have a right sibling.

Proof. See the full paper for the proof [1]. J

Partial Queries. Observe that w.l.o.g., we can assume that we first generate the dimensions
1 to t of the query, and then the dimensions t+ 1 to d− 1 of the query, and then the value
y. A partial query is one where only the dimensions 1 to t have been generated. This is
equivalent to only sampling t random points (xi, zi) for 1 ≤ i ≤ t. To be more specific,
assume we have set vi = vi, for 1 ≤ i ≤ t where each vi is a node in Ti. Then, the partial
query is equivalent to the random query Domv1,...,vt,vt+1,...,vd−1(q) and in which the first t
coordinates of q are known (not random). Thus, we can still talk about the j-subproblem of
a partial query; it could be that the j-subproblem is already known to be undefined (this
happens when one of the nodes ui, 1 ≤ i ≤ t is known to be undefined) but otherwise, it is
defined by defining nodes u1, . . . , ut and the random variables ut+1, . . . ,ud−1; these latter
random variables could later turn out to be undefined and thus rendering the j-subproblem
of the query undefined.

After sampling a partial query, we can then talk about eligible sums: a sum s is eligible
if it could potentially be used to answer the j-subproblem once the full query has been
generated. Note that the emphasis is on answering the j-subproblem. This means, there are
multiple ways for a sum to be ineligible: if j-subproblem is already known to be undefined
then there are no eligible sums. Otherwise, the defining nodes u1, · · · , ut are well-defined.
In this case, if it is already known that s is outside the query, or it is already known that
s cannot cover any points from the j-subproblem then s becomes ineligible. Final and the
most important case of ineligibility is when s is placed at a node wi which is a descendant of
node ui ∈ Ti for some 1 ≤ i ≤ t. If this happens, even though s can be potentially used to
answer the j-subproblem, it can do so from a different equivalent class, as the reader should
remember that we only consider sums that are stored in the path that connects ui to vi
for 1 ≤ i ≤ t. If a sum passes all these, then it is eligible. Clearly, once the final query is
generated, the set S′j is going to be a subset of the eligible sums.

I Definition 8. Given a partial query Domv1,...,vt,vt+1,...,vd−1(q), and considering a fixed
j-subproblem, we define the potential function Φv1,...,vt

to be the number of eligible sums.

I Lemma 9. We have

E(Φv1,...,vt ·
t∏
i=1

h2`i+ji

ji
) ≤ O(S+(D)).

Proof. See the full paper for the proof [1]. J

SoCG 2019

3:10 A New Lower Bound for Semigroup Orthogonal Range Searching

By the above lemma, we except only few eligible sums for a random partial query. Let
BAD1 be the “bad” event that the nodes v1, . . . ,vt are sampled to be nodes v1, . . . , vt such that
Φv1,...,vt

·
∏t
i=1

h2`i+ji

ji
> |S+(D)/ε|. By Markov’s inequality and Lemma 9, Pr[BAD1] = O(ε).

Now, fix v1 = v1, . . . ,vt = vt. In the rest of the proof we will assume these values are fixed
and we are going to generate the rest of the query. Next, we define another potential function.

I Definition 10. The potential Ψwt+1,...,wd−1 for wt+1 ∈ Tt+1, . . . , wd−1 ∈ Td−1, where the
depth of wi in Ti is di is defined as follows. First define #xt+1,...,xd−1 for nodes xi ∈ Ti to
be the number of eligible sums s such that s is placed at xi for t+ 1 ≤ i ≤ d− 1. Given the
nodes wt+1, · · · , wd−1, and for non-negative integers kt+1, . . . , kd−1, we define #kt+1,...,kd−1

as the sum of all #w′t+1,...,w
′
d−1

over all nodes w′i where w′i has depth di + ki in Ti and w′i is
a descendant of wi. We define the potential function as follows.

Ψwt+1,...,wd−1 =
∞∑

kt+1=0
· · ·

∞∑
kd−1=0

#kt+1,...,kd−1

2kt+1+···+kd−1
.

I Lemma 11. Having fixed the nodes v1, . . . , vt, we have,

E[Ψut+1,...,ud−1 ·
d−1∏
i=t+1

(h2`i+ji)] = O(Φv1,...,vt
)

where `i is the depth of vi, ui is the defining node of the j-subproblem, the expectation is
taken over the random choices of vi, t+ 1 ≤ i ≤ d− 1 and the potential is defined to be zero
if any of the nodes ui is undefined.

Proof. See the full paper for the proof [1]. J

Now we define the second bad event BAD2 to be the event that Ψut+1,...,ud−1 ·(h2`t+1+jt+1) ·
. . . (h2`d−1+jd−1) ≥ Φv1,...,vt/ε. By Markov’s inequality and Lemma 11, Pr[BAD2] = O(ε).

Proof of the main lemma. We now prove our main lemma (Lemma 6 at page 7).
Remember that we will focus on one equivalent class S′j of Sj. Observe that the summation∑
s∈S′

j
|e(s) ∩ Top(j, λ)| counts how many times a point in Top(j, λ) is covered by extensions

of sums that cover at least C points of the Top(j, λ) and this only takes into account the
random choices of y as the nodes v1, · · · , vd−1 have been fixed. As a result, S′j is a random
variable that only depends on y. To make this clear, letMj be the set that includes all the
sums that can be part of S′j over all the random choices of y. As a result, S′j is a random
subset ofMj. Observe that every sum s ∈ Mj has the property that it is stored in some
node on the path from ui to vi for 1 ≤ i ≤ t and at the subtree of ui for t+ 1 ≤ i ≤ d− 1.
Since Top(j, λ) has exactly, λ points, we can label them from one to λ under some global
ordering of the points (e.g., lexicographical ordering). Thus, let f(g) be the x-th point in
Top(j, λ), 1 ≤ g ≤ λ. Also, let m(g) be the number of sums s ∈ S′j s.t., e(s) contains f(g).
Then, we can do the following rewriting:

∑
s∈S′

j

|e(s) ∩ Top(j, λ)| =
λ∑
g=1

m(g).

By linearity of expectation,

E[
∑
s∈S′

j

|e(s) ∩ Top(j, λ)|] =
λ∑
g=1

E[m(g)] =
∑
s∈Mj

λ∑
g=1

Pr[s covers f(g), s ∈ S′j]. (1)

P. Afshani 3:11

In the rest of the proof, we bound the right hand side of Eq. 1 and note that the probability
is over the choices of y. Consider a particular outcome of our random trials in which the
random variable vi has been set to node vi, for 1 ≤ i ≤ d− 1 in which none of the bad events
BAD1 and BAD2 have happened. Set the parameter ε used in the definition of these bad events
to ε =

√
δ/εd. Thus, none of the bad events happen with probability at least 1−O(

√
δ/εd),

conditioned on the event that the j-subproblem of the query is defined. Note that can we
assume the random variable y has not been assigned yet. This is a valid assumption since
the subproblem of a query only depend on the selection of the nodes v1, . . . , vd−1 and not on
the Y -coordinate of the query.

As BAD1 has not occurred, we have Φv1,...,vt
·
∏t
i=1

h2`i+ji

ji
≤ |S(D)/ε|. As BAD2 has not

occurred either, we know that Ψut+1,...,ud−1 ·
∏d−1
i=t+1(h2`i+ji) < Φv1,...,vt

/ε. Thus,

Ψvt+1,...,vd−1 <
Φv1,...,vt

ε
∏d−1
i=t+1(h2`i+ji)

≤ |S+(D)|
ε
∏t
i=1

h2`i+ji

ji

.
1

ε
∏d−1
i=t+1(h2`i+ji)

=
|S+(D)|

∏t
i=1 ji

ε2hd−1∏d−1
i=1 2ji+`i

. (2)

The experiment. To bound the sum at the Eq. 1, we will use the above inequality combined
with the following experiment. We select a random point p from Top(j, λ) by sampling an
integer g ∈ [1, · · · , λ] and considering f(g). We compute the probability that f(g) can be
covered by the extension of a sum in S′j where the probability is computed over the choices
of g and the Y -coordinate of the query y.

We now look at the side lengths of the box Top(j, λ). The i-th side length of λ-top box is
1

2`i+ji
for 1 ≤ i ≤ d− 1; this is because the j-subproblem was defined by nodes ui where ui

has depth `i + ji. Let β be the side length of Top(j, λ) along the Y -axis. As β is chosen such
that Top(j, λ) contains λ points and the pointset well distributed, the volume of λ-top box
is Θ(λ/n). This implies, it suffices to pick β = Θ(λn

∏d−1
i=1 2`i+ji). Now remember that the

Y -coordinate of the top boundary of the λ-top box is y and the Y -coordinate of its lower
boundary is y − β.

Consider a sum s ∈Mj. Now consider the smallest box enclosing e(s); w.l.o.g., we use
the notation e(s) to refer to this box. For t+ 1 ≤ i ≤ d− 1, the i-th side length of e(s) is
2−`i−ji−ζi(s) because s was placed at node wi ∈ Ti which is below ui and thus our extensions
extends the i-dimension of the box to match that of wi. However, for 1 ≤ i ≤ t, the i-th side
length of e(s) is 2−`i−ji . We have

Vol(e(s) ∩ Top(j, λ)) ≤ β
t∏
i=1

2−`i−ji

d−1∏
i=t+1

2−`i−ji−ζi(s) = Θ(λ
n

d−1∏
i=t+1

2−ζi(s)). (3)

Observe that we have assumed s covers at least C points inside Top(j, λ). However, our
point set is well-distributed which implies the number of points covered by s is at most
n
εd
Vol(e(s) ∩ Top(j, λ)) which by Eq. 3 is bounded by O(λεd

∏d−1
i=t+1 2−ζi(s)). We are picking

the point f(g) randomly among the λ points inside the Top(j, λ) which implies the probability
that f(g) gets covered is at most

O(1
εd

d−1∏
i=t+1

2−ζi(s)). (4)

Note that above inequality is only with respect to the random choices of g and ignores the
probability of s ∈ S′j. However, the only necessary condition for a sum s ∈Mj to be in S′j

SoCG 2019

3:12 A New Lower Bound for Semigroup Orthogonal Range Searching

is that its Y -coordinate falls within the top and bottom boundaries of Top(j, λ) along the
Y -axis. The probability of this event is at most β by construction. As this probability is
indepdenent of choice of p, we have

Pr[s covers f(g), s ∈ S′j] = O(β
εd

d−1∏
i=t+1

2−ζi(s)). (5)

Now we consider the definition of the potential function Ψ to realize that we have

∞∑
kt+1=0

· · ·
∞∑

kd−1=0

#kt+1,...,kd−1

2kt+1+···+kd−1
= Ψvt+1,...,vd−1 =

∑
s∈S′

j

d−1∏
i=t+1

2−ζi(s). (6)

The left hand side is the definition of the potential function Ψ where as the right hand side
counts exactly the same concept: a sum s placed at depth `i + ji + ζi(s) of Ti and at a
descendant of vi, for t+ 1 ≤ i ≤ d− 1, contributes exactly

∏d−1
i=t+1 2−ζi(s) to the potential Ψ.

Remember that m(p) is the number of sums that cover a random point p selected
uniformly among the points inside Top(j, λ). We have

∑
s∈Mj

Pr[s covers f(g), s ∈ S′j] =
∑
s∈Mj

O

(
β
∏d−1
i=t+1 2−ζi(s)

εd

)
= (from Eq. 5)

O

(
βΨvt+1,...,vd−1

εd

)
= O

(
β

εd
·
|S+(D)|

∏t
i=1 ji

ε2hd−1∏d−1
i=1 2ji+`i

)
= (from Eq. 6 and Eq. 2)

O

(
λ
n

∏d−1
i=1 2`i+ji

εd
·
|S+(D)|

∏t
i=0 ji

ε2hd−1∏d−1
i=1 2ji+`i

)
= (from definition of β)

O

(
λ

nεd
·
|S+(D)|

∏t
i=0 ji

ε2hd−1

)
= O

 δhd−1

j1j2...jd−1
· n
S+(A)

nεd
·
|S+(D)|

∏t
i=0 ji

ε2hd−1

 =

(from the definition of λ)

O

(
δ

εdε2

)
<

1
2dC ′ . (from simplification and picking δ = O(εdε

2C′−12−d) small enough)

Observe that Pr[s covers f(g), s ∈ S′j] = 1
λ

∑λ
g=1 Pr[s covers f(g), s ∈ S′j]. Now our Main

Lemma follows from plugging this in Eq. 1.

3.3 The Lower Bound Proof
Our proof strategy is to use Lemma 6 to show that the query algorithm is forced to use a
lot of sums that only cover a constant number of points inside the query, leading to a large
query time.

I Theorem 12. Let P be a well-distributed point set containing Θ(n) points in Rd. Answering
semigroup queries on P using S+(n) storage and with Q(n) query bound requires that
S+(n) ·Q(n) = Ω(n(logn log logn)d−1).

We pick a random query according to the distribution defined in the previous subsection.
By Lemma 6, every j-subproblem for 1 ≤ ji ≤ h/2, has a constant probability of being well-
defined. Let W be the set of all the well-defined subproblems. For a j-subproblem, let λj be the
value λ as it is defined in Lemma 6. Observe that if a j-subproblem for j = (j1, · · · , jd−1), is
well-defined, then Top(j, λj) contains λj = δhd−1

j1j2...jd−1
· n
S+(A) points. However, if j-subproblem

P. Afshani 3:13

or Top(j, λj) is not well-defined, then we consider Top(j, λj) to contain 0 points. We define the
top of the query, Top(q), to be the set of points ∪j=(j1,...,jd−1),1≤j1,...,jd−1≤h/2Top(j, λj). As
each j-subproblem and Top(j, λj), for ji ≤ h/2 has a constant probability of being well-defined,
we have

E[|Top(q)|] =
∑

j=(j1,...,jd−1),1≤j1,...,jd−1≤h
2

E[Top(j, λj)]

= Θ(1)
h/2∑
j1=1

. . .

h/2∑
jd−1=1

δhd−1

j1j2 . . . jd−1
· n

S+(A)

=
h/2∑
j1=1

. . .

h/2∑
jd−2=1

δΘ(log h)hd−1

j1j2 . . . jd−2
· n

S+(A)

= . . . = Θ
(
δ logd−1 hhd−1n

S+(A)

)
. (7)

In the full paper [1], we show that we can find a subset Top(q) that contain at least a
constant fraction its points, s.t., every sum can cover at most a constant number of points in
this subset. As a result, the total number of sums required to cover the points in Top(q) is
asymptotically the same as Eq. 7, our claimed lower bound. This would complete the proof.

4 The Upper Bounds

In the full version of our paper [1], we prove the following theorem that shows the analysis of
our lower bound from the previous section is almost tight.

I Theorem 13. For a set P of n points placed uniformly randomly inside the unit cube in
Rd, one can build a data structure that uses O(n) storage such that a (d+ k)-sided query can
be answered with the expected query bound of O(logd−1 n(log logn)k), for 1 ≤ k ≤ d− 1.

If P is well-distributed, then the query bound can be made worst-case.

Due to lack of space, the technical parts of the proof appear in the full version only.
However, the main idea is to simulate the phenomenon we have captured in our lower bound:
the idea that one can store sums such that the sums from different subproblems “help”
each other. To do that, we define the notion of “collectively well-distributed” point sets.
Intuitively, collectively well-distributed point sets is a collection of point sets P where each
element of P is a well-distributed point set but importantly, certain unions of the point sets
in P are also well-distributed point sets. See Fig. 4 for an example. It turns out that we can
turn any properly “collectively well-distributed” point set P that contains O(n) points, into
a data structure that uses O(n) space (i.e., we form a constant number of sums per point in
P) and has the desired query time.

P3

P2

P1

P4

Figure 4 The point sets P1, P2, P3, P4 are well-distributed. For any continuous set of integers
I ⊂ {1, . . . , 4}, ∪i∈IPi is also well-distributed but P1 ∪ P3 might not be well-distributed.

SoCG 2019

3:14 A New Lower Bound for Semigroup Orthogonal Range Searching

5 Conclusions

In this paper we considered the semigroup range searching problem from a lower bound
point of view. We improved the best previous lower bound trade-off offered by Chazelle by
analysing a well-distributed point set for (2d− 1)-sided queries for an idempotent semigroup.
Furthermore, we showed that our analysis is tight which leads us to suspect that we have
found an (almost) optimal lower bound for idempotent semigroups as we believe it is unlikely
that a more difficult point set exists. Thus, two prominent open problems emerge: (i) Can
we improve the known data structures under the extra assumption that the semigroup is
idempotent? (ii) Can we improve our lower bound under the extra assumption that the
semigroup is not idempotent? Note that the effect of idempotence on other variants of range
searching was studied at least once before [6].

References
1 Peyman Afshani. A New Lower Bound for Semigroup Orthogonal Range Searching, 2019.

arXiv:1903.07967.
2 Peyman Afshani, Lars Arge, and Kasper Green Larsen. Higher-dimensional orthogonal

range reporting and rectangle stabbing in the pointer machine model. In Symposium on
Computational Geometry (SoCG), pages 323–332, 2012. doi:10.1145/2261250.2261299.

3 Peyman Afshani and Anne Drimel. On the complexity of range searching among curves. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
898–917, 2017.

4 Pankaj K. Agarwal. Range searching. In J. E. Goodman, J. O’Rourke, and C. Toth, editors,
Handbook of Discrete and Computational Geometry. CRC Press, Inc., 2016.

5 N. Alon and B. Schieber. OPTIMAL PREPROCESSING FOR ANSWERING ON-LINE
PRODUCT QUERIES. Technical Report 71/87, Tel-Aviv University, 1987.

6 Sunil Arya, Theocharis Malamatos, and David M. Mount. On the Importance of Idempotence.
In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 564–573, 2006.

7 Jon Louis Bentley. Decomposable searching problems. Information Processing Letters (IPL),
8(5):244–251, 1979.

8 Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the ACM
(CACM), 23(4):214–229, 1980.

9 Bernard Chazelle. Lower bounds for orthogonal range searching: part II. The arithmetic
model. Journal of the ACM (JACM), 37(3):439–463, 1990.

10 Michael L. Fredman. The inherent complexity of dynamic data structures which accommodate
range queries. In Proc. 21stProceedings of Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 191–199, October 1980.

11 Michael L. Fredman. A Lower Bound on the Complexity of Orthogonal Range Queries. Journal
of the ACM (JACM), 28(4):696–705, 1981.

12 Michael L. Fredman. Lower Bounds on the Complexity of Some Optimal Data Structures.
SIAM Journal of Computing, 10(1):1–10, 1981.

13 Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. Journal of Computer and System Sciences (JCSS), 18(2):110–127, 1979.

14 Andrew C. Yao. Space-time Tradeoff for Answering Range Queries (Extended Abstract). In
Proceedings of ACM Symposium on Theory of Computing (STOC), STOC ’82, pages 128–136.
ACM, 1982.

http://arxiv.org/abs/1903.07967
http://dx.doi.org/10.1145/2261250.2261299

Independent Range Sampling, Revisited Again
Peyman Afshani
Aarhus University, Denmark
peyman@cs.au.dk

Jeff M. Phillips
University of Utah, Salt Lake City, USA
jeffp@cs.utah.edu

Abstract
We revisit the range sampling problem: the input is a set of points where each point is associated
with a real-valued weight. The goal is to store them in a structure such that given a query range
and an integer k, we can extract k independent random samples from the points inside the query
range, where the probability of sampling a point is proportional to its weight.

This line of work was initiated in 2014 by Hu, Qiao, and Tao and it was later followed up by
Afshani and Wei. The first line of work mostly studied unweighted but dynamic version of the
problem in one dimension whereas the second result considered the static weighted problem in one
dimension as well as the unweighted problem in 3D for halfspace queries.

We offer three main results and some interesting insights that were missed by the previous work:
We show that it is possible to build efficient data structures for range sampling queries if we allow
the query time to hold in expectation (the first result), or obtain efficient worst-case query bounds
by allowing the sampling probability to be approximately proportional to the weight (the second
result). The third result is a conditional lower bound that shows essentially one of the previous
two concessions is needed. For instance, for the 3D range sampling queries, the first two results
give efficient data structures with near-linear space and polylogarithmic query time whereas the
lower bound shows with near-linear space the worst-case query time must be close to n2/3, ignoring
polylogarithmic factors. Up to our knowledge, this is the first such major gap between the expected
and worst-case query time of a range searching problem.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Theory of computation → Computational geometry

Keywords and phrases Range Searching, Data Structures, Sampling

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.4

Related Version A full version of the paper is available at [1], https://arxiv.org/abs/1903.08014.

Funding Peyman Afshani: supported by DFF (Det Frie Forskningsräd) of Danish Council for
Independent Research under grant ID DFF−7014−00404.
Jeff M. Phillips: supported by NSF CCF-1350888, CNS-1514520, CNS-1564287, IIS-1816149, and
in particular ACI-1443046. Part of the work was completed while visiting the Simons Institute for
Theory of Computing.

1 Introduction

In range searching, the goal is store a set P of points in a data structure such that given a
query range, we can answer certain questions about the subset of points inside the query
range. The difficulty of the range searching problem, thus depends primarily on the shape of
the query as well as types of questions that the data structure is able to answer. These range
searching questions have been studied extensively and we refer the reader to the survey by
Agarwal and Erickson [3] for a deeper review of range searching problems.

© Peyman Afshani and Jeff M. Phillips;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 4; pp. 4:1–4:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peyman@cs.au.dk
mailto:jeffp@cs.utah.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.4
https://arxiv.org/abs/1903.08014
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Independent Range Sampling, Revisited Again

Let us for a moment fix a particular query shape. For example, assume we are given
a set P ⊂ R2 to preprocess and at the query time we will be given a query halfplane h.
The simplest type of question is an emptiness query where we simply want to report to the
user whether h ∩ P is empty or not. Within the classical literature of range searching, the
most general (and thus the most difficult) variant of range searching is semigroup range
searching where each point in P is assigned a weight from a semigroup and at the query
time the goal is to return the sum of the weights of the points of h ∩ P . The restriction of
the weights to be from a semigroup is to disallow subtraction. As a result, semigroup range
searching data structures can answer a diverse set of questions. Other classical variants of
range searching lie between the emptiness and the semigroup variant. In our example, the
emptiness queries can be trivially solved with O(n) space and O(logn) query time whereas
the semigroup variant can only be solved with O(

√
n) query time using O(n) space. Finally,

the third important variant, range reporting, where the goal is to output all the points in
P ∩ h, is often close to the emptiness variant in terms of difficulty. E.g., halfplane queries
can be answered in O(logn+ k) time where k is the size of the output, using O(n) space.

Sampling queries. Let P be a large set of points that we would like to preprocess for range
searching queries. Consider a query range h. Classical range searching solutions can answer
simple questions such as the list of points inside h, or the number of them. However, we
immediately hit a barrier if we are interested in more complex questions, e.g., what if we want
to know how a “typical” point in h looks like? Or if we are curious about the distribution of
the data in h. In general, doing more complex data analysis requires that we extract the list
of all the points inside h but this could be an expensive operation. For questions of this type,
as well as many other similar questions, it is very useful to be able to extract a (relatively)
small random sample from the subset of points inside h. In fact, range sampling queries were
considered more than two decades ago within the context of database systems [7, 4, 5, 11, 10].
Indeed the entire field of sample complexity, which provides the basis for statistics and
machine learning, argues how any statistical quantity can be understood from an iid sample
of the data. Range sampling allows this literature to quickly be specified to data in a query
range. However, many of these classical solutions fail to hold in the worst-case as they use
R-trees or Quadtrees whose performance depends on the distribution of the coordinates of
the input points (which could be pretty bad). Some don’t even guarantee that the samples
extracted in the future will be independent of the samples extracted in the past. For example,
sometimes asking the same query twice would return the same samples.

The previous results. Given a set of n weights, one can sample one weight with proportional
probability using the well-known “alias method” by A. J. Walker [12]. This method uses
linear space and can sample a weight in worst-case constant time.

The rigorous study of independent range sampling was initiated by Hu et al. [8]. They
emphasized the requirement that any random sample extracted from the data structure
should be independent of all the other samples. They studied the one-dimensional version
and for an unweighted point set and presented a linear-sized data structure that could extract
k random samples in O(logn+ k) time and it could be updated in O(logn) time as well. A
few years later, Afshani and Wei [2] revisited the problem and solved the one-dimensional
version of the problem for weighted points: they presented a linear-size data structure that
could answer queries in O(Pred(n) + k) time where Pred(n) referred to the running time
of a predecessor query (often O(logn) but sometimes it could be faster, e.g., if the input
is indexed by an array then the predecessor query can be answered trivially in O(1) time).
They also studied the 3D halfspace queries but for unweighted points. Their main result was
an optimal data structure of linear-size that could answer queries in O(logn+ k) time.

P. Afshani and J.M.Phillips 4:3

Our results. We provide general results for the independent range sampling problem on
weighted input (wIRS), and design specific results for 3D halfspace queries. We show a
strong link between the wIRS and the range max problem. Namely, we show that the range
max problem is at least as hard as wIRS, and also we provide a general formulation to solve
the wIRS problem using range max. For halfspace queries in 3D, our framework gives a
structure that uses O(n logn) space and has O(log2 n + k) query time. We improve the
space complexity to O(n) when the ratio of the weights is nO(1). This solution uses rejection
sampling, so it only provides an expected query time bound. To compensate, we provide
another solution that has worst-case query time, but allows the points to be sampled within
a (1± ε) factor of their desired probability, and may ignore points that would be sampled
with probability less than γ/n for γ < ε < 1. This structure requires O(n logn) space, and
has a worst-case query time of O(log(n/γ)(logn+ 1/ε3) + k).

Finally, we show a conditional lower bound when we enforce worst-case query time and
exact sampling probabilities, in what we call the separated algebraic decision tree (SAD)
model. This model allows any decision tree structure that compares random bits to algebraic
functions of a set of input weights. In this model, we show wIRS is as hard as the range sum
problem, which is conjectured to be hard. In particular, if the best known solution to the
range sum problem for halfspaces in 3D is optimal, then the wIRS problem would require
Ω(n2/3−o(1)) query time if it uses near-linear space. This provides the first such separation
between expected O(log2 n+ k) and worst-case Ω(n2/3−o(1)) query time for a range searching
problem that we are aware of.

2 A Randomized Data Structure

In this section, we show that if we allow for the query bound to hold in expectation, then
the range sampling problem can be solved under some general circumstances. Intuitively, we
show that we need two ingredients: one, a data structure for range maximum queries, and
two, a data structure that can sample from a weighted set of points under the assumptions
that the weights are within a constant factor of each other. Furthermore, with an easy
observation, we can also show that the range sampling problem is at least as hard as range
maximum problem. We consider the input as a general set system (X,R). We assume the
input is a set X of n data elements (e.g., points) and we consider queries to be elements of
a set of ranges R where each R ∈ R is a subset of X. The set R is often given implicitly,
and for example, if X is a set of points in R3, R could be the set of all h ∩X where h is a
halfspace in 3D. Note that our model of computation is the real RAM model.

I Definition 1 (The Range Maximum Problem). Let X be a data set, s.t., each element
x ∈ X is assigned a real-value weight w(x). The goal is to store X in a structure, s.t., given
a range R ∈ R, we can find the element in R with the maximum weight.

Given a weighted set X, for any subset Y ⊂ X, we denote by w(Y) the sum
∑

x∈Y w(x).
First we observe that range sampling is at least as hard as the range maximum problem.

I Lemma 2. Assume we can solve range sampling queries on input (X,R) and for any
weight assignment w : X → R using S(|X|) space and Q(|X|) query time where the query
only returns one sample. Then, given the set X and a weight function w′ : X → R, we can
store X in a data structure of size S(|X|) such that given a query R, we can find the data
element in R with the maximum weight in Q(|X|) time, with high probability.

Proof. See the full paper for the proof [1]. J

SoCG 2019

4:4 Independent Range Sampling, Revisited Again

Next, we show that weighted range sampling can be obtained from a combination of
a range maximum data structure and a particular form of weighted range sampling data
structure for almost uniform weights.

I Lemma 3. Let (X,R) be an input to the range sampling problem. Assume, we have a
structure for the range maximum queries that uses O(Sm(|X|)) space and with query time of
O(Qm(|X|)). Furthermore, assume for any subset X ′ ⊂ X we can build a structure Ds(X ′)
that uses O(Ss(|X ′|)) space and given a query R ∈ R, it does the following: it can return
w(Y) for a subset Y ⊂ X ′ with the property that R ∩X ′ ⊂ Y , and |Y | = O(|R ∩X ′|) and
furthermore, the structure can extract k random samples from Y in O(Qs(|X|) + k) time.

Then, we can answer range sampling queries using O(Sm(|X|) + Ss(|X|)) space and with
expected query time of O(Qm(|X|) +Qs(|X|) log |X|+ k).

Proof. Let n = |X|. We store X in a data structure for the range maximum queries. We
partition X into subsets Xi ⊂ X in the following way. We place the element x1 with the
largest weight in X1 and then we add to X1 any element whose weight is at least w(x1)/2
and then recurse on the remaining elements. Observe that for all x, x′ ∈ Xi we have
w(x)/w(x′) ∈ (1/2, 2]. Thus, the weight function w is almost uniform on each Xi. We store
Xi in a data structure Ds(Xi).

Next, we build a subset sum information over the total weight W (Xi) of the (disjoint)
union of all subsets Xi′ with i′ ≥ i, that is, W (Xi) =

∑
j≥i w(Xj). Consider a query R ∈ R.

Step 1: Use the Range Maximum Structure. Issue a single range-max query on X for
the query range R ∈ R. Let x be the answer to the range-max query, assume x ∈ Xi.

Step 2: top-level alias structure. Having found i, we identify the smallest index i′ ≥ i

such that the maximum weight w(x′) for x′ ∈ Xi′ and the minimum weight w(x) for x ∈ Xi

satisfy w(x)/w(x′) > n2. As the weights in the sets Xi decreases geometrically, we have
i′ − i = O(logn). Then, for each Xj with j ∈ [i, i′), we use the data structure Ds(Xj) to
identify the set Yj such that Yj contains the set R ∩Xj . This returns the values w(Yj), and
the total running time of this step is O(Qs(n) logn).

We build a top-level alias structure on i′ − i + 1 values: all the i′ − i values w(Yj),
i ≤ j < i′, as well as the value W (Xi′). Let T = W (Xi′) +

∑i′−1
j=i w(Yj). This can be done

in O(logn) time as i′ − i = O(logn).

Step 3: Extracting samples. To generate k random samples from R, we first sample a
value using the top-level alias structure. This can result in two different cases:
Case 1. It returns the value W (Xi′). Let Xi′+ = ∪j≥i′Xj . In this case, we sample an

element from the set R ∩Xi′+, by building an alias structure on Xi+ in O(n) time. The
probability of sampling an element xj ∈ Xi′+ is set exactly to w(xj)

W (Xi′) . Note that these
probabilities of xj ∈ Xi′+ ∩ R do not add up to one which means the sampling might
fail and we might not return any element. If this happens, we go back to the top-level
alias structure and try again. Notice that R contains at least one element xi from Xi,
and that for any x ∈ Xj , j ≥ i′ have w(x) ≤ w(xi)/n2 which implies W (Xi′) ≤ w(xi)/n.
Thus, this case can happen with probability at most 1/n, meaning, even if we spend O(n)
time to answer the query, the expected query time is O(1).

Case 2. It returns a value w(Yj), for i ≤ j < i′. We place Yj into a list for now. At some
later point (to be described) we will extract a sample z from Yi. If z happens to be
inside R, then we return z, otherwise, the sampling fails and we go back to the top-level
structure.

P. Afshani and J.M.Phillips 4:5

We iterate until k queries have been pooled. Then, we issue them in O(logn) batches to data
structure Ds(Xj), i ≤ j < i′. Ignoring the failure events in case (2), processing a batch of k
queries will take O(Qs(n) logn+ k) time. Notice that each iteration of the above procedure
will succeed with a constant probability: case (1) is very unlikely (happens with probability
less than 1/n) and for case (2) observe that we have w(Yi) = O(w(R ∩Xi)) and thus each
query will succeed with constant probability. As a result, in expectation we only issue a
constant number of batches of size k to extract k random samples.

It remains to show that we sample each element with the correct probability. The
probability of reaching case (1) is equal to W (Xi′)

T . Thus, the probability of sampling an
element xj ∈ Xi′+ is equal to W (Xi′)

T · w(xj)
W (Xi′) = w(xj)

T . The same holds in case (2) and the
probability of sampling an element xj ∈ Xj , i ≤ j < i′ is w(xj)

T . Thus, conditioned on the
event that the sampling succeeds, each element is sampled with the correct probability. J

3 3D Halfspace Sampling

3.1 Preliminaries
In this section, we consider random sampling queries for 3D halfspaces. But we first need to
review some preliminaries.

I Lemma 4. Let P be a set of n points in R3. Let P = P1 ∪ · · · ∪ Pt be a partition of P
into t subsets. We can store P in a data structure of size O(n log t) such that given a query
halfspace h, we can find the smallest index i such that Pi ∩ h 6= ∅ in O(logn log t) time.

Proof. See the full paper for the proof [1]. J

The following folklore result is a special case of the above lemma.

I Corollary 5. Let P be a set of n points in R3 where each point p ∈ P is assigned a
real-valued weight w(p). We can store P in a data structure of size O(n logn) such that given
a query halfspace h, we can find the point with maximum weight in O(log2 n) time.

We also need the following preliminaries. Given a set H of n hyperplanes in R3, the
level of a point p is the number hyperplanes that pass below p. The (≤ k)-level of H (resp.
k-level of H) is the closure of the subset of R3 containing points with level at most k (resp.
exactly k). An approximate k-level of H is a surface composed of triangles (possibly infinite
triangles) that lies above k-level of H but below (ck)-level of H for a fixed constant c. For a
point q ∈ R3, we define the conflict list of q with respect to H as the subset of hyperplanes
in H that pass below q and we denote this with ∆(H, q). Similarly, for a triangle τ with
vertices v1, v2, and v3, we define ∆(H, τ) = ∆(H, v1)∪∆(H, v2)∪∆(H, v3). One of the main
tools that we will use is the existence of small approximate levels. This follows from the
existence of shallow cuttings together with some geometric observations.

I Lemma 6. For any set H of n hyperplanes in R3, and any parameter 1 ≤ k ≤ n/2, there
exists an approximate k-level which is a convex surface consisting of O(n/k) triangles.

Furthermore, we can construct a hierarchy of approximate ki-levels Li, for ki = 2i and
i = 0, · · · , logn, together with the list ∆(H, τ) for every triangle τ ∈ Li in O(n logn) time
and O(n) space. Given a query point q, we can find an index i in O(logn) time such that
there exists a triangle τ ∈ Li that lies above q such that |∆(H, q)| = O(|∆(H, τ)|).

Proof. See the full paper for the proof [1]. J

SoCG 2019

4:6 Independent Range Sampling, Revisited Again

We will also use the following results.

I Theorem 7 (The Partition Theorem, [9]). Given a set P of n points in 3D and an integer
0 < r ≤ n/2, there exists a partition of P into r subsets P1, · · · , Pr, each of size Θ(n/r),
where each Pi is enclosed by a tetrahedron Ti, s.t., any hyperplane crosses O(r2/3) tetrahedra.

I Lemma 8. Let T be tree of size n where each leaf v stores a real-valued non-negative weight
w(v). We can build a data structure s.t., given an internal node u ∈ T at the query time, we
can independently sample a leaf with probability proportional to its weight in the subtree of u.
The data structure uses O(n) space and it can answer queries in O(1) worst-case time.

Proof. See the full paper for the proof [1]. J

Afshani and Wei [2] consider unweighted sampling for 3D halfspace queries. We next use
the following technical result of theirs.

I Lemma 9. Let H be a set of n hyperplanes in 3D. Let f(n) = (logn)c log log n where c is
a large enough constant. We can build a tree Tglobal with n leafs where each hyperplane is
stored in one leaf such that the following holds: Given a point q ∈ R3 with level k where
k ≥ f(n), we can find k′ = O(k/ log2 n) internal nodes u1, · · · , uk′ in Tglobal such that
∆(H, q) = Tglobal(u1) ∪ · · · ∪ Tglobal(uk′) where Tglobal(ui) is the set of hyperplanes stored in
the subtree of ui.

Unfortunately, the above lemma is not stated explicitly by Afshani and Wei, however, Tglobal
is the “Global Structure” that is described in [2] under the same notation.

3.2 A Solution with Expected Query Time

We now observe that we can use Lemma 3 to give a data structure for weighted halfspace
range sampling queries in 3D. We first note that using Corollary 5 and by building a hierarchy
of shallow cuttings, i.e., building approximate ki-levels for ki = 2i, i = 0, · · · , logn, we can
get a data structure with O(n logn) space that can answer queries in O(log2 n+ k) query
time. Furthermore, as Lemma 2 shows, our problem is at least as hard as the halfspace
range maximum problem which currently has no better solution than O(n logn) space and
O(log2 n) expected query time. Thus, it seems we cannot do better unless we can do better
for range maximum queries, a problem that seems very difficult.

However, the reduction given by Lemma 2 is not completely satisfying since we need to
create a set of weights that are exponentially distributed. As a result, it does not capture
a more “natural” setting where the ratio between the largest and the smallest weight is
bounded by a parameter U that is polynomial in n. Our improved solution is the following
which shows when U = nO(1) we can in fact reduce the space to linear.

I Theorem 10. Let P be a set of n weighted points in R3, where the smallest weight is 1 and
the largest weight is U . We can store P in a data structure of size O(nmin{logn, log logn U})
such that given a query halfspace and an integer k, we can extract k independent random
samples from the points inside h in O(log2 n+ k) time.

Proof summary. For the complete proof see the full paper [1]. The basic idea is to partition
the input into sets where the ratio of weights is within n2. Then, we use Lemmas 9 and 8. J

P. Afshani and J.M.Phillips 4:7

3.3 Worst-Case Time with Approximate Weights
All of the previous data structures sample items exactly proportional to their weight, but rely
on rejection sampling. Hence, their query time is expected, and not worst case. With small
probability these structures may repeatedly sample items which are not in h, and then need
to reset and try again with no bound on the worst-case time. To achieve worst-case query
time, we need some modifications. We allow for items to be sampled “almost” proportional
to their weights, i.e., we introduce a notion of approximation. As we shall see in the next
chapter, without some kind of approximation, our task is very likely impossible.

Problem definition. We consider an input set X of n points where xi has weight wi and we
would like to store X in a data structure. At the query time, we are given a halfspace h and a
value k and we would like to extract k random samples from X ∩h. Let w(h) =

∑
xi∈X∩h wi,

and set two parameters 0 < γ < ε < 1. Ideally, we would like to sample each xi with
probability wi/w(h). Instead we sample xi with probability ρi, if wi/w(h) ≥ γ/n then

(1− ε) wi

w(h) ≤ ρi ≤ (1 + ε) wi

w(h) , (1)

and if wi/w(h) < γ/n then we must have ρi ≤ (1 + ε) wi

w(h) . That is, we sample all items
within a (1± ε) factor of their desired probability, except for items with very small weight,
which could be ignored and not sampled. The smaller items are such that the sum of their
desired probabilities is at most γ.

Overview of modifications. We start in the same framework as Section 3.2 and Lemma
3, i.e., we partition X into subsets X` by weight. Then, we need to make the following
modifications: (1) We can now ignore small enough weights; (2) We can no longer use
rejection sampling to probe into each set X`, rather we need to collect a bounded number (a
function f(ε)) of candidates from all X` which is guaranteed to contain some point in the
query h. (3) We can also no longer use rejection sampling within each X` to get candidates,
instead we build a stratified sample via the partition theorem.

Change (1) is trivial to implement. Remember that given query h, we first identify indices
i and i′ such that Xi contains the largest weight in h and the weights in Xi′ are a factor n2

smaller. We now require weights in Xi′ to be a factor n/γ smaller, and let i′ = i+ t where
t = O(log(n/γ)). We can now ignore all the remaining sets: the sets Xj with j ≥ i+ t will
have weights so small that even if there are Ω(n) points within, the sum of their weights will
be at most γ times the largest weight. Since γ < ε, this implicitly increases all of the other
weights in each X` (for ` ∈ [i, i+ t)) by at most a factor (1 + ε).

We next describe how we can build a data structure on each X` to generate f(1/ε)
candidate points. Once we have these t · f(1/ε) points, we can build two alias structures on
them (they will come with weights proportional to the probability they should be selected),
and select points until we find one in h. As a first pass, to generate k samples, we can repeat
this k times, or bring kf(1/ε) samples from each X`. We will return to this subproblem to
improve the dependence on k and ε by short-circuiting a low-probability event and reloading
these points dynamically.

3.3.1 Generating Candidate Points
Here we will focus on sampling our set of candidates. We will do this for every set X`,
i ≤ ` < i′. However, to simplify the presentation, we will assume that the input is a set X of
n points such that the weights of the points in X are within factor 2 of each other. We will

SoCG 2019

4:8 Independent Range Sampling, Revisited Again

sample f(1/ε) candidate points from X (representing a subset X`) s.t., the set of candidates
intersects with the query halfspace h. Each candidate will be sampled with a probability
that is almost uniform, i.e., it fits within our framework captured by Eq. 1.

Let H be the set of hyperplanes dual to points in X. We maintain a hierarchical shallow-
cutting of approximate levels (Lemma 6) on H. By Lemma 6, we get the following in the
primal setting (on X), given a query halfspace h: We can build O(|X|) subsets of X where
the subsets have in total O(|X| log |X|) points. Given a query halfspace h, in O(logn) time,
we can find a subset X ′ so that X ∩ h ⊂ X ′ and |X ′| = O(|X ∩ h|). We now augment
this structure with the following information on each such subset X ′, without increasing
the space complexity. We maintain an r-partition (Z1,∆1), (Z2,∆2), . . . (Zr′ ,∆r′) on X ′.
(That is, so r′ = Θ(r), each subset Zj ⊂ ∆j and has size bound |X ′|/r ≤ |Zj | ≤ 2|X ′|/r,
and the boundary of any halfspace h intersects at most O(r2/3) cells ∆j .) For each Zj we
maintain an alias structure so in O(1) time we can generate a random sj from the points
within. It is given a weight Wj =

∑
x∈Zj

w(x). In O(r) time we can generate a weighted set
S = {s1, s2, . . . , sr′}; this will be the candidate set.

The sum of all weights of points within h is w(h) =
∑

x∈X∩h w(x), and so we would like
to approximately sample each x ∈ X ′ ∩ h with probability w(x)/w(h).

I Lemma 11. Let r = Ω(1/ε3) and consider a candidate set S, and sample one point
proportional to their weights. For a point x ∈ X ′ ∩ h, the probability ρx that it is selected
satisfies

(1− ε)w(x)
w(h) ≤ ρx ≤ (1 + ε)w(x)

w(h) .

Proof. Of the r′ cells in S, classify them in sets as inside if ∆j ∈ h, as outside if ∆j ∩ h = ∅,
and as straddling otherwise. We can ignore the outside sets. There are O(r) inside sets, and
O(r2/3) straddling sets.

For point x ∈ Sj from an inside set, it ideally should be selected with probability
w(x)
Wj
· Wj

w(h) = w(x)
w(h) . Indeed it is the representative of Sj with probability w(x)

Wj
and is give weight

proportional to Wj in the alias structure. We now examine two cases, that all representative
points in the straddling sets are in h, and that none are; the probability x is selected will be
between the probability of these two cases, and the desired probability it is selected will also
be between these two cases. Let Win =

∑
Sj is inside Wj and Wstr =

∑
Sj is straddling Wj . The

probability x is selected if it is the representative of Sj is then in the range [Wj

Win+Wstr
,

Wj

Win
].

The ratio of these probabilities is Wj

Win
· Win+Wstr

Wj
= Win+Wstr

Win
= 1 + O(r2/3)

Θ(r) = 1 + O(r1/3).
Setting r = Ω(1/ε3) ensures that these probabilities are within a (1 + ε)-factor of each other,
and on all points from an inside set, are chosen with approximately the correct probability.

For a point x in a straddling set Sj , it should be selected with probability w(x)
Wj

and
is selected with probability between Lx = w(x)

Wj

Wj

Win+Wstr
and Ux = w(x)

Wj

Wj

Win+Wj
. As with

points from an inside set, these are within a (1 + ε)-factor of each other if r = Ω(1/ε3). And
indeed since Win ≤ w(h) ≤Win +Wstr then Lx ≤ w(x)

w(h) ≤ Ux, and the desired probability of
sampling straddling point x is in that range. J

3.3.2 Constructing the k Samples
To select k random samples, the simplest way is to run this procedure k times sequentially,
generating O(k/ε3) candidate points; this is on top of O(logn) to identify the proper subset
X ′ from the shallow cutting, applied to all t = O(log(n/γ)) weight partitions X`.

P. Afshani and J.M.Phillips 4:9

We can do better by first generating O(1/ε3) candidate points per X`, enough for a single
random point in h. Now we place these candidates in two separate alias structures along with
the candidate points from the other t structures. There are O(t/ε3) candidate points placed
in an inside alias structure, and O(t/ε2) points placed in a straddling alias structure. Now
to generate one point, we flip a coin proportional to the total weights in the two structures.
If we go to the inside structure, we always draw a point in h, we are done. If we go to the
straddling structure, we may or may not select a point in h. If we do, we are done; if not we
flip another coin to decide to go to one of the two structures, and repeat.

It is easy to see this samples points with the correct probability, but it does not yet have
a worst case time. We could use a dynamic aliasing structure [6] on the straddling set, so
we sample those without replacement, and update the coin weight. However, this adds a
O(log(1

ε log(n/γ))) factor to each of O(t/ε2) steps which might be needed. A better solution
is to only allow the coin to direct the sampler to the straddling sets at most once; if it goes
there and fails, then it automatically redirects to the alias structure on the inside sets which
must succeed. This distorts the sampling probabilities, but not by too much since in the
rejection sampling scheme, the probability of going to the straddling set even once is O(ε).

I Lemma 12. For any candidate point s let ρs be the probability it should be sampled, and ρ′s
the probability it is sampled with the one-shot deterministic scheme. Then ρs ≤ ρ′s ≤ (1+ε)ρs

if s is an inside point and (1− ε)ρs ≤ ρ′s ≤ ρs if s is from a straddling set.

Proof. The probability that the coin directs to the inside set is πin = Win
Win+Wstr

= 1
1+Wstr/Win

=
1

1+Ω(ε) = 1−O(ε). Let wstr be the probability of selecting a point inside h, given that the
coin has directed to the straddling set; we only need that Wstr ∈ [0, 1].

For a candidate point in the inside set s, the probability it is selected in the rejection
sampling scheme is ρs = w(s)

Win
(1−O(ε)), and in the deterministic scheme is ρ′s = w(s)

Win
(πin +

(1− πin)(1− wstr)) which is in the range [ρs,
w(s)
Win

], and these have a ratio 1 +O(ε).
Similarly, for a candidate point in the straddling set s, the probability it is selected in

the rejection sampling scheme is

ρs = w(s)
Wstr

(1− πin)(1 +Wstr(1− πin)(1 + . . .)) = w(s)
Wstr

(1− πin)(1 +O(ε))

and in the deterministic scheme is ρ′s = w(s)
Wstr

(1−πin). Thus ρ′s is in the range [ρs(1−O(ε)), ρs].
Adjusting the constant coefficients in ε elsewhere in the algorithm completes the proof. J

Now to generate the next independent point (which we need k of), we do not need to
re-query with h or rebuild the alias structures. In particular, each candidate point can have a
pointer back to the alias structure within its partition cell, so it can replace its representative
candidate point. Moreover, since the points have weight proportional to their cell in the
partition Wj , these weights do not change on a replacement. And more importantly, the
points we never inspected to see if they belong to h do not need to be replaced. This
deterministic process only inspects at most 2 points, and these can be replaced in O(1) time.
Hence extending to k samples, only increases the total runtime by an additive term O(k).

Final bound. We now have the ingredients for our final bound. In general the argument
follows that of Lemma 3 except for a few changes. First, we allow items with probability
total less than γn to be ignored. This replaces a logn factor in query time to be replaced
with t = log(n/γ) term. Second, we require O(t logn) time to identify the relevant subset X ′
in each of t shallow-cutting structures. Then we select O(1/ε3) candidate points from each
of t weight partitions, in O(t/ε3) time. Then pulling k independent samples, and refilling
the candidates takes O(k) time. This results in the following final bound:

SoCG 2019

4:10 Independent Range Sampling, Revisited Again

I Theorem 13. Let X be a set of n weighted points in R3, where the smallest weight is 1
and the largest weight is U . Choose 0 < γ < ε ≤ 1/2. We can store X in a data structure of
size O(nmin{logn, log logn U}) such that for any integer k, we can extract k independent
random samples from the points (ε, γ)-approximately proportional to their weights in worst
case time O(log(n/γ)(logn+ 1/ε3) + k)

In particular, if ε, γ = Ω(1), then the worst case time is O(log2 n+ k) matching the expected
time algorithm to sample by the exact weights.

4 Lower Bound for Worst-Case Time with Exact Weights

In this section, we focus on proving a (conditional) lower bound for a data structure that can
extract one random sample in Q(n) worst-case time using S(n) space. Our main result is that
under a reasonably restricted model, the data structure must essentially solve an equivalent
range searching problem in the “group model”. As a result, we get a conditional lower bound
as this latter problem is conjectured to be difficult. As an example, our conditional lower
bound suggests that halfspace range sampling queries would require that S(n)Q3(n) = Ω(n3),
i.e., with near-linear space we can only expect to get close to O(n2/3) query time. This
is in contrast to the case when we allow expected query time or approximate weights. As
already shown, we can solve the same problem with O(n logn) space and O(log2 n) query
time which reveals a large polynomial gap between the expected and the worst-case variants
of the problem. To our knowledge, this is the first time such a large gap appears in the range
searching literature between the worst-case and expected query times.

The Model of Computation. We assume the input is a list X of n elements, x1, · · · , xn,
where each element xi is associated with a real-valued weight w(xi). We use the decision tree
model of computation. We assume the data structure has three components: a preprocessing
algorithm that builds the data structure, a data structure which is a set of S(n) stored real
values, and finally a query algorithm that given a query q it returns an element sampled
with the correct probability in Q(n) worst-case time. We allow no approximation: the query
algorithm should return an element x with exactly w(x)/w(X) probability.

The main bottleneck. The challenge in obtaining our lower bound was understanding
where the main computational bottleneck lied and formulating a plan of attack to exploit
it. This turned out to be in the query algorithm. As a result, we place no restrictions
on the storage, or the preprocessing part of the algorithm, an idea that initially sounds
very counter intuitive. After giving the algorithm the input X together with the weight
assignment w : X → R, the algorithm stores some S(n) values in its storage. Afterwards, we
move to the query phase and this is where we would like to put reasonable limits. We give the
query algorithm the query q. We allow the query algorithm access to a set of t real random
numbers, R = {r1, · · · , rt}, generated uniformly in [0, 1]. We restrict the query algorithm
to be a “binary decision tree” T but in a specialized format: each node v of T involves a
comparison between some random number rv ∈ R and a rational function fv = gv/Gv where
gv and Gv are n-variate polynomials of the input weights w1, · · · , wn. To be more precise, we
assume the query algorithm can compute polynomials gv and Gv (either using polynomials
stored at the ancestors of v or using the values stored by the data structure). The query
algorithm at node v computes the ratio gv and Gv and compares it to the random value
rv ∈ {r1, · · · , rt}. If v is an internal node, then v will have two children u1 and u2 and the
algorithm will proceed to u1 if fv(w(x1), · · · , w(xn)) < rv and to u2 if otherwise. If v is a

P. Afshani and J.M.Phillips 4:11

leaf node, then v will return (a fixed) element xv ∈ X. Note that there is no restriction
on the rational function fv; it could be of an arbitrary size or complexity. We call this the
separated Algebraic decision tree (SAD) model since at each node, we have “separated” the
random numbers from the rational function that involves the weights of the input elements; a
more general model would be to allow a rational function of the weights wi and the random
numbers rj . If we insist the polynomials gv and Gv be linear (i.e., degree one), then we call
the model separated linear decision tree model (SLD).

I Theorem 14. Consider an algorithm for range sampling in the SAD model where the input
is a list of n of elements, x1, · · · , xn together with a weight assignment w(xi) ∈ R, for each
xi. Assume that the query algorithm has a worst-case bound, i.e., the maximum depth of its
decision tree T is bounded by a function d(n). Then, for every query q, there exists a node
v ∈ T such that Gv is divisible by the polynomial

∑
p∈q w(p).

Proof. Consider the query decision tree T . By our assumptions, T is a finite tree that
involves some N(n) nodes and it has the maximum depth of d(n). Each node v involves a
comparison between some random number ri and a rational function fv(w(x1), · · · , w(xt)).
To reduce clutter, we will simply write the rational function as fv. Let P be the set of all
the rational functions stored at the nodes of T . Note that each unique rational function
appears only once in P. Consider the set ∆P = {f1 − f2|f1, f2 ∈ P} which is the set of
pairwise differences. As each unique rational function appears only once in P , it follows that
none of the rational functions in ∆P is identical to zero. This in particular implies that we
can find real values w1, · · · , wn such that none of the rational functions in ∆P are zero on
w1, · · · , wn. Thus, as these functions are continuous at the points (w1, · · · , wn), it follows
that we can find a real value ε > 0 such that for every weight assignment w(xi) ∈ [wi, wi + ε],
the rational functions in ∆P have the same (none zero) sign. In the rest of the proof, we
only focus on the weight assignment functions w with the property that w(xi) ∈ [wi, wi + ε].

Let U be the unit cube in Rt. U denotes the total probability space that corresponds to
the random variables r1, · · · , rt. Every point in U corresponds to a possible value for the
random variables r1, · · · , rt. Now consider one rational function fv stored at a node v of T ,
and assume v involves a comparison between ri and fv and let u1 and u2 be the left and
the right child of v. By our assumption, we follow the path to u1 if fv ≤ ri but to u2 if
otherwise. Observe that this is equivalent to partitioning U into two regions by a hyperplane
perpendicular to the i-th axis at point fv. As a result, for every node v ∈ T , we can assign a
rectangular subset of U that denotes its region and it includes all the points (r1, · · · , rt) of U
such that we would reach node v if our random variables were sampled to be (r1, · · · , rt).

The next observation is that we can assume the region of each node is defined by fixed
rational functions. Consider the list of rational functions encountered on the path from v

to the root of T . Assume among this list, the rational functions f1, · · · , fm are involved in
comparisons with ri. Clearly, the lower boundary of the region of v along the i-th dimension
is min{f1, · · · , fm} whereas its upper boundary is max{f1, · · · , fm}. Now, observe that since
we have assumed that each fi − fj has a fixed sign, it follows that these evaluate to a fixed
rational function. Thus, let fi,v (resp. Fi,v) be the rational function that describes the lower
(resp. upper) boundary of the region of v along the i-th dimension. Let fi,v = ai,v/bi,v and
Fi,v = Ai,v/Bi,v where ai,v, bi,v, Ai,v, Bi,v are some polynomials of w(x1), · · · , w(xn) stored
in tree T (e.g., bi,v is equal to some Gu for some ancestor u of v and the same holds for Bi,v).

The Lebesgue measure of the region of v, Vol(v), is thus defined by the rational function

Vol(v) =
t∏

i=1
(Fi,v − fi,v) =

t∏
i=1

(Ai,v

Bi,v
− ai,v

bi,v
) =

t∏
i=1

Ai,vbi,v − ai,vBi,v

Bi,vbi,v
.

SoCG 2019

4:12 Independent Range Sampling, Revisited Again

Vol(v) is the probability of reaching v. Consider a query q that contains k elements. W.l.o.g,
let x1, · · · , xk be these k elements. Let v1, · · · , v` be the set of all the leaf nodes that return
x1. For x1 to have been sampled with correct probability we must have the following identity

∑̀
i=1

Vol(vi) = w(x1)
w(x1) + · · ·+ w(xk) .

Observe that since the polynomial w(x1) + · · ·+ w(xk) is irreducible, it follows that at least
one of the polynomials bi or Bi for some i has this polynomial as a factor. J

Conditional Lower Bound. Intuitively, our above theorem suggests that if we can perform
range sampling in finite worst-case time, then we should also be able to find the total weight
of the points in the query range – since the total weight

∑
p∈q w(p) is encoded in some

rational function. This latter problem is conjectured to be difficult but obtaining provable
good lower bounds remains elusive. This suggests that short of a breakthrough, we can only
hope for a conditional lower bound. This is reinforced by this observation that an efficient
data structure for range sum queries leads to an efficient data structure for range sampling.

I Observation 15. Assume for any set of X of n elements each associated with a real-valued
weight, we can build a data structure that uses S(n) space such that given a query range q, it
can output the total weight of the elements in q in Q(n) time.

Then, we can extract k random samples from q by a data structure that uses O(S(n) logn)
space and has the query time of O(kQ(n) logn).

Proof. Partition X into two equal-sized sets X1 and X2 and build the data structure for
range sum on each. Then recurse on X1 and X2. The total space complexity is O(S(n) logn).
Given a query q, it suffices to show how to extract one sample. Using the range sum query q
on X1 and X2, we can know the exact value of w1 =

∑
x∈q∩X1

w(x) and w2 =
∑

x∈q∩X2
w(x).

Thus, we can recurse into X1 with probability w1/(w1 +w2) and into X2 with w2/(w1 +w2).
In O(logn) recursion steps we find a random sample with query time O(Q(n) logn). J

This implies that in the SLD model, the range sampling problem in the worst-case is
equivalent to the range sum problem, ignoring polylog factors. This has consequences for
query ranges like halfspaces where the latter problem is conjectured to be hard.

I Conjecture 16. For every integer n, there exists a set P of Θ(n) points in Rd with the
following property: If for any function w : P → R given as input, we can build a data structure
of size S(n) such that for any query halfspace h, it can return the value

∑
p∈P∩h w(p) in

Q(n) time, then, we must have S(n)Qd(n) = Ω(nd−o(1)).

I Corollary 17. Assume Conjecture 1 holds for d = 3. Then, there exists an input set of
n points in R3 such that for any data structure that uses S(n) space and solves the range
sampling problem where the query algorithm is a decision tree T with worst-case query time
Q(n), we must have S(n)Q3(n) = Ω(n3−o(1)). Thus if space S(n) is near-linear, query time
Q(n) = Ω(n2/3−o(1)).

References
1 Peyman Afshani and Jeff M. Phillips. Independent Range Sampling, Revisited Again, 2019.

arXiv:1903.08014.
2 Peyman Afshani and Zhewei Wei. Independent Range Sampling, Revisited. In European

Symposium on Algorithms, pages 3:1–3:14, 2017.

http://arxiv.org/abs/1903.08014

P. Afshani and J.M.Phillips 4:13

3 Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. Advances
in Discrete and Computational Geometry, pages 1–56, 1999.

4 Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion
Stoica. BlinkDB: queries with bounded errors and bounded response times on very large
data. In Proceedings of the 8th ACM European Conference on Computer Systems, pages 29–42.
ACM, 2013.

5 Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. Random sampling for histogram
construction: How much is enough? In ACM SIGMOD Record, pages 436–447. ACM, 1998.

6 T Hagerup, K Mehlhorn, and JI Munro. Optimal algorithms for generating discrete random
variables with changing distributions. Lecture Notes in Computer Science, 700:253–264, 1993.

7 Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. ACM SIGMOD
Record, 26(2):171–182, 1997.

8 Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In ACM Symposium
on Principles of Database Systems, pages 246–255, 2014.

9 Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–334,
1992.

10 Frank Olken. Random sampling from databases. PhD thesis, University of California at
Berkeley, 1993.

11 Frank Olken and Doron Rotem. Random sampling from databases: a survey. Statistics and
Computing, 5(1):25–42, 1995.

12 Alastair J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 10(8):127–128, 1974.

SoCG 2019

An Efficient Algorithm for Generalized Polynomial
Partitioning and Its Applications
Pankaj K. Agarwal
Department of Computer Science, Duke University, Box 90129, Durham, NC 27708-0129 USA
pankaj@cs.duke.edu

Boris Aronov
Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY 11201, USA
boris.aronov@nyu.edu

Esther Ezra
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
School of Math, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
eezra3@math.gatech.edu

Joshua Zahl
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
jzahl@math.ubc.ca

Abstract
In 2015, Guth proved that if S is a collection of n g-dimensional semi-algebraic sets in Rd and
if D ≥ 1 is an integer, then there is a d-variate polynomial P of degree at most D so that each
connected component of Rd \ Z(P) intersects O(n/Dd−g) sets from S. Such a polynomial is called
a generalized partitioning polynomial. We present a randomized algorithm that computes such
polynomials efficiently – the expected running time of our algorithm is linear in |S|. Our approach
exploits the technique of quantifier elimination combined with that of ε-samples.

We present four applications of our result. The first is a data structure for answering point-
enclosure queries among a family of semi-algebraic sets in Rd in O(log n) time, with storage complexity
and expected preprocessing time of O(nd+ε). The second is a data structure for answering range
search queries with semi-algebraic ranges in O(log n) time, with O(nt+ε) storage and expected
preprocessing time, where t > 0 is an integer that depends on d and the description complexity
of the ranges. The third is a data structure for answering vertical ray-shooting queries among
semi-algebraic sets in Rd in O(log2 n) time, with O(nd+ε) storage and expected preprocessing time.
The fourth is an efficient algorithm for cutting algebraic planar curves into pseudo-segments.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Theory
of computation → Randomness, geometry and discrete structures

Keywords and phrases Polynomial partitioning, quantifier elimination, semi-algebraic range spaces,
ε-samples

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.5

Related Version https://arxiv.org/abs/1812.10269

Funding Pankaj K. Agarwal: P. Agarwal was supported by NSF under grants CCF-15-13816, CCF-
15-46392, and IIS-14-08846, by an ARO grant W911NF-15-1-0408, and by BSF Grant 2012/229
from the U.S.-Israel Binational Science Foundation.
Boris Aronov: B. Aronov was supported by NSF grants CCF-12-18791 and CCF-15-40656, and by
grant 2014/170 from the US-Israel Binational Science Foundation.
Esther Ezra: E. Ezra was supported by NSF CAREER under grant CCF:AF 1553354 and by Grant
824/17 from the Israel Science Foundation.
Joshua Zahl: J. Zahl was supported by an NSERC Discovery grant.

© Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:boris.aronov@nyu.edu
mailto:eezra3@math.gatech.edu
https://orcid.org/0000-0001-5129-8300
mailto:jzahl@math.ubc.ca
https://doi.org/10.4230/LIPIcs.SoCG.2019.5
https://arxiv.org/abs/1812.10269
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 An Efficient Algorithm for Generalized Polynomial Partitioning

1 Introduction

In 2015, Guth [11] proved that if S is a collection of n g-dimensional semi-algebraic sets1 in
Rd and if D ≥ 1 is an integer, then there is a d-variate polynomial P of degree at most D
so that each connected component of Rd \ Z(P) intersects O(n/Dd−g) sets from S 2, where
the implicit constant in the O(·) notation depends on d and on the degree and number
of polynomials required to define each semi-algebraic set. We refer to such a polynomial
P as a generalized partitioning polynomial. Guth’s proof established the existence of a
generalized partitioning polynomial, but it did not offer an efficient algorithm to compute
such a polynomial for a given collection of semi-algebraic sets. In this paper we study the
problem of computing a generalized partitioning polynomial efficiently and present a few
applications of such an algorithm.

Related work. In 2010, Guth and Katz [12] resolved the Erdős distinct distances problem
in the plane. A major ingredient in their proof was a partitioning theorem for points in Rd.
Specifically, they proved that given a set of n points in Rd and an integer D ≥ 1, there is a
d-variate partitioning polynomial P of degree at most D so that each connected component
of Rd \ Z(P) contains O(n/Dd) points from the set. Their polynomial partitioning theorem
led to a flurry of new results in combinatorial and incidence geometry, harmonic analysis,
and theoretical computer science.

The Guth-Katz result established the existence of a partitioning polynomial, but it did
not provide an effecient algorithm to compute such a polynomial. In [2], Agarwal, Matoušek,
and Sharir developed an efficient algorithm to compute partitioning polynomials, matching
the degree bound obtained in [12] up to a constant factor. They used this algorithm to
construct a linear-size data structure that can answer semialgebraic range queries amid a set
of n points in Rd in time O(n1−1/d polylog(n)), which is near optimal.

A major open question in geometric searching is whether a semialgebraic range query
can be answered in O(logn) time using a data structure of size roughly nd; such a data
structure is known only in very special cases, e.g., when query ranges are simplices [3]. If t
is the number of (real valued) parameters needed to represent query ranges, then the best
known data structure for semialgebraic range searching uses O(nt+ε) space for t ≤ 4 and
O(n2t−4+ε) space for t > 4 [3]. As we show below, an efficient algorithm for computing a
generalized partitioning polynomial leads to a semialgebraic range searching data structure
with O(logn) query time and O(nt+ε) space.

In [4], the last three authors developed an efficient algorithm for constructing a partition of
R3 adapted to a set of space curves. This partition is not given by a partitioning polynomial,
but it shares many of the same properties. For other settings, however, no effective method
is known for computing a partitioning polynomial.

Our results. Our main result is an efficient algorithm for computing a generalized par-
titioning polynomial for a family of semi-algebraic sets (Theorem 11): Given a set S of
n semi-algebraic sets in Rd, each of complexity at most b for some constant b > 0 (see
Section 2 for the definition of the complexity of a semi-algebraic set), our algorithm computes
a generalized partitioning polynomial of given degree D in expected time O(nePoly(D)).

1 Roughly speaking, a semi-algebraic set in Rd is the set of points in Rd that satisfy a Boolean formula
over a set of polynomial inequalities. See [8, Chapter 2] for formal definitions of a semialgebraic set and
its dimension.

2 Guth stated his result for the special case where the semi-algebraic sets are real algebraic varieties, but
his proof in fact holds in the more general setting of semi-algebraic sets.

P.K. Agarwal, B. Aronov, E. Ezra, and J. Zahl 5:3

In Section 4 we present four applications of our algorithm:

(i) Let S be a family of n semi-algebraic sets in Rd, each of complexity at most b for some
constant b > 0. Each set in S is assigned a weight that belongs to a semigroup. We
present a data structure of size O(nd+ε), for any constant ε > 0, that can compute,
in O(logn) time, the cumulative weight of the sets in S containing a query point. We
refer to the latter as a point-enclosure query. The data structure can be constructed in
O(nd+ε) randomized expected time. This is a significant improvement over the best
known data structure by Koltun [14], for d > 4, that uses O(n2d−4+ε) space.

(ii) Let P be a set of n points in Rd, each of which is assigned a weight in a semigroup,
and let R be a (possibly infinite) family of semi-algebraic sets in Rd. Suppose that
there exists a positive integer t and an injection f : R→ Rt so that for each p ∈ P , the
set f({R ∈ R | p ∈ R}) is a semi-algebraic set in Rt of complexity at most b. We can
construct in O(nt+ε) randomized expected time a data structure of size O(nt+ε), for
any constant ε > 0, that can compute in O(logn) time the cumulative weight of P ∩ γ
for a query range γ ∈ R.

(iii) Given a family S of n semi-algebraic sets in Rd, we present a data structure of size
O(nd+ε), for any constant ε > 0, that can answer vertical ray shooting queries in
O(log2 n) time. The data structure can be constructed in O(nd+ε) randomized expected
time.

(iv) Finally, we follow the technique of Sharir and Zahl [15] to cut n algebraic planar curves
into a collection of O(n3/2+ε) pseudo-segments (that is, a collection of Jordan arcs, each
pair of which intersects at most once), where the constant of proportionality depends
on the degree of the curves. By exploiting Theorem 11, we show that this collection can
be constructed in comparable time bound. We comment that applying the algorithm
in the previous work of Aronov et al. [4] results in the same asymptotic bound on the
number of pseudo-segments, however, its running time is quadratic in the number of
curves. Thus our algorithm yields a considerable improvement in the running time.

Throughout this paper we assume that d, b, and ε are constants. Whenever big-O notation
is used, the implicit constant may depend on d, b, and ε.

2 Preliminaries

In what follows, the complexity of a semi-algebraic set S in Rd is the minimum value b so
that S can be represented as the set of points x ∈ Rd satisfying a Boolean formula with at
most b atoms of the form P (x) < 0 or P (x) = 0, with each P being a d-variate polynomial
of degree at most b.

Our analysis makes extensive use of concepts and results from real algebraic geometry
and random sampling. We review them below.

2.1 Polynomials, partitioning, and quantifier elimination
Sign conditions. Let R[x1, . . . , xd] denote the set of all d-variate polynomials with real
coefficients. For P1, . . . , P` ∈ R[x1, . . . , xd], a sign condition on (P1, . . . , P`) is an element of
{−1, 0, 1}`. A strict sign condition on (P1, . . . , P`) is an element of {−1, 1}`. A sign condition
(ν1, . . . , ν`) ∈ {−1, 0, 1}` is realizable if the set

{x ∈ Rd | sign(Pj(x)) = νj for each j = 1, . . . , `} (1)

SoCG 2019

5:4 An Efficient Algorithm for Generalized Polynomial Partitioning

is non-empty. A realizable strict sign condition is defined analogously. The set (1) is
called the realization of the sign condition. The set of realizations of sign conditions (resp.,
realizations of strict sign conditions) corresponding to the tuple (P1, . . . , P`) is the collection
of all non-empty sets of the above form. These sets are pairwise disjoint and partition Rd,
by definition.

While a tuple of ` polynomials has 3` sign conditions and 2` strict sign conditions, Milnor
and Thom (see, e.g., [6, 10]) showed that any ` polynomials in R[x1, . . . , xd] of degree at
most s (with 2 ≤ d ≤ `) have at most (50s`/d)d realizable sign conditions.

Polynomials and partitioning. The set of polynomials in R[x1, . . . , xd] of degree at most b
is a real vector space of dimension

(
b+d
d

)
; we identify this vector space with R(b+d

d). For a
point q ∈ R(b+d

d), let Pq ∈ R[x1, . . . , xd] be the corresponding polynomial of degree at most b.

I Remark 1. Consider the polynomial Q(q, x) ∈ R[q1, . . . , q(b+d
d), x1, . . . , xd] given by

Q(q, x) := Pq(x). Since we can write Q(q, x) =
∑(b+d

d)
i=1 qiHi(x), where Hi is a monomial of

degree at most b, Q has degree b+ 1.

For each positive integer j, let Dj be the smallest positive integer so that
(
Dj+d
d

)
> 2j−1;

we have Dj = O(2j/d). Let k be a positive integer. For each j = 1, . . . , k, pick a 2j−1-
dimensional subspace Vj of R(Dj +d

d). These subspaces Vj will be fixed hereafter. Define the
product space

Yk :=
k×
j=1

Vj . (2)

We identify each point y = (y1, . . . , yk) ∈ Yk, where yj ∈ Vj , with a k-tuple of polynomials
Py = (Py1 , . . . , Pyk

). For each j = 1, . . . , k, deg(Pj) = O(2j/d) and thus deg
(∏k

j=1 Pj
)

=
O(2k/d).

Let Py ∈ Yk, let S be a collection of semi-algebraic sets in Rd, and let α ≥ 1. We say that
Py is a (k, α)-partitioning tuple for S if Py has exactly 2k realizable strict sign conditions
and the realization of each of them intersects at most |S|/α sets from S.3 Guth [11] proved
that, for an appropriate choice of α, a (k, α)-partitioning tuple is guaranteed to exist:

I Proposition 2 (Generalized Polynomial Partitioning [11]). Let S be a family of semi-algebraic
sets in Rd, each of dimension at most g and complexity at most b. For each k ≥ 1, there
exists a (k, α)-partitioning tuple for S, with α = Ωb,d(2k(1−g/d)).

We also recall Theorem 2.16 from [7]:

I Proposition 3. Let P be a set of s polynomials in R[x1, . . . , xd] of degree at most t. Then
there is an algorithm that computes a set of points meeting every connected component of
every realizable sign condition on P in time O(sdtO(d)). There is also an algorithm providing
the list of signs of all the polynomials of P at each of these points in time O(sd+1tO(d)).

3 As in [11], we work with a k-tuple of polynomials instead of a single polynomial so that we can bound the
number of sets intersected by the realization of a sign condition rather than by a connected component
of a realization.

P.K. Agarwal, B. Aronov, E. Ezra, and J. Zahl 5:5

Singly exponential quantifier elimination. Let h and ` be non-negative integers and let
P = {P1, . . . , Ps} ⊂ R[x1, . . . , xh, y1, . . . , y`]. Let Φ(y) be a first-order formula given by

(∃x1, . . . , xh)F (P1(x, y), . . . , Ps(x, y)), (3)

where y = (y1, . . . , y`) is a block of ` free variables; x is a block of h variables, and
F (P1, . . . , Ps) is a quantifier-free Boolean formula with atomic predicates of the form
sign(Pi(x1, . . . , xh, y)) = σ, with σ ∈ {−1, 0, 1}.

The Tarski-Seidenberg theorem states that the set of points y ∈ R` satisfying the
formula Φ(y) is semi-algebraic. The next proposition is a quantitative version of this result
that bounds the number and degree of the polynomial equalities and inequalities needed to
describe the set of points satisfying Φ(y). This proposition is known as a “singly exponential
quantifier elimination,” and its more general form (where Φ(y) may contain a mix of ∀ and ∃
quantifiers) can be found in [7, Theorem 2.27].

I Proposition 4. Let P be a set of at most s polynomials, each of degree at most t in h+ `

real variables. Given a formula Φ(y) of the form (3), there exists an equivalent quantifier-free
formula

Ψ(y) =
I∨
i=1

Ji∧
j=1

(Ni,j∨
n=1

sign(Pijn(y)) = σijn

)
, (4)

where Pijn are polynomials in the variables y, σijn ∈ {−1, 0, 1},

I ≤ s(h+1)(`+1)tO(h·`),

Ji ≤ s(h+1)tO(h),

Nij ≤ tO(h),

(5)

and the degrees of the polynomials Pijn(y) are bounded by tO(h). Moreover, there is an
algorithm to compute Ψ(Y) in time s(h+1)(`+1)tO(h·`).

2.2 Range spaces, VC dimension, and ε-samples
We first recall several standard definitions and results from [13, Chapter 5]. A range space is
a pair Σ = (X,R), where X is a set and R is a collection of subsets of X. Let (X,R) be a
range space and let A ⊂ X be a set. We define the restriction of Σ to A, denoted by ΣA to
be (A,RA), where RA := {R ∩A | R ∈ R}. If A is finite, then |RA| ≤ 2|A|. If equality holds,
then we say A is shattered. We define the shatter function by πR(z) := max|A|=z |RA|. The
VC dimension of Σ is the largest cardinality of a set shattered by R. If arbitrarily large finite
subsets can be shattered, we say that the VC dimension of Σ is infinite.

Let Σ be a range space, A a finite subset of X, and 0 ≤ ε ≤ 1. A set B ⊂ A is an
ε-sample (also known as ε-approximation) of ΣA if∣∣∣ |A ∩R||A|

− |B ∩R|
|B|

∣∣∣ ≤ ε ∀R ∈ R.

The following classical theorem of Vapnik and Chervonenkis [16] guarantees that, if the
VC-dimension of Σ is finite, then for each positive ε > 0, a sufficiently large random sample
of A is likely to be an ε-sample.4

4 The stated bound is not the strongest possible (see, e.g., [13, Chapter 7] for an improved bound), but is
sufficient for our purposes.

SoCG 2019

5:6 An Efficient Algorithm for Generalized Polynomial Partitioning

I Proposition 5 (ε-Sample Theorem). Let Σ = (X,R) be a range space of VC dimension at
most d and let A ⊂ X be finite. Let 0 < ε, δ < 1. Then a random subset B ⊂ A of cardinality
8d
ε2 log 1

εδ is an ε-sample for ΣA with probability at least 1− δ.

I Proposition 6 ([10, 13]). Let Σ = (X,R) be a range space whose shatter function πR(z)
satisfies the bound πR(z) ≤ Czρ, for all positive integers z, where ρ > 0 is a real parameter.
Then Σ has VC dimension at most 4ρ log(Cρ).

The following theorem can be proven by an argument closely following that in the proof
of Corollary 2.3 from [10]; see [1] for details.

I Theorem 7. Let Z ⊂ Rd × R` be a semi-algebraic set of complexity b. For each y ∈ R`,
define Ry = {x ∈ Rd | (x, y) ∈ Z}. Then the range space (Rd, {Ry | y ∈ R`}) has VC
dimension at most 200`2 log b.

3 Computing Generalized Polynomial Partition

In this section we obtain the main result of the paper: given a collection S of semi-algebraic sets
in Rd, each of dimension at most g and complexity at most b, a (k,Ωb,d(Dd−g))-partitioning
tuple for S can be computed efficiently. We obtain this result in several steps. Given a
semialgebraic set S, a sign condition σ ∈ {−1,+1}k and a real value b > 0, we first show
that the set of k-tuples of degree-b polynomials whose realization of σ intersects S is a
semialgebraic set. This in turn implies that, if S1, . . . , Sn are semi-algebraic sets and if
m ≤ n, then the set of k-tuples of degree-b polynomials whose realization intersects at most
m of the sets S1, . . . , Sn is semi-algebraic. We use a quantifier-elimination algorithm to find
a desired k-tuple. Unfortunately, the running time of the algorithm is exponential in n. We
reduce the running time of the algorithm by using a random sampling technique – we show
that it suffices to compute a partitioning tuple with respect to a small-size random subset
of S.

3.1 The parameter space of semi-algebraic sets
Fix positive integers b, d, g, and k, and let D = 2k/d. Hereafter we assume that D = Ω(2b),
which can be enforced by choosing k sufficiently large.

As above, let S be a family of semi-algebraic sets in Rd, each of dimension at most g and
complexity at most b. Let G : {0, 1}b → {0, 1} be a Boolean function. Let X =

(
R(b+d

d))b.
We identify a point x = (q1, . . . , qb) ∈ X with the semi-algebraic set

Zx,G = {v ∈ Rd | G(Pq1(v) ≥ 0, . . . , Pqb
(v) ≥ 0) = 1} ⊂ Rd.

Observe that each semi-algebraic set in S is of the form Zx,G for some choice of x ∈ X
and a Boolean function G. Let Y = Yk. For each y ∈ Y, define Sy := {u ∈ Rd | P1(u) >
0, . . . , Pk(u) > 0}, where (P1, . . . , Pk) is the tuple associated with y. Define

WG := {(x, y) ∈ X× Y | Zx,G ∩ Sy 6= ∅}.

I Theorem 8. The set WG is semi-algebraic; it is defined by O(ePoly(D)) polynomials, each
of degree DO(d).

Proof. Define V = {(x, y, v) ∈ X × Y × Rd | v ∈ Zx,G ∩ Sy}. The condition v ∈ Zx,G is a
Boolean condition on b polynomial inequalities. By Remark 1, each of these polynomials has
degree at most b+1. Similarly, the condition v ∈ Sy consists of k polynomial inequalities, each

P.K. Agarwal, B. Aronov, E. Ezra, and J. Zahl 5:7

of degree at most D+1. This means that there exists a set of polynomials Q = {Q1, . . . , Qb+k}
of degree b+D + 1 in the variables x, y, v, and a Boolean function F (z1, . . . , zb+k) so that

V = {(x, y, v) ∈ X× Y× Rd | F (Q1(x, y, v) ≥ 0, . . . , Qb+k(z, y, v) ≥ 0) = 1}.

With the above definitions

WG = {(x, y) | ∃(v1, . . . , vd) : F (Q1(x, y, v), . . . , Qb+k(x, y, v)) = 1}.

We now apply Proposition 4. We have a set Q of s = b+ k polynomials, each of degree at
most t = b+D + 1. The variables h and ` from the hypothesis of Proposition 4 are set to
h = d and ` = O

((
b+d
d

)b +Dd
)

= Poly(D); recall that D is sufficiently larger than b, and
thus ` is a suitably chosen polynomial function of D. With these assignments, Proposition 4
says that WG can be expressed as a quantifier-free formula of the form

I∨
i=1

Ji∧
j=1

(Ni,j∨
n=1

sign(Pijn(x, y)) = σijn

)
, (6)

where Pijn are polynomials in the variables (x, y), σijn ∈ {−1, 0, 1},

I ≤ (b+ k)Poly(D)(b+D)Poly(D) = O(ePoly(D)),

Ji ≤ (b+ k)d+1(b+D)O(d) = O(DO(d)),

Nij ≤ (b+D)O(d) = O(DO(d)),

(7)

where the degrees of the polynomials Pijn(y) are bounded by (b+D)O(d) = DO(d).
Summarizing, the quantifier-free formula (6) for WG is a Boolean combination of

O(ePoly(D)) polynomial inequalities, each of degree DO(d), as claimed. J

3.2 A singly-exponential algorithm
In this section, we discuss how to compute a (k, α)-partitioning tuple (for an appropriate
value of α) for a small number m of semi-algebraic sets.

I Theorem 9. Let S be a family of m semi-algebraic sets in Rd, each of dimension at most
g and complexity at most b. Let 1 ≤ k ≤ logm and let D = 2k/d. Then a (k,Ωb,d(Dd−g))-
partitioning tuple for S can be computed in O(ePoly(m)) time.

Proof. Set Y = Yk. As above, we identify points in Y with k tuples (P1, . . . , Pk) of
polynomials. The argument in Theorem 8, as well as the fact that the class of semi-algebraic
sets is closed under the operation of taking a projection, show that for each S ∈ S and each
σ ∈ {−1, 1}k,

IS,σ := {y ∈ Y | S ∩ {σ1P1 > 0, σ2P2 > 0, . . . , σkPk > 0} 6= ∅}

is a semi-algebraic set in Y that can be expressed as a Boolean combination of O(ePoly(D))
polynomials, each of degree DO(d). Moreover, it can be computed in time O(ePoly(D)) (see
once again Proposition 4).

Let Cb,d be a constant to be specified later (the constant will depend only on b and d) and
let N = Cb,d|S|Dg−d + 1; observe that N = O(m). For each σ ∈ {−1, 1}k and for each set
S′ ⊂ S of cardinality |S′| ≥ N , the set {y ∈ Y | y ∈ IS,σ for every S ∈ S′} is a semi-algebraic

SoCG 2019

5:8 An Efficient Algorithm for Generalized Polynomial Partitioning

set in Y that can be expressed as a Boolean combination of O(N ′ePoly(D)) = O(mePoly(D))
polynomials, each of degree DO(d), where N ′ = |S′|. Therefore

K :=
⋃
S′⊂S
|S′|≥N

{y ∈ Y | y ∈ IS,σ for every S ∈ S′} (8)

is a semi-algebraic set in Y that can be expressed as a Boolean combination of

∑
S′⊂S
|S′|≥N

O

((
m

|S′|

)
mePoly(D)

)
= O(em+Poly(D)) = O(ePoly(m))

polynomials, each of degree DO(d). This and the fact that the class of semi-algebraic sets is
closed under the operation of taking complement imply that

Good(σ) := Y \K = {y ∈ Y | y ∈ IS,σ for at most Cb,d|S|Dg−d sets S ∈ S}

is a semi-algebraic set in Y that can be expressed as a Boolean combination of O(ePoly(m))
polynomials, each of degree DO(d). This means that the set⋂

σ∈{−1,1}k

Good(σ) (9)

is a semi-algebraic set in Y that can be expressed as a Boolean combination of O(ePoly(m))
polynomials, each of degree DO(d). Recall that by assumption 1 ≤ k ≤ logm and D = 2k/d.
It thus follows that the degree is bounded by Poly(m). Similarly, the dimension of the space
Y is bounded by Poly(m) as well.

Proposition 2 guarantees that if Cb,d is selected sufficiently large, then the set (9) is
non-empty. By Proposition 3, it is possible to locate a point in this set in O(ePoly(m)) time,
concluding the proof of the theorem. J

3.3 Speeding up the algorithm using ε-sampling
In this section we first state the following lemma, whose proof is omitted (see the full version
of this paper [1] for the details):

I Lemma 10. For every choice of positive integers b and d, there is a constant C = C(b, d)
so that the following holds. Let C0 be a positive integer. Let S be a finite collection of
semi-algebraic sets in Rd, each of dimension at most g and complexity at most b. Let k
be a positive integer and let D = 2k/d. Let B ⊂ S be a randomly chosen subset of S of
cardinality at least CDC and let (P1, . . . , Pk) be a (k, D

d−g

C0
)-partitioning tuple for B. Then

with probability at least 1/2, each of the Dd realizable sign conditions of (P1, . . . , Pk) intersects
O(|S|C0D

g−d) elements from S.

Note that Lemma 10 states that it is sufficient to consider a random subset B of size
polynomial in D in order to obtain an appropriate partitioning tuple for the entire collection S,
with reasonable probability.

We next proceed as follows. We select a random sample of S of cardinality CDC and
use Theorem 9 to compute the corresponding partitioning tuple (P1, . . . , Pk). This takes
O(ePoly(D)) time. By Lemma 10, this tuple will be a (k,Ωb,d(Dd−g))-partitioning tuple for
S with probability at least 1/2. We can verify whether the partitioning tuple works in

P.K. Agarwal, B. Aronov, E. Ezra, and J. Zahl 5:9

O(|S|Poly(D)) time. If the tuple does not produce the appropriate partition, we discard
it and try again; the expected number of trials is at most 2. The verification step is done
as follows. For each semi-algebraic set S ∈ S we compute the subset of sign conditions of
(P1, . . . , Pk), with which it has a non-empty intersection. To this end, we restrict each of the
polynomials P1, . . . , Pk to S and apply Proposition 3 on this restricted collection, thereby
obtaining a set of points meeting each connected component of each of the realizable sign
conditions, as well as the corresponding list of signs of the restricted polynomials for each of
these points. This is done in O(DO(d)) time for a single semi-algebraic set S ∈ S, and overall
O(|S|DO(d)) time, over all sets. We refer the reader to [5] for further details concerning the
complexity of the restriction of P1, . . . , Pk to S. We have thus shown:

I Theorem 11. Let S be a finite collection of semi-algebraic sets in Rd, each of which
has dimension at most g and complexity at most b. Let k ≥ 1 and let D = 2k/d. Then a
(k,Ωb,d(Dd−g))-partitioning tuple for S can be computed in O(|S|Poly(D)+ePoly(D)) expected
time by a randomized algorithm.

4 Applications

In this section we describe a few applications of Theorem 11, namely, point-enclosure queries
amid semi-algebraic sets, semi-algebraic range searching with logarithmic query time, vertical
ray shooting amid semi-algebraic sets, and cutting algebraic curves into pseudo-segments.

4.1 Point-enclosure queries
Let S be a set of n semi-algebraic sets in Rd, each of complexity at most b. Each set S is
assigned a weight w(S). We assume that the weights belong to a semigroup, i.e., subtractions
are not allowed, and that the semigroup operation can be performed in constant time. We
wish to preprocess S into a data structure so that the cumulative weight of the sets in S

that contain a query point can be computed in O(logn) time; we refer to this query as
point-enclosure query. Note that if the weight of each set is 1 and the semi-group operation
is Boolean ∨, then the point-enclosure query becomes a union-membership query: determine
whether the query point lies in

⋃
S.

We follow a standard hierarchical partitioning scheme of space, e.g., as in [9, 3], but
use Theorem 11 at each stage. Using this hierarchical partition, we construct a tree data
structure T of depth O(logn), and a query is answered by following a path in T. More
precisely, we fix sufficiently large positive constants D = D(b, d) and n0 = n0(D). If n ≤ n0,
T consists of a single node that stores S itself. So assume that n > n0. Using Theorem 11,
we construct a tuple P = (P1, . . . , Pk) of d-variate polynomials of degree at most D, which
have 2k = O(Dd) realizable sign conditions, each of which with a realization that meets the
boundaries of at most O(|S|/D) sets of S. For each realizable sign condition σ, let Sσ ⊆ S be
the family of sets whose boundaries meet the realization of σ, and let S∗σ ⊆ S be the family
of sets that contain the realization of σ.

We compute Sσ, S∗σ, and Wσ = w(S∗σ), as follows: We first apply Proposition 3 to P to
compute, in O(DO(d)) time, a representative point ξσ in the realization of every realizable
sign condition σ. We fix a set S ∈ S, mark every realizable sign condition σ that meets ∂S,
and add S to the set Sσ. This step is similar to the one described in the proof of Theorem 11,
that is, we restrict each of the polynomials P1, . . . , Pk to the algebraic varieties representing
the boundary of S and apply Proposition 3 to this restricted collection. Each remaining sign
condition σ is either contained in S or disjoint from it, which can be determined by testing
whether its representing point ξσ is contained in S. If the answer is yes, we add the weight
w(S) to Wσ. This task can be completed in overall O(nDO(d)) time over all sets of S.

SoCG 2019

5:10 An Efficient Algorithm for Generalized Polynomial Partitioning

We create the root v of T and store the tuple P at v. We then create a child zσ for each
realizable sign condition σ and store σ and Wσ at zσ. We recursively construct the data
structure for each Sσ and attach it to zσ as its subtree. Since each node of T has degree at
most O(Dd) and the size of the subproblem reduces by a factor of D at each level of the
recursion, a standard analysis shows that the total size of the data structure is O(nd+ε),
where ε > 0 is a constant that can be made arbitrarily small by choosing D and n0 to be
sufficiently large. Similarly, the expected preprocessing time is also O(nd+ε).

Given a query point q ∈ Rd, we compute the cumulative weight of the sets containing q
by traversing a path in the tree in a top-down manner: We start from the root and maintain
a partial weight W , which is initially set to 0. At each node v, we find the sign condition σ of
the polynomial tuple at v whose realization contains q, add Wσ to W , and recursively query
the child zσ of v. The total query time is O(logn), where the constant of proportionality
depends on D (and thus on ε). Putting everything together, we obtain the following:

I Theorem 12. Let S be a set of n semi-algebraic sets in Rd, each of complexity at most b
for some constant b > 0, and let w(S) be the weight of each set S ∈ S that belongs to a
semigroup. Assuming that the semigroup operation can be performed in constant time, S can
be preprocessed in O(nd+ε) randomized expected time into a data structure of size O(nd+ε),
for any constant ε > 0, so that the cumulative weight of the sets that contain a query point
can be computed in O(logn) time.

4.2 Range searching
Next, we consider range searching with semi-algebraic sets: Let P be a set of n points in Rd.
Each point p ∈ P is assigned a weight w(p) that belongs to a semigroup. Again we assume
that the semigroup operation takes constant time. We wish to preprocess P so that, for a
query range γ, represented as a semi-algebraic set in Rd, the cumulative weight of γ ∩ P can
be computed in O(logn) time. Here we assume that the query ranges (semi-algebraic sets)
are parameterized as described in Section 3.1. That is, we have a fixed b-variate Boolean
function G. A query range is represented as a point x ∈ X = Rt, for some t ≤

(
b+d
d

)b,
and the underlying semi-algebraic set is Zx,G. We refer to t as the dimension of the query
space, and to the range searching problem in which all query ranges are of the form Zx,G as
(G, t)-semi-algebraic range searching.

For a point p ∈ Rd, let Sp ⊆ X denote the set of semi-algebraic sets Zx,G that contain p,
i.e., Sp = {x ∈ X | p ∈ Zx,G}. It can be checked that Sp is a semi-algebraic set whose
complexity depends only on b, d, and G. Let S = {Sp | p ∈ P}. For a query range Zx,G, we
now wish to compute the cumulative weight of the sets in S that contain x. This can be
done using Theorem 12. Putting everything together, we obtain the following:

I Theorem 13. Let P be a set of n points in Rd, let w(p) be the weight of p ∈ P that belongs
to a semigroup, and let G be a fixed b-variate Boolean function for some constant b > 0. Let
t ≤

(
b+d
d

)b be the dimension of the query space. Assuming that the semigroup operation can
be performed in constant time, P can be preprocessed in O(nt+ε) randomized expected time
into a data structure of size O(nt+ε), for any constant ε > 0, so that a (G, t)-semi-algebraic
range query can be answered in O(logn) time.

I Remark. If G is the conjunction of a set of b polynomial inequalities, then the size of the
data structure can be significantly improved by using a multi-level data structure, with a
slight increase in the query time to O(logb n); see, e.g., [3]. Roughly speaking, the value
of t will now be the dimension of the parametric space of each polynomial defining the
query semi-algebraic set, rather than the dimension of the parametric space of the entire
semi-algebraic set (which is the conjunction of b such polynomials).

P.K. Agarwal, B. Aronov, E. Ezra, and J. Zahl 5:11

4.3 Vertical ray shooting
We next present an efficient data structure for answering vertical ray-shooting queries:
Preprocess a collection S of n semi-algebraic sets in Rd, each of complexity at most b, into a
data structure so that the first set of S hit by ρq, the ray emanating in the (+xd)-direction
from a query point q, can be reported quickly. If there is more than one such set, the query
procedure returns one of them, arbitrarily.

The overall data structure. Our data structure for vertical ray shooting is similar to the
one described in Section 4.1, except that we store an auxiliary data structure at each node
of the tree to determine which of its children the query procedure should visit recursively.

Again we fix two constants D and n0. If n ≤ n0, the tree data structure T consists of a
single node that stores S. So assume that n > n0. We compute a partitioning polynomial
tuple P = (P1, . . . , Pk) for S of degree D. For each realizable sign condition σ, we compute
the set Sσ ⊆ S whose boundaries meet the realization of σ. We create the root node v
of T and create a child zσ for each realizable sign condition σ. We store two auxiliary
data structures DS1(v) and DS2(v) at v, described below, each of which can be constructed
in O(nd+ε) randomized expected time and requires O(nd+ε) space. Given a query point
q ∈ Rd, DS1(v),DS2(v) together determine, in O(logn) time, the sign condition σ whose
realization contains the first intersection point of ρq with a set of S. We recursively construct
the data structure for each subset Sσ and attach it to zσ as its subtree.

A standard analysis of multi-level data structures (see e.g. [3]) shows that the total
size of T is O(nd+ε), for any constant ε > 0, and that it can be constructed in O(nd+ε)
randomized expected time.

For a query point q ∈ Rd, the first set hit by ρq can be computed by traversing a
root-to-leaf path in T. Suppose we are at a node v. If v is a leaf, then we naively check
all sets in Sv to find the first among them hit by ρq. Otherwise, we use the auxiliary data
structures DS1(v) and DS2(v) to determine in O(logn) time the sign condition σ whose
realization contains the first intersection point of ρq and a set of S. We recursively visit the
child zσ of v. Since the depth of T is O(logn), the total query time is O(log2 n).

This completes the description of the overall algorithm. What remains is to describe the
auxiliary data structures DS1,DS2.

Auxiliary data structures. Recall that the auxiliary data structures are used to determine
the sign condition of P whose realization contains the first intersection point of a vertical
ray with a set of S. We first refine the realizations of sign conditions of P into “cylindrical”
cells, as follows. Let f =

∏k
i=1 Pi; by construction, the degree of f is O(D). By Warren [17,

Theorem 2], the number of connected components of Rd \ Z(f) is at most O(D)d; from now
on we refer to these components as cells.5 We refine the cells of Rd \Z(f) using the so-called
first-stage CAD (cylindrical algebraic decomposition); see, e.g., [6, Chapter 5] for a detailed
overview of standard CAD. That is, this is a simplified version of CAD, presented in [2].

Roughly speaking, the first-stage CAD for f is obtained by constructing a collection G of
polynomials in the variables x1, . . . , xd−1, whose zero sets contain the projection onto Rd−1

of the set of points in Z(f) of vertical tangency, self-intersection of zeros sets (roots with
multiplicity), or a singularity of some other kind. Having constructed G, the first-stage CAD

5 This notion is somewhat different than the notion of realizable sign conditions, where one can have
several connected components representing the same sign condition.

SoCG 2019

5:12 An Efficient Algorithm for Generalized Polynomial Partitioning

is obtained as the arrangement A({f}∪G) in Rd, where the polynomials in G are now regarded
as d-variate polynomials, that is, we lift them in the xd-direction; the geometric interpretation
of the lifting operation is to erect a “vertical wall” in Rd over each zero set within Rd−1 of
a (d− 1)-variate polynomial from G, and the first-stage CAD is the arrangement of these
vertical walls plus Z(f). It follows by construction that the cells of A({f} ∪ G) are vertical
stacks of “cylindrical” cells. In more detail, for each cell τ of A({f} ∪ G), there is unique
cell ϕ of the (d− 1)-dimensional arrangement A(G) in Rd−1 such that one of the following
two cases occur: (i) τ = {(x, ξ(x)} | x ∈ ϕ}, where ξ : ϕ→ R is a continuous semi-algebraic
function (i.e., τ is the graph of ξ over ϕ); or (ii) τ = {(x, t) | x ∈ ϕ, t ∈ (ξ1(x), ξ2(x))}, where
ξi, i = 1, 2 is a continuous semi-algebraic function on ϕ, the constant function ϕ→ {−∞}, or
the constant function ϕ→ {+∞}, and ξ1(x) < ξ2(x) for all x ∈ ϕ (i.e., τ is a cylindrical cell
over ϕ bounded from below (resp. above) by the graph of ξ1 (resp. ξ2)). As stated in [2], the
total number of cells in A({f} ∪ G) is DO(d), and each of them is a semi-algebraic set defined
by DO(d4) polynomials of degree DO(d3) (this is, in fact, an application of Proposition 3).

For a cell ϕ of the (d− 1)-dimensional arrangement A(G), let V (ϕ) be the stack of cells
of A({f} ∪ G) over ϕ, i.e., the set of cells that project to ϕ.

We note that the sign condition of P is the same for all points in a cell of A({f} ∪ G),
i.e., each cell lies in the realization of a single sign condition of P. It thus suffices to find the
cell of A({f} ∪ G) that contains the first intersection point of a vertical ray with a set of S in
order to find the sign condition of P whose realization contains such a point. We construct
DS1,DS2 on the cells of A({f} ∪ G) to quickly determine the desired cell.

The structure DS1. Fix a cell τ of A({f} ∪ G). DS1 is used to determine whether a query
ray ρq whose source point lies in τ intersects any set of S inside τ .

For each input set S ∈ S that intersects τ , let ↑S be the set of points x in Rd such that
the vertical ray ρx intersects S ∩ τ , i.e., ↑(S) is the union of the rays in the (−xd)-direction
emanating from the points of S ∩ τ . ↑S is a semi-algebraic set whose complexity depends
only on b, d, and D. Let ↑Sτ = {↑S | S ∈ S, S ∩ τ 6= ∅}. ↑Sτ can be computed in O(n) time.
Using Theorem 12, we process ↑S into a data structure DS1(τ) of size O(nd+ε) so that for a
query point q ∈ Rd, we can determine in O(logn) time whether q ∈

⋃
↑S, i.e., whether ρq

intersects any set of S within τ . We construct DS1(τ) for all cells τ of A({f} ∪ G). The total
size of the data structure, summed over all cells of A({f} ∪ G), is O(nd+ε), and it can be
constructed in O(nd+ε) randomized expected time.

The structure DS2. Fix a cell τ of A({f} ∪ G). DS2 is used to determine whether a line
parallel to the xd-axis intersects any set of S inside τ .

For each input set S ∈ S that intersects τ , let ↓Sτ be the projection of S ∩ τ onto the
hyperplane xd = 0. For a point q ∈ Rd, the vertical line (parallel to the xd-axis) through q
intersects S inside τ if and only if ↓q ∈ ↓Sτ (where ↓q is the projection of q onto the
hyperplane xd = 0). ↓Sτ is a (d − 1)-dimensional semi-algebraic set whose complexity
depends only on b and D. Let ↓Sτ = {↓Sτ | S ∈ S, S ∩ τ 6= ∅}. ↓Sτ can be constructed in
O(n) time. Using Theorem 12, we process ↓Sτ into a data structure DS2(τ) of size O(nd−1+ε)
so that, for a query point q ∈ Rd, we can determine in O(logn) time whether ↓q ∈

⋃
↓Sτ ,

i.e., whether the vertical line through q intersects any set of S inside τ . We construct DS2(τ)
for all cells of A({f} ∪ G). The total size of the data structure, summed over all cells of
A({f}∪G), is O(nd−1+ε), and it can be constructed in O(nd−1+ε) randomized expected time.

Answering a query. Given a query point q ∈ Rd, we determine the cell of A({f} ∪ G) that
contains the first intersection point of ρq with a set of S as follows. First, we determine the
cell τ of A({f} ∪ G) that contains the query point q. Using DS1(τ), we determine in O(logn)

P.K. Agarwal, B. Aronov, E. Ezra, and J. Zahl 5:13

time whether ρq intersects S inside τ . If the answer is yes, then τ is the desired cell. So
assume that the answer is no. Let ϕ be the cell of the (d− 1)-dimensional arrangement A(G)
such that ↓q ∈ ϕ. Let V (ϕ) = 〈τ1, . . . , τr〉 be the stack of cells over ϕ, and let τ = τi for
some i ≤ k. We visit the cells of V (τ) one by one in order, starting from τi+1 until we find a
cell τj such that ↓q ∈

⋃
↓Sτj

. Since q lies below τj , ρq intersects S inside τj if and only if
↓q ∈

⋃
↓(Sτj). If there is no such cell, we conclude that ρq does not intersect S. Otherwise

τj is the cell of A({f} ∪ G) that contains the first intersection point of ρq with a set of S.
Putting everything together we obtain the following.

I Theorem 14. Let S be a collection of n semi-algebraic sets in Rd, each of complexity at
most b for some constant b > 1. S can be preprocessed, in O(nd+ε) randomized expected time,
into a data structure of size O(nd+ε), for any constant ε > 0, so that a vertical ray-shooting
query can be answered in O(log2 n) time.

4.4 Cutting algebraic curves into pseudo-segments
Sharir and Zahl [15] presented a technique for cutting algebraic plane curves into pseudo-
segments, by lifting curves into three dimensions. More precisely, they prove that n non-
overlapping algebraic curves of bounded degree d can be cut into O(n3/2 logO(1) n) Jordan
arcs so that each pair of arcs intersect in at most one point. Their procedure exploits
Proposition 2 for algebraic curves in three dimensions; see [15, Theorem 1.1]. Theorem 11
can be used to prove a slightly weaker constructive and efficient variant of the above result,
for a sketch of the proof see the full version of this paper [1].

I Theorem 15. Let C be a set of n algebraic plane curves, each of degree at most d, with no
two sharing a common component. Then C can be cut into O(n3/2+Cd/ log logn) Jordan arcs,
where Cd is a constant that depends on d, so that each pair of arcs intersect in at most one
point. This cutting can be computed in randomized expected time O(n3/2+Cd/ log logn).

By replacing Theorem 1.1 in [15] with our Theorem 15, we obtain effective and efficient
version of all of the subsequent results in [15].

References
1 Pankaj K. Agarwal, Boris Aronov, Esther Ezra, and Joshua Zahl. An Efficient Algorithm

for Generalized Polynomial Partitioning and Its Applications. CoRR, abs/1812.10269, 2018.
arXiv:1812.10269.

2 Pankaj K. Agarwal, Jivr’i Matouvsek, and Micha Sharir. On Range Searching with Semialge-
braic Sets. II. SIAM J. Comput., 42(6):2039–2062, 2013. doi:10.1137/120890855.

3 P.K. Agarwal. Simplex range searching and its variants: A review. A Journey Through
Discrete Mathematics, pages 1–30, 2017.

4 Boris Aronov, Esther Ezra, and Joshua Zahl. Constructive Polynomial Partitioning for
Algebraic Curves in R3 with Applications. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 2636–2648, 2019. doi:10.1137/1.9781611975482.163.

5 Sal Barone and Saugata Basu. Refined Bounds on the Number of Connected Components
of Sign Conditions on a Variety. Discrete & Computational Geometry, 47(3):577–597, 2012.
doi:10.1007/s00454-011-9391-3.

6 S. Basu, R. Pollack, and M.F. Roy. Algorithms in Real Algebraic Geometry, volume 10.
Springer Verlag, Berlin-Heidelberg, 2006.

7 Saugata Basu. Algorithms in Real Algebraic Geometry: A Survey. CoRR, abs/1409.1534,
2014. arXiv:1409.1534.

SoCG 2019

http://arxiv.org/abs/1812.10269
http://dx.doi.org/10.1137/120890855
http://dx.doi.org/10.1137/1.9781611975482.163
http://dx.doi.org/10.1007/s00454-011-9391-3
http://arxiv.org/abs/1409.1534

5:14 An Efficient Algorithm for Generalized Polynomial Partitioning

8 J. Bochnak, M. Coste, and M.F. Roy. Géométrie algébrique réelle (Second edition in english:
Real Algebraic Geometry), volume 12(36). Springer Verlag, Berlin-Heidelberg, 1998.

9 Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. A Singly
Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications.
Theor. Comput. Sci., 84(1):77–105, 1991. doi:10.1016/0304-3975(91)90261-Y.

10 J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl. A semi-algebraic version of Zarankiewicz’s
problem. J. Eur. Math. Soc., 19(6):1785–1810, 2017.

11 L. Guth. Polynomial partitioning for a set of varieties. Math. Proc. Camb. Philos. Soc.,
159(3):459–469, 2015.

12 L Guth and N. Katz. On the Erdos distinct distance problem in the plane. Ann. of Math.,
181:155–190, 2015.

13 S. Har-Peled. Geometric Approximation Algorithms, volume 173. AMS Press, Boston, MA,
2011.

14 Vladlen Koltun. Almost tight upper bounds for vertical decompositions in four dimensions. J.
ACM, 51(5):699–730, 2004. doi:10.1145/1017460.1017461.

15 Micha Sharir and Joshua Zahl. Cutting algebraic curves into pseudo-segments and applications.
J. Comb. Theory, Ser. A, 150:1–35, 2017. doi:10.1016/j.jcta.2017.02.006.

16 V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory Probab. Appl., 16:264–280, 1971.

17 H.E. Warren. Lower bound for approximation by nonlinear manifolds. Trans. Amer. Math.
Soc., 133:167–178, 1968.

http://dx.doi.org/10.1016/0304-3975(91)90261-Y
http://dx.doi.org/10.1145/1017460.1017461
http://dx.doi.org/10.1016/j.jcta.2017.02.006

Efficient Algorithms for Geometric Partial
Matching
Pankaj K. Agarwal
Duke University, Durham, USA
pankaj@cs.duke.edu

Hsien-Chih Chang
Duke University, Durham, USA
hsienchih.chang@duke.edu

Allen Xiao
Duke University, Durham, USA
axiao@cs.duke.edu

Abstract
Let A and B be two point sets in the plane of sizes r and n respectively (assume r ≤ n), and let
k be a parameter. A matching between A and B is a family of pairs in A × B so that any point
of A ∪ B appears in at most one pair. Given two positive integers p and q, we define the cost of
matching M to be c(M) =

∑
(a,b)∈M‖a − b‖

q
p where ‖·‖p is the Lp-norm. The geometric partial

matching problem asks to find the minimum-cost size-k matching between A and B.
We present efficient algorithms for geometric partial matching problem that work for any powers

of Lp-norm matching objective: An exact algorithm that runs in O((n+ k2) polylogn) time, and a
(1 + ε)-approximation algorithm that runs in O((n+ k

√
k) polylogn · log ε−1) time. Both algorithms

are based on the primal-dual flow augmentation scheme; the main improvements involve using
dynamic data structures to achieve efficient flow augmentations. With similar techniques, we give an
exact algorithm for the planar transportation problem running in O(min{n2, rn3/2} polylogn) time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases partial matching, transportation, optimal transport, minimum-cost flow,
bichromatic closest pair

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.6

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.09358.

Funding Work on this paper was supported by NSF under grants CCF-15-13816, CCF-15-46392,
and IIS-14-08846, by an ARO grant W911NF-15-1-0408, and by BSF Grant 2012/229 from the
U.S.-Israel Binational Science Foundation.

Acknowledgements We thank Haim Kaplan for discussion and suggestion to use Goldberg et al. [9]
algorithm. We thank Debmalya Panigrahi for helpful discussions.

1 Introduction

Given two point sets A and B in the plane, we consider the problem of finding the minimum-
cost partial matching between A and B. Formally, suppose A has size r and B has size n
where r ≤ n. Let G(A,B) be the undirected complete bipartite graph between A and B,
and let the cost of edge (a, b) be c(a, b) = ‖a − b‖qp, for some positive integers p and q. A
matching M in G(A,B) is a set of edges sharing no endpoints. The size of M is the number
of edges in M . The cost of matching M , denoted c(M), is defined to be the sum of costs of
edges in M . For a parameter k, the problem of finding the minimum-cost size-k matching in

© Pankaj K. Agarwal, Hsien-Chih Chang, and Allen Xiao;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:hsienchih.chang@duke.edu
mailto:axiao@cs.duke.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.6
https://arxiv.org/abs/1903.09358
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Efficient Algorithms for Geometric Partial Matching

G(A,B) is called the geometric partial matching problem. We call the corresponding problem
in general bipartite graphs (with arbitrary edge costs) the partial matching problem.1

We also consider the following generalization of bipartite matching. Let φ : A ∪B → Z
be an integral supply-demand function with positive value on points of A and negative
value on points of B, satisfying

∑
a∈A φ(a) = −

∑
b∈B φ(b). Let U := maxp∈A∪B |φ(p)|. A

transportation map is a function τ : A × B → R≥0 such that
∑
b∈B τ(a, b) = φ(a) for all

a ∈ A and
∑
a∈A τ(a, b) = −φ(b) for all b ∈ B. We define the cost of τ to be

c(τ) :=
∑

(a,b)∈A×B

c(a, b) · τ(a, b).

The transportation problem asks to compute a transportation map of minimum cost.

Related work. Maximum-size bipartite matching is a classical problem in graph algorithms.
Upper bounds include the O(m

√
n) time algorithm by Hopcroft and Karp [10] and the

O(mmin{
√
m,n2/3}) time algorithm by Even and Tarjan [7], where n is the number of nodes

and m is the number of edges. The first improvement in over thirty years was made by
Mądry [15], which uses an interior-point algorithm, runs in O(m10/7 polylogn) time.

The Hungarian algorithm [13] computes a minimum-cost maximum matching in a bi-
partite graph in roughly O(mn) time. Faster algorithms have been developed, such as the
O(m

√
n log(nC)) time algorithms by Gabow and Tarjan [8] and the improved O(m

√
n logC)

time algorithm by Duan et al. [6] assuming the edge costs are integral; here C is the maximum
cost of an edge. Ramshaw and Tarjan [17] showed that the Hungarian algorithm can be
extended to compute a minimum-cost partial matching of size k in O(km+ k2 log r) time,
where r is the size of the smaller side of the bipartite graph. They also proposed a cost-scaling
algorithm for partial matching that runs in time O(m

√
k log(kC)), again assuming that costs

are integral. By reduction to unit-capacity min-cost flow, Goldberg et al. [9] developed a
cost-scaling algorithm for partial matching with an identical running time O(m

√
k log(kC)),

again only for integral edge costs.
In geometric settings, the Hungarian algorithm can be implemented to compute an optimal

perfect matching between A and B (assuming equal size) in time O(n2 polylogn) [11] (see also
[21, 1]). This algorithm computes an optimal size-k matching in time O(kn polylogn). Faster
approximation algorithms have been developed for computing perfect matchings in geometric
settings [21, 22, 4, 19]. Recall that the cost of the edges are the qth power of their Lp-distances.
When q = 1, the best algorithm to date by Sharathkumar and Agarwal [18] computes (1 + ε)-
approximation to the value of optimal perfect matching in O(n polylogn · poly ε−1) expected
time with high probability. Their algorithm can also compute a (1 + ε)-approximate partial
matching within the same time bound. For q > 1, the best known approximation algorithm
to compute a perfect matching runs in O(n3/2 polylogn log(1/ε)) time [19]; it is not obvious
how to extend this algorithm to the partial matching setting.

The transportation problem can also be formulated as an instance of the minimum-cost
flow problem. The strongly polynomial uncapacitated min-cost flow algorithm by Orlin [16]
solves the transportation problem in O((m + n logn)n logn) time. Lee and Sidford [14]
give a weakly polynomial algorithm that runs in O(m

√
n polylog(n,U)) time, where U is

the maximum amount of node supply-demand. Agarwal et al. [2, 3] showed that Orlin’s
algorithm can be implemented to solve 2D transportation in time O(n2 polylogn). In case

1 Partial matching is also called imperfect matching or imperfect assignment [17, 9].

P.K. Agarwal, H.-C. Chang, and A. Xiao 6:3

of O(1)-dimension Euclidean space, by adapting the Lee-Sidford algorithm, they developed
a (1 + ε)-approximation algorithm that runs in O(n3/2 poly ε−1 polylog(n,U)) time. They
also gave a Monte-Carlo algorithm that computes an O(log2(1/ε))-approximate solution
in O(n1+ε) time with high probability. Recently, Khesin, Niklov, and Paramonov [12]
obtained a (1+ε)-approximation in low-dimensional Euclidean space that runs in randomized
O(npoly ε−1 polylog(n,U)) time.

Our results. There are three main results in this paper. First in Section 2 we present an
efficient algorithm for computing an optimal partial matching in the plane.

I Theorem 1. Given two point sets A and B in the plane each of size at most n and an
integer k ≤ n, a minimum-cost matching of size k between A and B can be computed in
O((n+ k2) polylogn) time.

We use bichromatic closest pair (BCP) data structures to implement the Hungarian
algorithm efficiently, similar to Agarwal et al. [1] and Kaplan et al. [11]. But unlike their
algorithms which take Ω(n) time to find an augmenting path, we show that afterO(n polylogn)
time preprocessing, an augmenting path can be found in O(k polylogn) time. The key is to
recycle (rather than rebuild) our data structures from one augmentation to the next. We
refer to this idea as the rewinding mechanism.

Next in Sections 3, we obtain a (1 + ε)-approximation algorithm for the geometric partial
matching problem in the plane by providing an efficient implementation of the unit-capacity
min-cost flow algorithm by Goldberg et al. [9].

I Theorem 2. Given two point sets A and B in R2 each of size at most n, an integer k ≤ n,
and a parameter ε > 0, a (1 + ε)-approximate min-cost matching of size k between A and B
can be computed in O((n+ k

√
k) polylogn · log ε−1) time.

The main challenge here is how to deal with the dead nodes, which neither have excess/de-
ficit nor have flow passing through them, but still contribute to the size of the graph. We show
that the number of alive nodes is only O(k), and then represent the dead nodes implicitly
so that the Hungarian search and computation of a blocking flow can be implemented in
O(k polylogn) time.

Finally in Section 4 we present a faster algorithm for the transportation problem in R2

when the two point sets are unbalanced.

I Theorem 3. Given two point sets A and B in R2 of sizes r and n respectively with r ≤ n,
along with supply-demand function φ : A∪B → Z, an optimal transportation map between A
and B can be computed in O(min{n2, rn3/2} polylogn) time.

Our result improves over the O(n2 polylogn) time algorithm by Agarwal et al. [3] for
r = o(

√
n). Similar to their algorithm, we also use the strongly polynomial uncapacitated

minimum-cost flow algorithm by Orlin [16], but additional ideas are needed for efficient
implementation. Unlike in the case of matchings, the support of the transportation problem
may have size Ω(n) even when r is a constant; so naïvely we can no longer spend time
proportional to the size of support of the transportation map. However, with careful
implementation we ensure that the support is acyclic, and one can find an augmenting path
in O(r

√
npolylogn) time with proper data structures, assuming r ≤

√
n.

SoCG 2019

6:4 Efficient Algorithms for Geometric Partial Matching

2 Minimum-cost partial matchings using Hungarian algorithm

In this section, we solve the geometric partial matching problem and prove Theorem 1 by
implementing the Hungarian algorithm for partial matching in O((n+ k2) polylogn) time.

A node v is matched by matchingM if v is the endpoint of some edge inM ; otherwise v is
unmatched. Given a matchingM , an augmenting path Π = (a1, b1, . . . , a`, b`) is an odd-length
path with unmatched endpoints (a1 and b`) that alternates between edges outside and inside
of M . The symmetric difference M ⊕Π creates a new matching of size |M |+ 1, called the
augmentation of M by Π. The dual to the standard linear program for partial matching has
one dual variable for each node v, called the potential π(v) of v. Given potential π, we can
define the reduced cost of the edges to be cπ(v, w) := c(v, w)− π(v) + π(w). Potential π is
feasible on edge (v, w) if cπ(v, w) is nonnegative. Potential π is feasible if π is feasible on
every edge in G. We say that an edge (v, w) is admissible under potential π if cπ(v, w) = 0.

Fast implementation of Hungarian search. The Hungarian algorithm is initialized with
M ← ∅ and π ← 0. Each iteration of the Hungarian algorithm augments M by an admissible
augmenting path Π, discovered using a procedure called the Hungarian search. The algorithm
terminates after k augmentations, exactly when |M | = k; Ramshaw and Tarjan [17] showed
that M is guaranteed to be an optimal partial matching.

The Hungarian search grows a set of reachable nodes X from all unmatched v ∈ A using
augmenting paths of admissible edges. Initially, X is the set of unmatched nodes in A. Let
the frontier of X be the edges in (A∩X)× (B \X). X is grown by relaxing an edge (a, b) in
the frontier: Add b into X, modify potential to make (a, b) admissible, preserve cπ on other
edges within X, and keep π feasible on edges outside of X. Specifically, the algorithm relaxes
the min-reduced-cost frontier edge (a, b), and then raises π(v) by cπ(a, b) for all v ∈ X. If b is
already matched, then we also relax the matching edge (a′, b) and add a′ into X. The search
finishes when b is unmatched, and an admissible augmenting path now can be recovered.

In the geometric setting, we find the min-reduced-cost frontier edge using a dynamic
bichromatic closest pair (BCP) data structure, similar to [3, 21]. Given two point sets P
and Q in the plane and a weight function ω : P ∪Q→ R, the BCP is two points a ∈ P and
b ∈ Q minimizing the additively weighted distance c(a, b)− ω(a) + ω(b). Thus, a minimum
reduced-cost frontier edge is precisely the BCP of point sets P = A ∩X and Q = B \X,
with ω = π. Note that the “state” of this BCP is parameterized by X and π.

The dynamic BCP data structure by Kaplan et al. [11] supports point insertions and
deletions in O(polylogn) time and answers queries in O(log2 n) time for our setting. Each
relaxation in the Hungarian search requires one query, one deletion, and at most one insertion
(aside from the potential updates). As |M | ≤ k throughout, there are at most 2k relaxations
in each Hungarian search, and the BCP can be used to implement each Hungarian search in
O(k polylogn) time.

Rewinding mechanism. We observe that exactly one node of A is newly matched after an
augmentation. Thus (modulo potential changes), we can obtain the initial state of the BCP
for the (i+ 1)-th Hungarian search from the i-th one with a single BCP deletion.

If we remember the sequence of points added to X in the i-th Hungarian search, then at
the start of the (i+ 1)-th Hungarian search we can rewind this sequence by applying the
opposite insert/delete operation to each BCP update in reverse order to obtain the initial
state of the i-th BCP. With one additional BCP deletion, we have the initial state of the
(i+ 1)-th BCP. The number of insertions/deletions is bounded by the number of relaxations

P.K. Agarwal, H.-C. Chang, and A. Xiao 6:5

per Hungarian search which is O(k). Therefore we can recover, in O(k polylogn) time, the
initial BCP data structure for each Hungarian search beyond the first. We refer to this
procedure as the rewinding mechanism.

Potential updates. We modify a trick from Vaidya [21] to batch potential updates. Potential
is tracked with a stored value γ(v), while the true value of π(v) may have changed since γ(v)
was last recorded. This is done by aggregating potential changes into a variable δ, which is
initially 0 at the very beginning of the algorithm. Whenever we would raise the potential
of all nodes in X, we raise δ by that amount instead. We maintain the following invariant:
π(v) = γ(v) for v 6∈ X, and π(v) = γ(v) + δ for v ∈ X.

At the beginning of the algorithm, X is empty and stored values are equal to true values.
When a ∈ A is added to X, we update its stored value to π(a)− δ for the current value of δ,
and use that stored value as its BCP weight. Since the BCP weights are uniformly offset
from π(v) by δ, the pair reported by the BCP is still minimum. When b ∈ B is added to X,
we update its stored value to π(b)− δ (although it won’t be added to a BCP set). When a
node is removed from X (e.g. by augmentation or rewinding), we update the stored potential
γ(v) ← π(v) + δ, again for the current value of δ. Unlike Vaidya [21] and for the sake of
rewinding, we do not reset δ across Hungarian searches.

There are O(k) relaxations and thus O(k) updates to δ per Hungarian search. O(k) stored
values are updated per rewinding, so the time spent on potential updates per Hungarian
search is O(k). Putting everything together, our implementation of the Hungarian algorithm
runs in O((n+ k2) polylogn) time. This proves Theorem 1.

3 Approximating min-cost partial matching through cost-scaling

In this section we describe an approximation algorithm for computing a min-cost partial
matching. We reduce the problem to computing a min-cost circulation in a flow network
(Section 3.1). We adapt the cost-scaling algorithm by Goldberg et al. [9] for computing
min-cost flow of a unit-capacity network (Section 3.2). Finally, we show how their algorithm
can be implemented in O

(
(n+ k3/2) polylog(n) log(1/ε)

)
time in our setting (Section 3.3).

3.1 From matching to circulation
Given a bipartite graph G with node sets A and B, we construct a flow network N = (V, ~E)
in a standard way [17] so that a min-cost matching in G corresponds to a min-cost integral
circulation in N .

Flow network. Each node in G becomes a node in N and each edge (a, b) in G becomes an
arc a�b in N ; we refer to these nodes and arcs as bipartite nodes and bipartite arcs. We also
include a source node s and sink node t in N . For each a ∈ A, we add a left dummy arc s�a
and for each b ∈ B a right dummy arc b�t. The cost c(v�w) is equal to c(v, w) if v�w is a
bipartite arc and 0 if v�w is a dummy arc. All arcs in N have unit capacity.

Let φ : V → Z be an integral supply/demand function on nodes of N . The positive values
of φ(v) are referred to as supply, and the negative values of φ(v) as demand. A pseudoflow
f : ~E → [0, 1] is a function on arcs of N . The support of f in N , denoted as supp(f), is the
set of arcs with positive flow. Given a pseudoflow f , the imbalance of a node is

φf (v) := φ(v) +
∑

w�v∈~E

f(w�v)−
∑

v�w∈~E

f(v�w).

SoCG 2019

6:6 Efficient Algorithms for Geometric Partial Matching

We call positive imbalance excess and negative imbalance deficit. A node is balanced if it
has zero imbalance. If all nodes are balanced, the pseudoflow is a circulation. The cost of a
pseudoflow is defined to be

c(f) :=
∑

v�w∈supp(f)

c(v�w) · f(v�w).

The minimum-cost flow problem (MCF) asks to find a circulation of minimum cost.
If we set φ(s) = k, φ(t) = k, and φ(v) = 0 for all v ∈ A∪B, then an integral circulation f

corresponds to a partial matching M of size k and vice versa. Moreover, c(M) = c(f). Hence,
the problem of computing a min-cost matching of size k in G transforms to computing an
integral circulation in N . The following lemma will be useful for our algorithm.

I Lemma 4. Let N be the network constructed from the bipartite graph G above.
(i) For any integral circulation g in N , the size of supp(g) is at most 3k.
(ii) For any integral pseudoflow f in N with O(k) excess, the size of supp(f) is O(k).

3.2 A cost-scaling algorithm
Before describing the algorithm, we need to introduce a few more concepts.

Residual network and admissibility. If f is an integral pseudoflow on N (that is, f(v�w) ∈
{0, 1} for every arc in ~E), then each arc v�w in N is either idle with f(v�w) = 0 or saturated
with f(u�v) = 1.

Given a pseudoflow f , the residual network Nf = (V, ~Ef) is defined as follows. For each
idle arc v�w in ~E, we add a forward residual arc v�w in Nf . For each saturated arc v�w
in ~E, we add a backward residual arc w�v in Nf . The set of residual arcs in Nf is therefore

~Ef := {v�w | f(v�w) = 0} ∪ {w�v | f(v�w) = 1}.

The cost of a forward residual arc v�w is c(v�w), while the cost of a backward residual
arc w�v is −c(v�w). Each arc in Nf also has unit capacity. By Lemma 4, Nf has O(k)
backward arcs if f has O(k) excess.

A residual pseudoflow g in Nf can be used to change f into a different pseudoflow on N
by augmentation. For simplicity, we only describe augmentation for the case where f and g
are integral. Specifically, augmenting f by g produces a pseudoflow f ′ in N where

f ′(v�w) =

0 w�v ∈ ~Ef and g(w�v) = 1,
1 v�w ∈ ~Ef and g(v�w) = 1,
f(v�w) otherwise.

Using LP duality for min-cost flow, we assign potential π(v) to each node v in N . The
reduced cost of an arc v�w in N with respect to π is defined as

cπ(v�w) := c(v�w)− π(v) + π(w).

Similarly we define the reduced cost of arcs in Nf : the reduced cost of a forward residual
arc v�w in Nf is cπ(v�w), and the reduced cost of a backward residual arc w�v in Nf is
−cπ(v�w). Abusing the notation, we also use cπ to denote the reduced cost of arcs in Nf .

The dual feasibility constraint asks that cπ(v�w) ≥ 0 holds for every arc v�w in ~E;
potential π that satisfy this constraint is said to be feasible. Suppose we relax the dual
feasibility constraint to allow some small violation in the value of cπ(v�w). We say that a

P.K. Agarwal, H.-C. Chang, and A. Xiao 6:7

pair of pseudoflow f and potential π is θ-optimal [20, 5] if cπ(v�w) ≥ −θ for every residual
arc v�w in ~Ef . Pseudoflow f is θ-optimal if it is θ-optimal with respect to some potential
π; potential π is θ-optimal if it is θ-optimal with respect to some pseudoflow f . Given a
pseudoflow f and potential π, a residual arc v�w in ~Ef is admissible if cπ(v�w) ≤ 0. We
say that a pseudoflow g in Nf is admissible if g(v�w) > 0 only on admissible arcs v�w, and
g(v�w) = 0 otherwise.2 We will use the following well-known property of θ-optimality.

I Lemma 5. Let f be an θ-optimal pseudoflow in N and let g be an admissible pseudoflow
in Nf . Then f augmented by g is also θ-optimal in N .

Using Lemma 4, the following lemma can be proved about θ-optimality:

I Lemma 6. Let f be a θ-optimal integer circulation in N , and f∗ be an optimal integer
circulation for N . Then, c(f) ≤ c(f∗) + 6kθ.

Estimating the value of c(f∗). We now describe a procedure for estimating c(f∗) within
a polynomial factor, which is used to initialize the cost-scaling algorithm.

Let T be a minimum spanning tree of A∪B under the cost function c. Let e1, e2, . . . , en−1
be the edges of T sorted in nondecreasing order of length. Let Ti be the forest consisting of
the nodes of A∪B and edges e1, . . . , ei. We call a matchingM intra-cluster if both endpoints
of each edge in M lie in the same connected component of Ti. The following lemma will be
used by our cost-scaling algorithm:

I Lemma 7. Let A and B be two point sets in the plane. Define i∗ to be the smallest index
i such that there is an intra-cluster matching of size k in Ti∗ . Set θ := nq · c(ei∗). Then
(i) The value of i∗ can be computed in O(n logn) time.
(ii) c(ei∗) ≤ c(f∗) ≤ θ.
(iii) There is a θ-optimal circulation in the network N with respect to the all-zero potential,

assuming φ(s) = k, φ(t) = −k, and φ(v) = 0 for all v ∈ A ∪B.

As a consequence of Lemmas 7(ii) and 6, we have:

I Corollary 8. The cost of a θ-optimal integral circulation in N is at most (1 + ε)c(f∗),
where θ := ε

6k · c(ei∗).

Overview of the algorithm. We are now ready to describe our algorithm, which closely
follows Goldberg et al. [9]. The algorithm works in rounds called scales. Within each scale,
we fix a cost scaling parameter θ and maintain potential π with the following property:

(∗) There exists a 2θ-optimal integral circulation in N with respect to π.

For the initial scale, we set θ ← θ and π ← 0. By Lemma 7(iii), property (∗) is satisfied
initially. Each scale of the algorithm consists of two stages. In the scale initialization stage,
Scale-Init computes a θ-optimal pseudoflow f . In the refinement stage, Refine converts f
into a θ-optimal (integral) circulation g. In both stages, π is updated as necessary. If θ ≤ θ,
we return g. Otherwise, we set θ ← θ/2 and start the next scale. Note that property (∗) is
satisfied in the beginning of each scale.

By Corollary 8, when the algorithm terminates, it returns an integral circulation f̃ in N
of cost at most (1 + ε)c(f∗), which corresponds to a (1 + ε)-approximate min-cost matching
of size k in G. The algorithm terminates in log2(θ/θ) = O(log(n/ε)) scales.

2 The same admissibility/feasibility definitions will be used later in Section 4. However, the algorithm in
Section 4 maintains a 0-optimal f and therefore admissible residual arcs always have cπ(v�w) = 0.

SoCG 2019

6:8 Efficient Algorithms for Geometric Partial Matching

Scale initialization. In the first scale, we compute a θ-optimal pseudoflow by simply setting
f(v�w) ← 0 for all arcs in ~E. For subsequent scales, we initialize f to the 2θ-optimal
circulation of the previous scale. First, we raise the potential of all nodes in A by θ, all nodes
in B by 2θ, and t by 3θ. The potential of s is unchanged. Such potential change increases
the reduced cost of all forward arcs to at least −θ.

Next, for each backward arc w�v in Nf with cπ(w�v) < −θ, we set f(v�w)← 0 (that
is, make arc v�w idle), which replaces the backward arc w�v in Nf with forward arc v�w
of positive reduced cost. After this step, the resulting pseudoflow must be θ-optimal as all
arcs of Nf have reduced cost at least −θ.

The desaturation of each backward arc creates one unit of excess. Since there are at most
3k backward arcs, the pseudoflow has at most 3k excess after Scale-Init. There are O(n)
potential updates and O(k) arcs to desautrate, so the time required for Scale-Init is O(n).

Refinement. The procedure Refine converts a θ-optimal pseudoflow with O(k) excess
into a θ-optimal circulation, using a primal-dual augmentation algorithm. A path in Nf is
an augmenting path if it begins at an excess node and ends at a deficit node. We call an
admissible pseudoflow g in Nf an admissible blocking flow if g saturates at least one arc in
every admissible augmenting path in Ng. In other words, there is no admissible excess-deficit
path in the residual network after augmentation by g. Each iteration of Refine finds an
admissible blocking flow to be added to the current pseudoflow in two steps:
1. Hungarian search: a Dijkstra-like search that begins at the set of excess nodes and raises

potential until there is an excess-deficit path of admissible arcs in Nf .
2. Augmentation: construct an admissible blocking flow by performing depth-first search on

the set of admissible arcs of Nf . It suffices to repeatedly extract admissible augmenting
paths until no more admissible excess-deficit paths remain.

The algorithm repeats these steps until the total excess becomes zero. The following lemma
bounds the number of iterations in the Refine procedure at each scale.

I Lemma 9. Let θ be the scaling parameter and π0 the potential function at the beginning of
a scale, such that there exists an integral 2θ-optimal circulation with respect to π0. Let f be
a θ-optimal pseudoflow with excess O(k). Then Refine terminates within O(

√
k) iterations.

Proof. We sketch the proof, which is adapted from Goldberg et al. [9]. Let f0 be the assumed
2θ-optimal integral circulation with respect to π0, and let π be the potential maintained
during Refine. Let d(v) := (π(v)− π0(v))/θ, that is, the increase in potential at v in units
of θ. We divide the iterations of Refine into two phases: before and after every (remaining)
excess node has d(v) ≥

√
k. Each Hungarian search raises excess potential by at least θ,

since we use blocking flows. Thus, the first phase lasts at most
√
k iterations.

At the start of the second phase, consider the set of arcs E+ := {v�w ∈ ~E | f(v�w) <
f0(v�w)}. One can argue that the remaining excess with respect to f is bounded above by
the size of any cut separating the excess and deficit nodes [9, Lemma 4]. The proof examines
cuts Yi := {v | d(v) > i} for 0 ≤ i ≤

√
k. By θ-optimality of f and 2θ-optimality of f0,

one can show that each arc in E+ crosses at most 3 cuts. Furthermore, the size of E+ is
O(k), bounded by the support size of f and f0. Averaging, there is a cut among Yis of size
O(k/

√
k), so the total excess remaining is O(

√
k). Each iteration of Refine eliminates at

least one unit of excess, so the number of second phase iterations is also at most O(
√
k). J

In the next subsection we show that after O(npolylogn) time preprocessing, an iteration
of Refine can be performed in O(k polylogn) time (Lemma 11). By Lemma 9 and the fact
the algorithm terminates in O(log(n/ε)) scales, the overall running time of the algorithm is
O((n+ k3/2) polylogn log(1/ε)), as claimed in Theorem 2.

P.K. Agarwal, H.-C. Chang, and A. Xiao 6:9

3.3 Fast implementation of refinement stage

We now describe a fast implementation of Refine. The Hungarian search and augmentation
steps are similar: each traversing through the residual network using admissible arcs starting
from the excess nodes. Due to lack of space, we only describe the former.

At a high level, let X be the subset of nodes visited by the Hungarian search so far.
Initially X is the set of excess nodes. At each step, the algorithm finds a minimum-reduced-
cost arc v�w in Nf from X to V \X. If v�w is not admissible, the potential of all nodes in
X is increased by dcπ(v�w)/θe to make v�w admissible. If w is a deficit node, the search
terminates. Otherwise, w is added to X and the search continues.

Implementing the Hungarian search efficiently is more difficult than in Section 2 because
(a) excess nodes may show up in A as well as in B, (b) a balanced node may become
imbalanced later in the scales, and (c) the potential of excess nodes may be non-uniform.
We therefore need a more complex data structure.

We call a node v of N dead if φf (v) = 0 and no arc of supp(f) is incident to v; otherwise
v is alive. Note that s and t are always alive. Let A` denote the set of alive nodes in A;
define B` similarly. There are only O(k) alive nodes, as each can be charged to its adjoining
supp(f) arcs or its imbalance. We treat alive and dead nodes separately to implement the
Hungarian search efficiently. By definition, dead nodes only adjoin forward arcs in Nf . Thus,
the in-degree (resp. out-degree) of a node in A \A` (resp. B \B`) is 1, and any path passing
through a dead node has a subpath of the form s�v�b for some b ∈ B or a�v�t for some
a ∈ A. Consequently, a path in Nf may have at most two consecutive dead nodes, and
in the case of two consecutive dead nodes there is a subpath of the form s�v�w�t where
v ∈ A \A` and w ∈ B \B`. We call such paths, from an alive node to an alive node with
only dead interior nodes, alive paths. Let the reduced cost cπ(Π) of an alive path Π be the
sum of cπ over its arcs. We say Π is weakly admissible if cπ(Π) ≤ 0.

We find the min-reduced-cost alive path of lengths 1, 2, and 3 leaving X, then relax the
cheapest among them (raise potential of X by dcπ(Π)/θe and add every node of Π into X).
Essentially, relaxing alive paths “skips over” dead nodes. Since reduced costs telescope on
paths, weak admissibility of an alive path depends only on the potential of its alive endpoints.
Thus, we can query the minimum alive path using a partial assignment of π on only the alive
nodes, leaving π over the dead nodes untracked. We now describe a data structure for each
path length. Note that our “time budget” per Hungarian search is O(k polylogn).

Finding length-1 paths. This data structure finds a min-reduced-cost arc from an alive
node of X to an alive node of V \X. There are O(k) backward arcs, so the minimum among
backward arcs can be maintained explicitly in a priority queue and retrieved in O(1) time.

There are three types of forward arcs: s�a for some a ∈ A`, b�t for some b ∈ B`, and
bipartite arc a�b with two alive endpoints. Arcs of the first (resp. second) type can be found
by maintaining A` \X (resp. B` ∩X) in a priority queue, but should only be queried if
s ∈ X (resp. t 6∈ X). The cheapest arc of the third type can be maintained using a dynamic
BCP data structure between A` ∩X and B` \X, with reduced cost as the weighted pair
distance. Such a data structure can be implemented so that insertions/deletions can be
performed in O(polylog k) time [11].

Finding length-2 paths. We describe how to find a cheapest path of the form s�v�b where
v is dead and b ∈ B`. A cheapest path a�v�t can be found similarly. Similar to length-1
paths, we only query paths starting at s if s ∈ X and paths ending at t if t 6∈ X.

SoCG 2019

6:10 Efficient Algorithms for Geometric Partial Matching

Note that cπ(s�v�b) = c(v, b) + π(b)− π(s). Since π(s) is common in all such paths, it
suffices to find a pair (v, w) between A \ A` and B` \X minimizing c(v, w) + π(w). This
is done by maintaining a dynamic BCP data structure between A \ A` and B` \X with
the cost of a pair (v, w) being c(v, w) + π(w). We may require an update operation for each
alive node added to X during the Hungarian search, of which there are O(k), so the time
spent during a search is O(k polylogn).

Since the size of A \ A` is at least r − k, we cannot construct this BCP from scratch
at the beginning of each iteration. To resolve this, we use the idea of rewinding from
Section 2, with a slight twist. There are now two ways that the initial BCP may change
across consecutive Hungarian searches: (1) the initial set X may change as nodes lose excess
through augmentation, and (2) the set of alive/dead nodes in A may change. The first is
identical to the situation in Section 2; the number of excess depletions is O(k) over the course
of Refine. For the second, the alive/dead status of a node can change only if the blocking
flow found passes through the node. By Lemma 10 below, there are O(k) such changes per
Hungarian search, which can be done in O(k polylogn) time.

Finding length-3 paths. We now describe how to find the cheapest path of the form
s�v�w�t where v ∈ A\A` and w ∈ B\B`. Note that cπ(s�v�w�t) = c(v�w)−π(s)+π(t).
A pair (v, w) between A \A` and B \B` minimizing c(v, w) can be found by maintaining a
dynamic BCP data structure similar to the case of length-2 paths.

This BCP data structure has no dependency on X – the only update required comes
from membership changes to A` or B` after an augmentation. Applying Lemma 10 again,
there are O(k) alive/dead updates caused by an augmentation, so the time for these updates
per Hungarian search is O(k polylogn).

Updating potential. Potential updates for alive nodes can be handled in a batched fashion
as in Section 2. The three data structures above have no dependency on the dead node
potential; we leave them untracked as described before. The Hungarian search remains intact
since alive nodes are visited in the same order as when using arc-by-arc relaxations. However,
we need values of π on all nodes at the end of a scale (for the next Scale-Init) and for
individual dead nodes whenever they become alive (after augmentation).

We can reconstruct a “valid” potential in these situations. To recover potential for
v ∈ A \ A` we set π(v) ← π(s), and for v ∈ B \ B` we set π(v) ← π(t). Straightforward
calculation shows that such potential (1) preserves θ-optimality, and (2) makes Π (arc-wise)
admissible for any weakly admissible alive path Π. Hence, a blocking flow composed of
weakly admissible alive paths is admissible under the recovered potential.

The following lemma is crucial to the analysis of running time for the Hungarian search,
bounding both the number of relaxations and potential update/recovery operations.

I Lemma 10. Both Hungarian search and augmentation stages explore O(k) nodes, and the
blocking flow found in augmentation stage is incident to O(k) nodes.

Augmentation can also be implemented in O(k polylogn) time, after O(n polylogn) time
preprocessing, using similar data structures. We thus obtain the following:

I Lemma 11. After O(npolylogn) time preprocessing, each iteration of Refine can be
implemented in O(k polylogn) time.

P.K. Agarwal, H.-C. Chang, and A. Xiao 6:11

4 Transportation algorithm

Given two point sets A and B in R2 of sizes r and n respectively and a supply-demand
function φ : A ∪ B → Z as defined in the introduction, we present an O(rn3/2 polylogn)
time algorithm for computing an optimal transport map between A and B. By applying this
algorithm in the case of r ≤

√
n and the one by Agarwal et al. [3] when r >

√
n, we prove

Theorem 3. We use a standard reduction to the uncapacitated min-cost flow problem and
use Orlin’s algorithm [16] as well as some of the ideas from Agarwal et al. [3] for efficient
implementation under the geometric settings. We first present an overview of the algorithm
and then describe its fast implementation that achieves the desired running time.

4.1 Overview of the algorithm
Orlin’s algorithm follows an excess-scaling paradigm and the primal-dual framework. It
maintains a scale parameter ∆, a flow function f , and potential π on the nodes. Initially ∆
is equal to the total supply, f = 0, and π = 0. We fix a constant parameter α ∈ (0.5, 1). A
node v is called active if the magnitude of imbalance of v is at least α∆. At each step, using
the Hungarian search, the algorithm finds an admissible excess-to-deficit path between active
nodes in the residual network and pushes a flow of amount ∆ along this path.3 Repeat the
process until either active excess or deficit nodes are gone; when this happens, ∆ is halved.
The sequence of augmentations with a fixed value of ∆ is called an excess scale.

The algorithm also performs two preprocessing steps at the beginning of each excess scale.
First, if f(v�w) ≥ 3n∆, v�w is contracted to a single node z with φ(z) = φ(v) + φ(w).4
Second, if there are no active excess nodes and f(v�w) = 0 for every arc v�w, then ∆ is
aggresively lowered to maxv φ(v).

When the algorithm terminates, an optimal circulation in the contracted network is found.
We use the algorithm described in Agarwal et al. [3] to recover an optimal circulation for
the original network in O(npolylogn) time. Orlin showed that the algorithm terminates
within O(n logn) scales and performs a total of O(n logn) augmentations. In the next
subsection, we describe an algorithm that, after O(npolylogn) time preprocessing, finds an
admissible excess-to-deficit path in O(r

√
npolylogn) amortized time. Summing this cost

over all augmentations, we obtain the desired running time.

4.2 An efficient implementation
Recall in the previous sections that we could bound the running time of the Hungarian
search by the size of supp(f). Here, the number of active imbalanced nodes at any scale
is O(r), and the length of an augmenting path is also O(r). Therefore one might hope to
find an augmenting path in O(r polylogn) time, by adapting the algorithms described in
Sections 2 and 3. The challenge is that supp(f) may have Ω(n) size, therefore an algorithm
which runs in time proportional to the support size is no longer sufficient. Still, we manage
to implement Hungarian search in time O(r

√
npolylogn), by exploiting a few properties of

supp(f) as described below.
We note that each arc of supp(f) is admissible with reduced cost 0, so we prioritize the

relaxation of support arcs as soon as they arrive in X × (V \X), over the non-support arcs.
This strategy ensures the following crucial property.

3 Note that this augmentation may convert an excess node into a deficit node.
4 Intuitively, f(v�w) is so high that future scales cannot deplete the flow on v�w.

SoCG 2019

6:12 Efficient Algorithms for Geometric Partial Matching

I Lemma 12. If the support arcs supp(f) are relaxed as soon as possible, supp(f) is acyclic.

Next, similar to Section 3, we call node u alive if (a) u is an active imbalanced node or
(b) if u is incident to an arc of supp(f); u is dead otherwise. Unlike in Section 3, once a node
becomes alive it cannot be dead again. Furthermore, a dead node may become alive only at
the beginning of a scale (after the value of ∆ is reduced). Also, an augmenting path cannot
pass through a dead node. Therefore, we can ignore all dead nodes during Hungarian search,
and update the set of alive/dead nodes at the beginning of a scale.

Let BT ⊆ B` be the set of nodes that are either (a) active imbalanced nodes or (b)
incident to exactly one arc of supp(f). Lemma 12 implies that B` \BT has size O(r). We
can therefore find the min-reduced-cost arc between X ∩ A` and B` \ (BT ∪X) using a
BCP data structure as in Section 2, along with lazy potential updates and the rewinding
mechanism. The total time spent by Hungarian search on the nodes of B` \ BT will be
O(r polylogn). We subsequently focus on handling BT.

Handling BT. We now describe how we query a min-reduced-cost arc between X ∩A` and
BT \X. Each node b ∈ BT is incident to exactly one arc in supp(f). We partition these
nodes into clusters depending on their unique neighbor in Nf . That is, for a node a ∈ A`,
let BT

a := {b ∈ BT | a�b ∈ supp(f)}. We refer to BT
a as the star of a.

The crucial observation is that a is the only node in Nf reachable from each b ∈ BT
a , so

once the Hungarian search reaches a node of BT
a and thus a (recall we prioritize relaxing

support arcs), the Hungarian search need not visit any other nodes of BT
a , as they will

only lead to a. Hence, as soon as one node of BT
a is reached, all other nodes of BT

a can be
discarded from further consideration. Using this observation, we handle BT as follows.

We classify each a ∈ A` as light or heavy: heavy if |BT
a | ≥

√
n, and light if |BT

a | ≤ 2
√
n.

Note that if
√
n ≤ |BT

a | ≤ 2
√
n then a may be classified as light or heavy. We allow this

flexibility to implement reclassification in a lazy manner. Namely, a light node is reclassified
as heavy once |BT

a | > 2
√
n, and a heavy node is reclassified as light once |BT

a | <
√
n.

This scheme ensures that the star of a has gone through at least
√
n updates between two

successive reclassifications, and these updates will pay for the time spent in updating the
data structure when a is re-classified.

For each heavy node a ∈ A` \ X, we maintain a BCP data structure between BT
a

and X ∩ A`. Next, for all light nodes in A` \ X, we collect their stars into a single set
BT
< :=

⋃
a lightB

T
a . We maintain one single BCP data structure between BT

< and A` ∩X.
Thus, at most r different BCP data structures are maintained for stars.

Using these data structures, we can compute and relax a min-reduced-cost arc v�w
between A` ∩ X and BT \ X. If w lies in some star BT

a , then we also add a into X. If
a is light, then we delete BT

a from BT
< and update the BCP data structure of BT

<. If a is
heavy, then we stop querying the BCP data structure of BT

a for the remainder of the search.
Finally, since a becomes part of X, a is added to all O(r) BCP data structures. Recall that
r ≤
√
n by assumption. Adding arc v�w thus involves performing O(

√
n) insertion/deletion

operations in various BCP data structures, thereby taking O(
√
npolylogn) time.

Putting it together. While proof is omitted, the following lemma bounds the running time
of the Hungarian search.

I Lemma 13. Assuming all BCP data structures are initialized correctly, the Hungarian
search terminates within O(r) steps, and takes O(r

√
npolylogn) time.

P.K. Agarwal, H.-C. Chang, and A. Xiao 6:13

Once an augmenting path is found and the augmentation is performed, the set of
imbalanced nodes and the support arcs change. We thus need to update the sets BT, BT

a s,
and BT

<. This can be accomplished in O(r polylogn) amortized time. When we begin a new
Hungarian search, we use the rewinding mechanism to set various BCP data structures in
the right initial state. Finally, when we move from one scale to another, we also update the
sets A` and B`. Omitting all the details, we conclude the following.

I Lemma 14. Each Hungarian search can be performed in O(r
√
npolylogn) time.

Since there are O(n logn) augmentations and the flow in the original network can be
recovered from that in the contracted network in O(npolylogn) time [3], the total running
time of the algorithm is O(rn3/2 polylogn), as claimed in Theorem 3.

References
1 Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical Decomposition of Shallow Levels

in 3-Dimensional Arrangements and Its Applications. SIAM J. Comput., 29(3):912–953, 1999.
doi:10.1137/S0097539795295936.

2 Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen Xiao.
Faster Algorithms for the Geometric Transportation Problem. In Proc. 33rd Int. Sympos.
Comput. Geom. (SoCG), pages 7:1–7:16, 2017. doi:10.4230/LIPIcs.SoCG.2017.7.

3 Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen
Xiao. Faster Algorithms for the Geometric Transportation Problem. Preprint, 2019. arXiv:
1903.08263.

4 Pankaj K. Agarwal and Kasturi R. Varadarajan. A near-linear constant-factor approximation
for Euclidean bipartite matching? In Proc. 20th Annu. Sympos. Comput. Geom. (SoCG),
pages 247–252, 2004. doi:10.1145/997817.997856.

5 D. Bertsekas and D. El Baz. Distributed Asynchronous Relaxation Methods for Convex Network
Flow Problems. SIAM J. Control and Opt., 25(1):74–85, 1987. doi:10.1137/0325006.

6 Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling Algorithms for Weighted Matching in
General Graphs. ACM Trans. Algorithms, 14(1):8:1–8:35, 2018. doi:10.1145/3155301.

7 Shimon Even and Robert E. Tarjan. Network Flow and Testing Graph Connectivity. SIAM J.
Comput., 4(4):507–518, 1975. doi:10.1137/0204043.

8 Harold N. Gabow and Robert E. Tarjan. Faster Scaling Algorithms for Network Problems.
SIAM J. Comput., 18(5):1013–1036, 1989. doi:10.1137/0218069.

9 Andrew V. Goldberg, Sagi Hed, Haim Kaplan, and Robert E. Tarjan. Minimum-Cost Flows
in Unit-Capacity Networks. Theoret. Comput. Sci., 61(4):987–1010, 2017. doi:10.1007/
s00224-017-9776-7.

10 John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.

11 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
Planar Voronoi Diagrams for General Distance Functions and their Algorithmic Applications.
In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 2495–2504,
2017. doi:10.1137/1.9781611974782.165.

12 Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning for the
Geometric Transportation Problem. Preprint, 2019. arXiv:1902.08384.

13 Harold W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
(NRL), 2(1-2):83–97, 1955.

14 Yin Tat Lee and Aaron Sidford. Path Finding Methods for Linear Programming: Solving
Linear Programs in Õ(

√
rank) Iterations and Faster Algorithms for Maximum Flow. In 55th

Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 424–433, 2014. doi:10.1109/FOCS.
2014.52.

SoCG 2019

http://dx.doi.org/10.1137/S0097539795295936
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.7
http://arxiv.org/abs/1903.08263
http://arxiv.org/abs/1903.08263
http://dx.doi.org/10.1145/997817.997856
http://dx.doi.org/10.1137/0325006
http://dx.doi.org/10.1145/3155301
http://dx.doi.org/10.1137/0204043
http://dx.doi.org/10.1137/0218069
http://dx.doi.org/10.1007/s00224-017-9776-7
http://dx.doi.org/10.1007/s00224-017-9776-7
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/1.9781611974782.165
http://arxiv.org/abs/1902.08384
http://dx.doi.org/10.1109/FOCS.2014.52
http://dx.doi.org/10.1109/FOCS.2014.52

6:14 Efficient Algorithms for Geometric Partial Matching

15 Aleksander Mądry. Navigating Central Path with Electrical Flows: From Flows to Matchings,
and Back. In 54th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 253–262, 2013.
doi:10.1109/FOCS.2013.35.

16 James B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm. Operations
Research, 41(2):338–350, 1993. doi:10.1287/opre.41.2.338.

17 Lyle Ramshaw and Robert E. Tarjan. A Weight-Scaling Algorithm for Min-Cost Imperfect
Matchings in Bipartite Graphs. In Proc. 53rd Annu. IEEE Sympos. Found. Comput. Sci.
(FOCS), pages 581–590, 2012. doi:10.1109/FOCS.2012.9.

18 R. Sharathkumar and Pankaj K. Agarwal. A near-linear time ε-approximation algorithm for
geometric bipartite matching. In Proc. 44th Annu. ACM Sympos. Theory Comput. (STOC),
pages 385–394, 2012. doi:10.1145/2213977.2214014.

19 R. Sharathkumar and Pankaj K. Agarwal. Algorithms for the transportation problem in
geometric settings. In Proc. 23rd Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA),
pages 306–317, 2012. URL: https://dl.acm.org/citation.cfm?id=2095116.2095145.

20 Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5(3):247–256, 1985. doi:10.1007/BF02579369.

21 Pravin M. Vaidya. Geometry Helps in Matching. SIAM J. Comput., 18(6):1201–1225, 1989.
doi:10.1137/0218080.

22 Kasturi R. Varadarajan. A Divide-and-Conquer Algorithm for Min-Cost Perfect Matching in
the Plane. In Proc. 39th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 320–331,
1998. doi:10.1109/SFCS.1998.743466.

http://dx.doi.org/10.1109/FOCS.2013.35
http://dx.doi.org/10.1287/opre.41.2.338
http://dx.doi.org/10.1109/FOCS.2012.9
http://dx.doi.org/10.1145/2213977.2214014
https://dl.acm.org/citation.cfm?id=2095116.2095145
http://dx.doi.org/10.1007/BF02579369
http://dx.doi.org/10.1137/0218080
http://dx.doi.org/10.1109/SFCS.1998.743466

Connecting the Dots (with Minimum Crossings)
Akanksha Agrawal
Ben-Gurion University, Beer-Sheva, Israel
agrawal@post.bgu.ac.il

Grzegorz Guśpiel
Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
guspiel@tcs.uj.edu.pl

Jayakrishnan Madathil
The Institute of Mathematical Sciences, HBNI, Chennai, India
jayakrishnanm@imsc.res.in

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Bergen, Norway
saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University, Beer-Sheva, Israel
meiravze@bgu.ac.il

Abstract
We study a prototype Crossing Minimization problem, defined as follows. Let F be an infinite
family of (possibly vertex-labeled) graphs. Then, given a set P of (possibly labeled) n points in
the Euclidean plane, a collection L ⊆ Lines(P) = {` : ` is a line segment with both endpoints in
P}, and a non-negative integer k, decide if there is a subcollection L′ ⊆ L such that the graph
G = (P, L′) is isomorphic to a graph in F and L′ has at most k crossings. By G = (P, L′), we refer
to the graph on vertex set P , where two vertices are adjacent if and only if there is a line segment
that connects them in L′. Intuitively, in Crossing Minimization, we have a set of locations of
interest, and we want to build/draw/exhibit connections between them (where L indicates where it
is feasible to have these connections) so that we obtain a structure in F . Natural choices for F are
the collections of perfect matchings, Hamiltonian paths, and graphs that contain an (s, t)-path (a
path whose endpoints are labeled). While the objective of seeking a solution with few crossings is
of interest from a theoretical point of view, it is also well motivated by a wide range of practical
considerations. For example, links/roads (such as highways) may be cheaper to build and faster to
traverse, and signals/moving objects would collide/interrupt each other less often. Further, graphs
with fewer crossings are preferred for graphic user interfaces.

As a starting point for a systematic study, we consider a special case of Crossing Minimization.
Already for this case, we obtain NP-hardness and W[1]-hardness results, and ETH-based lower
bounds. Specifically, suppose that the input also contains a collection D of d non-crossing line
segments such that each point in P belongs to exactly one line in D, and L does not contain line
segments between points on the same line in D. Clearly, Crossing Minimization is the case where
d = n – then, P is in general position. The case of d = 2 is of interest not only because it is the most
restricted non-trivial case, but also since it corresponds to a class of graphs that has been well studied
– specifically, it is Crossing Minimization where G = (P, L) is a (bipartite) graph with a so called
two-layer drawing. For d = 2, we consider three basic choices of F . For perfect matchings, we show (i)
NP-hardness with an ETH-based lower bound, (ii) solvability in subexponential parameterized time,
and (iii) existence of an O(k2)-vertex kernel. Second, for Hamiltonian paths, we show (i) solvability
in subexponential parameterized time, and (ii) existence of an O(k2)-vertex kernel. Lastly, for
graphs that contain an (s, t)-path, we show (i) NP-hardness and W[1]-hardness, and (ii) membership
in XP.

© Akanksha Agrawal, Grzegorz Guśpiel, Jayakrishnan Madathil, Saket Saurabh, and
Meirav Zehavi;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:agrawal@post.bgu.ac.il
mailto:guspiel@tcs.uj.edu.pl
mailto:jayakrishnanm@imsc.res.in
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Connecting the Dots (with Minimum Crossings)

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases crossing minimization, parameterized complexity, FPT algorithm, polynomial
kernel, W[1]-hardness

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.7

Related Version A full version of the paper is available at https://akanksha-agrawal.weebly.
com/uploads/1/2/2/2/122276497/crossings.pdf.

Funding Akanksha Agrawal: The work was carried out when the author was employed at Hungarian
Academy of Sciences, and was supported by ERC Consolidator Grant SYSTEMATICGRAPH (No.
46 725978).
Grzegorz Guśpiel: Partially supported by the MNiSW grant DI2013 000443.
Saket Saurabh: Supported by ERC Consolidator Grant LOPPRE (No. 819416).
Meirav Zehavi: Supported by ISF grant no. 1176/18.

Acknowledgements We thank Grzegorz Gutowski and Paweł Rzążewski for many valuable comments
regarding the NP-hardness proof for CM-PM.

1 Introduction

Let F be an infinite family of (possibly vertex-labeled) graphs. Suppose that given a graph
F , the membership of F in F is testable in time polynomial in the size of F . For the family
F , we define a prototype Crossing Minimization problem as follows (see Fig. 1). Given
a set P of (possibly labeled) n points in the two-dimensional Euclidean plane, a collection
L ⊆ Lines(P) = {` : ` is a line segment with both endpoints in P}, and a non-negative integer
k, decide if there exists a subcollection L′ ⊆ L such that the graph G = (P,L′) is isomorphic1
to a graph in F and L′ has at most k crossings. The notation G = (P,L′) refers to the
graph on vertex set P , where two vertices are adjacent if and only if there is a line segment
that connects them in L′. Moreover, the number of crossings of L′ is the number of pairs of
line segments in L′ that intersect each other at a point other than their possible common
endpoint. The Crossing Minimization problem is a general model for a wide range of
scenarios where we have a set of points of interest that correspond to geographical areas or
fixed objects such as cities, manufacturing machinery or immobile equipment, attractions
and mailboxes, and we want to build, draw or exhibit connections between them (where L
indicates where it is feasible to have these connections) in order to obtain a structure in F .

While the objective of seeking a solution with few crossings is of interest from a theoretical
viewpoint, it is also well motivated by practical considerations. For example, public tracks
(such as roads, highways or even paths in amusement parks) with fewer crossings require the
construction of less bridges, elevated tracks, traffic lights and roundabouts, and therefore
they are likely to be cheaper to build [42], easier and faster to traverse [10], and cause less
accidents [21]. Moreover, signals and moving objects would interrupt each other less often.
This property may be crucial as frequent collision between signals can distort or weaken
them [3]. Furthermore, for moving objects such as robots (cleaning robots, autonomous agents
and self-driving cars) that cannot physically be present in an intersection point simultaneously,
encountering a large number of crossings may require the development of more complex
navigation and sensory systems [37]. Lastly, graphs with fewer crossings are easier to view
and analyze – in graphic user interfaces, for example, visual clarity is a major issue [13].

1 With respect to vertex-labeled graphs, isomorphism also preserves the labeling of vertices rather than
only their adjacency relationships – that is, a vertex labeled i can only be mapped to a vertex labeled i.

https://doi.org/10.4230/LIPIcs.SoCG.2019.7
https://akanksha-agrawal.weebly.com/uploads/1/2/2/2/122276497/crossings.pdf
https://akanksha-agrawal.weebly.com/uploads/1/2/2/2/122276497/crossings.pdf

A. Agrawal, G. Guśpiel, J. Madathil, S. Saurabh, and M. Zehavi 7:3

(a)
<latexit sha1_base64="OzqTylBdAgyEWK6IfZXnSl1JFSE=">AAACIXicZVDLSgNBEJyJrxhfiR69LAZBIYRdEfQY8OJRwZigWWR20jFD5rHM9IphyV941Ytf4028iT/jbMzBaMHQNd3VFF1JKoXDMPykpYXFpeWV8mplbX1jc6ta2752JrMc2txIY7sJcyCFhjYKlNBNLTCVSOgko7Ni3nkA64TRVzhOIVbsXouB4Ax966anEvOYH7DDyV21HjbDKYL/JJqROpnh4q5Gaa9veKZAI5fMudsoTDHOmUXBJUwqvcxByviI3cNthoPTOBc6zRA0/zNzoJkCF+fTcybBvu/0g4Gx/mkMpt3fGzlTrpi4hic4VEVRDIdFdWOVNIoPGiPdnFGeJGreudA5buMcMl9EipNK4T3IZIAmKOIK+sICRzn2hHmJPy3gQ2YZRx9qxYcW/Y3oP7k+akZhM7o8rrcas/jKZJfskQMSkRPSIufkgrQJJ5o8kWfyQl/pG32nHz/SEp3t7JA50K9vl2KkDA==</latexit><latexit sha1_base64="OzqTylBdAgyEWK6IfZXnSl1JFSE=">AAACIXicZVDLSgNBEJyJrxhfiR69LAZBIYRdEfQY8OJRwZigWWR20jFD5rHM9IphyV941Ytf4028iT/jbMzBaMHQNd3VFF1JKoXDMPykpYXFpeWV8mplbX1jc6ta2752JrMc2txIY7sJcyCFhjYKlNBNLTCVSOgko7Ni3nkA64TRVzhOIVbsXouB4Ax966anEvOYH7DDyV21HjbDKYL/JJqROpnh4q5Gaa9veKZAI5fMudsoTDHOmUXBJUwqvcxByviI3cNthoPTOBc6zRA0/zNzoJkCF+fTcybBvu/0g4Gx/mkMpt3fGzlTrpi4hic4VEVRDIdFdWOVNIoPGiPdnFGeJGreudA5buMcMl9EipNK4T3IZIAmKOIK+sICRzn2hHmJPy3gQ2YZRx9qxYcW/Y3oP7k+akZhM7o8rrcas/jKZJfskQMSkRPSIufkgrQJJ5o8kWfyQl/pG32nHz/SEp3t7JA50K9vl2KkDA==</latexit><latexit sha1_base64="OzqTylBdAgyEWK6IfZXnSl1JFSE=">AAACIXicZVDLSgNBEJyJrxhfiR69LAZBIYRdEfQY8OJRwZigWWR20jFD5rHM9IphyV941Ytf4028iT/jbMzBaMHQNd3VFF1JKoXDMPykpYXFpeWV8mplbX1jc6ta2752JrMc2txIY7sJcyCFhjYKlNBNLTCVSOgko7Ni3nkA64TRVzhOIVbsXouB4Ax966anEvOYH7DDyV21HjbDKYL/JJqROpnh4q5Gaa9veKZAI5fMudsoTDHOmUXBJUwqvcxByviI3cNthoPTOBc6zRA0/zNzoJkCF+fTcybBvu/0g4Gx/mkMpt3fGzlTrpi4hic4VEVRDIdFdWOVNIoPGiPdnFGeJGreudA5buMcMl9EipNK4T3IZIAmKOIK+sICRzn2hHmJPy3gQ2YZRx9qxYcW/Y3oP7k+akZhM7o8rrcas/jKZJfskQMSkRPSIufkgrQJJ5o8kWfyQl/pG32nHz/SEp3t7JA50K9vl2KkDA==</latexit><latexit sha1_base64="OzqTylBdAgyEWK6IfZXnSl1JFSE=">AAACIXicZVDLSgNBEJyJrxhfiR69LAZBIYRdEfQY8OJRwZigWWR20jFD5rHM9IphyV941Ytf4028iT/jbMzBaMHQNd3VFF1JKoXDMPykpYXFpeWV8mplbX1jc6ta2752JrMc2txIY7sJcyCFhjYKlNBNLTCVSOgko7Ni3nkA64TRVzhOIVbsXouB4Ax966anEvOYH7DDyV21HjbDKYL/JJqROpnh4q5Gaa9veKZAI5fMudsoTDHOmUXBJUwqvcxByviI3cNthoPTOBc6zRA0/zNzoJkCF+fTcybBvu/0g4Gx/mkMpt3fGzlTrpi4hic4VEVRDIdFdWOVNIoPGiPdnFGeJGreudA5buMcMl9EipNK4T3IZIAmKOIK+sICRzn2hHmJPy3gQ2YZRx9qxYcW/Y3oP7k+akZhM7o8rrcas/jKZJfskQMSkRPSIufkgrQJJ5o8kWfyQl/pG32nHz/SEp3t7JA50K9vl2KkDA==</latexit>

(b)
<latexit sha1_base64="7ayJAnrSgLcSNWKGmrg5DnQGFb8=">AAACIXicZVBNSwMxEE38tn7r0ctiESqUsiuCHgUvHhWsinYpSTptg/lYklmxLP0XXvXir/Em3sQ/Y7b2YOuDMC8zb3jM45mSHuP4i87Mzs0vLC4tV1ZW19Y3Nre2r73NnYCmsMq6W848KGmgiRIV3GYOmOYKbvjDWTm/eQTnpTVXOMgg1axnZFcKhqF119LcPhU1fjBsb1bjRjxC9J8kY1IlY1y0tyhtdazINRgUinl/n8QZpgVzKIWCYaWVe8iYeGA9uM+xe5IW0mQ5ghFTMw+GafBpMTpnGO2HTifqWheewWjU/btRMO3Lia8Hgn1dFs2wX1Y/0LxeftBa5SeMCs71pHOp88KlBeShyAyHldK7m6sIbVTGFXWkA4FqEAgLknBaJPrMMYEh1EoILZmO6D+5PmwkcSO5PKqe1sfxLZFdskdqJCHH5JSckwvSJIIY8kxeyCt9o+/0g37+SmfoeGeHTIB+/wCZGKQN</latexit><latexit sha1_base64="7ayJAnrSgLcSNWKGmrg5DnQGFb8=">AAACIXicZVBNSwMxEE38tn7r0ctiESqUsiuCHgUvHhWsinYpSTptg/lYklmxLP0XXvXir/Em3sQ/Y7b2YOuDMC8zb3jM45mSHuP4i87Mzs0vLC4tV1ZW19Y3Nre2r73NnYCmsMq6W848KGmgiRIV3GYOmOYKbvjDWTm/eQTnpTVXOMgg1axnZFcKhqF119LcPhU1fjBsb1bjRjxC9J8kY1IlY1y0tyhtdazINRgUinl/n8QZpgVzKIWCYaWVe8iYeGA9uM+xe5IW0mQ5ghFTMw+GafBpMTpnGO2HTifqWheewWjU/btRMO3Lia8Hgn1dFs2wX1Y/0LxeftBa5SeMCs71pHOp88KlBeShyAyHldK7m6sIbVTGFXWkA4FqEAgLknBaJPrMMYEh1EoILZmO6D+5PmwkcSO5PKqe1sfxLZFdskdqJCHH5JSckwvSJIIY8kxeyCt9o+/0g37+SmfoeGeHTIB+/wCZGKQN</latexit><latexit sha1_base64="7ayJAnrSgLcSNWKGmrg5DnQGFb8=">AAACIXicZVBNSwMxEE38tn7r0ctiESqUsiuCHgUvHhWsinYpSTptg/lYklmxLP0XXvXir/Em3sQ/Y7b2YOuDMC8zb3jM45mSHuP4i87Mzs0vLC4tV1ZW19Y3Nre2r73NnYCmsMq6W848KGmgiRIV3GYOmOYKbvjDWTm/eQTnpTVXOMgg1axnZFcKhqF119LcPhU1fjBsb1bjRjxC9J8kY1IlY1y0tyhtdazINRgUinl/n8QZpgVzKIWCYaWVe8iYeGA9uM+xe5IW0mQ5ghFTMw+GafBpMTpnGO2HTifqWheewWjU/btRMO3Lia8Hgn1dFs2wX1Y/0LxeftBa5SeMCs71pHOp88KlBeShyAyHldK7m6sIbVTGFXWkA4FqEAgLknBaJPrMMYEh1EoILZmO6D+5PmwkcSO5PKqe1sfxLZFdskdqJCHH5JSckwvSJIIY8kxeyCt9o+/0g37+SmfoeGeHTIB+/wCZGKQN</latexit><latexit sha1_base64="7ayJAnrSgLcSNWKGmrg5DnQGFb8=">AAACIXicZVBNSwMxEE38tn7r0ctiESqUsiuCHgUvHhWsinYpSTptg/lYklmxLP0XXvXir/Em3sQ/Y7b2YOuDMC8zb3jM45mSHuP4i87Mzs0vLC4tV1ZW19Y3Nre2r73NnYCmsMq6W848KGmgiRIV3GYOmOYKbvjDWTm/eQTnpTVXOMgg1axnZFcKhqF119LcPhU1fjBsb1bjRjxC9J8kY1IlY1y0tyhtdazINRgUinl/n8QZpgVzKIWCYaWVe8iYeGA9uM+xe5IW0mQ5ghFTMw+GafBpMTpnGO2HTifqWheewWjU/btRMO3Lia8Hgn1dFs2wX1Y/0LxeftBa5SeMCs71pHOp88KlBeShyAyHldK7m6sIbVTGFXWkA4FqEAgLknBaJPrMMYEh1EoILZmO6D+5PmwkcSO5PKqe1sfxLZFdskdqJCHH5JSckwvSJIIY8kxeyCt9o+/0g37+SmfoeGeHTIB+/wCZGKQN</latexit>

s
<latexit sha1_base64="arYgTh4QYlDpZdBh1zxGpce0BqA=">AAACGHicZVA9SwQxEE3O7/Xr1NImeAgWcuyKoKVgY6ngeYIuks3NesFksySzwrHcL7DVxl9jJ7Z2/huTcwtPH4R5mXnDY15WKukwjr9oa2Z2bn5hcSlaXlldW29vbF45U1kBPWGUsdcZd6BkAT2UqOC6tMB1pqCfPZyGef8RrJOmuMRRCanm94XMpeDoWxfurt2Ju/EE7D9JGtIhDc7vNii9HRhRaShQKO7cTRKXmNbcohQKxtFt5aDk4oHfw02F+XFay6KsEArxZ+ag4BpcWk+uGLNd3xmw3Fj/CmST7u+NmmsXJm7fExzqUDTHYahupLP98EFjlJsyqrNMTzsHnRM2raHyRZY4joJ3XimGhoWU2EBaEKhGnnAv8acxMeSWC/RZRj605G9E/8nVQTeJu8nFYefkoIlvkWyTHbJHEnJETsgZOSc9IgiQJ/JMXugrfaPv9ONH2qLNzhaZAv38BqDkoG8=</latexit><latexit sha1_base64="arYgTh4QYlDpZdBh1zxGpce0BqA=">AAACGHicZVA9SwQxEE3O7/Xr1NImeAgWcuyKoKVgY6ngeYIuks3NesFksySzwrHcL7DVxl9jJ7Z2/huTcwtPH4R5mXnDY15WKukwjr9oa2Z2bn5hcSlaXlldW29vbF45U1kBPWGUsdcZd6BkAT2UqOC6tMB1pqCfPZyGef8RrJOmuMRRCanm94XMpeDoWxfurt2Ju/EE7D9JGtIhDc7vNii9HRhRaShQKO7cTRKXmNbcohQKxtFt5aDk4oHfw02F+XFay6KsEArxZ+ag4BpcWk+uGLNd3xmw3Fj/CmST7u+NmmsXJm7fExzqUDTHYahupLP98EFjlJsyqrNMTzsHnRM2raHyRZY4joJ3XimGhoWU2EBaEKhGnnAv8acxMeSWC/RZRj605G9E/8nVQTeJu8nFYefkoIlvkWyTHbJHEnJETsgZOSc9IgiQJ/JMXugrfaPv9ONH2qLNzhaZAv38BqDkoG8=</latexit><latexit sha1_base64="arYgTh4QYlDpZdBh1zxGpce0BqA=">AAACGHicZVA9SwQxEE3O7/Xr1NImeAgWcuyKoKVgY6ngeYIuks3NesFksySzwrHcL7DVxl9jJ7Z2/huTcwtPH4R5mXnDY15WKukwjr9oa2Z2bn5hcSlaXlldW29vbF45U1kBPWGUsdcZd6BkAT2UqOC6tMB1pqCfPZyGef8RrJOmuMRRCanm94XMpeDoWxfurt2Ju/EE7D9JGtIhDc7vNii9HRhRaShQKO7cTRKXmNbcohQKxtFt5aDk4oHfw02F+XFay6KsEArxZ+ag4BpcWk+uGLNd3xmw3Fj/CmST7u+NmmsXJm7fExzqUDTHYahupLP98EFjlJsyqrNMTzsHnRM2raHyRZY4joJ3XimGhoWU2EBaEKhGnnAv8acxMeSWC/RZRj605G9E/8nVQTeJu8nFYefkoIlvkWyTHbJHEnJETsgZOSc9IgiQJ/JMXugrfaPv9ONH2qLNzhaZAv38BqDkoG8=</latexit><latexit sha1_base64="arYgTh4QYlDpZdBh1zxGpce0BqA=">AAACGHicZVA9SwQxEE3O7/Xr1NImeAgWcuyKoKVgY6ngeYIuks3NesFksySzwrHcL7DVxl9jJ7Z2/huTcwtPH4R5mXnDY15WKukwjr9oa2Z2bn5hcSlaXlldW29vbF45U1kBPWGUsdcZd6BkAT2UqOC6tMB1pqCfPZyGef8RrJOmuMRRCanm94XMpeDoWxfurt2Ju/EE7D9JGtIhDc7vNii9HRhRaShQKO7cTRKXmNbcohQKxtFt5aDk4oHfw02F+XFay6KsEArxZ+ag4BpcWk+uGLNd3xmw3Fj/CmST7u+NmmsXJm7fExzqUDTHYahupLP98EFjlJsyqrNMTzsHnRM2raHyRZY4joJ3XimGhoWU2EBaEKhGnnAv8acxMeSWC/RZRj605G9E/8nVQTeJu8nFYefkoIlvkWyTHbJHEnJETsgZOSc9IgiQJ/JMXugrfaPv9ONH2qLNzhaZAv38BqDkoG8=</latexit>

t
<latexit sha1_base64="TspyVlT4JDei0TLNCZADhUFYE3w=">AAACGHicZVA9SwQxEE3O7/Xr1NImeAgWcuyKoKVgY6ngeYIuks3NesFksySzwrHcL7DVxl9jJ7Z2/huTcwtPH4R5mXnDY15WKukwjr9oa2Z2bn5hcSlaXlldW29vbF45U1kBPWGUsdcZd6BkAT2UqOC6tMB1pqCfPZyGef8RrJOmuMRRCanm94XMpeDoWxd41+7E3XgC9p8kDemQBud3G5TeDoyoNBQoFHfuJolLTGtuUQoF4+i2clBy8cDv4abC/DitZVFWCIX4M3NQcA0urSdXjNmu7wxYbqx/BbJJ9/dGzbULE7fvCQ51KJrjMFQ30tl++KAxyk0Z1Vmmp52Dzgmb1lD5IkscR8E7rxRDw0JKbCAtCFQjT7iX+NOYGHLLBfosIx9a8jei/+TqoJvE3eTisHNy0MS3SLbJDtkjCTkiJ+SMnJMeEQTIE3kmL/SVvtF3+vEjbdFmZ4tMgX5+A6KYoHA=</latexit><latexit sha1_base64="TspyVlT4JDei0TLNCZADhUFYE3w=">AAACGHicZVA9SwQxEE3O7/Xr1NImeAgWcuyKoKVgY6ngeYIuks3NesFksySzwrHcL7DVxl9jJ7Z2/huTcwtPH4R5mXnDY15WKukwjr9oa2Z2bn5hcSlaXlldW29vbF45U1kBPWGUsdcZd6BkAT2UqOC6tMB1pqCfPZyGef8RrJOmuMRRCanm94XMpeDoWxd41+7E3XgC9p8kDemQBud3G5TeDoyoNBQoFHfuJolLTGtuUQoF4+i2clBy8cDv4abC/DitZVFWCIX4M3NQcA0urSdXjNmu7wxYbqx/BbJJ9/dGzbULE7fvCQ51KJrjMFQ30tl++KAxyk0Z1Vmmp52Dzgmb1lD5IkscR8E7rxRDw0JKbCAtCFQjT7iX+NOYGHLLBfosIx9a8jei/+TqoJvE3eTisHNy0MS3SLbJDtkjCTkiJ+SMnJMeEQTIE3kmL/SVvtF3+vEjbdFmZ4tMgX5+A6KYoHA=</latexit><latexit sha1_base64="TspyVlT4JDei0TLNCZADhUFYE3w=">AAACGHicZVA9SwQxEE3O7/Xr1NImeAgWcuyKoKVgY6ngeYIuks3NesFksySzwrHcL7DVxl9jJ7Z2/huTcwtPH4R5mXnDY15WKukwjr9oa2Z2bn5hcSlaXlldW29vbF45U1kBPWGUsdcZd6BkAT2UqOC6tMB1pqCfPZyGef8RrJOmuMRRCanm94XMpeDoWxd41+7E3XgC9p8kDemQBud3G5TeDoyoNBQoFHfuJolLTGtuUQoF4+i2clBy8cDv4abC/DitZVFWCIX4M3NQcA0urSdXjNmu7wxYbqx/BbJJ9/dGzbULE7fvCQ51KJrjMFQ30tl++KAxyk0Z1Vmmp52Dzgmb1lD5IkscR8E7rxRDw0JKbCAtCFQjT7iX+NOYGHLLBfosIx9a8jei/+TqoJvE3eTisHNy0MS3SLbJDtkjCTkiJ+SMnJMeEQTIE3kmL/SVvtF3+vEjbdFmZ4tMgX5+A6KYoHA=</latexit><latexit sha1_base64="TspyVlT4JDei0TLNCZADhUFYE3w=">AAACGHicZVA9SwQxEE3O7/Xr1NImeAgWcuyKoKVgY6ngeYIuks3NesFksySzwrHcL7DVxl9jJ7Z2/huTcwtPH4R5mXnDY15WKukwjr9oa2Z2bn5hcSlaXlldW29vbF45U1kBPWGUsdcZd6BkAT2UqOC6tMB1pqCfPZyGef8RrJOmuMRRCanm94XMpeDoWxd41+7E3XgC9p8kDemQBud3G5TeDoyoNBQoFHfuJolLTGtuUQoF4+i2clBy8cDv4abC/DitZVFWCIX4M3NQcA0urSdXjNmu7wxYbqx/BbJJ9/dGzbULE7fvCQ51KJrjMFQ30tl++KAxyk0Z1Vmmp52Dzgmb1lD5IkscR8E7rxRDw0JKbCAtCFQjT7iX+NOYGHLLBfosIx9a8jei/+TqoJvE3eTisHNy0MS3SLbJDtkjCTkiJ+SMnJMeEQTIE3kmL/SVvtF3+vEjbdFmZ4tMgX5+A6KYoHA=</latexit>

Figure 1 An instance of Crossing Minimization (in black) where F is the family of (a) perfect
matchings, and (b) graphs that have an (s, t)-path. Solution edges are marked by squiggly lines –
the number of crossings is 2 in (a) and 1 in (b). The d = 3 colorful line segments display D.

Keeping the above applications in mind, three natural choices for the family F are the fam-
ily of (Hamiltonian) paths, the family of graphs that contain an (s, t)-path (identification
of s and t is modeled by vertex labels), and the family of (possibly vertex-labeled) perfect
matchings. Indeed, these families model the most basic scenarios where all points must be
connected by a path (e.g., to plan tracks for sightseeing trains or maintenance equipment
such as cleaning robots or lawn mowers), only a specific pair of points must be connected
by a path (e.g., to transport goods between two destinations), or the points are to be
matched with one another (e.g., to pair up robots and charging ports). Furthermore, the
computational problems that correspond to these families – Hamiltonian Path, (s, t)-
Path and Perfect Matching, respectively – are among the most classical problems
in computer science [22, 29, 18, 11].

As a starting point for a systematic study, we consider a special case of Crossing
Minimization. Already for this case, we obtain NP-hardness and W[1]-hardness results, and
ETH-based lower bounds, alongside positive results. Specifically, suppose that the input also
contains a collection D of d non-crossing line segments such that each point in P belongs to
exactly one line in D, and L does not contain line segments between points on the same line
in D (see Fig. 1).2 Clearly, Crossing Minimization is the case where d = n – then, the set
P can be in general position. The case of d = 2 is of interest not only because it is the most
restricted non-trivial case, but also since it corresponds to a class of graphs that has been well
studied in the literature – specifically, this case is precisely Crossing Minimization where
G = (P,L) is a (bipartite) graph with a so called two-layer drawing. Clearly, our hardness
results carry over to any generalization of the case where d = 2. For this case, we consider
the aforementioned three basic choices of F , and obtain a comprehensive picture of their
complexity. In what follows, we discuss our contribution, and then review related literature.

1.1 Our Contribution
Our study focuses on the class of two-layered graphs. Formally, a two-layered graph is a
bipartite graph G with vertex bipartition V (G) = X ∪ Y that has a two-layer drawing – that
is, a placement of the vertices of X on distinct points on a straight line segment L1, and the

2 Having lines segments between points on the same line in D only makes the problem more general.

SoCG 2019

7:4 Connecting the Dots (with Minimum Crossings)

vertices of Y on distinct points on a different straight line segment L2 such that L1 and L2
are parallel to each other. (For ease of understanding, we take L1 to be a segment of the
line y = 1 in the plane, and similarly, L2 to be a segment of the line y = 0.) The relative
positions of the vertices in X and Y on L1 and L2, respectively, are given by permutations
σX and σY . Each edge is drawn using a straight line segment connecting the points of its
end-vertices. We refer to (σX , σY) as the two-layered embedding/drawing of G. Note that
(σX , σY) uniquely determines which edges intersect. The crossing minimization problem that
corresponds to Perfect Matching on two-layered graphs is defined as follows.

Crossing-Minimizing Perfect Matching (CM-PM) Parameter: k

Input: A two-layered graph G (i.e., a bipartite graph G with bipartition V (G) = X ∪ Y ,
and orderings σX and σY of X and Y , respectively), and a non-negative integer k.
Question: Does G have a perfect matching with at most k crossings?

Similarly, we define the crossing minimization variants of Hamiltonian Path (the
existence of a path that visits all vertices)3 and (s, t)-Path (the existence of a path between
two designated vertices). We refer to these problems as Crossing-Minimizing Hamiltonian
Path (CM-HP) and Crossing-Minimizing (s, t)-Path (CM-Path).

Our Results. In this paper, we present a comprehensive picture of both the classical and
parameterized computational complexities of these three problems as follows.4

CM-PM.
• Negative. NP-complete even on graphs of maximum degree 2. Moreover, unless the ETH

fails, it can be solved neither in time 2o(n+m) nor in time 2o(
√
k)nO(1) on these graphs,

(where n and m are respectively the number of vertices and edges of the input graph.)
• Positive. Admits a kernel with O(k2) vertices. Moreover, it admits a subexponential

parameterized algorithm with running time 2O(
√
k)nO(1). In light of the negative result

above, the running time of this algorithm is optimal under ETH.

We briefly remark that the proof of NP-completeness of CM-PM resolves an open
question related to a problem called Token Swapping (see Section 1.2), introduced in 2014
by Yamanaka et al. [48, 49]. Two generalizations of Token Swapping were introduced
by Yamanaka et al. [48, 49] and Bonnet et al. [7], both known to be NP-complete due to
Miltzow et al. [40]. One of the results of Bonnet et al. [7] is the analysis of the complexity of
all three token swapping problems on simple graph classes, including trees, cliques, stars and
paths. Subset Token Swapping was shown to be NP-complete on the first three classes,
but the status of the problem for paths was unknown. Since Subset Token Swapping
restricted to paths is equivalent to our CM-PM (noted by Miltzow [39]), we derive that
Subset Token Swapping restricted to paths is NP-complete as well.

3 We remark that our results for Hamiltonian Path can be extended to Hamiltonian Cycle.
4 Due to lack of space, several proofs have been omitted from the extended abstract.

A. Agrawal, G. Guśpiel, J. Madathil, S. Saurabh, and M. Zehavi 7:5

CM-HP.
• Negative. NP-complete even on graphs that admit a Hamiltonian path. Unless the ETH

fails, it can be solved neither in time 2o(n+m) nor in time 2o(
√
k)nO(1) on these graphs.

• Positive. Admits a kernel with O(k2) vertices. Moreover, it admits a subexponential
parameterized algorithm with running time 2O(

√
k log k)nO(1). In light of the negative

result above, the running time of this algorithm is almost optimal under ETH.

While Hamiltonian Path is a classical NP-complete problem [22], we prove that in
the case of CM-HP, the hardness holds even if we know of a Hamiltonian path in the
input graph (in which case Hamiltonian Path is trivial). We also comment that in the
case of CM-HP (and also CM-Path), unlike the case of CM-PM, the problem becomes
trivially solvable in polynomial time on graphs of maximum degree 2. Indeed, graphs of
maximum degree 2 are collections of paths and cycles, and hence admit only linearly in n
many Hamiltonian paths that can be easily enumerated in polynomial time. Then, CM-HP
is solved by testing whether at least one of these Hamiltonian paths has at most k crossings.
In fact, most natural NP-complete graph problems become solvable in polynomial time on
graphs of maximum degree 2, therefore we find the hardness of CM-PM on these graphs
quite surprising.

CM-Path.
• Negative. NP-complete and W[1]-hard. Specifically, unless W[1] = FPT, it admits

neither an algorithm with running time f(k)nO(1) nor a kernel of size f(k), for any
computable function f of k.

• Positive. Member in XP. Specifically, it is solvable in time nO(k).

In light of our first two sets of results, we find our third set of results quite surprising:
(s, t)-Path is the easiest to solve among itself, Perfect Matching and Hamiltonian
Path,5 yet when crossing minimization is involved, (s, t)-Path is substantially more difficult
than the other two problems – indeed, CM-PM is not even FPT (unless W[1] = FPT).

Our Methods. In what follows, we give a brief overview of our methods.

CM-PM. We prove that CM-PM on graphs of maximum degree 2 is NP-hard by a reduction
from Vertex Cover. The same reduction shows that CM-PM does not admit any 2o(n+m)-
time (or 2o(

√
k)nO(1)-time) algorithm unless the ETH fails.

For our algorithm and kernel, consider an instance (G, k) of CM-PM, where V (G) = X∪Y
is the vertex bipartition with |X| = |Y | = n. For i ∈ [n], let xi and yi denote the ith vertices
of X and Y , respectively, in the given two-layered embedding of G. It is not difficult to see
that the only perfect matching with no crossings, if such a matching exists, is {xiyi | i ∈ [n]}.
Therefore, if M is a perfect matching and xiyj ∈ M with i 6= j, then the edge xiyi must

5 In particular, (s, t)-Path can be directly solved in linear time via BFS [11], while Perfect Matching is
only known to be solvable by more complex (non-linear time) algorithms such as Edmonds algorithm [18],
and the status of Hamiltonian Path is even worse given that it is NP-complete [22].

SoCG 2019

7:6 Connecting the Dots (with Minimum Crossings)

intersect another edge in M , which yields a crossing. In fact, xiyj must intersect at least
|j − i| edges. Therefore, no feasible solution for CM-PM can contain an edge xiyj with
|j − i| > k. This observation plays a key role in both our algorithm and kernel designs.
Our algorithm is based on dynamic programming (DP), and its analysis is based on Hardy-
Ramanujan numbers [26]. (By considering these numbers, we are able to derive a running
time bound of O∗(2O(

√
k)).) Very briefly, at stage i we consider the graph Gi, the subgraph

of G induced by Xi ∪ Yi = {xj , yj | j ≤ i}. Our algorithm “guesses” which subsets of V (Gi)
are going to be matched to “future vertices”, i.e., vertices in V (G) \ V (Gi), in an optimal
solution, and solves the problem optimally on the graph induced by the remaining vertices.
For the kernel, we show that either (G, k) is a no-instance or the number of “bad pairs”, i.e.,
{xi, yi} where xiyi /∈ E(G), cannot exceed 2k. We then bound the number of pairs {xi, yi}
between two consecutive bad pairs by O(k) again, which gives a kernel with O(k2) vertices.

CM-HP. By a reduction from a variant of Hamiltonian Path on bipartite graphs, we
show that CM-HP is NP-hard even if the input graph is assumed to have a Hamiltonian
path. For our FPT algorithm and kernel, we adopt a strategy similar to the one we employed
for CM-PM.

CM-PATH. We prove the W[1]-hardness of CM-Path by giving an appropriate reduction
from Multi-Colored Clique, which is known to be W[1]-hard [19]. Given an instance
(G,V1, V2, . . . , Vk) of Multi-Colored Clique (G is a k-partite graph, and the problem
is to check whether G contains a clique with exactly one vertex from each Vi), we create
an equivalent instance (G′, X, Y, s, t, k′) of CM-Path, where G′ is a two-layered graph, as
follows. We create an s-t path in G′ that “selects” a vertex from each Vi and an edge for
each (distinct) pair (Vi, Vj). To this end, for each Vi, we have a vertex selection gadget Vi,
and for (distinct) Vi, Vj , we have an edge selection gadget Eij . The vertex and edge selection
gadgets are arranged in a linear fashion to create an s− t path in G′. In the construction,
we add a pair of non-adjacent vertices in Eij for each edge between Vi and Vj . We also add a
path between the pair of (non-adjacent) vertices whose edges cross the gadgets Vi and Vj ,
which enforces compatibility between vertices and edges that are selected. Finally, by setting
k′ appropriately, we get the desired reduction.

As for the XP algorithm for CM-Path, we guess which edges of G are going to be involved
in crossings in a feasible solution. The problem then reduces to connecting these guessed
edges using crossing-free subpaths, which can be done in polynomial time.

1.2 Related Works
The Crossing Number Problem. The crossing number of a graph G is the minimum
number of crossings in a plane drawing of G. The notion of a crossing number originally
arose in 1940 by Turán [46] for bipartite graphs in the context of the minimization of the
number of crossings between tracks connecting brick kilns to storage sites. Computationally,
the input of the Crossing Number problem is a graph G and a non-negative integer k, and
the task is to decide whether the crossing number of G is at most k. This problem is among
the most classical and fundamental graph layout problems in computer science. It was shown
to be NP-complete by Garey and Johnson in 1983 [23]. Not only is the problem NP-complete
on graphs of maximum degree 3 [27], but also it is surprisingly NP-complete even on graphs
that can be made planar and hence crossing-free by the removal of just a single edge [8].
Nevertheless, Crossing Number was shown to be FPT by Grohe already in 2001 [24], who

A. Agrawal, G. Guśpiel, J. Madathil, S. Saurabh, and M. Zehavi 7:7

developed an algorithm that runs in time f(k)n2 where f is at least double exponential.6 A
further development was achieved by Kawarabayashi and Reed [32], who showed that the
problem is solvable in time f(k)n. On the negative side, Hlinený and Dernár [28] proved
that Crossing Number does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Variants of Crossing Number where the vertices can be placed only on prespecified
curves are extensively studied. Closely related to our work is the well-known Two-Layer
Crossing Minimization problem: given a bipartite graph G with vertex bipartition
V (G) = X ∪ Y , and a non-negative integer k, the task is to decide whether G admits a
two-layered drawing where the number of crossings is at most k. This problem originated
in VLSI design [44]. A solution to the Two-Layer Crossing Minimization problem is
also useful in solving the rank aggregation problem, which has applications in meta-search
and spam reduction on the Web [6]. We refer the reader to [50] and references therein for
other applications. The Two-Layer Crossing Minimization problem is long known to
be NP-complete, even in its one sided version where we are allowed to permute vertices
only from one (fixed) side [16, 17]. Further, the membership of Two-Layer Crossing
Minimization in FPT has already been proven close to two decades ago by Dujmovic et
al. [15]. Noteworthy is also the well-studied variant of Crossing Number that restricts
the vertices to be placed only on a prespecified circle and edges are drawn as straight line
segments. Both of these variants as well as their various versions are subject to an active line
of research [33]. Further, aesthetic display of these layouts are of importance in biology [36],
and included in standard graph layout software [31] such as yFiles, Graphviz, or OGDF. For
more information on Crossing Number and its variants, we refer to surveys such as [43].

Problems on Fixed Point Sets. Settings where we are given a set P of points in the
plane that represent vertices, and edges are to be drawn as straight lines between them,
are intensively studied since the early 80s. A large body of work has been devoted to the
establishment of combinatorial bounds on the number of crossing-free graphs on P , where
particular attention is given to crossing-free triangulations, perfect matchings and Hamiltonian
paths and cycles. Originally, the study of these bounds was initiated by Newborn and Moser
in 1980 [41] for crossing-free Hamiltonian cycles. For more information, we refer to the
excellent Introduction of Sharir and Welzl [45] and the references therein. Computationally,
the problem of counting the number of such crossing-free graphs (faster than the time required
to enumerate them) is of great interest (see, e.g., [47, 4, 38]). Furthermore, the computation
of a single crossing-free graph on P (such as a perfect matching), possibly with a special
property of being “short” [2, 1, 9], has already been studied since 1993 [30]. To the best of
our knowledge, the minimization of the number of crossings (rather than the detection of
a crossing-free graph) has received only little attention, mostly in an ad-hoc fashion. An
exception to this is the work of Halldórsson et al. [25] with respect to spanning trees. We
remark that they study the problem in its full generality, where the computation of even a
crossing-free spanning tree is already NP-complete [34, 30].

Related to our study is also the Metro Line Crossing Minimization problem, intro-
duced by Benkert et al. [5]. Given an embedded graph G on P , as well as k pairs of vertices
(called terminals), a solution to this problem is a set of paths that connect their respective
pairs of terminals, and which has minimum number of “crossings” under a definition different

6 We find the contrast between this result and our result on CM-Path somewhat surprising. At first
glance, our CM-Path problem seems computationally simpler than Crossing Number (where the
embedding is computed from scratch), yet our problem is W[1]-hard while Crossing Number is FPT.

SoCG 2019

7:8 Connecting the Dots (with Minimum Crossings)

than ours. Specifically, paths are thought of as being drawn in the plane “alongside” the
edges of G rather than on the edges themselves. Such a formulation allows to reuse a single
edge a large number of times. Therefore, the avoidance of crossings might come at the cost
of congesting the same tracks by buses and trains (or building many parallel tracks).

2 Preliminaries

We use N to denote {0, 1, 2, . . .}. For n ∈ N, let [n] = {1, 2, 3, . . . , n}, and [n]0 = [n] ∪ {0}.

Two-layered graphs. Whenever context is clear, denote the vertex bipartition of a two-
layered graph G (given by the two-layer drawing) by (X,Y). Let nX = |X| and nY = |Y |.
For i ∈ [nX], let xi be the ith vertex of X, and for j ∈ [nY], let yj be the jth vertex of Y .
Moreover, we say that i is the index of the vertex xi, and j is the index of the vertex yj ;
we write index(xi) = i and index(yj) = j. Similarly, let Xi denote {xr | 1 ≤ r ≤ i}, and
let Yj denote {yr | 1 ≤ r ≤ j}. For i, j ∈ [nX], where i ≤ j, the set Xi,j denotes the set
{xp | i ≤ p ≤ j}. Moreover, if i < j, then Xj,i = ∅. The set Yi,j is defined analogously for
i, j ∈ [nY]. A crossing in G is a pair of edges intersecting at a point other than their possible
common endpoints. Note that two edges xiyj and xrys, where i, r ∈ [nX] and j, s ∈ [nY],
form a crossing (or, cross each other) if and only if r > i, j > s or i > r, s > j. For a
subgraph H of G, cr(H) denotes the number of crossings in H. Similarly, for a set of edges
E′ ⊆ E(G), cr(E′) denotes the number of crossings in the subgraph induced by E′.

For an introduction to parameterized complexity and kernelization, see [12, 14, 20].

3 NP-hardness for CM-PM

We show that CM-PM is NP-hard via a reduction from Vertex Cover (known to be
NP-hard from [35]). The Vertex Cover problem takes as input a graph H and an integer l,
and the goal is to check if there is S ⊆ V (H) of size at most l, such that H − S has no edges.

Let (H, l) be an instance of Vertex Cover. We create a corresponding instance (G, k)
of CM-PM. The general idea behind the reduction is to use two gadgets. The first one is
created for every vertex of H. There are two possible perfect matchings in each copy of the
gadget. Selecting one of these matchigs corresponds to choosing whether the vertex belongs
to the vertex cover or not. The second gadget is created for every edge of H. There are also
two possible perfect matchings in each copy of the gadget, corresponding to orienting the
edge in one of the two possible directions. The details of the construction ensure that the
number of crossings is minimized when each edge is oriented towards a selected vertex and
the number of selected vertices is minimal. We assume without loss of generality that the
two straight line segments are parallel and horizontal. Vertex gadgets are aligned in such a
way that there are no crossings between them, but each of them defines regions between the
vertices, called slots, that are used to anchor edge gadgets. The heart of the argument is a
careful analysis of the number of crossings between different gadgets.

For any integer s > 1, the vertex gadget of size s is a cycle on 8s vertices together with a
path on 2 vertices, positioned as shown in Figure 2. The vertex gadget defines 2s slots. The
slots are spaces between the vertices, whose exact location is marked in Figure 2 using gray
rectangles. The ones to the left of the pink edge are called left slots and the ones to the right
are called right slots. Furthermore, observe that there are only two ways to choose a perfect
matching in this gadget: either take all the blue edges and the pink edge in the middle, or
take all the yellow edges and the pink one. We interpret choosing the blue (yellow) matching
as selecting (not selecting) the vertex to the vertex cover.

A. Agrawal, G. Guśpiel, J. Madathil, S. Saurabh, and M. Zehavi 7:9

Figure 2 The vertex gadget of size 4, with 8 slots colored gray.

b

a

c

d e

f

Figure 3 The edge gadget and the placement of its vertices in slots.

We fix an ordering v1, . . . , vn on the vertices of H. For every v ∈ V (H), we create a copy
of the vertex gadget of size 2d(v). We arrange the gadgets on the two line segments in such a
way that each gadget occupies a separate range of the x axis and for every i < j, the gadget
for vi is to the left of the gadget for vj .

We process the edges in any order. For every vivj ∈ E(H), where i < j, we select two
first unselected right slots in the gadget for vi and two first unselected left slots in the gadget
for vj . The edge gadget for vivj is a cycle on 6 vertices that are labeled and arranged on the
line segments as shown in Figure 3. These vertices are carefully placed in the slots as follows:
vertices a and b in the first of the two selected slots of the gadget for vi, vertex c in the
second of these two slots, vertex d in the first of the two selected slots of the gadget for vj ,
and vertices e and f in the second of these two slots. The edge gadget admits two different
perfect matchings. We interpret choosing the green (red) matching as orienting the edge
towards vi (vj). For a complete example of the reduction for a small graph, see Figure 4.

Now by setting the “budget” for the number of edge crossings appropriately, we can
obtain the following theorem (we refer to the full version for a detailed analysis).

I Theorem 1. CM-PM is NP-hard, even if the maximum degree of the input graph is 2.

4 FPT Algorithm for CM-PM

Let (G, k) be an instance of CM-PM, with vertex bipartition X and Y , where |X| = |Y | = n.
(Here, we note that if |X| 6= |Y | then (G, k) is a no-instance as it does not admit a perfect
matching.) We will design an FPT algorithm for CM-PM running in time 2O(

√
k)nO(1). Our

algorithm will be a DP algorithm which processes the graph from left to right. That is to
say, for each i = 1, 2, . . . , n, at stage i, we consider the graph Gi = G[Xi ∪ Yi], the graph
induced by {x1, . . . , xi, y1, . . . , yi}, and solve a family of subproblems, the solution for one of
which will lead to an optimal solution for the entire graph G. We will bound the number of
sub-instances that we need to solve at each stage i, for i ∈ [n], by 2O(

√
k). To achieve the

above, we will use a well-known result on the number of partitions of an integer, (which says
that the number of partitions of an integer k is 2O(

√
(k))). (For the integer 6, a partition of it

is 1 + 2 + 3.) We will rely on the fact that for a number t, we can compute all its partitions
in time bounded by 2O(

√
t). This bound will be crucial for achieving the running time.

We first explain the intuition behind our algorithm. Suppose (G, k) is a yes-instance and
let M be a perfect matching of G with cr(M) 6 k. Fix i ∈ [n]. Consider how M saturates
the “future vertices,” i.e., vertices in Xi+1,n ∪ Yi+1,n. Consider a future vertex, say xj for
some j > i. Using the fact that cr(M) 6 k, we will show thatM cannot match xj to a vertex

SoCG 2019

7:10 Connecting the Dots (with Minimum Crossings)

w

v

u

u v w

Figure 4 A graph H and the two-layered graph G obtained by passing H to the reduction
algorithm, vertex gadgets presented schematically.

in Yi−k. Therefore, the only vertices in Xi ∪ Yi that can possibly be matched to vertices in
the future belong to Xi−k+1 ∪ Yi−k+1. In other words, while doing a DP from left to right,
by the time we get to stage i, the intersection of the potential solution with Xi−k ∪ Yi−k
is completely determined. This observation suggests the most obvious strategy: at stage i,
“guess” how the solution matches (and saturates) the vertices in Xi−k+1,i∪Yi−k+1,i. But this
strategy will only lead to an algorithm running in time kO(k)nO(1). Observe that since we are
only interested in a matching with the least possible number of crossings, we need not look
at all possible matchings in G[Xi−k+1,i ∪ Yi−k+1,i]. We only need to look at which subsets
of Xi−k+1,i and Yi−k+1,i are saturated by M . Thus, from each collection of matchings that
saturate the same subset of Xi−k+1,i ∪ Yi−k+1,i, we remember the matching that incurs the
least number of crossings. This observation can be used to obtain an algorithm running in
time 2O(k)nO(1). To further improve this running time, we show that the number of subsets
of Xi−k+1,i ∪ Yi−k+1,i that are not saturated by the intersection of any potential solution
with Xi ∪ Yi cannot exceed 2O(

√
k). (This is where we will use the bound that the number of

partitions of an integer t is bounded by 2O(
√
t).) This will lead us to an algorithm with the

claimed running time for the problem.
We start by giving some notations and preliminary results that will be helpful later. We

let Sat(M) = {u, v | uv ∈M}. That is, Sat(M) is the set of vertices saturated by M in G.

Partitions of an integer. For a positive integer α, a partition of α refers to writing α as a
sum of positive integers (greater than zero), where the order of the summands is immaterial.
Each summand in such a sum is called a part of α. For example, 16 = 1 + 4 + 4 + 7 is a
partition of 16. Note that here two of the parts (the two 4s) are the same. We, however, are
interested in only those partitions of α in which the parts are all distinct. Let us call such
partitions distinct-part partitions. For example, {1, 2, 6, 7} is a distinct-part partition of 16.
It is known that the number of partitions (and hence the number of distinct-part partitions)
of an integer k is bounded by 2O(

√
k) [26]. In light of this result, it is not difficult to see that

given an integer k, all distinct-part partitions of k can be generated in time 2O(
√
k). For

future reference, we state these results below.

I Lemma 2. The number of distinct-part partitions of any positive integer k, is at most
2O(
√
k). Moreover, we can generate all of these distinct-part partitions in time 2O(

√
k).

Some important sets for the algorithm. For i ∈ [n], we let X̂i = {xi−k+` | ` ∈ [k] and i−
k + ` > 1} and Ŷi = {yi−k+` | ` ∈ [k] and i− k + ` > 1} (see Figure 5). We will argue that
in any perfect matching M in G with cr(M) 6 k, the vertices from Xi which are matched
to a vertex ys, with s > i+ 1, belong to the set X̂i. Similarly, we can argue that Ŷi is the set
of vertices from Yi which can possibly be matched to vertices xs, with s > i+ 1.

A. Agrawal, G. Guśpiel, J. Madathil, S. Saurabh, and M. Zehavi 7:11

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

X̂8

Ŷ3

(a) The dashed rectangles show Ŷ3 and X̂8,
when k = 4.

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x6

y6

x7

y7

x8

y8

x9

y9

134

Q⊆X̂8

(b) k = 4. Q = {x5, x6, x8} ⊆ X̂8. The
number below each xj ∈ Q shows cst8(xj).
CstSet8(Q) = {4, 3, 1} and cst8(Q) = 8.

Figure 5 An example of X̂i, Ŷi, Q ⊆ X̂i, CstSeti(Q) and csti(Q).

We will now associate costs to vertices (and subsets) of X̂i (resp. Ŷi), which will be helpful
in obtaining lower bounds on the number of crossings, when vertices from X̂i (resp. Ŷi) are
matched to vertices ys (resp. xs), where s > i+ 1. To this end, consider i ∈ [n] and a vertex
xr ∈ X̂i. We let csti(xr) = i+ 1− r. Since xr ∈ X̂i, we have r 6 i, and thus, csti(xr) > 1.
For a subset Q ⊆ X̂i, we let CstSeti(Q) = {csti(x) | x ∈ Q} and csti(Q) =

∑
x∈Q csti(x).

Similarly, for i ∈ [n] and a vertex yr ∈ Ŷi, we let csti(yr) = i+ 1− r > 1. Moreover, for a
subset Q ⊆ Ŷi, we let CstSeti(Q) = {csti(y) | y ∈ Q} and csti(Q) =

∑
y∈Q csti(y). We note

that, for each i ∈ [n], we have csti(∅) = 0. In order to understand the intuition behind these
definitions, look at the ith stage in our algorithm. At stage i, we consider the graph G[Xi∪Yi].
Consider the vertices in X̂i that are matched to vertices in the future (i.e., vertices ys where
s > i). Note that if xi gets matched to a future vertex, then xi participates in at least
one crossing (in the final solution), and if xi−1 gets matched to a future vertex, then xi−1
participates in at least two crossings and so on. In particular, xr ∈ X̂i, if matched to a future
vertex participates in at least i+1−r crossings. So, csti(xr) is a lower bound on the number of
crossings in which xr participates (or cost incurred by xr) if it gets matched to a future vertex.
For a set Q ⊆ X̂i, CstSeti(Q) is the set of minimum costs incurred by each element of Q.
Moreover, csti(Q) is the cost incurred by Q if all its elements get matched to future vertices.
Now using the notion of distinct-part partitions of an integer, we introduce some “special”
sets of subsets of X and Y , respectively. These sets will be crucially used while creating
the sub-instances in our DP algorithm. For α ∈ [k], let Pα be the set of all distinct-part
partitions of α. Furthermore, let P6k = ∪α∈[k] Pα. From Lemma 2, we have |P6k| = 2O(

√
k).

Consider i ∈ [n], α ∈ [k], and P ∈ P6α. We let SiX(P) = {xi+1−β | β ∈ P and i+ 1− β > 1}.
(For example, for P = {1, 2, 6, 7, 8} and i = 6, we have SiX(P) = {x6, x5, x1}.) Note that
SiX(P) ⊆ X̂i, CstSeti(SiX(P)) = P, and csti(SiX(P)) = α, where P is a partition of α ∈ [k].
Similarly, we define SiY (P) = {yi+1−β | β ∈ P and i + 1 − β > 1} ⊆ Ŷi. Again, note that
CstSeti(SiX(P)) = P and csti(SiX(P)) = α. We let SiX = {SiX(P) | P ∈ P6k} ∪ {∅} ⊆ 2

X̂i and
SiY = {SiY (P) | P ∈ P6k} ∪ {∅} ⊆ 2

Ŷi .

I Lemma 3. The families SiX and SiY contain at most |P6k| + 1 = 2O(
√
k) sets each.

Moreover, for each i ∈ [n], the families SiX and SiY can be generated in 2O(
√
k) time.

We associate a set of integers to every pair (S, S′) ∈ SiX ×SiY , for each i ∈ [n]. These sets
will give the “allowed” number of crossings for a matching in the graph Gi. Consider i ∈ [n],
S ∈ SiX , and S′ ∈ SiY . We let Alwi(S, S′) = {` ∈ [k]0 | ` 6 k −max{csti(S), csti(S′)}}.

I Observation 4. Consider i ∈ [n] \ {1}. For S ∈ SiX and Q ⊆ S \ {xi}, we have Q ∈ Si−1
X .

Similarly, for S′ ∈ SiY and Q′ ⊆ S′ \ {yi}, we have Q′ ∈ Si−1
Y .

SoCG 2019

7:12 Connecting the Dots (with Minimum Crossings)

I Observation 5. Consider i ∈ [n]\{1}. For S ∈ SiX and Q ⊆ S\{xi}, we have csti−1(Q) 6
csti(S)−|S|. Similarly, for S′ ∈ SiY and Q′ ⊆ S′ \ {xi}, we have csti−1(Q′) 6 csti(S′)−|S′|.

We now define the notion of a “compatible matching.” Consider i ∈ [n], S ∈ SiX , and
S′ ∈ SiY . We say that a matching M in Gi is (i, S, S′)-compatible if S = X̂i \ Sat(M),
S′ = Ŷi \ Sat(M), and cr(M) 6 k −max{csti(S), csti(S′)}. Compatible matchings will be
helpful in establishing the correctness of our algorithm, in which we will be considering
matchings of Gi that saturate exactly (Xi ∪ Yi) \ (S ∪ S′), while incurring at most a certain
allowed number of crossings. Suppose at the ith stage of our algorithm, we consider a
matching, say Mi, of Gi that does not saturate S. We would like to extend Mi to a matching
of G with at most k crossings. That is, at stage i, Mi matches S to future vertices. Therefore,
while extending Mi to a matching of the entire graph G, we will incur at least csti(S) more
crossings (in addition to cr(Mi)). Therefore, in order to be able to extend Mi to matching
of G with at most k crossings, cr(Mi) cannot exceed k − csti(S). Identical reasoning holds
for the set S′.

We are now ready to define the states of our DP table. For each i ∈ [n], S ∈ SiX
and S′ ∈ SiY with |S| = |S′|, and an integer ` ∈ Alwi(S, S′) = {` ∈ [k]0 | ` 6 k −
max{csti(S), csti(S′)}}, we define

T [i, S, S′, `] =

1, if there is a matching M in Gi, such that cr(M) = ` and

Sat(M) = (Xi \ S) ∪ (Yi \ S′),
0, otherwise.

Observe that (G, k) is a yes-instance of CM-PM if and only if there is ` ∈ [k]0, such
that T [n, ∅, ∅, `] = 1. A matching M in Gi is said to realize T [i, S, S′, `], if cr(M) = ` and
M is (i, S, S′)-compatible. In the above we note that ` 6 k − max{csti(S), csti(S′)}, as
` ∈ Alwi(S, S′). Let us now see how T [i, S, S′, `] can be computed.

Base Case. Consider the entry T [1, S, S′, `]. Note that cr(G1) = 0. Thus, if ` > 0, we have
T [1, S, S′, `] = 0. Now we consider the case when ` = 0. Recall that by definition, we have
|S| = |S′|. If S = {x1} and S′ = {y1}, then we should not match any vertex. Thus, we have
a matching (which is the empty set) with 0 crossings, and thus, T [1, S, S′, `] = 1. Otherwise,
we have S = S′ = ∅. Note that the only possible matching in the graph G[{x1, y1}] is {x1y1}.
So, if x1y1 ∈ E(G), then {x1y1} is a matching with 0 crossings, and hence T [1, S, S′, `] = 0.
Otherwise, we have x1y1 /∈ E(G), and hence T [1, S, S′, `] = 0.

We now move to our recursive formulae for the computation of the entries of our table.
We set the value of T [i, S, S′, `] (recursively) based on the following cases, where i > 1.

Case 1: xi ∈ S and yi ∈ S′. From Observation 4, we have that S \ {xi} ∈ Si−1
X and

S′ \ {yi} ∈ Si−1
Y . Also, from Observation 5 it follows that ` ∈ Alwi−1(S \ {xi} , S′ \ {yi}).

We set T [i, S, S′, `] = T [i− 1, S \ {xi} , S′ \ {yi} , `].

I Lemma 6. The computation of T [i, S, S′, `] in Case 1 is correct.

Case 2: xi ∈ S and yi /∈ S′, or xi /∈ S and yi ∈ S′. We will only argue for the case
when xi ∈ S and yi /∈ S′. (The other case can be handled symmetrically.) Thus, hereafter we
assume that xi ∈ S and yi /∈ S′. In this case, a matching, say M , which realizes T [i, S, S′, `],
must saturate the vertex yi and must not saturate the vertex xi. Thus, M must have an
edge xjyi, where j < i (here we rely on the fact that yi cannot be matched to xi, as xi ∈ S).

A. Agrawal, G. Guśpiel, J. Madathil, S. Saurabh, and M. Zehavi 7:13

Xi
<latexit sha1_base64="wRyDKZy5r8PgKSGOTg7Z0jpTwXY=">AAACHHicZVBNSwMxEE38rPWr1aOXxaJ4KGVXBD0WvHisYD+gXUo2nbahyWZJZoWy9Dd41Yu/xpt4Ffw3ZmsPtn0Q5mXmDY95USKFRd//oRubW9s7u4W94v7B4dFxqXzSsjo1HJpcS206EbMgRQxNFCihkxhgKpLQjib3+bz9DMYKHT/hNIFQsVEshoIzdK1mp5+JWb9U8Wv+HN46CRakQhZo9MuU9gaapwpi5JJZ2w38BMOMGRRcwqzYSy0kjE/YCLopDu/CTMRJihDzlZmFmCmwYTa/ZOZduM7AG2rjXozevPt/I2PK5hNbdQTHKi+K4Tivdqqiav5BraVdMsqiSC075zrLTZhB6opIcFbMvYep9FB7eVLeQBjgKKeOMCdxp3l8zAzj6PIsutCC1YjWSeu6Fvi14PGmUr9cxFcgZ+ScXJGA3JI6eSAN0iScCPJCXskbfacf9JN+/Uk36GLnlCyBfv8CAsCiMA==</latexit><latexit sha1_base64="wRyDKZy5r8PgKSGOTg7Z0jpTwXY=">AAACHHicZVBNSwMxEE38rPWr1aOXxaJ4KGVXBD0WvHisYD+gXUo2nbahyWZJZoWy9Dd41Yu/xpt4Ffw3ZmsPtn0Q5mXmDY95USKFRd//oRubW9s7u4W94v7B4dFxqXzSsjo1HJpcS206EbMgRQxNFCihkxhgKpLQjib3+bz9DMYKHT/hNIFQsVEshoIzdK1mp5+JWb9U8Wv+HN46CRakQhZo9MuU9gaapwpi5JJZ2w38BMOMGRRcwqzYSy0kjE/YCLopDu/CTMRJihDzlZmFmCmwYTa/ZOZduM7AG2rjXozevPt/I2PK5hNbdQTHKi+K4Tivdqqiav5BraVdMsqiSC075zrLTZhB6opIcFbMvYep9FB7eVLeQBjgKKeOMCdxp3l8zAzj6PIsutCC1YjWSeu6Fvi14PGmUr9cxFcgZ+ScXJGA3JI6eSAN0iScCPJCXskbfacf9JN+/Uk36GLnlCyBfv8CAsCiMA==</latexit><latexit sha1_base64="wRyDKZy5r8PgKSGOTg7Z0jpTwXY=">AAACHHicZVBNSwMxEE38rPWr1aOXxaJ4KGVXBD0WvHisYD+gXUo2nbahyWZJZoWy9Dd41Yu/xpt4Ffw3ZmsPtn0Q5mXmDY95USKFRd//oRubW9s7u4W94v7B4dFxqXzSsjo1HJpcS206EbMgRQxNFCihkxhgKpLQjib3+bz9DMYKHT/hNIFQsVEshoIzdK1mp5+JWb9U8Wv+HN46CRakQhZo9MuU9gaapwpi5JJZ2w38BMOMGRRcwqzYSy0kjE/YCLopDu/CTMRJihDzlZmFmCmwYTa/ZOZduM7AG2rjXozevPt/I2PK5hNbdQTHKi+K4Tivdqqiav5BraVdMsqiSC075zrLTZhB6opIcFbMvYep9FB7eVLeQBjgKKeOMCdxp3l8zAzj6PIsutCC1YjWSeu6Fvi14PGmUr9cxFcgZ+ScXJGA3JI6eSAN0iScCPJCXskbfacf9JN+/Uk36GLnlCyBfv8CAsCiMA==</latexit><latexit sha1_base64="wRyDKZy5r8PgKSGOTg7Z0jpTwXY=">AAACHHicZVBNSwMxEE38rPWr1aOXxaJ4KGVXBD0WvHisYD+gXUo2nbahyWZJZoWy9Dd41Yu/xpt4Ffw3ZmsPtn0Q5mXmDY95USKFRd//oRubW9s7u4W94v7B4dFxqXzSsjo1HJpcS206EbMgRQxNFCihkxhgKpLQjib3+bz9DMYKHT/hNIFQsVEshoIzdK1mp5+JWb9U8Wv+HN46CRakQhZo9MuU9gaapwpi5JJZ2w38BMOMGRRcwqzYSy0kjE/YCLopDu/CTMRJihDzlZmFmCmwYTa/ZOZduM7AG2rjXozevPt/I2PK5hNbdQTHKi+K4Tivdqqiav5BraVdMsqiSC075zrLTZhB6opIcFbMvYep9FB7eVLeQBjgKKeOMCdxp3l8zAzj6PIsutCC1YjWSeu6Fvi14PGmUr9cxFcgZ+ScXJGA3JI6eSAN0iScCPJCXskbfacf9JN+/Uk36GLnlCyBfv8CAsCiMA==</latexit>

Xi�1
<latexit sha1_base64="m0pLpwDAEqnCZrrj+GHAuoWJwzA=">AAACHnicZVBNSwMxEE38rPWr1aOXxaJ40LIrgh4LXjxWsB/QLiWbTtvQZLMks0JZ+iO86sVf40286r8xW3uw7YMwLzNveMyLEiks+v4PXVvf2NzaLuwUd/f2Dw5L5aOm1anh0OBaatOOmAUpYmigQAntxABTkYRWNL7P561nMFbo+AknCYSKDWMxEJyha7XavUxcBdNeqeJX/Rm8VRLMSYXMUe+VKe32NU8VxMgls7YT+AmGGTMouIRpsZtaSBgfsyF0UhzchZmIkxQh5kszCzFTYMNsdsvUO3OdvjfQxr0YvVn3/0bGlM0n9tIRHKm8KIajvNqJii7zD2ot7YJRFkVq0TnXWW7CDFJXRILTYu49SKWH2suz8vrCAEc5cYQ5iTvN4yNmGEeXaNGFFixHtEqa19XArwaPN5Xa+Ty+Ajkhp+SCBOSW1MgDqZMG4WRMXsgreaPv9IN+0q8/6Rqd7xyTBdDvX/DToqI=</latexit><latexit sha1_base64="m0pLpwDAEqnCZrrj+GHAuoWJwzA=">AAACHnicZVBNSwMxEE38rPWr1aOXxaJ40LIrgh4LXjxWsB/QLiWbTtvQZLMks0JZ+iO86sVf40286r8xW3uw7YMwLzNveMyLEiks+v4PXVvf2NzaLuwUd/f2Dw5L5aOm1anh0OBaatOOmAUpYmigQAntxABTkYRWNL7P561nMFbo+AknCYSKDWMxEJyha7XavUxcBdNeqeJX/Rm8VRLMSYXMUe+VKe32NU8VxMgls7YT+AmGGTMouIRpsZtaSBgfsyF0UhzchZmIkxQh5kszCzFTYMNsdsvUO3OdvjfQxr0YvVn3/0bGlM0n9tIRHKm8KIajvNqJii7zD2ot7YJRFkVq0TnXWW7CDFJXRILTYu49SKWH2suz8vrCAEc5cYQ5iTvN4yNmGEeXaNGFFixHtEqa19XArwaPN5Xa+Ty+Ajkhp+SCBOSW1MgDqZMG4WRMXsgreaPv9IN+0q8/6Rqd7xyTBdDvX/DToqI=</latexit><latexit sha1_base64="m0pLpwDAEqnCZrrj+GHAuoWJwzA=">AAACHnicZVBNSwMxEE38rPWr1aOXxaJ40LIrgh4LXjxWsB/QLiWbTtvQZLMks0JZ+iO86sVf40286r8xW3uw7YMwLzNveMyLEiks+v4PXVvf2NzaLuwUd/f2Dw5L5aOm1anh0OBaatOOmAUpYmigQAntxABTkYRWNL7P561nMFbo+AknCYSKDWMxEJyha7XavUxcBdNeqeJX/Rm8VRLMSYXMUe+VKe32NU8VxMgls7YT+AmGGTMouIRpsZtaSBgfsyF0UhzchZmIkxQh5kszCzFTYMNsdsvUO3OdvjfQxr0YvVn3/0bGlM0n9tIRHKm8KIajvNqJii7zD2ot7YJRFkVq0TnXWW7CDFJXRILTYu49SKWH2suz8vrCAEc5cYQ5iTvN4yNmGEeXaNGFFixHtEqa19XArwaPN5Xa+Ty+Ajkhp+SCBOSW1MgDqZMG4WRMXsgreaPv9IN+0q8/6Rqd7xyTBdDvX/DToqI=</latexit><latexit sha1_base64="m0pLpwDAEqnCZrrj+GHAuoWJwzA=">AAACHnicZVBNSwMxEE38rPWr1aOXxaJ40LIrgh4LXjxWsB/QLiWbTtvQZLMks0JZ+iO86sVf40286r8xW3uw7YMwLzNveMyLEiks+v4PXVvf2NzaLuwUd/f2Dw5L5aOm1anh0OBaatOOmAUpYmigQAntxABTkYRWNL7P561nMFbo+AknCYSKDWMxEJyha7XavUxcBdNeqeJX/Rm8VRLMSYXMUe+VKe32NU8VxMgls7YT+AmGGTMouIRpsZtaSBgfsyF0UhzchZmIkxQh5kszCzFTYMNsdsvUO3OdvjfQxr0YvVn3/0bGlM0n9tIRHKm8KIajvNqJii7zD2ot7YJRFkVq0TnXWW7CDFJXRILTYu49SKWH2suz8vrCAEc5cYQ5iTvN4yNmGEeXaNGFFixHtEqa19XArwaPN5Xa+Ty+Ajkhp+SCBOSW1MgDqZMG4WRMXsgreaPv9IN+0q8/6Rqd7xyTBdDvX/DToqI=</latexit>

Xn
<latexit sha1_base64="vig0Lgd3pCN9vNkUoIKfRLWyTJQ=">AAACGnicZVA9SwNBEN2N3/FbS5vDoFiEcCeCloKNZUQTA8kR9jaTZMl+HLtzQjjyE2y18dfYia2N/8a9mMKYB8u8nXnDY16SSuEwDL9paWl5ZXVtfaO8ubW9s7u3f9B0JrMcGtxIY1sJcyCFhgYKlNBKLTCVSHhMRjfF/PEJrBNGP+A4hVixgRZ9wRn61n2rq7t7lbAWThEskmhGKmSGenef0k7P8EyBRi6Zc+0oTDHOmUXBJUzKncxByviIDaCdYf8qzoVOMwTN/80caKbAxfn0jklw4ju9oG+sfxqDaffvRs6UKyau6gkOVVEUw2FR3Vgl1eKDxkg3Z5QniZp3LnSO2ziHzBeR4qRcePczGaAJipyCnrDAUY49YV7iTwv4kFnG0adZ9qFF/yNaJM3zWhTWoruLyvXpLL51ckSOyRmJyCW5JrekThqEkwF5Ji/klb7Rd/pBP3+lJTrbOSRzoF8/F8ehKQ==</latexit><latexit sha1_base64="vig0Lgd3pCN9vNkUoIKfRLWyTJQ=">AAACGnicZVA9SwNBEN2N3/FbS5vDoFiEcCeCloKNZUQTA8kR9jaTZMl+HLtzQjjyE2y18dfYia2N/8a9mMKYB8u8nXnDY16SSuEwDL9paWl5ZXVtfaO8ubW9s7u3f9B0JrMcGtxIY1sJcyCFhgYKlNBKLTCVSHhMRjfF/PEJrBNGP+A4hVixgRZ9wRn61n2rq7t7lbAWThEskmhGKmSGenef0k7P8EyBRi6Zc+0oTDHOmUXBJUzKncxByviIDaCdYf8qzoVOMwTN/80caKbAxfn0jklw4ju9oG+sfxqDaffvRs6UKyau6gkOVVEUw2FR3Vgl1eKDxkg3Z5QniZp3LnSO2ziHzBeR4qRcePczGaAJipyCnrDAUY49YV7iTwv4kFnG0adZ9qFF/yNaJM3zWhTWoruLyvXpLL51ckSOyRmJyCW5JrekThqEkwF5Ji/klb7Rd/pBP3+lJTrbOSRzoF8/F8ehKQ==</latexit><latexit sha1_base64="vig0Lgd3pCN9vNkUoIKfRLWyTJQ=">AAACGnicZVA9SwNBEN2N3/FbS5vDoFiEcCeCloKNZUQTA8kR9jaTZMl+HLtzQjjyE2y18dfYia2N/8a9mMKYB8u8nXnDY16SSuEwDL9paWl5ZXVtfaO8ubW9s7u3f9B0JrMcGtxIY1sJcyCFhgYKlNBKLTCVSHhMRjfF/PEJrBNGP+A4hVixgRZ9wRn61n2rq7t7lbAWThEskmhGKmSGenef0k7P8EyBRi6Zc+0oTDHOmUXBJUzKncxByviIDaCdYf8qzoVOMwTN/80caKbAxfn0jklw4ju9oG+sfxqDaffvRs6UKyau6gkOVVEUw2FR3Vgl1eKDxkg3Z5QniZp3LnSO2ziHzBeR4qRcePczGaAJipyCnrDAUY49YV7iTwv4kFnG0adZ9qFF/yNaJM3zWhTWoruLyvXpLL51ckSOyRmJyCW5JrekThqEkwF5Ji/klb7Rd/pBP3+lJTrbOSRzoF8/F8ehKQ==</latexit><latexit sha1_base64="vig0Lgd3pCN9vNkUoIKfRLWyTJQ=">AAACGnicZVA9SwNBEN2N3/FbS5vDoFiEcCeCloKNZUQTA8kR9jaTZMl+HLtzQjjyE2y18dfYia2N/8a9mMKYB8u8nXnDY16SSuEwDL9paWl5ZXVtfaO8ubW9s7u3f9B0JrMcGtxIY1sJcyCFhgYKlNBKLTCVSHhMRjfF/PEJrBNGP+A4hVixgRZ9wRn61n2rq7t7lbAWThEskmhGKmSGenef0k7P8EyBRi6Zc+0oTDHOmUXBJUzKncxByviIDaCdYf8qzoVOMwTN/80caKbAxfn0jklw4ju9oG+sfxqDaffvRs6UKyau6gkOVVEUw2FR3Vgl1eKDxkg3Z5QniZp3LnSO2ziHzBeR4qRcePczGaAJipyCnrDAUY49YV7iTwv4kFnG0adZ9qFF/yNaJM3zWhTWoruLyvXpLL51ckSOyRmJyCW5JrekThqEkwF5Ji/klb7Rd/pBP3+lJTrbOSRzoF8/F8ehKQ==</latexit>

Yn
<latexit sha1_base64="MzbeOpOkS//rGKvm89tXd5k6uzM=">AAACGnicZVA9SwNBEN31M8avREubw6BYhHAngpYBG0tFo5F4hL3NJFmyH8funBCO/ARbbfw1dmJr479xL6Yw+mCZtzNveMxLUikchuEXXVhcWl5ZLa2V1zc2t7Yr1Z1bZzLLocWNNLadMAdSaGihQAnt1AJTiYS7ZHRezO8ewTph9A2OU4gVG2jRF5yhb13fd3W3Ugsb4RTBfxLNSI3McNmtUvrQMzxToJFL5lwnClOMc2ZRcAmT8kPmIGV8xAbQybB/FudCpxmC5n9mDjRT4OJ8esckOPCdXtA31j+NwbT7eyNnyhUTV/cEh6ooiuGwqG6sknrxQWOkmzPKk0TNOxc6x22cQ+aLSHFSLrz7mQzQBEVOQU9Y4CjHnjAv8acFfMgs4+jTLPvQor8R/Se3x40obERXJ7Xm4Sy+Etkj++SIROSUNMkFuSQtwsmAPJFn8kJf6Rt9px8/0gU629klc6Cf3xl9oSo=</latexit><latexit sha1_base64="MzbeOpOkS//rGKvm89tXd5k6uzM=">AAACGnicZVA9SwNBEN31M8avREubw6BYhHAngpYBG0tFo5F4hL3NJFmyH8funBCO/ARbbfw1dmJr479xL6Yw+mCZtzNveMxLUikchuEXXVhcWl5ZLa2V1zc2t7Yr1Z1bZzLLocWNNLadMAdSaGihQAnt1AJTiYS7ZHRezO8ewTph9A2OU4gVG2jRF5yhb13fd3W3Ugsb4RTBfxLNSI3McNmtUvrQMzxToJFL5lwnClOMc2ZRcAmT8kPmIGV8xAbQybB/FudCpxmC5n9mDjRT4OJ8esckOPCdXtA31j+NwbT7eyNnyhUTV/cEh6ooiuGwqG6sknrxQWOkmzPKk0TNOxc6x22cQ+aLSHFSLrz7mQzQBEVOQU9Y4CjHnjAv8acFfMgs4+jTLPvQor8R/Se3x40obERXJ7Xm4Sy+Etkj++SIROSUNMkFuSQtwsmAPJFn8kJf6Rt9px8/0gU629klc6Cf3xl9oSo=</latexit><latexit sha1_base64="MzbeOpOkS//rGKvm89tXd5k6uzM=">AAACGnicZVA9SwNBEN31M8avREubw6BYhHAngpYBG0tFo5F4hL3NJFmyH8funBCO/ARbbfw1dmJr479xL6Yw+mCZtzNveMxLUikchuEXXVhcWl5ZLa2V1zc2t7Yr1Z1bZzLLocWNNLadMAdSaGihQAnt1AJTiYS7ZHRezO8ewTph9A2OU4gVG2jRF5yhb13fd3W3Ugsb4RTBfxLNSI3McNmtUvrQMzxToJFL5lwnClOMc2ZRcAmT8kPmIGV8xAbQybB/FudCpxmC5n9mDjRT4OJ8esckOPCdXtA31j+NwbT7eyNnyhUTV/cEh6ooiuGwqG6sknrxQWOkmzPKk0TNOxc6x22cQ+aLSHFSLrz7mQzQBEVOQU9Y4CjHnjAv8acFfMgs4+jTLPvQor8R/Se3x40obERXJ7Xm4Sy+Etkj++SIROSUNMkFuSQtwsmAPJFn8kJf6Rt9px8/0gU629klc6Cf3xl9oSo=</latexit><latexit sha1_base64="MzbeOpOkS//rGKvm89tXd5k6uzM=">AAACGnicZVA9SwNBEN31M8avREubw6BYhHAngpYBG0tFo5F4hL3NJFmyH8funBCO/ARbbfw1dmJr479xL6Yw+mCZtzNveMxLUikchuEXXVhcWl5ZLa2V1zc2t7Yr1Z1bZzLLocWNNLadMAdSaGihQAnt1AJTiYS7ZHRezO8ewTph9A2OU4gVG2jRF5yhb13fd3W3Ugsb4RTBfxLNSI3McNmtUvrQMzxToJFL5lwnClOMc2ZRcAmT8kPmIGV8xAbQybB/FudCpxmC5n9mDjRT4OJ8esckOPCdXtA31j+NwbT7eyNnyhUTV/cEh6ooiuGwqG6sknrxQWOkmzPKk0TNOxc6x22cQ+aLSHFSLrz7mQzQBEVOQU9Y4CjHnjAv8acFfMgs4+jTLPvQor8R/Se3x40obERXJ7Xm4Sy+Etkj++SIROSUNMkFuSQtwsmAPJFn8kJf6Rt9px8/0gU629klc6Cf3xl9oSo=</latexit>

Yi�1
<latexit sha1_base64="7L/69ueVCvgfDluAHMNFRh9Rphg=">AAACHnicZVBNSwMxEE38rOtX1aOXxaJ40LIrgh4FLx4rWKvYpWTTWRuabJZkVijL/givevHXeBOv+m/M1h5sfRDmZeYNj3lxJoXFIPimc/MLi0vLtRVvdW19Y7O+tX1rdW44tLmW2tzFzIIUKbRRoIS7zABTsYROPLys5p0nMFbo9AZHGUSKPaYiEZyha3Xue4U4DstevRE0gzH8/ySckAaZoNXborTb1zxXkCKXzNqHMMgwKphBwSWUXje3kDE+ZI/wkGNyHhUizXKElM/MLKRMgY2K8S2lv+86fT/Rxr0U/XH370bBlK0m9sgRHKiqKIaDqtqRio+qD2ot7ZRREcdq2rnSWW6iAnJXRIalV3knufRR+1VWfl8Y4ChHjjAncaf5fMAM4+gS9Vxo4WxE/8ntSTMMmuH1aePiYBJfjeySPXJIQnJGLsgVaZE24WRInskLeaVv9J1+0M9f6Ryd7OyQKdCvH/KNoqM=</latexit><latexit sha1_base64="7L/69ueVCvgfDluAHMNFRh9Rphg=">AAACHnicZVBNSwMxEE38rOtX1aOXxaJ40LIrgh4FLx4rWKvYpWTTWRuabJZkVijL/givevHXeBOv+m/M1h5sfRDmZeYNj3lxJoXFIPimc/MLi0vLtRVvdW19Y7O+tX1rdW44tLmW2tzFzIIUKbRRoIS7zABTsYROPLys5p0nMFbo9AZHGUSKPaYiEZyha3Xue4U4DstevRE0gzH8/ySckAaZoNXborTb1zxXkCKXzNqHMMgwKphBwSWUXje3kDE+ZI/wkGNyHhUizXKElM/MLKRMgY2K8S2lv+86fT/Rxr0U/XH370bBlK0m9sgRHKiqKIaDqtqRio+qD2ot7ZRREcdq2rnSWW6iAnJXRIalV3knufRR+1VWfl8Y4ChHjjAncaf5fMAM4+gS9Vxo4WxE/8ntSTMMmuH1aePiYBJfjeySPXJIQnJGLsgVaZE24WRInskLeaVv9J1+0M9f6Ryd7OyQKdCvH/KNoqM=</latexit><latexit sha1_base64="7L/69ueVCvgfDluAHMNFRh9Rphg=">AAACHnicZVBNSwMxEE38rOtX1aOXxaJ40LIrgh4FLx4rWKvYpWTTWRuabJZkVijL/givevHXeBOv+m/M1h5sfRDmZeYNj3lxJoXFIPimc/MLi0vLtRVvdW19Y7O+tX1rdW44tLmW2tzFzIIUKbRRoIS7zABTsYROPLys5p0nMFbo9AZHGUSKPaYiEZyha3Xue4U4DstevRE0gzH8/ySckAaZoNXborTb1zxXkCKXzNqHMMgwKphBwSWUXje3kDE+ZI/wkGNyHhUizXKElM/MLKRMgY2K8S2lv+86fT/Rxr0U/XH370bBlK0m9sgRHKiqKIaDqtqRio+qD2ot7ZRREcdq2rnSWW6iAnJXRIalV3knufRR+1VWfl8Y4ChHjjAncaf5fMAM4+gS9Vxo4WxE/8ntSTMMmuH1aePiYBJfjeySPXJIQnJGLsgVaZE24WRInskLeaVv9J1+0M9f6Ryd7OyQKdCvH/KNoqM=</latexit><latexit sha1_base64="7L/69ueVCvgfDluAHMNFRh9Rphg=">AAACHnicZVBNSwMxEE38rOtX1aOXxaJ40LIrgh4FLx4rWKvYpWTTWRuabJZkVijL/givevHXeBOv+m/M1h5sfRDmZeYNj3lxJoXFIPimc/MLi0vLtRVvdW19Y7O+tX1rdW44tLmW2tzFzIIUKbRRoIS7zABTsYROPLys5p0nMFbo9AZHGUSKPaYiEZyha3Xue4U4DstevRE0gzH8/ySckAaZoNXborTb1zxXkCKXzNqHMMgwKphBwSWUXje3kDE+ZI/wkGNyHhUizXKElM/MLKRMgY2K8S2lv+86fT/Rxr0U/XH370bBlK0m9sgRHKiqKIaDqtqRio+qD2ot7ZRREcdq2rnSWW6iAnJXRIalV3knufRR+1VWfl8Y4ChHjjAncaf5fMAM4+gS9Vxo4WxE/8ntSTMMmuH1aePiYBJfjeySPXJIQnJGLsgVaZE24WRInskLeaVv9J1+0M9f6Ryd7OyQKdCvH/KNoqM=</latexit>

Yi
<latexit sha1_base64="RT6MIM4U9bfSZY5hpgrdB6+B17o=">AAACHHicZVBNSwMxEE3qd/2qevSyWBQPpeyKoMeCF48Krq20S8mm0zY02SzJrFCW/gavevHXeBOvgv/GbO3Btg/CvMy84TEvTqWw6Ps/tLSyura+sblV3t7Z3duvHBw+Wp0ZDiHXUptWzCxIkUCIAiW0UgNMxRKa8eimmDefwVihkwccpxApNkhEX3CGrhU+dXMx6Vaqft2fwlsmwYxUyQx33QNKOz3NMwUJcsmsbQd+ilHODAouYVLuZBZSxkdsAO0M+9dRLpI0Q0j4wsxCwhTYKJ9eMvFOXafn9bVxL0Fv2v2/kTNli4mtOYJDVRTFcFhUO1Zxrfig1tLOGeVxrOadC53lJsohc0WkOCkX3v1Meqi9IimvJwxwlGNHmJO40zw+ZIZxdHmWXWjBYkTL5PGiHvj14P6y2jibxbdJjskJOScBuSINckvuSEg4EeSFvJI3+k4/6Cf9+pOW6GzniMyBfv8CBHiiMQ==</latexit><latexit sha1_base64="RT6MIM4U9bfSZY5hpgrdB6+B17o=">AAACHHicZVBNSwMxEE3qd/2qevSyWBQPpeyKoMeCF48Krq20S8mm0zY02SzJrFCW/gavevHXeBOvgv/GbO3Btg/CvMy84TEvTqWw6Ps/tLSyura+sblV3t7Z3duvHBw+Wp0ZDiHXUptWzCxIkUCIAiW0UgNMxRKa8eimmDefwVihkwccpxApNkhEX3CGrhU+dXMx6Vaqft2fwlsmwYxUyQx33QNKOz3NMwUJcsmsbQd+ilHODAouYVLuZBZSxkdsAO0M+9dRLpI0Q0j4wsxCwhTYKJ9eMvFOXafn9bVxL0Fv2v2/kTNli4mtOYJDVRTFcFhUO1Zxrfig1tLOGeVxrOadC53lJsohc0WkOCkX3v1Meqi9IimvJwxwlGNHmJO40zw+ZIZxdHmWXWjBYkTL5PGiHvj14P6y2jibxbdJjskJOScBuSINckvuSEg4EeSFvJI3+k4/6Cf9+pOW6GzniMyBfv8CBHiiMQ==</latexit><latexit sha1_base64="RT6MIM4U9bfSZY5hpgrdB6+B17o=">AAACHHicZVBNSwMxEE3qd/2qevSyWBQPpeyKoMeCF48Krq20S8mm0zY02SzJrFCW/gavevHXeBOvgv/GbO3Btg/CvMy84TEvTqWw6Ps/tLSyura+sblV3t7Z3duvHBw+Wp0ZDiHXUptWzCxIkUCIAiW0UgNMxRKa8eimmDefwVihkwccpxApNkhEX3CGrhU+dXMx6Vaqft2fwlsmwYxUyQx33QNKOz3NMwUJcsmsbQd+ilHODAouYVLuZBZSxkdsAO0M+9dRLpI0Q0j4wsxCwhTYKJ9eMvFOXafn9bVxL0Fv2v2/kTNli4mtOYJDVRTFcFhUO1Zxrfig1tLOGeVxrOadC53lJsohc0WkOCkX3v1Meqi9IimvJwxwlGNHmJO40zw+ZIZxdHmWXWjBYkTL5PGiHvj14P6y2jibxbdJjskJOScBuSINckvuSEg4EeSFvJI3+k4/6Cf9+pOW6GzniMyBfv8CBHiiMQ==</latexit><latexit sha1_base64="RT6MIM4U9bfSZY5hpgrdB6+B17o=">AAACHHicZVBNSwMxEE3qd/2qevSyWBQPpeyKoMeCF48Krq20S8mm0zY02SzJrFCW/gavevHXeBOvgv/GbO3Btg/CvMy84TEvTqWw6Ps/tLSyura+sblV3t7Z3duvHBw+Wp0ZDiHXUptWzCxIkUCIAiW0UgNMxRKa8eimmDefwVihkwccpxApNkhEX3CGrhU+dXMx6Vaqft2fwlsmwYxUyQx33QNKOz3NMwUJcsmsbQd+ilHODAouYVLuZBZSxkdsAO0M+9dRLpI0Q0j4wsxCwhTYKJ9eMvFOXafn9bVxL0Fv2v2/kTNli4mtOYJDVRTFcFhUO1Zxrfig1tLOGeVxrOadC53lJsohc0WkOCkX3v1Meqi9IimvJwxwlGNHmJO40zw+ZIZxdHmWXWjBYkTL5PGiHvj14P6y2jibxbdJjskJOScBuSINckvuSEg4EeSFvJI3+k4/6Cf9+pOW6GzniMyBfv8CBHiiMQ==</latexit>

bXi
<latexit sha1_base64="vKTfPLgoOGC0oWSY+i+yBA4d5q8=">AAACJHicZVBNSwMxEE38rPWr6tHLYlE8lLIrgh4FLx4rWC3YpWSzUxuabNZkVinL/g6vevHXeBMPXvwtZuserD4I8zLzhse8KJXCou9/0rn5hcWl5dpKfXVtfWOzsbV9bXVmOHS5ltr0ImZBigS6KFBCLzXAVCThJhqfl/ObBzBW6OQKJymEit0lYig4Q9cK+48ihhHDvFcMxKDR9Nv+FN5/ElSkSSp0BluU9mPNMwUJcsmsvQ38FMOcGRRcQlHvZxZSxsfsDm4zHJ6GuUjSDCHhf2YWEqbAhvn0osLbd53YG2rjXoLetPt7I2fKlhPbcgRHqiyK4aisdqKiVvlBraWdMcqjSM06lzrLTZhD5opIsaiX3sNMeqi9MjEvFgY4yokjzEncaR4fMcM4ulzrLrTgb0T/yfVRO/DbweVx8+ygiq9GdskeOSQBOSFn5IJ0SJdwck+eyDN5oa/0jb7Tjx/pHK12dsgM6Nc31KClwg==</latexit><latexit sha1_base64="vKTfPLgoOGC0oWSY+i+yBA4d5q8=">AAACJHicZVBNSwMxEE38rPWr6tHLYlE8lLIrgh4FLx4rWC3YpWSzUxuabNZkVinL/g6vevHXeBMPXvwtZuserD4I8zLzhse8KJXCou9/0rn5hcWl5dpKfXVtfWOzsbV9bXVmOHS5ltr0ImZBigS6KFBCLzXAVCThJhqfl/ObBzBW6OQKJymEit0lYig4Q9cK+48ihhHDvFcMxKDR9Nv+FN5/ElSkSSp0BluU9mPNMwUJcsmsvQ38FMOcGRRcQlHvZxZSxsfsDm4zHJ6GuUjSDCHhf2YWEqbAhvn0osLbd53YG2rjXoLetPt7I2fKlhPbcgRHqiyK4aisdqKiVvlBraWdMcqjSM06lzrLTZhD5opIsaiX3sNMeqi9MjEvFgY4yokjzEncaR4fMcM4ulzrLrTgb0T/yfVRO/DbweVx8+ygiq9GdskeOSQBOSFn5IJ0SJdwck+eyDN5oa/0jb7Tjx/pHK12dsgM6Nc31KClwg==</latexit><latexit sha1_base64="vKTfPLgoOGC0oWSY+i+yBA4d5q8=">AAACJHicZVBNSwMxEE38rPWr6tHLYlE8lLIrgh4FLx4rWC3YpWSzUxuabNZkVinL/g6vevHXeBMPXvwtZuserD4I8zLzhse8KJXCou9/0rn5hcWl5dpKfXVtfWOzsbV9bXVmOHS5ltr0ImZBigS6KFBCLzXAVCThJhqfl/ObBzBW6OQKJymEit0lYig4Q9cK+48ihhHDvFcMxKDR9Nv+FN5/ElSkSSp0BluU9mPNMwUJcsmsvQ38FMOcGRRcQlHvZxZSxsfsDm4zHJ6GuUjSDCHhf2YWEqbAhvn0osLbd53YG2rjXoLetPt7I2fKlhPbcgRHqiyK4aisdqKiVvlBraWdMcqjSM06lzrLTZhD5opIsaiX3sNMeqi9MjEvFgY4yokjzEncaR4fMcM4ulzrLrTgb0T/yfVRO/DbweVx8+ygiq9GdskeOSQBOSFn5IJ0SJdwck+eyDN5oa/0jb7Tjx/pHK12dsgM6Nc31KClwg==</latexit><latexit sha1_base64="vKTfPLgoOGC0oWSY+i+yBA4d5q8=">AAACJHicZVBNSwMxEE38rPWr6tHLYlE8lLIrgh4FLx4rWC3YpWSzUxuabNZkVinL/g6vevHXeBMPXvwtZuserD4I8zLzhse8KJXCou9/0rn5hcWl5dpKfXVtfWOzsbV9bXVmOHS5ltr0ImZBigS6KFBCLzXAVCThJhqfl/ObBzBW6OQKJymEit0lYig4Q9cK+48ihhHDvFcMxKDR9Nv+FN5/ElSkSSp0BluU9mPNMwUJcsmsvQ38FMOcGRRcQlHvZxZSxsfsDm4zHJ6GuUjSDCHhf2YWEqbAhvn0osLbd53YG2rjXoLetPt7I2fKlhPbcgRHqiyK4aisdqKiVvlBraWdMcqjSM06lzrLTZhD5opIsaiX3sNMeqi9MjEvFgY4yokjzEncaR4fMcM4ulzrLrTgb0T/yfVRO/DbweVx8+ygiq9GdskeOSQBOSFn5IJ0SJdwck+eyDN5oa/0jb7Tjx/pHK12dsgM6Nc31KClwg==</latexit>

bYi
<latexit sha1_base64="/yVHVisoB31NrV5yeHKGAG1YPRM=">AAACJHicZVBNSwMxEE38rPWr1aOXxaJ4kLIrgh4LXjxWsK1il5JNZ91gslmTWaUs/R1e9eKv8SYevPhbzNYerD4I8zLzhse8KJPCou9/0rn5hcWl5cpKdXVtfWOzVt/qWp0bDh2upTZXEbMgRQodFCjhKjPAVCShF92dlfPeAxgrdHqJowxCxW5TEQvO0LXC/qMYQsKwuB4PxKDW8Jv+BN5/EkxJg0zRHtQp7Q81zxWkyCWz9ibwMwwLZlBwCeNqP7eQMX7HbuEmx/g0LESa5Qgp/zOzkDIFNiwmF429PdcZerE27qXoTbq/NwqmbDmxh45gosqiGCZltSMVHZYf1FraGaMiitSsc6mz3IQF5K6IDMfV0jvOpYfaKxPzhsIARzlyhDmJO83jCTOMo8u16kIL/kb0n3SPmoHfDC6OG639aXwVskN2yQEJyAlpkXPSJh3CyT15Is/khb7SN/pOP36kc3S6s01mQL++AdZXpcM=</latexit><latexit sha1_base64="/yVHVisoB31NrV5yeHKGAG1YPRM=">AAACJHicZVBNSwMxEE38rPWr1aOXxaJ4kLIrgh4LXjxWsK1il5JNZ91gslmTWaUs/R1e9eKv8SYevPhbzNYerD4I8zLzhse8KJPCou9/0rn5hcWl5cpKdXVtfWOzVt/qWp0bDh2upTZXEbMgRQodFCjhKjPAVCShF92dlfPeAxgrdHqJowxCxW5TEQvO0LXC/qMYQsKwuB4PxKDW8Jv+BN5/EkxJg0zRHtQp7Q81zxWkyCWz9ibwMwwLZlBwCeNqP7eQMX7HbuEmx/g0LESa5Qgp/zOzkDIFNiwmF429PdcZerE27qXoTbq/NwqmbDmxh45gosqiGCZltSMVHZYf1FraGaMiitSsc6mz3IQF5K6IDMfV0jvOpYfaKxPzhsIARzlyhDmJO83jCTOMo8u16kIL/kb0n3SPmoHfDC6OG639aXwVskN2yQEJyAlpkXPSJh3CyT15Is/khb7SN/pOP36kc3S6s01mQL++AdZXpcM=</latexit><latexit sha1_base64="/yVHVisoB31NrV5yeHKGAG1YPRM=">AAACJHicZVBNSwMxEE38rPWr1aOXxaJ4kLIrgh4LXjxWsK1il5JNZ91gslmTWaUs/R1e9eKv8SYevPhbzNYerD4I8zLzhse8KJPCou9/0rn5hcWl5cpKdXVtfWOzVt/qWp0bDh2upTZXEbMgRQodFCjhKjPAVCShF92dlfPeAxgrdHqJowxCxW5TEQvO0LXC/qMYQsKwuB4PxKDW8Jv+BN5/EkxJg0zRHtQp7Q81zxWkyCWz9ibwMwwLZlBwCeNqP7eQMX7HbuEmx/g0LESa5Qgp/zOzkDIFNiwmF429PdcZerE27qXoTbq/NwqmbDmxh45gosqiGCZltSMVHZYf1FraGaMiitSsc6mz3IQF5K6IDMfV0jvOpYfaKxPzhsIARzlyhDmJO83jCTOMo8u16kIL/kb0n3SPmoHfDC6OG639aXwVskN2yQEJyAlpkXPSJh3CyT15Is/khb7SN/pOP36kc3S6s01mQL++AdZXpcM=</latexit><latexit sha1_base64="/yVHVisoB31NrV5yeHKGAG1YPRM=">AAACJHicZVBNSwMxEE38rPWr1aOXxaJ4kLIrgh4LXjxWsK1il5JNZ91gslmTWaUs/R1e9eKv8SYevPhbzNYerD4I8zLzhse8KJPCou9/0rn5hcWl5cpKdXVtfWOzVt/qWp0bDh2upTZXEbMgRQodFCjhKjPAVCShF92dlfPeAxgrdHqJowxCxW5TEQvO0LXC/qMYQsKwuB4PxKDW8Jv+BN5/EkxJg0zRHtQp7Q81zxWkyCWz9ibwMwwLZlBwCeNqP7eQMX7HbuEmx/g0LESa5Qgp/zOzkDIFNiwmF429PdcZerE27qXoTbq/NwqmbDmxh45gosqiGCZltSMVHZYf1FraGaMiitSsc6mz3IQF5K6IDMfV0jvOpYfaKxPzhsIARzlyhDmJO83jCTOMo8u16kIL/kb0n3SPmoHfDC6OG639aXwVskN2yQEJyAlpkXPSJh3CyT15Is/khb7SN/pOP36kc3S6s01mQL++AdZXpcM=</latexit>

bYi�1
<latexit sha1_base64="T27853R7ry3OAi0kzf/f9Xy6kkA=">AAACKnicZVBNSwMxEE38rOtXq0cvi0XxUMuuCHoUvHisYKtil5JNpzaYbJZkVinL/hSvevHXeCte/SFmaw+2PgjzMvOGx7w4lcJiEIzpwuLS8spqZc1b39jc2q7WdjpWZ4ZDm2upzV3MLEiRQBsFSrhLDTAVS7iNny7L+e0zGCt0coOjFCLFHhMxEJyha/Wqte6L6MOQYX5f9HJxHBa9aj1oBhP4/0k4JXUyRatXo7Tb1zxTkCCXzNqHMEgxyplBwSUUXjezkDL+xB7hIcPBeZSLJM0QEj43s5AwBTbKJ3cV/oHr9P2BNu4l6E+6fzdypmw5sQ1HcKjKohgOy2pHKm6UH9Ra2hmjPI7VrHOps9xEOWSuiBQLr/QeZNJH7Ze5+X1hgKMcOcKcxJ3m8yEzjKNL13OhhfMR/Sedk2YYNMPr0/rF4TS+Ctkj++SIhOSMXJAr0iJtwskLeSVv5J1+0E86pl+/0gU63dklM6DfP0cEp3I=</latexit><latexit sha1_base64="T27853R7ry3OAi0kzf/f9Xy6kkA=">AAACKnicZVBNSwMxEE38rOtXq0cvi0XxUMuuCHoUvHisYKtil5JNpzaYbJZkVinL/hSvevHXeCte/SFmaw+2PgjzMvOGx7w4lcJiEIzpwuLS8spqZc1b39jc2q7WdjpWZ4ZDm2upzV3MLEiRQBsFSrhLDTAVS7iNny7L+e0zGCt0coOjFCLFHhMxEJyha/Wqte6L6MOQYX5f9HJxHBa9aj1oBhP4/0k4JXUyRatXo7Tb1zxTkCCXzNqHMEgxyplBwSUUXjezkDL+xB7hIcPBeZSLJM0QEj43s5AwBTbKJ3cV/oHr9P2BNu4l6E+6fzdypmw5sQ1HcKjKohgOy2pHKm6UH9Ra2hmjPI7VrHOps9xEOWSuiBQLr/QeZNJH7Ze5+X1hgKMcOcKcxJ3m8yEzjKNL13OhhfMR/Sedk2YYNMPr0/rF4TS+Ctkj++SIhOSMXJAr0iJtwskLeSVv5J1+0E86pl+/0gU63dklM6DfP0cEp3I=</latexit><latexit sha1_base64="T27853R7ry3OAi0kzf/f9Xy6kkA=">AAACKnicZVBNSwMxEE38rOtXq0cvi0XxUMuuCHoUvHisYKtil5JNpzaYbJZkVinL/hSvevHXeCte/SFmaw+2PgjzMvOGx7w4lcJiEIzpwuLS8spqZc1b39jc2q7WdjpWZ4ZDm2upzV3MLEiRQBsFSrhLDTAVS7iNny7L+e0zGCt0coOjFCLFHhMxEJyha/Wqte6L6MOQYX5f9HJxHBa9aj1oBhP4/0k4JXUyRatXo7Tb1zxTkCCXzNqHMEgxyplBwSUUXjezkDL+xB7hIcPBeZSLJM0QEj43s5AwBTbKJ3cV/oHr9P2BNu4l6E+6fzdypmw5sQ1HcKjKohgOy2pHKm6UH9Ra2hmjPI7VrHOps9xEOWSuiBQLr/QeZNJH7Ze5+X1hgKMcOcKcxJ3m8yEzjKNL13OhhfMR/Sedk2YYNMPr0/rF4TS+Ctkj++SIhOSMXJAr0iJtwskLeSVv5J1+0E86pl+/0gU63dklM6DfP0cEp3I=</latexit><latexit sha1_base64="T27853R7ry3OAi0kzf/f9Xy6kkA=">AAACKnicZVBNSwMxEE38rOtXq0cvi0XxUMuuCHoUvHisYKtil5JNpzaYbJZkVinL/hSvevHXeCte/SFmaw+2PgjzMvOGx7w4lcJiEIzpwuLS8spqZc1b39jc2q7WdjpWZ4ZDm2upzV3MLEiRQBsFSrhLDTAVS7iNny7L+e0zGCt0coOjFCLFHhMxEJyha/Wqte6L6MOQYX5f9HJxHBa9aj1oBhP4/0k4JXUyRatXo7Tb1zxTkCCXzNqHMEgxyplBwSUUXjezkDL+xB7hIcPBeZSLJM0QEj43s5AwBTbKJ3cV/oHr9P2BNu4l6E+6fzdypmw5sQ1HcKjKohgOy2pHKm6UH9Ra2hmjPI7VrHOps9xEOWSuiBQLr/QeZNJH7Ze5+X1hgKMcOcKcxJ3m8yEzjKNL13OhhfMR/Sedk2YYNMPr0/rF4TS+Ctkj++SIhOSMXJAr0iJtwskLeSVv5J1+0E86pl+/0gU63dklM6DfP0cEp3I=</latexit>

bXi�1
<latexit sha1_base64="No3O6lfxUq2u5bSlob3g/5gQ9Q0=">AAACKnicZVBNSwMxEE3qd/1q9ehlsSgeatkVQY+CF48VbC20S8mm0zY02SzJrFKW/Sle9eKv8SZe/SFmaw/WPgjzMvOGx7wokcKi73/S0srq2vrG5lZ5e2d3b79SPWhbnRoOLa6lNp2IWZAihhYKlNBJDDAVSXiMJrfF/PEJjBU6fsBpAqFio1gMBWfoWv1KtfcsBjBmmHXyfibOg7xfqfkNfwZvmQRzUiNzNPtVSnsDzVMFMXLJrO0GfoJhxgwKLiEv91ILCeMTNoJuisPrMBNxkiLE/N/MQswU2DCb3ZV7J64z8IbauBejN+v+3ciYssXE1h3BsSqKYjguqp2qqF58UGtpF4yyKFKLzoXOchNmkLoiEszLhfcwlR5qr8jNGwgDHOXUEeYk7jSPj5lhHF26ZRda8D+iZdK+aAR+I7i/rN2czuPbJEfkmJyRgFyRG3JHmqRFOHkmL+SVvNF3+kE/6devtETnO4dkAfT7B0VJp3E=</latexit><latexit sha1_base64="No3O6lfxUq2u5bSlob3g/5gQ9Q0=">AAACKnicZVBNSwMxEE3qd/1q9ehlsSgeatkVQY+CF48VbC20S8mm0zY02SzJrFKW/Sle9eKv8SZe/SFmaw/WPgjzMvOGx7wokcKi73/S0srq2vrG5lZ5e2d3b79SPWhbnRoOLa6lNp2IWZAihhYKlNBJDDAVSXiMJrfF/PEJjBU6fsBpAqFio1gMBWfoWv1KtfcsBjBmmHXyfibOg7xfqfkNfwZvmQRzUiNzNPtVSnsDzVMFMXLJrO0GfoJhxgwKLiEv91ILCeMTNoJuisPrMBNxkiLE/N/MQswU2DCb3ZV7J64z8IbauBejN+v+3ciYssXE1h3BsSqKYjguqp2qqF58UGtpF4yyKFKLzoXOchNmkLoiEszLhfcwlR5qr8jNGwgDHOXUEeYk7jSPj5lhHF26ZRda8D+iZdK+aAR+I7i/rN2czuPbJEfkmJyRgFyRG3JHmqRFOHkmL+SVvNF3+kE/6devtETnO4dkAfT7B0VJp3E=</latexit><latexit sha1_base64="No3O6lfxUq2u5bSlob3g/5gQ9Q0=">AAACKnicZVBNSwMxEE3qd/1q9ehlsSgeatkVQY+CF48VbC20S8mm0zY02SzJrFKW/Sle9eKv8SZe/SFmaw/WPgjzMvOGx7wokcKi73/S0srq2vrG5lZ5e2d3b79SPWhbnRoOLa6lNp2IWZAihhYKlNBJDDAVSXiMJrfF/PEJjBU6fsBpAqFio1gMBWfoWv1KtfcsBjBmmHXyfibOg7xfqfkNfwZvmQRzUiNzNPtVSnsDzVMFMXLJrO0GfoJhxgwKLiEv91ILCeMTNoJuisPrMBNxkiLE/N/MQswU2DCb3ZV7J64z8IbauBejN+v+3ciYssXE1h3BsSqKYjguqp2qqF58UGtpF4yyKFKLzoXOchNmkLoiEszLhfcwlR5qr8jNGwgDHOXUEeYk7jSPj5lhHF26ZRda8D+iZdK+aAR+I7i/rN2czuPbJEfkmJyRgFyRG3JHmqRFOHkmL+SVvNF3+kE/6devtETnO4dkAfT7B0VJp3E=</latexit><latexit sha1_base64="No3O6lfxUq2u5bSlob3g/5gQ9Q0=">AAACKnicZVBNSwMxEE3qd/1q9ehlsSgeatkVQY+CF48VbC20S8mm0zY02SzJrFKW/Sle9eKv8SZe/SFmaw/WPgjzMvOGx7wokcKi73/S0srq2vrG5lZ5e2d3b79SPWhbnRoOLa6lNp2IWZAihhYKlNBJDDAVSXiMJrfF/PEJjBU6fsBpAqFio1gMBWfoWv1KtfcsBjBmmHXyfibOg7xfqfkNfwZvmQRzUiNzNPtVSnsDzVMFMXLJrO0GfoJhxgwKLiEv91ILCeMTNoJuisPrMBNxkiLE/N/MQswU2DCb3ZV7J64z8IbauBejN+v+3ciYssXE1h3BsSqKYjguqp2qqF58UGtpF4yyKFKLzoXOchNmkLoiEszLhfcwlR5qr8jNGwgDHOXUEeYk7jSPj5lhHF26ZRda8D+iZdK+aAR+I7i/rN2czuPbJEfkmJyRgFyRG3JHmqRFOHkmL+SVvNF3+kE/6devtETnO4dkAfT7B0VJp3E=</latexit>

xi
<latexit sha1_base64="NK1v11B+7/owtqh6dX7543DeM0U=">AAACGnicZVBNSwMxEE3qV61frR69LBbFQym7Iuix4MWjolWhXUo2nW1Dk82SzIpl6U/wqhd/jTfx6sV/Y7b2YOuDMC8zb3jMi1IpLPr+Ny0tLa+srpXXKxubW9s71drundWZ4dDmWmrzEDELUiTQRoESHlIDTEUS7qPRRTG/fwRjhU5ucZxCqNggEbHgDF3r5qknetW63/Sn8P6TYEbqZIarXo3Sbl/zTEGCXDJrO4GfYpgzg4JLmFS6mYWU8REbQCfD+DzMRZJmCAlfmFlImAIb5tM7Jt6h6/S9WBv3EvSm3b8bOVO2mNiGIzhURVEMh0W1YxU1ig9qLe2cUR5Fat650FluwhwyV0SKk0rhHWfSQ+0VOXl9YYCjHDvCnMSd5vEhM4yjS7PiQgsWI/pP7k6agd8Mrk/rraNZfGWyTw7IMQnIGWmRS3JF2oSTAXkmL+SVvtF3+kE/f6UlOtvZI3OgXz9GA6FE</latexit><latexit sha1_base64="NK1v11B+7/owtqh6dX7543DeM0U=">AAACGnicZVBNSwMxEE3qV61frR69LBbFQym7Iuix4MWjolWhXUo2nW1Dk82SzIpl6U/wqhd/jTfx6sV/Y7b2YOuDMC8zb3jMi1IpLPr+Ny0tLa+srpXXKxubW9s71drundWZ4dDmWmrzEDELUiTQRoESHlIDTEUS7qPRRTG/fwRjhU5ucZxCqNggEbHgDF3r5qknetW63/Sn8P6TYEbqZIarXo3Sbl/zTEGCXDJrO4GfYpgzg4JLmFS6mYWU8REbQCfD+DzMRZJmCAlfmFlImAIb5tM7Jt6h6/S9WBv3EvSm3b8bOVO2mNiGIzhURVEMh0W1YxU1ig9qLe2cUR5Fat650FluwhwyV0SKk0rhHWfSQ+0VOXl9YYCjHDvCnMSd5vEhM4yjS7PiQgsWI/pP7k6agd8Mrk/rraNZfGWyTw7IMQnIGWmRS3JF2oSTAXkmL+SVvtF3+kE/f6UlOtvZI3OgXz9GA6FE</latexit><latexit sha1_base64="NK1v11B+7/owtqh6dX7543DeM0U=">AAACGnicZVBNSwMxEE3qV61frR69LBbFQym7Iuix4MWjolWhXUo2nW1Dk82SzIpl6U/wqhd/jTfx6sV/Y7b2YOuDMC8zb3jMi1IpLPr+Ny0tLa+srpXXKxubW9s71drundWZ4dDmWmrzEDELUiTQRoESHlIDTEUS7qPRRTG/fwRjhU5ucZxCqNggEbHgDF3r5qknetW63/Sn8P6TYEbqZIarXo3Sbl/zTEGCXDJrO4GfYpgzg4JLmFS6mYWU8REbQCfD+DzMRZJmCAlfmFlImAIb5tM7Jt6h6/S9WBv3EvSm3b8bOVO2mNiGIzhURVEMh0W1YxU1ig9qLe2cUR5Fat650FluwhwyV0SKk0rhHWfSQ+0VOXl9YYCjHDvCnMSd5vEhM4yjS7PiQgsWI/pP7k6agd8Mrk/rraNZfGWyTw7IMQnIGWmRS3JF2oSTAXkmL+SVvtF3+kE/f6UlOtvZI3OgXz9GA6FE</latexit><latexit sha1_base64="NK1v11B+7/owtqh6dX7543DeM0U=">AAACGnicZVBNSwMxEE3qV61frR69LBbFQym7Iuix4MWjolWhXUo2nW1Dk82SzIpl6U/wqhd/jTfx6sV/Y7b2YOuDMC8zb3jMi1IpLPr+Ny0tLa+srpXXKxubW9s71drundWZ4dDmWmrzEDELUiTQRoESHlIDTEUS7qPRRTG/fwRjhU5ucZxCqNggEbHgDF3r5qknetW63/Sn8P6TYEbqZIarXo3Sbl/zTEGCXDJrO4GfYpgzg4JLmFS6mYWU8REbQCfD+DzMRZJmCAlfmFlImAIb5tM7Jt6h6/S9WBv3EvSm3b8bOVO2mNiGIzhURVEMh0W1YxU1ig9qLe2cUR5Fat650FluwhwyV0SKk0rhHWfSQ+0VOXl9YYCjHDvCnMSd5vEhM4yjS7PiQgsWI/pP7k6agd8Mrk/rraNZfGWyTw7IMQnIGWmRS3JF2oSTAXkmL+SVvtF3+kE/f6UlOtvZI3OgXz9GA6FE</latexit>

yi
<latexit sha1_base64="z2ECyck4/Fdl8VZOHWnNp4Bcnmk=">AAACGnicZVBNSwMxEE3qV12/qh69LBbFg5RdEfQoePFY0VahXUo2nbbBZLMks8Ky9Cd41Yu/xpt49eK/MVt7sO2DMC8zb3jMi1MpLAbBD60sLa+srlXXvY3Nre2d2u5e2+rMcGhxLbV5jJkFKRJooUAJj6kBpmIJD/HTdTl/eAZjhU7uMU8hUmyYiIHgDF3rLu+JXq0eNIIJ/EUSTkmdTNHs7VLa7WueKUiQS2ZtJwxSjApmUHAJY6+bWUgZf2JD6GQ4uIwKkaQZQsLnZhYSpsBGxeSOsX/kOn1/oI17CfqT7v+NgilbTuypIzhSZVEMR2W1uYpPyw9qLe2MURHHata51FluogIyV0SKY6/0HmTSR+2XOfl9YYCjzB1hTuJO8/mIGcbRpem50ML5iBZJ+6wRBo3w9rx+dTyNr0oOyCE5ISG5IFfkhjRJi3AyJC/klbzRd/pBP+nXn7RCpzv7ZAb0+xdHuaFF</latexit><latexit sha1_base64="z2ECyck4/Fdl8VZOHWnNp4Bcnmk=">AAACGnicZVBNSwMxEE3qV12/qh69LBbFg5RdEfQoePFY0VahXUo2nbbBZLMks8Ky9Cd41Yu/xpt49eK/MVt7sO2DMC8zb3jMi1MpLAbBD60sLa+srlXXvY3Nre2d2u5e2+rMcGhxLbV5jJkFKRJooUAJj6kBpmIJD/HTdTl/eAZjhU7uMU8hUmyYiIHgDF3rLu+JXq0eNIIJ/EUSTkmdTNHs7VLa7WueKUiQS2ZtJwxSjApmUHAJY6+bWUgZf2JD6GQ4uIwKkaQZQsLnZhYSpsBGxeSOsX/kOn1/oI17CfqT7v+NgilbTuypIzhSZVEMR2W1uYpPyw9qLe2MURHHata51FluogIyV0SKY6/0HmTSR+2XOfl9YYCjzB1hTuJO8/mIGcbRpem50ML5iBZJ+6wRBo3w9rx+dTyNr0oOyCE5ISG5IFfkhjRJi3AyJC/klbzRd/pBP+nXn7RCpzv7ZAb0+xdHuaFF</latexit><latexit sha1_base64="z2ECyck4/Fdl8VZOHWnNp4Bcnmk=">AAACGnicZVBNSwMxEE3qV12/qh69LBbFg5RdEfQoePFY0VahXUo2nbbBZLMks8Ky9Cd41Yu/xpt49eK/MVt7sO2DMC8zb3jMi1MpLAbBD60sLa+srlXXvY3Nre2d2u5e2+rMcGhxLbV5jJkFKRJooUAJj6kBpmIJD/HTdTl/eAZjhU7uMU8hUmyYiIHgDF3rLu+JXq0eNIIJ/EUSTkmdTNHs7VLa7WueKUiQS2ZtJwxSjApmUHAJY6+bWUgZf2JD6GQ4uIwKkaQZQsLnZhYSpsBGxeSOsX/kOn1/oI17CfqT7v+NgilbTuypIzhSZVEMR2W1uYpPyw9qLe2MURHHata51FluogIyV0SKY6/0HmTSR+2XOfl9YYCjzB1hTuJO8/mIGcbRpem50ML5iBZJ+6wRBo3w9rx+dTyNr0oOyCE5ISG5IFfkhjRJi3AyJC/klbzRd/pBP+nXn7RCpzv7ZAb0+xdHuaFF</latexit><latexit sha1_base64="z2ECyck4/Fdl8VZOHWnNp4Bcnmk=">AAACGnicZVBNSwMxEE3qV12/qh69LBbFg5RdEfQoePFY0VahXUo2nbbBZLMks8Ky9Cd41Yu/xpt49eK/MVt7sO2DMC8zb3jMi1MpLAbBD60sLa+srlXXvY3Nre2d2u5e2+rMcGhxLbV5jJkFKRJooUAJj6kBpmIJD/HTdTl/eAZjhU7uMU8hUmyYiIHgDF3rLu+JXq0eNIIJ/EUSTkmdTNHs7VLa7WueKUiQS2ZtJwxSjApmUHAJY6+bWUgZf2JD6GQ4uIwKkaQZQsLnZhYSpsBGxeSOsX/kOn1/oI17CfqT7v+NgilbTuypIzhSZVEMR2W1uYpPyw9qLe2MURHHata51FluogIyV0SKY6/0HmTSR+2XOfl9YYCjzB1hTuJO8/mIGcbRpem50ML5iBZJ+6wRBo3w9rx+dTyNr0oOyCE5ISG5IFfkhjRJi3AyJC/klbzRd/pBP+nXn7RCpzv7ZAb0+xdHuaFF</latexit>

xj
<latexit sha1_base64="9YHuh1D85k/2x7V8DhiYle3Jh2U=">AAACGnicZVBNSwMxEE38rOtX1aOXxaJ4kLIrgh4FLx4r2lZol5JNZ9toslmSWbEs/Qle9eKv8SZevfhvzNYerD4I8zLzhse8OJPCYhB80bn5hcWl5cqKt7q2vrFZ3dpuWZ0bDk2upTa3MbMgRQpNFCjhNjPAVCyhHd9flPP2AxgrdHqDowwixQapSARn6FrXj727XrUW1IMJ/P8knJIamaLR26K029c8V5Ail8zaThhkGBXMoOASxl43t5Axfs8G0MkxOYsKkWY5Qsr/zCykTIGNiskdY3/fdfp+oo17KfqT7u+NgilbTuyRIzhUZVEMh2W1IxUflR/UWtoZoyKO1axzqbPcRAXkrogMx17pneTSR+2XOfl9YYCjHDnCnMSd5vMhM4yjS9NzoYV/I/pPWsf1MKiHVye184NpfBWyS/bIIQnJKTknl6RBmoSTAXkiz+SFvtI3+k4/fqRzdLqzQ2ZAP78BR7ehRQ==</latexit><latexit sha1_base64="9YHuh1D85k/2x7V8DhiYle3Jh2U=">AAACGnicZVBNSwMxEE38rOtX1aOXxaJ4kLIrgh4FLx4r2lZol5JNZ9toslmSWbEs/Qle9eKv8SZevfhvzNYerD4I8zLzhse8OJPCYhB80bn5hcWl5cqKt7q2vrFZ3dpuWZ0bDk2upTa3MbMgRQpNFCjhNjPAVCyhHd9flPP2AxgrdHqDowwixQapSARn6FrXj727XrUW1IMJ/P8knJIamaLR26K029c8V5Ail8zaThhkGBXMoOASxl43t5Axfs8G0MkxOYsKkWY5Qsr/zCykTIGNiskdY3/fdfp+oo17KfqT7u+NgilbTuyRIzhUZVEMh2W1IxUflR/UWtoZoyKO1axzqbPcRAXkrogMx17pneTSR+2XOfl9YYCjHDnCnMSd5vMhM4yjS9NzoYV/I/pPWsf1MKiHVye184NpfBWyS/bIIQnJKTknl6RBmoSTAXkiz+SFvtI3+k4/fqRzdLqzQ2ZAP78BR7ehRQ==</latexit><latexit sha1_base64="9YHuh1D85k/2x7V8DhiYle3Jh2U=">AAACGnicZVBNSwMxEE38rOtX1aOXxaJ4kLIrgh4FLx4r2lZol5JNZ9toslmSWbEs/Qle9eKv8SZevfhvzNYerD4I8zLzhse8OJPCYhB80bn5hcWl5cqKt7q2vrFZ3dpuWZ0bDk2upTa3MbMgRQpNFCjhNjPAVCyhHd9flPP2AxgrdHqDowwixQapSARn6FrXj727XrUW1IMJ/P8knJIamaLR26K029c8V5Ail8zaThhkGBXMoOASxl43t5Axfs8G0MkxOYsKkWY5Qsr/zCykTIGNiskdY3/fdfp+oo17KfqT7u+NgilbTuyRIzhUZVEMh2W1IxUflR/UWtoZoyKO1axzqbPcRAXkrogMx17pneTSR+2XOfl9YYCjHDnCnMSd5vMhM4yjS9NzoYV/I/pPWsf1MKiHVye184NpfBWyS/bIIQnJKTknl6RBmoSTAXkiz+SFvtI3+k4/fqRzdLqzQ2ZAP78BR7ehRQ==</latexit><latexit sha1_base64="9YHuh1D85k/2x7V8DhiYle3Jh2U=">AAACGnicZVBNSwMxEE38rOtX1aOXxaJ4kLIrgh4FLx4r2lZol5JNZ9toslmSWbEs/Qle9eKv8SZevfhvzNYerD4I8zLzhse8OJPCYhB80bn5hcWl5cqKt7q2vrFZ3dpuWZ0bDk2upTa3MbMgRQpNFCjhNjPAVCyhHd9flPP2AxgrdHqDowwixQapSARn6FrXj727XrUW1IMJ/P8knJIamaLR26K029c8V5Ail8zaThhkGBXMoOASxl43t5Axfs8G0MkxOYsKkWY5Qsr/zCykTIGNiskdY3/fdfp+oo17KfqT7u+NgilbTuyRIzhUZVEMh2W1IxUflR/UWtoZoyKO1axzqbPcRAXkrogMx17pneTSR+2XOfl9YYCjHDnCnMSd5vMhM4yjS9NzoYV/I/pPWsf1MKiHVye184NpfBWyS/bIIQnJKTknl6RBmoSTAXkiz+SFvtI3+k4/fqRzdLqzQ2ZAP78BR7ehRQ==</latexit>

S
<latexit sha1_base64="/SE6RJQR6FBzFyJzCmC3ITLSiV0=">AAACGHicZVBNSwMxEE38rPWr1aOXxaJ4KGVXBD0WvHhs0X5Au5RsOm2DyWZJZoWy9Bd41Yu/xpt49ea/MVt7sPVBmJeZNzzmRYkUFn3/m66tb2xubRd2irt7+weHpfJR2+rUcGhxLbXpRsyCFDG0UKCEbmKAqUhCJ3q8zeedJzBW6PgBpwmEio1jMRKcoWs17welil/z5/D+k2BBKmSBxqBMaX+oeaogRi6Ztb3ATzDMmEHBJcyK/dRCwvgjG0MvxdFNmIk4SRFivjKzEDMFNszmV8y8M9cZeiNt3IvRm3f/bmRM2Xxiq47gROVFMZzk1U5VVM0/qLW0S0ZZFKll51xnuQkzSF0RCc6KufcolR5qL0/JGwoDHOXUEeYk7jSPT5hhHF2WRRdasBrRf9K+rAV+LWheVerni/gK5ISckgsSkGtSJ3ekQVqEEyDP5IW80jf6Tj/o5690jS52jskS6NcPZsigQw==</latexit><latexit sha1_base64="/SE6RJQR6FBzFyJzCmC3ITLSiV0=">AAACGHicZVBNSwMxEE38rPWr1aOXxaJ4KGVXBD0WvHhs0X5Au5RsOm2DyWZJZoWy9Bd41Yu/xpt49ea/MVt7sPVBmJeZNzzmRYkUFn3/m66tb2xubRd2irt7+weHpfJR2+rUcGhxLbXpRsyCFDG0UKCEbmKAqUhCJ3q8zeedJzBW6PgBpwmEio1jMRKcoWs17welil/z5/D+k2BBKmSBxqBMaX+oeaogRi6Ztb3ATzDMmEHBJcyK/dRCwvgjG0MvxdFNmIk4SRFivjKzEDMFNszmV8y8M9cZeiNt3IvRm3f/bmRM2Xxiq47gROVFMZzk1U5VVM0/qLW0S0ZZFKll51xnuQkzSF0RCc6KufcolR5qL0/JGwoDHOXUEeYk7jSPT5hhHF2WRRdasBrRf9K+rAV+LWheVerni/gK5ISckgsSkGtSJ3ekQVqEEyDP5IW80jf6Tj/o5690jS52jskS6NcPZsigQw==</latexit><latexit sha1_base64="/SE6RJQR6FBzFyJzCmC3ITLSiV0=">AAACGHicZVBNSwMxEE38rPWr1aOXxaJ4KGVXBD0WvHhs0X5Au5RsOm2DyWZJZoWy9Bd41Yu/xpt49ea/MVt7sPVBmJeZNzzmRYkUFn3/m66tb2xubRd2irt7+weHpfJR2+rUcGhxLbXpRsyCFDG0UKCEbmKAqUhCJ3q8zeedJzBW6PgBpwmEio1jMRKcoWs17welil/z5/D+k2BBKmSBxqBMaX+oeaogRi6Ztb3ATzDMmEHBJcyK/dRCwvgjG0MvxdFNmIk4SRFivjKzEDMFNszmV8y8M9cZeiNt3IvRm3f/bmRM2Xxiq47gROVFMZzk1U5VVM0/qLW0S0ZZFKll51xnuQkzSF0RCc6KufcolR5qL0/JGwoDHOXUEeYk7jSPT5hhHF2WRRdasBrRf9K+rAV+LWheVerni/gK5ISckgsSkGtSJ3ekQVqEEyDP5IW80jf6Tj/o5690jS52jskS6NcPZsigQw==</latexit><latexit sha1_base64="/SE6RJQR6FBzFyJzCmC3ITLSiV0=">AAACGHicZVBNSwMxEE38rPWr1aOXxaJ4KGVXBD0WvHhs0X5Au5RsOm2DyWZJZoWy9Bd41Yu/xpt49ea/MVt7sPVBmJeZNzzmRYkUFn3/m66tb2xubRd2irt7+weHpfJR2+rUcGhxLbXpRsyCFDG0UKCEbmKAqUhCJ3q8zeedJzBW6PgBpwmEio1jMRKcoWs17welil/z5/D+k2BBKmSBxqBMaX+oeaogRi6Ztb3ATzDMmEHBJcyK/dRCwvgjG0MvxdFNmIk4SRFivjKzEDMFNszmV8y8M9cZeiNt3IvRm3f/bmRM2Xxiq47gROVFMZzk1U5VVM0/qLW0S0ZZFKll51xnuQkzSF0RCc6KufcolR5qL0/JGwoDHOXUEeYk7jSPT5hhHF2WRRdasBrRf9K+rAV+LWheVerni/gK5ISckgsSkGtSJ3ekQVqEEyDP5IW80jf6Tj/o5690jS52jskS6NcPZsigQw==</latexit>

S0
<latexit sha1_base64="UmftJOZCtu5qyrCELClfpvUrB44=">AAACGXicZVDLSgMxFE3qq46vqks3g8XHopQZEXQpuHFZH1VBh5JJ77ShyWRI7ghl6B+41Y1f407cuvJvzNQubD0Q7sm953K4J86ksBgE37QyN7+wuFRd9lZW19Y3aptbt1bnhkOba6nNfcwsSJFCGwVKuM8MMBVLuIsH5+X87gmMFTq9wWEGkWK9VCSCM3Stq+uDTq0eNIMx/P8knJA6maDV2aT0sat5riBFLpm1D2GQYVQwg4JLGHmPuYWM8QHrwUOOyWlUiDTLEVI+M7OQMgU2KsZnjPw91+n6iTbupeiPu383CqZsObENR7CvyqIY9stqhypulB/UWtopoyKO1bRzqbPcRAXkrogMR17pneTSR+2XMfldYYCjHDrCnMSd5vM+M4yjC9NzoYWzEf0nt0fNMGiGl8f1s/1JfFWyQ3bJIQnJCTkjF6RF2oSThDyTF/JK3+g7/aCfv9IKnexskynQrx/Om6B0</latexit><latexit sha1_base64="UmftJOZCtu5qyrCELClfpvUrB44=">AAACGXicZVDLSgMxFE3qq46vqks3g8XHopQZEXQpuHFZH1VBh5JJ77ShyWRI7ghl6B+41Y1f407cuvJvzNQubD0Q7sm953K4J86ksBgE37QyN7+wuFRd9lZW19Y3aptbt1bnhkOba6nNfcwsSJFCGwVKuM8MMBVLuIsH5+X87gmMFTq9wWEGkWK9VCSCM3Stq+uDTq0eNIMx/P8knJA6maDV2aT0sat5riBFLpm1D2GQYVQwg4JLGHmPuYWM8QHrwUOOyWlUiDTLEVI+M7OQMgU2KsZnjPw91+n6iTbupeiPu383CqZsObENR7CvyqIY9stqhypulB/UWtopoyKO1bRzqbPcRAXkrogMR17pneTSR+2XMfldYYCjHDrCnMSd5vM+M4yjC9NzoYWzEf0nt0fNMGiGl8f1s/1JfFWyQ3bJIQnJCTkjF6RF2oSThDyTF/JK3+g7/aCfv9IKnexskynQrx/Om6B0</latexit><latexit sha1_base64="UmftJOZCtu5qyrCELClfpvUrB44=">AAACGXicZVDLSgMxFE3qq46vqks3g8XHopQZEXQpuHFZH1VBh5JJ77ShyWRI7ghl6B+41Y1f407cuvJvzNQubD0Q7sm953K4J86ksBgE37QyN7+wuFRd9lZW19Y3aptbt1bnhkOba6nNfcwsSJFCGwVKuM8MMBVLuIsH5+X87gmMFTq9wWEGkWK9VCSCM3Stq+uDTq0eNIMx/P8knJA6maDV2aT0sat5riBFLpm1D2GQYVQwg4JLGHmPuYWM8QHrwUOOyWlUiDTLEVI+M7OQMgU2KsZnjPw91+n6iTbupeiPu383CqZsObENR7CvyqIY9stqhypulB/UWtopoyKO1bRzqbPcRAXkrogMR17pneTSR+2XMfldYYCjHDrCnMSd5vM+M4yjC9NzoYWzEf0nt0fNMGiGl8f1s/1JfFWyQ3bJIQnJCTkjF6RF2oSThDyTF/JK3+g7/aCfv9IKnexskynQrx/Om6B0</latexit><latexit sha1_base64="UmftJOZCtu5qyrCELClfpvUrB44=">AAACGXicZVDLSgMxFE3qq46vqks3g8XHopQZEXQpuHFZH1VBh5JJ77ShyWRI7ghl6B+41Y1f407cuvJvzNQubD0Q7sm953K4J86ksBgE37QyN7+wuFRd9lZW19Y3aptbt1bnhkOba6nNfcwsSJFCGwVKuM8MMBVLuIsH5+X87gmMFTq9wWEGkWK9VCSCM3Stq+uDTq0eNIMx/P8knJA6maDV2aT0sat5riBFLpm1D2GQYVQwg4JLGHmPuYWM8QHrwUOOyWlUiDTLEVI+M7OQMgU2KsZnjPw91+n6iTbupeiPu383CqZsObENR7CvyqIY9stqhypulB/UWtopoyKO1bRzqbPcRAXkrogMR17pneTSR+2XMfldYYCjHDrCnMSd5vM+M4yjC9NzoYWzEf0nt0fNMGiGl8f1s/1JfFWyQ3bJIQnJCTkjF6RF2oSThDyTF/JK3+g7/aCfv9IKnexskynQrx/Om6B0</latexit>

Figure 6 An illustration of the edges intersecting xjyi, where xj ∈ X̂i−1 \ S. Here, the red edges
intersect xjyi and the green edges do not intersect xjyi.

As M must satisfy the constraint cr(M) = ` 6 k, we must have i − k 6 j < i. That is,
the vertex to which yi is matched, must belong to the set X̂i−1. We will construct a set
Q ⊆ Si−1

X ⊆ 2
X̂i−1 . This set will be used for creating sub-instances whose values are needed

for the computation of T [i, S, S′, `]. Intuitively speaking, each set in Q will determine a
vertex to which yi is matched, in the matching that we are seeking for. Note that as yi must
be saturated by any matching that realizes (or complies) with T [i, S, S′, `], the edge, say
x̂yi in the matching might intersect other edges of the matching. Therefore, we will have
to account for this extra overhead in the number of crossing edges. To count these extra
crossings incurred, we will define an “overhead” function.

To construct Q, we first construct two sets Q̂, Q̃ ⊆ 2
X̂i−1 (each of size at most O(k)).

We will obtain Q̂ ⊇ Q̃ ⊇ Q (in that order, by removing some “bad sets”). For a vertex
xj ∈ (N(yi)∩ X̂i−1) \S, let Qj = (S \ {xi})∪{xj}. Intuitively, the vertex yi will be matched
to xj , when Qj is under consideration. Note that Qj ⊆ X̂i−1. We let Q̂ = {Qj | xj ∈
(N(yi) ∩ X̂i−1) \ S}. In the above definition, we only consider the neighbors of yi from
X̂i−1 \ S, because we require that the desired matching must not saturate a vertex from S.
We let Q̃ = Q̂ ∩ Si−1

X . We now define a function ovh : Q̃ → N (see Figure 6 for an intuitive
illustration). For Qj ∈ Q̃, we set ovh(Qj) = |Xj+1,i \ S|. To obtain Q, we will delete those
sets from Q̃ which will incur an “overhead” of crossings more than the “allowed” budget.
Before constructing Q, we first recall the following facts. By the definition of Q̃, we have
Q ∈ Si−1

X . Moreover, from Observation 4 it follows that S′ ∈ Si−1
Y (as yi /∈ S′). We set

Q = {Q ∈ Q̃ | `− ovh(Q) ∈ Alwi−1(Q,S′)}. Now we set T [i, S, S′, `] as follows.

T [i, S, S′, `] =
{

0, if Q = ∅,∨
Q∈Q T [i− 1, Q, S′, `− ovh(Q)], otherwise.

I Lemma 7. The computation of T [i, S, S′, `] in Case 2 is correct.

Case 3: xi /∈ S and yi /∈ S′. In this case, a matching, say M , which realizes T [i, S, S′, `],
must saturate both the vertices xi and yi. Thus, M must have edges xjyi and xiyj′ , where
j 6 i and j′ 6 i. (Assuming xi is adjacent to yi in G, it can be the case that j = j′ = i, in
which case xiyi ∈ M .) We will thus have T [i, S, S′, `] = T1[i, S, S′, `] ∨ T2[i, S, S′, `], where
T1[i, S, S′, `] and T2[i, S, S′, `] are boolean variables that correspond respectively to the cases
j = j′ = i and j 6= i (and j′ 6= i). We now define T1[i, S, S′, `] and T2[i, S, S′, `], formally.

SoCG 2019

7:14 Connecting the Dots (with Minimum Crossings)

Defining T1[i, S, S′, `]. Since xi /∈ S, we have S ⊆ X̂i−1. As yi /∈ S′, we have S′ ⊆ Ŷi−1.
By Observation 4, S ∈ Si−1

X and S′ ∈ Si−1
Y . Note that if a matching M that realizes

T [i, S, S′, `] contains the edge xiyi (assuming xiyi is indeed an edge in the graph G), then
cr(M) = cr(M \ {xiyi}). That is, no additional crossing is incurred by adding the edge xiyi
to the matching M \ {xiyi}. Also, note that ` ∈ Alwi−1(S, S′). With these observations, we
define T1[i, S, S′, `] as follows.

T1[i, S, S′, `] =
{

0, if xiyi /∈ E(G),
T [i− 1, S, S′, `], otherwise.

Defining T2[i, S, S′, `]. Now, to define T2[i, S, S′, `], we proceed as in Case 2. For a vertex
xj ∈ (N(yi)∩ X̂i−1) \ S, let Qj = S ∪ {xj}. We let Q̂ = {Qj | xj ∈ (N(yi)∩ X̂i−1) \ S}, and
Q = Q̂ ∩ Si−1

X . Similarly, for a vertex yj′ ∈ (N(xi) ∩ Ŷi−1) \ S′, let Rj′ = S′ ∪ {yj′}. We let
R̂ = {Rj′ | yj′ ∈ (N(xi) ∩ Ŷi−1) \ S′}, and R = R̂ ∩ Si−1

Y . We will now construct a set of
“crucial pairs” from Q×R, for the computation of T2[i, S, S′, `]. Towards this, we define a
function ovh : Q×R → N. We set ovh(Qj , Rj′) = |Xj+1,i \S|+ |Yj′+1,i \S′| − 1, for Qj ∈ Q
and Rj′ ∈ R. Finally, we let C = {(Q,R) ∈ Q×R | `− ovh(Q,R) ∈ Alwi−1(Q,R)}. Now we
set T2[i, S, S′, `] as follows.

T2[i, S, S′, `] =
{

0, if C = ∅,∨
(Q,R)∈C T [i− 1, Q,R, `− ovh(Q,R)], otherwise.

I Lemma 8. The computation of T [i, S, S′, `] in Case 3 is correct.

As observed earlier, (G, k) is a yes-instance of CM-PM if and only if there is ` ∈ [k]0,
such that T [n, ∅, ∅, `] = 1. Note that for each i ∈ [n], S ∈ SiX , S′ ∈ SiY , and ` ∈ Alwi(S, S′),
we can compute the entry T [i, S, S′, `] in time bounded by nO(1). Moreover, the number of
entries in our table is bounded by 2O(

√
k)nO(1) (see Lemma 3). Thus, the running time of

the algorithm is bounded by 2O(
√
k)nO(1). The correctness of the algorithm follows from the

correctness of base case and recursive formulae. Thus, we obtain the following theorem.

I Theorem 9. CM-PM admits an algorithm running in time 2O(
√
k)nO(1).

References
1 A. Karim Abu-Affash, Ahmad Biniaz, Paz Carmi, Anil Maheshwari, and Michiel H. M.

Smid. Approximating the bottleneck plane perfect matching of a point set. Comput. Geom.,
48(9):718–731, 2015.

2 A. Karim Abu-Affash, Paz Carmi, Matthew J. Katz, and Yohai Trabelsi. Bottleneck non-
crossing matching in the plane. Comput. Geom., 47(3):447–457, 2014.

3 Jihad Al-Oudatallah, Fariz Abboud, Mazen Khoury, and Hassan Ibrahim. Overlapping Signal
Separation Method Using Superresolution Technique Based on Experimental Echo Shape.
Advances in Acoustics and Vibration, pages 1–9, 2017.

4 Victor Alvarez, Karl Bringmann, Radu Curticapean, and Saurabh Ray. Counting crossing-free
structures. In Symposuim on Computational Geometry 2012, SoCG ’12, Chapel Hill, NC,
USA, June 17-20, 2012, pages 61–68, 2012.

5 Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin Nöllenburg. Algorithms for
Multi-criteria One-Sided Boundary Labeling. In Graph Drawing, 15th International Symposium,
GD 2007, Sydney, Australia, September 24-26, 2007. Revised Papers, pages 243–254, 2007.

6 Therese C. Biedl, Franz-Josef Brandenburg, and Xiaotie Deng. Crossings and Permutations.
In Proceeding of the 13th International Symposium on Graph Drawing, GD, volume 3843 of
Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

A. Agrawal, G. Guśpiel, J. Madathil, S. Saurabh, and M. Zehavi 7:15

7 Édouard Bonnet, Tillmann Miltzow, and Paweł Rzążewski. Complexity of Token Swapping
and Its Variants. Algorithmica, October 2017.

8 Sergio Cabello and Bojan Mohar. Adding One Edge to Planar Graphs Makes Crossing Number
and 1-Planarity Hard. SIAM J. Comput., 42(5):1803–1829, 2013.

9 John Gunnar Carlsson, Benjamin Armbruster, Saladi Rahul, and Haritha Bellam. A Bottleneck
Matching Problem with Edge-Crossing Constraints. Int. J. Comput. Geometry Appl., 25(4):245–
262, 2015.

10 Xuanwu Chen and Ming S. Lee. A case study on multi-lane roundabouts under congestion:
Comparing software capacity and delay estimates with field data. Journal of Traffic and
Transportation Engineering (English Edition), 3(2):154–165, 2016.

11 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

13 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. Algorithms for
drawing graphs: an annotated bibliography. Computational Geometry, 4(5):235–282, 1994.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

15 Vida Dujmovic, Michael R. Fellows, Michael T. Hallett, Matthew Kitching, Giuseppe Liotta,
Catherine McCartin, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosamond, Matthew
Suderman, Sue Whitesides, and David R. Wood. On the Parameterized Complexity of Layered
Graph Drawing. In 9th Annual European Symposium on Algorithms, ESA 2001, Proceedings,
pages 488–499, 2001.

16 Peter Eades and Sue Whitesides. Drawing graphs in two layers. Theoretical Computer Science,
131(2):361–374, 1994.

17 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994.

18 Jack Edmonds. Paths, Trees and Flowers. Canadian Journal of Mathematics, pages 449–467,
1965.

19 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical computer science,
410(1):53–61, 2009.

20 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

21 Per Garder. Pedestrian safety at traffic signals: A study carried out with the help of a traffic
conflicts technique. Accident Analysis & Prevention, 21(5):435–444, 1989.

22 M R Garey and D S Johnson. Computers and intractability: a guide to the theory of NP-
completeness. W.H. Freeman, New York, 1979.

23 Michael R Garey and David S Johnson. Crossing number is NP-complete. SIAM Journal on
Algebraic Discrete Methods, 4(3):312–316, 1983.

24 Martin Grohe. Computing crossing numbers in quadratic time. In Proceedings on 33rd Annual
ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages
231–236, 2001.

25 Magnús M. Halldórsson, Christian Knauer, Andreas Spillner, and Takeshi Tokuyama. Fixed-
Parameter Tractability for Non-Crossing Spanning Trees. In Algorithms and Data Structures,
10th International Workshop, WADS 2007, Halifax, Canada, August 15-17, 2007, Proceedings,
pages 410–421, 2007.

26 Godfrey H Hardy and Srinivasa Ramanujan. Asymptotic formulaæ in combinatory analysis.
Proceedings of the London Mathematical Society, 2(1):75–115, 1918.

27 Petr Hlinený. Crossing number is hard for cubic graphs. J. Comb. Theory, Ser. B, 96(4):455–
471, 2006.

SoCG 2019

7:16 Connecting the Dots (with Minimum Crossings)

28 Petr Hlinený and Marek Dernár. Crossing Number is Hard for Kernelization. In 32nd
International Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston,
MA, USA, pages 42:1–42:10, 2016.

29 John E. Hopcroft and Robert Endre Tarjan. Efficient Algorithms for Graph Manipulation [H]
(Algorithm 447). Commun. ACM, 16(6):372–378, 1973.

30 Klaus Jansen and Gerhard J. Woeginger. The Complexity of Detecting Crossingfree Configur-
ations in the Plane. BIT, 33(4):580–595, 1993.

31 Michael Junger and Petra Mutzel. Graph Drawing Software. Springer-Verlag, Berlin, Heidelberg,
2003.

32 Ken-ichi Kawarabayashi and Bruce A. Reed. Computing crossing number in linear time.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 11-13, 2007, pages 382–390, 2007.

33 Fabian Klute and Martin Nöllenburg. Minimizing Crossings in Constrained Two-Sided Circular
Graph Layouts. In 34th International Symposium on Computational Geometry, SoCG 2018,
June 11-14, 2018, Budapest, Hungary, pages 53:1–53:14, 2018.

34 Jan Kratochvíl, Anna Lubiw, and Jaroslav Nešetřil. Noncrossing Subgraphs in Topological
Layouts. SIAM J. Discret. Math., 4(2):223–244, March 1991.

35 Mukkai S Krishnamoorthy and Narsingh Deo. Node-deletion NP-complete problems. SIAM
Journal on Computing, 8(4):619–625, 1979.

36 Martin I Krzywinski, Jacqueline E Schein, Inanc Birol, Joseph Connors, Randy Gascoyne,
Doug Horsman, Steven J Jones, and Marco A Marra. Circos: An information aesthetic for
comparative genomics. Genome Research, 19(9):1639–1645, 2009.

37 J. Malik, J. Weber, Q. T. Luong, and D. Roller. Smart cars and smart roads. In Proceedings
6th. British Machine Vision Conference, pages 367–381, 1995.

38 Dániel Marx and Tillmann Miltzow. Peeling and Nibbling the Cactus: Subexponential-
Time Algorithms for Counting Triangulations and Related Problems. In 32nd International
Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston, MA, USA,
pages 52:1–52:16, 2016.

39 Tillmann Miltzow. Subset token swapping on a path and bipartite minimum crossing
matchings. In Order and Geometry Workshop, Problem booklet., pages 5–6, 2016. URL:
http://orderandgeometry2016.tcs.uj.edu.pl/docs/OG2016-ProblemBooklet.pdf.

40 Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and
Takeaki Uno. Approximation and Hardness of Token Swapping. In 24th Annual European
Symposium on Algorithms, ESA 2016, pages 66:1–66:15, 2016.

41 Monroe M. Newborn and William O. J. Moser. Optimal crossing-free Hamiltonian circuit
drawings of Kn. J. Comb. Theory, Ser. B, 29(1):13–26, 1980.

42 Michael Osigbemeh, Michael Onuu, and Olumuyiwa Asaolu. Design and development of an
improved traffic light control system using hybrid lighting system. Journal of Traffic and
Transportation Engineering (English Edition), 4(1):88–95, 2017. Special Issue: Driver Behavior,
Highway Capacity and Transportation Resilience.

43 Marcus Schaefer. The Graph Crossing Number and its Variants: A Survey. The Electronic
Journal of Combinatorics, 20, April 2013.

44 Carl Sechen. VLSI placement and global routing using simulated annealing, volume 54. Springer
Science & Business Media, 2012.

45 Micha Sharir and Emo Welzl. On the Number of Crossing-Free Matchings, Cycles, and
Partitions. SIAM J. Comput., 36(3):695–720, 2006.

46 Paul Turán. A note of welcome. Journal of Graph Theory, 1(1):7–9, 1997.
47 Manuel Wettstein. Counting and enumerating crossing-free geometric graphs. JoCG, 8(1):47–77,

2017.
48 Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio

Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping Labeled

http://orderandgeometry2016.tcs.uj.edu.pl/docs/OG2016-ProblemBooklet.pdf

A. Agrawal, G. Guśpiel, J. Madathil, S. Saurabh, and M. Zehavi 7:17

Tokens on Graphs. In Alfredo Ferro, Fabrizio Luccio, and Peter Widmayer, editors, Fun with
Algorithms, pages 364–375, 2014.

49 Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi, Yoshio
Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping labeled
tokens on graphs. Theoretical Computer Science, 586:81–94, 2015. Fun with Algorithms.

50 Lanbo Zheng and Christoph Buchheim. A New Exact Algorithm for the Two-Sided Crossing
Minimization Problem. In Proceedings of the First International Conference on Combinatorial
Optimization and Applications, COCOA, volume 4616 of Lecture Notes in Computer Science,
pages 301–310. Springer, 2007.

SoCG 2019

General Techniques for Approximate Incidences
and Their Application to the Camera Posing
Problem
Dror Aiger
Google, Tel Aviv, Israel
https://ai.google/research/people/DrorAiger
aigerd@google.com

Haim Kaplan
School of Computer Science, Tel Aviv University, Tel Aviv, Israel
Google, Tel Aviv, Israel
haimk@tau.ac.il

Efi Kokiopoulou
Google, Zurich, Switzerland
efi@google.com

Micha Sharir
School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@tau.ac.il

Bernhard Zeisl
Google, Zurich, Switzerland
bzeisl@google.com

Abstract
We consider the classical camera pose estimation problem that arises in many computer vision
applications, in which we are given n 2D-3D correspondences between points in the scene and points
in the camera image (some of which are incorrect associations), and where we aim to determine
the camera pose (the position and orientation of the camera in the scene) from this data. We
demonstrate that this posing problem can be reduced to the problem of computing ε-approximate
incidences between two-dimensional surfaces (derived from the input correspondences) and points
(on a grid) in a four-dimensional pose space. Similar reductions can be applied to other camera pose
problems, as well as to similar problems in related application areas.

We describe and analyze three techniques for solving the resulting ε-approximate incidences
problem in the context of our camera posing application. The first is a straightforward assignment
of surfaces to the cells of a grid (of side-length ε) that they intersect. The second is a variant
of a primal-dual technique, recently introduced by a subset of the authors [3] for different (and
simpler) applications. The third is a non-trivial generalization of a data structure Fonseca and
Mount [4], originally designed for the case of hyperplanes. We present and analyze this technique in
full generality, and then apply it to the camera posing problem at hand.

We compare our methods experimentally on real and synthetic data. Our experiments show that
for the typical values of n and ε, the primal-dual method is the fastest, also in practice.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Camera positioning, Approximate incidences, Incidences

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.8

Related Version A full version of the paper is available at http://arxiv.org/abs/1903.07047.

Funding Haim Kaplan: Partially supported by ISF grant 1841/14, by grant 1367/2016 from the
German-Israeli Science Foundation (GIF), and by Blavatnik Research Fund in Computer Science at
Tel Aviv University.
Micha Sharir : Partially supported by ISF Grant 260/18, by grant 1367/2016 from the German-
Israeli Science Foundation (GIF), and by Blavatnik Research Fund in Computer Science at Tel Aviv
University.

© Dror Aiger, Haim Kaplan, Efi Kokiopoulou, Micha Sharir, and Bernhard Zeisl;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://ai.google/research/people/DrorAiger
mailto:aigerd@google.com
mailto:haimk@tau.ac.il
mailto:efi@google.com
mailto:michas@tau.ac.il
mailto:bzeisl@google.com
https://doi.org/10.4230/LIPIcs.SoCG.2019.8
http://arxiv.org/abs/1903.07047
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Approximation Algorithms for Camera Posing

1 Introduction

Camera pose estimation is a fundamental problem in computer vision, which aims at
determining the pose and orientation of a camera solely from an image. This localization
problem appears in many interesting real-world applications, such as for the navigation of
self-driving cars [6], in incremental environment mapping such as Structure-from-Motion
(SfM) [1, 10, 11], or for augmented reality [8, 9, 12], where a significant component are
algorithms that aim to estimate an accurate camera pose in the world from image data.

Given a three-dimensional point-cloud model of a scene, the classical, but also state-of-the-
art approach to absolute camera pose estimation consists of a two-step procedure. First, one
matches a large number of features in the two-dimensional camera image with corresponding
features in the three-dimensional scene. Then one uses these putative correspondences to
determine the pose and orientation of the camera. Typically, the matches obtained in the first
step contain many incorrect associations, forcing the second step to use filtering techniques
to reject incorrect matches. Subsequently, the absolute 6 degrees-of-freedom (DoF) camera
pose is estimated, for example, with a perspective n-point pose solver [7] within a RANSAC
scheme [5].

In this work we concentrate on the second step of the camera pose problem. That is, we
consider the task of estimating the camera pose and orientation from a (potentially large)
set of n already calculated image-to-scene correspondences.

Further, we assume that we are given a common direction between the world and camera
frames. For example, inertial sensors, available on any smart-phone nowadays, allow to
estimate the vertical gravity direction in the three-dimensional camera coordinate system.
This alignment of the vertical direction fixes two degrees of freedom for the rotation between
the frames and we are left to estimate four degrees of freedom out of the general six. To
obtain four equations (in the four remaining degrees of freedom), this setup requires two
pairs of image-to-scene correspondences1 for a minimal solver. Hence a corresponding
naive RANSAC-based scheme requires O(n2) filtering steps, where in each iterations a pose
hypothesis based on a different pair of correspondences is computed and verified against all
other correspondences.

Recently, Zeisl et al. [13] proposed a Hough-voting inspired outlier filtering and camera
posing approach, which computes the camera pose up to an accuracy of ε > 0 from a set
of 2D-3D correspondences, in O(n/ε2) time, under the same alignment assumptions of the
vertical direction. In this paper we propose new algorithms that work considerably faster
in practice, but under milder assumptions. Our method is based on a reduction of the
problem to a problem of counting ε-approximate incidences between points and surfaces,
where a point p is ε-approximately incident (or just ε-incident) to a surface σ if the (suitably
defined) distance between p and σ is at most ε. This notion has recently been introduced
by a subset of the authors in [3], and applied in a variety of instances, involving somewhat
simpler scenarios than the one considered here. Our approach enables us to compute a
camera pose when the number of correspondences n is large, and many of which are expected
to be outliers. In contrast, a direct application of RANSAC-based methods on such inputs
is very slow, since the fraction of inliers is small. In the limit, trying all pairs of matches
involves Ω(n2) RANSAC iterations. Moreover, our methods enhance the quality of the posing
considerably [13], since each generated candidate pose is close to (i.e., consistent with) with
many of the correspondences.

1 As we will see later in detail, each correspondence imposes two constraints on the camera pose.

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, and B. Zeisl 8:3

Our results. We formalize the four degree-of-freedom camera pose problem as an approxi-
mate incidences problem in Section 2. Each 2D-3D correspondence is represented as a
two-dimensional surface in the 4-dimensional pose-space, which is the locus of all possible
positions and orientations of the camera that fit the correspondence exactly. Ideally, we
would like to find a point (a pose) that lies on as many surfaces as possible, but since we
expect the data to be noisy, and the exact problem is inefficient to solve anyway, we settle
for an approximate version, in which we seek a point with a large number of approximate
incidences with the surfaces.

Formally, we solve the following problem. We have an error parameter ε > 0, we lay down
a grid on [0, 1]d of side length ε, and compute, for each vertex v of the grid, a count I(v) of
surfaces that are approximately incident to v, so that (i) every surface that is ε-incident to v
is counted in I(v), and (ii) every surface that is counted in I(v) is αε-incident to v, for some
small constant α > 1 (but not all αε-incident surfaces are necessarily counted). We output
the grid vertex v with the largest count I(v) (or a list of vertices with the highest counts, if
so desired).

As we will comment later, (a) restricting the algorithm to grid vertices only does not
miss a good pose v: a vertex of the grid cell containing v serves as a good substitute for v,
and (b) we have no real control on the value of I(v), which might be much larger than the
number of surfaces that are ε-incident to v, but all the surfaces that we count are “good”
– they are reasonably close to v. In the computer vision application, and in many related
applications, neither of these issues is significant.

We give three algorithms for this camera-pose approximate-incidences problem. The
first algorithm simply computes the grid cells that each surface intersects, and considers the
number of intersecting surfaces per cell as its approximate ε-incidences count. This method
takes time O

(
n
ε2

)
for all vertices of our ε-size grid. We then describe a faster algorithm

using geometric duality, in Section 3. It uses a coarser grid in the primal space and switches
to a dual 5-dimensional space (a 5-tuple is needed to specify a 2D-3D correspondence and
its surface, now dualized to a point). In the dual space each query (i.e., a vertex of the
grid) becomes a 3-dimensional surface, and each original 2-dimensional surface in the primal
4-dimensional space becomes a point. This algorithm takes O

(
n3/5

ε14/5 + n+ 1
ε4

)
time, and is

asymptotically faster than the simple algorithm for n > 1/ε2.
Finally, we give a general method for constructing an approximate incidences data

structure for general k-dimensional algebraic surfaces (that satisfy certain mild conditions)
in Rd, in Section 4. It extends the technique of Fonseca and Mount [4], designed for the
case of hyperplanes, and takes O(n+ poly(1/ε)) time, where the degree of the polynomial in
1/ε depends on the number of parameters needed to specify a surface, the dimension of the
surfaces, and the dimension of the ambient space. We first present and analyze this technique
in full generality, and then apply it to the surfaces obtained for our camera posing problem.
In this case, the data structure requires O(n+ 1/ε6) storage and is constructed in roughly
the same time. This is asymptotically faster than our primal-dual scheme when n ≥ 1/ε16/3

(for n ≥ 1/ε7 the O(n) term dominates and these two methods are asymptotically the same).
Due to its generality, the latter technique is easily adapted to other surfaces and thus is
of general interest and potential. In contrast, the primal-dual method requires nontrivial
adaptation as it switches from one approximate-incidences problem to another and the dual
space and its distance function depend on the type of the input surfaces.

We implemented our algorithms and compared their performance on real and synthetic
data. Our experimentation shows that, for commonly used values of n and ε in practical
scenarios (n ∈ [8K, 32K], ε ∈ [0.02, 0.03]), the primal-dual scheme is considerably faster than

SoCG 2019

8:4 Approximation Algorithms for Camera Posing

the other algorithms, and should thus be the method of choice. Due to lack of space, the
experimentation details are omitted in this version, with the exception of a few highlights.
They can be found in the full version of the paper [2].

2 From camera positioning to approximate incidences

Suppose we are given a pre-computed three-dimensional scene and a two-dimensional picture
of it. Our goal is to deduce from this image the location and orientation of the camera in
the scene. In general, the camera, as a rigid body in 3-space, has six degrees of freedom,
three of translation and three of rotation (commonly referred to as the yaw, pitch and roll).
We simplify the problem by making the realistic assumption, that the vertical direction of
the scene is known in the camera coordinate frame (e.g., estimated by en inertial sensor on
smart phones). This allows us to rotate the camera coordinate frame such that its z-axis is
parallel to the world z-axis, thereby fixing the pitch and roll of the camera and leaving only
four degrees of freedom (x, y, z, θ), where c = (x, y, z) is the location of the camera center,
say, and θ is its yaw, i.e. horizontal the orientation of the optical axis around the vertical
direction. See Figure 1.

6DOF camera pose

object

object point

image points

4DOF camera pose

y

x

z

y

z

object

object point

image points

x

y

z
up

x

up

world frame

camera frame upright camera frame

Figure 1 With the knowledge of a common vertical direction between the camera and world
frame the general 6DoF camera posing problem reduces to estimating 4 parameters. This is the
setup we consider in our work.

By preprocessing the scene, we record the spatial coordinates w = (w1, w2, w3) of a
discrete (large) set of salient points. We assume that some (ideally a large number) of
the distinguished points are identified in the camera image, resulting in a set of image-to-
scene correspondences. Each correspondence w = {w1, w2, w3, ξ, η} is parameterized by five
parameters, the spatial position w and the position v = (ξ, η) in the camera plane of view
of the same salient point. Our goal is to find a camera pose (x, y, z, θ) so that as many
correspondences as possible are (approximately) consistent with it, i.e., the ray from the
camera center c to w goes approximately through (ξ, η) in the image plane, when the yaw of
the camera is θ.

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, and B. Zeisl 8:5

2.1 Camera posing as an ε-incidences problem
Each correspondence and its 5-tuple w define a two-dimensional surface σw in parametric 4-
space, which is the locus of all poses (x, y, z, θ) of the camera at which it sees w at coordinates
(ξ, η) in its image. For n correspondences, we have a set of n such surfaces. We prove that
each point in the parametric 4-space of camera poses that is close to a surface σw, in a
suitable metric defined in that 4-space, represents a camera pose where w is projected to a
point in the camera viewing plane that is close to (ξ, η), and vice versa (see Section 2.2 for
the actual expressions for these projections). Therefore, a point in 4-space that is close to
a large number of surfaces represents a camera pose with many approximately consistent
correspondences, which is a strong indication of being close to the correct pose.

Extending the notation used in the earlier work [3], we say that a point q is ε-incident to
a surface σ if dist(q, σ) ≤ ε. Our algorithms approximate, for each vertex of a grid Gε of side
length ε, the number of ε-incident surfaces and suggest the vertex with the largest count
as the best candidate for the camera pose. This work extends the approximate incidences
methodology in [3] to the (considerably more involved) case at hand.

2.2 The surfaces σw

Let w = (w1, w2, w3) be a salient point in R3, and assume that the camera is positioned at
(c, θ) = (x, y, z, θ). We represent the orientation of the vector w − c, within the world frame,
by its spherical coordinates (ϕ,ψ), except that, unlike the standard convention, we take ψ to
be the angle with the xy-plane (rather than with the z-axis):

tanψ = w3 − z√
(w1 − x)2 + (w2 − y)2

tanϕ = w2 − y
w1 − x

In the two-dimensional frame of the camera the (ξ, η)-coordinates model the view of w, which
differs from above polar representation of the vector w − c only by the polar orientation θ of
the viewing plane itself. Writing κ for tan θ, we have

ξ = tan(ϕ− θ) = tanϕ− tan θ
1 + tanϕ tan θ = (w2 − y)− κ(w1 − x)

(w1 − x) + κ(w2 − y) , (1)

η = tanψ = w3 − z√
(w1 − x)2 + (w2 − y)2

.

We note that using tan θ does not distinguish between θ and θ + π, but we will restrict θ to
lie in [−π/4, π/4] or in similar narrower ranges, thereby resolving this issue.

We use R4 with coordinates (x, y, z, κ) as our primal space, where each point models a
possible pose of the camera. Each correspondence w is parameterized by the triple (w, ξ, η),
and defines a two-dimensional algebraic surface σw of degree at most 4, whose equations (in
x, y, z, κ) are given in (1). It is the locus of all camera poses v = (x, y, z, κ) at which it sees
w at image coordinates (ξ, η). We can rewrite these equations into the following parametric
representation of σw, expressing z and κ as functions of x and y:

κ = (w2 − y)− ξ(w1 − x)
(w1 − x) + ξ(w2 − y) z = w3 − η

√
(w1 − x)2 + (w2 − y)2. (2)

For a camera pose v = (x, y, z, κ), and a point w = (w1, w2, w3), we write

F (v;w) = (w2 − y)− κ(w1 − x)
(w1 − x) + κ(w2 − y) G(v;w) = w3 − z√

(w1 − x)2 + (w2 − y)2
. (3)

In this notation we can write the Equations (1) characterizing σw (when regarded as
equations in v) as ξ = F (v;w) and η = G(v;w).

SoCG 2019

8:6 Approximation Algorithms for Camera Posing

2.3 Measuring proximity
Given a guessed pose v = (x, y, z, κ) of the camera, we want to measure how well it fits the
scene that the camera sees. For this, given a correspondence w = (w, ξ, η), we define the
frame distance fd between v and w as the L∞-distance between (ξ, η) and (ξv, ηv), where, as
in Eq. (3), ξv = F (v;w), ηv = G(v;w). That is,

fd(v,w) = max {|ξv − ξ|, |ηv − η|} . (4)

Note that (ξv, ηv) are the coordinates at which the camera would see w if it were placed
at position v, so the frame distance is the L∞-distance between these coordinates and the
actual coordinates (ξ, η) at which the camera sees w; this serves as a natural measure of how
close v is to the actual pose of the camera.

We are given a viewed scene of n distinguished points (correspondences) w = (w, ξ, η).
Let S denote the set of n surfaces σw, representing these correspondences. We assume
that the salient features w and the camera are all located within some bounded region, say
[0, 1]3. The replacement of θ by κ = tan θ makes its range unbounded, so we break the
problem into four subproblems, in each of which θ is confined to some sector. In the first
subproblem we assume that −π/4 ≤ θ ≤ π/4, so −1 ≤ κ ≤ 1. The other three subproblems
involve the ranges [π/4, 3π/4], [3π/4, 5π/4], and [5π/4, 7π/4]. We only consider here the first
subproblem; the treatment of the others is fully analogous. In each such range, replacing θ
by tan θ does not incur the ambiguity of identifying θ with θ + π.

Given an error parameter ε > 0, we seek an approximate pose v of the camera, at which
many correspondences w are within frame distance at most ε from v, as given in (4).

The following two lemmas relate our frame distance to the Euclidean distance. Their
(rather technical) proofs are given in the full version of this paper [2].

I Lemma 1. Let v = (x, y, z, κ), and let σw be the surface associated with a correspondence
w = {w1, w2, w3, ξ, η}. Let v′ be a point on σw such that |v − v′| ≤ ε (where | · | denotes the
Euclidean norm). If
(i) |(w1 − x) + κ(w2 − y)| ≥ a > 0, and
(ii) (w1 − x)2 + (w2 − y)2 ≥ a > 0, for some absolute constant a,

then fd(v,w) ≤ βε for some constant β that depends on a.

Informally, Condition (i) requires that the absolute value of the ξ = tan(ϕ− θ) coordinate
of the position of w in the viewing plane, with the camera positioned at v, is not too large
(i.e., that |(ϕ− θ)| is not too close to π/2). We can ensure this property by restricting the
camera image to some suitably bounded ξ-range.

Similarly, Condition (ii) requires that the xy-projection of the vector w − c is not too
small. It can be violated in two scenarios. Either we look at a data point that is too close to
c, or we see it looking too much “upwards” or “downwards”. We can ensure that the latter
situation does not arise, by restricting the camera image, as in the preceding paragraph, to
some suitably bounded η-range too. That done, we ensure that the former situation does not
arise by requiring that the physical distance between c and w be at least some multiple of a.

The next lemma establishes the converse connection.

I Lemma 2. Let v = (x, y, z, κ) be a camera pose and w = {w1, w2, w3, ξ, η} a correspondence,
such that fd(v,w) ≤ ε. Assume that |(w1 − x) + ξ(w2 − y)| ≥ a > 0, for some absolute
constant a, and consider the point v′ = (x, y, z′, κ′) ∈ σw where (see Eq. (2))

z′ = w3 − η
√

(w1 − x)2 + (w2 − y)2 κ′ = (w2 − y)− ξ(w1 − x)
(w1 − x) + ξ(w2 − y) .

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, and B. Zeisl 8:7

Then |z − z′| ≤
√

2ε and |κ− κ′| ≤ cε, for some constant c, again depending on a.

Informally, the condition |(w1 − x) + ξ(w2 − y)| ≥ a > 0 means that the orientation of the
camera, when it is positioned at (x, y) and sees w at coordinate ξ of the viewing plane is not
too close to ±π/2. This is a somewhat artificial constraint that is satisfied by our restriction
on the allowed yaws of the camera (the range of κ).

A Simple algorithm. Using Lemma 2 and Lemma 1 we can derive a simple naive solution
which does not require any of the sophisticated machinery developed in this work. We
construct a grid G over Q = [0, 1]3× [−1, 1], of cells τ , each of dimensions ε× ε× 2

√
2ε× 2aε,

where a is the constant of Lemma 2. We use this non-square grid G since we want to find
ε-approximate incidences in terms of frame distance. For each cell τ of G we compute the
number of surfaces σw that intersect τ . This gives an approximate incidences count for the
center of τ . Further details and a precise statement can be found in the full version [2].

3 Primal-dual algorithm for geometric proximity

Following the general approach in [3], we use a suitable duality, with some care. We write
ε = 2γδ1δ2, for suitable parameters γ, and ε/(2γ) ≤ δ1, δ2 ≤ 1, whose concrete values are
fixed later, and apply the decomposition scheme developed in [3] tailored to the case at
hand. Specifically, we consider the coarser grid Gδ1 in the primal space, of cell dimensions
δ1 × δ1 ×

√
2δ1 × cδ1, where c is is the constant from Lemma 2, that tiles up the domain

Q = [0, 1]3× [−1, 1] of possible camera positions. For each cell τ of Gδ1 , let Sτ denote the set
of surfaces that cross either τ or one of the eight cells adjacent to τ in the (z, κ)-directions.2
The duality is illustrated in Figure 2.

Figure 2 A schematic illustration of our duality-based algorithm.

We discretize the set of all possible positions of the camera by the vertices of the finer
grid Gε, defined as Gδ1 , with ε replacing δ1, that tiles up Q. The number of these candidate
positions is m := O(1/ε4). For each vertex q ∈ Gε, we want to approximate the number of
surfaces that are ε-incident to q, and output the vertex with the largest count as the best
candidate for the position of the camera. Let Vτ be the subset of Gε contained in τ . We
ensure that the boxes of Gδ1 are pairwise disjoint by making them half open, in the sense
that if (x0, y0, z0, κ0) is the vertex of a box that has the smallest coordinates, then the box
is defined by x0 ≤ x < x0 + δ1, y0 ≤ y < y0 + δ1, z0 ≤ z < z0 +

√
2δ1, κ0 ≤ κ < κ0 + cδ1.

This makes the sets Vτ pairwise disjoint as well. Put mτ = |Vτ | and nτ = |Sτ |. We have

2 The choice of z, κ is arbitrary, but it is natural for the analysis, given in the full version [2].

SoCG 2019

8:8 Approximation Algorithms for Camera Posing

mτ = O
(
(δ1/ε)4) for each τ . Since the surfaces σw are two-dimensional algebraic surfaces

of constant degree, each of them crosses O(1/δ2
1) cells of Gδ1 , so we have

∑
τ nτ = O(n/δ2

1).
We now pass to the dual five-dimensional space. Each point in that space represents a

correspondence w = (w1, w2, w3, ξ, η). We use the first three components (w1, w2, w3) as the
first three coordinates, but modify the ξ- and η-coordinates in a manner that depends on the
primal cell τ . Let cτ = (xτ , yτ , zτ , κτ) be the midpoint of the primal box τ . For each σw ∈ Sτ
we map w = (w, ξ, η), where w = (w1, w2, w3), to the point wτ = (w1, w2, w3, ξτ , ητ), where
ξτ = ξ − F (cτ ;w) and ητ = η −G(cτ ;w), with F and G as given in (3). We have

I Corollary 3. If σw crosses τ then |ξτ |, |ητ | ≤ γδ1, for some absolute constant γ, provided
that the following two properties hold, for some absolute constant a > 0 (the constant γ
depends on a).
(i) |(w1 − xτ) + κτ (w2 − yτ)| ≥ a, and
(ii) (w1−xτ)2 + (w2− yτ)2 ≥ a, where (xτ , yτ) are the (x, y)-coordinates of the center of τ .

Proof. If σw ∈ Sτ then it contains a point v′ such that |v′−cτ | ≤ c′δ1, for a suitable absolute
constant c′ (that depends on c). We now apply Lemma 1, recalling (4). J

We take the γ provided by Corollary 3 as the γ in the definition of δ1 and δ2. We map
each point v ∈ Vτ to the dual surface σ∗v = σ∗v;τ = {wτ | v ∈ σw}. Using (3), we have

σ∗v;τ = {(w, F (v;w)− F (cτ ;w), G(v;w)−G(cτ ;w)) | w = (w1, w2, w2) ∈ [0, 1]3}.

By Corollary 3, the points wτ , for the surfaces σw that cross τ , lie in the region Rτ =
[0, 1]3 × [−γδ1, γδ1]2. We partition Rτ into a grid Gδ2 of 1/δ5

2 small congruent boxes, each of
dimensions δ2 × δ2 × δ2 × (2γδ1δ2)× (2γδ1δ2) = δ2 × δ2 × δ2 × ε× ε.

Exactly as in the primal setup, we make each of these boxes half-open, thereby making
the sets of dual vertices in the smaller boxes pairwise disjoint. We assign to each of these dual
cells τ∗ the set S∗τ∗ of dual points that lie in τ∗, and the set V ∗τ∗ of the dual surfaces that cross
either τ∗ or one of the eight cells adjacent to τ∗ in the (ξτ , ητ)-directions. Put nτ∗ = |S∗τ∗ |
and mτ∗ = |V ∗τ∗ |. Since the dual cells are pairwise disjoint, we have

∑
τ∗ nτ∗ = nτ . Since

the dual surfaces are three-dimensional algebraic surfaces of constant degree, each of them
crosses O(1/δ3

2) grid cells, so
∑
τ∗ mτ∗ = O

(
mτ/δ

3
2
)
.

We compute, for each dual surface σ∗v , the sum
∑
τ∗ |S∗τ∗ |, over the dual cells τ∗ that are

either crossed by σ∗v or that one of their adjacent cells in the (ξτ , ητ)-directions is crossed by
σ∗v . We output the vertex v of Gε with the largest resulting count, over all primal cells τ .

The following theorem establishes the correctness of our technique. Its proof is given in
Appendix B of the full version [2].

I Theorem 4. Suppose that for every cell τ ∈ Gδ1 and for every point v = (x, y, z, κ) ∈ Vτ
and every w = ((w1, w2, w3), ξ, η) such that σw intersects either τ or one of its adjacent cells
in the (ξτ , ητ)-directions, we have that, for some absolute constant a > 0,
(i) |(w1 − x) + κ(w2 − y)| ≥ a,
(ii) (w1 − x)2 + (w2 − y)2 ≥ a, and
(iii) |(w1 − x) + ξ(w2 − y)| ≥ a.
Then (a) For each v ∈ V , every pair (v,w) at frame distance ≤ ε is counted (as an ε-incidence
of v) by the algorithm. (b) For each v ∈ V , every pair (v,w) that we count lies at frame
distance ≤ αε, for some constant α > 0 depending on a.

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, and B. Zeisl 8:9

3.1 Running time analysis
The cost of the algorithm is clearly proportional to

∑
τ

∑
τ∗ (mτ∗ + nτ∗) , over all primal

cells τ and the dual cells τ∗ associated with each cell τ . We have

∑
τ

∑
τ∗

(mτ∗ + nτ∗) = O

(∑
τ

(
mτ/δ

3
2 + nτ

))
= O

(
m/δ3

2 + n/δ2
1
)
.

Optimizing the choice of δ1 and δ2, we choose δ1 =
(
ε3n
m

)1/5
and δ2 =

(
ε2m
n

)1/5
. These

choices make sense as long as each of δ1, δ2 lies between ε/(2γ) and 1. That is, ε
2γ ≤(

ε3n
m

)1/5
≤ 1 and ε

2γ ≤
(
ε2m
n

)1/5
≤ 1, or c′ε2m ≤ n ≤ c′′m

ε3 , where c′ and c′′ are absolute
constants (that depend on γ).

If n < c′ε2m, we use only the primal setup, taking δ1 = ε (for the primal subdivision).

The cost is then O
(
n/ε2 +m

)
= O (m) . Similarly, if n > c′′m

ε3 , we use only the dual setup,
taking δ1 = 1 and δ2 = ε/(2γ), and the cost is thus O

(
n+m/ε3) = O(n). Adding everything

together, to cover all three subranges, the running time is then O
(
m2/5n3/5

ε6/5 + n+m
)
.

Substituting m = O
(
1/ε4), we get a running time of O

(
n3/5

ε14/5 + n+ 1
ε4

)
. The first term

dominates when n = Ω(1
ε2) and n = O(1

ε7) . In conclusion, we have the following result.

I Theorem 5. Given n data points that are seen (and identified) in a two-dimensional image
taken by a vertically positioned camera, and an error parameter ε > 0, where the viewed points

satisfy the assumptions made in Theorem 4, we can compute, in O
(
n3/5

ε14/5 + n+ 1
ε4

)
time,

a vertex v of Gε that maximizes the approximate count of ε-incident correspondences, where
“approximate” means that every correspondence w whose surface σw is at frame distance at
most ε from v is counted and every correspondence that we count lies at frame distance at
most αε from v, for some fixed constant α.

Restricting ourselves only to grid vertices does not really miss any solution. We only
lose a bit in the quality of approximation, replacing ε by a slightly large constant multiple
thereof, when we move from the best solution to a vertex of its grid cell.

4 Geometric proximity via canonical surfaces

In this section we present a general technique to preprocess a set of algebraic surfaces into a
data structure that can answer approximate incidences queries. In this technique we round
the n original surfaces into a set of canonical surfaces, whose size depends only on ε, such
that each original surface has a canonical surface that is “close” to it. Then we build an
octree-based data structure for approximate incidences queries with respect to the canonical
surfaces. However, to reduce the number of intersections between the cells of the octree and
the surfaces, we further reduce the number of surfaces as we go from one level of the octree
to the next, by rounding them in a coarser manner into a smaller set of surfaces.

This technique has been introduced by Fonseca and Mount [4] for the case of hyperplanes.
We describe as a warmup step, in Appendix C of the full version [2], our interpretation
of their technique applied to hyperplanes. We then extend here the technique to general
surfaces, and apply it to the specific instance of 2-surfaces in 4-space that arise in the camera
pose problem.

SoCG 2019

8:10 Approximation Algorithms for Camera Posing

We have a set S of n k-dimensional surfaces in Rd that cross the unit cube [0, 1]d, and a
given error parameter ε. We assume that each surface σ ∈ S is given in parametric form,
where the first k coordinates are the parameters, so its equations are

xj = F
(σ)
j (x1, . . . , xk), for j = k + 1, . . . , d.

Moreover, we assume that each σ ∈ S is defined in terms of ` essential parameters t =
(t1, . . . , t`), and d−k additional free additive parameters f = (fk+1, . . . , fd), one free parameter
for each dependent coordinate. Concretely, we assume that the equations defining the surface
σ ∈ S, parameterized by t and f (we then denote σ as σt,f), are

xj = Fj(x; t) + fj = Fj(x1, . . . , xk; t1, . . . , t`) + fj , for j = k + 1, . . . , d.

For each equation of the surface that does not have a free parameter in the original
expression, we introduce an artificial free parameter, and initialize its value to 0. (We need
this separation into essential and free parameters for technical reasons that will become clear
later.) We assume that t (resp., f) varies over [0, 1]` (resp., [0, 1]d−k).

Remark. The distinction between free and essential parameters seems to be artificial, but
yet free parameters do arise in certain basic cases, such as the case of hyperplanes discussed
in Appendix C of [2]. In the case of our 2-surfaces in 4-space, the parameter w3 is free,
and we introduce a second artificial free parameter into the equation for κ. The number of
essential parameters is ` = 4 (they are w1,w2,ξ, and η).

We assume that the functions Fj are all continuous and differentiable, in all of their
dependent variables x, t and f (this is a trivial assumption for f), and that they satisfy the
following two conditions.

(i) Bounded gradients. |∇xFj(x; t)| ≤ c1, |∇tFj(x; t)| ≤ c1, for each j = k+ 1, . . . , d, for
any x ∈ [0, 1]k and any t ∈ [0, 1]`, where c1 is some absolute constant. Here ∇x (resp.,
∇t) means the gradient with respect to only the variables x (resp., t).

(ii) Lipschitz gradients. |∇xFj(x; t)−∇xFj(x; t′)| ≤ c2|t − t′|, for each j = k + 1, . . . , d,
for any x ∈ [0, 1]k and any t, t′ ∈ [0, 1]`, where c2 is some absolute constant. This
assumption is implied by the assumption that all the eigenvalues of the mixed part of the
Hessian matrix ∇t∇xFj(x; t) have absolute value bounded by c2.

4.1 Canonizing the input surfaces
We first replace each surface σt,f ∈ S by a canonical “nearby” surface σs,g. Let ε′ = ε

c2 log(1/ε)
where c2 is the constant from Condition (ii). We get s from t (resp., g from f) by rounding
each coordinate in the essential parametric domain L (resp., in the parametric domain Φ)
to a multiple of ε′/(`+ 1). Note that each of the artificial free parameters (those that did
not exist in the original equations) has the initial value 0 for all surfaces, and remains 0 in
the rounded surfaces. We get O

(
(1/ε′)`′

)
canonical rounded surfaces, where `′ ≥ ` is the

number of original parameters, that is, the number of essential parameters plus the number
of non-artificial free parameters; in the worst case we have `′ = `+ d− k.

For a surface σt,f and its rounded version σs,g we have, for each j,

|(Fj(x; t) + fj)− (Fj(x; s) + gj)| ≤ |∇tFj(x; t′)| · |t− s|+ |fj − gj |
≤ c1|t− s|+ |fj − gj | ≤ (c1 + 1)ε′,

where t′ is some intermediate value, which is irrelevant due to Condition (i).

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, and B. Zeisl 8:11

We will use the `2-norm of the difference vector ((Fj(x; t) + fj)− (Fj(x; s) + gj))dj=k+1
as the measure of proximity between the surfaces σt,f and σs,g at x, and denote it as
dist(σt,f , σs,g; x). The maximum dist(σt,f , σs,g) := maxx∈[0,1]k dist(σt,f , σs,g; x) measures the
global proximity of the two surfaces. (Note that it is an upper bound on the Hausdorff
distance between the two surfaces.) We thus have dist(σt,f , σs,g) ≤ (c1 + 1)ε′ when σs,g is
the canonical surface approximating σt,f .

We define the weight of each canonical surface to be the number of original surfaces that
got rounded to it, and we refer to the set of all canonical surfaces by Sc.

4.2 Approximately counting ε-incidences
We describe an algorithm for approximating the ε-incidences counts of the surfaces in S and
the vertices of a grid G of side length 4ε.

We construct an octree decomposition of τ0 := [0, 1]d, all the way to subcubes of side
length 4ε such that each vertex of G is the center of a leaf-cube. We propagate the surfaces
of Sc down this octree, further rounding each of them within each subcube that it crosses.

The root of the octree corresponds to τ0, and we set Sτ0 = Sc. At level j ≥ 1 of the
recursion, we have subcubes τ of τ0 of side length δ = 1/2j . For each such τ , we set S̃τ to
be the subset of the surfaces in Sp(τ) (that have been produced at the parent cube p(τ) of
τ) that intersect τ . We now show how to further round the surfaces of S̃τ , so as to get a
coarser set Sτ of surfaces that we associate with τ , and that we process recursively within τ .

At any node τ at level j of our rounding process, each surface σ of Sτ is of the form
xj = Hj(x; t) + fj , for j = k + 1, . . . , d where x = (x1, . . . , xk), and t = (t1, . . . , t`).

(a) For each j = k + 1, . . . , d the function Hj is a translation of Fj . That is Hj(x; t) =
Fj(x; t) + c for some constant c. Thus the gradients of Hj also satisfy Conditions (i) and
(ii).

(b) t is some vector of ` essential parameters, and each coordinate of t is an integer multiple
of ε′

(`+1)δ , where δ = 1/2j .
(c) f = (fk+1, . . . , fd) is a vector of free parameters, each is a multiple of ε′/(`+ 1).

Note that the surfaces in Sτ0 = Sc, namely the set of initial canonical surfaces constructed
in Section 4.1, are of this form (for j = 0 and Hj = Fj). We get Sτ from S̃τ ⊆ Sp(τ) by the
following steps. The first step just changes the presentation of τ and S̃τ , and the following
steps do the actual rounding to obtain Sτ .

1. Let (ξ1, . . . , ξk, ξk+1, . . . , ξd) be the point in τ of smallest coordinates and set ξ =
(ξ1, . . . , ξk). We rewrite the equations of each surface of S̃τ as follows: xj = Gj(x; t) + f ′j ,
for j = k+ 1, . . . , d, where Gj(x; t) = Hj(x; t)−Hj(ξ; t) + ξj , and f ′j = fj +Hj(ξ; t)− ξj ,
for j = k + 1, . . . , d. Note that in this reformulation we have not changed the essential
parameters, but we did change the free parameters from fj to f ′j , where f ′j depends on
fj , t, ξ, and ξj . Note also that Gj(ξ; t) = ξj for j = k + 1, . . . , d.

2. We replace the essential parameters t of a surface σt,f by s, which we obtain by rounding
each coordinate of t to the nearest integer multiple of ε′

(`+1)δ . So the rounded surface
has the equations xj = Gj(x; s) + f ′j , for j = k + 1, . . . , d. Note that we also have that
Gj(ξ; s) = ξj , for j = k + 1, . . . , d.

3. For each surface, we round each free parameter f ′j , j = k+1, . . . , d, to an integral multiple
of ε′

`+1 , and denote the rounded vector by g. Our final equations for each rounded surface
that we put in Sτ are xj = Gj(x; s) + gj for j = k + 1, . . . , d.

SoCG 2019

8:12 Approximation Algorithms for Camera Posing

By construction, when t1 and f ′1 and t2 and f ′2 get rounded to the same vectors s and g
then the corresponding two surfaces in S̃τ get rounded to the same surface in Sτ . The weight
of each surface in Sτ is the sum of the weights of the surfaces in Sp(τ) that got rounded to it,
which, by induction, is the number of original surfaces that are recursively rounded to it. In
the next step of the recursion the Hj ’s of the parametrization of the surfaces in Sτ are the
functions Gj defined above.

The total weight of the surface in Sτ for a leaf cell τ is the approximate ε-incidences
count that we associate with the center of τ .

4.3 Error analysis
We now bound the error incurred by our discretization. We start with the following lemma,
whose proof is given in Appendix A of the full version [2].

I Lemma 6. Let τ be a cell of the octtree and let xj = Gj(x; t) +f ′j , for j = k+ 1, . . . , d be a
surface obtained in Step 1 of the rounding process described above. For any x = (x1, . . . , xk) ∈
[0, δ]k, for any t, s ∈ [0, 1]`, and for each j = k + 1, . . . , d, we have

|Gj(x; s)−Gj(x; t)| ≤ c2|x− ξ| · |t− s|, (5)

where c2 is the constant of Condition (ii), and ξ = (ξ1, . . . , ξk) consists of the first k
coordinates of the point in τ of smallest coordinates.

I Lemma 7. For any x = (x1, . . . , xk) ∈ [0, δ]k, for any t, s ∈ [0, 1]`, and for each
j = k + 1, . . . , d, we have∣∣Gj(x; s) + gj − (Gj(x; t) + f ′j)

∣∣ ≤ c2ε
′ ≤ ε

log(1/ε) , (6)

where c2 is the constant of Condition (ii).

Proof. Using the triangle inequality and Lemma 6, we get that∣∣Gj(x; s) + gj − (Gj(x; t) + f ′j)
∣∣

≤ |Gj(x; s)−Gj(x; t)|+
∣∣gj − f ′j∣∣ ≤ c2|x− ξ||t− s|+ ε′

`+ 1 .

Since |x− ξ| ≤ δ, |t− s| ≤ `ε′

(`+1)δ , and |gj − f
′
j | ≤ ε′

`+1 , the lemma follows. J

We now bound the number of surfaces in Sτ . Since s ∈ [0, 1]` and each of its coordinates
is a multiple of ε′

(`+1)δ , we have at most (δε′)
` different values for s. To bound the number of

possible values of g, we prove the following lemma (see [2] for the proof).

I Lemma 8. Let xj = Gj(x; t) + f ′j, for j = k + 1, . . . , d, be a surface σt,f′ in S̃τ . For each
j = k + 1, . . . , d, we have

∣∣f ′j∣∣ ≤ (c1 + 1)δ, where c1 is the constant of Condition (i).

Lemma 8 implies that each gj , j = k+ 1, . . . , d, has only O(δε′) possible values, for a total
of at most O((δε′)

d−k) possible values for g. Combining the number of possible values for s
and g, we get that the number of newly discretized surfaces in Sτ is

O

((
δ

ε′

)`
·
(
δ

ε′

)d−k)
= O

((
δ

ε′

)`+d−k)
. (7)

D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharir, and B. Zeisl 8:13

It follows that each level of the recursive octree decomposition generates

O

((
1
δ

)d
·
(
δ

ε′

)`+d−k)
= O

(
δ`−k

(ε′)`+d−k

)
re-discretized surfaces, where the first factor in the left-hand side expression is the number
of cubes generated at this recursive level, and the second factor is the one in (7).

Summing over the recursive levels j = 0, . . . , log 1
ε , where the cube size δ is 1/2j at level

j, we get a total size of O
(

1
(ε′)`+d−k

∑log 1
ε

j=0
1

2j(`−k)

)
. We get different estimates for the sum

according to the sign of ` − k. If ` > k the sum is O(1). If ` = k the sum is O
(
log 1

ε

)
. If

` < k the sum is O
(
2jmax(k−`)) = O

(
1

(ε′)k−`

)
. Accordingly, the overall size of the structure,

taking also into account the cost of the first phase, is
O
(

1
(ε′)`+d−k

)
for ` > k

O
(

1
(ε′)d log 1

ε

)
for ` = k

O
(

1
(ε′)d

)
for ` < k.

(8)

The following theorem summarizes the result of this section. Its proof follows in a
straightforward way from the preceding discussion from Lemma 7, analogously to the proof
of Lemma 8 in the appendix of the full version [2].

I Theorem 9. Let S be a set of n surfaces in Rd that cross the unit cube [0, 1]d, given
parametrically as xj = Fj(x; t) + fj for j = k + 1, . . . , d, where the functions Fj satisfy
conditions (i) and (ii), and t = (t1, . . . , t`). Let G be the (4ε)-grid within [0, 1]d. The
algorithm described above reports for each vertex v of G an approximate ε-incidences count
that includes all surfaces at distance at most ε from v and may include some surfaces at
distance at most (2

√
d+ 1)ε from v. The running time of this algorithm is proportional to

the total number of rounded surfaces that it generates, which is given by Equation (8), plus
an additive O(n) term for the initial canonization of the surfaces.

We can modify our data structure so that it can answer approximate or exact ε-incidence
queries as we describe in Appendix C of [2] for the case of hyperplanes.

4.4 Experimental Results: Summary
We implemented our algorithms and compared their performance on real and synthetic data.
Some of our results are shown in Figures 3 and 4. They show that in practical scenarios
(n ∈ [8K, 32K], ε ∈ [0.02, 0.03]), the primal-dual scheme is considerably faster than the other
algorithms. See full details in the full version of the paper [2].

10000 15000 20000 25000 30000

n

0

5

10

15

20

25

30

R
u
n
ti

m
e
 (

se
cs

)

ε= 0.020

naive

primal-dual

canonical surfaces

10000 15000 20000 25000 30000

n

0

5

10

15

20

25

30

R
u
n
ti

m
e
 (

se
cs

)

ε= 0.025

naive

primal-dual

canonical surfaces

10000 15000 20000 25000 30000

n

0

5

10

15

20

25

30

R
u
n
ti

m
e
 (

se
cs

)

ε= 0.030

naive

primal-dual

canonical surfaces

Figure 3 The run-time of the three methods on synthetic data for various values of ε.

SoCG 2019

8:14 Approximation Algorithms for Camera Posing

2000 4000 6000 8000 10000 12000

n

0

2

4

6

8

10

12

14

16

18

R
u
n
ti

m
e
 (

se
cs

)

ε= 0.02

naive

primal-dual

canonical surfaces

Figure 4 Run-time for real-world data.

References
1 Sameer Agarwal, Noah Snavely, Ian Simon, Steven M Seitz, and Richard Szeliski. Building

Rome in a day. In Commun. ACM 54(10), pages 105–112. ACM, 2011.
2 D. Aiger, H. Kaplan, E. Kokiopoulou, M. Sharis, and B. Zeisl. General techniques for

approximate incidences and their application to the camera posing problem. CoRR, 2019.
arXiv:1903.07047.

3 Dror Aiger, Haim Kaplan, and Micha Sharir. Output Sensitive Algorithms for Approximate
Incidences and Their Applications. In Computational Geometry, to appear. Also in European
Symposium on Algorithms, volume 5, pages 1–13, 2017.

4 Guilherme D Da Fonseca and David M Mount. Approximate range searching: The absolute
model. Computational Geometry, 43(4):434–444, 2010.

5 Martin A Fischler and Robert C Bolles. Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography. Communications
of the ACM, 24(6):381–395, 1981.

6 Christian Häne, Lionel Heng, Gim Hee Lee, Friedrich Fraundorfer, Paul Furgale, Torsten Sattler,
and Marc Pollefeys. 3D visual perception for self-driving cars using a multi-camera system:
Calibration, mapping, localization, and obstacle detection. Image and Vision Computing,
68:14–27, 2017.

7 Bert M Haralick, Chung-Nan Lee, Karsten Ottenberg, and Michael Nölle. Review and analysis
of solutions of the three point perspective pose estimation problem. International Journal of
Computer Vision, 13(3):331–356, 1994.

8 Georg Klein and David Murray. Parallel Tracking and Mapping for Small AR Workspaces. In
ISMAR, pages 83–86. IEEE, 2009.

9 Sven Middelberg, Torsten Sattler, Ole Untzelmann, and Leif Kobbelt. Scalable 6-DOF
Localization on Mobile Devices. In European Conference on Computer Vision, pages 268–283.
Springer, 2014.

10 Marc Pollefeys, Luc Van Gool, Maarten Vergauwen, Frank Verbiest, Kurt Cornelis, Jan Tops,
and Reinhard Koch. Visual Modeling with a Hand-Held Camera. International Journal of
Computer Vision, 59(3):207–232, 2004.

11 Johannes L Schonberger and Jan-Michael Frahm. Structure-from-Motion Revisited. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4104–4113, 2016.

12 Chris Sweeney, John Flynn, Benjamin Nuernberger, Matthew Turk, and Tobias Höllerer.
Efficient Computation of Absolute Pose for Gravity-Aware Augmented Reality. In ISMAR,
pages 19–24. IEEE, 2015.

13 Bernhard Zeisl, Torsten Sattler, and Marc Pollefeys. Camera Pose Voting for Large-Scale
Image-Based Localization. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2704–2712, 2015.

http://arxiv.org/abs/1903.07047

Circumscribing Polygons and Polygonizations for
Disjoint Line Segments
Hugo A. Akitaya
Department of Computer Science, Tufts University, Medford, MA, USA
hugo.alves_akitaya@tufts.edu

Matias Korman
Department of Computer Science, Tufts University, Medford, MA, USA
matias.korman@tufts.edu

Mikhail Rudoy
CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA
Google Inc., Cambridge, MA, USA
mrudoy@gmail.com

Diane L. Souvaine
Department of Computer Science, Tufts University, Medford, MA, USA
diane.souvaine@tufts.edu

Csaba D. Tóth
Department of Mathematics, California State University Northridge, Los Angeles, CA
Department of Computer Science, Tufts University, Medford, MA, USA
csaba.toth@csun.edu

Abstract

Given a planar straight-line graph G = (V, E) in R2, a circumscribing polygon of G is a simple
polygon P whose vertex set is V , and every edge in E is either an edge or an internal diagonal of P .
A circumscribing polygon is a polygonization for G if every edge in E is an edge of P .

We prove that every arrangement of n disjoint line segments in the plane has a subset of size
Ω(

√
n) that admits a circumscribing polygon, which is the first improvement on this bound in 20

years. We explore relations between circumscribing polygons and other problems in combinatorial
geometry, and generalizations to R3.

We show that it is NP-complete to decide whether a given graph G admits a circumscribing
polygon, even if G is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it
is NP-complete to determine whether a geometric matching admits a polygonization.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Combinatoric problems

Keywords and phrases circumscribing polygon, Hamiltonicity, extremal combinatorics

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.9

Related Version A full version of the paper is available on arXiv [2], http://arxiv.org/abs/1903.
07019.

Funding Research supported in part by the NSF awards CCF-1422311 and CCF-1423615.
Matias Korman: Partially supported by MEXT KAKENHI No. 17K12635.
Diane L. Souvaine: Partially supported by the Erwin Schrödinger Institute for Mathematics and
Physics (ESI).

© H. A. Akitaya, M. Korman, M. Rudoy, C. D. Tóth, and D. L. Souvaine;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hugo.alves_akitaya@tufts.edu
mailto:matias.korman@tufts.edu
mailto:mrudoy@gmail.com
mailto:diane.souvaine@tufts.edu
mailto:csaba.toth@csun.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.9
http://arxiv.org/abs/1903.07019
http://arxiv.org/abs/1903.07019
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Circumscribing Polygons and Polygonizations

1 Introduction

Reconstruction of geometric objects from partial information is a classical problem in
computational geometry. In this paper, we revisit the problem of reconstructing a simple
polygon (alternatively, a triangulated simple polygon) P when some of its edges have been
lost. Given a set V of n points in the plane, a polygonization of V is a simple polygon P
whose vertex set is V . It is easy to see that, unless all points are collinear, V has a simple
polygonization. The number of polygonizations is exponential in n, and there is extensive
work on determining the minimum and maximum number of polygonizations for n points in
general position as a function of n (see [6] and [20] for the latest upper and lower bounds,
and [9] for a survey on this and related problems).

A natural generalization of this problem is to augment a given planar straight-line graph
(PSLG) G = (V,E) into a simple polygon or a Hamiltonian PSLG. In particular, three
variants have been considered: A simple polygon P on a vertex set V is a polygonization
if every edge in E is an edge of P ; a circumscribing polygon if every edge in E is an edge
or an internal diagonal in P ; and a compatible Hamiltonian polygon if every edge in E
is an edge, an internal diagonal, or an external diagonal in P .

Hoffmann and Tóth [8] proved that every planar straight-line matching admits a compat-
ible Hamiltonian polygon, unless all segments are collinear, in which case no such polygon
exists. Urabe and Watanabe [21] constructed an arrangement of 16 disjoint segments that
does not admit a circumscribing polygon. However, a circumscribing polygon is known
to exist when (i) each segment has at least one endpoint on the boundary of the convex
hull [13], or (ii) no segment intersects the supporting line of any other segment [14]. Pach and
Rivera-Campo [16] proved in 1998 that every set of n disjoint segments contains a subset of
Ω(n1/3) segments that admits a circumscribing polygon; no nontrivial upper bound is known.

Rappaport [18] proved that it is NP-complete to decide whether G can be augmented into
a simple polygon. In the reduction, G consists of disjoint paths, and Rappaport conjectured
that the problem remains hard even if G is a perfect matching (i.e., disjoint line segments in
the plane). In the special case that G is perfect matching and every segment has at least one
endpoint on the boundary of the convex hull, then an O(n logn) time algorithm can compute
a polygonization (or report that none exists [19]). If S is a set of n ≥ 3 parallel chords of a
circle, then neither S nor any subset of 3 or more segments from S admits a polygonization
(so the analogue of the problem of Pach and Rivera-Campo [16] has a trivial answer in this
case). In a related result, Ishaque et al. [10] proved that n disjoint line segments in general
position, where n is even, can be augmented to a 2-regular PSLG (i.e., a union of disjoint
simple polygons).

Our Results. In this paper, we obtain the following results.
We prove that every set of n disjoint line segments in general position contains a subset
of Ω(

√
n) segments that admit a circumscribing polygon (Theorem 1 in Section 2). This

is the first improvement over the previous bound of Ω(n1/3) [16] in the last 20 years.
While we do not have any nontrivial upper bound for circumscribing polygons proper,
we relate that problem to the extensibility of disjoint line segments to disjoint rays. For
every n ∈ N, we construct a set of n disjoint line segments in the plane such that the size
of any subset extensible to disjoint rays is O(

√
n) (Section 3).

We prove that it is NP-complete to determine whether a given set of disjoint cycles in
the plane admits a circumscribing polygon (Theorem 13 in Section 4). The reduction is
from Hamiltonian paths in 3-connected cubic planar graphs.
We prove that it is NP-complete to determine whether a given set of disjoint line segments
admits a polygonization (Theorem 14 in Section 5). This settles a 30-year old conjecture
by Rappaport [18] in the affirmative.

H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:3

We conclude with a few open problems and three-dimensional generalizations in Section 6.
All omitted proofs are available in the full version of this paper [2].

Further Related Previous Work. Hamiltonicity fascinated graph theorists and geometers for
centuries. Some planar graph results hold for PSLGs, as well (i.e., planar graphs with a fixed
straight-line embeddings). Hamiltonicity is NP-complete for planar cubic graphs [7], but can
be solved in linear time in 4-connected planar graphs [4], and all 4-connected triangulations
(i.e., edge-maximal planar graphs) are Hamiltonian [22]. In terms of augmentation, a non-
Hamiltonian triangulation cannot be augmented to a Hamiltonian planar graph by adding
edges or vertices. However, Pach and Wenger [17] proved that every planar graph on n

vertices can be transformed into a Hamiltonian planar graph on at most 5n vertices by
subdividing some of the edges, with at most two new vertices per edge, and by adding new
edges. See also the surveys [5, 15] on Hamiltonicity of planar graphs and their applications.

2 Large Subsets with Circumscribing Polygons

For every integer n ≥ 2, let f(n) be the maximum integer such that every set of n disjoint
segments in the plane in general position contains a subset of f(n) segments that admit
a circumscribing polygon. Pach and Rivera-Campo [16] proved 20 years ago that f(n) =
Ω(n1/3). In this section, we improve the lower bound to f(n) = Ω(

√
n).

I Theorem 1. Every set of n ≥ 2 disjoint line segments in the plane in general position
contains Ω(

√
n) segments that admit a circumscribing polygon.

Proof. Segment Selection. Let S be a set of n ≥ 2 disjoint line segments in the plane. We
may assume without loss of generality that none of the segments is vertical, and all segment
endpoints have distinct x-coordinates. For a subset S′ ⊆ S, a halving line is a vertical line
` such that the number of segments in S′ contained in the left and right open halfplanes
bounded by ` differ by at most one. In particular, each halfplane contains at most |S′|/2
segments from S′.

We partition S recursively as follows. Find a halving line ` for S, and recurse on the
nonempty subsets of segments lying in each open halfplane determined by `. Denote by T
the recursion tree, which is a binary tree of depth at most logn. We denote by V (T) the set
of nodes of T , and by Vi(T) the set of nodes at level i of T for i = 0, 1, . . . , blognc. Associate
each node v ∈ V (T) to a halving line `v and to the subset Sv ⊆ S of segments that intersect
`v without intersecting the halving lines associated with any ancestor of v. This defines a
partition of S into subsets Sv, v ∈ V (T).

For every v ∈ V (T), sort the segments in Sv by the y-coordinates of their intersections
with the line `v; and let Qv ⊆ Sv be a maximum subset of segments that have monotonically
increasing or decreasing slopes. By the Erdős-Szkeres theorem, we have |Qv| ≥

√
|Sv| for

every v ∈ V (T). For a refined analysis, we consider the union of the sets Qv for v ∈ Vi(T)
for i = 0, . . . , blognc, and then take one such union of maximal cardinality.

We need some additional notation. For every v ∈ V (T), let nv = |Sv| and mv = |Qv|.
For every integer i = 0, 1, . . . , blognc, let Si (resp., Qi) be the union of Sv (resp., Qv) over
all vertices v ∈ Vi(T). Let νi = |Si| and µi = |Qi|. By definition, we have n =

∑blog nc
i=0 νi.

Let M = max{µi : 0 ≤ i ≤ blognc}. We claim that

M ≥
√
n/2. (1)

SoCG 2019

9:4 Circumscribing Polygons and Polygonizations

By the Erdős-Szekeres Theorem, we have mv ≥
√
nv for every v ∈ V (T). Since nv ≤ n/2i

for every v ∈ Vi(T), then mv ≥
√
nv = nv/

√
nv ≥ nv/

√
n/2i =

√
2i/n ·nv. Summation over

all v ∈ Vi(T) yields M ≥ µi ≥
√

2i/n · νi, which in turn gives νi ≤ M
√
n/2i. Summation

over all i = 0, . . . , blognc now gives n =
∑blog nc

i=0 νi ≤M
√
n

∑blog nc
i=0 2−i/2 ≤ 2M

√
n, hence

M ≥
√
n/2, which proves (1).

Let i∗ ∈ {0, 1, . . . , blognc} be an index where M = µi∗ , and put Ŝ0 = Qi∗ . By construc-
tion, Ŝ0 =

⋃
{Qv : v ∈ Vi∗(T)}. We further partition Ŝ0 into two subsets as follows. Let V <

i∗

(resp., V∗i>) be the set of nodes in Vi(T) such that the slopes in Qv monotonically increase
(resp., decrease). Let Ŝ1 be the larger of

⋃
{Qv : v ∈ V <

i∗ } and
⋃
{Qv : v ∈ V >

i∗ }, breaking
ties arbitrarily. Note that |Ŝ1| ≥

√
n/4. We may assume, by a reflection in the y-axis if

necessary, that Ŝ1 =
⋃
{Qv : v ∈ V >

i∗ }; see Fig. 1 for an example.

Construction of a Circumscribing Polygon. We construct a simple polygon that is a
circumscribing polygon for a subset Ŝ2 ⊆ Ŝ1 of size |Ŝ2| ≥ |Ŝ1|/2 ≥

√
n/8. Pach and Rivera-

Campo [16] proved that an arrangement of disjoint line segments admits a circumscribing
polygon if they are (1) stabbed by a vertical line, and (2) have monotonically increasing or
decreasing slopes. In particular, each Qv, v ∈ V (T), admits a circumscribing polygon. In
contrast, we construct a circumscribing polygon for at least half of the segments in Ŝ1, where
Ŝ1 is the union of all Qv, v ∈ Vi∗(T), separated by vertical lines.

`1 `2 `3 `4

L1 L2 L3

conv(Ŝ1)Q1

Q2

Q3

Q4

Figure 1 A set Ŝ1 =
⋃

{Qv : v ∈ V >
i∗ } of 25 line segments for r = 4; and P = conv(Ŝ1).

For ease of presentation, we introduce new notation for Ŝ1 =
⋃
{Qv : v ∈ V <

i∗ }; see Fig. 1.
Denote by `1, `2, . . . , `r the halving lines {`v : v ∈ V <

i∗ } sorted from left-to-right, and let
Q1, Q2, . . . , Qr be the corresponding sets in {Qv : v ∈ V >

i∗ }. Denote by Li (i = 1, . . . , r − 1)
the vertical lines that separate Qi and Qi+1. Refer to Fig. 1.

Overview. We construct a circumscribing polygon for a subset Ŝ2 ⊆ Ŝ1 incrementally in
two phases, while maintaining a polygon in the segment endpoint visibility graph of Ŝ1. We
use a machinery developed in [8], with several important new elements. Initially, let P be the
boundary of conv(Ŝ1), which is a simple polygon. Intuitively, think of polygon P as a rubber
band, and stretch it successively to visit more segment endpoints from Ŝ1, maintaining the
property that all segments in Ŝ1 remain in the closed polygonal domain of P . A key invariant
of P will be that if P visits only one endpoint of some segment in Ŝ1, then we can stretch
it to visit the other endpoint (a strategy previously used in [8, 13]). This tool allows us to
produce a circumscribing polygon for a subset of Ŝ1. It is enough to ensure that P reaches
an endpoint of at least half of the segments in Ŝ1. To do this, we use the fact that each
set Qv, v ∈ V >

i∗ , is sorted along the halving lines in decreasing order by slope, and we ensure

H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:5

that P reaches the left endpoint of at least half of the segments (later, we stretch P to visit
the right endpoints). At the end, we define Ŝ2 as the set of segments in Ŝ1 visited by P (i.e.,
we discard the remaining segments lying in the interior of P).

We maintain a polygon with the properties listed in Definition 2 below. There are a few
important features to note: P is not necessarily a simple polygon in intermediate steps of
the algorithm: it is a weakly simple polygon that does not have self-crossings; it has clearly
defined interior and exterior; and it can have repeated vertices. Specifically, each vertex
can repeat at most twice (i.e., multiplicity at most 2), and if its multiplicity is 2, then one
occurrence is a reflex vertex and the other is convex. Furthermore, all such reflex vertices
can be removed simultaneously by suitable shortcuts (cf. property (F5) below) to obtain a
simple polygon. We need to be very careful about reflex vertices in P : for each reflex vertex
in P , we ensure either that it will not become a repeated vertex later, or that if it becomes a
repeated vertex, then its reflex occurrence can be removed by a suitable shortcut.

Invariants. As in [8], we maintain a weakly simple polygon, called a frame (defined below).
A weakly simple polygon is a closed polygonal chain P = (v1, . . . , vk) in counterclockwise
order such that, for every ε > 0, displacing the vertices by at most ε can produce a simple
polygon. Denote by P̂ the union of the interior and the boundary of P . A weakly simple
polygon may have repeated vertices. Three consecutive vertices (vi−1, vi, vi+1) define an
interior angle ∠(vi−1, vi, vi+1), or ∠vi, which is either convex (≤ 180◦) or reflex (> 180◦).

The following definitions summarizes the properties that we maintain for a polygon P .
It is based on a similar concept in [8]: we do not allow segments to be external diagonal
(cf. (F2)) and relax the conditions on the possible occurrences of reflex vertices. Property
(F6) is related to the vertical lines `i (i = 1, . . . , r − 1) in the instance S =

⋃r
i=1 Qi. Reflex

vertices play an important role. We distinguish two types of reflex vertices: A reflex vertex
v of a frame P is safe if the (unique) line segment in S incident to v subdivides the reflex
angle ∠v into two convex angles; otherwise v is unsafe.

I Definition 2. A weakly simple polygon P = (v1, . . . , vk) is called frame for a set S of
disjoint line segments in the plane, if (cf. Fig. 2)
(F1) every vertex of P is an endpoint of some segment in S;
(F2) P̂ contains every segment in S;
(F3) every vertex in P has multiplicity at most 2;
(F4) if a vertex in P has multiplicity 2, say vi = vj, then one of ∠vi or ∠vj is convex (and

the other angle is reflex);
(F5) if (vi, . . . , vj) is a maximal chain of unsafe reflex vertices of P that each have multiplicity

2, then (vj+1, vj , . . . vi, vi−1) is a simple polygon that is interior-disjoint from P ;
(F6) the vertical line `i (i = 1, . . . , r − 1) crosses P exactly twice.

v1 v4

v6
v5 = v17

v7 v8

v9

v10

v11

v12

v13

v14

v15

v16v18

v3
v2

Figure 2 A frame P = (v1, . . . , v18) for 10 disjoint line segments (orange). The closed region P̂

is shaded gray. The vertices of multiplicity 1 (resp., 2) are marked with full (resp., empty) dots.

SoCG 2019

9:6 Circumscribing Polygons and Polygonizations

Elementary Operations. Let S be a set of disjoint line segments in general position, and let
P be a frame. We define four elementary operations that each transform P into a new frame
for S. The first operation is the “shortcut” that eliminates reflex vertices of multiplicity
2, and increases the area of the interior. The remaining three operations each increase the
number of vertices of the frame (possibly creating vertices of multiplicity 2) and decrease the
area of its interior.

For shortest path and ray shooting computations, we consider the line segments in S
and the current frame P to be obstacles. For a polygonal path (a, b, c) that does not cross
any segment in S, we define the convex arc carc(a, b, c) to be the shortest polygonal path
between a and c that is homotopic to (a, b, c).

a

b

c

v1

v2

v3

v2

v3v1

v2

v3

(a) (b) (c) (d)

a

b

c a

b

c a

b

c

v1v1

v2

v3

Figure 3 (a) A frame P . (b) P := BuildCap(P, 1, v1). (c) P := BuildCap(P, 1, a). (d) P :=
ChopWedges(P).

I Operation 1. (ChopWedges(P)) Refer to Fig. 3(c-d). Input: a frame P . Action:
While there is a vertex of multiplicity 2, do: let (vi, . . . , vj) be a maximal chain of convex
vertices of P that each have multiplicity 2, and replace the path (vi−1, vi, . . . vj , vj+1) in P
by a single edge vi−1vj+1.

I Operation 2. (BuildCap(P, %, a)) Refer to Fig. 3(a–c) Input: a frame P , an orientation
% ∈ {−1,+1}, and a convex vertex a of multiplicity 1 in P such that ab ∈ S and b is not a
vertex of P . Action: Let c be the neighbor of a in polygon P in orientation % (where ccw= 1,
cw= −1). Replace the edge ac of P with the polygonal path ab+ carc(b, a, c).

a b

(a) (b) (c)

x
a b

u

v

a b

(d)

b

x
u

v
u

v

a

x

Figure 4 (a) A frame. (b) The result of operation Dip(P, a, b). (c) A frame. (d) The result of
operation ShearDip(P, a, x).

I Operation 3. (Dip(P, a, b)) Refer to Fig. 4(a-b). Input: a frame P , a segment ab ∈ S
such that neither a nor b is a vertex of P , and the ray

−→
ba hits an edge of P that is not a

segment in S. Action: Assume that
−→
ba hits edge uv of P at the point x. Replace the edge

uv of P with the polygonal path carc(u, x, a) + carc(a, x, v).

H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:7

I Operation 4. (ShearDip(P, a, x)) Refer to Fig. 4(c-d). Input: a frame P , a segment
endpoint a in the interior of P , and a point x in the interior of an edge of P that is
not a segment in S such that ax does not cross P or any segment in S. Action: Let
uv be the edge of P that contains x. Replace the edge uv of P with the polygonal path
carc(u, x, a) + carc(a, x, v).

Operations 1 and 2 have been previously used in [8, 13]; it was shown that if all reflex
vertices in P have been created by BuildCap operations, then property (F5) automatically
holds [8, Sec. 2]. It is not difficult to see that if all reflex vertices in P have been created
by Dip operations, then property (F5) holds. However, this property does not extend to a
mixed sequence of BuildCap and Dip operations, and certainly not for ShearDip operations.
We maintain property (F5) by a careful application of these operations, using the fact that
each set Qi (i = 1, . . . , r) is stabbed by a vertical line.

Note that Operations 1–4 can only increase the vertex set of the frame (the shortcut
operation decreases the multiplicity of repeated vertices from 2 to 1, but maintains the same
vertex set). Initially, P = ∂conv(S), and so all vertices of conv(S) remain vertices in P in
our algorithm. In particular, the leftmost and rightmost segment endpoint in S are always
vertices in P (with multiplicity 1 by property (F4)). These vertices subdivide P into an
upper arc and a lower arc. As a convention, the leftmost (resp., rightmost) vertex is part
of the lower arc (upper arc). We define an orientation for every vertex v in a frame P : If v
is in the lower arc and the left endpoint of a segment in S, or if it is in the upper arc the
right endpoint of a segment in S, then ϕ(v) = 1; otherwise ϕ(v) = −1. When our algorithm
invokes the BuildCap operation at a vertex v, we use BuildCap(P, %(v), v).

We now can justify the distinction between safe and unsafe reflex vertices.

I Lemma 3. Let v be a reflex vertex of multiplicity 1 in a frame P such that v is safe. Then
after any sequence of the above four operations, the multiplicity of v remains 1.

Proof. Each operation creates at most one new reflex vertex, which has multiplicity 1; and
possibly many convex vertices along the convex arcs, which may have multiplicity 1 or 2.
However, each point can be an interior vertex of at most one convex arc. Consequently, the
multiplicity of a vertex v can possibly increase from 1 to 2 if it is first a reflex vertex of
multiplicity 1, and then visited for a second time (by a convex arc) as a convex vertex; see
Fig. 3(c) and Fig. 4(d) for examples. If v is a safe reflex vertex, then it cannot be an interior
vertex of a convex arc, and so its multiplicity cannot increase from 1 to 2. J

Phase 1: Left Endpoints. Initially, the frame P is the boundary of the convex hull conv(S).
In the first phase of our algorithm, we use operations BuildCap and Dip as follows:

1. Let P = ∂conv(S).
2. While condition (a) or (b) below is applicable, do:

a. If there exits a segment ab ∈ S such that the left endpoint a is a vertex of P , but the
right endpoint is not, then set P := BuildCap(P, %(a), a).

b. Else if there exists a segment ab ∈ Qi for some i ∈ {1, . . . , r} such that a is the left
endpoint, a lies in the interior of P , and

−→
ba hits an edge uv where uv 6∈ S, and the left

endpoint of uv is an endpoint of some segment in Qi, then set P := Dip(P, a, b).
3. Return P , and terminate Phase 1.

An example is shown in Fig. 5. First we show that Phase 1 returns a frame.

I Lemma 4. All operations in Phase 2 maintain properties (F1)–(F6) for P .

SoCG 2019

9:8 Circumscribing Polygons and Polygonizations

`1 `2 `3 `4

L1 L2 L3

Q1

Q2

Q3

Q4

at(2)

at(3) at(4)

Figure 5 A set Ŝ1 of 25 line segments; and the frame P at the end of Phase 1.

We also make simple observation about the frame at the end of Phase 1:

I Lemma 5. Let P be the frame returned by Phase 1, and let ab ∈ Ŝ1. If the left endpoint
of ab is a vertex of P , then it is a convex vertex of multiplicity 1.

The next lemma helps identify the segments in Qi whose left endpoints are not in P .

I Lemma 6. Let P be the frame returned by Phase 1. Let i ∈ {1, . . . , r}, and let Qi =
{ajbj : j = 1, . . . , |Qi|}, be sorted in increasing order by the y-coordinates of ajbj ∩ `i. If aj

is a vertex in the lower (resp., upper) arc of P , then so is aj′ for all j′ < j (resp., j′ > j).

By Lemma 6, the line segments in Ŝ1 whose left endpoints are not in P form a continuous
interval. That is, for every i ∈ {1, . . . , r}, there is a set of consecutive indices Mi ⊆
{1, . . . , |Qi|} (possibly Mi = ∅ or Mi = {1, . . . , |Qi|}) such that j ∈Mi if and only if the left
endpoint of ajbj is not in P . Let Q′i = {ajbj : j ∈Mi} and S′ =

⋃r
i=1 S

′
i

Phase 2: Middle Segments. In Phase 2, we use ShearDip and Dip operations to reach the
left endpoints of at least half of the segments in S′, followed by BuildCap operation to
reach the right endpoints of those segments if necessary. For i = 1, . . . , r, let at(i) be the
leftmost left endpoint in the set S′i. From some suitable point xi on the upper or the lower
arc of P , we use ShearDip(P, at(i), xi) to reach at(i). Choose the points xi, i = 1, . . . , r on the
same (upper or lower) arc of P by comparing the number of segments in S′i above and below
at(i)bt(i) for i = 1, . . . , r. The set of segments above and below are A and B, respectively,
defined as follows:

A =
r⋃

i=1
Ai, where Ai = {ajbj : j ≥ `(i), j ∈Mi, },

B =
r⋃

i=1
Bi, where Bi = {ajbj : j ≤ `(i), j ∈Mi, }.

If |A| ≥ |B|, then we reach the vertices at(i), for i = 1, . . . , r, from the upper arc; otherwise
we reach them from the lower arc. Without loss of generality, assume that |A| ≥ |B|.

It remains to specify the points xi for the operations ShearDip(P, at(i), xi). Consider the
vertical upward ray from at(i), and let ui be the first point on the ray that lies in the upper
arc of P or on a segment in S. If ui is in an edge of the upper arc, but not in a segment in
S, then let xi := ui. Otherwise, ui lies in some segment ab ∈ Qi, which is either an edge or
an internal diagonal of P . Since at(i) is the leftmost left endpoint of a segment in Qi that

H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:9

is not a vertex in P , we know that the triangle ∆(at(i)uia) is empty, and in particular at(i)
sees vertex a. Furthermore, a is a convex vertex of P of multiplicity 1 (cf. Lemma 5). In this
case, let xi be an interior point of edge a0a. Phase 2 proceeds as follows:

1. For i = 1 to r:
If Mi 6= ∅, then set P := ShearDip(P, at(i), xi).

2. While condition (a) or (b) below is applicable, do:
a. If there exits a segment ab ∈ S such that the left endpoint a is a vertex of P , but the

right endpoint is not, then set P := BuildCap(P, %(a), a).
b. Else if there exists a segment ab ∈ Qi for some i ∈ {1, . . . , r} such that ab lies in the

interior of P , a is the left endpoint, and
−→
ba hits an edge uv where uv 6∈ S, but both u

and v are endpoints of some segments in Qj , j ≥ i, then set P := Dip(P, a, b).
3. Return P , and terminate Phase 2.

I Lemma 7. All operations in Phase 2 maintain properties (F1)–(F6) for P ; and at the end
of Phase 2, every vertex at(i), i = 1, . . . , r, has multiplicity 1 in P .

I Lemma 8. At the end of Phase 2, P visits both endpoints of all segments in A. Consequently,
P visits both endpoints of at least half of the segments in Ŝ1.

`1 `2 `3 `4

L1 L2 L3

Q1

Q2

Q3

Q4

at(2)

at(3) at(4)

v

Figure 6 The set Ŝ1 from Fig. 5, and frame P at the end of Phase 2. Vertex v has multiplicity 2.

Phase 3: Right Endpoints. At the end of Phase 2, P visits the left endpoint of every
segment in A, and none in B \A. However, it may visit the right endpoint of some segments
in B \A. In this phase, we use BuildCap operations to ensure that P visits both endpoints
of these segments. Phase 3 proceeds as follows.

1. While condition (a) below is applicable, do
a. If there exists a segment ab ∈ S such that the one endpoint, say b, is a vertex of P ,

but the other endpoint is not, then set P := BuildCap(P, %(b), b).
2. Return P , and terminate Phase 3.

At the end of Phase 3, we obtain a frame P that contains, for each segment, either both
endpoints or neither endpoint; see Fig. 6. Some vertices may have multiplicity 2, but the
multiplicity of the special vertices at(i) (i = 1, . . . , r) remains 1.

I Lemma 9. All operations in Phase 3 maintain properties (F1)–(F6) for P ; and the
multiplicity of every vertex at(i), i = 1, . . . , r, remains 1.

I Lemma 10. Let P be the frame at the end of Phase 3. If one endpoint of a segment in Ŝ1
is a vertex in P , then so is the other endpoint.

SoCG 2019

9:10 Circumscribing Polygons and Polygonizations

Phase 4: Obtaining a Simple Polygon. In the last phase of our algorithm, we set P =
ChopWedges(P). This is a valid operation by property (F5). The resulting frame P is a
simple polygon whose vertex set is the same as at the end of Phase 3. By Lemma 10, if one
endpoint of a segment in Ŝ1 is a vertex in P , then so is the other endpoint. Consequently, P
is a circumscribing polygon for a set of segments in Ŝ1, which we denote by Ŝ2. By Lemma 8,
we have |Ŝ2| ≥ |Ŝ1|/2, as claimed. This completes the proof of Theorem 1. J

3 Disjoint Segments versus Disjoint Rays

In this section, we give two sufficient conditions for an arrangement of disjoint segments to
admit a circumscribing polygon. Both conditions involve extending the segments.

a1

b1

a2b2

a3b3

a4

b4

a5

b5
a6b6

a7 a8

b8b7

a9 b9

Figure 7 Left: an arrangement of disjoint segments extensible to rays. Right: an arrangement of
disjoint segments that is not extensible to rays, but admits escape routes.

(C1) A set S of n disjoint line segments is extensible to rays if there exists a set R of n
disjoint rays, each of which contains a segment from S; see Fig. 7(left).

(C2) A set S of n disjoint line segments admits escape routes if there exists an ordering
and orientation of the segments S = {ai, bi : i = 1, . . . , n} if the following process produces
a set of n rays or directed segments that do not cross any segment in S: For i = 1, . . . , n,
shoot a ray from bi in direction

−−→
aibi that ends at the first point where it hits a previous

ray or goes to infinity; see Fig. 7(right).
Clearly, (C1) implies (C2), but the converse is false in general. We can test property (C1) in
O(n logn) time. Indeed, there are two possible directions to extend each segment into a ray,
which can be encoded by a Boolean variable, and pairwise disjointness can be expressed by a
2SAT formula. For given ordering and orientation, it takes O(n log2 n) time to test whether
the extensions form escape routes [11]. However, we do not know whether condition (C2)
can be tested efficiently. Here we show that (C1) and (C2) each imply the existence of a
circumscribing polygon.

I Theorem 11. If S is a set of disjoint line segments satisfying (C2), then there is a
circumscribing polygon for S.

Proof sketch. By (C2), we may assume that S = {aibi : i = 1, . . . n} such that if we shoot a
ray from bi in direction

−−→
aibi for i = 1, . . . , n, then each ray either goes to infinity or intersects

a previous ray. We call the part of the ray
−−→
aibi from bi to the first point where it intersects a

previous ray or ∂conv(S) the extension of segment aibi.
Given the ordering and orientation of the segments in S, we construct a circumscribing

polygon using the following algorithm, using the operations BuildCap and Dip introduced in
Section 2; see Fig. 8 for an example.

H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:11

a1

b1

a2
b2

a3b3

a4

b4

a5

b5 a6

b6

a7 a8

b8b7

a9 b9

a1

b1

a2
b2

a3b3

a4

b4

a5

b5 a6

b6

a7 a8

b8b7

a9 b9

a1

b1

a2b2

a3b3

a4

b4

a5

b5 a6

b6

a7 a8

b8b7

a9 b9

a1

b1

a2b2

a3b3

a4

b4

a5

b5 a6

b6

a7 a8

b8b7

a9 b9

(a) (b)

(c) (d)

Figure 8 (a) An arrangement of 9 segments that admit escape routes from Fig. 7(right), and
P = conv(S). (b) Polygon P after the for loop of Dip operations. (c) Polygon P after the for loop
of BuildCap operations. (d) The circumscribing polygon for S after the ChopWedges operation.

1. Initialize P := ∂conv(S).
2. For i = 1 to n: if bi is not a vertex of P , then set P := Dip(P, bi, ai).
3. For i = 1 to n: if ai is not a vertex of P , then set P := BuildCap(P, 1, bi).
4. ChopWedges(P).
5. Return P . J

The above results link the circumscribing polygon problem to the problem of extending
line segments to rays. We now give an upper bound for the latter problem that seems to
imply that the lower bound of the former problem (Theorem 1) is tight.

I Lemma 12. For every n ∈ N, there is a set S of n disjoint line segments in the plane such
that the cardinality of every subset S′ ⊆ S that admits an escape route is |S′| ≤ 2d

√
ne − 1.

C

a1a2
a3
a4

b1

b2

b3

b4

C1

C2

C3

C4

Figure 9 Our lower bound construction for k = 4.

SoCG 2019

9:12 Circumscribing Polygons and Polygonizations

Proof sketch. We create a problem instance S with
√
n groups, each containing

√
n segments

(see Fig. 9). The key idea is that in any subset Q of S that admits escape routes, only
segments of one group can extend to the left. Moreover, we show that from each group only
one segment can extend to the right, giving the 2d

√
ne − 1 bound. J

4 Hardness for Circumscribing Polygons

In this section we prove that it is NP-hard to decide whether a given set of disjoint line
segments admits a circumscribing polygon. We reduce from a problem that we call Hamilto-
nian Path in 3-Connected Planar Cubic Graphs with Start Edge (HP3CPG-SE):
Given a 3-connected cubic planar graph G = (V,E) and an edge uv ∈ E, decide whether G
has Hamiltonian path whose first edge is uv, which is NP-complete [7, p. 713].

I Theorem 13. It is NP-complete to decide whether a given PSLG admits a circumscribing
polygon, even if the PSLG is max-degree-2.

Proof sketch. The membership to NP is trivial. Let G = (V,E) and uv ∈ E be an instance
of HP3CPG-SE, and let n = |V | (Fig. 10 (a)). We modify G by a Y∆-transform at u
producing a graph G′ with a new triangular face ∆(abu′) (Fig. 10 (b)). It is clear that G
admits a Hamiltonian path starting with uv if and only if G′ admits a Hamiltonian path
starting with abu′v. Embed G′ so that the outer face is ∆(abu′) (Fig. 10 (c)). Delete the
edge incident to a (b) that does not bound the outer face. Rotate by a small amount all
edges that do not bound the outer face, splitting each internal degree-3 vertex w into a
triangle ∆(w1w2w3) (Fig. 10(d) and Fig. 11(a–b)). We call these newly created triangles
transparent faces, and every remaining internal face opaque. Create a small new edge
in each transparent face, and shrink each opaque face by a small amount using its straight
skeleton (Fig. 10 (e)). After this step, each added small segment can still only see the three
vertices (Fig. 11 (c)). This construction defines a max-degree-2 PSLG Ĝ = (V̂ , Ê).

u v v
u0

u0

a

b

a

b

v

u0 a

b

u0 a

b

Figure 10 (a) A 3-connected cubic graph G with special edge uv. (b) Graph G′ after a Y ∆-
transform around vertex u. (c) A convex embedding of G′ such that the outer face is ∆u. (d) Rotating
the supporting line of internal edges. (e) Thickening the edges into corridors.

⇒ ⇒

Figure 11 A chamber incident to three corridors and a segment in the chamber that sees only
three other vertices.

H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:13

A circumscribing polygon of Ĝ must enclose all of its opaque faces. We partition the
regions of the outer face of Ĝ that lies in the convex hull of the embedding into corridors
and chambers. They correspond to edges and vertices of G′ respectively. We show that a
circumscribing polygon of Ĝ must behave as in Figs. 12 (a–d) in the vicinity of the endpoints
of a corridor, up to symmetry. Then, such a circumscribing polygon defines a Hamiltonian
path on the chambers. Hence, Ĝ admits a circumscribing polygon if and only if G admits a
Hamiltonian path starting with uv. J

u0 a

b

Figure 12 A circumscribing polygon P̂ at a chamber and a solution to the reduction in Fig. 10.

5 Simple Polygonizations of Disjoint Segments

Rappaport [18] proved that it is NP-hard to decide whether a given PSLG G = (V,E) admits
a polygonization. The reduction in [18] is from Hamiltonian Path in Planar Cubic
Graphs (HPPCG) and produces an instance in which G is a union of disjoint paths, every
edge in E is horizontal or vertical, and the vertices in V have integer coordinates, bounded
by a polynomial in n = |V |. In this section, we describe the connection gadget made of
disjoint line segments that simulates a pair of line segments that share an endpoint. Using
this gadget, we show that finding a simple polygonization of disjoint line segments is NP-hard.
Informal description of the connection gadget. Refer to Figure 13. Given a PSLG
G = (V,E), with a vertex p2 ∈ V of degree 2, incident to p1p2, p2p3 ∈ E, delete the edge
p1p2, and insert 6 new edges p1p

′
2, p4p5, p6p7, p8p9, p10p11, p12p13, and 11 new vertices p′2

and pi (i = 3, . . . , 13). Denote by G′ = (V ′, E′) the resulting new PSLG. We choose the
position of the new vertices close to p2 so that: (i) the two small segments p6p7 and p10p11 are
only visible from points p4, p5, p8, and p9, p12, p13 respectively; (ii) the union of the visibility
regions of p4, p5, p12, and p13 contain only vertices p2, p

′
2, p4, . . . , p13 and no other vertices.

Figure 13 (a) Two line segments p1p2 and p2p3. (b) Connection gadget that simulates (a) using
seven disjoint line segments. The polygonal path shown with black and blue line segments is
[p1, p′

2, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p2, p3]. (c) The union of the visibility region of the solid
black points p4 and p13.

SoCG 2019

9:14 Circumscribing Polygons and Polygonizations

I Theorem 14. It is NP-complete to decide whether a set S of disjoint line segments admits
a simple polygonization, even if S contains only segments with 4 distinct slopes.

Proof. Membership in NP is proven in [18]. We reduce NP-hardness from finding polygoniz-
ations for a disjoint union of paths. Let G = (V,E) be a PSLG produced by the reduction
in [18], and let n = |V |. We modify G by simultaneously replacing every vertex of degree 2
by a connection gadget (described above), and show that the resulting planar straight-line
matching M admits a polygonization if and only if G does. Since each gadget is constructed
independently, all coordinates can be described by polynomials as they are each obtained
by a constant number of intersections between lines and circles determined by G. Since G
contains only axis-parallel edges, edges of M have up to four distinct slopes. The reduction
runs in polynomial time.

We now show that M admits a polygonization if and only if G does. Note that the
connection gadget places edges in the convex corner of a degree-2 vertex in G, and it does
not block or create visibility between two leafs of G. By construction, if p is a leaf in G,
then the set of other leaves visible from p remains same in M . Since G is max-degree-2, it
remains to prove that, for every connection gadget, a polygonization of M must contain a
chain of length 11 from p′2 to p2 that uses only edges of the connection gadget.

By property (i) of the connection gadget, if a simple polygonization P of M exists, P
must connect p8 with p6 or p7, and p6 or p7 to p4 or p5, otherwise P would contain a cycle
of length 4 and P would be disconnected. The same argument applies to vertices p9, . . . , p13.
Fig. 13(c) shows the forced edges in a polygonization in red. By property (ii), p′2 must be
adjacent to p4 or p5, and p2 must be adjacent to p12 or p13, or else either P would contain a
cycle of length 10 and P would be disconnected, or P would not be simple. J

6 Conclusions

Our results raise interesting open problems, among others, about circumscribing polygons in
the plane (Section 6.1), and about higher dimensional generalizations (Section 6.2).

6.1 Geometric Matching or Few Slopes
As noted above, Urabe and Watanabe [21] constructed an arrangement of 16 disjoint segments
in R2 that does not admit a circumscribing polygon. If all segments have the same slope (but
they are not all collinear), then there always exists a circumscribing polygon. We conjecture
that disjoint segments with two distinct slopes still admit a circumscribing polygon. Here we
present negative instances with three slopes.

I Proposition 15. For every n ≥ 9, there is a set of n disjoint segments of 3 different slopes
that do not admit a circumscribing polygon.

Our construction for n = 9 is depicted in Figure 14(a).

6.2 Higher Dimensions
Generalizations to higher dimensions are also of interest. For a set V of points in R3, a
polyhedralization is a polyhedron homotopic to a sphere whose vertex set is V 1. It is
known that every set of n ≥ 4 points in general position admits a polyhedralization [1], and
even a polyhedralization of bounded vertex degree [3].

1 We thank Joe Mitchell for introducing us to the high dimensional variations of this problem.

H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:15

a1 b1

a2 b2
a3

b3

b4

a4 a5

b5

a6

b6

s7
s8

s9

s0

s1

s2

s3 s0

s1

s2

s3

s1

(c)(b)(a)

Figure 14 (a) A set of 9 disjoint line segments of slopes 0, 1, and ∞, that do not admit a
circumscribing polygon. (b–c) A set of 4 disjoint segments in R3 that do not admit a polyhedralization:
perspective view (b) and view from above (c).

For a set S of disjoint line segments in R3, we define a polyhedralization as a polyhedron
homotopic to a ball whose vertices are the segment endpoints, and every segment in S is either
an edge or an (external or internal) diagonal. A polyhedralization circumscribes S if every
segment in S is an edge or an internal diagonal. It is not difficult to see that an arrangement
of disjoint segments in general position in R3 need not admit a polyhedralization.

I Proposition 16. For every n ≥ 4, there is a set of n disjoint segments in R3 that do not
admit a polyhedralization.

Our construction is depicted in Figure 14(b–c).
We suspect that it is NP-hard to decide whether a set of n segments in R3 admit a

polyhedralization (or even a circumscribing polyhedralization). However, our proof techniques
do not seem to extend to higher dimensions.

6.3 Open Problems

We conclude with a collection of open problems.
1. In Section 5 we established NP-hardness for the polygonization problem, even when the

input consists of disjoint segments with four distinct slopes. Is it NP-hard to decide
whether n disjoint axis-parallel segments in the plane admit a polygonization? Is it
NP-hard for segments of 3 possible directions?

2. In Section 4 we proved that it is NP-complete to decide whether a 2-regular PSLG
admits a circumscribing polygon. We do not know whether the problem remains hard for
1-regular PSLGs (i.e., disjoint line segments). The connection gadgets we designed for
the polygonization problem (Section 4) do not seem to work for circumscribing polygons.
Is it NP-hard to decide whether n disjoint segments admit a circumscribing polygon?

3. Does every arrangement of disjoint axis-parallel segments in R2, not all in a line, admit a
circumscribing polygon?

4. Does every arrangement of disjoint line segments in R3, not all in a plane, admit a
circumscribing polyhedron?

5. We can decide in O(n logn) time whether n disjoint segments are extensible to disjoint
rays (Section 3). Can we decide efficiently whether they admit escape routes?

6. Let f(n) be the maximum integer such that every set of n disjoint segments contains f(n)
segments that admit a circumscribing polygon. In Section 2, we prove a lower bound of
f(n) = Ω(

√
n). Is it possible that f(n) = Ω(n)? Is there a nontrivial upper bound?

SoCG 2019

9:16 Circumscribing Polygons and Polygonizations

7. Let g(n) be the maximum integer such that every set of n disjoint segments contains
g(n) segments that are extensible to disjoint rays. Theorem 11 implies g(n) ≤ f(n). PA
Ramsey-type result on the intersection graph of rays [12, Remark 2] yields g(n) = Ω(n1/3),
and Lemma 12 gives g(n) = O(

√
n). What is the asymptotic growth rate of g(n)?

8. Let h(n) be the maximum integer such that every set of n disjoint segments contains
h(n) segments that admit an escape route. Theorem 11 implies g(n) ≤ h(n) ≤ f(n). We
have h(n) = Ω(n1/3) and h(n) = O(

√
n). What is the asymptotic growth rate of h(n)?

References
1 Pankaj K. Agarwal, Ferran Hurtado, Godfried T. Toussaint, and Joan Trias. On polyhedra

induced by point sets in space. Discrete Applied Mathematics, 156(1):42–54, 2008. doi:
10.1016/j.dam.2007.08.033.

2 Hugo A. Akitaya, Matias Korman, Mikhail Rudoy, Diane L. Souvaine, and Csaba D. Tóth.
Circumscribing Polygons and Polygonizations. CoRR, abs/1903.07019, 2019. arXiv:1903.
07019.

3 Gill Barequet, Nadia Benbernou, David Charlton, Erik D. Demaine, Martin L. Demaine,
Mashhood Ishaque, Anna Lubiw, André Schulz, Diane L. Souvaine, Godfried T. Toussaint,
and Andrew Winslow. Bounded-degree polyhedronization of point sets. Comput. Geom.,
46(2):148–153, 2013. doi:10.1016/j.comgeo.2012.02.008.

4 Norishige Chiba and Takao Nishizeki. The Hamiltonian cycle problem is linear-time solvable
for 4-connected planar graphs. Journal of Algorithms, 10(2):187–211, 1989. doi:10.1016/
0196-6774(89)90012-6.

5 Emilio Di Giacomo and Giuseppe Liotta. The Hamiltonian Augmentation Problem and Its
Applications to Graph Drawing. In Md. Saidur Rahman and Satoshi Fujita, editors, Proc.
4th International Workshop Algorithms and Computation (WALCOM), volume 5942 of LNCS,
pages 35–46, Berling, 2010. Springer. doi:10.1007/978-3-642-11440-3_4.

6 Alfredo García, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-free
subgraphs of KN. Comput. Geom., 16(4):211–221, 2000. doi:10.1016/S0925-7721(00)
00010-9.

7 Michael R. Garey, David S. Johnson, and Robert E. Tarjan. The Planar Hamiltonian Circuit
Problem is NP-Complete. SIAM J. Comput., 5(4):704–714, 1976. doi:10.1137/0205049.

8 Michael Hoffmann and Csaba D. Tóth. Segment endpoint visibility graphs are Hamiltonian.
Comput. Geom., 26(1):47–68, 2003. doi:10.1016/S0925-7721(02)00172-4.

9 Ferran Hurtado and Csaba D. Tóth. Plane Geometric Graph Augmentation: A Generic
Perspective. In János Pach, editor, Thirty Essays on Geometric Graph Theory, pages 327–354.
Springer, New York, 2013. doi:10.1007/978-1-4614-0110-0_17.

10 Mashhood Ishaque, Diane L. Souvaine, and Csaba D. Tóth. Disjoint Compatible Geomet-
ric Matchings. Discrete & Computational Geometry, 49(1):89–131, 2013. doi:10.1007/
s00454-012-9466-9.

11 Mashhood Ishaque, Bettina Speckmann, and Csaba D. Tóth. Shooting Permanent Rays
among Disjoint Polygons in the Plane. SIAM J. Comput., 41(4):1005–1027, 2012. doi:
10.1137/100804310.

12 David Larman, Jiří Matoušek, János Pach, and Jenő Törőcsik. A Ramsey-Type Result for
Convex Sets. Bull. London Math. Soc., 26(2):132–136, 1994. doi:10.1112/blms/26.2.132.

13 Andranik Mirzaian. Hamiltonian Triangulations and Circumscribing Polygons of Disjoint Line
Segments. Comput. Geom., 2:15–30, 1992. doi:10.1016/0925-7721(92)90018-N.

14 Joseph O’Rourke and Jennifer Rippel. Two Segment Classes with Hamiltonian Visibility
Graphs. Comput. Geom., 4:209–218, 1994. doi:10.1016/0925-7721(94)90019-1.

15 Kenta Ozeki, Nico Van Cleemput, and Carol T. Zamfirescu. Hamiltonian properties of
polyhedra with few 3-cuts—a survey. Discrete Mathematics, 341(9):2646–2660, 2018. doi:
10.1016/j.disc.2018.06.015.

http://dx.doi.org/10.1016/j.dam.2007.08.033
http://dx.doi.org/10.1016/j.dam.2007.08.033
http://arxiv.org/abs/1903.07019
http://arxiv.org/abs/1903.07019
http://dx.doi.org/10.1016/j.comgeo.2012.02.008
http://dx.doi.org/10.1016/0196-6774(89)90012-6
http://dx.doi.org/10.1016/0196-6774(89)90012-6
http://dx.doi.org/10.1007/978-3-642-11440-3_4
http://dx.doi.org/10.1016/S0925-7721(00)00010-9
http://dx.doi.org/10.1016/S0925-7721(00)00010-9
http://dx.doi.org/10.1137/0205049
http://dx.doi.org/10.1016/S0925-7721(02)00172-4
http://dx.doi.org/10.1007/978-1-4614-0110-0_17
http://dx.doi.org/10.1007/s00454-012-9466-9
http://dx.doi.org/10.1007/s00454-012-9466-9
http://dx.doi.org/10.1137/100804310
http://dx.doi.org/10.1137/100804310
http://dx.doi.org/10.1112/blms/26.2.132
http://dx.doi.org/10.1016/0925-7721(92)90018-N
http://dx.doi.org/10.1016/0925-7721(94)90019-1
http://dx.doi.org/10.1016/j.disc.2018.06.015
http://dx.doi.org/10.1016/j.disc.2018.06.015

H.A. Akitaya, M. Korman, M. Rudoy, C.D. Tóth, and D. L. Souvaine 9:17

16 János Pach and Eduardo Rivera-Campo. On circumscribing polygons for line segments.
Comput. Geom., 10(2):121–124, 1998. doi:10.1016/S0925-7721(97)00023-0.

17 János Pach and Rephael Wenger. Embedding Planar Graphs at Fixed Vertex Locations.
Graphs and Combinatorics, 17(4):717–728, 2001. doi:10.1007/PL00007258.

18 David Rappaport. Computing simple circuits from a set of line segments is NP-complete.
SIAM Journal on Computing, 18(6):1128–1139, 1989. doi:10.1137/0218075.

19 David Rappaport, Hiroshi Imai, and Godfried T. Toussaint. Computing simple circuits
from a set of line segments. Discrete & Computational Geometry, 5(3):289–304, 1990. doi:
10.1007/BF02187791.

20 Micha Sharir, Adam Sheffer, and Emo Welzl. Counting plane graphs: Perfect matchings,
spanning cycles, and Kasteleyn’s technique. J. Comb. Theory, Ser. A, 120(4):777–794, 2013.
doi:10.1016/j.jcta.2013.01.002.

21 Masatsugu Urabe and Mamoru Watanabe. On a Counterexample to a Conjecture of Mirzaian.
Comput. Geom., 2:51–53, 1992. doi:10.1016/0925-7721(92)90020-S.

22 Hassler Whitney. A Theorem on Graphs. Annals of Mathematics, 2nd Ser., 32(2):378–390,
1931.

SoCG 2019

http://dx.doi.org/10.1016/S0925-7721(97)00023-0
http://dx.doi.org/10.1007/PL00007258
http://dx.doi.org/10.1137/0218075
http://dx.doi.org/10.1007/BF02187791
http://dx.doi.org/10.1007/BF02187791
http://dx.doi.org/10.1016/j.jcta.2013.01.002
http://dx.doi.org/10.1016/0925-7721(92)90020-S

Morphing Contact Representations of Graphs
Patrizio Angelini
University of Tübingen, Tübingen, Germany
angelini@informatik.uni-tuebingen.de

Steven Chaplick
University of Würzburg, Würzburg, Germany
steven.chaplick@uni-wuerzburg.de

Sabine Cornelsen
University of Konstanz, Konstanz, Germany
sabine.cornelsen@uni-konstanz.de

Giordano Da Lozzo
Roma Tre University, Rome, Italy
giordano.dalozzo@uniroma3.it

Vincenzo Roselli
Roma Tre University, Rome, Italy
vincenzo.roselli@uniroma3.it

Abstract
We consider the problem of morphing between contact representations of a plane graph. In a contact
representation of a plane graph, vertices are realized by internally disjoint elements from a family of
connected geometric objects. Two such elements touch if and only if their corresponding vertices are
adjacent. These touchings also induce the same embedding as in the graph. In a morph between
two contact representations we insist that at each time step (continuously throughout the morph)
we have a contact representation of the same type.

We focus on the case when the geometric objects are triangles that are the lower-right half of
axis-parallel rectangles. Such RT-representations exist for every plane graph and right triangles are
one of the simplest families of shapes supporting this property. Thus, they provide a natural case to
study regarding morphs of contact representations of plane graphs.

We study piecewise linear morphs, where each step is a linear morph moving the endpoints
of each triangle at constant speed along straight-line trajectories. We provide a polynomial-time
algorithm that decides whether there is a piecewise linear morph between two RT-representations
of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs.
As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph
between every pair of RT-representations where the “top-most” triangle in both representations
corresponds to the same vertex. This shows that the realization space of such RT-representations of
any 4-connected plane triangulation forms a connected set.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Graph algorithms

Keywords and phrases Contact representations, Triangulations, Planar morphs, Schnyder woods

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.10

Related Version A full version of the paper [5] is available at https://arxiv.org/abs/1903.07595.

Funding Work supported by DFG grant Ka812/17-1 and by MIUR-DAAD Joint Mobility Program
n.57397196 (Angelini), by DFG grant WO758/11-1 (Chaplick), and by MIUR Project “MODE”
under PRIN 20157EFM5C, by MIUR Project “AHeAD” under PRIN 20174LF3T8, by MIUR-DAAD
JMP N◦ 34120, and by H2020-MSCA-RISE project 734922 – “CONNECT” (Da Lozzo and Roselli).

Acknowledgements This work began at the Graph and Network Visualization Workshop (GNV’18)
in Heiligkreuztal. We thank S. Felsner, N. Heinsohn, and A. Lubiw for interesting discussions.

© Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, Giordano Da Lozzo, and
Vincenzo Roselli;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:angelini@informatik.uni-tuebingen.de
mailto:steven.chaplick@uni-wuerzburg.de
mailto:sabine.cornelsen@uni-konstanz.de
mailto:giordano.dalozzo@uniroma3.it
mailto:vincenzo.roselli@uniroma3.it
https://doi.org/10.4230/LIPIcs.SoCG.2019.10
https://arxiv.org/abs/1903.07595
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Morphing Contact Representations of Graphs

1 Introduction

We consider the morphing problem from the perspective of geometric representations of
graphs. While a lot of work has been done to understand how to planarly morph the standard
node-link diagrams1 of plane graphs2 and to “rigidly” morph3 configurations of geometric
objects, comparatively little has been explicitly done regarding (non-rigid) morphing of
alternative representations of planar graphs, e.g., contact systems of geometric objects such
as disks or triangles. In this case, the planarity constraint translates into the requirement of
continuously maintaining a representation of the appropriate type throughout the morph.

More formally, let F be a family of geometric objects homeomorphic to a disk. An
F-contact representation of a plane graph G maps vertices to internally disjoint elements of
F . We denote the geometric object representing a vertex v by ∆(v). Objects ∆(v) and ∆(w)
touch if and only if {v, w} is an edge. The contact system of the objects must induce the
same faces and outer face as in G. A morph between two F -contact representations R0 and
R1 of a plane graph G is a continuously changing family of F -contact representations Rt of
G indexed by time t ∈ [0, 1]. An implication of the existence of morphs between any two
representations of the same type is that the topological space defined by such representations
is connected. We are interested in elementary morphs, and in particular in linear morphs,
where the boundary points of the geometric objects move at constant speed along straight-line
trajectories from their starting to their ending position. A piecewise linear morph of length `
between two F-contact representations R1 and R`+1 of a plane graph G is a sequence
〈R1, . . . , R`+1〉 of F -contact representations of G such that 〈Ri, Ri+1〉 is a linear morph, for
i = 1, . . . , `. For a background on the mathematical aspects of morphing, see, e.g., [3].

Morphs of Node-Link Diagrams. Fáry’s theorem tells us that every plane graph has a
node-link diagram where the edges are mapped to line segments. Of course, for a given plane
graph G, there can be many such node-link diagrams of G, and the goal of the work in planar
morphing is to study how (efficiently) one can create a smooth (animated) transition from
one such node-link diagram to another while maintaining planarity. Already in the 1940’s
Cairns [17] proved that, for plane triangulations, planar morphs exist between any pair of
such node-link diagrams. However, the construction involved exponentially-many morphing
steps. Floater and Gotsman [29], and Gotsman and Surazhsky [31, 39] gave a different
approach via Tutte’s graph drawing algorithm [42], but this involves non-linear trajectories of
unbounded complexity. Thomassen [40] and Aranov et al. [10] independently showed that two
node-link diagrams of the same plane graph have a compatible triangulation4 thereby lifting
Cairns’ result to plane graphs. Of particular interest is the study of linear morphs, where
each vertex moves at a uniform speed along a straight-line. After several intermediate results
to improve the complexity of the morphs [2, 6] and to remove the necessity of computing
compatible triangulations [8], the current state of the art [1] is that there is a planar morph
between any pair of node-link diagrams of any n-vertex plane graph using θ(n) linear steps.
Planar morphs of other specialized plane node-link diagrams have also been considered, e.g.,
planar orthogonal drawings [13, 43], convex drawings [7], upward planar drawings [21], and
so-called Schnyder drawings [12]. In this latter result the lattice structure of all Schnyder

1 where vertices are represented as points and edges as non-crossing curves
2 the set of faces and the outer face are fixed
3 scaling the objects is not allowed, e.g., as in bar-joint systems [35] or in body-hinge systems [14, 19, 24]
4 i.e., a way to triangulate both diagrams to produce the same plane triangulation

P. Angelini, S. Chaplick, S. Cornelsen, G. Da Lozzo, and V. Roselli 10:3

woods of a plane triangulation [15, 25] is exploited in order to obtain a sequence of linear
morphs within a grid of quadratic size. Finally, planar morphs on the surface of a sphere [33]
and in three dimensions have been investigated [11].

Morphs of Contact Representations. Similar to Fáry’s theorem, the well-known Koebe-
Andreev-Thurston theorem [4, 34] states that every plane graph G has a coin representation,
i.e. an F-contact representation where F is the set of all disks. Additionally, for the
case of 3-connected plane graphs, such coin representations of G are unique up to Möbius
transformations [16] – see [27] for a modern treatment. There has been a lot of work on how
to intuitively understand and animate such transformations (see, e.g., the work of Arnold
and Rogness [9]), i.e., for our context, how to morph between two coin representations. Of
course, ambiguity remains regarding how to formalize the complexity of such morphs. In
particular, this connection to Möbius transformations appears to indicate that a theory of
piecewise linear morphing for coin representations would be quite limited.

For this reason, we instead focus on contact representations of convex polygons. These
shapes still allow for representing all plane triangulations, as a direct consequence of the
Koebe-Andreev-Thurston theorem, but are more amenable to piecewise linear morphs, where
the linearity is defined on the trajectories of the corners. De Fraysseix et al. [23] showed
that every plane graph G has a contact representation by triangles, and observed that these
triangle-contact representations correspond to the 3-orientations (i.e., the Schnyder woods)
of G. Schrenzenmaier [38] used Schnyder woods to show that each 4-connected triangulation
has a contact representation with homothetic triangles. Gonçalves et al. [30] extended the
triangle-contact results from triangulations [23] to 3-connected plane graphs, by showing
that Felsner’s generalized Schnyder woods [25] correspond to primal-dual triangle-contact
representations. Note that triangles and coins are not the only families of shapes that have
been studied from the perspective of contact representations. Some further examples include
boxes in R3 [18, 26, 41], line segments [22, 32], and homothetic polygons [20, 28, 37].

The construction of triangle-contact representations [23] (and the correspondence to
3-orientations) can be adjusted so that each triangle is the lower-right half of an axis-parallel
rectangle. These right-triangle representations (RT-representations) are our focus; see Fig. 3.

Our Contribution and Outline. The paper is organized as follows. We start with some
definitions in Section 2 and describe the relationship between (degenerate) RT-representations
and Schnyder woods of plane triangulations in Section 3. In Section 4, we provide necessary
and sufficient conditions for a linear morph between two RT-representations. The first
condition is that each corner c of a triangle touches the same side s of another triangle
in the two representations, that is, the morph happens within the same Schnyder wood.
The contact between c and s is always maintained when s has the same slope in the two
RT-representations. Otherwise, we require the point of s hosting c to be defined by the same
convex combination of the end-points of s in both representations. In Section 5, we present
our morphing algorithm. If the two input RT-representations correspond to different Schnyder
woods, we consider a path between them in the lattice structure of all Schnyder woods, similar
to [12], that satisfies some properties (if it exists). When moving along this path, from a
Schnyder wood to another, we construct intermediate RT-representations that simultaneously
correspond to both woods. We provide an algorithm to construct such intermediate RT-
representations that result in a linear morph at each step. Finally, in Section 6, we show how
to decide whether there is a path in the lattice structure that satisfies the required properties.
This results in an efficient testing algorithm for the existence of a piecewise linear morph

SoCG 2019

10:4 Morphing Contact Representations of Graphs

v

vg

vr

vb

(a) inner vertex

Xb

Xr

Xg

(b) outer vertices

Figure 1 The two conditions for a Schnyder wood.

between two RT-representations of a plane triangulation; in the positive case, the computed
piecewise linear morph has at most quadratic length. Consequently, for 4-connected plane
triangulations, under a natural condition on the outer face of their RT-representations, the
topological space defined by such RT-representations is connected.

2 Definitions and Preliminaries

Basics. A plane triangulation is a maximal planar graph with a distinguished outer face.
A directed acyclic graph (DAG) is an oriented graph with no directed cycles. A topological
ordering of an n-vertex DAG G = (V,E) is a one-to-one map τ : V → {1, . . . , n} such that
τ(v) < τ(w) for (v, w) ∈ E. Let p and q be two points in the plane. The line segment pq
is the set {(1 − λ)p + λq; 0 ≤ λ ≤ 1} of convex combinations of p and q. Considering pq
oriented from p to q, we say that x cuts pq with the ratio λ if x = (1− λ)p+ λq.

In the case of polygons, a linear morph is completely specified by the initial and final
positions of the corners of each polygon. If a corner p is at position p0 in the initial
representation (at time t = 0) and at position p1 in the final representation (at time t = 1),
then its position at time t during a linear morph is (1− t)p0 + tp1 for any 0 ≤ t ≤ 1.

Schnyder Woods. A 3-orientation [15, 25] of a plane triangulation is an orientation of the
inner edges such that each inner vertex has out-degree 3 and the three outer vertices have
out-degree 0. A Schnyder wood T [36] of a plane triangulation G is a 3-orientation together
with a partition of the inner edges into three color classes, such that the three outgoing edges
of an inner vertex have distinct colors and all the incoming edges of an outer vertex have
the same color. Moreover, the color assignment around the vertices must be as indicated
in Fig. 1. We say that a cycle in a Schnyder wood is oriented if it is a directed cycle.

The following well-known properties of Schnyder woods can directly be deduced from
the work of Schnyder [36]. 1. Every plane triangulation has a 3-orientation. 2. For each
3-orientation of a plane triangulation there is exactly one partition of the inner edges into
three color classes such that the pair yields a Schnyder wood. 3. Each color class of a
Schnyder wood induces a directed spanning tree rooted at an outer vertex. 4. Reversing the
edges of two color classes and maintaining the orientation of the third color class yields a
directed acyclic graph. 5. The edges of an oriented triangle in a Schnyder wood have three
distinct colors and every triangle composed of edges of three different colors is oriented.

We call the color classes red (r,), blue (b,), and green (g,). The symbols Xr,
Xb, and Xg denote the red, blue, and green outer vertex of G, i.e., the outer vertices with
incoming red, blue, and green edges, respectively. For an inner vertex v, let vr, vb, and vg
be the respective neighbors of v such that (v, vr) is red, (v, vb) is blue, and (v, vg) is green.
Finally, let DAGr(T) (DAGb(T)) be the directed acyclic graph obtained from G by orienting
all red (blue) edges as in T while all blue (red) and green edges are reversed.

P. Angelini, S. Chaplick, S. Cornelsen, G. Da Lozzo, and V. Roselli 10:5

Let C be an oriented triangle of a Schnyder wood T . Reversing C yields another 3-
orientation with its unique Schnyder wood TC . If C is a facial cycle, then T differs from
TC by recoloring the edges on C only. More precisely, the former outgoing edge of a vertex
gets the color of the former incoming edge of the same vertex. This procedure of reversing
and recoloring is called flipping5 an oriented triangle of a Schnyder wood. Any Schnyder
wood can be converted into any other Schnyder wood of the same plane triangulation by
flipping O(n2) oriented triangles [12, 15]. For two Schnyder woods T0 and T`, <C1, . . . , C`>

is a flip sequence between T0 and T` if there are Schnyder woods T1, . . . , T`−1 such that Ci,
i = 1, . . . , `, is an oriented triangle in Ti−1 and Ti is obtained from Ti−1 by flipping Ci. We
say that a Schnyder wood T ′ can be obtained from a Schnyder wood T by a sequence of facial
flips if there is a flip sequence between T and T ′ that contains only facial cycles.

3 RT-Representations of Plane Triangulations

Let R be an RT-representation of a plane triangulation G and let u be a vertex of G. Recall
that ∆(u) is the triangle representing u in R. We denote by (u), (u), and (u) the
horizontal, vertical, and diagonal side of ∆(u). Further, we denote by (u), (u), and

(u), the left, right, and top corner of ∆(u), respectively. If two triangles touch each other
in their corners, we say that these two corners coincide. If there exist no two triangles whose
corners coincide, then R is non-degenerate; otherwise, it is degenerate. Let (c, s) be a pair
with c ∈ { , , } and s ∈ { , , }, we say that (c, s) is a compatible pair if it belongs
to the set {(,), (,), (,)}. Observe that, in any RT-representation of G, if a
corner c of a triangle ∆(u) touches the side s of a triangle ∆(v), with (u, v) ∈ E(G), then
(c, s) is a compatible pair. We formally require this also in the case of a degeneracy. E.g., if

(v) coincides with (u) for two vertices u and v, then the respective compatible pair is
either (,) or (,) – even though (v) also touches (u), and (u) touches (v).

In the next two subsections, we describe the relationship between RT-representations and
Schnyder woods [23] and extend it to the case of degenerate RT-representations.

3.1 From RT-Representations to Schnyder Woods
Let G = (V,E) be a plane triangulation with a given RT-representation R. It is possible to
orient and color the edges of G in order to obtain a Schnyder wood by considering the types
of contacts between triangles in R as follows.

First, consider the non-degenerate case; refer to Fig. 2a. Let e = {u, v} ∈ E be an inner
edge such that a corner c of ∆(u) touches a side s of ∆(v). We use the following rules: We
orient e from u to v, and color e blue if c is (u), green if c is (u), red if c is (u).

I Lemma 1 ([23], Theorem 2.2). The above assignment yields a Schnyder wood.

Assume now that there exist two triangles ∆(u) and ∆(v) whose corners coincide. Observe
that the assignment of colors and directions to the edge {u, v} determined by the procedure
above would be ambiguous. The next observation will be useful to resolve this ambiguity.

I Observation 2. In an RT-representation of a plane triangulation, if the corner of a triangle
∆(u) coincides with the corner of a triangle ∆(v) in a point p, then there exists a triangle
∆(w), w 6= u, v, with a corner on p, unless {u, v} is an edge of the outer face.

5 Brehm [15] called flipping a counter clockwise triangle a flip, and flipping a clockwise triangle a flop.

SoCG 2019

10:6 Morphing Contact Representations of Graphs

(a) non-degenerate case

w v

u

p

u

vw

u

vw
w

v

u

w
v

u

(b) degenerate case

Figure 2 From an RT-representation to a Schnyder wood.

By Observation 2, in a degenerate RT-representation there exist three vertices u, v, and w
such that (u), (v), (w) lie on a point, see Fig. 2b. For each of the three edges, a choice
of coloring and orientation corresponds to deciding which of the two triangles participates to
the touching with its corner and which triangle with an extremal point of one of its sides.
This yields two options as indicated in Fig. 2b, both resulting in a Schnyder wood. Note
that the face f = 〈u, v, w〉 is cyclic in both these Schnyder woods, and each of them can be
obtained from the other by flipping f . Summarizing, we get the following.

I Observation 3. Given an RT-representation R of a plane triangulation G, let P be the
set of points where three triangles meet. Then, R corresponds to a set TR of 2|P | different
Schnyder woods on G, the points of P correspond to |P | edge-disjoint oriented triangles, and
the Schnyder woods in TR differ in flipping some of them.

3.2 From Schnyder Woods to RT-Representations
Assume now that we are given a Schnyder wood T of a plane triangulation G = (V,E). We
describe a technique for constructing an RT-representation of G corresponding to T in which
the y-coordinate of the horizontal side of each triangle is prescribed by a function τ : V → R
satisfying some constraints; observe that in the non-degenerate case in [23] τ is a topological
labeling of DAGr(T), i.e., a canonical ordering of G.

We call τ : V −→ R an Admissible Degenerate Topological labeling of the graph DAGr(T),
for short ADT-labeling, if for each directed edge (u, v) of DAGr(T), we have 1. τ(u) ≤ τ(v)
and 2. τ(u) = τ(v) only if a. is green and belongs to a clockwise oriented facial cycle, or b. is
blue and belongs to a counter-clockwise oriented facial cycle, and 3. if τ(ub) = τ(u) = τ(ug)
for a vertex u, and u1 and u2 are vertices such that 〈u, ug, u1〉 is a clockwise facial cycle and
〈u, ub, u2〉 is a counter-clockwise facial cycle, then u1 6= u2.

I Lemma 4. Let R be an RT-representation of a plane triangulation G = (V,E), let T be a
Schnyder wood corresponding to R, and let τ(v), v ∈ V , be the y-coordinate of (v). Then,
τ is an ADT-labeling of DAGr(T).

Proof. Let (u, v) be a directed edge of DAGr(T). By the definition of T , we get immediately
that τ(u) ≤ τ(v) independently of whether (u, v) is red, green, or blue. In fact, if (u, v) is
red, then it is oriented from u to v in Tr. Thus, the compatible pair corresponding to such
an edge in R is ((u), (v)). Hence, (u) lies strictly below (v). If (u, v) is green (resp.,
blue), then it is oriented from v to u in T . Thus, the compatible pair corresponding to such
an edge in R is ((v), (u)) (resp., ((v), (u))). Hence, (u) does not lie above (v).

Assume that τ(u) = τ(v), which implies that (u, v) is not red, as observed above. Suppose
that (v, u) is a green edge. Then, (v) and (u) coincide. By Observation 2, there exists
a vertex z such that (z) coincides with (v) and (u). Thus, 〈v, u, z〉 is a clockwise

P. Angelini, S. Chaplick, S. Cornelsen, G. Da Lozzo, and V. Roselli 10:7

Xb

Xr

vr

vg

v

vb

Xg

u

f g

(a) Schnyder wood of G

0

8

7

1
0

3
2

5
4

4

6

f g

(b) Labeling τ of G

Xg

Xr

1

4

5

6

7

3

2

τ

0
Xb

8

v

vb

vr

vg

uf

g

(c) RT(T, τ, Ro)

Figure 3 (a) A Schnyder wood T of a plane triangulation G; the edges connecting v with vertices
vr, vg, and vb are dashed. (b) Graph DAGr(T) with ADT-labeling τ . (c) An RT-representation of
G constructed from T , τ , and an RT-representation Ro of the outer face.

oriented facial cycle. Similarly, when (v, u) is a blue edge, there is a vertex z such that (v),
(u), and (z) coincide. Therefore, 〈v, u, z〉 is a counter-clockwise oriented facial cycle.
Finally, if τ(ub) = τ(u) = τ(ug) and u1 and u2 are the vertices such that 〈u, ug, u1〉 is a

clockwise facial cycle and 〈u, ub, u2〉 is a counter-clockwise facial cycle, then (u1) touches
(u) and (u2) touches (u). Thus, u1 6= u2. J

I Lemma 5. Let T be a Schnyder wood of an n-vertex plane triangulation G, let τ be an
ADT-labeling of DAGr(T), and let Ro = ∆(Xr) ∪∆(Xg) ∪∆(Xb) be an RT-representation
of the outer face of G such that (Xi) has y-coordinate τ(Xi), with i ∈ {r, g, b}. Then, there
exists a unique RT-representation RT(T, τ,Ro) of G corresponding to T in which (v) has
y-coordinate τ(v), for each vertex v of G, and in which the outer face is drawn as in Ro.

Outline of the Proof. We process the vertices of G according to a topological ordering τ ′ of
DAGr(T). In the first two steps, we draw triangles ∆(Xb) and ∆(Xg) as in Ro; see Fig. 3c.
At each of the following steps, we consider a vertex v, with 2 < τ ′(v) = i < n.

We draw ∆(v) with its horizontal side on y = τ(v) and with its top corner at y = τ(vr), as
follows. Since the blue edge (vb, v) and the green edge (vg, v) are entering v in DAGr(T), the
triangles ∆(vb) and ∆(vg) have already been drawn. Also, by Property 1 of ADT-labeling,
we have that τ(vb) ≤ τ(v) and τ(vg) ≤ τ(v). Further, it can be shown that (vb) and

(vg) have y-coordinate larger than or equal to τ(v), and that if a triangle ∆(u) intersects
the line y = τ(v) between ∆(vb) and ∆(vg), then u is a neighbor of v such that v = ur. By
construction, (u) has y-coordinate equal to τ(v). Thus, we draw the horizontal side of
∆(v) on y = τ(v) between ∆(vb) and ∆(vg). The conditions of ADT-labelings guarantee
that (v) has positive length. If i = n, and hence v = Xr, we draw ∆(Xr) as in Ro. J

4 Geometric Tools

In this section, we provide geometric lemmata that will be exploited in the subsequent
sections. We first show that the incidence of a point and a line segment is maintained during
a linear morph if the line segment is moved in parallel (with a possible stretch, but keeping
the orientation) or the ratio with which the point cuts the segment is maintained; see Fig. 4.

I Lemma 6. For i = 0, 1 let pi, qi be two points in the plane and let xi ∈ piqi. For 0 < t < 1,
further let pt = (1− t)p0 + tp1 and qt = (1− t)q0 + tq1. Then, xt = (1− t)x0 + tx1 ∈ ptqt if
1. p0q0 and p1q1 are parallel with the same direction, or
2. x0 cuts p0q0 with the same ratio as x1 cuts p1q1

SoCG 2019

10:8 Morphing Contact Representations of Graphs

x0
p0 q0

x1
p1 q1

xt
pt qt

(a) segments collinear

x0p0

p1

q0

q1x1

pt qtxt

(b) segments parallel

x0p0

p1

q0

q1

x1

pt

qt

xt

(c) cut ratio maintained

Figure 4 Morphing a segment and a point.

Proof. Assume first that p0q0 and p1q1 are parallel. If p0q0 and p1q1 are collinear, we may
assume that they are both contained in the x-axis, that pi, qi, i = 0, 1, are real numbers, and
that p0 < q0. Since p0q0 and p1q1 have the same direction, this implies that p1 < q1. Since
xi, i = 0, 1, is a point in piqi, it follows that pi ≤ xi ≤ qi. Hence, we get for t ∈ [0, 1] that

(1− t)p0 + tp1︸ ︷︷ ︸
pt

≤ (1− t)x0 + tx1︸ ︷︷ ︸
xt

≤ (1− t)q0 + tq1︸ ︷︷ ︸
qt

.

If p0q0 and p1q1 are parallel with the same direction but not collinear, then the polygon
〈p0, q0, q1, p1〉 is convex. Thus, x0x1 must intersect ptqt, for any t. Also, ptqt and xt both lie
on the same line `t. More precisely, let d be the distance between the lines through segments
p0q0 and p1q1. Then, `t is the line with distance td from p0q0.

Finally, if x0 cuts p0q0 with the same ratio λ as x1 cuts p1q1, then xt = (1 − t)((1 −
λ)p0 + λq0) + t((1− λ)p1 + λq1) = (1− λ)pt + λqt ∈ ptqt. J

Lemma 6 implies the following sufficient criterion for a linear morph.

I Lemma 7. Let R0 and R1 be two RT-representations of a triangulation G corresponding
to the same Schnyder wood such that the triangles of the outer face pairwise touch in their
corners. The pair 〈R0, R1〉 defines a linear morph if, for any two adjacent vertices u and
v such that a corner ci(v) of v touches a side si(u) of u, where c ∈ { , , } and
s ∈ { , , }, one of the following holds:
1. s1(u) and s2(u) are parallel. 2. c1(v) cuts s1(u) with the same ratio as c2(v) cuts s2(u).

By Observation 3, an RT-representation R of a plane triangulation G corresponds to a set
TR of Schnyder woods that differ from each other by flipping a set of edge disjoint triangles.
The topmost vertex of R is the vertex v of G maximizing the y-coordinate of (v).

I Lemma 8. Let R0 and R1 be two RT-representations of the same plane triangulation
G = (V,E) such that 〈R0, R1〉 is a linear morph. Then TR0 ∩ TR1 6= ∅.

I Theorem 9 (Necessary Condition). If there is a piecewise linear morph between two RT-
representations of a plane triangulation G, then the corresponding Schnyder woods can be
obtained from each other by a sequence of facial flips. In particular the topmost vertex is the
same in both representations if G has more than three vertices.

Proof. Let 〈R1, . . . , R`〉 be a sequence of linear morphs. Lemma 8 implies TRi
∩ TRi+1 6= ∅

for i = 1, . . . , `− 1. Let Ti ∈ TRi
∩ TRi+1 for i = 1, . . . , `− 1. Then Ti+1, i = 1, . . . , `− 2 can

be obtained from Ti by a sequence of edge-disjoint facial flips. Hence, the Schnyder wood
T`−1 of R` can be obtained from the Schnyder wood T1 of R1 by a sequence of facial flips. J

P. Angelini, S. Chaplick, S. Cornelsen, G. Da Lozzo, and V. Roselli 10:9

a b

c
c a

b

c

ab

c a

b

c

a

b b

ca
c a

bcut scale rotate rotate rotate rotate

Figure 5 Morphing an RT-representation of a triangle to a labeled canonical form: First, cut
the extruding parts of the triangles, maintaining the slopes of the diagonal sides. Then, scale the
triangles such that the horizontal and vertical sides have length one. Finally, keep rotating the
triangles until the topmost vertex is as desired.

5 A Morphing Algorithm

In this section, we prove the following theorem.

I Theorem 10 (Sufficient Condition). Let R1 and R2 be two RT-representations of an n-
vertex plane triangulation G corresponding to the Schnyder woods T1 and T2, respectively. If
T2 can be obtained from T1 by a sequence of ` facial flips, then there exists a piecewise linear
morph between R1 and R2 of length O(n+ `). Such a morph can be computed in O(n(n+ `))
time, provided that the respective sequence of ` facial flips is given.

Since there is always a piecewise linear morph between two RT-representations of a plane
triangle (see Fig. 5), we will assume that G has at least four vertices. This implies especially
that the topmost vertex, which always coincides with Xr, is the same in R1 and R2.

In Section 5.1, we introduce our main procedure adjust, which moves a triangle in an
RT-representation along an incident diagonal and adjusts the remaining triangles so that the
result is a linear morph. Repeatedly applying adjust, we first morph R1 to a non-degenerate
RT-representation that still corresponds to T1 (Section 5.3); then, we perform a sequence
of linear morphs to realize the ` facial flips geometrically (Section 5.2), hence obtaining an
RT-representation corresponding to T2, which we finally morph to R2 (Section 5.3).

5.1 Moving a Triangle Along a Diagonal

Let G = (V,E) be a plane triangulation and let R be an RT-representation of G corresponding
to a Schnyder wood T of G. Given an inner vertex x of G and a real value y with some
properties, adjust computes a new RT-representation R′ of G corresponding to T in which

(x) has y-coordinate y and ∆(xg) remains unchanged, such that 〈R,R′〉 is a linear morph.
To achieve this goal, the y-coordinate of (v), for some vertex v 6= x, may also change;

however, the ratio with which (v) cuts (vg) does not change, thus satisfying Property 2
of Lemma 7. The y-coordinates of the horizontal sides are encoded by a new ADT-labeling τ
of G, and R′ is the unique RT-representation RT(T, τ,Ro) of G that is obtained by applying
Lemma 5 with input G, T , τ , and the representation Ro of the outer face of G in R.

For a vertex w ∈ V , we denote by top(w) the y-coordinate of (w); recall that, in
our construction, we have top(w) = τ(wr), if w is an inner vertex. Also, let v1, . . . , v` be
the neighbors of w such that (v1), . . . , (v`) appear in this order from (w) to (w)
along (w). For a fixed i ∈ {1, . . . , `}, we say that moving vi to y ∈ R respects the order
along (w) if (i) i = 1 and τ(w) ≤ y < τ(v2) (where equality is only allowed if (v1)
does not lie on (wb)), (ii) i = 2, . . . , ` − 1 and τ(vi−1) < y < τ(vi+1), or (iii) i = ` and
τ(vi−1) < y ≤ top(w) and y < top(v`). Further, for a vertex v, we consider the ratio λ(v)
with which (v) cuts the incident diagonal side, i.e., λ(v) = τ(v)−τ(vg)

top(vg)−τ(vg) , if either v is an
inner vertex or v ∈ {Xb, Xr}, (v) is on (Xg), and vg := Xg.

SoCG 2019

10:10 Morphing Contact Representations of Graphs

x xg

(a) original RT-representation

x xg

(b) after applying adjust(., ., x, τ(xg)).

Figure 6 Moving ∆(x) down along (xg).

For the vertex x and the y-coordinate y that are part of the input of adjust, we assume
that moving x to y respects the order along (xg). Setting τ(x)← y may have implications
on the neighbors of x of the following type. A. For every vertex v such that x = vg, the
value of τ(v) has to be modified to ensure that the ratio λ(v) with which (v) cuts (x) is
maintained; B. for every vertex u such that x = ur, we have to set top(u) = y to maintain
the contact between ∆(u) and ∆(x). Since these modifications may change the diagonal side
of ∆(u) and ∆(v), they may trigger analogous implications for the neighbors of u and v.

Since the y-coordinate of (u) is not changed, only a type-A implication may be triggered
for the neighbors of u. Further, the two implications correspond to following either a red or a
green edge, respectively, in reverse direction with respect to the one in T . Hence, the vertices
whose triangles may need to be adjusted are those that can be reached from the vertex x by
a reversed directed path in T using only red and green edges, but no two consecutive red
edges; see Fig. 7. Note that, since the green and the red edges have opposite orientation in
T and in DAGb(T), which is acyclic, this implies that adjust terminates.

The procedure adjust (see Fig. 6 for an illustration) first finds all the triangles that
may need to be adjusted, by performing a simple graph search from x following the above
described paths of red and green edges. In a second pass, it performs the adjustment of each
triangle ∆(w), by modifying τ(w) so that λ(w) is maintained. We ensure that the new value
of τ(w) is computed only after the triangle ∆(wg) has already been adjusted.

I Lemma 11. Let R1 be an RT-representation of a plane triangulation G = (V,E) corre-
sponding to the Schnyder wood T and let the y-coordinate of 1(v) be τ1(v), v ∈ V . Let
x ∈ V be an inner vertex and let y ∈ R be such that moving x to y respects the order along

(xg). Let τ2 be the output of adjust(τ1, T, x, y).
Then, we have that (i) τ2(x) = y, (ii) λ(v) is maintained for any vertex v 6= x, (iii) τ2

is an ADT-labeling of DAGr(T), and (iv) the morph between R1 and R2 = RT(T, τ2, Ro) is
linear, where Ro = ∆1(Xb) ∪∆1(Xg) ∪∆1(Xr).

Outline of the Proof. Properties i and ii are clear from the construction. We establish a
cycle C ′ (see Fig. 7) that encloses all vertices for which τ might be changed. Distinguishing
the cases y < τ1(x) and y > τ1(x), Properties iii can be shown by induction on a suitable
ordering of the edges in DAGr(T). Since all predecessors of xg in DAGb(T) are outside or
on C ′, we have that ∆1(xg) = ∆2(xg). Now, by Lemma 7, 〈R1, R2〉 is a linear morph. J

5.2 A Flipping Algorithm
Recall that, given a Schnyder wood T and an oriented cycle C in T , the Schnyder wood TC
is obtained from T by flipping C. In the following theorem we show how to realize this flip
geometrically with two linear morphs in the case in which C is a facial cycle.

P. Angelini, S. Chaplick, S. Cornelsen, G. Da Lozzo, and V. Roselli 10:11

x

xg

Xb pb

Xr

pr

Xgτ
u
n
ch
an

ge
d

u

Figure 7 Let u be the neighbor of x following xg in clockwise order. Then, the cycle C′ composed
of the blue u-Xb-path pb, the edge {u, x}, the red x-Xr-path pr, and the edge {Xr, Xb} encloses all
vertices for which τ is changed. Vertex x is the only vertex on C′ for which τ is changed.

I Theorem 12. Let R1 be a non-degenerate RT-representation of a plane triangulation
G corresponding to a Schnyder wood T . Let C be an oriented facial cycle in T . We can
construct a sequence of two linear morphs 〈R1, R2, R3〉 such that R3 is a non-degenerate
RT-representation of G corresponding to a Schnyder wood TC .

Proof. For the oriented facial cycle C, let Cr, Cg, and Cb be the vertices with outgoing red,
green, and blue edge, respectively, in C. In order to flip C, we move Cg along the respective
incident diagonal sides as sketched in the following figure.

Cg

Cb

Cr

Cg Cb

Cr
Cg

Cb

Cr

R2

clockwise counter-clockwise

More precisely, let τ1 be the y-coordinates of the horizontal sides in R1. We first compute
τ2 ← adjust(τ1, T, Cg, τ1(Cb)). If C is clockwise oriented, we then compute

τ3 ← adjust(τ2, TC , Cg, (τ2(Cg) + max{τ2(u); u = Cr or ug = Cr})/2).

If C is counter-clockwise oriented, we proceed as follows.

τ3 ← adjust(τ2, TC , Cg, (τ2(Cg) + min{τ2(u); u = (Cb)r or ug = Cb})/2).

In each case the new y-coordinates y for Cg are chosen such that moving Cg to y respects
the order along the respective incident diagonal. Thus, adjust can be applied. Also, τ2 is an
ADT-labeling of both, DAGr(T) and DAGr(TC), and τ3 is an ADT-labeling of DAGr(TC).
Let R2 = RT(T, τ2, Ro) = RT(TC , τ2, Ro) and let R3 = RT(TC , τ3, Ro). Since τ2 and τ3 are
produced by adjust, by Lemma 11, both 〈R1, R2〉 and 〈R2, R3〉 are linear morphs. J

5.3 Morphing Representations with the same Schnyder Wood
In this section, we consider RT-representations corresponding to the same Schnyder Wood.

I Theorem 13. Let R1 and R2 be two RT-representations of an n-vertex plane triangulation
corresponding to the same Schnyder wood T . Then, there is a piecewise linear morph between
R1 and R2 of length at most 2n.

SoCG 2019

10:12 Morphing Contact Representations of Graphs

The idea is to first transform the outer face to a canonical form, and then to move one
vertex v per step to a new y-coordinate y such that the ratio λ(v) is set to how it should be
in R2. The order in which we process the vertices is such that adjust can be applied to the
vertex v and the y-coordinate y. Recall that adjust does not alter the ratio λ, except for
the currently processed vertex v. The following lemma can be proven by induction on n.

I Lemma 14. Let P = {p1 < · · · < pn} and Q = {q1 < · · · < qn} be two sets of n reals each.
If P 6= Q then there is an i such that pi 6= qi and P has no element between pi and qi.

I Corollary 15. Let P and Q each be a set of n points on a segment s. We can move P to Q
in n steps by moving one point per step and by maintaining the ordering of the points on s.

Proof of Theorem 13. Let τ ′ be a topological ordering of the inner vertices of DAGr(T).
We extend τ ′ to an ADT-labeling of DAGr(T) by setting τ ′(Xb) = 0 = τ ′(Xg), and
τ ′(Xr) = n − 2. With a sequence of at most n linear morphs we transform Ri, i = 1, 2,
into an RT-representation R′ = RT(T, τ ′, Ro), where Ro has the following canonical form:

(Xb) = (Xg) = (0, 0), (Xb) = (Xr) = (0, n−2), (Xg) = (Xr) = (n−2, n−2),
and the lengths of (Xr) and (Xb) are one. In the first morph, we cut the extruding parts
of the outer triangles. In the second morph, we independently scale the x- and y-coordinates
of the corners and translate the drawing, to fit the corners as indicated. In a third step, we
adjust the lengths of (Xr) and (Xb). In the first morph the slope of no side is changed,
in the second morph no ratio is changed, and in the third morph there are only four sides
that are changed, which are not incident to any other triangle. Thus, the three morphs are
linear. Let the resulting RT-representation be R′i.

We now process the vertices in a reversed topological ordering on DAGb(T). We process
a vertex w as follows. Let τ be the current y-coordinates of the horizontal sides. Let
G(w) = {v ∈ V ;w = vg} and let P = {τ(v); v ∈ G(w)}. For v ∈ G(w) let y(v) be such that

y(v)− τ(w)
τ(wr)− τ(w) = τ ′(v)− τ ′(w)

τ ′(wr)− τ ′(w) ,

i.e., placing (v), v ∈ G(w) on the y-coordinate y(v) cuts (w) in the the same ratio as in
R′. Let Q = {y(v); v ∈ G(w)}. By the above corollary, we can order G(w) = {v1, . . . , vk}
such that replacing in the ith step τ(vi) by y(vi) maintains the ordering of {τ(v); v ∈ G(w)}.
Since τ ′ is a topological ordering, we will not move (vi) to an end vertex of (w). For
i = 1, . . . , k we now call τ ← adjust(τ, T, vi, y(vi)). This yields one linear morphing step.

After processing all vertices w in a reversed topological ordering of DAGb(T) and all
vertices in G(w) in the order given above, we have obtained an RT-representation R in which
any right corner cuts its incident diagonal in the same ratio as in R′. Since the outer face is
fixed, this implies that R = R′. Observe that G(w), w ∈ V , is a partition of the set of inner
vertices. Hence, we get at most one morphing step for each of the n− 3 inner vertices. J

Combining the results of Sections 5.1 to 5.3 yields the main result of the section.

Proof of Theorem 10. First, we transform R1 into a non-degenerate RT-representation R
with Schnyder wood T1 and a canonical representation of the outer face in O(n) linear
morphing steps, by Theorem 13. Then, we perform the ` facial flips as described in the proof
of Theorem 12, using two linear morphs for each flip. This yields an RT-representation R′
with Schnyder wood T2. Finally, we transform R′ into R2 in O(n) linear morphing steps,
by Theorem 13. This yields a total of O(n+ `) linear morphs. Each linear morph can be
computed by one application of adjust, which runs in linear time. J

P. Angelini, S. Chaplick, S. Cornelsen, G. Da Lozzo, and V. Roselli 10:13

6 A Decision Algorithm

It follows from Theorem 9 and Theorem 10 that there is a piecewise linear morph between
two RT-representations of a plane triangulation if and only if the respective Schnyder woods
can be obtained from each other by flipping faces only. Note that this condition is always
satisfied if the triangulation is 4-connected and the topmost vertex is the same in both
RT-representations. On the other hand, if the graph contains separating triangles, we have
to decide whether there is such a sequence of facial flips. We will show that this can be
decided efficiently and that, in the positive case, there exists one sequence whose length is at
most quadratic in the number of vertices. This establishes our final result.

I Theorem 16. Let R1 and R2 be two RT-representations of an n-vertex plane triangulation.
We can decide in O(n2) time whether there is a piecewise linear morph between R1 and R2
and, if so, a morph with O(n2) linear morphing steps can be computed in O(n3) time.

Since there is a one-to-one correspondence between Schnyder woods of a plane triangulation
and its 3-orientations, we will omit the colors in the following. A careful reading of Brehm [15]
and Felsner [25] reveals the subsequent properties of 3-orientations. The set of 3-orientations
of a triangulation forms a distributive lattice with respect to the following ordering. T1 ≤ T2
if and only if T1 can be obtained from T2 by a sequence of flips on some counter-clockwise
triangles. The minimum element is the unique 3-orientation without counter-clockwise cycles.
Moreover, given a 3-orientation T and a triangle t, the number of occurrences of t in any
flip-sequence between T and the minimum 3-orientation is the same – provided that the flip
sequence contains only counter-clockwise triangles. Let this number be the potential πT (t).

Observe that πT is distinct for distinct T . Moreover, min(πT1(t), πT2(t)), t triangle, is
the potential of the meet T1 ∧ T2 (i.e., the infimum) of two 3-orientations T1 and T2, while
max(πT1(t), πT2(t)), t triangle, is the potential of the join T1 ∨ T2 (i.e., the supremum) of
T1 and T2. The potential πT can be computed in quadratic time for a fixed 3-orientation
T of an n-vertex triangulation: At most O(n2) flips have to be performed in order to
reach the minimum 3-orientation. With a linear-time preprocessing, we can store all initial
counter-clockwise triangles in a list. After each flip, the list can be updated in constant time.

I Lemma 17. Let T1 and T2 be two 3-orientations of an n-vertex triangulation. T1 can
be obtained from T2 by a sequence of facial flips if and only if πT1(t) − πT2(t) = 0 for all
separating triangles t. Moreover, if T1 can be obtained from T2 by a sequence of facial flips,
then it can be obtained by O(n2) facial flips.

Proof. Observe that going from T1 to the meet T1 ∧ T2 involves

πT1(t)−min(πT1(t), πT2(t)) ∈ {0, πT1(t)− πT2(t)}

counter-clockwise flips on triangle t, and going from the meet T1 ∧ T2 to T2 involves

πT2(t)−min(πT1(t), πT2(t)) ∈ {0, πT2(t)− πT1(t)}

clockwise flips on triangle t. Thus, if πT1(t)−πT2(t) = 0 for all separating triangles t, then no
flip must be performed on a separating triangle. Then, the total number of flips is bounded
by

∑
t face(πT1(t) + πT2(t)) ∈ O(n2).

Assume now that there is a sequence T1 = T ′0, T
′
1, . . . , T

′
` , T
′
`+1 = T2 of 3-orientations such

that T ′i+1, i = 0, . . . , `, is obtained from T ′i by a (clockwise or counter-clockwise) facial flip.
We show by induction on ` that πT1(t)− πT2(t) = 0 for all separating triangles t. If ` = 0, let

SoCG 2019

10:14 Morphing Contact Representations of Graphs

t0 be the triangle that has to be flipped in order to go from T1 to T2. Then, t0 is a face and
πT1(t)− πT2(t) = 0 for t 6= t0. Assume now that ` ≥ 1. Let t be a separating triangle. Then

πT1(t)− πT2(t) = πT1(t)− πT ′
`
(t)︸ ︷︷ ︸

=0 by IH

+πT ′
`
(t)− πT2(t)︸ ︷︷ ︸
=0 by IH

= 0. J

7 Conclusions and Open Problems

We have studied piecewise linear morphs between RT-representations of plane triangulations,
and shown that when such a morph exists, there is one of length O(n2). It would be
interesting to explore lower bounds on this length. Observe that the minimum length of a
flip-sequence containing only facial cycles does not immediately imply such bound, since some
flips could be parallelized. Additionally, bounds on the resolution throughout our morphs
would be worth investigating; however, it is unclear whether the “ratio fixing” we use would
allow nice bounds. For this, it may help to return to integer y-coordinates between any
two flips; however, this would result in a cubic number of linear morphing steps. A major
open direction is whether our results can be lifted to general plane graphs, e.g., through the
use of compatible triangulations. Note that such a compatible triangulation would need to
be formed while preserving the conditions for the existence of a linear morph, i.e., without
introducing the need to flip a separating triangle.

Finally, beyond the context of RT-representations, many other families of geometric
objects could be considered. For example, morphing degenerate contact representations of
line segments generalizes planar morphing, by treating contact points as vertices.

References
1 Soroush Alamdari, Patrizio Angelini, Fidel Barrera-Cruz, Timothy M. Chan, Giordano Da

Lozzo, Giuseppe Di Battista, Fabrizio Frati, Penny Haxell, Anna Lubiw, Maurizio Patrignani,
Vincenzo Roselli, Sahil Singla, and Bryan T. Wilkinson. How to Morph Planar Graph Drawings.
SIAM Journal on Computing, 46(2):824–852, 2017.

2 Soroush Alamdari, Patrizio Angelini, Timothy M. Chan, Giuseppe Di Battista, Fabrizio Frati,
Anna Lubiw, Maurizio Patrignani, Vincenzo Roselli, Sahil Singla, and Bryan T. Wilkinson. Mor-
phing Planar Graph Drawings with a Polynomial Number of Steps. In Sanjeev Khanna, editor,
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA 2013),
pages 1656–1667. SIAM, 2013.

3 Helmut Alt and Leonidas J. Guibas. Chapter 3 - Discrete Geometric Shapes: Matching,
Interpolation, and Approximation. In J.-R. Sack and J. Urrutia, editors, Handbook of
Computational Geometry, pages 121–153. North-Holland, Amsterdam, 2000.

4 E. M. Andreev. On convex polyhedra in Lobachevskij spaces. Math. USSR, Sb., 10:413–440,
1971.

5 Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, Giordano Da Lozzo, and Vincenzo
Roselli. Morphing Contact Representations of Graphs. CoRR, abs/1903.07595, 2019. arXiv:
1903.07595.

6 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Vincenzo Roselli. Morphing Planar Graph Drawings Optimally. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Proceedings of the 41st
International Colloquium on Automata, Languages, and Programming - 41st International
Colloquium (ICALP 2014), volume 8572 of LNCS, pages 126–137. Springer, 2014.

7 Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani, and
Vincenzo Roselli. Optimal Morphs of Convex Drawings. In Lars Arge and János Pach, editors,

http://arxiv.org/abs/1903.07595
http://arxiv.org/abs/1903.07595

P. Angelini, S. Chaplick, S. Cornelsen, G. Da Lozzo, and V. Roselli 10:15

Proceedings of the 31st International Symposium on Computational Geometry (SoCG 2015),
volume 34 of LIPIcs, pages 126–140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

8 Patrizio Angelini, Fabrizio Frati, Maurizio Patrignani, and Vincenzo Roselli. Morphing Planar
Graph Drawings Efficiently. In Stephen K. Wismath and Alexander Wolff, editors, Proceedings
of the 21st International Symposium on Graph Drawing (GD 2013), volume 8242 of LNCS,
pages 49–60. Springer, 2013.

9 Douglas N. Arnold and Jonathan Rogness. Möbius Transformations Revealed. Notices of the
AMS, 55(10), 2008.

10 Boris Aronov, Raimund Seidel, and Diane Souvaine. On compatible triangulations of simple
polygons. Computational Geometry, 3(1):27–35, 1993.

11 Elena Arseneva, Prosenjit Bose, Pilar Cano, Anthony D’Angelo, Vida Dujmovic, Fabrizio Frati,
Stefan Langerman, and Alessandra Tappini. Pole Dancing: 3D Morphs for Tree Drawings. In
Therese Biedl and Andreas Kerren, editors, Proceedings of the 26th International Symposium
on Graph Drawing and Network Visualization (GD 2018), volume 11282 of LNCS, pages
371–384. Springer, 2018.

12 Fidel Barrera-Cruz, Penny Haxell, and Anna Lubiw. Morphing Schnyder Drawings of Planar
Triangulations. Discrete and Computational Geometry, pages 1–24, 2018.

13 Therese Biedl, Anna Lubiw, Mark Petrick, and Michael Spriggs. Morphing Orthogonal Planar
Graph Drawings. ACM Transactions on Algorithms, 9(4):29:1–29:24, 2013.

14 Clinton Bowen, Stephane Durocher, Maarten Löffler, Anika Rounds, André Schulz, and
Csaba D. Tóth. Realization of Simply Connected Polygonal Linkages and Recognition of Unit
Disk Contact Trees. In Emilio Di Giacomo and Anna Lubiw, editors, Proceedings of the 23rd
International Symposium on Graph Drawing (GD 2015), volume 9411 of LNCS, pages 447–459.
Springer, 2015.

15 Enno Brehm. 3-Orientations and Schnyder 3-Tree-Decompositions. Master’s thesis, Freie
Universität Berlin, FB Mathematik und Informatik, 2000. Diploma thesis.

16 Graham R. Brightwell and Edward R. Scheinerman. Representations of Planar Graphs. SIAM
Journal on Discrete Mathematics, 6(2):214–229, 1993.

17 S. S. Cairns. Deformations of Plane Rectilinear Complexes. The American Mathematical
Monthly, 51(5):247–252, 1944.

18 Steven Chaplick, Stephen G. Kobourov, and Torsten Ueckerdt. Equilateral L-Contact Graphs.
In Andreas Brandstädt, Klaus Jansen, and Rüdiger Reischuk, editors, Proceedings of the 39th
International Worksho on Graph-Theoretic Concepts in Computer Science (WG 2013), volume
8165 of LNCS, pages 139–151. Springer, 2013.

19 Robert Connelly, Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Stefan Langerman,
Joseph S. B. Mitchell, Ares Ribó, and Günter Rote. Locked and Unlocked Chains of Planar
Shapes. Discrete & Computational Geometry, 44(2):439–462, 2010.

20 Giordano Da Lozzo, William E. Devanny, David Eppstein, and Timothy Johnson. Square-
Contact Representations of Partial 2-Trees and Triconnected Simply-Nested Graphs. In
Yoshio Okamoto and Takeshi Tokuyama, editors, 28th International Symposium on Algorithms
and Computation, (ISAAC 2017), volume 92 of LIPIcs, pages 24:1–24:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

21 Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Vincenzo
Roselli. Upward Planar Morphs. In Therese Biedl and Andreas Kerren, editors, Proceedings of
the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018),
volume 11282 of LNCS, pages 92–105. Springer, 2018.

22 Hubert de Fraysseix and Patrice Ossona de Mendez. Representations by Contact and Intersec-
tion of Segments. Algorithmica, 47(4):453–463, 2007.

23 Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On Triangle Contact
Graphs. Combinatorics, Probability, and Computing, 3(2):233–246, 1994.

24 Erik D. Demaine and Joseph O’Rourke. Geometric folding algorithms - linkages, origami,
polyhedra. Cambridge University Press, 2007.

SoCG 2019

10:16 Morphing Contact Representations of Graphs

25 Stefan Felsner. Lattice Structures from Planar Graphs. The Electronic Journal of Combina-
torics, 11(1), 2004.

26 Stefan Felsner and Mathew C. Francis. Contact Representations of Planar Graphs with Cubes.
In Proceedings of the 27th Annual Symposium on Computational Geometry (SoCG 2011),
pages 315–320. ACM, 2011.

27 Stefan Felsner and Günter Rote. On Primal-Dual Circle Representations. In Jeremy T. Fineman
and Michael Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms (SOSA 2019),
volume 69 of OpenAccess Series in Informatics (OASIcs), pages 8:1–8:18, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.SOSA.2019.8.

28 Stefan Felsner, Hendrik Schrezenmaier, and Raphael Steiner. Equiangular Polygon Contact
Representations. In Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, Proceed-
ings of the 44th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2018), volume 11159 of LNCS, pages 203–215. Springer, 2018.

29 Michael S. Floater and Craig Gotsman. How to morph tilings injectively. Journal of Compu-
tational and Applied Mathematics, 101(1):117–129, 1999.

30 Daniel Gonçalves, Benjamin Lévêque, and Alexandre Pinlou. Triangle Contact Representations
and Duality. Discrete & Computational Geometry, 48(1):239–254, 2012.

31 Craig Gotsman and Vitaly Surazhsky. Guaranteed intersection-free polygon morphing. Com-
puters & Graphics, 25(1):67–75, 2001.

32 Stephen Kobourov, Torsten Ueckerdt, and Kevin Verbeek. Combinatorial and Geometric
Properties of Planar Laman Graphs. In Proceedings of the 24th annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2013), pages 1668–1678. SIAM, 2013.

33 Stephen G. Kobourov and Matthew Landis. Morphing Planar Graphs in Spherical Space.
Journal of Graph Algorithms and Applications, 12(1):113–127, 2008.

34 Paul Koebe. Kontaktprobleme der Konformen Abbildung. Berichte über die Verhandlungen
der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physikalische Klasse,
88:141–164, 1936.

35 G. Laman. On Graphs and Rigidity of Plane Skeletal Structures. Journal of Engineering
Mathematics, 4(4):331–340, 1970.

36 Walter Schnyder. Embedding Planar Graphs on the Grid. In Proceedings of the 1st ACM-SIAM
Symposium on Discrete Algorithms (SODA ’90), pages 138–148, 1990.

37 Oded Schramm. Combinatorially Prescribed Packings and Applications to Conformal
and Quasiconformal Maps. PhD thesis, Princeton University, 1990. Modified version:
arXiv:0709.0710v1.

38 Hendrik Schrezenmaier. Homothetic Triangle Contact Representations. In Hans L. Bodlaender
and Gerhard J. Woeginger, editors, Proceedings of the 43rd International Workshop on Graph
Theoretic Concepts in Computer Science (WG 2017), number 10520 in LNCS, pages 425–437,
2017.

39 Vitaly Surazhsky and Craig Gotsman. Controllable morphing of compatible planar triangula-
tions. ACM Transactions on Graphics, 20(4):203–231, 2001.

40 Carsten Thomassen. Deformations of Plane Graphs. Journal of Combinatorial Theory, Series
B, 34(3):244–257, 1983.

41 Carsten Thomassen. Interval representations of planar graphs. Journal of Combinatorial
Theory, Series B, 40(1):9–20, 1986.

42 W. T. Tutte. How to Draw a Graph. Proceedings of the London Mathematical Society,
s3-13(1):743–767, 1963.

43 Arthur van Goethem and Kevin Verbeek. Optimal Morphs of Planar Orthogonal Drawings.
In Bettina Speckmann and Csaba D. Tóth, editors, Proceedings of the 34th International
Symposium on Computational Geometry (SoCG 2018), volume 99 of LIPIcs, pages 42:1–42:14.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018.

http://dx.doi.org/10.4230/OASIcs.SOSA.2019.8
https://arxiv.org/abs/0709.0710v1

When Convexity Helps Collapsing Complexes
Dominique Attali
Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
Dominique.Attali@grenoble-inp.fr

André Lieutier
Dassault systèmes, Aix-en-Provence, France
andre.lieutier@3ds.com

David Salinas
Amazon research, Berlin, Germany
dsalina@amazon.com

Abstract
This paper illustrates how convexity hypotheses help collapsing simplicial complexes. We first
consider a collection of compact convex sets and show that the nerve of the collection is collapsible
whenever the union of sets in the collection is convex. We apply this result to prove that the
Delaunay complex of a finite point set is collapsible. We then consider a convex domain defined
as the convex hull of a finite point set. We show that if the point set samples sufficiently densely
the domain, then both the Čech complex and the Rips complex of the point set are collapsible for
a well-chosen scale parameter. A key ingredient in our proofs consists in building a filtration by
sweeping space with a growing sphere whose center has been fixed and studying events occurring
through the filtration. Since the filtration mimics the sublevel sets of a Morse function with a
single critical point, we anticipate this work to lay the foundations for a non-smooth, discrete Morse
Theory.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases collapsibility, convexity, collection of compact convex sets, nerve, filtration,
Delaunay complex, Čech complex, Rips complex

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.11

1 Introduction

Contractibility and collapsibility. In the realm of point set topology in Euclidean spaces, a
set is said to be contractible if it has the homotopy type of a point. Examples of contractible
sets are bounded convex sets which can each be continuously retracted to a point. Consider
a finite collection of convex sets C and the domain defined by their union

⋃
C. We know that

each convex set in the collection is contractible. Moreover, any non-empty intersection of two
or more convex sets being itself convex is again contractible. In this situation, the topology
of the domain

⋃
C is determined by the pattern in which convex sets in C intersect. This is

asserted by the Nerve Lemma [6] also known as Leray’s Theorem. Recall that the nerve of a
collection of sets is the abstract simplicial complex whose vertices correspond to sets in the
collection and whose simplices correspond to sub-collections with non-empty intersection.
The nerve provides a way to record the intersection pattern of sets in a collection. The Nerve
Lemma implies that the nerve inherits the homotopy type of

⋃
C. In particular, if

⋃
C is

convex, then it is contractible and so is the nerve.
Simplicial collapses are unitary operations on simplicial complexes that preserve the

homotopy type while removing a few simplices. A simplicial complex is said to be collapsible
if it can be reduced to a single vertex by a sequence of collapses. Collapsibility can be
interpreted as a combinatorial version of contractibility. Indeed, each sequence of collapses

© Dominique Attali, André Lieutier, and David Salinas;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Dominique.Attali@grenoble-inp.fr
mailto:andre.lieutier@3ds.com
mailto:dsalina@amazon.com
https://doi.org/10.4230/LIPIcs.SoCG.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 When Convexity Helps Collapsing Complexes

can be interpreted as a combinatorial analog of a deformation retract. Whereas contractibility
involves continuous processes, the notion of collapsibility, thanks to its combinatorial and
finitary nature, can be handled directly in a computational context [4, 2, 3].

If a simplicial complex is collapsible, then it is also contractible. However, the converse
does not hold – the triangulated Bing’s house is a famous example of simplicial complex
which is contractible without being collapsible [9]. A natural question to ask is: Under
which condition a simplicial complex is collapsible? This question has been studied in
different context. For instance, it is known that all triangulation of the 2-dimensional ball
are collapsible. Whether linear subdivisions of convex d-balls, or at least their subdivision,
are collapsible has been a long-standing open problem [5].

Contributions. In this paper, we establish collapsibility of certain simplicial complexes.
First, we consider a finite collection of compact convex sets whose union is convex and prove
that the nerve of the collection is collapsible. This is a stronger result than what we obtain
when applying the Nerve Lemma which only entails contractibility of the nerve. Then, we
focus on two simplicial complexes built upon a finite point set S. The first one is the Čech
complex C(S, r) of S with scale parameter r defined as the nerve of the collection of balls
of radius r centered at S. The second one is the Vietoris-Rips R(S, r) which is the largest
simplicial complex sharing with C(S, r) the same set of vertices and edges. In other words, a
simplex belongs to R(S, r) if and only if all its vertices and edges belong to C(S, r). Such
a simplicial complex which enjoys the property to be completely determined by the set of
its vertices and edges is called a flag completion. We study the situation in which the point
set S samples sufficiently densely a given convex domain. As a second result, we obtain
that, in this particular case, both the Čech complex and the Vietoris-Rips complex of S are
collapsible for a well-chosen scale parameter. Furthermore, when reducing the Vietoris-Rips
complex to a point by a sequence of collapses, we can do it in such a way that we preserve
at all time the property of the complex to be a flag completion. This opens the possibility
to compute the sequence of collapses by maintaining the graph formed by the vertices and
edges, thus avoiding the complexity, possibly exponential in the dimension, required by an
extensive complex representation; see [1] for an example of a data structure optimized for
“almost-flag” completions.

2 Preliminaries

In this section we review the necessary background and explain some of our terms.

2.1 Euclidean space, distances and convex sets
Rd denotes the Euclidean space and ‖x− y‖ the Euclidean distance between two points x
and y of Rd. Given a point o ∈ Rd and a subset X ⊆ Rd, we write d(o,X) for the infimum
of Euclidean distances between o and points in X. By convention, we set d(o,X) = +∞
whenever X is empty. We write ∂X for the boundary of X. The closed ball with center x
and radius r is denoted by B(x, r). The dilation of X by a ball of radius r centered at the
origin is X⊕r =

⋃
x∈X B(x, r) and referred to as the r-offset of X. If X is either compact or

convex, so is X⊕r. It is easy to check that (X ∪ Y)⊕r = X⊕r ∪ Y ⊕r. In this paper, we will
use many times the following fact.

I Remark. Let o ∈ Rd and X ⊆ Rd. If X is a non-empty compact convex set, then there is
a unique point x ∈ X such that d(o,X) = ‖o− x‖.

D. Attali, A. Lieutier, and D. Salinas 11:3

2.2 Abstract simplicial complexes
An (abstract) simplex is any finite non-empty set. The dimension of a simplex σ is one
less than its cardinality. A k-simplex designates a simplex of dimension k. If τ ⊆ σ is a
non-empty subset, we call τ a face of σ and σ a coface of τ . If in addition τ 6= σ, we say
that τ is a proper face and σ is a proper coface. Given a set of simplices ∆ and a simplex
σ ∈ ∆, we say that σ is inclusion-maximal in ∆ if it has no proper coface in ∆. Similarly,
we say that σ is inclusion-minimal if it has no proper face in ∆. An abstract simplicial
complex is a collection of simplices K, that contains, with every simplex, the faces of that
simplex. The vertex set of the abstract simplicial complex K is the union of its elements,
Vert(K) =

⋃
σ∈K σ. A subcomplex of K is a simplicial complex L ⊆ K. The star of σ in K,

denoted StK(σ), is the set of cofaces of σ. The link of σ in K, denoted LkK(σ), is the set
of simplices τ in K such that τ ∪ σ ∈ K and τ ∩ σ = ∅. It is a subcomplex of K. Another
particular subcomplex is the i-skeleton consisting of all simplices of dimension i or less. We
call the simplicial complex formed by a simplex and all its faces the closure of that simplex.
The closure of a simplex is an example of cone. A cone is a simplicial complex L which
contains a vertex o such that the following holds: σ ∈ L =⇒ σ ∪ {o} ∈ L.

2.3 Collapses
Let π : Vert(K) → Rn be an injective map that sends the n vertices of K to n affinely
independent points of Rn, such as for instance the n vectors of the standard basis of Rn.
Let Hull(X) denote the convex hull of X ⊆ Rn. The underlying space of K is the point
set |K| =

⋃
σ∈K Hull(π(σ)) and is defined up to a homeomorphism. We shall say that an

operation preserves the homotopy-type of K if the result is a simplicial complex K ′ whose
underlying space is homotopy equivalent to that of K. We are interested in simplifying a
simplicial complex through a sequence of homotopy-preserving operations.

Consider the operation that removes from K the set of simplices ∆ = StK(σ). This
operation is known to preserve the homotopy-type in the following three cases:
1. ∆ = {σ, τ} with σ 6= τ . This case can also be characterized by the fact that the link of σ

is reduced to a singleton. The operation is called an (elementary) collapse.
2. ∆ = {η | σ ⊆ η ⊆ τ} with σ 6= τ . This case can also be characterized by the fact that the

link of σ is the closure of a simplex. The operation is called a (classical) collapse.
3. The link of σ is a cone. The operation is called an (extended) collapse.
Both classical and extended collapses can be expressed as compositions of elementary collapses.
A simplicial complex is said to be collapsible if it can be reduced to a single vertex by a finite
sequence of collapses (either elementary, classical or extended).

2.4 Filtrations
In the next two sections, we establish collapsibility of certain simplicial complexes using the
following strategy. We associate to simplicial complex K a filtration {K(t)}t∈R which is a
nested one-parameter family of simplicial complexes such that K(−∞) = ∅ and K(+∞) = K.
The filtration induces a strict order on simplices of K defined by η ≺K ν ⇔ {η ∈ K(ti) and
ν ∈ K(tj) \K(ti) for some ti < tj}. Simply put, as time t goes by, if a simplex η shows up
in K(t) strictly before another simplex ν, then η ≺K ν. As we continuously increases the
parameter t from −∞ to +∞, the simplicial complex K(t) changes only at finitely many
values of t for which the set of simplices ∆(t) = K(t) \ limu→t− K(u) is non-empty, where
limu→t− K(u) designates the limit of K(u) as u approaches t from below. Let t0 be the first
time at which a non-empty simplicial complex appears in the filtration. In other words, K(t0)

SoCG 2019

11:4 When Convexity Helps Collapsing Complexes

is the smallest non-empty simplicial complex in the filtration. To prove that K is collapsible,
it suffices to show that: (1) K(t0) is collapsible; (2) the operation that removes ∆(t) from
K(t) is a collapse for all t > t0. For this purpose, it will be crucial to build filtrations that
are simple (see Figure 1):

I Definition 1. The filtration {K(t)}t∈R is simple if for all t > t0, then ∆(t) has a unique
inclusion-minimal element σt.

A

B CD

E

K(+∞) = K

A

B CD

A

B C

A

B

A A

B CD

K(t0)

Figure 1 The 6 simplicial complexes form a filtration of K which is simple.

When the filtration is simple, ∆(t) is precisely the star of σt in K(t) and removing ∆(t)
from K(t) is a collapse if one of the three conditions listed in Section 2.3 is satisfied.

I Definition 2. Two simplices σ1 and σ2 are in conjunction in filtration {K(t)}t∈R if they
are both inclusion-minimal elements of ∆(t) for some t > t0 (see Figure 2).

A

B CD

E

A

B CD

A

B C

A

B

A

K(+∞) = KK(t0)

Figure 2 The 5 simplicial complexes form a filtration of K which is not simple as simplices CD
and E are in conjunction.

Clearly, a filtration is simple if and only if it contains no pair of simplices in conjunction.
The following definition will be useful when, in the next section, we perturb a filtration to
make it simple.

I Definition 3. Consider a filtration {K(t)}t∈R of K and a filtration {L(t)}t∈R of L. We
say that the filtration {L(t)}t∈R is finer than the filtration {K(t)}t∈R if for all t ∈ R, there
exists t′ ∈ R such that K(t) = L(t′).

I Remark. If {L(t)}t∈R finer than {K(t)}t∈R, then η ≺K ν =⇒ η ≺L ν.

3 Collapsing nerves of compact convex sets

3.1 Statement of results
Given a finite collection of sets C, we write

⋃
C for the union of sets in C and

⋂
C for the

common intersection of sets in C. The nerve of C is the abstract simplicial complex that
consists of all non-empty subcollections whose sets have a non-empty common intersection,

NrvC = {η ⊆ C |
⋂
η 6= ∅}.

D. Attali, A. Lieutier, and D. Salinas 11:5

The nerve theorem implies that if all sets in C are compact and convex, then the nerve of C
is homotopy equivalent to the union of sets in C, that is NrvC '

⋃
C. We get immediately

that if furthermore
⋃
C is a non-empty convex set, then NrvC is contractible. In this paper,

we prove that under the same hypotheses on C, we have a stronger result, namely, that NrvC

is collapsible. Formally:

I Theorem 4. If C is a finite collection of compact convex sets whose union
⋃

C is a
non-empty convex set, then NrvC is collapsible.

Two corollaries follow immediately. First, we obtain collapsibility of the Delaunay
complex. Recall that given a finite point set S ⊆ Rd, the Voronoi region of a ∈ S is
Va = {x ∈ Rd | ‖x− a‖ ≤ ‖x− s‖, ∀s ∈ S} and the Delaunay complex of S is the nerve of
Voronoi regions, Del(S) = Nrv{Vs | s ∈ S}.

I Corollary 5. The Delaunay complex of any finite point set S ⊆ Rd is collapsible.

Proof. Apply Theorem 4 to the collection C = {Vs ∩B | s ∈ S}, where B is any ball large
enough to intersect all common intersection

⋂
s∈σ Vs for σ ranging over NrvS. The result

follows because Del(S) is isomorphic to NrvC which is collapsible by Theorem 4. J

To state the second corollary, recall that the Čech complex of a finite point set S ⊆ Rd
with parameter r ∈ R is the nerve of the collection of balls, C(S, r) = Nrv{B(s, r) | s ∈ S}
and denote by Hull(S) the convex hull of S.

I Corollary 6. The Čech complex of a finite point set S ⊆ Rd with parameter r ∈ R is
collapsible whenever Hull(S) ⊆ S⊕r.

Before proving the corollary, notice that the condition on S is tight as for any δ > 0, if
Hull(S) ⊆ S⊕(r+δ), then C(S, r) is not necessarily collapsible. Take for instance the Cech
complex of two points at distance 2(r + δ).

Proof. Apply Theorem 4 to the collection C = {B(s, r) ∩Hull(S) | s ∈ S} and notice that
NrvC is isomorphic to C(S, r). J

We prove Theorem 4 by adopting the following strategy. Consider a finite collection C of
compact convex sets whose union

⋃
C is non-empty and convex. We first build a filtration

of NrvC from which we derive a sequence of collapses reducing NrvC to a vertex. The rest
of the section is devoted to the proof of Theorem 4. In Section 3.2, we build the filtration
and show that the smallest non-empty simplicial complex in the filtration is collapsible.
In Section 3.3, we show that we can always perturb the collection C so that the filtration
associated to NrvC enjoys nice properties (in a sense to be made precise). In Section 3.4, we
study the filtration of the perturbed collection and show that events through the filtration
are collapses.

3.2 Building a filtration
Let C be a family of subsets of Rd whose union

⋃
C is non-empty. Let o be a fix point in

Rd that belongs to
⋃
C. We build a filtration of NrvC by sweeping the space Rd with a

sphere centered at o and whose radius t ≥ 0 continuously increases from 0 to +∞. Simplicial
complexes Ko,C(t) in the filtration are obtained by keeping simplices in NrvC which are
subcollections of C whose common intersections have a distance to o equal to or less than t:

Ko,C(t) = {η ⊆ C | d(o,
⋂
η) ≤ t}.

SoCG 2019

11:6 When Convexity Helps Collapsing Complexes

Clearly, Ko,C(t) = ∅ for all t < 0 and Ko,C(+∞) = NrvC. Notice that Ko,C(0) is non-empty
because point o belongs to at least one set C in the collection C and thus Ko,C(0) contains
at least vertex C. It follows that Ko,C(0) is the smallest non-empty simplicial complex in
the filtration. As we continuously increases the parameter t from −∞ to +∞, the simplicial
complex Ko,C(t) changes only at finitely many values of t for which the set of simplices

∆o,C(t) = {η ⊆ C | d(o,
⋂
η) = t}

is non-empty. When these events happen, the sphere centered at o with radius t passes
through particular points of

⋃
C that we call trigger points and defined below; see Figure 3.

I Definition 7. Consider η ⊆ C such that
⋂
η 6= ∅. The trigger point of η (with respect to o)

is the point of
⋂
η at which the smallest distance to o is achieved. There is thus one trigger

point per simplex in NrvC and the set of all these points is referred to as the trigger points
of NrvC (with respect to o).

o

xAB

xACD

A

B

C

D

E

o

D

C

E

A

B

xAB

xACD

Figure 3 Left: Collection of five convex sets {A,B,C,D,E} whose union is convex. The nerve
possesses six trigger points (red dots) among which one of them xAB lies on the boundary of the
union and another one xACD does not lie in the interior of any convex set in the collection. The
filtration associated to the nerve is depicted in Figure 2 and is not simple. Right: as we offset sets
in the collection while keeping the union convex and the nerve unchanged, the trigger point xAB

moves in the interior of the union and the trigger point xACD moves in the interior of at least one
convex set (namely A). The associated filtration is depicted in Figure 1 and is simple.

I Lemma 8. Let C be a family of subsets of Rd whose union
⋃

C is non-empty and convex
and let o ∈

⋃
C. Then, Ko,C(0) is collapsible.

Proof. Let τ0 = {C ∈ C | o ∈ C}. The simplicial complex Ko,C(0) = {η ⊆ C | d(o,
⋂
η) = 0}

consists of τ0 together with all its faces and is clearly collapsible. J

3.3 Perturbing filtrations
Let C be a finite family of compact convex sets whose union

⋃
C is convex and non-empty

and pick a point o in
⋃
C. In this section, we establish that it is always possible to perturb

the family C into a family of compact convex sets so as to make the filtration Ko,C(t) simple
while leaving

⋃
C convex and NrvC unchanged. Roughly speaking, we shall perturb sets in

the collection by thickening them.

D. Attali, A. Lieutier, and D. Salinas 11:7

I Lemma 9. For all δ > 0, there exists a non-negative map α : C→ R bounded above by δ
such that if we replace each set C ∈ C by set C⊕α(C) ∩

⋃
C, we perturb C in such a way that

(1) the nerve of C is left unchanged; (2) the filtration Ko,C(t) becomes simple.

The proof of Lemma 9 relies on three technical lemmas. To state them, we need some
notation and definitions. A perturbation of C is a map f : C→ P(Rd), where P(Rd) designates
the power set of Rd. For a subcollection η ⊆ C and a simplicial complex L over C, we write
f(η) = {f(C) | C ∈ η} and f(L) = {f(η) | η ∈ L}. For any non-negative map α : C→ R, we
write η⊕α = {C⊕α(C) | C ∈ η} and L⊕α = {η⊕α | η ∈ L}. A simple compactness argument
implies the first lemma of which the proof is omitted.

I Lemma 10. Let X be a finite collection of compact sets. There exists ε > 0 such that for
all non-negative maps ξ : X→ R bounded above by ε, we have (NrvX)⊕ξ = Nrv(X⊕ξ).

I Lemma 11. There exists ε > 0 such that for all non-negative maps α : C → R bounded
above by ε and all 0 ≤ β ≤ ε, if we replace each set C ∈ C by set C⊕α(C) ∩ (

⋃
C)⊕β, we

perturb C in such a way that (1) the nerve of C is left unchanged; (2) the filtration Ko,C(t)
after perturbation is finer than what it was before perturbation.

Proof. Consider a non-negative map α bounded above by ε and 0 ≤ β ≤ ε. Write fα,β(C) =
C⊕α(C) ∩ (

⋃
C)⊕β . To prove (1), we apply Lemma 10 to the set X = C∪ {

⋃
C} and the map

ξ defined by ξ(C) = α(C) for all C ∈ C and ξ(
⋃

C) = β. We know that for ε > 0 small
enough, NrvX = Nrv(X⊕ξ) or equivalently

⋂
η 6= ∅ ⇔

⋂
fα,β(η) 6= ∅ for all η ⊆ C, showing

that (1) holds. To prove (2), write

K(t) = {η ⊆ C | d(o,
⋂
η) ≤ t}

Lα,β(t) = {η ⊆ C | d(o,
⋂
fα,β(η)) ≤ t}

and let us establish that Lα,β(t) is finer than K(t). As we continuously increases the
parameter t from −∞ to +∞, the simplicial complex K(t) changes only at finitely many
values 0 = t0 < . . . < tm of t. Let Bi = B(o, ti) for i ∈ {0, . . . ,m}. Let us apply Lemma 10
to the set X = C∪{

⋃
C}∪{B0, . . . , Bm} and the map ξ defined by ξ(C) = α(C) for all C ∈ C,

ξ(
⋃
C) = β and ξ(Bi) = 0. Lemma 10 implies that for ε > 0 small enough, we have the

following five equivalences: η ∈ K(ti)⇔ d(o,
⋂
η) ≤ ti ⇔ Bi ∩

⋂
η 6= ∅ ⇔ Bi ∩

⋂
fα,β(η) 6=

∅ ⇔ d(o,
⋂
fα,β(η)) ≤ ti ⇔ η ∈ Lα,β(ti). Thus, for all t ≥ 0, there exists i such that

K(t) = K(ti) = L(ti) and Lα,β(t) is finer than K(t). J

Next lemma ensures that when we replace one of the set C in C by C⊕ε ∩
⋃
C, some of

the events in the corresponding filtration happen at an earlier time. Precisely:

I Lemma 12. Let C ∈ C and η ⊆ C such that C 6∈ η. Suppose {C} ∪ η is inclusion-minimal
in ∆o,C(t). Then, for all t > d(o,

⋃
C) and all ε > 0, we have d(o, C⊕ε ∩

⋂
η ∩

⋃
C) < t.

Proof. By assumption, d(o, C∩
⋂
η) = t. If η 6= ∅, then η is a proper subset of {C}∪η and the

minimality of {C} ∪ η in ∆o,C(t) implies that d(o,
⋂
η) < t and therefore d(o,

⋂
η ∩

⋃
C) < t.

If η = ∅, observe that the later inequality holds because we have assumed that d(o,
⋃

C) < t.
Let x be the point in C ∩

⋂
η closest to o and let x′ be the point in

⋂
η ∩

⋃
C closest to o.

As we go from x to x′ on the segment connecting x to x′, the distance to o decreases in a
sufficiently small neighborhood of x while we remain in both sets C⊕ε and

⋂
η ∩

⋃
C. Thus,

d(o, C⊕ε ∩
⋂
η ∩

⋃
C) < t. J

Before proving Lemma 9, recall that two simplices σ1 and σ2 are in conjunction in
filtration Ko,C(t) if they are both inclusion-minimal elements of ∆o,C(t) for some t > 0.

SoCG 2019

11:8 When Convexity Helps Collapsing Complexes

Proof of Lemma 9. The proof consists in applying a sequence of elementary perturbations
to set C while preserving NrvC and

⋃
C until no two simplices remain in conjunction in the

filtration Ko,C(t). Suppose two simplices are in conjunction, say σ1 and σ2. Suppose C ∈ σ1

and C 6∈ σ2 and replace the convex set C by C⊕ε ∩
⋃

C. Clearly, C is still a collection of
compact convex sets,

⋃
C is left unchanged by the operation and Lemma 11 implies that for

ε > 0 small enough, the nerve of C is also left unchanged. We prove below that for ε > 0
small enough: (1) σ1 and σ2 are not in conjunction anymore after the operation; (2) two
simplices η and ν are not in conjunction after the operation unless a face η′ ⊆ η and a face
ν′ ⊆ ν were already in conjunction before the operation. Introduce the map f : C→ P(Rd)
defined by f(C) = C⊕ε ∩

⋃
C and f(C ′) = C ′ for all C ′ 6= C.

(1) Let us prove that for ε > 0 small enough, f(σ1) and f(σ2) are not in conjunction in
Ko,f(C)(t). Let t = d(o,

⋂
σ1) = d(o,

⋂
σ2) and suppose σ1 = {C} ∪ η with C 6∈ η. By

construction, f(σ1) = C⊕ε ∩
⋂
η ∩

⋃
C. By Lemma 12, we have d(o,

⋂
f(σ1)) < t =

d(o,
⋂
f(σ2)), showing that f(σ1) and f(σ2) are not in conjunction in Ko,f(C)(t).

(2) Let us prove that for ε > 0 small enough, two simplices f(η) and f(ν) cannot be in
conjunction in Ko,f(C)(t) unless a face η′ ⊆ η and a face ν′ ⊆ ν are in conjunction in
Ko,C(t). Consider two simplices f(η) and f(ν) in conjunction inKo,f(C)(t). By Lemma 11,
the filtration Ko,f(C)(t) is finer than the filtration f(Ko,C(t)) and the remark in Section
2.4 entails the implication: d(o,

⋂
f(η)) = d(o,

⋂
f(ν)) =⇒ d(o,

⋂
η) = d(o,

⋂
ν). The

result hence follows.

To remove all pair of simplices in conjunction, consider the partial order ≺ on pair of
simplices defined by (ν′, η′) ≺ (ν, η) if dim ν′ ≤ dim ν and dim η′ ≤ dim η. Sort all pair of
simplices in conjunction according to a total order compatible with this partial order. Take
the smallest pair (σ1, σ2) and apply the elementary perturbation described above. Notice
that the operation does not create any new pair of simplices in conjunction smaller than
(σ1, σ2). By repeating this operation a finite number of times, we thus get a new collection
of compact convex sets possessing the same nerve and the same union but for which no two
simplices are in conjunction anymore. In other words, the filtration associated to the new
collection is simple. Since elementary perturbations can be made as small as wanted, their
composition can be made smaller than any given δ > 0. J

3.4 Studying events in the filtration
Throughout this section, C designates a finite collection of compact convex sets whose
union is a non-empty convex set and o designates a point in

⋃
C. In this section, we

establish Theorem 4. Let us start with a few general observations. Consider t > 0 such
that ∆o,C(t) 6= ∅. If we assume {Ko,C(t)}t∈R to be simple, then by definition ∆o,C(t) has
a unique inclusion-minimal element σt. Let pt be the point in

⋂
σt closest to o and let

τt = {C ∈ C | pt ∈ C}.

I Lemma 13. If {Ko,C(t)}t∈R is simple, then ∆o,C(t) = {η ⊆ C | σt ⊆ η ⊆ τt}.

Proof. Let us prove that for all η ⊆ C, we have the equivalence

σt ⊆ η ⊆ τt ⇐⇒ d(o,
⋂
η) = t.

Consider first η such that σt ⊆ η ⊆ τt. We have the following sequence of inclusions
pt ∈

⋂
τt ⊆

⋂
η ⊆

⋂
σt. Hence,

t = ‖pt − o‖ ≥ d(o,
⋂
τt) ≥ d(o,

⋂
η) ≥ d(o,

⋂
σt) = t

D. Attali, A. Lieutier, and D. Salinas 11:9

showing that d(o,
⋂
η) = t. Conversely, consider η ⊆ C such that d(o,

⋂
η) = t and

let x be the point of
⋂
η closest to o. Observe that σt ⊆ η because η ∈ ∆o,C(t) and

therefore x ∈
⋂
η ⊆

⋂
σt. It follows that

⋂
σt contains two points x and pt such that

‖x− o‖ = ‖pt − o‖ = t = d(o,
⋂
σt). Because

⋂
σt is convex, there is a unique point in

⋂
σt

at which the smallest distance to o is achieved, showing that pt = x and therefore η ⊆ τt. J

Hence, ∆o,C(t) has a unique inclusion-minimal element σt and a unique inclusion-maximal
element τt. More precisely, ∆o,C(t) consists of all cofaces of σt in Ko,C(t) and these cofaces
are all faces of τt. To prove that removing ∆o,C(t) from Ko,C(t) is a collapse, it suffices to
establish that τt 6= σt. Lemma 14 below shows that pt lies on the boundary of all the convex
sets in σt.

I Lemma 14. Consider η ∈ NrvC and let x be the point in
⋂
η closest to o. Suppose o 6= x.

If x lies in the interior of some C, then x is also the point in
⋂

(η \ {C}) closest to o.

Proof. Suppose that x lies in the interior of some C ∈ η; see Figure 4, left. Because o 6= x,
we cannot have η = {C} and therefore η′ = η \ {C} is non-empty. Let us prove that x is
the point of

⋂
η′ closest to o. Suppose for a contradiction that there exists a point x′ in⋂

η′ closer to o than x. Since the map m 7→ ‖m− o‖ is convex and ‖x− o‖ > ‖x′ − o‖, the
distance to o would be decreasing along the segment [x, x′] in the vicinity of x and since this
segment, in the vicinity of x, is contained in

⋂
η this would contradict the fact that x is the

closest point to o in
⋂
η. J

A B

C

o

x

x′

f(C)

C

o
C′f(C′)

x
y

Figure 4 Left: Counterexample to Lemma 14 when sets in C are not convex. Right: Notation for
the proof of Lemma 15.

If we were able to prove that pt belongs to the interior of one of the convex sets of τt,
we would be done because we would be sure that τt 6= σt. Unfortunately, this is not true in
general (see point xACD in Figure 3 for a counterexample) but becomes true if we slightly
perturb C, as explained in Lemma 15.

I Lemma 15. Let f : C → P(Rd) be a map such that for all C ∈ C, the subset f(C) is
convex, compact and contains C in its interior. Suppose Nrv f(C) = f(NrvC). Suppose
furthermore that all trigger points of Nrv f(C) lie in the interior of

⋃
f(C). Let y be one of

those trigger points. If y 6= o, then y lies in the interior of some f(C) ∈ f(C).

Proof. Let τ = {C ∈ C | y ∈ f(C)}. Suppose for a contradiction that y 6= o and that y lies
on the boundary of f(C) for all C ∈ τ ; see Figure 4, right. Since Nrv f(C) = f(NrvC), we
have that y ∈

⋂
f(τ) 6= ∅ implies that

⋂
τ 6= ∅. Let x be a point in the latter intersection.

For all C ∈ τ , we have that x belongs to the interior of f(C) while y belongs to the boundary
of f(C). Thus, the vector y − x points outward f(C) at y for all C ∈ τ . Since all convex
sets f(C ′) for which C ′ not in τ are at some positive distance from y, it follows that, on the

SoCG 2019

11:10 When Convexity Helps Collapsing Complexes

segment starting from y in the direction y − x, points sufficiently close to y do not belong to⋃
f(C). In other words, y ∈ ∂

⋃
f(C). But, y being a trigger point, y lies in the interior of⋃

f(C), yielding a contradiction. J

Next lemma gives an example of perturbation f of C which ensures that after perturbing
C with f , all trigger points of Nrv f(C) are in the interior of

⋃
f(C); see Figure 3.

I Lemma 16. Consider ε > 0 and a map α : C→ R such that 0 ≤ α(C) ≤ (
√

2− 1)ε. Let
f : C → P(Rd) defined by f(C) = C⊕(ε+α(C)) ∩ (

⋃
C)⊕ε. Suppose o ∈

⋃
C and Nrv f(C) =

f(NrvC). Then, all trigger points of Nrv f(C) lie in the interior of
⋃
f(C).

H

⋃
f(C)⋃

C

o

xC

y

x

ε

Figure 5 Notation for the proof of Lemma 16.

Proof. Consider η ⊆ C such that
⋂
f(η) 6= ∅ and suppose for a contradiction that the trigger

point y of f(η) lies on the boundary of
⋃
f(C); see Figure 5. Let x be the point in

⋃
C closest

to y and notice that (1) ‖x− y‖ = ε because
⋃
f(C) = (

⋃
C)⊕ε and (2) x ∈ ∂

⋃
C. We claim

that x ∈
⋂
f(η). Let H be the closed half-space which contains

⋃
C and whose boundary

passes through x while being orthogonal to the vector y − x. By construction, for all C ∈ η,
there is a point xC in

⋃
C whose distance to y is equal to or less than ε+α(C) ≤

√
2ε. Thus,

xC ∈ H ∩B(y,
√

2ε) ⊆ B(x, ε). Hence, ‖x− xC‖ ≤ ε and therefore x belongs to f(C) for all
C ∈ η, showing that x ∈

⋂
f(η) as claimed. Note that o ∈

⋃
C ⊆ H. We thus have three

points o, x and y such that y 6∈ H, x is the orthogonal projection of y onto H and o ∈ H. It
follows that ‖x− o‖ ≤ ‖y − o‖ and since x ∈

⋂
f(η), this contradicts the fact that y is the

trigger point of η, that is, the point of
⋂
f(η) closest to o. J

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let o ∈
⋃
C. By Lemma 10, for ε > 0 small enough, Nrv(C⊕ε) =

(NrvC)⊕ε. Clearly, C⊕ε is a collection of compact convex sets whose union is convex since⋃
(C⊕ε) = (

⋃
C)⊕ε. Applying Lemma 9 to the collection C⊕ε, we obtain the existence of a

perturbation f : C→ P(Rd) of the form f(C) = C⊕(ε+α(C)) ∩ (
⋃

C)⊕ε where α : C→ R is a
non-negative map such that (1) Nrv f(C) = f(NrvC) and (2) the filtration {Ko,f(C)(t)}t≥0 is
simple. Furthermore, the map α can be chosen arbitrarily small and in particular bounded
above by (

√
2 − 1)ε. Observe that such an f satisfies the assumptions of Lemma 16 and

therefore of Lemma 15. Letting D = f(C), we prove in the following paragraph that NrvD

is collapsible which entails immediately that NrvC is collapsible as the two are isomorphic.

D. Attali, A. Lieutier, and D. Salinas 11:11

By Lemma 8, Ko,D(0) is collapsible. Let us prove that for all t > 0 such that ∆o,D(t) 6=
∅, the operation that removes ∆o,D(t) from Ko,D(t) is a collapse. Since the filtration
{Ko,D(t)}t≥0 is simple, ∆o,D(t) has a unique inclusion-minimal element σt. Let pt be the
point in

⋂
σt closest to o and let τt = {D ∈ D | pt ∈ D}. By Lemma 13, ∆o,D(t) is the set of

simplices η ∈ NrvD such that σt ⊆ η ⊆ τt. Let us show that σt 6= τt. By Lemma 14, pt lies
on the boundary of all sets in σt. By Lemma 15, pt lies in the interior of at least one set D
in τt. Hence, τt 6= σt and the operation that removes ∆o,D(t) from Ko,D(t) is a collapse. J

4 Collapsing Rips complexes

In this section, we turn our attention to Rips complexes. Given a point set S and a scale
parameter r, the Rips complex R(S, r) is the simplicial complex whose simplices are subsets
of points in S with diameter at most 2r. Rips complexes are examples of flag completions.
Recall that the flag completion of a graph G, denoted Flag(G), is the maximal simplicial
complex whose 1-skeleton is G. Let G(S, r) denote the graph whose vertices are the points S
and whose edges connect all pairs of points within distance 2r. The Rips complex of S with
parameter r is R(S, r) = Flag(G(S, r)). It is the largest simplicial complex sharing with the
Čech complex C(S, r) the same 1-skeleton. However, the Rips complex has the computational
advantage over the Čech complex to be a flag completion: it suffices to compute its 1-skeleton
to encode the whole complex. In this section, we prove that if S samples sufficiently densely
Hull(S), then the Rips complex is collapsible for a suitable value of the scale parameter.

q q q

x x
x

a
b

c

d

o o o o o

t
t t t

t

a b

c

d

a b

c

d

a b

c

d

b

c

d

c

d

∆t = {} ∆t = {ab, abc} ∆t = {a, ac} ∆t = {b, bc} ∆t = {}

K+∞ = = K0

Figure 6 From left to right: Our proof technique (illustrated here when S = {a, b, c, d}) consists
in sweeping space with a sphere centered at o ∈ Hull(S) and whose radius t continuously decreases
from +∞ to 0. We deduce from the sweep a sequence of collapses reducing R(S, α) to a vertex.

I Theorem 17. Let S 6= ∅ be a finite set of points in Rd and r > 0. If Hull(S) ⊆ S⊕(2−
√

3)r,
then there exists a sequence of extended collapses reducing R(S, r) to a vertex in such a way
that the result of each extended collapse is a flag complex.

Proof. Set r = 1 and write Bx for the closed unit ball centered at x. Fix a point o in the
convex hull of S. We construct a sequence of collapses by sweeping the space with a sphere
centered at o and whose radius t ≥ 0 continuously decreases from +∞ to 0. Specifically,
let Gt be the graph whose vertices are points s ∈ S such that B(o, t) ∩ Bs 6= ∅ and whose
edges connect all pair of points a, b ∈ S such that B(o, t) ∩Ba ∩Bb 6= ∅. Let Kt = FlagGt.
Clearly, G+∞ = G(S, 1) and K+∞ = FlagG+∞ = R(S, 1). We claim that K0 is collapsible.
Indeed, the vertex set of K0 is the set of points τ0 = {s ∈ S | o ∈ Bs} = S ∩ Bo which is
non-empty since o ∈ Hull(S) ⊆ S⊕1. It follows that K0 = FlagG0 consists of τ0 and all

SoCG 2019

11:12 When Convexity Helps Collapsing Complexes

its faces and is collapsible. As we continuously decreases t from +∞ to 0, changes in the
simplicial complex Kt occur whenever a vertex or an edge disappears from the graph Gt; see
Figure 6. Generically, we may assume that these events do not happen simultaneously.

When a vertex a disappears from Gt at time t, the intersection B(o, t) ∩ Ba reduces
to a single point x; see Figure 7, left. In this situation, we claim that the link of a in Kt

is the closure of the simplex τx = S ∩ Bx \ {a}. First, note that τx is non-empty since x
lies on the segment connecting o to a and therefore belongs to the convex hull of S which
is contained in S⊕2−

√
3. Hence, there is a point s ∈ S in the interior of Bx and τx 6= ∅.

Furthermore, τx is precisely the vertex set of the link since an edge au belongs to Kt if and
only if B(o, t)∩Ba ∩Bu 6= ∅ with u ∈ S \ {a} which can be reformulated as u ∈ S ∩Bx \ {a}.
Finally, any two vertices u and v in the link are connected by an edge since clearly u, v ∈ τx
implies B(o, t) ∩Bu ∩Bv ⊃ {x}. We have just proved that the link of a in Kt is the closure
of a simplex. Thus, removing the star of a from Kt is a classical collapse.

a

o

u

t

o

b

2−
√

3

√
3− 1

x

v
t

a

x

u

v

Figure 7 Notation for the proof of Theorem 17. Two kinds of events may occur: either a vertex
collapse (on the left) or an edge collapse (on the right). The edge collapse is illustrated when triangle
oab is equilateral.

When an edge ab disappears from Gt at time t, there exists a point x such that {x} =
B(o, t) ∩ Ba ∩ Bb; see Figure 7, right. Note that x lies in the convex hull of {a, b, o} and
therefore lies in the convex hull of S. Since Hull(S) ⊆ S⊕2−

√
3, there exists u ∈ S such that

‖u− x‖ ≤ 2−
√

3. In particular, x ∈ Bu which ensures that both x ∈ B(o, t) ∩Ba ∩Bu 6= ∅
and x ∈ B(o, t) ∩ Bb ∩ Bu 6= ∅ and therefore u belongs to the link of ab in Kt. We claim
that the link of ab is a cone with apex u. Consider a point v ∈ S which belongs to the
link of ab in Kt. Equivalently, both B(o, t) ∩ Ba ∩ Bv 6= ∅ and B(o, t) ∩ Bb ∩ Bv 6= ∅ and
Lemma 19 implies that B(o, t) ∩B(x,

√
3− 1) ∩Bv 6= ∅. Since ‖u− x‖ ≤ 2−

√
3, we have

B(x,
√

3− 1) ⊆ Bu and therefore we also have B(o, t) ∩Bu ∩Bv 6= ∅, showing that uv also
belongs to the link of ab in Kt. We have just proved that the link of ab in Kt is a cone. Thus,
removing the star of ab from Kt is an extended collapse. J

D. Attali, A. Lieutier, and D. Salinas 11:13

L

m

qab

qc
q′

c

qa

qb

qa
qb

qc

qab

Da
Db

β

za

zc

Dc

Hb

Ha

zb

Hc

α

Da Db

Dc

qab

qc
q′

c

qa
qb

D′
c

D′
b

Figure 8 Notation for the proof of Lemma 18.

4.1 Two geometric lemmas
The proof of Theorem 17 relies on two geometric lemmas. The first one states facts about
three disks in the plane that intersect pairwise but have no common intersection (Lemma
18). It will allow us to deduce facts about the way four balls intersect in Rd (Lemma 19). As
before, Bx denotes the unit closed ball centered at x.

I Lemma 18. Let Da, Db and Dc be three disks with radius equal to or less than one and
such that any two disks have a non-empty intersection while the three together have no
common intersection. Let qab be the point of Da ∩ Db closest to the center of Dc. There
exists a point qc ∈ Dc such that:

for all points α ∈ Da ∩Dc and β ∈ Db ∩Dc, the point qc is in the convex hull of α, β
and qab;
‖qc − qab‖ ≤

√
3− 1.

Proof. Consider the disk Dm whose boundary is tangent to the boundaries of the three disks
Da, Db and Dc and whose interior intersects none of the three disks Da, Db and Dc. For
x ∈ {a, b, c}, the two disks Dx and Dm intersect in a single point qx; see Figure 8, left. Let
α ∈ Da ∩Dc and β ∈ Db ∩Dc. We claim that qc belongs to the convex hull of α, β and qab.
Indeed, for x ∈ {a, b, c}, let Hx be the half-plane that contains Dx and avoids the interior of
Dm. We have α ∈ Ha ∩Hc, β ∈ Hb ∩Hc, and qab ∈ Ha ∩Hb. The triangle αβqab covers the
closure of R2 \ (Ha ∪Hb ∪Hc) and therefore qc.

Let us prove that ‖qc − qab‖ ≤
√

3− 1. For x ∈ {a, b, c}, we denote the center of Dx by
zx and its radius by ρx. We are going to transform the three disks Da, Db and Dc in such a
way that after the transformation:
(i) the three disks intersect pairwise but have no common intersection;
(ii) the distance between qc and qab is at least as large as it was before the transformation;
(iii) ρx ≤ 1 for x ∈ {a, b, c};
(iv) the centers za, zb, and zc form an equilateral triangle of side length two.
Let q′c be the point on the boundary of Dm that is farthest away from qab; see Figure 8,
right. Clearly, ‖q′c − qab‖ ≥ ‖qc − qab‖. The two tangency points qa and qb decompose the
boundary of Dm in two arcs and it is not difficult to see that one of them contains both

SoCG 2019

11:14 When Convexity Helps Collapsing Complexes

Da

Do

Db

Dc

c′

α β

x

Kao(x)

Kab(x)

Kbo(x)

Figure 9 Notation for the proof of Lemma 19.

qc and q′c. Consider the disk D′c obtained by rotating Dc around m until it meets q′c. As
we do so, the rotated disk maintains a contact with at least one of the two disks Da or Db.
Without loss of generality, we may assume that Da ∩ D′c 6= ∅. Let L be the straight-line
passing through qab, q′c and m. Let D′b be the symmetric of Da with respect to L. We have
D′b ∩D′c 6= ∅. The two boundaries of Da and D′b meet in two points, one of them being qab.
If we replace Db by D′b and Dc by D′c, it is easy to check that now the three disks Da, Db

and Dc satisfies (i), (ii) and (iii) and their centers form an isosceles triangle. We can then
further transform the three disks in such a way that after the transformation, they satisfy in
addition (iv). When this is the case, we clearly have ‖qc − qab‖ =

√
3− 1. J

I Lemma 19. Let a and b be two points such that Ba and Bb have a non-empty intersection.
Let o be a point such that d(o,Ba ∩ Bb) = t > 0. Let x be the (unique) point of Ba ∩ Bb
closest to o. Any unit ball which has a non-empty intersection with both Ba ∩ B(o, t) and
Bb ∩B(o, t) has a non-empty intersection with B(x,

√
3− 1) ∩B(o, t).

Proof. Note that x ∈ B(o, t). Let c such that Bc∩Ba∩B(o, t) 6= ∅ and Bc∩Bb∩B(o, t) 6= ∅.
If x ∈ Bc, then the claim holds trivially since x ∈ B(x,

√
3− 1)∩B(o, t). Let us assume from

now on that x /∈ Bc. Take α ∈ Bc ∩Ba ∩B(o, t) and β ∈ Bc ∩Bb ∩B(o, t) and consider a
2-plane Π that contains the three points x, α and β. This 2-plane intersects the four balls
Ba, Bb, Bc and B(o, t) in four disks that we denote respectively Da, Db, Dc and Do; see
Figure 9. The three disks Da, Db and Do have a non-empty intersection reduced to point x.
We have α ∈ Dc ∩Da ∩Do 6= ∅, β ∈ Dc ∩Db ∩Do 6= ∅ and x /∈ Dc.

Let zc be the center of Dc. We claim that x is the point of Da ∩Db closest to zc. Define
the outer cone of Da ∩Do at x as the set of points:

Kao(x) = {y ∈ Π | ∀z ∈ Da ∩Do, 〈y − x, z − x〉 ≤ 0}.

Equivalently, Kao(x) is the set of points whose distance from x is less than or equal to the
distance from any other point of Da ∩Do. The fact that x /∈ Dc while α ∈ Dc implies that
‖zc − α‖ ≤ ‖zc − x‖. Thus, α is a point in the intersection Da ∩ Do closer to zc than x.
Equivalently, zc /∈ Kao(x). Similarly, zc /∈ Kbo(x). Since Kao(x) ∪ Kbo(x) ∪ Kab(x) = Π, it
follows that zc ∈ Kab(x). In other words, x is the point of Da ∩Db closest to zc as claimed.

D. Attali, A. Lieutier, and D. Salinas 11:15

Therefore, Lemma 18 can be applied and shows the existence of a point x′ ∈ Dc in the
convex hull of α, β and x such that x′ ∈ B(x,

√
3 − 1). Since all three points α, β and x

belong to B(o, t), it follows that x′ ∈ B(o, t), yielding the result. J

5 Future work

We envision that our work could create a bridge towards a non-smooth discrete Morse theory.
Continuous Morse theory studies how the homology of a smooth manifold is determined by
the critical points of a Morse function. Robin Forman has introduced a discrete Morse Theory
[7] enjoying similar properties but defined on simplicial complexes. This has been generalized
in [8, 4]. The filtrations that we built can be interpreted as defining a Morse function with a
single critical event creating a connected component. By removing the convexity assumption
on the union of convex sets, or by varying the function defining the filtration (here the
distance to o), we get a Morse Theory that may characterize the homology of any non-smooth
set that can be expressed as a finite union of convex sets (such as embedded simplical or
polyhedral complexes for examples). While this paper does not explore this generalization, it
opens the possibility for a non-smooth, discrete Morse Theory.

References
1 D. Attali, A. Lieutier, and D. Salinas. Efficient data structure for representing and simplifying

simplicial complexes in high dimensions. International Journal of Computational Geometry
and Applications (IJCGA), 22(4):279–303, 2012.

2 D. Attali, A. Lieutier, and D. Salinas. Vietoris-Rips complexes also provide topologically
correct reconstructions of sampled shapes. Computational Geometry: Theory and Applications
(CGTA), 2012. doi:10.1016/j.comgeo.2012.02.009.

3 Dominique Attali and André Lieutier. Geometry-driven collapses for converting a Čech
complex into a triangulation of a nicely triangulable shape. Discrete & Computational
Geometry, 54(4):798–825, 2015.

4 Ulrich Bauer and Herbert Edelsbrunner. The Morse theory of Čech and Delaunay complexes.
Transactions of the American Mathematical Society, 369(5):3741–3762, 2017.

5 Bruno Benedetti. Discrete Morse theory for manifolds with boundary. Transactions of the
American Mathematical Society, 364(12):6631–6670, 2012.

6 Karol Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fundamenta
Mathematicae, 35(1):217–234, 1948. URL: http://eudml.org/doc/213158.

7 Robin Forman. Morse theory for cell complexes, 1998.
8 Ragnar Freij. Equivariant discrete Morse theory. Discrete Mathematics, 309(12):3821–3829,

2009.
9 A. Hatcher. Algebraic topology. Cambridge University Press, 2002.

SoCG 2019

http://dx.doi.org/10.1016/j.comgeo.2012.02.009
http://eudml.org/doc/213158

Optimal Algorithm for Geodesic Farthest-Point
Voronoi Diagrams
Luis Barba
Department of Computer Science, ETH Zürich, Switzerland
luis.barba@inf.ethz.ch

Abstract
Let P be a simple polygon with n vertices. For any two points in P , the geodesic distance between
them is the length of the shortest path that connects them among all paths contained in P . Given a
set S of m sites being a subset of the vertices of P , we present the first randomized algorithm to
compute the geodesic farthest-point Voronoi diagram of S in P running in expected O(n + m) time.
That is, a partition of P into cells, at most one cell per site, such that every point in a cell has the
same farthest site with respect to the geodesic distance. This algorithm can be extended to run in
expected O(n + m log m) time when S is an arbitrary set of m sites contained in P .

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geodesic distance, simple polygons, farthest-point Voronoi diagram

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.12

Related Version A full version of this paper is available at https://arxiv.org/abs/1809.01481.

1 Introduction

Let P be a simple n-gon. Let S be a set of m ≥ 3 weighted sites (points) contained in
V (P), where V (P) denotes the set of vertices of P . That is, we have a function w : S → R
that assigns to each site of S a non-negative weight. We also extend the weight function to
any point in P by setting w(x) = 0 for all x ∈ P \ S. While we could allow the sites to lie
anywhere on the boundary, ∂P , of P , as long as we know their clockwise order along ∂P , we
can split the edges of P at the sites, and produce a new polygon where each site coincides
with a vertex. Therefore, we assume that S ⊆ V (P).

Given two points x, y in P (either on the boundary or in the interior), the geodesic
path π

P
(x, y) is the shortest path contained in P connecting x with y. If the straight-line

segment connecting x with y is contained in P , then π
P

(x, y) is the straight-line segment xy.
Otherwise, π

P
(x, y) is a polygonal chain whose vertices (other than its endpoints) are reflex

vertices of P . We refer the reader to [14] for more information on geodesic paths.
For a segment xy, we denote its Euclidean length by |xy|. For a path, its Euclidean length

is the sum of the Euclidean length of all of its segments. Given two points x and y in P ,
their geodesic distance gP (x, y) is the Euclidean length of π

P
(x, y). The weighted geodesic

distance (or simply w-distance) between two points x and y in P , denoted by dP
w(x y), is

the sum of w(x) with the Euclidean length of π
P

(x, y), i.e., dP
w(x y) = w(x) + gP (x, y).

Notice that if all weights are set to zero, then the w-distance coincides with the classical
definition of geodesic distance [14]. Moreover, notice that this distance is not symmetric
unless the weights of x and y coincide.

Given a point x ∈ P , an S-farthest site of x in P is a site s of S whose w-distance to x is
maximized. To ease the description, we assume that each vertex of P has a unique S-farthest
neighbor. This general position condition was also assumed in [1, 3, 18] and can be obtained
by applying a slight perturbation [10].

© Luis Barba;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luis.barba@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.SoCG.2019.12
https://arxiv.org/abs/1809.01481
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Geodesic Farthest-Point Voronoi Diagrams

P P ′

a) c)

P ′

b)

Figure 1 a) A simple polygon P with a set S of six weighted sites and their FVD. b) A new
polygon P ′ where a path of length w(s) is added at the location of each site s ∈ S. Then the weight
is set to zero and moved at the endpoint of its corresponding path. c) The FVD of S in P coincides
with the FVD of the new sites in the new polygon P ′.

For a site s ∈ S, let CellP (s,S) = {x ∈ P : dP
w(s x) ≥ dP

w(s′ x),∀s′ ∈ S} be the
(weighted farthest) Voronoi cell of s (in P with respect to S). That is, CellP (s,S) consists
of all the points of P that have s as one of their S-farthest sites. The union of all Voronoi
cells covers the entire polygon P , and the closure of the set int(P) \ ∪s∈S int(CellP (s,S))
defines the (weighted farthest) Voronoi graph of S in P .

The Voronoi graph together with the set of Voronoi cells defines the weighted geodesic
farthest-point Voronoi diagram (or simply FVD) of S in P , denoted by vd(S, P). Thus, we
indistinctively refer to vd(S, P) as a graph or as a set of Voronoi cells; see Figure 1.

Notice that having non-zero weights on our set of sites does not make the problem harder.
To see this, consider a new polygon P ′, where at the location of each site s ∈ S, a path of
length w(s) is attached to the boundary of P . Additionally, the site s is given weight zero and
is moved to the other endpoint of this path; see Figure 1 for an illustration. In this way we
obtain a new weakly simple polygon P ′ and a new set of sites S ′ that defines the same FVD
as S in P . Therefore, a weighted FVD as described in this paper has the same properties as
the classical farthest-point Voronoi diagram constructed using the geodesic distance [3]. In
particular, we know that the Voronoi graph is a tree with leaves on the boundary of P . Also,
each edge of this graph consists of a sequence of straight lines and hyperbolic arcs that may
intersect ∂P only at its endpoints [3]. Thus, we refer to the Voronoi graph as a Voronoi tree.
While working with weighted sites might seem an unnecessary complication, we decided to
work with them to ease the description of the recursive construction that our algorithm uses.

Let FP (x,S) be the function that maps each x ∈ P to the w-distance to a S-farthest
neighbor of x (i.e., FP (x,S) = dP

w(x fP (x,S))). Notice that FP (x,S) can be seen as the
upper envelope of the w-distance functions from the sites in S. Throughout the paper, we
will play with this alternative way of thinking of Voronoi diagrams, either as graphs or as
upper envelopes. A point c ∈ P that minimizes FP (x,S) is called the geodesic center of P .
Similarly, a point s ∈ P that maximizes FP (x,S) (together with fP (s)) forms a diametral
pair and their w-distance is the geodesic diameter.

Related work. The problem of computing the geodesic center of a simple n-gon P (and its
counterpart, the geodesic diameter) were central in the 80’s in the computational geometry
community. Chazelle [7] provided the first O(n2)-time algorithm to compute the geodesic
diameter. Suri [21] improved upon it by reducing the running time to O(n logn). Finally,
Hershberger and Suri [12] introduced a matrix search technique that allowed them to obtain
a linear-time algorithm for computing the diameter.

L. Barba 12:3

The first algorithm for computing the geodesic center of P was given by Asano and
Toussaint [4], and runs in O(n4 logn) time. This algorithm computes a super set of the
vertices of the Voronoi tree of vd(S, P), where S is the set of vertices of P . Shortly after,
Pollack et al. [20] improved the running time to O(n logn). This remained the best running
time for many years until recently when Ahn et al. [1] settled the complexity of this problem
by presenting a Θ(n)-time algorithm to compute the geodesic center of P .

The problem of computing the FVD generalizes the problems of computing the geodesic
center and the geodesic diameter. For a set S of m ≥ 3 sites in a simple n-gon P , Aronov [3]
presented an algorithm to compute vd(S, P) in O((n+m) log(n+m)) time. While the best
known lower bound is Ω(n+m logm), it was not known whether or not the dependence on n,
the complexity of P , is linear in the running time. In fact, this problem was explicitly posed
by Mitchell [14, Chapter 27] in the Handbook of Computational Geometry, and solving it has
become a prominent area of research in recent years. Oh et al. [18] (SoCG’16) present the first
improvement to this problem in more than 20 years. Using the new tools presented by Ahn
et al. [1], they introduce an O(n log logn+m logm)-time algorithm to compute vd(S, P).
As a stepping stone, they present an O((n+m) log logn)-time algorithm for the simpler case
where all sites are vertices of P . In fact, any improvement on the latter algorithm translates
directly to an improvement on the general problem. In particular, a linear time algorithm
for the simpler case with sites on the boundary of P suffices to match the lower bound
and close the problem presented by Mitchell [14, Chapter 27] in the case of farthest-point
Voronoi diagrams.

Recently, not only farthest-point Voronoi diagrams have received attention. For the
nearest-point geodesic Voronoi diagram, two papers have focused in finding algorithms
matching the same lower bound of Ω(n+m logm) [13, 16]. While these results work only
for a limited range of m with respect to n, both papers have appeared in consecutive years
in the Symposium on Computational Geometry (SoCG). In a recent breakthrough to appear
in SODA’19, Oh [15] presents an optimal algorithm to compute the nearest-point geodesic
Voronoi diagram running in O(n+m logm) time. However, the techniques in these papers
are fundamentally based on data structures with logarithmic query time, and hence it is not
conceivable to adapt them to obtain a linear-time algorithm for the case when the sites are
vertices of the polygon.

Our results. In this paper, we provide an optimal, albeit randomized, algorithm to compute
vd(S, P) for the important case where all sites of S are vertices of P . Our algorithm runs in
expected Θ(n+m) time, and uses a completely different set of tools to solve the problem.
Using the reduction presented by Oh et al. [18], we immediately obtain an algorithm for
the general case where the sites can be arbitrary points in P . This algorithm matches the
lower bound and runs in expected Θ(n+m logm) time thereby solving the problem posed
by Mitchell [14, Chapter 27] in the case of farthest-point Voronoi diagrams. It remains open
to find a deterministic algorithm with the same running time.

Our approach. Let P be a simple n-gon and let S be a set of m ≥ 3 sites contained in V (P),
where V (P) is the set of vertices of P . We present a randomized O(n+m)-time algorithm to
compute the FVD of S in P . We would like to use a variation of the randomized incremental
construction (RIC) for Euclidean farthest-point Voronoi diagrams [9]. This algorithm inserts
the sites, one by one, in random order, and constructs the cell of each newly inserted site in
time proportional to its size. By bounding the expected size of each cell using backwards
analysis, the incremental construction can be carried out in total linear time.

SoCG 2019

12:4 Geodesic Farthest-Point Voronoi Diagrams

In the geodesic case however, the complexity of a cell depends not only on the set of sites,
but also on the complexity of the polygon [2]. Already the FVD of 3 sites can have Ω(n)
vertices and arcs. Moreover, there is an additional complication when using w-distances. To
achieve an incremental construction, one would need to have at hand a complete description
of the w-distance function dP

w(s x) inside of the newly created cell for the inserted site s. If
this function is precomputed in the entire polygon, this would be too costly. Thus, one needs
to define these functions only at the specific locations where they are needed. An additional
problem is that for a RIC, the first inserted sites must have their w-distance defined in almost
the entire polygon. Thus, already the description-size of the w-distances needed for the first
batch of sites (say the first m/100) becomes superlinear. Therefore, it seems hopeless to try
a RIC without somehow reducing the complexity of P throughout the process. Nevertheless,
a RIC works well for all the sites that come after this first batch. Intuitively, the latter
insertions define smaller cells, and the space needed to describe their w-distances can be
nicely bounded. Thus, the main question is how to deal with this first fraction of the sites.

In this paper we overcome these difficulties with a novel approach, and manage to deal
with this first fraction of the sites using pruning. First, we randomly partition the sites into
B and R, where |B| ≤ αm for some constant 0 < α < 1 (Section 3.1). Then, we construct
recursively an “approximation” of the FVD of B (Section 3.2). To this end, we define a new
weakly simple polygon Q containing B with only a constant fraction of the vertices of P .
Essentially we prune from P all the vertices that have nothing to do with geodesic paths
connecting sites in B with points in their respective Voronoi cells. Our approximation comes
from recursively computing the FVD of B in Q. We show that the complexity of Q decreases
sufficiently so that the recursive call leads to a linear overall running time.

However, reducing the complexity comes with a price. The w-distance from sites of B
inside of Q turns out to be only “similar” to that in P . However, we make sure that these
functions are accurate where it matters. After computing this “Voronoi-like” diagram for B,
we need to deal with the sites of R. To this end, we turn to the RIC (Section 4). We compute
the w-distance from sites in R only inside of specific parts of P , making sure that they suffice
for our purpose, while their overall complexity remains linear. Another challenge comes from
the fact that the w-distances from B are with respect to Q, while the ones from R are not.
Thus, we need to prove that the upper envelope of these functions induces a Voronoi diagram.
Once we deal with these technical details, we end up with an upper envelope of functions
that we prove to coincide with the FVD of S in P , finishing our construction.

We show that the insertion of each site r ∈ R can be carried out in expected O(n/m)
time. Thus, inserting all sites of R can be done in expected O(n+m) time. After inserting
the sites of R, the expected total running time of our algorithm is given by the simple
recurrence E [T (n,m)] ≤ T (n/2,m/2) +O(n+m) = O(n+m). The crucial aspect of our
approach that could not be achieved before this paper, is the reduction in the complexity
of the polygon. Overall, we combine many different tools, from recursion, pruning, and
randomization, together with all the machinery to deal with geodesic functions. Due to space
constraints, the proof of all results marked with [∗] have been omitted and can be found in
the full version of this paper [5].

2 Preliminaries

Let P be a simple n-gon and let S be a set of m ≥ 3 sites contained in V (P). Because
S ⊆ V (P), we know that m = |S| ≤ n.

A subset G ⊆ P is geodesically convex in P if for each x, y ∈ G, the geodesic path between
x and y is contained in G, i.e., if π

P
(x, y) ⊆ G. Given a set A of points in P , the geodesic

hull of A in P is the minimum geodesically convex set in P that contains A. In particular,

L. Barba 12:5

if A ⊆ ∂P , then the boundary of the geodesic hull of A is obtained by joining consecutive
points of A along ∂P by the geodesic path between them. Note that this geodesic hull
is not necessarily a simple polygon but a weakly simple polygon. Geodesic functions in
weakly simple polygons behave in the exact same way as in simple polygons, and the existing
machinery applies directly with no overhead [6]. Thus, while many papers state their results
for simple polygons, they apply directly to weakly simple polygons. In particular, all results
and tools presented in this paper apply directly to weakly simple polygons. This remark is
already crucial in several recent papers [17, 18].

I Lemma 1 (Restatement of Lemma 2 of [19]). Let A ⊆ ∂P be a set of O(n) points sorted
along ∂P . Then the geodesic hull of A in P can be computed in O(n) time.

Let vd∂(S, P) be the FVD of S restricted to the boundary of P . More formally, for each
s ∈ S, let bCellP (s,S) = CellP (s,S) ∩ ∂P be the boundary cell of s and let vd∂(S, P) be
the union of these boundary cells. The construction of vd∂(S, P) has often been a stepping
stone in the computation of vd(S, P) [3, 18], and our algorithm follows the same approach.
The following result from [18] allows us to compute it efficiently.

I Theorem 2 (Theorem 9 of [18]). Let P be an n-gon and let S ⊆ V (P) be a set of sites.
Then, we can compute vd∂(S, P) in O(n) time.

Using this procedure, we can find out in O(n) time which sites of S have a non-empty
Voronoi cell. Therefore, we can forget about the sites with empty cells and assume without
loss of generality from now on that all sites of S have non-empty Voronoi cells.

Given a site s ∈ S and a polygonal chain C ⊆ ∂P with endpoints p and p′, the funnel of
s to C in P , denoted by FunnelP (s→ C), is the geodesic hull of s and C in P . It is known
that FunnelP (s→ C) coincides with the weakly simple polygon contained in P bounded by
C, π

P
(s, p′) and π

P
(s, p) [1]. For ease of notation, we denote FunnelP (s → bCellP (s,S))

simply by FunnelP (s,S), i.e., the funnel with apex s that goes to bCellP (s,S). The following
lemma shows the relation between Voronoi cells and their funnels.

I Lemma 3 (Consequence of Lemma 4.1 of [1]). Given a site s ∈ S, the Voronoi cell
CellP (s,S) is contained in the funnel FunnelP (s,S).

We are also interested in bounding the total complexity of the funnels of sites in S. Given
a polygon Q, let |Q| denote its combinatorial complexity (or just complexity), i.e., the number
of vertices and edges used to represent it.

I Lemma 4 (Consequence of Corollaries 3.8 and 4.4 of [1]). Given an n-gon P and a set
S ⊆ V (P),

∑
s∈S |FunnelP (s,S)| = O(n). Also, all funnels can be computed in O(n) time.

2.1 The simplification transformation
The following transformation allows us to modify the input of our problem and assume some
nice structural properties without loss of generality. In this section and for this transformation,
we allow the given polygon P to be weakly simple instead of a simple n-gon. The result
of the transformation described in this section takes a weakly simple polygon with a set of
weighted sites as input, and produces a new simple polygon with a new set of weighted sites.
Moreover, this resulting polygon has a particular structure that is crucial in the recursive
calls of our algorithm.

Let LS,P
be the set of leaves of vd(S, P). We first notice that we can focus on a specific

geodesically convex subpolygon of P to compute vd(S, P).

SoCG 2019

12:6 Geodesic Farthest-Point Voronoi Diagrams

P P

H

a) b) c)

G

Figure 2 a) A simple polygon P with a set S of six weighted sites and their FVD. b) The polygon
H being the geodesic hull of LS,P and S. c) The simplification transformation allows to redefine the
problem inside a simpler polygon G with a new set of weighted sites and obtain the same FVD.

I Lemma 5. Let H be the geodesic hull of S∪LS,P
in P . Then, for each s ∈ S, CellH(s,S) ⊆

CellP (s,S). Moreover, the Voronoi trees of vd(S, H) and vd(S, P) coincide.

Proof. Let s be a site of S and let x ∈ H. Because H is a geodesically convex subset of P ,
and since x, s ∈ H, we know that π

H
(x, s) = π

P
(x, s). That is, the w-distance to x from

each site in S is the same in P and H. Therefore, the S-farthest sites of x are also preserved,
which implies that CellH(s,S) ⊆ CellP (s,S). Because this happens for each Voronoi cell of
S in H, and since the leaves belong also to H, the Voronoi trees coincide. J

While the geodesic hull H of S ∪ LS,P
in P does not necessarily have lower complexity

than P , it has some nice structure. We know that its boundary consists of geodesic paths
that connect consecutive points in S ∪ LS,P

along ∂P . However, this geodesic hull H is not
necessarily a simple polygon; see Figure 2. To make it simple, we need to deal with “dangling
paths” as follows.

We say that a vertex of H is H-open if it is incident to the interior of H. For each s ∈ S,
let as be the H-open vertex of FunnelP (s,S) that is geodesically closest to s. Note that all
paths from s to any point in the interior of H pass through as. However, as long as the
length of the geodesic path π

P
(s, as) remains the same, the shape of this path is irrelevant.

In fact, this is equivalent to giving as a weight such that each distance measured from as to
points in the interior of H has an added value of dP

w(s as).
To formalize this intuition, we define a new polygon, a new set of sites, and a new weighted

distance function as follows. Let A = {as : s ∈ S} be the set of m H-open vertices defined
by S. These vertices are our new set of sites. Let G(P,S) (or simply G if P and S are
clear from the context) be the geodesic hull of A ∪ LS,P

in P . Note that G ⊆ H is a simple
polygon by the definition of each as in A. We define a new weight function w′ : G → R

so that w′(x) =
{

dP
w(s as) if x = as ∈ A

0 otherwise
, if s and as coincide, then their weight is w(s).

With this new weight function, we can think of A as a set of weighted sites in G.

I Lemma 6. [∗] It holds that vd(A, G) and vd(S, P) have the same Voronoi trees.

By Lemma 6, we can always transform the problem of computing the FVD of S in P
as follows. Recall that LS,P

is the set containing each leaf of vd(S, P) and that m = |S|.
Compute vd∂(S, P) and the funnel FunnelP (s,S) of each site in S in total O(n) time.
Because S ∪ LS,P

⊆ ∂P and has size 2m = O(n), we can compute H the geodesic hull
of S ∪ LS,P

in P in O(n) time using Lemma 1. After that, consider the set A of H-open
vertices as defined above. Again, we can compute the geodesic hull G of A ∪ LS,P

in P in

L. Barba 12:7

O(n) time using Lemma 1. By Lemma 6, vd(A, G) and vd(S, P) coincide, so we can forget
about P and S, and focus simply on G and A to compute the FVD. We call this process the
simplification transformation; see Figure 2. Note that the only convex vertices of G are the
sites in A and the leaves in LS,P

. We summarize the main properties of this simplification
transformation in the following result.

I Lemma 7. Let P be a simple n-gon and let S ⊆ V (P) be a set of m ≥ 3 sites. The
simplification transformation computes in O(n) time a new simple polygon G with at most
n+m vertices and a new set A ⊆ V (G) of m weighted sites such that (1) the Voronoi trees of
vd(A, G) and vd(B,P) coincide, and (2) the set of convex vertices of G is exactly A∪LS,P

.

3 Computing the FVD

Let P be a simple polygon and let S be a set of m ≥ 3 weighted sites contained in V (P).
Using the simplification transformation defined in Section 2.1, we can assume without loss
of generality that P is a simple polygon with at most n+m vertices, and among them, its
convex vertices are exactly the sites in S and the leaves of LS,P

(see Lemma 7). That is,
it consists of at most 2m convex vertices. If we consider consecutive vertices in S ∪ LS,P

along ∂P , the chain connecting them consists only of reflex vertices of P , or is a single
edge. The next step explained in the following section is to randomly partition S. Note
that if m = O(1), we can compute vd(S, P) in O(n) time by computing their bisectors and
considering their overlay. Thus, we assume that m is larger than some predefined constant.

3.1 First phase: the partition
We compute in linear time vd∂(S, P) using Lemma 2, and let LS,P

be the set of leaves of
vd(S, P). Note that |LS,P

| = m. For each s ∈ S, we compute the funnel FunnelP (s,S).
Given a subset R ⊆ S, let κ(R) =

∑
r∈R |FunnelP (r,S)| be the magnitude of R. Lemma 4

implies that κ(S) = O(n), and that all these funnels can be computed in O(n) time. To be
more precise, let τ ≥ 2 be the constant hidden by the big O notation, i.e., κ(S) ≤ τn. Next,
we compute a random permutation Π of S. Let 0 < α < 1 be some constant to be defined
later. Let B and R be a partition of S such that B consists of the first bατmc sites according
to Π, and R = S \B. We refer to B and R as the sets of blue and red sites of S, respectively.

I Observation 8. It holds that E [κ(B)] ≤ αn and |B| = bατmc ≤ αm.

We would like to recursively compute a Voronoi-like diagram of the sites in B while
forgetting for a while about the red sites. Once we have this recursively computed diagram,
we perform a randomized incremental construction of vd(S, P) by inserting the sites of R in
the random order according to permutation Π. In the next section we discuss the recursive
call to compute a diagram for B, and later spend Section 4 detailing the insertion process.

3.2 A smaller polygon
While it would be great to compute vd(B,P), this may be too expensive as the diagram can
have large complexity, and we need our recursive call to have smaller complexity (a constant
fraction reduction in the size). Thus, we would not compute vd(B,P) exactly, but we will
compute an “approximation” of it. Notice that we can see vd(B,P) as the upper envelope
of the w-distances dP

w(b x). Because these functions have a complexity that depends on
the size of the polygon, we need to simplify them. To achieve this, for a site b ∈ B, this

SoCG 2019

12:8 Geodesic Farthest-Point Voronoi Diagrams

a) b) c) Q

PPP

Figure 3 a) The polygon obtained from the simplification transformation, and the decomposition
of its boundary into red and blue chains. b) The funnels of the sites in B are depicted, as well as all
vertices in VB . c) The polygon Q is obtained by taking a rubber band and keeping attached at all
vertices in VB ∪ VC and letting it snap.

simpler distance function will be completely accurate inside of CellP (b,S). However, for any
point x outside of CellP (b,S), this new distance from s to x will be only upper bounded by
dP

w(b x). That is, distances from b can only get shorter, and only outside of CellP (b,S).
To define these new distance functions, we define a new polygon Q of lower complexity

than P (although P ⊆ Q). Let VB be the set consisting of all vertices of P that belong to the
funnel FunnelP (b,S) of some b ∈ B. By Observation 8, we know that the expected size of VB
is at most αn. Note that we could repeat the construction of B and R an expected constant
number times, until we guarantee that VB ≤ αn. Let VC be the set of convex vertices of P .
By our assumption that the simplification transformation has already been applied to P ,
we know by Lemma 2.1 that VC consists of the union of S and LS,P

, where LS,P
is the set

of leaves of vd(S, P), i.e., |VC | ≤ 2m. Let Q be a polygon defined as follows. Imagine the
boundary of P being a rubber band, and each vertex of VB ∪ VC being a pin. By letting the
rubber band free while keeping it attached at the pins, this rubber band snaps to a closed
curve defining a weakly simple polygon Q; see Figure 3.

I Lemma 9. [∗] The polygon Q contains P , is weakly simple, can be computed in expected
O(n) time, and has at most αn + 4m vertices. Moreover, for x, y ∈ P , it holds that
gQ(x, y) ≤ gP (x, y). In particular, for each b ∈ B and x ∈ P , dQ

w(b x) ≤ dP
w(b x), and if

x ∈ CellP (b,S), then dQ
w(b x) = dP

w(b x).

Sketch proof. The boundary of Q can be constructed by connecting consecutive points in
VB ∪ VC by geodesics contained in the complement of P , i.e., in a domain that has P as
a hole or obstacle (Q is also known as the relative hull of VB ∪ VC in this domain). Only
convex vertices of P can be in these paths, and they can be visited only twice. Therefore, Q
consists of at most |VB |+ 2|VC | ≤ αn+ 4m vertices. J

Our plan is now to compute the FVD of B in the new polygon Q, and then use this
as a “good” approximation of vd(B,P) in P . By “good” we mean that the red sites can
be randomly inserted in this diagram, and that the result of this whole process is indeed
vd(S, P). We will prove these properties in the next section, but for now, we focus on
describing the recursive algorithm.

Let I(n,m) be the time to insert back the sites of R and obtain vd(S, P) after having
recursively computed vd(B,Q). Because Q consists of at most αn+4m vertices by Lemma 9,
and since |B| ≤ αm by Lemma 8, we get a recursion of the form T (n,m) = T (αn+4m,αm)+
I(n,m) for the running time of our algorithm. We claim that I(n,m) = O(n+m), and we
prove it in the next section. However, for T (n,m) to solve to O(n+m), we need to look at one

L. Barba 12:9

more iteration of the recursion, as it can be that αn+ 4m is not really smaller than n if m is
large. Fortunately, because T (αn+4m,αm) = T (α(αn+4m)+4αm,α2m)+I(αn+4m,αm),
and by our assumption on the running time of I(n,m), we get that

T (n,m) = T (α2n+ 8αm,α2m) +O(n+m) +O(αn+ 4m+ αm).

By choosing the constant α sufficiently small, and since we assume that m ≤ n, we can
guarantee that T (n,m) ≤ T (n/2,m/2) +O(n+m) = O(n+m) proving the main result of
this paper. Therefore, it remains only to show that I(n,m) is indeed O(n+m), i.e., in linear
time we can insert back the red sites, and obtain the FVD vd(S, P) from the recursively
computed diagram of vd(B,Q).

3.3 Preprocessing the red sites
Before going into the insertion process of the sites in R, we need to finish some preprocessing
on them. To be able to insert these sites efficiently, we need to have a representation of the
w-distance of each r ∈ R defined on a sufficiently large superset of CellP (r,S).

Note that we cannot define these distance functions in the entire polygon, otherwise we
are spending already too much time and space. On the other hand, if its representation is
too narrow, then during the insertion it might be that the distance information is insufficient.

Recall that LS,P
denotes the set of leaves of vd(S, P). Color the leaves in LS,P

purple if
they are incident to the Voronoi cell of a site in B and a site in R; see Figure 4.

Q

b) c)

Gr

r

a)

P

vr

r

vr

ur ur

QQ

CellP (r,S)

Figure 4 a) The coloring of the purple leaves of LS,P . b) For a site r ∈ R, the construction of ur

and vr lying inside blue Voronoi cells. c) The polygon Gr where we compute the SPM of r.

Recall that given a polygon K and two points x and y on ∂K, ∂K(x, y) denotes the
polygonal chain that starts at x and follows the boundary of K clockwise until reaching y.
For each r ∈ R, let ur and vr respectively be the first purple leaves of LS,P

reached from
any point in bCellP (r,S) when walking counterclockwise and clockwise along ∂P . We then
move ur and vr slightly clockwise and counterclockwise, respectively, so that they both
sit inside of a blue Voronoi cell. Moreover, we know that bCellP (r,S) is contained in the
interior of the path ∂P (ur, vr). We define a new polygon where we define the w-function
of r as follows. Because both ur and vr lie on ∂P and on Voronoi cells of blue sites, we
know that ur and vr are both on ∂Q. Let Gr be a new weakly simple polygon bounded
by the paths π

P
(r, ur), ∂Q(ur, vr) and π

P
(vr, r). Notice however that the paths π

P
(r, ur)

and π
P

(vr, r), called the walls, are defined within the polygon P , while the other path
bounding Gr is contained in ∂Q. Since P ⊂ Q, we know that Gr ⊆ Q. Moreover, the funnel
FunnelP (r → ∂P (ur, vr)) is contained in Gr; see Figure 4.

SoCG 2019

12:10 Geodesic Farthest-Point Voronoi Diagrams

I Lemma 10. [∗] Given r ∈ R, it holds that CellP (r,S) ⊆ Gr. Moreover, it holds that

E
[∑
r∈R
|Gr|

]
= O(n) and

⋃
r∈R

Gr = Q.

The last technical detail is the structure used to store the w-distances from the sites in R.
Let s ∈ S and let H ⊆ P be a subpolygon such that s ∈ H. The shortest-path map (or SPM
for short) of s in H is a subdivision of H into triangles such that the geodesic path to all the
points in one triangle has the same combinatorial structure. By precomputing the geodesic
distance to each vertex of H, we get a constant-sized representation of the w-distance from s

inside each triangle (for more information on shortest-path maps refer to [11]). We know
also that the SPM of s in H can be computed in O(|H|) time [8, 11].

Using these SPM’s, we describe our w-distances as follows. For each r ∈ R, we compute
the SPM of r in Gr. Because the complexity of this SPM is O(|Gr|), we conclude that the
total expected complexity of all these SPM’s is E

[∑
r∈R |Gr|

]
= O(n) by Lemma 10.

4 Inserting back the red sites

After computing vd(B,Q) recursively, we would like to start the randomized incremental
construction of sites of R. But first, we should specify how we store vd(B,Q).

Using the SPM’s, we introduce the refined FVD of B in Q. This refined FVD is a
decomposition of Q into constant-size cells defined as follows: For each site b ∈ B, the
Voronoi cell CellQ(b, B) is subdivided by the defining triangles of the SPM of b in Q. That
is, we take the intersection of each defining triangle 4 of the SPM of b and intersect it with
the Voronoi cell of b to obtain a refined triangle. As usual, for each point in a refined triangle,
the geodesic distance is measured from its apex a and added with dP

w(b a). Thus, each
refined triangle and its distance function can be described with O(1) space. We say that b
owns these refined triangles. In other words, we have a way to describe the upper envelope of
the w-distances of the sites in B within Q using a collection of constant-size refined triangles.

Assume inductively that vd(B,Q) is represented as a refined FVD as described above.
That is, for each site b of B, there is a collection of refined triangles owned by b which cover
the entire Voronoi cell CellQ(b, B). Let fb : Q → R such that fb(x) = dQ

w(b x) for each
x ∈ Q, i.e., fb is the function that maps each point to its w-distance to b in Q. Note that
the refined triangles of b in the refined FVD of vd(B,Q) provide a representation of this
w-distance inside CellQ(b, B). We say that the geodesic path π

Q
(b, x) is the witness path of

the value of fb(x).

I Observation 11. Let b ∈ B. Given x ∈ P , it holds that fb(x) ≤ dP
w(b x). Moreover, if

x ∈ CellP (b,S), then fb(x) = dP
w(b x).

Let r ∈ R and recall that Gr is the polygon associated with r defined in Section 3.1. As a
preprocessing, we have computed the SPM of r within Gr. We define a function fr : Gr → R
that encodes the w-distances from r with respect to the polygon Gr, instead of Q. That is,
fr(x) = dGr

w (x r) for each x ∈ Gr. In this case we say that π
Gr

(r, x) is a witness path of
the value of fr(x). Note that by Lemma 10, the functions fr jointly cover polygon Q.

I Lemma 12. [∗] Let r ∈ R. Given x ∈ P , it holds that fr(x) ≤ dP
w(r x). Moreover,

if x ∈ CellP (r,S) and the path π
P

(r, x) contains no point of bCellP (r,S) other than its
endpoints, then fr(x) = dP

w(r x).

L. Barba 12:11

Note that for each site of R, we have considered their w-distances inside of Gr, while for
the sites in B, their w-distances are with respect to Q. Therefore, in the intermediate steps
of our incremental construction, we will not have the FVD of the sites, but some Voronoi-like
structure.

4.1 The envelope
Note that vd(B,Q) represents already the upper envelope of the functions fb for the sites
in B. We would like to complete this envelope by incrementally inserting the functions fr
for the sites in R. To deal with these upper envelopes, we introduce some definitions.

Consider the order of the sites of R according to the random permutation Π used to
construct B and R. Let S0 = B and for each 1 ≤ i ≤ |R|, let Si be the set consisting of B
and the first i red sites according to the permutation Π. This is the order that we use for
our randomized incremental construction. That is, on each insertion step we would like to
maintain a Voronoi-like structure for the sites in Si.

Let s be a site of Si. Given a point x of Q, we say that x is i-dominated by s if
fs(x) ≥ fs′(x) for all s′ ∈ Si. Notice that if a point x is i-dominated, then the witness path
of fs(x) must be defined.

I Lemma 13. [∗] Let s be a site of S, and let x be a point that is i-dominated by s. If z ∈ Q
is a point that lies on the witness path of fs(z), then z is i-dominated by s.

Let x be a point that is i-dominated by s. Extend the last segment of the witness path
of fs(x) until it touches the boundary of Q at a point x∗. We say that x∗ is the s-shadow
of x. A direct consequence of Lemma 13 is the following result.

I Corollary 14. Let s ∈ Si. If x is i-dominated by s, then its s-shadow is also i-dominated
by s and lies on ∂Q.

The following result is crucial to guarantee the resulting structure after the incremental
construction coincides with the desired FVD of S.

I Lemma 15. [∗] For each 0 ≤ i ≤ |R| and for each site s ∈ Si, each point in the Voronoi
cell CellP (s,S) is i-dominated by s.

4.2 The insertion process
Let r be the i-th site of R inserted in our randomized incremental construction. To simplify
our incremental construction, instead of constructing the entire set of points that are i-
dominated by r, which might contain several connected components, we focus exclusively on
constructing the connected component containing CellP (r,S). This simplifies the structure
of the upper envelope, and helps us to prove a bound on its complexity.

We define the envelope-graph of Si recursively. For the base case i = 0, the envelope-graph
of S0 is simply the Voronoi-tree of vd(B,Q). This envelope-graph induces a decomposition
of Q into 0-patches. The 0-patch of each site s ∈ S0 is the connected component in this
decomposition that contains CellP (s,S).

Given the envelope-graph of Si−1, the envelope-graph of Si is defined as follows. We
consider the set of all points of Q that are i-dominated by r and the connected components
that they induce. The i-patch of r is the connected component that contains CellP (r,S)
induced by these points. The envelope-graph of Si is then obtained by adding to it the
boundary of the i-patch of r, and removing everything inside it. In this way, the (i− 1)-
patches of the envelope graph of Si−1 might shrink. However, Lemma 15 guarantees that for
each site s ∈ Si, the Voronoi cell CellP (s,S) is i-dominated by s. Therefore, CellP (s,S) is
still contained in the i-patch of s, i.e., the i-patch of s is non-empty.

SoCG 2019

12:12 Geodesic Farthest-Point Voronoi Diagrams

I Lemma 16. [∗] The envelope-graph of Si is a tree with at most 2|Si| leaves lying on the
boundary of Q.

Proof sketch. The proof is by induction, with vd(B,Q) as base case. When inserting the
i-th site r ∈ R into the envelope-graph of Si−1, the i-patch of r is connected and intersects ∂Q
in a single connected component. By adding this i-patch, the tree structure is preserved. J

I Lemma 17. [∗] The i-patch of r is contained in Gr and does not intersect the walls of Gr.

4.3 Algorithmic description
We proceed now to describe algorithmically how to carry on the incremental construction
described above, and construct the envelope-graph of Si. Our algorithm starts with the
refined FVD of vd(B,Q), and on each round constructs the boundary of the i-patch of a
new site of R. In addition to our envelope-graph, we maintain a set of refined triangles that
cover each i-patch in the same way that they cover the Voronoi cells in the refined FVD; see
Figure 5. We call this representation the refined envelope of Si. We assume inductively that
the envelope-graph of Si is stored as a refined envelope. For the base case this holds as we
assume that we have at hand the refined FVD of vd(B,Q). In addition, we maintain the
invariant that for each vertex v of Q, we know the site whose i-patch contains v. Moreover,
we assume also that we have a pointer to the refined triangle of this i-patch that contains v.

a) b) c)

Q Q Q

Gr

z

b b b

r

Figure 5 a) a site b ∈ B and the defining triangles of fb. b) The refined triangles obtained by
intersecting with the 0-patch of b. c) The insertion of the red site r and the update of the envelope.

For each b ∈ B, let µb be the set of refined triangles that belong to b. For a site r ∈ R,
let µr denote the set of triangles used to describe fr, i.e, the set of triangles in the SPM of r
inside of Gr. Thus regardless of the case µs denotes a set of triangles (and their associated
distance function) owned by s.

I Lemma 18. [∗] Let r be the i-th site of R inserted in our randomized incremental con-
struction. The i-patch of r can be computed in O(Mr +Dr + |µr|) time, where Mr is the size
of the i-patch of r, and Dr is the number of arcs of the envelope-graph of Si−1 that disappear.
Moreover, the refined envelope of Si can be obtained within the same time from that of Si−1.

Proof Sketch. To compute the i-patch of r, the first step is to find a point lying on its
boundary, which can be done by locating the leaves of LS,P

bounding bCellP (r,S). Next,
we walk along ∂Q until finding an endpoint z of the intersection of ∂Q with the i-patch of r.
Finally, we trace the boundary of the i-patch of r inside of Q in the standard way used in the
RIC of Euclidean Voronoi diagrams. That is, by walking along the overlay of the triangles in
µr and the refined triangles of the refined envelope of Si−1, and constructing each arc of the
i-patch of r at a time. The insertion time is then proportional to the size of the i-patch. J

L. Barba 12:13

The complexity of the envelope-graph of Si is the number of vertices and arcs defining it.

I Lemma 19. [∗] The expected complexity of the envelope-graph of Si is O(n).

Proof sketch. Recall that for b ∈ B, µb is the set of refined triangles that belong to b, and
for r ∈ R, µr is the set of triangles used to describe fr inside of Gr. Since vd(B,Q) is a
FVD of B in Q and by Lemma 10, we know that E

[∑
s∈S |µs|

]
= O(n). Using a charging

argument, we prove that the complexity of the envelope-graph of Si is at most
∑
s∈S |µs|. J

We are now ready to combine these lemmas into the main result of this section.

I Theorem 20. [∗] The envelope-graph and refined envelope of S|R| can be computed in
expected O(n) time. Moreover, for each s ∈ S, the envelope-graph of S|R| coincides with the
Voronoi tree of vd(S, P).

Proof Sketch. By Lemma 15, the |R|-patch of each site s of S contains its corresponding
Voronoi cell CellP (s,S). Because the union of these Voronoi cells covers P , we conclude
that the |R|-patch of s and CellP (s,S) coincide inside P for each s ∈ S. That is, the
envelope-graph of S|R| coincides with the Voronoi tree of vd(S, P).

By Lemma 18, the time needed to insert all sites of R, is O(
∑
r∈R(Mr+Dr+ |µr|)). Using

backwards analysis, we show that E [Mr] = O(n/|S|). Therefore, E
[∑

r∈RMr

]
= O(n).

Moreover, Lemma 10 implies that
∑
r∈R µr = O(n), and since an arc is destroyed only once,

we can charge this cost to the creation of the arc. Putting everything together, we conclude
that the expected time needed to insert all red sites is O(n). J

We are ready to state our main result. As mentioned in Section 3.2, the running time
of our algorithm is T (n,m) ≤ T (n/2,m/2) + I(n,m), where I(n,m) is the time to insert
the red sites. By Theorem 20, and by our assumption that m ≤ n, I(n,m) = O(n + m).
Therefore, by solving the recurrence we obtain the following result.

I Theorem 21. Let P be a simple polygon and let S be a set of m ≥ 3 weighted sites
contained in V (P). We can compute the FVD of S in P in expected O(n+m) time.

References
1 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou Carufel, Matias Korman, and Eunjin

Oh. A Linear-Time Algorithm for the Geodesic Center of a Simple Polygon. Discrete &
Computational Geometry, 56(4):836–859, December 2016. doi:10.1007/s00454-016-9796-0.

2 Boris Aronov. On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica,
4(1-4):109–140, 1989.

3 Boris Aronov, Steven Fortune, and Gordon Wilfong. The furthest-site geodesic Voronoi
diagram. Discrete & Computational Geometry, 9(1):217–255, 1993.

4 T. Asano and G.T. Toussaint. Computing the geodesic center of a simple polygon. Technical
Report SOCS-85.32, McGill University, 1985.

5 Luis Barba. Geodesic farthest-point Voronoi diagram in linear time. CoRR, abs/1809.01481,
2018. arXiv:1809.01481.

6 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
Proceedings of the twenty-sixth annual ACM-SIAM Symposium on Discrete Algorithms, pages
1655–1670. SIAM, 2014.

7 Bernard Chazelle. A theorem on polygon cutting with applications. In Proceedings of FOCS,
pages 339–349, 1982. doi:10.1109/SFCS.1982.58.

8 Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6(1):485–524, 1991.

SoCG 2019

http://dx.doi.org/10.1007/s00454-016-9796-0
http://arxiv.org/abs/1809.01481
http://dx.doi.org/10.1109/SFCS.1982.58

12:14 Geodesic Farthest-Point Voronoi Diagrams

9 Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf. Com-
putational geometry. In Computational geometry, pages 1–17. Springer, 2000.

10 Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–104,
1990.

11 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E Tarjan. Linear-
time algorithms for visibility and shortest path problems inside triangulated simple polygons.
Algorithmica, 2(1-4):209–233, 1987.

12 John Hershberger and Subhash Suri. Matrix Searching with the Shortest-Path Metric. SIAM
Journal on Computing, 26(6):1612–1634, 1997.

13 Chih-Hung Liu. A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram of Points
in a Simple Polygon. In LIPIcs-Leibniz International Proceedings in Informatics, volume 99.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

14 J. S. B. Mitchell. Geometric Shortest Paths and Network Optimization. In J.-R. Sack and
J. Urrutia, editors, Handbook of Computational Geometry, pages 633–701. Elsevier, 2000.

15 Eunjin Oh. Optimal Algorithm for Geodesic Nearest-point Voronoi Diagrams. In To appear
in the Proceedings of the 31st annual ACM-SIAM Symposium on Discrete Algorithms, page
TBD, 2019.

16 Eunjin Oh and Hee-Kap Ahn. Voronoi diagrams for a moderate-sized point-set in a simple
polygon. In LIPIcs-Leibniz International Proceedings in Informatics, volume 77. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

17 Eunjin Oh, Sang Won Bae, and Hee-Kap Ahn. Computing a geodesic two-center of points in
a simple polygon. In Latin American Symposium on Theoretical Informatics, pages 646–658.
Springer, 2016.

18 Eunjin Oh, Luis Barba, and Hee-Kap Ahn. The farthest-point geodesic Voronoi diagram of
points on the boundary of a simple polygon. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 51. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

19 Evanthia Papadopoulou. k-Pairs Non-Crossing Shortest Paths in a Simple Polygon. Interna-
tional Journal of Computational Geometry and Applications, 9(6):533–552, 1999.

20 Richard Pollack, Micha Sharir, and Günter Rote. Computing the geodesic center of a simple
polygon. Discrete & Computational Geometry, 4(1):611–626, 1989.

21 Subhash Suri. Computing geodesic furthest neighbors in simple polygons. Journal of Computer
and System Sciences, 39(2):220–235, 1989.

Upward Book Embeddings of st-Graphs
Carla Binucci
Università degli Studi di Perugia, Perugia, Italy
carla.binucci@unipg.it

Giordano Da Lozzo
Roma Tre University, Rome, Italy
giordano.dalozzo@uniroma3.it

Emilio Di Giacomo
Università degli Studi di Perugia, Perugia, Italy
emilio.digiacomo@unipg.it

Walter Didimo
Università degli Studi di Perugia, Perugia, Italy
walter.didimo@unipg.it

Tamara Mchedlidze
Karlsruhe Institute of Technology, Karlsruhe, Germany
mched@iti.uka.de

Maurizio Patrignani
Roma Tre University, Rome, Italy
maurizio.patrignani@uniroma3.it

Abstract
We study k-page upward book embeddings (kUBEs) of st-graphs, that is, book embeddings of single-
source single-sink directed acyclic graphs on k pages with the additional requirement that the vertices
of the graph appear in a topological ordering along the spine of the book. We show that testing
whether a graph admits a kUBE is NP-complete for k ≥ 3. A hardness result for this problem was
previously known only for k = 6 [Heath and Pemmaraju, 1999]. Motivated by this negative result,
we focus our attention on k = 2. On the algorithmic side, we present polynomial-time algorithms
for testing the existence of 2UBEs of planar st-graphs with branchwidth β and of plane st-graphs
whose faces have a special structure. These algorithms run in O(f(β) · n+ n3) time and O(n) time,
respectively, where f is a singly-exponential function on β. Moreover, on the combinatorial side, we
present two notable families of plane st-graphs that always admit an embedding-preserving 2UBE.

2012 ACM Subject Classification Theory of computation→ Computational geometry; Mathematics
of computing → Graph algorithms

Keywords and phrases Upward Book Embeddings, st-Graphs, SPQR-trees, Branchwidth, Sphere-cut
Decomposition

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.13

Related Version Details for the omitted and sketched proofs can be found in the full version of the
paper [23], which is available at https://arxiv.org/abs/1903.07966.

Funding This work was supported in part by project “Algoritmi e sistemi di analisi visuale di reti
complesse e di grandi dimensioni” – Ricerca di Base 2018, Dipartimento di Ingegneria dell’Università
degli Studi di Perugia (Binucci, Di Giacomo, and Didimo), and in part by MIUR Project “MODE”
under PRIN 20157EFM5C, by MIUR Project “AHeAD” under PRIN 20174LF3T8, by MIUR-DAAD
JMP N◦ 34120, by H2020-MSCA-RISE project 734922 – “CONNECT”, and by Roma Tre University
Azione 4 Project “GeoView” (Da Lozzo and Patrignani).

Acknowledgements This research began at the Bertinoro Workshop on Graph Drawing 2018.

© Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo,
Tamara Mchedlidze, and Maurizio Patrignani;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 13; pp. 13:1–13:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carla.binucci@unipg.it
mailto:giordano.dalozzo@uniroma3.it
mailto:emilio.digiacomo@unipg.it
mailto:walter.didimo@unipg.it
mailto:mched@iti.uka.de
mailto:maurizio.patrignani@uniroma3.it
https://epubs.siam.org/doi/10.1137/S0097539795291550
https://doi.org/10.4230/LIPIcs.SoCG.2019.13
https://arxiv.org/abs/1903.07966
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Upward Book Embeddings of st-Graphs

1 Introduction

A k-page book embedding 〈π, σ〉 of an undirected graph G = (V,E) consists of a vertex
ordering π : V ↔ {1, 2, . . . , |V |} and of an assignment σ : E → {1, . . . , k} of the edges of G
to one of k sets, called pages, so that for any two edges (a, b) and (c, d) in the same page, with
π(a) < π(b) and π(c) < π(d), we have neither π(a) < π(c) < π(b) < π(d) nor π(c) < π(a)
< π(d) < π(b). From a geometric perspective, a k-page book embedding can be associated
with a canonical drawing Γ(π, σ) of G where the k pages correspond to k half-planes sharing
a vertical line, called the spine. Each vertex v is a point on the spine with y-coordinate π(v);
each edge e is a circular arc on the σ(e)-th page, and the edges in the same page do not cross.

For k-page book embeddings of directed graphs (digraphs), a typical requirement is
that all the edges are oriented in the upward direction. This implies that G is acyclic and
that all the vertices appear along the spine in a topological ordering. This type of book
embedding for digraphs is called an upward k-page book embedding of G (for short, kUBE).
Note that, when k = 2 and the two pages are coplanar, drawing Γ(π, σ) is an upward planar
drawing of G, i.e., a planar drawing where all the edges monotonically increase in the upward
direction. The study of upward planar drawings is a most prolific topic in the theory of
graph visualization [6, 7, 20, 21, 25, 26, 28, 31, 33, 35, 51, 69].

The page number of a (di)graph G (also called book thickness) is the minimum number k
such that G admits a (upward) k-page book embedding. Computing the page number
of directed and undirected graphs is a widely studied problem, which finds applications
in a variety of domains, including VLSI design, fault-tolerant processing, parallel process
scheduling, sorting networks, parallel matrix computations [29, 53, 68], computational
origami [2], and graph drawing [22, 37, 52, 76]. See [42] for additional references.

Book embeddings of undirected graphs. Seminal results on book embeddings of undirected
graphs are described in the paper of Bernhart and Kainen [19]. They prove that the graphs
with page number one are exactly the outerplanar graphs, while graphs with page number two
are the sub-Hamiltonian graphs. This second result implies that it is NP-complete to decide
whether a graph admits a 2-page book embedding [75]. Yannakakis [77] proved that every
planar graph has a 4-page book embedding, while the fascinating question whether the page
number of planar graphs can be reduced to three is still open. The aforementioned works
have inspired several papers about the page number of specific families of undirected graphs
(e.g., [16, 18, 29, 46]) and about the relationship between the page number and other graph
parameters (e.g., [43, 50, 60, 61]). Different authors studied constrained versions of k-page
book embeddings where either the vertex ordering π is (partially) fixed [8, 30, 62, 73, 74] or the
page assignment σ for the edges is given [10, 9, 11, 57]. Relaxed versions of book embeddings
where edge crossings are allowed (called k-page drawings) or where edges can cross the spine
(called topological book embeddings) have also been considered (e.g., [1, 14, 24, 27, 36, 44, 45]).
Finally, 2-page (topological) book embeddings find applications to point-set embedding and
universal point set (e.g., [12, 13, 39, 40, 47, 59]).

Book embeddings of directed graphs. As for undirected graphs, there are many papers
devoted to the study of upper and lower bounds on the page number of directed graphs.
Heath et al. [56] show that directed trees and unicyclic digraphs have page number one
and two, respectively. Alzohairi and Rival [4], and later Di Giacomo et al. [37] with an
improved linear-time construction, show that series-parallel digraphs have page number two.
Mchedlidze and Symvonis [63] generalize this result and prove that N -free upward planar

C. Binucci et al. 13:3

digraphs, which contain series-parallel digraphs, also have page number two (a digraph is
upward planar if it admits an upward planar drawing). Frati et al. [49] give several conditions
under which upward planar triangulations have bounded page number. Overall, the question
asked by Nowakowski and Parker [66] almost 30 years ago, of whether the page number of
upward planar digraphs is bounded, remains open. Several works study the page number of
acyclic digraphs in terms of posets, i.e., the page number of their Hasse diagram (e.g., [3, 66]).

About the lower bounds, Nowakowski and Parker [66] give an example of a planar st-graph
that requires three pages for an upward book embedding (see Fig. 9a). A planar st-graph is
an upward planar digraph with a single source s and a single sink t. Hung [58] shows an
upward planar digraph with page number four, while Heath and Pemmaraju [54] describe
an acyclic planar digraph (which is not upward planar) requiring bn/2c pages. Syslo [72]
provides a lower bound on the page number of a poset in terms of its bump number.

Besides the study of upper and lower bounds on the page number of digraphs, several
papers concentrate on the design of testing algorithms for the existence of kUBEs. The
problem is NP-complete for k = 6 [55]. For k = 2, Mchedlidze and Symvonis [65] give linear-
time testing algorithms for outerplanar and planar triangulated st-graphs. An O(w2nw)-time
testing algorithm for 2UBEs of planar st-graphs whose width is w is given in [63], where
the width is the minimum number of directed paths that cover all the vertices. Heath and
Pemmaraju [55] describe a linear-time algorithm to recognize digraphs that admit 1UBEs.

Finally, as for the undirected case, constrained or relaxed variants of kUBEs for digraphs
are studied [2, 38, 52], as well as applications to the point-set embedding problem [37, 52].

Contribution. Our paper is motivated by the gap present in the literature about the
computation of upward book embeddings of digraphs: Polynomial-time algorithms are known
only for one page or for two pages and subclasses of planar digraphs, while NP-completeness
is known only for exactly 6 pages. We shrink this gap and address the research direction
proposed by Heath and Pemmaraju [55]: Identification of graph classes for which the existence
of kUBEs can be solved efficiently. Our results are as follows:

We prove that testing whether a digraph G admits a kUBE is NP-complete for every
k ≥ 3, even if G is an st-graph (Section 3). An analogous result was previously known
only for the constrained version in which the page assignment is given [2].
We describe another meaningful subclass of upward planar digraphs that admit a 2UBE
(Section 4). This class is structurally different from the N -free upward planar digraphs,
the largest class of upward 2-page book embeddable digraphs previously known.
We give algorithms to test the existence of a 2UBE for notable families of planar st-graphs.
First, we give a linear-time algorithm for plane st-graphs whose faces have a special
structure (Section 5). Then, we describe an O(f(β) · n+ n3)-time algorithm for n-vertex
planar st-graphs of branchwidth β, where f is a singly-exponential function (Section 6).
The algorithm works for both variable and fixed embedding. This result also implies a
sub-exponential-time algorithm for general planar st-graphs.

2 Preliminaries

We assume familiarity with basic definitions on graph connectivity and planarity (see [15, 23]).
We only consider (di)graphs without loops and multiple edges, and we denote by V (G) and
E(G) the sets of vertices and edges of a (di)graph G.

A digraph G is a planar st-graph if and only if: (i) it is acyclic; (ii) it has a single source
s and a single sink t; and (iii) it admits a planar embedding E with s and t on the outer face.
A graph G together with E is a planar embedded st-graph, also called a plane st-graph.

SoCG 2019

13:4 Upward Book Embeddings of st-Graphs

Let G be a plane st-graph and let e = (u, v) be an edge of G. The left face (resp. right
face) of e is the face to the left (resp. right) of e while moving from u to v. The boundary of
every face f of G consists of two directed paths pl and pr from a common source sf to a
common sink tf . The paths pl and pr are the left path and the right path of f , respectively.
The vertices sf and tf are the source and the sink of f , respectively. If f is the outer face, pl
(resp. pr) consists of the edges for which f is the left face (resp. right face); in this case pl
and pr are also called the left boundary and the right boundary of G, respectively. If f is an
internal face, pl (resp. pr) consists of the edges for which f is the right face (resp. left face).

The dual graph G∗ of a plane st-graph G is a plane st-graph (possibly with multiple edges)
such that: (i) G∗ has a vertex associated with each internal face of G and two vertices s∗ and t∗
associated with the outer face of G, that are the source and the sink of G∗, respectively; (ii)
for each internal edge e of G, G∗ has a dual edge from the left to the right face of e; (iii) for
each edge e in the left boundary of G, there is an edge from s∗ to the right face of e; (v) for
each edge e in the right boundary of G, there is an edge from the left face of e to t∗.

Consider a planar st-graph G and let G be a planar st-graph obtained by augmenting G
with directed edges in such a way that it contains a directed Hamiltonian st-path PG. The
graph G is an HP-completion of G. Consider now a plane st-graph G and let E be a planar
embedding of G. Let G be an embedded HP-completion of G whose embedding E is such
that its restriction to G is E . We say that G is an embedding-preserving HP-completion of G.

Bernhart and Kainen [19] prove that an undirected planar graph admits a 2-page book
embedding if and only if it is sub-Hamiltonian, i.e., it can be made Hamiltonian by adding
edges while preserving its planarity. Theorem 1 is an immediate consequence of the result
in [19] for planar digraphs (see also Fig. 1); when we say that a 2UBE 〈π, σ〉 is embedding-
preserving we mean that the drawing Γ(π, σ) preserves the planar embedding of G.

I Theorem 1. A planar (plane) st-graph G admits a (embedding-preserving) 2UBE 〈π, σ〉 if
and only if G admits a (embedding-preserving) HP-completion G. Also, the order π coincides
with the order of the vertices along PG.

s

t

(a)

s∗ t∗

s

t

(b)

1

2

3

4

5

6

7

8

9

10

(c)

1

2

3

4

5

6

7

8

9

10

(d)

Figure 1 (a) A plane st-graph G. (b) The dual of G is shown in gray. (c) An embedding-preserving
HP-completion of G. (d) An embedding-preserving 2UBE Γ of G corresponding to (c).

3 NP-Completeness for kUBE (k ≥ 3)

We prove that the kUBE Testing problem of deciding whether a digraph G admits an
upward k-page book embedding is NP-complete for each fixed k ≥ 3. The proof uses a
reduction from the Betweenness problem [67].

C. Binucci et al. 13:5

Betweenness
Instance: A finite set S of elements and a set R ⊆ S × S × S of triplets.
Question: Does there exist an ordering τ : S → N of the elements of S such that for

any element (a, b, c) ∈ R either τ(a) < τ(b) < τ(c) or τ(c) < τ(b) < τ(a)?

We incrementally define a set of families of digraphs and prove some properties of these
digraphs. Then, we use the digraphs of these families to reduce a generic instance of
Betweenness to an instance of 3UBE Testing, thus proving the hardness result for k = 3.
We then explain how the proof can be easily adapted to work for k > 3.

For a digraph G, we denote by u v a directed path from a vertex u to a vertex v
in G. Let γ = 〈π, σ〉 be a 3UBE of G. Two edges (u, v) and (w, z) of G conflict if either
π(u) < π(w) < π(v) < π(z) or π(w) < π(u) < π(z) < π(v). Two conflicting edges cannot be
assigned to the same page. The next property will be used in the following; it is immediate
from the definition of book embedding and from the pigeonhole principle.

I Property 1. In a 3UBE there cannot exist 4 edges that mutually conflict.

Shell digraphs. The first family that we define are the shell digraphs, recursively defined
as follows. Digraph G0, depicted in Fig. 2a, consists of a directed path P with 8 vertices
denoted as s0, q0, p−1, t−1, s′0, q′0, t′0, and p0 in the order they appear along P . Besides
the edges of P , the following directed edges exists in G0: (s0, s

′
0), (q0, q

′
0), (t−1, p0). Finally,

there is a vertex t0 connected to P by means of the two directed edges (p−1, t0) and (t′0, t0).
Graph Gh is obtained from Gh−1 with additional vertices and edges as shown in Fig. 2b. A
new directed path of two vertices sh and qh is connected to Gh−1 with the edge (qh, sh−1); a
second path of four vertices s′h, q′h, t′h, and ph is connected to Gh with the edge (th−1, s

′
h).

The following edges exist between these new vertices: (sh, s′h), (qh, q′h), (th−1, ph). Finally,
there is a vertex th connected to the other vertices by means of the two directed edges
(ph−1, th) and (t′h, th). For any h ≥ 0, the edges (sh, s′h) and (qh, q′h) are called the forcing
edges of Gh; the edges (ph−1, th) and (th−1, ph) are the channel edges of Gh; the edge (t′h, th)
is the closing edge of Gh. The vertices and edges of Gh \Gh−1 are the exclusive vertices and
edges of Gh. The following lemma establishes some basic properties of the shell digraphs.

I Lemma 2. Every shell digraph Gh for h ≥ 0 admits a 3UBE. In any 3UBE γ = 〈π, σ〉 of
Gh the following conditions hold for every i = 0, 1, . . . , h:
S1 all vertices of Gi are between si and ti in π;
S2 the channel edges of Gi are in the same page;
S3 if i > 0, the channel edges of Gi and those of Gi−1 are in different pages.

Note that Condition S1 uniquely defines the vertex ordering of Gh in every 3UBE. Namely,
the path sh p0 precedes each path ti−1 pi (for i = 1, . . . , h), and each path ti−1 pi
precedes the path ti pi+1 (for i = 1, . . . , h− 1) (see Fig. 3a for an example with h = 2).

Filled shell digraphs. Let Gh be a shell digraph. A filled shell digraph Hh,s (for h ≥ 0 and
s ≥ 1) is obtained from Gh by adding h + 2 groups α−1, α0, . . . , αh of s vertices each; see
Fig. 3b for an illustration. The vertices of group αi are denoted as vi,1, vi,2, . . . vi,s. These
vertices will be used to map the elements of the set S of an instance of Betweenness to an
instance of 3UBE Testing. For each vertex v−1,j of the set α−1 there is a directed edge
(p−1, v−1,j) and a directed edge (v−1,j , t−1). For each vertex vi,j of the set αi with i ≥ 0 and
i even, there is a directed edge (pi, vi,j). Finally, for each vertex vi,j of the set αi with i ≥ 0,
there is a directed edge (vi−1,j , vi,j).

SoCG 2019

13:6 Upward Book Embeddings of st-Graphs

Channel edges

Forcing edges

Closing edge

s0

q0

p−1

t−1

s′0
q′0

t′0

p0

t0

G0

(a) G0

sh

q′h

t′h

ph−1

th−1

sh−1

s′h

ph

th

qh

Gh−1

Gh

(b) Gk

Figure 2 Definition of shell digraphs. Edges are oriented from bottom to top.

I Lemma 3. Every filled shell digraph Hh,s for s > 0 and even h ≥ 0 admits a 3UBE. In
any 3UBE γ = 〈π, σ〉 of Hh,s the following conditions hold for every i = −1, 0, 1, . . . , h:
F1 the vertices of the group αi are between pi and ti in π;
F2 if i ≥ 0 the vertices of αi are in reverse order with respect to those of αi−1 in π;
F3 if i ≥ 0 each edge (vi−1,j , vi,j) is in the page of the channel edges of Gi (for j = 1, . . . , s).

Observe that, by Condition F2, all groups αi with even index have the same ordering in
π and all groups with odd index have the opposite order. As mentioned above the vertices in
the groups αi will correspond to the elements of the set S of an instance of Betweenness
in the reduced instance of 3UBE Testing. If the reduced instance admits a 3UBE, the
order of the groups in π will give the desired order for the instance of Betweenness.

Λ-filled shell digraphs and hardness proof. Starting from a filled shell digraph Hh,s, a
Λ-filled shell digraph Ĥh,s is obtained by replacing some edges with a gadget that has two
possible configurations in any 3UBE of Ĥh,s. More precisely, we replace each edge (t′i, pi)
of Hh,s for i odd with the gadget shown in Fig. 4a. The gadget replacing (t′i, pi) will be
denoted as Λi. Notice that, this replacement preserves Conditions F1–F3 of Lemma 3.

I Lemma 4. Every Λ-filled shell digraph Ĥh,s for s > 0 and even h ≥ 0 admits a 3UBE. In
any 3UBE γ = 〈π, σ〉 of Ĥh,s the following conditions hold for every i = 1, 3, . . . , h− 1:
G1 the vertices of the gadget Λi are between t′i and pi in π;
G2 the vertices xi and yi are between wi and zi in π and there exists a 3UBE γ′ = 〈π′, σ′〉

of Ĥh,s where the order of xi and yi is exchanged in π′.

C. Binucci et al. 13:7

s1

p1

q1

s0

q0

p−1

t−1

p0

t0

p2

t2

t1

s2

q2

t′2

t′1

t′0

(a)

s1

p1

q1

s0

q0

p−1

t−1

p0

t0

p2

t2

t1

s2

q2

α0

α−1

α1

α2

t′2

t′1

t′0

(b)

Figure 3 (a) A 3UBE of the shell digraph G2; the colors of the edges represent the pages. (b)
Definition of Hh,s for h = 2 and s = 5. In both figures edges are oriented from bottom to top.

t′i

pi

ui

wi

xi

yi

zi

αi

Λi

(a)

vi,a

xi

yi

vi,b

vi,c

(b)

Figure 4 (a) A gadget Λi (black edges). (b) The triplet edges of Gi (bold edges).

I Theorem 5. 3UBE Testing is NP-complete even for st-graphs.

Proof sketch. 3UBE Testing is clearly in NP. To prove the hardness we describe a reduction
from Betweenness. From an instance I = 〈S,R〉 of Betweenness we construct an instance
GI of 3UBE Testing that is an st-graph; we start from the Λ-filled shell digraph Ĥh,s with
h = 2|R| and s = |S|. Let v1, v2, . . . , vs be the elements of S. They are represented in Ĥh,s

SoCG 2019

13:8 Upward Book Embeddings of st-Graphs

r1

r2

r3

r1

r2

r3

S = { }
R = {r1, r2, r3}
r1 = ()
r2 = ()
r3 = ()

Figure 5 A 3UBE of the st-graph GI reduced from a positive instance I = 〈S,R〉 of Betweenness;
the edge colors represent the corresponding pages. Edges are oriented from bottom to top.

by the vertices vi,1, vi,2, . . . , vi,s of the groups αi, for i = −1, 0, 1, . . . , h. In the reduction
each group αi with odd index is used to encode one triplet and, in a 3UBE of GI , the order of
the vertices in these groups (which is the same by Condition F2) corresponds to the desired
order of the elements of S for the instance I. Number the triplets of R from 1 to |R| and
let (va, vb, vc) be the j-th triplet. We use the group αi and the gadget Λi with i = 2j − 1 to
encode the triplet (va, vb, vc). More precisely, we add to Ĥh,s the edges (xi, vi,a), (xi, vi,b),
(yi, vi,b), and (yi, vi,c) (see Fig. 4b). These edges are called triplet edges and are denoted as Ti.
In any 3UBE of GI the triplet edges are forced to be in the same page and this is possible if
and only if the constraints defined by the triplets in R are respected. The digraph obtained

C. Binucci et al. 13:9

s0

q0

p−1

t−1

p0

t0

t′0

(a)

vi,a

xi

yi

vi,b

vi,c

(b)

Figure 6 Reduction for kUBE Testing (example with k = 5). (a) Replacement of the forcing
edges. (b) Replacement of the gadget Λi. In both figures colors represent the pages.

by the addition of the triplet edges is not an st-graph because the vertices of the last group
αh are all sinks. The desired instance GI of 3UBE Testing is the st-graph obtained by
adding the edges (vh,j , th) (for j = 1, 2, . . . , s). Fig. 5 shows a 3UBE of the st-graph GI
reduced from a positive instance I of Betweenness. J

For k > 3, the reduction from an instance I of Betweenness to an instance GI of kUBE
Testing is similar. In the shell digraph every pair of forcing edges is replaced by a bundle
of k − 1 edges that mutually conflict (see Fig. 6a). The edges in each such bundle require
k − 1 pages and force all edges that conflict with them to use the k-th page. Analogously,
the two edges (ui, zi) and (wi, pi) of the gadget Λi are replaced by a bundle of k − 1 edges
that mutually conflict (see Fig. 6b); this forces the triplet edges to be in the k-th page.

I Corollary 6. kUBE Testing is NP-complete for every k ≥ 3, even for st-graphs.

4 Existential Results for 2UBE

Let f be an internal face of a plane st-graph, and let pl and pr be the left and the right path
of f ; f is a generalized triangle if either pl or pr is a single edge (i.e., a transitive edge), and
it is a rhombus if each of pl and pr consists of exactly two edges (see Figs. 7a and 7b).

Let G be a plane st-graph. A forbidden configuration of G consists of a transitive edge
e = (u, v) shared by two internal faces f and g such that sf = sg = u and tf = tg = v (i.e.,
two generalized triangles sharing the transitive edge); see Fig. 7c. The absence of forbidden
configurations is a necessary condition for the existence of an embedding-preserving 2UBE.
If G is triangulated, the absence of forbidden configurations is also a sufficient condition [65].

I Theorem 7. Any plane st-graph such that the left and the right path of every internal face
contain at least two and three edges, respectively, admits an embedding-preserving 2UBE.

Proof sketch. We prove how to construct an embedding-preserving HP-completion. The
idea is to construct G by adding a face of G per time from left to right, according to a
topological ordering of the dual graph of G. When a face f is added, its right path is attached
to the right boundary of the current digraph. We maintain the invariant that at least one
edge e in the left path of f belongs to the Hamiltonian path of the current digraph. The

SoCG 2019

13:10 Upward Book Embeddings of st-Graphs

pl pr

tf

sf

f

(a)

pl pr

tf

sf

f

(b)

tf = tg = v

sf = sg = u

gf

e

(c)

Figure 7 (a) A generalized triangle G. (b) A rhombus (c) A forbidden configuration.

Hamiltonian path is extended by replacing e with a path that traverses the vertices of the
right path of f . To this aim, dummy edges are suitably inserted inside f . When all faces are
added, the resulting graph is an HP-completion G of G. The idea is illustrated in Fig. 8. J

e

(a)

e f

(b)

Figure 8 Idea of the construction in the proof of Theorem 7. Dummy edges are dashed.

The next theorem is proved with a construction similar to that of Theorem 7.

I Theorem 8. Let G be a plane st-graph such that every internal face of G is a rhombus.
Then G admits an embedding-preserving 2UBE.

5 Testing 2UBE for Plane Graphs with Special Faces

By Theorem 7, if all internal faces of a plane st-graph G are such that their left and right path
contain at least two and at least three edges, respectively, G admits an embedding-preserving
2UBE. If these conditions do not hold, an embedding-preserving 2UBE may not exist (see
Fig. 9a). We now describe an efficient testing algorithm for a plane st-graph G = (V,E)
whose internal faces are generalized triangles or rhombi (see Fig. 9b). We construct a mixed
graph GM = (V,E ∪ EU), where EU is a set of undirected edges and (u, v) ∈ EU if u and v
are the two vertices of a rhombus face f distinct from sf and tf (red edges in Fig. 9c). For
a rhombus face f , the graph obtained from G by adding the directed edge (u, v) inside f
is still a plane st-graph (see, e.g. [17, 32]). Since there is only one edge of EU inside each
rhombus face of G, this implies the following property.

C. Binucci et al. 13:11

I Property 2. Every orientation of the edges in EU transforms GM into an acyclic digraph.

(a) (b) (c)

Figure 9 (a) A plane st-graph that does not admit a 2UBE [66]. (b) A plane st-graph G whose
faces are generalized triangles or rhombi. (b) The mixed graph GM = (V,E,EU).

I Theorem 9. Let G be a plane st-graph such that every internal face of G is either a
generalized triangle or a rhombus. There is an O(n)-time algorithm that decides whether G
admits an embedding-preserving 2UBE, and which computes it in the positive case.

Proof. The edges of EU are the only edges that can be used to construct an embedding-
preserving HP-completion of G. This, together with Theorem 1, implies that G admits
a 2UBE if and only if the undirected edges of GM can be oriented so that the resulting
digraph −−→GM has a directed Hamiltonian path from s to t. By Property 2, any orientation of
the undirected edges of GM gives rise to an acyclic digraph. On the other hand an acyclic
digraph is Hamiltonian if and only if it is unilateral (see, e.g. [5, Theorem 4]); we recall that
a digraph is unilateral if each pair of vertices is connected by a directed path (in at least one
of the two directions) [64]. Testing whether the undirected edges of GM can be oriented so
that the resulting digraph −−→GM is unilateral, and computing such an orientation if it exists,
can be done in time O(|V |+ |E|+ |EU |) = O(n) [64, Theorem 4]. A Hamiltonian path of
−−→
GM is given by a topological ordering of its vertices. J

6 Testing Algorithms for 2UBE Parameterized by the Branchwidth

In this section, we show that the 2UBE Testing problem is fixed-parameter tractable with re-
spect to the branchwidth of the input st-graph both in the fixed and in the variable embedding
setting. Since the treewidth tw(G) and the branchwidth bw(G) of a graph G are within a con-
stant factor from each other (i.e., bw(G)−1 ≤ tw(G) ≤ b 3

2bw(G)c−1 [70]), our FPT algorithm
also extends to graphs of bounded treewidth. Previously, the complexity of this problem was
settled only for graphs of treewidth at most 2 in the variable embedding setting1 [37].

We use the SPQR-tree data structure [34] to efficiently handle the planar embeddings of
the input digraphs and sphere-cut decompositions [71] to develop a dynamic-programming
approach on the skeletons of the rigid components. For the definition of the SPQR-tree T of
a biconnected graph and the related concepts of skeleton skel(µ) and pertinent graph pert(µ)
of a node µ of T , types of the nodes of T (namely, S-,P-,Q-, and R-nodes), and virtual edges

1 To our knowledge, no efficient algorithm was known for treewidth 2 in the fixed embedding setting.

SoCG 2019

13:12 Upward Book Embeddings of st-Graphs

of a skeleton, see [23]. To ease the description, we can assume that each S-node has exactly
two children [41] and that the skeleton of each node µ does not contain the virtual edge
representing the parent of µ. In particular, we will exploit the following property of T when
G is an st-graph containing the edge e = (s, t) and T is rooted at the Q-node of e.

I Property 3 ([34]). Let µ ∈ T with poles u and v. Without loss of generality, assume that the
directed paths connecting u and v in G are oriented from u to v. Then, pert(µ) is a uv-graph.

For the definition of branchwidth and sphere-cut decomposition, and for the related
concepts of middle set mid(e) and noose Oe of an arc e of the decomposition, and length
of a noose, see [23]. We denote a sphere-cut decomposition of a plane graph G = (V,E) by
the triple 〈T, ξ,Π =

⋃
a∈E(T) πa〉, where T is a ternary tree whose leaves are in a one-to-one

correspondence with the edges of G, which is defined by a bijection ξ : L(T)↔ E(G) between
the leaf set L(T) of T and the edge set E, and where πa is a circular order of mid(a), for
each arc a of T . In particular, we will exploit the property that each of the two subgraphs
that lie in the interior and in the exterior of a noose is connected and that the set of nooses
forms a laminar set family, that is, any two nooses are either disjoint or nested.

Without loss of generality, we assume that the input st-graph G contains the edge (s, t),
which guarantees that G is biconnected. In fact, in any 2UBE of G vertices s and t have to
be the first and the last vertex of the spine, respectively. Thus, either (s, t) is an edge of G
or it can be added to any of the two pages of the spine of a 2UBE of G to obtain a 2UBE
〈π, σ〉 of G ∪ (s, t). Clearly, the edge (s, t) will be incident to the outer face of Γ(π, σ).

Overview. Our approach leverages on the classification of the embeddings of each tricon-
nected component of the biconnected graph G. Intuitively, such classification is based on
the visibility of the spine that the embedding “leaves” on its outer face. We show that the
planar embeddings of a triconnected component that yield a 2UBE of the component can be
partitioned into a finite number of equivalence classes, called embedding types. By visiting
the SPQR-tree T of G bottom-up, we describe how to compute all the realizable embedding
types of each triconnected component, that is, those embedding types that are allowed by
some embedding of the component. To this aim we will exploit the realizable embedding
types of its child components. If the root of T , which represents the whole st-graph G,
admits at least one planar embedding belonging to some embedding type, then G admits a
2UBE. The most challenging part of this approach is handling the triconnected components
that correspond to the P-nodes, where the problem is reduced to a maximum flow problem
on a capacitated flow network with edge demands, and to the R-nodes, where a sphere-cut
decomposition of bounded width is used to efficiently compute the feasible embedding types.

Embedding Types. Given a 2UBE 〈π, σ〉, the two pages will be called the left page (the
one to the left of the spine) and the right page (the one to the right of the spine), respectively.
We write σ(e) = L (resp. σ(e) = R) if the edge e is assigned to the left page (resp. right
page). A point p of the spine is visible from the left (right) page if it is possible to shoot
a horizontal ray originating from p and directed leftward (rightward) without intersecting
any edge in Γ(π, σ). Let µ be a node of the SPQR-tree T of G rooted at (s, t). Recall
that, by Property 3, since T has been rooted at (s, t), the pertinent graph pert(µ) and
the skeleton skel(µ) of µ are s′t′-graphs, where s′ and t′ are the poles of µ . We denote
by sµ (by tµ) the pole of µ that is the source (the sink) of pert(µ) and of skel(µ). Let
〈πµ, σµ〉 be a 2UBE of pert(µ) and let Eµ be the embedding of Γ(πµ, σµ). We say that Eµ
has embedding type (or is of Type) 〈s_vis, spine_vis, t_vis〉 with s_vis, t_vis ∈ {L,R,N}
and spine_vis ∈ {L,R,B,N} where:

C. Binucci et al. 13:13

sµ

−〈R,B,L〉
sµ

tµ

−〈L,B,R〉
sµ

tµ

−〈L,B, L〉
sµ

tµ

−〈R,B,R〉

sµ

tµ

−〈L,L, L〉
sµ

tµ

−〈R,R,R〉

tµ

sµ

−〈N,B,L〉

tµ

sµ

−〈N,B,L〉

sµ

tµ

−〈N,L, L〉

sµ

tµ

−〈L,L,N〉

tµ

sµ

−〈N,B,R〉

tµ

sµ

−〈R,B,N〉

sµ

tµ

−〈N,R,R〉

sµ

tµ

−〈R,R,N〉

sµ

tµ

−〈N,L,N〉
sµ

tµ

−〈N,R,N〉

sµ

tµ

−〈N,B,N〉

sµ

tµ

−〈N,N,N〉

horizontal
mirror

tµ

vertical
mirror

vertical
mirror

vertical
mirror

vertical
mirror

Figure 10 Illustrations of the possible embedding types of a node µ with poles sµ and tµ; the
portion of the spine that is visible from the left or from the right is green. Pairs of embedding types
in the same dotted box are one the vertically-mirrored copy of the other. Embedding types on the
top are the horizontally-mirrored copy of the ones on the bottom. Embedding types -〈N,B,N〉
and -〈N,N,N〉 are the horizontal and vertical mirrored copies of themselves.

SoCG 2019

13:14 Upward Book Embeddings of st-Graphs

s

tµ

sµ

t

π1

π6

π5

π4

π3

π2

(a) Drawing
Γ(π, σ) of G

sµ

tµ

(b) Drawing
Γ(π′µ, σ′µ) of pert(µ)

t

s

sµ

tµ

f ′`
f ′r

t′µ

s′µ

(c) Drawing Γ∗ of
Gµ ∪ pert(µ)

t

s

sµ = s′µ

tµ = t′µ

π1

π6

π3 ◦ π5

π2 ◦ π4

(d) Drawing
Γ′ of G

Figure 11 Illustrations for Lemma 11. The 2UBEs of pert(µ) are of Type -〈L,B,N〉.

1. s_vis is L (resp., R) if in Eµ there is a portion of the spine incident to s and between s
and t that is visible from the left page (resp., from the right page); otherwise, s_vis is N .

2. t_vis is L (resp., R) if in Eµ there is a portion of the spine incident to t and between s
and t that is visible from the left page (resp., from the right page); otherwise, t_vis is N .

3. spine_vis is L (resp., R) if in Eµ there is a portion of the spine between s and t that is
visible from the left page (resp., from the right page); spine_vis is B if in Eµ there is a
portion of the spine between s and t that is visible from the left page, and a portion of
the spine between s and t that is visible from the right page; otherwise, spine_vis is N .

We also say that a node µ and pert(µ) admits Type 〈x, y, z〉 if pert(µ) admits an embedding
of Type 〈x, y, z〉. We have the following lemma.

I Lemma 10. Let µ be a node of T , let 〈πµ, σµ〉 be a 2UBE of pert(µ) and let Eµ be a
planar embedding of Γ(πµ, σµ). Then Eµ has exactly one embedding type, where the possibile
embedding types are the 18 depicted in Fig. 10.

Let 〈π, σ〉 be a 2UBE of G, let µ a node of T , and let 〈πµ, σµ〉 be the restriction of 〈π, σ〉
to pert(µ). Further, let 〈π′µ, σ′µ〉 6= 〈πµ, σµ〉 be a 2UBE of pert(µ).

I Lemma 11. If 〈π′µ, σ′µ〉 and 〈πµ, σµ〉 have the same embedding type, then G admits a 2UBE
whose restriction to pert(µ) is 〈π′µ, σ′µ〉.

Proof sketch. First, insert a possibly squeezed copy of Γ(π′µ, σ′µ) (Fig. 11b) inside Γ(π, σ)
(Fig. 11a) in the interior of the face fµ of the plane digraph Gµ resulting from removing
pert(µ) (except its poles) from Γ(π, σ). Second, suitably move parts of the boundary of fµ
along portions of the spine incident to the inserted drawing of pert(µ) (Fig. 11c). Then,
continuously move the copies of the poles of µ inside fµ towards their copies in Γ(π, σ),
without intersecting any edge, to obtain a drawing Γ′ of G (Fig. 11d). J

C. Binucci et al. 13:15

Recall that, for each node µ of T , pert(µ) may have exponentially many embeddings, given
by the permutations of the children of the P-nodes and by the flips of the R-nodes. Lemma 11 is
the reason why we only need to compute a single embedding for each embedding type realizable
by pert(µ), i.e., a constant number of embeddings instead of an exponential number.

We first describe an algorithm to decide if G admits a 2UBE and its running time. The
same procedure can be easily refined to actually compute a 2UBE of G, with no additional
cost, by decorating each node µ ∈ T with the embedding choices performed at µ, for each of
its O(1) possible embedding types.

Testing Algorithm. The algorithm is based on computing, for each non-root node µ of T ,
the set of embedding types realizable by pert(µ), based on whether µ is an S-, P-, Q-, or an
R-node. Since, by Lemmas 10 and 11, G admits a 2UBE if and only if the pertinent graph of
the unique child of the root Q-node admits an embedding of at least one of the 18 possible
embedding types, this approach allows us to solve the 2UBE Testing problem for G.

Recall that the only possible embedding choices for G happen at P- and R-nodes. While
the treatment of Q- and S-nodes does not require any modification when considering the
variable and the fixed embedding settings, for P- and R-nodes we will discuss how to compute
the embedding types that are realizable by pert(µ) in both such settings. In particular, in
the fixed embedding scenario the above characterization needs to additionally satisfy the
constraints imposed by the fixed embedding on the skeletons of the P- and R-nodes in T .

Note that a leaf Q-node only admits embeddings of type -〈L,L,L〉 or -〈R,R,R〉. Also,
combining 2UBEs of the two children of an S-node µ always yields a 2UBE of pert(µ), whose
embedding type can be easily computed. In [23] we prove the following.

I Lemma 12. Let µ be an S-node. The set of embedding types realizable by pert(µ) can be
computed in O(1) time, both in the fixed and in the variable embedding setting.

P-nodes. Let µ be a P-node with poles sµ and tµ. Recall that an embedding for a P-node
is obtained by choosing a permutation for its children and an embedding type for each child.
Our approach to compute the realizable types of pert(µ) consists of considering one type at a
time for µ. For each embedding type, we check whether the children of µ, together with their
realizable embedding types, can be arranged in a finite number of families of permutations
(which we prove to be a constant number) so to yield an embedding of the considered type.
In order to ease the following description, consider that the arrangements of the children
for obtaining some embedding types can be easily derived from the arrangements to obtain
the (horizontally) symmetric ones by (i) reversing the left-to-right sequence of the children
in the construction and (ii) by taking, for each child, the horizontally-mirrored embedding
type; for instance, the arrangements to construct an embedding of Type -〈L,L,N〉 can
be obtained from the ones to construct an embedding of Type -〈R,R,N〉, and vice versa.
Moreover, two embedding types, namely Type -〈N,B,N〉 and Type -〈N,N,N〉, are
(horizontally) self-symmetric. As a consequence, in order to consider all the embedding types
that are realizable by pert(µ) we describe how to obtain only 10 “relevant” embedding types
(enclosed by a solid polygon in Fig. 10): -〈R,R,R〉, -〈N,R,N〉, -〈R,B,R〉, -〈L,B,R〉,
-〈N,R,R〉, -〈N,B,R〉, -〈R,R,N〉, -〈R,B,N〉, -〈N,B,N〉, and -〈N,N,N〉.
Next, we give necessary and sufficient conditions under which the pertinent graph of

a P-node admits an embedding of Type -〈N,R,R〉. Then, we show how to test these
conditions efficiently by exploiting a suitably defined flow network. The conditions for the
remaining types, given in [23], can be tested with the same algorithmic strategy.

SoCG 2019

13:16 Upward Book Embeddings of st-Graphs

tµ

sµ

π1

π2

π3

(a) -〈N,R,R〉; Case 1

tµ

sµ

π∗

π′p

π′q

π′′q

π′′p

(b) -〈N,R,R〉; Case 2

[1, 2]

[0,∞]

[0, 1] [0, 1]

[1,∞]

[0, 1] [0,∞]

s

t

[0, 1]

[1, 1]

ν1

µk

ν2

µ1 µ2

(c) Network N for Case 2

Figure 12 Case 1 (a) and Case 2 (b) of Lemma 13 for a P-nodes µ of Type -〈N,R,R〉. The
spine is colored either green, blue, or black. The green part is the portion of the spine that is visible
from the right, the black parts correspond to the bottom-to-top sequences of the internal vertices of
pert(µ) inherited from the 2UBEs of the children of µ, the blue parts join sequences inherited from
different children. (c) Capacitated flow network N with edge demands corresponding to (b).

I Lemma 13 (Type -〈N,R,R〉). Let µ be a P-node. Type -〈N,R,R〉 is admitted by µ
in the variable embedding setting if and only if at least one of two cases occurs. (Case 1)
The children of µ can be partitioned into two parts: The first part consists either of a Type-
-〈R,R,R〉 Q-node child, or of a Type- -〈N,R,R〉 child, or both. The second part consists

of any number, even zero, of Type- -〈L,B,R〉 children. (Case 2) The children of µ can be
partitioned into three parts: The first part consists either of a Type- -〈R,R,R〉 Q-node child,
or of a non-Q-node Type- -〈R,R,R〉 child, or both. The second part consists of any number,
even zero, of Type- -〈R,B,R〉 children. The third part consists of any positive number of
Type- -〈N,B,R〉 or Type- -〈L,B,R〉 children, with at most one Type- -〈N,B,R〉 child.

Regarding the time complexity of testing the existence of a Type- -〈N,R,R〉 embedding
of pert(µ), we show that deciding if one of (Case 1) or (Case 2) of Lemma 13 applies can
be reduced to a network flow problem on a network N with edge demands. The network for
(Case 2) is depicted in Fig. 12c. The details of this construction are given in [23].

I Lemma 14. Let µ be a P-node with k children. The set of embedding types realizable by
pert(µ) can be computed in O(k2) time in the variable embedding setting.

The fixed embedding scenario for a P-node µ can be addressed by processing the children
of µ in the left-to-right order defined by the given embedding of G. The details of such an
approach are given in [23], where the following is proven.

I Lemma 15. Let µ be a P-node with k children. The set of embedding types realizable by
pert(µ) can be computed in O(k) time in the fixed embedding setting.

Lemmas 12 and 15 yield a counterpart, in the fixed embedding setting, of the linear-time
algorithm by Di Giacomo et al. [37] to compute 2UBEs of series-parallel graphs.

I Theorem 16. There exists an O(n)-time algorithm to decide whether an n-vertex series-
parallel st-graph admits an embedding-preserving 2UBE.

C. Binucci et al. 13:17

tµ
sµ

a1 a2

skela! skela2

skelµ

a∗

(a) A sphere-decomposition of
skel(µ) ∪ (sµ, tµ)

sµ

tµ

(b) Outer faces of
skela1 and skela2

sµ

tµ

(c) Directed paths of
skela1 and skela2

sµ

tµ

(d) Graph A = A1 ∪
A2

Figure 13 Illustrations for the R-node case. (a) A partial sphere-cut decomposition of the graph
skel(µ) ∪ (sµ, tµ) rooted at the edge (sµ, tµ), where µ is an R-node. The nooses are dotted curves.

R-nodes. Let µ be an R-node and (T, ξ,Π) be a sphere-cut decomposition of skel(µ)∪(sµ, tµ)
of width β, rooted at the node ρ with ξ(ρ) = (sµ, tµ); refer to Fig. 13a. Each arc a of T
is associated with a subgraph skela of skel(µ) and with a subgraph perta of pert(µ), both
bounded by the noose of a. Let a1 and a2 be the two arcs leading to a from the bottom of T .
Intuitively, our strategy to compute the embedding types of pert(µ) is to visit T bottom-up
maintaining a succinct description of size O(β) of the properties of the 2UBEs of perta. To
this aim, we construct cycles composed of directed edges that are in one-to-one correspondence
with maximal directed paths along the outer face of skela1 and skela2 (Figs. 13b and 13c),
which we use to define an auxiliary graph A whose 2UBEs concisely represent the possible
2UBEs of perta obtained by combining the 2UBEs of perta1 and perta2 (Fig. 13d). When
we reach the arc a∗ incident to ρ with skela∗ = skel(µ), we use the computed properties to
determine the embedding types realizable by pert(µ). We provide full details in [23].

I Lemma 17. Let µ be an R-node whose skeleton skel(µ) has k children and branchwidth β.
The set of embedding types realizable by pert(µ) can be computed in O(2O(β log β) ·k) time, both
in the fixed and in the variable embedding setting, provided that a sphere-cut decomposition
〈Tµ, ξµ,Πµ〉 of width β of skel+(µ) is given.

By Lemmas 12, 14, 15 and 17 and since T has O(|G|) size [34, 41], we get the following.

I Theorem 18. There exists an O(2O(β log β) · n+ n2 + g(n))-time algorithm to decide if an
n-vertex planar (plane) st-graph of branchwidth β admits a (embedding-preserving) 2UBE,
where g(n) is the computation time of a sphere-cut decomposition of an n-vertex plane graph.

Observe that g(n) is O(n3) by the result in [71]. Thus, we get the following.

I Corollary 19. There exists an O(2O(β log β) · n+ n3)-time algorithm to decide whether an
n-vertex planar (plane) st-graph of branchwidth β admits a (embedding-preserving) 2UBE.

Since the branchwidth of a planar graph G is at most 2.122
√
n [48], Corollary 19

immediately implies that the 2UBE Testing problem can be solved in sub-exponential time.

I Corollary 20. There exists an O(2O(
√
n log

√
n) + n3)-time algorithm to decide whether an

n-vertex planar (plane) st-graph admits a (embedding-preserving) 2UBE.

SoCG 2019

13:18 Upward Book Embeddings of st-Graphs

7 Conclusion and Open Problems

Our results provide significant advances on the complexity of the kUBE Testing problem.
We showed NP-hardness for k ≥ 3; we gave FPT- and polynomial-time algorithms for relevant
families of planar st-graphs when k = 2. We point out that our FPT-algorithm can be refined
to run in O(n2) time for st-graphs of treewidth at most 3, by constructing in linear time a
sphere-cut decomposition of their rigid components. We conclude with some open problems.

The main open question is about the complexity of the 2UBE Testing problem, which
has been conjectured to be NP-complete in the general case [55].
The digraphs in our NP-completeness proof are not upward planar. Since there are
upward planar digraphs that do not admit a 3UBE [58], it would be interesting to study
whether the problem remains NP-complete for three pages and upward planar digraphs.
Finally, it is natural to investigate other families of planar digraphs for which a 2UBE
always exists or polynomial-time testing algorithms can be devised.

References

1 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Pedro Ramos, and
Gelasio Salazar. The 2-page crossing number of Kn. In Tamal K. Dey and Sue Whitesides,
editors, Symposium on Computational Geometry 2012, SoCG ’12, pages 397–404. ACM, 2012.
doi:10.1145/2261250.2261310.

2 Hugo A. Akitaya, Erik D. Demaine, Adam Hesterberg, and Quanquan C. Liu. Upward
Partitioned Book Embeddings. In Fabrizio Frati and Kwan-Liu Ma, editors, GD 2017, volume
10692 of LNCS, pages 210–223. Springer, 2017. doi:10.1007/978-3-319-73915-1_18.

3 Mustafa Alhashem, Guy-Vincent Jourdan, and Nejib Zaguia. On The Book Embedding Of
Ordered Sets. Ars Combinatoria, 119:47–64, 2015.

4 Mohammad Alzohairi and Ivan Rival. Series-Parallel Planar Ordered Sets Have Pagenumber
Two. In Stephen C. North, editor, Graph Drawing, GD ’96, volume 1190 of LNCS, pages
11–24. Springer, 1996. doi:10.1007/3-540-62495-3_34.

5 Patrizio Angelini, Michael A. Bekos, Walter Didimo, Luca Grilli, Philipp Kindermann, Tamara
Mchedlidze, Roman Prutkin, Antonios Symvonis, and Alessandra Tappini. Greedy Rectilinear
Drawings. In Therese Biedl and Andreas Kerren, editors, GD 2018, volume 11282 of LNCS.
Springer, 2018.

6 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Valentino Di Donato, Philipp
Kindermann, Günter Rote, and Ignaz Rutter. Windrose Planarity: Embedding Graphs
with Direction-Constrained Edges. ACM Trans. Algorithms, 14(4):54:1–54:24, 2018. doi:
10.1145/3239561.

7 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Strip
Planarity Testing for Embedded Planar Graphs. Algorithmica, 77(4):1022–1059, 2017. doi:
10.1007/s00453-016-0128-9.

8 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Ignaz Rutter. Intersection-Link Representations of Graphs. J. Graph Algorithms
Appl., 21(4):731–755, 2017. doi:10.7155/jgaa.00437.

9 Patrizio Angelini, Giordano Da Lozzo, and Daniel Neuwirth. Advancements on SEFE and
Partitioned Book Embedding problems. Theor. Comput. Sci., 575:71–89, 2015.

10 Patrizio Angelini, Marco Di Bartolomeo, and Giuseppe Di Battista. Implementing a Partitioned
2-Page Book Embedding Testing Algorithm. In Graph Drawing, volume 7704 of LNCS, pages
79–89. Springer, 2012.

11 Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Ignaz Rutter.
Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a
connected graph. J. Discrete Algorithms, 14:150–172, 2012.

http://dx.doi.org/10.1145/2261250.2261310
http://dx.doi.org/10.1007/978-3-319-73915-1_18
http://dx.doi.org/10.1007/3-540-62495-3_34
http://dx.doi.org/10.1145/3239561
http://dx.doi.org/10.1145/3239561
http://dx.doi.org/10.1007/s00453-016-0128-9
http://dx.doi.org/10.1007/s00453-016-0128-9
http://dx.doi.org/10.7155/jgaa.00437

C. Binucci et al. 13:19

12 Patrizio Angelini, David Eppstein, Fabrizio Frati, Michael Kaufmann, Sylvain Lazard, Tamara
Mchedlidze, Monique Teillaud, and Alexander Wolff. Universal Point Sets for Drawing Planar
Graphs with Circular Arcs. J. Graph Algorithms Appl., 18(3):313–324, 2014.

13 Melanie Badent, Emilio Di Giacomo, and Giuseppe Liotta. Drawing colored graphs on colored
points. Theor. Comput. Sci., 408(2-3):129–142, 2008.

14 Michael J. Bannister and David Eppstein. Crossing Minimization for 1-page and 2-page
Drawings of Graphs with Bounded Treewidth. In Christian A. Duncan and Antonios Symvonis,
editors, GD 2014, volume 8871 of LNCS, pages 210–221. Springer, 2014. doi:10.1007/
978-3-662-45803-7_18.

15 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

16 Michael A. Bekos, Till Bruckdorfer, Michael Kaufmann, and Chrysanthi N. Raftopoulou. The
Book Thickness of 1-Planar Graphs is Constant. Algorithmica, 79(2):444–465, 2017.

17 Michael A. Bekos, Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani,
and Chrysanthi N. Raftopoulou. Edge Partitions of Optimal 2-plane and 3-plane Graphs. In
Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts
in Computer Science, WG 2018, volume 11159 of LNCS, pages 27–39. Springer, 2018. doi:
10.1007/978-3-030-00256-5_3.

18 Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-Page Book
Embeddings of 4-Planar Graphs. Algorithmica, 75(1):158–185, 2016. doi:10.1007/
s00453-015-0016-8.

19 Frank Bernhart and Paul C Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

20 Paola Bertolazzi, Giuseppe Di Battista, and Walter Didimo. Quasi-Upward Planarity. Al-
gorithmica, 32(3):474–506, 2002. doi:10.1007/s00453-001-0083-x.

21 Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Optimal
Upward Planarity Testing of Single-Source Digraphs. SIAM J. Comput., 27(1):132–169, 1998.
doi:10.1137/S0097539794279626.

22 Therese C. Biedl, Thomas C. Shermer, Sue Whitesides, and Stephen K. Wismath. Bounds for
Orthogonal 3-D Graph Drawing. J. Graph Algorithms Appl., 3(4):63–79, 1999.

23 Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo, Tamara Mchedlidze,
and Maurizio Patrignani. Upward Book Embeddings of st-Graphs. CoRR, abs/1903.07966,
2019. arXiv:1903.07966.

24 Carla Binucci, Emilio Di Giacomo, Md. Iqbal Hossain, and Giuseppe Liotta. 1-page and
2-page drawings with bounded number of crossings per edge. Eur. J. Comb., 68:24–37, 2018.
doi:10.1016/j.ejc.2017.07.009.

25 Carla Binucci and Walter Didimo. Computing Quasi-Upward Planar Drawings of Mixed
Graphs. Comput. J., 59(1):133–150, 2016. doi:10.1093/comjnl/bxv082.

26 Franz-Josef Brandenburg. Upward planar drawings on the standing and the rolling cylinders.
Comput. Geom., 47(1):25–41, 2014. doi:10.1016/j.comgeo.2013.08.003.

27 Jean Cardinal, Michael Hoffmann, Vincent Kusters, Csaba D. Tóth, and Manuel Wettstein.
Arc diagrams, flip distances, and Hamiltonian triangulations. Comput. Geom., 68:206–225,
2018. doi:10.1016/j.comgeo.2017.06.001.

28 Steven Chaplick, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Martin Nöllenburg,
Maurizio Patrignani, Ioannis G. Tollis, and Alexander Wolff. Planar L-Drawings of Directed
Graphs. In Fabrizio Frati and Kwan-Liu Ma, editors, GD 2017, volume 10692 of LNCS, pages
465–478. Springer, 2017. doi:10.1007/978-3-319-73915-1_36.

29 Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. Embedding graphs
in books: A layout problem with applications to VLSI design. SIAM Journal on Algebraic
Discrete Methods, 8(1):33–58, 1987.

30 Robert J. Cimikowski. An analysis of some linear graph layout heuristics. J. Heuristics,
12(3):143–153, 2006.

SoCG 2019

http://dx.doi.org/10.1007/978-3-662-45803-7_18
http://dx.doi.org/10.1007/978-3-662-45803-7_18
http://dx.doi.org/10.1007/978-3-030-00256-5_3
http://dx.doi.org/10.1007/978-3-030-00256-5_3
http://dx.doi.org/10.1007/s00453-015-0016-8
http://dx.doi.org/10.1007/s00453-015-0016-8
http://dx.doi.org/10.1016/0095-8956(79)90021-2
http://dx.doi.org/10.1007/s00453-001-0083-x
http://dx.doi.org/10.1137/S0097539794279626
http://arxiv.org/abs/1903.07966
http://dx.doi.org/10.1016/j.ejc.2017.07.009
http://dx.doi.org/10.1093/comjnl/bxv082
http://dx.doi.org/10.1016/j.comgeo.2013.08.003
http://dx.doi.org/10.1016/j.comgeo.2017.06.001
http://dx.doi.org/10.1007/978-3-319-73915-1_36

13:20 Upward Book Embeddings of st-Graphs

31 Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and Vincenzo
Roselli. Upward Planar Morphs. In Therese C. Biedl and Andreas Kerren, editors, GD 2018,
volume 11282 of LNCS, pages 92–105. Springer, 2018. doi:10.1007/978-3-030-04414-5_7.

32 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1998.

33 Giuseppe Di Battista and Roberto Tamassia. Algorithms for Plane Representations of Acyclic
Digraphs. Theor. Comput. Sci., 61:175–198, 1988. doi:10.1016/0304-3975(88)90123-5.

34 Giuseppe Di Battista and Roberto Tamassia. On-Line Planarity Testing. SIAM Journal on
Computing, 25(5):956–997, 1996.

35 Giuseppe Di Battista, Roberto Tamassia, and Ioannis G. Tollis. Area Requirement and
Symmetry Display of Planar Upward Drawings. Discrete & Computational Geometry, 7:381–
401, 1992. doi:10.1007/BF02187850.

36 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K. Wismath. Curve-
constrained drawings of planar graphs. Comput. Geom., 30(1):1–23, 2005. doi:10.1016/j.
comgeo.2004.04.002.

37 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K. Wismath. Book
Embeddability of Series-Parallel Digraphs. Algorithmica, 45(4):531–547, 2006. doi:10.1007/
s00453-005-1185-7.

38 Emilio Di Giacomo, Francesco Giordano, and Giuseppe Liotta. Upward Topological Book
Embeddings of DAGs. SIAM Journal on Discrete Mathematics, 25(2):479–489, 2011. doi:
10.1137/080731128.

39 Emilio Di Giacomo, Giuseppe Liotta, and Francesco Trotta. On Embedding a Graph on Two
Sets of Points. Int. J. Found. Comput. Sci., 17(5):1071–1094, 2006.

40 Emilio Di Giacomo, Giuseppe Liotta, and Francesco Trotta. Drawing Colored Graphs with
Constrained Vertex Positions and Few Bends per Edge. Algorithmica, 57(4):796–818, 2010.

41 Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward Spirality and Upward
Planarity Testing. SIAM J. Discrete Math., 23(4):1842–1899, 2009.

42 Vida Dujmović and David R. Wood. On Linear Layouts of Graphs. Discrete Mathematics &
Theoretical Computer Science, 6(2):339–358, 2004.

43 Vida Dujmović and David R. Wood. Stacks, Queues and Tracks: Layouts of Graph Subdivisions.
Discrete Mathematics & Theoretical Computer Science, 7(1):155–202, 2005. URL: http:
//dmtcs.episciences.org/346.

44 H. Enomoto and M. S. Miyauchi. Embedding Graphs into a Three Page Book with O(m logn)
Crossings of Edges over the Spine. SIAM J. Discrete Math., 12(3):337–341, 1999.

45 H. Enomoto, M. S. Miyauchi, and K. Ota. Lower Bounds for the Number of Edge-crossings
Over the Spine in a Topological Book Embedding of a Graph. Discrete Applied Mathematics,
92(2-3):149–155, 1999.

46 Hikoe Enomoto, Tomoki Nakamigawa, and Katsuhiro Ota. On the Pagenumber of Complete
Bipartite Graphs. Journal of Combinatorial Theory, Series B, 71(1):111–120, 1997. doi:
10.1006/jctb.1997.1773.

47 Hazel Everett, Sylvain Lazard, Giuseppe Liotta, and Stephen K. Wismath. Universal Sets of
n Points for One-bend Drawings of Planar Graphs with n Vertices. Discrete & Computational
Geometry, 43(2):272–288, 2010.

48 Fedor V. Fomin and Dimitrios M. Thilikos. New upper bounds on the decomposability of
planar graphs. Journal of Graph Theory, 51(1):53–81, 2006. doi:10.1002/jgt.20121.

49 Fabrizio Frati, Radoslav Fulek, and Andres J. Ruiz-Vargas. On the Page Number of Upward
Planar Directed Acyclic Graphs. Journal of Graph Algorithms and Applications, 17(3):221–244,
2013. doi:10.7155/jgaa.00292.

50 Joseph L. Ganley and Lenwood S. Heath. The pagenumber of k-trees is O(k). Discrete Applied
Mathematics, 109(3):215–221, 2001.

http://dx.doi.org/10.1007/978-3-030-04414-5_7
http://dx.doi.org/10.1016/0304-3975(88)90123-5
http://dx.doi.org/10.1007/BF02187850
http://dx.doi.org/10.1016/j.comgeo.2004.04.002
http://dx.doi.org/10.1016/j.comgeo.2004.04.002
http://dx.doi.org/10.1007/s00453-005-1185-7
http://dx.doi.org/10.1007/s00453-005-1185-7
http://dx.doi.org/10.1137/080731128
http://dx.doi.org/10.1137/080731128
http://dmtcs.episciences.org/346
http://dmtcs.episciences.org/346
http://dx.doi.org/10.1006/jctb.1997.1773
http://dx.doi.org/10.1006/jctb.1997.1773
http://dx.doi.org/10.1002/jgt.20121
http://dx.doi.org/10.7155/jgaa.00292

C. Binucci et al. 13:21

51 Ashim Garg and Roberto Tamassia. On the Computational Complexity of Upward and
Rectilinear Planarity Testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/
S0097539794277123.

52 Francesco Giordano, Giuseppe Liotta, Tamara Mchedlidze, Antonios Symvonis, and Sue
Whitesides. Computing upward topological book embeddings of upward planar digraphs.
Journal of Discrete Algorithms, 30:45–69, 2015.

53 L. Heath, F. Leighton, and A. Rosenberg. Comparing Queues and Stacks As Mechanisms for
Laying Out Graphs. SIAM Journal on Discrete Mathematics, 5(3):398–412, 1992.

54 Lenwood S. Heath and Sriram V. Pemmaraju. Stack and Queue Layouts of Posets. SIAM
Journal on Discrete Mathematics, 10(4):599–625, 1997.

55 Lenwood S. Heath and Sriram V. Pemmaraju. Stack and Queue Layouts of Directed Acyclic
Graphs: Part II. SIAM Journal on Computing, 28(5):1588–1626, 1999.

56 Lenwood S. Heath, Sriram V. Pemmaraju, and Ann N. Trenk. Stack and Queue Layouts of
Directed Acyclic Graphs: Part I. SIAM Journal on Computing, 28(4):1510–1539, 1999.

57 Seok-Hee Hong and Hiroshi Nagamochi. Simpler algorithms for testing two-page book embed-
ding of partitioned graphs. Theor. Comput. Sci., 725:79–98, 2018.

58 L. T. Q. Hung. A Planar Poset which Requires 4 Pages. PhD thesis, Institute of Computer
Science, University of Wrocław, 1989.

59 Maarten Löffler and Csaba D. Tóth. Linear-Size Universal Point Sets for One-Bend Drawings.
In Graph Drawing, volume 9411 of LNCS, pages 423–429. Springer, 2015.

60 Seth M. Malitz. Genus g Graphs Have Pagenumber O(√g). J. Algorithms, 17(1):85–109, 1994.
61 Seth M. Malitz. Graphs with E Edges Have Pagenumber O(

√
E). J. Algorithms, 17(1):71–84,

1994.
62 Sumio Masuda, Kazuo Nakajima, Toshinobu Kashiwabara, and Toshio Fujisawa. Crossing

Minimization in Linear Embeddings of Graphs. IEEE Trans. Computers, 39(1):124–127, 1990.
63 Tamara Mchedlidze and Antonios Symvonis. Crossing-Free Acyclic Hamiltonian Path Com-

pletion for Planar st-Digraphs. In Yingfei Dong, Ding-Zhu Du, and Oscar H. Ibarra, editors,
Algorithms and Computation, ISAAC 2009, volume 5878 of LNCS, pages 882–891. Springer,
2009.

64 Tamara Mchedlidze and Antonios Symvonis. Unilateral Orientation of Mixed Graphs. In
SOFSEM 2010, volume 5901 of LNCS, pages 588–599. Springer, 2010.

65 Tamara Mchedlidze and Antonios Symvonis. Crossing-Optimal Acyclic HP-Completion for
Outerplanar st-Digraphs. Journal of Graph Algorithms and Applications, 15(3):373–415, 2011.
doi:10.7155/jgaa.00231.

66 Richard Nowakowski and Andrew Parker. Ordered sets, pagenumbers and planarity. Order,
6(3):209–218, 1989.

67 J. Opatrny. Total Ordering Problem. SIAM Journal on Computing, 8(1):111–114, 1979.
doi:10.1137/0208008.

68 Sriram V. Pemmaraju. Exploring the Powers of Stacks and Queues via Graph Layouts. PhD
thesis, Virginia Polytechnic Institute and State University at Blacksburg, Virginia, 1992.

69 Aimal Rextin and Patrick Healy. Dynamic Upward Planarity Testing of Single Source
Embedded Digraphs. Comput. J., 60(1):45–59, 2017. doi:10.1093/comjnl/bxw064.

70 Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)
90061-N.

71 Paul D. Seymour and Robin Thomas. Call Routing and the Ratcatcher. Combinatorica,
14(2):217–241, 1994. doi:10.1007/BF01215352.

72 Maciej M. Syslo. Bounds to the Page Number of Partially Ordered Sets. In Manfred Nagl,
editor, Graph-Theoretic Concepts in Computer Science, WG ’89, volume 411 of LNCS, pages
181–195. Springer, 1989. doi:10.1007/3-540-52292-1_13.

73 Walter Unger. On the k-Colouring of Circle-Graphs. In Robert Cori and Martin Wirsing, editors,
STACS 88, volume 294 of LNCS, pages 61–72. Springer, 1988. doi:10.1007/BFb0035832.

SoCG 2019

http://dx.doi.org/10.1137/S0097539794277123
http://dx.doi.org/10.1137/S0097539794277123
http://dx.doi.org/10.7155/jgaa.00231
http://dx.doi.org/10.1137/0208008
http://dx.doi.org/10.1093/comjnl/bxw064
http://dx.doi.org/10.1016/0095-8956(91)90061-N
http://dx.doi.org/10.1016/0095-8956(91)90061-N
http://dx.doi.org/10.1007/BF01215352
http://dx.doi.org/10.1007/3-540-52292-1_13
http://dx.doi.org/10.1007/BFb0035832

13:22 Upward Book Embeddings of st-Graphs

74 Walter Unger. The Complexity of Colouring Circle Graphs (Extended Abstract). In Alain
Finkel and Matthias Jantzen, editors, STACS 92, volume 577 of LNCS, pages 389–400. Springer,
1992. doi:10.1007/3-540-55210-3_199.

75 Avi Wigderson. The complexity of the Hamiltonian circuit problem for maximal planar graphs.
Technical report, 298, EECS Department, Princeton University, 1982.

76 David R. Wood. Bounded Degree Book Embeddings and Three-Dimensional Orthogonal
Graph Drawing. In Graph Drawing, volume 2265 of LNCS, pages 312–327. Springer, 2001.

77 Mihalis Yannakakis. Embedding Planar Graphs in Four Pages. Journal of Computer and
System Sciences, 38(1):36–67, 1989. doi:10.1016/0022-0000(89)90032-9.

http://dx.doi.org/10.1007/3-540-55210-3_199
http://dx.doi.org/10.1016/0022-0000(89)90032-9

Bounded Degree Conjecture Holds Precisely for
c -Crossing-Critical Graphs with c ≤ 12
Drago Bokal
Department of Mathematics and Computer Science, University of Maribor, Maribor, Slovenia
drago.bokal@um.si

Zdeněk Dvořák
Computer Science Institute, Charles University, Prague, Czech Republic
rakdver@iuuk.mff.cuni.cz

Petr Hliněný
Faculty of Informatics, Masaryk University, Brno, Czech Republic
hlineny@fi.muni.cz

Jesús Leaños
Academic Unit of Mathematics, Autonomous University of Zacatecas, Zacatecas, Mexico
jleanos@matematicas.reduaz.mx

Bojan Mohar
Department of Mathematics, Simon Fraser University, Burnaby BC, Canada
Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
mohar@sfu.ca

Tilo Wiedera
Theoretical Computer Science, Osnabrück University, Germany
tilo.wiedera@uos.de

Abstract
We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-
crossings when drawn in the plane. For every fixed pair of integers with c ≥ 13 and d ≥ 1, we give
first explicit constructions of c-crossing-critical graphs containing a vertex of degree greater than
d. We also show that such unbounded degree constructions do not exist for c ≤ 12, precisely, that
there exists a constant D such that every c-crossing-critical graph with c ≤ 12 has maximum degree
at most D. Hence, the bounded maximum degree conjecture of c-crossing-critical graphs, which was
generally disproved in 2010 by Dvořák and Mohar (without an explicit construction), holds true,
surprisingly, exactly for the values c ≤ 12.

2012 ACM Subject Classification Theory of computation→ Computational geometry; Mathematics
of computing → Graphs and surfaces

Keywords and phrases graph drawing, crossing number, crossing-critical, zip product

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.14

Related Version https://arxiv.org/abs/1903.05363

Funding Drago Bokal: ARRS Project J1-8130, ARRS Programme P1-0297.
Zdeněk Dvořák: Supported by project 17-04611S of Czech Science Foundation.
Petr Hliněný: Supported by Czech Science Foundation, project no. 17-00837S.
Jesús Leaños: Partially supported by PFCE-UAZ 2018-2019 grant.
Bojan Mohar : B.M. was supported in part by the NSERC Discovery Grant R611450 (Canada), by
the Canada Research Chairs program, and by the Research Project J1-8130 of ARRS (Slovenia).
Tilo Wiedera: Supported by the German Research Foundation (DFG) project CH 897/2-2.

Acknowledgements We acknowledge the supporting environment of the workshop Crossing Num-
bers: Theory and Applications (18w5029) at the Banff International Research Station, where the
fundamentals of this contribution were developed.

© Drago Bokal, Zdeněk Dvořák, Petr Hliněný, Jesús Leaños, Bojan Mohar, and Tilo Wiedera;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1196-5476
mailto:drago.bokal@um.si
https://orcid.org/0000-0002-8308-9746
mailto:rakdver@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-2125-1514
mailto:hlineny@fi.muni.cz
https://orcid.org/0000-0002-9068-8536
mailto:jleanos@matematicas.reduaz.mx
https://orcid.org/0000-0002-7408-6148
mailto:mohar@sfu.ca
https://orcid.org/0000-0002-5923-4114
mailto:tilo.wiedera@uos.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.14
https://arxiv.org/abs/1903.05363
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Bounded Maximum Degree in Crossing-Critical Graphs

1 Introduction

Minimizing the number of edge-crossings in a graph drawing in the plane (the crossing
number of the graph, see Definition 2.1) is considered one of the most important attributes of
a “nice drawing” of a graph. In the case of classes of dense graphs (those having superlinear
number of edges in terms of the number vertices), the crossing number is necessarily very
high – see the famous Crossing Lemma [1, 13]. However, within sparse graph classes (those
having only linear number of edges), we may have planar graphs at one end and graphs with
up to quadratic crossing number at the other end. In this situation, it is natural to study
the “minimal obstructions” for low crossing number, with the following definition.

Let c be a positive integer. A graph G is called c-crossing-critical if the crossing number
of G is at least c, but every proper subgraph has crossing number smaller than c. We say
that G is crossing-critical if it is c-crossing-critical for some positive integer c.

Since any non-planar graph contains at least one crossing-critical subgraph, the under-
standing of the properties of the crossing-critical graphs is a central part of the theory of
crossing numbers.

In 1984, Širáň gave the earliest construction of nonsimple c-critical-graphs for every fixed
value of c ≥ 2 [18]. Three years later, Kochol [11] gave an infinite family of c-crossing-critical,
simple, 3-connected graphs, for every c ≥ 2. Another early result on c-crossing-critical
graphs was reported in the influential paper of Richter and Thomassen [17], who proved that
c-crossing-critical graphs have bounded crossing number in terms of c. They also initiated
research on degrees in c-crossing-critical graphs by showing that, if there exists an infinite
family of r-regular, c-crossing-critical graphs for fixed c, then r ∈ {4, 5}. Of these, 4-regular
3-critical graphs were constructed by Pinontoan and Richter [16], and 4-regular c-critical
graphs are known for every c ≥ 3, c 6= 4 [3]. Salazar observed that the arguments of Richter
and Thomassen could be applied to average degree as well, showing that an infinite family of
c-crossing-critical graphs of average degree d can exist only for d ∈ (3, 6], and established
their existence for d ∈ [4, 6). Nonexistence of such families with d = 6 was established much
later by Hernández, Salazar, and Thomas [9], who proved that, for each fixed c, there are only
finitely many c-crossing-critical simple graphs of average degree at least six. The existence
of such families with d ∈ [7

2 , 4] was established by Pinontoan and Richter [16], whereas the
whole possible interval was covered by Bokal [2], who showed that, for sufficiently large
crossing number, both the crossing number c and the average degree d ∈ (3, 6) could be
prescribed for an infinite family of c-crossing critical graphs of average degree d.

In 2003, Richter conjectured that, for every positive integer c, there exists an integer D(c)
such that every c-crossing-critical graph has maximum degree less than D(c) [14]. Reflecting
upon this conjecture, Bokal in 2007 observed that the known 3-connected crossing-critical
graphs of that time only had degrees 3, 4, 6, and asked for existence of such graphs with
arbitrary other degrees, possibly appearing arbitrarily many times. Hliněný augmented his
construction of c-crossing-critical graphs with pathwidth linear in c to show the existence of
c-crossing-critical graphs with arbitrarily many vertices of every set of even degrees. Only a
recent paper by Bokal, Bračič, Derňár, and Hliněný [3] provided the corresponding result
for odd degrees, showing in addition that, for sufficiently high c, all the three parameters
– crossing number c, rational average degree d, and the set of degrees D ⊆ N \ {1, 2} that
appear arbitrarily often in the graphs of the infinite family – can be prescribed. They also
analysed the interplay of these parameters for 2-crossing-critical graphs that were recently
completely characterized by Bokal, Oporowski, Richter, and Salazar [5].

D. Bokal, Z. Dvořák, P. Hliněný, J. Leaños, B. Mohar, and T. Wiedera 14:3

Despite all this research generating considerable understanding of the behavior of degrees
in known crossing-critical graphs as well as extending the construction methods of such
graphs, the original conjecture of Richter was not directly addressed in the previous works.
It was, however, disproved by Dvořák and Mohar [8], who showed that, for each integer
c ≥ 171, there exist c-crossing-critical graphs of arbitrarily large maximum degree. Their
counterexamples, however, were not constructive, as they only exhibited, for every such c,
a graph containing sufficiently many critical edges incident with a fixed vertex and argued
that those edges belong to every c-crossing-critical subgraph of the exhibited graph. On the
other hand, as a consequence of [5] it follows that, except for possibly some small examples,
the maximum degree in a large 2-crossing-critical graph is at most 6, implying that Richter’s
conjecture holds for c = 2. In view of these results, and the fact that 1-crossing-critical
graphs (subdivisions of K5 and K3,3) have maximum degree at most 4, this leaves Richter’s
conjecture unresolved for each c ∈ {3, 4, . . . , 170}.

The richness of c-crossing-critical graphs is restricted for every c by the result of Hliněný
that c-crossing-critical graphs have bounded path-width [10]; this structural result is com-
plemented by a recent classification of all large c-crossing-critical graphs for arbitrary c by
Dvořák, Hliněný, and Mohar [7]. We use these results in Section 3 to show that Richter’s
conjecture holds for c ≤ 12. The result is stated below. It is both precise and surprising and
shows how unpredictable are even the most fundamental questions about crossing numbers.

I Theorem 1.1. There exists an integer D such that, for every positive integer c ≤ 12, every
c-crossing-critical graph has maximum degree at most D.

In fact, one can separately consider in Theorem 1.1 twelve upper bounds Dc for each of
the values c ∈ {1, 2, . . . , 12}. For instance, D1 = 4 and the optimal value of D2 (we know
D2 ≥ 8) should also be within reach using [5] and continuing research. On the other hand,
due to the asymptotic nature of our arguments, we are currently not able to give any “nice”
numbers for the remaining upper bounds, and we leave this aspect to future investigations.

We cover the remaining values of c ≥ 13 in the gap with the following:

I Theorem 1.2. For every positive integer d, there exists a 3-connected 13-crossing-critical
graph G(d), whose maximum degree is at least d.

I Corollary 1.3. For every two integers c ≥ 13 and d ≥ 1, there exists a 3-connected
c-crossing-critical graph G(c, d), whose maximum degree is at least d.

We also address the related question about the structure of c-crossing-critical graphs with
more than one vertex of large degree. We show the following:

I Corollary 1.4. For any integers c ≥ 13, i ≥ 1 and i, where 1 ≤ i ≤ c/13, there exists a
3-connected c-crossing-critical graph G(c, d, i), which contains i vertices of degree greater
than d.

Note that, without the 3-connectivity assumption, Corollary 1.4 is established simply by
taking disjoint or vertex-identified copies of the graphs from Corollary 1.3.

The paper is structured as follows. The preliminaries, needed to help understanding the
structure of large c-crossing critical graphs are defined in Section 2. We prove Theorem
1.1 in Section 3, and Theorem 1.2 in Section 4. This construction is combined with a new
technical operation called 4-to-3 expansion and zip product to establish Corollaries 1.3 and
1.4 in Section 5. We conclude with some remarks and open problems in Section 6.

SoCG 2019

14:4 Bounded Maximum Degree in Crossing-Critical Graphs

2 Graphs and the crossing number

In this paper, we consider multigraphs by default, even though we could always subdivide
parallel edges (while sacrificing 3-connectivity) in order to make our graphs simple. We
follow basic terminology of topological graph theory, see e.g. [15].

A drawing of a graph G in the plane is such that the vertices of G are distinct points and
the edges are simple (polygonal) curves joining their end vertices. It is required that no edge
passes through a vertex, and no three edges cross in a common point. A crossing is then
an intersection point of two edges other than their common end. A face of the drawing is a
maximal connected subset of the plane minus the drawing. A drawing without crossings in
the plane is called a plane drawing of a graph, or shortly a plane graph. A graph having a
plane drawing is planar.

The following are the core definitions used in this work.

I Definition 2.1 (crossing number). The crossing number cr(G) of a graph G is the minimum
number of crossings of edges in a drawing of G in the plane. An optimal drawing of G is
every drawing with exactly cr(G) crossings.

I Definition 2.2 (crossing-critical). Let c be a positive integer. A graph G is c-crossing-critical
if cr(G) ≥ c, but every proper subgraph G′ of G has cr(G′) < c.

Let us remark that a c -crossing-critical graph may have no drawing with only c crossings
(for c = 2, such an example is the Cartesian product of two 3-cycles, C3�C3).

Suppose G is a graph drawn in the plane with crossings. Let G′ be the plane graph
obtained from this drawing by replacing the crossings with new vertices of degree 4. We say
that G′ is the plane graph associated with the drawing, shortly the planarization of (the
drawing of) G, and the new vertices are the crossing vertices of G′.

Preliminaries. In some of our constructions, we will have to combine crossing-critical graphs
as described in the next definition.

I Definition 2.3. Let d = 2 or 3. For i ∈ {1, 2}, let Gi be a graph and let vi ∈ V (Gi) be a
vertex of degree d that is only incident with simple edges, such that Gi − vi is connected.
Let uj

i , j ∈ {1, . . . , d} be the neighbors of vi. The zip product of G1 and G2 at v1 and v2 is
obtained from the disjoint union of G1 − v1 and G2 − v2 by adding the edges uj

1uj
2, for each

j ∈ {1, . . . , d}.

Note that, for different labellings of the neighbors of v1 and v2, different graphs may result
from the zip product. However, the following has been shown:

I Theorem 2.4 ([4]). Let G be a zip product of G1 and G2 as in Definition 2.3. Then,
cr(G) = cr(G1) + cr(G2). Furthermore, if for both i = 1 and i = 2, Gi is ci-crossing-critical,
where ci = cr(Gi), then G is (c1 + c2)-crossing-critical.

For vertices of degree 2, this theorem was established already by Leaños and Salazar in [12].
Dvořák, Hliněný, and Mohar [7] recently characterized the structure of large c-crossing-

critical graphs. From their result, it can be derived that in a crossing-critical graph with a
vertex of large degree, there exist many internally vertex-disjoint paths from this vertex to
the boundary of a single face, see the following corollary for a more precise formulation. To
keep our contribution self-contained, we also give a simple independent proof of this claim in
the full version of the paper.

D. Bokal, Z. Dvořák, P. Hliněný, J. Leaños, B. Mohar, and T. Wiedera 14:5

I Corollary 2.5. There exists a function f2.5 : N2 → N such that the following holds. Let
c ≥ 1 and t ≥ 3 be integers and let G be an optimal drawing of a 2-connected c-crossing-
critical graph. If G has maximum degree greater than f2.5(c, t), then there exists a path Q

contained in the boundary of a face of G and internally vertex-disjoint paths P1, . . . , Pt

starting in the same vertex not in Q and ending in distinct vertices appearing in order on Q

(and otherwise disjoint from Q), such that no crossings of G appear on P1, Pt, nor in the
face of P1 ∪ Pt ∪Q that contains P2, . . . , Pt−1.

3 Crossing-critical graphs with at most 12 crossings

We now use Corollary 2.5 to prove the following “redrawing” lemma.

I Lemma 3.1. Let G be a 2-connected c-crossing-critical graph. If G has maximum degree
greater than f2.5(c, 6c + 1), then there exist integers r ≥ 2 and k ≥ 0 such that kr ≤ c − 1
and G has a drawing with at most c− 1− kr +

(
k
2
)
crossings.

Proof. Consider an optimal drawing of G. Let P1, . . . , P6c+1 be paths obtained using
Corollary 2.5 and v their common end vertex. For 2 ≤ i ≤ 6c − 1, let Ti denote the 2-
connected block of G− ((V (Pi−1)∪V (Pi+2))\{v}) containing Pi and Pi+1, and let Ci denote
the cycle bounding the face of Ti containing Pi−1. Note that if 2 ≤ i and i + 3 ≤ j ≤ 6c− 1,
then G− V (Ti ∪ Tj) has at most three components: one containing Pi+2 − v, one containing
P1 − v, and one containing P6c+1 − v, where the latter two components can be the same.

Let e be the edge of P3c+1 incident with v and let G′ be an optimal drawing of G− e.
Since G is c-crossing-critical, G′ has at most c− 1 crossings. Hence, there exist indices i1
and i2 such that 2 ≤ i1 ≤ 3c − 1, 3c + 2 ≤ i2 ≤ 6c − 1, and none of the edges of Ti1 and
Ti2 is crossed. Let us set L = Ti1 , CL = Ci1 , R = Ti2 , and CR = Ci2 . Let M , S1, and
S2 denote the subgraphs of G consisting of the components of G − V (L ∪ R) containing
P3c+1−v, P1−v, and P6c+1−v, respectively, together with the edges from these components
to the rest of G and their incident vertices (where possibly S1 = S2). Let SL and ML be
subpaths of CL of length at least one intersecting in v such that V (S1 ∩ CL) ⊆ V (SL) and
V (M ∩CL) ⊆ V (ML). Analogously, let SR and MR be subpaths of CR of length at least one
intersecting in v such that V (S2 ∩ CR) ⊆ V (SR) and V (M ∩ CR) ⊆ V (MR). See Figure 1.

We can assume without loss of generality (by circle inversion of the plane if necessary)
that neither CL nor CR bounds the outer face of CL ∪ CR in the drawings inherited from G

and from G′. Let eML
, eSL

, eSR
, eMR

be the clockwise cyclic order of the edges of CL ∪ CR

incident with v in the drawing G, where eQ ∈ E(Q) for every Q ∈ {ML, SL, SR, MR}. By
the same argument, we can assume that the clockwise cyclic order of these edges in the
drawing of G′ is either the same or eML

, eSL
, eMR

, eSR
.

In G, L is drawn in the closed disk bounded by CL, R is drawn in the closed disk bounded
by CR, and M , S1, and S2 together with all the edges joining them to v are drawn in the
outer face of CL∪CR. Since CL and CR are not crossed in the drawing G′, we can if necessary
rearrange the drawing of G′ without creating any new crossings1 so that the same holds for the
drawings of L, R, M , S1, and S2 in G′. Let r ≥ 1 denote the maximum number of pairwise

1 As G is not 3-connected, it is possible that some 2-connected components or some edges of L, R are
drawn in the exterior of the disk bounded by CL, CR. However, these can be flipped into the interior of
CL, CR, and after such rearranging, CL, CR bound the outer face of the drawings of L, R. Similarly, if
S1 6= S2, either of them could be in the interior of CL, CR, and we flip them into the exterior, so that
the interior of CL, CR contains only drawings of L, R, respecitvely.

SoCG 2019

14:6 Bounded Maximum Degree in Crossing-Critical Graphs

v

P1 P6c+1

S1 S2

SL

eSL

ML

eMLCL

SR

eSR

MR

eMR CR

1
2

r

M1 M2

M

a)

v

P1 P6c+1

S1 S2

SL

eSL

ML

eMLCL

SR

eSR

MR

eMR CR

1
2

3
r

1
2

3

M1 M2

(k = 3)
(r = 4)

b)

v

P1

P6c+1

SL

eSL

ML

eMLCL

SR

eSR

MR

eMR

CR

1
2

3
r

1
2

k

c)

Figure 1 An illustration of the proof of Lemma 3.1. a) The original optimal drawing of G, with
subdrawings of M1 and M2 (red) that will be glued into the drawing of G0 from an optimal drawing
of G− e. b) A drawing of G with at most c− 1 crossings, obtained from G0 (black, blue, green)
and M1, M2 (red). c) A drawing of G with at most

(
c−1−kr+k

2

)
crossings, obtained from G0 (black,

blue) and M1, M2 (red).

D. Bokal, Z. Dvořák, P. Hliněný, J. Leaños, B. Mohar, and T. Wiedera 14:7

edge-disjoint paths in M − v from V (M ∩CL − v) to V (M ∩CR − v). By Menger’s theorem,
M − v has disjoint induced subgraphs M ′

1 and M ′
2 such that V (M − v) = V (M ′

1) ∪ V (M ′
2),

V (M ∩CL−v) ⊆ V (M ′
1), V (M ∩CR−v) ⊆ V (M ′

2), and G contains exactly r edges with one
end in M ′

1 and the other end in M ′
2. For i ∈ {1, 2}, let Mi be the subgraph of M induced by

V (M ′
i)∪{v}. Let F be a path in M−v from V (M ∩CL−v) to V (M ∩CR−v) that has in the

drawing G′ the smallest number of intersections with the edges of S1 ∪ S2, and let k denote
the number of such intersections. Let G0 denote the drawing G′ − (V (M) \ V (ML ∪MR)).
Since M − v contains r pairwise edge-disjoint paths from V (M ∩CL − v) to V (M ∩CR − v)
and each of them crosses S1 ∪ S2 at least k times, we conclude that G′ has at least kr

crossings (and thus kr ≤ c− 1) and G0 has at most c− 1− kr crossings.
Suppose first that edges of CL∪CR incident with v are in G′ drawn in the same clockwise

cyclic order as in G. We construct a new drawing of the graph G in the following way: Start
with the drawing of G0. Take the plane drawings of M1 and M2 as in G, “squeeze” them
and draw them very close to ML and MR, respectively, so that they do not intersect any
edges of G0. Finally, draw the r edges between M1 and M2 very close to the curve tracing
F (as drawn in G′), so that each of them is crossed at most k times. This gives a drawing
of G with at most (c− 1− kr) + kr < c crossings, contradicting the assumption that G is
c-crossing-critical.

Hence, we can assume that the edges of CL ∪ CR incident with v are in G′ drawn in
the clockwise order eML

, eSL
, eMR

, eSR
. If r = 1, then proceed analogously to the previous

paragraph, except that a mirrored version 2 of the drawing of M2 is inserted close to MR; as
there is only one edge between M1 and M2, this does not incur any additional crossings, and
we again conclude that the resulting drawing of G has fewer than c crossings, a contradiction.
Therefore, r ≥ 2.

Consider the drawing G′, and let q be a closed curve passing through v, following ML

slightly outside CL till it meets F , then following F almost till it hits MR, then following
MR slightly outside CR till it reaches v. Note that q only crosses G0 in v and in relative
interiors of the edges, and it has at most k crossings with the edges. Shrink and mirror the
part of the drawing of G0 drawn in the open disk bounded by q, keeping v at the same spot
and the parts of edges crossing q close to q; then reconnect these parts of the edges with
their parts outside of q, creating at most

(
k
2
)
new crossings in the process. Observe that in

the resulting re-drawing of G0, the path ML ∪MR is contained in the boundary of a face
(since q is drawn close to it and nothing crosses this part of q), and thus we can add M

planarly (as drawn in G) to the drawing without creating any further crossings. Therefore,
the resulting drawing has at most c− 1− kr +

(
k
2
)
crossings. J

It is now easy to prove Theorem 1.1.

Proof of Theorem 1.1. We prove by induction on c that, for every positive integer c ≤ 12,
there exists an integer ∆c such that every c-crossing-critical graph has maximum degree at
most c. The only 1-crossing-critical graphs are subdivisions of K5 and K3,3, and thus we
can set ∆1 = 4. Suppose now that c ≥ 2 and the claim holds for every smaller value. We
define ∆c = max(2∆c−1, f2.5(c, 6c + 1)). Let G be a c-crossing-critical graph and suppose
for a contradiction that ∆(G) > ∆c.

2 Mirrored version of a drawing is the drawing obtained by reversing the vertex rotations of edges around
every vertex and every crossing, and embedding the edges and the vertices accordingly. The name
explains that this is homeomorphic to the original drawing seen in a mirror.

SoCG 2019

14:8 Bounded Maximum Degree in Crossing-Critical Graphs

If G is not 2-connected, then it contains induced subgraphs G1 and G2 such that
G1 6= G 6= G2, G = G1 ∪G2, and G1 intersects G2 in at most one vertex. Then c ≤ cr(G) =
cr(G1) + cr(G2), and for every edge e ∈ E(G1) we have c > cr(G− e) = cr(G1 − e) + cr(G2).
Hence, cr(G1) ≥ c − cr(G2) and cr(G1 − e) < c − cr(G2) for every edge e ∈ E(G1), and
thus G1 is (c− cr(G2))-crossing-critical. Similarly, G2 is (c− cr(G1))-crossing-critical. Since
cr(G1) ≥ 1 and cr(G2) ≥ 1, it follows by the induction hypothesis that ∆(Gi) ≤ ∆c−1 for
i ∈ {1, 2}, and thus ∆(G) ≤ ∆c, which is a contradiction.

Hence, G is 2-connected. By Lemma 3.1, there exist integers r ≥ 2 and k ≥ 0 such that
kr ≤ c − 1 and c − 1 − kr +

(
k
2
)
≥ c, and thus

(
k
2
)
≥ kr + 1 ≥ 2k + 1. This inequality is

only satisfied for k ≥ 6, and thus the first inequality implies c ≥ kr + 1 ≥ 13. This is a
contradiction. Hence, the maximum degree of G is at most ∆c. J

4 Explicit 13-crossing-critical graphs with large degree

We define the following family of graphs, which is illustrated in Figure 2. To simplify the
terminology and the pictures, we introduce “thick edges”: for a positive integer t, we say
that uv is a t-thick edge, or an edge of thickness t, if there is a bunch of t parallel edges
between u and v. Naturally, if a t1-thick edge crosses a t2-thick edge, then this counts as
t1t2 ordinary crossings. By routing every parallel bunch of edges along the “cheapest” edge
of the bunch, we get the following important folklore claim:

B Claim 4.1. For every graph G, there exists an optimal drawing D of G, such that every
bunch of parallel edges is drawn as one thick edge in D.

I Definition 4.2 (Critical family {Gk
13}). Let k ≥ 2 be an integer. Let Cu be a 6-cycle on the

vertex set {x, u1, u2, u3, u4, u5} with (thick) edges xu1, u1u2, u2u3, u3u4, u4u5, u5x which
are of thickness 7, 5, 4, 4, 4, 1 in this order. Analogously, let Cv be a 6-cycle on the vertex set
{x, v1, v2, v3, v4, v5} isomorphic to Cu in this order of vertices. We denote by B the graph
obtained from the union Cu ∪ Cv (identifying their vertex x) by adding edges u2v3 and u3v2,
and 2-thick edges u1v4 and u4v1.

Let Di, for i ∈ {1, . . . , k}, denote the graph on the vertex set {x, wi
1, wi

2, wi
3, wi

4} with
the edges xwi

1, xwi
4, wi

1wi
4, wi

2wi
3 and the 2-thick edges wi

1wi
2 and wi

3wi
4. From the union

B ∪D1 ∪ . . . ∪Dk (again identifying their vertex x), we obtain obtain the graph Gk
13 via

identifying u5 with w1
2 and wk

3 with v5, and
for i = 2, 3, . . . , k, identifying wi−1

3 with wi
2.

This definition is illustrated in Figure 2. For reference, we will call the graph B the
bowtie of Gk

13, and the graph Di the i-th wedge of Gk
13.

I Observation 4.3.
a) For every k ≥ 2, the graph Gk

13 is a 3-connected and non-planar.
b) The degree of the vertex x in Gk

13 equals 2k + 16.
c) There exists an automorphism of Gk

13 exchanging ui with vi, for i = 1, 2, 3, 4, 5.

In order to prove Theorem 1.2, e.g. for G(d) = G
bd/2c
13 , it suffices to show two claims; that

cr(Gk
13) ≥ 13 for k ≥ 2, and that, for every edge e of Gk

13, we get cr(Gk
13 − e) ≤ 12. (We also

remark that cr(G1
13) ≤ 12, and for this reason we assume k ≥ 2.)

I Lemma 4.4. cr(G2
13) = cr(G3

13) = 13.

D. Bokal, Z. Dvořák, P. Hliněný, J. Leaños, B. Mohar, and T. Wiedera 14:9

xu1u2u3u4

u5

(u5 = w1
2)

v1 v2 v3 v4

v5

(wk
3 = v5)

wk−1
2(wk−2

3 = wk−1
2)

wk−1
1 wk−1

4

wk
2 (wk−1

3 = wk
2)

wk
1

wk
4

4

4 4 5 7 7 5 4 4

4

22

2
2

2 2
2

2· · ·

Figure 2 The graph Gk
13 of Definition 4.2, drawn with 13 crossings. The thick edges of this graph

have their thickness written as numeric labels, and all the unlabeled edges are of thickness 1. The
bowtie part of this graph is drawn in red and blue (where blue edges are those between ui and vj

vertices), and the wedges are drawn in black. Only the (k − 1)-th and k-th wedges are detailed,
while the remaining wedges 1, . . . , k − 2 analogously span the grey shaded area. Dotted lines show
possible alternate routings of the edge v1u4 (which preserve the number of 13 crossings).

Proof. For every k ≥ 2, Figure 2 shows a drawing of Gk
13 with 13 crossings. For the lower

bounds, we use the computer tool Crossing Number Web Compute [6] which uses an ILP
formulation of the crossing number problem (based on Kuratowski subgraphs), and solves it
via a branch-and-cut-and-price routine. Moreover, this computer tool generates machine-
readable proofs3 of the lower bound, which (roughly) consist of a branching tree in which
every leaf holds an LP formulation of selected Kuratowski subgraphs certifying that, in this
case, the crossing number must be greater than 12. J

I Lemma 4.5. For every k ≥ 2, cr(Gk
13) ≥ 13.

Proof. We proceed by induction on k, where the base cases k = 2, 3 are proved in Lemma 4.4.
Hence, we may assume that k ≥ 4.

Consider a drawing of Gk
13 with c = cr(Gk

13) crossings. Let 1 ≤ i ≤ k − 1, and recall that
wi

3 = wi+1
2 . By Claim 4.1, we may assume that all thick edges are drawn together in a bunch.

We now distinguish three cases based on the cyclic order of edges leaving the vertices wi
3

(the orientation is not important):

3 See the computation results at http://crossings.uos.de/job/PZPmFDmDEKsgxLpftZmlXw (k = 2) and
http://crossings.uos.de/job/EDsMIoyqrgonXEeD0plqdg (k = 3). Vertex x is labeled 0. Cycle Cu

uses vertices 0, 1, 2, 3, 4, 10. Cycle Cv uses vertices 0, 5, 6, 7, 8, and 14 for k = 2 (resp. 17 for k = 3).
We remark that the proof file for k = 3 is particularly large, it spans 2150 cases with 717 Kuratowski
constraints per case on average. For k = 2, there are just 1300 cases with about 180 constraints each.

SoCG 2019

http://crossings.uos.de/job/PZPmFDmDEKsgxLpftZmlXw
http://crossings.uos.de/job/EDsMIoyqrgonXEeD0plqdg

14:10 Bounded Maximum Degree in Crossing-Critical Graphs

a) x

u5 v5

wi
2

wi
3

wi+1
3

wi
1

wi
4 wi+1

4
wi+1

1

2
2 2

2

· · ·
· · ·

b) x

w1
2 v5

w2
2(w1

3 = w2
2)

w2
3

w3
3

w2
1

w2
4

w1
1

w1
4

? ? w3
4

w3
1

2
2

2

2
2 2· · ·

Figure 3 Two cases of the induction step in the proof of Lemma 4.5. (a) We “shrink” two wedges
into one by drawing new edges wi

1wi+1
4 (green) and wi

2wi+1
3 (blue) along the depicted paths. (b) We

likewise “shrink” three wedges into one by drawing the depicted new edges w1
1w3

4 and w1
2w3

3 (this
picture does not specify how w2

1 and w2
4 connect to x since it is not important for us).

There exists i ∈ {1, . . . , k − 1}, such that the edges incident to wi
3 = wi+1

2 , in a small
neighbourhood of wi

3, have the cyclic order wi
3wi

4, wi
3wi+1

1 , wi
3wi+1

3 , wi
3wi

2. See in
Figure 3 a, where this cyclic order is anti-clockwise. In this case, we draw a new edge
wi

1wi+1
4 along the path (wi

1, wi
4, wi

3, wi+1
1 , wi+1

4), and another new edge wi
2wi+1

3 along the
path (wi

2, wi
3, wi+1

3) (both new edges are of thickness 1). Then we delete the vertices
wi

4, wi
3, wi+1

1 together with incident edges. The resulting drawing represents a graph
which is clearly isomorphic to Gk−1

13 – the wedges i and i + 1 have been replaced with one
wedge.
Moreover, thanks to the assumption, we can avoid crossing between wi

1wi+1
4 and wi

2wi+1
3

in the considered neighbourhood of former wi
3. Therefore, every crossing of the new

drawing (including possible crossings of each of the new edges wi
1wi+1

4 and wi
2wi+1

3 among
themselves or with other edges) existed already in the original drawing of Gk

13, and so
cr(Gk−1

13) ≤ c. However, cr(Gk−1
13) ≥ 13 by the induction assumption, and so c ≥ 13 holds

true in this case.
The same proof as above works if the cyclic order around wi

3 is wi
3wi

4, wi
3wi+1

1 , wi
3wi

2,
wi

3wi+1
3 .

For all i ∈ {1, . . . , k−1}, in a small neighbourhood of wi
3, the edges incident to wi

3 = wi+1
2

have (up to orientation reversal) the cyclic order wi
3wi

4, wi
3wi+1

3 , wi
3wi+1

1 , wi
3wi

2. See
Figure 3 b. We will use this assumption only for i = 1, 2 as follows.
We draw a new edge w1

1w3
4 along the path (w1

1, w1
4, w1

3, w2
3, w3

1, w3
4), and another new edge

w1
2w3

3 along the path (w1
2, w1

3, w2
1, w2

4, w2
3, w3

3) (both new edges are of thickness 1). Then
we delete the vertices w1

4, w1
3, w2

1, w2
4, w2

3, w3
1 together with incident edges. The resulting

D. Bokal, Z. Dvořák, P. Hliněný, J. Leaños, B. Mohar, and T. Wiedera 14:11

a)

4

4
4

5

7
7 5 4 4

4

2

2

2

2

x

u1

u2

u5

v1

v5

wk
1

wk
2

wk
4

···

b)

x

u1

u4u5

v1

v3

v4v5

4

4

4
5

7

7
5

4

4

4
2

2

··
·

Figure 4 Two drawings of the graph Gk
13, having (a) 14 and (b) 16 crossings. These drawings

are used to argue criticality of some of the bowtie (red) edges of Gk
13. The grey areas span the

crossing-free wedges of Gk
13 which are not detailed in the pictures, similarly as in Figure 2.

drawing represents a graph which is now isomorphic to Gk−2
13 – the wedges 1, 2 and 3

have been replaced with one wedge.
As in the previous case, we can avoid crossing between w1

1w3
4 and w1

2w3
3 in the considered

neighbourhoods of former w1
3 and w2

3. Therefore, analogously, cr(Gk−2
13) ≤ c. However,

k − 2 ≥ 2 and so cr(Gk−2
13) ≥ 13 by the induction assumption, and hence c ≥ 13 holds

true also in this case.
By induction, for every integer k ≥ 2, cr(Gk

13) = c ≥ 13 holds. J

I Lemma 4.6. For every edge e of Gk
13, we have cr(Gk

13 − e) ≤ 12.

Proof. On a high level, our proof strategy can be described as follows. We provide a
collection of drawings of Gk

13, such that each edge of Gk
13 in some of the drawings, when

deleted, exhibits a “drop” of the crossing number below 13. Note that, for thick edges, we
are deleting only one edge of the multiple bunch.

In particular, the drawing of Figure 2 proves the claim for e ∈ {u1v4, u2v3, u3v2, u4v1}
(the blue edges of the bowtie subgraph); whenever any one of these edges is removed, we save
at least one crossing from the optimal number 13. Likewise, Figure 2 proves the claim for
e ∈ {xv5, v4v5} (see the dotted routings of the edge v1u4), and hence also for e ∈ {xu5, u4u5}
by symmetry (the automorphism from Observation 4.3).

To proceed with the remaining edges e of the bowtie graph B ⊆ Gk
13 (the red edges),

we resort to drawings that may have more than 13 crossings but still provide a drawing
of Gk

13 − e with at most 12 crossings. Consider first the drawing obtained from the one of
Figure 2 by “flipping” the right-hand part of the picture along the line through x and u5.
See Figure 4 a. In this drawing (with 14 crossings), the only crossings occur between the
7-thick edge xu1 and the edges wk

1 wk
4 , wk

2 v5. By a slight shift of the latter two edges, we
obtain another drawing with only 14 crossing between the 5- and 2-thick edges u1u2, u1v4
and again the edges wk

1 wk
4 , wk

2 v5. Removing an edge of the bunch xu1 (respectively, one edge
of u1u2) drops the crossing number down to 12. Second, there is a drawing with 16 crossing,
which occur only between the 4-thick edges v2v3 and u3u4; see Figure 4 b. Deleting any one

SoCG 2019

14:12 Bounded Maximum Degree in Crossing-Critical Graphs

a)

4
4

4

5

7

7

5

4

4

4

2

2
2

2

xu5 v5

wi
2

wi
1

wi
3

wi
4

··
·

··
·

b)

4
4

4

5

7

7

5

4

4

4

2

2

2

2

xu5 v5

wi
2

wi
3

wi
4

wi
1

··
·

··
·

Figure 5 Two drawings of the graph Gk
13, having (a) 13 and (b) 18 crossings. These drawings

are used to argue criticality of edges of the i-th wedge. The grey areas span the crossing-free wedges
of Gk

13 which are not detailed in the pictures, similarly as in Figure 4.

edge of v2v3, u3u4 again drops the crossing number down to at most 12. Consequently, our
claim holds for e ∈ {xu1, u1u2, v2v3, u3u4} and, by symmetry, for e ∈ {xv1, v1v2, u2u3, v3v4}.

We are left with the last, and perhaps most interesting, cases in which e is an edge in
the i-th wedge Di. Imagine we “disconnect” Di by removing vertices wi

1 and wi
4 and the

edge wi
2wi

3, and then twist the bowtie graph B together with the adjacent strips of wedges
D1 ∪ . . .∪Di−1 and Di+1 ∪ . . .∪Dk, removing all crossings. If we introduce the vertices and
edges of Di back, we get a drawing in Figure 5 a with 13 crossings which are only between the
edges xwi

1, wi
2wi

3, wi
1wi

4 and the six blue bowtie edges. For every edge e ∈ {xwi
1, wi

2wi
3, wi

1wi
4}

its removing from Gk
13 thus decreases the crossing number to at most 12. Lastly, we may

move the vertex wi
1 to obtain another drawing as in Figure 5 b. The latter drawing has 18

crossings between the edges wi
1wi

2, wi
2wi

3 and the six blue bowtie edges. Removing one edge
of wi

1wi
2 thus drops the crossing number down to 12, again. With help of symmetry, the

claim is thus proved also for every edge e ∈ E(Di), for each i ∈ {1, 2, . . . , k}. J

For d ≥ 4, Theorem 1.2 is then established with G(d) := G
bd/2c
13 .

5 Extended crossing-critical constructions

In the previous section, we have constructed an infinite family of 13-crossing-critical graphs
with unbounded maximum degree. There are two further natural questions to be asked;
(a) what about analogous c-crossing-critical families for c > 13, and (b) what about con-
structing c-crossing-critical graphs with more than one high-degree vertex?

Clearly, disjoint union of a graph Gk
13 with c−13 disjoint copies of K3,3 yields a (disconnec-

ted) c-crossing-critical graph with maximum degree greater than d, for every c ≥ 14. Similarly,
concerning (b), we can consider disjoint union of t copies of Gk

13 to get a 13t-crossing-critical
graph with t vertices of arbitrarily high degree. Though, our aim is to preserve also the
3-connectivity property of the resulting graphs.

First, to motivate the coming construction, we recall that the zip product of Definition 2.3
requires a vertex of degree 3 in the considered graphs. However, the graph Gk

13 of Definition 4.2
has no such vertex, and so we come with the following modification.

D. Bokal, Z. Dvořák, P. Hliněný, J. Leaños, B. Mohar, and T. Wiedera 14:13

t1 s t2

t3

4 4

t1

s1 s2

s3

t2

t3

4
3

4

Figure 6 An illustration of the 4-to-3 expansion of the vertex s in a graph G. Clearly, for every
optimal drawing of G respecting Claim 4.1, this “split” construction can be preformed in a small
neighbourhood of s without introducing additional crossings.

I Definition 5.1 (Critical family {Hk
13}). Let G be a graph and s ∈ V (G) be a vertex incident

exactly with two 4-thick edges st1, st2, and one ordinary edge st3. We call a 4-to-3 expansion
of s the following operation: in G, remove the vertex s with its incident edges, and add three
new vertices s1, s2, s3, two 4-thick edges s1t1, s2t2, one 3-thick edge s1s2, and three ordinary
edges s3t1, s3t2, s3t3. See the sketch in Figure 6.

Now, for k ≥ 2, the graph Hk
13 is constructed from the graph Gk

13 of Definition 4.2 by a
4-to-3 expansion of the vertex v3 and of the vertex u3 (cf. Figure 2).

The proof of the following technical Lemma is present in the full paper.

I Lemma 5.2. Let G be a 13-crossing-critical graph, and let s ∈ V (G) be a vertex incident
exactly with two 4-thick edges and one ordinary edge in G. If G1 is a graph obtained by a
4-to-3 expansion of s, then G1 is also 13-crossing-critical.

I Remark 5.3. The number 13 of crossings in Lemma 5.2 is rather special and the claim
cannot be easily generalized to other numbers of crossings. For instance, one can construct
a graph of crossing number 14, such that one of its 4-to-3 expansions has crossing number
only 13.

I Corollary 5.4. For every k ≥ 2, the graph Hk
13 is 13-crossing-critical.

Proof. We start with Theorem 1.2, and apply Lemma 5.2 to the vertices v3 and u3 of Gk
13. J

Proof of Corollary 1.3. For c = 13, we set G(13, d) := H
bd/2c
13 from Corollary 5.4. Note that

G(13, d) contains two vertices of degree 3. For c > 13, we proceed by induction, assuming
that we have already constructed the graph G(c− 1, d) and it contains a vertex of degree 3.
Theorem 2.4 establishes that G(c, d), as a zip product of G(c− 1, d) with K3,3, is c-crossing-
critical (and it still contains the same vertex x of high degree as Hk

13 does). Furthermore,
G(c, d) contains a vertex of degree 3 coming from the K3,3 part. J

Proof of Corollary 1.4. The proof proceeds in a manner similar to the proof of Corollary 1.3.
This time we inductively zip together (cf. Theorem 2.4) i ≤ c/13 copies of the graph H

bd/2c
13

and c− 13i copies of K3,3, which results in a c-crossing-critical graph with i vertices (one
per each copy) of degree greater than d. Note that we never “run out” of degree-3 vertices in
the construction since each copy of H

bd/2c
13 has two such vertices. J

6 Concluding remarks and open problems

While our contribution closes the questions related to the validity of the bounded maximum
degree conjecture, the following problems remain open:

SoCG 2019

14:14 Bounded Maximum Degree in Crossing-Critical Graphs

I Problem 6.1. For each c ≤ 12, determine the least integer D(c) bounding maximum degree
of c-crossing-critical graphs.

I Problem 6.2. Develop a theory of wedges that parallels the theory of tiles for constructively
establishing c-crossing-criticality of graphs with large maximum degrees.

Furthermore, the requirement in Corollary 1.4 that the number i of large degree vertices
is at most c/13 could possibly be weakened. The following is a natural question. For an
integer i ≥ 0, let ci denote the largest possible positive integer c for which there exists an
integer D such that every 3-connected c-crossing-critical graph has at most i vertices of
degree larger than D. From the previous, we easily see that 12 ≤ ci ≤ 13i + 12, and we have
exactly determined the value c0 = 12 in Theorems 1.1 and 1.2.

I Problem 6.3. Determine ci as a function of i.

References
1 Miklós Ajtai, Vašek Chvátal, Monroe M. Newborn, and Endre Szemerédi. Crossing-Free

Subgraphs. In Peter L. Hammer, Alexander Rosa, Gert Sabidussi, and Jean Turgeon, editors,
Theory and Practice of Combinatorics, volume 60 of North-Holland Mathematics Studies, pages
9–12. North-Holland, 1982. doi:10.1016/S0304-0208(08)73484-4.

2 Drago Bokal. Infinite families of crossing-critical graphs with prescribed average degree and
crossing number. J. Graph Theory, 65(2):139–162, 2010. doi:10.1002/jgt.20470.

3 Drago Bokal, Mojca Bračič, Marek Dernár, and Petr Hliněný. On Degree Properties of
Crossing-Critical Families of Graphs. Electron. J. Comb., 26(1):#P1.40, 2019.

4 Drago Bokal, Markus Chimani, and Jesús Leaños. Crossing number additivity over edge cuts.
Eur. J. Comb., 34(6):1010–1018, 2013. doi:10.1016/j.ejc.2013.02.002.

5 Drago Bokal, Bogdan Oporowski, R. Bruce Richter, and Gelasio Salazar. Characterizing
2-crossing-critical graphs. Advances in Appl. Math., 74:23–208, 2016. doi:10.1016/j.aam.
2015.10.003.

6 Markus Chimani and Tilo Wiedera. An ILP-based Proof System for the Crossing Number
Problem. In ESA 2016, LIPIcs 57, pages 29:1–29:13, 2016. doi:10.4230/LIPIcs.ESA.2016.29.

7 Zdenek Dvořák, Petr Hliněný, and Bojan Mohar. Structure and Generation of Crossing-Critical
Graphs. In SoCG 2018, LIPIcs 99, pages 33:1–33:14, 2018. doi:10.4230/LIPIcs.SoCG.2018.
33.

8 Zdeněk Dvořák and Bojan Mohar. Crossing-critical graphs with large maximum degree. J.
Comb. Theory, Series B, 100(4):413–417, 2010. doi:10.1016/j.jctb.2009.11.003.

9 César Hernández-Vélez, Gelasio Salazar, and Robin Thomas. Nested cycles in large tri-
angulations and crossing-critical graphs. J. Comb. Theory, Series B, 102(1):86–92, 2012.
doi:10.1016/j.jctb.2011.04.006.

10 Petr Hliněný. Crossing-number critical graphs have bounded path-width. J. Comb. Theory,
Series B, 88(2):347–367, 2003. doi:10.1016/S0095-8956(03)00037-6.

11 Martin Kochol. Construction of crossing-critical graphs. Discrete Math., 66(3):311–313, 1987.
doi:10.1016/0012-365X(87)90108-7.

12 Jesús Leaños and Gelasio Salazar. On the additivity of crossing numbers of graphs.
Journal of Knot Theory and Its Ramifications - JKTR, 17:1043–1050, 2008. doi:10.1142/
S0218216508006531.

13 Frank T. Leighton. Complexity Issues in VLSI: Optimal Layouts for the Shuffle-exchange
Graph and Other Networks. MIT Press, Cambridge, MA, USA, 1983.

14 Bojan Mohar, Richard J. Nowakowski, and Douglas B. West. Research problems from
the 5th Slovenian Conference (Bled, 2003). Discrete Math., 307(3-5):650–658, 2007. doi:
10.1016/j.disc.2006.07.013.

http://dx.doi.org/10.1016/S0304-0208(08)73484-4
http://dx.doi.org/10.1002/jgt.20470
http://dx.doi.org/10.1016/j.ejc.2013.02.002
http://dx.doi.org/10.1016/j.aam.2015.10.003
http://dx.doi.org/10.1016/j.aam.2015.10.003
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.29
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.33
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.33
http://dx.doi.org/10.1016/j.jctb.2009.11.003
http://dx.doi.org/10.1016/j.jctb.2011.04.006
http://dx.doi.org/10.1016/S0095-8956(03)00037-6
http://dx.doi.org/10.1016/0012-365X(87)90108-7
http://dx.doi.org/10.1142/S0218216508006531
http://dx.doi.org/10.1142/S0218216508006531
http://dx.doi.org/10.1016/j.disc.2006.07.013
http://dx.doi.org/10.1016/j.disc.2006.07.013

D. Bokal, Z. Dvořák, P. Hliněný, J. Leaños, B. Mohar, and T. Wiedera 14:15

15 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins University Press,
2001. URL: https://jhupbooks.press.jhu.edu/content/graphs-surfaces.

16 Benny Pinontoan and R. Bruce Richter. Crossing numbers of sequences of graphs II: Planar
tiles. J. Graph Theory, 42(4):332–341, 2003. doi:10.1002/jgt.10097.

17 R. Bruce Richter and Carsten Thomassen. Minimal Graphs with Crossing Number at Least k.
J. Comb. Theory, Series B, 58(2):217–224, 1993. doi:10.1006/jctb.1993.1038.

18 Jozef Širáň. Infinite families of crossing-critical graphs with a given crossing number. Discrete
Math., 48(1):129–132, 1984. doi:10.1016/0012-365X(84)90140-7.

SoCG 2019

https://jhupbooks.press.jhu.edu/content/graphs-surfaces
http://dx.doi.org/10.1002/jgt.10097
http://dx.doi.org/10.1006/jctb.1993.1038
http://dx.doi.org/10.1016/0012-365X(84)90140-7

Preconditioning for the Geometric Transportation
Problem
Andrey Boris Khesin
University of Toronto, Toronto, Ontario, Canada

Aleksandar Nikolov
University of Toronto, Toronto, Ontario, Canada
http://www.cs.toronto.edu/~anikolov/
anikolov@cs.toronto.edu

Dmitry Paramonov
University of Toronto, Toronto, Ontario, Canada

Abstract
In the geometric transportation problem, we are given a collection of points P in d-dimensional
Euclidean space, and each point is given a supply of µ(p) units of mass, where µ(p) could be a
positive or a negative integer, and the total sum of the supplies is 0. The goal is to find a flow (called
a transportation map) that transports µ(p) units from any point p with µ(p) > 0, and transports
−µ(p) units into any point p with µ(p) < 0. Moreover, the flow should minimize the total distance
traveled by the transported mass. The optimal value is known as the transportation cost, or the
Earth Mover’s Distance (from the points with positive supply to those with negative supply). This
problem has been widely studied in many fields of computer science: from theoretical work in
computational geometry, to applications in computer vision, graphics, and machine learning.

In this work we study approximation algorithms for the geometric transportation problem. We
give an algorithm which, for any fixed dimension d, finds a (1 + ε)-approximate transportation map
in time nearly-linear in n, and polynomial in ε−1 and in the logarithm of the total supply. This is the
first approximation scheme for the problem whose running time depends on n as n · polylog(n). Our
techniques combine the generalized preconditioning framework of Sherman, which is grounded in
continuous optimization, with simple geometric arguments to first reduce the problem to a minimum
cost flow problem on a sparse graph, and then to design a good preconditioner for this latter problem.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Network flows

Keywords and phrases Earth Mover Distance, Transportation Problem, Minimum Cost Flow

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.15

Related Version A full version is available at https://arxiv.org/abs/1902.08384.

Funding Aleksandar Nikolov: Supported by an NSERC Discovery Grant (RGPIN-2016-06333).

1 Introduction

In the Geometric Transportation problem, we are given a set P of n points in d-dimensional
Euclidean space, and a function µ : P → Z that assigns a (positive or negative integer)
weight to each point, so that

∑
p∈P µ(p) = 0. We call µ the supply function. We can think of

each point p ∈ P as either a pile of earth, or a hole, and µ(p) gives, respectively, the amount
of earth (if positive) or the size of the hole (if negative). The constraint on µ means that the
total space in the holes equals the total amount of earth in the piles. Our goal is to find the
most efficient way to transport the earth to the holes, where the cost of transporting a unit of
mass from p to q equals the distance ‖p− q‖2 it must travel, measured in the Euclidean norm.

© Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.cs.toronto.edu/~anikolov/
mailto:anikolov@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.15
https://arxiv.org/abs/1902.08384
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Preconditioning for Transportation

More formally, let P+ = {p ∈ P : µ(p) ≥ 0} be the “piles” and P− = {q ∈ P : µ(q) < 0}
be the “holes”. We want to solve the minimum cost flow problem given by the following
linear program

Minimize
∑

p∈P+,q∈P−

fpq‖p− q‖2

subject to

∀p ∈ P+ :
∑

q∈P−

fpq = µ(p),

∀q ∈ P− :
∑

p∈P+

fpq = µ(q),

∀p ∈ P+, q ∈ P− :fpq ≥ 0.

Above, the constraints enforce that all demands are satisfied, i.e. all the earth goes into
holes, and no hole is overfilled. A vector f ∈ RP+×P− that satisfies these constraints is called
a transportation map for (P, µ). The cost of an optimal transportation map is called the
transportation cost of (P, µ), or also the Earth Mover’s Distance, or 1-Wasserstein distance
between the measures φ = µ|P+ and ψ = −µ|P− , and is denoted cost(P, µ).

The geometric transportation problem is a discretized version of the continuous optimal
mass transportation problem of Monge and Kantorovich. This is a classical problem in
mathematics, with many beautiful connections to partial differential equations, geometry,
and probability theory, among others [19]. The discrete problem above has also found a large
number of applications, for example to shape matching [9, 10] and image retrieval [15, 13] in
computer vision, and interpolation between distributions in graphics [6]. It is also of intrinsic
interest as a natural problem in computational geometry.

The geometric transportation problem can be modeled as a minimum cost flow problem in
the complete bipartite graph with bi-partition P+ ∪P−. This graph is dense, and solving the
minimum cost flow problem exactly using the algorithm of Lee and Sidford would take time
O(n2.5 polylog(U)),1 where U =

∑
p∈P+

µ(p). If instead we settle for an (1+ε)-approximation,
then the recent algorithm of Sherman [18] gives running time O(n2+o(1)ε−2). However, there
exist faster (in certain parameter regimes) approximation algorithms which exploit the
geometric structure of the problem: after a long line of work, Sharathkumar and Agarwal [17]
gave an algorithm that computes a (1 + ε)-approximation in time O(n

√
U polylog(U, ε, n)),

and, recently, Agarwal et al. [1] gave several algorithms with different trade-offs, among them
an (1 + ε)-approximation algorithm running in time O(n3/2ε−d polylog(U, n)). A nearly
linear time (1 + ε)-approximation algorithm was given by Sharathkumar and Agarwal [16] in
the special case of unit supplies; their algorithm runs in time O(nε−O(d) polylog(n)). Until
now, no such algorithm was known for general supply functions.

A related line of work focuses on estimating the transportation cost, without necessarily
computing a transportation map. An influential paper in this direction was that of Indyk [11],
whose algorithm gives a constant factor approximation to the transportation cost in the case
of unit supplies, in time O(n polylog(n)). This result was extended to arbitrary supplies and
to approximation factor 1 + ε by Andoni et al. [4], whose algorithm runs in time O(n1+o(1)),
with the o(1) factor in the exponent hiding dependence on ε. The result of Sherman [18],
mentioned above, together with the existence of sparse Euclidean spanners, implies an

1 We allow the implicit constants in the asymptotic notation to depend on the dimension d, except when
the asymptotic notation is used in an exponent.

A.B. Khesin, A. Nikolov, and D. Paramonov 15:3

O(n1+o(1)ε−O(d)) time algorithm to estimate the transportation cost.2 It is not immediately
clear, however, how to use the flow in G to construct a transportation map of comparable
cost in nearly linear time.

There is a related line of work [14, 2, 3] that studies the transportation problem when
the cost of transporting mass from p to q is ‖p− q‖r

2, giving the r-Wasserstein distance. This
appears to be a more challenging problem, and we do not address it further.

1.1 Our results and methods
Let us recall that the aspect ratio (or spread) of a pointset P is defined as the ratio of its
diameter to the smallest distance between two distinct points. Our main result is a nearly
linear time (1 + ε)-approximation algorithm for the geometric transportation problem, as
captured by the following theorem.

I Theorem 1. There exists a randomized algorithm that on input an n-point set P ⊂ Qd with
aspect ratio ∆, and supply function µ : P → Z, runs in time O(nε−O(d) log(∆)O(d) logn), and
with probability at least 1/2 finds a transportation map with cost at most (1 +ε) · cost(P, µ).

There also exists a randomized algorithm that on input an n-point set P ⊂ Qd and supply
function µ : P → Z such that U =

∑
p∈P+

µ(p), runs in time O(nε−O(d) log(U)O(d) log(n)2),
and with probability at least 1/2 finds a transportation map with cost at most
(1 + ε) · cost(P, µ).

In constant dimension, the dependence of the running time on the aspect ratio ∆ or total
supply U is polylogarithmic, and the dependence on the approximation ε is polynomial. The
dependence on n is just O(n logn) (respectively O(n log(n)2)). This is in contrast with prior
work which either had a much larger dependence on n, or a polynomial dependence on U .

In the proof of this result, we employ a combination of geometric tools, and tools from
continuous optimization developed for the general minimum cost flow problem. As a first step,
we reduce the transportation problem to an (uncapacitated) minimum cost flow problem on a
random sparse graph. This construction is closely related to the prior work of Sharathkumar
and Agarwal in the case of unit capacities [16], and also to the estimation algorithm for the
transportation cost in [4]. In particular, the sparse graph and minimum cost flow instance
we construct are a simplification of the minimum cost flow instance in [4]. Together with
the recent work of Sherman [18], this reduction is enough to get a O(n1+o(1)ε−O(d)) time
algorithm to estimate the transportation cost. As mentioned above, this running time can
also be achieved using a Euclidean spanner, and the random sparse graph we use can, in
fact, be seen as a randomized spanner. Our graph, however, has a nice hierarchical structure
not shared by other spanner constructions. In particular, there is a quadtree of the input
point set such that any edge leaving a cell of the quadtree goes to either a sibling cell or
a parent cell. This property is useful both for improving the running time further, and for
computing a transportation map.

To further improve the running time, we open up Sherman’s elegant framework, and
combine it with classical geometric constructions. Sherman showed that repeatedly finding
a flow which is approximately optimal, and approximately feasible gives a fast algorithm,
as long as the problem being solved is sufficiently well conditioned. Unfortunately, most
minimum cost flow problems are not well-conditioned in their natural formulations, and
we need to construct a preconditioner. We exploit ideas from the known embeddings of

2 We are indebted to an anonymous reviewer for this observation.

SoCG 2019

15:4 Preconditioning for Transportation

transportation cost into `1 [7, 12] to construct a preconditioner with condition number that
depends polynomially on the approximation factor and the logarithm of the aspect ratio. The
insight that these simple and well-known techniques can be repurposed to give high-quality
preconditioners is one of our main conceptual contributions. Finally, we also give a simple
method to extract a transportation map from a low-cost flow in our random sparse graph.

2 Notation and basic notions

We use the notation ‖x‖p for the `p norm of a vector x ∈ Rd: ‖x‖p =
(∑d

i=1 |xi|p
)1/p

. We
will assume that the input P ⊂ Qd to our problem lies in [0,∆]d, and that the smallest
Euclidean distance between any two points is at least 1. Since any shifts, rotations, or
dilations of the points do not change the problem, this assumption is equivalent to assuming
that the aspect ratio of P , i.e. the ratio between the diameter of P and the smallest distance
between two distinct points, is bounded between ∆ and

√
d∆.

In fact, at the cost of a small increase in the approximation factor, we can reduce to this
case of bounded aspect ratio. The reduction produces a point set P for which ∆ is bounded
by a factor that depends on U =

∑
p∈P+

µ(p).

I Lemma 2 ([11, 4]). Suppose that there exists a function T , increasing in all its parameters,
and an algorithm which, for any ε, δ < 1, on input of size n in [0,∆]d ∩ Zd, runs in time
O(nT (∆, ε, δ)), and with probability 1− δ computes a 1 + ε approximation to the geometric
transportation problem. Then there exists an algorithm that takes any input P ⊂ Rd of size
n and µ : P → Z such that U =

∑
p∈P+

µ(p), runs in time O(nT (cdU/ε2, ε, δn)) for an
absolute constant c, and, with probability 1− δ, achieves an approximation of 1 +O(ε) for
the geometric transportation problem on P and µ.

With this lemma, the second algorithm in Theorem 1 follows from the first one. For this
reason, we can focus our presentation on the case of bounded aspect ratio.

For a set V , we call f ∈ RV×V a flow if it is anti-symmetric, i.e. fuv = −fvu for every
u, v ∈ V . Intuitively, we think of fuv > 0 as flow going in the direction from u to v. For a
graph G = (V,E), we define a flow on G to be a flow f supported on E, i.e. one such that
fuv = 0 for any (u, v) 6∈ E. The divergence of a flow f at u is the quantity

∑
v∈V fuv, i.e. the

excess of the flow leaving u over the flow entering u. When the divergence at u is 0, we say
that flow conservation is satisfied at u.

In general, we assume that our graphs are stored in the adjacency list representation, and
that flow values are stored with the adjacency list.

3 Reduction to minimum cost flow on a sparse graph

The first step in our algorithm is to reduce the geometric transportation problem, which is
naturally modeled as a minimum cost flow problem on a complete bipartite graph, to another
minimum cost flow on a sparse random graph. The following construction is a simplified
version of one used in [4].

3.1 Graph construction
Recall that P ⊂ [0,∆d]. We start by constructing a grid containing all the points in P

as follows. We sample a uniformly random point x ∈ [0,∆]d, and define the cell C0 =
[−∆,∆]d + x. Note that all points in P are in C0. We say that C0 is on level 0. The set of

A.B. Khesin, A. Nikolov, and D. Paramonov 15:5

C`−1

C`

Figure 1 A cell C`−1 on level `− 1 and the four cells on level ` contained in it. The subcells of
C`−1 are shown with dashed lines, and the corresponding net points in N`−1 with black dots. The
subcells of one of the cells on level ` are shown with dotted lines, and the corresponding net point in
N` with crosses.

cells on level ` is labelled C` and is constructed by taking each cell C in C`−1 and dividing
it into 2d equally-sized cubes of side length half the side length of C, and retaining those
that contain points in P . We say that C is the parent of the cells into which it was divided.
Conversely, those 2d cells are called the children of C. This division is continued until level
L, where all points in P lie in different cells in CL. With probability 1, no point of P lands
on the boundary of any cell, so we will ignore this event.

Since the side length of any cell on level ` is half of the side length of a cell on level
`− 1, any cell in C` has side length 21−`∆, and we refer to this length as ∆l. Also note that,
since the closest two points in P are at least distance 1 apart, we have L ≤ log2(2

√
d∆), so

L = O(log ∆). Moreover, any point p ∈ P lies in at most L+ 1 cells, one per level, and, since
in C` we only retain cells that contain points in P , we have that |C0 ∪ . . . ∪ CL| ≤ n(L+ 1) =
O(n log ∆).

Let ε0 be a small number such that ε−1
0 is an even integer. This ε0 is not the same as

the value used when we speak of a (1 + ε)-approximation, although the two are related,
as we will see. Next, for each ` ∈ {0, . . . , L, we take each cell C ∈ C`, and we divide it
into ε−d

0 subcells, each of side length ε0∆l. The set of all such subcells of all C ∈ C` is
denoted C̃`. To each subcell we associate a net point at its centre and we denote the set of
all net points on level ` as N`. See Figure 1 for an illustration. Note that |N`| = |C`|ε−d

0 , so
|N0 ∪ . . . ∪NL| ≤ n(L+ 1)ε−d

0 = O(nε−d
0 log ∆).

If p is a point in C0, let C`(p) ∈ C̃` be the unique subcell on level ` that contains p.
Similarly, let N`(p) be the net point on level ` closest to p. Equivalently, N`(p) is the center
of C`(p). We say that N`(p) and N`−1(p) are each other’s child and parent, respectively.

We are now ready to construct our graph G = (V,E). We set V = P ∪N0∪N1∪ · · ·∪NL,
the set of all of the points in the original problem and all of the netpoints we have constructed.
By the previous discussion, |V | = O(nε−d

0 log ∆). We build our graph using three types
of edges. The first set, E1, connects points p in P to their closest net point on level L,
i.e. E1 = {(p,NL(p)) : p ∈ P}. The size of this set is |E1| = n. The second set of edges, E2,
connects all net points of subcells of a given cell pairwise. Thus,

E2 = {(u, v) : ` ∈ {0, 1, . . . , L}, C ∈ C`, u, v ∈ N` ∩ C s.t. u 6= v}.

Since |C`| ≤ n, and, for any C ∈ C`, |N` ∩ C| = ε−d
0 , we have that |E2| ≤ (L + 1)nε−2d

0 =
O(nε−2d

0 log ∆). The last set of edges, E3, connects net points to their parent net points, i.e.

E3 = {(N`−1(u), u) : ` ∈ {1, 2, . . . , L}, u ∈ N`}.

SoCG 2019

15:6 Preconditioning for Transportation

The size of E3 is less than the total number of net points, so |E3| = O(nε−d
0 log ∆). Then,

the set of edges is defined as E = E1 ∪ E2 ∪ E3, and this completes the description of
G = (V,E). The number of edges is dominated by the size of E2, and is in O(nε−2d

0 log ∆).
We will be calculating distances between points along paths in this graph, and we define the
distance/cost of any edge to equal the Euclidean distance between the two endpoints of the
edge.

For the rest of the paper we will use G to refer to the random graph constructed above.
Having stored the random shift of C0, we can enumerate the vertices in time O(nε−d

0 log ∆)
by going through each point in P and checking which cells it lies in. We can then store
the vertices in a static dictionary [8]. Similarly, we can construct the adjacency lists of the
vertices in time O(nε−2d

0 log ∆).

3.2 Preserving Euclidean distance
Let distG(u, v) be the shortest path distance between two nodes u and v of G, i.e.

distG(u, v) = min
k∑

i=1
‖ui − ui−1‖2,

with the minimum taken over paths u = u0, . . . , uk = v connecting u and v in G. Our goal
for this section is to show that, for any two p and q in P , the expected value of distG(u, v) is
close to the Euclidean distance between them. In other words, we want to show that our
random graph construction provides a randomized embedding of Euclidean distance into the
shortest path metric of a sparse graph. This is similar to the embeddings used in [4] and
[17, 16], and can be seen as a randomized spanner construction, in which the graph G only
needs to have low stretch in expectation.

For two points p and q in P , we define `(p, q) to be the level of the smallest cell
containing both p and q, which can depend on the random shift of the grid. This means
that C`(p,q)(p) = C`(p,q)(q), but C`(p,q)+1(p) 6= C`(p,q)+1(q). The following definition will be
useful.

I Definition 3. Given two points p, q ∈ P , the canonical path between p and q in the random
graph G consists of the edges

{(N`(p), N`−1(p) : `(p, q) + 1 ≤ ` ≤ L} ∪ {(N`(p,q)(p), N`(p,q)(q))}
∪ {(N`(q), N`−1(q) : `(p, q) + 1 ≤ ` ≤ L} ∪ {(NL(p), p), (NL(q), q)}.

The canonical path could be much longer than ‖p− q‖2 because, if p and q are two nearby
points that are separated by a grid line, the canonical path will be much larger than the
Euclidean distance. However, when p and q are very close together, the likelihood that such
a grid line will fall between them is low. To formalize this intuition, we need the following
well-known bound on the probability that p and q will be split at a certain level of the tree,
which is elementary, and goes back at least to Arora’s work on Euclidean TSP [5].

I Lemma 4. Over the random shift of C0, ∀p, q ∈ P ,

P(C`(p) 6= C`(q)) ≤
‖p− q‖1

∆`
≤
√
d‖p− q‖2

∆`
.

Using this standard lemma, we can prove the bound on the distortion between Euclidean
distance and the expected shortest path distance in G. The proof, which is standard, is
presented in the full version of the paper.

A.B. Khesin, A. Nikolov, and D. Paramonov 15:7

I Lemma 5. Let p, q ∈ P . Then, for any shift of C0, ‖p− q‖2 ≤ distG(p, q). Moreover, over
the random shift of C0, E[distG(p, q)] ≤ (1 +O(ε0L))‖p− q‖2.

3.3 Approximating the transportation cost with minimum cost flow
We are now ready to translate the transportation problem to a minimum cost flow problem
in G, captured by the following linear program.

Minimize
∑

(u,v)∈E

fuv‖u− v‖2 (1)

subject to
∀u, v ∈ V :fuv = −fvu (2)

∀p ∈ P :
∑
u∈V

fpu = µ(p), (3)

∀u ∈ V \ P :
∑
v∈v

fuv = 0. (4)

Let us denote by cost(G,µ) the value of the optimal solution to the problem (1)–(4). Note
that, since G is a random graph, cost(G,µ) is also a random variable.

The next theorem shows that that cost(G,µ) approximates the transportation cost
cost(P, µ). The proof is given in the full version of the paper.

I Theorem 6. For any shift of C0, cost(P, µ) ≤ cost(G,µ). Moreover, over the random
shift of C0,

E[cost(G,µ)] ≤ (1 +O(ε0L))cost(P, µ).

4 Solving the minimum cost flow problem

In this section we describe the generalized preconditioning framework of Sherman [18], and
describe how to use it to solve the minimum cost flow problem (1)–(4) in nearly linear time.

4.1 Generalized preconditioning framework
We take a short detour to describe the generalized preconditioning framework of Sherman.
Suppose that ‖ · ‖ is a norm on Rm, and we are given inputs A ∈ Rn×m and b ∈ Rn. The
framework is concerned with solving the following optimization problem over the variables
f ∈ Rm:

Minimize ‖f‖ (5)
subject to Af = b, . (6)

This formulation can capture many important problems, including, crucially for us, the
uncapacitated minimum cost flow problem,3 as we explain later.

A central definition in the framework is that of the nonlinear condition number. Before
we state it, let us recall that the norm of a linear map T : X → Y , where (X, ‖ · ‖X) and
(Y, ‖ · ‖Y) are two finite dimensional normed vector spaces, is defined as

‖T‖ = sup
x6=0

‖T (x)‖Y

‖x‖X
.

3 Uncapacitated minimum cost flow is commonly known as the transportation problem. We do not use
this terminology, in order to avoid confusion with the geometric transportation problem.

SoCG 2019

15:8 Preconditioning for Transportation

We adopt the same definition for non-linear maps, as well. For an n×m matrix A, and norms
‖ · ‖X on X = Rn and ‖ · ‖Y on the column span Y of A, we use the notation ‖A‖‖·‖X→‖·‖Y

to refer to the norm of the linear map from X to Y represented by A.
Having recalled these notions, we proceed to define the condition number.

I Definition 7. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be two finite dimensional normed vector spaces.
The non-linear condition number κ of a linear map T : X → Y is defined by

κ(T) = inf
S
‖T‖‖S‖,

where S : Y → X ranges over all (not necessarily linear) maps such that for all x ∈ X we
have T (S(Tx)) = Tx.

For an n×m matrix A, and norms ‖ · ‖X on X = Rm and ‖ · ‖Y on the column span Y
of A, we define κ‖·‖X→‖·‖Y

(A) as κ(T), where T : X → Y is the linear map represented by
the matrix A.

This definition generalizes the standard condition number, which is the special case in which
both norms are taken to be Euclidean.

The generalized preconditioning framework is based on composing rough approximation
algorithms to get a high-quality approximation. The rough approximation algorithms are
further allowed to violate the constraints of the problem slightly. Thus, they achieve a
bi-criteria approximation, captured by the following definition.

I Definition 8. Let ‖ · ‖Y be a norm defined on the range of the matrix A in (6). Let f∗ be
an optimal solution to the problem (5)–(6). Then f ∈ Rm is called an (α, β)-solution (with
respect to ‖ · ‖Y) to (5)–(6) if ‖f‖ ≤ α‖f∗‖ and, moreover,

‖Af − b‖Y ≤ β‖A‖‖·‖→‖·‖Y
‖f∗‖.

An algorithm that, when given inputs A and b, outputs an (α, β)-solution f is called an
(α, β)-solver (with respect to ‖ · ‖Y) for (5)–(6).

We use the next result of Sherman, which gives a solver for (5)–(6) with running time
controlled by condition number of the constraint matrix.

I Theorem 9 ([18]). Let ε, β > 0, and suppose that the norm in (5) is the `m
1 norm. Let

κ = κ‖·‖1→‖·‖1(A), and let M be an upper bound on the time necessary to compute matrix-
vector products with A and A>. Then there exists a (1 + ε, β)-solver with respect to ‖ · ‖1 for
the problem (5)–(6) with running time bounded by

O
(
κ2(m+ n+M) log(m)(ε−2 + log(1/β))

)
.

This algorithm is based on repeatedly applying an (α, β) solver with much worse dependence
on β; in fact, at the cost of a slightly worse dependence on κ, for the latter one can use a
simple solver based on the multiplicative weights update method.

Rescaling f coordinatewise gives us the following easy corollary, whose proof is omitted.

I Corollary 10. Let ε, β > 0, and let c ∈ Rm
>0. Suppose that the norm in (5) is given by

‖f‖c =
∑m

i=1 cifi. Let κ = κ‖·‖c→‖·‖1(A), and let M be the time necessary to compute matrix-
vector products with A and A>. Then there exists a (1+ε, β)-solver with respect to ‖·‖1 for the
problem (5)–(6) with running time bounded by O

(
κ2(m+ n+M) log(m)(ε−2 + log(1/β))

)
.

A.B. Khesin, A. Nikolov, and D. Paramonov 15:9

While Theorem 9 and Corollary 10 allow us to find solutions which are very close to being
feasible, they do not give an exactly feasible solution. The final result we use from Sherman
allows us to use a solver which exactly satisfies the constraints, but only achieves a large
approximation ratio, to round an approximately feasible solution to an exactly feasible one.

To state the result, we need to define the composition of two solvers F and F ′. The
composed algorithm F ′ ◦ F first calls F on A and b to get f ; then it calls F ′ on A and the
residual vector b−Af to get a solution f ′; finally it outputs f + f ′.

I Theorem 11 ([18]). Let C ≥ 1, and ε, β > 0. Let κ = κ‖·‖→‖·‖Y
(A), where ‖·‖ is the norm

in (5), and ‖ · ‖Y is some norm on the column span of A. Then, if F is a (1 + ε, εβ/κ)-solver,
and F ′ is a (C, 0)-solver, the composition F ′ ◦ F is a (1 + ε+ Cεβ, 0)-solver.

4.2 Preconditioner construction
The formulation (5)–(6) captures the (uncapacitated) minimum cost flow problem with
arbitrary demands. We will explain this for the graph G = (V,E) defined in Section 3.2 and
the minimum cost flow problem (1)–(4). Let us pick an arbitrary orientation on the edges
E, and call the directed edges ~E. Then take A to be the directed vertex by edge incidence
matrix of G: it is indexed by V × ~E, and for any node u, and any directed edge e = (v, w),
set Au,e = 1 if u = v, Au,e = −1 if u = w, and Au,e = 0 otherwise. We represent a flow f by
its restriction to ~E, seen as a vector in R~E . Slightly abusing notation, we will use the letter
f both for this vector, and for the flow, which is defined both for (u, v) ∈ ~E, and for (v, u),
with fvu = −fuv. For a flow vector f , the product Af gives us the vector of divergences,
i.e. for any u ∈ V

(Af)u =
∑

v:(u,v)∈~E

fuv −
∑

v:(v,u)∈~E

fvu =
∑

v:(u,v)∈E

fuv.

We define the vector b ∈ RV to encode the supplies, i.e. for p ∈ P we set bp = µ(p), and for
u ∈ V \ P we set bu = 0. It follows that the constraint Af = b encodes (3)–(4). Finally, let
us denote the cost of an edge e = (u, v) ∈ ~E by c(e) = ‖u− v‖2. Then, for the norm in the
objective (5), we choose ‖f‖c =

∑
e∈E c(e)|fe|. With these choices of A, b, and ‖ · ‖ = ‖ · ‖c,

an optimal solution to (5)–(6) gives an optimal solution to (1)–(4). For the rest of this
section we will fix A, b, c, and ‖ · ‖c to be as just defined.

Unfortunately, we cannot directly use Corollary 10 to get the running time we are aiming
for, since the condition number of the matrix A could be large. We address this by designing
a preconditioner: another matrix B, of full column rank, which can be applied quickly, and
has the property that BA has small condition number. This allows us to apply Corollary 10
to the problem (5)–(6) with the modified, but equivalent, constraint BAf = Bb, and get a
fast algorithm for the minimum cost flow problem in G.

In our construction of the preconditioner B we will use the following lemma, which was
implicit in [18]. We omit the proof, which follows from the arguments in [18].

I Lemma 12. Let ‖ · ‖X be a norm on Rn, and let H be an n ×m matrix. Suppose that
there exists a γ > 0 such that for any h in the column span Y of H, the norm ‖ · ‖Y satisfies

‖h‖Y ≤ min{‖f‖X : f ∈ Rn, Hf = h} ≤ γ‖h‖Y .

Then κ‖·‖X→‖·‖Y
(H) ≤ γ.

We will design a preconditioner matrix B such that ‖b̃‖1 approximates the cost of the
minimum cost flow with supply vector b̃. Then the fact that BA has small condition number
will follow from Lemma 12. The following lemma captures the construction of B, which is
inspired by embedding of the Earth Mover Distance in `1 [7, 12].

SoCG 2019

15:10 Preconditioning for Transportation

I Lemma 13. There exists a matrix B ∈ RV×V of full column rank with at most O(|V | log ∆)
nonzero entries, such that the following holds. For any b̃ ∈ RV such that

∑
u∈V b̃u = 0, we

have

‖Bb̃‖1 ≤ min{‖f‖c : f ∈ R~E , Af = b̃} ≤ γ‖Bb̃‖1,

for γ = O(log(∆)/ε0). Moreover, a flow f satisfying Af = b̃ of cost at most γ‖Bb̃‖1 can be
constructed in time O(nε−d

0 log ∆) given Bb̃.

Proof. The matrix B has one row associated with each vertex u ∈ V . For p ∈ P , we let
Bp,p = ‖p−NL(p)‖2 and Bp,u = 0 for any u 6= p. Every other vertex u ∈ V \P is a net point.
Suppose that u is in N`; then for any v ∈ V such that N`(v) = u, Bu,v = ε0∆`

4(L+1) , and for all
other v, Bu,v = 0. This defines the matrix B. Notice that each vertex u ∈ V contributes to
at most L+ 2 nonzero entries of B: one for each ` ∈ {0, . . . , L} corresponding to N`(u), and
one more when u ∈ P . It is easy to verify directly that B has full column rank.

The definition of B guarantees that

‖Bb̃‖1 =
∑
p∈P

|b̃p|‖p−NL(p)‖2 + 1
L+ 1

L∑
`=0

ε0∆`

4
∑

C̃∈C̃`

∣∣∣∣∣∣
∑

u∈C̃∩V

b̃u

∣∣∣∣∣∣ . (7)

The remainder of the proof is broken down into several claims. For the first claim, let us
extend the definition of cost(G, ·) to supplies which can be non-zero on net points as well by

cost(G, b̃) = min{‖f‖c : f ∈ R~E , Af = b̃}.

B Claim 14. ‖Bb̃‖1 ≤ cost(G, b̃).

Proof. In any feasible flow f , the total cost of the flow on edges incident to points p ∈ P
must equal the first term in (7). Then, we just need to show that the remaining terms are a
lower bound on the total cost of the flow on the remaining edges. In fact we will show that,
for each `,

ε0∆`

4
∑

C̃∈C̃`

∣∣∣∣∣∣
∑

u∈C̃∩V

b̃u

∣∣∣∣∣∣ ≤ cost(G, b̃)−
∑
p∈P

|b̃p|‖p−NL(p)‖2. (8)

It follows that the average of the term on the left over all ` is also a lower bound on the right
hand side, which proves the claim. To establish inequality (8) notice that, in any feasible f ,
flow of value at least

∣∣∣∑
u∈C̃∩V

b̃u

∣∣∣ must enter or leave each C̃ ∈ C̃`, and every edge e from a

vertex in C̃ to a vertex outside of C̃ has cost at least c(e) ≥ ε0∆`/2 by the definition of G.
Therefore, the total cost of flow leaving or entering C̃ is at least ε0∆`

2

∣∣∣∑
u∈C̃∩V

b̃u

∣∣∣. Adding
up these terms over all C̃ ∈ C̃` accounts for the cost of any edge of G at most twice, and (8)
follows. C

B Claim 15. cost(G, b̃) ≤ γ‖Bb̃‖1 for γ = O(L/ε0) = O(log(∆)/ε0).

Proof. We prove the claim by constructing an appropriate feasible flow f . We proceed to
construct f by levels, from the bottom up. The construction will be efficient, also proving
the claim after “moreover” in the statement of the lemma. On level L, for any p ∈ P , we set

A.B. Khesin, A. Nikolov, and D. Paramonov 15:11

fpu = b̃p, where u = NL(p). Then, for levels ` = L− 1, L− 2, . . . , 1, we execute the following
procedure in every subcell C̃ ∈ C̃`−1. Let us define, for any node u and the current flow f ,
the surplus

δ(u, f) =
∑

v:(u,v)∈~E

fuv −
∑

v:(v,u)∈~E

fvu − b̃u =
∑

v:(u,v)∈E

fuv − b̃u.

I.e. this is how much more flow leaves u than should, as prescribed by b̃. Pick any two u
and v in N` ∩ C̃ such that δ(u, f) > 0 > δ(v, f), and add min{|δ(u, f)|, |δ(v, f)|} units of
flow to fvu. Continue until we have that for all u ∈ N` ∩ C̃ the surpluses δ(u, f) have the
same sign. Since at every step of this procedure we make the surplus of at least one node
0, and we always decrease the absolute value of the surplus at any node, we will stop after
at most |N` ∩ C̃| steps. Finally, for the node u ∈ N`−1 which is the center of C̃, and for all
nodes v ∈ N` ∩ C̃ for which δ(v, f) 6= 0, we set fuv = δ(v, f). After this final step, every
node u ∈ N` ∩ C̃ has surplus 0.

For ` = 0, we perform essentially the same procedure, but in the entire cell C0. I.e. we pick
any two u and v in N` ∩ C0 such that δ(u, f) > 0 > δ(v, f), and add min{|δ(u, f)|, |δ(v, f)|}
units of flow to fvu. Once again, after at most |N0| steps all surpluses will have the same
sign, and, as we show below, will in fact be 0, so f will be feasible.

An easy induction argument shows that, once we have processed levels L,L− 1, . . . , `,
for any ` > 0, the surplus at any node u ∈ NL ∪ . . . ∪N` is 0, and the same is true for the
surplus at any p ∈ P . To show that the flow f is feasible, it is enough to show that after
processing the cell C0 on level 0, all nodes have surplus 0. Notice that, while processing any
subcell C̃, we do not change the total surplus

∑
u∈V ∩C̃

δ(u, f). This means that, for any
` > 0, after having processed a subcell C̃ ∈ C̃`−1 with center u, we have

δ(u, f) = −
∑

v∈C̃∩V

b̃v = −
∑

v:N`−1(v)=u

b̃v. (9)

In particular, we have that before we start processing C0,
∑

u∈N0
δ(u, f) = −

∑
u∈V b̃u = 0.

Since, once again, every step we make during the processing of C0 preserves the total surplus,
and we stop when all surpluses have the same sign, then at the time we are done it must be
the case that every node has surplus 0, and, therefore, f is a feasible flow.

It remains to bound the cost of the flow f constructed above. We can charge the cost of
the subcells processed on each level while construting f to one of the terms of the right hand
side of (7), and this completes the proof of the claim. The details of this calculation appear
in the full version of the paper. C

The two claims finish the proof of the lemma, together with the observation that the
construction of the flow f can be implemented recursively in time O(nε−d

0 log ∆). J

Our main result for solving the minimum cost flow problem in G follows. The proof,
which at this point is straightforward, is given in the full version of the paper.

I Theorem 16. A flow f feasible for the problem (1)–(4), with cost at most 1 +O(ε) factor
larger than the optimal cost, can be computed in time

O

(
log(∆)2

ε2
0

(|E|+ |V | log(∆)) log(|E|)
(

1
ε2 + log

(log(∆)
ε0

)))
.

SoCG 2019

15:12 Preconditioning for Transportation

5 Generating a transportation map

Theorem 16 guarantees we can obtain an approximately optimal flow in our graph G in
nearly linear time. We wish to turn this flow into a transportation map on P . To accomplish
this, we will repeatedly transform our flow into other flows, without increasing the cost,
and ending at a flow which is also a transportation map. We will no longer keep the flow
supported on the edges of E, and will instead allow positive flow between arbitrary pairs of
points. We will gradually make sure that there is positive flow only between points in P (as
opposed to net points).

We first begin by defining a notion we call uniform flow parity.

I Definition 17. Given a flow f ∈ RV×V , and a vertex u ∈ V , f is said to satisfy, or have
uniform flow parity at u if for all remaining v ∈ V , fuv has the same sign. In other words,
either there is flow going out of v or there is flow going into v, but there is no flow passing
through v. The flow f is said to satisfy uniform flow parity if f has uniform flow parity on
every v ∈ V .

The next easy lemma shows that a flow that satisfies uniform flow parity is supported on
edges between vertices with non-zero divergence.

I Lemma 18. Suppose that a flow f ∈ RV×V satisfies uniform flow parity at a vertex u ∈ V ,
and that

∑
v∈V fuv = 0. Then fuv = 0 for all v ∈ V .

Proof. Assume, towards contradiction, that f has 0 divergence at u but fuv 6= 0 for some
v ∈ V . Then there must be some w ∈ V such that fuw has the opposite sign to fuv, or∑

v∈V fuv = 0 would not hold. This contradicts uniform flow parity. J

We apply Lemma 18 through the following corollary of it.

I Corollary 19. Let f be a flow on V × V . Suppose that for any u ∈ V \ P ,
∑

v∈V fuv = 0
and for any p ∈ P ,

∑
v∈V fpv = µ(p). Then, if f satisfies uniform flow parity, it is a

transportation map for P and µ.

Proof. By Lemma 18, f is supported on P × P . Moreover, since for any p ∈ P+ we have∑
q∈P fpq = µ(p) > 0, and f satisfies uniform flow parity, it must be the case that fpq ≥ 0

for all q ∈ P . Similarly, for any p ∈ P− it must be the case that fpq ≤ 0 for all q ∈ P , or,
equivalently, fqp ≥ 0 for all q ∈ P . It follows that f is in fact supported on P+ × P−, and is,
therefore, a transportation map. J

Let us take a flow f which is an approximately optimal solution to (1)–(4). We can extend
f to V × V by setting fuv = 0 for (u, v) 6∈ E. If we can transform f into another flow f ′

without increasing its cost, so that f ′ satisfies uniform flow parity, then we can use f ′ as an
approximately optimal transportation map. Towards this goal, we define the Cancellation
Procedure Cancel-Vertex(f, u), given in Algorithm 1.

Algorithm 1 The Cancellation Procedure.
1: procedure Cancel-Vertex(f, u)
2: while ∃v, w : fvu > 0 > fwu do
3: x = min{fvu, fuw}
4: fvu ← fvu − x
5: fuw ← fuw − x
6: fvw ← fvw + x

7: end while
8: end procedure

A.B. Khesin, A. Nikolov, and D. Paramonov 15:13

The essential properties of Cancel-Vertex(f, u) are collected in the following lemma,
whose proof is omitted from this extended abstract.

I Lemma 20. Let f be a flow on V ×V , and u ∈ V . The while loop in Cancel-Vertex(f, u)
makes at most |{v : fuv 6= 0}| many iterations, and, letting f ′ be the flow after the procedure
is called, we have the following properties:
1. All divergences are preserved, i.e.

∑
w∈V f

′
vw =

∑
w∈V fvw for all v ∈ V .

2. The flow f ′ satisfies uniform flow parity at u.
3. If f satisfies uniform flow parity at some vertex v ∈ V , then so does f ′.
4. The size of the support of f is at most that of f ′.
5. The cost of f ′ with respect to the cost function c(u, v) = ‖u− v‖2 is at most the cost of f .

Suppose that we maintain f in a sparse representation; namely, we keep an adjacency
list of the edges on which f is not zero, with the corresponding flow values. Then, after
preprocessing the adjacency list of u in linear time to find the edges with positive and negative
flow, every iteration of the while loop in the Cancellation Procedure can be executed in
constant time, and the total running time, by Lemma 20, is bounded by O(degf (u)), where
degf (u) = |{v : fuv 6= 0}|.

Corollary 19 and Lemma 20 imply that if we apply the Cancellation Procedure to the
flow f and every vertex of the graph G, then the resulting flow has cost no greater than that
of f , is supported on a set of edges of size bounded by |E|, and is a transportation map. In
the next theorem, which is our main result for constructing a transportation map from a
flow f in G, we show that if we apply the procedure first to netpoints in NL, then to NL−1,
etc., then the total running time is nearly linear. The proof, which is deferred to the full
version of the paper, simply accounts for the current degree of any node to which we apply
the Cancellation Procedure.

I Theorem 21. There exists an algorithm running in time O
(
nε−d log(∆) + ε−2dlog(∆)

)
that, given as input a flow f which is feasible for the minimum cost flow problem defined in
Section 3.3, outputs a transportation map for P and µ of cost no larger than that of f .

Combining Theorem 6, used with ε0 set to a sufficiently small multiple of ε/L, and
Theorems 16 and 21 gives the first claim of Theorem 1, but with the approximation holding
in expectation. At the cost of increasing ε by a factor of 2, Markov’s inequality shows that
the approximation also holds with probability at least 1/2. Then the second statement in
Theorem 1 follows from the first one, and Lemma 2.

References
1 Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen Xiao.

Faster Algorithms for the Geometric Transportation Problem. In Symposium on Computational
Geometry, volume 77 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017.

2 Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching
with metric and geometric costs. In STOC, pages 555–564. ACM, 2014.

3 Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Weed. Approximating the
Quadratic Transportation Metric in Near-Linear Time. CoRR, abs/1810.10046, 2018.

4 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In STOC, pages 574–583. ACM, 2014.

5 Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman
and other Geometric Problems. J. ACM, 45(5):753–782, 1998.

SoCG 2019

15:14 Preconditioning for Transportation

6 Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement
Interpolation Using Lagrangian Mass Transport. ACM Trans. Graph., 30(6):158:1–158:12,
December 2011. doi:10.1145/2070781.2024192.

7 Moses Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages
380–388. ACM, 2002.

8 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. J. Assoc. Comput. Mach., 31(3):538–544, 1984. doi:10.1145/828.1884.

9 Panos Giannopoulos and Remco C Veltkamp. A pseudo-metric for weighted point sets. In
European Conference on Computer Vision, pages 715–730. Springer, 2002.

10 Kristen Grauman and Trevor Darrell. Fast contour matching using approximate earth mover’s
distance. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, volume 1, pages I–I. IEEE, 2004.

11 Piotr Indyk. A near linear time constant factor approximation for Euclidean bichromatic
matching (cost). In SODA, pages 39–42. SIAM, 2007.

12 Piotr Indyk and Nitin Thaper. Fast Image Retrieval via Embeddings. In 3rd International
Workshop on Statistical and Computational Theories of Vision, 2003.

13 Qin Lv, Moses Charikar, and Kai Li. Image Similarity Search with Compact Data Structures.
In Proceedings of the Thirteenth ACM International Conference on Information and Knowledge
Management, CIKM ’04, pages 208–217, New York, NY, USA, 2004. ACM. doi:10.1145/
1031171.1031213.

14 Jeff M. Phillips and Pankaj K. Agarwal. On Bipartite Matching under the RMS Distance. In
CCCG, 2006.

15 Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric
for image retrieval. International journal of computer vision, 40(2):99–121, 2000.

16 R. Sharathkumar and Pankaj K. Agarwal. A near-linear time ε-approximation algorithm for
geometric bipartite matching. In STOC, pages 385–394. ACM, 2012.

17 R. Sharathkumar and Pankaj K. Agarwal. Algorithms for the transportation problem in
geometric settings. In SODA, pages 306–317. SIAM, 2012.

18 Jonah Sherman. Generalized Preconditioning and Undirected Minimum-Cost Flow. In SODA,
pages 772–780. SIAM, 2017.

19 Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2003. doi:10.1007/b12016.

http://dx.doi.org/10.1145/2070781.2024192
http://dx.doi.org/10.1145/828.1884
http://dx.doi.org/10.1145/1031171.1031213
http://dx.doi.org/10.1145/1031171.1031213
http://dx.doi.org/10.1007/b12016

The One-Way Communication Complexity of
Dynamic Time Warping Distance
Vladimir Braverman
Johns Hopkins University, Baltimore MD, USA
vova@cs.jhu.edu

Moses Charikar
Stanford University, Stanford CA, USA
moses@cs.stanford.edu

William Kuszmaul
Massachusetts Institute of Technology, Cambridge MA, USA
kuszmaul@mit.edu

David P. Woodruff
Carnegie Mellon University, Pittsburgh PA, USA
dwoodruf@cs.cmu.edu

Lin F. Yang
Princeton University, Princeton NJ, USA
lin.yang@princeton.edu

Abstract
We resolve the randomized one-way communication complexity of Dynamic Time Warping (DTW)
distance. We show that there is an efficient one-way communication protocol using Õ(n/α) bits
for the problem of computing an α-approximation for DTW between strings x and y of length n,
and we prove a lower bound of Ω(n/α) bits for the same problem. Our communication protocol
works for strings over an arbitrary metric of polynomial size and aspect ratio, and we optimize the
logarithmic factors depending on properties of the underlying metric, such as when the points are
low-dimensional integer vectors equipped with various metrics or have bounded doubling dimension.
We also consider linear sketches of DTW, showing that such sketches must have size Ω(n).

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases dynamic time warping, one-way communication complexity, tree metrics

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.16

Related Version A full version of this paper is available at https://arxiv.org/abs/1903.03520.

Funding Vladimir Braverman: Supported by NSF CAREER grant 1652257, ONR Award N00014-
18-1-2364, and the Lifelong Learning Machines program from DARPA/MTO.
Moses Charikar : Supported by NSF grant CCF-1617577 and a Simons Investigator Award.
William Kuszmaul: Supported by an MIT Akamai Fellowship and a Fannie & John Hertz Foundation
Fellowship. Also supported by NSF grants 1314547 and 1533644.
David P. Woodruff : Partially supported by NSF Big Data grant 1447639.
Lin F. Yang: This work was done while the author was visiting IBM in 2017, hosted by David
Woodruff, and supported by NSF CAREER grant 1652257.

Acknowledgements David P. Woodruff would like to thank the Simons Institute for the Theory of
Computing where part of this work was done.

© Vladimir Braverman, Moses Charikar, William Kuszmaul, David P. Woodruff, and
Lin F. Yang;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vova@cs.jhu.edu
mailto:moses@cs.stanford.edu
mailto:kuszmaul@mit.edu
mailto:dwoodruf@cs.cmu.edu
mailto:lin.yang@princeton.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.16
https://arxiv.org/abs/1903.03520
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 One-Way Communication Complexity of DTW

1 Introduction

The Dynamic Time Warping (DTW) distance is a widely used distance measure between
time series. It is particularly flexible in dealing with temporal sequences that vary in speed.
To measure the distance between two sequences, each sequence is “warped" non-linearly
in the time dimension (i.e., portions of each sequence are stretched by varying amounts)
and the warped sequences are compared by summing up distances between corresponding
elements. DTW was popularized in the speech recognition community by Sakoe and Chiba
[34]. It was introduced in the data mining community for mining time series by Berndt and
Clifford [9]. Its many applications include phone authentication [14], signature verification
[29], speech recognition [28], bioinformatics [1], cardiac medicine [11], and song identification
[38]. Several techniques and heuristics have been developed to speed up natural dynamic
programming algorithms for it [19, 34, 25, 26, 24, 6, 33]. We refer the reader also to Section
2 of [4] for more references.

Distance measures on sequences and time series have been extensively studied in the
literature. Given two sequences x = x1, x2, . . . , xm and y = y1, y2, . . . , yn of points in Rd (or
a metric space), one seeks to “match the points up” as closely as possible. One way of doing
this is to define a “correspondence” (x̄, ȳ) between x, y by considering expansions of x and y
to produce sequences of equal length, i.e., we duplicate each point xi some number mi times
(to produce x̄) and each point yj some nj times (to produce ȳ), so that

∑m
i=1mi =

∑n
i=1 ni.

Now, we define a vector z with zi = d(x̄i, ȳi), for some underlying distance function d and
choose the correspondence which minimizes a certain function of z. For example, minimizing∑
zi leads to the Dynamic Time Warping distance. Minimizing maxi zi leads to the discrete

Fréchet distance. The edit distance between strings can be similarly cast in this framework.
One unusual aspect of DTW (in contrast to its close cousins, edit distance and Fréchet
distance) is that it does not satisfy the triangle inequality.

Edit distance and Fréchet distance have received a lot of attention in the theory community.
Fundamental questions such as exact and approximation algorithms, nearest neighbor search,
sketching, and communication complexity have been intensively studied. However, there
are relatively few results about DTW. Similar to edit distance, DTW can be computed
by a quadratic-time dynamic program. Recently, it was shown that there is no strongly
subquadratic-time algorithm for DTW unless the Strong Exponential Time Hypothesis is false
[10, 2]; approximation algorithms for DTW were obtained under under certain assumptions
about properties of the input strings [3, 37]; and slightly subquadratic algorithms for DTW
have also been obtained [18]. DTW was studied in the context of LSH [15] and nearest
neighbor search [35, 16]. To the best of our knowledge, until now, there has been no study of
the communication complexity of this basic distance measure on sequences.

In this paper, we study the one-way communication complexity of DTW. For a distance
measure d : X × X → R≥0 such as DTW, the goal in the one-way communication model is
to define a randomized function S and an estimation procedure E so that for any x, y ∈ X ,
given S(x) and y, the output E(S(x), y) ≈ d(x, y) with large probability. There are various
notions of approximation, but a natural one is that d(x, y) ≤ E(S(x), y) < αd(x, y) for an
approximation factor α > 1. The challenge is to understand how large S(x) needs to be (for
sequences of length n) in order to obtain approximation factor α. A closely related notion
is that of sketching, where the estimation procedure takes S(x) and S(y) and we require
that E(S(x), S(y)) ≈ d(x, y) with large probability. This one-way communication complexity
question has been studied previously for edit distance, in the context of document exchange
[7, 8, 20]. This model captures a number of applications, e.g., lower bounds in it apply to data

V. Braverman, M. Charikar, W. Kuszmaul, D. P. Woodruff, and L. F. Yang 16:3

stream algorithms and to sketching protocols. Upper bounds in it are appropriate for nearest
neighbor search; indeed, the natural thing to do here is a lookup table, so a (one-way) sketch
of size b bits creates a table of size 2b (see e.g., [5]). One-way communication is one of the
simplest and most natural settings in which one can study communication complexity, and it
has rich connections to areas such as information theory, coding theory, on-line computing,
and learning theory [27].

1.1 Our results
Our main result is a tight Θ̃(n/α) bound, up to logarithmic factors, on the one-way commu-
nication complexity of computing an α-approximation to DTW. The results are discussed in
more detail below.

We present a communication protocol using Θ̃(n/α) bits which works for DTW on any
underlying metric space of polynomial size and aspect ratio (Theorem 8). We optimize the
logarithmic factors in the important case when the points are natural numbers and the
distance d(a, b) = |a − b|, as well as more generally when the points are low-dimensional
integer vectors equipped with various metrics (Theorem 9); we also optimize for the important
case where the underlying metric has small doubling dimension (Theorem 9). At the cost of
an extra logarithmic factor in complexity, all of our protocols are also time-efficient, in that
Alice and Bob each run in polynomial time.

Next, we turn to lower bounds. Our communication protocol is non-linear, and we
show that in general linear sketches must have size Ω(n) (Theorem 12). Moreover, we
prove that our upper bounds are within a polylogarithmic factor of tight, establishing
a randomized one-way communication lower bound of Ω(n/α) for any underlying metric
space of size at least three, for one-way communication algorithms which succeed with
constant success probability (Theorem 11). We optimize this in several ways: (1) when the
underlying metric is generalized Hamming space over a point set of polynomial size n1+Ω(1),
we improve the lower bound to Ω(n/α · logn) for algorithms which succeed with probability
1− 1/n, and show this is optimal (Theorem 10); (2) for the natural numbers, we improve
the lower bound to Ω(n/α · log(min(α, |Σ|))) for algorithms which succeed with probability
at least 1− 1/min(α, |Σ|) (see the extended paper [36]). We note that our lower bound of
Ω(n/α) applies even to approximating DTW in the low distance regime (i.e., distinguishing
DTW(x, y) ≤ 1 versus DTW(x, y) > α with constant probability), and that in this regime
the edit distance admits a much smaller sketching complexity [7, 21]. To the best of our
knowledge, our result provides the first separation between the DTW and the edit distance.

We summarize our results in Table 1. The layout of the paper is as follows: We present
preliminaries in Section 2. We give a detailed overview of our techniques and results in
Section 3. Then in Section 4 we give a complete treatement of several of the core results. A
full presentation of all of the technical results appears in the extended paper [36].

2 Preliminaries

As a convention, we say an event occurs with high probability if it happens with probability
at least 1− 1

poly(n) for a polynomial of our choice. Throughout the paper, we use (Σ, d) to
denote a finite metric space. We denote by Σn the set of strings of length n over Σ and
by Σ≤n the set of strings of length at most n over Σ. An important property of Σ will be
its aspect ratio, which is defined as the ratio between the diameter of Σ and the smallest
distance between distinct points in Σ.

SoCG 2019

16:4 One-Way Communication Complexity of DTW

Table 1 Summary of results on computing α multiplicative approximation of DTWn over a
metric space Σ with aspect ratio poly(n). ∗These upper bounds are also time efficient. Inefficient
protocols can remove an additional logα factor in the communication complexity. †These lower
bounds hold for protocols that are correct with probability 1− 1/n or 1− 1/min(α, |Σ|).

Model Metric Space Communication Bounds Theorem

One-way

Finite O(n/α · logα · log3 n)∗ 8

Natural Numbers O(n/α · logα · log2 n · log log logn)∗ 9

`d
p Op,d(n/α · logα · log2 n · log log logn)∗ 9

doubling constant λ O(log λ · n/α · logα · log2 n · log log logn)∗ 9

Finite Ω(n/α) 11

Generalized Hamming Θ(n/α · logn)† 10

Linear Sketch Finite Ω(n) 12

Dynamic Time Warping Distance

We study the dynamic warping distance (DTW) of strings x, y ∈ Σ≤n. Before we formally
define the DTW distance, we first introduce the notion of an expansion of a string.

I Definition 1. The runs of a string x ∈ Σ≤n are the maximal substrings consisting of a
single repeated letter. Any string obtained from x by extending x’s runs is an expansion of x.

For example, the runs of aabbbccd are aa, bbb, cc, and d. Given a string x, we can extend a
run in x by further duplicating the letter which populates the run. For example, the second
run in aabbbccd can be extended to obtain aabbbbccd, and we say the latter string is an
expansion of the first.

Using the notion of an expansion, we can now define dynamic time warping.

I Definition 2. Consider two strings x, y ∈ Σ≤n. A correspondence1 between x and y is a
pair (x, y) of equal-length expansions of x and y. The edges in a correspondence are the pairs
of letters (xi, yi), and the cost of an edge is given by d(xi, yi). The cost of a correspondence
is the sum

∑
i d(xi, yi) of the costs of the edges between the two expansions. A correspondence

between x and y is said to be optimal if it has the minimum attainable cost, and the resulting
cost is called the dynamic time warping distance DTW(x, y).

When discussing a correspondence (x, y), the following terms will be useful.

I Definition 3. A run in x overlaps a run in y if there is an edge between them. A letter
xi is matched to a letter yj if the extended run containing xi overlaps the extended run
containing yj.

Note that any minimum-length optimal correspondence between strings x, y ∈ Σ≤n will
be of length at most 2n. In particular if in an optimal correspondence a run r1 in x and
a run r2 in y have both been extended and overlap by at least one letter, then there is a
shorter optimal correspondence in which the length of each run is reduced by one. Thus any
minimum-length optimal correspondence has the property that every edge (xi, yi) contains
at least one letter from a run that has not been extended, thereby limiting the length of the
correspondence to at most 2n.

1 A related concept, traversal, is sometimes used in the literature. A traversal can be viewed as the the
set of matching edges of a correspondence.

V. Braverman, M. Charikar, W. Kuszmaul, D. P. Woodruff, and L. F. Yang 16:5

DTW can be defined over an arbitrary metric space (Σ, d), and is also well-defined when
d is a distance function not satisfying the triangle inequality.

Throughout our proofs, we will often refer to DTW over generalized Hamming space,
denoted by DTW0(x, y). As a convention, regardless of what metric space the strings x and
y are initially taken over, DTW0(x, y) is defined to be the DTW-distance between x and y
obtained by redefining the distance function d(·, ·) to return 1 on distinct inputs.

One-Way Communication Complexity

In this paper, we focus on the one-way communication model. In this model, Alice is given
an input x, Bob is given an input y, and Bob wishes to recover a valid solution to a problem
with some solution-set f(x, y) ⊆ R. (For convenience, we will refer to the problem by its
solution set f(x, y).) Alice is permitted to send Bob a single message sk(x), which may be
computed in a randomized fashion using arbitrarily many public random bits. Bob must
then use Alice’s message sk(x) in order to compute some F (sk(x), y), which he returns as
his proposed solution to f(x, y).

The pair (sk, F) is a p-accurate one-way communication protocol for the problem f(·, ·) if
for all x and y, the probability Pr[F (sk(x), y) ∈ f(x, y)] that Bob returns a correct answer to
f(x, y) is at least p. The protocol is said to have bit complexity at most m if Alice’s message
sk(x) is guaranteed not to exceed m in length. Moreover, the protocol is said to be efficient
if both sk and F can be evaluated in time polynomial in the length of x and y.

Fix a parameter p ∈ (0, 1], the randomized one-way communication complexity CCp(f)
of the problem f is the minimum attainable bit complexity of a p-accurate one-way commu-
nication protocol for f . The focus of this paper is on the one-way communication complexity
of the α-DTW problem, defined as follows:

I Definition 4 (α-DTW). The α-DTW(Σ≤n) problem is parameterized by an approximation
parameter 1 ≤ α ≤ n. The inputs are a string x ∈ Σ≤n and a string y ∈ Σ≤n. The goal is
recover an α-approximation for DTW(x, y). In particular, the set of valid solutions is

{t | DTW(x, y) ≤ t < α ·DTW(x, y)}.

One can also consider the decision version of this problem, in which one wishes to
distinguish between distances at most r and distances at greater than rα:

I Definition 5 (DTEP). The Decision Threshold Estimation Problem DTEPαr (Σ≤n), is
paramaterized by a positive threshold r > 0 and an approximation parameter 1 ≤ α ≤ n. The
inputs to the problem are a string x ∈ Σ≤n and a string y ∈ Σ≤n. An output of 0 is a valid
solution if DTW(x, y) ≤ rα, and an output of 1 is a valid solution of DTW(x, y) > r.

Notice that any algorithm for α-DTW immediately gives an solution for DTEPαr for any
r > 0. Conversely, any lower bound for the communication complexity of DTEP gives a lower
bound for the communication complexity of α-DTW. For both of the above two definitions,
we may omit the sequence space Σ≤n if it is clear from the context.

3 Technical overview

In this section, we present the statements and proof overviews of our main results.

Complexity Upper Bounds

Our starting point is the following: suppose that x, y ∈ Σn for a metric space Σ of polynomial
size and aspect ratio, and further that the distances between points are always either 0 or at
least 1. Alice and Bob wish to construct a 2/3-accurate one-way protocol for α-DTW.

SoCG 2019

16:6 One-Way Communication Complexity of DTW

Collapsing Repeated Points. Consider the strings c(x) and c(y), formed by reducing each
run of length greater than one in x and y to the same run of length one. If we define l to
be the length of the longest run in x or y, then DTW(x, y) ≤ l ·DTW(c(x), c(y)). Indeed,
any correspondence (c(x), c(y)) between c(x) and c(y) gives rise to a correspondence (x̄, ȳ)
between x and y obtained by duplicating each coordinate in c(x) and c(y) a total of l times.
Moreover, since any correspondence (x̄, ȳ) between x and y is also a correspondence between
c(x) and c(y), it follows that DTW(c(x), c(y)) ≤ DTW(x, y).

Inefficient Protocol via Hashing. Suppose Alice and Bob are guaranteed that DTW(x, y) ≤
n/α, and that the maximum run-length l satisfies l < α. Then it suffices for Alice and Bob to
compute DTW(c(x), c(y)); and for this it suffices for Bob to be able to reconstruct c(x). The
claim is that from a random hash of c(x) of length O(n/α logn) bits, given c(y), Bob can
reconstruct c(x). Indeed, given that DTW(c(x), c(y)) ≤ n/α, and given that the runs in c(x)
and c(y) are all of length one, one can verify that there must be an optimal correspondence
(c(x), c(y)) between c(x) and c(y) such that c(y) is obtained from c(y) by extending at most
n/α runs. Since there are nO(n/α) ways to choose which runs in c(y) are extended, and since
there are then nO(n/α) ways to choose the new lengths to which those runs are extended, it
follows that there are only nO(n/α) options for c(y). Moreover, because c(x) and c(y) differ in
at most n/α positions, for a given option of c(y) there are only nO(n/α) · |Σ|O(n/α) = nO(n/α)

options for c(x) and thus for c(x). Since starting from c(y), there are only nO(n/α) options for
c(x), meaning that a O(n/α logn)-bit hash allows Bob to recover c(x) with high probability.

Efficiency via Edit Distance Sketch. In addition to requiring that DTW(x, y) ≤ n/α and
l < α, the above protocol is inefficient since Bob needs to enumerate over all possibilities of
c(x) and compute the hash value of each. Exploiting the fact that c(x) and c(y) contain only
runs of length one, we prove that DTW(c(x), c(y)) is within a constant factor of the edit
distance between c(x) and c(y). This means that Alice can instead invoke the edit-distance
communication protocol of [21] of size O(n/α logn logα), which allows Bob to efficiently
recover c(x) using the fact that the edit distance between c(x) and c(y) is O(n/α).

Handling Heavy Hitters. The arguments presented so far require that x and y contain no
runs of length greater than α. We call such runs heavy hitters. To remove this restriction,
a key observation is that there can be at most n/α heavy hitters. Therefore Alice can
communicate to Bob precisely which runs are heavy hitters in x using O(n/α logn) bits. The
players then proceed as before: Alice collapses her input x to c(x) by removing consecutive
duplicates, and Bob collapses his input y to c(y) by removing consecutive duplicates. We
still have DTW(c(x), c(y)) ≤ DTW(x, y) since any correspondence between x and y is a
correspondence between c(x) and c(y). Thus, as before, Bob can reconstruct c(x) whenever
DTW(x, y) ≤ n/α. Now, though, it could be that DTW(x, y) > αDTW(c(x), c(y)) because
of the positions in c(x) and c(y) that occur more than α times. However, Bob uses his
knowledge of the locations and values of the heavy hitters, together with c(x), to create a
string x′ formed from x by collapsing runs of length less than α, and not doing anything to
runs of length at least α. Now by computing DTW(x′, y), Bob obtains a α-approximation
for DTW(x, y), since any correspondence between x′ and y gives rise to a correspondence
between x and y by duplicating each letter α times.

Having handled the heavy hitters, the only remaining requirement by our protocol is that
the distances between letters in x and y be zero and one. Thus we arrive at the following:

V. Braverman, M. Charikar, W. Kuszmaul, D. P. Woodruff, and L. F. Yang 16:7

I Proposition 6 (Protocol over Hamming Space). Consider DTW over a metric space Σ
of polynomial size with distances zero and one. Then for p = 1 − poly(n−1), there is
an efficient p-accurate one-way communication protocol for α-DTW over Σ≤n which uses
O
(
nα−1 · logα · logn

)
bits. Moreover, for any δ ∈ (0, 1), there is an inefficient (1 − δ)-

accurate protocol for α-DTW(Σ≤n) using space O(nα−1 · logn+ log δ−1) for any δ ∈ (0, 1).

Note that our protocol is constructive in that it actually allows for y to build a corres-
pondence between x and y satisfying the desired approximation bounds.

In generalizing to DTW over arbitrary metric spaces, we will use our protocol over
Hamming Space as a primitive. Moreover, we will exploit the fact that it can be used to
solve a slightly more sophisticated problem which we call bounded α-DTW :

I Definition 7 (Bounded α-DTW). In the bounded α-DTW(Σ≤n) problem, Alice and Bob
are given strings x and y in Σ≤n. The goal for Bob is:

If DTW0(x, y) ≤ n/α, solve α-DTW on (x, y).
If DTW0(x, y) > n/α, either solve α-DTW on (x, y), or return “Fail”.

A crucial observation is that Proposition 6 continues to hold without modification if the
alphabet Σ has arbitrary distances and our goal is to solve the bounded α-DTW problem.

Extending Distance Range via HSTs. The result for the bounded α-DTW problem allows
for Bob to either determine an α-approximation for DTW(x, y), or to determine that
DTW(x, y) > n/α. As a result the algorithm can be used to distinguish between DTW(x, y) ≤
n/α an DTW(x, y) > n. One issue though is that the argument cannot distinguish between
larger distances, such as for example between the cases DTW(x, y) ≤ n and DTW(x, y) > nα.
A key idea for resolving this issue is to first consider the DTW problem over a 2-hierarchically
well-separated tree metric (HST), and then use the embedding of [17] to embed an arbitrary
finite metric of polynomial size and aspect ratio into such a metric. A 2-hierarchically
well-separated tree metric is defined as the shortest path metric on a tree whose nodes are
elements of Σ and whose edges have positive weights for which on any root-to-leaf path, the
weights are geometrically decreasing by a factor of 2. Since the weights decrease geometrically,
for convenience we define pairwise distances in the tree metric to be the maximum edge
length on the tree path between the nodes, a notion of distance which coincides with the
sum of edge lengths up to a constant factor.

Suppose the points in Σ correspond to a 2-hierarchically well-separated tree metric and
we wish to distinguish between whether DTW(x, y) ≤ nr/α or DTW(x, y) > nr. A crucial
idea is what we call the r-simplification sr(x) of a string x, which replaces each character
pi in x with its highest ancestor in the tree reachable via edges of weight at most r/4. A
key property is that DTW(sr(x), sr(y)) ≤ DTW(x, y), since for two points `1, `2 in x, y,
respectively, either they each get replaced with the same point in the r-simplifications of x
and y, or the maximu-length edge on a path between `1 and `2 is the same before and after
r-simplification. Notice that if a point in sr(x) is not equal to a point in sr(y), then their
distance is at least r/4, by the definition of an r-simplification. Combining the preceding
two observations, if DTW(x, y) ≤ nr/α, then DTW(sr(x), sr(y)) ≤ nr/α and there is a
correspondence for which sr(x) and sr(y) disagree in at most 4n/α positions. On the other
hand, since we only “collapse” edges of weight at most r/4, we have that if DTW(x, y) > nr,
then DTW(sr(x), sr(y)) > nr/2, since the optimal correspondence has length at most 2n.

It follows that the cases of DTW(x, y) ≤ nr/α and DTW(x, y) > nr, correspond with
the cases of DTW(sr(x), sr(y)) ≤ nr/α and DTW(sr(x), sr(y)) > nr/2, and moreover that
when DTW(sr(x), sr(y)) ≤ nr/α, there is an optimal correspondence for which sr(x) and

SoCG 2019

16:8 One-Way Communication Complexity of DTW

sr(y) disagree in at most 4n/α positions. Thus we can use our protocol for the α-bounded
DTW problem to figure out which case we are in, for a given r. This gives a protocol for
distinguishing between whether DTW(x, y) ≤ nr/α or DTW(x, y) > nr.

In order to obtain an α-approximation for DTW(x, y), the rough idea now is to run the
above protocol multiple times in parallel as r varies in powers of 2, and then to find the
smallest value of r for which the protocol declares DTW(x, y) ≤ nr. This works as long
as points are taken from a 2-hierarchically well-separated tree metric. In order to extend
the result to hold over arbitrary finite metrics of polynomial size and aspect ratio, the
final piece is the embedding φ of [17], which embeds any polynomial size metric Σ into a
2-hierarchically well-separated tree metric for which for all a, b ∈ Σ, d(a, b) ≤ d(φ(a), φ(b))
and E(d(φ(a), φ(b))) = O(logn)d(a, b). This “lopsided” guarantee is sufficient for us since
it ensures in any correspondence the sum of distances after performing the embedding will
not shrink, while for a single fixed optimal correspondence, by a Markov bound the sum of
distances after performing the embedding will not increase by more than an O(logn) factor
with constant probability. Putting the pieces together we are able to obtain an efficient
2/3-accurate one-way communication protocol for α-DTW using O(n/α logα log3 n) bits.
Formally, we arrive at the following theorem:

I Theorem 8 (Main Upper Bound). Let Σ be a metric space of size and aspect ratio polynomial
in n. Then there is an efficient 2/3-accurate one-way communication protocol for α-DTW
over Σ with space complexity O

(
nα−1 · logα · log3 n

)
and an inefficient 2/3-accurate one-way

protocol with complexity O
(
nα−1 · log3 n).

Optimizing in the Case of Natural Numbers. We can further optimize the logarithmic
factors in our upper bound when the underlying alphabet Σ is, for example, the natural
numbers and d(a, b) = |a − b|. We handle the case DTW(x, y) ≤ n/α as before. However,
for larger values of DTW(x, y), we take a different approach.

We first explain the case of distinguishing DTW(x, y) ≤ n versus DTW(x, y) > αn. The
idea is to impose a randomly shifted grid of side length α/4, and to round each point in x
and y down to the nearest smaller grid point, resulting in strings x′ and y′. Define a short
edge in a correspondence to be an edge of cost at most α/4, and otherwise call the edge a
long edge. We assume w.l.o.g. that any correspondence has length at most 2n.

Suppose first DTW(x, y) ≤ n, and consider an optimal correspondence. We will show
that the effect of rounding is such that with probability at least 2/3, DTW(x′, y′) ≤ O(n).
First we consider what effect rounding has on the short edges. The expected number of short
edges with endpoints that get rounded to different grid points is at most∑

short edge length l

l

α/4 ≤
4 DTW(x, y)

α
.

Each such edge has its length increased by at most α/4 after rounding, and so the expected
contribution of short edges to the correspondence after rounding is at most O(DTW(x, y)).
Since each long edge has its length increase by at most an additive α/4, and its original
length is at least α/4, its contribution changes by at most a constant factor, so the total
contribution of long edges after rounding is O(DTW(x, y)). Hence, when DTW(x, y) ≤ n,
with probability at least 2/3 after rounding, we have DTW(x′, y′) = O(n).

Next suppose DTW(x, y) > nα, and consider any correspondence. The total change
in the cost of the correspondence that can result from the rounding procedure is at most
2n · α/4, since there are at most 2n edges in total. Consequently the effect of rounding is
such that DTW(x′, y′) > nα/2.

V. Braverman, M. Charikar, W. Kuszmaul, D. P. Woodruff, and L. F. Yang 16:9

It follows that when comparing the cases of DTW(x, y) ≤ n and DTW(x, y) > nα, there
is an Ω(α)-factor gap between DTW(x′, y′) in the two cases. Further, after rounding to grid
points, all non-equal points have distance at least α/4, and so if DTW(x′, y′) ≤ n, then there
is a correspondence on which they differ in at most O(n/α) positions. Thus our protocol for
bounded α-DTW can be applied to distinguish between the two cases. A similar approach
can be used to distinguish between DTW(x, y) ≤ rn/α and DTW(x, y) > rn in general, and
this can then be used to solve α-DTW similarly as for 2-hierarchically well-separated tree
metrics above. We save roughly a logn factor here because we do not incur the logn factor
distortion of embedding an arbitrary metric into a tree metric.

We remark that our algorithm in the 1-dimensional natural number case uses a similar
grid snapping as used in [15] for their nearest neighbor search algorithm for Frechét distance.
Recently, Bringmann (personal communication) obtained a sketch for Frechét distance which
builds upon the ideas in [15] and uses O(n/α) bits. To the best of our knowledge, these
techniques do not yield nontrivial results for Dynamic Time Warping, however.

A Unified Approach. To unify the argument for 2-hierarchically well-separated tree metrics
and the natural numbers, we recall the definition of a σ-separable metric space. A δ-bounded
partition of a metric space (Σ, d) is a partition such that the diameter of each part is at
most δ. A distribution over partitions is then called σ-separating if for all x, y ∈ Σ, the
probability that x and y occur in different parts of the partition is at most σ · d(x, y)/δ. We
say Σ is σ-separable if for every δ > 0, there exists a σ-separating probability distribution
over δ-bounded partitions of Σ. One can also define an efficient notion of this, whereby the
distribution over partitions is efficiently sampleable.

By adapting our argument for the natural numbers to σ-separable metrics of polynomial
size and aspect ratio, we obtain an efficient 2/3-accurate protocol for α-DTW with bit
complexity O(σn/α log3 n log log logn), where the log log logn comes from minor technical
subtitles. For general metrics, it is known that σ = O(logn), while for the natural numbers,
σ = O(1). Consequently, our result for σ-separable metrics captures both the result obtained
using HSTs (up to a factor of log log logn) as well as the optimization for the natural
numbers. Moreover, the theorem allows for space savings over many additional metrics, such
as low-dimensional integer vectors equipped with `p-norms, metrics with bounded doubling
dimension, etc., all of which have σ � O(logn) [13, 30, 31]. The general result we arrive at
is captured formally in the following theorem:

I Theorem 9 (Extended Main Upper Bound). Let (Σ, d) be a metric space of size and aspect
ratio poly(n). Suppose that (Σ, d) is efficiently σ-separable for some 1 ≤ σ ≤ O(logn).
Then there is an efficient 2/3-accurate one-way communication protocol for α-DTW(Σ≤n)
with space complexity O

(
σnα−1 · logα · log2 n · log log logn

)
and an inefficient 2/3-accurate

one-way protocol with space complexity O
(
σnα−1 · log2 n · log log logn

)
.

The proof closely follows that for the natural numbers, where instead of our ran-
domly shifted grid, we use a random δ-bounded partition. If we are trying to distinguish
DTW(x, y) ≤ nr/α versus DTW(x, y) > nr, then we set δ = Θ(r). Just like for the grid,
where we “snapped” points to their nearest grid point, we now snap points to a representative
point in each part of the partition, obtaining two new sequences x̃ and ỹ. By using shared
randomness, the representative in each part can be agreed upon without any communica-
tion. Just like in the grid case, we show that if DTW(x, y) ≤ nr/α, then for the optimal
correspondence, in expectation its cost increases only by a constant factor after snapping.
On the other hand, if DTW(x, y) > nr, then we show that for every correspondence, its cost
decreases only by a constant factor. The key difference is that now the expected number of
short edges with endpoints occurring in different parts of the partition is at most σ·DTW(x,y)

δ .

SoCG 2019

16:10 One-Way Communication Complexity of DTW

Complexity Lower Bounds

The simplest of our lower bounds comes from a reduction from a randomized 1-way commu-
nication lower bound for indexing over large alphabets [22]. In this problem, Alice is given
a string s in Ur for some universe U and length parameter r, and Bob is given a character
a ∈ U and an index j ∈ [r]. The goal is for Bob to decide if sj = a with probability at least
1− 1/|U|. It is known if Alice sends a single message to Bob, then there is an Ω(r log2 |U|)
lower bound. By reducing this large-alphabet indexing problem to α-DTW when r = n/α.
To perform the reduction, Alice’s input string s = s1, . . . , sn/α ∈ Un/α is mapped to the
string x = (s1, 1), (s2, 2), . . . , (sn/α, n/α). Bob’s inputs of a ∈ U and j ∈ [r] are mapped
to an input string y = (a, j), (a, j), . . . in which the character (a, j) is repeated n times. If
sj = a, then DTW(x, y) = n/α − 1 (due to the n/α − 1 characters of x that do not get
matched with an equal-value letter); otherwise DTW(x, y) ≥ n (due to the fact that none
of the letters in y can be correctly matched). This gives a reduction to α-DTW as desired.
Using this we have an Ω(n/α · logn) lower bound for (1− 1/n)-accurate α-DTW, provided
the alphabet size |Σ| is say, at least n2. Thus we have the following theorem:

I Theorem 10 (Tight Bound Over Hamming Space). Consider 1 ≤ α ≤ n, and consider the
generalized Hamming distance over a point-set Σ with Σ of polynomial size n1+Ω(1). For
p ≥ 1− 1/|Σ|−1, CCp(α-DTW(Σ≤n) = Θ[nα−1 · logn].

In order to obtain a nearly tight lower bound for arbitrary finite metric spaces, we
construct a more intricate lower bound of Ω(n/α) which holds whenever |Σ| ≥ 3. For
convenience, we describe the argument for the case of Σ = {0, 1, 2} below. The lower bound
is achieved via a reduction from the Index problem in which Alice has s ∈ {0, 1}t, Bob has
an i ∈ [t], and Bob would like to output si with probability at least 2/3. The randomized
1-way communication complexity of this problem is Ω(t). We instantiate t = Θ(n/α). For
each sj , if sj = 1, Alice creates a string Z(1) of length 3α consisting of α 0s, followed by α
1s, followed by α 2s; and if sj = 0, Alice creates a string Z(0) of length 2α+ 1 consisting of
α 0s, followed by a single 1, followed by α 2s. She then concatenates Z(s1), Z(s2), . . . , Z(st)
into a single string x of length n. Bob, who is given an index i ∈ [t], creates the string
y = (012)i−1(02)(012)t−i; that is, we have the length-3 string 012 repeated i− 1 times, then
the string 02, followed by the string 012 repeated t − i times. (We call each piece of the
form (012) and (01) a block.) Notice that if si = 0, then DTW(x, y) = 1, since the single 1 in
Z(si) can match to either the 0 or 2 in the (02) block of Bob’s string y. On the other hand,
if si = 1, the entire run of α 1s in Z(si) has to appear somewhere in the correspondence
and cannot match to the 0 or 2 in the i-th piece of Bob’s string, without incurring a cost
of α. So these α 1s must either “travel” to blocks j > i in y or blocks j < i in y. Suppose,
without loss of generality, most of these α 1s are matched to a block j > i. This has a ripple
effect, since it causes the α 2s in the i-th block to also have to travel to a block j > i. While
this is possible, it then means the α 0s in the (i+ 1)-st block must travel to a block even
larger than j, etc. Eventually, we run out of blocks to match the elements in Alice’s string to
since there are t− i blocks in her string that need to be matched to fewer than t− i blocks
in Bob’s string. This ultimately forces DTW(x, y) ≥ α, completing the reduction from the
Index problem to α-DTW. The extension of this argument to arbitrary Σ establishes that
our upper bound for general metric spaces is optimal up to a polylogarithmic factor:

I Theorem 11 (General Lower Bound). Let Σ = {a, b, c} be three letters with a two-point
distance function d : Σ×Σ→ R+, not necessarily satisfying the triangle inequality. Consider
1 ≤ α ≤ n. Then CC0.1

[
DTEPαr (Σ≤n)

]
= Ω(n/α).

V. Braverman, M. Charikar, W. Kuszmaul, D. P. Woodruff, and L. F. Yang 16:11

Our communication protocols are non-linear, and we conclude our lower bounds by
observing that linear sketches must have size Ω(n). (See the extended paper [36].)

I Theorem 12 (Linear Sketching Lower Bound). Consider 1 ≤ α ≤ n. Then any 0.1-error
linear sketch for α-DTW on {0, 1, 2}4n has space complexity Ω(n).

4 The bounded αDTW problem

Recall that in the Bounded α-DTW problem, the goal for Bob is: If DTW0(x, y) ≤ n/α,
solve α-DTW on (x, y); and if DTW0(x, y) > n/α, either solve α-DTW on (x, y), or return
“Fail”. In this section, we formally present the protocol for bounded α-DTW. We then use this
to give tight bounds on the one-way communication complexity of α-DTW over generalized
Hamming Space. The protocols in this section are constructive in that, in addition to
estimating DTW(x, y), Bob is also able to build a correspondence between x and y. The
protocol for Bounded α-DTW forms the core for the communication protocol over arbitrary
metrics. The full protocol over arbitrary metrics is given in the extended paper [36].

In order to design an efficient one-way communication scheme for bounded α-DTW, we
will use what we refer to as the K-document exchange problem as a primitive. Here, Alice
and Bob are given strings x and y ∈ Σn. The goal for Bob is: If ed(x, y) ≤ K, recover the
string x; and if ed(x, y) > K, either recover x or return “Fail”.

The K-document exchange problem has been studied extensively [32, 23, 8, 12, 21].
The one-way communication protocol of [21] efficiently solves K-document exchange using
O(K log(n/K) · logn) bits with high probability. This can be slightly improved at the cost
of being no longer time-efficient using the protocol of [32], which achieves accuracy 1− δ for
any δ ∈ (0, 1) by having Alice simply hash her string to a Θ(K · logn+ log δ−1)-bits.

The K-document exchange problem concerns edit distance rather than DTW. Nonetheless,
in designing a sketch for DTW, the K-document exchange problem will prove useful due to
a convenient relationship between edit distance and DTW over generalized Hamming space.

I Lemma 13 (DTW0 Approx. Edit Dist.). Let x, y be strings of length at most n with letters
from any metric space, and suppose that neither string contains any runs of length greater
than one. Then DTW0(x, y) ≤ ed(x, y) ≤ 3 DTW0(x, y).

Proof. We first show that DTW0(x, y) ≤ ed(x, y). A sequence of edits from x to y can be
viewed as consisting of insertions in each of x and y, as well as substitutions. One can create
expansions x and y of x and y, respectively, by extending runs by one in each place where
the sequence of edits would have performed an insertion. The Hamming distance between x
and y is then at most the length of the sequence of edits. Hence DTW0(x, y) ≤ ed(x, y).

Next we show that ed(x, y) ≤ 3 DTW0(x, y). Consider an optimal correspondence (x, y)
between x and y. Without loss of generality, we may assume that whenever two runs in
x and y overlap, at least one of them has length only one. (Indeed, otherwise both runs
could have been reduced in size by one at no cost to DTW.) Therefore, any run of length
k in x must overlap k distinct runs in y, and thus must incur at least (k − 1)/2 Hamming
differences. On the other hand, because the run is length k, the expansion of the run can be
simulated by k − 1 insertions. Therefore, x and y can be constructed from x and y through
at most 2 DTW0(x, y) edits. Hence, ed(x, y) ≤ 3 DTW0(x, y). J

We now present an efficient one-way communication scheme for bounded α-DTW.

SoCG 2019

16:12 One-Way Communication Complexity of DTW

I Proposition 14 (Protocol for Bounded DTW). Consider DTW over a metric space Σ
of polynomial size. Then for p = 1 − poly(n−1), there is an efficient p-accurate one-way
communication protocol for bounded α-DTW over Σ≤n which uses O

(
nα−1 · logα · logn

)
bits. Moreover, for any δ ∈ (0, 1), there is an inefficient (1− δ)-accurate protocol for bounded
α-DTW(Σ≤n) using space O(nα−1 · logn+ log δ−1) for any δ ∈ (0, 1).

Proof. We assume without loss of generality that α and n/α are integers. Let x ∈ Σ≤n be a
string given to Alice, and y ∈ Σ≤n be a string given to Bob. Alice can construct a string x′
by taking each run in x which is of length less than α and reducing its length to one. Notice
that DTW(x′, y) ≤ DTW(x, y) trivially and that DTW(x, y) < αDTW(x′, y) because any
correspondence between x′ and y can be turned into a correspondence between x and y

by duplicating every letter in the original correspondence α− 1 times. Thus if Alice could
communicate x′ to Bob, then Bob could solve α-DTW.

In an attempt to communicate x′ to Bob, Alice constructs a list L consisting of the pairs
(i, li) for which the i-th run in x is of length li ≥ α. Alice then sends L to Bob. Notice that
|L| ≤ n/α, and thus can be communicated with O(nα logn) bits. Moreover, if Alice defines x′′
to be x except with every run reduced to length one, then x′ can be recovered from x′′ and
L. Therefore, if Alice could further communicate x′′ to Bob, then Bob could solve α-DTW.

In an attempt to communicate x′′ to Bob, Alice invokes the one-way communication
protocol of [21] for the 3n/α-document exchange problem. She sends Bob the resulting
sketch s of size O(n/α · logα logn) bits which is correct with probability at least p. Bob
defines y′′ to be y with each run reduced to length one and uses the sketch s along with
y′′ in order to try to recover x′′. If Bob is able to use s to recover a value for x′′, then he
can correctly solve α-DTW with high probability. If Bob is unable to use s to recover a
value for x′′, then Bob may conclude with high probability that ed(x′′, y′′) > 3n/α. Because
ed(x′′, y′′) ≤ 3 DTW0(x′′, y′′) by Lemma 13 and because DTW0(x′′, y′′) ≤ DTW0(x, y), we
have that n/α < DTW0(x, y). It follows that in this case Bob can correctly return “Fail”.

Rather than using the efficient one-way communication protocol of [21], Alice could instead
invoke the protocol of [32] in which she sends Bob a hash of x′′ using O(nα−1 · logn+log δ−1)
and Bob is able to then inefficiently recover x′′ correctly with probability at least 1− δ. This
gives an inefficient (1− δ)-accurate protocol which uses O(nα−1 · logn+ log δ−1) bits. J

We now prove a tight communication bound for α-DTW over generalized Hamming space.

I Theorem 15 (Theorem 10 Restated). Consider 1 ≤ α ≤ n, and consider the generalized
Hamming distance over a point-set Σ with Σ of polynomial size n1+Ω(1). For p ≥ 1−1/|Σ|−1,
the p-accurate one-way communication complexity of α-DTW(Σ≤n) is Θ[nα−1 · logn].

Proposition 14 implies the desired upper bound (via the inefficient protocol). In order
to prove Theorem 15, it therefore suffices to prove the lower bound. To do this, we first
introduce a problem with high one-way communication complexity.

I Lemma 16 ([22], Theorem 3.1). Define (n,S)-SET as follows. Alice gets an n-element set
S ⊆ S and Bob gets a character a ∈ S. The goal is for Bob to determine whether a ∈ S. Let
p ≥ 1− 1

|S| . Then CCp((n,S)-SET) ≥ Ω(n log(|S|/n)).

Proof of Theorem 15. As described above, it suffices to show the lower bound. To this
end, we reduce (n/α,Σ)-SET to α-DTW for strings of length n. Suppose Alice is given
S ⊆ Σ of size n/α and Bob is given the character a ∈ Σ. Then Alice can compute x
to be the concatenation of the elements of S in an arbitrary order. Alice will use the
resulting string x ∈ Σ≤n as an input for the α-DTW problem. Bob can then define y to

V. Braverman, M. Charikar, W. Kuszmaul, D. P. Woodruff, and L. F. Yang 16:13

be the character a repeated n times. Notice that if a ∈ S then DTW(x, y) = n/α − 1,
whereas if a 6∈ S then DTW(x, y) = n. By Lemma 16, this reduction establishes that
for p ≥ 1 − 1

|Σ| the p-accurate one-way communication complexity of α-DTW is at least
Ω(nα−1 · log(α|Σ|/n)) = Ω(nα−1 · logn), since |Σ| = n1+Ω(1). J

References
1 John Aach and George M Church. Aligning gene expression time series with time warping

algorithms. Bioinformatics, 17(6):495–508, 2001.
2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

LCS and other sequence similarity measures. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on, pages 59–78. IEEE, 2015.

3 Pankaj K Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. Approximating dynamic time
warping and edit distance for a pair of point sequences. arXiv preprint, 2015. arXiv:
1512.01876.

4 Ghazi Al-Naymat, Sanjay Chawla, and Javid Taheri. Sparsedtw: A novel approach to
speed up dynamic time warping. In Proceedings of the Eighth Australasian Data Mining
Conference-Volume 101, pages 117–127. Australian Computer Society, Inc., 2009.

5 Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David Woodruff. Efficient sketches for
earth-mover distance, with applications. In Foundations of Computer Science, 2009. FOCS’09.
50th Annual IEEE Symposium on, pages 324–330. IEEE, 2009.

6 Nurjahan Begum, Liudmila Ulanova, Jun Wang, and Eamonn J. Keogh. Accelerating Dynamic
Time Warping Clustering with a Novel Admissible Pruning Strategy. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Sydney, NSW, Australia, August 10-13, 2015, pages 49–58, 2015.

7 D. Belazzougui and Q. Zhang. Edit Distance: Sketching, Streaming and Document Exchange.
ArXiv e-prints, 2016. arXiv:1607.04200.

8 Djamal Belazzougui. Efficient deterministic single round document exchange for edit distance.
arXiv preprint, 2015. arXiv:1511.09229.

9 Donald J. Berndt and James Clifford. Using Dynamic Time Warping to Find Patterns in
Time Series. In Knowledge Discovery in Databases: Papers from the 1994 AAAI Workshop,
Seattle, Washington, July 1994. Technical Report WS-94-03, pages 359–370, 1994.

10 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Foundations of Computer Science (FOCS), 2015
IEEE 56th Annual Symposium on, pages 79–97. IEEE, 2015.

11 EG Caiani, A Porta, G Baselli, M Turiel, S Muzzupappa, F Pieruzzi, C Crema, A Malliani,
and S Cerutti. Warped-average template technique to track on a cycle-by-cycle basis the
cardiac filling phases on left ventricular volume. In Computers in Cardiology 1998, pages
73–76. IEEE, 1998.

12 Diptarka Chakraborty, Elazar Goldenberg, and Michal Kouckỳ. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages 712–725. ACM, 2016.

13 Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin. Approxim-
ating a finite metric by a small number of tree metrics. In Foundations of Computer Science,
1998. Proceedings. 39th Annual Symposium on, pages 379–388. IEEE, 1998.

14 Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and Heinrich Hussmann.
Touch me once and i know it’s you!: implicit authentication based on touch screen patterns.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
987–996. ACM, 2012.

15 Anne Driemel and Francesco Silvestri. Locality-Sensitive Hashing of Curves. In 33rd In-
ternational Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane,
Australia, pages 37:1–37:16, 2017.

SoCG 2019

http://arxiv.org/abs/1512.01876
http://arxiv.org/abs/1512.01876
http://arxiv.org/abs/1607.04200
http://arxiv.org/abs/1511.09229

16:14 One-Way Communication Complexity of DTW

16 Ioannis Z Emiris and Ioannis Psarros. Products of Euclidean metrics and applications to
proximity questions among curves. arXiv preprint, 2017. arXiv:1712.06471.

17 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497,
2004.

18 Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. arXiv preprint, 2016. arXiv:1607.05994.

19 Daniel S. Hirschberg. A Linear Space Algorithm for Computing Maximal Common Sub-
sequences. Commun. ACM, 18(6):341–343, 1975.

20 Utku Irmak, Svilen Mihaylov, and Torsten Suel. Improved single-round protocols for remote
file synchronization. In INFOCOM, pages 1665–1676, 2005.

21 Utku Irmak, Svilen Mihaylov, and Torsten Suel. Improved single-round protocols for remote
file synchronization. Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer
and Communications Societies., 3:1665–1676 vol. 3, 2005.

22 Thathachar S Jayram and David P Woodruff. Optimal bounds for Johnson-Lindenstrauss
transforms and streaming problems with subconstant error. ACM Transactions on Algorithms
(TALG), 9(3):26, 2013.

23 Hossein Jowhari. Efficient communication protocols for deciding edit distance. In European
Symposium on Algorithms, pages 648–658. Springer, 2012.

24 Eamonn J. Keogh. Exact Indexing of Dynamic Time Warping. In VLDB 2002, Proceedings of
28th International Conference on Very Large Data Bases, August 20-23, 2002, Hong Kong,
China, pages 406–417, 2002.

25 Eamonn J. Keogh and Michael J. Pazzani. Scaling up Dynamic Time Warping to Massive
Dataset. In Principles of Data Mining and Knowledge Discovery, Third European Conference,
PKDD ’99, Prague, Czech Republic, September 15-18, 1999, Proceedings, pages 1–11, 1999.

26 Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining
applications. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, Boston, MA, USA, August 20-23, 2000, pages 285–289, 2000.

27 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication com-
plexity. In Proceedings of the twenty-seventh annual ACM symposium on Theory of computing,
pages 596–605. ACM, 1995.

28 Lindasalwa Muda, Mumtaj Begam, and Irraivan Elamvazuthi. Voice recognition algorithms
using mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) techniques.
arXiv preprint, 2010. arXiv:1003.4083.

29 Mario E Munich and Pietro Perona. Continuous dynamic time warping for translation-invariant
curve alignment with applications to signature verification. In Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Conference on, volume 1, pages 108–115. IEEE,
1999.

30 Assaf Naor. Probabilistic clustering of high dimensional norms. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 690–709. SIAM, 2017.

31 Ofer Neiman. On Stochastic Decompositions of Metric Spaces.
32 Alon Orlitsky. Interactive communication: Balanced distributions, correlated files, and

average-case complexity. In Foundations of Computer Science, 1991. Proceedings., 32nd
Annual Symposium on, pages 228–238. IEEE, 1991.

33 François Petitjean, Germain Forestier, Geoffrey I. Webb, Ann E. Nicholson, Yanping Chen,
and Eamonn J. Keogh. Faster and more accurate classification of time series by exploiting a
novel dynamic time warping averaging algorithm. Knowl. Inf. Syst., 47(1):1–26, 2016.

34 Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49,
1978.

http://arxiv.org/abs/1712.06471
http://arxiv.org/abs/1607.05994
http://arxiv.org/abs/1003.4083

V. Braverman, M. Charikar, W. Kuszmaul, D. P. Woodruff, and L. F. Yang 16:15

35 Yasushi Sakurai, Masatoshi Yoshikawa, and Christos Faloutsos. FTW: fast similarity search
under the time warping distance. In Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 13-15, 2005, Baltimore, Mary-
land, USA, pages 326–337, 2005.

36 Braverman Vladimir, Moses Charikar, William Kuszmaul, David P. Woodruff, and Liu F.
Yang. The One-Way Communication Complexity of Dynamic time Warping Distance. arXiv
preprint, 2019. arXiv:1903.03520.

37 Rex Ying, Jiangwei Pan, Kyle Fox, and Pankaj K Agarwal. A simple efficient approxima-
tion algorithm for dynamic time warping. In Proceedings of the 24th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, page 21. ACM,
2016.

38 Yunyue Zhu and Dennis Shasha. Warping indexes with envelope transforms for query by
humming. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, pages 181–192. ACM, 2003.

SoCG 2019

http://arxiv.org/abs/1903.03520

Walking the Dog Fast in Practice: Algorithm
Engineering of the Fréchet Distance
Karl Bringmann
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

Marvin Künnemann
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
marvin@mpi-inf.mpg.de

André Nusser
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Germany
anusser@mpi-inf.mpg.de

Abstract
The Fréchet distance provides a natural and intuitive measure for the popular task of computing the
similarity of two (polygonal) curves. While a simple algorithm computes it in near-quadratic time, a
strongly subquadratic algorithm cannot exist unless the Strong Exponential Time Hypothesis fails.
Still, fast practical implementations of the Fréchet distance, in particular for realistic input curves,
are highly desirable. This has even lead to a designated competition, the ACM SIGSPATIAL GIS
Cup 2017: Here, the challenge was to implement a near-neighbor data structure under the Fréchet
distance. The bottleneck of the top three implementations turned out to be precisely the decision
procedure for the Fréchet distance.

In this work, we present a fast, certifying implementation for deciding the Fréchet distance, in
order to (1) complement its pessimistic worst-case hardness by an empirical analysis on realistic input
data and to (2) improve the state of the art for the GIS Cup challenge. We experimentally evaluate
our implementation on a large benchmark consisting of several data sets (including handwritten
characters and GPS trajectories). Compared to the winning implementation of the GIS Cup, we
obtain running time improvements of up to more than two orders of magnitude for the decision
procedure and of up to a factor of 30 for queries to the near-neighbor data structure.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases curve simplification, Fréchet distance, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.17

Related Version A full version of this paper is available at https://arxiv.org/abs/1901.01504.

Supplement Material https://github.com/chaot4/frechet_distance

1 Introduction

A variety of practical applications analyze and process trajectory data coming from different
sources like GPS measurements, digitized handwriting, motion capturing, and many more.
One elementary task on trajectories is to compare them, for example in the context of
signature verification [28], map matching [15, 27, 16, 10], and clustering [12, 13]. In this
work we consider the Fréchet distance as curve similarity measure as it is arguably the most
natural and popular one. Intuitively, the Fréchet distance between two curves is explained
using the following analogy. A person walks a dog, connected by a leash. Both walk along

© Karl Bringmann, Marvin Künnemann, and André Nusser;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 17; pp. 17:1–17:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kbringma@mpi-inf.mpg.de
mailto:marvin@mpi-inf.mpg.de
mailto:anusser@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.17
https://arxiv.org/abs/1901.01504
https://github.com/chaot4/frechet_distance
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

their respective curve, with possibly varying speeds and without ever walking backwards.
Over all such traversals, we search for the ones which minimize the leash length, i.e., we
minimize the maximal distance the dog and the person have during the traversal.

Initially defined more than one hundred years ago [21], the Fréchet distance quickly
gained popularity in computer science after the first algorithm to compute it was presented
by Alt and Godau [2]. In particular, they showed how to decide whether two length-n curves
have Fréchet distance at most δ in time O(n2) by full exploration of a quadratic-sized search
space, the so-called free-space (we refer to Section 3.1 for a definition). Almost twenty years
later, it was shown that, conditional on the Strong Exponential Time Hypothesis (SETH),
there cannot exist an algorithm with running time O(n2−ε) for any ε > 0 [6]. Even for
realistic models of input curves, such as c-packed curves [18], exact computation of the
Fréchet distance requires time n2−o(1) under SETH [6]. Only if we relax the goal to finding
a (1 + ε)-approximation of the Fréchet distance, algorithms with near-linear running times in
n and c on c-packed curves are known to exist [18, 7].

It is a natural question whether these hardness results are mere theoretical worst-case
results or whether computing the Fréchet distance is also hard in practice. This line of
research was particularly fostered by the research community in form of the GIS Cup 2017 [25].
In this competition, the 28 contesting teams were challenged to give a fast implementation
for the following problem: Given a data set of two-dimensional trajectories D, answer queries
that ask to return, given a curve π and query distance δ, all σ ∈ D with Fréchet distance at
most δ to π. We call this the near-neighbor problem.

The three top implementations [5, 11, 19] use multiple layers of heuristic filters and
spatial hashing to decide as early as possible whether a curve belongs to the output set or
not, and finally use an essentially exhaustive Fréchet distance computation for the remaining
cases. Specifically, these implementations perform the following steps:
0. Preprocess D.
On receiving a query with curve π and query distance δ:
1. Use spatial hashing to identify candidate curves σ ∈ D.
2. For each candidate σ, decide whether π, σ have Fréchet distance ≤ δ:

a) Use heuristics (filters) for a quick resolution in simple cases.
b) If unsuccessful, use a complete decision procedure via free-space exploration.

Let us highlight the Fréchet decider outlined in steps 2a and 2b: Here, filters refer to sound,
but incomplete Fréchet distance decision procedures, i.e., whenever they succeed to find
an answer, they are correct, but they may return that the answer remains unknown. In
contrast, a complete decision procedure via free-space exploration explores a sufficient part of
the free space (the search space) to always determine the correct answer. As it turns out, the
bottleneck in all three implementations is precisely Step 2b, the complete decision procedure
via free-space exploration. Especially [5] improved upon the naive implementation of the
free-space exploration by designing very basic pruning rules, which might be the advantage
because of which they won the competition. There are two directions for further substantial
improvements over the cup implementations: (1) increasing the range of instances covered by
fast filters and (2) algorithmic improvements of the exploration of the reachable free-space.

Our contribution. We develop a fast, practical Fréchet distance implementation. To this
end, we give a complete decision procedure via free-space exploration that uses a divide-and-
conquer interpretation of the Alt-Godau algorithm for the Fréchet distance and optimize it
using sophisticated pruning rules. These pruning rules greatly reduce the search space for
the realistic benchmark sets we consider – this is surprising given that simple constructions

K. Bringmann, M. Künnemann, and A. Nusser 17:3

generate hard instances which require the exploration of essentially the full quadratic-sized
search space [6, 8]. Furthermore, we present improved filters that are sufficiently fast
compared to the complete decider. Here, the idea is to use adaptive step sizes (combined
with useful heuristic tests) to achieve essentially “sublinear” time behavior for testing if an
instance can be resolved quickly. Additionally, our implementation is certifying (see [22] for
a survey on certifying algorithms), meaning that for every decision of curves being close/far,
we provide a short proof (certificate) that can be checked easily; we also implemented a
computational check of these certificates. See Section 8 in the full version for details.

An additional contribution of this work is the creation of benchmarks to make future
implementations more easily comparable. We compile benchmarks both for the near-neighbor
problem (Steps 0 to 2) and for the decision problem (Step 2). For this, we used publicly
available curve data and created queries in a way that should be representative for the
performance analysis of an implementation. As data sets we use the GIS Cup trajectories [24],
a set of handwritten characters called the Character Trajectories Data Set [26] from [17], and
the GeoLife data set [3] of Microsoft Research [30, 29, 31]. Our benchmarks cover different
distances and also curves of different similarity, giving a broad overview over different
settings. We make the source code as well as the benchmarks publicly available to enable
independent comparisons with our approach.1 Additionally, we particularly focus on making
our implementation easily readable to enable and encourage others to reuse the code.

Evaluation. The GIS Cup 2017 had 28 submissions, with the top three submissions2
(in decreasing order) due to Bringmann and Baldus [5], Buchin et al. [11], and Dütsch
and Vahrenhold [19]. We compare our implementation with all of them by running their
implementations on our new benchmark set for the near-neighbor problem and also comparing
to the improved decider of [5]. The comparison shows significant speed-ups up to almost a
factor of 30 for the near-neighbor problem and up to more than two orders of magnitude for
the decider.

Related work. The best known algorithm for deciding the Fréchet distance runs in time
O(n2 (log logn)2

logn) on the word RAM [9]. This relies on the Four Russians technique and is
mostly of theoretical interest. There are many variants of the Fréchet distance, e.g., the
discrete Fréchet distance [1, 20]. After the GIS Cup 2017, several practical papers studying
aspects of the Fréchet distance appeared [4, 14, 23]. Some of this work [4, 14] addressed
how to improve upon the spatial hashing step (Step 1) if we relax the requirement of
exactness. Since this is orthogonal to our approach of improving the complete decider, these
improvements could possibly be combined with our algorithm. The other work [23] neither
compared with the GIS Cup implementations, nor provided their source code publicly to
allow for a comparison, which is why we have to ignore it here.

1 Code and benchmarks are available at: https://github.com/chaot4/frechet_distance
2 The submissions were evaluated “for their correctness and average performance on a[sic!] various large

trajectory databases and queries”. Additional criteria were the following: “We will use the total elapsed
wall clock time as a measure of performance. For breaking ties, we will first look into the scalability
behavior for more and more queries on larger and larger datasets. Finally, we break ties on code stability,
quality, and readability and by using different datasets.”

SoCG 2019

https://github.com/chaot4/frechet_distance

17:4 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

2 Preliminaries

Our implementation as well as the description are restricted to two dimensions, however, the
approach can also be generalized to polygonal curves in d dimensions. Therefore, a curve
π is defined by its vertices π1, . . . , πn ∈ R2 which are connected by straight lines. We also
allow continuous indices as follows. For p = i+ λ with i ∈ {1, . . . , n} and λ ∈ [0, 1], let

πp := (1− λ)πi + λπi+1.

We call the πp with p ∈ [1, n] the points on π. A subcurve of π which starts at point p on π
and ends at point q on π is denoted by πp...q. In the remainder, we denote the number of
vertices of π (resp. σ) with n (resp. m) if not stated otherwise. We denote the length of a
curve π by ‖π‖, i.e., the sum of the Euclidean lengths of its line segments. Additionally, we
use ‖v‖ for the Euclidean norm of a vector v ∈ R2. For two curves π and σ, the Fréchet
distance dF (π, σ) is defined as

dF (π, σ) := inf
f∈Tn

g∈Tm

max
t∈[0,1]

∥∥πf(t) − σg(t)
∥∥ ,

where Tk is the set of monotone and continuous functions f : [0, 1] → [1, k]. We define
a traversal as a pair (f, g) ∈ Tn × Tm. Given two curves π, σ and a query distance δ, we
call them close if dF (π, σ) ≤ δ and far otherwise. There are two problem settings that we
consider in this paper:

Decider Setting. Given curves π, σ and a distance δ, decide whether dF (π, σ) ≤ δ. (With
such a decider, we can compute the exact distance by using parametric search in theory
and binary search in practice.)

Query Setting. Given a curve dataset D, build a data structure that on query (π, δ) returns
all σ ∈ D with dF (π, σ) ≤ δ.

We mainly focus on the decider in this work. To allow for a comparison with previous
implementations (which are all in the query setting), we also run experiments with our
decider plugged into a data structure for the query setting.

2.1 Preprocessing

When reading the input curves we immediately compute additional data which is stored with
each curve:
Prefix Distances. To be able to quickly compute the curve length between any two vertices

of π, we precompute the prefix lengths, i.e., the curve lengths ‖π1...i‖ for every i ∈
{2, . . . , n}. We can then compute the curve length for two indices i < i′ on π by
‖πi...i′‖ = ‖π1...i′‖ − ‖π1...i‖.

Bounding Box. We compute the bounding box of all curves, which is a simple coordinate-wise
maximum and minimum computation.

Both of these preprocessing steps are extremely cheap as they only require a single pass over
all curves, which we anyway do when parsing them. In the remainder of this work we assume
that this additional data was already computed, in particular, we do not measure it in our
experiments as it is dominated by reading the curves.

K. Bringmann, M. Künnemann, and A. Nusser 17:5

Figure 1 Example of a free-space diagram for curves π (black) and σ (red). The doubly-circled
vertices mark the start. The free-space, i.e., the pairs of indices of points which are close, is colored
green. The non-free areas are colored red. The threshold distance δ is roughly the distance between
the first vertex of σ and the third vertex of π.

3 Complete decider

The key improvement of this work lies in the complete decider via free-space exploration.
Here, we use a divide-and-conquer interpretation of the algorithm of Alt and Godau [2]
which is similar to [5] where a free-space diagram is built recursively. This interpretation
allows us to prune away large parts of the search space by designing powerful pruning rules
identifying parts of the search space that are irrelevant for determining the correct output.
Before describing the details, we formally define the free-space diagram.

3.1 Free-space diagram
The free-space diagram was first defined in [2]. Given two polygonal curves π and σ and a
distance δ, it is defined as the set of all pairs of indices of points from π and σ that are close
to each other, i.e.,

F := {(p, q) ∈ [1, n]× [1,m] | ‖πp − σq‖ ≤ δ}.

For an example see Figure 1. A path from a to b in the free-space diagram F is defined as a
continuous mapping P : [0, 1]→ F with P (0) = a and P (1) = b. A path P in the free-space
diagram is monotone if P (x) is component-wise at most P (y) for any 0 ≤ x ≤ y ≤ 1. The
reachable space is then defined as

R := {(p, q) ∈ F | there exists a monotone path from (1, 1) to (p, q) in F}.

Figure 2 shows the reachable space for the free-space diagram of Figure 1. It is well known
that dF (π, σ) ≤ δ if and only if (n,m) ∈ R.

This leads us to a simple dynamic programming algorithm to decide whether the Fréchet
distance of two curves is at most some threshold distance. We iteratively compute R
starting from (1, 1) and ending at (n,m), using the previously computed values. As R is
potentially a set of infinite size, we have to discretize it. A natural choice is to restrict to
cells. The cell of R with coordinates (i, j) ∈ {1, . . . , n − 1} × {1, . . . ,m − 1} is defined as
Ci,j := R ∩ [i, i+ 1]× [j, j + 1]. This is a natural choice as given Ci−1,j and Ci,j−1, we can
compute Ci,j in constant time; this follows from the simple fact that F ∩ [i, i+ 1]× [j, j + 1]
is convex [2]. We call this computation of the outputs of a cell the cell propagation. This
algorithm runs in time O(nm) and was introduced by Alt and Godau [2].

SoCG 2019

17:6 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

Figure 2 Reachable space of the free-space diagram in Figure 1. The reachable part is blue and
the non-reachable part is red. Note that the reachable part is a subset of the free-space.

3.2 Basic algorithm
For integers 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m we call the set B = [i, i′]× [j, j′] a box. We denote
the left/right/bottom/top boundaries of B by Bl = {i} × [j, j′], Br = {i′} × [j, j′], Bb =
[i, i′]× {j}, Bt = [i, i′]× {j′}. The left input of B is BRl = Bl ∩ R, and its bottom input is
BRb = Bb ∩R. Similarly, the right/top output of B is BRr = Br ∩R, BRt = Bt ∩R. A box is
a cell if i+ 1 = i′ and j + 1 = j′. We always denote the lower left corner of a box by (i, j)
and the top right by (i′, j′), if not mentioned otherwise.

A recursive variant of the standard free-space decision procedure is as follows: Start with
B = [1, n]× [1,m]. At any recursive call, if B is a cell, then determine its outputs from its
inputs in constant time, as described by [2]. Otherwise, split B vertically or horizontally
into B1, B2 and first compute the outputs of B1 from the inputs of B and then compute the
outputs of B2 from the inputs of B and the outputs of B1. In the end, we just have to check
(n,m) ∈ R to decide whether the curves are close or far. This is a constant-time operation
after calculating all outputs.

Now comes the main idea of our approach: we try to avoid recursive splitting by directly
computing the outputs for non-cell boxes using certain rules. We call them pruning rules
as they enable pruning large parts of the recursion tree induced by the divide-and-conquer
approach. Our pruning rules are heuristic, meaning that they are not always applicable,
however, we show in the experiments that on practical curves they apply very often and
therefore massively reduce the number of recursive calls. The detailed pruning rules are
described Section 3.3. Using these rules, we change the above recursive algorithm as follows.
In any recursive call on box B, we first try to apply the pruning rules. If this is successful,
then we obtained the outputs of B and we are done with this recursive call. Otherwise, we
perform the usual recursive splitting. Corresponding pseudocode is shown in Algorithm 1.

In the remainder of this section, we describe our pruning rules and their effects.

3.3 Pruning rules
In this section we introduce the rules that we use to compute outputs of boxes which are
above cell-level in certain special cases. Note that we aim at catching special cases which
occur often in practice, as we cannot hope for improvements on adversarial instances due
to the conditional lower bound of [6]. Therefore, we make no claims whether they are
applicable, only that they are sound and fast. In what follows, we call a boundary empty if
its intersection with R is ∅.

K. Bringmann, M. Künnemann, and A. Nusser 17:7

Algorithm 1 Recursive Decider of the Fréchet Distance.
1: procedure DecideFréchetDistance(π, σ)
2: ComputeOutputs(π, σ, [1, n]× [1,m])
3: return [(n,m) ∈ R]

4: procedure ComputeOutputs(π, σ,B = [i, i′]× [j, j′])
5: if B is a cell then
6: compute outputs by cell propagation
7: else
8: use pruning rules I to IV to compute outputs of B
9: if not all outputs have been computed then
10: if j′ − j > i′ − i then . split horizontally
11: B1 = [i, i′]× [j, b(j + j′)/2c]
12: B2 = [i, i′]× [b(j + j′)/2c, j′]
13: else . split vertically
14: B1 = [i, b(i+ i′)/2c]× [j, j′]
15: B2 = [b(i+ i′)/2c, i′]× [j, j′]
16: ComputeOutputs(π, σ,B1) and ComputeOutputs(π, σ,B2)

Figure 3 Output computation of a box when inputs are empty. First we can compute the outputs
of the top left box and then the outputs of the right box. In this example, we then know that the
curves have a Fréchet distance greater than δ as (n,m) is not reachable.

Rule I: empty inputs
The simplest case where we can compute the outputs of a box B is if both inputs are empty,
i.e. BRb = BRl = ∅. In this case no propagation of reachability is possible and thus the
outputs are empty as well, i.e. BRt = BRr = ∅. See Figure 3 for an example.

Rule II: shrink box
Instead of directly computing the outputs, this rule allows us to shrink the box we are
currently working on, which reduces the problem size. Assume that for a box B we have
that BRb = ∅ and the lowest point of BRl is (i, jmin) with jmin > j. In this case, no pair in
[i, i′]× [j, jmin] is reachable. Thus, we can shrink the box to the coordinates [i, i′]× [bjminc, j′]
without losing any reachability information. An equivalent rule can be applied if we swap
the role of Bb and Bl. See Figure 4 for an example of applying this rule.

Rule III: simple boundaries
Simple boundaries are boundaries of a box that contain at most one free section. To define
this formally, a set I ⊆ [1, n] × [1,m] is called an interval if I = ∅ or I = {p} × [q, q′] or
I = [q, q′]× {p} for real p and an interval [q, q′]. In particular, the four boundaries of a box
B = [i, i′] × [j, j′] are intervals. We say that an interval I is simple if I ∩ F is again an
interval. Geometrically, we have a free interval of a point πp and a curve σq...q′ (which is the

SoCG 2019

17:8 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

Figure 4 This is an example of shrinking a box in case one of the inputs is empty and the other
one starts with an empty part. In this example the top left box has an empty input on the left and
the start of the bottom input is empty as well. Thus, we can shrink the box to the right part.

πp

δ

σ′

Figure 5 Example of a point πp and a curve σ′ which lead to a simple boundary.

form of a boundary in the free-space diagram) if the circle of radius δ around πp intersects
σq...q′ at most twice. See Figure 5 for an example. We call such a boundary simple because
it is of low complexity, which we can exploit for pruning.

There are three pruning rules that we do based on simple boundaries (see Figure 6 for
visualizations). They are stated here for the top boundary Bt, but symmetric rules apply to
Br. Later, in Section 3.4, we then explain how to actually compute simple boundaries, i.e.,
also how to compute Bt ∩ F . The pruning rules are:

(a) If Bt is simple because Bt ∩ F is empty then we also know that the output of this
boundary is empty. Thus, we are done with Bt.

(b) Suppose that Bt is simple and, more specifically, of the form that it first has a free and
then a non-free part; in other words, we have (i, j′) ∈ Bt ∩ F . Due to our recursive
approach, we already computed the left inputs of the box and thus know whether the
top left corner of the box is reachable, i.e. whether (i, j′) ∈ R. If this is the case, then
we also know the reachable part of our simple boundary: Since (i, j′) ∈ R and Bt ∩ F is
an interval containing (i, j′), we conclude that BRt = Bt ∩ F and we are done with Bt.

(c) Suppose that Bt is simple, but the leftmost point (imin, j
′) of Bt ∩ F has imin > i. In

this case, we try to certify that (imin, j
′) ∈ R, because then it follows that BRt = Bt ∩ F

and we are done with Bt. To check for reachability of (imin, j
′), we try to propagate the

reachability through the inside of the box, which in this case means to propagate it from
the bottom boundary. We test whether (imin, j) is in the input, i.e., if (imin, j) ∈ BRb , and
whether {imin} × [j, j′] ⊆ F (by slightly modifying the algorithm for simple boundary
computations). If this is the case, then we can reach every point in Bt ∩ F from (imin, j)
via {imin} × [j, j′].

We also use symmetric rules by swapping “top” with “right” and “bottom” with “left”.

K. Bringmann, M. Künnemann, and A. Nusser 17:9

a) b) c)

Figure 6 Visualization of the rules for computing outputs using simple boundaries. All three
cases are visualized with the top boundary being simple. In a) the boundary is non-free and therefore
no point on it can be reachable. In b) the boundary’s beginning is free and reachable, enabling us
to propagate the reachability to the entire free interval. In c) we can propagate the reachability of
a point on the bottom boundary, using a free interval inside the box, to the beginning of the free
interval of the top boundary and thus decide the entire boundary.

Rule IV: boxes at free-space diagram boundaries

The boundaries of a free-space diagram are a special form of boundary which allows us to
introduce an additional rule. Consider a box B which touches the top boundary of the free-
space diagram, i.e., B = [i, i′]× [j,m]. Suppose the previous rules allowed us to determine the
output for BRr . Since any valid traversal from (1, 1) to (n,m) passing through B intersects Br,
the output BRt is not needed anymore, and we are done with B. A symmetric rule applies to
boxes which touch the right boundary of the free-space diagram.

3.4 Implementation details of simple boundaries

It remains to describe how we test whether a boundary is simple, and how we determine
the free interval of a simple boundary. One important ingredient for the fast detection of
simple boundaries are two simple heuristic checks that check whether two polygonal curves
are close or far, respectively. The former check was already used in [5]. We first explain these
heuristic checks, and then explain how to use them for the detection of simple boundaries.

Heuristic check whether two curves are close. Given two subcurves π′ := πi...i′ and
σ′ := σj...j′ , this filter heuristically tests whether dF (π′, σ′) ≤ δ. Let ic := b i+i

′

2 c and
jc := b j+j

′

2 c be the indices of the midpoints of π′ and σ′ (with respect to hops). Then
dF (π′, σ′) ≤ δ holds if

max{‖πi...ic‖ , ‖πic...i′‖}+ ‖πic − σjc
‖+ max{‖σj...jc

‖ , ‖σjc...j′‖} ≤ δ.

The triangle equality ensures that this is an upper bound on all distances between two points
on the curves. For a visualization, see Figure 7a. Observe that all curve lengths that need to
be computed in the above equation can be determined quickly due to our preprocessing, see
Section 2.1. We call this procedure HeurClose(π′, σ′, δ).

Heuristic check whether two curves are far. Symmetrically, we can test whether all pairs
of points on π′ and σ′ are far by testing

‖πic − σjc
‖ −max{‖πi...ic‖ , ‖πic...i′‖} −max{‖σj...jc

‖ , ‖σjc...j′‖} > δ.

We call this procedure HeurFar(π′, σ′, δ).

SoCG 2019

17:10 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

πi

σj

πic

σjc

≤ δ?

πi′

σj′

(a) HeurClose

πi

πi′

πic

σj

σj′

σjc

> δ?‖πic − πi′‖

‖σjc − σj‖

(b) HeurFar

Figure 7 Visualizations of heuristic checks HeurClose and HeurFar.

Computation of simple boundaries. Recall that an interval is defined as I = {p} × [q, q′]
(intervals of the form [q, q′] × {p} are handled symmetrically). The naive way to decide
whether interval I is simple would be to go over all the segments of σq...q′ and compute the
intersection with the circle of radius δ around πp. However, this is too expensive because
(i) computing the intersection of a disc and a segment involves taking a square root, which
is an expensive operation with a large constant running time, and (ii) iterating over all
segments of σq...q′ incurs a linear factor in n for large boxes, while we aim at a logarithmic
dependence on n for simple boundary detection.

We avoid these issues by resolving long subcurves σj..j+s using our heuristic checks
(HeurClose, HeurFar). Here, s is an adaptive step size that grows whenever the heuristic
checks were applicable, and shrinks otherwise. See Algorithm 2 for pseudocode of our simple
boundary detection. It is straightforward to extend this algorithm to not only detect whether
a boundary is simple, but also compute the free interval of a simple boundary; we call the
resulting procedure SimpleBoundary.

3.5 Effects of combined pruning rules

All the pruning rules presented above can in practice lead to a reduction of the number of
boxes that are necessary to decide the Fréchet distance of two curves. We exemplify this on
two real-world curves; see Figure 8 for the curves and their corresponding free-space diagram.
We explain in the following where the single rules come into play. For Box 1 we apply Rule
IIIb twice – for the top and right output. The top boundary of Box 2 is empty and thus
we computed the outputs according to Rule IIIa. Note that the right boundary of this box
is on the right boundary of the free-space diagram and thus we do not have to compute it
according to Rule IV. For Box 3 we again use Rule IIIb for the top, but we use Rule IIIc
for the right boundary – the blue dotted line indicates that the reachability information is
propagated through the box. For Box 4 we first use Rule II to move the bottom boundary
significantly up, until the end of the left empty part; we can do this because the bottom
boundary is empty and the left boundary is simple, starting with an empty part. After two
splits of the remaining box, we see that the two outputs of the leftmost box are empty as
the top and right boundaries are non-free, using Rule IIIa. For the remaining two boxes we
use Rule I as their inputs are empty.

This example illustrates how propagating through a box (in Box 3) and subsequently
moving a boundary (in Box 4) leads to pruning large parts. Additionally, we can see how
using simple boundaries leads to early decisions and thus avoids many recursive steps. In
total, we can see how all the explained pruning rules together lead to a free-space diagram

K. Bringmann, M. Künnemann, and A. Nusser 17:11

Algorithm 2 Checks if the boundary {p} × [q, q′] in the free-space diagram is simple.
1: procedure isSimpleBoundary(πp, σq...q′)
2: if HeurFar(πp, σq...q′ , δ) or HeurClose(πp, σq...q′ , δ) then
3: return ‘simple’

4: C ←

{
{σq} , if ‖p− σq‖ ≤ δ
∅ , otherwise

. set of change points

5: s← 1, j ← q

6: while j < q′ do
7: if HeurClose(πp, σj...j+s, δ) then
8: j ← j + s

9: s← 2s
10: else if HeurFar(πp, σj...j+s, δ) then
11: j ← j + s

12: s← 2s
13: else if s > 1 then
14: s← s/2
15: else
16: P ← {j′ ∈ (j, j + 1] | ‖πp − σj′‖ = δ}
17: C ← C ∪ P
18: j ← j + 1
19: if |C| > 2 then
20: return ‘not simple’

21: return ‘simple’

with only twelve boxes, i.e., twelve recursive calls, for curves with more than 50 vertices
and more than 1500 reachable cells. Figure 9 shows what effects the pruning rules have by
introducing them one by one in an example.

4 Decider with filters

The decider can be divided into two parts:
1. Filters
2. Complete decider via free-space exploration
As outlined in Section 1, we first try to determine the correct output by using fast but
incomplete filtering mechanisms and only resort to the slower complete decider presented in
the last section if none of the heuristic deciders (filters) gave a result.

The speed-ups introduced by our complete decider were already explained in Section 3.
A second source for our speed-ups lies in the usage of a good set of filters. Interestingly,
since our optimized complete decider via free-space exploration already solves many simple
instances very efficiently, our filters have to be extremely fast to be useful – otherwise, the
additional effort for an incomplete filter does not pay off. In particular, we cannot afford
expensive preprocessing and ideally, we would like to achieve sublinear running times for our
filters. To this end, we only use filters that can traverse large parts of the curves quickly.
We achieve sublinear-type behavior by making previously used filters work with an adaptive
step size (exploiting fast heuristic checks), and designing a new adaptive negative filter. Due
to space constraints, the detailed explanation of the filters is in Section 4 of the full version.

SoCG 2019

17:12 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

3 4

21

Figure 8 A free-space diagram as produced by our final implementation (left) with the corres-
ponding curves (right). The curves are taken from the SIGSPATIAL dataset. We number the boxes
in the third level of the recursion from 1 to 4.

5 Experiments

In the experiments, we aim to substantiate the following two claims. First, we want to
verify that our main contribution, the decider, actually is a significant improvement over the
state of the art. To this end, we compare our implementation with the – to our knowledge –
currently fastest Fréchet distance decider, namely [5]. Second, we want to verify that our
improvements in the decider setting also carry over to the query setting, also significantly
improving the state of the art. To show this, we compare to the top three submissions of the
GIS Cup.

We use three different data sets: the GIS Cup set (Sigspatial) [24], the handwritten
characters (Characters) [26], and the GeoLife data set (GeoLife) [3]. For all experiments,
we used a laptop with an Intel i5-6440HQ processor with 4 cores and 16GB of RAM. See
Section 7 of the full version for additional experiments.

5.1 Decider setting

In this section we test the running time performance of our new decider algorithm. We first
describe our new benchmark using the three data sets, and then discuss our experimental
findings, in particular how the performance and improvement over the state of the art varies
with the distance and also the “neighbor rank” in the data set.

Benchmark. For the decider, we want to specifically test how the decision distance δ
and how the choice of the second curve σ influences the running time of the decider. To
experimentally evaluate this, we create a benchmark for each data set D in the following way.
We select a random curve π ∈ D and sort the curves in the data set D by their distance to π
in increasing order, obtaining the sequence σ1, . . . , σn. For all k ∈ {1, . . . , blognc}, we

K. Bringmann, M. Künnemann, and A. Nusser 17:13

Figure 9 A decider example introducing the pruning rules one by one. They are introduced
from top to bottom and left to right. The images in this order depict: the free-space diagram, the
reachable space, after introducing Rule I, Rule II, Rule IIIa, Rule IIIb, Rule IIIc, Rule IV, and finally
the free-space diagram with all pruning rules enabled. The curves of this example are shown in
Figure 8.

SoCG 2019

17:14 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

select a curve σ ∈ {σ2k , . . . , σ2k+1−1} uniformly at random3,
compute the exact distance δ∗ := dF (π, σ),
for each l ∈ {−10, . . . , 0}, add benchmark tests (π, σ, (1− 2l) · δ∗) and (π, σ, (1 + 2l) · δ∗).

By repeating this process for 1000 uniformly random curves π ∈ D, we create 1000 test cases
for every pair of k and l.

Running times. First we show how our implementation performs in this benchmark. In
Figure 10 we depict timings for running our implementation on the benchmark for all data
sets. We can see that distances larger than the exact Fréchet distance are harder than smaller
distances. This effect is most likely caused by the fact that decider instances with positive
result need to find a path through the free-space diagram, while negative instances might be
resolved earlier as it already becomes clear close to the lower left corner of the free-space
diagram that there cannot exist such a path. Also, the performance of the decider is worse
for computations on (π, σi, δ) when i is smaller. This seems natural, as curves which are
closer are more likely in the data set to actually be of similar shape, and similar shapes often
lead to bottlenecks in the free-space diagram (i.e., small regions where a witness path can
barely pass through), which have to be resolved in much more detail and therefore lead to a
higher number of recursive calls. It follows that the benchmark instances for low k and l are
the hardest; this is the case for all data sets. In Characters we can also see that for k = 7
there is suddenly a rise in the running time for certain distance factors. We assume that
this comes from the fact that the previous values of k all correspond to the same written
character and this changes for k = 7.

We also run the original code of the winner of the GIS Cup, namely [5], on our benchmark
and compare it with the running time of our implementation. See Figure 11 for the speed-up
factors of our implementation over the GIS Cup winner implementation. The speed-ups
obtained depend on the data set. While for every data set a significant amount of benchmarks
for different k and l are more than one order of magnitude faster, for GeoLife even speed-
ups by 2 orders of magnitude are reached. Speed-ups tend to be higher for larger distance
factors. The results on GeoLife suggest that for longer curves, our implementation becomes
significantly faster relative to the current state of the art. Note that there also are situations
where our decider shows similar performance to the one of [5]; however, those are cases where
both deciders can easily recognize that the curves are far (due to, e.g., their start or end
points being far). We additionally show the percentage of instances that are already decided
by the filters in Figure 12.

5.2 Query setting
Our query data structure is influenced by [5]. We first use spatial hashing (via a kd-tree) on
endpoints and extrema of the curves to select a good set of candidate curves, and then use
our decider from Section 4 to decide those candidates. See Section 5 of the full version.

Benchmark. We build a query benchmark similar to the one used in [5]. For each k ∈
{0, 1, 10, 100, 1000}, we select a random curve π ∈ D and then pick a threshold distance δ
such that a query of the form (π, δ) returns exactly k + 1 curves (note that the curve π itself
is also always returned). We repeat this 1000 times for each value of k and also create such
a benchmark for each of the three data sets.

3 Note that for k = blognc some curves might be undefined as possibly 2k+1 − 1 > n. In this case we
select a curve uniformly at random from {σ2k , . . . , σn}.

K. Bringmann, M. Künnemann, and A. Nusser 17:15

1− 2−1 1− 2−3 1− 2−5 1− 2−7 1− 2−9 1 + 2−10 1 + 2−8 1 + 2−6 1 + 2−4 1 + 2−2 1 + 20 1 + 22

distance factor

21

23

25

27

29

211

213

n
ei

gh
b

or
ra

n
k

2

4

6

8

10

12

14

16

co
m

p
u

ta
ti

on
ti

m
e

(m
s)

Sigspatial:

1− 2−1 1− 2−3 1− 2−5 1− 2−7 1− 2−9 1 + 2−10 1 + 2−8 1 + 2−6 1 + 2−4 1 + 2−2 1 + 20 1 + 22

distance factor

21

23

25

27

29

211

n
ei

gh
b

or
ra

n
k

5

10

15

20

co
m

p
u

ta
ti

on
ti

m
e

(m
s)

Characters:

1− 2−1 1− 2−3 1− 2−5 1− 2−7 1− 2−9 1 + 2−10 1 + 2−8 1 + 2−6 1 + 2−4 1 + 2−2 1 + 20 1 + 22

distance factor

21

23

25

27

29

211

213

n
ei

gh
b

or
ra

n
k

10

20

30

40

50

60

70

80

co
m

p
u

ta
ti

on
ti

m
e

(m
s)

Geolife:

Figure 10 Running times of the decider benchmark when we run our implementation on it.

SoCG 2019

17:16 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

1− 2−1 1− 2−3 1− 2−5 1− 2−7 1− 2−9 1 + 2−10 1 + 2−8 1 + 2−6 1 + 2−4 1 + 2−2 1 + 20 1 + 22

distance factor

21

23

25

27

29

211

213

n
ei

gh
b

or
ra

n
k

100

101

sp
ee

d
-u

p
fa

ct
or

Sigspatial:

1− 2−1 1− 2−3 1− 2−5 1− 2−7 1− 2−9 1 + 2−10 1 + 2−8 1 + 2−6 1 + 2−4 1 + 2−2 1 + 20 1 + 22

distance factor

21

23

25

27

29

211

n
ei

gh
b

or
ra

n
k

100

101

sp
ee

d
-u

p
fa

ct
or

Characters:

1− 2−1 1− 2−3 1− 2−5 1− 2−7 1− 2−9 1 + 2−10 1 + 2−8 1 + 2−6 1 + 2−4 1 + 2−2 1 + 20 1 + 22

distance factor

21

23

25

27

29

211

213

n
ei

gh
b

or
ra

n
k

100

101

102
sp

ee
d

-u
p

fa
ct

or
Geolife:

Figure 11 The speed-up factors obtained over the GIS Cup winner on the decider benchmark.

K. Bringmann, M. Künnemann, and A. Nusser 17:17

1− 2−1 1− 2−3 1− 2−5 1− 2−7 1− 2−9 1 + 2−10 1 + 2−8 1 + 2−6 1 + 2−4 1 + 2−2 1 + 20 1 + 22

distance factor

21

23

25

27

29

211

213

n
ei

gh
b

or
ra

n
k

0

20

40

60

80

100

fil
te

re
d

(%
)

Sigspatial:

1− 2−1 1− 2−3 1− 2−5 1− 2−7 1− 2−9 1 + 2−10 1 + 2−8 1 + 2−6 1 + 2−4 1 + 2−2 1 + 20 1 + 22

distance factor

21

23

25

27

29

211

n
ei

gh
b

or
ra

n
k

0

20

40

60

80

100

fil
te

re
d

(%
)

Characters:

1− 2−1 1− 2−3 1− 2−5 1− 2−7 1− 2−9 1 + 2−10 1 + 2−8 1 + 2−6 1 + 2−4 1 + 2−2 1 + 20 1 + 22

distance factor

21

23

25

27

29

211

213

n
ei

gh
b

or
ra

n
k

0

20

40

60

80

100

fil
te

re
d

(%
)

Geolife:

Figure 12 The percentage of queries that are decided by the filters on the decider benchmark.

SoCG 2019

17:18 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

Ta
bl
e
1
C
om

pa
ri
ng

th
e
ru
nn

in
g
ti
m
es

(i
n
s)

of
th
e
qu

er
ie
s
of

th
e
to
p
th
re
e
im

pl
em

en
ta
ti
on

s
of

th
e
G
IS

C
up

20
17

w
it
h
ou

r
ne

w
im

pl
em

en
ta
ti
on

on
th
e

qu
er
y
be

nc
hm

ar
k
on

al
ld

at
a
se
ts

(1
00
0
qu

er
ie
s
pe

r
en
tr
y)
.

Si
gs

pa
ti

al
C

ha
ra

ct
er

s
G

eo
Li

fe
k

0
1

10
10
0

10
00

0
1

10
10
0

10
00

0
1

10
10
0

10
00

[5
]

0.
09
4

0.
12
3

0.
32
2

1.
81
2

8.
40
8

0.
18
7

0.
21
7

0.
42
1

2.
22
2

17
.1
69

0.
29
8

0.
74
1

4.
32
7

33
.0
34

10
9.
44

[1
1]

0.
42
1

0.
61
8

1.
71
1

7.
86

35
.7
04

0.
17
6

0.
28

0.
61
1

3.
03
9

17
.6
81

3.
62
7

6.
06
7

26
.3
43

12
0.
50
9

41
5.
54
8

[1
9]

0.
19
7

0.
18
8

0.
64
3

5.
56
4

76
.1
44

0.
14
2

0.
14
7

0.
22
2

1.
84
9

22
.4
99

2.
61
4

4.
11
2

16
.4
28

16
6.
20
6

13
52
.1
9

ou
rs

0.
01
7

0.
00
7

0.
02
6

0.
13
0

0.
49
0

0.
00
4

0.
02
0

0.
05
8

0.
30
1

1.
17
6

0.
02
7

0.
08
9

0.
34
1

1.
10
8

3.
64
2

Ta
bl
e
2
T
im

in
gs

(in
s)

of
th
e
sin

gl
e
pa

rt
s
of

ou
r
qu

er
y
al
go

rit
hm

on
th
e
qu

er
y
be

nc
hm

ar
k
on

al
lt

hr
ee

da
ta

se
ts
.
To

av
oi
d
co
nf
us
io
n,

no
te

th
at

th
e
su
m

of
th
e
tim

es
in

th
is

ta
bl
e
do

no
t
m
at
ch

th
e
en
tr
ie
s
in

Ta
bl
e
1
as

th
os
e
ar
e
pa

ra
lle

liz
ed

tim
in
gs

an
d
ad

di
tio

na
lly

th
e
tim

in
g
its

el
fi
nt
ro
du

ce
s
so
m
e
ov
er
he

ad
.

Si
gs

pa
ti

al
C

ha
ra

ct
er

s
G

eo
Li

fe
k

0
1

10
10
0

10
00

0
1

10
10
0

10
00

0
1

10
10
0

10
00

sp
at
ia
lh

as
hi
ng

0.
00
2

0.
00
3

0.
00
5

0.
01
7

0.
07
4

0.
00
2

0.
00
2

0.
00
4

0.
01
1

0.
03
2

0.
00
6

0.
00
9

0.
01
6

0.
03
2

0.
09
1

gr
ee
dy

fil
te
r

0.
00
4

0.
00
6

0.
02
4

0.
14
3

0.
90
3

0.
00
4

0.
01
0

0.
03
2

0.
15
3

0.
72
1

0.
00
9

0.
01
7

0.
06
0

0.
27
3

1.
41
0

ad
ap

tiv
e
eq
ua

l-t
im

e
fil
te
r

0.
00
0

0.
00
1

0.
00
6

0.
03
0

0.
08
8

0.
00
1

0.
00
4

0.
01
8

0.
08
8

0.
42
4

0.
00
5

0.
01
7

0.
06
3

0.
27
3

1.
21
1

ne
ga
tiv

e
fil
te
r

0.
00
1

0.
00
2

0.
01
0

0.
04
4

0.
10
7

0.
00
3

0.
01
2

0.
03
8

0.
15
2

0.
30
9

0.
00
8

0.
02
0

0.
06
9

0.
20
0

0.
60
6

co
m
pl
et
e
de

ci
de

r
0.
00
2

0.
01
1

0.
04
4

0.
21
4

0.
33
0

0.
00
5

0.
03
0

0.
10
9

0.
67
1

2.
63
9

0.
06
2

0.
21
0

0.
99
8

3.
02
5

8.
76
0

K. Bringmann, M. Künnemann, and A. Nusser 17:19

Running times. We compare our implementation with the top three implementations of
the GIS Cup on this benchmark. The results are shown in Table 1. Again the running
time improvement of our implementation depends on the data set. For Characters the
maximal improvement factor over the second best implementation is 14.6, for Sigspatial
17.3, and for GeoLife 29.1. For Sigspatial and Characters it is attained at k = 1000,
while for GeoLife it is reached at k = 100 but k = 1000 shows a very similar but slightly
smaller factor.

To give deeper insights about the single parts of our decider, a detailed analysis of the
running times of the single parts of the algorithm is shown in Table 2. Again we witness
different behavior depending on the data set. It is remarkable that for Sigspatial the
running time for k = 1000 is dominated by the greedy filter. This suggests that improving
the filters might still lead to a significant speed-up in this case. However, for most of the
remaining cases the running time is clearly dominated by the complete decider, suggesting
that our efforts of improving the state of the art focused on the right part of the algorithm.

References
1 Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the

Discrete Fréchet Distance in Subquadratic Time. SIAM J. Comput., 43(2):429–449, 2014.
doi:10.1137/130920526.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75–91,
1995.

3 Microsoft Research Asia. GeoLife GPS Trajectories. https://www.microsoft.com/en-us/
download/details.aspx?id=52367. Accessed: 2018-12-03.

4 Maria Astefanoaei, Paul Cesaretti, Panagiota Katsikouli, Mayank Goswami, and Rik Sarkar.
Multi-resolution sketches and locality sensitive hashing for fast trajectory processing. In Proc.
26th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems (ACM GIS), 2018.

5 Julian Baldus and Karl Bringmann. A Fast Implementation of Near Neighbors Queries for
Fréchet Distance (GIS Cup). In Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL’17, pages 99:1–99:4,
New York, NY, USA, 2017. ACM. doi:10.1145/3139958.3140062.

6 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquad-
ratic algorithms unless SETH fails. In Foundations of Computer Science (FOCS), 2014 IEEE
55th Annual Symposium on, pages 661–670. IEEE, 2014.

7 Karl Bringmann and Marvin Künnemann. Improved Approximation for Fréchet Distance
on c-Packed Curves Matching Conditional Lower Bounds. Int. J. Comput. Geometry Appl.,
27(1-2):85–120, 2017. doi:10.1142/S0218195917600056.

8 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
Journal of Computational Geometry, 7(2):46–76, December 2015. doi:10.20382/jocg.v7i2a4.

9 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets Walk
the Dog: Improved Bounds for Computing the Fréchet Distance. Discrete & Computational
Geometry, 58(1):180–216, 2017. doi:10.1007/s00454-017-9878-7.

10 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms, pages 645–654. Society for Industrial and Applied Mathematics, 2009.

11 Kevin Buchin, Yago Diez, Tom van Diggelen, and Wouter Meulemans. Efficient Trajectory
Queries Under the Fréchet Distance (GIS Cup). In Proceedings of the 25th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, SIGSPATIAL’17,
pages 101:1–101:4, New York, NY, USA, 2017. ACM. doi:10.1145/3139958.3140064.

SoCG 2019

http://dx.doi.org/10.1137/130920526
https://www.microsoft.com/en-us/download/details.aspx?id=52367
https://www.microsoft.com/en-us/download/details.aspx?id=52367
http://dx.doi.org/10.1145/3139958.3140062
http://dx.doi.org/10.1142/S0218195917600056
http://dx.doi.org/10.20382/jocg.v7i2a4
http://dx.doi.org/10.1007/s00454-017-9878-7
http://dx.doi.org/10.1145/3139958.3140064

17:20 Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance

12 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna, and
Maarten Löffler. Approximating (k, `)-center clustering for curves. CoRR, abs/1805.01547,
2018. arXiv:1805.01547.

13 Jonathan Campbell, Jonathan Tremblay, and Clark Verbrugge. Clustering Player Paths. In
FDG, 2015.

14 Matteo Ceccarello, Anne Driemel, and Francesco Silvestri. FRESH: Fréchet similarity with
hashing. CoRR, abs/1809.02350, 2018. arXiv:1809.02350.

15 Erin Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk. Map-matching using
shortest paths. In Proceedings of the 3rd International Workshop on Interactive and Spatial
Computing, pages 44–51. ACM, 2018.

16 Daniel Chen, Anne Driemel, Leonidas J Guibas, Andy Nguyen, and Carola Wenk. Approximate
map matching with respect to the Fréchet distance. In 2011 Proceedings of the Thirteenth
Workshop on Algorithm Engineering and Experiments (ALENEX), pages 75–83. SIAM, 2011.

17 Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL:
http://archive.ics.uci.edu/ml.

18 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet Distance for
Realistic Curves in Near Linear Time. Discrete & Computational Geometry, 48(1):94–127,
July 2012. doi:10.1007/s00454-012-9402-z.

19 Fabian Dütsch and Jan Vahrenhold. A Filter-and-Refinement-Algorithm for Range Queries
Based on the Fréchet Distance (GIS Cup). In Proceedings of the 25th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, SIGSPATIAL’17,
pages 100:1–100:4, New York, NY, USA, 2017. ACM. doi:10.1145/3139958.3140063.

20 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

21 M Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo
Matematico di Palermo (1884-1940), 22(1):1–72, 1906.

22 Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying al-
gorithms. Computer Science Review, 5(2):119–161, 2011.

23 Hong Wei, Riccardo Fellegara, Yin Wang, Leila De Floriani, and Hanan Samet. Multi-level
Filtering to Retrieve Similar Trajectories Under the Fréchet Distance. In Proceedings of the
26th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, SIGSPATIAL ’18, pages 600–603, New York, NY, USA, 2018. ACM. doi:10.1145/
3274895.3274978.

24 Martin Werner. ACM SIGSPATIAL GIS Cup 2017 Data Set. https://www.martinwerner.
de/datasets/san-francisco-shortest-path.html. Accessed: 2018-12-03.

25 Martin Werner and Dev Oliver. ACM SIGSPATIAL GIS Cup 2017 - Range Queries Under
Fréchet Distance. ACM SIGSPATIAL Newsletter, To Appear., 2018.

26 Ben H Williams. Character Trajectories Data Set. https://archive.ics.uci.edu/ml/
datasets/Character+Trajectories. Accessed: 2018-12-03.

27 Tim Wylie and Binhai Zhu. Intermittent Map Matching with the Discrete Fréchet Distance.
arXiv preprint, 2014. arXiv:1409.2456.

28 Jianbin Zheng, Xiaolei Gao, Enqi Zhan, and Zhangcan Huang. Algorithm of On-Line Hand-
writing Signature Verification Based on Discrete Fréchet Distance. In Lishan Kang, Zhihua
Cai, Xuesong Yan, and Yong Liu, editors, Advances in Computation and Intelligence, pages
461–469, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

29 Yu Zheng, Xing Xie, and Wei-Ying Ma. Understanding Mobility Based on GPS
Data. In Proceedings of the 10th ACM conference on Ubiquitous Computing (Ubicomp
2008), September 2008. URL: https://www.microsoft.com/en-us/research/publication/
understanding-mobility-based-on-gps-data/.

http://arxiv.org/abs/1805.01547
http://arxiv.org/abs/1809.02350
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/s00454-012-9402-z
http://dx.doi.org/10.1145/3139958.3140063
http://dx.doi.org/10.1145/3274895.3274978
http://dx.doi.org/10.1145/3274895.3274978
https://www.martinwerner.de/datasets/san-francisco-shortest-path.html
https://www.martinwerner.de/datasets/san-francisco-shortest-path.html
https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
http://arxiv.org/abs/1409.2456
https://www.microsoft.com/en-us/research/publication/understanding-mobility-based-on-gps-data/
https://www.microsoft.com/en-us/research/publication/understanding-mobility-based-on-gps-data/

K. Bringmann, M. Künnemann, and A. Nusser 17:21

30 Yu Zheng, Xing Xie, and Wei-Ying Ma. Mining Interesting Locations and Travel Sequences
From GPS Trajectories. In Proceedings of International conference on World Wide Web 2009,
April 2009. WWW 2009. URL: https://www.microsoft.com/en-us/research/publication/
mining-interesting-locations-and-travel-sequences-from-gps-trajectories/.

31 Yu Zheng, Xing Xie, and Wei-Ying Ma. GeoLife: A Collaborative Social Networking Service
among User, location and trajectory. IEEE Data(base) Engineering Bulletin, June 2010.

SoCG 2019

https://www.microsoft.com/en-us/research/publication/mining-interesting-locations-and-travel-sequences-from-gps-trajectories/
https://www.microsoft.com/en-us/research/publication/mining-interesting-locations-and-travel-sequences-from-gps-trajectories/

Polyline Simplification has Cubic Complexity
Karl Bringmann
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

Bhaskar Ray Chaudhury
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
Graduate School of Computer Science Saarbrücken, Saarland Informatics Campus, Germany
braycha@mpi-inf.mpg.de

Abstract
In the classic polyline simplification problem we want to replace a given polygonal curve P , consisting
of n vertices, by a subsequence P ′ of k vertices from P such that the polygonal curves P and P ′

are “close”. Closeness is usually measured using the Hausdorff or Fréchet distance. These distance
measures can be applied globally, i.e., to the whole curves P and P ′, or locally, i.e., to each simplified
subcurve and the line segment that it was replaced with separately (and then taking the maximum).
We provide an O(n3) time algorithm for simplification under Global-Fréchet distance, improving the
previous best algorithm by a factor of Ω(kn2). We also provide evidence that in high dimensions cubic
time is essentially optimal for all three problems (Local-Hausdorff, Local-Fréchet, and Global-Fréchet).
Specifically, improving the cubic time to O(n3−εpoly(d)) for polyline simplification over (Rd, Lp) for
p = 1 would violate plausible conjectures. We obtain similar results for all p ∈ [1,∞), p 6= 2. In total,
in high dimensions and over general Lp-norms we resolve the complexity of polyline simplification
with respect to Local-Hausdorff, Local-Fréchet, and Global-Fréchet, by providing new algorithms
and conditional lower bounds.

2012 ACM Subject Classification Theory of computation; Theory of computation → Design and
analysis of algorithms; Theory of computation → Mathematical optimization

Keywords and phrases Polyline simplification, Fréchet distance, Hausdorff distance, Conditional
lower bounds

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.18

Related Version A full version of the paper is available at https://arxiv.org/abs/1810.00621.

1 Introduction

We revisit the classic problem of polygonal line simplification, which is fundamental to
computational geometry. The most frequently implemented algorithms for curve simplification
go back to the 70s (Douglas and Peucker [11]) and 80s (Imai and Iri [18]). A polyline is given
by a sequence P = 〈v0, v1, . . . , vn〉 of points vi ∈ Rd, and represents the continuous curve
walking along the line segments vivi+1 in order. Given such a polyline P and a number
δ > 0, we want to compute P ′ = 〈vi0 , . . . , vik−1〉, with 0 = i0 < . . . < ik−1 = n, of minimal
length k such that P and P ′ have “distance” at most δ.

Several distance measures have been used for the curve simplification problem. The most
generic distance measure on point sets A,B is the Hausdorff distance. However, the most
popular distance measure for curves in computational geometry is the Fréchet distance δF .
In comparison to Hausdorff distance, it takes the ordering of the vertices along the curves
into account, and thus better captures an intuitive notion of distance among curves.

For both of these distance measures δ∗ ∈ {δH , δF }, we can apply them locally or globally
to measure the distance between the original curve P and its simplification P ′. In the global
variant, we consider the distance δ∗(P, P ′), i.e., we use the Hausdorff or Fréchet distance of
P and P ′. In the local variant, we consider the distance max1≤`<k δ∗(P [i`−1 . . . i`], vi`−1vi`),

© Karl Bringmann and Bhaskar Ray Chaudhury;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kbringma@mpi-inf.mpg.de
mailto:braycha@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.18
https://arxiv.org/abs/1810.00621
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Polyline Simplification has Cubic Complexity

i.e., for each simplified subcurve P [i`−1 . . . i`] of P we compute the distance to the line
segment vi`−1vi` that we simplified the subcurve to, and we take the maximum over these
distances. This gives rise to four problem variants, depending on the distance measure:
Local-Hausdorff, Local-Fréchet, Global-Hausdorff, and Global-Fréchet.

Among the variants, Global-Hausdorff is unreasonable as it does not take the ordering of
vertices of the curve into account and it was recently shown that curve simplification under
Global-Hausdorff is NP-hard [20]. Hence, we do not consider this measure in this paper.

The classic Ô(n3)1 time algorithm by Imai and Iri [18] was designed for Local-Hausdorff
simplification. By changing the distance computation in this algorithm for the Fréchet
distance, one can obtain an Ô(n3)-time algorithm for Local-Fréchet [15]. There are improve-
ments for Local-Hausdorff simplification in small dimension d [19, 8, 6]; the fastest running
times are 2O(d)n2 for L1-norm, Ô(n2) for L∞-norm, and Ô(n3−Ω(1/d)) for L2-norm [6].

The remaining variant, Global-Fréchet, has only been studied very recently [20], although
it is a reasonable measure: The Local constraints (i.e., matching each vi` to itself) are
not necessary to enforce ordering along the curve, since Fréchet distance already takes the
ordering of the vertices into account – in contrast to Hausdorff distance. Van Kreveld et
al. [20] presented an Ô(k∗ · n5) time algorithm for Global-Fréchet simplification where k∗ is
the size of the optimal simplification.

1.1 Contribution 1: Algorithm for Global-Fréchet simplification
One could get the impression that Global-Fréchet simplification is a well-motivated, but
computationally expensive curve simplification problem, in comparison to the local variants.
We show that the latter intuition is wrong, by designing an Ô(n3)-time algorithm for
Global-Fréchet simplification improving the previously best Ô(k∗ · n5)-time algorithm [20].

I Theorem 1 (Section 3). Global-Fréchet simplification can be solved in time Ô(n3).

This shows that all three problem variants (Local-Hausdorff, Local-Fréchet, and Global-
Fréchet) can be solved in time Ô(n3), and thus the choice of which problem variant to apply
should not be made for computational reasons, at least in high dimensions.

1.2 Contribution 2: Conditional lower bound
Since all three variants can be solved in time Ô(n3), the question arises whether any of them
can be solved in time Ô(n3−ε). Tools to (conditionally) rule out such algorithms have been
developed in recent years in the area of fine-grained complexity, see, e.g., the survey [21].
One of the most widely used fine-grained hypotheses is the following.

k-OV Hypothesis. Problem: Given sets A1, . . . , Ak ⊆ {0, 1}d of size n, determine whether
there exist vectors a1 ∈ A1, . . . , ak ∈ Ak that are orthogonal, i.e., for each dimension j ∈ [d]
there is an i ∈ [k] with ai[j] = 0.
Hypothesis: For any k ≥ 2 and ε > 0 the problem is not in time Ô(nk−ε).

Naively, k-OV can be solved in time Ô(nk), and the hypothesis asserts that no polynomial
improvement is possible, at least not with polynomial dependence on d. Buchin et al. [7]
used the 2-OV hypothesis to rule out Ô(n2−ε)-time algorithms for Local-Hausdorff2 in the

1 In Ô-notation we hide any polynomial factors in d, but we make exponential factors in d explicit.
2 Their proof can be adapted to also work for Local-Fréchet and Global-Fréchet.

K. Bringmann and B. R. Chaudhury 18:3

L1, L2, and L∞ norm. This yields a tight bound (in Ô sense) for L∞, since an Ô(n2)-time
algorithm is known [6]. However, for all other Lp-norms (p ∈ [1,∞)), the question remained
open whether Ô(n3−ε)-time algorithms exist. To answer this question, one could try to
generalize the conditional lower bound by Buchin et al. [7] to start from 3-OV. However, curve
simplification problems seem to have the wrong “quantifier structure” for such a reduction
(we will make this clearer when we give a brief overview of the reduction.) For similar reasons,
Abboud et al. [2] introduced the Hitting Set Hypothesis, in which they essentially consider
a variant of 2-OV where we have a universal quantifier over the first set of vectors and an
existential quantifier over the second one (∀∃-OV). From their hypothesis, however, it is not
known how to prove higher lower bounds than quadratic. We therefore consider the following
natural extension of their hypothesis. This problem was studied in a more general context
by Gao et al. [14].

∀∀∃-OV Hypothesis. Problem: Given sets A,B,C ⊆ {0, 1}d of size n, determine whether
for all a ∈ A, b ∈ B there is c ∈ C such that a, b, c, are orthogonal, i.e.,

∑
`∈[d]

a[`]b[`]c[`] = 0.

Hypothesis: For any ε > 0 the problem is not in time Ô(n3−ε).

No algorithm violating this hypothesis is known, and even for much stronger hypotheses
on variants of k-OV and Satisfiability no such algorithms are known, see Section 5 in the
full version for details. This shows that the hypothesis is plausible, in addition to being a
natural generalization of the hypothesis of Abboud et al. [2].

We now give an brief overview of an ∀∀∃-OV-based lower bound for curve simplification.
Given a ∀∀∃-OV instance on vectors A,B,C ⊆ {0, 1}d, we construct corresponding point
sets Ã, B̃ ⊂ Rd′ (for some d′ = O(d)), forming two clusters that are very far apart from each
other. We add a start- and an endpoint, which can be chosen far away from these clusters (in
a new direction). Near the midpoint between Ã and B̃, another set of points C̃ is constructed.
The final curve then starts in the startpoint, walks through all points in Ã, then through
all points in C̃, then through all points in B̃, and ends in the endpoint. Choosing a size-4
simplification implements an existential quantifier over a ∈ A, b ∈ B. The constraints that
all c̃ ∈ C̃ are close to the line segment from ã to b̃ implements a universal quantifier over
c ∈ C. Naturally, we want the distance from c̃ to the line segment ãb̃ to be large if a, b, c are
orthogonal, and to be small otherwise. This simulates the negation of ∀∀∃-OV, so any curve
simplification algorithm can be turned into an algorithm for ∀∀∃-OV.

I Theorem 2 (Section 4). Over (Rd, Lp) for any p ∈ [1,∞) with p 6= 2, Local-Hausdorff,
Local-Fréchet, and Global-Fréchet simplification have no Ô(n3−ε)-time algorithm for any
ε > 0, unless the ∀∀∃-OV Hypothesis fails. This holds even for the problem of deciding
whether the optimal simplification has size ≤ 4 or ≥ 5.

In particular, this rules out improving the 2O(d)n2-time algorithm for Local-Hausdorff
over L1 [6] to a polynomial dependence on d. Note that the theorem statement excludes two
interesting values for p, namely ∞ and 2. For p =∞, an Ô(n2)-time algorithm is known for
Local-Hausdorff [6], so proving the above theorem also for p =∞ would immediately yield
an algorithm breaking the ∀∀∃-OV Hypothesis.

For p = 2, we do not have such a strong reason why it is excluded, however, we now
argue that at least a significantly different proof would be necessary in this case. We want
the points C̃ to lie in the middle between Ã and B̃, which essentially means that we want to
consider the distance from (ã+ b̃)/2 to c̃. Now consider just a single dimension of ∀∀∃-OV.
Then our task boils down to constructing points a0, a1 and b0, b1 and c0, c1, corresponding

SoCG 2019

18:4 Polyline Simplification has Cubic Complexity

to the bits in this dimension, such that ‖(ai + bj)/2 − ck‖p = β1 if i = j = k = 1 and β0
otherwise, with β1 < β0. Writing a′i = ai/2 and b′j = bj/2 for simplicity, in the case p = 2 we
can simplify

‖a′i + b′j − ck‖22 =
d′∑
`=1

(a′i[`] + b′j [`]− ck[`])2

=
d′∑
`=1

(
(a′i[`] + b′j [`])2 + (a′i[`]− ck[`])2 + (b′j [`]− ck[`])2 − a′i[`]2 − b′j [`]2 − ck[`]2

)
= ‖a′i + b′j‖22 + ‖a′i − ck‖22 + ‖b′j − ck‖22 − ‖a′i‖22 − ‖b′j‖22 − ‖ck‖22
= f1(i, j) + f2(j, k) + f3(i, k),

for some functionsf1, f2, f3 : {0, 1} × {0, 1} → R. Note that by assumption this is equal
to β2

1 if i = j = k = 1 and β2
0 otherwise, with β1 < β0. However, it can be checked that such

functions do not exist3. Therefore, for p = 2 our outlined reduction cannot work - provably!
We nevertheless make this reduction work for p ∈ [1,∞), p 6= 2. The above argument shows
that the construction is necessarily subtle. Indeed, constructing the right points requires some
technical effort, see Section 4. This leaves open the possibility of a faster curve simplification
algorithm for L2, but such a result would need to exploit the Euclidean norm very heavily.

1.3 Further related work
Curve simplification has been studied in a variety of different formulations and settings. To
list some examples, it was shown that the algorithm by Douglas and Peucker [11] can be
implemented in time O(n logn) [17], and that the classic O(n3)-time algorithm for Local-
Hausdorff simplification by Imai and Iri [18] can be implemented in time O(n2) in two
dimensions [8, 19]. More topics include curve simplification without self-intersections [10],
Local-Hausdorff simplification with angular constraints between consecutive line segments [9],
approximation algorithms [3], streaming algorithms [1], and the use of curve simplification in
subdivision algorithms [16, 12, 13].

1.4 Organization
In Section 2 we formally define the problems studied in this paper. In Section 3 we present
our new algorithm for Global-Fréchet, and in Section 4 we show our conditional lower bounds.

2 Preliminaries

Our ambient space is the metric space (Rd, Lp), where the distance between points x, y ∈ Rd

is the Lp-norm of their difference, i.e., ‖x− y‖p =
(∑d

i=1(x[i]− y[i])p
)1/p. A polyline P of

size n+ 1, given by a sequence of points 〈v0, v1, . . . , vn〉 is the continuous curve that starts in
v0, walks along the line segments vivi+1 for i = 0, . . . , n− 1 in order, and ends in vn. We also
interpret P as a function P : [0, n]→ Rd where P [i+ λ] = (1− λ)vi + λvi+1 for any λ ∈ [0, 1]
and i ∈ {0, . . . , n − 1}. We use the notation P [t1 . . . t2] to represent the sub-polyline of P
between P [t1] and P [t2]. Formally for integers 0 ≤ i ≤ j ≤ n and reals λ1, λ2 ∈ [0, 1) ,

P [i+ λ1 . . . j + λ2] = 〈(1− λ1)vi + λ1vi+1, vi+1, . . . , vj , (1− λ2)vj + λ2vj+1〉

3 We can express this situation by a linear system of equations in 12 variables (4 image values for each
function fi) and 8 equations (for the values of f on i, j, k ∈ {0, 1}) and verify that it has no solution.

K. Bringmann and B. R. Chaudhury 18:5

A simplification of P is a curve Q = 〈vi0 , vi1 . . . , vim〉 with 0 = i0 < i1 < . . . < im = n. The
size of the simplification Q is m+ 1. Our goal is to determine a simplification of minimal size
that “very closely” represents P . To this end we define two popular measures of similarity
between the curves, namely the Fréchet and Hausdorff distances.

I Definition 3 (Fréchet distance). The (continuous) Fréchet distance δF (P1, P2) between two
curves P1 and P2 of size n and m respectively is

δF (P1, P2) = inf
f

max
t∈[0,n]

‖P1[t]− P2[f(t)]‖p

where f : [0, n]→ [0,m] is monotone with f(0) = 0 and f(n) = m.

Alt and Godau [5] characterize the Fréchet distance in terms of the “free-space diagram”.

IDefinition 4 (Free-Space). Given two curves P1, P2 and δ ≥ 0, the free-space FSδ(P1, P2) ⊆
R2 is the set {(x, y) ∈ ([0, n]× [0,m]) | ‖P1[x]− P2[y]‖p ≤ δ}.

Consider the following decision problem. Given two curves P1, P2 of size n and m,
respectively, and given δ ≥ 0, decide whether δF (P1, P2) ≤ δ. The answer to this question is
yes if and only if (n,m) is reachable from (0, 0) by a monotone path through FSδ(P1, P2).
This “reachability” problem is known to be solvable by a dynamic programming algorithm
in time O(nm). In particular, if either P1 or P2 is a line segment, then the decision problem
can be solved in linear time.

The Hausdorff distance between curves ignores the ordering of the points along the curve.
Intuitively, if we remove the monotonicity condition from function f in Definition 3 we obtain
the directed Hausdorff distance between the curves. Formally, it is defined as follows.

I Definition 5 (Hausdorff distance). The (directed) Hausdorff distance δH(P1, P2) between
curves P1 and P2 of size n and m, respectively, is

δH(P1, P2) = max
t1∈[0,n]

min
t2∈[0,m]

‖P1[t1]− P2[t2]‖p

In order to measure the “closeness” between a curve and its simplification, these above
similarity measures can be applied either globally to the whole curve and its simplification,
or locally to each simplified subcurve P [i` . . . i`+1] and the segment vi` , vi`+1 to which it was
simplified (taking the maximum over all `). This gives rise to the following measures for
curve simplification.

I Definition 6 (Similarity for Curve Simplification). Given a curve P = 〈v0, v1, . . . , vn〉 and
a simplification Q = 〈vi0 , vi1 . . . , vim〉 of P , we define their Global-Hausdorff distance as
δH(P,Q) and their Local-Hausdorff distance4 as max

0≤`≤m−1
δH(P [i` . . . i`+1], vi`vi`+1). Their

Global-Fréchet and Local-Fréchet distance are defined similarly, with δH replaced by δF .

3 Algorithms for Global-Fréchet simplification

In this section we present an O(n3) time algorithm for curve simplification under Global-
Fréchet distance, i.e., we prove Theorem 1.

4 It can be checked that in this expression directed and undirected Hausdorff distance have the same
value, and so for Local-Hausdorff we can without loss of generality use the directed Hausdorff distance.

SoCG 2019

18:6 Polyline Simplification has Cubic Complexity

si,j

t

ti,j

t′

DP (k − 1, ik−1, j
′)

vik−1
vik

si,j

t

ti,j

t′

DP (k − 1, ik−1, j
′)

vik−1
vik

Figure 1 There is a monotone path from (0, t′) to (1, t) in FSδ(P, vik−1vik) (left). Since DP(k −
1, ik−1, j

′) ≤ t′ ≤ t, there is a monotone path in from (0,DP(k − 1, ik−1, j
′)) (right) to (1, t) by

moving from (0,DP(k − 1, ik−1, j
′)) to (0, t′) and then following the previous monotone path.

3.1 An O(kn5) algorithm for Global Fréchet simplification
We start by describing the previously best algorithm by [20]. Let P be the polyline
〈v0, v1, . . . vn〉. Let DP(k, i, j) represent the earliest reachable point on vjvj+1 with a length
k simplification of the polyline P [0 . . . i], i.e, DP(k, i, j) represents the smallest t such that
P [t] lies on the line-segment vjvj+1 (i.e. j ≤ t ≤ j + 1) and there is a simplification Q̃ of
the polyline P [0 . . . i] of size at most k such that δF (Q̃, P [0 . . . t]) ≤ δ. If such a point does
not exist then we set DP(k, i, j) = ∞. To solve Global-Fréchet simplification, we need to
return the minimum k such that DP(k, n, n − 1) 6= ∞. Let P [ti,j] and P [si,j] be the first
point and the last point respectively on the line segment vjvj+1 such that ‖vi −P [ti,j]‖p ≤ δ
and ‖vi − P [si,j]‖p ≤ δ. Observe that if DP(k, i, j) 6=∞ then ti,j ≤ DP(k, i, j) ≤ si,j for all
k. We will crucially make use of the following characterization of the DP table entries.

I Lemma 7. DP(k, i, j) is the minimal t ∈ [ti,j , si,j], such that for some i′ < i and j′ ≤ j,
we have DP(k − 1, i′, j′) 6=∞ and δF (P [DP(k − 1, i′, j′) . . . t], vi′vi) ≤ δ. If no such t exists
then DP(k, i, j) =∞.

Proof Sketch. DP(k, i, j) is the minimal t ∈ [ti,j , si,j] such that for some i′ < i and
t′ ≤ t we have a simplification Q̂ of the polyline P [0 . . . i′] and δF (Q̂, P [0 . . . t′]) ≤ δ and
δF (P [t′ . . . t], vi′vi) ≤ δ, and DP(k, i, j) = ∞ if no such t exists. Let j′ ≤ t′ ≤ j′ + 1 and
i′ < i, then DP(k − 1, i′, j′) 6=∞ and by inspecting FSδ(P, vi′vi), it is clear that there also
exists a monotone path from (0,DP(k − 1, i′, j′)) to (1, t) (see Figure 1). Thus it suffices to
consider only DP(k − 1, i′, j′) as candidates for t′. J

A dynamic programming algorithm follows more or less directly from Lemma 7. Note
that for fixed i′ < i and j′ ≤ j such that DP(k− 1, i′, j′) 6=∞ we can determine the minimal
t such that (1, t) is reachable from (0,DP(k−1, i′, j′)) by a monotone path in FSδ(P, vi′vi) in
O(n) time. This follows from the standard algorithm for the decision version of the Fréchet
distance between two polygonal curves of length at most n (in particular here one of the
curves is of length 1). To determine DP(k, i, j) we enumerate over all i′ < i and j′ ≤ j such
that DP(k− 1, i′, j′) 6=∞ and determine the minimum t that is reachable. The running time
to determine DP(k, i, j) is thus O(n3). As there are O(k∗n2) DP-cells to fill, the algorithm
runs in time O(k∗n5) where k∗ is the size of the optimal simplification.

K. Bringmann and B. R. Chaudhury 18:7

si,j
t > si,j

ti,j

DP (k − 1, î, j)

vî vi

si,j

t

ti,j

DP (k − 1, î, j)

vî vi

si,j

ti,j, t

DP (k − 1, î, j)
vî vi

Figure 2 For î < i, t ∈ [ti,j , si,j] is minimal such that (1, t) is reachable from (0,DP(k − 1, î, j))
by a monotone path in fboxj . If DP(k − 1, î, j) > si,j (left) then no such t exists. If ti,j ≤
DP(k − 1, î, j) ≤ si,j (middle) then t = DP(k − 1, î, j). If DP(k − 1, î, j) < ti,j (right) then t = ti,j .

3.2 An O(n3) algorithm for Global-Fréchet simplification
Now we improve the running time by a more careful understanding of the monotone paths
through FSδ(P, vi′vi) to (1,DP(k, i, j)) for fixed i, j and i′. Let fboxj denote the intersection
of the free-space FSδ(P, vi′vi) with the square with corner vertices (0, j) and (1, j + 1). The
following fact will be useful later.

I Fact 8. fboxj is convex for all j ∈ [n− 1].

Let verj be the free space on the vertical line segment with endpoints (0, j) and (0, j + 1)
and let horj be the free space on the horizontal line segment (0, j) to (1, j) in the free space
FSδ(P, vi′vi). We consider the point (0, j) to belong to verj , but not horj , to avoid certain
corner cases. We split the monotone paths from (0,DP(k − 1, i′, j′)) for i′ < i and j′ ≤ j

to (1,DP(k, i, j)) in FSδ(P, vi′vi) into two categories: the ones that intersect verj and the
ones that intersect horj . We first look at the monotone paths that intersect verj . If the
monotone path intersects verj then j′ = j. Let DP1(k, i, j) = min

i′<i
DP(k− 1, i′, j). We define

DP1(k, i, j) =
{

max(DP1(k, i, j), ti,j) if DP1(k, i, j) ≤ si,j
∞ otherwise (1)

We show a characterization of DP1 similar to the characterization of DP in Lemma 7
and thus establish that DP1 correctly handles all paths intersecting verj .

I Observation 9. DP1(k, i, j) is the minimal t ∈ [ti,j , si,j] such that DP(k−1, i′, j) 6=∞ and
δF (P [DP(k−1, i′, j) . . . t], vi′vi) ≤ δ for some i′ < i. If no such t exists then DP1(k, i, j) =∞.

Proof Sketch. Observe that for any î < i, the minimal t ∈ [ti,j , si,j] such that there is
a monotone path from (0,DP(k − 1, î, j)) to (1, t) in FSδ(P, vîvi) or equivalently in fboxj
is max(DP(k − 1, î, j), ti,j) if DP(k − 1, î, j) ≤ si,j (see Figure 2 middle and right) and t

does not exist when DP(k − 1, î, j) > si,j (see Figure 2 left). Therefore, if DP1(k, i, j) =
mini′<iDP(k−1, i′, j) ≤ si,j then the minimal t ∈ [ti,j , si,j] that is reachable from (0,DP(k−
1, i′, j) for i′ < i is max(mini′<i(DP(k − 1, i′, j), ti,j) = max(DP1(k, i, j), ti,j). Otherwise (if
DP1(k, i, j) = mini′<iDP(k − 1, i′, j) > si,j) then no such t exists. J

We now look at the monotone paths that intersect horj . Observe that if the monotone
path intersects horj then j′ < j. Along this line, we define DP2(k, i, j) = 1 if there exists
some i′ < i and j′ < j, such that DP(k − 1, i′, j′) 6= ∞ and there exists a monotone path
from (0,DP(k − 1, i′, j′)) to (1, ti,j) in the free-space FSδ(P, vi′vi), and otherwise we set
DP2(k, i, j) = 0. Using this, we define

DP2(k, i, j) =
{
ti,j if DP2(k, i, j) = 1
∞ otherwise

SoCG 2019

18:8 Polyline Simplification has Cubic Complexity

si,j

t

ti,j

DP (k − 1, i′, j′)

vi′ vi

z

si,j

t

ti,j

DP (k − 1, i′, j′)

vi′ vi

z

Figure 3 For t ≥ ti,j , there is a monotone path from (0,DP(k− 1, i′, j′)) to (1, t) in FSδ(P, vi′vi)
(left) for i′ < i and j′ < j that intersect horj at z. Then there is also a monotone path from
(0,DP(k − 1, i′, j′)) to (1, ti,j) (right) following the previous monotone path upto z and then from z

to (1, ti,j).

We show a characterization of DP2 similar our characterization of DP in Lemma 7, thus
establishing that DP2 correctly handles all paths intersecting horj .

I Observation 10. DP2(k, i, j) is the minimal t ∈ [ti,j , si,j] such that DP(k − 1, i′, j′) 6=∞
and δF (P [DP(k− 1, i′, j′) . . . t], vi′vi) ≤ δ for some i′ < i and j′ < j. If no such t exists then
DP2(k, i, j) =∞.

Proof Sketch. The key idea is that if any t ∈ [ti,j , si,j], (1, t) is reachable by a monotone
path in FSδ(P, vi′vi) from (0,DP(k− 1, i′, j′)) for i′ < i, then so is (1, tij) (see Figure 3). J

I Lemma 11. DP(k, i, j) = min(DP1(k, i, j),DP2(k, i, j)).

Proof. Follows directly from Observations 7, 9, and 10. J

In particular this yields a dynamic programming formulation for DP(k, i, j), since both
DP1(k, i, j) and DP2(k, i, j) depend on values of DP(k′, i′, j′) with k′ < k, i′ < i and j′ ≤ j.

We define κ(i, j) as the minimal k such that DP(k, i, j) 6=∞. Similarly we define κ1(i, j)
and κ2(i, j) as the minimal k such that DP1(k, i, j) 6=∞ and DP2(k, i, j) 6=∞, respectively.
Note that κ(i, j) = min(κ1(i, j), κ2(i, j)) (by Lemma 11). Also note that both κ1(i, j) and
κ2(i, j) depend only on the values of DP(k′, i′, j′) with k′ < k, i′ < i and j′ ≤ j.

With these preparations can now present our dynamic programming algorithm, except
for one subroutine κ2-subroutine(i) that we describe in Section 3.3. In particular, for any i,
κ2-subroutine(i) determines κ2(i, j) for all j ∈ [n] only using the values of κ(i′, j) for all
i′ < i and all 0 ≤ j ≤ n− 1. Now we show how to compute DP1(k, i, j). Observe that for
any i, j and k we can compute DP1(k, i, j) from DP1(k, i− 1, j) and DP(k − 1, i− 1, j) as
DP1(k, i, j) = min(DP1(k, i− 1, j),DP(k− 1, i− 1, j)). Then we can compute DP1(k, i, j) by
using equation (1) and set κ1(i, j) to the minimal k such that DP1(k, i, j) 6=∞. We compute
DP2(k, i, j) by setting DP2(k, i, j) = ti,j if k ≥ κ2(i, j) and DP2(k, i, j) = ∞ otherwise.
Also, we set κ(i, j) as min(κ1(i, j), κ2(i, j)). After that we can update DP(k, i, j) by the
formulation in Lemma 11.

K. Bringmann and B. R. Chaudhury 18:9

Algorithm 1 Solving curve simplification under Global-Fréchet distance.
1: Precompute all ti,j and si,j and initialize all DP1(k, 0, j), DP(k, 0, j), κ(0, j) and

DP(0, i, j).
2: for all i = 1 to n do
3: Determine κ2(i, j) for all 0 ≤ j ≤ n− 1 using κ2-subroutine(i)
4: for j = 0 to n− 1 do
5: for every k ∈ [n+ 1] set DP1(k, i, j) to min(DP1(k, i− 1, j),DP(k − 1, i− 1, j))
6: for every k ∈ [n+ 1] set DP1(k, i, j) to max(DP1(k, i, j), ti,j) if DP1(k, i, j) ≤ si,j

and to ∞ otherwise
7: set κ1(i, j) to the smallest k such that DP1(k, i, j) 6=∞
8: set κ(i, j) = min(κ1(i, j), κ2(i, j))
9: for every k ∈ [n+ 1] set DP2(k, i, j) to ti,j if k ≥ κ2(i, j) and to ∞ otherwise
10: for every k ∈ [n+ 1] set DP(k, i, j) to min(DP1(k, i, j),DP2(k, i, j))

Denote the running time of κ2-subroutine(i) by T (n). Since we fill each of O(n3) DP
cells in time O(1), the total running time of Algorithm 1 is O(n3 + n · T (n)).

3.3 Implementing the κ2-subroutine(i)
In this subsection we show how to implement the κ2-subroutine(i) in time T (n) = O(n2).
Then in total we have O(n3) for solving Global-Fréchet simplification.

3.3.1 Cell Reachability
We introduce an auxiliary problem Cell Reachability. We shall see later that an O(n) time
solution to this problem ensures that the κ2-subroutine(i) can be implemented in time O(n2).

I Definition 12. In an instance of the Cell Reachability problem, we are given:
A set of n cells. Each cell j with 1 ≤ j ≤ n is a unit square with corner points (0, j) and
(1, j + 1). We say that cells j and j + 1 are consecutive.
An integral entry-cost λj > 0 for every cell j.
A set of n− 1 passages between consecutive cells. The passage pj is the horizontal line
segment with endpoints (j, aj) and (j, bj) where bj > aj.

A cell j is reachable from a cell j′ with j′ < j if and only if there exists xj′+1 ≤ xj′+2 . . . ≤
xj such that xk ∈ [ak, bk] for every j′ < k ≤ j. Intuitively, cell j is reachable from cell j′
if and only if there is a monotone path through the passages from cell j′ to cell j. Let the
exit-cost µj of a cell j as the minimal λj′ such that j is reachable from cell j′, j′ < j. The
goal is to determine the sequence 〈µ1, µ2, . . . , µn〉. See Figure 4 for an illustration.

We make a more refined notion of reachability. For any cells j and j′ < j we define the
first reachable point frp(j, j′) on cell j from cell j′ as the minimal t such that there exist
xj′+1 ≤ xj′+2 ≤ . . . ≤ xj such that xk ∈ [ak, bk] for every j′ < k ≤ j and xj = t, and we set
frp(j, j′) =∞ if there exists no such t. Let tj(k) be the first reachable point on cell j from
any cell j′ with entry-cost at most k i.e. tj(k) = min {frp(j, j′) | j′ < j, λj′ ≤ k}. Note that
µj is the minimal k such that tj(k) 6=∞. Thus, it suffices to show how to determine tj(·)
and µj from tj(·) for all j ∈ [n] in O(n) time. To this end we generalize an algorithm by Alt
et al. [4, Lemma 2.3]; the details can be found in the full version of this paper.

I Theorem 13. Cell Reachability can be solved in O(n) time.

SoCG 2019

18:10 Polyline Simplification has Cubic Complexity

Cell 4

Cell 3

Cell 2

Cell 1
1=λ1

4=λ2

8=λ3

Cell 4

Cell 3

Cell 2

Cell 1
1=λ1

4=λ2

8=λ3

Cell 4

Cell 3

Cell 2

Cell 1
1=λ1

4=λ2

8=λ3

Figure 4 The red horizontal line segments between the cells indicate the passages. Cell 4 is only
reachable from cells 2 and 3. Thus µ4 = min(λ2, λ3) = min(4, 8) = 4.

3.3.2 Implementing κ2-subroutine(i) using Cell Reachability
Recall the definition of κ2(·, ·) and what our goal is now: For a fixed i′ < i, let κ(i, j, i′) be
the minimal k such that for some j′ < j, we have DP(k − 1, i′, j′) 6=∞ and δF (P [DP(k −
1, i′, j′) . . . ti,j], vi′vi) ≤ δ. Note that κ2(i, j) = min

i′<i
κ(i, j, i′). In order to show that the

κ2-subroutine(i) can be implemented in O(n2), it suffices to show that for fixed i′ < i we
can determine κ(i, j, i′) for all j ∈ [n− 1] in O(n) time.

Let the line segment between (aj , j) and (bj , j) denote the free-space on horj . Due to
the convexity of every cell in the free space FSδ(P, vi′vi), it suffices to look at reachability
through the free space at the boundary of the cells (horj). Thus for any j′ < j there is
a monotone path from (0,DP(κ(i′, j′), i′, j′)) to (1, ti,j) in the free-space FSδ(P, vi′vi) if
and only if there exist xj′+1 ≤ xj′+2 ≤ . . . ≤ xj with each xk ∈ [ak, bk] for all j′ < k ≤ j.
Similarly, it suffices to look at the reachability only from the points (0,DP(κ(i′, j′), i′, j′)).
This yields the following observation, whose proof is illustrated in Figure 5.

I Observation 14. For any i′ < i if there is a monotone path from (0,DP(k, i′, j′)) to (1, ti,j)
in the free-space FSδ(P, vi′vi) intersecting horj, then there is also a monotone path from
(0,DP(κ(i′, j′), i′, j′)) to (1, ti,j) in the free-space FSδ(P, vi′vi) intersecting horj.

Observation 14 implies that κ(i, j, i′) is the minimal value of 1 + κ(i′, j′) over all j′ < j

such that there exist xj′+1 ≤ xj′+2 ≤ . . . ≤ xj with xk ∈ [ak, bk] for j′ < k ≤ j. Note that
now we are in an instance of Cell Reachability. Thus for any fixed i′ we can determine
κ(i, j, i′) in O(n) time and therefore we can implement κ2-subroutine(i) in O(n2) time.

4 Conditional lower bound for curve simplification

In this section we show that an O(n3−εpoly(d)) time algorithm for Global-Fréchet, Local-
Fréchet or Local-Hausdorff simplification over (Rd, ‖‖p) for any p ∈ [1,∞), p 6= 2, would
yield an O(n3−εpoly(d)) algorithm for ∀∀∃-OV.

K. Bringmann and B. R. Chaudhury 18:11

vi′ vi

ti′,j′

si′,j′

DP(k,i′,j′)
DP(κ(i′,j′),i′,j′)

ti,j

si,j

z

vi′ vi

ti′,j′

si′,j′

DP(k,i′,j′)
DP(κ(i′,j′),i′,j′)

ti,j

si,j

z

Figure 5 Illustration of the proof of Observation 14. For any i′ < i, j′ < j and any k, there
is a monotone path from (0,DP(k, i′, j′)) to (1, ti,j) in FSδ(P, vi′vi) (left) that intersects horj at
z. Then there is a monotone path from (0,DP(κ(i′, j′), i′, j′)) to (1, ti,j) in FSδ(P, vi′vi) (right) by
walking from (0,DP(κ(i′, j′), i′, j′) to z and then following the previous path from z to (1, ti,j).

4.1 Overview of the reduction
Consider any instance (A,B,C) of ∀∀∃-OV where A,B,C ⊆ {0, 1}d have size n. We write
A = {a1, a2, . . . an}, B = {b1, b2, . . . bn} and C = {c1, c2, . . . cn}. We will efficiently construct
3n + 1 points in RD with D ∈ O(d) namely the sets of points Ã = {ã1, ã2, . . . ãn}, B̃ ={
b̃1, b̃2, . . . b̃n

}
and C̃ = {c̃1, c̃2, . . . c̃n} and one more point s. We also determine δ ≥ 0 such

that the following properties are satisfied.

(P1) For any ã ∈ Ã, b̃ ∈ B̃, c̃ ∈ C̃, there is a point x on the line segment ãb̃ with ‖x− c̃‖p ≤ δ
if and only if ‖ ã+b̃

2 − c̃‖p ≤ δ.
(P2) For any ã ∈ Ã, b̃ ∈ B̃, c̃ ∈ C̃, we have ‖ ã+b̃

2 − c̃‖p ≤ δ if and only if
∑
`∈[d]

a[`] ·b[`] ·c[`] 6= 0.

(P3) ‖x− y‖p ≤ δ holds for all x, y ∈ Ã, and for all x, y ∈ B̃ and for all x, y ∈ C̃.
(P4) For any y1, y2 ∈ {s} ∪ B̃ ∪ C̃ and any point x on the line segment y1y2 we have
‖x− ã‖p > δ for all ã ∈ Ã.

(P5) For any y1, y2 ∈ {s} ∪ Ã ∪ C̃ and any point x on the line segment y1y2 we have
‖x− b̃‖p > δ for all b̃ ∈ B̃.

(P6) For any y ∈ B̃ ∪ Ã and any point x on the line segment sy we have ‖x− c̃‖p > δ for
all c̃ ∈ C̃.

We postpone the exact construction of these points. Our hard instance for curve simpli-
fication will be Q = 〈s, ã1, ã2, . . . , ãn, c̃1, c̃2, . . . , c̃n, b̃1, b̃2, . . . , b̃n, s〉.

I Fact 15. Let r1, r2, s1, s2 ∈ RD and ‖rk − sk‖p ≤ δ for k ∈ [2]. Then δF (r1r2, s1s2) ≤ δ.

I Lemma 16. Let Q̂ = 〈s, ãi, b̃j , s〉 for some ãi ∈ Ã and b̃j ∈ B̃. If ‖ ãi+b̃j

2 − c̃‖p ≤ δ for all
c̃ ∈ C̃ then the Local-Frechet distance between Q and Q̂ is at most δ.

Proof. Both Q and Q̂ have the same starting point s. By property P3 we have ‖ã− ãi‖p ≤ δ
for all ã ∈ Ã, and ‖b̃− b̃j‖p ≤ δ for all b̃ ∈ B̃. Thus it follows that δF (〈s, ã1, . . . , ãi〉, sãi) ≤ δ
and δF (〈b̃j , . . . , b̃n, s〉, b̃js) ≤ δ. It remains to show that δF (Qij , ãib̃j) ≤ δ where Qij =

SoCG 2019

18:12 Polyline Simplification has Cubic Complexity

〈ãi, . . . , ãn, c̃1, . . . , c̃n, b̃1, . . . , b̃j〉. To this end first note that both Qij and ãib̃j have the same
endpoints. We outline monotone walks within distance δ on both Qij and ãib̃j .
(1) Walk on Qij from ãi to ãn and remain at ãi on ãib̃j . (by Property P3)
(2) Walk uniformly on both polylines, up to ãi+b̃j

2 on ãib̃j and up to c̃1 on Qij . (by Fact 15)
(3) Walk on Qij from c̃1 to c̃n and remain at ãi+b̃j

2 on ãib̃j . (by assumption)
(4) Walk uniformly on both curves up to b̃j on ãib̃j and up to b̃1 on Qij . (by Fact 15)
(5) Walk on Qij until b̃j and remain at b̃j on ã1b̃j . (by Property P3) J

Observe that property P3 implies that there is a simplification of size five namely
Q̂ = 〈s, ã, c̃, b̃, s〉 for any ã ∈ Ã, b̃ ∈ B̃, and c̃ ∈ C̃, such that the distance between Q̂ and Q
is at most δ under all three distance measures. We now show that a smaller simplification is
only possible if there exist a ∈ A, b ∈ B such that for all c ∈ C we have

∑
`∈[d]

a[`] · b[`] · c[`] 6= 0.

I Lemma 17. Let Q̂ be a simplification of the polyline Q of size 4. Then the following
statements are equivalent :
(1) The Global-Fréchet distance between Q and Q̂ is at most δ.
(2) The Local-Fréchet distance between Q and Q̂ is at most δ.
(3) The Local-Hausdorff distance between Q and Q̂ is at most δ.
(4) There exists ã ∈ Ã, b̃ ∈ B̃, such that Q̂ = 〈s, ã, b̃, s〉 and ‖ ã+b̃

2 − c̃‖p ≤ δ for every c̃ ∈ C̃.
(5) There exist a ∈ A, b ∈ B such that for all c ∈ C we have

∑
`∈[d]

a[`] · b[`] · c[`] 6= 0.

A detailed proof can be found in the full version of this paper. Assuming that we can
determine Q and δ in O(nd) time, the above lemma directly yields the following theorem.

I Theorem 18. For any ε > 0, there is no O(n3−εpoly(d)) algorithm for Global-Fréchet,
Local-Fréchet and Local-Hausdorff simplification over (Rd, ‖‖p) for any p ∈ [1,∞), p 6= 2,
unless ∀∀∃-OV Hypothesis fails. This holds even for the problem of deciding whether the
optimal simplification has size ≤ 4 or ≥ 5.

Proof. given an instance A,B,C of ∀∀∃-OV, we can construct the curve Q and δ in time
O(nd). By Lemma 17, the simplification problem on (Q, δ) is equivalent to ∀∀∃-OV on
A,B,C. Thus, any O(n3−εpoly(d)) time algorithm for the curve simplification problem would
yield an O(n3−εpoly(d)) time algorithm for ∀∀∃-OV. J

It remains to construct the point s, the sets Ã, B̃ and C̃ and δ. We first introduce some
notation. For vectors x and y and α ∈ [− 1

2 ,
1
2], we define Pxy(α) as (1

2 − α)x + (1
2 + α)y.

Moreover let ui ∈ Rd. We write v =
[
u1u2 . . . um

]
for the vector v ∈ Rmd with v[(j−1)d+k] =

uj [k] for any j ∈ [m] and k ∈ [d].

I Fact 19. Let u1, u2, . . . , um ∈ Rd and v =
[
u1u2 . . . um

]
. Then we have ‖v‖pp =

∑
i∈[m]
‖ui‖pp.

4.2 Cordinate gadgets
In this section, our aim is to construct points Ai, Bi, Ci for i ∈ {0, 1} such that the distance
‖Ci − PAjBk

(0)‖p only depends on whether the bits i, j, k ∈ {0, 1} seen as cordinates of
vectors are orthogonal. In other words, the points Ai, Bi, Ci form a cordinate gadget.
Formally we will prove the following lemma,

K. Bringmann and B. R. Chaudhury 18:13

I Lemma 20. For any p 6= 2

‖Ci − PAjBk
(0)‖pp =

{
β1 if i = 1, j = 1, k = 1
β2 otherwise

where β1 < β2.

In Section 4.3 we will use this lemma to construct the final point sets . Let θ1, θ2, θ3, θ4
and θ5 be positive constants. We construct the points A1,B1,C1 and A0,B0,C0 in R9.

A0 =
[
−θ1, 0, −θ2, 0, θ3, 2θ3, θ4, −2θ4, 0

]
A1 =

[
θ1, 2θ1, θ2, −2θ2, −θ3, 0, −θ4, 0, 0

]
B0 =

[
−θ1, 0, θ2, 2θ2, θ3, −2θ3, −θ4, 0, 0

]
B1 =

[
θ1, −2θ1, −θ2, 0, −θ3, 0, θ4, 2θ4, 0

]
C0 =

[
0, 0, 0, 0, 0, 0, 0, 0, θ5

]
C1 =

[
−θ1, 0, −θ2, 0, −θ3, 0, −θ4, 0, 0

]
From these points we can compute the points PAiBj

(0) for all i, j ∈ {0, 1}.

PA0B0(0) =
[
−θ1, 0, 0, θ2, θ3, 0, 0, −θ4, 0

]
PA1B0(0) =

[
0, θ1, θ2, 0, 0, −θ3, −θ4, 0, 0

]
PA1B1(0) =

[
θ1, 0, 0, −θ2, −θ3, 0, 0, θ4, 0

]
PA0B1(0) =

[
0, −θ1, −θ2, 0, 0, θ3, θ4, 0, 0

]
Observe that ‖C0−PAiBj (0)‖pp =

∑
r∈[5]

θpr for all i, j ∈ {0, 1}. Thus all the points PAiBj(0)

are equidistant from C0 irrespective of the exact values of θr for r ∈ [5]. Note that when
θr = θ for all r ∈ [5], then ‖C1 − PAiBj (0)‖pp = 4θp + 2pθp for all i, j ∈ {0, 1}. Thus all the
points PAiBj

(0) are equidistant from C1 when all the θr are the same. We now determine
θr for r ∈ [5] such that all but one point in

{
PAiBj (0)|i, j ∈ {0, 1}

}
are equidistant and far

from C1. More precisely,

‖C1 − PAiBj
(0)‖pp =

{
β1 if i = 1, j = 1
β2 otherwise

and β1 < β2. We first quantify the distances from {C0,C1} to each of the points in{
PAjBk

(0) | j, k ∈ {0, 1}
}
.

I Lemma 21. We have

‖Ci − PAjBk
(0)‖pp =

∑
r∈[5] θ

p
r if i = 0

2θp2 + 2pθp3 + 2θp4 if i = 1, j = 0, k = 0
2θp1 + 2pθp2 + 2θp3 if i = 1, j = 1, k = 0
2θp1 + 2θp3 + 2pθp4 if i = 1, j = 0, k = 1
2pθp1 + 2θp2 + 2θp4 if i = 1, j = 1, k = 1

We set the values of θr for r ∈ [5] depending on p. When 1 ≤ p < 2 we set

θ1 = (2p−1 − 1)
1
p , θ2 = 0, θ3 = 1, θ4 = 0, θ5 = 2

p−1
p

Substituting these values of θr for all r ∈ [5] in Lemma 21 we make the following observation.

SoCG 2019

18:14 Polyline Simplification has Cubic Complexity

I Observation 22. When 1 ≤ p < 2, then

‖Ci − PAjBk
(0)‖pp =

{
2p(2p−1 − 1) if i = 1, j = 1, k = 1
2p otherwise

In case p > 2. Then we set

θ1 = 0, θ2 = (2p − 2)
1
p , θ3 = (2p − 4)

1
p , θ4 = (2p − 2)

1
p , θ5 = (22p − 3 · 2p)

1
p

Substituting these values of θr for all r ∈ [5] in Lemma 21 we make the following observation.

I Observation 23. When p > 2, then

‖Ci − PAjBk
(0)‖pp =

{
2p+2 − 8 if i = 1, j = 1, k = 1
22p − 8 otherwise

Combining Observations 22 and 23 we arrive at Lemma 20.

4.3 Vector gadgets
For every a ∈ A, b ∈ B and c ∈ C we introduce vectors a′, b′, c′ and a′′b′′, c′′ and then
concatenate the respective vectors to form ã, b̃ and c̃ respectively. Intuitively a′, b′, c′ help us
to ensure properties P1 and P2, while a′′, b′′, c′′ help us ensure the other properties.

4.3.1 The vectors a′, b′, c′, and s′

We construct the vector s′ and the vectors a′, b′ and c′ for every a ∈ A, b ∈ B and c ∈ C
respectively, in R9d as follows :

a′ =
[
Aa[1],Aa[2], . . .Aa[d]

]
b′ =

[
Bb[1],Bb[2], . . .Bb[d]

]
c′ =

[
Cc[1],Cc[2], . . .Cc[d]

]
s′ =

[
0, 0, . . . , 0

]
We also define the sets A′ = {a′ | a ∈ A}, B′ = {b′ | b ∈ B} and C ′ = {c′ | c ∈ C}. We

now make a technical observation about the vectors in A′, B′, and C ′, that will be useful
later. We set η1 = max

i∈[5]
θi.

I Observation 24. For any x, y ∈ A′ ∪B′ ∪ C ′, we have ‖x− y‖p ≤ η2 where η2 : = 36dη1.

Proof Sketch. Note that the absolute value of every cordinate of the vectors a′, b′, and c′, is
bounded by 2η1 (Since every cordinate is of the form ±θr or ±2θr or 0). Combined with the
fact that the total number of cordinates is 9d, this immediately implies the observation. J

Note that a ∈ A, b ∈ B and c ∈ C are non orthogonal if and only if #c,a,b
111 > 0 where

#c,a,b
111 = |{i | i ∈ [d], a[i] = b[i] = c[i] = 1}|. The following lemma shows a connection between

non-orthogonality and small distance ‖c′ − Pa′b′(0)‖p.

I Lemma 25. For any a ∈ A, b ∈ B and c ∈ C, ‖c′ − Pa′b′(0)‖pp = dβ2 − (β2 − β1)#c,a,b
111 .

Proof. By Observation 19 we have

‖c′ − Pa′b′(0)‖pp =
∑
`∈[d]

‖Cc[`] − PAa[`]Bb[`](0)‖pp

= β2(d−#c,a,b
111) + β1#c,a,b

111 (by Lemma 20)

= dβ2 − (β2 − β1)#c,a,b
111 . J

K. Bringmann and B. R. Chaudhury 18:15

4.3.2 The vectors a′′,b′′, c′′, and s′′

We construct the vector s′′ and the vectors a′′,b′′, and c′′ for every a ∈ A,b ∈ B, and c ∈ C,
respectively, in R3 as follows :

a′′ =
[
γ1, 0, 0

]
b′′ =

[
γ1, γ2, 0

]
c′′ =

[
0, γ2

2 , 0
]

s′′ =
[
0, γ2

2 , γ2]

where γ1, γ2 are positive constants. We are now ready to define the final points of our
construction, s and ã, b̃ and c̃ for any a ∈ A, b ∈ B and c ∈ C, respectively.

ã =
[
a′, a′′

]
b̃ =

[
b′, b′′

]
c̃ =

[
c′, c′′

]
s =

[
s′, s′′

]
We set

γ1 = η1, δ = (γp1 + dβ2 − (β2 − β1))
1
p , γ2 = max

(
4δ, η2

(
1 + (γp1 + dβ2)

1
p

(γp1 + dβ2)
1
p − δ

))

Note that we have constructed the point sets Ã, B̃, C̃, and the point s and determined
δ in total time O(nd). Therefore now it suffices to show that our point set and δ satisfy
the properties P1, P2, P3, P4, P5, and P6. To this end, we first show how the distance
‖c̃− Pãb̃(α)‖p is related with #c,a,b

111 (the non-orthogonality of the vectors a,b, and c).

I Lemma 26. For any a ∈ A, b ∈ B and c ∈ C we have,
‖c̃− Pãb̃(0)‖pp = γp1 + β2d− (β2 − β1)#c,a,b

111 .
If #c,a,b

111 = 0 then ‖c̃− Pãb̃(α)‖pp > δ for all α ∈ [− 1
2 ,

1
2].

Proof Sketch. Note that ‖c̃−Pãb̃(0)‖p = ‖c′−Pa′b′(0)‖p + ‖c′′−Pa′′b′′(0)‖p. Using Lemma
25 and substituting vectors a′′,b′′ and c′′ we arrive at ‖c̃−Pãb̃(0)‖pp = γp1 +β2d−(β2−β1)#c,a,b

111 .
Since we choose our γ2 to be sufficiently large the closest point on the line-segment ãb̃ to c̃ is
sufficiently near Pãb̃(0). Thus when #c,a,b

111 = 0, we have ‖c̃− Pãb̃(0)‖pp = γp1 + β2d > δ and
no point sufficiently near Pãb̃(0) has distance smaller than δ to c̃. J

We now show that the properties P1 and P2 hold. The first result of Lemma 26 implies
that for any a ∈ A, b ∈ B and c ∈ C we have ‖c̃− Pãb̃(0)‖p ≤ δ if and only if #c,a,b

111 ≥ 1, or
equivalently if

∑
`∈[d] a[`] · b[`] · c[`] 6= 0. By the second result of Lemma 26, it follows that

for any α ∈ [− 1
2 ,

1
2] if ‖c̃− Pãb̃(α)‖pp ≤ δ, then #c,a,b

111 = 0 which implies ‖c̃− Pãb̃(0)‖pp ≤ δ.
The remaining properties are guaranteed primarily by the component vectors a′′, b′′ and c′′
of ã, b̃ and c̃, and the detailed proof is in the full version of the paper.

References
1 Mohammad Ali Abam, Mark de Berg, Peter Hachenberger, and Alireza Zarei. Streaming

Algorithms for Line Simplification. Discrete & Computational Geometry, 43(3):497–515, 2010.
2 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and Fixed

Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs. In SODA,
pages 377–391. SIAM, 2016.

3 Pankaj K. Agarwal, Sariel Har-Peled, Nabil H. Mustafa, and Yusu Wang. Near-Linear Time
Approximation Algorithms for Curve Simplification. Algorithmica, 42(3-4):203–219, 2005.

4 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. In SODA,
pages 589–598. ACM/SIAM, 2003.

5 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5(1–2):78–99, 1995.

SoCG 2019

18:16 Polyline Simplification has Cubic Complexity

6 Gill Barequet, Danny Z. Chen, Ovidiu Daescu, Michael T. Goodrich, and Jack Snoeyink.
Efficiently Approximating Polygonal Paths in Three and Higher Dimensions. Algorithmica,
33(2):150–167, 2002.

7 Kevin Buchin, Maike Buchin, Maximilian Konzack, Wolfgang Mulzer, and André Schulz.
Fine-grained analysis of problems on curves. EuroCG, Lugano, Switzerland, 2016.

8 W.S. Chan and F. Chin. APPROXIMATION OF POLYGONAL CURVES WITH MIN-
IMUM NUMBER OF LINE SEGMENTS OR MINIMUM ERROR. International Journal of
Computational Geometry & Applications, 06(01):59–77, 1996.

9 Danny Z. Chen, Ovidiu Daescu, John Hershberger, Peter M. Kogge, Ningfang Mi, and Jack
Snoeyink. Polygonal path simplification with angle constraints. Comput. Geom., 32(3):173–187,
2005.

10 Mark de Berg, Marc van Kreveld, and Stefan Schirra. Topologically Correct Subdivision
Simplification Using the Bandwidth Criterion. Cartography and Geographic Information
Systems, 25(4):243–257, 1998.

11 David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number of
points required to represent a digitized line or its caricature. Cartographica, 10(2):112–122,
1973.

12 Regina Estkowski and Joseph S. B. Mitchell. Simplifying a polygonal subdivision while keeping
it simple. In SoCG, pages 40–49. ACM, 2001.

13 Stefan Funke, Thomas Mendel, Alexander Miller, Sabine Storandt, and Maria Wiebe. Map
Simplification with Topology Constraints: Exactly and in Practice. In ALENEX, pages
185–196. SIAM, 2017.

14 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and R. Ryan Williams. Completeness
for First-Order Properties on Sparse Structures with Algorithmic Applications. In SODA,
pages 2162–2181. SIAM, 2017.

15 Michael Godau. A natural metric for curves - computing the distance for polygonal chains
and approximation algorithms. In STACS, pages 127–136, 1991.

16 Leonidas J. Guibas, John Hershberger, Joseph S. B. Mitchell, and Jack Snoeyink. Approxim-
ating Polygons and Subdivisions with Minimum Link Paths. Int. J. Comput. Geometry Appl.,
3(4):383–415, 1993.

17 John Hershberger and Jack Snoeyink. An O(n logn) Implementation of the Douglas-Peucker
Algorithm for Line Simplification. In SoCG, pages 383–384. ACM, 1994.

18 Hiroshi Imai and Masao Iri. Polygonal Approximations of a Curve — Formulations and
Algorithms. In Computational Morphology, volume 6 of Machine Intelligence and Pattern
Recognition, pages 71–86. North-Holland, 1988.

19 Avraham Melkman and Joseph O’Rourke. On Polygonal Chain Approximation. In Computa-
tional Morphology, volume 6 of Machine Intelligence and Pattern Recognition, pages 87–95.
North-Holland, 1988.

20 Marc J. van Kreveld, Maarten Löffler, and Lionov Wiratma. On Optimal Polyline Simplification
Using the Hausdorff and Fréchet Distance. In SoCG, volume 99 of LIPIcs, pages 56:1–56:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

21 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the ICM, 2018.

A Spanner for the Day After
Kevin Buchin
Department of Mathematics and Computing Science, TU Eindhoven, The Netherlands
k.a.buchin@tue.nl

Sariel Har-Peled
Department of Computer Science, University of Illinois at Urbana-Champaign, USA
sariel@illinois.edu

Dániel Oláh
Department of Mathematics and Computing Science, TU Eindhoven, The Netherlands
d.olah@tue.nl

Abstract
We show how to construct (1 + ε)-spanner over a set P of n points in Rd that is resilient to a
catastrophic failure of nodes. Specifically, for prescribed parameters ϑ, ε ∈ (0, 1), the computed
spanner G has O

(
ε−7d log7 ε−1 · ϑ−6n log n(log log n)6) edges. Furthermore, for any k, and any

deleted set B ⊆ P of k points, the residual graph G \ B is (1 + ε)-spanner for all the points
of P except for (1 + ϑ)k of them. No previous constructions, beyond the trivial clique with
O(n2) edges, were known such that only a tiny additional fraction (i.e., ϑ) lose their distance
preserving connectivity.

Our construction works by first solving the exact problem in one dimension, and then showing a
surprisingly simple and elegant construction in higher dimensions, that uses the one dimensional
construction in a black box fashion.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric spanners, vertex failures, robustness

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.19

Related Version A full version of the paper is available at http://arxiv.org/abs/1811.06898.

Funding Sariel Har-Peled: Work on this paper was partially supported by a NSF AF awards
CCF-1421231.
Dániel Oláh: Supported by the Netherlands Organisation for Scientific Research (NWO) through
Gravitation-grant NETWORKS-024.002.003.

1 Introduction

Spanners. A Euclidean graph is a graph whose vertices are points in Rd and the edges are
weighted by the Euclidean distance between their endpoints. Let G = (P,E) be a Euclidean
graph and p, q ∈ P be two vertices of G. For a parameter t ≥ 1, a path between p and q in
G is a t-path if the length of the path is at most t ‖p− q‖, where ‖p− q‖ is the Euclidean
distance between p and q. The graph G is a t-spanner of P if there is a t-path between
any pair of points p, q ∈ P . Throughout the paper, n denotes the cardinality of the point set
P , unless stated otherwise. We denote the length of the shortest path between p, q ∈ P in
the graph G by d(p, q).

Spanners have been studied extensively. The main goal in spanner constructions is to
have small size, that is, to use as few edges as possible. Other desirable properties are low
degrees [2, 10, 18], low weight [6, 12], low diameter [3, 4] or to be resistant against failures.
The book by Narasimhan and Smid [17] gives a comprehensive overview of spanners.

© Kevin Buchin, Sariel Har-Peled, and Dániel Oláh;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3022-7877
mailto:k.a.buchin@tue.nl
https://orcid.org/0000-0003-2638-9635
mailto:sariel@illinois.edu
mailto:d.olah@tue.nl
https://doi.org/10.4230/LIPIcs.SoCG.2019.19
http://arxiv.org/abs/1811.06898
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 A Spanner for the Day After

Robustness. In this paper, our goal is to construct spanners that are robust according to
the notion introduced by Bose et al. [7]. Intuitively, a spanner is robust if the deletion of k
vertices only harms a few other vertices. Formally, a graph G is an f(k)-robust t-spanner,
for some positive monotone function f , if for any set B of k vertices deleted in the graph,
the remaining graph G \B is still a t-spanner for at least n− f(k) of the vertices. Note, that
the graph G \B has n− k vertices – namely, there are at most L(k) = f(k)− k additional
vertices that no longer have good connectivity to the remaining graph. The quantity L(k) is
the loss. We are interested in minimizing the loss.

The natural question is how many edges are needed to achieve a certain robustness (since
the clique has the desired property). That is, for a given parameter t and function f , what
is the minimal size that is needed to obtain an f(k)-robust t-spanner on any set of n points.

A priori it is not clear that such a sparse graph should exist (for t a constant) for a
point set in Rd, since the robustness property looks quite strong. Surprisingly, Bose et al. [7]
showed that one can construct a O(k2)-robust O(1)-spanner with O(n logn) edges. Bose
et al. [7] proved various other bounds in the same vein on the size for one-dimensional and
higher-dimensional point sets. Their most closely related result is that for the one-dimensional
point set P = {1, 2, . . . , n} and for any t ≥ 1 at least Ω(n logn) edges are needed to construct
an O(k)-robust t-spanner.

An open problem left by Bose et al. [7] is the construction of O(k)-robust spanners –
they only provide the easy upper bound of O(n2) for this case.

ϑ-reliable spanners. We are interested in building spanners where the loss is only fractional.
Specifically, given a parameter ϑ, we consider the function f(k) = (1 + ϑ)k. The loss in this
case is L(k) = f(k)− k = ϑk. A (1 + ϑ)k-robust t-spanner is ϑ-reliable t-spanner .

Exact reliable spanners. If the input point set is in one dimension, then one can easily
construct a 1-spanner for the points, which means that the exact distances between points
on the line are preserved by the spanner. This of course can be done easily by connecting
the points from left to right. It becomes significantly more challenging to construct such an
exact spanner that is reliable.

Fault tolerant spanners. Robustness is not the only definition that captures the resistance
of a spanner network against vertex failures. A closely related notion is fault tolerance
[13, 14, 15]. A graph G = (P,E) is an r-fault tolerant t-spanner if for any set B of failed
vertices with |B| ≤ r, the graph G \ B is still a t-spanner. The disadvantage of r-fault
tolerance is that each vertex must have degree at least r + 1, otherwise the vertex can be
isolated by deleting its neighbors. Therefore, the graph has size at least Ω(rn). There are
constructions that show O(rn) edges are enough to build r-fault tolerant spanners. However,
depending on the chosen value r the size can be too large.

In particular, fault tolerant spanners cannot have a near-linear number of edges, and
still withstand a widespread failure of nodes. Specifically, if a fault tolerant spanner has m
edges, then it can withstand a failure of at most 2m/n vertices. In sharp contrast, ϑ-reliable
spanners can withstand a widespread failure. Indeed, a ϑ-reliable spanner can withstand a
failure of close to n/(1 + ϑ) of its vertices, and still have some vertices that are connected by
short paths in the remaining graph.

K. Buchin, S. Har-Peled, and D. Oláh 19:3

1.1 Our results
In this paper, we investigate how to construct reliable spanners with very small loss – that is
ϑ-reliable spanners. To the best of our knowledge nothing was known on this case before
this work. For omitted proofs we refer the reader to the full version of the paper [8].

(a) Expanders are reliable. Intuitively, a constant degree expander is a robust/reliable
graph under a weaker notion of robustness – that is, connectivity. As such, for a
parameter ϑ > 0, we show that constant degree expanders are indeed ϑ-reliable in the
sense that all except a small fraction of the points stay connected. Formally, one can
build a graph G with O(ϑ−3n) edges, such that for any failure set B of k vertices, the
graph G \ B has a connected component of size at least n − (1 + ϑ)k. We emphasize,
however, that distances are not being preserved in this case. See Lemma 6 for the result.

(b) Exact O(1)-reliable spanner in one dimension. Inspired by the reliability of
constant degree expanders, we show how to construct an O(1)-reliable exact spanner on
any one-dimensional set of n points with O(n logn) edges.1 The idea of the construction
is to build a binary tree over the points, and to build bipartite expanders between
certain subsets of nodes in the same layer. One can think of this construction as building
different layers of expanders for different resolutions. The construction is described in
Section 3.2. See Theorem 12 for the result.

(c) Exact ϑ-reliable spanner in one dimension. One can get added redundancy by
systematically shifting the layers. Done carefully, this results in a ϑ-reliable exact spanner.
The construction is described in Section 3.3. See Theorem 13 for the result.

(d) ϑ-reliable (1 + ε)-spanners in higher dimensions. We next show a surprisingly
simple and elegant construction of ϑ-reliable spanners in two and higher dimensions,
using a recent result of Chan et al. [11], which show that one needs to maintain only a
“few” linear orders. This immediately reduces the d dimensional problem to maintaining
a reliable spanner for each of this orderings, which is the problem we already solved. See
Section 4 for details.

(e) ϑ-reliable (1 + ε))-spanner in Rd with bounded spread. Since both general
constructions in Rd have some additional polylog factors that seems unnecessary, we
present a better construction for the bounded spread case. Specifically, for points
with spread Φ in Rd, and for any ε > 0, we construct a ϑ-reliable (1 + ε)-spanner
with O

(
ε−dϑ−2n log Φ

)
edges. The basic idea is to construct a well-separated pair

decomposition (WSPD) directly on the quadtree of the point set, and convert every pair
in the WSPD into a reliable graph using a bipartite expander. The union of these graphs
is the required reliable spanner. See Section 5 and Lemma 21 for details.

Shadow. Underlying our construction is the notion of identifying the points that loose
connectivity when the failure set is removed. Intuitively, a point is in the shadow if it is
surrounded by failed points. We believe that this concept is of independent interest – see
Section 3.1 for details and relevant results in one dimension and the full version [8] for an
additional result in higher dimensions.

Independently, Bose et al. [5] also obtained an upper bound on the size of reliable spanners
in Rd. Their construction has O(n log2 n log logn) edges, which is close to our bound of
O(n logn(log logn)6) edges.

1 This also improves an earlier preliminary construction by (some of) the authors arXiv:1803.08719.

SoCG 2019

https://arxiv.org/abs/1803.08719

19:4 A Spanner for the Day After

2 Preliminaries

2.1 Problem definition and notations
Let [n] denote the set {1, 2, . . . , n} and let [i : j] = {i, i+ 1, . . . , j}.

I Definition 1 (Robust spanner). Let G = (P,E) be a t-spanner for some t ≥ 1 and let
f : N → R+, and two point sets P1, P2 ⊆ P . The graph G is an f(k)-robust t-spanner
for P1 ⊕ P2 if for any set of (failed) vertices B ⊆ P there exists a set B+ ⊇ B with
|B+| ≤ f

(
|B|
)
such that the subgraph

G \B = GP\B =
(
P \B,

{
uv ∈ E(G)

∣∣ u, v ∈ P \B})
induced by P \B is a t-spanner for (P1 \B+)⊕ (P2 \B+). That is, G\B has a t-path between
all pairs of points p ∈ P1 \B+ and q ∈ P2 \B+. If P1 = P2 = P , then G is a f(k)-robust
t-spanner.

The vertices of B+ \B are the vertices harmed by B, and the quantity L(k) = f(k)−k ≥
|B+| − |B| is the loss.

I Definition 2. For a parameter ϑ > 0, a graph G that is (1 + ϑ)k-robust t-spanner is a
ϑ-reliable t-spanner.

I Definition 3. For a number x > 0, let pow2(x) = 2dlog xe be the smallest number that is a
power of 2 and is at least as large as x.

2.2 Expander construction
For a set X of vertices in a graph G = (V,E), let Γ(X) =

{
v ∈ V

∣∣ uv ∈ E for a u ∈ X
}
be

the neighbors of X in G. The following lemma, which is a standard expander construc-
tion (see e.g. [16, Section 5.3]), provides the main building block of our one-dimensional
construction.

I Lemma 4. Let L,R be two disjoint sets, with a total of n elements, and let ξ ∈ (0, 1) be a
parameter. One can build a bipartite graph G = (L ∪R,E) with O(n/ξ2) edges, such that

(i) for any subset X ⊆ L, with |X| ≥ ξ|L|, we have that |Γ(X)| > (1− ξ)|R|, and

(ii) for any subset Y ⊆ R, with |Y | ≥ ξ|R|, we have that |Γ(Y)| > (1− ξ)|L|.

2.3 Expanders are reliable
Let P be a set with n elements, and let ϑ ∈ (0, 1) be a parameter. We next build a constant
degree expander graph on P and show that it is ϑ-reliable. The following two lemmas are
not surprising if one is familiar with expanders and their properties.

I Lemma 5. Let n be a positive integer number, let α > 1 be an integer constant, and let
β ∈ (0, 1) be some constant. One can build a graph G = ([n], E), such that for all sets
X ⊂ V , we have that |Γ(X)| ≥ min

(
(1− β)n, α |X|

)
. The graph G has O((α/β)n) edges.

I Lemma 6. Let n and ϑ ∈ (0, 1/2) be parameters. One can build a graph G = ([n], E) with
O(ϑ−3n) edges, such that for any set B ⊆ [n], we have that G\B has a connected component
of size at least n− (1 + ϑ) |B|. That is, the graph G is ϑ-reliable.

K. Buchin, S. Har-Peled, and D. Oláh 19:5

3 Building reliable spanners in one dimension

3.1 Bounding the size of the shadow
Our purpose is to build a reliable 1-spanner in one dimension. Intuitively, a point in [n] is in
trouble, if many of its close by neighbors belong to the failure set B. Such an element is in
the shadow of B, defined formally next.

I Definition 7. Consider an arbitrary set B ⊆ [n] and a parameter α ∈ (0, 1). A number
i is in the left α-shadow of B, if and only if there exists an integer j ≥ i, such that∣∣[i : j] ∩B

∣∣ ≥ α
∣∣[i : j]

∣∣ . Similarly, i is in the right α-shadow of B, if and only if there
exists an integer i, such that h ≤ i and |[h : i] ∩B| ≥ α |[h : i]| . The left and right α-shadow
of B is denoted by S→(B) and S←(B), respectively. The combined shadow is denoted by
S(α,B) = S→(B) ∪ S←(B).

I Lemma 8. Fix a set B ⊆ [n] and let α ∈ (0, 1) be a parameter. Then, we have that
|S→(B)| ≤ (1 + d1/αe) |B|. In particular, the size of S(α,B) is at most 2(1 + d1/αe) |B|.

Lemma 8 is somewhat restrictive because the shadow is at least twice larger than the
failure set B. Intuitively, as α→ 1, the shadow should converge to B. The following lemma,
which is a variant of Lemma 8 quantify this.

I Lemma 9. Fix a set B ⊆ [n], let α ∈ (2/3, 1) be a parameter, and let S(α,B) be the set
of elements in the α-shadow of B. We have that |S(α,B)| ≤ |B| /(2α− 1).

Proof. Let c = 1− 1/α < 0. For i = 1, . . . , n, let xi = c if i ∈ B, and xi = 1 otherwise. For
any interval I of length ∆, with τ∆ elements in B, such that x(I) =

∑
i∈I xi ≤ 0, we have

that

x(I) ≤ 0 ⇐⇒ (1− τ)∆ + cτ∆ ≤ 0 ⇐⇒ 1− τ ≤ −τc ⇐⇒ 1/τ ≤ 1− c
⇐⇒ 1/τ ≤ 1− (1− 1/α) ⇐⇒ 1/τ ≤ 1/α ⇐⇒ τ ≥ α.

An element j ∈ [n] is in the left α-shadow of B if and only if there exists an integer j′,
such that |[j : j′] ∩B| ≥ α |[j : j′]| and, by the above, x

(
[j : j′]

)
≤ 0. Namely, an integer j in

the left α-shadow of B corresponds to some prefix sum of the xis that starts at j and add
up to some non-positive sum. From this point on, we work with the sequence of numbers
x1, . . . , xn, using the above summation criterion to detect the elements in the left α-shadow.

For a location j ∈ [n] that is in the left α-shadow, let Wj = [j : j′] be the witness
interval for j – this is the shortest interval that has a non-positive sum that starts at j.
Let I = Wk = [k : k′] be the shortest witness interval, for any number in S(α,B) \B. For
any j ∈ [k + 1 : k′], we have x

(
[k : j − 1]

)
+ x([j : k′]) = x([k : k′]) ≤ 0. Thus, if xj = 1, this

implies that either j or k have shorter witness intervals than I, which is a contradiction to
the choice of k. We conclude that xj < 0 for all j ∈ [k + 1 : k′], that is, [k + 1 : k′] ⊆ B.

Letting ` = |I| = k′ − k + 1, we have that (` − 1)/` ≥ α ⇐⇒ ` − 1 ≥ α` ⇐⇒
` ≥ 1/(1− α) ⇐⇒ ` ≥ d1/(1− α)e ≥ 3, as α ≥ 2/3. In particular, by the minimality of I,
it follows that ` = d1/(1− α)e.

Let J = [k : k′ − 1] ⊂ I. We have that x(J) > 0. For any j ∈ S(α,B) \ B, such that
j 6= k, consider the witness interval Wj . If j > k, then j > k′, as all the elements of
I, except k, are in B. If j < k and j′ ∈ J , then τ = x([k : j′]) > 0, which implies that
x
(
[j : k − 1]

)
= x

(
Wj

)
− τ < 0, but this is a contradiction to the definition of Wj . Namely,

all the witness intervals either avoids J , or contain it in their interior. Given a witness
interval Wj , such that J ⊂ Wj , we have x(Wj \ J) = x(Wj) − x(J) < x(Wj) ≤ 0, since
x(J) > 0.

SoCG 2019

19:6 A Spanner for the Day After

1 ni j

v

Figure 1 The binary tree built over [n]. The block of node v is the interval [i : j].

So consider the new sequence of numbers x[n]\J = x1, . . . , xk−1, xk′ , . . . xn resulting from
removing the elements that corresponds to J from the sequence. Reclassify which elements
are in the left shadow in the new sequence. By the above, any element that was in the
shadow before, is going to be in the new shadow. As such, one can charge the element k,
that is in the left shadow (but not in B), to all the other elements of J (that are all in B).
Applying this charging scheme inductively, charges all the elements in the left shadow (that
are not in B) to elements in B. We conclude that the number of elements in the left shadow
of B, that are not in B is bounded by

|B|
|J | − 1 = |B|

`− 2 = |B|
d1/(1− α)e − 2 ≤

1− α
1− 2(1− α) |B| =

1− α
2α− 1 |B| .

The above argument can be applied symmetrically to the right shadow. We conclude that

|S(α,B)| ≤ |B|+ 2 1− α
2α− 1 |B| =

2α− 1 + 2− 2α
2α− 1 |B| = |B|

2α− 1 . J

3.2 Construction of O(1)-reliable exact spanners in one dimension
3.2.1 Constructing the graph H
Assume n is a power of two, and consider building the natural full binary tree T with the
numbers of [n] as the leaves. Every node v of T corresponds to an interval of numbers of the
form [i : j] its canonical interval, which we refer to as the block of v, see Figure 1. Let I be
the resulting set of all blocks. In each level one can sort the blocks of the tree from left to
right. Two adjacent blocks of the same level are neighbors. For a block I ∈ I, let next(I)
and prev(I) be the blocks (in the same level) directly to the right and left of I, respectively.

We build the graph of Lemma 4 with ξ = 1/16 for any two neighboring blocks in I.
Let H be the resulting graph when taking the union over all the sets of edges generated
by the above.

3.2.2 Analysis
In the following we show that the resulting graph H is an O(k)-robust 1-spanner and has
O(n logn) edges. We start by verifying the size of the graph.

I Lemma 10. The graph H has O(n logn) edges.

Proof. Let h = logn be the depth of the tree T . In each level i = 1, 2, . . . , h of T there
are 2h−i nodes and the blocks of these nodes have size 2i. The number of pairs of adjacent
blocks in level i is 2h−i − 1 and each pair contributes O(2i) edges. Therefore, each level
of T contributes O(n) edges. We get O(n logn) for the overall size by summing up for
all levels. J

K. Buchin, S. Har-Peled, and D. Oláh 19:7

i j

(a) The canonical path in the tree.

1 ni j

(b) The canonical path on the blocks.

Figure 2 The canonical path between the vertices i and j in two different representations. The
blue nodes and blocks correspond to the ascent part and the red nodes and blocks correspond to the
descent part of the walk.

There is a natural path between two leaves in the tree T , described above, going through
their lowest common ancestor. However, for our purposes we need something somewhat
different – intuitively because we only want to move forward in the 1-path.

Given two numbers i and j, where i < j, consider the two blocks I, J ∈ I that correspond
to the two numbers at the bottom level. Set I0 = I, and J0 = J . We now describe a canonical
walk from I to J , where initially ` = 0. During the walk we have two active blocks I` and J`,
that are both in the same level. For any block I ∈ I we denote its parent by p(I). At every
iteration we bring the two active blocks closer to each other by moving up in the tree.

Specifically, repeatedly do the following:
(a) If I` and J` are neighbors then the walk is done.
(b) If I` is the right child of p(I`), then set I`+1 = next(I`) and J`+1 = J`, and continue to

the next iteration.
(c) If J` is the left child of p(J`), then set I`+1 = I` and J`+1 = prev(J`), and continue to

the next iteration.
(d) Otherwise – the algorithm ascends. It sets I`+1 = p(I`), and I`+1 = p(J`), and it

continues to the next iteration.
It is easy to verify that this walk is well defined, and let

π(i, j) ≡ I0 → I1 → · · · → I`︸ ︷︷ ︸
ascent

→ J` → · · · → J0︸ ︷︷ ︸
descent

be the resulting walk on the blocks where we removed repeated blocks. Figure 2 illustrates
the path of blocks between two vertices i and j.

In the following, consider a fixed set B ⊆ [n] of faulty nodes. A block I ∈ I is α-
contaminated, for some α ∈ (0, 1), if |I ∩B| ≥ α |I|.

I Lemma 11. Consider two nodes i, j ∈ [n], with i < j, and let π(i, j) be the canonical
path between i and j. If any block of π = π(i, j) is α-contaminated, then i or j are in the
α/3-shadow of B.

SoCG 2019

19:8 A Spanner for the Day After

Proof. Assume the contamination happens in the left half of the path, i.e., at some block It,
during the ascent from i to the connecting block to the descent path into j. By construction,
there could be only one block before It on the path of the same level, and all previous blocks
are smaller, and there are at most two blocks at each level. Furthermore, for two consecutive
Ij , Ij+1 that are blocks of different levels, Ij ⊆ Ij+1. Thus we have that either i ∈ It, or
i ∈ prev(It), or i ∈ prev(prev(It)), since there are at most |It|+ |It| /2+ · · ·+2+1 = 2 |It|−1
vertices that are contained in the path before the block It. Notice that if i ∈ It, then it is
the leftmost point of It.

In particular, let r be the maximum number in It, and observe |[i : r] ∩B| ≥ α |It| ≥
(α/3) |[i : r]|. Thus, the number i is the α/3-shadow, as claimed.

The other case, when the contamination happens in the right part during the descent, is
handled symmetrically. J

I Theorem 12. The graph H constructed above on the set [n] is an O(1)-reliable exact
spanner and has O(n logn) edges.
Proof. The size is proved in Lemma 10. Let α = 1/32. Let B+ be the set of vertices
that are in the α/3-shadow of B, that is, B+ = S(α/3, B). By Lemma 8 we have that
|B+| ≤ 2(1 + d3/αe) |B| ≤ 200 |B| .

Consider any two vertices i, j ∈ [n] \B+. Let π(i, j) be the canonical path between i and
j. None of the blocks in this path are α-contaminated, by Lemma 11.

Let S be the set of all vertices that have a 1-path from i to them. Consider the ascent
part of the path π(i, j) : I0 → I1 → · · · → I`. The claim is that for every block It in this
path, we have that at least 3

4 of the vertices have 1-paths from i (i.e., |It ∩ S| ≥ 3
4 |It|).

This claim is proven by induction. The claim trivially holds for I0. Now, consider two
consecutive blocks It → It+1. There are two cases:
(i) It+1 = next(It). Then, the graph H includes the expander graph on It, It+1 described

in Lemma 4. At least 3
4 |It| vertices of It are in S. As such, at least 15

16 |It+1| vertices of
It+1 are reachable from the vertices of It. Since It+1 is not α-contaminated, at most an
α-fraction of vertices of It+1 are in B, and it follows that |It+1 ∩ S| ≥ (15

16 −α) |It+1| ≥
3
4 |It+1| , as claimed.

(ii) It+1 is the parent of It. In this case, It is the left child of It+1. Let I ′t be the right child
of It+1. Since It+1 is not α-contaminated, we have that |It+1 ∩B| ≤ α |It+1|. As such,

|I ′t ∩B| ≤ |It+1 ∩B| ≤ 2α |I ′t|

Now, by the expander construction on (It, I ′t), and arguing as above, we have

|I ′t ∩ S| ≥
(

15
16 − 2α

)
|I ′t| ≥

3
4 |I
′
t| ,

which implies that |It+1 ∩ S| ≥ 3
4 |It+1|.

The symmetric claim for the descent part of the path is handled in a similar fashion,
therefore, at least 3

4 of the points in J` can reach j with a 1-path. Using these and the
expander construction between I` and J`, we conclude that there is a 1-path from i to j in
H \B, as claimed. J

Note that it is easy to generalize the construction for arbitrary n. Let h be an integer
such that 2h−1 < n < 2h and build the graph H on {1, 2, 3, . . . , 2h}. Since H is a 1-spanner,
the 1-paths between any pair of vertices of [n] does not use any vertices from {n+ 1, . . . , 2h}.
Therefore, we can simply delete the part of H that is beyond n to obtain an O(1)-reliable
1-spanner on [n]. Since we defined B+ to be the shadow of B, the O(1)-reliability is
inherited automatically.

We also note that no effort was made to optimize the constants in the above construction.

K. Buchin, S. Har-Peled, and D. Oláh 19:9

1 n2

1
2
3
4

j =

0 1 2 87

k =

I(3, 2, 4)

Figure 3 The shifted intervals I(i, ·, ·) for i = 3 with N = 4 and n = 64. Each interval has length
2i = 8, there are N = 4 different shifts and there are n

2i + 1 = 9 blocks per each shift.

3.3 Construction of ϑ-reliable exact spanners in one dimension
Here, we show how to extend Theorem 12, to build a one dimensional graph, such that for
any fixed ϑ > 0 and any set B of k deleted vertices, at most (1 + ϑ)k vertices are no longer
connected (by a 1-path) after the removal of B. The basic idea is to retrace the construction
of Theorem 12, and extend it to this more challenging case. The main new ingredient is a
shifting scheme.

Let [n] be the ground set, and assume that n is a power of two, and let h = logn. Let

N = pow2
(
c/ϑ2) and ξ = 1

32N , (1)

where c is a sufficiently large constant (c ≥ 512). We first connect any i ∈ [n], to all the
vertices that are in distance at most 3N from it, by adding an edge between the two vertices.
Let G0 be the resulting graph.

Let i0 = logN . For i = i0, . . . , h− 1, and j = 1, . . . , N , let

∆(i, j) = 1 + (j − 1)2i/N − 2i

be the shift corresponding to i and j. For a fixed i, the ∆(i, j)s are N equally spaced numbers
in the block

[
1− 2i : 1− 2i/N

]
, starting at its left endpoint. For k = 0, . . . , n/2i, let

I(i, j, k) =
[
∆(i, j) + k2i : ∆(i, j) + (k + 1)2i

]
be the shifted interval of length 2i that starts at ∆(i, j) and is shifted k blocks to the right,
see Figure 3. The set of all intervals of interest is

I =

I(i, j, k)

∣∣∣∣∣∣
i = i0, . . . , logn
j = 1, . . . , N
k = 0, . . . , n/2i

 .

Constructing the graph Hϑ. Let GE(i, j, k) denote the expander graph of Lemma 4,
constructed over I(i, j, k) and I(i, j, k + 1), with the value of the parameter ξ as specified in
Eq. (1). We define Hϑ to be the union of all the graphs GE over all choices of i, j, k, and
also including the graph G0 (described above). In the case that n is not a power of two, do
the construction on [pow2(n)]. In any case, the last step is to delete vertices from Hϑ that
are outside the range of interest [n].

I Theorem 13. For parameters n and ϑ > 0, the graph Hϑ constructed over [n], is a
ϑ-reliable exact spanner. Furthermore, Hϑ has O(ϑ−6n logn) edges.

SoCG 2019

19:10 A Spanner for the Day After

4 Building a reliable spanner in Rd

In the following, we assume that P ⊆ [0, 1)d – this can be done by an appropriate scaling
and translation of space. We use a novel result of Chan et al. [11], called locality-sensitive
orderings. These orderings can be thought as an alternative to quadtrees and related
structures. For an ordering σ of [0, 1)d, and two points p, q ∈ [0, 1)d, such that p ≺ q, let
(p, q)σ =

{
z ∈ [0, 1)d

∣∣ p ≺ z ≺ q} be the set of points between p and q in the order σ.

I Theorem 14 ([11]). For ς ∈ (0, 1) fixed, there is a set Π+(ς) of M(ς) = O(ς−d log ς−1)
orderings of [0, 1)d, such that for any two (distinct) points p, q ∈ [0, 1)d, with ` = ‖p− q‖,
there is an ordering σ ∈ Π+, and a point z ∈ [0, 1)d, such that
(i) p ≺σ q,
(ii) (p, z)σ ⊆ ball

(
p, ς`

)
,

(iii) (z, q)σ ⊆ ball
(
q, ς`

)
, and

(iv) z ∈ ball
(
p, ς`

)
or z ∈ ball

(
q, ς`

)
.

Furthermore, given such an ordering σ, and two points p, q, one can compute their ordering,
according to σ, using O(d log ς−1) arithmetic and bitwise-logical operations.

4.1 Construction
Given a set P of n points in [0, 1)d, and parameters ε, ϑ ∈ (0, 1), let ς = ε/c,

M = M(ς) = O(ς−d log ς−1) = O
(
ε−d log ε−1),

and c be some sufficiently large constant. Next, let ϑ′ = ϑ/(3N ·M) where N = dlog logne+1,
and let Π+ = Π+(ς) be the set of orderings of Theorem 14. For each ordering σ ∈ Π+,
compute the ϑ′-reliable exact spanner Gσ of P , see Theorem 13, according to σ. Let G be
the resulting graph by taking the union of Gσ for all σ ∈ Π+.

4.2 Analysis
I Theorem 15. The graph G, constructed above, is a ϑ-reliable (1 + ε)-spanner and has size

O
(
ε−7d log7 1

ε
· ϑ−6n logn(log logn)6

)
.

Proof. First, we show the bound on the size. There are M different orderings for which we
build the graph of Theorem 13. Each of these graphs has O

(
(ϑ′)−6n logn

)
edges. Therefore,

the size of G is

M ·O
(
(ϑ′)−6n logn

)
= O

(
M

(
3NM
ϑ

)6
n logn

)
= O

(
ε−7d log7 1

ε
· ϑ−6n logn(log logn)6

)
.

Next, we identify the set of harmed vertices B+ given a set of failed vertices B ⊆ P . First, let
B1 be the union of all the (1−ϑ′/4)-shadows resulting from B in Gσ, for all σ ∈ Π+. Then, for
i = 2, . . . , N , we define Bi in a recursive manner to be the union of all the (1−ϑ′/4)-shadows
resulting from Bi−1 in Gσ, for all σ ∈ Π+. We set B+ = BN .

By the recursion and Lemma 9 we have that

|Bi| ≤

(
|Bi−1|

2(1− ϑ′

4)− 1
− |Bi−1|

)
M + |Bi−1| =

|Bi−1| − (1− ϑ′

2) |Bi−1|
1− ϑ′

2
M + |Bi−1|

= ϑ′ |Bi−1|
2− ϑ′ M + |Bi−1| ≤ (1 + ϑ′M) |Bi−1| =

(
1 + ϑ

3N

)
|Bi−1| .

K. Buchin, S. Har-Peled, and D. Oláh 19:11

Therefore, we obtain

∣∣B+∣∣ = |BN | ≤
(

1 + ϑ

3N

)N
|B| ≤ exp

(
N

ϑ

3N

)
|B| ≤ (1 + ϑ) |B| ,

using 1 + x ≤ ex ≤ 1 + 3x, for x ∈ [0, 1].
Now we show that there is a (1 + ε)-path π̂ between any pair of vertices p, q ∈ P \B+ ≡

P \ BN such that the path π̂ does not use any vertices of B. By Theorem 13, the graph
Gσ \BN−1 ⊆ G\BN−1 contains a monotone path connecting p to q, according to σ. Observe
that there is a unique edge (p′, q′) on this path that “jumps” from the locality of p to the
locality of q. Formally, we have the following:
(a) ‖p′ − q′‖ ≤ ‖p− q‖+ 2ς ‖p− q‖ = (1 + 2ε/c) ‖p− q‖ .
(b) ‖p− p′‖ ≤ 2ς ‖p− q‖ = 2(ε/c) ‖p− q‖ and similarly ‖q − q′‖ ≤ 2(ε/c) ‖p− q‖.
(c) p′, q′ ∈ P \BN−1.
We fix the edge (p′, q′) to be used in the computed path π̂ connecting p to q. We still need
to build the two parts of the path π̂ between p, p′ and q, q′.

This procedure reduced the problem of computing a reliable path between two points
p, q ∈ P \BN , into computing two such paths between two points of P \BN−1 (i.e., p, p′ and
q, q′). The benefit here is that ‖p− p′‖ , ‖q − q′‖ � ‖p− q‖. We now repeat this refinement
process N − 1 times.

To this end, let Qi be the set of active pairs that needs to be connected in the ith level of
the recursion. Thus, we have Q0 = {(p, q)}, Q1 = {(p, p′), (q, q′)}, and so on. We repeat this
N − 1 times. In the ith level there are |Qi| = 2i active pairs. Let (x, y) ∈ Qi be such a pair.
Then, there is an edge (x′, y′) in the graph G \BN−(i+1), such that we have the following:
(a) ‖x′ − y′‖ ≤ ‖x− y‖ (1 + 2ε/c) ≤ (2ε/c)i(1 + 2ε/c) ‖p− q‖ .
(b) ‖x− x′‖ ≤ 2(ε/c) ‖x− y‖ ≤ (2ε/c)i+1 ‖p− q‖ and ‖y − y′‖ ≤ (2ε/c)i+1 ‖p− q‖.
(c) x′, y′ ∈ P \BN−(i+1).
The edge (x′, y′) is added to the path π̂. After N − 1 iterations the set of active pairs is
QN−1 and for each pair (x, y) ∈ QN−1 we have that x, y ∈ P \B1. For each of these pairs
(x, y) ∈ QN−1 we apply Theorem 14 and Theorem 13 to obtain a path of length at most
‖x− y‖ 2 logn between x and y (and this subpath of course does not contain any vertex in
B). We add all these subpaths to connect the active pairs in the path π̂, which completes π̂
into a path.

Now, we bound the length of path π̂. Since, for all (x, y) ∈ QN−1, we have ‖x− y‖ ≤
‖p− q‖ · (2ε/c)N−1 and |QN−1| = 2N−1, the total length of the subpaths calculated, in the
last step, is

∑
(x,y)∈QN−1

length
(
π̂[x, y]

)
≤ 2N−1 ‖p− q‖ ·

(
2ε
c

)N−1
2 logn

≤ ‖p− q‖ ·
(

4ε
c

)log logn
2 logn ≤ ‖p− q‖ · εlog logn

(
4
c

)log logn
2 logn

≤ ‖p− q‖ · ε4 ·
1

logn · 2 logn ≤ ε

2 ‖p− q‖ ,

for large enough n and c ≥ 8. The total length of the long edges added to π̂ in the recursion,

SoCG 2019

19:12 A Spanner for the Day After

is bounded by

N−2∑
i=0

2i ‖p− q‖
(

2ε
c

)i(
1 + 2ε

c

)
≤ ‖p− q‖

(
1 + 2ε

c

) ∞∑
i=0

(
4ε
c

)i
= ‖p− q‖

(
1 + 2ε

c

)
1

1− 4ε/c = ‖p− q‖
(

1 + 6ε
c− 4ε

)
≤
(

1 + ε

2

)
‖p− q‖ ,

which holds for c ≥ 16. Therefore, the computed path π̂ between p and q is a (1 + ε)-path in
G \B, which concludes the proof of the theorem. J

5 Construction for points with bounded spread in Rd

The input is again a set P ⊂ Rd of n points, and parameters ϑ ∈ (0, 1/2) and ε ∈ (0, 1).
The goal is to build a ϑ-reliable (1 + ε)-spanner on P that has optimal size under some
condition on P . The condition is that the spread Φ(P) is bounded by a polynomial of n. The
construction is based on well-separated pair decompositions (WSPD), which was introduced
by Callahan and Kosaraju [9]. For preliminaries see the full version [8].

5.1 The construction of GΦ

First, compute a quadtree T for the point set P . For any node v ∈ T , let �v denote the cell
(i.e. square or cube, depending on the dimension) represented by v. Let Pv = �v ∩ P be
the point set stored in the subtree of v. Compute a (6/ε)-WSPD W over T for P using the
construction of Abam and Har-Peled [1, Lemma 2.8]. The pairs in W can be represented
by pairs of nodes {u, v} of the quadtree T . Note that the algorithm uses the diameters and
distances of the cells of the quadtree, that is, for a pair {u, v} ∈ W, we have

(6/ε) ·max
(
diam(�u),diam(�v)

)
≤ d(�u,�v).

For any pair {u, v} ∈ W, we build the bipartite expander of Lemma 4 on the sets Pu
and Pv such that the expander property holds with ξ = ϑ/8. Furthermore, for every two
node u and v that have the same parent in the quadtree T we add the edges of the bipartite
expander of Lemma 4 between Pu and Pv. Let GΦ be the resulting graph when taking the
union over all the sets of edges generated by the above.

5.2 Analysis
I Lemma 16. The graph GΦ has O

(
ξ−2ε−dn log Φ(P)

)
edges.

Proof. By Lemma 5.4 of [8], every point participates in O(ε−d log Φ(P)) WSPD pairs. By
Lemma 4 the average degree in all the expanders is at most O(1/ξ2), resulting in the given
bound on the number of edges. There are also the additional pairs between a node in T and
its parent, but since every point participates in only O(log Φ(P)) such pairs, the number of
edges is dominated by the expanders on the WSPD pairs. It follows that the number of edges
in the resulting graph is O(ξ−2ε−dn log Φ(P)). J

I Definition 17. For a number γ ∈ (0, 1), and failed set of vertices B ⊆ P , a node v of the
quadtree T is in the γ-shadow if |B ∩ Pv| ≥ γ |Pv|. Naturally, if v is in the γ-shadow, then
the points of Pv are also in the shadow. As such, the γ-shadow of B is the set of all the
points in the shadow – formally, S(γ,B) =

⋃
v∈T : |B∩Pv|≥γ|Pv| Pv.

K. Buchin, S. Har-Peled, and D. Oláh 19:13

Let γ = 1− ϑ/2. Note that B ⊆ S(γ,B), since every point of B is stored as a singleton
in a leaf of T .

I Definition 18. For a node x in T , let n(x) = |Px|, and b(x) = |Px ∩B|.

I Lemma 19. Let γ = 1− ϑ/2 and B ⊆ P be fixed. Then, the size of the γ-shadow of B is
at most (1 + ϑ) |B|.

Proof. Let H be the set of nodes of T that are in the γ-shadow of B. A node u ∈ H is
maximal if none of its ancestors is in H. Let H ′ = {u1, . . . , um} be the set of all maximal
nodes in H, and observe that ∪u∈H′Pu = ∪v∈HPv = S(γ,B). For any two nodes x, y ∈ H ′,
we have Px ∩ Py = ∅. Therefore, we have

|B| =
∑
u∈H′

b(u) ≥
∑
u∈H′

γn(u) = γ |S(γ,B)| .

Dividing both sides by γ implies the claim, since 1/γ = 1/(1− ϑ/2) ≤ 1 + ϑ. J

I Lemma 20. Let γ = 1 − ϑ/2. Fix a node u ∈ T of the quadtree, the failure set B ⊆ P ,
its shadow B+ = S(γ, P), and the residual graph H = GΦ \ B. For a point p ∈ Pu \ B+,
let Ru(p) be the set of all reachable points in Pu with stretch two, formally, Ru(p) ={
q ∈ Pu \B

∣∣ dH(p, q) ≤ 2 · diam(�u)
}
. Then, we have |Ru(p)| ≥ 3ξ |Pu| .

Proof. Let u1, u2, . . . , uj = u be the sequence of nodes in the quadtree from the leaf u1 that
contains (only) p, to the node u. A level of a point q ∈ Pu, denoted by `(q), is the first index
i, such that q ∈ Pui

. A skipping path in GΦ, is a sequence of edges pq1, q1q2, . . . qm−1qm,
such that `(qi) < `(qi+1), for all i.

Let Qi be the set of all points in Pui
\B that are reachable by a skipping path in H from

p. We claim, for i = 1, . . . , j, that

|Qi| ≥ (1− ξ)n(ui)− b(ui) ≥ (1− ξ − γ)n(ui) = (ϑ/2− ξ)n(ui) = 3ξn(ui),

since ξ = ϑ/8 and p is not in the γ-shadow. The claim clearly holds for u1. So, assume
inductively that the claim holds for u1, . . . , uj−1. Let v1, . . . , vm be the children of uj that
have points stored in them (excluding uj−1). There is an expander between Puj−1 and Pvi ,
for all i, as a subgraph of GΦ. It follows, by induction, that

|Qj | ≥ (1− ξ)n(uj−1)− b(uj−1) +
∑
i

(
(1− ξ)n(vi)− b(vi)

)
= (1− ξ)n(uj−1) +

∑
i

(1− ξ)n(vi)−
(
b(uj−1) +

∑
i

b(vi)
)

= (1− ξ)n(uj)− b(uj).

Observe that a skipping path from p to q ∈ Puj
has length at most

j∑
i=1

diam(�ui
) ≤ diam

(
�uj

) j∑
i=1

21−j ≤ 2 · diam
(
�uj

)
.

Thus, Qj ⊆ Ru(p), and the claim follows. J

Now we are ready to prove that GΦ is a reliable spanner.

I Lemma 21. For a set P ⊆ Rd of n points and parameters ε ∈ (0, 1) and ϑ ∈ (0, 1/2), the
graph GΦ is a ϑ-reliable (1 + ε)-spanner with O

(
ε−dϑ−2n log Φ(P)

)
edges, where Φ(P) is the

spread of P .

SoCG 2019

19:14 A Spanner for the Day After

p

q

p′

q′

�u

�v

Figure 4 The pair {u, v} ∈ W that separates p and q. The blue path is a (1 + ε)-path between p

and q in the graph GΦ \B.

Proof. Let ξ = ϑ/8 and γ = 1 − ϑ/2. The bound on the number of edges follows by
Lemma 16.

Let B be a set of faulty vertices of GΦ, and let H = GΦ \B be the residual graph. We
define B+ to contain the vertices that are in the γ-shadow of B. Then, we have B ⊆ B+ and
|B+| ≤ (1 + ϑ) |B| by Lemma 19. Finally, we need to show that there exists a (1 + ε)-path
between any p, q ∈ P \B+.

Let {u, v} ∈ W be the pair that separates p and q with p ∈ Pu and q ∈ Pv, see Figure 4.
Let Ru(p) (resp. Rv(q)) be the set of points in Pu (resp. Pv) that are reachable in H from
p (resp. q) with paths that have lengths at most 2 · diam(�u) (resp. 2 · diam(�v)). By
Lemma 20, |Ru(p)| ≥ 3ξn(u) ≥ ξn(u) and |Rv(q)| ≥ 3ξn(v).

Since there is a bipartite expander between Pu and Pv with parameter ξ, by Lemma 4,
the neighborhood Y of Ru(p) in Pv has size at least (1− ξ)n(v). Observe that |Y ∩Rv(q)| =
|Rv(q) \ (Pv \ Y)| ≥ |Rv(q)| − |Pv \ Y | ≥ 3ξn(v) − ξn(v) > 0. Therefore, there is a point
q′ ∈ Y ∩Rv(q), and a point p′ ∈ Ru(p), such that p′q′ ∈ E(GΦ). We have that

dH(p, q) ≤ dH(p, p′) + dH(p′, q′) + dH(q′, q) ≤ 2 · diam(�u) + ‖p′ − q′‖+ 2 · diam(�v)

≤ 3 · diam(�u) + d(�u,�v) + 3 · diam(�v) ≤
(

1 + 6 · ε6

)
· d(�u,�v)

≤ (1 + ε) · ‖p− q‖ . J

6 Conclusions

In this paper we have shown several constructions for ϑ-reliable spanners. Our results for
constructing reliable exact spanners in one dimension have size O(n logn), which is optimal.
In higher dimensions we were able to show a simple construction of a ϑ-reliable spanner with
optimal size for the case of bounded spread. For arbitrary point sets in Rd we obtained a
construction with an extra (log logn)6 factor in the size.

It seems clear that our construction for the unbounded case is suboptimal in terms of
extra factors, and we leave improving it as an open problem for further research. Another
natural open question is how to construct reliable spanners that are required to be subgraphs
of a given graph.

K. Buchin, S. Har-Peled, and D. Oláh 19:15

References
1 M. A. Abam and S. Har-Peled. New Constructions of SSPDs and their Applications. Compu-

tational Geometry: Theory and Applications, 45(5–6):200–214, 2012. doi:10.1016/j.comgeo.
2011.12.003.

2 B. Aronov, M. de Berg, O. Cheong, J. Gudmundsson, H. J. Haverkort, M. H. M. Smid, and
A. Vigneron. Sparse geometric graphs with small dilation. Computational Geometry: Theory
and Applications, 40(3):207–219, 2008. doi:10.1016/j.comgeo.2007.07.004.

3 S. Arya, D. M. Mount, and M. Smid. Randomized and deterministic algorithms for geometric
spanners of small diameter. In Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS),
pages 703–712, 1994. doi:10.1109/SFCS.1994.365722.

4 S. Arya, D. M. Mount, and M. Smid. Dynamic algorithms for geometric spanners of small
diameter: Randomized solutions. Computational Geometry: Theory and Applications, 13(2):91–
107, 1999. doi:10.1016/S0925-7721(99)00014-0.

5 P. Bose, P. Carmi, V. Dujmovic, and P. Morin. Near-Optimal O(k)-Robust Geometric Spanners.
CoRR, abs/1812.09913, 2018. arXiv:1812.09913.

6 P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and M. Smid. Computing the Greedy
Spanner in Near-Quadratic Time. Algorithmica, 58(3):711–729, November 2010. doi:
10.1007/s00453-009-9293-4.

7 P. Bose, V. Dujmović, P. Morin, and M. Smid. Robust Geometric Spanners. SIAM Journal
on Computing, 42(4):1720–1736, 2013. doi:10.1137/120874473.

8 K. Buchin, S. Har-Peled, and D. Oláh. A Spanner for the Day After. CoRR, abs/1811.06898,
2018. arXiv:1811.06898.

9 P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. Journal of the Association for
Computing Machinery, 42(1):67–90, 1995. doi:10.1145/200836.200853.

10 P. Carmi and L. Chaitman. Stable Roommates and Geometric Spanners. In Proc. 22nd Canad.
Conf. Comput. Geom. (CCCG), pages 31–34, 2010. URL: http://cccg.ca/proceedings/
2010/paper11.pdf.

11 T. M. Chan, S. Har-Peled, and M. Jones. On Locality-Sensitive Orderings and their Applica-
tions. CoRR, abs/1809.11147, 2018. arXiv:1809.11147.

12 J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast Greedy Algorithms for Con-
structing Sparse Geometric Spanners. SIAM J. Comput., 31(5):1479–1500, May 2002.
doi:10.1137/S0097539700382947.

13 C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient Algorithms for Constructing Fault-
Tolerant Geometric Spanners. In Proc. 30th Annu. ACM Sympos. Theory Comput. (STOC),
pages 186–195. ACM, 1998. doi:10.1145/276698.276734.

14 C. Levcopoulos, G. Narasimhan, and M. Smid. Improved Algorithms for Constructing Fault-
Tolerant Spanners. Algorithmica, 32(1):144–156, 2002. doi:10.1007/s00453-001-0075-x.

15 T. Lukovszki. New Results of Fault Tolerant Geometric Spanners. In Proc. 6th Workshop
Algorithms Data Struct. (WADS), volume 1663 of LNCS, pages 193–204. Springer, 1999.
doi:10.1007/3-540-48447-7_20.

16 R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New
York, NY, USA, 1995.

17 G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge University Press, New
York, NY, USA, 2007.

18 M. Smid. Geometric Spanners with Few Edges and Degree Five. In Proc. 12th Australasian
Theo. Sym. (CATS), volume 51 of CRPIT, pages 7–9, 2006. URL: http://crpit.com/
abstracts/CRPITV51Smid.html.

SoCG 2019

http://dx.doi.org/10.1016/j.comgeo.2011.12.003
http://dx.doi.org/10.1016/j.comgeo.2011.12.003
http://dx.doi.org/10.1016/j.comgeo.2007.07.004
http://dx.doi.org/10.1109/SFCS.1994.365722
http://dx.doi.org/10.1016/S0925-7721(99)00014-0
http://arxiv.org/abs/1812.09913
http://dx.doi.org/10.1007/s00453-009-9293-4
http://dx.doi.org/10.1007/s00453-009-9293-4
http://dx.doi.org/10.1137/120874473
http://arxiv.org/abs/1811.06898
http://dx.doi.org/10.1145/200836.200853
http://cccg.ca/proceedings/2010/paper11.pdf
http://cccg.ca/proceedings/2010/paper11.pdf
http://arxiv.org/abs/1809.11147
http://dx.doi.org/10.1137/S0097539700382947
http://dx.doi.org/10.1145/276698.276734
http://dx.doi.org/10.1007/s00453-001-0075-x
http://dx.doi.org/10.1007/3-540-48447-7_20
http://crpit.com/abstracts/CRPITV51Smid.html
http://crpit.com/abstracts/CRPITV51Smid.html

Computing Shapley Values in the Plane
Sergio Cabello
Department of Mathematics, FMF, University of Ljubljana, Slovenia
Department of Mathematics, IMFM, Ljubljana, Slovenia
https://www.fmf.uni-lj.si/~cabello/
sergio.cabello@fmf.uni-lj.si

Timothy M. Chan
Department of Computer Science, University of Illinois at Urbana-Champaign, USA
http://tmc.web.engr.illinois.edu/
tmc@illinois.edu

Abstract
We consider the problem of computing Shapley values for points in the plane, where each point is
interpreted as a player, and the value of a coalition is defined by the area of usual geometric objects,
such as the convex hull or the minimum axis-parallel bounding box.

For sets of n points in the plane, we show how to compute in roughly O(n3/2) time the Shapley
values for the area of the minimum axis-parallel bounding box and the area of the union of the
rectangles spanned by the origin and the input points. When the points form an increasing or
decreasing chain, the running time can be improved to near-linear. In all these cases, we use linearity
of the Shapley values and algebraic methods.

We also show that Shapley values for the area of the convex hull or the minimum enclosing disk
can be computed in O(n2) and O(n3) time, respectively. These problems are closely related to the
model of stochastic point sets considered in computational geometry, but here we have to consider
random insertion orders of the points instead of a probabilistic existence of points.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Shapley values, stochastic computational geometry, convex hull, minimum
enclosing disk, bounding box, arrangements, convolutions, airport problem

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.20

Related Version Full version available at http://arxiv.org/abs/1804.03894.

Funding Sergio Cabello: Supported by the Slovenian Research Agency (P1-0297, J1-8130, J1-8155).
Timothy M. Chan: Supported in part by NSF Grant CCF-1814026.

Acknowledgements The authors are very grateful to Sariel Har-Peled for fruitful discussions.

1 Introduction

One can associate several meaningful values to a set P of points in the plane, like for example
the area of the convex hull or the area of the axis-parallel bounding box. How can we split
this value among the points of P? Shapley values are a standard tool in cooperative games
to “fairly” split common cost between different players. Our objective in this paper is to
present algorithms to compute the Shapley values for points in the plane when the cost of
each subset is defined by geometric means.

Coalitional games in the plane. Formally, a coalitional game is a pair (P, v), where P
is the set of players and v : 2P → R is the characteristic function, which must satisfy
v(∅) = 0. Depending on the problem at hand, the characteristic function can be seen as a
cost or a payoff associated to each subset of players (usually called a coalition). Coalitional
games are a very common model for cooperative games with transferable utility.

© Sergio Cabello and Timothy M. Chan;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3183-4126
https://www.fmf.uni-lj.si/~cabello/
mailto:sergio.cabello@fmf.uni-lj.si
http://tmc.web.engr.illinois.edu/
mailto:tmc@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.20
http://arxiv.org/abs/1804.03894
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Computing Shapley Values in the Plane

var vbb vabbvch ved

Figure 1 Different costs associated to a point set that are considered in this paper. The cross
represents the origin. In all cases we focus on the area.

In our setting, the players will be points in the plane. Thus P ⊂ R2. Such scenario arises
naturally in the context of game theory through modeling: each point represents an agent,
and each coordinate of the point represents an attribute of the agent.

We will consider characteristic functions given by the area of shapes that “enclose” the
points. The shapes that we consider are succinctly described in Figure 1. More precisely, we
consider the following coalitional games.
AREACONVEXHULL game: The characteristic function is vch(Q) = area (CH (Q)) for each

nonempty Q ⊂ P , where CH (Q) denotes the convex hull of Q.
AREAENCLOSINGDISK game: The characteristic function is ved(Q) = area (med(Q)) for

each nonempty Q ⊂ P , where med(Q) is a disk of smallest radius that contains Q.
AREAANCHOREDRECT game: The characteristic function is var(Q) = area

(⋃
p∈QRp

)
for

each nonempty Q ⊂ P , where Rp is the axis-parallel rectangle with one corner at p and
another corner at the origin.

AREABOUNDINGBOX game: The characteristic function is vbb(Q) = area (bb(Q)) for each
nonempty Q ⊂ P , where bb(Q) is the smallest axis-parallel bounding box of Q.

AREAANCHOREDBOUNDINGBOX game: The characteristic function is vabb(Q), defined by
area (bb(Q ∪ {o})) for each nonempty Q ⊂ P , where o is the origin.

In the full version [5] we also consider variants of these problems where the perimeter of
the shapes is used.

Shapley values. Shapley values are probably the most popular solution concept for coali-
tional games. The objective is to split the value v(P) between the different players of a
coalitional game (P, v) in a meaningful way. It is difficult to overestimate the relevance of
Shapley values. See the book edited by Roth [26] or the survey by Winter [29] for a general
discussion showing their relevance. There are also different axiomatic characterizations of
the concept, meaning that Shapley values can be shown to be the only map satisfying certain
natural conditions. Shapley values can be interpreted as a cost allocation, a split of the
payoff, or, after normalization, as a power index. The Shapley-Shubik power index arises
from considering voting games, a particular type of coalitional game. We refer to some
textbooks in Game Theory ([11, Chapter IV.3], [19, Section 9.4], [21, Section 14.4]) for a
comprehensive treatment.

In a nutshell, the Shapley value of a player p in a coalitional game is the expected increase
in the value of the characteristic function when inserting the player p, if the players are
inserted in an order chosen uniformly at random. We next make this definition precise.

Consider a coalitional game (P, v). We denote by n the number of players and by [n]
the set of integers {1, . . . , n}. A permutation of P is a bijective map π : P → [n]. Let Π(P)
be the set of permutations of P . Each permutation π ∈ Π(P) defines an ordering in P ,
where π(p) is the position of p in that order. We will heavily use this interpretation of

S. Cabello and T.M. Chan 20:3

permutations as defining an order in P . For each element p ∈ P and each permutation
π ∈ Π(P), let P (π, p) be the elements of P before p in the order defined by π, including p.
Thus P (π, p) = {q ∈ P | π(q) ≤ π(p)}. We can visualize P (π, p) as adding the elements
of P one by one, following the order defined by π, until we insert p. The increment in v(·)
when adding player p is

∆(v, π, p) = v
(
P (π, p)

)
− v
(
P (π, p) \ {p}

)
.

The Shapley value of player p ∈ P in the game (P, v) is

φ(p, v) = 1
n!

∑
π∈Π(P)

∆(v, π, p) = Eπ
[
∆(v, π, p)

]
,

where π is picked uniformly at random from Π(P). It is not difficult to see that the Shapley
values indeed split the value v(P) among the players, that is,

∑
p∈P φ(p, v) = v(P).

Since several permutations π define the same subset P (π, p), the Shapley value of p is
often rewritten as

φ(p, v) =
∑

S⊂P\{p}

|S|!(n− |S| − 1)!
n!

(
v(S ∪ {p})− v(S)

)
.

Computing Shapley values from these formulas is computationally infeasible because we
have to consider either all the permutations or all the subsets of the players. In fact, there
are several natural instances where computing Shapley values is difficult.

Overview of our contribution

We show that the Shapley values for the AreaConvexHull and AreaEnclosingDisk
games can be computed in O(n2) and O(n3) time, respectively. These problems resemble
the models recently considered in stochastic computational geometry; see for example [1, 2,
12, 13, 14, 23, 30]. However, there are some key differences in the models. In the most basic
model in stochastic computational geometry, sometimes called unipoint model, we have a
point set and, for each point, a known probability of being actually present, independently
for each point. Then we want to analyze a certain functional, for example, the expected area
of the minimum enclosing disk.

In our scenario, we have to consider random insertion orders of the points and analyze
the expected increase in the value of the characteristic function after the insertion of a fixed
point p. Thus, we have to consider subsets of points constructed according to a different
random process. In particular, whether other points precede p or not in the random order
are not independent events. Conditioning on properties of the shape before adding the
new point p, one can get polynomial-time algorithms. We improve the running time by
rewriting the Shapley values in a different way and grouping permutations with a similar
behavior. Finally, we use arrangements of lines and planes to speed up the computation by
an additional linear factor.

For the AreaAnchoredRect, AreaBoundingBox, and AreaAnchoredBound-
ingBox games we show that Shapley values can be computed in O(n3/2 logn) time. In
the special case where the points form a chain (increasing or decreasing y-coordinate for
increasing x-coordinate), the Shapley values of those games can be computed in O(n log2 n)
time. We refer to these games as axis-parallel games.

It is relative easy to compute the Shapley values for these axis-parallel games in quadratic
time using arrangements of rectangles and the linearity of Shapley values. We will discuss
this as an intermediary step towards our solution. However, it is not obvious how to

SoCG 2019

20:4 Computing Shapley Values in the Plane

get subquadratic time. Besides using the linearity of Shapley values, a key ingredient in
our algorithms is using convolutions to evaluate at multiple points some special rational
functions that keep track of the ratio of permutations with a certain property. The use
of algebraic methods in computational geometry is not very common, and there are few
results [3, 4, 15, 18] using such techniques in geometric problems.

Our O(n3/2 logn) algorithm bears some similarities with other existing algorithms with
near n3/2 time complexity in the computational geometry literature, for problems like Klee’s
measure problem [22]. As in these previous algorithms, we employ an orthogonal subdivision
where each region is empty of input points inside, and is “influenced” on average by O(

√
n) of

the points outside. What is new is our combination of such a geometric partitioning scheme
with the aforementioned algebraic techniques.

In summary, our results combine fundamental concepts from several different areas
and motivated by classical concepts of game theory, we introduce new problems related to
stochastic computational geometry and provide efficient algorithms for them.

Related work

The book by Chalkiadakis, Elkind, and Wooldridge [6] and the chapter by Deng and Fang [8]
give a summary of computational aspects of coalitional games. The book by Nisan et al. [20]
provides a general overview of the interactions between game theory and algorithms.

In the classical Airport problem considered by Littlechild and Owen [16], we have a set
P of points with positive coordinate on the real line, and the cost of a subset Q of the points
is given by max(Q). It models the portion of the runway that has to be used by each airplane,
and Shapley values provide a way to split the cost of the runway among the airplanes. As
pointed out before, the points represent agents, in this case airplanes. Several other airport
problems are discussed in the survey by Thomson [27]. Using inclusion-exclusion, the airport
problem is equivalent to the problem of allocating the length of the smallest interval that
contains a set of points on the line. The problems considered in this paper are natural
generalizations of the concept of interval when going from one to two dimensions.

Another very common solution concept for a coalitional game (P, v) is the core, defined as{
(xp)p∈P ∈ RP | ∀S ⊆ P :

∑
p∈S

xp ≥ v(S)
}
.

Sometimes the condition
∑
p∈P xp = v(P) is also added to the definition. The size of the

core is considered a proxy to the stability of the game and, in particular, it is of interest
whether the core is nonempty. There are other solution concepts for coalitional games; we
refer the reader to the aforementioned general references.

Puerto, Tamir and Perea [24] study the Minimum Radius Location Game in general
metric spaces. When specialized to the Euclidean plane, this is equivalent to using the
perimeter of the minimum enclosing disk. The paper also considers the L1-metric, which is
proportional to the perimeter of the minimum enclosing axis-parallel square (after applying
a rotation). However, the focus of their work is on understanding the core of the game,
and do not discuss the computation of Shapley values. In particular, they show that the
Minimum Radius Location Game in the Euclidean plane has nonempty core. Puerto, Tamir
and Perea [25] also discuss the Minimum Diameter Location Game, which can be defined for
arbitrary metric spaces, but then focus their discussion on graphs.

Faigle et al. [10] consider the TSP coalitional game in general metric spaces, specialize
some results to the Euclidean plane, and provide approximate allocations of the costs.

S. Cabello and T.M. Chan 20:5

The computation of Shapley values has been considered for several games on graphs. The
aforementioned Airport problem can be considered a shortest spanning-path game in a
(graph-theoretic) path. Megiddo [17] extended this to trees, while Deng and Papadimitriou [9]
discuss a game on arbitrary graphs defined by induced subgraphs. They show that the
Shapley values are easy to compute, while characterizing the core is NP-complete.

There is a very large body of follow up works for graphs, but we could not trace other
works considering the computation of Shapley values for games defined through planar
objects, despite being very natural.

Assumptions

We will assume general position in the following sense: no two points have the same x or y
coordinate, no three points are collinear, and no four points are cocircular. In particular, the
points are all different. The actual assumptions depend on the game under consideration. It
is simple to consider the general case, but it makes the notation more tedious.

We assume a unit-cost real-RAM model of computation. In a model of computation
that accounts for bit complexity, time bounds may increase by polynomial factors (even if
the input numbers are integers, the outputs may be rationals with large numerators and
denominators).

Organization

Because of space constraints, we limit our presentation to a selection of our results and an
overview of the ideas. In this version we do not include our algorithm for computing the
Shapley values for the AreaEnclosingDisk game in O(n3) time. Also, our results about
considering the perimeter are not described in this version; they can be found in the full
version [5].

We start with preliminaries in Section 2, where we set the notation, present basic properties
of Shapley values, and discuss our needs of algebraic computations. The AreaConvex-
Hull game is considered in Section 3. In Section 4 we discuss the main ideas for the
AreaAnchoredRect game and provide some discussion concerning the AreaBound-
ingBox and AreaAnchoredBoundingBox games. We conclude in Section 5 with some
discussion.

2 Preliminaries

All point sets will be in the Euclidean plane R2. The origin is denoted by o. For a point
p ∈ R2, let Rp be the axis-parallel rectangle with one corner at the origin o and the opposite
corner at p. As already mentioned in the introduction, for each Q ⊂ R2 we use bb(Q) for the
(minimum) axis-parallel bounding box of Q, med(Q) for a smallest (actually, the smallest)
disk that contains Q, and CH (Q) for the convex hull of Q.

We try to use the word rectangle when one corner is defined by an input point, while
the word box is used for more general cases. All rectangles and boxes in this paper are
axis-parallel, and we drop the adjective axis-parallel when referring to them. An anchored
box is a box with one corner at the origin.

For a point p ∈ R2 we denote by x(p) and y(p) its x- and y-coordinate, respectively. We
use x(Q) for {x(q) | q ∈ Q}, and similarly y(Q). A set P of points is a decreasing chain,
if x(p) < x(q) implies y(p) > y(q) for all p, q ∈ P . A set P of points is an increasing chain
if x(p) < x(q) implies y(p) < y(q) for all p, q ∈ P .

SoCG 2019

20:6 Computing Shapley Values in the Plane

p

q q′

p

q q′

H(q, q′)

Figure 2 Left: triangulating the difference between CH (P (π, p)) and CH (P (π, p) \ {p}). Right:
in order for 4pqq′ to be in T (π, p), q and q′ must appear before p, which in turn must appear before
all other points in the halfplane H(q, q′).

Shapley values. It is easy to see that Shapley values are linear in the characteristic functions.
This means that for any two characteristic functions v1, v2 : 2P → R and for each λ1, λ2 ∈ R
we have

φ(p, λ1v1 + λ2v2) = λ1 · φ(p, v1) + λ2 · φ(p, v2).

The Shapley values when the characteristic function v is constant over all nonempty subsets
of P is given φ(p, v) = v(P)/n.

Algebraic computations. For axis-parallel problems we will use the lemma below, which
provides multipoint evaluation for a special type of rational functions. The lemma follows
from a simple application of convolution, via fast Fourier transform; see the full paper for the
proof. (A more general approach of Aronov, Katz and Moroz [4, 18] for arbitrary rational
functions gives a slightly worse running time.)

I Lemma 1. Let b0, . . . , bn,∆ be real numbers and consider the rational function

R(x) =
n∑
t=0

bt
∆ + t+ x

.

Given an integer ` > −∆, possibly negative, and a positive integer m, we can evaluate R(x)
at all the integer values x = `, `+ 1, . . . , `+m in O((n+m) log(n+m)) time.

3 Convex hull

In this section we consider the area of the convex hull of the points. Consider a fixed set P
of points in the plane. For simplicity we assume that no three points are collinear.

I Lemma 2. For each point p of P we can compute φ(p, vch) in O(n2) time.

Proof. For each q, q′ ∈ P (q 6= q′), let H(q, q′) be the open halfplane containing all points to
the left of the directed line from q to q′. Define level(q, q′) to be the number of points in
P ∩H(q, q′).

We can decompose the difference between CH (P (π, p)) and CH (P (π, p) \ {p}) into a set
T (π, p) of triangles (see Figure 2 (left)), where

T (π, p) = {4pqq′ | p ∈ H(q, q′), q and q′ appear before p in π, and
no points before p in π lie in H(q, q′)}.

S. Cabello and T.M. Chan 20:7

In other words, 4pqq′ ∈ T (π, p) if and only if p ∈ H(q, q′), and among the level(q, q′) + 2
points in H(q, q′) ∪ {q, q′}, the two earliest points are q and q′, and the third earliest point
is p. See Figure 2 (right). (Note that if CH (P (π, p)) = CH (P (π, p) \ {p}), then T (π, p) is
empty.) For fixed p, q, q′ ∈ P with p ∈ H(q, q′), simple counting implies that the probability
that 4pqq′ ∈ T (π, p) with respect to a random permutation π is exactly

ρ(q, q′) = (level(q, q′)− 1)! 2!
(level(q, q′) + 2)! = 2

(level(q, q′) + 2)(level(q, q′) + 1) level(q, q′) .

It follows that the Shapley value of p is

φ(p, vch) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

area(4pqq′) · ρ(q, q′). (1)

From the formula, we can immediately compute φ(p, vch) for any given p ∈ P in O(n2) time,
if all ρ(q, q′) values have been precomputed.

Each value ρ(q, q′) can be computed from level(q, q′) using O(1) arithmetic operations.
Thus, precomputing ρ(q, q′) requires precomputing level(q, q′) for all O(n2) pairs q, q′. In the
dual, this corresponds to computing the levels of all O(n2) vertices in an arrangement of n
lines. The arrangement of n lines can be constructed in O(n2) time [7, Chapter 8], and the
levels of all vertices can be subsequently generated by traversing the arrangement in O(1)
time per vertex. J

Naively applying Lemma 2 to all points p ∈ P gives O(n3) total time. We can speed up
the algorithm by a factor of n:

I Theorem 3. The Shapley values of the AreaConvexHull game for n points can be
computed in O(n2) time.

Proof. Let p = (x, y) ∈ P . Observe that for fixed q, q′ ∈ P (q 6= q′), if p ∈ H(q, q′),
then area(4pqq′) is a linear function in x and y and can thus be written as a(q, q′)x +
b(q, q′)y + c(q, q′). Let A(q, q′) = a(q, q′) · ρ(q, q′), B(q, q′) = b(q, q′) · ρ(q, q′), and C(q, q′) =
c(q, q′) · ρ(q, q′). (As noted earlier, we can precompute all the ρ(q, q′) values in O(n2) time
from the dual arrangement of lines.) By (1),

φ(p, vch) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

(A(q, q′)x+B(q, q′)y+C(q, q′)) = A(p)x+B(p)y+ C(p),

where

A(p) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

A(q, q′), B(p) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

B(q, q′), C(p) =
∑

q, q′ ∈ P (q 6= q′)
with p ∈ H(q, q′)

C(q, q′).

We describe how to compute A(p), B(p), and C(p) for all p ∈ P in O(n2) total time.
Afterwards, we can compute φ(p, vch) for all p ∈ P in O(n) additional time.

The problem can be reduced to 3 instances of the following:

Given a set P of n points in the plane, and given O(n2) lines each through 2 points
of P and each assigned a weight, compute for all p ∈ P the sum of the weights of all
lines below p (or similarly all lines above p).

SoCG 2019

20:8 Computing Shapley Values in the Plane

= + + +

Figure 3 It is enough to consider the cases where all points are in a quadrant.

In the dual, the problem becomes:

Given a set L of n lines in the plane, and given O(n2) vertices in the arrangement,
each assigned a weight, compute for all lines ` ∈ L the sum S(`) of the weights of all
vertices below `.

To solve this problem, we could use known data structures for halfplane range searching,
but a direct solution is simpler. First construct the arrangement in O(n2) time. Given
`, `′ ∈ L, define S(`, `′) to be the sum of the weights of all vertices on the line `′ that are
below `. For a fixed `′ ∈ L, we can precompute S(`, `′) for all ` ∈ L \ {`′} in O(n) time,
since these values correspond to prefix or suffix sums over the sequence of weights of the
O(n) vertices on the line `′. The total time for all lines `′ ∈ L is O(n2).

Afterwards, for each ` ∈ L, we can compute S(`) in O(n) time by summing S(`, `′) over
all `′ ∈ L \ {`} and dividing by 2 (since each vertex is counted twice). The total time for all
` ∈ L is O(n2). J

4 Axis-parallel problems

Most of this section is dedicated to the AreaAnchoredRect game defined by the char-
acteristic function var. Towards the end we discuss the additional challenges to handle the
AreaBoundingBox and AreaAnchoredBoundingBox games. Unless stated explicitly,
the game under consideration is the AreaAnchoredRect.

For the AreaAnchoredRect game, it is easy to see that one can focus on the special
case where all the points are in a quadrant; see Figure 3.

4.1 Notation for axis-parallel problems
Consider a fixed set P of points in the positive quadrant. In the notation we drop the
dependency on P . For simplicity, we assume general position: no two points have the same
x- or y-coordinate. We first introduce some notation.

For each point q of the plane, we use the “cardinal directions” to define subsets of points
in quadrants with apex at q:

NW(q) = {p ∈ P | x(p) ≤ x(q), y(p) ≥ y(q)},
NE(q) = {p ∈ P | x(p) ≥ x(q), y(p) ≥ y(q)},
SE(q) = {p ∈ P | x(p) ≥ x(q), y(p) ≤ y(q)}.

We use lowercase to denote their cardinality: nw(q) = |NW(q)|, ne(q) = |NE(q)| and
se(q) = |SE(q)|. See Figure 4, left.

Let x1 < . . . < xn denote the x-coordinates of the points of P , and let y1 < . . . < yn be
their y-coordinates. We also set x0 = 0 and y0 = 0. For each i, j ∈ [n] we use wi = xi − xi−1
(for width) and hj = yj − yj−1 (for height).

S. Cabello and T.M. Chan 20:9

q

NE(q)NW(q)

SE(q)

xi xi+1xi−1

yj

yj+1

yj−1

ci,j ci+1,j

ci+1,j+1ci,j+1

wi wi+1

hj

hj+1

Figure 4 Left: the quadrants to define NW(q), NE(q) and SE(q). Right: cells of A.

1

2

2

23

3

3

3

4 2

2

1

4

45

5

5

6

67

4

3

2

1

4

1

1

3 2 1

1 1

1

1

1

1

1

1

Figure 5 The non-zero counters ne(c) for the bounded cells c of A. The intensity of the color
correlates with the counter ne(c).

Let L be the set of horizontal and vertical lines that contain some point of P . We add
to L both axes. The lines in L define a partition of the plane into cells, usually called the
arrangement and denoted by A = A(L). The (2-dimensional) cells of A are open sets whose
closure is a rectangle, possibly unbounded in some direction. We are only interested in the
bounded cells, and with a slight abuse of notation, we use A for the set of bounded cells.
We denote by ci,j the cell between the vertical lines x = xi−1 and x = xi and the horizontal
lines y = yj−1 and y = yj . Note that ci,j is the interior of a rectangle with width wi and
height hj . See Figure 4, right.

Since NE(q) is constant over each 2-dimensional cell c of A, we can define NE(c), for each
cell c ∈ A. The same holds for NW(c), SE(c), ne(c), nw(c) and se(q). See Figure 5.

A block is a set of cells B = B(i0, i1, j0, j1) = {ci,j | i0 ≤ i ≤ i1, j0 ≤ j ≤ j1} for some
indices i0, i1, j0, j1, with 1 ≤ i0 ≤ i1 ≤ n and 1 ≤ j0 ≤ j1 ≤ n. The number of columns and
rows in B is i1 − i0 + 1 + j1 − j0 + 1 = O(i1 − i0 + j1 − j0). A block B is empty if no point
of P is on the boundary of at least three cells of B. Equivalently, B is empty if no point of
P is in the interior of the union of the closure of the cells in B. See Figure 6 for an example.

We will be using maximal rows and columns within a block B to compute some partial
information. Thus, for each block B and each index i, we define the vertical slab V (i, B) =
{ci,j | 1 ≤ j ≤ n, ci,j ∈ B}. Similarly, for each block B and each index j, we define the
horizontal slab H(j, B) = {ci,j | 1 ≤ i ≤ n, ci,j ∈ B}. Such slabs are meaningful only for

SoCG 2019

20:10 Computing Shapley Values in the Plane

wi

hj

yj1

yj

yj0−1

xixi−1

yj−1

xi0−1 xi1

V
(i
,B

)

H(j, B)ci,j

Figure 6 An empty block B = B(i0, i1, j0, j1) with a vertical and a horizontal slab shaded.

indices within the range that defines the slab. We call them the slabs within B.

4.2 Interpreting Shapley values geometrically
First, we reduce the problem of computing Shapley values to a neat geometric problem. The
following result can be shown by decomposing the game into several games, one per cell of
A, and using the linearity of Shapley values.

I Lemma 4. If P is in the positive quadrant, then for each p ∈ P we have

φ(p, var) =
∑

c∈A, c⊂Rp

area(c)
ne(c) .

For each subset C of cells of A, we define

σ(C) =
∑
c∈C

area(c)
ne(c)

(We will only consider sets C of cells with ne(c) > 0 for all c ∈ C.) Note that we want to
compute σ(·) for the sets of cells contained in the rectangles Rp for all p ∈ P .

Using standard tools in computational geometry we can compute the values φ(p, var) for
all p ∈ P in near-quadratic time, as follows. An explicit computation of A takes quadratic
time, and we can use standard data structures for orthogonal range searching ([28], [7,
Chapter 5]) to compute ne(c) for each cell c ∈ A. Finally, replacing each cell c by a point
qc ∈ c with weight wc = area(c)/ne(c), computing φ(p, var) reduces to computing

∑
qc∈Rp

wc,
which is again an orthogonal range query. An alternative is to use dynamic programming
across the cells of A to compute ne(c) and partial sums of the weights wc.

Our objective in the following sections is to improve this result using the correlation
between adjacent cells. While at first glance it seems that segment trees [7, Section 10.3]
may be useful, the weights are inversely proportional to ne(c), which gives problems

S. Cabello and T.M. Chan 20:11

4.3 Handling empty blocks
In the following we assume that we have preprocessed P in O(n logn) time such that ne(q)
can be computed in O(logn) time for each point q given at query time [28]. This is a standard
range counting for orthogonal ranges.

When a block B is empty, then we can use multipoint evaluation to obtain the partial
sums σ(·) for each vertical and horizontal slab of the block.

I Lemma 5. Let B be an empty block with k columns and rows. We can compute in
O(k logn) time the values σ(C) for all slabs C within B.

Proof. Assume that B is the block B(i0, i1, j0, j1). We only explain how to compute
the values σ(V (i, B)) for all i0 ≤ i ≤ i1. The computation for the horizontal slabs
σ(H(j0, B)), . . . , σ(H(j1, B)) is similar.

We look into the first vertical slab V (i0, B) and make groups of cells depending on their
value ne(·). More precisely, for each ` we define J(`) = {j | j0 ≤ j ≤ j1, ne(ci0,j) = `}. Let
`0 and `1 be the minimum and the maximum ` such that J(`) 6= 0, respectively.

Recall that hj is the height of the cell ci,j for all i0 ≤ i ≤ i1. We set up the following
rational function with variable x:

R(x) =
`1∑
`=`0

∑
j∈J(`) hj

`+ x
.

Setting t = `− `0, bt =
∑
j∈J(`0+t) hj and ∆ = `0, we have

R(x) =
`1−`0∑
t=0

bt
∆ + t+ x

.

Thus, this is a rational function of the shape considered in Lemma 1 with `1−`0 ≤ j1−j0+1 ≤
k terms. The coefficients can be computed in O(k logn) time because we only need the
values hj and ne(ci0,j) for each j.

Note that

wi0 ·R(0) = wi0 ·
`1∑
`=`0

∑
j∈J(`)

hj
`

=
j1∑
j=j0

wi0hj
ne(ci0,j)

=
j1∑
j=j0

area(ci0,j)
ne(ci0,j)

= σ(V (i0, B)).

A similar statement holds for all the other vertical slabs within B, as follows.
Consider two consecutive vertical slabs V (i, B) and V (i + 1, B) within the block B.

Because the block B is empty, the difference ne(ci+1,j)− ne(ci,j) is independent of j. See
Figure 7. It follows that, for each index i with i0 ≤ i ≤ i1, there is an integer δi such that
ne(ci,j) = ne(ci0,j) + δi for all j with j0 ≤ j ≤ j1. Moreover, for each i with i0 ≤ i ≤ i1 and
each ` with `0 ≤ ` ≤ `1, the value of ne(ci,j) is constant over all j ∈ J(`). Therefore, for each
j ∈ J(`) we have ne(ci,j) = `+ δi.

Each value δi can be obtained using that δi = ne(ci,j0)− ne(ci0,j0). This means that the
values δi0 , . . . , δi1 can be obtained in O(k logn) time.

Now we note that, for each index i with i0 ≤ i ≤ i1, we have

wi ·R(δi) = wi ·
`1∑
`=`0

∑
j∈J(`)

hj
`+ δi

=
j1∑
j=j0

wihj
ne(ci,j)

=
j1∑
j=j0

area(ci,j)
ne(ci,j)

= σ(V (i, B)).

We use Lemma 1 to evaluate the i1 − i0 + 1 ≤ k values R(δi), where i0 ≤ i ≤ i1, in
O(k log k) = O(k logn) time. After this, we get each value σ(V (i, B)) = wi · R(δi) in
constant time. J

SoCG 2019

20:12 Computing Shapley Values in the Plane

wi+1

h j

wi wi+2

h j1

h j0

wi+3

0

0

0

0

0

0

0

0

−1

−1

−1

−1

−1 −1

−1

Figure 7 Changes in the values of ne(·) when passing from a vertical slab to the next one. The
rightmost transition shows the need to deal with empty blocks for our argument.

4.4 Chains
In this section we consider the case where the points are a chain. As discussed before, it is
enough to consider that P is in the positive quadrant. After sorting, we can assume without
loss of generality that the points of P are indexed so that 0 < x(p1) < · · · < x(pn).

For increasing chains, the problem is actually an Airport game in disguise and Shapley
values can be computed using prefix sums. See Figure 8.

I Lemma 6. If P is an increasing chain in the positive quadrant, then we can compute the
Shapley values of the AreaAnchoredRect game in O(n logn).

1

1
2

1
3

1
4

1
5

1
6

p6

p5

p4

p3

p2

p1

Figure 8 Increasing chain. Each region is marked with the multiplicative weight for its area.

S. Cabello and T.M. Chan 20:13

w1 w2 w3 w4 w5 w6

h6

h5

h4

h3

h2

h1

1

1
2

1
3

1
4

1
5

1
6

1

1
2

1
3

1
4

1
5

1

1
2

1
3

1
4

1

1
2

1
3

1

1
2 1

w1 w2 w3 w4

1
4

1
5

1
6

1
3

1
4

1
5

1
2

1
3

1
4

1

1
2

1
3

p1

p2

p3

p4

p5

p6

p4

h1

h2

h3

c1,5 c2,5

c1,4 c2,4 c3,4

c1,3 c2,3 c3,3 c4,3

c1,2 c2,2 c3,2 c4,2 c5,2

c1,1 c2,1 c3,1 c4,1 c5,1 c6,1

Figure 9 Decreasing chain. Left: Each cell ci,j is marked with the multiplicative weight 1
ne(c) for

its area. Right: the cells whose contribution we have to add for the point p4.

H(n−m, B`,r)

pm

p`

pm

pr

p`

V (`+ 2, B`,r)

pr

Figure 10 Vertical and horizontal slabs for the divide-and-conquer.

It remains the more interesting case, when the chain is decreasing. See Figure 9 for
an example. In this case, the values ne(c) have a special structure, we do not need data
structures to obtain ne(ci,j), and the proof of Lemma 5 can be simplified.

We use a divide-and-conquer paradigm considering certain empty blocks defined by two
indices ` and r, where ` < r. Since the indexing of rows is not the most convenient in this
case, it is better to introduce the notation B`,r for the block B(`+ 1,m, n− r+ 2, n−m+ 1),
where m = m(`, r) = b(`+ r)/2c. Initially we will have ` = 0 and r = n+ 1, which means
that we start with the block B0,n+1 = B(1,m, 1,m). See Figure 10 for a generic case.

The blocks B`,r that we consider are in bijection with the intervals (`, r) that correspond
to nodes in a binary search tree with values {0, . . . , n+ 1} at the leaves. For each block B`,r
considered during the recursion, we compute σ(C) for each slab C within B`,r using Lemma 5.
Furthermore, within each block we compute the sums of σ() for prefixes of horizontal and
vertical slabs within the block. This means that, for a block B`,r, we compute

σ(V (`+ 1, B`,r)), σ(V (`+ 1, B`,r) ∪ V (`+ 2, B`,r)), . . . , σ(B`,r),

and a similar prefix sums for horizontal slabs.

SoCG 2019

20:14 Computing Shapley Values in the Plane

pn/2

pn/4

pn/8

p3n/16
pa

Figure 11 Expressing Rpa as the union of O(logn) prefixes of slabs within blocks.

For each point pa ∈ P , the rectangle Rpa is the disjoint union of O(logn) prefixes of slabs
within blocks considered in the algorithm. Whether we use a column prefix or a row prefix
of a block B(`, r) depends on the relative order of the index a of the point and the median
index m = m(`, r). See Figure 11. Thus, σ(Rpa

) can be computed as the sum of O(logn)
values that are already computed. This approach leads to the following result.

I Lemma 7. If P is a decreasing chain with n points in the positive quadrant, then we can
compute the Shapley values of the AreaAnchoredRect game in O(n log2 n) time.

When the point set is a chain over different quadrants, we can use symmetry to reduce it
to a few problems over the positive quadrant, possibly changing the increasing/decreasing
character of chain. From Lemmas 6 and 7 we then obtain the following.

I Theorem 8. If P is a chain with n points, then we can compute the Shapley values of the
AreaAnchoredRect game in O(n log2 n) time.

4.5 General point sets
We consider now the general case, where the points do not form a chain, as in Figure 5. Like
before, we restrict the discussion to the case where P is in the positive quadrant.

In this scenario we consider horizontal bands. A horizontal band B is the block between
two horizontal lines. Thus, B = {ci,j | j0 ≤ j ≤ j1} for some indices 1 ≤ j0 ≤ j1 ≤ n. See
Figure 12. We keep using the notation introduced for blocks. Thus, for each i ∈ [n], let
V (i, B) be the vertical slab with the cells ci,j ∈ B. Let PB be the points of P that are the
top-right corner of some cell of B. We use kB = |PB |. Because of our assumption on general
position, kB = j1 − j0 + 1 and thus kB is precisely the number of horizontal slabs in the
band B. Furthermore, for each point p ∈ PB we define the rectangle R(p,B) as the cells of
B to the left and bottom of p. Formally R(p,B) = {c ∈ B | c ⊂ Rp}.

Each band can be decomposed further into O(kB) empty blocks, and for each such block
we can use Lemma 5 to compute σ(C) for each slab C within each block. We can then
compute prefix sums of the values σ() for the horizontal and vertical slabs within each block,
and express σ(R(p,B)), for each single p ∈ PB, as the sum of O(kB) prefixes of rows, at
most one per block. This leads to the following.

S. Cabello and T.M. Chan 20:15

wi

h j

y j1

y j

y j−1

x1 x2 xnxn−1x ix i−1

ci+1, j

V
(i

,B
)

m1 col m2 col mt col

qt

qt−1

q2

R(q2, B)
H(j, Bt)

h j0

Figure 12 Notation for a band B.

I Lemma 9. For a band B with kB rows we can compute in O(((kB)2 + n) logn) time
σ(V (i, B)), for all i ∈ [n], and σ(R(p,B)), for all p ∈ PB.

Finally, we can express σ(Rp) as the sum of at most one prefix sum of vertical slabs
per band, and σ(R(p,B)) for the band B that contains p. Using O(

√
n) bands, each with

kB = O(
√
n), this means that we can compute each σ(Rp) as the sum of O(

√
n) values.

Again, the relevant values can be computed with some bookkeeping as prefix sums.

I Theorem 10. The Shapley values of the AreaAnchoredRect game for n points can be
computed in O(n3/2 logn) time.

4.6 Area of the bounding box
Here we would like to present some of the additional challenges when adapting the algorithm
for the AreaAnchoredRect game to the AreaBoundingBox game, defined by the
characteristic function vbb. A reduction using inclusion-exclusion shows that it suffices to
consider the anchored version, AreaAnchoredBoundingBox, when the points are in the
positive quadrant.

The geometric interpretation of the Shapley values for the AreaAnchoredBounding-
Box game becomes slightly more complicated because a cell c of A is inside bb(Q ∪ {o})
if and only if Q contains some point in NE(c) or it contains some point in NW(c) and in
SE(c). To obtain a precise description, we define the following values for each cell c of A:

ψNE(c) = 1
ne(c) + nw(c) + 1

ne(c) + se(c) −
1

ne(c) + nw(c) + se(c) ,

ψNW(c) = 1
ne(c) + nw(c) −

1
ne(c) + nw(c) + se(c) ,

ψSE(c) = 1
ne(c) + se(c) −

1
ne(c) + nw(c) + se(c) .

The next lemma provides a geometric description of the Shapley values; see Figure 13.

SoCG 2019

20:16 Computing Shapley Values in the Plane

∑
c

area(c) · ψNE(c)

∑
c

area(c) · ψNW(c)

∑
c

area(c) · ψSE(c)

bb(P ∪ {o})

p

o

Figure 13 The formula in Lemma 11.

I Lemma 11. If P is in the positive quadrant, then for each p ∈ P the Shapley value
φ(p, vabb) is∑
c∈A, p∈NE(c)

area(c) · ψNE(c) +
∑

c∈A, p∈NW(c)

area(c) · ψNW(c) +
∑

c∈A, p∈SE(c)

area(c) · ψSE(c).

Following the paradigm used for the AreaAnchoredRect game, we compute

σNE(C) =
∑
c∈C

area(c) · ψNE(c),

σNW(C) =
∑
c∈C

area(c) · ψNW(c),

σSE(C) =
∑
c∈C

area(c) · ψSE(c)

for multiple horizontal and vertical slabs C inside empty blocks and inside bands. For this
we use again the coherence between adjacent slabs of an empty block. More precisely, for
two columns within an empty block, the difference between the counters ne(), nw() and
se() is independent of the row. See Figure 14. This is the key idea to obtain an analogue of
Lemma 5 for the anchored bounding box.

The rest of the approach used for the AreaAnchoredRect game essentially works for
the AreaAnchoredBoundingBox game, with a few minor modifications. We refer to the
full version [5] for additional information. We summarize the final result.

I Theorem 12. The Shapley values of the AreaAnchoredBoundingBox and Are-
aBoundingBox games for n points can be computed in O(n3/2 logn) time. If the points
form a chain, then we need O(n log2 n) time.

5 Conclusions

In game theory, quite often one considers coalitional games where some point, say the origin,
has to be included in the solutions that are considered. This setting is meaningful, for
example, when we split the costs to connect to a fixed landmark. For example, we could
use the minimum enclosing disk that contains also the origin. We do this for the anchored
versions of the games. Our results also hold in this setting through an easy adaptation.

S. Cabello and T.M. Chan 20:17

hj

hj1

hj0

counter ne(ci,j)

hj

hj1

hj0

counter nw(ci,j)

hj

hj1

hj0

counter se(ci,j)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

1+

1+

1+

1+

1+

Figure 14 Changes in the counter ne(·) (left), nw(·) (center) and se(·) (right) depending on the
position of the points of P .

The problems we consider here are a new type of stochastic problems in computational
geometry. The relation to other problems in stochastic computational geometry is unclear.
For example, computing the expected length of the minimum spanning tree (MST) in the
plane for a stochastic point set is #P-hard [13]. Does this imply the same for the coalitional
game based on the length of the Euclidean MST? Is there also a FPRAS for computing
the Shapley values of the game defined using the Euclidean MST? Since the length of the
Euclidean spanning tree is not monotone, a priori some Shapley values could be potentially
0, which, at least intuitively, makes it harder to get approximations.

In the coalitional games that we consider, the Shapley values that we compute can be
interpreted as the relevance of each point within the point set for different geometric concepts.
It would be worthwhile to understand whether there is some relation between Shapley values
in geometric settings and the concept of depth in point sets, like the Tukey depth. For
stochastic points, this relation has been explored and exploited by Agarwal et al. [1].

References
1 Pankaj K. Agarwal, Sariel Har-Peled, Subhash Suri, Hakan Yildiz, and Wuzhou Zhang.

Convex Hulls Under Uncertainty. Algorithmica, 79(2):340–367, 2017. doi:10.1007/
s00453-016-0195-y.

2 Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. Range-max queries on
uncertain data. J. Comput. Syst. Sci., 94:118–134, 2018. doi:10.1016/j.jcss.2017.09.006.

3 Deepak Ajwani, Saurabh Ray, Raimund Seidel, and Hans Raj Tiwary. On Computing the
Centroid of the Vertices of an Arrangement and Related Problems. In Frank K. H. A. Dehne,
Jörg-Rüdiger Sack, and Norbert Zeh, editors, 10th International Workshop Algorithms and
Data Structures, WADS 2007, volume 4619 of Lecture Notes in Computer Science, pages
519–528. Springer, 2007. doi:10.1007/978-3-540-73951-7_45.

4 Boris Aronov and Matthew J. Katz. Batched Point Location in SINR Diagrams via Algebraic
Tools. ACM Trans. Algorithms, 14(4):41:1–41:29, 2018. doi:10.1145/3209678.

5 Sergio Cabello and Timothy M. Chan. Computing Shapley values in the plane. CoRR,
abs/1804.03894, 2018. arXiv:1804.03894.

6 Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational Aspects of
Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, 2011. doi:10.2200/S00355ED1V01Y201107AIM016.

SoCG 2019

http://dx.doi.org/10.1007/s00453-016-0195-y
http://dx.doi.org/10.1007/s00453-016-0195-y
http://dx.doi.org/10.1016/j.jcss.2017.09.006
http://dx.doi.org/10.1007/978-3-540-73951-7_45
http://dx.doi.org/10.1145/3209678
http://arxiv.org/abs/1804.03894
http://dx.doi.org/10.2200/S00355ED1V01Y201107AIM016

20:18 Computing Shapley Values in the Plane

7 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

8 Xiaotie Deng and Qizhi Fang. Algorithmic Cooperative Game Theory. In Altannar
Chinchuluun, Panos M. Pardalos, Athanasios Migdalas, and Leonidas Pitsoulis, editors,
Pareto Optimality, Game Theory And Equilibria, pages 159–185. Springer New York, 2008.
doi:10.1007/978-0-387-77247-9_7.

9 Xiaotie Deng and Christos H. Papadimitriou. On the Complexity of Cooperative Solution
Concepts. Mathematics of Operations Research, 19(2):257–266, 1994. doi:10.1287/moor.19.
2.257.

10 Ulrich Faigle, Sándor P. Fekete, Winfried Hochstättler, and Walter Kern. On approximately
fair cost allocation in Euclidean TSP games. Operations-Research-Spektrum, 20(1):29–37, 1998.
doi:10.1007/BF01545526.

11 Thomas S. Ferguson. Game Theory, 2nd edition, 2014. Electronic text available at https:
//www.math.ucla.edu/~tom/Game_Theory/Contents.html.

12 Martin Fink, John Hershberger, Nirman Kumar, and Subhash Suri. Hyperplane separability
and convexity of probabilistic point sets. JoCG, 8(2):32–57, 2017. URL: http://jocg.org/
index.php/jocg/article/view/321.

13 Pegah Kamousi, Timothy M. Chan, and Subhash Suri. Stochastic minimum spanning trees
in Euclidean spaces. In Ferran Hurtado and Marc J. van Kreveld, editors, Proceedings of
the 27th ACM Symposium on Computational Geometry, SoCG’11, pages 65–74. ACM, 2011.
doi:10.1145/1998196.1998206.

14 Pegah Kamousi, Timothy M. Chan, and Subhash Suri. Closest pair and the post office problem
for stochastic points. Comput. Geom., 47(2):214–223, 2014. doi:10.1016/j.comgeo.2012.10.
010.

15 Stefan Langerman. On the Complexity of Halfspace Area Queries. Discrete & Computational
Geometry, 30(4):639–648, 2003. doi:10.1007/s00454-003-2856-2.

16 Stephen C. Littlechild and Guillermo Owen. A Simple Expression for the Shapely Value in A
Special Case. Management Science, 20(3):370–372, 1973. doi:10.1287/mnsc.20.3.370.

17 Nimrod Megiddo. Computational Complexity of the Game Theory Approach to Cost Allocation
for a Tree. Mathematics of Operations Research, 3(3):189–196, 1978. doi:10.1287/moor.3.3.
189.

18 Guillaume Moroz and Boris Aronov. Computing the Distance between Piecewise-Linear
Bivariate Functions. ACM Trans. Algorithms, 12(1):3:1–3:13, 2016. doi:10.1145/2847257.

19 Roger B. Myerson. Game theory - Analysis of Conflict. Harvard University Press, 1997.
20 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.

Cambridge University Press, 2007.
21 Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT Press, 1994.
22 Mark H. Overmars and Chee-Keng Yap. New Upper Bounds in Klee’s Measure Problem.

SIAM J. Comput., 20(6):1034–1045, 1991. doi:10.1137/0220065.
23 Pablo Pérez-Lantero. Area and Perimeter of the Convex Hull of Stochastic Points. Comput.

J., 59(8):1144–1154, 2016. doi:10.1093/comjnl/bxv124.
24 Justo Puerto, Arie Tamir, and Federico Perea. A cooperative location game based on the

1-center location problem. European Journal of Operational Research, 214(2):317–330, 2011.
doi:10.1016/j.ejor.2011.04.020.

25 Justo Puerto, Arie Tamir, and Federico Perea. Cooperative location games based on the
minimum diameter spanning Steiner subgraph problem. Discrete Applied Mathematics, 160(7-
8):970–979, 2012. doi:10.1016/j.dam.2011.07.020.

26 Alvin E. Roth, editor. The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge
University Press, 1988.

27 William Thomson. Cost allocation and airport problems, 2013. Rochester Center for Economic
Research Working Paper. Version of 2014 available at http://www.iser.osaka-u.ac.jp/
collabo/20140524/Airport_Problems.pdf.

http://dx.doi.org/10.1007/978-0-387-77247-9_7
http://dx.doi.org/10.1287/moor.19.2.257
http://dx.doi.org/10.1287/moor.19.2.257
http://dx.doi.org/10.1007/BF01545526
https://www.math.ucla.edu/~tom/Game_Theory/Contents.html
https://www.math.ucla.edu/~tom/Game_Theory/Contents.html
http://jocg.org/index.php/jocg/article/view/321
http://jocg.org/index.php/jocg/article/view/321
http://dx.doi.org/10.1145/1998196.1998206
http://dx.doi.org/10.1016/j.comgeo.2012.10.010
http://dx.doi.org/10.1016/j.comgeo.2012.10.010
http://dx.doi.org/10.1007/s00454-003-2856-2
http://dx.doi.org/10.1287/mnsc.20.3.370
http://dx.doi.org/10.1287/moor.3.3.189
http://dx.doi.org/10.1287/moor.3.3.189
http://dx.doi.org/10.1145/2847257
http://dx.doi.org/10.1137/0220065
http://dx.doi.org/10.1093/comjnl/bxv124
http://dx.doi.org/10.1016/j.ejor.2011.04.020
http://dx.doi.org/10.1016/j.dam.2011.07.020
http://www.iser.osaka-u.ac.jp/collabo/20140524/Airport_Problems.pdf
http://www.iser.osaka-u.ac.jp/collabo/20140524/Airport_Problems.pdf

S. Cabello and T.M. Chan 20:19

28 Dan E. Willard. New Data Structures for Orthogonal Range Queries. SIAM J. Comput.,
14:232–253, 1985. doi:10.1137/0214019.

29 Eyal Winter. The Shapley value. In R.J. Aumann and S. Hart, editors, Handbook of Game
Theory with Economic Applications, volume 3, chapter 53, pages 2025–2054. Elsevier, 1 edition,
2002. doi:10.1016/S1574-0005(02)03016-3.

30 Jie Xue, Yuan Li, and Ravi Janardan. On the separability of stochastic geometric objects,
with applications. Comput. Geom., 74:1–20, 2018. doi:10.1016/j.comgeo.2018.06.001.

SoCG 2019

http://dx.doi.org/10.1137/0214019
http://dx.doi.org/10.1016/S1574-0005(02)03016-3
http://dx.doi.org/10.1016/j.comgeo.2018.06.001

On the Metric Distortion of Embedding
Persistence Diagrams into Separable Hilbert
Spaces
Mathieu Carrière
Department of Systems Biology, Columbia University, New York, USA
mc4660@cumc.columbia.edu

Ulrich Bauer
Department of Mathematics, Technical University of Munich (TUM), Germany
ulrich.bauer@tum.de

Abstract
Persistence diagrams are important descriptors in Topological Data Analysis. Due to the nonlinearity
of the space of persistence diagrams equipped with their diagram distances, most of the recent
attempts at using persistence diagrams in machine learning have been done through kernel methods,
i.e., embeddings of persistence diagrams into Reproducing Kernel Hilbert Spaces, in which all
computations can be performed easily. Since persistence diagrams enjoy theoretical stability
guarantees for the diagram distances, the metric properties of the feature map, i.e., the relationship
between the Hilbert distance and the diagram distances, are of central interest for understanding
if the persistence diagram guarantees carry over to the embedding. In this article, we study the
possibility of embedding persistence diagrams into separable Hilbert spaces with bi-Lipschitz maps.
In particular, we show that for several stable embeddings into infinite-dimensional Hilbert spaces
defined in the literature, any lower bound must depend on the cardinalities of the persistence
diagrams, and that when the Hilbert space is finite dimensional, finding a bi-Lipschitz embedding is
impossible, even when restricting the persistence diagrams to have bounded cardinalities.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases Topological Data Analysis, Persistence Diagrams, Hilbert space embedding

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.21

1 Introduction

The increase of available data in both academia and industry has been exponential over the
past few decades, making data analysis and machine learning ubiquitous in many different
fields of science. Topological Data Analysis (TDA) [5] is one specific field of data science,
which focuses more on complex rather than big data. The general assumption of TDA is
that data is actually sampled from geometric or low-dimensional domains, whose topological
features are relevant to the analysis. These topological features are usually encoded in a
mathematical object called persistence diagram, which is roughly a set of points in the plane,
each point representing a topological feature whose size is contained in the coordinates of
the point. Persistence diagrams have been proved to bring complementary information to
other traditional descriptors in many different applications, often leading to large result
improvements. This is also due to the stability properties of the persistence diagrams, which
state that persistence diagrams computed on similar data are also very close in the diagram
distances [2, 8, 9].

Unfortunately, the use of persistence diagrams in machine learning methods is not
straightforward, since many algorithms expect data to be Euclidean vectors, while persistence
diagrams are sets of points with possibly different cardinalities. Moreover, the diagram
distances used to compare persistence diagrams are computed by means of optimal matchings,

© Mathieu Carrière and Ulrich Bauer;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mc4660@cumc.columbia.edu
mailto:ulrich.bauer@tum.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 On the Metric Distortion of Embedding PDs into Separable Hilbert Spaces

and thus are quite different from Euclidean metrics. The usual way to cope with such difficult
data is to use kernel methods. A kernel is a symmetric function on the data whose evaluation
on a pair of data points equals the scalar product of the images of these points under a feature
map into a Hilbert space, called the Reproducing Kernel Hilbert Space of the kernel. Many
algorithms can be kernelized, such as PCA and SVM, allowing one to handle non-Euclidean
data as soon as either a kernel or a feature map is available.

Hence, the question of defining a feature map into a Hilbert space has been intensively
studied in the past few years, and, as of today, various methods have been proposed and
implemented, either into finite or infinite dimensional Hilbert spaces [4, 7, 21, 16, 1, 6, 13].
Since persistence diagrams enjoy stability properties, it is also natural to ask the same
guarantee for their embeddings. Indeed, various feature maps defined in the literature satisfy
a stability property stating that the Hilbert distance between the image of the persistence
diagrams is upper bounded by some specific diagram distance, most commonly the 1-
Wasserstein diagram distance. In many cases, this upper bound applies only to a restricted
set of persistence diagrams with bounded number and bounded range of persistence pairs,
and these bounds enter the constant in the stability estimate. However, some unconditional
stability results exist as well, e.g., for the Persistence Scale Space feature map [21].

A more difficult question is to prove whether a lower bound also holds or not. As a
first step in this direction, a lower bound for the Sliced Wasserstein distance was proved
in [6], showing that this metric is equivalent to the first diagram distance. Moreover, since
the Sliced Wasserstein distance is conditionally negative definite, a Gaussian kernel can be
defined with it with Berg’s theorem [3]. However, even in this case, the resulting Sliced
Wasserstein kernel distance is not equivalent to the Sliced Wasserstein distance, and so the
corresponding feature map is not guaranteed to be bi-Lipschitz. Thus, the question remained
open in general.

Contributions

In this article, we consider the general question of the existence of bi-Lipschitz embeddings
of persistence diagrams into separable Hilbert spaces. More precisely, we show the following
results:

For several stable feature maps defined in the literature, if such a bi-Lipschitz embedding
exists for persistence diagrams with bounded number and range of points, then the ratio
between upper and lower bound goes to ∞ as the bounds on the number of points in the
persistence diagrams and on their range increase to∞ (Theorem 3.5 and Proposition 3.9).
Such a bi-Lipschitz embedding does not exist if the Hilbert space is finite dimensional
(Theorem 4.4),

Finally, we also provide experimental evidence of this behavior by computing the metric
distortions of various feature maps for persistence diagrams with increasing cardinalities.

Related work

Feature maps for persistence diagrams can be classified into two different classes, depending
on whether the corresponding Hilbert space has finite or infinite dimension.

In the infinite dimensional case, the first attempt was that proposed in [4], in which
persistence diagrams are turned into families of L2 functions, called landscapes, by computing
the homological rank functions given by the persistence diagram points. Another common
way to define a feature map is to see the points of the persistence diagrams as centers of
Gaussians with a fixed bandwidth, weighted by the distance of the point to the diagonal.

M. Carrière and U. Bauer 21:3

This is the approach originally advocated in [21], and later generalized in [17], leading to the
so-called Persistence Scale Space and Persistence Weighted Gaussian feature maps. Another
possibility is to define a Gaussian-like feature map by using the Sliced Wasserstein distance
between persistence diagrams, which is conditionally negative definite. This implicit feature
map, called the Sliced Wasserstein map, was defined in [6].

In the finite dimensional case, many different possibilities are available. One may consider
evaluating a family of tropical polynomials onto the persistence diagram [14], taking the sorted
vector of the pairwise distances between the persistence diagram points [7], or computing
the coefficients of a complex polynomial whose roots are given by the persistence diagram
points [10]. Another line of work has been proposed in [1] by discretizing the Persistence
Scale Space feature map. The idea is to discretize the plane into a fixed grid, and then
compute a value for each pixel by integrating Gaussian functions centered on the persistence
diagram points. Finally, persistence diagrams have been incorporated in deep learning
frameworks in [13], in which Gaussian functions (whose means and variances are optimized
by the neural network during training) are integrated against persistence diagrams seen as
discrete measures.

2 Background

2.1 Persistence Diagrams
Persistent homology is a technique of TDA, using concepts from algebraic topology, which
allows the user to compute and encode topological information of datasets in a compact
descriptor called the persistence diagram. Given a space X and a continuous and real-valued
function f : X → R, the persistence diagram of f can be computed under mild conditions
(the function has to be tame, see [8] for more details), and consists in a finite set of points with
multiplicities in the upper-diagonal half-plane Dg(f) = {(xi, yi)} ⊂ {(x, y) ∈ R2 : y > x}.
This set of points is computed from the family of sublevel sets of f , that is the sets of the form
f−1((−∞, α]), for some α ∈ R. More precisely, persistence diagrams encode the different
topological events that occur as α increases from −∞ to ∞. Such topological events include
creation and merging of connected components and cycles in every dimension. For example,
when dealing with a point cloud X̂ ⊂ Rn, a common strategy to obtain a persistence diagram
from X̂ is to set X = Rn and to use the Euclidean distance to X̂ as the function f . See also
Figure 1 for another example.

Intuitively, persistent homology records, for each topological feature that appears in the
family of sublevel sets, the value αb at which the feature appears, called the birth value, and
the value αd at which it gets merged or filled in, called the death value. These values are
then used as coordinates for a corresponding point in the persistence diagram. In general,
depending on the space X, there will also be topological features for which there is no
finite death value. Such features are however not considered in the context of the present
paper. Note that several features may have the same birth and death values, so points in the
persistence diagram have multiplicities. Moreover, since αd ≥ αb, these points are always
located above the diagonal ∆ = {(x, x) : x ∈ R}. A general intuition about persistence
diagrams is that the distance of a point to ∆ is a direct measure of its relevance: if a point
is close to ∆, it means that the corresponding cycle got filled in right after its appearance,
thus suggesting that it is likely due to noise in the dataset. On the contrary, points that
are far away from ∆ represent cycles with a significant life span, and are more likely to be
relevant for the analysis. We refer the interested reader to [11, 19] for more details about
persistent homology.

SoCG 2019

21:4 On the Metric Distortion of Embedding PDs into Separable Hilbert Spaces

f ≤ f ≤ f ≤ f ≤
I1

I2
I3

I4 − I7

P1 P3

P2

P4 − P7

Figure 1 Example of persistence diagram computation. The space we consider is a blurry image
of a zero, and the function f that we use is the grey level value on each pixel. We show four different
sublevel sets of f . For each sublevel set, the corresponding pixels are displayed in pink color. In the
first sublevel set, two connected components are present in the sublevel set, so we start two intervals
I1 and I2. In the second one, one connected component got merged to the other, so we stop the
corresponding interval I2, and a cycle (loop) is created, so we start a third interval I3. In the third
sublevel set, a new small cycle is created, as well as three more connected components. In the fourth
sublevel set, all pixels belong to the set: all cycles are filled in and all connected components are
merged together, so all intervals end here. Finally, each interval Ik is represented as a point Pk in
the plane (using the endpoints as coordinates).

Notation

Let D be the set of persistence diagrams with at most a countable number of points. More
formally, D can be equivalently defined as a set of multiplicity functions {m : R2 \ ∆ →
N : supp(m) is countable}, where each point q ∈ supp(m) is a point in the corresponding
persistence diagram with multiplicity m(q). Let DN be the set of persistence diagrams with
less than N points, i.e., DN = {m : R2 \∆→ N :

∑
qm(q) < N}. Let DL be the space of

persistence diagrams included in [−L,L]2, i.e., DL = {m : R2\∆→ N : supp(m) ⊂ [−L,L]2}.
Finally, let DLN be the space of persistence diagrams with less than N points included in
[−L,L]2, i.e., DLN = DN ∩ DL. Obviously, we have the following sequences of (strict)
inclusions: DLN ⊂ DN ⊂ D, and DLN ⊂ DL ⊂ D.

Diagram distances

Persistence diagrams can be efficiently compared using the diagram distances, which is a
family of distances parametrized by an integer p that rely on the computation of partial
matchings. Recall that two persistence diagrams Dg1 and Dg2 may have different number of
points. A partial matching Γ between Dg1 and Dg2 is a subset of Dg1 ×Dg2. It comes along
with Γ1 (resp. Γ2), which is the set of points of Dg1 (resp. Dg2) that are not matched to a
point of Dg2 (resp. Dg1) by Γ. The p-cost of Γ is given as:

cp(Γ) =
∑

(p,q)∈Γ

‖p− q‖p∞ +
∑
p∈Γ1

‖p−∆‖p∞ +
∑
q∈Γ2

‖q −∆‖p∞.

The p-diagram distance is then defined as the cost of the best partial matching:

M. Carrière and U. Bauer 21:5

I Definition 2.1. Given two persistence diagrams Dg1 and Dg2, the p-diagram distance dp
is defined as:

dp(Dg1,Dg2) = infΓ
p
√
cp(Γ).

Note that in the literature, these distances are often called the Wasserstein distances
between persistence diagrams. Here, we follow the denomination of [6]. In particular, taking
a maximum instead of a sum in the definition of the cost,

c∞(Γ) = max
(p,q)∈Γ

‖p− q‖∞ + max
p∈Γ1

‖p−∆‖∞ + max
q∈Γ2

‖q −∆‖∞.

allows to add one more distance in the family, the bottleneck distance d∞(Dg1,Dg2) =
infΓ c∞(Γ).

Stability

A useful property of persistence diagrams is their stability in terms of the data generating
the diagrams. Indeed, it is well known in the literature that persistence diagrams computed
from close functions are close themselves in the bottleneck distance:

I Theorem 2.2 ([8, 9]). Given two tame functions f, g : X → R, one has the following
inequality:

d∞(Dg(f),Dg(g)) ≤ ‖f − g‖∞. (1)

In other words, the map Dg is 1-Lipschitz. Note that stability results exist as well for the
other diagram distances, but these results are weaker than the above Lipschitz condition,
and they require more conditions – see [19].

2.2 Bi-Lipschitz embeddings.
The main question that we adress in this article is the one of preserving the persistence
diagram metric properties when using embeddings into Hilbert spaces. For instance, one
may ask the images of persistence diagrams under a feature map into a Hilbert space to be
stable as well. A natural question is then whether a lower bound also exists, i.e., whether
the feature map Φ is a bi-Lipschitz embedding between (D, dp) and H.

I Definition 2.3. Let (X, dX) and (Y, dY) be two metric spaces. A bi-Lipschitz embedding
between (X, dX) and (Y, dY) is a map Φ : X → Y such that there are constants 0 < A,B <∞
such that

AdX(x, x′) ≤ dY (Φ(x),Φ(x′)) ≤ B dX(x, x′)

for any x, x′ ∈ X. The metrics dX and dY are called strongly equivalent, and the constants
A and B are called the lower and upper metric distortion bounds, respectively. If A = B = 1,
Φ is called an isometric embedding.

Note that this definition is equivalent to the commonly used definition, which additionally
requires A = 1

B .
I Remark 2.4. Finding an isometric embedding of persistence diagrams into a Hilbert space
is impossible since geodesics are unique in a Hilbert space, while this is not the case for
persistence diagrams, as shown in the proof of Proposition 2.4 in [23].

SoCG 2019

21:6 On the Metric Distortion of Embedding PDs into Separable Hilbert Spaces

I Remark 2.5. For feature maps that are bounded, i.e., those maps Φ such that there exists
a constant C > 0 for which ‖Φ(Dg)‖ ≤ C for all Dg, it is obviously impossible to find a
bi-Lipschitz embedding. This involves for instance the Sliced Wasserstein (SW) feature
map [6], which is defined implicitly from a Gaussian-like function.

3 Mapping into separable Hilbert spaces

In our first main result, we use separability to determine whether a bi-Lipschitz embedding
can exist between the space of persistence diagrams and a Hilbert space.

I Definition 3.1. A metric space is called separable if it has a dense countable subset.

For instance, the following three Hilbert spaces (equipped with their canonical metrics)
are separable: Rn, `2 and L2(Ω), where Ω is separable. The two following results describe
well-known properties of separable spaces.

I Proposition 3.2. Any subspace of a separable metric space is separable as well.

I Proposition 3.3. Let (X, dX) and (Y, dY) be two metric spaces, and assume there is a
bi-Lipschitz embedding Φ : X → Y , with Lipschitz constants A and B. Then X is separable
if and only if im(Φ) is separable.

The following lemma shows that for a feature map Φ which is bi-Lipschitz when restricted
to DLN , the limits of the corresponding constants can actually be used to study the general
metric distortion in D.

I Lemma 3.4. Let p ∈ R∗+ and let d be a continuous metric on (D, dp). Let

RLN =
{
dp(Dg,Dg′)
d(Dg,Dg′)

: Dg 6= Dg′ ∈ DLN
}
,

ALN = inf RLN and BLN = sup RLN .

Since ALN is nonincreasing and BLN is nondecreasing with respect to N and L, we define

AN = lim
L→∞

ALN , AL = lim
N→∞

ALN , A = lim inf
N,L→∞

ALN ,

BN = lim
L→∞

BLN , BL = lim
N→∞

BLN , B = lim sup
N,L→∞

BLN ,

where the limit superior and inferior for N,L→∞ are taken for the nets ALN and BLN over
the directed set N× R. Then the following inequalities hold:

AL d(Dg,Dg′) ≤ dp(Dg,Dg′) ≤ BL d(Dg,Dg′) for all Dg,Dg′ ∈ DL,
AN d(Dg,Dg′) ≤ dp(Dg,Dg′) ≤ BN d(Dg,Dg′) for all Dg,Dg′ ∈ DN ,
A d(Dg,Dg′) ≤ dp(Dg,Dg′) ≤ B d(Dg,Dg′) for all Dg,Dg′ ∈ D.

Note that A, AN , AL, B, BN and BL may be equal to 0 or ∞, so it does not necessarily
hold that d and dp are strongly equivalent on either DN , DL, or D.

Proof. We only prove the last inequality, since the proof extends verbatim to the other two.
Pick any two persistence diagrams Dg,Dg′ ∈ D. Let Γ = {(pi, qi)}i∈N be an optimal partial
matching achieving dp(Dg,Dg′), where pi (resp. qi) is either in Dg (resp. Dg′) or in π∆(Dg′)

M. Carrière and U. Bauer 21:7

(resp. π∆(Dg)), and where π∆ is the projection (in the Euclidean norm) onto the diagonal ∆.
We now define two sequences of persistence diagrams {Dgn}n∈N and {Dg′n}n∈N recursively
with Dg0 = Dg′0 = ∅ and

Dgn+1 =
{

Dgn if pn+1 ∈ π∆(Dg′),
Dgn ∪ {pn+1} otherwise,

Dg′n+1 =
{

Dg′n if qn+1 ∈ π∆(Dg),
Dg′n ∪ {qn+1} otherwise.

Note that Γ might have only a finite number of elements if both Dg and Dg′ have finite
cardinalities. In this case, we set {Dgn}n∈N (resp. {Dg′n}n∈N) to be constant and equal to
Dg (resp. Dg′) for sufficiently large n. Moreover, define

ln = max{max{‖p‖∞ : p ∈ Dgn},max{‖q‖∞ : q ∈ Dg′n}},
sn = max{card(Dgn), card(Dg′n)},

Note that both {ln}n∈N and {sn}n∈N are nondecreasing. We have Dgn,Dg′n ∈ Dlnsn and thus

Alnsn d(Dgn,Dg′n) ≤ dp(Dgn,Dg′n) ≤ Blnsn d(Dgn,Dg′n). (2)

Now, since dp(Dgn,Dg)→ 0 when n→∞, we have d(Dgn,Dg)→ 0 by continuity of d, and
similarly d(Dg′n,Dg′)→ 0. Hence, we have dp(Dgn,Dg′n)→ dp(Dg,Dg′) and d(Dgn,Dg′n)→
d(Dg,Dg′) with the triangle inequality. We finally obtain the desired inequality by letting
n→∞ in (2). J

A corollary of the previous results is that even if a feature map taking values in a separable
Hilbert space might be bi-Lipschitz when restricted to DLN , the ratio of upper and lower
bound has to go to ∞ as soon as the domain of the feature map is not separable.

I Theorem 3.5. Let Φ : DΦ → H be a feature map defined on a non-separable subspace DΦ
of persistence diagrams containing every DLN , i.e., DLN ⊂ DΦ for each N,L. Assume Φ takes
values in a separable Hilbert space H, and that Φ is bi-Lipschitz on each DLN with constants
ALN , B

L
N . Then BLN/ALN →∞ as N,L→∞.

Note that, by Theorem 12 in [18], if the p-total persistence, i.e., the p-diagram distance
to the empty diagram, of each element of DΦ is finite, then DΦ becomes separable w.r.t. dp.
In particular, this means that DLN is separable for each N,L. Moreover, this shows that
Theorem 3.5 applies only to domains DΦ containing at least one diagram whose p-total
persistence is infinite, in particular, a diagram with an infinite number of points.

However, many feature maps defined in the literature, such as the Persistence Weighted
Gaussian feature map [17] or the Landscape feature map [4], are actually defined on such
domains, and take values in separable spaces, such as the function space L2(Ω), where Ω is
the upper half-plane {(x, y) : x ≤ y}. Hence, to illustrate how Theorem 3.5 applies to these
feature maps, we now provide two lemmata. In the first one, we define a set S which is not
separable with respect to d1, and in the second one, we show that, nevertheless, S is actually
included in the domain DΦ of these feature maps.

I Lemma 3.6. Consider the set of points P =
{(
k, k + 1

k

)
∈ R2 : k ∈ N

}
, and define the

set S of persistence diagrams as the power set S = P(P). Then (S, d1) is not separable.

Proof. Let pk =
(
k, k + 1

k

)
∈ R2 for all k ∈ N. Then we have S = {Dgu}u∈U , where

U = {0, 1}N is the set of sequences with values in {0, 1}, and where Dgu = {pi : i ∈ supp(u)}.
First note that since the sequences u ∈ U can have infinite support, the spaces U and
S = {Dgu}u∈U are not countable.

SoCG 2019

21:8 On the Metric Distortion of Embedding PDs into Separable Hilbert Spaces

Let ∼ be the equivalence relation on S defined as

Dgu ∼ Dgv ⇐⇒ | supp(u)4 supp(v)| <∞,

where 4 denotes the symmetric difference of sets. Since the set of sequences with finite
support is countable, it follows that each equivalence class [Dgu]∼ is countable as well. In
particular, this means that the set of equivalence classes S/ ∼ is uncountable, since otherwise
S would be countable as a countable union of countable equivalence classes.

We now prove the result by contradiction. Assume that S is separable, and let S ′ ⊂ S
be the corresponding dense countable subset of S. Let ε > 0. Then for each u ∈ U , there
is at least one sequence u′ ∈ U such that Dgu′ ∈ S ′ and d1(Dgu,Dgu′) ≤ ε. We now
claim that every such u′ satisfies Dgu′ ∈ [Dgu]∼. Indeed, assume Dgu′ 6∈ [Dgu]∼ and let
I = supp(u′)4 supp(u). Then, since |I| =∞, we would have

d1(Dgu,Dgu′) =
∑
k∈I

1
k

=∞ > ε,

which is not possible. Hence, this means that |S ′| ≥ |S/ ∼ |. However, we showed that S/ ∼
is uncountable, meaning that S ′ is uncountable as well, which leads to a contradiction, since
S ′ is countable by assumption. J

We now show that the Persistence Weighted Gaussian and the Landscape feature maps
are well-defined on the set S. Let us first formally define these feature maps.

I Definition 3.7. Given p = (u, v) ∈ R2, u ≤ v, let φp be the piecewise linear hat function
defined as

φp(t) =
{
v−u

2 (1− 2
v−u |t−

u+v
2 |) if x ≤ t ≤ y,

0 otherwise.

Then, given a persistence diagram Dg, let λk : t 7→ maxk{φp(t)}p∈Dg, where maxk denotes
the k-th largest element. The Landscape feature map is defined as:

ΦL : Dg 7→ λ̄, where λ̄(x, y) =
{
λdxe(y) x ≥ 0,
0 otherwise.

I Definition 3.8. Let ω : R2 → R be a weight function and σ > 0. The Persistence Weighted
Gaussian feature map is defined as:

ΦωPWG : Dg 7→
∑
p∈Dg

ω(p)e−
‖·−p‖2

2
2σ2 .

I Proposition 3.9. Let ω be the weight function (x, y) 7→ (y − x)2. Let S be the set of
persistence diagrams defined in Lemma 3.6. Then:

S ⊂ DΦωPWG
and S ⊂ DΦL .

Proof. Let uk ∈ U be the sequence defined with un = 1 if n ≤ k and un = 0 otherwise. To
show the desired result, it suffices to show that {ΦωPWG(Dguk)}k∈N and {ΦL(Dguk)}k∈N are
Cauchy sequences in L2(R2). Let q ≥ p ≥ 1, and let us study ‖Φ(Dguq)− Φ(Dgup)‖

2
L2(R2)

for each feature map.

M. Carrière and U. Bauer 21:9

Case ΦωPWG. We have the following inequalities:

‖ΦωPWG(Dguq)− ΦωPWG(Dgup)‖2L2(R2)

=
∫
R2

 q∑
k=p

1
k2 e−

‖x−pk‖
2
2

2σ2

2

dx =
q∑

k=p

q∑
l=p

1
k2l2

∫
R2

e−
‖x−pk‖

2
2+‖x−pl‖

2
2

2σ2 dx

= πσ2
q∑

k=p

q∑
l=p

1
k2l2

e−
‖pk−pl‖

2
2

4σ2 (cf Appendix C in [20])

≤ πσ2

 q∑
k=p

1
k2

 q∑
l=p

1
l2

The result simply follows from the fact that {

∑n
k=1

1
k2 }n∈N is convergent and Cauchy.

Case ΦL. Since all triangular functions, as defined in Definition 3.7, have disjoint support,
it follows that the only non-zero lambda function is λ1 =

∑k
n=1 φn, where φn is a

triangular function defined with φn(t) = 1
2n (1− |2n(t− (n+ 1

2n))|) if n ≤ t ≤ n+ 1
n and

0 otherwise. See Figure 2.

1/2

1/4

1/8

1 2 3 4

φ1

φ2
φ3 φ4

Figure 2 Image of Dgu4 under ΦL.

Hence, we have the following inequalities:

‖ΦL(Dguq)− ΦL(Dgup)‖2L2(R2)

=
∫
R

 q∑
k=p

φk(x)

2

dx =
q∑

k=p

q∑
l=p

∫
R
φk(x)φl(x)dx

=
q∑

k=p

∫
R
φk(x)2dx ≤

q∑
k=p

∫
R
φk(x)dx =

q∑
k=p

1
4k2

Again, the result follows from the fact that {
∑n
k=1

1
k2 }n∈N is convergent and Cauchy. J

Proposition 3.9 shows that Theorem 3.5 applies (with the metric d1 between persistence
diagrams) to the Landscape feature map and to the Persistence Weighted Gaussian feature
map with weight function (x, y) 7→ (y− x)2 – actually, any weight function that is equivalent
to or dominated by (y − x)2 when (y − x) goes to 0. Note also that the authors in [16]
suggest using weight functions of the form (x, y) 7→ arctan(C|y − x|α), which, in this case,
means that Theorem 3.5 applies if α ≥ 2. In particular, in this case, any lower bound for the
Persistence Weighted Gaussian feature map has to go to 0 when N,L→∞, since an upper
bound exists for this map due to its stability properties – see Corollary 3.5 in [17].

SoCG 2019

21:10 On the Metric Distortion of Embedding PDs into Separable Hilbert Spaces

4 Mapping into finite-dimensional Hilbert spaces

In our second main result, we show that more can be said about feature maps into Rn
(equipped with the Euclidean metric), using the so-called Assouad dimension. This involves
all vectorization methods for persistence diagrams that we described in the related work.

Assouad dimension

I Definition 4.1 (Paragraph 10.13 in [12]). Let (X, dX) be a metric space. Given a subset
E ⊂ X and r > 0, let Nr(E) be the least number of open balls of radius less than or equal to
r that can cover E. The Assouad dimension of X is:

dimA(X, dX) = inf{α > 0 : ∃C > 0 s.t. supx∈XNβr(B(x, r)) ≤ Cβ−α, ∀r > 0, β ∈ (0, 1]}.

Intuitively, the Assouad dimension measures the number of open balls of radius βr needed
to cover an open ball of radius r. For example, the Assouad dimension of Rn is n. Moreover,
the Assouad dimension is preserved by bi-Lipschitz embeddings.

I Proposition 4.2 (Lemma 9.6 in [22]). Let (X, dX) and (Y, dY) be metric spaces with a
bi-Lipschitz embedding Φ : X → Y . Then dimA(X, dX) = dimA(im(Φ), dY).

The Assouad dimension is closely related to the familiar notion of doubling metric space,
where only the number of open balls of radius βr needed to cover an open ball of radius
r is considered: A metric space (X, dX) is doubling if there is a constant M such that
N r

2
(B(x, r)) ≤M for all x ∈ X and r > 0. In terms of Assouad dimension, this is equivalent

to dimA(X, dX) < ∞ [12]. Hence, the property of being doubling is also preserved under
bi-Lipschitz maps.

Non-embeddability

We now show that DLN cannot be embedded into Rn with bi-Lipschitz embeddings. The
proof of this fact is a consequence of the following lemma:

I Lemma 4.3. Let p ∈ N ∪ {∞}, N ∈ N, and L > 0. Then dimA(DLN , dp) =∞.

Proof. Let Bp denote an open ball with dp. We want to show that, for any α > 0 and C > 0,
it is possible to find a persistence diagram Dg ∈ DLN , a radius r > 0 and a factor β ∈ (0, 1]
such that the number of open balls of radius at most βr needed to cover Bp(Dg, r) is strictly
larger than Cβ−α. To this end, we pick arbitrary α > 0 and C > 0. The idea of the proof is
to define Dg as the empty diagram, and to derive a lower bound on the number of balls with
radius βr needed to cover Bp(Dg, r) by considering a family of persistence diagrams {Dg′j}
with only one point each, evenly distributed on the line {(x, x+ r) : x ∈ [−L,L]} such that
the distance between two consecutive points is r in the `∞-distance. Indeed, the pairwise
distance between any two such persistence diagrams is sufficiently large so that they must
belong to different balls. Then we can control the number of persistence diagrams, and thus
the number of balls, by taking r sufficiently small.

More formally, choose β = 1
4 , M = 1 + bCβ−αc > Cβ−α, and r = 2L/M . We want to

show that we have at least M balls in any cover by βr, meaning that |{Dgi}| ≥M . To this
end, assume we are given an arbitrary cover of Bp(Dg, r) with open balls of radius less than
βr centered on a family {Dgi} as follows:

Bp(Dg, r) ⊆
⋃
i

Bp(Dgi, βr). (3)

M. Carrière and U. Bauer 21:11

r

r

r

−L L

L+ r

Dg′0

Dg′1

Dg′2

Dg′3

Dg′4
L

Figure 3 Persistence diagram used in the proof of Lemma 4.3. In this particular example, we
have M = 5.

We now define a particular family of persistence diagrams which all have to lie in different
elements of the cover (3). For any 0 ≤ j ≤M − 1, we let Dg′j denote the persistence diagram
containing only the point (−L+ jr,−L+ (j + 1)r), see Figure 3. It is clear that each Dg′j is
in DLN .

Moreover, since dp(Dg,Dg′j) = r
2 < r, it also follows that Dg′j ∈ Bp(Dg, r). Hence,

according to (3), each Dg′j is contained in some ball Bp(Dgi, βr). Finally, note that no
two Dg′j 6= Dg′k can be contained in the same ball Bp(Dgi, βr). Indeed, assuming that
Dg′j ,Dg′k ∈ Bp(Dgi, βr), since the distance between Dg′j and Dg′j′ is always obtained by
matching their points to the diagonal, we reach a contradiction with the following application
of the triangle inequality:

dp(Dg′j ,Dg′k) = 2
1
p
r

2 ≤ dp(Dg′j ,Dgi) + dp(Dgi,Dg′k) < 2βr = r

2 .

This observation shows that there are at least M different open balls in the cover (3), which
concludes the proof. J

The following theorem is then a simple consequence of Lemma 4.3 and Proposition 4.2:

I Theorem 4.4. Let p ∈ N ∪ {∞} and n ∈ N. Then, for any N ∈ N and L > 0, there is no
bi-Lipschitz embedding between (DLN , dp) and Rn.

Interestingly, the integers N and n are independent in Theorem 4.4: even if one restricts
to persistence diagrams with only one point, it is still impossible to find a bi-Lipschitz
embedding into Rn, whatever n is.

5 Experiments

In this section, we illustrate our main results by computing the lower metric distortion
bounds for the main stable feature maps in the literature. We use persistence diagrams with
increasing number of points to experimentally observe the convergence of this bound to 0, as
described in Theorem 3.5. More precisely, we generate 100 persistence diagrams for each
cardinality in a range going from 10 to 1000 by uniformly sampling points in the unit upper
half-square {(x, y) : 0 ≤ x, y ≤ 1, x ≤ y}. See Figure 4 for an illustration.

SoCG 2019

21:12 On the Metric Distortion of Embedding PDs into Separable Hilbert Spaces

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4 Example of synthetic persistence diagrams with cardinalities 10 (upper left), 30 (upper
right), 60 (lower left) and 100 (lower right) generated for the experiment.

Then, we consider the following feature maps:
the Persistence Weighted Gaussian with unit bandwidth (PWG) [17],
the Persistence Scale Space with unit bandwidth (PSS) [21],
the Landscape (LS) [4],
the Persistence Image with resolution 10 x 10 and unit bandwidth (IM) [1]
the Topological Vector with 10 dimensions (TV) [7],

Since most of these feature maps enjoy stability properties with respect to the first diagram
distance d1, we compute the ratios between the metrics in the Hilbert spaces corresponding
to these feature maps and d1. Moreover, we also look at the ratio induced by the square root
of the Sliced Wasserstein distance SW between persistence diagrams [6]. Indeed, if the SW
feature map is restricted to a set of persistence diagrams which are close to each other (w.r.t.
the SW distance), then the distance in the corresponding Hilbert space is actually equivalent
to the square root of the SW distance from the formula:

‖ΦSW(Dg)− ΦSW(Dg′)‖ =
√

2
(
1− e−SW(Dg,Dg′)

)
Hence, we added the square root of the SW distance in our experiment. All feature maps
were computed with the sklearn-tda library1, which uses Hera2 [15] as a backend to compute
the first diagram distances d1 between pairs of persistence diagrams. These ratios are then
displayed as boxplots in Figure 5.

It is clear from Figure 5 that the extreme values of these ratios (the upper tail of the ratio
distributions) increase with the cardinality of the persistence diagrams, as expected from
Theorem 3.5. This is especially interesting in the case of the Sliced Wasserstein distance
since the question whether the lower bound that was proved in [6], which increases with the
number of points in the diagrams, was tight or not, i.e., if a lower bound which is oblivious

1 https://github.com/MathieuCarriere/sklearn_tda
2 https://bitbucket.org/grey_narn/hera

https://github.com/MathieuCarriere/sklearn_tda
https://bitbucket.org/grey_narn/hera

M. Carrière and U. Bauer 21:13

0 10 20 30 40 50 60 70 80 90 100
PD Cardinality

2

4

6

8

10

12

14

PW
G:

 B
N
 /

A N

0 10 20 30 40 50 60 70 80 90 100
PD Cardinality

1

2

3

4

5

6

PS
S:

 B
N
 /

A N

0 10 20 30 40 50 60 70 80 90 100
PD Cardinality

1.0

1.5

2.0

2.5

3.0

3.5

SW
: B

N
 /

A N

0 10 20 30 40 50 60 70 80 90 100
PD Cardinality

0

2

4

6

8

10

12

14

LS
: B

N
 /

A N

0 10 20 30 40 50 60 70 80 90 100
PD Cardinality

0.0

0.2

0.4

0.6

0.8

IM
: B

N
 /

A N

0 10 20 30 40 50 60 70 80 90 100
PD Cardinality

0

50

100

150

200

250

300

350

400

TV
: B

N
 /

A N

Figure 5 Boxplots of the ratios between distances induced by various feature maps and the first
diagram distance d1.

to the number of points could be derived, is still open. Hence, it seems from Figure 5 that
this is not the case empirically. It is also interesting to notice that the divergence speed of
these ratios differ from a feature map to another. More precisely, it seems like the metric
distortion bounds increase linearly with the cardinalities for the TV and LS feature maps
and the Sliced Wasserstein distance, while it is increasing at a much lower speed for the
other feature maps.

6 Conclusion

In this article, we provided two important theoretical results about the embedding of
persistence diagrams in separable Hilbert spaces, which is a common technique in TDA to
feed machine learning algorithms with persistence diagrams. Indeed, most of the recent

SoCG 2019

21:14 On the Metric Distortion of Embedding PDs into Separable Hilbert Spaces

attempts have defined feature maps for persistence diagrams into Hilbert spaces and showed
these maps were stable with respect to the first diagram distance, and conjectured whether a
lower bound holds as well or not. In this work, we proved that this is never the case if the
Hilbert space is finite dimensional, and that such a lower bound has to go to zero with the
number of points for most other feature maps in the literature. We also provided experiments
that confirm this result, by showing a clear increase of the metric distortion with the number
of points for persistence diagrams generated uniformly in the unit upper half-square.

References
1 Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,

Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence Images:
A Stable Vector Representation of Persistent Homology. Journal of Machine Learning Research,
18(8):1–35, 2017.

2 Ulrich Bauer and Michael Lesnick. Induced matchings and the algebraic stability of persistence
barcodes. Journal of Computational Geometry, 6(2):162–191, 2015.

3 Christian Berg, Jens Christensen, and Paul Ressel. Harmonic Analysis on Semigroups: Theory
of Positive Definite and Related Functions. Springer, 1984.

4 Peter Bubenik. Statistical Topological Data Analysis using Persistence Landscapes. Journal
of Machine Learning Research, 16:77–102, 2015.

5 Gunnar Carlsson. Topology and Data. Bulletin of the American Mathematical Society,
46:255–308, 2009.

6 Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced Wasserstein Kernel for Persistence
Diagrams. In Proceedings of the 34th International Conference on Machine Learning, 2017.

7 Mathieu Carrière, Steve Oudot, and Maks Ovsjanikov. Stable Topological Signatures for
Points on 3D Shapes. Computer Graphics Forum, 34, 2015.

8 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The Structure and Stability of
Persistence Modules. Springer, 2016.

9 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of Persistence Diagrams.
Discrete and Computational Geometry, 37(1):103–120, 2007.

10 Barbara Di Fabio and Massimo Ferri. Comparing Persistence Diagrams Through Complex
Vectors. In Image Analysis and Processing – ICIAP 2015, pages 294–305, 2015.

11 Herbert Edelsbrunner and John Harer. Computational Topology: an introduction. AMS
Bookstore, 2010.

12 Juha Heinonen. Lectures on Analysis on Metric Spaces. Springer, 2001.
13 Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep Learning with

Topological Signatures. In Advances in Neural Information Processing Systems 30, pages
1633–1643. Curran Associates, Inc., 2017.

14 Sara Kališnik. Tropical Coordinates on the Space of Persistence Barcodes. Foundations of
Computational Mathematics, 2018.

15 Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry Helps to Compare
Persistence Diagrams. Journal of Experimental Algorithmics, 22:1.4:1–1.4:20, September 2017.

16 Genki Kusano, Kenji Fukumizu, and Yasuaki Hiraoka. Persistence Weighted Gaussian Kernel
for Topological Data Analysis. In Proceedings of the 33rd International Conference on Machine
Learning, pages 2004–2013, 2016.

17 Genki Kusano, Kenji Fukumizu, and Yasuaki Hiraoka. Kernel Method for Persistence Diagrams
via Kernel Embedding and Weight Factor. Journal of Machine Learning Research, 18(189):1–41,
2018.

18 Yuriy Mileyko, Sayan Mukherjee, and John Harer. Probability measures on the space of
persistence diagrams. Inverse Problems, 27(12):124007, 2011.

19 Steve Oudot. Persistence Theory: From Quiver Representations to Data Analysis. Number
209 in Mathematical Surveys and Monographs. American Mathematical Society, 2015.

M. Carrière and U. Bauer 21:15

20 Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A Stable Multi-Scale Kernel
for Topological Machine Learning. CoRR, abs/1412.6821, 2014. arXiv:1412.6821.

21 Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A Stable Multi-Scale Kernel
for Topological Machine Learning. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

22 James C. Robinson. Dimensions, Embeddings, and Attractors, volume 186 of Cambridge Tracts
in Mathematics. Cambridge University Press, 2010.

23 Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet Means for
Distributions of Persistence Diagrams. Discrete and Computational Geometry, 52(1):44–70,
2014.

SoCG 2019

http://arxiv.org/abs/1412.6821

Convex Polygons in Cartesian Products
Jean-Lou De Carufel
School of Electrical Engineering and Computer Science, University of Ottawa, Canada
jdecaruf@uottawa.ca

Adrian Dumitrescu
Department of Computer Science, University of Wisconsin-Milwaukee, USA
dumitres@uwm.edu

Wouter Meulemans
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
w.meulemans@tue.nl

Tim Ophelders
Department of Computational Mathematics, Science and Engineering,
Michigan State University, East Lansing, MI, USA
ophelder@egr.msu.edu

Claire Pennarun
LIRMM, CNRS & Université de Montpellier, France
claire.pennarun@gmail.com

Csaba D. Tóth
Department of Mathematics, California State University Northridge, Los Angeles, CA, USA
Department of Computer Science, Tufts University, Medford, MA, USA
csaba.toth@csun.edu

Sander Verdonschot
School of Computer Science, Carleton University, Ottawa, ON, Canada
sander@cg.scs.carleton.ca

Abstract
We study several problems concerning convex polygons whose vertices lie in a Cartesian product of
two sets of n real numbers (for short, grid). First, we prove that every such grid contains a convex
polygon with Ω(log n) vertices and that this bound is tight up to a constant factor. We generalize
this result to d dimensions (for a fixed d ∈ N), and obtain a tight lower bound of Ω(logd−1 n) for
the maximum number of points in convex position in a d-dimensional grid. Second, we present
polynomial-time algorithms for computing the longest convex polygonal chain in a grid that contains
no two points with the same x- or y-coordinate. We show that the maximum size of such a convex
polygon can be efficiently approximated up to a factor of 2. Finally, we present exponential bounds
on the maximum number of convex polygons in these grids, and for some restricted variants. These
bounds are tight up to polynomial factors.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Erdős–Szekeres theorem, Cartesian product, convexity, polyhedron, recursive
construction, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.22

Related Version A full version of this paper is available at https://arxiv.org/abs/1812.11332.

Funding Wouter Meulemans: Partially supported by the Netherlands eScience Center (NLeSC,
027.015.G02)
Csaba D. Tóth: Supported in part by the NSF awards CCF-1422311 and CCF-1423615.

Acknowledgements This work was initiated at the 2017 Fields Workshop on Discrete and Compu-
tational Geometry (Carleton University, Ottawa, ON, July 31–August 4, 2017).

© Jean-Lou De Carufel, Adrian Dumitrescu, Wouter Meulemans, Tim Ophelders,
Claire Pennarun, Csaba D. Tóth, and Sander Verdonschot;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jdecaruf@uottawa.ca
mailto:dumitres@uwm.edu
mailto:w.meulemans@tue.nl
mailto:ophelder@egr.msu.edu
mailto:claire.pennarun@gmail.com
mailto:csaba.toth@csun.edu
mailto:sander@cg.scs.carleton.ca
https://doi.org/10.4230/LIPIcs.SoCG.2019.22
https://arxiv.org/abs/1812.11332
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Convex Polygons in Cartesian Products

1 Introduction

Can a convex polygon P in the plane be reconstructed from the projections of its vertices to
the coordinate axes? Assuming that no two vertices of P share the same x- or y-coordinate,
we arrive at the following problem: given two sets, X and Y , each containing n real numbers,
does the Cartesian product X × Y support a convex polygon with n vertices? We say that
X × Y contains a polygon P if every vertex of P is in X × Y ; and X × Y supports P if
it contains P and no two vertices of P share an x- or y-coordinate. For short, we call the
Cartesian product X × Y an n× n grid.

Not every n×n grid supports a convex n-gon. This is the case already for n = 5 (Figure 1).
Several interesting questions arise: can we decide efficiently whether an n× n-grid supports
a convex n-gon? How can we find the largest k such that it supports a convex k-gon? What
is the largest k such that every n × n grid supports a convex k-gon? How many convex
polygons does an n× n grid support, or contain? We initiate the study of these questions for
convex polygons, and their higher dimensional variants for convex polyhedra.

Our results. We first show that every n × n grid supports a convex polygon with (1 −
o(1)) logn vertices1; this bound is tight up to a constant factor: there are n× n grids that
do not support convex polygons with more than 4(dlogne+ 1) vertices. We generalize our
upper and lower bounds to higher dimensions, and show that every d-dimensional Cartesian
product

∏d
i=1 Yi, where |Yi| = n and d is constant, contains Ω(logd−1 n) points in convex

position; this bound is also tight apart from constant factors (Section 2). Next, we present
polynomial-time algorithms to find a maximum supported convex polygon that is x- or
y-monotone. We show how to efficiently approximate the maximum size of a supported
convex polygon up to a factor of two (Section 3). Finally, we present tight asymptotic bounds
for the maximum number of convex polygons supported by an n× n grid (Section 4).

Related work. Erdős and Szekeres proved, as one of the first Ramsey-type results in
combinatorial geometry [16], that for every k ∈ N, a sufficiently large point set in the plane
in general position contains k points in convex position. The minimum cardinality of a point
set that guarantees k points in convex position is known as the Erdős–Szekeres number, f(k).
They proved that 2k−2 + 1 ≤ f(k) ≤

(2k−4
k−2

)
+ 1 = 4k(1−o(1)), and conjectured that the lower

bound is tight [14]. The current best upper bound, due to Suk [29], is f(k) ≤ 2k(1+o(1)). In
other words, every set of n points in general position in the plane contains (1− o(1)) logn
points in convex position, and this bound is tight up to lower-order terms.

In dimension d ≥ 3, the asymptotic growth rate of the Erdős–Szekeres number is not
known. By the Erdős–Szekeres theorem, every set of n points in general position in Rd
contains Ω(logn) points in convex position (it is enough to find points whose projections
onto a generic plane are in convex position). For every constant d ≥ 2, Károlyi and Valtr [19]
and Valtr [30] constructed n-element sets in general position in Rd in which no more than
O(logd−1 n) points are in convex position. Both constructions are recursive, and one of them
is related to high-dimensional Horton sets [30]. These bounds are conjectured to be optimal
apart from constant factors. Our results establish the same O(logd−1 n) upper bound for
Cartesian products

∏d
i=1 Yi, where |Yi| = n, for which it is tight apart from constant factors.

However our results do not improve the bounds for points in general position.

1 Throughout this paper all logarithms are in base 2.

J.-L. De Carufel et al. 22:3

Algorithmically, one can find a largest convex cap in a given set of n points in R2 in
O(n2 logn) time by dynamic programming [10], and a largest subset in convex position in
O(n3) time [7, 10]. The same approach can be used for counting the number of convex
polygons contained in a given point set [20]. While this approach applies to grids, it is
unclear how to include the restriction that each coordinate is used at most once. On the
negative side, finding a largest subset in convex position in a point set in Rd for d ≥ 3 was
recently shown to be NP-hard [15].

There has been significant interest in counting the number of convex polygons in various
point sets. Answering a question of Hammer, Erdős [13] proved that every set of n points in
general position in R2 contains exp(Θ(log2 n)) subsets in convex position, and this bound is
the best possible. Bárány and Pach [2] showed that the number of convex polygons in an
n× n section of the integer lattice is exp

(
O(n2/3)

)
. Bárány and Vershik [3] generalized this

bound to d-dimensions and showed that there are exp
(
O(n(d−1)/(d+1))

)
convex polytopes in

an n× · · · × n section of Zd. Note that the exponent is sublinear in n for every d ≥ 2. We
prove that an n× n Cartesian product can contain exp(Θ(n)) convex polygons, significantly
more than integer grids; our bounds are tight up to polynomial factors.

Motivated by integer programming and geometric number theory, lattice polytopes (whose
vertices are in Zd) have been intensely studied; refer to [1, 4]. However, results for lattices
do not extend to arbitrary Cartesian products. Recently, several deep results have been
established for Cartesian products in incidence geometry and additive combinatorics [23, 24,
25, 28], while the analogous statements for points sets in general position remain elusive.

Definitions. A polygon P in R2 is convex if all of its internal angles are strictly smaller
than π. A point set in R2 is in convex position if it is the vertex set of a convex polygon; and
it is in general position if no three points are collinear. Similarly, a polyhedron P in Rd is
convex if it is the convex hull of a finite set of points. A point set in Rd is in convex position
if it is the vertex set of a convex polytope; and it is in general position if no d+ 1 points lie
on a hyperplane. In Rd, we say that the xd-axis is vertical, hyperplanes orthogonal to xd are
horizontal, and understand the above-below relationship with respect to the xd-axis. Let ed
be a standard basis vector parallel to the xd-axis. A point set P in Rd is full-dimensional if
no hyperplane contains P .

We consider special types of convex polygons. Let P be a convex polygon with vertices
((x1, y1), . . . , (xk, yk)) in clockwise order. We say that P is a convex cap if the x- or y-
coordinates are strictly monotonic, and a convex chain if both the x- and y-coordinates are
strictly monotonic. We distinguish four types of convex caps (resp., chains) based on the
monotonicity of the coordinates as follows:

convex caps come in four types {y, y,

y,

y

}. We have
P ∈y if and only if (xi)k

i=1 strictly increases;
P ∈ y if and only if (yi)k

i=1 strictly increases;
P ∈ y if and only if (xi)k

i=1 strictly decreases;
P ∈

y

if and only if (yi)k
i=1 strictly decreases;

convex chains come in four types { , , , }. We have
= y ∩y, = y ∩

y

, = y∩ y, =

y

∩ y.

Initial observations. It is easy to see that for n = 3, 4, every n× n grid supports a convex
n-gon. However, there exists a 5 × 5 grid that does not support any convex pentagon
(cf. Fig. 1). Interestingly, every 6× 6 grid supports a convex pentagon.

I Lemma 1. Every 6× 6 grid X × Y supports a convex polygon of size at least 5.

SoCG 2019

22:4 Convex Polygons in Cartesian Products

Figure 1 Maximum-size supported convex polygons of respective sizes 3, 4, 4, and 5 in n × n

grids, where n is between 3 and 6.

Proof. Let X ′ = X \ {min(X),max(X)} and Y ′ = Y \ {min(Y),max(Y)}. The 4 × 4
grid X ′ × Y ′ supports a convex chain P ′ of size 3 between two opposite corners of X ′ × Y ′.
Then one x-coordinate x′ ∈ X ′ and one y-coordinate y′ ∈ Y ′ are not used by P ′. Without
loss of generality, assume that P ′ ∈ . Then the convex polygon containing the points of P ′
and (x′,min(Y)) and (max(X), y′) is a supported convex polygon of size 5 on X × Y . J

2 Extremal bounds for convex polytopes in Cartesian products

2.1 Lower bounds in the plane
In this section, we show that for every n ≥ 3, every n× n grid supports a convex polygon
with Ω(logn) vertices. The results on the Erdős–Szekeres number cannot be used directly,
since they crucially use the assumption that the given set of points is in general position. An
n× n section of the integer lattice is known to contain Θ(n) points in general position [12],
and this number is conjectured to be π√

3n(1 + o(1)) [17, 31]. However, this result does not
apply to arbitrary Cartesian products. It is worth noting that higher dimensional variants
for the integer lattice are poorly understood: it is known that an n × n × n section of Z3

contains Θ(n2) points no three of which are collinear [22], but no similar statements are
known in higher dimensions. We use a recent result from incidence geometry.

I Lemma 2. (Payne and Wood [21]) Every set of N points in the plane with at most `
collinear, ` ≤ O(

√
N), contains a set of Ω(

√
N/ log `) points in general position.

I Lemma 3. Every n× n grid supports a convex polygon of size (1− o(1)) logn.

Proof. Every n× n grid contains a set of Ω(
√
n2/ logn) = Ω(n/

√
logn) points in general

position by applying Lemma 2 with N = n2 and ` = n. Discarding points with the same x-
or y-coordinate reduces the size by a factor at most 1

4 , so this asymptotic bound also holds
when coordinates in X and Y are used at most once. By Suk’s result [29], the grid supports
a convex polygon with at least (1− o(1))

(
log(n/

√
logn)

)
= (1− o(1)) logn vertices. J

2.2 Upper bounds in the plane
For the upper bound, we construct n × n Cartesian products that do not support large
convex chains. For n = 8, such a grid is depicted in Figure 2.

I Lemma 4. For every n ∈ N, there exists an n×n grid that contains at most 4(dlogne+ 1)
points in convex position.

Proof. Let g(n) be the maximum integer such that for all n-element sets X,Y ⊂ R, the
grid X × Y supports a convex polygon of size g(n); clearly g(n) is nondecreasing. Let k
be the minimum integer such that n ≤ 2k; thus dlogne ≤ k and g(n) ≤ g(2k). We show
that g(2k) ≤ 4(k + 1) and thereby establish that g(n) ≤ 4(k + 1).

J.-L. De Carufel et al. 22:5

Figure 2 An 8 × 8 grid with no convex chains of size greater than 4 = log 8 + 1, where
X = {0, 1, . . . , 7} and Y = {0, 1, 16, 17, 256, 257, 272, 273}. Two lines determined by grid points are
drawn in blue.

Assume w.l.o.g. that n = 2k, and let X = {0, . . . , n− 1}. For a k-bit integer m, let mi

be the bit at its i-th position, such that m =
∑k−1
i=0 mi2i. Let Y = {

∑k−1
i=0 mi(2n)i | 0 ≤

m ≤ n − 1} (see Fig. 2). Both X and Y are symmetric: X = {max(X) − x | x ∈ X}
and Y = {max(Y)− y | y ∈ Y }. Thus, it suffices to show that no convex chain P ∈ of size
greater than k + 1 exists.

Consider two points, p = (x, y) and p′ = (x′, y′), in X × Y such that x < x′ and y < y′.
Assume y =

∑k−1
i=0 mi(2n)i and y′ =

∑k−1
i=0 m

′
i(2n)i. The slope of the line spanned by p and p′

is slope(p, p′) =
∑k−1
i=0 (m′i−mi)(2n)i/(x′−x). Let j be the largest index such that mj 6= m′j .

Then y < y′ implies mj < m′j , and we can bound the slope as follows:

slope(p, p′) ≥
(2n)j −

∑j−1
i=0 (2n)i

x′ − x
>

(2n)j − 2(2n)j−1

n− 1 = 2 · (2n)j−1,

slope(p, p′) ≤
∑j
i=0(2n)i

x′ − x
≤
∑j
i=0(2n)i

1 = (2n)j+1 − 1
2n− 1 < 2 · (2n)j .

Hence, slope(p, p′) ∈ Ij = (2 · (2n)j−1, 2 · (2n)j). Let us define the family of inter-
vals I0, I1, . . . , Ik−1 analogously, and note that these intervals are pairwise disjoint. Sup-
pose that some convex chain P ∈ contains more than k + 1 points. Since the slopes
of the first k + 1 edges of P decrease monotonically, by the pigeonhole principle, there
must be three consecutive vertices p = (x, y), p′ = (x′, y′), and p′′ = (x′′, y′′) of P such
that both slope(p, p′) and slope(p′, p′′) are in the same interval, say Ij . Assume that
y =

∑k−1
i=0 mi(2n)i, y′ =

∑k−1
i=0 m

′
i(2n)i+1, and y′′ =

∑k−1
i=0 m

′′
i (2n)i+1. Then j is the

largest index such that mj 6= m′j , and also the largest index such that m′j 6= m′′j . Be-
cause m < m′ < m′′, we have mj < m′j < m′′j , which is impossible since each of mj , m′j
and m′′j is either 0 or 1.

SoCG 2019

22:6 Convex Polygons in Cartesian Products

Hence, X×Y does not contain any convex chain in of size greater than k+1. Analogously,
every convex chain in , , or has at most k + 1 vertices. Consequently, X × Y contains
at most 4(k + 1) points in convex position. J

2.3 Upper bounds in higher dimensions
We construct Cartesian products in Rd, for d ≥ 3, that match the best known upper bound
O(logd−1 n) for the Erdős–Szekeres numbers in d-dimensions for points in general position.
Our construction generalizes the ideas from the proof of Lemma 4 to d-space.

I Theorem 5. Let d ≥ 2 be fixed. For every n ≥ 2, there exist n-element sets Yi ⊆ R for
i = 1, . . . , d, such that the Cartesian product Y =

∏d
i=1 Yi contains at most O(logd−1 n)

points in convex position.

Proof. We construct point sets recursively. For d = 2, the result follows from Lemma 4.
For d ≥ 3 and 0 ≤ i ≤ j, we define Sd(i, j) as a Cartesian product of d sets, where the first
d − 1 sets have 2j elements and the last set has 2i elements. We then show that Sd(i, j)
does not contain the vertex set of any full-dimensional convex polyhedron with more than
2d2−d+1 · i · jd−2 vertices (there is no restriction on lower-dimensional convex polyhedra).

To initialize the recursion, we define boundary values as follows: For every j ≥ 0, let
S2(j, j) be the 2j × 2j grid defined in the proof of Lemma 4 that does not contain more than
4(j + 1) points in convex position. Note that every line that contains 3 or more points from
S2(j, j) is axis-parallel (this property was not needed in the proof of Lemma 4). Assume
now that d ≥ 3, and Sd−1(j, j) has been defined for all j ≥ 0; and for all k = 1, . . . , d, every
k-dimensional flat containing 2k + 1 or more points is parallel to at least one coordinate axis.
We now construct Sd(i, j) for all 0 ≤ i ≤ j as follows.

Let Sd(0, j) = Sd−1(j, j)× {0}. For i = 1, . . . , j, we define Sd(i, j) as the disjoint union
of two translates of Sd(i − 1, j). Specifically, let Sd(i, j) = A ∪ B, where A = Sd(i − 1, j)
and B = A+ λided, where λid > 0 is sufficiently large (as specified below) and algebraically
independent from the coordinates of Sd(i− 1, j), and for all k = 1, . . . , d, every k-dimensional
flat containing 2k + 1 or more points is parallel to at least one coordinate axis. .

Figure 3 A polyhedron conv(P) in R3, whose projection conv(P)proj is a rectangle. Seven points
in P are projected onto the four vertices of conv(P)proj. Overall the silhouette of P contains 12
points. Red (blue) vertices are upper (lower); the purple point is both upper and lower.

Let P ⊂ Sd(i, j) be a full-dimensional set in convex position. The orthogonal projection
of conv(P) to the horizontal hyperplane xd = 0 is a convex polytope in Rd−1 that we denote
by conv(P)proj; refer to Fig. 3. The silhouette of P is the subset of vertices whose orthogonal

J.-L. De Carufel et al. 22:7

projection to xd = 0 lies on the boundary of conv(P)proj. Since no three points in P are
collinear, at most two points in P are projected to the same point. A point p ∈ P is an
upper (resp., lower) vertex if P lies in the closed halfspace below (resp., above) some tangent
hyperplane of conv(P) at p (a point in P may be both upper and lower vertex).

We prove, by double induction on d and i, the following:

B Claim 6. If P ⊂ Sd(i, j) is a full-dimensional set in convex position, then P contains at
most 2d(d−1) · i · jd−2 upper (resp., lower) vertices of conv(P).

For d = 2 and i = j, this holds by definition (cf. Lemma 4). For i = 0, the set Sd(0, j) =
Sd−1(j, j)×{0} lies in a horizontal hyperplane in Rd, and so it is not full-dimensional, hence
the claim vacuously holds. By induction, Sd−1(j, j) contains at most 2(d−1)(d−2) · j · jd−3

upper (resp., lower) vertices in Rd−1, hence Sd(0, j) has at most 2 · 2(d−1)(d−2) · j · jd−3

extreme points in Rd. Assume that d ≥ 3, 1 = i ≤ j, and the claim holds for Sd−1(j, j).
We prove the claim for Sd(i, j). The set Sd(1, j) is the disjoint union of A = Sd(0, j) and
B = Sd(0, j) + λ1

ded. Every upper (resp., lower) vertex of Sd(1, j) is an extreme vertex in A
or B, hence Sd(1, j) contains at most 4 · 2(d−1)(d−2) · jd−2 = 2d2−3d+4 · jd−2 < 2d2−d · 1 · jd−2

upper (resp., lower) vertices, as required, where we used that d ≥ 3.
In the general case, we assume that d ≥ 3, 2 ≤ i ≤ j, and the claim holds for Sd−1(j, j)

and Sd(i− 1, j). We prove the claim for Sd(i, j). Recall that Sd(i, j) is the disjoint union
of two translates of Sd(i− 1, j), namely A = Sd(i− 1, j) and B = Sd(i− 1, j) + λided. Let
P ⊂ Sd(i, j) be a full-dimensional set in convex position. We partition the upper vertices
in P as follows. Let P0 ⊂ P be the set of upper vertices whose orthogonal projections to
xd = 0 are vertices of conv(P)proj. For k = 1, . . . , d − 1, let Pk ⊂ P be the set of upper
vertices whose orthogonal projections to xd = 0 lie in the relative interior of a k-face of
conv(P)proj. By construction, only axis-aligned faces can contain interior points. For the
(d− 1)-dimensional polytope conv(P)proj, the axis-aligned k-faces (k = 1, . . . , d− 1) can be
partitioned into

(
d−1
k

)
equivalence classes, based on the set of parallel coordinate axes.

The orthogonal projection of Sd(i, j) to xd = 0 is Sd−1(j, j), and the orthogonal projection
of P0, denoted P proj

0 , is the vertex set of a (d−1)-dimensional convex polyhedron in Sd−1(j, j).
By induction, |P0| ≤ 2 · 2(d−1)(d−2) · j · jd−3 = 2d2−3d+3jd−2. We show the following.

B Claim 7. For every axis-aligned face F of conv(P)proj, the set of upper vertices that
project to the interior of F is contained in either A or B.

Let F be an axis-aligned k-face of conv(P)proj for k ∈ {1, 2, . . . , d − 1}. Let P (F) ⊂ P be
the set of upper vertices whose orthogonal projections lie in the interior of F , and let P (∂F)
be the set of upper vertices whose orthogonal projections lie in the boundary of F . Let
P (∂F)proj be the orthogonal projection of P (∂F) to the hyperplane xd = 0. Consider the
point set P ′ = P (∂F)proj ∪ P (F), and observe that if P (F) 6= ∅, then it is a vertex set of
a (k + 1)-dimensional polytope in which all vertices are upper. It remains to show that
P (F) ⊆ A or P (F) ⊆ B. Suppose, for the sake of contradiction, that P (F) contains points
from both A and B. Let pa be a vertex in P (F) with the maximum xd-coordinate. The
1-skeleton of conv(P ′) contains a xd-monotonically decreasing path from pa to an xd-minimal
vertex in P ′. Let pb be the neighbor of pa along such a path. Then pb ∈ B by the choice
of pa. Every hyperplane containing pa and pb, in particular the tangent hyperplane of P ′
containing the edge papb, partitions P (∂F)proj, which is a contradiction.

SoCG 2019

22:8 Convex Polygons in Cartesian Products

We can now finish the proof of Claim 6. By induction on Sd(i− 1, j), we have

|Pk| ≤
(
d− 1
k

)
· 2(d−k−1)(d−k−2)+1jd−k−1 · 2k(k−1) · (i− 1) · jk−1

≤
(
d− 1
k

)
· 2(d−1)(d−2) · (i− 1) · jd−2.

Altogether, the number of upper vertices is
d−1∑
k=0
|Pk| ≤ 2d

2−3d+3jd−2 +
d−1∑
k=1

(
d− 1
k

)
2(d−1)(d−2) · (i− 1) · jd−2 < 2d(d−1) · i · jd−2,

as required, where we used the binomial theorem and the inequality d ≥ 3. J

2.4 Lower bounds in higher dimensions
The proof technique in Section 2.1 is insufficient for establishing a lower bound of Ω(logd−1 n)
for d ≥ 3. Whereas a d-dimensional n× . . .×n grid contains Ω(nδ) points in general position
for some δ = δ(d) > 0 [6], the current best lower bound on the number of points in convex
position in any set of n points in general position in Rd is Ω(logn); the conjectured value
is Ω(logd−1 n). Instead, we rely on the structure of Cartesian products and induction on d.
Our main result in this section is the following.

I Theorem 8. Every d-dimensional Cartesian product
∏d
i=1 Yi, where |Yi| = n and d is

fixed, contains Ω(logd−1 n) points in convex position.

We say that a strictly increasing sequence of real numbers A = (a1, . . . , an), has the
monotone differences property (for short, A is MD), if either ai+1 − ai > ai − ai−1, or
ai+1 − ai < ai − ai−1 for i = 2, . . . , n− 1. Furthermore, the sequence A is r-MD for some
r > 1 if either ai+1 − ai ≥ r(ai − ai−1), or ai+1 − ai ≤ (ai − ai−1)/r for i = 2, . . . , n− 1.

A finite set X ⊆ R is MD (resp., r-MD) if its elements arranged in increasing order
form an MD (resp., r-MD) sequence. These sequences are intimately related to convexity: a
strictly increasing sequence A = (a1, . . . , an) is MD if and only if there exists a monotone
(increasing or decreasing) convex function f : R→ R such that ai = f(i) for all i = 1, . . . , n.
MD sets have been studied in additive combinatorics [11, 18, 23, 27].

We first show that every n-element set X ⊆ R contains an MD subset of size Ω(logn),
and this bound is the best possible (Lemma 9). In contrast, every n-term arithmetic
progression contains an MD subsequence of Θ(

√
n) terms: for example (0, . . . , n−1) contains

the subsequence (i2 : i = 0, . . . , b
√
n− 1c). We then show that for constant d ≥ 2, the

d-dimensional Cartesian product of MD sets of size n contains Θ(nd−1) points in convex
position. The combination of these results immediately implies that every n × . . . × n

Cartesian product in Rd contains Ω(logd−1 n) points in convex position.
The following lemma gives a lower bound for MD sequences. It is known that a monotone

sequence of n reals contains a 2-MD sequence (satisfying the so-called doubling differences
condition [26]) of size Ω(logn) [5, Lemma 4.1]; see also [8] for related recent results.

I Lemma 9. Every set of n real numbers contains an MD subset of size b(logn)/2c+ 1. For
every n ∈ N, there exists a set of n real numbers in which the size of every MD subset is at
most dlogne+ 1.

Proof. Let X = (x0, . . . , xn−1) be a strictly increasing sequence. Assume w.l.o.g. that
n = 2` + 1 for some ` ∈ N. We construct a sequence of nested intervals

[a0, b0] ⊃ [a1, b1] ⊃ . . . ⊃ [a`, b`]

J.-L. De Carufel et al. 22:9

such that the endpoints of the intervals are in X and the lengths of the intervals decrease by
factors of 2 or higher, that is, bi − ai ≤ (bi−1 − ai−1)/2 for i = 1, . . . , `.

We start with the interval [a0, b0] = [x0, xn−1]; and for every i = 0, . . . , `− 1, we divide
[ai, bi] into two intervals at the median, and recurse on the shorter interval.

a0

a1

a2

a3

a4

b0

b1

b2

b3

b4

m0

m1

m2

m3

b0

Figure 4 A sequence X of 17 elements and nested intervals [a0, b0] ⊃ . . . ⊃ [a4, b4].

By partitioning [ai, bi] at the median, the algorithm maintains the invariant that [ai, bi]
contains 2`−i + 1 elements of X. Note that for every i = 1, . . . , `, we have either (ai−1 = ai
and bi−1 < bi) or (ai−1 = ai and bi < bi−1). Consequently, the sequences A = (a0, a1, . . . , a`)
and B = (b`, b`−1, . . . , b0) both increase (not necessarily strictly), and at least one of them
contains at least 1 + `/2 distinct terms. Assume w.l.o.g. that A contains at least 1 + `/2
distinct terms. Let C = (c0, . . . , ck) be a maximal strictly increasing subsequence of A. Then
k ≥ `/2 = b(logn)/2c.

We show that C is an MD sequence. Let i ∈ {1, . . . , k − 1}. Assume that ci = aj =
. . . = aj′ for consecutive indices j, . . . , j′. Then ci−1 = aj−1, ci = aj , and ci+1 = aj′+1.
By construction, ci ∈ [aj−1, bj−1] = [ci−1, bj] such that ci − ci−1 ≥ bj − ci. Similarly,
ci+1 ∈ [aj′ , bj′] = [ci, bj′] such that ci+1 − ci ≥ bj′ − ci+1. However, [aj , bj] ⊂ [aj−1, bj−1].
As required, this yields

ci+1 − ci = aj′+1 − aj < bj − aj ≤
bj−1 − aj−1

2 ≤ aj − aj−1 = ci − ci−1.

The upper bound construction is the point set Y defined in the proof of Lemma 4,
for which every chain in or supported by {0, . . . , n − 1} × Y has at most dlogne + 1
vertices. Let {b0, . . . , b`−1} ⊂ Y be an MD subset such that b0 < . . . < b`−1. Then
{(i, bi) : i = 0, . . . , `− 1} ⊂ X × Y is in or . Consequently, every MD subset of Y has at
most dlogne+ 1 terms, as claimed. J

We show how to use Lemma 9 to establish a lower bound in the plane. While this
approach yields worse constant coefficients than Lemma 3, its main advantage is that it
generalizes to higher dimensions (see Lemma 12 below).

I Lemma 10. The Cartesian product of two MD sets, each of size n, supports n points in
convex position.

Proof. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be MD sets such that ai < ai+1 and
bi < bi+1 for i = 1, . . . , n − 1. We may assume, by applying a reflection if necessary, that
ai+1 − ai < ai − ai−1 and bi+1 − bi < bi − bi−1, for i = 2, . . . , n− 1 (see Fig. 5).

We define P ⊂ A×B as the set of n points (ai, bj) such that i+j = n+1. By construction,
every horizontal (vertical) line contains at most one point in P . Since the differences ai−ai−1
are positive and strictly decrease in i; and the differences b`−i− b`−i−1 are negative and their
absolute values strictly increase in i, the slopes (b`−i − b`−i−1)/(ai − ai−1) strictly decrease,
which proves the convexity of P . J

SoCG 2019

22:10 Convex Polygons in Cartesian Products

a7a1 a2 a3 a4 a5 a6

b7

b1

b2

b3

b5
b6

b4

Figure 5 A 7× 7 grid {a1, . . . , a7} × {b1, . . . , b7}, where the differences between consecutive x-
coordinates (resp., y-coordinates) decrease by factors of 2 or higher. The point sets {(0, 0)}∪{(ai, bj) :
i + j = k}, for k = 2, . . . , 8, form nested convex chains.

I Lemma 11. The Cartesian product of three MD sets, each of size n, contains
(
n+1

2
)
points

in convex position.

Proof. Let A = {a1, . . . , an}, B = {b1, . . . , bn}, and C = {c1, . . . , cn} be MD sets, where the
elements are labeled in increasing order. We may assume, by applying a reflection in the x-, y-,
or z-axis if necessary, that ai+1−ai < ai−ai−1, bi+1−bi < bi−bi−1, and ci+1−ci < ci−ci−1,
for i = 2, . . . , n− 1. For i, j, k ∈ {1, . . . , n}, let pi,j,k = (ai, bj , ck) ∈ A×B × C. We now let
P = {pi,j,k : i+j+k = n+2}. It is clear that |P | =

∑n
i=1 i =

(
n+1

2
)
. We let P ′ = P ∪{p1,1,1}

and show that the points in P ′ are in convex position.
By Lemma 10, the points in P ′ lying in the planes x = a1, y = b1, and z = c1 are each

in convex position. These convex (n + 1)-gons are faces of the convex hull of P , denoted
conv(P). We show that the remaining faces of conv(P) are the triangles T ′i,j,k spanned by
pi,j,k, pi,j+1,k−1, and pi+1,j,k−1; and the triangles T ′′i,j,k spanned by pi,j,k, pi,j−1,k+1, and
pi−1,j,k+1.

The projection of these triangles to the xy-plane is shown in Fig. 5. By construction,
the union of these faces is homeomorphic to a sphere. It suffices to show that the dihedral
angle between any two adjacent triangles is convex. Without loss of generality, consider
the triangle T ′i,j,k, which is adjacent to at most three other triangles: T ′′i+1,j,k−1, T ′′i,j+1,k−1,
and T ′′i+1,j+1,k−2 (if they exist). Consider first the triangles T ′i,j,k and T ′′i+1,j+1,k−2. They
share the edge pi+1,j−1,k+1pi−1,j+1,k+1, which lies in the plane z = ck+1. The orthogonal
projections of these triangles to this plane are congruent, however their extents in the z-axis
are ci+1 − ci and ci − ci−1, respectively. Since ci+1 − ci < ci − ci−1, their dihedral angle
is convex. Similarly, the dihedral angles between T ′i,j,k and T ′′i+1,j,k−1 (resp., T ′′i,j+1,k−1) is
convex because ai+1 − ai < ai − ai−1 and bi+1 − bi < bi − bi−1. J

J.-L. De Carufel et al. 22:11

The proof technique of Lemma 11 generalizes to higher dimensions (details are provided
in the full version):

I Lemma 12. For every constant d ≥ 2, the Cartesian product of d MD sets, each of size n,
contains Ω(nd−1) points in convex position.

Now Theorem 8 follows from Lemma 9 and Lemma 12.

3 Algorithms

In this section, we describe polynomial-time algorithms for (i) finding convex chains and
caps of maximum size; and (ii) approximating the maximum size of a convex polygon; where
these structures are supported by a given grid. The main challenge is to ensure that the
vertices of the convex polygon (resp., cap or chain) have distinct x- and y-coordinates. The
coordinates of a point p ∈ X × Y are denoted by x(p) and y(p).

As noted in Section 1, efficient algorithms are available for finding a largest convex polygon
or convex cap contained in a planar point set. Edelsbrunner and Guibas [10, Thm. 5.1.2]
use the dual line arrangement of N points in the plane and dynamic programming to find
the maximum size of a convex cap in y in O(N2) time and O(N) space; the same bounds
hold for y, y, and

y

. A longest convex cap can be also returned in O(N2 logN) time and
O(N logN) space. It is straightforward to adapt their algorithm to find the maximum size of
a convex cap in , and report a longest such chain within the same time and space bounds.
Since x- and y-coordinates do not repeat in a convex chain, we obtain the following.

I Theorem 13. In a given n× n grid, the maximum size of a supported convex chain can
be computed in O(n4) time and O(n2) space; and a supported convex chain of maximum size
can be computed in O(n4 logn) time and O(n2 logn) space.

We make use of the following general observation:

I Observation 14. If a supported convex polygon P is in a set , , , , y,

y

, y, or y,
then every subsequence of P is in the same set. That is, these classes are hereditary.

3.1 Convex caps
For computing the maximum size of a convex cap in y, we need to be careful to use each
y-coordinate at most once. We design an algorithm that finds the maximum size of two
convex chains that use distinct y-coordinates by dynamic programming. Specifically, for two
edges l = (l1, l2) and r = (r1, r2), we compute the maximum total size C(l, r) of a pair of
chains A ∈ and B ∈ such that their vertices use distinct y-coordinates and such that
the last two vertices of A are l1 and l2 (or A = (l1) if l1 = l2), and the first two vertices
of B are r1 and r2 (or B = (r1) if r1 = r2). We use the dynamic programming algorithm
of [10] to find L(p1, p2) (resp., R(p1, p2)), the size of a largest convex chain P in (resp.,),
ending (resp., starting) with vertices p1 and p2, or P = (p1) if p1 = p2.

The desired quantity C(l, r) can be computed by dynamic programming. By Observa-
tion 14, we can always safely eliminate the highest vertex of the union of the two chains, to
find a smaller subproblem, as this vertex cannot be (implicitly) part of the optimal solution
to a subproblem. In particular, if l is a single vertex and it is highest, we can simply use the
value of R(r1, r2), incrementing it by one for the one vertex of l. Analogously, we handle the
case if r is or both l and r are a single vertex. The interesting case is when both chains end
in an edge. Here, we observe that we can easily check whether l and r use unique coordinates.

SoCG 2019

22:12 Convex Polygons in Cartesian Products

r1

r2

l1

l2

r1 = r2

l1

l2

(a) (b)
r1

r2

l1

l2

v

r1

r2

l1

l2

(c) (d)

Figure 6 Illustration for the cases of C(l, r). (a) Invalid configuration, as y(r2) = y(l2). (b) r is
a single point above l2, so we look for the longest chain ending in l. (c) Removing the topmost point
(from l in this case), testing all valid possible v to find the longest chain. Note that the left and right
chain may not complete to a cap – this is checked separately. (d) We only need to test whether l

and r make a cap (purple dotted line) to check whether the C(l, r) entry should be considered.

If not, then this subproblem is invalid; otherwise, we may find a smaller subproblem by
eliminating the highest vertex and comparing all possible subchains that could lead to it.

With the reasoning above, we obtain the recurrence below; see Fig. 6(a–c) for illustration.
The first case eliminates invalid edges, and edge pairs that use a y-coordinate more than once.
In all remaining cases, we assume that l ∈ , r ∈ , and l and r use distinct y-coordinates.

C(l, r) =

−∞ if l1 6= l2 and l /∈ , or
r1 6= r2 and r /∈ , or
{y(l1), y(l2)} ∩ {y(r1), y(r2)} 6= ∅

2 otherwise, if l1 = l2 and r1 = r2

L(l1, l2) + 1 otherwise, if r1 = r2 and y(l2) < y(r1)
R(r1, r2) + 1 otherwise, if l1 = l2 and y(l2) > y(r1)
max(v,l1,l2)∈ or v=l1 C((v, l1), r) + 1 otherwise, if y(l2) > y(r1)
max(r1,r2,v)∈ or v=r1 C(l, (r2, v)) + 1 otherwise, y(l2) < y(r1).

Let E = (X × Y)2 denote the number of pairs (edges) in the grid, from which we take l
and r. As |E| = O(n4), we can compute C(l, r) for all l and r in O(|E|2|X × Y |) = O(n10)
time and O(|E|2) = O(n8) space. With C(l, r), we can easily find the size of a maximum
size cap P in y, using the observation below, and analogous observations for the special
case k = 1 and/or ` = 1 (see Fig. 6(d)).

J.-L. De Carufel et al. 22:13

I Observation 15. If A = (a1, . . . , ak) ∈ and B = (b1, . . . , b`) ∈ with k ≥ 2, ` ≥ 2
and (ak−1, ak, b1, b2) ∈y and A and B use distinct y-coordinates, then (a1, . . . , ak, b1, . . . , b`)
lies in y and has size k + `.

Note that the condition (ak−1, ak, b1, b2) ∈y implies that the x-coordinates are disjoint.

I Theorem 16. For a given n × n grid, a supported convex cap of maximum size can be
computed in O(n10) time and O(n8) space.

Although computing the maximum size of a supported convex polygon remains elusive,
we can easily devise a constant-factor approximation algorithm by eliminating duplicate
coordinates as described in Section 3.3 of the full version.

4 The maximum number of convex polygons

Let F (n) be the maximum number of convex polygons that can be present in an n × n
grid, with no restriction on the number of times each coordinate is used. Let G(n) be this
number where all 2n grid lines are used (i.e., each grid line contains at least one vertex of
the polygon). Let F̄ (n) and Ḡ(n) be the corresponding numbers where each grid line is used
at most once (so F̄ (n) counts the maximum number of supported convex polygons). By
definition, we have F (n) ≥ G(n) ≥ Ḡ(n) and F (n) ≥ F̄ (n) ≥ Ḡ(n) for all n ≥ 2. We prove
the following theorem, in which the Θ∗(.) notation hides polynomial factors in n.

I Theorem 17. The following bounds hold:

F (n) = Θ∗(16n), F̄ (n) = Θ∗(9n), G(n) = Θ∗(9n), Ḡ(n) = Θ∗(4n).

4.1 Upper bounds
We first prove that F (n) = O(n · 16n) by encoding each convex polygon in a unique way,
so that the total number of convex polygons is bounded by the total number of encodings.
Recall that a convex polygon P can be decomposed into four convex chains P , P , P , P ,
with only extreme vertices of P appearing in multiple chains. Let yP = P ∪ P and

y

P = P ∪ P . To encode P , we assign the following number to each of the 2n grid lines `
(see Fig. 7): 0 if ` is not incident on any vertex of P , 3 if ` is incident on multiple vertices of
P , 1 if ` is incident on one vertex of P and that vertex lies on yP if ` is horizontal, or on y

P

if ` is vertical, and 2 otherwise. We also record the index of the horizontal line containing
the leftmost vertex of P (pick the topmost of these if there are multiple leftmost points).

0

0

3

0

2

1

1

1

1

111001130

Figure 7 Encoding the grid lines.

SoCG 2019

22:14 Convex Polygons in Cartesian Products

Since each of the 2n grid lines is assigned one of 4 possible values, and there are n
horizontal lines, the total number of encodings is O(n · 42n) = O(n · 16n). All that is left to
show is that each encoding corresponds to at most one convex polygon.

First, observe that if P is a convex chain, say in , then the set of grid lines containing a
vertex of P uniquely defines P : since both coordinates change monotonically, the i-th vertex
of P must be the intersection of the i-th horizontal and vertical lines. So all we need to do
to reconstruct P is to identify the set of lines that make up each convex chain.

Since we know the location of the (topmost) leftmost vertex of P , we know where P

starts. Every horizontal line above this point labelled with a 1 or 3 must contain a vertex of
P ; let k be the number of such lines. Since the x-coordinates are monotonic as well, P

ends at the k-th vertical line labelled with a 2 or 3. The next chain, P , starts either at the
end of P , if the horizontal line is labelled with a 1, or at the intersection of this horizontal
line with the next vertical line labelled with a 2 or 3, if this horizontal line is labelled with a
3. We can find the rest of the chains in a similar way. Thus, F (n) = O(n · 16n).

The upper bounds for F̄ (n), G(n), and Ḡ(n) are analogous, except that certain labels are
excluded. For the number of supported convex polygons F̄ (n), each grid line is used at most
once, which means that the label 3 cannot be used. Thus, F̄ (n) = O(n · 32n) = O(n · 9n).
Similarly, for G(n), all grid lines contain at least one vertex of the polygon, so the label 0
cannot be used. Therefore G(n) = O(n · 32n) = O(n · 9n). Finally, for Ḡ(n), every grid line
contains exactly one vertex of the polygon, so neither 0 nor 3 can be used as labels. This
gives Ḡ(n) = O(n · 22n) = O(n · 4n) possibilities.

4.2 Lower bounds
Assume that n = 2m+ 3, where m ∈ N satisfies suitable divisibility conditions, as needed.
All four lower bounds use the same grid, constructed as follows (see Fig. 8).

X = {1, . . . , n− 1} Y − = {y1, . . . , ym+2}, where yi = ni

Y = Y − ∪ Y + Y + = {z1, . . . , zm+2}, where zi = 2 · ym+2 − yi

Note that this results in an (n− 1)× (n− 1) grid, since ym+2 = zm+2. To obtain an n× n
grid, we duplicate the median grid lines in both directions and offset them by a sufficiently
small distance ε > 0. The resulting grid has the property that any three points p, q, r in the
lower half X × Y − with x(p) < x(q) < x(r) and y(p) < y(q) < y(r) make a left turn at q.
To see this, suppose that y(p) = ni, y(q) = nj , and y(r) = nk, for some 1 ≤ i < j < k ≤ n.
Then the slope of pq is strictly smaller than the slope of qr, since

slope(qr) = nk − nj

x(r)− x(q) ≥
nj+1 − nj

n− 1 = nj >
nj − ni

1 ≥ nj − ni

x(q)− x(p) = slope(pq).

c

b

a

d
y

x

Figure 8 The n× n grid defined in Section 4.2, with n = 9 = 2m + 3 for m = 3, before doubling
the median lines. The segments (parts of grid lines) incident to vertices are drawn in blue.

J.-L. De Carufel et al. 22:15

Thus, any sequence of points with increasing x- and y-coordinates in the lower half is in .
By symmetry, such a sequence in the upper half X × Y + is in . Analogously, points with
increasing x-coordinates and decreasing y-coordinates are in if they are in the lower half
and if they are in the upper half.

We first derive lower bounds on Ḡ(n) and G(n) by constructing a large set of convex
polygons that use each grid line at least once. Then we use these bounds to derive the
bounds on F̄ (n) and F (n). The polygons we construct all share the same four extreme
vertices, which lie on the intersections of the grid boundary with the duplicated median grid
lines. Specifically, the leftmost and rightmost vertices are the intersections of the duplicate
horizontal medians with the left and right boundary, and the highest and lowest vertices are
the intersections of the duplicate vertical medians with the top and bottom boundary. Since
each of these median lines now contains a vertex, we can choose additional vertices from the
remaining 2m grid lines in each direction.

To construct each polygon, select m/2 vertical grid lines left of the median to participate
in the bottom chain, and do the same right of the median. Likewise, select m/2 horizontal
grid lines above and below the median, respectively, to participate in the left chain. The
remaining grid lines participate in the other chain (top or right). This results in a polygon
withm/2 vertices in each quadrant of the grid (excluding the extreme vertices). The convexity
follows from our earlier observations. The total number of such polygons is(

m
m
2

)4
= Θ

((
m−

1
2 2m

)4
)

= Θ(m−224m) = Θ(n−222n) = Θ(n−24n) = Θ∗(4n).

The first step uses the following estimate, which can be derived from Stirling’s formula for
the factorial [9]. Let 0 < α < 1, then(

n

αn

)
= Θ(n− 1

2 2H(α)n), where H(α) = −α logα− (1− α) log(1− α).

For the lower bound on G(n), the only difference is that we now allow grid lines to contain
vertices in two chains. We obtain a maximum when we divide the grid lines evenly between
the three groups (bottom chain, top chain, both chains). Thus, we select m/3 vertical grid
lines left of the median to participate in the bottom chain, another m/3 to participate in
the top chain and the remaining m/3 participate in both. We repeat this selection to the
right of the median and on both sides of the median horizontal line. As before, this results
in a convex polygon with the same number of vertices in each quadrant of the grid – exactly
2m/3 this time. The number of such polygons is(

m
m
3

)4(2m
3
m
3

)4

= Θ
((

m−
1
2 2H(1

3)m ·m− 1
2 2H(1

2) 2m
3

)4
)

= Θ
(
m−424m(log 3− 2

3 + 2
3)
)

= Θ
(
n−422n log 3) = Θ

(
n−49n

)
= Θ∗ (9n) .

We translate these bounds to bounds on F̄ (n) and F (n) in the full version.

4.3 The maximum number of weakly convex polygons
A polygon P in R2 is weakly convex if all of its internal angles are less than or equal to π. We
summarize the bounds we obtain in the following (details are provided in the full version):

I Theorem 18. Let W (n) denote the maximum number of weakly convex polygons that can
be present in an n× n grid. Then W (n) = Ω(16n) and W (n) = O∗(16n).

SoCG 2019

22:16 Convex Polygons in Cartesian Products

References
1 Imre Bárány. Random points and lattice points in convex bodies. Bulletin of the American

Mathematical Society, 45:339–365, 2008.
2 Imre Bárány and János Pach. On the number of convex lattice polygons. Combinatorics,

Probability and Computing, 1(4):295–302, 1992.
3 Imre Bárány and Anatoly Moiseevich Vershik. On the number of convex lattice polytopes.

Geometric and Functional Analysis, 2(4):381–393, 1992.
4 Alexander Barvinok. Lattice points and lattice polytopes. In Jacob E. Goodman, Joseph

O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational Geometry,
chapter 7, pages 185–210. CRC Press, Boca Raton, FL, 3rd edition, 2017.

5 Boris Bukh and Jiří Matoušek. Erdős–Szekeres-type statements: Ramsey function and
decidability in dimension 1. Manuscript, 2012. Available from: https://arxiv.org/abs/1207.
0705.

6 Jean Cardinal, Csaba D. Tóth, and David R. Wood. A note on independent hyperplanes and
general position subsets in d-space. Journal of Geometry, 108(1):33–43, 2017.

7 Václav Chvátal and G. T. Klincsek. Finding largest convex subsets. Congressus Numerantium,
29:453–460, 1980.

8 David Conlon, Jacob Fox, János Pach, Benny Sudakov, and Andrew Suk. Ramsey-type
results for semi-algebraic relations. Transactions of the American Mathematical Society,
366:5043–5065, 2014.

9 Adrian Dumitrescu, André Schulz, Adam Sheffer, and Csaba D. Tóth. Bounds on the maximum
multiplicity of some common geometric graphs. SIAM Journal on Discrete Mathematics,
27(2):802–826, 2013.

10 Herbert Edelsbrunner and Leonidas J. Guibas. Topologically Sweeping an Arrangement.
Journal of Computer and System Sciences, 38(1):165–194, 1989.

11 György Elekes, Melvyn B. Nathanson, and Imre Z. Ruzsa. Convexity and Sumsets. Journal
of Number Theory, 83(2):194–201, 2000.

12 Paul Erdős. Appendix, in Klaus F. Roth, On a problem of Heilbronn. Journal of the London
Mathematical Society, 26:198–204, 1951.

13 Paul Erdős. Some more problems on elementary geometry. Gazette of the Australian Mathe-
matical Society, 5(2):52–54, 1978.

14 Paul Erdős and György Szekeres. On some extremum problems in elementary geometry.
Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio
Mathematica, 3-4:53–62, 1960/1961.

15 Panos Giannopoulos, Christian Knauer, and Daniel Werner. On the Computational Complexity
of Erdős-Szekeres and Related Problems in R3. In Proc. 21st European Symposium on
Algorithms, volume 8125 of LNCS, pages 541–552. Springer, 2013.

16 Ronald L. Graham. Euclidean Ramsey theory. In Jacob E. Goodman, Joseph O’Rourke, and
Csaba D. Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 11, pages
281–297. CRC Press, Boca Raton, FL, 3rd edition, 2017.

17 Richard K. Guy and Patrick A. Kelly. The No-Three-in-Line-Problem. Canadian Mathematical
Bulletin, 11:527–531, 1968.

18 Norbert Hegyvári. On consecutive sums in sequences. Acta Mathematica Hungarica, 48(1-
2):193–200, 1986.

19 Gyula Károlyi and Pavel Valtr. Configurations in d-space without large subsets in convex
position. Discrete & Computational Geometry, 30(2):277–286, 2003.

20 Joseph S.B. Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger.
Counting convex polygons in planar point sets. Information Processing Letters, 56(1):45–49,
1995.

21 Michael S. Payne and David R. Wood. On the general position subset selection problem.
SIAM Journal on Discrete Mathematics, 27(4):1727–1733, 2013.

22 Attila Pór and David R. Wood. No-three-in-line-in-3D. Algorithmica, 47(4):481–488, 2007.

https://arxiv.org/abs/1207.0705
https://arxiv.org/abs/1207.0705

J.-L. De Carufel et al. 22:17

23 Orit E. Raz, Micha Sharir, and Ilya D. Shkredov. On the number of unit-area triangles
spanned by convex grids in the plane. Computational Geometry: Theory and Applications,
62:25–33, 2017.

24 Orit E. Raz, Micha Sharir, and József Solymosi. Polynomials vanishing on grids: The
Elekes–Rónyai problem revisited. American Journal of Mathematics, 138(4):1029–1065, 2016.

25 Orit E. Raz, Micha Sharir, and Frank De Zeeuw. Polynomials vanishing on Cartesian products:
The Elekes–Szabó theorem revisited. Duke Mathematical Journal, 165(18):3517–3566, 2016.

26 David Alan Rosenthal. The classification of the order indiscernibles of real closed fields and
other theories. PhD thesis, University of Wisconsin–Madison, 1981.

27 Tomasz Schoen and Ilya D. Shkredov. On Sumsets of Convex Sets. Combinatorics, Probability
and Computing, 20(5):793–798, 2011.

28 Ryan Schwartz, József Solymosi, and Frank de Zeeuw. Extensions of a result of Elekes and
Rónyai. Journal of Combinatorial Theory, Series A, 120(7):1695–1713, 2013.

29 Andrew Suk. On the Erdős-Szekeres convex polygon problem. Journal of the American
Mathematical Society, 30:1047–1053, 2017.

30 Pavel Valtr. Sets in Rd with no large empty convex subsets. Discrete Mathematics, 108(1–
3):115–124, 1992.

31 Eric W. Weisstein. No-Three-in-a-Line-Problem. online, 2005. Available from: http://
mathworld.wolfram.com/No-Three-in-a-Line-Problem.html.

SoCG 2019

http://mathworld.wolfram.com/No-Three-in-a-Line-Problem.html
http://mathworld.wolfram.com/No-Three-in-a-Line-Problem.html

Smallest k-Enclosing Rectangle Revisited
Timothy M. Chan
Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
tmc@illinois.edu

Sariel Har-Peled
Dept. of Computer Science, University of Illinois at Urbana-Champaign, USA
sariel@illinois.edu

Abstract
Given a set of n points in the plane, and a parameter k, we consider the problem of computing
the minimum (perimeter or area) axis-aligned rectangle enclosing k points. We present the first
near quadratic time algorithm for this problem, improving over the previous near-O(n5/2)-time
algorithm by Kaplan et al. [23]. We provide an almost matching conditional lower bound, under the
assumption that (min,+)-convolution cannot be solved in truly subquadratic time. Furthermore, we
present a new reduction (for either perimeter or area) that can make the time bound sensitive to k,
giving near O(nk) time. We also present a near linear time (1 + ε)-approximation algorithm to the
minimum area of the optimal rectangle containing k points. In addition, we study related problems
including the 3-sided, arbitrarily oriented, weighted, and subset sum versions of the problem.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric optimization, outliers, approximation algorithms, conditional
lower bounds

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.23

Related Version A full version is available at https://arxiv.org/abs/1903.06785.

Funding Timothy M. Chan: Supported in part by NSF AF award CCF-1814026.
Sariel Har-Peled: Supported in part by NSF AF award CCF-1421231.

1 Introduction

Given a set P of n points in the plane, and a parameter k, consider the problem of computing
the smallest area/perimeter axis-aligned rectangle that contains k points of P . (Unless stated
otherwise, rectangles are axis-aligned by default.) This problem and its variants have a long
history. Eppstein and Erickson [18] studied an exhaustive number of variants of this problem
for various shapes.

For the minimum perimeter variant, the first work on this problem seems to be Aggarwal
et al. [1], who showed a brute force algorithm with running time O(n3). Recently, Kaplan
et al. [23] gave an algorithm with running time O(n5/2 log2 n) that works for both minimum
perimeter and area.

Several works derived algorithms with running time sensitive to k, the number of points
in the shape. Aggarwal et al. [1] showed an algorithm for the minimum perimeter with
running time O(k2n logn). This was improved to O(n logn+ k2n) by Eppstein and Erickson
[18] or alternatively by Datta et al. [16]. Kaplan et al.’s algorithm [23] for the k-insensitive
case, coupled with these previous techniques [18, 16], results in an O(n logn+ nk3/2 log2 k)
running time, which is currently the state of the art.

Known techniques [18, 16] reduce the problem to solving O(n/k) instances of size O(k).
These reductions work only for the perimeter case, not the area case – in particular, there
are incorrect attributions in the literature to results on the minimum area rectangle – see the
introduction of de Berg et al. [17] for details. De Berg et al. described an algorithm with

© Timothy M. Chan and Sariel Har-Peled;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmc@illinois.edu
mailto:sariel@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.23
https://arxiv.org/abs/1903.06785
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Smallest k-Enclosing Rectangle Revisited

running time O(n log2 n+ nk2 logn) for minimum area. Both de Berg et al. [17] and Kaplan
et al. [23] left as an open question whether there is a reduction from the minimum-area
problem to about Õ(n/k) instances of size O(k), where Õ hides1 polynomial factors in logn
and 1/ε. Such a reduction would readily imply an improved algorithm.

Our results

We revisit the above problems and provide significantly improved algorithms:

1. Exact smallest k-enclosing rectangle. In Section 2.1 we describe an algorithm for the
minimum k-enclosing rectangle (either area or perimeter) with running time O(n2 logn)
(see Theorem 2). It is based on a new divide-and-conquer approach, which is arguably
simpler than Kaplan et al.’s algorithm. Known reductions mentioned above then lead to
an O(n logn+ nk log k)-time algorithm for computing the minimum perimeter rectangle.

2. k-sensitive running time for smallest area. In Section 2.2 we describe a reduction of the
minimum-area problem to O(nk log n

k) instances of size O(k) (see Theorem 8). Our
reduction uses shallow cutting for 3-sided rectangular ranges [22] and is conceptually
simple.
Plugging this the aforementioned new O(n2 logn)-time algorithm leads to O(nk log n

k log k)
time algorithm for computing the minimum area k-enclosing rectangle (see Corollary 9).
Thus, our new result strictly improves upon both Kaplan et al.’s and de Berg et al.’s
results for all k, from constant to Θ(n).

The smallest enclosing rectangle problem is amenable to sampling. Kaplan et al. used
samples in an approximation algorithm, with running time Õ(n/k), that computes a rectangle
containing at least (1−ε)k points of a prescribed perimeter, where k is the maximum number
of points in any such rectangle. Similarly, using relative approximations [21], de Berg et al.
[17] showed an algorithm that computes, in Õ(n) time, a rectangle containing ≥ (1 − ε)k
points, where k is the maximum number of points in any rectangle of a prescribed area. The
“dual” problem, of approximating the minimum area rectangle containing k points seems
harder, since sampling does not directly apply to it.

1. Approximating the area of the smallest k-enclosing rectangle. In Section 2.3, we present
an approximation algorithm that computes, in O(n logn) expected time, a rectangle
containing k points of area ≤ (1 + ε)α∗, for a constant ε ∈ (0, 1), where α∗ is the
smallest-area of such a rectangle (see Theorem 13).

We next present a flotilla of related results:

1. 3-sided smallest k-enclosing rectangle. In Section 3.1 we (slightly) speed up the exact
algorithm for the 3-sided rectangles case (i.e., rectangles that must have their bottom
edge on the x-axis). The running time is O

(
n2/2Ω(

√
logn)), and is obtained using known

results on the (min,+)-convolution problem [7, 28] (see Theorem 16).
2. Arbitrarily oriented smallest k-enclosing rectangle. In Section 3.2 we briefly consider the

variant where the rectangle may not be axis-aligned. We show that this problem can
be solved in O(n3 logn + n3k/2Ω(

√
log k)) time, slightly improving a previous result of

O(n3k) [15] when k is not too small.

1 We reserve the right, in the future, to use the Õ to hide any other things we do not like.

T.M. Chan and S. Har-Peled 23:3

3. Minimum-weight k-enclosing rectangle. In Section 3.3 we show how to extend our
O(n2 logn)-time algorithm to the related problem of finding a minimum-weight rectangle
that contains k points, for n given weighted points in the plane (see Theorem 17).

4. Subset sum for k-enclosing rectangle. In Section 3.4, we study the problem of finding a
rectangle that contains k points and has a prescribed weight W (or as close as one can
get to it). The running time of the new algorithm is O(n5/2 logn) (see Theorem 19).

5. Conditional lower bound. In Section 3.5, we prove that our near quadratic algorithm
for exact minimum (perimeter or area) k-enclosing rectangle is near optimal up to an
arbitrarily small polynomial factor, under a “popular” conjecture that the (min,+)-
convolution problem cannot be solved in truly subquadratic time [14].

2 Smallest k-enclosing rectangle

2.1 An exact near-quadratic algorithm
Our O(n2 logn)-time algorithm for minimum k-enclosing rectangles is based on divide-and-
conquer. It has some similarity with an O(n2)-time divide-and-conquer algorithm by Barbay
et al. [5] for a different problem (finding the minimum-weight rectangle for n weighted
points in the plane, without any k-enclosing constraint), but the new algorithm requires
more ingenuity.

We start with a semi-dynamic data structure for a 1D subproblem:

I Lemma 1. Given a set P of n points in 1D with q marked points, and an integer k, we
can maintain an O(q2)-space data structure, with O(n logn+ nq) preprocessing time, that
supports the following operations:

report the shortest interval containing k points of P in O(q) time;
delete a marked point in O(q) time;
unmark a marked point in O(q) time.

Proof. Sort the points P , and let p1, . . . , pn he resulting order. Consider the (implicit)
matrix M = P − P . Formally, the entry Mij is pj − pi (we are interested only in the top
right part of this matrix) – such an entry can be computed in O(1) time directly from the
sorted point set. The optimal quantity of interest is the minimum on the kth diagonal; that
is, α(M) = miniMi,i+k−1. When a marked point get deleted, this corresponds to deleting
a row and a column of M – the quantity of interest remains the minimum along the kth
diagonal. Such a deletion, as far as a specific entry of the top right of the matrix is concerned,
either (i) removes it, (ii) keeps it in its place, (iii) shift it one diagonal down as its moves left,
or (iv) keep it on the same diagonal as it shifts both up and left (see Figure 1).

In particular, any sequence of at most q deletions of elements can shift an entry in the
matrix at most q diagonals down. This implies that we need to keep track only of the
k, . . . , k + q diagonals of this matrix. To do better, observe that if we track the elements of
an original diagonal of interest, the deletions can fragment the diagonal into at most O(q)
groups, where each group still appear as contiguous run of the original diagonal.

To this end, let a fragment of a diagonal be either (i) a singleton entry that appears in
a row or column of a marked point, or (ii) a maximum contiguous portion of the diagonal
which does not touch any singleton entries from (i). It is easy to verify that the kth diagonal
of the matrix at any given point in time is made out of a sequence of at most 3k fragments,
where each fragment is an original fragment of one of the diagonals in the range k, . . . , k + q.

As such, instead of storing all the elements of a fragment, we only maintain the minimum
entry of the fragment (together with the information of what pairs of points it corresponds
to). After this compression, a diagonal of interest can be represented as a linked list of O(q)

SoCG 2019

23:4 Smallest k-Enclosing Rectangle Revisited

a
b
A

e
f
g

E

G

I
J

a
b
A

e
f
g

E

G

I
J

b
A

Ee
g G

I
J

Figure 1 Behold the matrix!

fragment summaries. In the preprocessing stage, the algorithm computes this representation
for the k to k + q diagonals (using this representation). This requires O(q2) space, and
O(nq) time.

A deletion of a marked point then corresponds to taking a contiguous block of linked
fragments at the ith list and moving it to list i− 1, doing this surgery for i = k, . . . , k + q.
The blocks being moved start and end in singleton entries that correspond to the deleted
point. We also need to remove these two singleton elements, and merge the two adjacent
fragment summaries that are no longer separated by a singleton. This surgery for all the q+ 1
lists of interest can be done in O(q) time (we omit the tedious but straightforward details).

A query corresponds to scanning the kth diagonal and reporting the minimum value
stored along it. An unmarking operation corresponds to merging two fragment summaries
and the singleton separating them into a single fragment summary, and doing this for all the
q + 1 lists. Both operations clearly can be done in O(q) time. J

I Theorem 2. Given a set P of n points in the plane and an integer k, one can compute,
in O(n2 logn) time, the smallest-area/perimeter axis-aligned rectangle enclosing k points.

Proof. We do divide-and-conquer by y-coordinates. Given a set P of n points in the plane,
and horizontal slabs σ and τ , each containing q points of P , we describe a recursive algorithm
to find a smallest k-enclosing axis-aligned rectangle containing P , under the restriction that
the top edge is inside σ and the bottom edge is inside τ . It is assumed that either σ is
completely above τ , or σ = τ . It is also assumed that all points above σ or below τ have
already been deleted from P . There can still be a large number of points in P − (σ ∪ τ)
(recursion will lower q but not necessarily n). We will not explicitly store the points in
P − (σ ∪ τ), but rather “summarize” the points in an O(q2)-space structure. Namely, we
assume that the x-coordinates of P are maintained in the 1D data structure S of Lemma 1,
where the marked points are the O(q) points in P ∩ (σ ∪ τ).

The algorithm proceeds as follows:
1. If q = 1, then report the answer by querying S in O(1) time. Else:
2. Divide σ into two horizontal subslabs σ1 and σ2, each containing q/2 points of P . Likewise

divide τ into τ1 and τ2.
3. For each i, j ∈ {1, 2}, recursively solve the problem for the slabs σi and τj ;2 to prepare

for the recursive call, make a copy of S, delete the (marked) points in P ∩ (σ ∪ τ) above

2 If σ = τ , one of the four recursive calls is unnecessary.

T.M. Chan and S. Har-Peled 23:5

σi or below τj , and unmark the remaining points in P ∩ (σ ∪ τ)− (σi ∪ τj), as shown in
Figure 2. The time needed for these O(q) deletions and unmarkings, and for copying S,
is O(q2) (we emphasize that this bound is independent of n).

σ

τ

σ1

σ2

τ1
τ2

σ1

τ1

σ1

τ2

σ2

τ1

σ2

τ2

Figure 2 Divide et impera for the problem at hand.

The running time satisfies the recurrence

T (n, q) = 4T (n, q/2) +O(q2),

with T (n, 1) = O(1), which gives T (n, q) = O(q2 log q). Initially, σ = τ is the entire plane,
with q = n; the data structure S can be preprocessed in O(n2) time. Thus, the total running
time is O(n2 logn). J

One can readily get an algorithm with k-sensitive running time for the perimeter case, by
reducing the problem into O(n/k) instance of size O(k). This reduction is well known [18, 16]
in this case – approximate the smallest enclosing disk containing k points in O(n logn) time,
partition the plane into a grid with side length proportional to the radius of this disk, and
then solve the problem for each cluster (i.e., 3× 3 group of grid cells) that contains at least
k points of P , using our above algorithm. We thus get the following.

I Corollary 3. Given a set P of n points in the plane and an integer k, one can compute,
in O(n logn+ nk log k) time, the smallest-perimeter axis-aligned rectangle enclosing k points
of P .

The O(n logn) term can be eliminated in the word RAM model, using a randomized
linear-time algorithm for approximate smallest k-enclosing disk [20] (which requires integer
division and hashing).

A similar reduction for the minimum-area case is more challenging, and was left as an
open problem in previous work [23]. The difficulty arises because the optimal-area rectangle
may be long and thin, with side length potentially much bigger than the radius of the
minimum k-enclosing disk. Nonetheless, we show that such a reduction is possible (with an
extra logarithmic factor) in the next subsection.

2.2 k-sensitive running time for smallest area
Our starting point is a shallow cutting lemma for 3-sided ranges [22]. (It can be viewed as
an orthogonal variant of Matoušek’s shallow cutting lemma for halfspaces [24].)

SoCG 2019

23:6 Smallest k-Enclosing Rectangle Revisited

I Lemma 4 ([22]). Given a set P of n points in the plane, lying above a horizontal line `,
and a parameter k, one can compute a family F of at most 2 dn/ke subsets of P , each of
size at most 6k. The collection of sets can be computed in O(n) time if the x-coordinates
have been pre-sorted. For any axis-aligned rectangle R with its bottom edge lying on `, that
contains less than k points of P , we have P ∩R ⊆ PA for some PA ∈ F .

I Definition 5. Let R be the set of all axis-aligned rectangles in the plane. A scoring
function is a function f : R→ R, with the following properties:
1. Translation invariant: ∀p ∈ R2, we have f(p+R) = f(R).
2. Monotonicity: ∀R,R′ ∈ R, such that R ⊆ R′, we have that f(R) ≤ f(R′).

Functions that satisfy the above definition include area, perimeter, diameter, and enclosing
radius of a rectangle.

For a set U ⊆ Rd, let lU = {(x,−y) | (x, y) ∈ U} be the reflection of U through the
x-axis. Similarly, let |U |y =

{
(x, |y|)

∣∣ (x, y) ∈ U
}
be the folding of U through the x-axis.

I Lemma 6. Given a set P of n points in the plane, a parameter k, and a scoring function
f , let Rmin be the minimum score axis-aligned rectangle that contains k points of P , and
intersects the x-axis. Then, one can compute a family F of O(n/k) subsets of P , such that
(i) each set of F is of size ≤ 12k, and (ii) Rmin ∩ P ⊆ PA, for some PA ∈ F .

Proof. Let P ′ = |P |y be the “folding” of P over the x-axis, and let F ′ be the cover of P ′ by
sets of size ≤ 12k, as computed by Lemma 4 for rectangles containing at most 2k points.
Let F be the corresponding family of sets for P . We claim that F has the desired property.

Rmin

x-axis

R

x-axis

R′

x-axis

Let R = |Rmin|y be the folding of Rmin, and let R′ = lR. Observe that f(R) = f(R′) ≤
f(Rmin) because of the translation invariance of f , and monotonicity of f .

If |R∩P | > k then one can shrink it so that it contains only k points of P , but this would
imply that Rmin is not the minimum, a contradiction. The case that |R′ ∩ P | > k leads to a
similar contradiction. We conclude that R ∪R′ contains at most 2k points of P . Implying
that R = |Rmin|y contains at most 2k points of P ′. As such, there is a set PA′ ∈ F ′ that
contains R ∩ P ′. Now, let PA be the corresponding set in F to PA′. Since Rmin ⊆ R ∪R′,
it follows that Rmin ∩ P ⊆ (R ∪R′) ∩ P ⊆ PA, as desired. J

I Lemma 7. Given a set P of n points in the plane, a parameter k, and a scoring function
f , let Rmin be the minimum score rectangle that contains k points of P . One can compute,
in O(n logn) time, a family F of O(nk log n

k) subsets of P , such that (i) each subset of F is
of size ≤ 12k, and (ii) Rmin ∩ P ⊆ PA, for some PA ∈ F .

Proof. Find a horizontal line ` that splits P evenly, and compute the family of Lemma 6.
Now recurse on the points above ` and the points below `. The recursion bottoms out when
the number of points is ≤ 12k. The correctness is by now standard – as soon as a recursive
call picks a line that stabs the optimal rectangle, the family generated for this line contains
the desired set. The x-coordinates need to be pre-sorted just once at the beginning. J

T.M. Chan and S. Har-Peled 23:7

I Theorem 8. Let P be a set of n points in the plane, k be a parameter, f be a scoring function
for rectangles, and let alg be an algorithm the computes, in Talg(m) time, the axis-aligned
rectangle containing k points in a set of m points that minimizes f . Then one can compute the
rectangle containing k points of P that minimizes f , in time O

(
n logn+ Talg(12k)nk log n

k

)
.

Proof. Compute the family of sets F using Lemma 7, and then apply alg to each set in
this family. J

Combining Theorem 2 with Theorem 8 gives the following.

I Corollary 9. Given a set P of n points in the plane and an integer k, one can compute,
in O(nk log n

k log k) time, the smallest-area axis-aligned rectangle enclosing k points of P .

For the case when t = n− k is very small (i.e., finding the smallest enclosing axis-aligned
rectangle with t outliers), there is an easy reduction (for both perimeter and area) yielding
O(n+Talg(4t)) time [26, 2], by keeping the t leftmost/rightmost/topmost/bottommost points.
Immediately from Theorem 2, we get O(n+ t2 log t) running time.

2.3 An approximation algorithm for smallest area
In this subsection, we give an efficient approximation algorithm for the smallest-area k-
enclosing rectangle problem. The smallest perimeter case is straightforward to approximate,
by grid rounding, but the area case is tougher, again because the optimal rectangle may be
long and thin.

I Definition 10. A laminar family of 3-sided rectangles is a collection R of axis-aligned
rectangles with the bottom edges lying on the x-axis, such that for every pair of rectangles
[a, b]× [0, c] and [a′, b′]× [0, c′] in R, one of the following is true:

[a, b] ∩ [a′, b′] = ∅, or
[a, b] ⊆ [a′, b′] and c > c′, or
[a′, b′] ⊆ [a, b] and c′ > c.

Standard range trees can answer orthogonal range counting queries (counting the number
of points inside rectangular ranges) in logarithmic time per query (this has been improved to
O(
√

logn) in the offline setting by Chan and Pătraşcu [12]). The following lemma shows how
to achieve constant time per query in the offline laminar special case, which will be useful
later in our approximation algorithm.

I Lemma 11. Let P be a set of n points, and let R be a laminar family of O(n) 3-sided
rectangles in the plane. Suppose that we are given a designated point on the top edge of
each rectangle in R, and the x- and y-coordinates of all the designated points and all the
points of P have been pre-sorted. Then we can count, for each rectangle R ∈ R, the number
of points of P inside the rectangle, in O(n) total time.

SoCG 2019

23:8 Smallest k-Enclosing Rectangle Revisited

Proof. We describe a sweep algorithm, with a horizontal sweep line ` moving downward.
Let X denote the set of x-coordinates of all points of P and all designated points of the
rectangles of R. Consider the union of R ∩ ` over all R ∈ R; it can be expressed as a union
of disjoint intervals. Let I` be the x-projection of these disjoint intervals. Store the following
collection Γ` of disjoint sets in a union-find data structure [27]: for each interval I ∈ I`,
define the set X ∩ I, and for each a ∈ X not covered by I`, define the singleton set {a}.
Create a linked list L` containing these sets in Γ` ordered by x. For each set in Γ`, we store
a count of the number of points of P below ` with x-coordinates inside the set.

Suppose that the sweep line ` hits the top edge of a rectangle R with x-projection [a, b].
By definition of a laminar family, any interval in I` that intersects [a, b] must be contained
in [a, b]. We find the set in Γ` that contains the x-coordinate of the designated point of R.
From this set, we walk through the list L` in both directions to find all sets contained in
[a, b], and replace these sets with their union in Γ` and L`. The count for the new set is the
sum of the counts of the old sets; this also gives the output count for the rectangle R.

Next, suppose that the sweep line ` hits a point p ∈ P . We find the set in Γ` that contains
the x-coordinate of p, and decrement its count. (For example, if the set is a singleton, its
count changes from 1 to 0.)

The entire sweep performs O(n) union and find operations. Gabow and Tarjan [19] gave
a linear-time union-find algorithm for the special case where the “union tree” is known in
advance; their algorithm is applicable, since the union tree here is just a path of the elements
ordered by x. J

We first solve the approximate decision problem:

I Lemma 12. Given a set P of n points in the plane, a value α, and parameters k and
ε ∈ (0, 1), one can either compute a k-enclosing axis-aligned rectangle R′ such that area(R′) ≤(
1 +O(ε)

)
α, or conclude that the smallest-area k-enclosing axis-aligned rectangle has area

greater than α. The running time of the algorithm is O
(
ε−3 log ε−1 · n logn

)
.

Proof. It is sufficient to solve the problem for the case where the rectangle must intersect a
horizontal line ` in O((1/ε)3 log(1/ε) ·n) time, assuming that the x- and y-coordinates of the
given points P have been pre-sorted. Then standard divide-and-conquer by y-coordinates
gives an O((1/ε)3 log(1/ε) ·n logn)-time algorithm for the general problem. Pre-sorting needs
to be done only once at the beginning.

Without loss of generality, assume that ` is the x-axis. Suppose there exists a rectangle
R∗ intersecting ` that contains at least k points and has area at most α. By symmetry, we
may assume that R∗ has greater area above ` than below, and that the top edge passes
through some input point p = (px, py) ∈ P . Then the height h∗ of R∗ is between py and 2py,
and the width w∗ is at most α/py.

T.M. Chan and S. Har-Peled 23:9

Without loss of generality, assume that all x-coordinates are in [0, 1/3]. Define a one-
dimensional quadtree interval (also known as a dyadic interval) to be an interval of the
form [m2i ,

m+1
2i]. It is known that every interval of length w < 1/3 is contained in a quadtree

interval of length O(w) after shifting the interval by one of two possible values s ∈ {0, 1/3}
(this is a special case of a shifting lemma for d-dimensional quadtrees [6, 8]). Thus, suppose
that [px −α/py, px +α/py] is contained in the interval [m2i + s, m+1

2i + s], where the length 1
2i

is equal to the smallest power of 2 greater than cα/py, for some constant c. (Note that i is
a nondecreasing function of py.) Without loss of generality, assume that 1/ε = 2E for an
integer E. Define a family of O(1/ε3) canonical rectangles of the form

[m2i + j
2i+E + s, m

2i + j′

2i+E + s] × [−j′′εpy, py]

over all possible indices j, j′, j′′ ∈ {0, . . . , 1/ε} such that px ∈ [m2i + j
2i+E + s, m

2i + j′

2i+E + s].
By rounding, R∗ is contained in a canonical rectangle R′ with height at most h∗+O(ε)py ≤

(1 +O(ε))h∗ and width at most

w∗ +O(ε)α/py ≤
(
1 +O(ε)

)
α/h∗,

and thus area at most (1 +O(ε))α. So, it suffices to count the number of points inside each
canonical rectangle and return the smallest area among those rectangles containing at least
k points.

To speed up range counting, observe that for canonical rectangles with the same j, j′, j′′,
the same s ∈ {0, 1/3}, and the same value for (i mod E), the portion of the rectangles above
(resp. below) ` forms a laminar family. This is because: (i) in the x-projections, if a pair
of intervals intersects, one interval must be contained in the other; (ii) as the height of
the 3-sided rectangle increases, py increases, and so i can only increase (or stay the same),
and so the width of the rectangle can only decrease (or stay the same). Thus, we can
apply Lemma 11 to compute the counts of the points inside each rectangle, for all canonical
rectangles with a fixed j, j′, j′′, s and (i mod E), in O(n) time (for each canonical rectangle,
we can use a point (px, py) ∈ P on the top edge, and a corresponding point (px,−j′′εpy)
on the bottom edge, as the designated points). The number of choices for j, j′, j′′, s and
(i mod E) is O((1/ε)3 log(1/ε)). J

I Theorem 13. Given a set P of n points in the plane, and parameters k and ε ∈ (0, 1),
one can compute a k-enclosing rectangle R′ such that area(R′) ≤ (1 + ε)opt(P, k), where
opt(P, k) is the area of the smallest axis-aligned rectangle containing k points of P . The
expected running time of the algorithm is O

(
(1/ε)3 log(1/ε) · n logn

)
.

Proof. We can use known techniques for reducing optimization problems to decision problems.
We give a self-contained description of one approach based on Chan’s randomized technique [9].

Let b be a sufficiently large constant. Divide the plane into b columns (vertical slabs)
each containing n/b points. Similarly divide the plane into b rows (horizontal slabs) each
containing n/b points. These steps take linear time by invoking a selection algorithm O(b)
times. For each quadruple τ = (c, c′, r, r′) where c and c′ are columns (with c left of c′ or
c = c′) and r and r′ are rows (with r below r′ or r = r′), consider the subproblem of finding
the smallest-area rectangle containing k points of P , subject to the extra constraints that the
left edge of the rectangle lies in c, the right edge lies in c′, the bottom edge lies in r, and the
top edge lies in r′. To solve this subproblem, it suffices to consider the at most 4n/b points
in P ∩ (c ∪ c′ ∪ r ∪ r′). To ensure that the extra constraints are satisfied, we add 4n/b copies
of the four intersection points formed by the right boundary of c, the left boundary of c′, the

SoCG 2019

23:10 Smallest k-Enclosing Rectangle Revisited

top boundary of r, and the bottom boundary of r′; and we add 16n/b to k. (Straightforward
modifications can be made in the special case when c = c′ or r = r′.) Let Pτ be the resulting
point set of size at most 20n/b points, and kτ be the resulting value of k. We thus have

opt(P, k) = min
τ

opt(Pτ , kτ).

To compute an approximation to the minimum, we consider the at most b4 quadruples
in random order τ1, τ2, . . . and keep track of an approximate minimum α with the invariant
that α ≤ min{opt(Pτ1 , kτ1), . . . , opt

(
Pτi−1 , kτi−1

)
} < (1 + ε)α after the (i − 1)th iteration.

Let ε′ be such that (1 + ε′)2 = 1 + ε; note that ε′ = Θ(ε). At the ith iteration, we run the
approximate decision procedure for Pτi twice, at values α and α/(1 + ε′), which allows us to
conclude one of the following:

opt(Pτi , kτi) ≥ α. In this case, we can continue to the next iteration and the invariant is
maintained.

α/(1 + ε′) ≤ opt(Pτi
, kτi

) < (1 + ε′)α. In this case, we reset α to α/(1 + ε′) and the
invariant is maintained.

opt(Pτi
, kτi

) < α. In this case, we recursively compute an approximation αi to the
quantity opt(Pτi , kτi), satisfying αi ≤ opt(Pτi , kτi) < (1 + ε)αi. We reset α to αi and the
invariant is maintained.

We land in the third case only if opt(Pτi
, kτi

) is the smallest among the i values opt(Pτ1 , kτ1),
. . . , opt(Pτi

, kτi
), which happens with probability at most 1/i. Thus, the expected number

of recursive calls is bounded by the (b4)th Harmonic number
∑b4

i=1 1/i < ln(b4) + 1. The
expected running time satisfies the recurrence

T (n) ≤ (4 ln b+ 1)T (20n/b) +O
(
(1/ε)3 log(1/ε) · n logn

)
,

which gives T (n) = O
(
(1/ε)3 log(1/ε) · n logn

)
when b = 1000, for example. J

3 Extensions

3.1 3-sided smallest k-enclosing rectangle
In this subsection, we give a slightly faster algorithm for the 3-sided variant of the prob-
lem, finding the smallest-area/perimeter rectangle enclosing k points, under the restriction
that the bottom edge lies on the x-axis. The improvement uses the latest result on the
(min,+)-convolution problem, and is interesting in view of a reduction in Section 3.5 in
the reverse direction, establishing essentially an equivalence of the 3-sided problem to
(min,+)-convolution.

I Problem 14. (min,+)-Convolution. Given real numbers a0, . . . , an−1, b0, . . . , bn−1, compute
c` = min`i=0(ai + b`−i) for all ` = 0, . . . , 2n− 2.

Let Tconvol(n) be the time complexity of the (min,+)-convolution problem. As observed
by Bremner et al. [7], the problem can be reduced to (min,+)-matrix multiplication, and
using the current best result by Williams [28] (derandomized by Chan and Williams [13]),
Tconvol(n) = O(n2/2Ω(

√
logn)). We use (min,+)-convolution to speed up the preprocessing

time of the 1D data structure from Section 2.1.

I Lemma 15. The preprocessing time in Lemma 1 can be reduced to O((n/q)Tconvol(q) + q3).

T.M. Chan and S. Har-Peled 23:11

Proof. Divide the n × n matrix M vertically into n/q submatrices M1, . . . ,Mn/q each
of dimension n × q. For each submatrix Mi, we consider the portions of the diagonals
k, . . . , k + q that are within Mi – each such portion will be called a chunk. We precompute
the minimum of the entries in each chunk. For a fixed i, this is equivalent to computing
minqi<j≤q(i+1)(pj+`−1 − pj) for all ` ∈ {k, . . . , k + q}. Notice that after some massaging
of the sequence (negating, reversing, and padding), this computation can be reduced to
(min,+)-convolution over O(q) elements, and can thus be done in O(Tconvol(q)) time. The
total time over all i is O((n/q)Tconvol(q)).

Recall that in the preprocessing algorithm in Lemma 1, we need to compute the minimum
of each fragment in the k, . . . , k + q diagonals. Each fragment can be decomposed into some
number of disjoint chunks plus O(q) extra elements. Over all O(q) diagonals, there are O(q2)
fragments and O(n/q · q) = O(n) chunks in total. Thus, we can compute the minima of all
fragments in O(q2 · q + n/q · q) = O(q3 + n) time, after the above precomputation of the
minima of all chunks. J

I Theorem 16. Given a set P of n points in the plane and integer k, one can compute, in
O(n2/2Ω(

√
logn)) time, the smallest-area/perimeter axis-aligned rectangle enclosing k points

of P , under the restriction that the bottom edge lies on the x-axis.

Proof. Divide the plane into n/q horizontal slabs each containing q points, for some parameter
q to be set later.

Take such a slab σ. We solve the subproblem of finding a smallest k-enclosing axis-aligned
rectangle under the restriction that the top edge is in σ and the bottom edge is on the x-axis.
To this end, we first delete all points above σ or below the x-axis. We build the 1D data
structure S in the lemma for the x-coordinates of the surviving points, where the marked
points are the q points in σ. The preprocessing time is O((n/q)Tconvol(q) + q3). Then for
each point p ∈ σ, we can compute a smallest k-enclosing axis-aligned rectangle where the top
edge has p’s y-coordinate and bottom edge is on the x-axis, by making a copy of S, deleting
all points in σ above p, and querying S. The time needed for the O(q) deletions, and for
copying S, is O(q2). The total time over all p ∈ σ is O(q3).

We return the minimum (by area or perimeter) of all the rectangles found. The overall
running time over all n/q slabs σ is

O((n/q) · ((n/q)Tconvol(q) + q3)).

With Tconvol(q) = O(q2/2Ω(
√

log q)), we can set q = n1/3, for example, and obtain the final
time bound O(n2/2Ω(

√
log q)). J

For k-sensitive bounds, we can apply the shallow cutting technique from Section 2.2
(which is easier for 3-sided rectangles) and obtain an O(n logn+ nk/2Ω(

√
log k)) time bound.

3.2 Arbitrarily oriented smallest k-enclosing rectangle
We briefly consider the problem of computing a smallest-area/perimeter arbitrarily oriented
rectangle (not necessarily axis-aligned) enclosing k points. The optimal rectangle is defined
by 5 points, with one edge containing 2 points p∗1 and p∗2. Given a fixed choice of p∗1 and
p∗2, we can use a rotation and translation to make p∗1p∗2 lie on the x-axis and thereby obtain
a 3-sided axis-aligned rectangle problem, which can be solved in O(n logn+ nk/2Ω(

√
log k))

time. Exhaustively trying all pairs p∗1p∗2 then gives O(n3 logn+ n2k/2Ω(
√

log k)) total time.

SoCG 2019

23:12 Smallest k-Enclosing Rectangle Revisited

3.3 Minimum-weight k-enclosing rectangle
Our O(n2 logn)-time algorithm can be adapted to solve the following related problem.
(Without the k constraint, the problem has an O(n2)-time algorithm [5].)

I Theorem 17. Given a set P of n points in the plane each with a real weight, and an
integer k, one can compute, in O(n2 logn) time, the axis-aligned rectangle enclosing k points
minimizing the total weight of the points inside.

Proof. We follow the same approach as in Section 2.1, with the following differences in the
data structure of Lemma 1. For every fragment we maintain the minimum weight solution.
Using prefix sums, the entry Mi,j in the matrix contains the total weight of the elements
from i to j. As before, we break the q + 1 diagonals of entry into fragments, where each
fragment summary maintains the minimum weight encountered.

A deletion of a marked point p of weight w would result is an insertion of a fixup entry,
of value −w into a linked list of a diagonal where p appeared as a singleton (when crossing a
column of p), and a fixup entry of value +w when encountering the row column of p. The
real value of a fragment is the value stored in the fragment plus the total sum of the fixups
appearing before it in the linked list of its diagonal. As such, during query the real value
can be computed in O(q) time overall, as this list is being scanned. When we merge two
adjacent fragments separated by a singleton, we should increase the later fragment by the
fixup value at the singleton before taking the minimum. Clearly, all the operations can be
implemented in O(q) time.

Now, we can use the divide-and-conquer algorithm in the proof of Theorem 2 with
no change. J

As an application, we can solve the following problem: given n points in the plane each
colored red or blue, and an integer k, find an axis-aligned rectangle enclosing exactly k points
minimizing the number of red points inside. This is a special case of the problem in the
above theorem, where the red points have weight 1 and blue points have weight 0, and can
thus be solved in O(n2 logn) time.

Similarly, we can solve for other variants of the red/blue problem, for example, finding
a k-enclosing rectangle maximizing (or minimizing) the number of red points, or finding
a k-enclosing rectangle with exactly a given number kr of red points. (For the latter, the
following observation allows us to reduce the 1D subproblem to querying for the maximum
and minimum: given a set P of red/blue points in 1D and a value k, let Kr denote the set of
all possible values kr for which there exists an interval containing k points of P and exactly
kr red points; then Kr forms a contiguous range of integers, and thus contains all numbers
between min(Kr) and max(Kr).)

3.4 Subset sum for k-enclosing rectangle
A more challenging variant of the weighted problem is to find a rectangle enclosing exactly
k points with total weight exactly W (similar to subset sum), or more generally, find an
axis-aligned rectangle enclosing exactly k points with total weight closest to W .

We use a different approach, using a 1D data structure that is static but can “plan for” a
small number of deletions.

I Lemma 18. Given a set P of n points in 1D and integers k and q, we can build a static
data structure, with O(nq logn) preprocessing time, that supports the following type of queries
in O(q logn) time: for any subset D ⊂ P of at most q points and any weight W , find an
interval containing k points of P −D with weight closest to W .

T.M. Chan and S. Har-Peled 23:13

Proof. See full version [10]. J

I Theorem 19. Given n points in the plane each with a real weight, and given a real number
W and an integer k, one can compute, in O(n5/2 logn) time, an axis-aligned rectangle
enclosing exactly k points with total weight closest to W .

Proof. See full version [10]. J

We can further improve the running time for small k:

I Theorem 20. Given n points in the plane each with a real weight, and given a real number
W and an integer k, one can compute, in O(n2

√
k log k) time, an axis-aligned rectangle

enclosing exactly k points with total weight closest to W .

Proof. See full version [10]. J

As an application, we can solve the following problem: given n colored points in the plane
with d different colors, and integers k1, . . . , kd, with k1 + · · ·+ kd = k, find an axis-aligned
rectangle enclosing exactly ki points of the ith color. The problem was proposed by Barba
et al. [4], who gave an O(n2k)-time algorithm. (It may be viewed as a geometric variant of
the jumbled or histogram indexing problem for strings [11].) It is a special case of the problem
from Theorem 19: we can give points with color i a weight of M i for a sufficiently large M ,
e.g., M = n+ 1, and set the target to W =

∑d
i=1 kiM

i. Since weights require O(d logn) bits,
each addition has O(d) cost, and so the running time becomes O(dn2

√
k log k). The weights

can be reduced to O(logn) bits by randomized hashing (for example, by randomly selecting
M from {0, . . . , p−1} and working with numbers modulo p for an O(logn)-bit prime p), since
there are only polynomially (i.e., O(n4)) many combinatorially different rectangles. This
way, the running time can be reduced to O(n2

√
k log k) – this improves Barba et al.’s result.

3.5 Conditional lower bounds
We can prove that the smallest-perimeter k-enclosing axis-aligned rectangle problem do
not have truly subquadratic (i.e., O(n2−δ)) algorithms, under the conjecture that (min,+)-
convolution does not have a truly subquadratic algorithm. Our proof holds for the 3-sided
version of the problem, which complements nicely with our upper bound in Section 3.1 using
(min,+)-convolution.

We describe a reduction from the following decision problem, which Cygan et al. [14]
showed does not have a truly subquadratic algorithm under the (min,+)-convolution
conjecture.
I Problem 21. (min,+)-Convolution Decision. Given real numbers a0, . . . , an−1, b0, . . . , bn−1,

and c0, . . . , cn−1, decide whether

∀` : c` ≤ min
i+j=`

(ai + bj).

I Theorem 22. If there is a T (n)-time algorithm for computing the smallest-perimeter/area
axis-aligned rectangle enclosing k points for a given set of n points in the plane and a given
number k (with or without the constraint that the bottom edge lies on the x-axis), then there
is an O(T (O(n))-time algorithm for Problem 21.

Proof. See full version [10]. J

A similar reduction holds for the minimum-weight k-enclosing rectangle problem from
Theorem 17:

SoCG 2019

23:14 Smallest k-Enclosing Rectangle Revisited

I Theorem 23. If there is a T (n)-time algorithm for computing the minimum-weight axis-
aligned rectangle enclosing k points for a given set of n weighted points in the plane and
number k (with or without the constraint that the bottom edge lies on the x-axis), then there
is an O(T (O(n))-time algorithm for Problem 21.

Proof. See full version [10]. J

A near-quadratic conditional lower bound for the minimum-weight rectangle problem
without the k constraint was given by Backurs et al. [3] (under a different “popular” conjecture
about the complexity of maximum-weight clique).

We can similarly prove that the subset-sum variant of the k-enclosing rectangle prob-
lem from Theorem 19 (or its 3-sided variant) does not have truly subquadratic algo-
rithms, under the conjecture that the convolution-3SUM problem (given real numbers
a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1, decide whether c` = ai + b`−i for some i and `) does
not have a truly subquadratic algorithm (which is known to be true under the conjecture
that 3SUM for integers does not have a truly subquadratic algorithm [25]).

References
1 Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri. Finding k points with minimum

diameter and related problems. J. Algorithms, 12(1):38–56, 1991. doi:10.1016/0196-6774(91)
90022-Q.

2 Rossen Atanassov, Prosenjit Bose, Mathieu Couture, Anil Maheshwari, Pat Morin, Michel
Paquette, Michiel H. M. Smid, and Stefanie Wuhrer. Algorithms for optimal outlier removal.
J. Discrete Algorithms, 7(2):239–248, 2009. doi:10.1016/j.jda.2008.12.002.

3 Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for maximum
weight rectangles. In Proc. 43rd Int. Colloq. Automata Lang. Prog. (ICALP), pages 81:1–81:13,
2016.

4 Luis Barba, Stephane Durocher, Robert Fraser, Ferran Hurtado, Saeed Mehrabi, Debajyoti
Mondal, Jason Morrison, Matthew Skala, and Mohammad Abdul Wahid. On k-enclosing
objects in a coloured point set. In Proc. 25th Canad. Conf. Comput. Geom. (CCCG), 2013.
URL: http://cccg.ca/proceedings/2013/papers/paper_35.pdf.

5 Jérémy Barbay, Timothy M. Chan, Gonzalo Navarro, and Pablo Pérez-Lantero. Maximum-
weight planar boxes in O(n2) time (and better). Inform. Process. Lett., 114(8):437–445, 2014.
doi:10.1016/j.ipl.2014.03.007.

6 Marshall W. Bern. Approximate closest-point queries in high dimensions. Inf. Process. Lett.,
45(2):95–99, 1993. doi:10.1016/0020-0190(93)90222-U.

7 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Pătraşcu, and Perouz Taslakian. Necklaces, convolutions,
and X + Y . Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

8 Timothy M. Chan. Approximate nearest neighbor queries revisited. Discrete & Computational
Geometry, 20(3):359–373, 1998. doi:10.1007/PL00009390.

9 Timothy M. Chan. Geometric applications of a randomized optimization technique. Discrete
Comput. Geom., 22(4):547–567, 1999. doi:10.1007/PL00009478.

10 Timothy M. Chan and Sariel Har-Peled. Smallest k-enclosing rectangle revisited. CoRR,
abs/1903.06785, 2019. arXiv:1903.06785.

11 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combinatorics.
In Proc. 47th Annu. ACM Sympos. Theory Comput. (STOC), pages 31–40, 2015. doi:
10.1145/2746539.2746568.

12 Timothy M. Chan and Mihai Pătraşcu. Counting inversions, offline orthogonal range counting,
and related problems. In Proc. 21st ACM-SIAM Sympos. Discrete Algs. (SODA), pages
161–173, 2010. doi:10.1137/1.9781611973075.15.

http://dx.doi.org/10.1016/0196-6774(91)90022-Q
http://dx.doi.org/10.1016/0196-6774(91)90022-Q
http://dx.doi.org/10.1016/j.jda.2008.12.002
http://cccg.ca/proceedings/2013/papers/paper_35.pdf
http://dx.doi.org/10.1016/j.ipl.2014.03.007
http://dx.doi.org/10.1016/0020-0190(93)90222-U
http://dx.doi.org/10.1007/s00453-012-9734-3
http://dx.doi.org/10.1007/PL00009390
http://dx.doi.org/10.1007/PL00009478
http://arxiv.org/abs/1903.06785
http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1137/1.9781611973075.15

T.M. Chan and S. Har-Peled 23:15

13 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov–Smolensky. In Proc. 27th ACM-SIAM Sympos. Discrete
Algs. (SODA), pages 1246–1255, 2016. doi:10.1137/1.9781611974331.ch87.

14 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min,+)-convolution. In Proc. 44th Int. Colloq. Automata Lang. Prog. (ICALP),
volume 80 of LIPIcs, pages 22:1–22:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.22.

15 Sandip Das, Partha P. Goswami, and Subhas C. Nandy. Smallest k-point enclosing rectangle
and square of arbitrary orientation. Inform. Process. Lett., 94(6):259–266, 2005. doi:10.1016/
j.ipl.2005.02.013.

16 Amitava Datta, Hans-Peter Lenhof, Christian Schwarz, and Michiel H. M. Smid. Static
and dynamic algorithms for k-point clustering problems. J. Algorithms, 19(3):474–503, 1995.
doi:10.1006/jagm.1995.1048.

17 Mark de Berg, Sergio Cabello, Otfried Cheong, David Eppstein, and Christian Knauer. Covering
many points with a small-area box. CoRR, abs/1612.02149, 2016. arXiv:1612.02149.

18 David Eppstein and Jeff Erickson. Iterated nearest neighbors and finding minimal polytopes.
Discrete Comput. Geom., 11:321–350, 1994. URL: http://jeffe.cs.illinois.edu/pubs/
small.html.

19 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint
set union. J. Comput. Sys. Sci., 30(2):209–221, 1985. doi:10.1016/0022-0000(85)90014-5.

20 Sariel Har-Peled and Soham Mazumdar. Fast algorithms for computing the smallest k-enclosing
disc. Algorithmica, 41(3):147–157, 2005. URL: https://sarielhp.org/p/03/min_disk/.

21 Sariel Har-Peled and Micha Sharir. Relative (p, ε)-approximations in geometry. Discrete
Comput. Geom., 45(3):462–496, 2011. doi:10.1007/s00454-010-9248-1.

22 Allan Grønlund Jørgensen and Kasper Green Larsen. Range selection and median: Tight
cell probe lower bounds and adaptive data structures. In Proc. 22nd ACM-SIAM Sympos.
Discrete Algs. (SODA), pages 805–813, 2011. doi:10.1137/1.9781611973082.63.

23 Haim Kaplan, Sasanka Roy, and Micha Sharir. Finding axis-parallel rectangles of fixed
perimeter or area containing the largest number of points. In Proc. 26th Annu. Euro. Sympos.
Alg. (ESA), volume 87 of LIPIcs, pages 52:1–52:13, 2017. doi:10.4230/LIPIcs.ESA.2017.52.

24 Jiří Matoušek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169–186, 1992.
25 Mihai Pătraşcu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd Annu.

ACM Sympos. Theory Comput. (STOC), pages 603–610, 2010. doi:10.1145/1806689.1806772.
26 Michael Segal and Klara Kedem. Enclosing k points in the smallest axis parallel rectangle.

Inform. Process. Lett., 65(2):95–99, 1998. doi:10.1016/S0020-0190(97)00212-3.
27 Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. Assoc.

Comput. Mach., 22(2):215–225, 1975. doi:10.1145/321879.321884.
28 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proc. 46th Annu. ACM

Sympos. Theory Comput. (STOC), pages 664–673, 2014. doi:10.1145/2591796.2591811.

SoCG 2019

http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.22
http://dx.doi.org/10.1016/j.ipl.2005.02.013
http://dx.doi.org/10.1016/j.ipl.2005.02.013
http://dx.doi.org/10.1006/jagm.1995.1048
http://arxiv.org/abs/1612.02149
http://jeffe.cs.illinois.edu/pubs/small.html
http://jeffe.cs.illinois.edu/pubs/small.html
http://dx.doi.org/10.1016/0022-0000(85)90014-5
https://sarielhp.org/p/03/min_disk/
http://dx.doi.org/10.1007/s00454-010-9248-1
http://dx.doi.org/10.1137/1.9781611973082.63
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.52
http://dx.doi.org/10.1145/1806689.1806772
http://dx.doi.org/10.1016/S0020-0190(97)00212-3
http://dx.doi.org/10.1145/321879.321884
http://dx.doi.org/10.1145/2591796.2591811

Dynamic Geometric Data Structures via Shallow
Cuttings
Timothy M. Chan
Department of Computer Science, University of Illinois at Urbana-Champaign, USA
tmc@illinois.edu

Abstract
We present new results on a number of fundamental problems about dynamic geometric data
structures:
1. We describe the first fully dynamic data structures with sublinear amortized update time for

maintaining (i) the number of vertices or the volume of the convex hull of a 3D point set, (ii) the
largest empty circle for a 2D point set, (iii) the Hausdorff distance between two 2D point sets,
(iv) the discrete 1-center of a 2D point set, (v) the number of maximal (i.e., skyline) points in
a 3D point set. The update times are near n11/12 for (i) and (ii), n7/8 for (iii) and (iv), and
n2/3 for (v). Previously, sublinear bounds were known only for restricted “semi-online” settings
[Chan, SODA 2002].

2. We slightly improve previous fully dynamic data structures for answering extreme point queries
for the convex hull of a 3D point set and nearest neighbor search for a 2D point set. The query
time is O(log2 n), and the amortized update time is O(log4 n) instead of O(log5 n) [Chan, SODA
2006; Kaplan et al., SODA 2017].

3. We also improve previous fully dynamic data structures for maintaining the bichromatic closest
pair between two 2D point sets and the diameter of a 2D point set. The amortized update time
is O(log4 n) instead of O(log7 n) [Eppstein 1995; Chan, SODA 2006; Kaplan et al., SODA 2017].

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Data structures design and analysis

Keywords and phrases dynamic data structures, convex hulls, nearest neighbor search, closest pair,
shallow cuttings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.24

Related Version A full version of this paper is available at https://arxiv.org/abs/1903.08387.

Funding Timothy M. Chan: Work supported in part by NSF Grant CCF-1814026.

Acknowledgements I thank Sariel Har-Peled for discussions on other problems that indirectly led
to the results of this paper. Thanks also to Mitchell Jones for discussions on range searching for
points in convex position.

1 Introduction

Background. Dynamic data structures that can support insertions and deletions of data
have been a fundamental topic in computational geometry since the beginning of the field.
For example, in 1981 an early landmark paper by Overmars and van Leeuwen [25] presented
a fully dynamic data structure for 2D convex hulls with O(logn) query time and O(log2 n)
update time; the log2 n bound was later improved in a series of work [7, 6, 12] for various
basic types of hull queries, e.g., finding extreme points along given directions.

One of the key results in the area is the author’s fully dynamic data structure for 3D
convex hulls [10], which was the first to achieve polylogarithmic query and update time for
basic types of hull queries. The original solution required O(log2 n) query time for extreme
point queries, and O(log6 n) amortized update time. (A previous solution by Agarwal and

© Timothy M. Chan;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmc@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.24
https://arxiv.org/abs/1903.08387
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Dynamic Geometric Data Structures via Shallow Cuttings

Matoušek [4] had O(nε) query or update time for an arbitrarily small constant ε > 0.)
Recently Kaplan et al. [21] noted a small modification of the data structure, improving
the update time to O(log5 n). The result has numerous applications, including dynamic 2D
nearest or farthest neighbor search (by the standard lifting map). Another application is
dynamic 2D bichromatic closest pair (i.e., computing minp∈P minq∈Q ‖p− q‖ for two planar
point sets P and Q) or dynamic 2D diameter (i.e., computing maxp∈P maxq∈P ‖p− q‖ for
a planar point set P): Eppstein [18] gave a clever, general technique reducing dynamic
closest/farthest pair problems to dynamic nearest/farthest neighbor search, which increased
the update time by a log2 n factor; when combined with the above, this yielded an O(log7 n)
update time bound.

For many other problems, polylogarithmic update time appears more difficult, and getting
sublinear update time is already challenging. For example, in SoCG 2001, the author [8]
obtained a dynamic data structure for the width of a 2D point set with O∗(

√
n) amortized

update time.1 (Part of the difficulty is that the width problem is neither “decomposable” nor
“LP-type”.) Sublinear update time is known for a few other assorted geometric problems,
such as dynamic connectivity for the intersection graph of geometric objects [14].

In SODA 2002, the author [9] explored still more challenging dynamic geometric problems,
including maintaining

(i) the number of vertices and facets of a 3D convex hull, or its volume,
(ii) the largest empty circle for a 2D point set (with center restricted to be inside a fixed

triangle),
(iii) the Hausdorff distance for 2D point sets P andQ (i.e., computing maxq∈Q minp∈P ‖p−q‖

for two planar point set), and
(iv) the discrete 1-center of a 2D point set P (i.e., computing minq∈P maxp∈P ‖p− q‖).

The paper [9] obtained sublinear results only for the insertion-only case and the off-line case
(where we are given the entire update sequence in advance), or a generalization of both – the
semi-online case (as defined by Dobkin and Suri [17], where we are given the deletion time
of an element when it is inserted). The update time bounds were O∗(n7/8) for (i) and (ii),
and O∗(n5/6) for (iii) and (iv).

None of these four problems are “decomposable”. In particular, problem (i) is nontrivial
since known methods such as [10] for 3D convex hull queries do not maintain the global hull
explicitly, unlike Overmars and van Leeuwen’s original data structure for 2D convex hulls.
Problem (ii) also seems to require explicit maintenance of a 3D convex hull (lifted from
the 2D farthest-point Voronoi diagram). Problems (iii) and (iv) are max-min or min-max
problems, and lack the symmetry of min-min and max-max problems that enable Eppstein’s
technique. For all these problems, the fully dynamic case has remained open.

New results.
1. We present the first fully dynamic data structures with sublinear update time for Problems

(i)–(iv). The amortized update time bounds are O∗(n11/12) for (i) and (ii), and O∗(n5/6)
for (iii) and (iv).
The approach is general enough to be applicable to many more problems; for example, we
can maintain the number of maximal or “skyline” points (points that are not dominated
by other points) in a 3D point set in O∗(n2/3) amortized time.

1 Throughout the paper, we use the O∗ notation to hide small extra factors that are polylogarithmic, or
in some cases, o(nε) for an arbitrarily small constant ε > 0.

T.M. Chan 24:3

2. For basic 3D convex hull queries (e.g., extreme point queries) and 2D nearest neighbor
search, as mentioned, Kaplan et al. [21] have lowered the amortized update time of the
author’s fully dynamic data structure [10], from O(log6 n) to O(log5 n). We describe a
further logarithmic-factor improvement, from O(log5 n) to O(log4 n).
Although this improvement is admittedly small, the importance of the result stems from
its many applications [10]; for example, we can now compute the convex (or onion) layers
of a 3D point set in O(n log4 n) time, and the k-level in an arrangement of planes in 3D
in O(n logn+ f log4 n) time where f is the output size.

3. For bichromatic closest pair and diameter in 2D, combining Eppstein’s technique [18]
with the above new result on dynamic nearest neighbor search already gives a slightly
improved amortized update time of O(log6 n). We describe a further, more substantial
improvement that eliminates the two extra logarithmic factors caused by Eppstein’s
technique [18]. The new update time bound is O(log4 n).
Dynamic bichromatic closest pair has applications to other problems. For example, we
can now maintain the Euclidean minimum spanning tree of a 2D point set with O(log6 n)
amortized update time by using another reduction of Eppstein [18] combined with known
results for dynamic minimum spanning trees for graphs [20].

Techniques. The common thread in all of our new methods is the use of shallow cuttings:
Let H be a set of n hyperplanes in Rd. The level of a point q refers to the number of
hyperplanes of H strictly below q. A (k,K)-shallow cutting is a collection of cells covering all
points of level at most k, such that each cell intersects at most K hyperplanes. The conflict
list H∆ of a cell ∆ refers to the subset of all hyperplanes of H intersecting ∆.

Matoušek [23] proved the existence of shallow cuttings with small number of cells.
Specifically, in 3D, the main lemma can be stated as follows:2

I Lemma 1. (Shallow Cutting Lemma) Given a set H of n planes in R3 and a parameter
k ∈ [1, n], there exists a (k,O(k))-shallow cutting with O(n/k) cells, where each cell is a
“downward” tetrahedron containing (0, 0,−∞). The cutting, together with the conflict lists of
all its cells, can be constructed in O(n logn) time.

The construction time was first shown by Ramos [26] with a randomized algorithm. Later,
Chan and Tsakalidis [15] obtained the first O(n logn)-time deterministic algorithm.

To see how static shallow cuttings may be useful for dynamic geometric data structures,
observe that most of the problems considered here are related to the lower envelope of a
dynamic set of planes in R3 (via duality or the standard lifting transformation). Usually, the
bottleneck lies in deletions rather than insertions. Basically, a shallow cutting provides a
compact implicit representation of the (≤ k)-level, which is guaranteed to cover the lower
envelope even when up to k deletions have occurred.

A further idea behind all our solutions is to classify planes into two types, those that
intersect few cells of the shallow cutting, and those that intersect many cells. The latter type
of planes may be bad in slowing down updates, but the key observation is that there can’t
be too many bad elements.

The new sublinear solutions to Problems (i)–(iv), described in Sections 2–3, are obtained
by incorporating the shallow cutting idea with the previous techniques from [9], based on
periodic rebuilding. The entire solution is conceptually not complicated at all, and the

2 Matoušek’s original formulation in Rd states the existence of a (k, n/r)-shallow cutting with O(rbd/2c(1+
kr/n)dd/2e) cells.

SoCG 2019

24:4 Dynamic Geometric Data Structures via Shallow Cuttings

description for Problem (i) fits in under two pages, assuming the availability of known
range searching structures. As are typical in other works on data structures with sublinear
update time with “funny” exponents, parameters are judiciously chosen to balance several
competing costs.

The shallow cutting idea has actually been exploited before in dynamic data structures
for basic 3D convex hull queries: Agarwal and Matoušek [4] used shallow cuttings recursively
(which caused some loss of efficiency), while the author [10] used a hierarchy of shallow
cuttings, for logarithmically many values of k. The above application of shallow cuttings to
Problems (i)–(iv) is even more elementary – we only need a single cutting. (This makes it all
the more embarassing that the idea was missed till now.)

For basic 3D convex hull queries and 2D nearest neighbor search, our improvement is less
innovative. Described in Section 4 (which can be read independently of the previous sections),
it is based on the author’s original data structure [10], with Kaplan et al.’s logarithmic-
factor improvement [21], plus one extra idea to remove a second logarithmic factor: the
main observation is that Chan and Tsakalidis’s algorithm for shallow cuttings [15] already
constructs an entire hierarchy of O(logn) cuttings in O(n logn) time, not just a single cutting.
However, the hierarchy needed for the data structure in [10] requires some planes be pruned
as we go from one cutting to the next, so Chan and Tsakalidis’s algorithm cannot be applied
immediately. Still, we show that some nontrivial but technical changes (as explained in the
appendix) can fix the problem.

For 2D bichromatic closest pair and diameter, our log2 n-factor improvement, described
in Section 5, is a bit more interesting. We still do not know how to improve Eppstein’s
general reduction [18] from dynamic closest pair to dynamic nearest neighbor search, but
intuitively the blind combination of Eppstein’s technique with the author’s dynamic data
structure for 2D nearest neighbor search seems wasteful, since both share some commonalities
(both are sophisticated variants of the logarithmic method [5], and both handle deletions
via re-insertions of elements into smaller subsets). To avoid the redundancy, we show how
to directly modify our dynamic data structure for 2D nearest neighbor search to solve
the dynamic 2D bichromatic closest pair problem. The resulting modification completely
bypasses Eppstein’s “conga line” structure [18, 19], and turns out to cause no increase to the
O(log4 n) bound.

2 Dynamic 3D Convex Hull Size

We begin with our new sublinear-time fully dynamic data structure for maintaining the
number of vertices/facets of the convex hull of a dynamic 3D point set. The solution is
based on the use of shallow cuttings (Lemma 1) and the author’s previous semi-online data
structure [9].

I Theorem 2. We can maintain the number of vertices, edges, and facets for the convex
hull of a dynamic set of n points in R3, in general position, with O∗(n) preprocessing time
and O∗(n11/12) amortized insertion and deletion time.

Proof. It suffices to maintain the number of convex hull facets, which determines the number
of vertices and edges (assuming general position). It suffices to compute the number of upper
hull facets, since by symmetry we can compute the number of lower hull facets. We describe
our solution in dual space, where the problem is to compute the number of vertices in LE(H)
for a dynamic set H of n planes in R3.

T.M. Chan 24:5

Let k and s be parameters to be set later. We divide the update sequence into phases of
k updates each. We maintain a decomposition of the set H into a deletion-only set H0 and a
small set Hbad of “bad” planes.

Preprocessing for each phase. At the beginning of each phase, we construct a (k,O(k))-
shallow cutting Γ of H with O(n/k) cells, together with all their conflict lists, by Lemma 1.
We set

H0 = {h ∈ H : h intersects at most n/s cells} and Hbad = H −H0.

Since the total conflict list size is O(n/k · k) = O(n), we have |Hbad| = O(s).
Let V0 and E0 be the set of vertices and edges of the portion of LE(H0) covered by Γ,

respectively. There are O(k) such vertices and edges per cell of Γ, and hence, |V0|, |E0| =
O(n/k · k) = O(n). We preprocess V0 and E0 in O∗(n) time by known range searching and
intersection searching techniques, so that

we can count the number of points in V0 inside a query tetrahedron in O∗(n2/3) time
(this is 3D simplex range searching) [22, 11, 2];
we can count the number of line segments in E0 intersecting a query triangle in O∗(n3/4)
time (as noted in [9], we can first solve the case of lines and query halfplanes in R3 using
semialgebraic range searching [3] in Plücker space, and then extend the solution for line
segments and query triangles by a multi-level data structure [2]).

These data structures can support insertions and deletions of points in V0 and line segments
in E0 in O∗(1) time each. In addition, we preprocess H0 in a known dynamic lower envelope
data structure in O∗(n) time, to support ray shooting queries in LE(H0) in O∗(1) time and
deletions in O∗(1) time (e.g., see [4] or Section 4). The total preprocessing time per phase is
O∗(n). Amortized over k updates, the cost is O∗(n/k).

Inserting a plane h. We just insert h to the list Hbad. Note that |Hbad| = O(s+ k) at all
times, since there are at most k insertions per phase.

Deleting a plane h from Hbad. We just remove h from the list Hbad.

Deleting a plane h from H0. We consider each cell ∆ ∈ Γ intersected by h, and compute
LE((H0)∆) from scratch in O(k log k) time (since |(H0)∆| = O(k)). As the number of cells
intersected by h is at most n/s, this computation requires O∗(kn/s) total time. The sets
V0 and E0 undergo at most O(kn/s) changes, and their associated data structures can be
updated in O∗(kn/s) time.

Computing the answer. To compute the number of vertices of LE(H) = LE(H0 ∪Hbad), we
first construct LE(Hbad) in O((s+ k) log(s+ k)) time, and triangulate all its O(s+ k) faces.
For each triangle τ in this triangulation:

we count the number of vertices of V0 that lie directly below τ , in O∗(n2/3) time; and
we count the number of edges of E0 that intersect τ , in O∗(n3/4) time.

We sum up all these counts. In addition, for each edge of LE(Hbad), we test whether it
intersects LE(H0) by ray shooting in O∗(1) time, and increment the count if true. For each
vertex of LE(Hbad), we test whether it is underneath LE(H0) by vertical ray shooting in
O∗(1) time, and increment the count if true. Note that LE(H) is covered by Γ at all times,
since there are at most k deletions per phase. The overall count thus gives the answer. The
total time to compute the answer is O∗((s+ k)n3/4).

SoCG 2019

24:6 Dynamic Geometric Data Structures via Shallow Cuttings

Analysis. The overall amortized update time is

O∗(n/k + kn/s+ (s+ k)n3/4).

The theorem follows by setting s = k2 and k = n1/12. J

The preprocessing time can be made O(n logn) and space made O(n) by increasing the
update time by an nε factor, via known trade-offs for range/intersection searching (with
larger-degree partition trees). The method can be deamortized, using existing techniques [24].

The same method can be adapted to maintain the sum or maximum of f(v) over all
vertices v of LE(H), for a general class of functions f . Instead of range counting, we store
the set V0 of points for range sum or range maximum queries (which have similar complexity
as range counting). For the set E0 of line segments, the base level of its multi-level data
structure requires data structures SL for each canonical subset L of lines in R3, so that we
can return the sum or maximum of f(` ∩ h) over all ` ∈ L for a query plane h in O∗(|L|α)
time, supporting insertions and deletions in L in O∗(1) time. If α ≤ 3/4, the final time
bound of our algorithm remains O∗(n11/12).

I Theorem 3. We can maintain the volume of the convex hull for a dynamic set of n points
in R3, with O∗(n) preprocessing time and O∗(n11/12) amortized insertion and deletion time.

Proof. Let o be a fixed point sufficiently far below all the input points. It suffices to maintain
the sum of the volume of the tetrahedra op1p2p3 over all upper hull facets p1p2p3, since by
symmetry we can maintain a similar sum for lower hull facets and subtract. We map each
point p to its dual plane hp. Then the problem fits in the above framework, with f(v) equal
to the volume of the tetrahedron op1p2p3 for a vertex v defined by the planes hp1 , hp2 , hp3 .
For a fixed line ` defined by the planes hp1 and hp2 , observe that f(`∩hp) is a linear function
over the 3 coordinates of p, since the volume of op1p2p can be expressed as a determinant.
(This assumes that op1p2 is oriented clockwise, which we can ensure at the base level of the
multi-level data structure.) Thus, we can implement the base structures SL with α = 0, by
simply summing the 4 coefficients of the associated linear functions over all ` ∈ L. J

I Theorem 4. We can maintain the largest empty circle of a dynamic set of n points in R2,
under the restriction that the center lies inside a given triangle ∆0, with O∗(n) preprocessing
time and O∗(n11/12) amortized insertion and deletion time.

Proof. By the standard lifting transformation, map each input point p = (a, b) ∈ R2 to the
plane hp with equation z = −2ax− 2by + a2 + b2 in R3. Add 3 near-vertical planes along
the edges of ∆0. The largest empty circle problem reduces to finding a vertex v = (x, y, z)
of the lower envelope of these planes, maximizing f(v) = x2 + y2 + z. For a fixed line
`, observe that f(` ∩ h(a,b)) is a fixed-degree rational function (ratio of two polynomials)
in the 2 variables a and b. We can implement the base structures SL with α = 2/3, by
known techniques for semialgebraic range searching in 3D [4] (applied to the graphs of these
bivariate functions). J

We can obtain sublinear update time bounds for other similar problems, e.g., maintain-
ing the minimum/maximum-area Delaunay triangle of a dynamic 2D point set. Another
application is computing the number of maximal points, also called “skyline points” (which
are points not dominated by other points), in a dynamic 3D point set:

I Theorem 5. We can maintain the number of maximal points in a dynamic set P of n points
in R3, with O∗(n) preprocessing time and O∗(n2/3) amortized insertion and deletion time.

T.M. Chan 24:7

Proof. The maximal points are vertices of the upper envelope of orthants (−∞, a]×(−∞, b]×
(−∞, c] over all input points (a, b, c) ∈ P (the upper envelope is an orthogonal polyhedron).
As is well known, an analogue of the shallow cutting lemma holds for such orthants in 3D
(in fact, there is a transformation that maps such orthants to halfspaces in 3D); for example,
see [13]. The same method can thus be adapted. In fact, it can be simplified. The data
structure for V0 is for orthogonal range searching [16], which has O∗(1) query and update
time. The data structure E0 is not needed. The overall update time becomes

O∗(n/k + kn/s+ (s+ k)).

The theorem follows by setting s = k2 and k = n1/3. J

We can similarly maintain the volume of a union of n boxes in R3 in the case when all
the boxes have a common corner point at the origin (this is called the hypervolume indicator
problem) with O∗(n2/3) update time (previously, an O∗(

√
n) bound was known only in the

semi-online setting [9]).

3 Dynamic 2D Hausdorff Distance

The method in Section 2 can also be adapted to solve the dynamic 2D Hausdorff distance
problem:

I Theorem 6. We can maintain the Hausdorff distance between two dynamic sets P and Q
of at most n points in R2, with O∗(n) preprocessing time and O∗(n8/9) amortized insertion
and deletion time.

Proof. By the standard lifting transformation, map each point p = (a, b) ∈ P to the plane
hp with equation z = −2ax − 2by + a2 + b2 in R3. Let H be the resulting set of planes.
For each point q ∈ Q, let λH(q) denote the point on LE(H) at the vertical line at q. The
problem is to find the maximum of f(λH(q)) over all q ∈ Q, where f(x, y, z) = x2 + y2 + z,
for a dynamic set H of at most n planes and a dynamic set Q of at most n points.

Let k and s be parameters to be set later. We divide the update sequence into phases of
k updates each. We maintain a decomposition of the set H into a deletion-only set H0 and a
small set Hbad of “bad” planes, and a decomposition of the set Q into a deletion-only set Q0
and a small set Qbad of “bad” points.

Preprocessing for each phase. At the beginning of each phase, we construct a (k,O(k))-
shallow cutting Γ of H with O(n/k) cells, together with all their conflict lists, by Lemma 1.
We further subdivide the cells to ensure that each cell contains at most k points of Q in its
xy-projection; this can be done by O(n/k) additional vertical plane cuts, so the number of
cells remains O(n/k). We set

H0 = {h ∈ H : h intersects at most n/s cells} and Hbad = H −H0.

Since the total conflict list size is O(n/k · k) = O(n), we have |Hbad| = O(s).
We set Q0 = Q. We compute λH0(q) for all q ∈ Q in O(n logn) time. Let Λ0 be the

subset of points in {λH0(q) : q ∈ Q} covered by Γ. We preprocess the point set Λ0 in known
3D simplex range searching data structures [22, 11, 2] in O∗(n) time, to support the following
queries in O∗(n2/3) time:

compute the maximum of f(v) over all points v ∈ Λ0 inside a query tetrahedron;

SoCG 2019

24:8 Dynamic Geometric Data Structures via Shallow Cuttings

compute the maximum of f(λ{hp}(x, y)) over all points v = (x, y, z) ∈ Λ0 inside a query
tetrahedron for a query plane hp; note that maximizing f(λ{hp}(x, y)) is equivalent to
maximizing the distance from (x, y) to p (so we can use a 2-level data structure, combining
simplex range searching with 2D farthest neighbor searching).

The data structures can support insertions and deletions of points in Λ0 in O∗(1) time each.
In addition, we preprocess H0 in a known dynamic lower envelope data structure in O∗(n)
time, to support ray shooting queries in LE(H0) in O∗(1) time and deletions in O∗(1) time
(e.g., see [4] or Section 4).

Inserting a plane h to H or a point q to Q. We just insert h to the list Hbad or q to the
list Qbad. Note that |Hbad| = O(s+ k) and |Qbad| = O(k) at all times.

Deleting a plane h from Hbad or a point q from Qbad. We just remove h from the list
Hbad or q from the list Qbad.

Deleting a point q from Q0. We just remove λH0(q) from the set Λ0 in O∗(1) time.

Deleting a plane h from H0. We consider each cell ∆ ∈ Γ intersected by h, and compute
λ(H0)∆(q) for all q ∈ Q in the xy-projection of ∆ from scratch in O(k log k) time (since ∆ is
intersected by O(k) planes in H and contains O(k) points of Q in its xy-projection). As the
number of cells intersected by h is at most n/s, this computation takes O∗(kn/s) total time.
The set Λ0 undergoes at most O(kn/s) changes, and its associated data structures can be
updated in O∗(kn/s) time.

Computing the answer. To compute the maximum of f(λH(q)) over all q ∈ Q, we first
construct LE(Hbad) in O((s+ k) log(s+ k)) time, and triangulate all its O(s+ k) faces. For
each triangle τ in this triangulation:

We compute the maximum of f(v) over all v = (x, y, z) ∈ Λ0 that lie directly below τ , in
O∗(n2/3) time. Note that for all such v, the λH(x, y) = λH0(x, y) = v.
We let h be the plane through τ and compute the maximum of f(λ{h}(x, y)) over all
v = (x, y, z) ∈ Λ0 that lie directly above τ , in O∗(n2/3) time. Note that for all such v,
λH(x, y) = λ{h}(x, y).

In addition, for each q ∈ Qbad, we compute λH(q) by vertical ray shooting in LE(H0) and
LE(Hbad) in O∗(1) time; we take the maximum of f(λH(q)) for these points. Note that
LE(H) is covered by Γ at all times, since there are at most k deletions per phase. The overall
maximum thus gives the answer. The total time to compute the answer is O∗((s+ k)n2/3).

Analysis. The overall amortized update time is

O∗(n/k + kn/s+ (s+ k)n2/3).

The theorem follows by setting s = k2 and k = n1/9. J

We can similarly solve the dynamic 2D discrete 1-center problem, by switching lower
with upper envelopes and maximum with minimum:

I Theorem 7. We can maintain the discrete 1-center of a dynamic set of n points in R2,
with O∗(n) preprocessing time and O∗(n8/9) amortized insertion and deletion time.

It is possible to slightly improve the O∗(n8/9) bound to O∗(n5/6) in the preceding two
theorems: the key observation is that the point set Λ0 is in convex position, and in the
convex-position case, the O∗(n2/3) query time for 3D simplex range searching can be improved
to O∗(

√
n), as shown by Sharir and Zaban [27]. (The same observation also improves the

author’s previous O∗(n5/6) result to O∗(n3/4) in the semi-online setting.)

T.M. Chan 24:9

It remains open whether the dynamic Hausdorff distance and discrete 1-center problem in
dimensions d ≥ 3 can similarly be solved in sublinear time. The author’s previous paper [9]
gave an O∗(n1−1/(d+1)(dd/2e+1))-time algorithm but only in the semi-online setting. In higher
dimensions, the size of shallow cuttings becomes too large for the approach to be effective.

4 Dynamic 3D Convex Hull Queries

In this section, we present a slightly improved data structure for extreme point queries for a
dynamic 3D convex hull, by combining the author’s previous data structure [10] (as refined
by Kaplan et al. [21]) with a modification of Chan and Tsakalidis’s algorithm for constructing
a hierarchy of shallow cuttings [15].

To describe the latter, we need a definition: Given a set H of n planes in R3 and a
collection Γin of cells, a Γin-restricted (k,K)-shallow cutting is a collection Γout of cells
covering {p ∈ R3 : p is covered by Γin and has level at most k}, such that each cell in Γout
intersects at most K planes. We note that Chan and Tsakalidis’s algorithm, with some
technical modifications, can prove the following lemma. (The proof requires knowledge of
Chan and Tsakalidis’s paper, and is deferred to the full paper.)

I Lemma 8. There exist constants b, c, and c′ such that the following is true: For a set H
of at most n planes in R3 and a parameter k ∈ [1, n], given a (−∞, cbk)-shallow cutting3 Γin
with at most c′n/(bk) downward cells, together with their conflict lists, we can construct a
Γin-restricted (k, ck)-shallow cutting Γout with at most c′n/k downward cells, together with
their conflict lists, in O(n+ (n/k) log(n/k)) deterministic time.

We now redescribe the author’s previous data structure [10] for 3D extreme point queries,
with slight changes to incorporate Lemma 8. The redescription uses a recursive form of
the logarithmic method [5], which should be a little easier to understand than the original
description.

I Theorem 9. We can maintain a set of n points in R3, with O(n logn) preprocessing time,
O(log2 n) amortized insertion time, and O(log4 n) amortized deletion time, so that we can
answer find the extreme point of the convex hull along any query direction in O(log2 n) time.

Proof. We describe our solution in dual space, where we want to answer vertical ray shooting
queries for LE(H), i.e., find the lowest plane of H at a query vertical line, for a dynamic set
H of n planes in R3.

Preprocessing. Our preprocessing algorithm is given by the pseudocode below (ignoring
trivial base cases), with the constants b, c, c′ from Lemma 8:4

preprocess(H):
1. H0 = H, Γ0 = {R3}, ` = logb n
2. for i = 1, . . . , ` do {
3. Γi = a Γi−1-restricted (n/bi, cn/bi)-shallow cutting of Hi−1 with at most c′bi cells
4. Hi = Hi−1 − {h ∈ H : h intersects more than 2cc′` cells of Γ1 ∪ · · · ∪ Γi}
5. for each ∆ ∈ Γi, compute the conflict list (Hi)∆ and initialize k∆ = 0

}

3 In a (−∞, k)-shallow cutting, the cells are not required to cover any particular region.
4 Line 4 is where Kaplan et al.’s improvement lies [21]. The original data structure from [10] basically

had Hi = Hi−1 − {h ∈ H : h intersects more than 2cc′` cells of Γi}.

SoCG 2019

24:10 Dynamic Geometric Data Structures via Shallow Cuttings

6. preprocess H` for static vertical ray shooting
7. Hbad = H −H`

8. preprocess(Hbad)

Note that Γi−1 is a (−∞, cn/bi−1)-shallow cutting of Hi−2, and consequently a (−∞,
cn/bi−1)-shallow cutting of Hi−1, since Hi−1 ⊆ Hi−2. Given Γi−1 and its conflict lists, we
can thus apply Lemma 8 to compute Γi and its conflict lists, in O(n+ bi log bi) time. The
total time for lines 1–5 is O(n logn +

∑`
i=1 b

i log bi) = O(n logn). Line 6 takes O(n logn)
time (by a planar point location method [16]).

We claim that |Hbad| ≤ n/2. To see this, consider each h ∈ Hbad. Let i be the index
with h ∈ Hi−1 −Hi. Then h intersects more than 2cc′` cells of Γ1 ∪ · · · ∪ Γi; send a charge
from h to each of these cells. Each cell in Γj receives charges only from planes in Hj−1
that intersect the cell. Thus, the total number of charges is at least 2cc′`|Hbad| and is at
most

∑`
j=1 cn/b

j · c′bj = cc′`n. The claim follows. The preprocessing time thus satisfies the
recurrence P (n) ≤ P (n/2) +O(n logn), which gives P (n) = O(n logn).

Inserting a plane h. We simply insert h to Hbad recursively. When |Hbad| reaches 3n/4, we
rebuild the data structure for H. It takes Ω(n) updates for a rebuild to occur. The amortized
insertion time thus satisfies the recurrence I(n) ≤ I(3n/4)+O(P (n)/n) = I(3n/4)+O(logn),
which gives I(n) = O(log2 n).

Deleting a plane h. The deletion algorithm is as follows:

delete(H,h):
1. for i = 1, . . . , ` do
2. for each ∆ ∈ Γi with h ∈ (Hi)∆ do {
3. increment k∆
4. if k∆ ≥ n/bi+1 then
5. for all h ∈ (Hi)∆ that are still in H but not yet in Hbad, insert h to Hbad

}
6. if h ∈ Hbad then delete(Hbad, h)

Let i be the largest index with h ∈ Hi. Then h intersects at most 2cc′` = O(logn) cells
of Γ1 ∪ · · · ∪ Γi. Thus, in each deletion, lines 3–5 are executed O(logn) times.

In lines 3–5, it takes n/bi+1 increments of k∆ to cause the |(Hi)∆| ≤ cn/bi planes to
be inserted to Hbad. Thus, each increment triggers O(1) amortized number of insertions
to Hbad, and so a deletion triggers O(logn) amortized number of insertions to Hbad. The
amortized deletion time thus satisfies the recurrence D(n) ≤ D(3n/4) +O(logn)I(3n/4) =
D(3n/4) +O(log3 n), which gives D(n) = O(log4 n).

Answering the query for a vertical line q. We first answer the query for the static set H`

in O(logn) time (by planar point location); if the returned plane has already been deleted,
ignore the answer. We then recursively answer the query for Hbad, and return the lowest of
all the planes found. The query time satisfies the recurrence Q(n) ≤ Q(3n/4) + O(logn),
which gives Q(n) = O(log2 n).

Correctness of the query algorithm. To prove correctness, let h∗ be the lowest plane at q
and v∗ = h∗ ∩ q. If h∗ ∈ Hbad, correctness follows by induction. So, assume that h∗ 6∈ Hbad.

If v∗ is covered by Γ`, say, by the cell ∆ ∈ Γ`, then either v∗ is on LE(H`), in which case
the algorithm would have correctly found h∗, or some plane in (H`)∆ has been deleted from
H, in which case all active planes of (H`)∆, including h∗, would have been inserted to Hbad.

T.M. Chan 24:11

Otherwise, let i be an index such that v∗ is not covered by Γi but is covered by Γi−1, say,
by the cell ∆ ∈ Γi−1. Since Γi is a Γi−1-restricted (n/bi, cn/bi)-shallow cutting of Hi−1, it
follows that v∗ must have level more than n/bi in Hi−1. In order for v∗ to be the answer,
the more than n/bi planes of Hi−1 below v∗ must have been deleted from H. But then all
active planes of (Hi−1)∆, including h∗, would have been inserted to Hbad. J

By the standard lifting transformation, we obtain:

I Corollary 10. We can maintain a set of n points in R2, with O(n logn) preprocessing time,
O(log2 n) amortized insertion time, and O(log4 n) amortized deletion time, so that we can
answer find the nearest neighbor to any query point in O(log2 n) time.

The space usage in the above data structure is O(n logn), but can be improved to O(n),
by following an idea mentioned in [10] (due to Afshani): instead of storing conflict lists
explicitly, generate conflict lists on demand by using a known optimal (static) linear-space
data structure for halfspace range reporting [1].

Following [10], we can use the same dynamic data structure to answer other basic types of
3D convex hull queries, e.g., gift wrapping queries (finding the two tangents of the hull with
a query line outside the hull) in O(log2 n) time and line-intersection queries (intersecting the
hull with a query line) in O(log4 n logO(1) logn) time. The latter corresponds to 3D linear
programming queries in dual space. The dynamic data structure can be adapted to maintain
the smallest enclosing circle of a 2D point set. Following [12], the dynamic data structure
can also be adapted to answer 3D halfspace range reporting queries.

5 Dynamic 2D Bichromatic Closest Pair

We now adapt the data structure in Section 4 to solve the dynamic 2D bichromatic closest
pair problem:

I Theorem 11. We can maintain the closest pair between two dynamic sets P and Q of at
most n points in R2, with O(n logn) preprocessing time, O(log2 n) amortized insertion time,
and O(log4 n) amortized deletion time.

Proof. By the standard lifting transformation, map each input point p = (a, b) to the plane
hp with equation z = −2ax − 2by + a2 + b2 in R3. Let H = {hp : p ∈ P}. For each point
q ∈ Q, let λH(q) denote the point on LE(H) at the vertical line at q. Let J = {hq : q ∈ Q}.
For each point p ∈ P , define λJ (p) similarly. We want to compute the minimum of f(λH(q))
over all q ∈ Q, where f(x, y, z) = x2 +y2 + z, which is equivalent to the minimum of f(λJ (p))
over all p ∈ P .

Preprocessing. We maintain a global heap, whose minimum gives the answer. We modify
the preprocess(H) algorithm in Section 4:

preprocess(H,J):
1. run lines 1–7 of the preprocess(H) algorithm on H
2. for each hq ∈ J , add f(λH`

(q)) to the heap
3. run lines 1–7 of the preprocess(H) algorithm but with H’s replaced by J ’s
4. for each hp ∈ H, add f(λJ`

(p)) to the heap
5. preprocess(Hbad, Jbad)

As in Section 4, the preprocessing time satisfies the recurrence P (n) ≤ P (n/2)+O(n logn),
which gives P (n) = O(n logn).

SoCG 2019

24:12 Dynamic Geometric Data Structures via Shallow Cuttings

Inserting a plane hp to H. We recursively insert hp to Hbad. We also compute λJ`
(p) in

O(logn) time (by planar point location), and add f(λJ`
(p)) to the heap.

When |Hbad| or |Jbad| reaches 3n/4, we rebuild the data structure for H and J . It takes
Ω(n) updates for a rebuild to occur. The amortized insertion time thus satisfies the recurrence
I(n) ≤ I(3n/4) +O(logn) +O(P (n)/n) = I(3n/4) +O(logn), which gives I(n) = O(log2 n).

Inserting a plane hq to J . Symmetric to the above.

Deleting a plane hp from H. We run lines 1–5 of the delete(H,h) algorithm in Section 4
(with h = hp). In the heap, we remove all entries f(λH`

(q)) that has λH`
(q) = λ{hp}(q). If

hp ∈ Hbad, we further recursively delete hp from Hbad. We also remove f(λJ`
(p)) from the

heap.
For the analysis, we can charge removals of entries from the heap to their corresponding

insertions, by amortization. The amortized deletion time thus satisfies the recurrence
D(n) ≤ D(3n/4) +O(logn)I(3n/4) = D(3n/4) +O(log3 n), which gives D(n) = O(log4 n).

Deleting a plane hq from J . Symmetric to the above.

Correctness. Let p∗q∗ be the closest pair with p∗ ∈ P and q∗ ∈ Q. If both hp∗ ∈ Hbad and
hq∗ ∈ Jbad, correctness follows by induction. Otherwise, assume without loss of generality
that hp∗ 6∈ Hbad. (The case Jq∗ 6∈ Jbad is symmetric.) Let v∗ = λH(q∗). The rest of the
correctness argument is essentially identical to that in Section 4:

If v∗ is covered by Γ`, say, by the cell ∆ ∈ Γ`, then either v∗ is on LE(H`), in which case
the algorithm would have included f(λH(q∗)) in the heap, or some plane in (H`)∆ has been
deleted from H, in which case all active planes of (H`)∆, including hp∗ , would have been
inserted to Hbad.

Otherwise, let i be an index such that v∗ is not covered by Γi but is covered by Γi−1, say,
by the cell ∆ ∈ Γi−1. Since Γi is a Γi−1-restricted (n/bi, cn/bi)-shallow cutting of Hi−1, it
follows that v∗ must have level more than n/bi in Hi−1. In order for v∗ to be the answer,
the more than n/bi planes of Hi−1 below v∗ must have been deleted from H. But then all
active planes of (Hi−1)∆, including hp∗ , would have been inserted to Hbad. J

We can similarly solve the diameter problem, by replacing min with max and lower with
upper envelopes:

I Theorem 12. We can maintain the diameter of a dynamic set of n points in R2, with
O(n logn) preprocessing time, O(log2 n) amortized insertion time, and O(log4 n) amortized
deletion time.

References
1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.

In Proc. 20th ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 180–186, 2009. URL:
http://dl.acm.org/citation.cfm?id=1496770.1496791.

2 Pankaj K. Agarwal. Simplex range searching and its variants: A review. In M. Loebl, J. Nešetril,
and R. Thomas, editors, Journal through Discrete Mathematics. Springer, to appear.

3 Pankaj K. Agarwal and Jiří Matoušek. On range searching with semialgebraic sets. Discrete
Comput. Geom., 11:393–418, 1994. doi:10.1007/BF02574015.

4 Pankaj K. Agarwal and Jiří Matoušek. Dynamic half-space range reporting and its applications.
Algorithmica, 13(4):325–345, 1995. doi:10.1007/BF01293483.

5 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: static-to-dynamic
transformation. J. Algorithms, 1(4):301–358, 1980. doi:10.1016/0196-6774(80)90015-2.

6 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proc. 43rd Sympos.
Found. Comput. Sci. (FOCS), pages 617–626, 2002. doi:10.1109/SFCS.2002.1181985.

http://dl.acm.org/citation.cfm?id=1496770.1496791
http://dx.doi.org/10.1007/BF02574015
http://dx.doi.org/10.1007/BF01293483
http://dx.doi.org/10.1016/0196-6774(80)90015-2
http://dx.doi.org/10.1109/SFCS.2002.1181985

T.M. Chan 24:13

7 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmic amortized time.
J. ACM, 48(1):1–12, 2001. Preliminary version in FOCS 1999. doi:10.1145/363647.363652.

8 Timothy M. Chan. A fully dynamic algorithm for planar width. Discrete Comput. Geom.,
30(1):17–24, 2003. Preliminary version in SoCG 2001. doi:10.1007/s00454-003-2923-8.

9 Timothy M. Chan. Semi-online maintenance of geometric optima and measures. SIAM
J. Comput., 32(3):700–716, 2003. Preliminary version in SODA 2002. doi:10.1137/
S0097539702404389.

10 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. J. ACM, 57(3):16:1–16:15, 2010. Preliminary version in SODA 2006. doi:10.1145/
1706591.1706596.

11 Timothy M. Chan. Optimal partition trees. Discrete Comput. Geom., 47(4):661–690, 2012.
Preliminary version in SoCG 2010. doi:10.1007/s00454-012-9410-z.

12 Timothy M. Chan. Three problems about dynamic convex hulls. Int. J. Comput. Geom. Appl.,
22(4):341–364, 2012. Preliminary version in SoCG 2011. doi:10.1142/S0218195912600096.

13 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on
the RAM, revisited. In Proc. 27th ACM Sympos. Comput. Geom. (SoCG), pages 1–10, 2011.
doi:10.1145/1998196.1998198.

14 Timothy M. Chan, Mihai Pătraşcu, and Liam Roditty. Dynamic connectivity: Connecting to
networks and geometry. SIAM J. Comput., 40(2):333–349, 2011. Preliminary version in FOCS
2008. doi:10.1137/090751670.

15 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and
3-d shallow cuttings. Discrete Comput. Geom., 56(4):866–881, 2016. Preliminary version in
SoCG 2015. doi:10.1007/s00454-016-9784-4.

16 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL: http://www.
worldcat.org/oclc/227584184.

17 David P. Dobkin and Subhash Suri. Maintenance of geometric extrema. J. ACM, 38(2):275–298,
1991. doi:10.1145/103516.103518.

18 David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions.
Discrete Comput. Geom., 13:111–122, 1995. doi:10.1007/BF02574030.

19 David Eppstein. Fast hierarchical clustering and other applications of dynamic closest pairs.
ACM Journal of Experimental Algorithmics, 5:1, 2000. doi:10.1145/351827.351829.

20 Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic minimum
spanning forest. In Proc. 23rd European Sympos. Algorithms (ESA), pages 742–753, 2015.
doi:10.1007/978-3-662-48350-3_62.

21 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
In Proc. 28th ACM–SIAM Sympos. Discrete Algorithms (SODA), pages 2495–2504, 2017.
doi:10.1137/1.9781611974782.165.

22 Jiří Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–334, 1992. doi:
10.1007/BF02293051.

23 Jiří Matoušek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169–186, 1992.
doi:10.1016/0925-7721(92)90006-E.

24 Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in
Computer Science. Springer, 1983. doi:10.1007/BFb0014927.

25 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. J.
Comput. Syst. Sci., 23(2):166–204, 1981. doi:10.1016/0022-0000(81)90012-X.

26 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proc. 15th
Sympos. Comput. Geom. (SoCG), pages 390–399, 1999. doi:10.1145/304893.304993.

27 Micha Sharir and Shai Zaban. Output-sensitive tools for range searching in higher dimensions.
Manuscript, 2013. URL: http://www.cs.tau.ac.il/~michas/shai.pdf.

SoCG 2019

http://dx.doi.org/10.1145/363647.363652
http://dx.doi.org/10.1007/s00454-003-2923-8
http://dx.doi.org/10.1137/S0097539702404389
http://dx.doi.org/10.1137/S0097539702404389
http://dx.doi.org/10.1145/1706591.1706596
http://dx.doi.org/10.1145/1706591.1706596
http://dx.doi.org/10.1007/s00454-012-9410-z
http://dx.doi.org/10.1142/S0218195912600096
http://dx.doi.org/10.1145/1998196.1998198
http://dx.doi.org/10.1137/090751670
http://dx.doi.org/10.1007/s00454-016-9784-4
http://www.worldcat.org/oclc/227584184
http://www.worldcat.org/oclc/227584184
http://dx.doi.org/10.1145/103516.103518
http://dx.doi.org/10.1007/BF02574030
http://dx.doi.org/10.1145/351827.351829
http://dx.doi.org/10.1007/978-3-662-48350-3_62
http://dx.doi.org/10.1137/1.9781611974782.165
http://dx.doi.org/10.1007/BF02293051
http://dx.doi.org/10.1007/BF02293051
http://dx.doi.org/10.1016/0925-7721(92)90006-E
http://dx.doi.org/10.1007/BFb0014927
http://dx.doi.org/10.1016/0022-0000(81)90012-X
http://dx.doi.org/10.1145/304893.304993
http://www.cs.tau.ac.il/~michas/shai.pdf

Lower Bounds for Electrical Reduction on Surfaces
Hsien-Chih Chang
Duke University, Durham, USA
hsienchih.chang@duke.edu

Marcos Cossarini
Laboratoire d’Analyse et de Mathématiques Appliquées, Université Paris-Est Marne-la-Vallée,
Champs-sur-Marne, France
marcos.cossarini@u-pem.fr

Jeff Erickson
University of Illinois at Urbana-Champaign, Champaign, USA
jeffe@illinois.edu

Abstract
We strengthen the connections between electrical transformations and homotopy from the planar
setting – observed and studied since Steinitz – to arbitrary surfaces with punctures. As a result, we
improve our earlier lower bound on the number of electrical transformations required to reduce an
n-vertex graph on surface in the worst case [SOCG 2016] in two different directions. Our previous
Ω(n3/2) lower bound applies only to facial electrical transformations on plane graphs with no
terminals. First we provide a stronger Ω(n2) lower bound when the planar graph has two or more
terminals, which follows from a quadratic lower bound on the number of homotopy moves in the
annulus. Our second result extends our earlier Ω(n3/2) lower bound to the wider class of planar
electrical transformations, which preserve the planarity of the graph but may delete cycles that are
not faces of the given embedding. This new lower bound follow from the observation that the defect
of the medial graph of a planar graph is the same for all its planar embeddings.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases electrical transformation, ∆Y-transformation, homotopy, tight, defect, SPQR-
tree, smoothings, routing set, 2-flipping

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.25

Related Version A full version of this paper is available at https://arxiv.org/abs/1707.04683.

Funding This work was partially supported by NSF grant CCF-1408763. We also greatly appreciate
the support from Labex Bezout.
Hsien-Chih Chang: This work was initiated when the author was affiliated with University of Illinois
at Urbana-Champaign, USA.
Marcos Cossarini: This work is initiated when the author was affiliated with Instituto de Matemática
Pura e Aplicada, Brazil.

1 Introduction

Consider the following set of local operations performed on any graph:
Leaf contraction: Contract the edge incident to a vertex of degree 1.
Loop deletion: Delete the edge of a loop.
Series reduction: Contract either edge incident to a vertex of degree 2.
Parallel reduction: Delete one of a pair of parallel edges.
Y�∆ transformation: Delete a degree-3 vertex and connect its neighbors with three
new edges.
∆�Y transformation: Delete edges of a 3-cycle and join its vertices to a new vertex.

© Hsien-Chih Chang, Marcos Cossarini, and Jeff Erickson;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 25; pp. 25:1–25:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hsienchih.chang@duke.edu
mailto:marcos.cossarini@u-pem.fr
mailto:jeffe@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.25
https://arxiv.org/abs/1707.04683
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Lower Bounds for Electrical Reduction on Surfaces

These operations and their inverses, which we call electrical transformations following Colin
de Verdière et al. [10], have been used for over a century to analyze electrical networks [24].
Steinitz [35, 36] proved that any planar network can be reduced to a single vertex using
these operations. Several decades later, Epifanov [16] proved that any planar graph with
two special vertices called terminals can be similarly reduced to a single edge between the
terminals; simpler algorithmic proofs of Epifanov’s theorem were later given by Feo [18],
Truemper [40, 41], and Feo and Provan [19]. These results have since been extended to
planar graphs with more than two terminals [20, 21, 2, 14] and to some families of non-planar
graphs [20, 42]. See Chang’s thesis [5] for a history of the problem.

Despite decades of prior work, the complexity of the reduction process is still poorly
understood. Steinitz’s proof implies that O(n2) electrical transformations suffice to reduce
any n-vertex planar graph to a single vertex; Feo and Provan’s algorithm reduces any 2-
terminal planar graph to a single edge in O(n2) steps. While these are the best upper bounds
known, several authors have conjectured that they can be improved [20, 19, 2]. Without
any restrictions on which transformations are permitted, the only known lower bound is
the trivial Ω(n). However, Chang and Erickson recently proved that if all transformations
are required to be facial, meaning any deleted cycle must be a face of the given embedding,
then reducing a plane graph without terminals to a single vertex requires Ω(n3/2) steps
in the worst case [7]. This is obtained by studying the relation between facial electrical
transformations and homotopy moves, a set of operations performed on the medial graph of
the input.

In this paper, we extend our earlier lower bound for electrical transformations in two
directions. To this end, first we study multicurves on surfaces under electrical reduction and
homotopy moves, which are in one-to-one correspondence with medial graphs. Specifically,
in Section 3 we prove that the set of tight multicurves under electrical reduction and under
homotopy moves is identical. As a consequence, any surface-embedded graph can be reduced
without ever increasing its number of edges. Previously such property is only known to hold
for plane graphs [27, 7].

Next, we consider plane graphs with two terminals. In this setting, leaf deletions, series
reductions, and Y�∆ transformations that delete terminals are forbidden. We prove in
Section 4 that Ω(n2) facial electrical transformations are required in the worst case to reduce
a 2-terminal plane graph as much as possible. Not every 2-terminal plane graph can be
reduced to a single edge between the terminals using only facial electrical transformations.
However, we show that any 2-terminal plane graph can be reduced to a unique minimal
graph called a bullseye using a finite number of facial electrical transformations. Our lower
bound ultimately relies on a recent Ω(n2) lower bound on the number of homotopy moves
required to tighten a contractible closed curve in the annulus [9].

In Section 5, we consider a wider class of electrical transformations that preserve the
planarity of the graph, but are not necessarily facial. Our second main result is that Ω(n3/2)
planar electrical transformations are required to reduce a planar graph (without terminals)
to a single vertex in the worst case. Like our earlier lower bound for facial electrical
transformations, our proof ultimately reduces to the study of a certain curve invariant, called
the defect, of the medial graph of a given unicursal plane graph G. A key step in our new
proof is the following surprising observation: Although the definition of the medial graph of
G depends on the embedding of G, the defect of the medial graph is the same for all planar
embeddings of G.

H.-C. Chang, M. Cossarini, and J. Erickson 25:3

2 Background

2.1 Types of electrical transformations
We distinguish between three increasingly general types of electrical transformations in plane
graphs: facial, crossing-free, and arbitrary. (For ease of presentation, we assume throughout
the paper that plane graphs are actually embedded on the sphere instead of the plane.)

An electrical transformation in a graph G embedded on a surface Σ is facial if any deleted
cycle is a face of G. All leaf contractions, series reductions, and Y�∆ transformations are
facial, but loop deletions, parallel reductions, and ∆�Y transformations may not be facial.
Facial electrical transformations form three dual pairs, as shown in Figure 1; for example,
any series reduction in G is equivalent to a parallel reduction in the dual graph G∗.

Figure 1 Facial electrical transformations in a plane graph G and its dual G∗.

An electrical transformation in G is crossing-free if it preserves the embeddability of the
underlying graph into the same surface. Equivalently, an electrical transformation is crossing-
free if the vertices of the cycle deleted by the transformation are all incident to a common
face of G. All facial electrical transformations are trivially crossing-free, as are all loop
deletions and parallel reductions. If the graph embeds in the plane, crossing-free electrical
transformations are also called planar. The only non-crossing-free electrical transformation
is a ∆�Y transformation whose three vertices are not incident to a common face; any such
transformation introduces a K3,3-minor into the graph, connecting the three vertices of the
∆ to an interior vertex, an exterior vertex, and the new Y vertex.

Figure 2 A non-planar ∆�Y transformation.

2.2 Multicurves and medial graphs
A surface is a 2-manifold with or without punctures. Formally, a closed curve in a surface Σ
is a continuous map γ : S1 → Σ. A closed curve is simple if it is injective. A multicurve is
a collection of one or more closed curves. We consider only generic multicurves, which are
injective except at a finite number of (self-)intersections, each of which is a transverse double
point. A multicurve is connected if its image in the surface is connected; we consider only
connected multicurves in this paper. The image of any (non-simple, connected) multicurve
has a natural structure as a 4-regular map, whose vertices are the self-intersection points
of the curves, edges are maximal subpaths between vertices, and faces are components of
complement of the curves in the surface. We do not distinguish between multicurves whose
images are combinatorially equivalent maps.

SoCG 2019

25:4 Lower Bounds for Electrical Reduction on Surfaces

The medial graph G× of an embedded graph G is another embedded graph whose vertices
correspond to the edges of G, and two vertices of G× are connected by an edge if the
corresponding edges in G are consecutive in cyclic order around some vertex, or equivalently,
around some face in G. Every vertex in every medial graph has degree 4; thus, every medial
graph is the image of a multicurve. Conversely, when the surface is a sphere, the image of
every non-simple multicurve is the medial graph of some plane graph. We call an embedded
graph G unicursal if its medial graph G× is the image of a single closed curve.

Smoothing a multicurve γ at a vertex x replaces the intersection of γ with a small
neighborhood of x with two disjoint simple paths, so that the result is another 4-regular
embedded graph. There are two possible smoothings at each vertex. More generally, a
smoothing of γ is any multicurve obtained by smoothing a subset of its vertices.

Figure 3 Two possible smoothings of a vertex.

2.3 Local moves
A homotopy between two curves γ and γ′ on the same surface Σ is a continuous deformation
from one curve to the other, formally defined as a continuous function H : S1 × [0, 1]→ Σ
such that H(·, 0) = γ and H(·, 1) = γ′. The definition of homotopy extends naturally to
multicurves. Classical topological arguments imply that two multicurves are homotopic if
and only if one can be transformed into the other by a finite sequence of homotopy moves
(shown in Figure 4). Notice that a 1�0 move is applied to an empty loop, and a 2�0 move is
applied on an empty bigon. A multicurve is homotopically tight (or h-tight for short) if no
sequence of homotopy moves leads to a multicurve with fewer vertices.

Figure 4 Homotopy moves 1�0, 2�0, and 3�3.

Figure 5 Electrical moves 1�0, 2�1, and 3�3.

Facial electrical transformations in any embedded graph G correspond to local operations
in the medial graph G× that closely resemble homotopy moves. We call these 1�0, 2�1, and
3�3 moves, where the numbers before and after each arrow indicate the number of local
vertices before and after the move. We collectively refer to these operations and their inverses
as electrical moves. A multicurve is electrically tight (or e-tight for short) if no sequence of
electrical moves leads to another multicurve with fewer vertices. For multicurves on surfaces
with boundary, both homotopy moves and electrical moves performed on boundary faces are
forbidden. The fact that we use same name tight for both homotopy moves and electrical
moves is not a coincidence; we will justify its usage in Section 3.2.

H.-C. Chang, M. Cossarini, and J. Erickson 25:5

3 Connection between electrical and homotopy moves

For any connected multicurve (or 4-regular embedded graph) γ on surface Σ,
let X(γ) denote the minimum number of electrical moves required to tighten γ,
let H↓(γ) denote the minimum number of homotopy moves required to tighten γ, without
ever increase the number of vertices; that is, no 0�1 and 0�2 moves are allowed.
let H(γ) denote the minimum number of homotopy moves required to tighten γ.

It is not immediately obvious whether a multicurve γ that is tight under monotonic
homotopy moves could be further tightened by allowing 0�1 and 0�2 moves or not. Hass
and Scott [22] and de Graaf and Schrijver [13] independently proved that any multicurve γ
can be tightened using monotonic homotopy moves, which implies that H↓(γ) = 0 if and only
if H(γ) = 0. In other words, (standard) homotopy moves and monotonic homotopy moves
share the same set of tight multicurves. Now H↓(γ) ≥ H(γ) follows for any multicurve γ.

3.1 Smoothing lemma
We would like to compare X(γ) with H↓(γ) and H(γ). The following key lemma follows
from close reading of proofs by Truemper [40, Lemma 4] and several others [20, 25, 2, 27]
that every minor of a ∆Y-reducible graph is also ∆Y-reducible.

I Lemma 1 (Chang and Erickson [7, Lemma 3.1]). Let γ be any connected multicurve on
surface Σ, and let γ̌ be a connected smoothing of γ. Applying any sequence of N electrical
moves to γ to obtain γ′. Then one can apply a similar sequence of electrical moves of length
at most N to γ̌ to obtain a (possibly trivial) connected smoothing γ̌′ of γ′.

As a remark, using similar argument one can recover a result by Newmann-Coto [26]:
any homotopy from multicurve γ to another multicurve γ′ that never removes vertices can
be turned into a homotopy from a smoothing of γ to a smoothing of γ′.

Using Lemma 1 one can show that X(γ) ≥ H↓(γ) for every planar curve γ, a result
implicit in the work of Noble and Welsh [27] and formally proved by Chang and Erickson [7].

I Lemma 2 (Smoothing Lemma [7]). X(γ̌) ≤ X(γ) for every connected smoothing γ̌ of every
connected multicurve γ in the plane.

I Lemma 3 (Monotonicity Lemma [7]). For every connected multicurve γ, there is a minimum-
length sequence of electrical moves that simplifies γ to a simple closed curve that does not
contain 0�1 or 1�2 moves.

I Lemma 4 (Electrical-Homotopy Ineq. [7]). X(γ) ≥ H↓(γ) for every planar curve γ.

3.2 Equivalence of tightness
One of the main obstacles to generalize Lemmas 2, 3, and 4 to curves on arbitrary surface
is that again we do not know a priori whether the set of tight multicurves under electrical
moves is the same as those under homotopy moves. Such problem did not exist in the planar
setting as all planar multicurves can be tightened to simple curves using either electrical or
homotopy moves. We first show that every electrically tight multicurve is also homotopically
tight.

I Lemma 5. Let γ be a connected multicurve on an arbitrary surface Σ. If γ is electrically
tight, then γ is homotopically tight.

SoCG 2019

25:6 Lower Bounds for Electrical Reduction on Surfaces

Proof. Let γ be a connected multicurve in some arbitrary surface, and suppose γ is not
homotopically tight. Results of Hass and Scott [22] and de Graaf and Schrijver [13] imply
that γ can be tightened by a finite sequence of homotopy moves that never increases the
number of vertices. In particular, applying some finite sequence of 3�3 moves to γ creates
either an empty loop, which can be removed by a 1�0 move, or an empty bigon, which can
be removed by either a 2�0 move or a 2�1 move. Thus, γ is not electrically tight. J

However, for the reverse direction, we don’t have a similar monotonicity result for electrical
moves on arbitrary surfaces. A careful reading of the sequence of work by de Graaf and
Schrijver [29, 30, 32, 31, 11, 12, 13] leads to a five-way equivalence that shows the two
versions of tightness coincide when the given curve is primitive. Unfortunately their results
do not generalize as some of the equivalences break down with the presence of non-primitive
counterexamples. We defer details to the full version of the paper.

Routing set. Inspired by the routing problem studied by de Graaf and Schrijver [12], we
introduce the notion of routing set. Despite its naïve look, the routing set satisfies a crucial
property that encapsulates the whole difficulty of the problem, which allows us to bypass the
heavy machinery developed for the primitive case. We then use the established equivalence
of tightness to derive the monotonicity lemma for electrical moves on arbitrary multicurves.

For any multicurve γ, the routing set of γ is the following collection of homotopy classes:

route(γ) :=
{

[γ̌] | γ̌ is a smoothing of γ
}
.

Each homotopy class in route(γ) is referred as a route of γ.

I Lemma 6. Routing set of γ is invariant under electrical moves for any multicurve γ.

Proof. Let γ′ be the multicurve obtained from performing one electrical move to γ. Because
electrical moves are closed under inverses, we only need to prove that route(γ) ⊆ route(γ′).

Let γ̌ be an arbitrary smoothing of γ; [γ̌] is in route(γ) by definition. By Lemma 1, one
can obtain a connected smoothing γ̌′ of γ′ that is at most one electrical move away from
γ̌. In particular, [γ̌′] is in route(γ′). If γ̌′ is equal to γ̌ or is obtained from γ̌ using a 1�0,
0�1, or 3�3 move, then immediately we have [γ̌] = [γ̌′] to be a route in route(γ′). If γ̌′ is
obtained from γ̌ using a 2�1 move, consider the multicurve γ̌◦ obtained from γ̌ by performing
a 2�0 move (on the same empty bigon) instead. γ̌◦ is a smoothing of γ̌′, which in turn
is a smoothing of γ′. Because 2�0 is a homotopy move, [γ̌] = [γ̌◦] is a route in route(γ′).
Similarly when γ̌′ is obtained from γ̌ using a 1�2 move, we consider γ̌ as a smoothing of γ̌′
thus [γ̌] is a route in route(γ′). This concludes the proof. J

The intersection number of a homotopy class [γ] is defined to be the minimum number of
vertices among all curves homotopic to γ. The main routes of γ are those routes of γ that
achieve the maximum intersection number.

I Lemma 7. Any homotopically tight multicurve is also electrically tight.

Proof. Assume for contradiction that there is an h-tight multicurve γ that is not e-tight.
Tighten γ using electrical moves to an e-tight multicurve γ′ with less number of vertices than
γ. Now by Lemma 6 the routing set of γ and γ′ is the same; in particular, [γ′] is a main
route of both γ and γ′. However since both γ and γ′ are h-tight, the intersection number of
[γ] is strictly greater than the intersection number of [γ′] and thus [γ′] cannot be a main
route of γ, a contradiction. J

H.-C. Chang, M. Cossarini, and J. Erickson 25:7

3.3 Monotonicity of electrical moves
As a corollary of Lemma 7, we are ready to generalize the monotonicity lemma (Lemma 3)
to multicurves on general surfaces.

I Lemma 8. Let γ be any connected multicurve γ on surface Σ, and let γ̌ be a connected
smoothing of γ, satisfying route(γ) = route(γ̌). Then X(γ̌) ≤ X(γ) holds.

Proof. Let γ be a connected multicurve with n(γ) vertices, and let γ̌ be a connected
smoothing of γ. If X(γ) equals to zero, then γ is both e-tight and h-tight by Lemma 5. The
fact that route(γ) = route(γ̌) implies that [γ] is a route of γ̌ and its intersection number is
equal to n(γ). If γ̌ is a proper smoothing of γ, then the intersection number of any route of
γ̌ is strictly less then n(γ), a contradiction. As a result, the only smoothing of γ satisfying
the condition is γ itself, and therefore the inequality trivially holds.

Otherwise, applying a minimum-length sequence of electrical moves that tightens γ. By
Lemma 1 there is another sequence of electrical moves of length at most X(γ) that tightens
γ̌. We immediately have X(γ̌) ≤ X(γ) and the lemma is proved. J

I Lemma 9. For any connected multicurve γ, there is a minimum-length sequence of electrical
moves that tightens γ that does not contain 0�1 or 1�2 moves.

The proof follows almost verbatim from Lemma 3 after substituting Lemma 8 for Lemma 2
and applying Lemma 6. See the full version for a proof.

4 Two-terminal plane graphs

Most applications of electrical reductions, starting with Kennelly’s computation of effective
resistance [24], designate two vertices of the input graph as terminals and require a reduction
to a single edge between those terminals. In this context, electrical transformations that delete
either of the terminals are forbidden; specifically: leaf contractions when the leaf is a terminal,
series reductions when the degree-2 vertex is a terminal, and Y�∆ transformations when
the degree-3 vertex is a terminal. An important subtlety here is that not every 2-terminal
planar graph can be reduced to a single edge using only facial electrical transformations.
The simplest bad example is the three-vertex graph shown in Figure 6.

Figure 6 A facially irreducible 2-terminal plane graph; solid vertices are the terminals.

In this section, we show that in the worst case, Ω(n2) facial electrical transformations
are required to reduce a 2-terminal plane graph with n vertices as much as possible. The
medial graph G× of any 2-terminal plane graph G is properly considered as a multicurve
embedded in the annulus; the faces of G× that correspond to the terminals are removed
from the surface. The main strategy is to lower bound X(G×) by some function of H(G×),
then defer to the quadratic lower bound for untangling annular curve using homotopy moves
[9]. To this end, we generalize Lemma 4 to annular curves; such result is obtained by the
understanding of tight multicurves on the annulus.

First, we prove in Section 4.1 that any annular curve can be tightened to a unique family
of curves. Next in Section 4.2, we generalize the results by Chang and Erickson [7], in
particular the electrical-homotopy inequality (Lemma 4), to the annular case. We prove

SoCG 2019

25:8 Lower Bounds for Electrical Reduction on Surfaces

our quadratic lower bound in Section 4.3. Existing algorithms for reducing an arbitrary
2-terminal plane graphs to a single edge rely on an additional operation which we call a
terminal-leaf contraction, in addition to facial electrical transformations. We discuss this
subtlety in more detail in the full version.

4.1 Tight annular curves
The winding number of a directed closed curve γ in the annulus is the number of times any
generic path π from one (fixed) boundary component to the other crosses γ from left to right,
minus the number of times π crosses γ from right to left. Two directed closed curves in the
annulus are homotopic if and only if their winding numbers are equal.

The depth of any multicurve γ in the annulus is the minimum number of times a path
from one boundary to the other crosses γ; thus, depth is essentially an unsigned version of
winding number. Just as the winding number around the boundaries is a complete homotopy
invariant for curves in the annulus, the depth turns out to be a complete invariant for
electrical moves on the annular multicurves.

I Lemma 10. Electrical moves do not change the depth of any annular multicurve.

For any integer d > 0, let αd denote the unique closed curve in the annulus with d− 1
vertices and winding number d. Up to isotopy, this curve can be parametrized in the plane as

αd(θ) := ((cos(θ) + 2) cos(dθ), (cos(θ) + 2) sin(dθ)) .

In the notation of our other papers [7, 8], αd is the flat torus knot T (d, 1).
The following lemmas are direct consequences of Lemma 7.

I Lemma 11. For any integer d > 0, the curve αd is both h-tight and e-tight.

I Corollary 12. A connected multicurve γ in the annulus is e-tight if and only if γ = αdepth(γ);
therefore, any annular multicurve γ is e-tight if and only if γ is h-tight.

4.2 Smoothing lemma in the annulus
Equipped with the understanding of tight annular curves, we are ready to extend the results
in Section 3.1 to the annulus.

I Lemma 13. For any connected smoothing γ̌ of any connected multicurve γ in the annulus,
we have X(γ̌) + 1

2 depth(γ̌) ≤ X(γ) + 1
2 depth(γ).

Proof. Let γ be an arbitrary connected multicurve in the annulus, and let γ̌ be an arbitrary
connected smoothing of γ. Without loss of generality, we can assume that γ is non-simple,
since otherwise the lemma is vacuous.

If γ is already e-tight, then γ = αd for some integer d ≥ 2 by Corollary 12. (The curves
α0 and α1 are simple.) First, suppose γ̌ is a connected smoothing of γ obtained by smoothing
a single vertex x. The smoothed curve γ̌ contains a single empty loop if x is the innermost
or outermost vertex of γ, or a single empty bigon otherwise. Applying one 1�0 or 2�0 move
transforms γ̌ into the curve αd−2, which is e-tight by Lemma 11. Thus we have X(γ̌) = 1
and depth(γ̌) = d − 2, which implies X(γ̌) + 1

2 depth(γ̌) = X(γ) + 1
2 depth(γ). As for the

general case when γ̌ is obtained from γ by smoothing more than one vertices, the statement
follows from the previous case by induction on the number of smoothed vertices.

If γ is not e-tight, applying a minimum-length sequence of electrical moves that tightens
γ into some curve γ′. By Lemma 1 there is another sequence of electrical moves of length
at most X(γ) that tightens γ̌ to some connected smoothing γ̌′ of γ′, which can be further

H.-C. Chang, M. Cossarini, and J. Erickson 25:9

tightened electrically to an e-tight curve using arguments in the previous paragraph because
γ′ is e-tight. This implies that X(γ̌) ≤ X(γ)+ 1

2 (depth(γ′)−depth(γ̌′)). By Lemma 10, γ and
γ′ have the same depth, and γ̌ and γ̌′ have the same depth. Therefore X(γ̌) + 1

2 depth(γ̌) ≤
X(γ) + 1

2 depth(γ) and the lemma is proved. J

I Lemma 14. For every connected multicurve γ in the annulus, there is a minimum-length
sequence of electrical moves that tightens γ to αdepth(γ) without 0�1 or 1�2 moves.

The proof follows almost verbatim from Lemma 3 and 9; see the full version.

I Lemma 15. X(γ) + 1
2 depth(γ) ≥ H↓(γ) ≥ H(γ) for every closed curve γ in the annulus.

Proof. Let γ be a closed curve in the annulus. If γ is already e-tight, then X(γ) = H↓(γ) = 0
by Lemma 5, so the lemma is trivial. Otherwise, consider a minimum-length sequence of
electrical moves that tightens γ. By Lemma 14, we can assume that the first move in the
sequence is neither 0�1 nor 1�2. If the first move is 1�0 or 3�3, the theorem immediately
follows by induction on X(γ), since by Lemma 10 neither of these moves changes the depth
of the curve.

The only interesting first move is 2�1. Let γ′ be the result of this 2�1 move, and let γ◦ be
the result if we perform the 2�0 move on the same empty bigon instead. The minimality of
the sequence implies X(γ) = X(γ′)+1, and we trivially have H↓(γ) ≤ H↓(γ◦)+1. Because γ
is a single curve, γ◦ is also a single curve and therefore a connected proper smoothing of γ′.
Thus, Lemma 10, Lemma 13, and induction on the number of vertices imply

X(γ) + 1
2 depth(γ) = X(γ′) + 1

2 depth(γ′) + 1

≥ X(γ◦) + 1
2 depth(γ◦) + 1

≥ H↓(γ◦) + 1
≥ H↓(γ),

which completes the proof. J

4.3 Quadratic lower bound
Bullseyes. For any k > 0, let Bk denote the 2-terminal plane graph that consists of a path
of length k between the terminals, with a loop attached to each of the k − 1 interior vertices,
embedded so that collectively they form concentric circles that separate the terminals. We
call each graph Bk a bullseye. For example, B1 is just a single edge; B2 is shown in Figure 6;
and B4 is shown on the left in Figure 7. The medial graph B×k of the kth bullseye is the
curve α2k. Because different bullseyes have different medial depths, Lemma 10 implies that
no bullseye can be transformed into any other bullseye by facial electrical transformations.

The following corollary is now immediate from the electrical-homotopy inequality for
annular curves (Lemma 15).

I Theorem 16. Let G be a 2-terminal plane graph, and let γ be any unicursal smooth-
ing of G×. Reducing G to a bullseye requires at least H(γ) − 1

2 depth(γ) facial electrical
transformations.

Chang et al. [9] presented an infinite family of contractible curves in the annulus para-
metrized by their number of vertices n that require Ω(n2) homotopy moves to tighten. Every
contractible curve is the medial graph of some 2-terminal plane graph (because they have

SoCG 2019

25:10 Lower Bounds for Electrical Reduction on Surfaces

Figure 7 The bullseye graph B4 and its medial graph α8.

even depth and thus the faces can be two-colored [37]). Euler’s formula implies that every
n-vertex curve in the annulus has exactly n + 2 faces (including the boundary faces) and
therefore has depth at most n+ 1.

I Corollary 17. Reducing a 2-terminal plane graph to a bullseye requires Ω(n2) facial
electrical transformations in the worst case.

5 Planar electrical transformations

Finally, we extend our earlier Ω(n3/2) lower bound for reducing plane graphs and our Ω(n2)
lower bound for reducing graphs on surface – without terminals using only facial electrical
transformations – to the larger class of planar electrical transformations. Recall that a plane
graph G unicursal if its medial graph G× is the image of a single closed curve. As in our
earlier work [7], we analyze electrical transformations in an unicursal plane graph G in terms
of a certain invariant of the medial graph of G called defect, first introduced by Aicardi [1]
and Arnold [4, 3]. Our extension to non-facial electrical transformations is based on the
following surprising observation: Although the medial graph of G depends on its embedding,
the defect of the medial graph of G does not.

I Theorem 18. Let G and H be planar embeddings of the same abstract planar graph. If G
is unicursal, then H is unicursal and defect(G×) = defect(H×).

The goal of the section is to prove Theorem 18.

5.1 Defect
Let γ be an arbitrary closed curve on the sphere. Choose an arbitrary basepoint γ(0) and an
arbitrary orientation for γ. For any vertex x of γ, we define sgn(x) = +1 if the first traversal
through x crosses the second traversal from right to left, and sgn(x) = −1 otherwise. Two
vertices x and y are interleaved, denoted x G y, if they alternate in cyclic order – x, y, x, y –
along γ. Finally, following Polyak [28], we can define

defect(γ) := −2
∑
xGy

sgn(x) · sgn(y),

where the sum is taken over all interleaved pairs of vertices of γ.
Trivially, every simple closed curve has defect zero. Straightforward case analysis [28]

implies that the defect of a curve does not depend on the choice of basepoint or orientation.
Moreover, any homotopy move changes the defect of a curve by at most 2; see the paper by
Chang and Erickson [7, Section 2.1] for an explicit case breakdown. Defect is also preserved
by any homeomorphism from the sphere to itself, including reflection.

H.-C. Chang, M. Cossarini, and J. Erickson 25:11

5.2 Navigating between planar embeddings
Whitney [43, 39] showed that any planar embedding of a 2-connected planar graph G can be
transformed into any other embedding by a finite sequence of split reflections, defined as
follows. A split curve is a simple closed curve σ whose intersection with the embedding of
G consists of two vertices x and y; without loss of generality, σ is a circle with x and y at
opposite points. A split reflection modifies the embedding of G by reflecting the subgraph
inside σ across the line through x and y.

I Lemma 19. Let G be an arbitrary 2-connected planar graph. Any two planar embeddings
of G can be transformed into one other by a finite sequence of split reflections.

To navigate among the planar embeddings of arbitrary connected planar graphs, we need
two additional operations. First, we allow split curves that intersect G at only a single cut
vertex; a cut reflection modifies the embedding of G by reflects the subgraph inside such a
curve. More interestingly, we also allow degenerate split curves that pass through a cut vertex
x of G twice, but are otherwise simple and disjoint from G. The interior of a degenerate split
curve σ is an open topological disk. A cut eversion is a degenerate split reflection that everts
the embedding of the subgraph of G inside such a curve, intuitively by mapping the interior
of σ to an open circular disk (with two copies of x on its boundary), reflecting the interior
subgraph, and then mapping the resulting embedding back to the interior of σ. Structural
results of Stallman [33, 34] and Di Battista and Tamassia [15, Section 7] imply the following.

Figure 8 Top row: A regular split reflection and a cut reflection. Bottom row: a cut eversion.

I Lemma 20. Let G be an arbitrary connected planar graph. Any planar embedding of G can
be transformed into any other planar embedding of G by a finite sequence of split reflections,
cut reflections, and cut eversions.

5.3 Tangle flips
Now consider the effect of the operations stated in Lemma 20 on the medial graph G×.
By assumption, G is unicursal so that G× is a single closed curve. Let σ be any (possibly
degenerate) split curve for G. Embed G× so that every medial vertex lies on the corresponding
edge in G, and every medial edge intersects σ at most once. By the Jordan curve theorem, we
can assume without loss of generality that σ is a circle, and that the intersection points γ ∩σ
are evenly spaced around σ. A tangle of γ is the intersection of γ with either disk bounded
by σ; each tangle consists of one or more subpaths of γ called strands. We arbitrarily refer
to the two tangles defined by σ as the interior and exterior tangles of σ. Split curve σ
intersects at most four edges of G×, so the tangle of G× inside σ has at most two strands.

SoCG 2019

25:12 Lower Bounds for Electrical Reduction on Surfaces

Moreover, reflecting (or everting) the subgraph of G inside σ induces a flip of this tangle
of G×. Any tangle can be flipped by reflecting the disk containing it, so that each strand
endpoint maps to a different strand endpoint; see Figure 9. Straightforward case analysis
implies that flipping any tangle of G× with at most two strands transforms G× into another
closed curve; see Figure 10.

Figure 9 Flipping tangles with one and two strands.

I Lemma 21. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ
with one strand yields another closed curve γ′ with defect(γ′) = defect(γ).

Proof. Let σ be a simple closed curve that crosses γ at exactly two points. These points
decompose σ into two subpaths α · β, where α is the unique strand of the interior tangle and
β is the unique strand of the exterior tangle. Let Σ denote the interior disk of σ, and let
φ : Σ → Σ denote the homeomorphism that flips the interior tangle. Flipping the interior
tangle yields the closed curve γ′ := rev(φ(α)) · β, where rev denotes path reversal.

No vertex of α is interleaved with a vertex of β; thus, two vertices in γ′ are interleaved if
and only if the corresponding vertices in γ are interleaved. Every vertex of rev(φ(α)) has the
same sign as the corresponding vertex of α, since both the orientation of the vertex and the
order of traversals through the vertex changed. Thus, every vertex of γ′ has the same sign as
the corresponding vertex of γ. We conclude that defect(γ′) = defect(γ). J

A tangle is tight if each strand is simple and each pair of strands crosses at most once. Any
tangle can be tightened – that is, transformed into a tight tangle – by continuously deforming
the strands without crossing σ or moving their endpoints, and therefore by a finite sequence
of homotopy moves. Let γ e σ and γ d σ denote the closed curves that result from tightening
the interior and exterior tangles of σ, respectively.1 The following lemma that flipping any
2-strand tangle does not change its defect follows from our inclusion-exclusion formula for
defect [6, Lemma 5.4]; we give a simpler proof here to keep the paper self-contained.

I Lemma 22. Let γ be an arbitrary closed curve on the sphere. Flipping any tangle of γ
with two strands yields another closed curve γ′ with defect(γ′) = defect(γ).

Proof. Let σ be a simple closed curve that crosses γ at exactly four points. These four
points naturally decompose γ into four subpaths α · δ · β · ε, where α and β are the strands
of the interior tangle of σ, and δ and ε are the strands of the exterior tangle. Flipping the
interior tangle either exchanges α and β, reverses α and β, or both; see Figure 10. In every
case, the result is a single closed curve γ′. We classify each vertex of γ as interior if it lies
on α and/or β, and exterior otherwise. Similarly, we classify pairs of interleaved vertices are
either interior, exterior, or mixed.

1 We recommend pronouncing e as “tightened inside” and d as “tightened outside”; note that the symbols
e and d resemble the second letters of “inside” and “outside”.

H.-C. Chang, M. Cossarini, and J. Erickson 25:13

�" �"
�

↵

�

↵

�

�"

↵

�"

�

↵

�

"

�

"

�

↵

�

↵

�

�"

↵

�"

�

↵

�

"

�

"

�

↵ ↵

��
�"

↵

�"
�

↵

Figure 10 Flipping all six types of 2-strand tangle.

An interior vertex x and an exterior vertex y are interleaved if and only if x is an
intersection point of α and β and y is an intersection point of δ and ε. Thus, the total
contribution of mixed vertex pairs to Polyak’s formula defect(γ) = −2

∑
xGy sgn(x) · sgn(y) is

−2
∑

x∈α∩β

∑
y∈δ∩ε

sgn(x) · sgn(y) = −2

 ∑
x∈α∩β

sgn(x)

 ∑
y∈δ∩ε

sgn(y)

 .

Consider any sequence of homotopy moves that tightens the interior tangle with strands α
and β. Any 2�0 move involving both α and β removes one positive and one negative vertex;
no other homotopy move changes the number of vertices in α∩β or the signs of those vertices.
Thus, tightening α and β leaves the sum

∑
x∈α∩β sgn(x) unchanged. Similarly, tightening

the exterior tangle δ ∪ ε leaves the sum
∑
y∈δ∩ε sgn(y) unchanged. But after tightening both

tangles, either α and β are disjoint, or δ and ε are disjoint, or both, as γ is a single closed
curve. Thus, at least one of the sums

∑
x∈α∩β sgn(x) and

∑
y∈δ∩ε sgn(y) is equal to zero.

We conclude that mixed vertex pairs do not contribute to the defect.
The curve γ e σ obtained by tightening α and β has at most one interior vertex (and

therefore no interior vertex pairs); the exterior vertices of γ e σ are precisely the exterior
vertices of γ. Similarly, the curve γ d σ obtained by tightening both δ and ε has at most one
exterior vertex; the interior vertices of γ d σ are precisely the interior vertices of γ. It follows
that defect(γ) = defect(γ d σ) + defect(γ e σ).

Finally, let γ′ be the result of flipping the interior tangle. The curve γ′ d σ is just a
reflection of γ dσ, which implies that defect(γ′ dσ) = defect(γ dσ), and straightforward case
analysis implies γ′eσ = γeσ. We conclude that defect(γ′) = defect(γ′eσ)+defect(γ′dσ) =
defect(γ e σ) + defect(γ d σ) = defect(γ). J

Lemmas 20, 21, and 22 now immediately imply Theorem 18.

5.4 Back to planar electrical moves
Each planar electrical transformation in a plane graph G induces the same change in the
medial graph G× as a finite sequence of 1- and 2-strand tangle flips (hereafter simply called
“tangle flips”) followed by a single electrical move. For an arbitrary connected multicurve γ,
let X̄(γ) denote the minimum number of electrical moves in a mixed sequence of electrical
moves and tangle flips that tightens γ. Similarly, let H̄(γ) denote the minimum number of
homotopy moves in a mixed sequence of homotopy moves and tangle flips that tightens γ.
We emphasize that tangle flips are “free” and do not contribute to either X̄(γ) or H̄(γ).

Our lower bound on planar electrical moves follows our earlier lower bound proof for
facial electrical moves almost verbatim; the only subtlety is that the embedding of the graph
can effectively change at every step of the reduction. A complete proof can be found in the
full version of the paper.

SoCG 2019

25:14 Lower Bounds for Electrical Reduction on Surfaces

I Lemma 23. X̄(γ) ≥ H̄(γ) ≥ |defect(γ)|/2 for every closed curve γ on the sphere.

I Theorem 24. Let G be an arbitrary planar graph, and let γ be any unicursal smoothing
of G× (defined with respect to any planar embedding of G). Reducing G to a single vertex
requires at least |defect(γ)|/2 planar electrical transformations.

Finally, Hayashi et al. [23] and Even-Zohar et al. [17] describe infinite families of planar
closed curves with defect Ω(n3/2); see also [7, Section 2.2].

I Corollary 25. Reducing any n-vertex planar graph to a single vertex requires Ω(n3/2)
planar electrical transformations in the worst case.

6 Open problems

Our results suggest several open problems. Perhaps the most compelling, and the primary
motivation for our work, is to find either a subquadratic upper bound or a quadratic lower
bound on the number of (unrestricted) electrical transformations required to reduce any
planar graph without terminals to a single vertex. Like Gitler [20], Feo and Provan [19], and
Archdeacon et al. [2], we conjecture that O(n3/2) facial electrical transformations suffice.
However, proving the conjecture appears to be challenging.

Another direction is to prove a quadratic lower bound for graphs on surfaces with
positive genus under crossing-free electrical transformations. To generalize Theorem 18 to
surface-embedded graphs, we need an extension of Lemma 20 to navigate through all the
possible embeddings. Using the theory of large-edgewidth (LEW) embeddings, a result by
Thomassen [38, Theorem 6.1] shows that any embedding of a surface-embedded graph can
be obtained from the LEW-embedding (if there’s one) by a finite sequence of split reflections.
From here it is not hard to construct a toroidal curve that admits an LEW-embedding and
has quadratic defect. The main difficulty is that we don’t have a similar electrical-homotopy
inequality for arbitrary surfaces.

Finally, none of our lower bound techniques imply anything about non-planar electrical
transformations or about electrical reduction of non-planar graphs. Indeed, the only lower
bound known in the most general setting, for any family of electrically reducible graphs, is
the trivial Ω(n). It seems unlikely that planar graphs can be reduced more quickly by using
non-planar electrical transformations, but we can’t prove anything. Any non-trivial lower
bound for this problem would be interesting.

References
1 Francesca Aicardi. Tree-like curves. In Vladimir I. Arnold, editor, Singularities and Bifurcations,

volume 21 of Advances in Soviet Mathematics, pages 1–31. Amer. Math. Soc., 1994.
2 Dan Archdeacon, Charles J. Colbourn, Isidoro Gitler, and J. Scott Provan. Four-terminal

reducibility and projective-planar wye-delta-wye-reducible graphs. J. Graph Theory, 33(2):83–
93, 2000.

3 Vladimir I. Arnold. Plane curves, their invariants, perestroikas and classifications. In Vladimir I.
Arnold, editor, Singularities and Bifurcations, volume 21 of Adv. Soviet Math., pages 33–91.
Amer. Math. Soc., 1994.

4 Vladimir I. Arnold. Topological Invariants of Plane Curves and Caustics, volume 5 of University
Lecture Series. Amer. Math. Soc., 1994.

5 Hsien-Chih Chang. Tightening curves and graphs on surfaces. Ph.D. dissertation, University
of Illinois at Urbana-Champaign, 2018.

6 Hsien-Chih Chang and Jeff Erickson. Electrical reduction, homotopy moves, and defect.
Preprint, October 2015. arXiv:1510.00571.

http://arxiv.org/abs/1510.00571

H.-C. Chang, M. Cossarini, and J. Erickson 25:15

7 Hsien-Chih Chang and Jeff Erickson. Untangling Planar Curves. In Proc. 32nd Int. Symp.
Comput. Geom., volume 51 of Leibniz International Proceedings in Informatics, pages 29:1–
29:15, 2016. URL: http://drops.dagstuhl.de/opus/volltexte/2016/5921.

8 Hsien-Chih Chang and Jeff Erickson. Unwinding Annular Curves and Electrically Reducing
Planar Networks. Accepted to Computational Geometry: Young Researchers Forum, Proc.
33rd Int. Symp. Comput. Geom., 2017.

9 Hsien-Chih Chang, Jeff Erickson, David Letscher, Arnaud de Mesmay, Saul Schleimer, Eric
Sedgwick, Dylan Thurston, and Stephan Tillmann. Tightening Curves on Surfaces via Local
Moves. Submitted, 2017.

10 Yves Colin de Verdière, Isidoro Gitler, and Dirk Vertigan. Réseaux électriques planaires II.
Comment. Math. Helvetici, 71:144–167, 1996.

11 Maurits de Graaf and Alexander Schrijver. Characterizing homotopy of systems of curves on
a compact surface by crossing numbers. Linear Alg. Appl., 226–228:519–528, 1995.

12 Maurits de Graaf and Alexander Schrijver. Decomposition of graphs on surfaces. J. Comb.
Theory Ser. B, 70:157–165, 1997.

13 Maurits de Graaf and Alexander Schrijver. Making curves minimally crossing by Reidemeister
moves. J. Comb. Theory Ser. B, 70(1):134–156, 1997.

14 Lino Demasi and Bojan Mohar. Four terminal planar Delta-Wye reducibility via rooted K2,4

minors. In Proc. 26th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 1728–1742, 2015.
15 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM J. Comput.,

25(5):956–997, 1996. doi:10.1137/S0097539794280736.
16 G. V. Epifanov. Reduction of a plane graph to an edge by a star-triangle transformation. Dokl.

Akad. Nauk SSSR, 166:19–22, 1966. In Russian. English translation in Soviet Math. Dokl.
7:13–17, 1966.

17 Chaim Even-Zohar, Joel Hass, Nati Linial, and Tahl Nowik. Invariants of Random Knots and
Links. Discrete & Computational Geometry, 56(2):274–314, 2016. arXiv:1411.3308.

18 Thomas A. Feo. I. A Lagrangian Relaxation Method for Testing The Infeasibility of Certain
VLSI Routing Problems. II. Efficient Reduction of Planar Networks For Solving Certain
Combinatorial Problems. PhD thesis, Univ. California Berkeley, 1985. URL: http://search.
proquest.com/docview/303364161.

19 Thomas A. Feo and J. Scott Provan. Delta-wye transformations and the efficient reduction of
two-terminal planar graphs. Oper. Res., 41(3):572–582, 1993.

20 Isidoro Gitler. Delta-wye-delta Transformations: Algorithms and Applications. PhD thesis,
Department of Combinatorics and Optimization, University of Waterloo, 1991.

21 Isidoro Gitler and Feliú Sagols. On terminal delta-wye reducibility of planar graphs. Networks,
57(2):174–186, 2011.

22 Joel Hass and Peter Scott. Shortening curves on surfaces. Topology, 33(1):25–43, 1994.
23 Chuichiro Hayashi, Miwa Hayashi, Minori Sawada, and Sayaka Yamada. Minimal unknotting

sequences of Reidemeister moves containing unmatched RII moves. J. Knot Theory Ramif.,
21(10):1250099 (13 pages), 2012. arXiv:1011.3963.

24 Arthur Edwin Kennelly. Equivalence of triangles and three-pointed stars in conducting
networks. Electrical World and Engineer, 34(12):413–414, 1899.

25 Hiroyuki Nakahara and Hiromitsu Takahashi. An Algorithm for the Solution of a Linear
system by ∆-Y Transformations. IEICE TRANSACTIONS on Fundamentals of Electronics,
Communications and Computer Sciences, E79-A(7):1079–1088, 1996. Special Section on
Multi-dimensional Mobile Information Network.

26 Max Neumann-Coto. A characterization of shortest geodesics on surfaces. Algebraic &
Geometric Topology, 1:349–368, 2001.

27 Steven D. Noble and Dominic J. A. Welsh. Knot Graphs. J. Graph Theory, 34(1):100–111,
2000.

28 Michael Polyak. Invariants of curves and fronts via Gauss diagrams. Topology, 37(5):989–1009,
1998.

SoCG 2019

http://drops.dagstuhl.de/opus/volltexte/2016/5921
http://dx.doi.org/10.1137/S0097539794280736
http://arxiv.org/abs/1411.3308
http://search.proquest.com/docview/303364161
http://search.proquest.com/docview/303364161
http://arxiv.org/abs/1011.3963

25:16 Lower Bounds for Electrical Reduction on Surfaces

29 Alexander Schrijver. Homotopy and crossing of systems of curves on a surface. Linear Alg.
Appl., 114–115:157–167, 1989.

30 Alexander Schrijver. Decomposition of graphs on surfaces and a homotopic circulation theorem.
J. Comb. Theory Ser. B, 51(2):161–210, 1991.

31 Alexander Schrijver. Circuits in graphs embedded on the torus. Discrete Math., 106/107:415–
433, 1992.

32 Alexander Schrijver. On the uniqueness of kernels. J. Comb. Theory Ser. B, 55:146–160, 1992.
33 Matthias F. M. Stallmann. Using PQ-trees for planar embedding problems. Technical

Report NCSU-CSC TR-85-24, Dept. Comput. Sci., NC State Univ., December 1985. URL:
https://people.engr.ncsu.edu/mfms/Publications/1985-TR_NCSU_CSC-PQ_Trees.pdf.

34 Matthias F. M. Stallmann. On counting planar embeddings. Discrete Math., 122:385–392,
1993.

35 Ernst Steinitz. Polyeder und Raumeinteilungen. Enzyklopädie der mathematischen Wis-
senschaften mit Einschluss ihrer Anwendungen, III.AB(12):1–139, 1916.

36 Ernst Steinitz and Hans Rademacher. Vorlesungen über die Theorie der Polyeder: unter Einsch-
luß der Elemente der Topologie, volume 41 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, 1934. Reprinted 1976.

37 Peter Guthrie Tait. On Knots I. Proc. Royal Soc. Edinburgh, 28(1):145–190, 1876–7.
38 Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. J. Comb.

Theory Ser. B, 48(2):155–177, 1990. doi:10.1016/0095-8956(90)90115-G.
39 Klaus Truemper. On Whitney’s 2-isomorphism theorem for graphs. Journal of Graph Theory,

4(1):43–49, 1980.
40 Klaus Truemper. On the delta-wye reduction for planar graphs. J. Graph Theory, 13(2):141–148,

1989.
41 Klaus Truemper. Matroid Decomposition. Academic Press, 1992.
42 Donald Wagner. Delta-wye reduction of almost-planar graphs. Discrete Appl. Math., 180:158–

167, 2015.
43 Hassler Whitney. 2-isomorphic graphs. American Journal of Mathematics, 55(1):245–254,

1933.

https://people.engr.ncsu.edu/mfms/Publications/1985-TR_NCSU_CSC-PQ_Trees.pdf
http://dx.doi.org/10.1016/0095-8956(90)90115-G

Maintaining the Union of Unit Discs Under
Insertions with Near-Optimal Overhead
Pankaj K. Agarwal
Department of Computer Science, Duke University, Durham, NC 27708, USA
pankaj@cs.duke.edu

Ravid Cohen
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
ravidcohn@gmail.com

Dan Halperin
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
danha@post.tau.ac.il

Wolfgang Mulzer
Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
mulzer@inf.fu-berlin.de

Abstract

We present efficient data structures for problems on unit discs and arcs of their boundary in the
plane. (i) We give an output-sensitive algorithm for the dynamic maintenance of the union of n
unit discs under insertions in O(k log2 n) update time and O(n) space, where k is the combinatorial
complexity of the structural change in the union due to the insertion of the new disc. (ii) As part of
the solution of (i) we devise a fully dynamic data structure for the maintenance of lower envelopes
of pseudo-lines, which we believe is of independent interest. The structure has O(log2 n) update
time and O(logn) vertical ray shooting query time. To achieve this performance, we devise a new
algorithm for finding the intersection between two lower envelopes of pseudo-lines in O(logn) time,
using tentative binary search; the lower envelopes are special in that at x = −∞ any pseudo-line
contributing to the first envelope lies below every pseudo-line contributing to the second envelope.
(iii) We also present a dynamic range searching structure for a set of circular arcs of unit radius
(not necessarily on the boundary of the union of the corresponding discs), where the ranges are unit
discs, with O(n logn) preprocessing time, O(n1/2+ε + `) query time and O(log2 n) amortized update
time, where ` is the size of the output and for any ε > 0. The structure requires O(n) storage space.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases lower envelopes, pseudo-lines, unit discs, range search, dynamic algorithms,
tentative binary search

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.26

Related Version A full version of the paper is available at [3], http://arxiv.org/abs/1903.10943.

Funding Pankaj K. Agarwal: Work on this paper is supported by NSF under grants CCF-15-13816,
CCF-15-46392, and IIS-14-08846, by ARO grant W911NF-15-1-0408, and by grant 2012/229 from
the U.S.-Israel Binational Science Foundation.
Ravid Cohen: Work by D.H. and R.C. has been supported in part by the Israel Science Foundation
(grant no. 825/15), by the Blavatnik Computer Science Research Fund, by the Blavatnik Interdiscip-
linary Cyber Research Center at Tel Aviv University, and by grants from Yandex and from Facebook.
Wolfgang Mulzer : Partially supported by ERC STG 757609 and GIF grant 1367/2016.

Acknowledgements We thank Haim Kaplan and Micha Sharir for helpful disucussions.

© Pankaj K. Agarwal, Ravid Cohen, Dan Halperin, and Wolfgang Mulzer;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:ravidcohn@gmail.com
mailto:danha@post.tau.ac.il
https://orcid.org/0000-0002-1948-5840
mailto:mulzer@inf.fu-berlin.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.26
http://arxiv.org/abs/1903.10943
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Maintaining the Union of Unit Discs

1 Introduction

Let S be set of n points in R2, and let U be the union of the unit discs centered at the
points of S. We would like to maintain the boundary ∂U of U , as new points are added to S.
Even for discs of varying radii, the complexity of ∂U is O(n) [17], and it can be computed in
O(n logn) time using power diagrams [6]. An incremental algorithm [20] can maintain ∂U in
total of O(n2) time. This is worst-case optimal, as the overall complexity of the structural
changes to ∂U under n insertions may be Ω(n2); see an example in [3]. Here, we describe in
Section 3 an output-sensitive algorithm that uses O(n) space and updates ∂U in O(k log2 n)
time per insertion of a disc, where k is the combinatorial complexity of the structural changes
to ∂U due to the insertion. Some of our ideas resemble those of de Berg at al. [12], who
present a semi-dynamic (insertion only) point-location data structure for U .

The efficient manipulation of collections of unit discs is a widely and frequently studied
topic, for example in the context of sensor networks, where every disc represents the area
covered by a sensor. Here, we are motivated by multi-agent coverage of a region in search of
a target [11], where we investigate the pace of coverage and wish to estimate at each stage
the portion of the overall area covered up to a certain point in time. Since the simulation is
discretized (i.e., each agents is modeled by a unit disc whose motion is simulated by changing
its location at fixed time steps), we can apply the structure above to update the area of the
union within the same time bound. We give more details in Section 3.

A set of pseudo-lines in the plane is a set of infinite x-monotone curves each pair of which
intersects at exactly one point. Arrangements of pseudo-lines have been intensively studied in
discrete and computational geometry; see the recent survey on arrangements [14] for a review
of combinatorial bounds and algorithms for arrangements of pseudo-lines. At the heart of our
solution to the dynamic maintenance of U lies an efficient data structure for the following
problem: Given n pseudo-lines in the plane, dynamically maintain their lower envelope
such that one can efficiently answer vertical ray shooting queries from y = −∞. Here, the
dynamization allows insertions and deletions. For the case of lines (rather than pseudo-lines),
there are several efficient data structures to choose from [8, 9, 18, 7, 16]; these are, however,
not directly applicable for pseudo-lines. Also, there are powerful general structures based on
shallow cuttings [5, 10, 15]. These structures can handle general families of algebraic curves
of bounded description complexity and typically also work in R3. However, the additional
flexibility comes at a cost: the algorithms are quite involved, the performance guarantees
are in the expected and amortized sense, and the operations have (comparatively) large
polylogarithmic running times. For pseudo-lines, Chan’s method [10], with improvements by
Kaplan et al. [15], yields O(log3 n) amortized expected insertion time, O(log5 n) amortized
expected deletion time, and O(log2 n) worst-case query time. The solution that we propose
here is, however, considerably simpler and more efficient: We devise a fully dynamic data
structure with O(log2 n) worst-case update-time, O(logn) worst-case ray-shooting query-time,
and O(n) space. Additionally, we describe how to find all pseudo-lines below a given query
point in O(logn+k log2 n) time, where k is the output size. The structure is an adaptation of
the Overmars-van Leeuwen structure [18], matching the performance of the original structure
for the case of lines. The key innovation is a new algorithm for finding the intersection
between two lower envelopes of planar pseudo-lines in O(logn) time, using tentative binary
search (where each pseudo-line in one envelope is “smaller” than every pseudo-line in the
other envelope, in a sense to be made precise below). To the best of our knowledge this is
the most efficient data structure for the case of pseudo-lines to date.

P.K. Agarwal, R. Cohen, D. Halperin, and W. Mulzer 26:3

For our solution to the union-maintenance problem, we need to answer intersection-
searching queries of the form: Given the collection C of unit-radius circular arcs that comprise
∂U and a query unit disc D, report the arcs in C intersecting D. This problem is a special
case of the intersection searching problem in which we wish to preprocess a set of geometric
objects into a data structure so that the set of objects intersected by a query object can be
reported efficiently. Intersection-searching queries are typically answered using multi-level
partition trees; see the recent survey [1] for a comprehensive review. Our final result is a
data structure for the intersection-searching problem in which the input objects are arbitrary
unit-radius circular arcs rather than arcs forming the boundary of the union of the unit
discs, and the query is a unit disc. We present a linear-size data structure with O(n logn)
preprocessing time, O(n1/2+δ + `) query time and O(log2 n) amortized update time, where `
is the size of the output and δ > 0 is a small constant. Note that because of lack of space,
many proofs are omitted from this version and can be found in [3].

2 Dynamic lower envelope for pseudo-lines

We describe a data structure to dynamically maintain the lower envelope of an arrangement
of planar pseudo-lines under insertions and deletions. Even though we present our data
structure for pseudo-lines, it holds for more general classes of planar curves; see below.

2.1 Preliminaries
Let E be a planar family of pseudo-lines, and let ` be a vertical line strictly to the left of
the first intersection point in E. The line ` defines a total order ≤ on the pseudo-lines in
E, namely for e1, e2 ∈ E, we have e1 ≤ e2 if and only if e1 intersects ` below e2. Since each
pair of pseudo-lines in E crosses exactly once, it follows that if we consider a vertical line `′
strictly to the right of the last intersection point in E, the order of the intersection points
between `′ and E, from bottom to top, is exactly reversed.

The lower envelope L(E) of E is the x-monotone curve obtained by taking the pointwise
minimum of the pseudo-lines in E. Combinatorially, the lower envelope L(E) is a sequence of
connected segments of the pseudo-lines in E, where the first and last segment are unbounded.
Two properties are crucial for our data structure: (A) every pseudo-line contributes at most
one segment to L(E); and (B) the order of these segments corresponds exactly to the order
≤ on E defined above. In fact, our data structure works for every set of planar curves with
properties (A) and (B) (with an appropriate order ≤), even if they are not pseudo-lines in
the strict sense; this fact will prove useful in Section 3 below.

We assume a computational model in which primitive operations on pseudo-lines, such as
computing the intersection point of two pseudo-lines or determining the intersection point of
a pseudo-line with a vertical line can be performed in constant time.

2.2 Data structure and operations
The tree structure. Our primary data structure is a balanced binary search tree Ξ. Such a
tree data structure supports insert and delete, each in O(logn) time. The leaves of Ξ contain
the pseudo-lines, from left to right in the sorted order defined above. An internal node v ∈ Ξ
represents the lower envelope of the pseudo-lines in its subtree. More precisely, every leaf v
of Ξ stores a single pseudo-line ev ∈ E. For an inner node v of Ξ, we write E(v) for the set
of pseudo-lines in the subtree rooted at v. We denote the lower envelope of E(v) by L

(
v
)
.

The inner node v has the following variables:

SoCG 2019

26:4 Maintaining the Union of Unit Discs

f , `, r: a pointer to the parent, left child and right child of v, respectively;
max: the last pseudo-line in E(V) (last in the ordering defined in Section 2.1)
Λ: a balanced binary search tree that stores the prefix or suffix of L(v) that is not on
the lower envelope L(f) of the parent (in the root, we store the lower envelope of E).
The leaves of Λ store the pseudo-lines that support the segments on the lower envelope,
with the endpoints of the segments, sorted from left to right. An inner node of Λ stores
the common point of the last segment in the left subtree and the first segment in the
right subtree. We will need split and join operations on the binary trees, which can be
implemented in O(logn) time.

Queries. We now describe the query operations available on our data structure. In a vertical
ray-shooting query, we are given a value x0 ∈ R, and we would like to find the pseudo-line
e ∈ E where the vertical line ` : x = x0 intersects L(E). Since the root of Ξ explicitly stores
L(E) in a balanced binary search tree, this query can be answered easily in O(logn) time.

I Lemma 1. Let ` : x = x0 be a vertical ray shooting query. We can find the pseudo-line(s)
where ` intersects L(E) in O(logn) time.

I Lemma 2. Let q ∈ R2. We can report all pseudo-lines in E that lie below q ∈ R2 in total
time O(logn+ k log2 n), where k is the output size

Update. To insert or delete a pseudo-line e in Ξ, we follow the method of Overmars and
van Leeuwen [18]. We delete or insert a leaf for e in Ξ using standard binary search tree
techniques (the v.max pointers guide the search in Ξ). As we go down, we construct the
lower envelopes for the nodes hanging off the search path, using split and join operations on
the v.Λ trees. Going back up, we recompute the information v.Λ and v.max. To update the
v.Λ trees, we need the following operation: given two lower envelopes L` and Lr, such that
all pseudo-lines in L` are smaller than all pseudo-lines in Lr, compute the intersection point
q of L` and Lr. In the next section, we see how to do this in O(logn) time, where n is the
size of E. Since there are O(logn) nodes in Ξ affected by an update, this procedure takes
O(log2 n) time. More details can be found in [18, 19].

I Lemma 3. It takes O(log2 n) to insert or delete a pseudo-line in Ξ.

2.3 Finding the intersection point of two lower envelopes
Given two lower envelopes L` and Lr such that all pseudo-lines in L` are smaller than all
pseudo-lines in Lr, we would like to find the intersection point q between L` and Lr in
O(logn) time. We assume that L` and Lr are represented as balanced binary search trees.
The leaves of L` and Lr store the pseudo-line segments on the lower envelopes, sorted from
left to right. We assume that the pseudo-line segments in the leaves are half-open, containing
their right, but not their left endpoint in L`; and their left, but not their right endpoint
in Lr.1 Thus, it is uniquely determined which leaves of L` and Lr contain the intersection
point q. A leaf v stores the pseudo-line L(v) that supports the segment for v, as well as
an endpoint v.p of the segment, namely the left endpoint if v is a leaf of L`, and the right

1 We actually store both endpoints in the trees, but the intersection algorithm uses only one of them,
depending on the role the tree plays in the algorithm.

P.K. Agarwal, R. Cohen, D. Halperin, and W. Mulzer 26:5

endpoint if v is a leaf of Lr.2 An inner node v stores the intersection point v.p between the
last pseudo-line in the left subtree v.` of v and the first pseudo-line in the right subtree v.r
of v, together with the lower envelope L(v) of these two pseudo-lines. These trees can be
obtained by appropriate split and join operations from the Λ trees stored in Ξ.

Figure 1 (On the top). An example of case 1. Case 2 is symmetric. (On the bottom). An
example of Case 3. L` is blue; Lr is red. The solid pseudo-lines are fixed. The dashed pseudo-lines
are optional, namely, either none of the dashed pseudo-lines exists or exactly one of them exists. u.p
and v.p are the current points; and Case 3 applies. Irrespective of the local situation at u and v, the
intersection point can be to the left of u.p, between u.p and v.p, or to the right of v.p, depending on
which one of the dashed pseudo-lines exists.

Let u∗ ∈ L` and v∗ ∈ Lr be the leaves whose segments contain q. Let π` be the path
in L` from the root to u∗ and πr the path in Lr from the root to v∗. Our strategy is as
follows: we simultaneously descend into L` and into Lr. Let u be the current node in L`
and v the current node in Lr. In each step, we perform a local test on u and v to decide how
to proceed. There are three possible outcomes:

2 If the segment is unbounded, the endpoint might not exist. In this case, we use a symbolic endpoint at
infinity that lies below every other pseudo-line.

SoCG 2019

26:6 Maintaining the Union of Unit Discs

1. u.p is on or above L(v): the intersection point q is equal to or to the left of u.p. If u is
an inner node, then u∗ cannot lie in u.r; if u is a leaf, then u∗ lies strictly to the left of u;

2. v.p lies on or above L(u): the intersection point q is equal to or to the right of v.p. If v is
an inner node, then v∗ cannot lie in v.`; if v is a leaf, then v∗ lies strictly to the right of v;

3. u.p lies below L(v) and v.p lies below L(u): then, u.p lies strictly to the left of v.p (since
we are dealing with pseudo-lines). It must be the case that u.p is strictly to the left of q
or v.p is strictly to the right of q (or both). In the former case, if u is an inner node, u∗
lies in or to the right of u.r and if u is a leaf, then u∗ is u or a leaf to the right of u. In
the latter case, if v is an inner node, v∗ lies in or to the left of v.` and if v is a leaf, then
v∗ is v or a leaf to the left of v; see Figure 1.

u

v

L` Lr

Figure 2 The invariant: the current search nodes are u and v. uStack contains all nodes on the
path from the root to u where the path goes to a right child (orange squares), vStack contains all
nodes from the root to v where the path goes to a left child (orange squares). The final leaves u∗
and v∗ are in one of the gray subtrees; and at least one of them is under u or under v.

Although it is clear how to proceed in the first two cases, it is not immediately obvious
how to proceed in the third case, because the correct step might be either to go to u.r or to
v.`. In the case of lines, Overmars and van Leeuwen can solve this ambiguity by comparing
the slopes of the relevant lines. For pseudo-lines, however, this does not seem to be possible.
For an example, refer to Figure 1, where the local situation at u and v does not determine
the position of the intersection point q. Therefore, we present an alternative strategy.

u

v
Case 3

u

v

L` Lr L` Lr

Figure 3 Comparing u to v: in Case 3, we know that u∗ is in u.r or v∗ is in v.`; we go to u.r
and to v.`.

We will maintain the invariant that the subtree at u contains u∗ or the subtree at v
contains v∗ (or both). In Case 3, u∗ must be in u.r, or v∗ must be in v.`; see Figure 3. We
move u to u.r and v to v.`. One of these moves must be correct, but the other move might
be mistaken: we might have gone to u.r even though u∗ is in u.` or to v.` even though v∗ is
in v.r. To correct this, we remember the current u in a stack uStack and the current v in
a stack vStack, so that we can revisit u.` or v.r if it becomes necessary. This leads to the

P.K. Agarwal, R. Cohen, D. Halperin, and W. Mulzer 26:7

general situation shown in Figure 2: u∗ is below u or in a left subtree of a node on uStack,
and v∗ is below v or in a right subtree of a node on vStack, and at least one of u∗ or v∗
must be below u or v, respectively. Now, if Case 1 occurs when comparing u to v, we can
exclude the possibility that u∗ is in u.r. Thus, u∗ might be in u.`, or in the left subtree of
a node in uStack; see Figure 4. To make progress, we now compare u′, the top of uStack,
with v. Again, one of the three cases occurs. In Case 1, we can deduce that going to u′.r
was mistaken, and we move u to u′.`, while v does not move. In the other cases, we cannot
rule out that u∗ is to the right of u′, and we move u to u.`, keeping the invariant that u∗
is either below u or in the left subtree of a node on uStack. However, to ensure that the
search progresses, we now must also move v. In Case 2, we can rule out v.`, and we move
v to v.r. In Case 3, we move v to v.`. In this way, we keep the invariant and always make
progress: in each step, we either discover a new node on the correct search paths, or we
pop one erroneous move from one of the two stacks. Since the total length of the correct
search paths is O(logn), and since we push an element onto the stack only when discovering
a new correct node, the total search time is O(logn); see an example run in [3]. For the full
pseudocode and the formal proof see [3].

u

v

u

vu′

Case 1

Case 1 Case 2 Case 3

L` Lr

L` Lr

u
vu′

L` Lr

u

u′
v

L` Lr

u

u′
v

L` Lr

Figure 4 Comparing u to v: in Case 1, we know that u∗ cannot be in u.r. We compare u′ and v
to decide how to proceed: in Case 1, we know that u∗ cannot be in u′.r; we go to u′.`; in Case 2, we
know that u∗ cannot be in u.r and that v∗ cannot be in v.`; we go to u.` and to v.r; in Case 3, we
know that u∗ is in u′.r (and hence in u.`) or in v.`; we go to u.` and to v.`.

SoCG 2019

26:8 Maintaining the Union of Unit Discs

3 Maintaining the union of unit discs under insertions

To maintain the union of unit discs under insertions, we maintain dynamic data structures
for representing the boundary of the union, for reporting the arcs of the boundary that
intersect with the next disc to be inserted, and for updating the boundary representation
due to the insertion of the new disc. This section is dedicated to these data structures.

Overview of the algorithm. We denote by D(x) the unit disc centered at x. Let U be the
union of n unit discs and let D(x) be the new unit disc, which we wish to insert. In order to
report the arcs of ∂U that intersect D(x), we overlay the plane with an implicit grid, where
only cells that intersect with U are stored, and where the size of the diagonal of a grid cell
is 1. The arcs of ∂U are divided into the cells of the grid – each arc of ∂U is associated
with the cell that contains it. Note that if an arc belongs to more than one cell then we
split it into (sub)arcs at the boundaries of the cells that it crosses (see an illustration of the
structure in [3].We divide the arcs of a given cell into four sets: top, right, bottom and left,
which we denote by Et, Er, Eb and El respectively (see Section 3.1). The algorithm consists
of the following main steps: (1) Find the cells that D(x) intersects. (2) For each such cell
find the arcs of each one of the sets Et, Er, Eb and El that D(x) intersects. Cells of the
union that contain no boundary arcs are treated in a special way. (3) Update ∂U using the
arcs we found in the previous step and with ∂D(x).

Step 1 of the algorithm is implemented using a balanced binary tree Ω on the active cells,
namely cells that have non-empty intersection with the current union U . The key of each
active cell is the pair of coordinates of its bottom left corner. The active cells are stored at
the leaves of the tree in ascending lexicographic order. Finding the cells intersected by a
new disc, inserting or deleting a cell, take O(logn) time each. For details, see, e.g., [13]. As
we will see below, the structure Ω will also be used to decide whether a new disc is fully
contained in the current union or lies completely outside the current union (Section 3.3).

Most of this section is dedicated to a description of Steps 2 and 3 of the algorithm for
the set Et. The sets Er, Eb, and El can be handled in a similar manner. The basic property
that we use is that D(x) intersects an arc e if and only if x belongs to e⊕D1, namely the
Minkowski sum of e with a unit disc.

We split the boundaries of the Minkowski sums of Et into upper and lower curves at the
x-extremal points; in what follows, we refer to them as upper and lower curves, and denote
their respective sets by Γ+ and Γ−. (For clarity, we will refer to portions of the boundary of
the union as arcs and to portions of the boundary of the Minkowski sums as curves.) The
disc D(x) intersects the arc e ∈ Et if and only if x lies above the lower curve induced by e
and below the upper curve induce by e. We will store the curves of Γ+ in a dynamic structure
∆+ and the curves of Γ− in a dynamic structure ∆− (both described in Section 3.2).

Another property that we use is the following (see Lemma 12 below): Let ` be a vertical
line that passes through x, the center of the new disc. Then the intersection points of curves
in Γ+ with ` are all above the intersection points of curves of Γ− with `.

Assume for the sake of exposition that we are given the point ξ of intersection between `
and the upper envelope of the curves in Γ−. If the center x of our new disc is above ξ then,
since x is above all the lower curves that cross ` we only need to search the structure ∆+ for
the upper curves that lie above x – these will determine the arcs of Et that are intersected by
D(x). If the point x coincides with or lies below ξ then we only need to search the structure
∆− for the lower curves that lie below x – now these will determine the arcs of Et that are
intersected by D(x).

P.K. Agarwal, R. Cohen, D. Halperin, and W. Mulzer 26:9

However, we cannot easily obtain the point ξ, and hence querying the data structures
is a little more involved: We use ∆+ to iterate over the upper curves that lie above x. For
every upper curve we check in O(1) time whether its corresponding arc (of Et) intersects
with D(x). If it intersects then we add this arc to the output list and continue to the next
upper curve. If all the upper curves above x turn out to be induced by arcs intersecting D(x)
we output this list of arcs and stop.

If all the reported arcs from the query of ∆+ indeed intersect D(x), then we are guaranteed
that x is above ξ and this is the complete answer. Due to Lemma 12, if we detect that the
arc induced by a curve reported by ∆+ to lie above x is not intersecting D(x), then we are
guaranteed that x is on or below ξ and we will obtain the full reply by querying ∆−.

We review the geometric foundations needed by our algorithms and data structures in
Section 3.1, then describe the data structures in Section 3.2. Finally, in Section 3.3 we
explain how we solve our motivating problem – dynamically reporting the area of the union.

3.1 Preliminaries
Let B be an axis-parallel square, which represents one grid cell with unit-length diagonal,
and let `1 and `2 be lines that support the diagonals of B. These lines divide the plane into
top, right, bottom and left quadrants, which we denote by Qt, Qr, Qb and Ql, respectively.

Let U be the union of n unit discs. We divide the arcs of ∂U that are contained in B
into four sets according to the quadrant which contains their centers. In case that a center
lies on one of the lines then it is added either to the top or to the bottom quadrant. Denote
these four sets of arcs by Et, Er, Eb and El. The power of this subdivision into quadrants is
that now the projections of the arcs in any one set onto a major axis (the x-axis for Et or
Eb, and the y-axis for El or Er), are pairwise interior disjoint. For example, Et contains the
arcs whose centers are located in Qt, and the projections of the arcs in Et onto the x-axis
are pairwise interior disjoint, as we show below in Lemma 6.

I Definition 4. For two bounded x-monotone arcs ei and ej we write ei ≤x ej if and only if
the right endpoint of ei is to the left of or coincides with the left endpoint of ej.

I Lemma 5. Each arc in Et is portion of a lower semicircle.

I Lemma 6. The x-projections of the (relative interiors of) arcs in Et are pairwise disjoint.

Relying on Lemma 6, henceforth we assume that the arcs in Et are ordered from left to
right: e1, . . . , em. We wish to find which arcs of the set Et intersect with the new unit disc
D(x) to be inserted. For this purpose, we compute the Minkowski sum of each arc ei of Et
with a unit disc centred at the origin. Then, we divide the boundary of each Minkowski sum
into upper and lower curves at the x-extremal points: denote the top curve by γ+

i and the
bottom curve by γ−i . We denote the set of the upper curves, {γ+

i |ei ∈ Et}, by Γ+ and the
set of the lower curves, {γ−i |ei ∈ Et}, by Γ−. In the rest of this section we prove some useful
properties regrading the curves in Γ+ and Γ−:
P1 Every lower curve in Γ− can appear at most once on the lower envelope of the curves in

Γ−. Furthermore, if γ−i and γ−j appear on the lower envelope then γ−i appears to the left
of γ−j if and only if ei <x ej .

P2 Let ei, ei+1 and ei+2 be an ordered sequence of arcs in Et and q be a point. If q lies
below γ+

i and γ+
i+2 then q lies also below γ+

i+1.
P3 For every vertical line `. The intersection points of the lower curves with ` are below the

intersection points of the upper curves with `.

SoCG 2019

26:10 Maintaining the Union of Unit Discs

In order to prove Property P1, we first need to show that every pair of lower curves
intersect at most once.

I Lemma 7. Let ei and ej be arcs of Et. Then γ−i and γ−j intersect in exactly one point.

For two x-monotone curves `1, `2 that intersect exactly once, we say that `1 < `2 when `1
appears on their joint lower envelope immediately to the left of their intersection point and
`2 < `1 otherwise. The proof of Lemma 7 also implies,

I Corollary 8. For any pair of curves γ−i , γ
−
j ∈ Γ−, γ−i < γ−j if and only if ei <x ej.

We now turn to discuss the upper curves. To prove Property P2 (Lemma 10), we first
consider the structure of the upper envelope of the upper curves.

I Observation 9. Let p and q be the endpoints of the arc ei in Et. The upper curve γ+
i is

the upper envelope of the upper boundaries (namely, semicircles) of the discs D(p) and D(q)

I Lemma 10. Let ei, ei+1 and ei+2 be an ordered sequence of arcs in Et and q be a point.
If q is below γ+

i and γ+
i+2 then q is also below γ+

i+1.

Proof. Let p1, p2, p3 be points on arcs that belong to Et with p1 <x p2 <x p3. Let σ+
1 , σ+

2
and σ+

3 be the upper semicircles of ∂D(p1), ∂D(p2) and ∂D(p3), respectively. Let p+
12 and

p+
23 be the intersection points of σ+

1 ∩σ
+
2 and σ+

2 ∩σ
+
3 , respectively. These intersection points

exist, since the distance between every pair of points in B is at most one. By the assumption,
p1 <x p2, which means that σ+

1 appears to the left of σ+
2 on the upper envelope of σ+

1 and σ+
2 .

Let c be the center of the arc e of Et on which p2 lies. The point c is on σ+
2 , since p2 belongs

to a lower semicircle of radius 1. In addition, c is not below σ+
1 since otherwise p1 ∈ D(c)

which would contradict that p1 is a point on an arc in Et. This means that p+
12 ≤x c. The

same argument implies that p+
23 ≥x c and therefore p+

12 ≤x p
+
23. This in turn implies that the

intersection point, p+
13, between σ

+
1 and σ+

3 is below or on σ+
2 and therefore every point that

lies below σ+
1 and σ+

3 lies below σ+
2 . The only condition on p1, p2 and p3 is that they will be

x-ordered. ei ≤x ei+1 ≤x ei+2, so the claim holds (see Figure 5). J

B

Figure 5 (On the left). An example of ∂U ∩B. e1, e2 and e3 are the arcs of Et whose centers are
c1, c2 and c3, respectively. The red, green and blue outer shapes are the boundary of the Minkowski
sums of each of e1, e2 and e3 with a disc of radius 1, respectively. γ+

1 and γ−1 are denoted by the
upper and lower red curves whose endpoints are q1 and q2, respectively. (On the right) Illustration
of the proof of Lemma 10.

For p an endpoint of ei ∈ Et, we call the upper semi-circle of the disc D(p) the upper
curve of p. We denote the upper envelope of the curves in Γ+ by U(Γ+). Note that some of
the upper curves may appear on U(Γ+) as a single point, namely, they coincide with one of
the breakpoints of U(Γ+). The following corollary stems from the proof of Lemma 10.

P.K. Agarwal, R. Cohen, D. Halperin, and W. Mulzer 26:11

I Corollary 11. (i) The upper curve of each endpoint of every arc of Et appears on U(Γ+).
(ii) The x-order of the curves on U(Γ+) corresponds to the x-order of the endpoints of the
arcs of Et.

Next, we prove that for any pair of arcs ei, ej ∈ Et, γ+
i and γ−j are disjoint. Furthermore,

we show that γ+
i is above γ−j , and by that prove Property P3.

I Lemma 12. Let ei and ej be two distinct arcs in Et and let ` be a vertical line. If `
intersects with γ+

i and γ−j at p and q, respectively, then p >y q.

3.2 Data structures
In this section we describe two data structures. The data structure ∆+ (resp. ∆−), dynam-
ically maintains the set Γ+ of the upper curves (resp. Γ− of lower curves). The purpose
of these structures is to efficiently answer the following queries: given a point x, report on
the upper (resp. lower) curves which are above (resp. below) x. For the structure ∆+ it is
required that we get the answer gradually, one curve after the other, since we need to test
each curve for being relevant (in addition to being above x), and stop as soon as we detect
the first irrelevant curve.

3.2.1 Dynamically maintaining the lower curves
For maintaining the lower curves Γ− induced by the arcs in Et, we implement ∆− using the
data structure described in Section 2. Recall that the data structure dynamically maintains a
set of curves fulfilling property P1 and supports the following query: given a point x report
the curves in Γ− that are below x.

Update. After we insert a new unit disc we may have to delete and insert many lower
curves. If a lower curve γ−i is split into subcurves, then we delete γ−i and create two new
subcurves instead. In order for Property P1 to hold at all times, we first delete the old lower
curves from ∆− and then insert the new ones.

3.2.2 Dynamically maintaining the upper curves
Description. Let p1, p2, . . . , pr be the endpoints of the arcs of Et sorted in ascending x-order.
Recall that U(Γ+) denotes the upper envelope of Γ+. Let s1, s2, . . . , sr be the arcs of U(Γ+)
ordered from left to right. Note that each endpoint of Et corresponds to an arc in U(Γ+),
i.e., pi corresponds to the curve si. The data structure ∆+ is a balanced binary search tree.
We store the points pi in the leaves of the tree in their left-to-right order. We also store
in each leaf pointers rn and ln to its right and left neighboring leaves respectively, if exist.
Each internal node stores a pointer lml to the leftmost leaf of its right subtree. To keep the
a structure simple, if two arcs of Et meet at a single point, we keep only one of the endpoints
incident to this point in the list {pi}. However, we mark in the leaf of pi which are the two
arcs incident to it. Below, when we traverse the leaves of the tree and test the respective
arcs of Et for intersection with the new disc, in some nodes we may need to test two arcs.

Query. Let q be a query point. By following a path from the root, we first find the leaf
v such that the vertical line through p intersects the edge sv. The search down the tree is
carried out as follows. Suppose we reached an internal node u. We use the pointer lml(u) to
obtain the leaf w, and use ln(w) to find the point immediately to its left in the sequence

SoCG 2019

26:12 Maintaining the Union of Unit Discs

{pi}. These two points will determine the breakpoint of U(Γ+) that separates between the
left and right portions of the envelope, which are represented by the subtrees rooted at the
left and right children of u.

Recall that the structure ∆+ plays the extra role of deciding whether the center x of
the new disc lies above the point ξ or not (see the overview the algorithm in the beginning
of Section 3). Therefore the query process is somewhat more involved than if we used the
structure only to determine which curves of Γ+ pass above x.

Once we find the point pi whose arc si of the envelope intersects the vertical line through
the query point q, we will be traversing leaves of ∆+ starting at v going both rightward and
leftward. At each leaf u we test whether q lies below the curve sj stored at u and if so, we
check whether D(x) intersects the relevant arc of Et. If the answer to both predicates is true
then we continue the search in the same direction. If while we search rightwards the first
predicate is false then we go leftwards starting from v. If the first predicate is false and we
search leftwards then we stop the search and report on the arcs that we found. If the first
predicate is true and second predicate is false then we continue with ∆−.

Update. After we insert a new disc, many arcs may be deleted from Et and many new arcs
may be inserted into Et. We simply remove the endpoints of the deleted arcs and insert the
endpoints of the new arcs into ∆+.

The correctness of the query procedure follows from Lemma 10. The performance of the
structure is summarized in the following lemma whose proof is straightforward.

I Lemma 13. The query time of the data structure is O(logn+ k), where k is the number
of reported arcs. The update requires O(logn) time per operation.

When querying the data structures ∆+ and ∆− we obtain the set I of arcs of the existing
union-boundary that need to be deleted or partially cut since they are covered by the new
disc D(x) to be inserted. However, we also need to update the structures with the arcs that
the boundary of the new disc contributes to the union boundary.

To find which portions of ∂D(x) appear on the boundary of the union U ∪ D(x), we
construct the arrangement A(I ∪ ∂D(x)) and look for faces of this arrangement that abut
∂D(x) and are not in the union U . One can show that in a face f of this type the arcs
of ∂U appear on it as concave, meaning that any point inside this face is outside the disc
bounded by the arcs. Denote the size of I by k. Assume first that k ≥ 1. We can construct
the arrangement in O(k log k) time (recall that the arcs in I ∪ ∂D(x) are pairwise interior
disjoint). Finding the arcs of ∂D(x) that should be inserted takes another O(k) time.

If k = 0, there are two cases based on whether D(x) ∩ U is (i) D(x) or (ii) the empty set.
To distinguish between the cases we need to either (i) find a point that belongs to D(x) and
U , or (ii) a point that belongs to D(x) but not to U . Recall that in order to find I we overlay
the plane with a grid of cells of unit-length diagonal each. This implies that at least one
of the cells, denoted by ω, is fully contained in D(x). If ω is an active cell, i.e., ω ∩ U 6= ∅,
then ω is fully contained in U (I is an empty set) and therefore D(x) ∩ U = D(x); otherwise
D1(x) ∩ U = ∅. To check whether ω is active, we search for it in the structure Ω. In case (i)
we do nothing further, and in case (ii) we make all the grid cells covered by D(x) active, and
we update the data structures of each grid cell crossed by ∂D(x) by the relevant portions of
∂D(x). To conclude,

I Theorem 14. The boundary arcs of the union of a set of n unit discs can be maintained
under insertion in a data structure of O(n) size so that a new disc can be inserted in
O(k log2 n) time, where k is the total number of changes on the boundary of the union.

P.K. Agarwal, R. Cohen, D. Halperin, and W. Mulzer 26:13

3.3 Maintaining the area of the union
We are now ready to solve our motivating problem, namely dynamically reporting the area
of the union as we insert discs. At a a high level our algorithm proceeds as follows:
1. Find the set I of the arcs on the boundary of the union U that intersect with the new

disc D(x) to be inserted.
2. Compute the arrangement A(I ∪ ∂D(x)).
3. Calculate the extra area (over the area of the union before inserting D(x)) that D(x)

covers, using A(I ∪ ∂D(x)).

In order to find I we make use of the data strctures described above and summarized
in Theorem 14. Let k denote the number of arcs in I and assume that k ≥ 1. We use
a sweep-line algorithm to compute the arrangement A(I ∪ ∂D(x)) in time O(k log k). To
calculate the extra area that D(x) covers, we go over the faces of the arrangement and sum
up the area of the faces that are contained in D(x) \ U . If k = 0 then either the disc is fully
contained in the current union (see above for how to determine this), in which case we do
nothing, or it is disjoint from the union before the insertion of the disc, in which case we
increase the area by π. To conclude,

I Theorem 15. Given a sequence of n unit discs in R2 to be inserted one after the other,
reporting the area of the union of the discs after each insertion can be carried out in O(k log2 n)
time and O(n) space, where k is the total number of structural changes to the boundary of
the union incurred by the insertion of the new disc.

4 Intersection-searching of unit arcs with unit disc

In this section we address the following intersection-searching problem: Preprocess a collection
C of circular arcs of unit radius into a data structure so that for a query unit disc D(x),
centered at the point x, the arcs in C intersecting D(x) can be reported efficiently. We
assume for simplicity that every arc in C belong to the lower semicircle.

Let e ∈ C be a unit-radius circular arc, and let p1 and p2 be its endpoints. A unit disc
D(x) intersects e if and only if e⊕D(0), the Minkowski sum of e with a unit disc, contains the
center x. Let z := D(p1)∪D(p2), and let D+(c) be the disk of radius 2 centered at c; z divides
D+(c) into three regions (see Fig. 6): (i) z+, the portion of D+(c) \ z above z, (ii) z itself,
and (iii) z−, the portion of D+(c) \ z below z. It can be verified that e⊕D(0) = z ∪ z−. We
give an alternate characterization of z ∪ z−, which will help in developing the data structure.

Let ` be a line that passes through the tangents points, p′1 and p′2, of D(p1) and D(p2)
with D+(c), respectively, and let `− be the halfplane lying below `. Set L(e) = D+(c) ∩ `−
(see Fig. 6).

I Lemma 16. If ∂D(p1) and ∂D(p2) intersect at two points (one of which is always c) then
` passes through q := (∂D(p1) ∩ ∂D(p2)) \ {c}. Otherwise c ∈ `.

Proof. Assume that q exists. The quadrilateral (c, p1, q, p2) is a rhombus since all its edges
have length 1. Let α be the angle ∠p1qp2 and β be the angle ∠cp1q. The angle ∠qp1p

′
1

is equal to α since the segment (c, p′1) is a diameter of D(p1). The angle ∠p1qp
′
1 is equal

to β
2 since 4p1qp

′
1 is an isosceles triangle. The same arguments apply to the angle ∠p2qp

′
2

implying that the angle ∠p′1qp
′
2 is equal to π.

Assume that q does not exists then the segment (p1, p2) is a diameter of D(c). The
segment (c, p′1) is a diameter of D(p1). The segment (p1, p2) coincide with (c, p′1) at the
segment (c, p1). The same argument applies to the segment (c, p′2), implying that the angle
∠p′1qp

′
2 is equal to π (see Fig 6). J

SoCG 2019

26:14 Maintaining the Union of Unit Discs

Figure 6 (On the left) Partition of D2(c) into three regions: z+, z and z−. (On the right)
Illustration of Lemma 16.

The following corollary summarizes the criteria for the intersection of a unit circular arc
with a unit disc.

I Corollary 17. Let e be a circular arc in C with endpoints p1 and p2 and center c. Then (i)
z∪ z− = z∪L(e). (ii) e intersects a unit disc D(x) if and only if at least one of the following
conditions is satisfied: (a) x ∈ D(p1) (or p1 ∈ D(x)), (b) x ∈ D(p2) (or p2 ∈ D(x)), and (c)
x ∈ L(e).

We thus construct three separate data structures. The first data structure preprcesses the
left endpoints of arcs in C for unit-disc range searching, the second data structure preprocesses
the right endpoints of arcs in C for unit-disc range searching, and the third data structure
preprocesses L = {L(e) | e ∈ C} for inverse range searching, i.e., reporting all regions in
L that contain a query point. Using standard circle range searching data structures (see
e.g. [4, 2]), we can build these three data structures so that each of them takes O(n) space
and answers a query in O(n1/2+ε + k) time, where k is the output size. Furthermore, these
data structures can handle insertions/deletions in O(log2 n) time. We omit all the details
from here and conclude the following:

I Theorem 18. Let C be a set of n unit-circle arcs in R2. C can be preprocessed into a data
structure of linear size so that for a query unit disk D, all arcs of C intersecting D can be
reported in O(n1/2+ε + k) time, where ε is an arbitrarily small constant and k is the output
size. Furthermore the data structure can be updated under insertion/deletion of a unit-circle
arc in O(log2 n) amortized time.

References
1 Pankaj K. Agarwal. Range searching. In Jacob E. Goodman, Joseph O’Rourke, and Csaba

Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 40. Chapman &
Hall/CRC, 3rd edition, 2017.

2 Pankaj K. Agarwal. Simplex Range Searching and Its Variants: A Review, pages 1–30. Springer
International Publishing, Cham, 2017.

3 Pankaj K. Agarwal, Ravid Cohen, Dan Halperin, and Wolfgang Mulzer. Maintaining the Union
of Unit Discs under Insertions with Near-Optimal Overhead, 2019. arXiv:1903.10943v1.

4 Pankaj. K. Agarwal and Jiří Matoušek. On range searching with semialgebraic sets. Discrete
& Computational Geometry, 11(4):393–418, 1994.

5 Pankaj K. Agarwal and Jiří Matoušek. Dynamic Half-Space Range Reporting and Its Applica-
tions. Algorithmica, 13(4):325–345, 1995.

http://arxiv.org/abs/1903.10943v1

P.K. Agarwal, R. Cohen, D. Halperin, and W. Mulzer 26:15

6 F. Aurenhammer. Improved algorithms for discs and balls using power diagrams. Journal of
Algorithms, 9(2):151–161, 1988. doi:10.1016/0196-6774(88)90035-1.

7 Gerth Stølting Brodal and Riko Jacob. Dynamic Planar Convex Hull with Optimal Query
Time. In Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop on Algorithm Theory,
Bergen, Norway, July 5-7, 2000, Proceedings, pages 57–70, 2000.

8 Gerth Stølting Brodal and Riko Jacob. Dynamic Planar Convex Hull. In Proceedings of the
43rd Symposium on Foundations of Computer Science, pages 617–626, 2002.

9 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmaic amortized
time. J. ACM, 48(1):1–12, 2001.

10 Timothy M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor
queries. J. ACM, 57(3):16:1–16:15, 2010.

11 Ravid Cohen, Dan Halperin, and Yossi Yovel. Sensory Regimes of Effective Distributed
Searching without Leaders. Manuscript, 2018.

12 Mark de Berg, Kevin Buchin, Bart MP Jansen, and Gerhard Woeginger. Fine-grained
complexity analysis of two classic TSP variants. arXiv preprint, 2016. arXiv:1607.02725.

13 Dan Halperin and Mark H. Overmars. Spheres, molecules, and hidden surface removal. Comput.
Geom., 11(2):83–102, 1998.

14 Dan Halperin and Micha Sharir. Arrangements. In Jacob E. Goodman, Joseph O’Rourke,
and Csaba Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 28.
Chapman & Hall/CRC, 3rd edition, 2017.

15 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
Planar Voronoi Diagrams for General Distance Functions and their Algorithmic Applications.
In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
2495–2504, 2017.

16 Haim Kaplan, Robert Endre Tarjan, and Kostas Tsioutsiouliklis. Faster kinetic heaps and
their use in broadcast scheduling. In Proceedings of the 12th Annual Symposium on Discrete
Algorithms, pages 836–844, 2001.

17 Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the Union of Jordan Regions and
Collision-Free Translational Motion Amidst Polygonal Obstacles. Discrete & Computational
Geometry, 1:59–70, 1986.

18 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal
of Computer and System Sciences, 23(2):166–204, 1981.

19 Franco P. Preparata and Michael Ian Shamos. Computational Geometry. An Introduction.
Springer-Verlag, New York, 1985.

20 Paul G Spirakis. Very fast algorithms for the area of the union of many circles. Report no. 98
– Dept. Computer Science, Courant Institute, New York University, 1983.

SoCG 2019

http://dx.doi.org/10.1016/0196-6774(88)90035-1
http://arxiv.org/abs/1607.02725

Almost Tight Lower Bounds for Hard Cutting
Problems in Embedded Graphs
Vincent Cohen-Addad
Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6, Paris, France
vcohenad@gmail.com

Éric Colin de Verdière
Université Paris-Est, LIGM, CNRS, ENPC, ESIEE Paris, UPEM, Marne-la-Vallée, France
eric.colindeverdiere@u-pem.fr

Dániel Marx
Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),
Budapest, Hungary
dmarx@cs.bme.hu

Arnaud de Mesmay
Univ. Grenoble Alpes, CNRS, Grenoble INP1, GIPSA-lab, 38000 Grenoble, France
arnaud.de-mesmay@gipsa-lab.fr

Abstract
We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for
two fundamental but seemingly very different cutting problems on surface-embedded graphs: the
Shortest Cut Graph problem and the Multiway Cut problem.

A cut graph of a graph G embedded on a surface S is a subgraph of G whose removal from S

leaves a disk. We consider the problem of deciding whether an unweighted graph embedded on a
surface of genus g has a cut graph of length at most a given value. We prove a time lower bound
for this problem of nΩ(g/ log g) conditionally to ETH. In other words, the first nO(g)-time algorithm
by Erickson and Har-Peled [SoCG 2002, Discr. Comput. Geom. 2004] is essentially optimal. We
also prove that the problem is W[1]-hard when parameterized by the genus, answering a 17-year old
question of these authors.

A multiway cut of an undirected graph G with t distinguished vertices, called terminals, is a
set of edges whose removal disconnects all pairs of terminals. We consider the problem of deciding
whether an unweighted graph G has a multiway cut of weight at most a given value. We prove a
time lower bound for this problem of nΩ(

√
gt+g2/ log(gt)), conditionally to ETH, for any choice of the

genus g ≥ 0 of the graph and the number of terminals t ≥ 4. In other words, the algorithm by the
second author [Algorithmica 2017] (for the more general multicut problem) is essentially optimal;
this extends the lower bound by the third author [ICALP 2012] (for the planar case).

Reductions to planar problems usually involve a grid-like structure. The main novel idea for our
results is to understand what structures instead of grids are needed if we want to exploit optimally
a certain value g of the genus.

2012 ACM Subject Classification Mathematics of computing → Graphs and surfaces; Mathematics
of computing → Graph algorithms

Keywords and phrases Cut graph, Multiway cut, Surface, Lower bound, Parameterized Complexity,
Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.27

Funding Vincent Cohen-Addad: Ce projet a bénéficié d’une aide de l’État gérée par l’Agence
Nationale de la Recherche au titre du Programme FOCAL portant la référence suivante : ANR-18-
CE40-0004-01.

1 Institute of Engineering Univ. Grenoble Alpes

© Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and Arnaud de Mesmay;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vcohenad@gmail.com
mailto:eric.colindeverdiere@u-pem.fr
mailto:dmarx@cs.bme.hu
mailto:arnaud.de-mesmay@gipsa-lab.fr
https://doi.org/10.4230/LIPIcs.SoCG.2019.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

Éric Colin de Verdière: Partially supported by the French ANR project ANR-17-CE40-0033 (SoS).
Dániel Marx: Supported by ERC Consolidator Grant SYSTEMATICGRAPH (No. 725978).
Arnaud de Mesmay: Partially supported by the French ANR projects ANR-16-CE40-0009-01 (GATO),
ANR-18-CE40-0004-01 (FOCAL) and the CNRS PEPS project COMP3D.

Acknowledgements We are grateful to the anonymous referees for a careful reading of the paper
and many helpful suggestions.

1 Introduction

During the past decade, there has been a flurry of works investigating the complexity of
solving exactly optimization problems on planar graphs, leading to what was coined as
the “square root phenomenon” by the third author [27]: many problems turn out to be
easier on planar graphs, and the improvement compared to the general case is captured
exactly by a square root. For instance, problems solvable in time 2O(n) in general graphs can
be solved in time 2O(

√
n) in planar graphs, and similarly, in a parameterized setting, FPT

problems admitting 2O(k)nO(1)-time algorithms or W[1]-hard problems admitting nO(k)-time
algorithms can often be sped up to 2Õ(

√
k)nO(1) and nÕ(

√
k), respectively, when restricted

to planar graphs. We have many examples where matching upper bounds (algorithms) and
lower bounds (complexity reductions) show that indeed the best possible running time for
the problems has this form. On the side of upper bounds, the improvement often stems
from the fact that planar graphs have (recursive) planar separators of size O(

√
n), and

the theory of bidimensionality provides an elegant framework for a similar speedup in the
parameterized setting for some problems [12]. However, in many cases these algorithms
rely on highly problem-specific arguments [6, 28, 21, 30, 2, 23, 14]. The lower bounds are
conditional to the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [19]
and follow from careful reductions from problems displaying this phenomenon, e.g., Planar
3-Coloring, k-Clique, or Grid Tiling. We refer to the recent book [9] for precise results
along these lines.

While the theme of generalizing algorithms from planar graphs to surface-embedded
graphs has attracted a lot of attention, and has flourished into an established field mixing
algorithmic and topological techniques (see [7]), the same cannot be said at all of the lower
bounds. Actually, up to our knowledge, there are very few works explicitly establishing
algorithmic lower bounds based on the genus of the surfaces on which a graph is embedded,
or even just hardness results when parameterized by the genus – the only ones we are
aware of are the exhaustive treatise [29] of the third author and Pilipczuk on Subgraph
Isomorphism, where some of the hardness results feature the genus of the graph, the lower
bounds of Curticapean and the third author [8] on the problem of counting perfect matchings
and the work of Chen et al. [1].

In this work, we address this surprising gap by providing lower bounds conditioned on
ETH for two fundamental yet seemingly very different cutting problems on surface-embedded
graphs: the Shortest Cut Graph problem and the Multiway Cut problem. In both
cases, our lower bounds match the best known algorithms up to a logarithmic factor in
the exponent. We believe that the tools that we develop in this paper could pave the way
towards establishing lower bounds for other problems on surface-embedded graphs.

The shortest cut graph problem. A cut graph of an edge-weighted graph G cellularly
embedded on a surface S is a subgraph of G that has a unique face, which is a disk.
Computing a shortest cut graph is a fundamental problem in algorithm design, as it is often

V. Cohen-Addad, É. Colin de Verdière, D. Marx, and A. de Mesmay 27:3

easier to work with a planar graph than with a graph embedded on a surface of positive
genus, since the large toolbox that has been designed for planar graphs becomes available.
Furthermore, making a graph planar is useful for various purposes in computer graphics and
mesh processing, see, e.g., [34]. Be it for a practical or a theoretical goal, a natural measure
of the distortion induced by the cutting step is the length of the topological decomposition.

Thus, the last decade has witnessed a lot of effort on how to obtain efficient algorithms for
the problems of computing short topological decompositions, see for example the survey [7].
For the shortest cut graph problem, Erickson and Har-Peled [13] showed that the problem
is NP-hard when the genus is considered part of the input and gave an exact algorithm
running in time nO(g), where n is the size of the input graph and g the genus of the
surface, together with an O(log2 g)-approximation running in time O(g2n logn). The first
and fourth authors [5] gave a (1 + ε)-approximation algorithm running in time O(f(ε, g)n3),
where f is some explicit computable function. Whether it is possible to improve upon the
exact algorithm of Erickson and Har-Peled by designing an FPT algorithm for the problem,
namely an exact algorithm running in time f(g)nO(1), has been raised by these authors [13,
Conclusion] and has remained an open question over the last 17 years.

In this paper, we solve this question by proving that the result of Erickson and Har-Peled
cannot be significantly improved. We indeed show a lower bound of nΩ(g/ log g) (for the
associated decision problem, even in the unweighted case) assuming the Exponential Time
Hypothesis (ETH) of Impagliazzo et al. [19] (see Definition 3), and also prove that the
problem is W[1]-hard:

I Theorem 1. Let us consider the Shortest Cut Graph problem: Given an unweighted
graph G with n vertices cellularly embedded on an orientable surface of genus g, and an
integer λ, decide whether G admits a cut graph of length at most λ.
1. This problem is W[1]-hard when parameterized by g.
2. Assuming ETH, there exists a universal constant αCG such that for any fixed integer

g ≥ 2, there is no algorithm solving all the Shortest Cut Graph instances of genus at
most g in time O(nαCG·g/ log g).

(In the second item, the constraint g ≥ 2 is just here to ensure that g/ log g is well-defined.)

The multiway cut problem. The second result of our paper concerns the Multiway Cut
problem (also known as the Multiterminal Cut problem). Given an edge-weighted
graph G together with a subset T of t vertices called terminals, a multiway cut is a set
of edges whose removal disconnects all pairs of terminals. Computing a minimum-weight
multicut is a classic problem that generalizes the minimum s − t cut problem and some
closely related variants have been actively studied since as early as 1969 [18]. On general
graphs, while the problem is polynomial-time solvable for t = 2, it becomes NP-hard for any
fixed t ≥ 3, see [10]. In the case of planar graphs, it remains NP-hard if t is arbitrarily large,
but can be solved in time 2O(t)nO(

√
t), where n is the number of vertices and edges of the

graph [21], and a lower bound of nΩ(
√
t) was proved (conditionally on ETH) by the third

author [26]. A generalization to higher-genus graphs was recently obtained by the second
author [6] who devised an algorithm running in time f(g, t) ·nO(

√
gt+g2) in graphs of genus g,

for some function f (actually, for the more general Multicut problem). If one allows some
approximation, this can be significantly improved: three of the authors recently provided a
(1 + ε)-approximation algorithm running in time f(ε, g, t) · n logn [3].

We prove a lower bound of nΩ(
√
gt+g2/ log(gt)) for the associated decision problem, even

in the unweighted case, which almost matches the aforementioned best known upper bound,
and generalizes the lower bound of the third author [26] for the planar case. Actually, we

SoCG 2019

27:4 Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

prove a lower bound that holds for any value of the integers g and t as long as t ≥ 4. The
precise theorem is the following, where we use g∗ to denote max(2, g) so that the quantities
are well-defined for g = 0 and g = 1:

I Theorem 2. Let us consider the Multiway Cut problem: Given an unweighted graph G,
a set T of vertices, and an integer λ, decide whether there exists a multiway cut of (G,T) of
value at most λ.

Assuming ETH, there exists a universal constant αMC such that for any fixed choice of
integers g ≥ 0 and t ≥ 4, there is no algorithm that decides all the Multiway Cut instances
(G,T, λ) for which G is embeddable on the orientable surface of genus g and |T | ≤ t, in time
O(nαMC

√
g∗t+g∗2/ log(g∗t)) .

Note that taking g = 0 in this theorem yields lower bounds for the Planar Multiway
Cut problem, and recovers, up to a logarithmic factor, the lower bounds obtained by the
third author [26] for that problem. In the opposite regime, we also prove W[1]-hardness
with respect to the genus for instances with 4 terminals, see Proposition 11. We remark
that t = 2 corresponds to the minimum cut problem, which is polynomial-time solvable, so
a lower bound on t is necessary. While the last remaining case, for t = 3, is known to be
NP-hard [10], our techniques do not seem to encompass it, and we leave its parameterized
complexity with respect to the genus as an open problem.
I Remark. Parameterized lower bounds in the literature often have the form “assuming ETH,
there is no f(k)no(h(k)) algorithm to solve problem X, for any function f”, where h is some
specific dependency on the parameter. The lower bounds that we prove in Theorems 1 and 2
are instead of the form “assuming ETH, there exists a universal constant α such that for
any fixed k, there is no O(nαh(k)) algorithm to solve problem X”. The latter lower bounds
imply the former: indeed, f(k)no(h(k)) = O(nαh(k)) for a fixed k. Our results are stronger,
concerning instances for any fixed k. Moreover, lower bounds with two parameters are
difficult to state with o() notation. The statement of Theorem 2 handles every combination
of the two parameters in a completely formal way.

Main ideas of the proof. What is a good starting problem to prove hardness results
for surface-embedded graphs? For planar graphs, the Grid Tiling problem of the third
author [24] has now emerged as a convenient, almost universal, tool to establish parameterized
hardness results and precise lower bounds based on ETH. A similar approach, based on
constraint satisfaction problems (CSPs) on d-dimensional grids, was used by the third author
and Sidiropoulos [31] to obtain lower bounds for geometric problems on low-dimensional
Euclidean inputs (see also [11] for a similar framework for geometric intersection graphs).
However, these techniques do not apply directly for the problems that we consider. Indeed,
the bounds implied by these approaches are governed by the treewidths of the underlying
graphs and are of the type nΩ(√p) or nΩ(p1−1/d) respectively, where p is the parameter of
interest and d the dimension of the grid in the latter case. In contrast, here, we are looking
for bounds of the form nΩ∗(p) (while this is not apparent from looking at Theorem 2, this
also turns out to be the main regime of interest for the Multiway Cut problem).

Our first contribution, in Section 3, is to introduce a new hard problem for embedded
graphs, which is versatile enough to be used as a starting point to obtain lower bounds for
both the Shortest Cut Graph and the Multiway Cut problem (and hopefully others).
It is a variant of the Grid Tiling problem which we call 4-Regular Graph Tiling; in
a precise sense, it generalizes the Grid Tiling problem to allow for embedded 4-regular
graphs different from the planar grid to be used as the structure graph of the problem. We

V. Cohen-Addad, É. Colin de Verdière, D. Marx, and A. de Mesmay 27:5

show that a CSP instance with k binary constraints can be simulated by a 4-Regular
Graph Tiling instance with parameter k. A result of the third author [25] shows that,
assuming the ETH, such CSP instances cannot be solved in time f(k)nΩ(k/ log k), giving a
similar lower bound for 4-Regular Graph Tiling (Theorem 9).

We then establish in Sections 4 and 5 the lower bounds for the Shortest Cut Graph
and “one half” of the lower bound for Multiway Cut, namely, for the regime where the
genus dominates the number of terminals. Both reductions proceed from 4-Regular Graph
Tiling and use as a building block an intricate set of cross gadgets originally designed by
the third author [26] for his hardness proof of the Planar Multiway Cut problem. While
it does not come as a surprise that these gadgets are useful for more general non-planar
Multiway Cut instances, it turns out that via basic planar duality, they also provide
exactly the needed technical tool for establishing the hardness of Shortest Cut Graph.

In order to establish the “second half” of the lower bound in Theorem 2, in the regime
where the number of terminals dominates the genus, we use a similar strategy in Section 6
but bypass the use of the 4-Regular Graph Tiling problem. Instead, we rely directly
on the aforementioned theorem of the third author on the parameterized hardness of CSPs,
which we apply not to a family of expanders, but to blow-ups of expanders, i.e., expanders
where vertices are replaced by grids of a well-chosen size. This size is prescribed exactly
by the tradeoff between the genus and the number of terminals, as described with the two
integers g and t in Theorem 2. The key property of these blow-ups is that their treewidth is
tw = Θ(

√
gt) and thus the nΩ(tw/ log tw) lower bound on the complexity of CSPs with these

blow-ups as primal graphs yields exactly the target lower bound. The reduction from CSPs
to Multiway Cut is carried out in Proposition 14 and also relies on cross gadgets.

There just remains to combine Propositions 11 and 14 to obtain Theorem 2. This is easy
and we refer to the full version [4, Section 7] for the proof.

Note that while Theorem 2 does not use an embedded graph as an input, we can find
an embedding of a graph on a surface with minimum possible genus in f(g)n time [20, 32].
Thus, the same hardness result holds in the embedded case and the question is not about
whether we are given the embedding or not.

2 Preliminaries

Graphs on surfaces. For standard definitions for graphs embedded on surfaces, we refer to
the classic textbook of Mohar and Thomassen [33] and the fullversion [4, Section 2]. In this
article, all surfaces are compact, connected, and orientable.

The Exponential Time Hypothesis. Our lower bounds are conditioned on the Exponential
Time Hypothesis (ETH), which was conjectured in [19].

I Conjecture 3 (Exponential Time Hypothesis [19]). There exists a positive real value s > 0
such that 3-CNF-SAT, parameterized by n, has no 2sn(n+m)O(1)-time algorithm (where n
denotes the number of variables and m denotes the number of clauses).

We refer to the survey [22] for background and discussion of this conjecture.

Expanders and their treewidth. We will rely on the following classical lemmas about
expander graphs and their treewidth. A family G of graphs is dense if for any n > 0, there
exists a graph in G with Θ(n) vertices (where the Θ() hides a universal constant). The other
definitions and the proofs are included in the full version [4, Section 2]

SoCG 2019

27:6 Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

I Lemma 4. There exists a dense family H of bipartite four-regular expanders.

I Lemma 5. Every d-regular graph G satisfies tw(G) ≥ b|V (G)| · (1− λ(G)/d)/8c.

Constraint satisfaction problems. A binary constraint satisfaction problem is a triple
(V,D,C) where

V is a set of variables,
D is a domain of values,
R is a set of constraints, {c1, . . . , cq}, which are all pairs 〈si, Ri〉 , where si is a pair of
variables called the scope, and Ri is a subset of D2 called the relation.

All the constraint satisfaction problems (CSPs) in this paper will be binary, and thus we
will omit the adjective binary.

A solution to a constraint satisfaction problem instance is a function f : V → D such that
for each constraint ci with si = (v1, v2), the pair f(v1, v2) is a member of Ri. An algorithm
decides a CSP instance I if it outputs true if and only if that instance admits a solution.

The primal graph of a CSP instance I = (V,D,C) is a graph with vertex set V such
that distinct vertices u, v ∈ V are adjacent if and only if there is a constraint whose scope
contains both u and v.

The starting points for the reductions in this paper are the following two theorems, which
state in a precise sense that the treewidth of the primal graph of a binary CSP establishes a
lower bound on the best algorithm to decide it.

I Theorem 6 ([17, 16]). Let G be an arbitrary class of graphs with unbounded treewidth. Let
us consider the problem of deciding the binary CSP instances whose primal graph, G, lies
in G. This problem is W[1]-hard parameterized by the treewidth.

I Theorem 7 ([25]). Assuming ETH, there exists a universal constant αCSP such that for
any fixed primal graph G with tw(G) ≥ 2, there is no algorithm deciding the binary CSP
instances whose primal graph is G in time O(|D|αCSP·tw(G)/ log tw(G)).

The first theorem is due to Grohe et al. [17] (see also Grohe [16]). The second one follows
from the work of the third author [25]. Since this statement differs from the main theorem
of [25], we explain in the full version [4, Section 2] how to obtain it.

Cross gadgets. We rely extensively on the following intricate family of gadgets introduced
by the third author in his proof of hardness of Planar Multiway Cut [26], which we call
cross gadgets. Let ∆ be an integer. The gadgets always have the form of a planar graph
GS embedded on a disk, with 4∆ + 8 distinguished vertices on its boundary, which are, in
clockwise order, denoted by

UL, u1, . . . , u∆+1, UR, r1, . . . , r∆+1, DR, d∆+1, . . . d1, DL, `∆+1, . . . , `1.

The embedding is chosen so that the boundary of the disk intersects the graph precisely in
this set of distinguished vertices; the interior of the edges lie in the interior of the disk. We
consider the vertices UL,UR,DR, and DL as terminals in that gadget, and thus a multiway
cut M of the gadget is a subset of the edges of GS such that GS \M has at least four
components, and each of the terminals is in a distinct component. We say that a multiway
cut M of the gadget represents the pair (i, j) ∈ [∆]2 (where, as usual, [∆] denotes the set
{1, . . . ,∆}) if GS \M has exactly four components that partition the distinguished vertices
into the following classes:

{UL, u1, . . . , uj , `1, . . . , `i} {UR, uj+1, . . .∆+1 , r1, . . . , ri}
{DL, d1, . . . dj , `i+1, . . . , `∆+1} {DR, dj+1, . . . , d∆+1, ri+1, . . . r∆+1}

V. Cohen-Addad, É. Colin de Verdière, D. Marx, and A. de Mesmay 27:7

UL UR

DL DR

u1 u2 u3 u4

`1

`2

`3

`4

d1 d2 d3 d4

r4

r1

r2

r3

UL∗ UR∗

DL∗ DR∗

u∗1 u∗2 u∗3 u∗4

`∗1

`∗2

`∗3

`∗4

d∗1 d∗2 d∗3 d∗4

r∗4

r∗1

r∗2

r∗3

Figure 1 Left: a cross gadget GS for ∆ = 3. The dashed line indicates a multiway cut that
represents the pair (2, 3). Right: a dual cross gadget G∗S for ∆ = 3. The dashed lined is a dual
multiway cut that represents the pair (2, 3).

We remark that, as in the original article [26], the notation (i, j) is in matrix form. We
will use the same convention throughout this paper, especially in Section 3.

The boundary of a cross gadget and a multiway cut representing a pair are pictured on
Figure 1, left. The properties that we require are summarized in the following lemma:

I Lemma 8 ([26, Lemma 2]). Given a subset S ⊆ [∆]2, we can construct in polynomial time
a planar gadget GS with poly(∆) unweighted edges and vertices, and an integer D1 such that
the following properties hold:
i. For every (i, j) ∈ S, the gadget GS has a multiway cut of weight D1 representing (i, j).
ii. Every multiway cut of GS has weight at least D1.
iii. If a multiway cut of GS has weight D1, then it represents some (i, j) ∈ S.

Note that in [26], the third author uses weights to define the gadgets, but as he explains
at the end of the introduction, the weights are polynomially large integers and thus can be
emulated with parallel unweighted edges.

In the following, we will also use the dual of the graph GS as one of our gadgets, yielding
a dual cross gadget G∗S (see Figure 1). Its properties mirror exactly the ones of cross gadgets
in a dual setting, we refer to the full version [4, Section 2] for details.

3 The 4-regular graph tiling problem

We introduce the problem 4-Regular Graph Tiling which will be used as a basis to prove
the reductions involved in Theorems 1 and 2.

4-Regular Graph Tiling
Input: Integers k, n; a four-regular graph Γ on k vertices where the edges are labeled

by U,D,L,R in a way that each vertex is incident to exactly one of each label; for each
vertex v, a non-empty set Sv ⊆ [n]× [n].

Output: For each vertex v, a value sv ∈ Sv such that if sv = (i, j),
1. the first coordinate of sL(v) and sR(v) is i, and
2. the second coordinate of sU(v) and sD(v) is j,

SoCG 2019

27:8 Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

...
...

u

va

vb

vc

vd

u1

u2

u3

u4

e1
e2
e3

e4

ve1

ve2

ve3

ve4

va,1

vb,2

vc,3

vd,4

Figure 2 The reduction in the proof of Theorem 9. The bipartition on both sides are represented
by hollow/solid vertices. The colors represent the 4-coloring of the edges, and the labels of the edges
are suggested by their orientation, i.e., edges entering vertices vertically are labeled U or D, while
edges entering vertices horizontally are labeled L or R.

where U(v), D(v), L(v), and R(v) denote the vertex of the graph Γ connected to v via
an edge labeled respectively by U , D, L, and R.

We call the two conditions above the compatibility conditions of the 4-Regular Graph
Tiling instance. The graph in the input is allowed to have parallel edges. It is easy to see
that the Grid Tiling problem [24] is a special case of 4-Regular Graph Tiling.

In this section, we prove a larger lower bound for this more general problem: we prove an
nΩ(k/ log k) lower bound, conditionally to ETH, for 4-Regular Graph Tiling, even when
the problem is restricted to bipartite instances and when fixing k. We also show that it is
W[1]-hard when parameterized by the integer k (even for bipartite instances). Precisely:

I Theorem 9.
1. The 4-Regular Graph Tiling problem restricted to instances whose underlying graph

is bipartite, parameterized by the integer k, is W[1]-hard.
2. Assuming ETH, there exists a universal constant αGT such that for any fixed integer

k ≥ 2, there is no algorithm that decides all the 4-Regular Graph Tiling instances
whose underlying graph is bipartite and has at most k vertices, in time O(nαGT·k/ log k).

The analogous result for Grid Tiling by the third author [24] embeds the k-Clique
problem in a k× k grid. Here we start from a hardness result for 4-regular binary CSPs that
follows from Theorem 7 and directly represent the problem as a 4-Regular Graph Tiling
instance by locally replacing each variable and each binary constraint in an appropriate way.

Proof. In the proof, we will use the well-known fact that a d-regular bipartite graph G can
be properly edge-colored with d colors. This is proved by induction on d: The case d = 0 is
trivial; in general, take a perfect matching of G, which exists by Hall’s marriage theorem;
color the edges with color d; the subgraph of G made of the uncolored edges satisfies the
induction hypothesis with d− 1, so it admits a proper edge-coloring with d− 1 colors; thus
G has a proper edge-coloring with d colors. This also implies that computing such a proper
edge-coloring takes polynomial time.

The proof of the theorem proceeds by a reduction from the binary CSP instances involved
in Theorems 6 and 7. Starting from a binary CSP instance I = (V,D,C) whose primal
graph is P , a 4-regular bipartite graph, we define an instance of 4-Regular Graph Tiling,
(k, n, {Si},Γ), in the following way.

V. Cohen-Addad, É. Colin de Verdière, D. Marx, and A. de Mesmay 27:9

1. We set n = |D| and k = 6|V |.
2. We find a proper edge coloring of P with 4 colors, as indicated above.
3. Denoting by V1 and V2 the two subsets of vertices of P corresponding to the bipartition

of P , for each vertex u of V1, we create four vertices u1, u2, u3, u4 in Γ which we connect
in a cycle in this order using two U and two D edges. Similarly, for each vertex v of V2,
we create four vertices v1, v2, v3, v4 in Γ which we connect in a cycle in this order using
two R and two L edges.

4. For each edge e = uv labeled with a color i, where u ∈ V1 and v ∈ V2, we create one
vertex ve in Γ, which is connected to ui via two edges, one labeled R and one labeled L,
and to vi via two edges, one labeled U and one labeled D.

5. For each vertex ui or vi of Γ coming from a vertex of P , the corresponding subset Sui or
Svi

is set to be Diag([n]) := {(x, x) | x ∈ [n]}.
6. For each vertex ve of Γ coming from an edge e = uv of P , where u ∈ V1 and v ∈ V2, the

corresponding subset Se is set to be the relation corresponding to e.

See Figure 2 for an illustration of this reduction. We claim that the graph Γ is bipartite:
The bipartition is obtained by picking for one side the odd-numbered u and v vertices and
the ve vertices for e labeled by an even color, and for the other side the even-numbered u and
v vertices and the ve vertices for e labeled by an odd color. It follows from the construction
that this is a bipartition.

We claim that this instance of 4-Regular Graph Tiling is satisfiable if and only if
I is satisfiable. Indeed, if I is satisfiable, the truth assignment f for I can be used to find
the values for the si in the following way. For a vertex ui or vi of Γ coming from a vertex
v of P , the value sui

or svi
can be chosen to be (f(v), f(v)). For a vertex ve of Γ coming

from an edge e = uv of P where u ∈ V1 and v ∈ V2, the value of se can be chosen to be
(f(u), f(v)). The compatibility conditions are trivially fulfilled. In the other direction, the
values svi for the four vertices of Γ coming from a vertex v of P are identical and of the form
(x, x). Choosing x as the truth assignment for v in I yields a solution to the CSP I.

We thus have a linear-time reduction from binary CSP, restricted to instances I whose
primal graph has |V | vertices, is four-regular and is bipartite, to instances of 4-Regular
Graph Tiling on a bipartite graph with 6|V | vertices. Combined with Theorem 6 applied
to the infinite family H of four-regular bipartite expanders output by Lemma 4 and Lemma 5
relating their treewidth to their number of vertices, this proves the first item of the theorem.
For the second item, we fix an integer k; by Lemma 4, there exists a constant c so that
if k ≥ c, there exists a four-regular bipartite expander G with expansion constant 1 >

cexp > λ(G)/4, and with at least k/c and at most k/6 vertices. We set αGT to be equal to
min(log c/c, αCSP · (1− cexp)/16c), where αCSP is the constant of Theorem 7. If k is smaller
than c, such an expander may not exist in H, but since αGT · c/ log c < 1, the trivial linear
lower bound for the 4-Regular Graph Tiling problem, which holds for any k ≥ 2, is
enough to conclude. If k is at least c, observing that the polynomial-time reduction blows
up the number of vertices by 6, we have that an algorithm deciding all the 4-Regular
Graph Tiling bipartite instances with at most k vertices in time O(nαGT·k/ log k) would
decide binary CSP instances whose primal graph is G in time

O(nαCSP·
(1−cexp)

16c · c|V (G)|
log c|V (G)|) = O(nαCSP·

(1−cexp)
16c · 16c·tw(G)

(1−cexp) log tw(G)) = O(|D|αCSP·tw(G)/ log tw(G)))

where the first equality uses Lemma 5. This would contradict Theorem 7. J

SoCG 2019

27:10 Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

I Remark 10. It might seem more natural to use a definition of 4-Regular Graph Tiling
where half-edges are labeled by U,D,L and R, so that every edge contains either U and D, or
L and R labels. This fits more the intuition that the top side of a vertex should be attached
to the bottom side of the next vertex. It follows from roughly the same proof that the same
hardness result also holds for that variant. However, it seems that both the bipartiteness
and the unusual labeling are required for the reduction in Section 4.

4 Multiway cut with four terminals

In this section, we prove the following proposition, which will yield Theorem 2 in the regime
where the genus dominates the number of terminals.

I Proposition 11.
1. The Multiway Cut problem when restricted to instances (G,T, λ) in which |T | = 4 and

G is embeddable on the surface of genus g is W[1]-hard parameterized by g.
2. Assuming ETH, there exists a universal constant αMC1 such that for any fixed integer

g ≥ 2, there is no algorithm that decides all the Multiway Cut instances (G,T, λ) for
which G is embeddable on the surface of genus g and |T | = 4, in time O(nαMC1·g/ log g).

Proof. The idea is to reduce 4-Regular Graph Tiling instances of Theorem 9 to the
instances of Multiway Cut specified by the proposition. Consider an instance of 4-
Regular Graph Tiling where the underlying graph Γ is bipartite and has at most k
vertices (k being arbitrary for now). In polynomial time, we transform it into an equivalent
instance (G,T, λ) of Multiway Cut as follows.
1. To each vertex v of Γ corresponds a cross gadget GS(v) where ∆ = n and the subset S is

chosen to be Sv.
2. For each edge e = uv of Γ labeled U , we identify the vertices of the U side of the cross

gadget GS(v) to the corresponding vertices of the U side of the cross gadget GS(u).
Similarly for the edges labeled D, R, and L for which the vertices on the D, R, and L
sides, respectively, are identified. Note that only vertices, and not edges, are identified.

3. The four corner vertices UL,UR,DR, and DL of all the cross gadgets are identified in
four vertices UL,UR,DR, and DL, where the four terminals are placed.

Note that since the sides are consistently matched in this last step, the four terminals remain
distinct after this identification.

We claim that this instance admits a multiway cut of weight at most D2 := kD1 (where
D1 is the integer from Lemma 8) if and only if the 4-Regular Graph Tiling instance is
satisfiable. Assume first that the 4-Regular Graph Tiling instance is satisfiable. For
each vertex v of Γ, one can use the value sv to choose, using Lemma 8(1), a multiway cut in
GS(v) representing sv. We claim that the construction ensures that taking the union of all
these sets of edges forms a multiway cut M separating the four terminals in G. Indeed, after
removing the multiway cuts, the four terminals lie in four different components in each of
the cross gadgets. This remains the case after identifying the four sides: consider two cross
gadgets that have two sides identified; let w be a vertex on that common side; then, by the
compatibility conditions in the definition of 4-Regular Graph Tiling, w is connected, in
the first gadget, to a terminal (UL, UR, DR, or DL) if and only if it is connected to the
corresponding terminal in the second gadget. The multiway cut M has weight at most kD1,
since it is the union of k edge sets of weight at most D1.

For the other direction, we first observe that if the instance admits a multiway cut of
weight at most kD1, then each of the cross gadgets GS must admit a multiway cut (otherwise
the four terminals would not be disconnected). By Lemma 8(2), each of these k multiway cuts

V. Cohen-Addad, É. Colin de Verdière, D. Marx, and A. de Mesmay 27:11

UL UR

DRDL

UL

DL

Figure 3 If the multiway cuts do not match (here represented by their duals), they do not
separate the terminals.

U

D
L R

Δ...1
1

Δ

...

Δ...1

1

Δ

...

U

D
LR

Δ ... 1
1

Δ

...

Δ ... 1

1

Δ

...

Figure 4 Left: A bipartite four-valent graph Γ with two vertices. Right: The construction of
the embedding of G. The orientation of each gadget of G, corresponding to a vertex v, is chosen
according to the side of the bipartition vertex v lies in. This allows to connect pairs of vertices on
the boundary of each gadget with the same indices.

has weight exactly D1. Therefore, by Lemma 8(3), each of them represents some (i, j) ∈ S,
which will be used as the value sv for the 4-Regular Graph Tiling instance. Furthermore,
we claim that the multiway cuts need to match along identified sides, i.e., if a multiway
cut represents the pair (i, j), then a multiway cut in a cross gadget adjacent along an edge
labeled U or D needs to represent a pair (k, j) for some k ∈ [n], and similarly a multiway cut
in a cross gadget adjacent along an edge labeled R or L needs to represent a pair (i, `) for
some ` ∈ [n], for otherwise the four terminals are not separated. Indeed, if, say, a multiway
cut representing the pair (i, j) is connected along an edge labeled R to a multiway cut
representing the pair (i′, `) for i′ > i, there is a path connecting the terminals UR and DR,
as pictured in Figure 3, contradicting the fact that we have a multiway cut. Therefore, the
compatibility conditions of the 4-Regular Graph Tiling instance are satisfied.

B Claim 12. The genus of the graph G is O(k).

This claim is proved by providing an embedding of G, by connecting cross gadgets with at
most k ribbons which will then be contracted. An important subtlety is that the naive way
of doing so does not yield an orientable surface, and to fix this, the fact that G is bipartite
turns out to be crucial: Our embedding switches the orientation of the gadgets based on the
bipartition of the vertices (as pictured in Figure 4). The full proof of this claim is included
in the full version [4, Section 4].

SoCG 2019

27:12 Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

Figure 5 Left: A bipartite four-valent graph Γ with two vertices. Right: The resulting graph Γ′.
The graph Γ is in thick lines, and the edges forming the complement of a spanning tree are split
with a new vertex, to which a loop (in thin lines) is attached.

To summarize: Given an instance of 4-Regular Graph Tiling where the underlying
graph Γ is bipartite and has at most k vertices, for an arbitrary k, we can transform it in
polynomial time into an equivalent instance of Multiway Cut with four terminals and
whose graph has at most k · poly(n) vertices and edges and is embeddable on a surface of
genus at most ck, for some universal constant c ≥ 1, where the polynomial is inherited from
Lemma 8.

Combined with Theorem 9(1), this proves the first item. For the second one, for a given
choice of g, we pick k = bg/cc. If k ≥ 2, setting αMC1 = αGT/cd where d is the degree of
the polynomial and combining Theorem 9(2) with this reduction proves the second item of
the theorem. Otherwise, as in the proof of Theorem 9, choosing αMC1 to be smaller than
2c/ log(2c) and using the trivial linear lower bound suffices to conclude. J

5 Shortest cut graph

In this section, we prove Theorem 1 on the hardness of the Shortest Cut Graph problem.

Proof. The idea is to reduce 4-Regular Graph Tiling instances of Theorem 9 to instances
of Shortest Cut Graph. Let Γ be a bipartite four-regular graph with k vertices.

From Γ, we build a surface S as follows (see Figure 5): We build one cylindrical tube
for each edge of Γ and one sphere minus four disks for each vertex of Γ, attaching them
in the natural way to obtain an orientable surface. By Euler’s formula, this surface has
genus k + 1. Moreover, the graph Γ is naturally embedded in S, though not cellularly. In
order to have a cellular embedding, and actually a cut graph, we transform Γ as follows. Let
T be a spanning tree of Γ. Let Γ′ be the graph obtained from Γ by subdividing each edge
not in T into two edges, and adding a loop in the middle vertex. Now, embed Γ′ into S in
the natural way: Starting from the embedding of Γ into S, put each middle vertex on the
corresponding cylindrical tube of S, and make the corresponding loop go around the tube.
The resulting graph is a cut graph of S (indeed, it has a single face, because we only add
loops in the middle of edges not in the spanning tree T ; Γ′ has 2k + 1 vertices and 4k + 2
edges (being four-regular); so its unique face is a disk, by Euler’s formula).

Let V1 ∪ V2 be the bipartition of the vertices of Γ. We note that the above construction
is possible while enforcing an arbitrary cyclic ordering of the edges incident to each vertex
of Γ; we do it in a way that the cyclic ordering of the edges around each vertex in V1 is the
standard one (U , R, D, L in clockwise order), while the cyclic ordering around each vertex

V. Cohen-Addad, É. Colin de Verdière, D. Marx, and A. de Mesmay 27:13

in V2 is reversed (U , L, D, R in clockwise order). We now build a graph G embedded on the
same surface S as follows, obtained by replacing each vertex of Γ′ with a dual cross gadget
and by (almost) identifying vertices on the corresponding sides of adjacent gadgets. In detail:
1. To each vertex v of Γ corresponds a dual cross gadget G∗S(v) where ∆ = n and the subset

S is chosen to be Sv. We embed that dual cross gadget with the same orientation as the
corresponding vertex of Γ′.

2. For each edge e = uv of T , we identify the vertices (not the edges) on the side of G∗S(u)
corresponding to the label of e to the vertices on the same side of G∗S(v). By the choice of
the rotation systems, and for the same reason as in Figure 4, this identifies the vertices in
the gadget associated with u to the corresponding vertices in the gadget associated with v;
for example, if the label of edge e is R, the vertex ri of the first gadget is associated to
vertex ri of the second gadget).

3. For an edge e = uv of Γ not in T , we use another dual cross gadget G∗S(e), for which we
choose S to be the unconstrained relation S = [n]2. We put that gadget on the vertex
of Γ′. We identify the vertices on the side of G∗S(u) corresponding to the label of e to
the vertices of the same side of G∗S(e), and similarly the vertices on the side of G∗S(v)
corresponding to the label of e to the vertices on the opposite side of G∗S(e). The two
opposite sides of G∗S(e) which are not yet identified are identified to each other.

The following claim, whose proof is included in the full version [4, Section 5], shows that
the reduction works as expected.

B Claim 13. The embedded graph G admits a cut graph C of weight at most (2k + 1)D1 if
and only if the 4-Regular Graph Tiling instance on Γ is satisfiable.

To summarize: Given an instance of 4-Regular Graph Tiling where the underlying
graph Γ is bipartite and has k vertices, for an arbitrary k, we can transform it in polynomial
time into an equivalent instance of Shortest Cut Graph whose graph has k · poly(n)
vertices and edges, embedded on a surface of genus k+ 1. Combined with Theorem 9(1), this
proves the first item of the theorem. For the second item, for any choice of integer g ≥ 3, we
choose k = g − 1, and the above reduction, combined with Theorem 9(2), finishes the proof
for αCG ≤ αGT/d (where d is the degree of the polynomial of Lemma 8). For g = 2, we set
αCG ≤ 2 and conclude using the trivial linear lower bound. J

6 Multiway cut with a large number of terminals

The goal of this section is to prove the following proposition, which yields Theorem 2 when
the number of terminals dominates the genus. Recall that g∗ denotes max(g, 2).

I Proposition 14. Assuming ETH, there exists a universal constant αMC2 such that for
any fixed choice of integers g ≥ 0 and t ≥ 24g∗, there is no algorithm that decides all the
Multiway Cut instances (G,T, λ) for which G is embeddable on the surface of genus g and
|T | ≤ t, in time O(nαMC2

√
g∗t/ log(g∗t)) .

Sketch of proof. We only sketch the proof and refer to the full version [4, Section 6] for
details. Here are the key ideas: The reduction bypasses the use of 4-Regular Grid Tiling
and instead starts directly from a binary CSP instance on a four-regular graph P . In a
way similar to the proofs of Proposition 11 and Theorem 1, this instance can be encoded in
a Multiway Cut instance by using cross gadgets to encode the constraints. In order to
obtain the claimed lower bound, we will apply Theorem 7, and thus we need to choose for

SoCG 2019

27:14 Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

Figure 6 The construction of Gδ for δ = 4.

P a graph having genus at most g∗ and treewidth Ω(g∗t); our construction uses a blow-up
of an expander graph, i.e., an expander graph where each vertex has been replaced with a
grid of an appropriate size (see Figure 6) – this is a construction reminiscent of one used in
Gilbert, Hutchinson and Tarjan [15]. J

Finally, the proof of Theorem 2 is obtained by using Proposition 11 or Proposition 14,
depending on the tradeoff between g and t. This is carried out in the full version [4, Section 7].

References
1 Jianer Chen, Iyad A Kanj, Ljubomir Perković, Eric Sedgwick, and Ge Xia. Genus characterizes

the complexity of certain graph problems: Some tight results. Journal of Computer and
System Sciences, 73(6):892–907, 2007.

2 Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Tight Bounds for
Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions).
In 25th ACM–SIAM Symposium on Discrete Algorithms (SODA), pages 1782–1801, 2014.
doi:10.1137/1.9781611973402.129.

3 Vincent Cohen-Addad, Éric Colin de Verdière, and Arnaud de Mesmay. A near-linear
approximation scheme for multicuts of embedded graphs with a fixed number of terminals. In
29th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1439–1458, 2018.

4 Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost
Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs. Full version of this
article, 2019. arXiv:1903.08603.

5 Vincent Cohen-Addad and Arnaud de Mesmay. A fixed parameter tractable approximation
scheme for the optimal cut graph of a surface. In European Symposium on Algorithms (ESA),
pages 386–398. Springer, 2015.

6 Éric Colin de Verdière. Multicuts in planar and bounded-genus graphs with bounded number
of terminals. Algorithmica, 78(4):1206–1224, 2017.

7 Éric Colin de Verdière. Computational topology of graphs on surfaces. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba Toth, editors, Handbook of Discrete and Computational Geometry,
chapter 23, pages 605–636. CRC Press LLC, third edition, 2018.

8 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In 27th ACM–SIAM
symposium on Discrete algorithms (SODA), pages 1650–1669. Society for Industrial and
Applied Mathematics, 2016.

9 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 3. Springer,
2015.

10 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–
894, 1994.

http://dx.doi.org/10.1137/1.9781611973402.129
http://arxiv.org/abs/1903.08603

V. Cohen-Addad, É. Colin de Verdière, D. Marx, and A. de Mesmay 27:15

11 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for ETH-tight algorithms and lower bounds in geometric intersection
graphs. In 50th ACM Symposium on Theory of Computing (STOC), pages 574–586, 2018.

12 Erik D Demaine, Fedor V Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
Journal of the ACM, 52(6):866–893, 2005.

13 Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discrete &
Computational Geometry, 31(1):37–59, 2004.

14 Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh. Subexponential Parameterized Algorithms for Planar and Apex-Minor-Free
Graphs via Low Treewidth Pattern Covering. In IEEE 57th Symposium on Foundations of
Computer Science, FOCS, pages 515–524, 2016. doi:10.1109/FOCS.2016.62.

15 John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A separator theorem for
graphs of bounded genus. Journal of Algorithms, 5(3):391–407, 1984.

16 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1):1, 2007.

17 Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of conjunctive
queries tractable? In 33rd ACM Symposium on Theory of Computing (STOC), pages 657–666,
2001.

18 Te C. Hu. Integer programming and network flows. Technical report, Wisconsin Univ Madison
Dept. of Computer Sciences, 1969.

19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? In 39th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 653–662, 1998.

20 Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce Reed. A simpler linear time algorithm for
embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width.
In 49th IEEE Symposium on the Foundations of Computer Science (FOCS), pages 771–780.
IEEE, 2008.

21 Philip N. Klein and Dániel Marx. Solving Planar k-Terminal Cut in O(nc
√
k) Time. In

International Colloquium on Automata, Languages, and Programming (ICALP), pages 569–580.
Springer, 2012.

22 Daniel Lokshtanov, Dániel Marx, Saket Saurabh, et al. Lower bounds based on the exponential
time hypothesis. Bulletin of EATCS, 3(105), 2013.

23 Daniel Lokshtanov, Saket Saurabh, and Magnus Wahlström. Subexponential Parameterized
Odd Cycle Transversal on Planar Graphs. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012,
Hyderabad, India, pages 424–434, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.424.

24 Dániel Marx. On the Optimality of Planar and Geometric Approximation Schemes. In 48th
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 338–348, 2007.

25 Dániel Marx. Can You Beat Treewidth? Theory of Computing, 6(1):85–112, 2010.
26 Dániel Marx. A Tight Lower Bound for Planar Multiway Cut with Fixed Number of Terminals.

In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming, pages 677–688, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

27 Dániel Marx. The Square Root Phenomenon in Planar Graphs. In Frontiers in Algorithmics
and Algorithmic Aspects in Information and Management, volume 7924. Springer, 2013.

28 Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. On subexponential parameterized
algorithms for Steiner Tree and Directed Subset TSP on planar graphs. In 59th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 474–484, 2018.

29 Dániel Marx and Michał Pilipczuk. Everything you always wanted to know about the parame-
terized complexity of Subgraph Isomorphism (but were afraid to ask). In 31st International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 25, pages 542–553,
2014.

SoCG 2019

http://dx.doi.org/10.1109/FOCS.2016.62
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.424

27:16 Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs

30 Dániel Marx and Michal Pilipczuk. Optimal Parameterized Algorithms for Planar Facility
Location Problems Using Voronoi Diagrams. In 23rd European Symposium on Algorithms
(ESA), pages 865–877, 2015.

31 Dániel Marx and Anastasios Sidiropoulos. The limited blessing of low dimensionality: when
1−1/d is the best possible exponent for d-dimensional geometric problems. In 30th Symposium
on Computational Geometry (SoCG), page 67. ACM, 2014.

32 Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM
Journal on Discrete Mathematics, 12(1):6–26, 1999.

33 Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 2001.

34 Zoë Wood, Hugues Hoppe, Mathieu Desbrun, and Peter Schröder. Removing excess topology
from isosurfaces. ACM Transactions on Graphics (TOG), 23(2):190–208, 2004.

The VC Dimension of Metric Balls Under Fréchet
and Hausdorff Distances
Anne Driemel
University of Bonn, Germany
driemel@cs.uni-bonn.de

Jeff M. Phillips
University of Utah, Salt Lake City, USA
jeffp@cs.utah.edu

Ioannis Psarros
National & Kapodistrian University of Athens, Greece
ipsarros@di.uoa.gr

Abstract
The Vapnik-Chervonenkis dimension provides a notion of complexity for systems of sets. If the VC
dimension is small, then knowing this can drastically simplify fundamental computational tasks
such as classification, range counting, and density estimation through the use of sampling bounds.
We analyze set systems where the ground set X is a set of polygonal curves in Rd and the sets R
are metric balls defined by curve similarity metrics, such as the Fréchet distance and the Hausdorff
distance, as well as their discrete counterparts. We derive upper and lower bounds on the VC
dimension that imply useful sampling bounds in the setting that the number of curves is large, but
the complexity of the individual curves is small. Our upper bounds are either near-quadratic or
near-linear in the complexity of the curves that define the ranges and they are logarithmic in the
complexity of the curves that define the ground set.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Theory of computation → Computational geometry

Keywords and phrases VC dimension, Fréchet distance, Hausdorff distance

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.28

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.03211.

Funding Anne Driemel: Anne Driemel thanks the Hausdorff Center for Mathematics for their
generous support and the Netherlands Organization for Scientific Research (NWO) for support
under Veni Grant 10019853.
Jeff M. Phillips: Jeff Phillips thanks his support from NSF CCF-1350888, ACI-1443046, CNS-
1514520, CNS-1564287, and IIS-1816149. Part of the work was completed while visiting the Simons
Institute for Theory of Computing.
Ioannis Psarros: This research is co-financed by Greece and the European Union (European Social
Fund- ESF) through the Operational Programme � Human Resources Development, Education
and Lifelong Learning � in the context of the project “Strengthening Human Resources Research
Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation
(IKY).

Acknowledgements We thank Peyman Afshani for useful discussions on the topic of this paper. We
also thank the organizers of the 2016 NII Shonan Meeting “Theory and Applications of Geometric
Optimization” where this research was initiated.

© Anne Driemel, Jeff M. Phillips, and Ioannis Psarros;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 28; pp. 28:1–28:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:driemel@cs.uni-bonn.de
mailto:jeffp@cs.utah.edu
mailto:ipsarros@di.uoa.gr
https://doi.org/10.4230/LIPIcs.SoCG.2019.28
https://arxiv.org/abs/1903.03211
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

1 Introduction

A range space (X,R) (also called set system) is defined by a ground set X and a set of ranges
R, where each r ∈ R is a subset of X. A data structure for range searching answers queries
for the subset of the input data that lies inside the query range. In range counting, we are
interested only in the size of this subset. In our setting, a range is a metric ball defined by a
curve and a radius. The ball contains all curves that lie within this radius from the center
under a specific distance function (e.g., Fréchet or Hausdorff distance).

A crucial descriptor of any range space is its VC-dimension [33, 31, 30] and related
shattering dimension, which we define formally below. These notions quantify how complex
a range space is, and have played fundamental roles in machine learning [34, 6], data
structures [12], and geometry [24, 10]. For instance, specific bounds on these complexity
parameters are critical for tasks as diverse as neural networks [6, 27], art-gallery problems [32,
21, 28], and kernel density estimation [26]. The Fréchet distance is a popular distance
measure for curves. The Fréchet distance is very similar to the Hausdorff distance for sets,
which is defined as the minimal maximum distance of a pair of points, one from each set,
under all possible mappings between the two sets. The difference between the two distance
measures is that the Fréchet distance requires the mapping to adhere to the ordering of the
points along the curve. Both distance measures allow flexible associations between parts of
the input elements which sets them apart from classical `p distances and makes them so
suitable for trajectory data under varying speeds. In particular, the last five years have seen
a surge of interest into data structures for trajectory processing under the Fréchet distance,
manifested in a series of publications [14, 23, 15, 2, 35, 8, 19, 11, 18, 7, 20].

Our contribution in this paper is a comprehensive analysis of the Vapnik-Chervonenkis
dimension of the corresponding range spaces. The resulting VC dimension bounds, while
being interesting in their own right, have a plethora of applications through the implied
sampling bounds. We detail a range of implications of our bounds in Section 10.

2 Definitions

In this section, we formally define the distances between curves as well as VC-dimension and
range spaces, so we can state our main results. This basic set up will be enough to prove the
main results for discrete distance. Then in Section 6 we provide more advanced geometric
definitions and properties about VC dimension with our proofs for the continuous distances.

2.1 Distance measures
In the following, we define the Hausdorff distance, the discrete and the continuous Fréchet
distance, and the Weak Fréchet distance. We denote by ‖ · ‖ the Euclidean norm ‖ · ‖2.

I Definition 1 (Directed Hausdorff distance.). Let X, Y be two subsets of some metric space
(M,d). The directed Hausdorff distance from X to Y is:

d−→
H

(X,Y) = sup
u∈X

inf
v∈Y

d(u, v).

I Definition 2 (Hausdorff distance.). Let X, Y be two subsets of some metric space (M,d).
The Hausdorff distance between X and Y is:

dH(X,Y) = max{d−→
H

(X,Y), d−→
H

(Y,X)}.

A. Driemel, J.M. Phillips, and I. Psarros 28:3

I Definition 3. Given polygonal curves V and U with vertices v1, . . . , vm1 and u1, . . . , um2

respectively, a traversal T = (i1, j1), . . . , (it, jt) is a sequence of pairs of indices referring to a
pairing of vertices from the two curves such that:
1. i1, j1 = 1, it = m1, jt = m2.
2. ∀(ik, jk) ∈ T : ik+1 − ik ∈ {0, 1} and jk+1 − jk ∈ {0, 1}.
3. ∀(ik, jk) ∈ T : (ik+1 − ik) + (jk+1 − jk) ≥ 1.

I Definition 4 (Discrete Fréchet distance). Given polygonal curves V and U with vertices
v1, . . . , vm1 and u1, . . . , um2 respectively, we define the Discrete Fréchet Distance between V
and U as the following function:

ddF (V,U) = min
T∈T

max
(ik,jk)∈T

‖vik − ujk
‖,

where T denotes the set of all possible traversals for V and U .

Any polygonal curve V with vertices v1, . . . , vm1 and edges v1v2, . . . , vm1−1vm1 has a
uniform parametrization that allows us to view it as a parametrized curve v : [0, 1] 7→ R2.

I Definition 5 (Fréchet distance). Given two parametrized curves u, v : [0, 1] 7→ R2, their
Weak Fréchet distance is defined as follows:

dF (u, v) = min
f :[0,1] 7→[0,1]
g:[0,1]7→[0,1]

max
α∈[0,1]

‖v(f(α))− u(g(α))‖,

where f ranges over all continuous and monotone bijections with f(0) = 0 and f(1) = 1. The
Weak Fréchet distance dwF is defined as above, except that f and g range over all continuous
functions (not exclusively bijections) with f(0) = 0 and f(1) = 1 and g(0) = 0 and g(1) = 1.

2.2 Range spaces
Each range space can be defined as a pair of sets (X,R), where X is the ground set and R
is the range set. Let (X,R) be a range space. For Y ⊆ X, we denote:

R|Y = {R ∩ Y | R ∈ R}.

If R|Y contains all subsets of Y , then Y is shattered by R.

I Definition 6 (Vapnik-Chernovenkis dimension). The Vapnik-Chernovenkis dimension [30,
31, 33] (VC dimension) of (X,R) is the maximum cardinality of a shattered subset of X.

I Definition 7 (Shattering dimension). The shattering dimension of (X,R) is the smallest δ
such that, for all m,

max
B⊂X
|B|=m

|R|B | = O(mδ).

It is well-known [6, 24] that for a range space (X,R) with VC-dimension ν and shattering
dimension δ that ν ≤ O(δ log δ) and δ = O(ν). So bounding the shattering dimension and
bounding the VC-dimension are asymptotically equivalent within a log factor.

I Definition 8 (Dual range space). Given a range space (X,R), for any p ∈ X, we define

Rp = {R | R ∈ R, p ∈ R}.

The dual range space of (X,R) is the range space (R, {Rp | p ∈ X}).

SoCG 2019

28:4 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

It is a well-known fact that if a range space has VC dimension ν, then the dual range space
has VC dimension ≤ 2ν+1 (see e.g. [24]).

Many ways are known to bound the VC dimension of geometric range spaces. For
instance when the ground set is Rd and the ranges are defined by inclusion in halfspaces,
then the range space and its dual range space are isomorphic and both have VC-dimension
and shattering dimension d. When the ranges are defined by inclusion in balls, then the
VC-dimension and shattering dimension is d + 1, and the dual range spaces have bounds
of d [24]. It is also for instance known [9] that the composition ranges formed as the k-fold
union or intersection of ranges from a range space with bounded VC-dimension ν induces a
range space with VC-dimension O(νk log k), and this was recently shown that this is tight
for even some simple range spaces such as those defined by halfspaces [13]. More such results
are deferred to Section 6.

2.3 Range spaces induced by distance measures
Let (M,d) be a pseudometric space. We define the ball of radius r and center p, under the
distance measure d, as the following set:

bd(p, r) = {x ∈M | d(x, p) ≤ r},

where p ∈M . The doubling dimension of a metric space (M, d), denoted as ddim(M,d), is
the smallest integer t such that any ball can be covered by at most 2t balls of half the radius.

In this paper, we study the VC dimension of range spaces (X,R) induced by pseudometric
spaces1 (M,d) by setting X = M and

R = {bd(p, r) | r ∈ R, r > 0, p ∈M}.

It is a reasonable question to ask whether the doubling dimension of a metric space influences
the VC dimension of the induced range space. In general, a bounded doubling dimension
does not imply a bounded VC dimension of the induced range space and vice versa. Recently,
Huang et al. [25] showed that if we allow a small (1 + ε)-distortion of the distance function d,
the shattering dimension can be upper bounded by O(ε−O(ddim(M,d))). It is conceivable that
the doubling dimension of the metric space of the Discrete Fréchet distance and Hausdorff
distance is bounded, as long as the underlying metric has bounded doubling dimension.
However, for the continuous Fréchet distance, the doubling dimension is known to be
unbounded [16]. Moreover, we will see that much better bounds can be obtained by a careful
study of the specific distance measure.

Specifically, we study an unbalanced version of the above range space, in that we distinguish
between the complexity of objects of the ground set and the complexity of objects defining
the ranges. To this end, we define, for any integers d and m, Xdm :=

(
Rd
)m and we treat

the elements of this set as ordered sets of points in Rd of size m. Formally, we study range
spaces with ground set Xdm and range set defined as

Rd,k =
{
bd(p, r) ∩ Xdm | r ∈ R, r > 0, p ∈ Xdk

}
under different variants of the Fréchet and the Hausdorff distance. We emphasize that the
range space consists of ranges of all radii.

1 While we may use the term metric or pseudometric to define the range, our methods do not assume any
metric properties of the inducing distance measure.

A. Driemel, J.M. Phillips, and I. Psarros 28:5

3 Our Results

Table 1 shows an overview of our bounds. For metric balls defined on point sets (resp. point
sequences) in Rd we show that the VC dimension is at most near-linear in dk, the complexity
of the ball centers that define the ranges, and at most logarithmic in dm, the complexity of
point sets of the ground set. Our lower bounds show that these bounds are almost tight in
all parameters k, d, and m. For the Fréchet distance, where the ground set X are continuous
polygonal curves in Rd we show an upper bound that is quadratic in k, quadratic in d, and
logarithmic in m. The same bounds in k and m hold for the Hausdorff distance, where the
ground set are sets of line segments in R2. We obtain slightly better bounds in k for the
Weak Fréchet distance. Our lower bounds extend to the continuous case, but are only tight
in the dependence on m – the complexity of the ground set.

Table 1 Our bounds on the VC dimension of range spaces of the form (Xd
m,Rd,k), for d being

the distance measures in the table. In the first column we distinguish between Xd
m consisting of

discrete point sequences vs. Xd
m consisting of continuous polygonal curves. The lower bounds hold

for all distance measures in this table.

discrete
Hausdorff

O(dk log(dkm)) (Theorems 9,10) Ω(max(dk log k, log dm))
(d ≥ 4, Theorem 23)

Ω(max(k, logm))
(d ≥ 2, Theorem 22)

Fréchet

continuous

weak Fréchet O(d2k log(dkm)) (Theorem 16)

Fréchet O(d2k2 log(dkm)) (Theorem 18)

Hausdorff O(k2 log(km)) (d = 2, Theorem 21)

While the VC dimension bounds for the discrete Hausdorff and Fréchet metric balls may
seem like an easy implication of composition theorems for VC dimension [9, 13], we still find
three things about these results remarkable:
1. First, for Fréchet variants, there are Θ(2k2m) valid alignment paths in the free space

diagram. And one may expect that these may materialize in the size of the composition
theorem. Yet by a simple analysis of the shattering dimension, we show that they do not.

2. Second, the VC dimension only has logarithmic dependence on the size m of the curves
in the ground set, rather than a polynomial dependence one would hope to obtain by
simple application of composition theorems. This difference has important implications
in analyzing real data sets where we can query with simple curves (small k), but may not
have a small bound on the size of the curves in the data set (large m).

3. Third, for the continuous variants, the range spaces can indeed be decomposed into
problems with ground sets defined on line segments. However, we do not know of a
general d-dimensional bound on the VC-dimension of range space with a ground set of
segments, and ranges defined by segments within a radius r of another segment. We are
able to circumvent this challenge with circuit-based methods to bound the VC-dimension
and careful predicate design for the Fréchet distance, but for Hausdorff distance are only
able to prove a bound in R2.

4 Our Approach

Our methods use the fact that both the Fréchet distance and the Hausdorff distance are
determined by one of a discrete set of events, where each event involves a constant number of
simple geometric objects. For example, it is well known that the Hausdorff distance between

SoCG 2019

28:6 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

two discrete sets of points is equal to the distance between two points from the two sets.
The corresponding event happens as we consider a value δ > 0 increasing from 0 and we
record which points of one set are contained in which balls of radius δ centered at points
from the other set. The same phenomenon is true for the discrete Fréchet distance between
two point sequences. In particular, the so-called free-space matrix which can be used to
decide whether the discrete Fréchet distance is smaller than a given value δ encodes exactly
the information about which pairs of points have distance at most δ. The basic phenomenon
remains true for the continuous versions of the two distance measures if we extend the set of
simple geometric objects to include line segments and if we also consider triple intersections.
Each type of event can be translated into a range space of which we can analyze the VC
dimension. Together, the product of the range spaces encodes the information, which curves
lie inside which metric balls, in the form of a set system. This representation allows us to
prove bounds on the VC dimension of metric balls under these distance measures.

5 Basic Idea: Discrete Fréchet and Hausdorff

In this section we prove our upper bounds in the discrete setting. Let Xdm =
(
Rd
)m; we treat

the elements of this set as ordered sets of points in Rd of size m. The range spaces that we
consider in this section are defined over the ground set Xdm and the range set of balls under
either the Hausdorff or the Discrete Fréchet distance. The proofs in the proceeding sections
all follow the basic idea of the proof in the discrete setting.

I Theorem 9. Let (Xdm,RdH,k) be the range space with RdH,k the set of all balls under the
Hausdorff distance centered at point sets in Xdk. The VC dimension is O (dk log(dkm)).

Proof. Let {S1, . . . , St} ⊆ Xdm and S =
⋃
i Si; we define S so that it ignores the ordering with

each Si and is a single set of size tm. Any intersection of a Hausdorff ball with {S1, . . . , St}
is uniquely defined by a set {B1 ∩ S, . . . , Bk ∩ S}, where B1, . . . , Bk are balls in Rd. To
see that, notice that the discrete Hausdorff distance between two sets of points is uniquely
defined by the distances between points of the two sets.

Consider the range space (Rd,B), where B is the set of balls in Rd. We know that the
shattering dimension is d+ 1 [24]. Hence,

max
S⊆Rd,|S|=tm

|B|S | = O((tm)d+1).

This implies that |{{B1 ∩S, . . . , Bk ∩S} | B1, . . . , Bk are balls in Rd}| ≤ O((tm)(d+1)k), and
hence2,

2t ≤ O
(

(tm)(d+1)k
)

=⇒ t = O (dk log(dkm)) . J

I Theorem 10. Let (Xdm,RdF,k) be the range space with RdF,k the set of all balls under
the Discrete Fréchet distance centered at polygonal curves in Xdk. The VC dimension is
O (dk log(dkm)).

Proof. Let {S1, . . . , St} ⊆ Xdm and S =
⋃
i Si. Any intersection of a Discrete Fréchet ball

with {S1, . . . , St} is uniquely defined by a sequence B1 ∩ S, . . . , Bk ∩ S, where B1, . . . , Bk
are balls in Rd. The number of such sequences can be bounded by O((tm)(d+1)k) as in the

2 for u >
√
e if x/ ln(x) ≤ u then x ≤ 2u lnu. Hence, if tm/ log(tm) ≤ dkm, then tm = O(dkm log(dkm)).

A. Driemel, J.M. Phillips, and I. Psarros 28:7

proof of Theorem 9. Enforcing that a sequence contains a valid alignment path only reduces
the number of possible distinct sets formed by t curves, and it can be determined using these
intersections and the two orderings of B1, . . . , Bk and of vertices within some Sj ∈ Xdm. J

6 Preliminaries

In this section, we provide a more advanced set of geometric primitives and other technical
known results about VC-dimension. We also derive some simple corollaries. We also provide
some basic results about the distances which will couple with the geometric primitives in our
proofs for continuous distance measures.

We again consider a ground set Xdm =
(
Rd
)m which we treat as a set of polygonal curves

with points in Rd of size m. Given such a curve s ∈ Xdm, let V (s) be its ordered set of vertices
and E(s) its ordered set of edges.

6.1 A simple model of computation
We consider a model of computation that will be useful for modeling primitive geometric
sets, and in turn bounding the VC-dimension of an associated range space. These will be
useful in that they allow the invocation of powerful and general tools to describe range spaces
defined by distances between curves. We allow the following operations, which we call simple
operations:

the arithmetic operations +,−,×, and / on real numbers,
jumps conditioned on >,≥, <,≤,=, and 6= comparisons of real numbers, and
output 0 or 1.

We say a function requires t simple operations if it can be computed with a circuit of depth t
composed only of these simple operations. Notably, the lack of a square-root operator creates
some challenges when dealing with geometric objects.

6.2 Geometric primitives
For any p ∈ Rd we denote by Br(p) the ball of radius r, centered at p. For any two
points s, t ∈ Rd, we denote by st the line segment from s to t. Whenever we store such
a line segment, for technicalities within the lemma below, we store the coordinates of its
endpoints s and t. For any two points s, t ∈ Rd, we define the stadium centered at st,
Dr(st) =

{
x ∈ Rd | ∃p ∈ st ‖p− x‖ ≤ r

}
. For any two points s, t ∈ Rd, we define a cylinder

Cr(st) =
{
x ∈ Rd | ∃p ∈ `(st) ‖p− x‖ ≤ r

}
, where `(st) denotes the line supporting the

edge st. Finally, for any two points s, t ∈ Rd, we define the capped cylinder centered at st:
Rr(st) = {p+ u | p ∈ st and u ∈ Rd s.t. ‖u‖ ≤ r and 〈t− s, u〉 = 0}.

For each of these geometric sets, we can determine if a point x ∈ Rd is in the set with a
constant number of operations under a simple model of computation.

I Lemma 11. For a point x ∈ Rd, and any set of the form Br(p), Dr(st), Cr(st), or Rr(st),
we can determine if x is in that set (returns 1, otherwise 0) using O(d) simple operations.

Proof. For ball Br(p) we can compute a distance ‖x − p‖2 in O(d) time, and determine
inclusion with a comparison to r2. For cylinder Cr(st) we can compute the closest point to
x on this line as

πst(x) = t+ (s− t)〈(s− t), x〉
‖s− t‖2 .

SoCG 2019

28:8 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

p
r

Br(p) s

t

s

t

r
r

s

t

r

Rr(st)Cr(st)Dr(st)

Figure 1 Illustration of basic shapes in R2, from left to right: a ball Br(p), a stadium Dr(st), a
cylinder Cr(st), and a capped cylinder Rr(st).

Then we can determine inclusion by comparing ‖πst(x) − x‖2 to r2. For capped cylinder
Rr(st) we also need to compare ‖πst(x)− t‖2 and ‖πst(x)− s‖2 to see if either of these terms
is greater than ‖s − t‖2. For stadium Dr(st) we determine inclusion if any x is in any of
Rr(st), Br(s) or Br(t). J

6.3 Bounding the VC-Dimension
For range spaces defined on continuous curves, our proofs use a powerful theorem from
Goldberg and Jerrum [22] as improved and restated by Anthony and Bartlett [6]. It allows
one to easily bound the VC-dimension of geometric range spaces under our simple model
of computation.

I Theorem 12 (Theorem 8.4 [6]). Suppose h is a function from Rd × Rn to {0, 1} and let

H = {x 7→ h(α, x) : α ∈ Rd}

be the class determined by h. Suppose that h can be computed by an algorithm that takes as
input the pair (α, x) ∈ Rd × Rn and returns h(α, x) after no more than t simple operations.
Then, the VC dimension of H is ≤ 4d(t+ 2).

An example implication can be seen for geometric sets via Lemma 11. Note that this
implies any VC dimension upper bound proved in this approach applies to both the range
space and its dual range space because the function h is unchanged and the ranges can still
be described by O(d) real coordinates.

I Corollary 13. For range spaces defined on Rd with geometric sets Br(p), Dr(st), Cr(st),
or Rr(st) as ranges, the VC dimension is O(d2). The same O(d2) VC dimension bound holds
for the corresponding dual range spaces, with ground sets as the geometric sets, and ranges
defined by stabbing using points in Rd.

Note that these bounds are not always tight. Specifically, because the VC-dimension
for ranges defined geometrically by balls Br(p) is O(d) [24]. Moreover, the VC-dimension
of range spaces defined by cylinders Cr(st) is known to be O(d) [4]. The ranges defined
by capped cylinders Rr(st) are the intersection of a cylinder and two halfspaces, each with
VC-dimension O(d) and hence by the composition theorem [9], this full range spaces also
has VC-dimension O(d). Finally, the stadium Dr(st) is defined by the union of a capped
cylinder Rr(st) and two balls Br(s) and Br(t); hence again by the composition theorem [9],
its VC-dimension is O(d). However, it is not clear that these improved bounds hold for
the dual range spaces, aside for the case of Br. Moreover, when the ground set X of the

A. Driemel, J.M. Phillips, and I. Psarros 28:9

range space (X,R) is not Rd, then we need to be cautious in using the k-fold composition
theorem [9], which bounds the VC-dimension of complex range spaces derived as the logical
intersection or union of simpler range spaces with bounded VC-dimension. In the case of a
ground set X = Rd, logical and geometric intersections are the same, but for other ground
sets (like dual objects, or line segments Xd2) this is not necessarily the case. For instance, a
line segment e ∈ Xd2 may intersect a ball Br and also a halfspace H while not intersecting
the intersection Br ∩H.

6.4 Representation by predicates
In order to prove bounds on the VC dimension of range spaces defined on continuous curves,
we establish sets of geometric predicates which are sufficient to determine if two curves
have distance at most r to each other. Analyzing the range spaces associated with these
predicates (over all possible radii r) allows us to compose them further and to establish VC
dimension bounds for the range space induced by the corresponding distance measure. For
the Fréchet and Weak Fréchet distance, the predicates mirror those used in range searching
data structures [2, 1]. And for the Hausdorff distance on continuous curves, the predicates
are derived from the Voronoi diagram [5]. The technical challenges for each case are similar,
but require different analyses.

7 The Fréchet distance

We consider the range spaces (Xdm,RFk
) and (Xdm,RwFk

), where RFk
(resp. RwFk

) denotes
the set of all balls, centered at curves in Xdk, under the Fréchet distance (resp. weak
Fréchet) distance.

7.1 Fréchet distance predicates
It is known that the Fréchet distance between two polygonal curves can be attained, either
at a distance between their endpoints, at a distance between a vertex and a line supporting
an edge, or at the common distance of two vertices with a line supporting an edge. The
third type of event is sometimes called monotonicity event, since it happens when the Weak
Fréchet distance is smaller than the Fréchet distance. In this sense, our representation of the
ball of radius r under the Fréchet distance is based on the following predicates. Let s ∈ Xdm
with vertices s1, . . . , sm and q ∈ Xdk with vertices q1, . . . , qk.

P1 (Endpoints (start)) This predicate returns true if and only if ‖s1 − q1‖ ≤ r.
P2 (Endpoints (end)) This predicate returns true if and only if ‖sm − qk‖ ≤ r.
P3 (Vertex-edge (horizontal)) Given an edge of s, sjsj+1, and a vertex qi of q, this predicate

returns true iff there exist a point p ∈ sjsj+1, such that ‖p− qi‖ ≤ r.
P4 (Vertex-edge (vertical)) Given an edge of q, qiqi+1, and a vertex sj of s, this predicate

returns true iff there exist a point p ∈ qiqi+1, such that ‖p− sj‖ ≤ r.
P5 (Monotonicity (horizontal)) Given two vertices of s, sj and st with j < t and an edge

of q, qiqi+1, this predicate returns true if there exist two points p1 and p2 on the line
supporting the directed edge, such that p1 appears before p2 on this line, and such that
‖p1 − sj‖ ≤ r and ‖p2 − st‖ ≤ r.

P6 (Monotonicity (vertical)) Given two vertices of q, qi and qt with i < t and an directed
edge of s, sjsj+1, this predicate returns true if there exist two points p1 and p2 on the
line supporting the directed edge, such that p1 appears before p2 on this line, and such
that ‖p1 − qi‖ ≤ r and ‖p2 − qt‖ ≤ r.

SoCG 2019

28:10 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

I Lemma 14 (Lemma 9, [1]). Given the truth values of all predicates (P1)− (P6) of two
curves s and q for a fixed value of r, one can determine if dF (s, q) ≤ r.

Predicates P1 − P4 are sufficient for representing metric balls under the weak Fréchet
distance. The proof can be found in the full version of the paper [17].

I Lemma 15. Given the truth values of all predicates (P1)− (P4) of two curves s and q for
a fixed value of r, one can determine if dwF (s, q) ≤ r.

7.2 Fréchet distance VC dimension bounds
We first consider the range space (Xdm,RwF,k), where RwF,k is the set of all balls under
the Weak Fréchet distance centered at curves in Xdk. The main task is to translate the
predicates P1 −P4 into simple range spaces, and then bound their associated VC dimensions.
Consider any two polygonal curves s ∈ Xdm and q ∈ Xdk. In order to encode the intersection
of polygonal curves with metric balls, we will make use of the following sets:

P r1 (q, s) = Br(q1) ∩ V (s),
P r2 (q, s) = Br(qk) ∩ V (s),
P r3 (q, s) = {Dr(sisi+1) ∩ V (q) | sisi+1 ∈ E(s)},
P r4 (q, s) = {Dr(qiqi+1) ∩ V (s) | qiqi+1 ∈ E(q)}.

The proof of the following theorem can be found in the full version of the paper [17].

I Theorem 16. Let RwF,k be the set of balls under the Weak Fréchet metric centered at
polygonal curves in Xdk. The VC dimension of (Xdm,RwF,k) is O

(
d2k log(dkm)

)
.

We now consider the range space (Xdm,RF,k), where RF,k denotes the set of all balls,
centered at curves in Xdk, under the Fréchet distance. The approach is the same as with
the Weak Fréchet distance, except we also need to bound VC dimension of range spaces
associated with predicates P5 and P6 to encode monotonicity. While there exists geometric
set constructions that are used in the context of range searching [2, 1] we can simply appeal
to Theorem 12. We need to define a set to represent predicates P5 and P6. The appropriate
ground set is over two points qj , qt ∈ Rd, which for notational simplicity we reuse Xd2. Then
the rangesM are defined by sets Mr(st) ∈M, defined with respect to radii r ≥ 0 and line
segments st. Specifically, Mr(st) ⊂ Xd2 so any {q1, q2} ∈Mr(st) satisfies that
‖p1 − q1‖ ≤ r and ‖p2 − q2‖ ≤ r;
p1, p2 ∈ ` where st supports `; and
p1 is less than p2 along the line as 〈p1, t− s〉 ≤ 〈p2, t− s〉.

The predicate P5 is satisfied if sj , st ∈ Mr(qiqi+1) and predicate P6 is satisfied if qi, qt ∈
Mr(sjsj+1).

I Lemma 17. The VC dimension of the range space (Xd2,M), and of the associated dual
range space, is O(d2).

Proof. We may assume that q1 is the origin, since we can subtract q1 from all vectors s, t, q2
using O(d) simple calculations, without changing the outcome. As with bounding the VC
dimension of range spaces on Rd induced by sets Cr(st), we can derive the closest points on
` as πst(q1) and πst(q2) using O(d) simple operations.

If ` is not perpendicular to q2 − q1, then it intersects the bisector of q1 and q2 and we
can compute this intersection point as follows:

b`(q1, q2) := s− 〈q2, s− q2/2〉
〈t− s, q2〉

(t− s), (1)

A. Driemel, J.M. Phillips, and I. Psarros 28:11

q1q2

`

q1q2

`

Figure 2 Illustration of predicate P5 with line ` and the two disks centered at q1 and q2. In these
examples, the projection of q2 onto ` appears before the projection of q1 onto ` along the direction
of ` and the intersection of ` with the bisector lies outside of the lens formed by the two disks. On
the left, the predicate is satisfied by setting p1 = p2 = πst(q1). On the right, the predicate evaluates
to false.

This takes O(d) simple operations. Now, predicate P5 can be computed as follows (Predicate
P6 can be computed in the same way):

1: if (‖πst(q1)− q1‖2 > r2) or (‖πst(q2)− q2‖2 > r2) then
2: return 0
3: else if 〈πst(q1), t− s〉 ≤ 〈πst(q2), t− s〉 then
4: return 1
5: else if ‖πst(q1)− q2‖2 ≤ r2 then
6: return 1
7: else if ‖πst(q2)− q1‖2 ≤ r2 then
8: return 1
9: else if 〈q2 − q1, t− s〉 6= 0 then
10: compute b`(q1, q2) using Eq. (1)
11: if ‖b`(q1, q2)− q1‖2 ≤ r2 and ‖b`(q1, q2)− q2‖2 ≤ r2 then
12: return 1
13: end if
14: else return 0
15: end if

Lines 1-4 test if p1 = πst(q1) and p2 = πst(q2) satisfy the predicate. Lines 5-8 test if
p1 = p2 = πst(q2) or p1 = p2 = πst(q1) satisfies the predicate. Then Line Line 9-12 tests if
p1 = p2 = b`(q1, q2) satisfies the predicate. Otherwise, we conclude that the predicate is not
satisfied for any choice of p1, p2 ∈ `. To see why this is correct, assume the test in line 3
evaluates to false. In this case, the predicate is satisfied only if ` intersects the lens formed
by the intersection of the two balls centered at q1, q2. If the line intersects the bisector of
q1 and q2 inside the lens, then we will find a satisfying assignment to p1 and p2. If the line
intersects the bisector outside of the lens, then by convexity the intersection of the line with
either ball is completely contained in one of the two halfspaces bounded by the bisector.
Therefore we would find a satisfying assignment to p1 and p2 among the closest points on
the line to q1 or q2, if there exists one. See Figure 2 for an example of the last case. J

We define sets to correspond with predicates P5 and P6:
P r5 (q, s) = {{sj , st} ∈ V (s)× V (s) | (sj , st) ∈Mr(qiqi+1) and qiqi+1 ∈ E(q)}.
P r6 (q, s) = {{qi, qt} ∈ V (q)× V (q) | (si, st) ∈Mr(sjsj+1) and sjsj+1 ∈ E(s)}.

SoCG 2019

28:12 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

I Theorem 18. Let RF,k be the set of all balls, under the Fréchet distance, centered at
polygonal curves in Xdk. The VC dimension of (Xdm,RF,k) is O

(
d2k2 log(dkm)

)
.

Proof. Due to Lemma 14, if S ⊂ Xdm is a set of t polygonal curves and q ∈ Xdk, the set
{s ∈ S | dF (s, q) ≤ r} is uniquely defined by the sets⋃

s∈S
P r1 (q, s),

⋃
s∈S

P r2 (q, s),
⋃
s∈S

P r3 (q, s),
⋃
s∈S

P r4 (q, s),
⋃
s∈S

P r5 (q, s),
⋃
s∈S

P r6 (q, s).

As in the proof of Theorem 16, the number of all possible sets⋃
r≥0

⋃
s∈S

P1(q, s),
⋃
r≥0

⋃
s∈S

P2(q, s),
⋃
r≥0

⋃
s∈S

P3(q, s),
⋃
r≥0

⋃
s∈S

P4(q, s)

is bounded by (tm)O(d2k).

By Lemma 17 we are able to bound the number of all possible sets
⋃
r≥0

⋃
s∈S P

r
5 (q, s)

as (tm)O(d2k2). The k2 term arises because we consider Θ(k2) pairs sj , st for predicate P5.
And because this bound is proven using Theorem 12, then it applies to the dual range space,
and we also bound the number of possible sets in

⋃
r≥0

⋃
s∈S P

r
6 (s, q) as also (tm)O(d2k2). So

ultimately,

2t ≤ (tm)O(d2k2) =⇒ t = O
(
d2k2 log(dkm)

)
. J

8 Hausdorff distance

We consider the range space (Xdm,RrHk
), where RrHk

denotes the set of all balls, of radius r
centered at curves in Xdk, under the symmetric Hausdorff distance.3 We also consider the
same problems under both directed versions of the Hausdorff distance, and their induced
range spaces (Xdm,Rr−→Hk

) and (Xdm,Rr←−Hk

). While some intermediate arguments hold in Rd,
we are only able to provide VC dimension bounds in R2. Proofs can be found in the full
version of the paper [17].

I Theorem 19. Let −→RH,k be the set of all balls, under the directed Hausdorff distance from
polygonal curves in X2

k. The VC dimension of (X2
m,
−→
RH,k) is O(k2 log(km)).

I Theorem 20. Let ←−RH,k be the set of all balls, under the directed Hausdorff distance to
polygonal curves in X2

k. The VC dimension of (X2
m,
←−
RH,k) is O(k log(km)).

I Theorem 21. Let RH,k be the set of all balls, under the symmetric Hausdorff distance in
X2
k. The VC dimension of (X2

m,RH,k) is O(k2 log(km)).

9 Lower bounds

Our lower bounds are constructed in the simplified setting that either k = 1 or m = 1, i.e.,
either the ground set or the curves defining the metric ball consist of one vertex only. In
this case, all of our considered distance measures (except for one direction of the directed

3 The proofs in this section are written for polygonal curves in Xd
m (resp. X2

m), but they readily extend
to (not-necessarily connected) sets of line segments in Rd (resp. R2) of cardinality m′ = m−1

2 .

A. Driemel, J.M. Phillips, and I. Psarros 28:13

q
P

p0

Figure 3 A curve q with metric ball of radius R− ε containing a subset of P . The shaded area is
the set of points that are contained inside the metric ball.

Hausdorff distance) are equal. The basic idea behind our lower bound construction is that,
for m = 1, the ranges behave like convex polygons with k facets. In particular, the set of
points contained inside the range centered at a curve q, is equal to the intersection of a
set of equal-size Euclidean balls centered at the vertices of q. Figure 3 shows a sketch of
the construction. For k = 1 and m ≥ 1, we use [24, Lemma 5.18], which bounds the VC
dimension of the dual range space as a function of the VC dimension of the primal space.
Proofs of the lower bounds can be found in the full version of the paper [17].

I Theorem 22. The VC-dimension of the range spaces (X2
m,RdF,k), (X2

m,RdH,k), (X2
m,

RF,k), (X2
m,RwF,k), and (X2

m,RH,k)is Ω(max(k, logm)).

I Theorem 23. For d ≥ 4, the VC-dimension of the range spaces (Xdm,RdF,k), (Xdm,RdH,k),
(Xdm,RwF,k), (Xdm,RF,k), and (Xdm,RH,k) is Ω(max(dk log k, log dm)).

10 Implications

In this section we demonstrate that bounds on the VC-dimension for the range space defined
by metric balls on curves immediately implies various results about prediction and statistical
generalization over the space of curves. In the following consider a range space (X,R) with
a ground set of X of curves of size n = |X|, where R are the ranges corresponding to
metric balls for some distance measure we consider, and the VC-dimension is bounded by
ν. This section discusses accuracy bounds that depend directly on the size |X| = n and
the VC-dimension ν. They will assume that X is a random sample of some much larger set
Xbig or an unknown continuous generating distribution µ. Under the randomness in this

SoCG 2019

28:14 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

assumed sampling procedure, there is a probability of failure δ that often shows up in these
bounds, but is minor since it shows up as log(1/δ). These bounds take two closely-linked
forms. First, given a limited set X from an unknown µ, then how accurate is a query or a
prediction made using only X. Second, given the ability to draw samples (at a cost) from
an unknown distribution µ, how many are required so the prediction on the samples set X
has bounded prediction error. The theme of the following results, as implied by our above
VC-dimension results, is that if these families of curves are only inspected with or queried
with curves with a small number of segments (k is small), then the VC-dimension of the
associated range space ν = O(k log km) or O(k2 log km) is small, and that such analyses
generalize well. We show this in several concrete examples. More examples are detailed in
the full version of the paper [17].

Approximate range counting on curves. Given a large set of curves X (of potentially
very large complexity m), and a query curve q (with smaller complexity k) we would like
to approximate the number of curves nearby q. For instance, we restrict X to historical
queries at a certain time of day, and query with the planned route q, and would like to know
the chance of finding a carpool. VC-dimension ν of the metric balls shows up directly in
two analyses. First, if we assume X ∼ µ where µ is a much larger unknown distribution
(but the real one), then we can estimate the accuracy of the fraction of all curves in this
range within additive error O(

√
(1/|X|)(ν + log(1/δ))). On the other hand, if X is too large

to conveniently query, we can sample a subset S ⊂ X of size O((1/ε2)(ν + log(1/δ))) and
know that the estimate for the fraction of curves from S in that range is within additive ε
error of the fraction from X. Such sampling techniques have a long history in traditional
databases [29], and have more recently become important when providing online estimates
during a long query processing time as incrementally increasing size subsets are considered [3].
Ours provides the first formal analysis of these results for queries over curves.

Density estimation of curves. A related task in generalization to new curves is density
estimation. Consider a large set of curves X which represent a larger unknown distribution
µ that models a distribution of curves; we want to understand how unusual a new curve q
would be given we have not yet seen exactly the same curve before. One option is to use the
distance to the (kth) nearest neighbor curve in X, or a bit more robust option is to choose a
radius r, and count how many curves are within that radius (e.g., the approximate range
counting results above). Alternatively, for X ⊂M, consider now a kernel density estimate
kdeX : M→ R defined by kdeX(p) = 1

n

∑
p∈P K(x, p) with kernel K(x, p) = exp(−d(x, p)2)

(where d is some distance of choice among curves, e.g., dF). The kernel is defined such that
each superlevel set Kτ

x = {p ∈M | K(x, p) ≥ τ} corresponds with some range R ∈ R so that
R ∩X = Kτ

x ∩X. Then a random sample S ⊂ X of size O((1/ε2)(ν + log 1
δ)) satisfies that

‖kdeX −kdes ‖∞ ≤ ε [26]. Thus, again the VC-dimension ν of the metric balls directly
influences this estimates accuracy, and for query curves with small complexity k, the bound
is quite reasonable.

References

1 Peyman Afshani and Anne Driemel. On the complexity of range searching among curves.
CoRR, arXiv:1707.04789v1, 2017. arXiv:1707.04789.

2 Peyman Afshani and Anne Driemel. On the complexity of range searching among curves.
In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

http://arxiv.org/abs/1707.04789

A. Driemel, J.M. Phillips, and I. Psarros 28:15

2018, New Orleans, LA, USA, January 7-10, 2018, pages 898–917, 2018. doi:10.1137/1.
9781611975031.58.

3 S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. BlinkDB: queries
with bounded errors and bounded response times on very large data. In EuroSys, 1993.

4 Yohji Akama, Kei Irie, Akitoshi Kawamura, and Yasutaka Uwano. VC Dimension of Principal
Component Analysis. Discrete & Computational Geometry, 44:589–598, 2010.

5 Helmut Alt, Bernd Behrends, and Johannes Blömer. Approximate matching of polygonal
shapes. Annals of Mathematics and Artificial Intelligence, 13(3):251–265, September 1995.
doi:10.1007/BF01530830.

6 Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999.

7 Maria Astefanoaei, Paul Cesaretti, Panagiota Katsikouli, Mayank Goswami, and Rik Sarkar.
Multi-resolution sketches and locality sensitive hashing for fast trajectory processing. In
International Conference on Advances in Geographic Information Systems (SIGSPATIAL
2018), volume 10, 2018.

8 Julian Baldus and Karl Bringmann. A Fast Implementation of Near Neighbors Queries for
FréChet Distance (GIS Cup). In Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL’17, pages 99:1–99:4,
2017.

9 Anselm Blumer, A. Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability and
the Vapnik-Chervonenkis Dimension. Journal of the ACM, 36:929–965, 1989.

10 Hervé Brönnimann and Michael T. Goodrich. Almost Optimal Set Covers in Finite VC-
Dimension. Discrete & Computational Geometry, 1995.

11 Kevin Buchin, Yago Diez, Tom van Diggelen, and Wouter Meulemans. Efficient trajectory
queries under the Fréchet distance (GIS Cup). In Proc. 25th Int. Conference on Advances in
Geographic Information Systems (SIGSPATIAL), pages 101:1–101:4, 2017.

12 Bernard Chazelle and Emo Welzl. Quasi-Optimal Range Searching in Spaces of Finite
VC-Dimension. Discrete and Computational Geometry, 4:467–489, 1989.

13 Monika Csikos, Andrey Kupavskii, and Nabil H. Mustafa. Optimal Bounds on the VC-
dimension. arXiv:1807.07924, 2018. arXiv:1807.07924.

14 Mark De Berg, Atlas F Cook, and Joachim Gudmundsson. Fast Fréchet queries. Computational
Geometry, 46(6):747–755, 2013.

15 Mark de Berg and Ali D. Mehrabi. Straight-Path Queries in Trajectory Data. In WALCOM:
Algorithms and Computation - 9th Int. Workshop, WALCOM 2015, Dhaka, Bangladesh,
February 26-28, 2015. Proceedings, pages 101–112, 2015. doi:10.1007/978-3-319-15612-5_
10.

16 Anne Driemel, Amer Krivošija, and Christian Sohler. Clustering time series under the Fréchet
distance. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 766–785, 2016. doi:10.1137/1.9781611974331.ch55.

17 Anne Driemel, Jeff M. Phillips, and Ioannis Psarros. The VC dimension of metric balls under
Fréchet and Hausdorff distances. CoRR, arXiv:1903.03211, 2019. arXiv:1903.03211.

18 Anne Driemel and Francesco Silvestri. Locally-sensitive hashing of curves. In 33st International
Symposium on Computational Geometry, SoCG 2017, pages 37:1–37:16, 2017.

19 Fabian Dütsch and Jan Vahrenhold. A Filter-and-Refinement- Algorithm for Range Queries
Based on the Fréchet Distance (GIS Cup). In Proc. 25th Int. Conference on Advances in
Geographic Information Systems (SIGSPATIAL), pages 100:1–100:4, 2017.

20 Ioannis Z. Emiris and Ioannis Psarros. Products of Euclidean Metrics and Applications to
Proximity Questions among Curves. In Proc. 34th Int. Symposium on Computational Geometry
(SoCG), volume 99 of LIPIcs, pages 37:1–37:13, 2018.

21 Alexander Gilbers and Rolf Klein. A new upper bound for the VC-dimension of visibility
regions. Computational Geometry: Theory and Applications, 74:61–74, 2014.

SoCG 2019

http://dx.doi.org/10.1137/1.9781611975031.58
http://dx.doi.org/10.1137/1.9781611975031.58
http://dx.doi.org/10.1007/BF01530830
http://arxiv.org/abs/1807.07924
http://dx.doi.org/10.1007/978-3-319-15612-5_10
http://dx.doi.org/10.1007/978-3-319-15612-5_10
http://dx.doi.org/10.1137/1.9781611974331.ch55
http://arxiv.org/abs/1903.03211

28:16 The VC Dimension of Metric Balls Under Fréchet and Hausdorff Distances

22 Paul W. Goldberg and Mark R. Jerrum. Bounding the Vapnik-Chervonenkis Dimension of
Concept Classes Parameterized by Real Numbers. Machine Learning, 18:131–148, 1995.

23 Joachim Gudmundsson and Michiel Smid. Fast algorithms for approximate Fréchet matching
queries in geometric trees. Computational Geometry, 48(6):479–494, 2015. doi:10.1016/j.
comgeo.2015.02.003.

24 Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical Society,
Boston, MA, USA, 2011.

25 Lingxiao Huang, Shaofeng Jiang, Jian Li, and Xuan Wu. Epsilon-Coresets for Clustering
(with Outliers) in Doubling Metrics. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 814–825. IEEE, 2018.

26 Sarang Joshi, Raj Varma Kommaraju, Jeff M. Phillips, and Suresh Venkatasubramanian.
Comparing Distributions and Shapes Using the Kernel Distance. In ACM SoCG, 2011.

27 Marek Karpinski and Angus Macintyre. Polynomial bounds for VC dimension of sigmoidal
neural networks. In STOC, 1995.

28 Elmar Langetepe and Simone Lehmann. Exact VC-dimension for L1-visibility of points in
simple polygons. arXiv:1705.01723, 2017. arXiv:1705.01723.

29 Frank Olken. Random Sampling in Databases. PhD thesis, University of California at Berkeley,
1993.

30 Norbert Sauer. On the Density of Families of Sets. Journal of Combinatorial Theory Series A,
13:145–147, 1972.

31 Saharon Shelah. A Combinatorial Problem; Stability and Order for Models and Theories in
Infinitary Languages. Pacific Journal of Mathematics, 41(1), 1972.

32 Pavel Valtr. Guarding Galleries Where No Point Sees a Small Area. Israel Journal of
Mathematics, 104:1–16, 1998.

33 Vladimir Vapnik and Alexey Chervonenkis. On the Uniform Convergence of Relative Frequen-
cies of Events to their Probabilities. Theory of Probability and its Applications, 16:264–280,
1971.

34 Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.
35 Martin Werner and Dev Oliver. ACM SIGSPATIAL GIS Cup 2017: Range queries under

Fréchet distance. SIGSPATIAL Special, 10(1):24–27, June 2018. doi:10.1145/3231541.
3231549.

http://dx.doi.org/10.1016/j.comgeo.2015.02.003
http://dx.doi.org/10.1016/j.comgeo.2015.02.003
http://arxiv.org/abs/1705.01723
http://dx.doi.org/10.1145/3231541.3231549
http://dx.doi.org/10.1145/3231541.3231549

Dual Circumference and Collinear Sets
Vida Dujmović
School of Computer Science and Electrical Engineering, University of Ottawa, Canada
https://cglab.ca/~vida/
vida.dujmovic@uottawa.ca

Pat Morin
School of Computer Science, Carleton University, Canada
https://cglab.ca/~morin/
morin@scs.carleton.ca

Abstract
We show that, if an n-vertex triangulation T of maximum degree ∆ has a dual that contains a cycle
of length `, then T has a non-crossing straight-line drawing in which some set, called a collinear set,
of Ω(`/∆4) vertices lie on a line. Using the current lower bounds on the length of longest cycles in
3-regular 3-connected graphs, this implies that every n-vertex planar graph of maximum degree ∆
has a collinear set of size Ω(n0.8/∆4). Very recently, Dujmović et al. (SODA 2019) showed that,
if S is a collinear set in a triangulation T then, for any point set X ⊂ R2 with |X| = |S|, T has a
non-crossing straight-line drawing in which the vertices of S are drawn on the points in X. Because
of this, collinear sets have numerous applications in graph drawing and related areas.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Extremal graph theory; Human-centered computing → Graph drawings

Keywords and phrases Planar graphs, collinear sets, untangling, column planarity, universal point
subsets, partial simultaneous geometric drawings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.29

Related Version A full version of this paper is available at https://arxiv.org/abs/1811.03427.

Funding This work was partly funded by NSERC and MRI.

Acknowledgements Much of this research took place during the Sixth Workshop on Order and
Geometry held in Ciążeń, Poland, September 19–22, 2018. The authors are grateful to the organizers,
Stefan Felsner and Piotr Micek, and to the other participants for providing a stimulating research
environment.

1 Introduction

Throughout this paper, all graphs are simple and finite and have at least 4 vertices. For
a planar graph G, we say that a set S ⊆ V (G) is a collinear set if G has a non-crossing
straight-line drawing in which the vertices of S are all collinear. A plane graph is a planar
graph G along with a particular non-crossing drawing of G. The dual G? of a plane graph G
is the graph whose vertex set V (G?) is the set of faces in G and in which fg ∈ E(G?) if and
only if the faces f and g of G have at least one edge in common. The circumference, c(G),
of a graph G is the length of the longest cycle in G. In Section 2, we prove the following:

I Theorem 1. Let T be a triangulation of maximum degree ∆ whose dual T ? has circumfer-
ence `. Then T has a collinear set of size Ω(`/∆4).

The dual of a triangulation is a 3-connected cubic planar graph. The study of the
circumference of 3-connected cubic planar graphs has a long and rich history going back
to at least 1884 when Tait [27] conjectured that every such graph is Hamiltonian. In 1946,
Tait’s conjecture was disproved by Tutte who gave a non-Hamiltonian 46-vertex example [28].

© Vida Dujmović and Pat Morin;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://cglab.ca/~vida/
mailto:vida.dujmovic@uottawa.ca
https://cglab.ca/~morin/
mailto:morin@scs.carleton.ca
https://doi.org/10.4230/LIPIcs.SoCG.2019.29
https://arxiv.org/abs/1811.03427
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Dual Circumference and Collinear Sets

Repeatedly replacing vertices of Tutte’s graph with copies of itself gives a family of graphs,
〈Gi : i ∈ Z〉 in which Gi has 46 ·45i vertices and circumference at most 45 ·44i. Stated another
way, n-vertex members of the family have circumference O(nα), for α = log44(45) < 0.9941.
The current best upper bound of this type is due to Grünbaum and Walther [18] who
construct a 24-vertex non-Hamiltonian cubic 3-connected planar graph, resulting in a family
of graphs in which n-vertex members have circumference O(nα) for α = log23(22) < 0.9859.

A series of results has steadily improved the lower bounds on the circumference of n-
vertex (not necessarily planar) 3-connected cubic graphs. Barnette [5] showed that, for every
n-vertex 3-connected cubic graph G, c(G) = Ω(logn). Bondy and Simonovits [8] improved
this bound to eΩ(

√
logn) and conjectured that it can be improved to Ω(nα) for some α > 0.

Jackson [19] confirmed this conjecture with α = log2(1 +
√

5)− 1 > 0.6942. Billinksi et al.
[6] improved this to the solution of 41/α − 31/α = 2, which implies α > 0.7532. The current
record is held by Liu, Yu, and Zhang [22] who show that α > 0.8.

It is known that any planar graph of maximum degree ∆ can be triangulated so that
the resulting triangulation has maximum degree d3∆/2e+ 11 [21]. This fact, together with
Theorem 1 and the result of Liu, Yu, and Zhang [22], implies the following corollary:

I Corollary 2. Every n-vertex triangulation of maximum degree ∆ contains a collinear set
of size Ω(n0.8/∆4).

It is known that every planar graph G has a collinear set of size Ω(
√
n) [9, 13] . Corollary 2

therefore improves on this bound for bounded-degree planar graphs and, indeed for the family
of n-vertex planar graphs of maximum degree ∆ ∈ O(nδ), with δ < 0.075. For example,
the triangulations dual to Grünbaum and Walther’s construction have maximum degree
∆ ∈ O(logn). As discussed below, this implies that there exists n-vertex triangulations
of maximum degree O(logn) whose largest collinear set has size O(n0.9859). Corollary 2
implies that every n-vertex planar graph of maximum degree O(logn) has a collinear set of
size Ω(n0.8).

Recently, Dujmović et al. [14] have shown that every collinear set is free. That is, for any
planar graph G, any collinear set S ⊆ V (G), and any setX ⊂ R2 with |X| = |S|, there exists a
non-crossing straight-line drawing of G in which the vertices of S are drawn on the points of X.
Because of this, collinear sets have immediate applications in graph drawing and related areas.
For applications of Corollary 2, including untangling [11, 23, 29, 17, 20, 9, 12, 13, 25], column
planarity [3, 15, 12, 13], universal point subsets [16, 1, 12, 13], and partial simultaneous
geometric drawings [15, 4, 2, 7, 13] the reader is referred to Dujmović [13] and Dujmović et
al. [14, Section 1.1]. Corollary 2 gives improved bounds for all of these problems for planar
graphs of maximum ∆ ∈ o(n0.075).

For example, it is known that every n-vertex planar geometric graph can be untangled
while keeping some set of Ω(n0.25) vertices fixed [9] and that there are n-vertex planar
geometric graphs that cannot be untangled while keeping any set of Ω(n0.4948) vertices fixed
[10]. Although asymptotically tight bounds are known for paths [11], trees [17], outerplanar
graphs [17], planar graphs of treewidth two [25], and planar graphs of treewidth three [12],
progress on the general case has been stuck for 10 years due to the fact that the exponent
0.25 comes from two applications of Dilworth’s Theorem. Thus, some substantially new idea
appears to be needed. By relating collinear/free sets to dual circumference, the current paper
presents an effective new idea. Indeed, Corollary 2 implies that every bounded-degree n-vertex
planar geometric graph can be untangled while keeping Ω(n0.4) vertices fixed. Note that,
even for bounded-degree planar graphs, Ω(n0.25) was the best previously-known lower bound.

V. Dujmović and P. Morin 29:3

Our work opens two avenues for further progress:
1. Lower bounds on the circumference of 3-regular 3-connected graphs is an active area

of research. Indeed, the Ω(n0.8) lower bound of Liu, Yu, and Zhang [22] is less than a
year old. Any further progress on these lower bounds will translate immediately to an
improved bound in Corollary 2 and all its applications.

2. It is possible that the dependence on ∆ can be removed from Theorem 1 and Corollary 2,
thus making these results applicable to all planar graphs, regardless of maximum degree.

2 Proof of Theorem 1

Let G be a plane graph. We treat the vertices of G as points, the edges of G as closed
curves, and the faces of G as closed sets (so that a face contains all the edges on its boundary
and an edge contains both its endpoints). Whenever we consider subgraphs of G we treat
them as having the same embedding as G. Similarly, if we consider a graph G′ that is
homeomorphic1 to G then we assume that the edges of G′ – each of which represents a path
in G whose internal vertices all have degree 2 – inherit their embedding from the paths they
represent in G.

Finally, if we consider the dual G? of G then we treat it as a plane graph in which each
vertex f is represented as a point in the interior of the face f of G that it represents. The
edges of G? are embedded so that an edge fg is contained in the union of the two faces f
and g of G, it intersects the interior of exactly one edge of G that is common to f and g,
and this intersection consists of a single point.

A proper good curve C for a plane graph G is a Jordan curve with the following properties:
1. proper : for any edge xy of G, C either contains xy, intersects xy in a single point (possibly

an endpoint), or is disjoint from xy; and
2. good: C contains at least one point in the interior of some face of G.

Da Lozzo et al. [12] show that proper good curves define collinear sets:

I Theorem 3. In a plane graph G, a set S ⊆ V (G) is a collinear set if and only if there is
a proper good curve for G that contains S.

For a triangulation T , let v(T) denote the size of a largest collinear set in T . We will show
that, for any triangulation T of maximum degree ∆ whose dual is T ?, v(T) = Θ(c(T ?)/∆4)
by relating proper good curves in T to cycles in T ?.

As shown by Ravsky and Verbitsky [25, 24], the inequality v(T) ≤ c(T ?) is easy: If T is a
triangulation that has a proper good curve C containing k vertices, then a slight deformation
of C produces a proper good curve that contains no vertices. This curve intersects a cyclic
sequence of faces f0, . . . , fk′−1 of T with k′ ≥ k. In this sequence, fi and f(i+1) mod k′ share
an edge, for every i ∈ {0, . . . , k′ − 1}, so this sequence is a closed walk in the dual T ? of T .
The properness of the original curve and the fact that each face of T is a triangle ensures
that fi 6= fj for any i 6= j, so this sequence is a cycle in T ? of length k′ ≥ k. Therefore,
c(T ?) ≥ v(T). From the result of Grünbaum and Walther described above, this implies that
there are n-vertex triangulations T such that v(T) = O(n0.9859).

The other direction, lower-bounding v(T) in terms c(T ?) is more difficult. Not every
cycle C of length ` in T ? can be easily transformed into a proper good curve containing a
similar number of vertices in C. In the next section, we describe three parameters τ , ρ, and
κ of a cycle C in T ? and show that C can always be transformed into a proper good curve
containing Ω(κ) vertices of T .

1 We say that a graph G′ is homeomorphic to G if G′ can be obtained from G by repeatedly contracting
an edge of G that is incident to a degree-2 vertex.

SoCG 2019

29:4 Dual Circumference and Collinear Sets

Figure 1 Faces of T ? that are pinched and caressed by C. C is bold, caressed faces are teal,
pinched faces are pink, and untouched faces are unshaded.

2.1 Faces that are Touched, Pinched, and Caressed
Throughout the remainder of this section, T is a triangulation whose dual is T ? and C is a
cycle in T ?. Refer to Figure 1 for the following definitions. We say that a face f of T ?
1. is touched by C if f ∩ C 6= ∅;
2. is pinched by C if f ∩ C is a cycle or has more than one connected component; and
3. is caressed by C if it is touched but not pinched by C.

Since C is almost always the cycle of interest, we will usually say that a face f of T ? is
touched, pinched, or caressed, without specifically mentioning C. We will frequently use
the values τ , ρ, and κ to denote the number of faces of T ? in some region that are τouched,
ρinched or κaressed. Observe that, since every face that is touched is either pinched or
caressed, we have the identity τ = ρ+ κ.

I Lemma 4. If C caresses κ faces of T ? then T has a proper good curve that contains at
least κ/4 vertices so, by Theorem 3, v(T) ≥ κ/4.

Proof. Let F be the set of faces in T ? that are caressed by C. Each element u ∈ F

corresponds to a vertex of T so we will treat F as a set of vertices in T . Consider the
subgraph T [F] of T induced by F . The graph T [F] is planar and has κ vertices. Therefore,
by the 4-Colour Theorem [26], T [F] contains an independent set F ′ ⊆ F of size at least κ/4.

We claim that there is a proper good curve for T that contains all the vertices in F ′. To
see this, first observe that the cycle C in T ? already defines a proper good curve (that does
not contain any vertices of T) that we also call C. We perform local modifications on C so
that it contains all the vertices in F ′.

For any vertex u ∈ F ′, let w0, . . . , wd−1 denote the neighbours of u in cyclic order. The
curve C intersects some contiguous subsequence uwi, . . . , uwj of the edges adjacent to u.
Since u is caressed, this sequence does not contain all edges incident to u. Therefore, the curve
C crosses the edge wi−1wi, then crosses uwi, . . . , uwj , and then crosses the edge wjwj+1. We

V. Dujmović and P. Morin 29:5

u

C wi

wi−1

wj

wj+1 u

wi

wi−1

wj

wj+1

C ′

Figure 2 Transforming the dual cycle C into a proper good curve C′ containing u.

f0
f1 f2 f3 f4 fk−1

fk

Figure 3 A Hamiltonian cycle C in T ? that caresses only four faces.

modify C by removing the portion between the first and last of these crossings and replacing
it with a curve that contains u and is contained in the two triangles wi−1uwi and wjuwj+1.
(See Figure 2.)

After performing this local modification for each u ∈ F ′ we have a curve C ′ that contains
every vertex u ∈ F ′. All that remains is verify that C ′ is good and proper for T . That C ′ is
good for T is obvious. That C ′ is proper for T follows from the following two observations:
(i) C ′ does not contain any two adjacent vertices (since F ′ is an independent set); and (ii) if
C ′ contains a vertex u, then it does not intersect the interior of any edge incident to u. J

Lemma 4 reduces our problem to finding a cycle in T ? that caresses many faces. It is
tempting to hope that any sufficiently long cycle in T ? caresses many faces, but this is not
true; Figure 3 shows that even a Hamiltonian cycle C in T ? may caress only four faces,
two inside C and two outside of C. In this example, there is an obvious sequence of faces
f0, . . . , fk, all contained in the interior of C where fi shares an edge with fi+1 for each
i ∈ {0, . . . , k− 1}. The only faces caressed by C are the endpoints f0 and fk of this sequence.

Our strategy is to define a tree structure, T0 on groups of faces contained in the interior
of C and a similar structure, T1 on groups of faces in the exterior of C. We will then show
that every leaf of T0 or T1 contains a face caressed by C. In Figure 3, the tree T0 is the
path f0, . . . , fk and, indeed, the leaves f0 and fk of this tree are caressed by C. After a
non-trivial amount of analysis of the trees T0 and T1, we will eventually show that, if C does
not caress many faces, then T0 and T1 have many nodes, but few leaves. Therefore T0 and T1
have many degree-2 nodes. This abundance of degree-2 nodes makes it possible to perform a
surgery on C that increases the number of caressed faces. Performing this surgery repeatedly
will then produce a curve C that caresses many faces.

A path P = v1, . . . , vr in T ? is a chord path (for C) if v1, vr ∈ V (C) and v2, . . . , vr−1 6∈
V (C). Note that this definition implies that the interior vertices v2, . . . , vr−1 of P are either
all contained in the interior of C or all contained in the exterior of C.

SoCG 2019

29:6 Dual Circumference and Collinear Sets

PL
R

C

f

X1

X2X3

Figure 4 The proof of Lemma 5.

I Lemma 5. Let P be a chord path for C and let L and R be the two faces of P ∪C that each
contain P in their boundary. Then R contains at least one face of T ? that is caressed by C.

Proof. The proof is by induction on the number, t, of faces of T ? contained in R. If t = 1,
then R is a face of T ? and it is caressed by C.

If t > 1, then consider the face f of T ? that is contained in R and has the first edge of P
on its boundary. Refer to Figure 4. Since t > 1, X = R \ f is non-empty. The set X may
have several connected components X1, . . . , Xk, but each Xi has a boundary that contains a
chord path Pi for C. We can therefore apply induction on P1 (or any Pi) using R = X1 in
the inductive hypothesis. J

2.2 Auxilliary Graphs and Trees: H, H̃, T0, and T1

Refer to Figure 5. Consider the auxilliary graph H with vertex set V (H) ⊆ V (T ?) and whose
edge set consist of the edges of C plus those edges of T ? that belong to any face pinched by
C. Let v0, . . . , vr−1 be the clockwise cyclic sequence of vertices on some face f of T ? that is
pinched by C. We identify three kinds of vertices that are special with respect to f :
1. A vertex vi is special of Type A if vi−1vi is an edge of C and vivi+1 is not an edge of C.
2. A vertex vi is special of Type B if vi−1vi is not an edge of C and vivi+1 is an edge of C.
3. A vertex vi is special of Type Y if vi not incident to any edge of C and vi has degree 3

in H.

We say that a chord path vi, . . . , vj is a keeper with respect to f if vi is special of Type A,
vj is special of Type B, and none of vi+1, . . . , vj−1 are special. We let H̃ denote the subgraph
of H containing all the edges of C and all the edges of all paths that are keepers with respect
to some pinched face f of T ?.

It is worth emphasizing at this point that, by definition, every keeper is entirely contained
in the boundary of at least one face f of T ?. This property will be useful shortly.

Let H̃ ′ denote the graph that is homeormophic to H̃ but does not contain any degree 2
vertices. That is, H̃ ′ is the minor of H̃ obtained by repeatedly contracting an edge incident
a degree-2 vertex. The graph H̃ ′ naturally inherits an embedding from the embedding of H̃.
This embedding partitions the edges of H̃ ′ into three sets:
1. The set B of edges that are contained in (the embedding of) C;
2. The set E0 of edges whose interiors are contained in the interior of (the embedding of) C;

and
3. The set E1 of edges whose interiors are contained in the exterior of (the embedding of) C.

Observe that, for each i ∈ {0, 1}, the graph Hi whose edges are exactly those in B ∪ Ei
is outerplanar, since all vertices of Hi are on a single face, whose boundary is C. Let Hi

? be
dual of Hi and let Ti be the subgraph of Hi

? whose edges are all those dual to the edges of
Ei. From the outerplanarity of Hi, it follows that Ti is a tree.

V. Dujmović and P. Morin 29:7

(a) (b)

(c) (d)

Figure 5 (a) the cycle C in T ? with faces classified as pinched or caressed; (b) the auxilliary
graph H; (c) the auxilliary graph H̃ with keeper paths highlighted; (d) the trees T0 and T1.

Each vertex of Ti corresponds to a face of H̃. From this point onwards, we will refer to
the vertices of Ti as nodes to highlight this fact, so that a node u of Ti is synonymous with
the subset of R2 contained in the corresponding face of H̃. In the following, when we say
that a node u of Ti contains a face f of T ? we mean that f is one of the faces of T ? whose
union makes up u. The degree, δu of any node u in Ti is exactly equal to the number of
keeper paths on the boundary of u.

The following lemma allows us to direct our effort towards proving that one of T0 or T1
has many leaves.

I Lemma 6. Each leaf u of Ti contains at least one face of T ? that is caressed by C.

Proof. The edge of Ti incident to u corresponds to a chord path P . The graph P ∪ C has
two faces with P on its boundary, one of which is u. The lemma now follows immediately
from Lemma 5, with R = u. J

We will make use of the following well-known property of 3-connected plane graphs.

I Lemma 7. If T has n ≥ 4 vertices then any two faces of T ? share at most one edge.

I Lemma 8. Let u be a node of Ti and let ρu, κu, and δu denote the number of pinched faces
of T ? in u, the number of caressed faces of T ? in u, and the degree of u in Ti, respectively.
Then ρu ≤ 2(κu + δu).

Before proving Lemma 8, we point out that the leading constant 2 is tight. Figure 6
shows an example in which all ρu = 2k + 1 pinched faces of T ? are contained in a single
(pink) node u of T0 that contains κu = 0 caressed faces and has degree δu = k + 2.

SoCG 2019

29:8 Dual Circumference and Collinear Sets

· · ·

Figure 6 An example showing the tightness of Lemma 8.

Proof. The proof is a discharging argument. We assign each pinched face in u a single unit
of charge, so that the total charge is ρu. We then describe a discharging procedure that
preserves the total charge. After executing this procedure, pinched faces in u have no charge,
each caressed face in u has charge at most 2, and each keeper path in u has charge at most
2. Since there is a bijection between keeper paths in u and edges of Ti incident to u, this
proves the result.

We now describe the discharging procedure, which is recursive and takes as input a chord
path P that partitions u into two parts L and R. We require as a precondition that there are
m ≥ 1 pinched faces of T ? in L, each of which contains at least one edge of P and such that
every edge of P is contained in at least one of these faces. During a recursive call, P may
have a charge c ∈ {0, 1, 2}. This charge will be at most 1 if m > 1, but can be 2 if m = 1.

To initialize the discharging procedure, we choose an arbitrary pinched face f contained
in u. The face f begins with one unit of charge and has r ≥ 2 chord paths P1, . . . , Pr on
its boundary. We move the charge from f onto P1 and apply the recursive procedure to
P1, with a charge of 1 (with L being the component of u \ P1 that contains f). We then
recursively apply the discharging procedure on each of P2, . . . , Pr with a charge of 0.

Next we describe each recursive step, during which we are given P with some charge
c ∈ {0, 1, 2}. There are several cases to consider (see Figure 7):
1. R contains no face of T ? that is pinched by C. If R is empty, then P is a keeper path, in

which case we leave a charge of c on it and we are done. Otherwise R is non-empty and
Lemma 5 ensures that R contains at least one caressed face f . We move the charge from
P onto f and we are done.

2. R contains a face f that is pinched by C and that shares at least one edge with P . We
consider three subcases:
a. f contains neither endpoint of P . In this case, R \ f has at least three connected

components, A, B, and X1, . . . , Xk, where A and B each contain an endpoint of P
and each Xi has a chord path Pi in common with f . We recurse on each of these
components so that each of these components takes the place of R in the recursion.
When recursing on A we take one unit of charge from P (if needed) and place it on
A’s chord path. When recursing on B we take the second unit of charge from P (if
needed) and place it on B’s chord path. When recursing on X1 we move the unit of
charge from f to P1. When recursing on X2, . . . , Xk we use no charge on P2, . . . , Pk.

b. f contains exactly one endpoint of P . In this case, R \ f has one connected component
A that contains an endpoint of P and one or more connected components X1, . . . , Xk

where each Xi has a chord path Pi on the boundary of f . The path P has a charge
c ≤ 2. When recursing on X1 we assign all of P ’s charge to the chord path P1, which
is contained in the single pinched face f . When recursing on A we move the single
unit of charge from f to the chord path of A.

V. Dujmović and P. Morin 29:9

f

A

B

X1

X2

X3

P P

f

A

X1

X2

X3

2.a 2.b

P f

X2

X3

X1
P g

f2

f3

f

f1

2.c 3

Figure 7 Discharging steps in the proof of Lemma 8.

c. f contains both endpoints of P . We claim that, in this case, P must be on the
boundary of more than one pinched faces in L, otherwise P would be a keeper path.
To see this, observe that the face f contains both the first edge e1 and last edge e2
of P . If e1 = e2 because P is a single edge, then it is certainly a keeper, which is not
possible. Otherwise, by Lemma 7, e1 and e2 are on the boundary of two different faces
in L. By assumption, both of these faces are pinched by C.
Therefore P has at most one unit of charge assigned to it. Now, R \ f has one or more
connected components X1, . . . , Xk sharing chord paths P1, . . . , Pk with f on which we
recurse. When recursing on X1 we move the charge from P and the charge from f to
P1. When recursing on the remaining Xi, i ∈ {2, . . . , k} we assign no charge to Pi.

3. R contains at least one pinched face, but no pinched face in R shares an edge with P .
In this case, consider the face g of H that is contained in R and has P on its boundary.
By definition, g contains no pinched faces of T ?, but g is touched by C, so g contains at
least one caressed face2 f of T ?. We move the c units of charge from P onto f .
Now, R still contains one or more pinched faces f1, . . . , fk, where each fi shares part of a
chord path Pi with g. On each such face fi, we run the initialization procedure described
above except that we recurse only on the chord paths of fi that do not share edges with
g. i.e., we do not recurse on the chord path Pi.

This completes the description of the discharging procedure, and the proof. J

2 In fact g contains at least two caressed faces, one for each endpoint of P .

SoCG 2019

29:10 Dual Circumference and Collinear Sets

2.3 Bad Nodes
We say that a node of Ti is bad if it has degree 2 and contains no face of T ? that is caressed by
C. We now move from studying individual nodes of T0 and T1 to studying global quantities
associated with T0 and T1. From this point on, for each i ∈ {0, 1},
1. τi, ρi, and κi refer the total numbers of faces contained in nodes of Ti that are touched,

pinched, and caressed by C, respectively;
2. ni refers to the number of nodes of Ti;
3. δi = 2(ni − 1) is the total degree of all nodes in Ti; and
4. bi is the number of bad nodes in Ti.

I Lemma 9. If κi ≤ τi/6 then ni ≥ τi/8.

Proof. From Lemma 8 we know ρi ≤ 2(κi + δi), so

τi = κi + ρi ≤ 3κi + 2δi = 3κi + 4(ni − 1) ≤ τi/2 + 4ni ,

and reorganizing the left- and right-hand sides gives the desired result. J

I Lemma 10. For any 0 < ε < 1, if bi ≤ (1− ε)ni, then κi = Ω(ετi).

Proof. Partition the nodes of Ti into the following sets:
1. the set B of bad nodes;
2. the set N1 of leaves;
3. the set N≥3 of nodes having degree at least 3;
4. the set N2 of nodes having degree 2 that are not bad.

bi = ni − |N1| − |N≥3| − |N2|
> ni − 2|N1| − |N2| since |N1| > |N≥3|
≥ ni − 2κi − |N2| (since, by Lemma 6, κi ≥ |N1|)
≥ ni − 3κi (since each node in N2 contains a caressed face)

Thus, we have

ni − 3κi ≤ bi ≤ (1− ε)ni

and rewriting gives

κi ≥ εni/3 . (1)

If κi ≥ τi/6, then the proof is complete. On the other hand, if κi ≤ τi/6 then, by Lemma 9,
ni ≥ τi/8. Combining this with (1) gives

κi ≥ εni/3 ≥ ετi/24 = Ω(ετi) . J

2.4 Interactions Between Bad Nodes
We have now reached a point in which we know that the vast majority of nodes in T0 and T1
are bad nodes, otherwise Lemma 10 implies that a constant fraction of the faces touched by
C are caressed by C. At this point, we are ready to study interactions between bad nodes
of T0 and bad nodes of T1. The proof of the following lemma is ommitted due to space
constraints but can be found in the full version of the paper.

V. Dujmović and P. Morin 29:11

I Lemma 11. If u is a bad node then there is a single face f of T ? that is contained in u
and that contains all edges of C ∩ u.

The following lemma shows that a bad node u in T0 and a bad node w in T1 share at
most one edge of C.

I Lemma 12. If nodes u in T0 and w in T1 are bad nodes that share at least one edge of C,
then u and w share exactly one edge of C.

Proof. Suppose u and w share two edges e1 and e2 of C. Then, by Lemma 11, there is a
common face fu in u that contains e1 and e2, Similarly, there is a common face fw contained
in w that contains both e1 and e2. But this contradicts Lemma 7. J

I Lemma 13. If u and w are bad nodes of Ti sharing a common chord path P , then P is a
single edge.

Proof. By Lemma 11, u and w have the first edge of P in common and the last edge of P in
common. Lemma 7 therefore implies that the first and last edge of P are the same, so P has
only one edge. J

2.5 Really Bad Nodes
At this point we will start making use of the assumption that the triangulation T has
maximum degree ∆, which is equivalent to the assumption that each face of T ? has at most
∆ edges on its boundary.

I Observation 14. If T has maximum degree ∆ and C has length `, then the number of
faces τ of T ? touched by C is at least 2`/∆. At least `/∆ of these faces are in the interior
of C and at least `/∆ of these faces are in the exterior of C.

Proof. Orient the edges of C counterclockwise so that, for each edge e of C, the face of T ?
to the left of e is in C’s interior and the face of T ? to the right of e is in C’s exterior. Each
face of T ? has at most ∆ edges. Therefore, the number of faces to the right of edges in C is
at least `/∆. The same is true for the number of faces of T ? to the left of edges in C. J

For a node u of Ti, we define N(u) as the set of nodes in T0 and T1 (excluding u) that
share an edge of T ? with u. Note that N(u) contains the neighbours of u in Ti as well as
nodes of T1−i with which u shares an edge of C. We say that a node u is really bad if u and
all nodes in N(u) are bad. The proof of the following lemma – which is similar to that of
Lemma 10 – is ommitted due to space constraints.

I Lemma 15. For every sufficiently small 0 < α < 1/2, if T has maximum degree ∆, C has
length `, and the number κ, of faces caressed by C is at most α`/∆2, then the number of
really bad nodes in T0 is at least n0 −O(αn0).

For a node u of Ti, we define N0(u) = {u} and, for any r ∈ N, we define Nr(u) =⋃
w∈Nr−1(u)N(w). We say that a node u in Ti is reallyr bad if u is bad and all nodes in

Nr(u) are bad. The proof of the following lemma is a straightforward generalization of the
proof of Lemma 15.

I Lemma 16. For any constant i ∈ N and every sufficiently small 0 < α < 1/2, if T has
maximum degree ∆, C has length `, and the number, κ, of faces caressed by C is at most
α`/∆i+1, then the number of reallyi bad nodes in T0 is at least n0 −O(αn0).

For our purposes, it will be sufficient to work with bad (i = 0), really bad (i = 1), and
really really bad (i = 2) nodes.

SoCG 2019

29:12 Dual Circumference and Collinear Sets

2.6 Tree/Cycle Surgery
We summarize the situation so far. We are left with the case where C has length ` and
therefore touches Ω(`/∆) faces. To complete the proof of Theorem 1 we must deal with the
situation where C caresses o(`/∆4) faces and therefore each of T0 and T1 has o(`/∆4) leaves
(Lemma 6), Ω(`/∆) nodes (Lemma 9), and the fraction of really really bad nodes in T0 and
T1 is 1−O(1/∆2) (Lemma 16).

To handle cases like these, the only option is to perform surgery on the cycle C to increase
the number of caressed nodes. In particular, our strategy is to perform modifications to C
that increase the number of faces caressed by C. At this point we are ready to complete the
proof of Theorem 1.

Proof of Theorem 1. By Lemma 4, it suffices to prove the existence of a cycle C in T ?

that caresses Ω(`/∆4) faces. We begin by applying Lemma 16 with i = 2 and α = ε/∆.
For sufficiently small, but constant, ε, Lemma 16 implies that κ = Ω(`/∆4) or the number
of nodes in T0 that are not really really bad is at most O(εn0/∆). In the former case, C
caresses Ω(`/∆4) faces of T ? and we are done.

In the latter case, consider the forest obtained by removing all nodes of T0 that are not
really really bad. This forest has (1−O(ε/∆))n0 nodes. We claim that it also has O(εn0/∆)
components. To see why this is so, let L be the set of leaves in Ti and let S be the set of
non-leaf nodes in Ti that are not really really bad. Observe that it is sufficient to upper
bound the number, k of components in Ti − S.

We have |L| ≤ |S|+ |L| = O(εn0/∆) and k =
∑
u∈S(degTi

(u)− 1). Furthermore,

O(εn0/∆) ≥ |L| ≥
∑
u∈S

(degTi
(u)− 2) = |S|+

∑
u∈S

(degTi
(u)− 1) = |S|+ k .

Therefore k ≤ |S|+ k = O(εn0/∆), as claimed.
Thus the forest obtained by removing all really really bad nodes from Ti has at most

O(εn0/∆) components, each of which is a path. At least one of these paths contains Ω(∆/ε)
nodes. In particular, for a sufficiently small constant ε, one of these components, X, has at
least 5∆ nodes.

Consider some node u in X, and let Ca and Cb be the two components of u ∩ C.
Observe that T1[N(u)] consists of two paths a1, . . . , ar and b1, . . . , bs of bad nodes where
each a1, . . . , ar contains an edge of Ca and each of b1, . . . , br contains an edge of Cb. Note
that it is possible that ai = bj for some values of i and j, but everything stated thus far,
and subsequently, is still true. It follows from Lemma 12 that among any sequence of ∆
consecutive nodes in X, at least one node has r ≥ 2 and therefore |N(u)| ≥ 5. Let u be any
such node that is not among the first 2∆ or last 2∆ nodes of X. Such a u always exists
because X contains at least 5∆ nodes.

Let x0 = u. We now describe some of the nodes in the vicinity of u (refer to Figure 8):
1. there is a path x2∆, . . . , x1, x0, y1, . . . , y2∆ in T0 consisting entirely of really really bad

nodes.
2. some really bad node a1 of T1 shares an edge with each of x0, . . . , xi for some i ∈
{1, . . . ,∆− 4}.

3. some really bad node a2 of T1 shares an edge with a1 and and edge with x0.
4. some really bad node a0 of T1 shares an edge with a1 and with each of xi, . . . , xi+j for

some j ∈ {0, . . . ,∆− 4}.

The surgery we perform focuses on the nodes u and a1. Consider the two components
of C ∩ a1. One of these components, p, shares an edge with u. By Lemma 12, the other
component, q, does not share an edge with u. Imagine removing u from T0, thereby separating

V. Dujmović and P. Morin 29:13

x1

xi

xi+j

u = x0

y1

y2∆

x2∆

a1

a0

a−1

a2

...

...

...

...

Figure 8 Nodes in the vicinity of u = x0.

T0 into a component Tx containing x1 and a component Ty containing y1. Equivalently, one
can think of removing the edges of u from C separating C into two paths Cx and Cy on the
boundary of Tx and Ty, respectively. We distinguish between two major cases (see Figure 9):

1. q ⊂ Cx. In this case, we punt to Case 2. By Lemma 13 a1 − C consists of two edges
and exactly one of these edges, e, is not incident to u. Instead, e is incident to xi. We
set u′ = xi, x′1 = xi−1, y′1 = xi+1, and a′1 = a1. Observe that a′1 connects the two
components of T0 − u′ and shares edges with u′ and x′1. This is exactly the situation
considered in Case 2.

2. q ⊂ Cy. At this point it is helpful to think of T0, T1, and C as a partition of R2, where
nodes of T0 are coloured red, nodes of T1 are coloured blue and C is the (purple) boundary
between red and blue. To describe our modifications of C, we imagine changing the
colours of nodes. The effect that such a recolouring has on C is immediately obvious:
It produces a 1-dimensional set C ′ that contains every (purple) edge contained in the
red-blue boundary. The set C ′ is a collection of vertices and edges of T ?. Therefore, if C ′
is a simple cycle, then C ′ defines a new pair of trees T ′0 and T ′1.
Refer to the right two thirds of Figure 9 for a simple (and misleading) example of what
follows. For a full example, refer to Figure 10. The surgery we perform, recolours
x0, x1, . . . , xi−1 blue and recolours a1 red. Observe that, because q ⊂ Cy and p contain
an edge of x1, this implies that the red subset of R2 is simply-connected and its boundary
C ′ is a simple cycle consisting of edges of T ∗. The new trees T ′0 and T ′1 are therefore well
defined. We now make two claims that will complete our proof.

B Claim 17. For each i ∈ {0, 1}, and every node of w Ti that is not bad, C ∩w = C ′ ∩w.
(Equivalently, for every face f of T ? that is not a bad node of T0 or T1, C ∩ f = C ′ ∩ f .)

B Claim 18. The face a0 is caressed by C ′.

SoCG 2019

29:14 Dual Circumference and Collinear Sets

x1

xi

xi+j

y1

y2∆

x2∆

a0

a−1

a2

...

...

...

...

u = x0

a1

x1

xi

xi+j

y1

y2∆

x2∆

a0

a−1

a2

...

...

...

...

u = x0

a1

x1

xi

xi+j

y1

y2∆

x2∆

a0

a−1

a2

...

...

...

...

u = x0

a1

(1) (2) C′

Figure 9 Cases 1 and 2 in the proof of Theorem 1 and the surgery performed in Case 2.

These two claims complete the proof because, together, they imply that C ′ caresses one
more node than C. Indeed, by definition, C did not caress any faces belonging to bad
nodes. Therefore, the first claim implies that the faces of T ? caressed by C ′ are a superset
of those caressed by C. The face a0 is a bad node of Ti so it is not caressed by C but the
second claim states that it is caressed by C ′. Therefore C ′ caresses at least one more face
than C.
This surgery recolours at most ∆ − 2 ≤ ∆ nodes of T0 and T1, so the difference in
length between C and C ′ is at most ∆2. If we start with a cycle C of length `, then
we can perform this surgery at least `/(4∆2) times before the length of C decreases
to less than `′ = `/2. If at some point during this process, we are no longer able to
perform this operation, it is because C caresses Ω(`′/∆4) = Ω(`/∆4) faces of T ? and
we are done. By the end of this process, the number of faces caressed by C is at least
`/(4∆2) ∈ Ω(`/∆2) ⊂ Ω(`/∆4) and we are also done.
Thus, all that remains is to prove Claim 17 and Claim 18.
To prove Claim 17 we observe that C and C ′ differ only on the boundaries of nodes
that are recoloured. Thus, it is sufficient to show that all nodes in R = ∪{N(v) : v ∈
{x0, . . . , xi−1, a1} are bad. But this is immediate since x0, . . . , xi−1 are really really bad
and a1 ∈ N(x0), so a1 is bad. Since every node in R share an edge with at least one of
{x0, . . . , xi−1, a1}, every node in R is therefore bad, as required.
To prove Claim 18 we consider the boundary of the face a0 of T ∗ after the recolouring
operation. This boundary consists of, in cyclic order:
a. An edge shared between a0 and a1. This edge is in C ′ since a0 is in T ′1 and a1 is in T ′0.
b. A path of edges shared with xi, . . . , xi+j . The nodes xi, . . . , xi+j are in T0 and are

distinct from x0, . . . , xi−1, so these nodes are in T ′0. Therefore, this part of the bounary
of a0 is contained in C ′.

V. Dujmović and P. Morin 29:15

x1

xi

xi+j

u = x0

y1

y2∆

x2∆

a−1

a2

...

...

...

...

a1

a0

x1

xi

xi+j

u = x0

y1

y2∆

x2∆

a−1

a2

...

...

...

...

a1

a0

Figure 10 Performing surgery on C to obtain C′ that caresses a0.

c. An edge shared between a0 and another node a−1 =6= a1 of T1. The faces of a−1 are
in T ′1 because a1 is the only face that moves from T1 to T ′0. (T ′1 is the only face whose
colour goes from blue to red.)

d. A path of edges that contains at least one edge of Cy. If we fix an embedding in which
the outer face is some face of T1 other than a0, then this path contains a portion of
C that is traversed in clockwise order. By Lemma 12 This path does not contain
any edge of xi. Furthermore, this path does not contain any edges of x0, x1, . . . , xi−1
that are not on the outer face of T0 ∪ a1. Therefore, this path consists of a (possibly
empty) sequence of edges that are shared with x0, . . . , xi−1 followed by a sequence of
edges from Cy. The former part of this path is shared with nodes in T ′1, so these edges
are not in C ′. The latter part of this path is shared with nodes in Ty, which are all
contained contained in T ′0.

Therefore the intersection C ′ ∩ a0 consists of one connected component so a0 is caressed
by C ′. J

3 Discussion

It remains an open problem to eliminate the dependence of our results on the maximum
degree, ∆, of T . The next significant step is to resolve the following conjecture:

I Conjecture 19. If T is a triangulation whose dual T ? has a cycle of length `, then T ? has
a cycle that caresses Ω(`) faces. (Therefore, by Lemma 4 and Theorem 3, T has a collinear
set of size Ω(`).)

SoCG 2019

29:16 Dual Circumference and Collinear Sets

References

1 Patrizio Angelini, Carla Binucci, William S. Evans, Ferran Hurtado, Giuseppe Liotta, Tamara
Mchedlidze, Henk Meijer, and Yoshio Okamoto. Universal Point Subsets for Planar Graphs. In
Kun-Mao Chao, Tsan-sheng Hsu, and Der-Tsai Lee, editors, Algorithms and Computation - 23rd
International Symposium, ISAAC 2012, Taipei, Taiwan, December 19-21, 2012. Proceedings,
volume 7676 of Lecture Notes in Computer Science, pages 423–432. Springer, 2012. doi:
10.1007/978-3-642-35261-4_45.

2 Patrizio Angelini, William S. Evans, Fabrizio Frati, and Joachim Gudmundsson. SEFE without
mapping via large induced outerplane graphs in plane graphs. Journal of Graph Theory,
82(1):45–64, 2016. doi:10.1002/jgt.21884.

3 Luis Barba, William Evans, Michael Hoffmann, Vincent Kusters, Maria Saumell, and Bettina
Speckmann. Column planarity and partially-simultaneous geometric embedding. J. Graph
Algorithms Appl., 21(6):983–1002, 2017. doi:10.7155/jgaa.00446.

4 Luis Barba, Michael Hoffmann, and Vincent Kusters. Column planarity and partial simultan-
eous geometric embedding for outerplanar graphs. In Abstracts of the 31st European Workshop
on Computational Geometry (EuroCG), pages 53–56, 2015.

5 David Barnette. Trees in polyhedral graphs. Canadian Journal of Mathematics, 18:731–736,
1966.

6 Mark Bilinski, Bill Jackson, Jie Ma, and Xingxing Yu. Circumference of 3-connected claw-free
graphs and large Eulerian subgraphs of 3-edge connected graphs. J. Combin. Theory Ser. B,
101:214–236, 2011.

7 T. Bläsius, S. G. Kobourov, and I. Rutter. Simultaneous embedding of planar graphs. In
Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization, pages 349–381.
Chapman and Hall/CRC Press, 2013.

8 J.A. Bondy and M. Simonovits. Longest cycles in 3-connected 3-regular graphs. Canadian
Journal of Mathematics, 32:987–992, 1980.

9 Prosenjit Bose, Vida Dujmović, Ferran Hurtado, Stefan Langerman, Pat Morin, and David R.
Wood. A Polynomial Bound for Untangling Geometric Planar Graphs. Discrete & Computa-
tional Geometry, 42(4):570–585, 2009. doi:10.1007/s00454-008-9125-3.

10 Javier Cano, Csaba D. Tóth, and Jorge Urrutia. Upper Bound Constructions for Untangling
Planar Geometric Graphs. SIAM J. Discrete Math., 28(4):1935–1943, 2014. doi:10.1137/
130924172.

11 Josef Cibulka. Untangling Polygons and Graphs. Discrete & Computational Geometry,
43(2):402–411, 2010. doi:10.1007/s00454-009-9150-x.

12 Giordano Da Lozzo, Vida Dujmović, Fabrizio Frati, Tamara Mchedlidze, and Vincenzo Roselli.
Drawing planar graphs with many collinear vertices. Journal of Computational Geometry,
9(1):94–130, 2018.

13 Vida Dujmović. The Utility of Untangling. J. Graph Algorithms Appl., 21(1):121–134, 2017.
doi:10.7155/jgaa.00407.

14 Vida Dujmović, Fabrizio Frati, Daniel Gonçalves, Pat Morin, and Günter Rote. Every Collinear
Set is Free. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA19),
2019.

15 William Evans, Vincent Kusters, Maria Saumell, and Bettina Speckmann. Column Planarity
and Partial Simultaneous Geometric Embedding. In Christian A. Duncan and Antonios
Symvonis, editors, Graph Drawing - 22nd International Symposium, GD 2014, Würzburg,
Germany, September 24-26, 2014, Revised Selected Papers, volume 8871 of Lecture Notes in
Computer Science, pages 259–271. Springer, 2014. doi:10.1007/978-3-662-45803-7_22.

16 Emilio Di Giacomo, Giuseppe Liotta, and Tamara Mchedlidze. How many vertex locations
can be arbitrarily chosen when drawing planar graphs? CoRR, abs/1212.0804, 2012. arXiv:
1212.0804.

http://dx.doi.org/10.1007/978-3-642-35261-4_45
http://dx.doi.org/10.1007/978-3-642-35261-4_45
http://dx.doi.org/10.1002/jgt.21884
http://dx.doi.org/10.7155/jgaa.00446
http://dx.doi.org/10.1007/s00454-008-9125-3
http://dx.doi.org/10.1137/130924172
http://dx.doi.org/10.1137/130924172
http://dx.doi.org/10.1007/s00454-009-9150-x
http://dx.doi.org/10.7155/jgaa.00407
http://dx.doi.org/10.1007/978-3-662-45803-7_22
http://arxiv.org/abs/1212.0804
http://arxiv.org/abs/1212.0804

V. Dujmović and P. Morin 29:17

17 Xavier Goaoc, Jan Kratochvíl, Yoshio Okamoto, Chan-Su Shin, Andreas Spillner, and Alexan-
der Wolff. Untangling a Planar Graph. Discrete & Computational Geometry, 42(4):542–569,
2009. doi:10.1007/s00454-008-9130-6.

18 Branko Grünbaum and Hansjoachim Walther. Shortness Exponents of Families of Graphs. J.
Comb. Theory, Ser. A, 14(3):364–385, 1973. doi:10.1016/0097-3165(73)90012-5.

19 Bill Jackson. Longest cycles in 3-connected cubic graphs. J. Combin. Theory Ser. B, 41:17–26,
1986.

20 Mihyun Kang, Oleg Pikhurko, Alexander Ravsky, Mathias Schacht, and Oleg Verbitsky.
Untangling planar graphs from a specified vertex position - Hard cases. Discrete Applied
Mathematics, 159(8):789–799, 2011. doi:10.1016/j.dam.2011.01.011.

21 Goos Kant and Hans L. Bodlaender. Triangulating Planar Graphs while Minimizing the
Maximum Degree. Inf. Comput., 135(1):1–14, 1997. doi:10.1006/inco.1997.2635.

22 Qinghai Liu, Xingxing Yu, and Zhao Zhang. Circumference of 3-connected cubic graphs. J.
Comb. Theory, Ser. B, 128:134–159, 2018. doi:10.1016/j.jctb.2017.08.008.

23 János Pach and Gábor Tardos. Untangling a Polygon. Discrete & Computational Geometry,
28(4):585–592, 2002. doi:10.1007/s00454-002-2889-y.

24 Alexander Ravsky and Oleg Verbitsky. On collinear sets in straight line drawings. CoRR,
abs/0806.0253, 2008. arXiv:0806.0253.

25 Alexander Ravsky and Oleg Verbitsky. On Collinear Sets in Straight-Line Drawings. In
Petr Kolman and Jan Kratochvíl, editors, 37th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2011), volume 6986 of LNCS, pages 295–306. Springer,
2011. doi:10.1007/978-3-642-25870-1_27.

26 Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas. The Four-Colour
Theorem. J. Comb. Theory, Ser. B, 70(1):2–44, 1997. doi:10.1006/jctb.1997.1750.

27 Peter Guthrie Tait. Remarks on the colouring of maps. Proc. Roy. Soc. Edinburgh Sect. A,
10:729, 1880.

28 W. T. Tutte. On Hamilton circuits. J. Lond. Math. Soc., 21:98–101, 1946.
29 Mamoru Watanabe. Open problem. 5th Czech–Slovak Symposium on Combinatorics, 1998.

SoCG 2019

http://dx.doi.org/10.1007/s00454-008-9130-6
http://dx.doi.org/10.1016/0097-3165(73)90012-5
http://dx.doi.org/10.1016/j.dam.2011.01.011
http://dx.doi.org/10.1006/inco.1997.2635
http://dx.doi.org/10.1016/j.jctb.2017.08.008
http://dx.doi.org/10.1007/s00454-002-2889-y
http://arxiv.org/abs/0806.0253
http://dx.doi.org/10.1007/978-3-642-25870-1_27
http://dx.doi.org/10.1006/jctb.1997.1750

A Product Inequality for Extreme Distances
Adrian Dumitrescu
Department of Computer Science, University of Wisconsin–Milwaukee, USA
http://www.cs.uwm.edu/faculty/ad/
dumitres@uwm.edu

Abstract
Let p1, . . . , pn be n distinct points in the plane, and assume that the minimum inter-point distance
occurs smin times, while the maximum inter-point distance occurs smax times. It is shown that
sminsmax ≤ 9

8 n2 + O(n); this settles a conjecture of Erdős and Pach (1990).

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases Extreme distances, repeated distances

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.30

1 Introduction

Let p1, . . . , pn be n distinct points in the plane, and assume that the minimum inter-point
distance occurs smin times, while the maximum inter-point distance occurs smax times. It is
well-known that smin ≤ 3n and smax ≤ n; see, e.g., [3, Ch. 13]; and these classical bounds
immediately imply that sminsmax ≤ 3n2. Erdős and Pach [1] asked for a proof or disproof of
the following sharper product inequality:

sminsmax ≤
9
8n

2 + o(n2).

The authors also remarked that this inequality, if true, essentially cannot be improved; and
this would follow from a construction of E. Makai Jr. (not discussed in their paper). Indeed,
the main term in the inequality cannot be improved: the point configuration exhibited in
Fig. 1 has smin = 3

4n+ 3
4n−O(

√
n) = 3

2n−O(
√
n), and smax = 3

4n (provided that the circular
arc subtends an angle of 60◦), and so sminsmax = 9

8n
2−O(n

√
n). The m = 1

4n interior points
make a section of a unit triangular lattice with b3m−

√
12m− 3c unit distances, where the

minimum inter-point distance is equal to 1; see [2] or [3, p. 211].

3n/4

n/4

Figure 1 An n-element point set with 3
4 n points on the convex hull and 1

4 n interior points.
3
4 n− 1 boundary points are evenly distributed on a circular arc of radius Θ(

√
n) centered at the

leftmost point.

Here we prove the claimed inequality in a slightly stronger form (with a linear lower
order term).

I Theorem 1. Let p1, . . . , pn be n distinct points in the plane, and let smin and smax denote
the multiplicity of the minimum and maximum inter-point distance, respectively. Then
sminsmax ≤ 9

8n
2 +O(n).

© Adrian Dumitrescu;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 30; pp. 30:1–30:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.cs.uwm.edu/faculty/ad/
mailto:dumitres@uwm.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.30
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 A Product Inequality for Extreme Distances

Definitions and notations. A convex polygon is one in strictly convex position, i.e., no
three boundary points are collinear.

Preliminaries. Let S = {p1, . . . , pn} be a set of n distinct points in the plane. Given two
points p and q, let `(p, q) denote the line determined by p and q. Let δ and ∆ denote the
minimum and maximum pairwise distance of S, respectively. We may assume that δ = 1; a
standard packing argument then yields ∆ = Ω(

√
n). Let Gδ and G∆ denote the respective

graphs. It is well-known that |E(Gδ)| ≤ 3n and |E(G∆)| ≤ n; see, e.g., [3, Ch. 13].
For any point u ∈ S, let deg(u) denote its degree in Gδ; it is well known that deg(u) ≤ 6

for any u ∈ S. For any point u ∈ S, let Γ(u) = {v ∈ S : uv ∈ E(Gδ)}; i.e., Γ(u) is the set of
vertices adjacent to u in Gδ. For a point u, let x(u) and y(u) denote its x- and y-coordinates
respectively.

For a point set S, conv(S) denotes the convex hull of S, and ∂conv(S) denotes the
boundary of conv(S). The perimeter of a polygon P is denoted by per(P).

2 Setup of the proof

Let H ⊆ S denote the set of (extreme) vertices of conv(S) labeled in a clockwise manner:
H = {u1, u2, . . . , uh}, and so that indices can be read in a circular fashion, i.e., uh+1 = u1.
We say that a vertex ui ∈ H has a flat neighborhood if the interior angles of the seven vertices
{ui−3, ui−2, ui−1, ui+1, ui+2, ui+3} all belong to the interval (179◦, 180◦). Observe that the
number of vertices of conv(S) that do not have flat neighborhoods is O(1).

Let F ⊆ H denote the set of vertices of conv(S) that have flat neighborhoods. Let D ⊆ H
denote the set of vertices of conv(S) that are endpoints of some diameter pair. Put |D| = d,
f = |F |, and recall that h = |H|; as such, d ≤ h and f ≤ h.

The set of points S can be partitioned into three parts as S = H ∪H ′ ∪ I, where
H is the set of extreme vertices of conv(S); an element of H can be in any of the following
sets D ∩ F , D \ F , F \ D, or S \ (D ∪ F). Let u1, . . . , uh (where uh+1 = u1) be the
extreme vertices of conv(S) in clockwise order.
H ′ is the set of points on ∂conv(S) that are not in H (the interior angle of each vertex
in H ′ is 180◦).
I is the set of interior vertices, i.e., those that are not on ∂conv(S).

As mentioned earlier, we have

smax ≤ d ≤ h. (1)

Indeed, the endpoints of any diameter pair must be extreme points on the boundary of
conv(S). If d ≤ n/3, then smax ≤ d ≤ n/3 and consequently, sminsmax ≤ 3n · 1

3n = n2, as
required (with room to spare). We therefore subsequently assume that d ≥ n/3; and so we
have h ≥ d ≥ n/3.

I Lemma 2. If h ≥ n/3, then ∆ ≥ n
3π ; in particular ∆ = Ω(n).

Proof. Let p = per(conv(S)); since δ = 1 and h ≥ n/3, we have p ≥ n/3. By a standard
isoperimetric inequality, p ≤ π∆; see, e.g., [4]. Putting the two inequalities together yields
∆ ≥ n

3π , as required. J

A. Dumitrescu 30:3

3 Charging scheme

Assume that each point in S carries an initial charge equal to its degree in Gδ (at most 6).
The scheme we discuss below transfers a unit charge from each convex hull vertex of degree
3 that belongs to D ∩F to one or two interior vertices, in such a way that the final charge of
each interior vertex is at most 6. This achieves the desired effect that the endpoints on the
convex hull of these edges are left with a charge of 2 (while their initial charge was 3). Once
this goal is achieved, the upper bound we need on the number of unit distances follows from
Lemma 5 (in Section 5).

The main difficulties posed by this plan are (i) deciding how to implement the charging
scheme; and (ii) verifying its validity (namely that the final charge of each interior vertex is
bounded from above by 6). We next describe the charging scheme, after which we show in
Lemma 4 that it works as intended.

Overview

Recall that u1, . . . , uh (where uh+1 = u1) are the extreme vertices of conv(S) in clockwise
order. For any extreme vertex with a flat neighborhood ui ∈ F , let Σui

be an orthogonal
coordinate system whose origin is ui, and where the x-axis is a supporting line of conv(S)
incident to ui, and S lies in the closed halfplane below the x-axis. See Fig. 2. More precisely:
if uiui+1 ∈ Gδ and there exists v ∈ I s.t. uiv, ui+1v ∈ Gδ (i.e., ∆uiui+1v is an equilateral
triangle), the x-axis will be chosen as # »uiui+1; otherwise, the x-axis will be chosen so that
S \ {ui} lies strictly below this line and the bisector of the interior angle ∠ui−1uiui+1 is the
negative direction of the y-axis.

Having defined Σui
, consider the rectangleRui

= [x(ui)−7/4, x(ui)+7/4]×[y(ui)−2, y(ui)]
in this system. When sending charge from ui, a reference will be made to Rui

(in the details
of the charging scheme).

Σui x

y

ui+1
ui−1

ui

Rui

ui−2

Figure 2 The coordinate system Σui and the axis-aligned rectangle Rui for a vertex ui ∈ H with
a flat neighborhood.

Vertices in H = {u1, . . . , uh} are processed one by one in this order (pairs of adjacent
vertices of H corresponding to equilateral triangles in Gδ are processed at the same time).
Equivalently, we keep the coordinate system fixed (with the two axes horizontal and vertical)
and rotate S counterclockwise so that ui is the highest vertex in S at the time it is processed;

SoCG 2019

30:4 A Product Inequality for Extreme Distances

see Fig. 3 (middle) for the case (a) when the x-axis will be chosen as # »uiui+1; and see Fig. 3 (left)
for the remaining case (b). In either case, the point set S is contained in the closed halfplane
below the x-axis.

Let ui ∈ D ∩F be an extreme vertex of degree 3; if the vertices in Γ(ui) are ordered from
left to right, let vi ∈ Γ(ui) be the second (middle) element. We refer to the edge uivi as the
middle edge associated (and incident) to ui.

(c) If uiv and ui+1v are unit edges incident to v connecting v with two non-adjacent
extreme vertices ui and ui+1 (i.e., |uiui+1| > 1), then uiv and ui+1v are not middle edges,
and so we are in the situation described in (a) or (b); see Fig. 3 (right), where middle edges
uivi and ui+1vi+1 will be those charged to interior vertices.

ui

vi

ui−1 ui+1
ui ui+1

vi

wi

ui+1ui

vi vi+1

v

Figure 3 Illustrations to the scenarios described in (a), (b) and (c). Middle edges are drawn
in bold.

Charging rules. When handling the current vertex ui, or two consecutive vertices ui, ui+1
that belong to a unit equilateral triangle, we use the coordinate system Σui

. Let uivi be the
middle edge from ui, where vi is an interior vertex. We distinguish four cases, depending on
whether (i) the degree of vi is 6 or less than 6; and (ii) vi is connected to one or two vertices
on ∂conv(S). The following charging rules are observed:

1. Every middle edge has its unit charge distributed to one or two interior vertices.
2. Charging amounts can be 1/2 or 1: we sometimes transfer the entire unit charge of a

middle edge to an interior vertex and sometimes split the unit charge into two equal
parts, 1/2, that are sent to two different interior vertices.

3. The unit charge on the middle edge incident to ui is distributed to one or two interior
vertices at distance at most 2 in Gδ; i.e., this charging process can only affect vertices in
Γ(ui) ∪ Γ(Γ(ui)).

Before the execution of the charging scheme, we clearly have smin = 1
2

∑
p∈S deg(p). The

charging scheme that is put in place transfers one unit from each extreme vertex of degree 3
that is an element of D ∩ F to one or two interior vertices. After completion, smin can be
calculated in an alternative way, as half the sum of final charges of all vertices (Lemma 5 in
Section 5).

Details

Case 1: deg(vi) = 6, and uivi is the unique unit edge incident to vi connecting vi with an
extreme vertex; see1 Fig. 4. Note that the six vertices in Γ(vi) form a regular hexagon of
unit side-length. Let a, b ∈ Γ(ui)∩ Γ(vi) be the other two common neighbors of ui and vi

1 In all subsequent figures, solid edges are of unit length and middle edges are drawn in bold.

A. Dumitrescu 30:5

on the left and right, respectively. Note that deg(a) ≤ 5, and similarly, deg(b) ≤ 5; indeed,
if deg(a) = 6 (or deg(b) = 6), one element in Γ(a) (resp., Γ(b)) would lie strictly above
ui, a contradiction. Distribute the unit charge on edge uivi into two equal parts: 1/2 to
the left interior vertex a and 1/2 to the right interior vertex b. Observe that a, b ∈ Rui .

ui

vi

a b

ui+1

Figure 4 Case 1. All points lie in the closed halfplane below the horizontal line incident to ui.

Case 2: deg(vi) = 6, where uivi and ui+1vi are unit edges incident to vi connecting vi with
two adjacent extreme vertices ui and ui+1; see Fig. 5 (left). The argument assumes that
both ui and ui+1 are elements of D ∩ F , since otherwise, there is no need to transfer
charge from the respective unit edges. Note that the six vertices in Γ(vi) form a regular
hexagon of unit side-length. Let a ∈ Γ(ui) ∩ Γ(vi) be the interior vertex on the left,
and b ∈ Γ(ui+1) ∩ Γ(vi) be the interior vertex on the right. Note that deg(a) ≤ 5 and
deg(b) ≤ 5; indeed, if say, deg(a) = 6 (or deg(b) = 6), the interior angle at ui (resp., at
ui+1) would be 180◦, a contradiction, since we have assumed that ui, ui+1 ∈ D.
We further identify other vertices of low degree that will be charged. Let wi, wi+1 ∈ Γ(vi)
be the two neighbors of vi below it, as in Fig. 5 (right). Our charging scheme is symmetric,
and here we show how to distribute the unit charge of edge ui+1vi to b and some other
interior vertex (the distribution of the unit charge of edge uivi is analogous, involving a
and some other interior vertex).

ui ui+1

vi
a

wi wi+1 wi+2

dc

wi−1

ui ui+1

vi
a b b

Figure 5 Case 2. All points lie in the closed halfplane below the horizontal line `(ui, ui+1).

If deg(wi+1) ≤ 5, distribute the unit charge on edge ui+1vi into two equal parts: 1/2
to interior vertex b and 1/2 to the interior vertex wi+1. We subsequently assume that
deg(wi+1) = 6. Let wi+2 ∈ Γ(b) ∩ Γ(wi+1) be the interior vertex on the line `(wi, wi+1)
to the right. If deg(wi+2) ≤ 5, distribute the unit charge on edge ui+1vi into two equal
parts: 1/2 to interior vertex b and 1/2 to the interior vertex wi+2. We subsequently
assume that deg(wi+2) = 6. Let d ∈ Γ(b) ∩ Γ(wi+2) be the interior vertex on the line
`(vi, b) to the right. Observe that deg(d) ≤ 4: since each element of Γ(d) \ {b, wi+2} must
lie strictly below the line `(wi+2, d), there are at most two such vertices. In this last case,
distribute the unit charge on edge ui+1vi into two equal parts: 1/2 to the interior vertex
b and 1/2 to the interior vertex d. Observe that b, d, wi+1, wi+2 ∈ Rui+1 , and similarly
that a, c, wi, wi−1 ∈ Rui .

SoCG 2019

30:6 A Product Inequality for Extreme Distances

Case 3: deg(vi) ≤ 5, and uivi is the unique unit edge incident to vi connecting vi with an
extreme vertex; see Fig. 6. If deg(vi) ≤ 4, charge edge uivi to the interior vertex vi; i.e.,
vi receives a unit charge; see Fig. 6 (left).

ui

vi

ui−1

ui

vi

c

d

ui−1ui

vi

ba

ui−1 ui+1ui+1
ui+1

Figure 6 Case 3. Left: deg(vi) = 4. Middle: b is the highest among {a, b}. Right: c is the highest
among {c, d}. All points lie in the closed halfplane below the horizontal line incident to ui.

If deg(vi) = 5, refer to Fig. 6 (middle and right). Let a and b be the two neighbors of vi
left and right of ui, respectively; see Fig. 6 (middle). Let high(a, b) denote the element
of {a, b} which is the highest (i.e., closest to the x-axis of Σui

). Observe that high(a, b)
has degree at most 5; since otherwise, the y-coordinate of one of its neighbors (w.r.t.
this coordinate system) would be non-negative, a contradiction. Further observe that
high(a, b)ui is an edge in Gδ; since otherwise, ui would not have degree 3 or its interior
angle would be 180◦, either of which is a a contradiction. Distribute the unit charge on
edge uivi into two equal parts: 1/2 unit to vi and 1/2 unit to high(a, b) (with ties broken
arbitrarily). Observe that vi, a, b ∈ Rui .

Case 4: deg(vi) ≤ 5, where uivi and ui+1vi are unit edges incident to vi connecting vi with
two adjacent extreme vertices ui and ui+1; see Fig. 7 (left). If deg(vi) ≤ 4, distribute the
two unit charge on uivi and ui+1vi to vi. Assume now that deg(vi) = 5 and let wi denote
the vertex in Γ(vi) below vi that is farthest from `(uiui+1).
If deg(wi) ≤ 5, distribute the two units of charge for edges uivi and ui+1vi into two equal
parts: one unit to vi and one unit to wi. Observe that vi, wi ∈ Rui

.

ui ui+1

vi

wi

b

a

ui−1 ui+2
ui ui+1

vi

wi

Figure 7 Case 4. Left: deg(wi) = 5. Right: deg(wi) = 6. All points lie in the closed halfplane
below the horizontal line `(ui, ui+1).

Assume now that deg(wi) = 6; observe that the six vertices in Γ(wi) form a regular
hexagon of unit side-length. Let a, b ∈ Γ(vi) ∩ Γ(wi) be as in Fig. 7 (right). We claim
that deg(a) ≤ 5 and deg(b) ≤ 5. We may assume that ∠aviui ≥ 90◦ ≥ ∠bviui+1.

A. Dumitrescu 30:7

If deg(a) = 6, let vi−1 be the next counterclockwise vertex after vi in Γ(a). Since the
triangle ∆avi−1vi is equilateral, this implies that vi−1vi is yet another edge in Gδ, which
is in contradiction with the assumption that deg(vi) = 5.
If deg(b) = 6, then bui+1 is an edge in Gδ, thus vib ‖ uiui+1 and so vib is horizontal.
Let c be the next clockwise vertex after ui+1 in Γ(b). Then ui+1c is also horizontal,
thus c ∈ ∂conv(S), which implies that the interior angle at ui+1 is 180◦, which is a
contradiction (we have assumed that ui, ui+1 ∈ D).
Since each of the two assumptions deg(a) = 6 and deg(b) = 6 leads to a contradiction,
this proves the claim. Distribute the two unit charges for edges uivi and ui+1vi as one
unit to vi, 1/2 unit to a and 1/2 unit to b. (This can be also viewed as distributing the
unit charge for uivi as 1/2 unit to vi and 1/2 unit to a, and distributing the unit charge
for ui+1vi as 1/2 unit to vi and 1/2 unit to b.) Observe that vi, a ∈ Rui

and vi, b ∈ Rui+1 .

Illustration. An example illustrating the final charges in a few representative cases is shown
in Fig. 8.

4.5

4.5

4.5

5.5

2

6

5.5

2

4.5

4.5

5.5

2 22

4.5

2 2

2
2

4.5

5
5.5

5.5
3.5

5.5

Figure 8 Charging illustrations for vertices on the upper hull; middle edges adjacent to extreme
vertices of degree 3 in D ∩ F are drawn in thick lines.

4 Charging scheme analysis

By direct inspection of the scheme we note the two properties announced prior to describing
the charging scheme:

I Observation. The following hold: (i) Unit charges associated to middle edges are distributed
to interior vertices in amounts of 1/2 or 1. (ii) The unit charge on the middle edge incident
to ui is distributed to one or two interior vertices at distance at most 2 in Gδ; i.e., this
process can only affect vertices in Γ(ui) ∪ Γ(Γ(ui)).

The following lemma specifies the range affected by one charge distribution.

I Lemma 3. Let ui ∈ D∩F be a vertex of degree 3 that sends charge to some interior vertex
v ∈ Γ(ui) ∪ Γ(Γ(ui)), where v is not necessarily unique. Then v can only receive charges
from elements of {ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3}.

Proof. Write u = ui (for short). Consider the coordinate system Σu, and the rectangle
Ru = [x(u)− 7/4, x(u) + 7/4]× [y(u)− 2, y(u)] in this system; refer to Fig 9. By the charging
scheme, u can only send charges to interior vertices contained in Ru. Consider the larger
rectangle R′u = [x(u)− 15/4, x(u) + 15/4]× [y(u)− 4, y(u)] ⊃ Ru. Since v can only receive
charges from vertices at distance at most 2 from it, any element sending charges to v would
be contained in R′u.

Since u ∈ D ∩ F , u is an endpoint of a diameter pair, say, uu′, where u′ ∈ D. Observe
that the ray

»

uu′ makes an angle of at most 1◦ with #»ru, the vertical ray from u pointing
downwards. Indeed, otherwise one of the two distances |ui−1u

′| and |ui+1u
′| would be larger

SoCG 2019

30:8 A Product Inequality for Extreme Distances

ui−2

u′

ui+4

ui+3ui−3

ui−1

ui−4

ui+2
ui ui+1

Figure 9 The flat neighborhood of u = ui and a diameter pair (u, u′). All points lie in the closed
halfplane below the horizontal line incident to ui.

than |uu′| = ∆, as the longest side in an obtuse triangle. Recall that ∆ = Ω(n) by Lemma 2;
we may assume that n is large enough, e.g., n ≥ 100, so that ∆ ≥ 10. By convexity,
conv(ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3, u

′) is empty of points from H in its interior. Recall
that u has a flat neighborhood, and intuitively, this implies that v cannot receive charges
from the ’other side’ of the boundary. More precisely, since u has a flat neighborhood, the
rectangle R′u does not contain any elements of H \ {ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3},
and so v cannot receive charges from elements in H \ {ui−3, ui−2, ui−1, ui, ui+1, ui+2, ui+3},
as required. J

We next formulate and prove the main property accomplished by the charge distribution.

I Lemma 4. The final charge for any interior vertex is at most 6.

Proof. By Lemma 3 it suffices to bound from above the charge received by an interior vertex
from the left and from the right. Specifically, we show that the maximum final charge for
any such vertex is at most 6.

Overcharging by Case 1 only: Let v be an interior vertex of degree 5 that is charged as b in
Fig. 4 from the left (i.e., from an edge uivi on the left), and as a in Fig. 4 from the right
(i.e., from an edge uivi on the right). The charges received sum up to at most 1

2 + 1
2 = 1,

as required.
Overcharging by Case 1 and Case 2: The argument is similar to that for the previous case.

Let v be an interior vertex that is charged from the left as b or d in Fig. 5 (right) and is
charged from the right as a in Fig. 4. The charges received sum up to at most 1

2 + 1
2 = 1,

as required.
Overcharging by Case 1 and Case 3: Assume that an interior vertex receives a unit charge

as vertex vi in Fig. 6 according to Case 3. This happens only when deg(vi) ≤ 4; and
then it is easy to see that no overcharging can occur even if vi receives 1/2 unit from the
left and from the right (according to Case 1). In the remaining case, deg(vi) = 5, both
vertices that get charged according to Case 3, only receive 1/2 unit charge each. Since
charges received from Case 1 are limited to 1/2 unit, the charges received by vi sum up
to at most 1

2 + 1
2 = 1, as required.

A. Dumitrescu 30:9

Overcharging by Case 1 and Case 4: Assume that some interior vertex receives a unit
charge from the left according to Case 4 and 1/2 unit charge from the right according to
Case 1. See Fig. 10 and Fig. 11, and observe that j = i+ 2. First, consider the situation
in Fig. 10, when deg(wi) = 5. If the overcharged vertex is vi = c, the interior vertex
c would be adjacent to three extreme vertices (ui, ui+1, ui+2), a contradiction. If the
overcharged vertex is wi = c, the distance from wi to `(uiui+1) is at least 2

√
3

2 =
√

3; on
the other hand, the distance from c to the same line is less than 1, since ui+1 has a flat
neighborhood. Therefore such an overcharging cannot occur.

uj

vj

c d

ui ui+1

vi

wi

Figure 10 Overcharging by Case 4 (left) and Case 1 (right); deg(wi) = 5.

Second, consider the situation in Fig. 11, when deg(wi) = 6. If the overcharged vertex is
b = c, the charges received sum up to at most 1

2 + 1
2 = 1, as required.

ui ui+1

vi
a

b

wi

uj

vj

c d

Figure 11 Overcharging by Case 4 (left) and Case 1 (right); deg(wi) = 6.

Overcharging by Case 2 only: Each charge received by an interior vertex is Case 2 is equal
to 1/2; as such, an interior vertex of degree at most 5 can receive at most 1/2 units from
the left and at most 1/2 units from the right, as required.

Overcharging by Case 2 and Case 3: Refer to Fig. 12. Assume for contradiction that a
vertex of degree at most 5 receives a 1/2 unit charge from the left according to Case 2 (as
vertex b, wi+1, wi+2, or d), and a 1/2 unit charge as vertex c or vj according to Case 3.
It is clear that j ≥ i + 2. The charge received is at most 1

2 + 1
2 = 1, as required. The

situation when deg(vj) ≤ 4 is similarly easy to analyze.
Overcharging by Case 2 and Case 4: Assume for contradiction that an interior vertex has

degree 5 and receives a 1/2 unit charge from the left according to Case 2, and a one unit
charge from the right according to Case 4; see Fig. 13. Then

SoCG 2019

30:10 A Product Inequality for Extreme Distances

uj

vj

c

uj+1uj−1

d

ui ui+1

vi
a

wi wi+1 wi+2

dc

wi−1

b

Figure 12 Overcharging by Case 2 (left) and Case 3 (right).

vertex wi+2 on the left must coincide with vertex wj on the right.
vertex b on the left must coincide with vertex e on the right.
vertex d on the left must coincide with vertex vj on the right.

However this is impossible to achieve with ui, ui+1, uj , uj+1 consecutive extreme vertices
with flat neighborhoods, since uj , uj+1 would need to lie strictly below `(ui, ui+1), while
the triangle ∆vjujuj+1 is equilateral and `(uj , uj+1) is almost horizontal (recall from
Case 2 that deg(d) ≤ 4 due to some restrictions imposed on its neighbors). The above
conditions imply that vj is lower than d and so the two points cannot coincide.

ui ui+1

vi
a

wi wi+1

c

wi−1

uj uj+1

vj

wj
wi+2

d
e

b

Figure 13 Overcharging by Case 2 (left) and Case 4 (right).

Overcharging by Case 3 only: Since vi is is adjacent to exactly one extreme vertex, vi
cannot receive multiple charges. Any other vertex can only receive a 1/2 unit charge from
the left and a 1/2 unit charge from the right. As such, the charge received is bounded
from above by 1

2 + 1
2 = 1, as required.

Overcharging by Case 3 and Case 4: Observe that vertex vi in Case 4, see Fig. 7 (left or
right), is adjacent to exactly two extreme vertices; consequently it cannot receive any
charge according to the procedure in Case 3. Similarly, observe that vertex wi in Case 4,
see Fig. 7 (left), is not adjacent to any extreme vertex; consequently it cannot receive any
charge according to the procedure in Case 3.
Consider now the scenario illustrated in Fig. 14 in which deg(vi) = deg(vj) = 5; observe
that j = i+ 2. If b = vj receives a 1/2 unit charge according to Case 4 and another 1/2
unit charge according to Case 3, the charge received is bounded from above by 1

2 + 1
2 = 1,

as required; see Fig. 14 (middle). Similarly, if b = c receives a 1/2 unit charge according
to Case 4 and another 1/2 unit charge according to Case 3, the charge received is at most
1
2 + 1

2 = 1, as required; see Fig. 14 (right). Therefore such an overcharging cannot occur.
Overcharging by Case 4 only: Refer to Fig. 15 and Fig. 16; observe that j = i + 2. One

possibility is having wi = a, with wi receiving a unit charge according to Case 4 (on the
left) and a receiving a 1/2 unit charge according to the same case (on the right); see

A. Dumitrescu 30:11

ui ui+1

vi
a

b

wi

ui−1 uj

vj

uj

vj

c

Figure 14 Overcharging by Case 4 (left) and Case 3 (middle and right).

Fig. 15. However this requires vivj to be yet another edge in Gδ beyond the five incident
to vj , contradicting the assumption of Case 4 that deg(vj) = 5.

uj uj+1

vj

wj

b

a

ui ui+1

vi

wi

Figure 15 Overcharging by Case 4 only.

Another possibility is having b = c, with b receiving a 1/2 unit charge according to Case 4
(on the left) and c receiving a 1/2 unit charge according to the same case (on the right);
see Fig. 16. The charge received is at most 1

2 + 1
2 = 1, as required.

uj uj+1

vj

wj

d

c

ui ui+1

vi

wi

b

a

Figure 16 Overcharging by Case 4 only.

With all possibilities of potential overcharging having been analyzed, the proof of Lemma 4
is now complete. J

SoCG 2019

30:12 A Product Inequality for Extreme Distances

5 Conclusion of the proof

In this section we finalize the proof of Theorem 1.

I Lemma 5. smin ≤ 3n− 2d+O(1).

Proof. Assume that each element of I carries an initial charge equal to its degree in Gδ (at
most 6). Note that each element of H has degree at most 3; indeed, if deg(u) = 4, then the
interior angle at u equals 180◦, and so u is not an extreme vertex of conv(S). In particular,
each element of D ∩ F has degree at most 3.

Each vertex of D ∩ F of degree 3 in Gδ sends (distributes) a unit charge to one or two
interior vertices of degree at most 5; so that the final charge of each interior vertex is at most
6; with each vertex receiving a charge at most 2 (and the final charge of each element of D∩F
is 2); all these are consequences of Lemma 4. A key observation is that |F ∩D| ≥ |D| −O(1),
since there are only O(1) elements of D that do not have flat neighborhoods. Assuming the
charging procedure finalized, we have

2smin =
∑
p∈S

deg(p) ≤ 3|H \ F ∩D|+ 2|F ∩D|+ 6|S \H|

= 3h− 3|F ∩D|+ 2|F ∩D|+ 6n− 6h
= 6n− 3h− |F ∩D| ≤ 6n− 3d− d+O(1)
= 6n− 4d+O(1),

as required. J

Proof of Theorem 1. Using the inequalities on smin and smax stated in Lemma 5 and
Equation (1), respectively, we obtain

sminsmax ≤ (3n− 2d+O(1)) d ≤ 9
8n

2 +O(n),

as required. Indeed, setting x = d/n yields the quadratic function f(x) = x(3 − 2x),
which attains its maximum value 9

8 for x = 3
4 . Thus (3n − 2d)d ≤ 9

8n
2 and we also have

O(1)d = O(d) = O(n); adding these two inequalities yields the one claimed above. This
concludes the proof of Theorem 1.

References
1 Paul Erdös and János Pach. Variation on the theme of repeated distances. Combinatorica,

10(3):261–269, 1990. doi:10.1007/BF02122780.
2 Heiko Harborth. Solution to problem 664A. Elem. Math, 29:14–15, 1974.
3 János Pach and Pankaj K. Agarwal. Combinatorial Geometry. Wiley-Interscience series in

discrete mathematics and optimization. Wiley, 1995.
4 Paul R. Scott and Poh Wah Awyong. Inequalities for convex sets. Journal of Inequalities in

Pure and Applied Mathematics, 1(1):6, 2000.

http://dx.doi.org/10.1007/BF02122780

Topological Data Analysis in Information Space
Herbert Edelsbrunner
IST Austria (Institute of Science and Technology Austria)
Am Campus 1, 3400 Klosterneuburg, Austria
edels@ist.ac.at

Žiga Virk
Faculty of Computer and Information Science, University of Ljubljana
Vecna pot 113, 1000 Ljubljana, Slovenia
ziga.virk@fri.uni-lj.si

Hubert Wagner
IST Austria (Institute of Science and Technology Austria)
Am Campus 1, 3400 Klosterneuburg, Austria
hwagner@ist.ac.at

Abstract
Various kinds of data are routinely represented as discrete probability distributions. Examples
include text documents summarized by histograms of word occurrences and images represented
as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the
standard simplex of the appropriate dimension, we can understand collections of such objects in
geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we
look into dissimilarity measures with information-theoretic justification, and we develop the theory
needed for applying topological data analysis in this setting. In doing so, we emphasize constructions
that enable the usage of existing computational topology software in this context.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational topology, persistent homology, information theory, entropy

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.31

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.08510.

Funding This research is partially supported by the Office of Naval Research, through grant
no. N62909-18-1-2038, and the DFG Collaborative Research Center TRR 109, “Discretization in
Geometry and Dynamics”, through grant no. I02979-N35 of the Austrian Science Fund (FWF).

1 Introduction

The field of computational topology has a very short history, at least if compared with
standard subfields of mathematics [15]. Starting as a broadening of the geometric tool-set to
answer low-dimensional topology questions, it soon extended its scope to include topological
problems in high-dimensional data analysis, giving rise to the subfield of topological data
analysis (TDA) [11]. At the very foundation of topology is the notion of neighborhood, which
in practice is often constructed from the Euclidean metric in real space. One reason for its
popularity is the extensive tool-set associated with this metric, but there is evidence that
this choice is often suboptimal [22]. Other popular options are the Hamming distance and
discrete distances, which are preferred for their simplicity.

While the choice of distance is important, there is a paucity in our understanding of the
consequences. We contribute to the study by connecting distances with information-theoretic
foundations [14] to the tool-set of topological data analysis. These distances include the
Fisher information metric [2], and the relative entropy, also known as Kullback–Leibler
divergence [23]. The former is obtained by integrating the square root of the relative entropy

© Herbert Edelsbrunner, Žiga Virk, and Hubert Wagner;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 31; pp. 31:1–31:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edels@ist.ac.at
mailto:ziga.virk@fri.uni-lj.si
mailto:hwagner@ist.ac.at
https://doi.org/10.4230/LIPIcs.SoCG.2019.31
https://arxiv.org/abs/1903.08510
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Topological Data Analysis in Information Space

along shortest paths. Restricting the points to the standard simplex, we get a metric between
discrete probability distributions, which has information-theoretic significance. While the
latter is not a distance in the strict sense, it plays an important role in many application areas
as preferred measurement between probability distributions. The Kullback–Leibler divergence
is also an example of the broader class of Bregman divergences [10], which have been studied
from a geometric point of view in [8, 27]. To clearly distinguish the spaces equipped with
dissimilarity measures based on information-theoretic notions from the standard Euclidean
setting, we call them information spaces.

Our interest in information-theoretic distances complements the common theme of
incorporating statistical tools into the topological data analysis pipeline. Like-minded efforts
advocate that results obtained with topological methods need calibration through statistics,
and that new developments in both fields will be needed to achieve this [1]. The goal
of this paper is more modest: the import of concepts from information theory into the
inner workings of the topological tools. This can be compared with the persistent entropy
introduced by Rucco and collaborators [25] to sharpen the sensitivity of persistent homology
in the assessment of network organization. Unrelated to this thought but important to
our effort is the work of Antonelli and collaborators [4] on the isometry between Fisher
information space and Euclidean space, which we recast in Section 3. We follow up with a
list of concrete contributions the reader finds in this paper:

In Section 2, we prove that relative entropy balls are convex. In contrast, the balls based
on the Burg entropy, which is popular in speech recognition, are convex only for small
radii, as elaborated in the full version of this paper.
In Section 3, we give an explicit description of the Fisher information metric derived from
the relative entropy and of Antonelli’s isometry, prove that Fisher information balls are
convex, and generalize the Antonelli isometry to decomposable Bregman divergences.
In Section 4, we prove tight bounds relating the Jensen–Shannon divergence with the
Fisher information metric, recalling that the square root of the former is a metric [19].

In a final technical section, we tie things together by explaining how these notions of distance
are used to compute the persistence diagrams of data in this space. We compare the results
for the three notions of distance studied in this paper: the relative entropy, the Fisher
information metric, and the Jensen–Shannon divergence. In the full version of this paper, we
expand these consideration to the case of Burg entropy.

Scope of the paper. Apart from reporting the above technical results, our aim is to provide
a self-contained reference for researchers interested in the theoretical and applied side of
information theory in the context of computational topology. To this end, we provide intuitive
explanations of basic topological objects measured with information-theoretic distances.

Overview. To put our results in perspective, we mention that this paper is third in a
series. The entry point is [18], where Bregman divergences are shown to be compatible with
basic topological tools. In subsequent work [20], we studied properties of Bregman balls,
in particular bounding the location of first intersection of such balls. Our previous work
was concerned with shared properties of Bregman divergences; in this work, we focus on
information-theoretic distances based on Shannon’s entropy.

While working directly with the Kullback–Leibler divergence is ideal from an information-
theoretic standpoint, its lack of symmetry and the triangle inequality prohibits the use
with existing computational geometry and topology tools. This prompts the study of
metrics derived from Bregman divergences in general, and from Kullback–Leibler divergence

H. Edelsbrunner, Ž. Virk, and H. Wagner 31:3

specifically. The latter include the Fisher metric and the Jensen-Shannon metric. Studying
properties of these metrics is the main focus of this paper, which is structured as follows:
Section 2 presents the background on Shannon entropy and relative entropy. Section 3 relates
the Fisher information metric to the relative entropy and to the Euclidean metric. Section
4 proves inequalities relating the Jensen–Shannon divergence with the Fisher information
metric. Section 5 uses persistent homology to compare these notions of distance if applied to
data. Section 6 concludes this paper.

2 Entropy and Relative Entropy

Starting with the Shannon entropy, we define the relative entropy of an ordered pair of points,
and provide an intuitive explanation of this measurement. Considering the ball consisting of
all points for which the relative entropy from the center does not exceed a given threshold,
we prove that it is convex, in the original coordinate system and in all dimensions.

Convex function and divergence. We write R+ for the set of positive real numbers, Rn+
for the positive orthant in n dimensions, and x = (x1, x2, . . . , xn) ∈ Rn+ for a point in the
orthant. Its components satisfy xi > 0 for 1 ≤ i ≤ n. The (negative, extended) Shannon
entropy is the function E : Rn+ → R defined by mapping x to

E(x) =
∑n

i=1
[xi ln xi − xi]. (1)

It is strictly convex and infinitely often differentiable; see Figure 1 for the graph of the
function in one dimension. The relative entropy from x to y is the difference between E and
the best linear approximation of E at y, both evaluated at x:

DE(x‖y) = E(x)− [E(y) + 〈∇E(y), x− y〉] (2)

=
∑n

i=1
[xi ln xi

yi
− xi + yi]. (3)

The relative entropy is also known as the Kullback–Leibler divergence; see [3, page 57].
The construction of the relative entropy is illustrated in Figure 1, making it obvious that
DE(x‖y) is neither symmetric in its two arguments, nor does it satisfy the triangle inequality.
Notwithstanding, the primary interpretation of the relative entropy is as a measure of distance.
Intuitively, the relative entropy from a distribution x to another distribution y measures
the average surprisal when we expect items according to y but observe items according to
x. More technically, this surprisal is expressed as the loss of coding efficiency, namely the
expected number of extra bits needed to encode the messages from x using a code optimized
for y. In practice, it quantifies how well y approximates x, and later we use this interpretation
to understand the meaning of relative-entropy balls and their intersections.
I Remark 1. The definition of the relative entropy is an example of a more general construction.
Letting Ω ⊆ Rn be open and convex, a function F : Ω→ R is of Legendre type if it is strictly
convex, differentiable, and the gradient diverges when we approach the boundary of Ω.
Clearly, the Shannon entropy is of Legendre type. Named after Lev Bregman [10], the
corresponding Bregman divergence is defined by substituting F for E in (2).
I Remark 2. If we restrict a Legendre type function to an affine subspace, we get another
Legendre type function and therefore another divergence. An important example is the
standard (n− 1)-simplex, ∆ = ∆n−1, which is the intersection of Rn+ with the (n− 1)-plane
defined by

∑n
i=1 xi = 1. Since Rn+ is open so is ∆. Every point of ∆ can be interpreted as

a discrete probability distribution for n elements. The Shannon entropy and the relative
entropy are defined as in (1) and (3), except for a smaller domain.

SoCG 2019

31:4 Topological Data Analysis in Information Space

yx

D
E

(x
‖y

)

Figure 1 The graph of the Shannon entropy, the graph of its best linear approximation at y, and
the relative entropy from x to y.

Decomposability and convexity. We note that a function F : Ω → R whose restrictions
obtained by fixing coordinates are convex is not necessarily convex. An example is the
function F (x) =

∏n
i=1 xi. On the other hand, if F is decomposable: F (x) =

∑n
i=1 Fi(xi),

then the convexity of the components implies the convexity of F .

I Lemma 3 (Composable Convexity). Let Ω ⊆ Rn be convex and F : Ω→ R a decomposable
function. The components of F are convex if and only if F is convex.

Proof. It is clear that the convexity of F implies the convexity of its components. We
thus limit ourselves to proving the other implication. Let x, y ∈ Ω, let 0 ≤ λ ≤ 1, and let
u = (1 − λ)x + λy be the corresponding convex combination. Since the components of F
are convex, by assumption, we have Fi(ui) ≤ (1 − λ)Fi(xi) + λFi(yi) for every 1 ≤ i ≤ n.
Taking sums on the left and on the right, we get F (u) ≤ (1− λ)F (x) + λF (y); that is: F is
convex as claimed. J

I Remark 4. While nonconvex components imply a nonconvex function, they do not imply
nonconvex sublevel sets. This stronger implication is valid for strongly decomposable functions
F , by which we mean that all components are the same: Fi = Fj for all 1 ≤ i, j ≤ n. To see
this, let the component f of F be nonconvex, assume f is nonnegative, and let a < b such
that f(a+b

2) > 1
2f(a) + 1

2f(b). Supposing 1 is in the domain of f , we set x = (a, b, 1, . . . , 1)
and y = (b, a, 1, . . . , 1) and note that x+y

2 = (a+b
2 , a+b

2 , 1, . . . , 1). Hence,

F (x+y
2) = 2f(a+b

2) + (n− 2)f(1) > f(a) + f(b) + (n− 2)f(1) = 1
2 [F (x) + F (y)]. (4)

Setting r2 = F (x) = F (y), we see that F−1[0, r2] is a nonconvex subset of Rn.

Convexity of entropy balls. To study the local behavior of a divergence, we fix a point
x ∈ Ω and call Dx : Ω→ R defined by Dx(y) = DF (x‖y) the divergence function of x. Its
sublevel sets are balls of points whose divergence from x is bounded by a non-negative
threshold:

Br(x) = D−1
x [0, r2] = {y ∈ Ω | DF (x‖y) ≤ r2}. (5)

Assuming F is the Shannon entropy, we call Br(x) an entropy ball. Observe that such a
ball is the set of all probability distributions that approximate the center distribution, x,
with a loss of at most r2 bits. We recall that in practice each distribution characterizes an
object, perhaps an image or a text document. In this case, it is clear that a ball represents a
collection of similar objects, for a chosen similarity threshold r2.

For general Legendre type functions, the balls are not necessarily convex, and we will
encounter nonconvex balls shortly. However, entropy balls are necessarily convex.

H. Edelsbrunner, Ž. Virk, and H. Wagner 31:5

I Theorem 5 (Convexity of Entropy Balls). Let E : Rn+ → R be the Shannon entropy. Then
the entropy ball Br(x) is convex for every x ∈ Rn+ and every r2 ≥ 0.

Proof. Since the Shannon entropy is strongly decomposable, so is the divergence function of
every point x ∈ Rn+: Dx(y) = E(x)−E(y)−〈∇E(y), x− y〉 =

∑n
i=1[xi ln xi−xi ln yi−xi+yi],

in which the yi are variables and the xi are constants. Each component is convex because − ln t
is convex, By Lemma 3, this implies that Dx is convex, so all its sublevel sets are convex. J

3 Fisher Information Metric

Like any other twice differentiable Legendre type function, the Shannon entropy induces a
metric that integrates infinitesimal steps along shortest paths. This metric has an isometry to
Euclidean space, which facilitates topological methods applied to data in information space.

From divergence to distance. Recall that the Shannon entropy is twice differentiable, so
the Hessian matrix of second derivatives at any point y ∈ Rn+ is well defined:

HE(y) =
[
∂2E

∂xi∂xj
(y)
]

1≤i,j≤n
. (6)

This symmetric square matrix defines a scalar product at y by mapping two vectors u, v ∈
Rn to 〈u, v〉y = 1

2 u
THE(y)v. The corresponding Riemannian metric is called the Fisher

information metric: dE : Rn+ × Rn+ → R. Given points x, y ∈ Rn+, the distance is the length
of the shortest path γ : [0, 1]→ Rn+ with γ(0) = x and γ(1) = y, in which the length is

Length(γ) =
∫ 1

t=0

√
〈γ̇(t), γ̇(t)〉γ(t) dt =

∫ 1

t=0

√
1
2 γ̇(t)THE(γ(t))γ̇(t) dt. (7)

Since the Shannon entropy is decomposable, the only non-zero entries in the Hessian matrix
are the second derivatives of the component functions in the diagonal:

HE(y) =

1/y1 0 . . . 0

0 1/y2 . . . 0
...

...
. . .

...
0 0 . . . 1/yn

 . (8)

Accordingly, the formula for the length of a smooth path simplifies to

Length(γ) =
∫ 1

t=0

√
1
2

∑n

i=0
γ̇i(t)2

γi(t) dt, (9)

in which γi(t) and γ̇i(t) are the i-th components of the curve and its velocity vector at t.

I Remark 6. The construction of the metric can be restricted to any smooth submanifold of
the domain. Since this limits the set of available paths, the distance between two points cannot
be less than without the restriction. For example, we may restrict the Fisher information
metric in Rn+ to the standard simplex: dE|∆ : ∆ × ∆ → R. While the relative entropy
in ∆ is the restriction of the relative entropy in Rn+, this is not the case for the Fisher
information metric.

SoCG 2019

31:6 Topological Data Analysis in Information Space

Euclidean isometries. As discovered by Antonelli [4], there is a simple diffeomorphism that
maps Rn+ equipped with the Fisher information metric to Rn+ equipped with the Euclidean
metric. Such an isometry exists for every length metric defined as explained by a twice
differentiable decomposable Legendre type function. We explain its construction in this more
general setting. Suppose ϕ : Ω→ Ω2 is a diffeomorphism. Given a metric d2 : Ω2×Ω2 → R, we
get an induced metric, dϕ : Ω×Ω→ R, defined by dϕ(x, y) = d2(ϕ(x), ϕ(y)). By construction,
ϕ is an isometry between the two metric spaces. We are interested in the case in which d2 is
the Euclidean metric.

I Lemma 7 (Euclidean Isometry). Let Ω be an open convex subset of Rn and F : Ω→ R a
twice differentiable decomposable Legendre type function. Then there exists a decomposable
isometry ϕ : Ω→ Ω2 ⊆ Rn connecting the length metric defined by F in Ω with the Euclidean
metric in Ω2.

Proof. We construct a decomposable diffeomorphism ϕ : Ω→ Ω2 such that the length metric
dF is induced by ϕ and the Euclidean metric on Ω2. Write ϕi(xi) for the components of
the diffeomorphism and

∑n
i=1(dui)2 for the differential form of the Euclidean metric in Ω2.

Setting ui = ϕi(xi) so that dui = ϕ′i(xi) dxi, we get∑n

i=1
(dui)2 =

∑n

i=1
ϕ′i(xi)2(dxi)2 =

∑n

i=1
1
2F
′′
i (xi)(dxi)2, (10)

in which the last sum is the differential form of the metric defined by F , and the second
equality is required to get an isometry. This condition simplifies to

ϕ′i(xi) =
√

1
2F
′′
i (xi), (11)

for 1 ≤ i ≤ n. Since F is strictly convex, we have F ′′i (xi) > 0 for every component function,
so this equation has a solution. J

From Fisher information to Euclidean distance. We make use of Lemma 7 by constructing
the isometry that relates the Fisher information metric in Rn+ and in ∆ = ∆n−1 with the
Euclidean metric in Rn+ and in

√
2Sn−1

+ , the latter being our notation for the positive orthant
of the (n− 1)-sphere with radius

√
2 centered at the origin in Rn. As mentioned before, this

isometry is well known [2, 4], and we give the construction for completeness.

I Theorem 8 (Fisher Information to Euclidean Distance). Let E : Rn+ → R be the Shannon
entropy, and x, y ∈ Rn+. Then

dE(x, y) =
√

2
∑n

i=1
(
√
xi −

√
yi)2

, (12)

dE|∆(x, y) =
√

2 arccos
∑n

i=1

√
xi
√
yi, (13)

where we assume x, y ∈ ∆ ⊆ Rn+ in (13). Furthermore, the balls under dE and dE|∆ are
convex.

Proof. We prove both equations with the diffeomorphism ϕ : Rn+ → Rn+ that distorts the
Fisher information metric to the Euclidean metric. Since E decomposes into identical
components, so does ϕ. By Equation (11) in the proof of Lemma 7, the derivative of this
component satisfies p′(t) = 1/

√
2t. We get p(t) =

√
2t by integration. As illustrated in

Figure 2, the diffeomorphism maps a point x with coordinates xi > 0 to the point ϕ(x) with
coordinates p(xi) =

√
2xi > 0. The squared Euclidean distance between ϕ(x) and ϕ(y) is∑n

i=1(
√

2xi −
√

2yi)2, which implies (12).

H. Edelsbrunner, Ž. Virk, and H. Wagner 31:7

The image of the standard simplex, ϕ(∆), consists of all points with coordinates ui =
p(xi) > 0 that satisfy u2

1 + u2
2 + . . .+ u2

n = 2. This is the equation of the sphere with radius√
2 centered at the origin in Rn. Denoting the positive portion of this sphere by

√
2Sn−1

+ ,
we get an isometry ϕ|∆ : ∆→

√
2Sn−1

+ . Given points u, v ∈
√

2Sn−1
+ , the shortest spherical

path connecting them is a portion of the great-circle that passes through u and v. Its length
is
√

2 times the angle between the vectors u, v ∈ Rn+. This implies (13).

Figure 2 Left: three Fisher information disks each for seven points inside the standard triangle.
Right: the images of the disks in the positive portion of the sphere. For aesthetic reasons, we scale
the sphere by a factor 1/

√
2 relative to the triangle.

To prove convexity, let x ∈ Rn+, consider the function dx : Rn+ → R defined by dx(y) =
d2
E(x, y), and note that d−1

x [0, r2] is the ball with center x and radius r ≥ 0 under the
Fisher information metric. It is the preimage of the function fu : Rn+ → R defined by
fu(v) =

∑n
i=1(vi − ui)2, with ui =

√
2xi and vi =

√
2yi, for 1 ≤ i ≤ n. Hence, dx is

decomposable with dx(y) = 2
∑n
i=1(√yi −

√
xi)2. The components are convex because −

√
t

is convex. By Lemma 3, dx is convex, and because x can be any point in Rn+, all balls under
dE are convex. To finally see that every ball under dE|∆ is convex, we note that it is the
preimage of the intersection between

√
2Sn−1

+ and a Euclidean ball. This preimage is the
intersection between ∆ and a ball under dE , which is again convex. J

I Remark 9. Using the isometry specified in Theorem 8, we can map data from Fisher
information space to Euclidean space and apply standard mathematical and computational
tools there. Furthermore, the presented derivation works for any Bregman divergence,
provided it is decomposable, which ensures the Hessian is diagonal.

4 Information and Loss

In this section, we reverse the direction and measure divergences to a point. We use these
readings to define the Jensen–Shannon divergence, whose square root we compare to the
Fisher information metric.

Jensen–Shannon divergence. The Jensen–Shannon divergence of a pair x, y ∈ Rn+ is the
average relative entropy from x and y to the average of the two points:

JS(x, y) = 1
2 [DE(x‖µ) +DE(y‖µ)] = 1

2 [E(x) + E(y)]− E(µ) (14)

= 1
2

∑n

i=1
[xi ln 2xi

xi+yi
+ yi ln 2yi

xi+yi
], (15)

SoCG 2019

31:8 Topological Data Analysis in Information Space

in which µ = x+y
2 and we get (15) by noting that x+ y − 2µ = 0. As pointed out in [19], it

measures the loss of efficiency when we encode signals from two probability distributions
using their average.

If we substitute any other point z ∈ Rn+ for µ, the average relative entropy increases.
To prove this, we define f(z) = 1

2 [DE(x‖z) + DE(y‖z)], noting that f(µ) = JS(x, y). The
following lemma can also be found in [5].

I Lemma 10 (Local Minimum). Let µ be the average of the points x, y ∈ Rn+. Then
f(µ) ≤ f(z) for every z ∈ Rn+, with equality if and only if z = µ.

Proof. Computing f(z) − f(µ) from the definition, most terms cancel and only E(µ) −
E(z)− 〈∇E(z), µ− z〉 remains, which implies f(z)− f(µ) = DE(µ‖z). It is non-negative by
definition and 0 if and only if z = µ. J

As proved in [19], Rn+ together with the square root of the Jensen–Shannon divergence
is a metric space. It is however not a length metric space because it does not agree with
the corresponding intrinsic metric, in which the length of a path is measured by taking
infinitesimal steps; see also Section 3. It is not difficult to see that the intrinsic metric defined
by the Jensen–Shannon divergence is half the intrinsic metric defined by the relative entropy,
which is of course the Fisher information metric. Being a metric, the square root of the
Jensen–Shannon divergence satisfies the triangle inequality, which implies that it is bounded
from above by the corresponding intrinsic metric.

Jensen–Shannon divergence versus Fisher information metric. Since the Fisher informa-
tion metric is twice the intrinsic metric defined by the Jensen–Shannon divergence, we get
4 JS(x, y) ≤ d2

E(x, y). We will confirm this inequality with an independent argument shortly,
and prove 4

ln 2 = 5.770 . . . as a tight upper bound on the expansion.

I Theorem 11 (Jensen–Shannon Divergence vs. Fisher Information). The Jensen–Shannon
divergence and the squared Fisher information metric satisfy

4 JS(x, y) ≤ d2
E(x, y) ≤ 4

ln 2 JS(x, y), (16)

4 JS(x, y) ≤ d2
E|∆(x, y) ≤

√
2π

ln 2 JS(x, y), (17)

in which (16) applies to Rn+ and (17) to the standard (n− 1)-simplex.

Proof. Restricting Rn+ to ∆, the Jensen–Shannon divergence is unaffected, but the Fisher
information metric expands because the shortest paths correspond to great-circle arcs rather
than line segments in Euclidean space. The expansion is larger for longer paths, and the
supremum expansion rate is π/

√
8, which is the length of a quarter great-circle over the

length of the straight edge connecting its endpoints. Since 4
ln 2

π√
8 =

√
2π

ln 2 , (16) implies (17).
Returning to Rn+, we note that both the Jensen–Shannon divergence and the squared

Fisher information metric are decomposable. It suffices to prove (16) in n = 1 dimension,
where we write a for x and b for y. From (12) and (15), we get d2

E(a, b) = 2(
√
a−
√
b)2 and

JS(a, b) = 1
2 [a ln 2a

a+b + b ln 2b
a+b]. Observe that d2

E(Ca,Cb) = C d2
E(a, b) and JS(Ca,Cb) =

C JS(a, b) for every C > 0. We use these properties to eliminate one degree of freedom by
setting b = t2a to get

1
a d

2
E(a, b) = d2

E(1, t2) = 2(1− t)2, (18)
1
a JS(a, b) = JS(1, t2) = 1

2

[
ln 2

1+t2 + t2 ln 2t2
1+t2

]
. (19)

H. Edelsbrunner, Ž. Virk, and H. Wagner 31:9

We will see shortly that the ratio of these two functions behaves monotonically within 1 <
t <∞, attaining its extreme values in the two limits. These extreme values are the constants
in (16), with monotonicity proving the inequalities. Setting f(t) = JS(1, t2)/d2

E(1, t2), the
inequalities in (16) are equivalent to

ln 2
4 ≤ f(t) ≤ 1

4 . (20)

Plugging the right-hand sides of (18) and (19) into the definition of the ratio, we get

f(t) = 1
4(t−1)2

[
ln 2

t2+1 + t2 ln 2t2
t2+1

]
. (21)

When t goes to infinity, the first term in (21) goes to 0, while the second term goes to ln 2
4 ,

the lower bound in (20). To take the other limit, when t goes to 1, we use the l’Hopital rule
and differentiate the numerator and the denominator twice. For the numerator, we get

g(t) = t2 ln t2 − (t2 + 1) ln t2+1
2 , (22)

g′(t) = 2t ln t2 − 2t ln t2+1
2 , (23)

g′′(t) = 2 ln t2 − 2 ln t2+1
2 + 4

t2+1 . (24)

Setting t = 1, we get g(1) = g′(1) = 0 and g′′(1) = 2. Similarly, the denominator and its first
derivate vanish at t = 1, its second derivative is 8, and f(t) goes to 1

4 , the upper bound in
(20). It remains to show that the ratio is monotonically decreasing, from 1

4 = 0.25 at t = 1
to ln 2

4 = 0.173 . . . at t =∞. We accomplish this by computing the derivative of f as written
in (22):

f ′(t) = (t ln t2+t)(t−1)2

2(t−1)4 − t2(t−1) ln t2
2(t−1)4 − (t ln t

2+1
2 +t)(t−1)2

2(t−1)4 + (t2+1) ln t
2+1
2 (t−1)

2(t−1)4 (25)

=
t(t−1) ln 2t2

t2+1
2(t−1)3 −

t2 ln 2t2
t2+1

2(t−1)3 + ln t
2+1
2

2(t−1)3 = 1
2(t−1)3

[
ln t2+1

2 − t ln 2t2
t2+1

]
. (26)

To prove that f ′(t) is negative for all t > 1, we rewrite the numerator and compute its
first two derivatives: u(t) = (t + 1) ln t2+1

2 − t ln t2, u′(t) = ln t2+1
2 + 2t(t+1)

t2+1 − ln t2 − 2,
u′′(t) = 1

t(t2+1)2 [−2t3 + 2t2 + 2t− 2]. The numerator of the second derivative factors into
(t− 1)(−2t2 + 2), which is clearly negative for all t > 1. Note that u(1) = u′(1) = 0. Because
u′′ is negative, we have u′(t) < 0 and u(t) < 0 for all t > 1. The latter inequality is equivalent
to f ′(t) < 0 for all t > 1, which implies that f is monotonically decreasing. This implies (20)
and completes the proof. J

5 TDA in Information Space

While the preceding sections shed light on distances with information-theoretic foundations,
we will now connect them to topological data analysis. We begin with the introduction of
standard results from topological data analysis, which we will then use to shed light on
relations between different notions of distance.

Half-diameter functions. It will be convenient to consolidate notation by writing X for a
topological space and θ : X × X → R for a distance. Here we consider X to either be Rn+
or ∆n−1, and θ to either be the square root of the Jensen–Shannon divergence,

√
JS, or

the Fisher information metric, dE . When we consider the set of all subsets, we will always
exclude the empty set and write P0(X) = {Q ⊆ X | Q 6= ∅}. Given X and θ, the half-diameter
function Dθ : P0(X)→ R is defined by mapping every non-empty subset Q ⊆ X to

Dθ(Q) = 1
2 sup
x,y∈Q

θ(x, y), (27)

SoCG 2019

31:10 Topological Data Analysis in Information Space

which we call the half-diameter of Q. Since θ is a metric, we can define the Hausdorff distance
between two subsets of X as the larger of the two directed such distances: Hθ(P,Q) =
max{Hθ(P‖Q),Hθ(Q‖P)}, in which Hθ(P‖Q) = maxx∈P miny∈Q θ(x, y). This is a metric
on the compact sets in P0(X), and under it, the half-diameter function is 1-Lipschitz and
therefore continuous. Finally, we note that the half-diameter function is monotonic, that is:
Dθ(P) ≤ Dθ(Q) whenever ∅ 6= P ⊆ Q ⊆ X.

Data analysis starts with a finite set of points, X ⊆ X. Let K = P0(X), noting that this
is a full simplex, and write f : K → R for the restriction of the half-diameter function. For
each r ≥ 0, we write Kr = f−1[0, r] for the corresponding sublevel set, which consists of all
simplices in K with half-diameter r or less. By the monotonicity of f , each sublevel set is
a subcomplex of K. We refer to Kr as the Vietoris–Rips complex of X and θ for radius r.
By construction, Kr is a clique complex: a simplex belongs to Kr if and only if all edges
of the simplex belong to Kr. It follows that the edges in Kr determine the entire complex.
This has computational advantages because triangles and higher-dimensional simplices can
be treated implicitly, computing their properties from the edges only when needed; see
e.g. the Ripser software of Bauer [6]. It has modeling disadvantages because triangles and
higher-dimensional simplices carry no new structural information. We will return to this
point when we consider Čech complexes as an alternative construction.

Persistent homology. Persistent homology groups have been introduced in [16] to measure
holes in proteins. The concept has since found many applications inside and outside
mathematics. The idea is however older, and the earliest reference we know is a paper by
Morse [26], which develops the concept as a tool in the study of minimal surfaces.

The concept starts with the classic notion of homology groups, which formalize our notion
of how a complex or really any topological space is connected; see e.g. [21]. It does so by
counting the holes as ranks of abelian groups. Choosing the coefficients in the construction
of these groups as elements of a field, the groups are vector spaces and their ranks are the
familiar dimensions from linear algebra. Returning to f : P0(X)→ R, we index the finitely
many sublevel sets consecutively from 1 to m. Mapping each complex K` to its p-th homology
group, for some fixed integer p, we get a sequence of vector spaces, H` = Hp(K`):

. . . ⊆ Ki−1 ⊆ Ki ⊆ . . . ⊆ Kj−1 ⊆ Kj ⊆ . . .y y y y

. . . → Hi−1 → Hi → . . . → Hj−1 → Hj → . . .

The inclusions Ki ⊆ Kj induce linear maps hi,j : Hi → Hj , and by the functoriality of
homology, the inclusions commute with these maps. We call the row of complexes a filtration
and the row of vector spaces together with the maps connecting them a persistence module.
This is the essential concept that permits us to measure how long holes persist in the filtration.
To be specific, let 1 ≤ i ≤ j ≤ m and call the image of the map from Hi to Hj a persistent
homology group, im hi,j ⊆ Hj . Its rank is the number of holes in Ki that are still holes in Kj .
A homology class α in Hi is born at Ki if α does not belong to the image of Hi−1, and it
dies entering Kj if α enters the preimage of Hi−1 when we go from Kj−1 to Kj . Writing ri
for the smallest value such that Ki = f−1[0, ri], we define the persistence of α as |rj − ri|.

To summarize the information in the persistence module, we represent a coset of homology
classes born at Ki and dying entering Kj by the point (ri, rj); see Figure 3, setting rj =∞ if
the classes never die. The result is a multiset of points in the extended plane, which we refer
to as the persistence diagram of f , denoted Dgm(f). The ranks of the persistent homology
groups can be read as the numbers of points in the upper-left quadrants defined by corners
on or above the diagonal; see again Figure 3.

H. Edelsbrunner, Ž. Virk, and H. Wagner 31:11

Birth

D
e
a
th

R

Figure 3 Left: the graph of a function on R. Right: the persistence diagram of the function,
with two finite points and one point at infinity. The components of the highlighted sublevel set are
counted by the two points in the corresponding upper-left quadrant.

Stability. An important property of persistence diagrams is their stability with respect to
perturbations. To explain this, we define the bottleneck distance between two persistence
diagrams as the length of the longest edge in a minimizing matching. To finesse the difficulty
caused by different cardinalities, we add infinitely many copies of every point along the
diagonal to each diagram and define W∞(Dgm(f),Dgm(g)) = infβ supA ‖A− β(A)‖∞, in
which β : Dgm(f)→ Dgm(g) is a bijection and A is a point in Dgm(f). The original proof
of stability in [13] bounds the bottleneck distance by the L∞-distance between the functions.
In later developments, [7, 12] compare the diagrams directly with the persistence modules
they summarize. Letting F and G be the persistence modules defined by the sublevel sets of
f and g, indexed by real numbers for convenience, we say they are ε-interleaved if there are
maps φr : Fr → Gr+ε and ψr : Gr → Fr+ε that commute with the maps within the modules.
The interleaving distance, denoted I(F ,G), is the infimum ε ≥ 0 for which F and G are
interleaved. With this notation, we have

W∞(Dgm(f),Dgm(g)) = I(F ,G) ≤ ‖f − g‖∞. (28)

Suppose θ is a metric, and X,Y ⊆ X are finite sets with Hausdorff distance ε. Letting f and
g be the restrictions of the half-diameter function to P0(X) and to P0(Y), it is not difficult
to see that the interleaving distance between the corresponding persistence modules is at
most ε. We state this straightforward consequence of stability for later reference.

I Theorem 12 (Stability for Metrics). Let θ : X× X→ R be a metric, X,Y ⊆ X finite, and
f : P0(X)→ R, g : P0(Y)→ R induced by the half-diameter function of X and θ. Then the
bottleneck distance between Dgm(f) and Dgm(g) is bounded from above by the Hausdorff
distance between X and Y .

Approximation. Since
√

JS and dE are both metrics, Theorem 12 applies. Specifically,
the mapping from the subsets of X to the space of persistence diagrams defined by

√
JS is

1-Lipschitz, and so is the mapping defined by dE . Writing f, fı : X → R for the maps in
which =

√
JS and ı = 1

2dE , the persistence diagrams of f and fı are generally different,
and we can use this difference to compare the two distances. By Theorem 11, we have

1
C (x, y) ≤ ı(x, y) ≤ C (x, y) (29)

for C2 = 1/ ln 2 = 1.442 . . ., in which the two distances between x and y are measured in Rn+.
Rewriting (29) in terms of sublevel sets, we get f−1

 [0, 1
C r] ⊆ f

−1
ı [0, r] ⊆ f−1

 [0, Cr]. To get
constant interleaving distance, we re-index the vector spaces in the persistence modules F

SoCG 2019

31:12 Topological Data Analysis in Information Space

of f and Fı of fı by substituting ln r for r. Hence, I(F,Fı) ≤ lnC = 0.183 By (28),
this implies that the persistence diagrams of F and Fı are very similar, with bottleneck
distance at most 0.183 We get slightly different results if we measure the distances in ∆.
Specifically, we get C2 =

√
2π/(4 ln 2) = 1.602 . . . in (29) and interleaving distance at most

lnC = 0.235

I Theorem 13 (Approximation). Let =
√

JS and ı = 1
2dE, X ⊆ X finite, and F,Fı the

persistence modules defined by the restrictions of lnD, lnDı to P0(X). Then F and Fı are
interleaved, with the interleaving distance labeling the first edge in Figure 4.

0.183 . . . 0.346 . . .

0.235 . . . 0.693 . . .
RıDıD

Figure 4 Recall that =
√

JS, ı = 1
2 dE , and D, Dı, Rı are the corresponding half-diameter and

radius functions. Each edge is labeled by two interleaving distances: above the edge for X = Rn
+ and

below the edge for X = ∆.

I Remark 14. The two constants labeling the first edge in Figure 4 can be improved by
taking advantage of the asymmetry of the inequalities in (16) and (17). Indeed, while being
symmetric, (29) is strictly weaker than (16).

Radius function by comparison. We contrast the half-diameter functions with a different
construction, which we introduce for the Fisher information metric. Given X, the radius
function Rı : P0(X)→ R is defined by mapping every non-empty subset to

Rı(Q) = inf
z∈X

sup
x∈Q

dE(z, x), (30)

which we call the radius of Q. Again, the radius function is monotonic, but in contrast
to the half-diameter functions, the simplices of dimension 2 and higher encode structural
information that is not already contained in the edges. To explain, we write Br(x) for the
set of points dE(x, z) ≤ r. The radius function signals at which radius the balls defined by
Q have a non-empty common intersection: r ≥ Rı(Q) if and only if

⋂
x∈QBr(x) 6= ∅.

To see why this property is useful, consider a finite set X ⊆ X, write g : P0(X) → R
for the restriction of the radius function, and note that Gr = g−1[0, r] is a subcomplex of
G = P0(X). We refer to Gr as the Čech complex of X and ı for radius r. Furthermore, write
Xr =

⋃
x∈X Br(x) for the union of the balls with radius r. We thus have two filtrations: the

complexes Gr and the subspaces Xr of X. The Nerve Theorem implies that Gr and Xr have
isomorphic homology groups [9, 24], and this property extends:

I Theorem 15 (Isomorphism of Modules). The persistence modules defined by the complexes
Gr = g−1[0, r] and the subspaces Xr =

⋃
x∈X Br(x) are isomorphic and the corresponding

persistence diagrams are equal.

Theorem 15 suggests we consider the common persistence diagram of the subspaces Xr

and the Čech complexes Gr the “correct” diagram of the data set, X. Not surprisingly, the
persistence diagram of the corresponding Vietoris–Rips complexes is generally different. We
therefore have the opportunity to quantify the error we tolerate when we compute persistence
for the Vietoris–Rips instead of the Čech complexes. Clearly, Dı(Q) ≤ Rı(Q), but how
different can the two values be? Considering first the case X = Rn+, we recall Theorem 8 (12).
As proved in [15, page 62], the radius of a simplex in Euclidean space is at most

√
2 times the

H. Edelsbrunner, Ž. Virk, and H. Wagner 31:13

half-length of its longest edge. The isometry between the Fisher information distance and the
Euclidean distance implies Rı(Q) ≤

√
2Dı(Q) in Rn+ equipped with the Fisher information

metric. Hence, 1
CDı(Q) ≤ Rı(Q) ≤ CDı(Q) with C2 = 2. The corresponding interleaving

distance is lnC = 0.346 . . ., as recorded in Figure 4. The calculation of the interleaving
distance for points in ∆ is similar, except that we do not have a Euclidean result ready to
use. We will prove shortly that for simplices Q ⊆ Sn−1

+ , we have 1
CDı(Q) ≤ Rı(Q) ≤ CDı(Q)

with C2 = 4. The corresponding interleaving distance is lnC = 0.693 We thus observe
that there is a higher penalty for using Vietoris–Rips complexes in ∆ than there is in Rn+.
We finally prove the required Euclidean result. We recall that the radius and half-diameter
of a set Q are defined in (27) and (30).

I Lemma 16 (Interleaving on the Sphere). Let Q be a finite set of points in Sn−1
+ . Measuring

distances in the (n− 1)-sphere, the radius of Q is at most twice the half-diameter of Q, and
this bound is tight as n goes to infinity.

Proof. Suppose first that Q is a regular (n − 1)-simplex. It cannot be larger than the
(n− 1)-simplex Q0 that covers the entire positive orthant of the sphere. Its vertices are the
n unit coordinate vectors, and its center lies on the diagonal, with all coordinates equal to
1/
√
n. The scalar product of the vectors connecting the origin to the center and a vertex

of Q0 is 1/
√
n, which goes to 0 as n goes to infinity. It follows that the spherical distance

between the two points approaches π
2 . Since the half-diameter of Q0 is π

4 and the radius of Q0
approaches π

2 as n goes to infinity, the claimed inequality holds for regular (n− 1)-simplices
and cannot be improved unless we assume a fixed finite dimension.

To see that the claimed inequality holds for general sets Q, we recall that the spherical
distance is a metric. Let Br(x) be the ball with Fisher information radius r centered at x ∈ Q.
Setting r equal to the diameter of Q, every such ball contains all points of Q, which implies
that the common intersection is non-empty. Hence, the radius is at most the diameter. J

6 Discussion

The main contribution of this paper is a connection between information theory and topolo-
gical data analysis, thus complementing the established field of information geometry [3] with
topological methods. Concretely, we study notions of distance with information theoretic
foundations, focusing on properties relevant in their application in topological data analysis.
As an immediate practical gain, we can now use computational topology tools that work
for Euclidean distance to analyze data measured with Fisher information metric. It is thus
easy to experiment with data in information space without developing new and specialized
software. Another option is to construct Vietoris–Rips complexes with the Ripser software
[6], which at the time of writing this paper is significantly more efficient than constructing
nerves of entropy balls.

The first concrete application of the theory set up in this paper is described in [17], where
Euclidean and Fisher information point processes are studied and compared through the
lens of integral geometry. Many challenges remain before topology can be fully utilized
in high-dimensional data analysis tasks. In particular, a proof of stability of topological
descriptors based on Bregman divergences remains elusive, and we hope that the results
presented here are a step in this direction.

The cosine dissimilarity is an effective measure for text documents in the vector space
model [22]. It represents each document as a discrete probability distribution, and – just like
the Antonelli isometry – maps this distribution to a point in the positive orthant of a sphere.
This resembles the Fisher information distance in ∆, except that the latter uses the angle

SoCG 2019

31:14 Topological Data Analysis in Information Space

rather than its cosine. This suggests an information-theoretic interpretation for the cosine
measure. Using the generalized Antonelli isometry, we can devise similarly simple measures
for other decomposable Bregman divergences. Will they prove equally effective in practice?

References
1 R. Adler. TOPOS, and why we should care about it. IMS Bulletin, 43, 2014.
2 E. Akin. The Geometry of Population Genetics. Springer, Berlin, 1979.
3 S. Amari and H. Nagaoka. Methods of Information Geometry. Amer. Math. Soc., Providence,

Rhode Island, 2000.
4 P.L. Antonelli et al. The geometry of random drift I-VI. Adv. Appl. Prob., 9-12, 1977-80.
5 A. Banerjee, S. Merugu, I.S. Dhillon, and J. Ghosh. Clustering with Bregman divergences. J.

Mach. Learn. Res., 6:1705–1749, 2005.
6 U. Bauer. Fast Rips in the browser, 2016. URL: www.ctralie.com/Software/jsTDA.
7 U. Bauer and M. Lesnick. Induced matchings and the algebraic stability of persistence barcodes.

J. Comput. Geom., 6:162–191, 2015.
8 J.-D. Boissonnat, F. Nielsen, and R. Nock. Bregman Voronoi diagrams. Discrete Comput.

Geom., 44:281–307, 2010.
9 K. Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fund. Math.,

35:217–234, 1948.
10 L.M. Bregman. The relaxation method of finding the common point of convex sets and its

applications to the solution of problems in convex programming. USSR Comput. Math. Math.
Phys., 7:200–217, 1967.

11 G. Carlsson. Topology and data. Bull. Amer. Math. Soc., 46:255–308, 2009.
12 F. Chazal, de Silva, V., M. Glisse, and S. Oudot. The Structure and Stability of Persistence

Modules. SpringerBriefs in Mathematics, Springer, 2016.
13 D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete

Comput. Geom., 37:103–120, 2007.
14 I. Csiszár and J. Körner. Coding Theory for Discrete Memoryless Systems. Cambridge Univ.

Press, Cambridge, England„ 2011.
15 Edelsbrunner, H., and J.L. Harer. Computational Topology. An Introduction. Amer. Math.

Soc., Providence, Rhode Island, 2010.
16 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.

Discrete Comput. Geom., 28:511–533, 2002.
17 H. Edelsbrunner and A. Nikitenko. Random inscribed polytopes have similar radius functions

as Poisson–Delaunay mosaics,, 2016. arXiv:1705.02870.
18 H. Edelsbrunner and H. Wagner. Topological data analysis with Bregman divergences. In

“Proc. 33rd Ann. Symp. Comput. Geom., 2017”, 1–16, pages 1–16, 2017.
19 D.M. Endres and J.E. Schindelin. A new metric for probability distributions. IEEE Trans.

Inform. Theory, 49:1858–1860, 2003.
20 Edelsbrunner H., Ž Virk, and H. Wagner. Smallest Enclosing Spheres and Chernoff Points in

Bregman Geometry. In “Proc. 34rd Ann. Symp. Comput. Geom., 2018”, 2018.
21 A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.
22 A. Huang. Similarity measures for text document clustering. In “Proc. 6th New Zealand

Computer Science Research Student Conference”, 49–56, pages 49–56, 2008.
23 S. Kullback and R.A. Leibler. On information and sufficiency. Ann. Math. Stat., 22:79–86,

1951.
24 J. Leray. Sur la forme des espaces topologiques et sur les points fixes des représentations. J.

Math. Pure Appl., 24:95–167, 1945.
25 E. Merelli, M. Rucco, P. Sloot, and L. Tesei. Topological characterization of complex systems:

using persistent entropy. Entropy, 17:6872–6892, 2015.
26 M. Morse. Rank and span in functional topology. Ann. Math., 41:419–454, 1940.
27 F. Nielsen and R. Nock. On the smallest enclosing information disk. In “Proc. 18th Canad.

Conf. Comput. Geom., 2006.

www.ctralie.com/Software/jsTDA
http://arxiv.org/abs/1705.02870

Cubic Planar Graphs That Cannot Be Drawn On
Few Lines
David Eppstein
Computer Science Department, University of California, Irvine, USA
eppstein@uci.edu

Abstract
For every integer `, we construct a cubic 3-vertex-connected planar bipartite graph G with O(`3)
vertices such that there is no planar straight-line drawing of G whose vertices all lie on ` lines.
This strengthens previous results on graphs that cannot be drawn on few lines, which constructed
significantly larger maximal planar graphs. We also find apex-trees and cubic bipartite series-parallel
graphs that cannot be drawn on a bounded number of lines.

2012 ACM Subject Classification Theory of computation → Computational geometry; Human-
centered computing → Graph drawings

Keywords and phrases graph drawing, universal point sets, collinearity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.32

Funding David Eppstein: Supported in part by NSF grants CCF-1618301 and CCF-1616248.

1 Introduction

A number of works in graph drawing and network visualization have considered drawing
graphs with line segments as edges and with the vertices placed on few lines, or on a minimal
number of lines. Even very strong constraints, such as restricting the vertices of a drawing
to only two lines, allow many graphs to be drawn [16]: every weakly leveled graph drawing
(a planar drawing on any number of parallel lines with every edge connecting two vertices on
the same or adjacent lines) can be converted into a drawing on two crossing lines that spirals
around the crossing. This conversion allows, for instance, all trees, all outerplanar graphs,
all Halin graphs, all squaregraphs (graphs in which all bounded faces have exactly four sides
and all vertices not on the unbounded face have at least four neighbors) and all grid graphs
(Figure 1) to be drawn on two lines [1, 2, 15].

Additional past results in this area include:
Fixed-parameter tractable algorithms for drawing planar graphs without crossings with
all vertices on ` parallel lines, based on the fact that a graph with such a drawing must
have pathwidth O(`) [8].
NP-hardness of crossing minimization for graphs drawn with vertices on two parallel lines
(with a fixed assignment of vertices to lines but variable placement of each vertex along
each line) and of finding large crossing-free subgraphs [12,13].
NP-hardness of recognizing the graphs that can be drawn without crossing with all vertices
on three parallel but non-coplanar lines in three-dimensional space, or on three rays in the
plane with a common apex and bounding three wedges with angles less than π [2]. More
generally, the number of parallel three-dimensional lines (in sufficiently general position)
needed for a crossing-free drawing of a graph is the track number of the graph [10, 11]. It
is closely related to the volume of three-dimensional grid drawings, and can be bounded
by the pathwidth of the graph [9].
∃R-completeness and fixed-parameter tractability of deciding whether a given graph can
be drawn without crossing with all edges on ` lines (not required to be parallel) in two or
three dimensions [4].

© David Eppstein;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 32; pp. 32:1–32:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Cubic Planar Graphs That Cannot Be Drawn On Few Lines

Figure 1 Spiraling around the central crossing allows every weakly leveled drawing (in this case,
a drawing of a grid graph) to be converted to a drawing with all vertices on two lines.

Implementation of a tester for drawing graphs without crossings on two lines using integer
linear programming and SAT solvers, and an examination of the subclasses of planar
graphs that can be drawn without crossings with all vertices on two lines [16].
The existence of families of planar graphs that cannot be drawn without crossings on any
fixed number of lines, no matter how the lines are arranged in the plane [5, 14,19].

In this paper we strengthen the final result of this listing, the existence of families of
planar graphs that cannot be drawn on any fixed number of lines, in two ways.

First, we greatly improve the size bounds for these difficult-to-draw graphs. The previous
bounds of Ravsky, Chaplick, et al. [5, 19] are based on the observation that, in a maximal
planar graph, a line through q vertices implies the existence of a path in the dual graph of
length Ω(q). However, there exist n-vertex maximal planar graphs for which the longest
dual path has length O(nc) for some constant c < 1 called the shortness exponent. In these
graphs, at most O(nc) vertices can lie on one line, so the number of lines needed to cover the
vertices of any drawing of such a graph is Ω(n1−c). Based on this reasoning, they showed
the existence of n-vertex graphs requiring O(n0.01) lines to cover the vertices of any drawing.
Inverting this relationship, graphs that cannot be drawn on ` lines can have a number of
vertices that is only polynomial in `, but that polynomial is roughly `100. Alternatively, it
can be proven by a straightforward induction that a special class of maximal planar graphs,
the planar 3-trees, cannot be drawn on a constant number of lines, but the proof only shows
that the required number of lines for these graphs is at least logarithmic [14]. Inverting this
relationship, the graphs of this type that cannot be drawn on ` lines have size exponential
in `. In this paper, we prove polynomial bounds with a much smaller exponent than 100.

Second, we show that the property of requiring many lines extends to a broader class
of graphs. Both classes of counterexamples discussed above involve maximal planar graphs,
graphs in which every face of the embedding is a triangle. Maximality seems a necessary part
of the proofs based on the shortness exponent, as the connection between numbers of vertices
on a single line and lengths of dual paths does not necessarily hold for other classes of planar
graphs. In contrast, based on computational experiments, Firman et al. [16] conjectured
that cubic (that is, 3-regular) planar graphs can always be drawn without crossings on only

D. Eppstein 32:3

Figure 2 A cubic planar graph that cannot be drawn on two lines, giving a counterexample
to a conjecture of Firman et al. [16]. Its inability to be drawn on two lines has been verified
computationally by Firman et al.

two lines. The cubic graphs are distinct from the known examples of graphs that require
their vertices to lie on many lines, as a maximal planar graph larger than K4 cannot be
cubic. Their conjecture inspired the present work, and a counterexample to it found by the
author (Figure 2) led to our main results. In this work, we provide examples of graphs that
require many lines but are cubic, providing stronger counterexamples to the conjecture of
Firman et al. Moreover these graphs do not contain any triangles, showing that the presence
of triangles is not a necessary component of graphs that require many lines.

More specifically, we prove:

I Theorem 1. For every ` there exists a graph G` that is cubic, 3-vertex-connected, planar,
and bipartite, with O(`3) vertices, such that every straight-line planar drawing of G` requires
more than ` lines to cover all vertices of the drawing.

Additionally, we can construct G` in such a way that it is drawable with its vertices on
O(`) lines, or such that it has bounded pathwidth. In particular, this proves that the relation
between pathwidth and number of lines proven by Dujmović et al. [8] is not bidirectional.
Every graph that can be drawn without crossings on a given number of parallel lines has
pathwidth bounded linearly in the number of lines, but the number of lines needed to draw
a planar graph cannot be bounded by a function of its pathwidth, regardless of whether we
constrain the lines to be parallel.

Using similar methods, we also prove:

I Theorem 2. For every ` there exists a subcubic series-parallel graph that cannot be drawn
with its vertices on ` lines, and an apex-tree (a graph formed by adding one vertex to a tree)
that cannot be drawn with its vertices on ` lines.

Theorem 2 stands in contrast to the fact that all trees and all outerplanar graphs can be
drawn on only two crossed lines. In Theorem 2, both the series-parallel graph and apex-tree
can be made to be bipartite, and the apex-tree can be made subcubic at all tree vertices.

These results lower the treewidth of the known graphs that cannot be drawn on a constant
number of lines from three [14] to two, and they show that adding one vertex to a graph can
change the number of lines needed to draw it from two to any larger number. The apex-tree
graphs are also central to recent research characterizing the minor-closed families of bounded
layered pathwidth [7]. However, for Theorem 2 we do not have a polynomial size bound on
the graphs that we construct; instead, they are exponential in size. At least in the case of
apex-trees, this exponential size blowup is necessary, as we finally prove:

SoCG 2019

32:4 Cubic Planar Graphs That Cannot Be Drawn On Few Lines

Figure 3 The overall construction plan of our graph: O(`2) copies of a subgraph formed from
O(`) nested hexagons.

I Theorem 3. Every apex-tree with n vertices has a planar embedding that can be drawn
with its vertices on O(logn) parallel lines.

2 Counterexamples of cubic size

2.1 Overview

The overall strategy of our construction for graphs of size O(`3) that cannot be drawn on `
lines is illustrated in Figure 3. As can be seen in the figure, the graph consists of a number of
subunits, each formed by a set of nested hexagons, connected to each other by triples of edges.
These subunits resemble the nested triangles graph frequently used as a counterexample in
graph drawing [6, 17], but are based on hexagons rather than triangles.

The figure shows faces of three types: triples of quadrilaterals at the center of each set of
nested hexagons, non-convex L-shaped hexagonal faces between pairs of hexagons in each set
of nested hexagons, and Y-shaped dodecagonal faces between triples of subunits. Because the
graph is planar and each bounded face has an even number of sides, the graph is also bipartite.
It is straightforward to add a small number of additional vertices surrounding the sets of
nested hexagons (as shown) to complete the graph to one that is cubic, 3-vertex-connected,

D. Eppstein 32:5

and still bipartite. Because it is 3-vertex-connected, it has a unique planar embedding, the
one shown, up to the choice of which face of the embedding is the outer face. With at most
one exception (the subunit that includes the outer face), all subunits must be drawn as
shown in the figure (topologically but not geometrically), within disjoint hexagonal regions
of the plane.

The drawing also shows that each subunit can be drawn using only three lines. Indeed,
the number of lines needed to cover all of the vertices in Figure 3 (and in similar figures
with more subunits) is proportional only to the square root of the number of subunits.
Nevertheless, we shall show that, if there are enough subunits relative to the number of lines,
then at least one of the subunits will be difficult to draw on few lines. More specifically, for
a given parameter ` (a number of lines that should be too small to cover all vertices of the
drawing) we will choose the number of subunits to be at least

(
`
2
)

+ 2, two more than the
largest possible number of crossing points that ` lines can have. In this way, there will be
at least one subunit that does not include the outer face of the embedding, and does not
surround any crossing points of the lines.

We will show that, for subunits formed from a sufficiently large number of nested hexagons
(linear in `), it is not possible to draw the subunit on ` lines without surrounding any crossing
points. Because, nevertheless, one of the subunits must fail to surround any crossing points,
it cannot be drawn on ` lines. It follows that the whole graph also cannot be drawn on ` lines.

2.2 Nested polygons with no surrounded crossings
To formalize the subunits of the drawing of Figure 3, we define a (p, r)-nest, for positive
integers p and r, to be a collection of r disjoint simple p-gons (not necessarily convex),
together with one additional point (the egg), such that each p-gon contains the egg. Because
the p-gons are disjoint and all contain the egg, it is necessarily the case (by the Jordan curve
theorem) that each two of the p-gons are nested, one inside the other. Then the subunits of
Figure 3 form a (6, r)-nest, for some r, together with some additional graph edges between
consecutive cycles that force the cycles to be nested within each other but play no additional
role in our analysis.

In Figure 3, each (6, r)-nest is drawn with all hexagon vertices on three lines that cross
at the egg of the nest. More generally, whenever p is even, a (p, r)-nest can be drawn on
only two crossing lines, with the egg at the crossing point; when p is odd, three lines suffice.
However, in all of these drawings, a crossing point of the lines is contained within at least
one polygon of the nest. We will show that, when this does not happen, nests require Ω(r/p)
lines to cover all of their points.

I Lemma 4. Let p be a positive integer, let P be a simple p-gon, and let L be a line. Then
L intersects the interior of P in at most bp/2c open line segments.

Proof. Each line segment begins and ends at points where L intersects P either at a vertex
or at an interior point of one of the sides of P . If the segment endpoint is at a crossing of L
with an interior point of a side of P , then that point is the endpoint of only one segment
of L, and is the only point of intersection of L with that side. If the segment endpoint is a
vertex of P , then it may be the endpoint of of two segments of L, but in that case it is the
only point of intersection of L with both sides incident to the vertex. So in either case each
endpoint of a segment of L uses up at least one side of P . As P has p sides, the number of
segments is at most bp/2c. J

SoCG 2019

32:6 Cubic Planar Graphs That Cannot Be Drawn On Few Lines

I Corollary 5. Let A be an arrangement of ` lines, and let P be a simple p-gon whose
interior is disjoint from the crossings of A. Then the lines of A intersect the interior of P
in at most ` · bp/2c open line segments.

I Lemma 6. Let A be an arrangement of lines and P be a simple polygon that does not
contain any crossing point of A. Then the lines of A partition the interior of P into regions
in such a way that the graph of regions and their adjacencies forms a tree.

Proof. To show that the graph of regions and adjacencies is connected, consider any two
regions Ri and Rj , and choose a curve C within the interior of P connecting any point in Ri

to any point in Rj . Then the sequence of regions crossed by C forms a walk in the region
adjacency graph connecting Ri to Rj .

To show that the graph of regions and adjacencies has no simple cycle, assume for a
contradiction that there is such a cycle. Then by choosing a representative point within
each region of the cycle, and connecting these points by curves that pass between adjacent
regions without crossing any other regions, we can form a simple closed curve C in the plane
that crosses the lines of A in exactly the order given by the cycle. By the Jordan curve
theorem, each line that crosses into the interior of C must cross out of C at another point.
Two crossings of C by the same line cannot be adjacent in the cyclic order of crossings, for
then the graph cycle corresponding to C would not be simple. Therefore, C is crossed by at
least two lines, in alternating order. But this can happen only when C contains the crossing
point of these lines, an impossibility as C is entirely contained in P which we assumed to
enclose no crossings. This contradiction shows that a simple cycle does not exist.

As a connected graph with no simple cycles, the graph of regions and adjacencies must
be a tree. J

I Lemma 7. Let A be an arrangement of lines and P be a simple polygon that does not
contain any crossing point of A. Let S be the system of disjoint open line segments formed
by intersecting the lines of A with the interior of P , and let Q be another simple polygon,
disjoint from P , such that each vertex of Q lies on a segment of S. Then at least two segments
of S are disjoint from the interior of Q.

Proof. Because the graph of regions and adjacencies formed in P by A is a tree (Lemma 6),
it has at least two leaves. Let s be either of the two segments of S separating one of these
leaf regions from the rest of P . Then no edge of Q can enter the interior of this leaf region,
because there is no other segment available to be the endpoint of this edge. Therefore, Q
remains entirely on one side of s, and s is disjoint from the interior of Q. As there were
at least two choices for s, there are at least two segments of S that are disjoint from the
interior of Q. J

Putting these observations together, we have:

I Lemma 8. Let A be an arrangement of ` lines, let p and r be positive integers, and suppose
that 2(r − 1) > ` · bp/2c. Then it is not possible to draw a (p, r)-nest in such a way that the
polygon vertices of the nest and its egg all lie on lines of A.

Proof. Suppose for a contradiction that we have drawn a (p, r)-nest with all points on lines
of A. Let S be the system of disjoint open line segments formed by intersecting the lines of
A with the outer polygon of the nest. Then |S| ≤ ` · bp/2c by Corollary 5, and each of the
r − 1 remaining polygons of the nest use up at least two of the segments of S by Lemma 7.
Therefore, if 2(r − 1) > ` · bp/2c (as we supposed in the statement of the lemma), there
will be no segments remaining for the egg to lie on. Therefore, a drawing meeting these
conditions is impossible. J

D. Eppstein 32:7

Figure 4 An arrangement of ` lines can support b3(`− 1)/2− 1c nested hexagons surrounding a
central point, with the point and the hexagon vertices all on the lines, and all arrangement crossings
exterior to all hexagons.

In the particular case of a (6, r)-nest (as used in Figure 3), Lemma 8 states that a drawing
that does not contain an arrangement crossing cannot exist for r ≥ 3`/2 + 2. This is close to
tight: Figure 4 shows how to draw a (6, r)-nest with all polygon vertices and the egg on `
lines, for r = 3`/2−O(1).

2.3 The main result
Proof of Theorem 1. We wish to show the existence of a planar cubic bipartite graph that
cannot be drawn on ` lines, for a given parameter `. Consider a cubic bipartite 3-vertex-
connected planar graph formed, as in Figure 3, by at least

(
l
2
)

+ 2 subunits, each of which
must be drawn as a (6, r)-nest, for r = d3`/2e+ 2. Because there are O(`2) subunits, each
of size O(`), and O(`) vertices surrounding the subunits, the total size of the resulting
graph is O(`3).

To argue that the resulting graph cannot be drawn on ` lines, we consider an arbitrary
arrangement A with ` lines, and prove that the graph cannot be drawn with all of its vertices
on A. Among the graph’s

(
l
2
)

+ 2 subunits, one subunit (the one from which the outer face
was chosen) can surround all the others, but the rest must be drawn in disjoint regions of
the plane. Because there are more remaining subunits than the number of crossing points of
A (which is at most

(
`
2
)
), at least one subunit must be drawn in such a way that it does not

contain any of the crossing points of A. However, by Lemma 8, this is impossible. J

When the subunits of the graph are arranged as in Figure 3, into a compact hexagonal
grid in the plane, then (as the figure shows) the vertices of the whole graph can be covered
by O(`) lines, even though we have proved that there is no cover by ` lines. Alternatively,

SoCG 2019

32:8 Cubic Planar Graphs That Cannot Be Drawn On Few Lines

Figure 5 Zigzag pattern of subunits (shown schematically as hexagons) used to construct a graph
of pathwidth O(1) that cannot be drawn on few lines.

it is possible to arrange the subunits into a linear zig-zag pattern (Figure 5), preserving
the 3-vertex-connectedness of the resulting graph and still requiring only O(`2) vertices to
surround the subunits. When the subunits are arranged in this way, the resulting graph
might require a larger number of lines to cover its vertices (i.e., we do not have tight bounds
on the number of lines needed for a graph of this form), but it has pathwidth O(1).

3 Series-parallel graphs

A two-terminal series-parallel graph (series-parallel graph, for short) is a graph with two
distinct designated terminal vertices s and t formed recursively from smaller graphs of the
same type (starting from a single edge) by two operations:

Series composition: given two series-parallel graphs G1 and G2 with terminals s1, t1, s2,
and t2, form their disjoint union, and then merge vertices s2 and t1 into a single vertex.
Let the terminals of the resulting merged graph be the unmerged terminals of the given
graphs, s1 and t2. Series composition forms an associative binary operation on these
graphs (if we perform series compositions on a sequence of more than two graphs, the
order in which we perform the compositions does not affect the result).
Parallel composition: given two series-parallel graphs G1 and G2 with terminals s1, t1,
s2, and t2, form their disjoint union, merge vertices s1 and s2 into a single vertex, and
similarly merge t1 and t2 into a single vertex. Let the terminals of the resulting merged
graph be the resulting merged vertices. Parallel composition forms an associative and
commutative binary operation on these graphs (if we perform series compositions on a
set of more than two graphs, neither the order of the two graphs in each composition nor
the order in which we perform the compositions affects the result).

These graphs have treewidth two, and every graph of treewidth two is a subgraph of a series-
parallel graph. They are automatically planar, and they include every outerplanar graph.

We will recursively construct two families of series-parallel graphs Ai and Bi that cannot
be drawn on a bounded number of lines. Figure 6 shows the graph B5 from this family. To
construct these graphs, let A1 be a series-parallel graph with one edge and two terminal
vertices. Then:

For each i ≥ 1, let Bi be the graph formed as the parallel composition of two subgraphs,
each of which is the series composition of an edge, Ai, and another edge (Figure 7, right).
For each i > 1, let Ai be the graph formed as the parallel composition of two subgraphs,
one of which is a single edge and the other of which is the series composition of an edge,
Bi−1, and another edge (Figure 7, left).

It follows by induction that these graphs are subcubic, with degree two at their two
terminals, and that they are bipartite, with a 2-coloring (shown in the figure) in which the
two terminals have different colors. In the figure, the upper blue and lower yellow vertices
are the terminals of a graph Bi at some level of the construction, while the upper yellow and
lower blue vertices are the terminals of a graph Ai at some level of the construction.

D. Eppstein 32:9

Figure 6 A subcubic bipartite series-parallel graph that cannot be drawn on few lines.

Ai

Ai Bi

AiBi – 1

Figure 7 Recursive construction of Ai (left) and Bi (right).

Because they are 2-vertex-connected but not 3-vertex-connected, these graphs have many
planar embeddings. The planar embeddings of any 2-connected graph may be understood in
terms of its SPQR tree [18], which in the case of a series-parallel graph is more or less the
same as the expression tree of series and parallel compositions from which it was formed
(associating consecutive compositions of the same type into a single multi-operand operation).
Because of this equivalence, the embeddings of the graphs Ai and Bi may be generated
from the embedding shown in the figure by two types of change: any collection of subgraphs
connecting two opposite terminals of the graph may be flipped, giving a mirror-image
embedding of that subgraph within the larger graph, and any face of the resulting embedding
may be chosen as the outer face. We will show that these embeddings always contain large
nested sets of hexagons; this property forms the basis for our argument about drawings on
few lines.

I Lemma 9. Every planar embedding of Ai in which the two terminals belong to the outer
face contains a (6, i− 1)-nest.

Proof. For i = 1, a (6, i− 1)-nest consists of a single point (the egg), and the result follows
trivially. Otherwise, let s and t be the two terminals of the Bi−1 subgraph from which the
given Ai graph is formed (Figure 8). Then, in the Ai graph, there are three length-three
paths from s to t: one through the two terminals of the Ai graph, and one through each of
the two Ai−1 subgraphs from which the Bi−1 subgraph is formed.

SoCG 2019

32:10 Cubic Planar Graphs That Cannot Be Drawn On Few Lines

Ai Bi – 1
Ai – 1 Ai – 1

s

t

Bi – 2 Bi – 2

Figure 8 Illustration for Lemma 9. No matter how Ai is embedded, it will contain a 6-cycle (red)
surrounding one of the copies of Ai−1 from which it is formed.

By the assumption that the two terminals of Ai belong to the outer face, there is a six-
vertex cycle combining two of these three length-three paths, one through the two terminals
of Ai and one through one of the copies of Ai−1, that surrounds the other copy of Ai−1. By
induction, this surrounded copy contains a (6, i− 2)-nest, which together with the cycle that
surrounds it forms a (6, i− 1)-nest. J

I Lemma 10. Let j ≤ i be two positive integers. Then every planar embedding of Bi contains
at least 2j − 1 disjointly-embedded (6, i− j)-nests.

Proof. Bj is recursively constructed from 2j copies of Ai−j+1. At most one of these copies
can contain the outer face of the embedding, so at least 2j − 1 copies are embedded with
their two terminals outermost. The result follows from Lemma 9. J

Proof of Theorem 2, series-parallel case. The theorem claims that there exists a cubic
bipartite series-parallel graph that cannot be drawn on ` lines. To prove this, choose j such
that 2j ≥

(
`
2
)

+ 2 and choose i such that i− j ≥ 3`/2 + 2. We claim that, for this case, Bi

has the required properties. By Lemma 10, it contains at least
(

`
2
)

+ 1 disjointly embedded
(6, i − j)-nests, enough to ensure that at least one of them does not contain any crossing
points of any given arrangement of ` lines. By Lemma 8, a nest of this depth that does not
contain any crossing points cannot be drawn with its vertices on ` lines. J

4 Apex-tree graphs

4.1 Apex-tree graphs requiring many lines
Figure 9 depicts a graph in the form of a tree (blue and yellow vertices) plus one additional
vertex (red); such a graph has been called an apex-tree, and the additional vertex is the apex
The tree in the figure can be constructed from the series-parallel graph B4 of the previous
section by contracting half of the vertices (one vertex from each pair of terminals) into a
single supervertex. Alternatively, it can be constructed from a complete binary tree by
subdividing every non-leaf edge and then connecting each subdivision vertex and each leaf
vertex to the apex. These graphs are subcubic except at the apex, and bipartite.

D. Eppstein 32:11

Figure 9 An apex-tree graph, subcubic except at the apex, that cannot be drawn on few lines.

As with the earlier series-parallel graphs, we will prove that these graphs cannot be drawn
on a sublogarithmic number of lines. An obstacle to the proof, however, is that they contain
no (p, r)-nests for r > 1, nor can any such nest exist in any apex-tree. The reason is that,
in an apex-tree, all cycles contain the apex. Therefore, there can be no two disjoint cycles,
and no nests of two or more disjoint cycles. Nevertheless, these graphs do contain nest-like
structures. We define a (p, r)-near nest in an embedded plane graph to be a collection of p
r-cycles, plus one additional vertex (the egg), such that all cycles contain the egg in their
interior, the cycles are edge-disjoint, and any two of them share at most one vertex with each
other. Then the following lemma is an analogue of Lemma 8 for near-nests:

I Lemma 11. Let A be an arrangement of ` lines, let p and r be positive integers, and
suppose that r − 1 > ` · bp/2c. Then it is not possible to draw a (p, r)-near-nest in such a
way that the polygon vertices of the nest and its egg all lie on lines of A.

Proof. Suppose for a contradiction that we have drawn a (p, r)-near-nest with all points
on lines of A. Let S be the system of disjoint open line segments formed by intersecting
the lines of A with the outer polygon of the nest. Then |S| ≤ ` · bp/2c by Corollary 5, and
each of the r − 1 remaining polygons of the nest use up at least one of the segments of S by
Lemma 7 and by the fact that at most one of the two extreme segments of the polygon can
be shared with other polygons interior to it. Therefore, if r − 1 > ` · bp/2c (as we supposed
in the statement of the lemma), there will be no segments remaining for the egg to lie on.
Therefore, a drawing meeting these conditions is impossible. J

Analogously to Lemma 9 and Lemma 10, we have:

SoCG 2019

32:12 Cubic Planar Graphs That Cannot Be Drawn On Few Lines

I Lemma 12. For every planar embedding of a graph like the one of Figure 9 formed from
a complete binary tree of height i, and for every j ≤ i, the embedding contains 2j − 1 disjoint
(4, i− j)-near-nests.

Proof. This result follows immediately from Lemma 10, which proves the existence of a
(6, i− j)-nest in the corresponding series-parallel graphs, together with the observations that
every planar embedding of our apex-trees can be expanded to a planar embedding of the
corresponding series-parallel graphs, and that every 6-cycle of a (6, i−j)-nest in the expanded
series-parallel graph has three of its vertices contracted into the apex of the apex-tree graph.

Alternatively, one could prove the result by repeating the proof of Lemma 10 with minor
modifications. J

Proof of Theorem 2, apex-tree case. The theorem claims that there exists a bipartite apex-
tree graph, subcubic except at its apex, that cannot be drawn on ` lines. To prove this,
choose j such that 2j ≥

(
`
2
)

+ 2 and choose i such that i− j − 1 > 2`. Form an apex-tree
graph as above from a complete binary tree of height i. We claim that, for this case, the
resulting apex-tree graph has the required properties. For, by Lemma 12, it contains at least(

`
2
)

+ 1 disjointly embedded (4, i− j)-near-nests, enough to ensure that at least one of them
does not contain any crossing points of any given arrangement of `-lines. By Lemma 11, a
nest of this depth that does not contain any crossing points of the ` lines cannot be drawn
with its vertices on the lines. J

4.2 Drawing apex-tree graphs on few lines
Recall that Theorem 3 states that we can draw any apex-tree graph planarly on O(logn)
parallel lines. To do so, we adapt a standard tool from tree drawing, the heavy path
decomposition [20], to draw any tree with its vertices on the points of a grid of height log2 n

and width n (in particular, on O(logn) horizontal lines) in such a way that the resulting
drawing can be extended to a drawing of an apex-tree, by adding one more vertex adjacent
to any subset of the tree vertices.

The heavy path decomposition of a tree is obtained by choosing one heavy edge for each
non-leaf vertex of the tree, an edge connecting it to the subtree with the largest number of
vertices (breaking ties arbitrarily). The connected components of the subgraph formed by
the heavy edges are heavy paths, including as a special case length-zero paths for leaf vertices
that were not chosen by their parent. The heavy paths partition the vertices of the tree. By
induction, a vertex v that can reach a leaf by a path that includes i non-heavy edges must be
the root of a subtree containing at least 2i+1 − 1 vertices (including v itself). Therefore, in a
tree with n > 1 vertices, every root-to-leaf path contains at most log2 n− 1 non-heavy edges.

Proof of Theorem 3. To draw the given tree on a grid, we traverse the tree in preorder,
ordering the children at each vertex so that the heavy edge is last. We let the x-coordinate
of each vertex be its position in this preorder listing, and we let the y-coordinate be the
number of non-heavy edges on the path from the vertex to the root. These choices give
unique coordinates for each vertex on a grid of height log2 n and width n, as claimed. Each
tree edge either connects two consecutive vertices on the same level of the grid (on the same
heavy path), or it connects vertices on consecutive levels (a parent and child not connected
by a heavy edge) whose x-coordinates both are less than the next vertex on the same level
as the parent. Therefore, the drawing has no crossings.

All edges of this tree drawing have slope in the interval [0, 1]. The traversal ordering
ensures that, for each vertex v, and each vertex w with a higher y-coordinate than v, one of
the following is true: w has smaller x-coordinate than v, w is a descendant of v, or w is a

D. Eppstein 32:13

Figure 10 Drawing an apex-tree on a grid. The thick horizontal black lines depict the heavy path
decomposition of the given tree. Note that although the grid size is approximately (n + log2 n)× n,
only the bottom log2 n horizontal grid lines and the top horizontal grid line are occupied by vertices.

descendant of a vertex that is placed below and to the right of v. In all three cases, neither w
nor any edge incident to w can block the visibility from v upwards and to the right through
lines of slope greater than one. Therefore, if we place the apex n+ 1 units above the upper
right corner of the grid, it will be visible to all tree vertices by unobstructed lines of sight and
we can complete the drawing of any apex-tree consisting of the given tree and one apex. J

The construction is depicted in Figure 10.

5 Conclusions and open problems

We have found planar 3-regular bipartite graphs of size cubic in ` that cannot be drawn on `
lines, cubic bipartite series-parallel graphs of size exponential in ` that cannot be drawn on `
lines, and apex-trees of size exponential in ` that cannot be drawn on ` lines. For apex-trees
the exponential size bound is necessary, although there may still be room for tightening the
gap between the exponential upper and lower bounds. For the other two classes of graphs, we
do not know whether our results are tight. Stefan Felsner and Alexander Wolff have recently
proven that every 4-vertex-connected maximal planar graph of size at most quadratic in `
may be drawn on ` pseudolines, and that it is NP-hard to find drawings on two lines [3].
Do there exist planar graphs of subcubic size that cannot be drawn on ` lines? Do there
exist series-parallel graphs of polynomial size that cannot be drawn on ` lines? How well
can the optimal number of lines be approximated? We leave these problems as open for
future research.

SoCG 2019

32:14 Cubic Planar Graphs That Cannot Be Drawn On Few Lines

References
1 Hans-Jürgen Bandelt, Victor Chepoi, and David Eppstein. Combinatorics and geometry of

finite and infinite squaregraphs. SIAM Journal on Discrete Mathematics, 24(4):1399–1440,
2010. doi:10.1137/090760301.

2 Michael J. Bannister, William E. Devanny, Vida Dujmović, David Eppstein, and David R.
Wood. Track layouts, layered path decompositions, and leveled planarity. Algorithmica, 2018.
doi:10.1007/s00453-018-0487-5.

3 Therese Biedl, William Evans, Stefan Felsner, Sylvain Lazard, Henk Meijer, Pavel Valtr, Sue
Whitesides, Steve Wismath, and Alexander Wolff. Line and plane cover numbers revisited.
Manuscript, 2019.

4 Steven Chaplick, Krzysztof Fleszar, Fabian Lipp, Alexander Ravsky, Oleg Verbitsky, and
Alexander Wolff. The complexity of drawing graphs on few lines and few planes. In Faith Ellen,
Antonina Kolokolova, and Jörg-Rüdiger Sack, editors, Algorithms and Data Structures: 15th
International Symposium, WADS 2017, St. John’s, NL, Canada, July 31 – August 2, 2017,
Proceedings, volume 10389 of Lecture Notes in Computer Science, pages 265–276. Springer,
2017. doi:10.1007/978-3-319-62127-2_23.

5 Steven Chaplick, Krzysztof Fleszar, Fabian Lipp, Oleg Verbitsky, and Alexander Wolff. Drawing
graphs on few lines and few planes. In Yifan Hu and Martin Nöllenburg, editors, Graph
Drawing and Network Visualization: 24th International Symposium, GD 2016, Athens, Greece,
September 19–21, 2016, Revised Selected Papers, volume 9801 of Lecture Notes in Computer
Science, pages 166–180. Springer, 2016. doi:10.1007/978-3-319-50106-2_14.

6 Danny Dolev, Tom Leighton, and Howard Trickey. Planar embedding of planar graphs.
Advances in Computing Research, 2:147–161, 1984. URL: https://noodle.cs.huji.ac.il/
~dolev/pubs/planar-embed.pdf.

7 Vida Dujmović, David Eppstein, Gwenaël Joret, Pat Morin, and David R. Wood. Minor-closed
graph classes with bounded layered pathwidth. in preparation, 2018.

8 Vida Dujmović, Michael R. Fellows, Matthew Kitching, Giuseppe Liotta, Catherine McCartin,
Naomi Nishimura, Prabhakar Ragde, Frances Rosamond, Sue Whitesides, and David R. Wood.
On the parameterized complexity of layered graph drawing. Algorithmica, 52(2):267–292, 2008.
doi:10.1007/s00453-007-9151-1.

9 Vida Dujmović, Pat Morin, and David R. Wood. Path-width and three-dimensional straight-
line grid drawings of graphs. In Michael T. Goodrich and Stephen G. Kobourov, editors, Graph
Drawing: 10th International Symposium, GD 2002, Irvine, CA, USA, August 26–28, 2002,
Revised Papers, volume 2528 of Lecture Notes in Computer Science, pages 42–53. Springer,
2002. doi:10.1007/3-540-36151-0_5.

10 Vida Dujmović, Attila Pór, and David R. Wood. Track layouts of graphs. Discrete Math.
Theor. Comput. Sci., 6(2):497–521, 2004.

11 Vida Dujmović and David R. Wood. Stacks, queues and tracks: layouts of graph subdivisions.
Discrete Math. Theor. Comput. Sci., 7(1):155–201, 2005.

12 Peter Eades and Sue Whitesides. Drawing graphs in two layers. Theoretical Computer Science,
131(2):361–374, 1994. doi:10.1016/0304-3975(94)90179-1.

13 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.

14 David Eppstein. Forbidden Configurations in Discrete Geometry. Cambridge University Press,
2018. Theorem 16.13.

15 Stefan Felsner, Giuseppe Liotta, and Stephen Wismath. Straight-line drawings on restricted
integer grids in two and three dimensions. Journal of Graph Algorithms and Applications,
7(4):363–398, 2003. doi:10.7155/jgaa.00075.

16 Oksana Firman, Fabian Lipp, Laura Straube, and Alexander Wolff. Examining weak line covers
with two lines in the plane (poster abstract). In Graph Drawing and Network Visualization:
26th International Symposium, GD 2018, Barcelona, Spain, September 26–28, 2018, Revised
Selected Papers, Lecture Notes in Computer Science. Springer, 2018. to appear.

http://dx.doi.org/10.1137/090760301
http://dx.doi.org/10.1007/s00453-018-0487-5
http://dx.doi.org/10.1007/978-3-319-62127-2_23
http://dx.doi.org/10.1007/978-3-319-50106-2_14
https://noodle.cs.huji.ac.il/~dolev/pubs/planar-embed.pdf
https://noodle.cs.huji.ac.il/~dolev/pubs/planar-embed.pdf
http://dx.doi.org/10.1007/s00453-007-9151-1
http://dx.doi.org/10.1007/3-540-36151-0_5
http://dx.doi.org/10.1016/0304-3975(94)90179-1
http://dx.doi.org/10.1007/BF01187020
http://dx.doi.org/10.7155/jgaa.00075

D. Eppstein 32:15

17 Fabrizio Frati and Maurizio Patrignani. A note on minimum-area straight-line drawings of
planar graphs. In Graph Drawing: 15th International Symposium, GD 2007, Sydney, Australia,
September 24-26, 2007, Revised Papers, volume 4875 of Lecture Notes in Computer Science,
pages 339–344. Springer, 2008. doi:10.1007/978-3-540-77537-9_33.

18 Saunders Mac Lane. A structural characterization of planar combinatorial graphs. Duke
Mathematical Journal, 3(3):460–472, 1937. doi:10.1215/S0012-7094-37-00336-3.

19 Alexander Ravsky and Oleg Verbitsky. On collinear sets in straight-line drawings. In Petr
Kolman and Jan Kratochvíl, editors, Graph-Theoretic Concepts in Computer Science: 37th
International Workshop, WG 2011, Teplá Monastery, Czech Republic, June 21–24, 2011,
Revised Papers, volume 6986 of Lecture Notes in Computer Science, pages 295–306. Springer,
2011. doi:10.1007/978-3-642-25870-1_27.

20 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

SoCG 2019

http://dx.doi.org/10.1007/978-3-540-77537-9_33
http://dx.doi.org/10.1215/S0012-7094-37-00336-3
http://dx.doi.org/10.1007/978-3-642-25870-1_27
http://dx.doi.org/10.1016/0022-0000(83)90006-5

Counting Polygon Triangulations is Hard
David Eppstein
Computer Science Department, University of California, Irvine, USA
eppstein@uci.edu

Abstract
We prove that it is #P-complete to count the triangulations of a (non-simple) polygon.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Problems, reductions and completeness

Keywords and phrases counting complexity, #P-completeness, triangulation, polygons

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.33

Funding David Eppstein: Supported in part by NSF grants CCF-1618301 and CCF-1616248.

1 Introduction

In 1979, Leslie Valiant published his proof that it is #P-complete to compute the permanent
of a 0-1 matrix, or equivalently to count the perfect matchings of a bipartite graph [41]. This
result was significant in two ways: It was surprising at the time that easy (polynomial time)
existence problems could lead to intractable counting problems, and it opened the door to
hardness proofs for many other counting problems. Beyond individual problems, several
broad classifications of hard graph counting problems are now known. For instance, it is
#P-complete to count k-colorings or determine the value of the Tutte polynomial at any value
outside of a small finite set of exceptions [23], and all problems of counting homomorphisms
to a fixed directed acyclic graph are either #P-complete or polynomial [18].

In computational geometry, it has been shown that counting the vertices or facets of high-
dimensional convex polytopes is #P-complete [28], and that computing the expected total
length of the minimum spanning tree of a stochastic subset of three-dimensional points is #P-
hard [25]. Additionally, when testing existence of a geometric structure is hard [5, 9, 31, 29, 26]
it is just hard to determine whether its count is nonzero. However, we know of no past
hardness proofs for counting easy-to-construct two-dimensional structures. Although there
has been significant research on counting non-crossing configurations in the plane, including
matchings, simple polygons, spanning trees, triangulations, and pseudotriangulations, the
complexity of these problems has remained undetermined. Research on these problems
has instead focused on determining the number of configurations for special classes of
point sets [20, 8, 24], bounding the number of configurations as a function of the number of
points [2, 4, 39, 37, 17, 38, 1, 33, 3, 36, 21, 10], developing exponential- or subexponential-time
counting algorithms [12, 7, 42, 5, 30, 13], or finding faster approximations [6, 27].

In this paper we bring the two worlds of #P-completeness and counting planar structures
together by proving the following theorem:

I Theorem 1. It is #P-complete to count the number of triangulations of a given polygon.

Necessarily, the polygons of our hardness construction have holes, as it is straightforward to
count the triangulations of a simple polygon in polynomial time by dynamic programming [19,
32, 16]. The polygons resulting from the construction can be drawn with all vertices on
a grid of polynomial size. Our proof strategy is to develop a polynomial-time counting
reduction from the problem of counting independent sets in 3-regular bipartite planar graphs
(here the independent sets are not necessarily maximum nor maximal), which was proved

© David Eppstein;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Counting Polygon Triangulations is Hard

#P-complete by Xia, Zhang, and Zhao [43]. We reduce counting independent sets in 3-regular
planar graphs to counting maximum non-crossing subsets of a special class of line segment
arrangements, which we in turn reduce to counting triangulations.

2 Preliminaries

2.1 Polygons and triangulation
A planar straight-line graph consists of finitely many closed line segments in the Euclidean
plane, disjoint except for shared endpoints. The endpoints of these segments can be interpreted
as the vertices, and the segments as the edges, of an undirected graph drawn with straight
edges and no crossings in the plane. The faces of the planar straight-line graph are the
connected components of its complement (that is, maximal connected subsets of the plane
that are disjoint from the segments of the graph). In any planar straight-line graph, exactly
one unbounded face extends beyond the bounding box of the segments; all other faces are
bounded. A segment of the graph forms a side of a face if the interior of the segment
intersects the topological closure of the face. As with any graph, a planar straight-line graph
is d-regular if each of its vertices is incident to exactly d line segments.

For the purposes of this paper, we define a polygon P to be a 2-regular planar straight-line
graph in which there is a bounded face φ whose sides are all the segments of P . If φ exists,
it is uniquely determined from P . We call φ the interior of P . The connected components
of the graph are necessarily simple cycles of line segments, exactly one of which separates φ
from the unbounded face. If there is more than one connected component of the graph, we
call the other components holes, and if there are no holes we call P a simple polygon.

We define a triangulation of a polygon P to be a planar straight-line graph consisting
of the edges of P and added segments interior to P , all of whose vertices are vertices of P ,
partitioning the interior of P into three-sided faces. As is well known, every polygon has
a triangulation. A triangulation of an n-vertex polygon can be found in O(n logn) time,
for instance by constrained Delaunay triangulation, and this can be improved to O(n log h)
for polygons with h holes [11]. The known exponential or sub-exponential algorithms for
counting triangulations of point sets [7, 30] can be adapted to count triangulations of polygons
in the same time bounds.

2.2 Counting complexity
The complexity class #P is defined as the class of functional algorithmic problems for which
the desired output counts the accepting paths of some nondeterministic polynomial-time
Turing machine.

I Lemma 2. Computing the number of triangulations of a polygon is in #P.

Proof. The output is the number of accepting paths of a nondeterministic polynomial-time
Turing machine that guesses the set of edges in the triangulation, and verifies that these
edges form a triangulation of the input. J

#P-hardness and #P-completeness are defined using reductions, polynomial-time trans-
formations from one problem X (typically already known to be hard) to another problem Y

that we wish to prove hard. Three types of reduction are in common use for this purpose:
Turing reductions consist of an algorithm for solving problem X in polynomial time given
access to an oracle for solving problem Y .

D. Eppstein 33:3

Polynomial-time counting reductions consist of two polynomial-time transformations: a
transformation σ that transforms inputs to X into inputs to Y , and a second transforma-
tion τ that transforms outputs of Y back to outputs of X. The reduction is valid if, for
every input χ to problem X, τ(Y (σ(χ))) = X(χ).
Parsimonious reductions consist of a polynomial-time transformation from inputs of X
to inputs of Y that preserve the exact solution value.

A problem Y is defined to be #P-hard for a given class of reductions if every problem X

in #P has a reduction to Y . Y is #P-complete if, in addition, Y is itself in #P. Composing
two reductions of the same type produces another reduction, so we will generally prove
#P-hardness or #P-completeness by finding a single reduction from a known-hard problem
and composing it with the reductions from everything else in #P to that known-hard problem.

The reductions that we construct in this work will be polynomial-time counting reductions.
However, we rely on earlier work on #P-completeness of graph problems that uses the weaker
notion of Turing reductions. Therefore, we will prove that our geometric problems are
#P-complete under Turing reductions. If the graph-theoretic results are strengthened to
use counting reductions (and in particular if counting maximum independent sets in regular
planar graphs is #P-complete under counting reductions) then the same strengthening will
apply as well to counting triangulations. For the remainder of this paper, however, whenever
we refer to #P-hardness or #P-completeness, it will be under Turing reductions.

2.3 Counting independent sets
Xia, Zhang, and Zhao [43] proved that it is #P-complete to count the vertex covers in a
connected 3-regular bipartite planar graph (subsets of vertices that touch all edges). A set of
vertices is a vertex cover if and only if its complement is an independent set, so it immediately
follows that it is also #P-complete to count independent sets in the same graphs (the counts
are the same). It is also #P-complete to find the number of maximum independent sets in a
planar bipartite graph of maximum degree three [40], but for our purposes the regularity of
the graph is more important than the maximality of the independent set.

3 Red–blue arrangements

In this section we define and prove hard a counting problem that will be an intermediate step
in our hardness proof for triangulations. It involves counting maximum non-crossing subsets
of certain special line segment arrangements. Counting maximum non-crossing subsets of
arbitrary line segment arrangements can easily be shown to be hard: It follows from the
hardness of counting maximum independent sets in planar graphs [40] and from the proof
of Scheinerman’s conjecture that every planar graph can be represented as an intersection
graph of line segments [34, 14]. So the significance of the reduction that we describe in this
section is that it provides arrangements with a highly constrained form, a form that will be
useful in our eventual reduction to counting triangulations.

I Definition 3. We define a red–blue arrangement to be a collection of finitely many line
segments in the plane (specified by the Cartesian coordinates of their endpoints) with the
following properties:

Each line segment is assigned a color, either red or blue.
Each intersection point of two segments is a proper crossing point of exactly two segments.
Each blue segment is crossed by exactly two other segments, both red.
Each red segment is crossed by exactly three other segments, in the order blue–red–blue.
The union of the segments forms a connected subset of the plane.

SoCG 2019

33:4 Counting Polygon Triangulations is Hard

Figure 1 Transformation from a 3-regular planar graph G to a red–blue arrangement. Left: the
gadgets for edges and vertices of the graph. Right: an example of the whole arrangement for the
graph of a triangular prism.

See the right side of Figure 1 for an example. We will be interested in the maximum
non-crossing subsets of such an arrangement: sets of as many segments as possible, no two
of which cross.

In a red–blue arrangement, consider the graph whose vertices represent line segments
and whose edges represent bichromatic crossings (crossings between a red segment and a
blue segment). Then this graph is a disjoint union of cycles, each of which has even length
with vertices alternating between red and blue. We call the cycles of this graph alternating
cycles of the arrangement.

I Lemma 4. Every red–blue arrangement has equal numbers of red and blue segments. If
there are n red and n blue segments, the maximum non-crossing subsets of the arrangement
all have exactly n segments. Within each alternating cycle of the arrangement, a maximum
non-crossing subset must use a monochromatic subset of the cycle (either all the red segments
of the cycle, or all the blue segments of the cycle).

Proof. The equal numbers of red and blue segments in the whole arrangement follow from
the decomposition of the arrangement into alternating cycles and the equal numbers within
each cycle. Within a single cycle, there are exactly two maximum non-crossing subsets, the
subsets of red and of blue segments, each of which uses exactly half of the segments of the
cycle. Therefore, no non-crossing subset of the whole arrangement can include more than n
segments (half of the total), and a non-crossing subset that uses exactly n segments must be
monochromatic within each alternating cycle. There exists at least one non-crossing subset
of exactly n segments, namely the set of blue segments. J

Given a connected 3-regular planar graph G, we will construct a red–blue arrangement
AG from it, as follows.

We begin by finding a straight-line drawing of G. We then replace each vertex v of G by a
twelve-segment alternating cycle (Figure 1, lower left). Each edge of G incident to v will have
two red segments on either side of it, within the two faces bounded by that edge, and these
segments form the six red segments of the alternating cycle. Three blue segments, drawn
near v within the three faces incident to v, connect pairs of red segments within each face.
Another three blue segments cross the three edges incident to v (which are not themselves
part of the arrangement) and connect the two red segments on either side of the edge.

D. Eppstein 33:5

In this way, each edge uv of G will have four red segments near it (two on each side from
each of its two endpoints) and two blue segments crossing it (one from each endpoint). We
arrange these segments so that, on each side of uv, the two red segments cross, and there are
no other crossings except those in the alternating cycles (Figure 1, upper left). An example
of the whole red–blue arrangement produced by these rules is shown in Figure 1, right.

By using an initial drawing of G within an n × n unit grid, where n is the number of
vertices of G [35, 15], and then scaling the grid by a polynomial factor, we can create room to
place each segment of the corresponding red–blue arrangement near its corresponding edge or
vertex in the drawing of G, with integer coordinates for its endpoints. In this way, the entire
construction can be performed in polynomial time, using segments whose endpoints have
integer coordinates of polynomial magnitude. Because the coordinates are small integers,
the angles between any two crossing segments will be at least inverse-polynomial. We omit
the details.

I Lemma 5. Let G be a connected 3-regular planar graph, and let AG be constructed from
G as above. Then the independent sets of G correspond one-for-one with the maximum non-
crossing subsets of AG, with an independent set having size k if and only if the corresponding
non-crossing subset has exactly 6k red segments.

Proof. Given an independent set Z in G, one can construct a non-crossing subset of AG of
size n, with 6|Z| red segments, by choosing all the red segments in the alternating cycles
around members of Z, and all the blue segments in the remaining alternating cycles. Because
Z includes no two adjacent vertices, the subsets chosen in this way will be non-crossing. Z
can be recovered as the set of vertices from which we used red segments of alternating cycles,
so the correspondence from independent sets to non-crossing subset constructed in this way
is one-to-one.

By Lemma 4, these non-crossing subsets are maximum. By the same lemma, every
maximum non-crossing subset consists of red segments in the alternating cycles of some
vertices of G and blue segments in the remaining alternating cycles. No two adjacent vertices
of G can have their red segments chosen as that would produce a crossing, so there are no
maximum non-crossing subsets other than the ones coming from independent sets of G. J

This leads to the main result of this section:

I Lemma 6. It is #P-complete to compute the number of maximum non-crossing subsets of
a red–blue arrangement A.

Proof. The problem is clearly in #P. By Lemma 5, the construction of the red–blue
arrangement AG from a 3-regular planar graph G is a parsimonious reduction from the
known #P-complete problem of counting independent sets in 3-regular planar graphs. J

4 Reduction to triangulation

In this section we describe our reduction from line segment arrangements to polygons. The
rough idea is to thicken each segment of the given red–blue arrangement to a rectangle with
rounded ends, and form the union of these rectangles. In the part of the polygon formed from
each segment, many more triangulations will use diagonals running end-to-end along the
segment than triangulations that do not, causing most triangulations to correspond to sets
of diagonals from a maximum non-crossing subset of the arrangement. With a careful choice
of the shapes of the thickened segments in this construction, we can recover the number of
maximum non-crossing subsets of the arrangement from the number of triangulations.

SoCG 2019

33:6 Counting Polygon Triangulations is Hard

lens, a + b points tube, O(1) points

lens, a points

Figure 2 Polygonal gadgets for replacing the red segments (top) and blue segments (bottom) of
a red–blue arrangement.

4.1 From segments to polygons

The gadgets that we use to replace the red and blue segments of a red–blue arrangement are
shown (not to scale) in Figure 2. They resemble the cross-section of a telescope, and we have
named their parts accordingly. Each gadget consists of O(1) vertices spaced along two convex
curves, which we call the tube. These two curves bend slightly outwards from each other, but
both remain close to the center line of the gadget. Consecutive pairs of points are connected
to each other along the tube, leaving either three gaps (for red segments) or two gaps (for
blue segments) where other segments of the arrangement cross the given segment. The two
vertices on each side of each gap are shared with the gadget for the crossing segment.

At the ends of the tubes, the two convex curves are connected to each other by two
concave curves (the lenses of the gadget), each containing larger numbers of vertices that
are connected consecutively to each other without gaps. Each blue lens has some number a
of vertices, and each red lens has some larger number a+ b of vertices, where a and b are
both positive integers to be determined later as a function of the number of segments in the
arrangement. The key geometric properties of these gadgets are:

Each gadget forms a collection of polygonal chains whose internal vertices (the vertices
that are not the end-point of any of the chains) are not part of any other gadget and
whose endpoints are part of exactly one other gadget. The union of all the gadgets of the
arrangement forms a single polygon (with holes).
Each vertex of the lens at one end of the gadget is visible within the polygon to each
vertex of the lens at the other end of the gadget, and to each vertex of the tube of the
gadget, but not to any vertices of its own lens that it is non-adjacent to.
All of the vertices that are visible to a vertex of the lens of a gadget belong to the same
gadget. (This is not an automatic property of the gadgets as drawn, but can be achieved
by making the gadgets sufficiently narrow relative to the spacing of points along their
tubes, depending on the angles at which different segments cross each other.)
Each pair of points that are visible to each other are both part of one gadget. (Again,
this is not an automatic property, but can be achieved by using narrow-enough gadgets.)

We denote by PA the polygon obtained by replacing each segment of a red–blue ar-
rangement A by a gadget. Figure 3 gives an example of a red–blue arrangement A and its
corresponding polygon PA, drawn approximately and schematically (not to scale).

D. Eppstein 33:7

Figure 3 A red–blue arrangement A and the polygon PA obtained from it by replacing its
segments by gadgets (schematic view, not to scale).

As long as the segments of A have endpoints whose coordinates are integers of polynomial
magnitude, and the parameters a and b are chosen to also be of polynomial magnitude, it
will be possible to carry out the construction of PA from A in polynomial time and for the
coordinates of the resulting polygon to be integers of (larger) polynomial magnitude. We
omit the details.

4.2 Triangulation within a gadget
For a triangulation T of a polygon PA, and a gadget S of PA corresponding to a segment s
of A, we define the local part of T in S to be the set of triangles that have a side on one of
the two lenses of S. We say that segment s is active in T if its local part includes at least
one triangle that touches both lenses of S, and that s is passive otherwise.

I Lemma 7. The active segments of a triangulation form a non-crossing set.

Proof. If two segments cross, any lens-to-lens triangle within one segment crosses any
lens-to-lens triangle of the other. But in a triangulation, no two triangles can cross each
other. J

I Lemma 8. Let T be a triangulation of PA, let s be an active segment of T , let S be the
corresponding gadget, and let ΠS be the polygon formed by intersecting PA with the convex
hull of S. Then the intersection of T and ΠS is a triangulation of ΠS.

Proof. By the construction of PA, every edge of T must belong to a single gadget (as
there are no other visibilities between pairs of vertices in PA). By the same argument as
in Lemma 7, no segment with its endpoints in a single other gadget than S can cross ΠS .
Therefore, all edges of T that include an interior point of ΠS must connect two vertices of S,
and lie within ΠS . It follows that all triangles of T that include an interior point of ΠS must
also lie within ΠS , so that T restricts to a triangulation of ΠS . J

SoCG 2019

33:8 Counting Polygon Triangulations is Hard

Figure 4 Illustration for Lemma 10: Closing off a lens by connecting the endpoints of its path
(red dashed edge) forms a polygon with as many distinct triangulations as lens vertices.

I Corollary 9. Let T be a triangulation of PA, and let L be a lens in polygonal chain CL of
a gadget S. Suppose that some active segment of T separates CL from the rest of S. Let ΠL

be the polygon formed from C by adding one more edge connecting the two endpoints of C.
Then T intersects ΠL in a triangulation of ΠL.

Proof. By Lemma 8, T contains the edge connecting the endpoints of C. This edge separates
ΠL from the rest of the polygon, so each triangle of T must lie either entirely within or
entirely outside ΠL. But the triangles within ΠL cover ΠL (as the triangles of T cover all of
PA) so they form a triangulation of ΠL. J

These claims already allow us to produce a precise count of the triangulations whose
active segments form a maximum non-crossing subset, as a function of the number of red
segments in the subset, which we will do in the next section. However, we also need to bound
the number of triangulations with smaller sets of active segments, and show that (with an
appropriate choice of the parameters a and b) they form a negligible number of triangulations
compared to the ones coming from maximum non-crossing subsets.

4.3 Counting within a gadget
It is straightforward to count triangulations of the polygon formed by a single lens:

I Lemma 10. Let ΠL be the polygon formed from a lens by closing its path off by a single
edge uv, as in Corollary 9. Then the number of distinct triangulations of ΠL equals the
number of vertices of the lens (a for a blue lens, a+ b for a red lens).

Proof. Any triangulation of ΠL is completely determined by the choice of apex of the triangle
that has uv as one of its sides. All the remaining edges of the triangulation must each
connect one vertex of the lens to the remaining visible endpoint of uv, the only vertex visible
to that lens vertex (Figure 4). The number of choices for the apex equals the number of
lens vertices. J

D. Eppstein 33:9

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

Figure 5 Encoding a triangulation of the convex hull of two lenses by a sequence of bits.

More generally, for any passive segment, we have:

I Lemma 11. Let S be the gadget of segment s. Then the number of combinatorially distinct
ways to choose the local part in S of a triangulation of PA for which s is passive is polynomial
in the number of lens vertices of S.

Proof. Recall that the triangles of the local part each have one lens edge as one of their sides.
Within each lens, the only choice is where to place the apex of each of these triangles. There are
O(1) choices of apex vertex, and within each lens the edges whose triangles have a given apex
must form a contiguous subsequence. There are only polynomially many ways of partitioning
the sequences of lens edges into a constant number of contiguous subsequences. J

A similar argument also shows:

I Lemma 12. Let T be a triangulation of PA and let S be a gadget of PA. Then only O(1)
vertices of S can participate in triangles of T which are not part of the local part of T in S.

Proof. S has O(1) vertices outside of its two lenses, so it has O(1) non-lens vertices that
can participate in non-local triangles. A lens vertex can participate in a non-local triangle
in one of two ways: either the triangle has one lens vertex and two non-lens vertices, or it
has two vertices from opposite lenses and one non-lens vertex. There are O(1) edges of T
between non-lens vertices of S, each of which is part of two triangles in T , so there are O(1)
triangles in S ∩ T with only one lens vertex. Each non-lens vertex of S can participate in
only one triangle whose other two vertices are on opposite lenses, so again there are O(1)
triangles of this type. Therefore, there are O(1) lens vertices in non-local triangles. J

It is sufficiently messy to count the triangulations of active gadgets that we provide here
only approximate bounds. However, the exact number of triangulations can be found in
polynomial time using the algorithm for counting triangulations of simple polygons [19, 32, 16].

SoCG 2019

33:10 Counting Polygon Triangulations is Hard

0 0 0 10

01 1 01 01

1 1 0 1

110 0 0 0

001 1 1 1

Figure 6 Encoding the local part of a triangulation by a sequence of bits.

I Lemma 13. Let ΠS be the polygon formed by intersecting polygon PA with the convex hull
of gadget S, as in Lemma 8. Let ` be the number of lens vertices of ΠS (2a for a blue gadget,
2a+ 2b for a red gadget). Then the number of triangulations of ΠS is Θ(2`/

√
`).

Proof. One can obtain Ω(2`/
√
`) triangulations by choosing a maximal set of non-crossing

lens-to-lens diagonals in ΠS , which form the edges of a triangulation of the convex hull of
the two lenses, and then choosing arbitrarily a triangulation of the remaining polygons of
O(1) vertices on either side of the convex hull of the two lenses. The triangles within any
triangulation of the convex hull of the two lenses have a path as their dual graph, and if they
are ordered along the path then the triangulation itself is determined by a sequence of bits
(one bit per triangle) that denote whether each triangle includes an edge of one lens or of the
other lens [22] (Figure 5). There are `− 2 bits in the sequence, exactly half of which must
be zeros and half of which must be ones, so the number of these triangulations is(

`− 2
(`− 2)/2

)
= Ω

(
2`

√
`

)
.

In the other direction, we can produce an overestimate of the number of distinct local
parts of triangulations of ΠS by a similar method of counting balanced binary strings of
slightly greater length. As in Figure 5, consider one of the two lenses as being “upper”
(labeled by 1’s in the binary string) and the other as being “lower” (labeled by 0’s). Similarly,
we can describe the two sides of the tube of the gadget as being left or right. Suppose also
that each side of a tube of the given gadget has t internal vertices (vertices that do not
belong to either lens). We describe the local part of a triangulation by a sequence of bits, as
follows (Figure 6):

t blocks of 0-bits, each terminated by a single 1-bit, specifying how many edges of the
lower lens form triangles whose apex is at each of the internal vertices of the left tube.
t blocks of 1-bits, each terminated by a single 0-bit, specifying how many edges of the
upper lens form triangles whose apex is at each of the internal vertices of the left tube.

D. Eppstein 33:11

Figure 7 The twelve-sided polygon in the center of two crossing red gadgets.

A sequence of bits as before describing the left-to-right sequence of triangles that have all
three vertices on the two lenses, with a 0-bit for a triangle with a side on the lower lens
and a 1-bit for a triangle with a side on the upper lens.
t blocks of 0-bits, each terminated by a single 1-bit, specifying how many edges of the
lower lens form triangles whose apex is at each of the internal vertices of the right tube.
t blocks of 1-bits, each terminated by a single 0-bit, specifying how many edges of the
upper lens form triangles whose apex is at each of the internal vertices of the right tube.

The resulting sequence of bits uniquely describes each distinct local part, has 2` − 2 + 4t
bits, and has equal numbers of 0- and 1-bits. Not all such sequences of bits describe a valid
local part (they may specify triangles connecting the lower and upper lenses to the tubes
that cross each other) but this is non-problematic. There are O(2`/

√
`) possible sequences of

bits of this type, so there are O(2`/
√
`) local parts of triangulations of ΠS . Each local part

leaves remaining untriangulated regions on the left and right sides of ΠS with a bounded
total number of vertices (as in the proof of Lemma 12) so it can be extended to a complete
triangulation in O(1) distinct ways. Therefore, the total number of triangulations of ΠS is
O(2`/

√
`). J

4.4 Global counting
The key properties of the number of triangulations of PA (with an appropriate choice of a
and b) that allow us to prove our counting reduction are that

the number of triangulations coming from any particular maximum non-crossing subset
of A can be determined only from n and the number of red segments in the subset, and
non-crossing subsets that use fewer segments than the maximum, or that use the maximum
total number of segments but fewer than the maximum possible number of red segments,
contribute a negligible fraction of the total number of triangulations.

In this section we make these notions precise.

I Definition 14. We define the following numerical parameters:
α is the number of triangulations of ΠS for a blue gadget S, as bounded asymptotically
as a function of parameter a by Lemma 13.

SoCG 2019

33:12 Counting Polygon Triangulations is Hard

β is the number of triangulations of ΠS for a red gadget S, as bounded asymptotically as
a function of parameters a and b by Lemma 13.
γ is the number of triangulations of the twelve-sided polygon formed in the center of two
crossing red gadgets by the four shared vertices of the two gadgets and their four neighbors
in each gadget (Figure 7).
qn,r, for any n ≥ 0 and 0 ≤ r ≤ n/2, is αn−rβrγ(n−2r)/2a2r(a+ b)2(n−r)23r.

We do not derive an explicit formula for α and β. Therefore, it is important for us that
they can be calculated in polynomial time by dynamic programming, as (for appropriate
choices of a and b) they count triangulations of simple polygons of polynomial size.

I Lemma 15. Let A be a red–blue arrangement with n red and n blue segments. Let Ξ be
a maximum non-crossing subset of A, with r = r(Ξ) red segments. Then the number of
triangulations of PA in which Ξ forms the active set is qn,r.

Proof. By Lemma 8, the triangulations with Ξ active can be partitioned into the polygons
ΠS for the active segments of Ξ and the remaining sub-polygons left by the removal of these
polygons, each of which can be triangulated independently and each of which contributes a
term to the product in the definition of qn,r. There are r active red segments and n− r active
blue segments, each of which contributes a factor of β or α (respectively) to the product by
which qn,r was defined. There are 2r lenses of passive blue segments and 2(n − r) lenses
of passive red segments, each of which contributes a term of a or (a + b) to the product,
respectively, by Lemma 10.

The r active red segments and r passive red segments that they cross leave n− 2r red
segments that are passive but not crossed by another red segment. These n−2r red segments
form (n− 2r)/2 twelve-sided polygons where their gadgets cross each other in pairs, with
each pair contributing a factor of γ to the product.

The remaining factor of 23r in the product comes from the r passive blue gadgets, each
of which has a central quadrilateral between the two red active segments that cross it, and
from the r passive red gadgets that are crossed by an active red gadget, each of which has
two central quadrilaterals between the consecutive pairs of the three active segments that
cross it. These 3r quadrilaterals each can be triangulated in two ways. J

I Corollary 16. Let a ≥ b. Then qn,r/qn,r−1 = Θ(22b).

Proof. Increasing the exponent of β by one and decreasing the exponent of α by one leads
to the 22b change in the total. All of the other changes to the formula for qn,r are bounded
either by a constant (independent of a and b) or by a power of a/(a+ b), which is at least
1/2 by the assumption that a ≥ b. J

I Lemma 17. Suppose the parameters a and b are both upper-bounded by polynomials of n.
Then

log2 qn,r = 2an+ 2rb±O(n logn),

where the constant in the O-notation depends on the bounds on a and b.

Proof. In the formula for qn,r, each factor of α contributes 2a−O(logn) to the logarithm,
each factor of β contributes 2a+ 2b− O(logn), each factor of a or b contributes O(logn),
and each factor of γ or 2 contributes O(1). The result follows by adding these contributions
according to their exponents. J

D. Eppstein 33:13

I Lemma 18. Suppose the parameters a and b are both upper-bounded by polynomials of n.
Let p denote the number of triangulations of PA that do not have a maximum non-crossing
subset of A as their active set. Then

log2 p ≤ 2a(n− 1) + 2b(n− 1) +O(n logn).

Proof. There are 22n subsets of the 2n segments of A, and a smaller number of these
subsets that can be a non-maximum active set of a triangulation. The choice of this subset
adds O(n) to the logarithm. For each non-maximum active set, there can be at most
n− 1 active segments, and the triangulations of the corresponding polygons adds at most
2a(n− 1) + 2b(n− 1)−O(n logn) to the logarithm. The local parts of the passive gadgets
can be chosen in a number of ways per gadget that is polynomial in a and b, adding another
O(n logn) term to the logarithm. Once the active gadgets have been triangulated and the
local parts of the passive gadgets have been chosen, the regions that remain to be triangulated
have a total of O(n) vertices, so the number of ways to triangulate them contributes another
O(n) to the logarithm. J

4.5 Completing the reduction
We have already described how to transform an arrangement A into a polygon PA, modulo
the choice of the parameters a and b. To complete the description of our reduction, we need
to set a and b and we need to describe how to recover the number of maximum non-crossing
subsets of A from the number N of triangulations of PA.

Given a red–blue arrangement A with n red and n blue segments, set b = 2n. By
Corollary 16, qn,r−1 and qn,r differ by a factor of approximately 24n, much larger than the
22n bound on the total number of non-crossing sets of segments. Therefore, for any given r
and for all sufficiently large n, the number of triangulations with a maximum non-crossing
set of active segments that includes fewer than r red segments is strictly less than qn,r. Next,
set a = 3n2. This is large enough that, comparing the bounds of Lemma 17 and Lemma 18,
the number p of triangulations whose active set is non-maximum is strictly smaller than qn,0,
as the O(n logn) term and larger multiple of b in the formula for log2 p are not large enough
to make up for the smaller multiple of a in the same formula.

With these choices of a and b, the same reasoning also shows that (for all sufficiently
large n) the total number of triangulations of any PA′ for any arrangement A′ with fewer
red and blue segments than A is strictly smaller than qn,0. Therefore, from the total number
N of triangulations of PA we can unambiguously determine the size of A.

With these considerations, we are ready to prove the correctness of our reduction:

Proof of Theorem 1. Counting triangulations of a given polygon P is in #P by Lemma 2,
so we can complete the proof by describing a polynomial-time counting reduction from the
number of maximum non-crossing subsets of a red–blue arrangement A (proved #P-hard
in Lemma 6). To transform A into a polygon, let n be the number of red segments in A.
Our reduction will work for all sufficiently large n; for the bounded values of n that are not
sufficiently large, directly compute the number of maximum non-crossing subsets of A and
construct a polygon with the same number of triangulations using the formula for numbers
of triangulations of lens polygons of Lemma 10. Otherwise, choose a = 4n2 and b = 3n as
above, and construct the polygon PA. To transform the number N of triangulations of the
given polygon into the number of maximum non-crossing subsets of A, first check whether
this number is sufficiently small that it comes from our special-case construction for bounded
values of n. If so, directly decode it to the number of maximum non-crossing subsets.

SoCG 2019

33:14 Counting Polygon Triangulations is Hard

In the remaining case, recover n as the unique value that could have produced a polygon
PA with N triangulations. For each choice of r from n down to 0 (in decreasing order)
compute the number of maximum non-crossing subsets with r red segments as bN ′/qn,rc
(where N ′ starts with the value N and is reduced as the algorithm progresses) and then
replace N ′ by N ′ mod qn,r before proceeding to the next value of r. Sum the numbers of
maximum-non-crossing subsets obtained for each value of r to obtain the total number of
maximum non-crossing subsets.

When computing the number of non-crossing subsets for each value of r, the contributions
from triangulations whose active segments include more red segments than r will already
have been subtracted off, by induction. The contributions from triangulations whose active
segments include fewer red segments than r, or from triangulations that do not have maximum
non-crossing sets of active segments, will sum to less than a single multiple of the number of
triangulations for each non-crossing set with the given number of red segments, as discussed
above. Therefore, each number of non-crossing subsets is computed correctly. J

5 Conclusions and open problems

We have shown that counting triangulations of polygons (with holes) is #P-complete under
Turing reductions. It would be of interest to tighten this result to show completeness under
counting reductions, or even under parsimonious reductions. Can this be done, either by
strengthening the type of reduction used for the underlying graph problem that we reduce
from (independent sets in regular planar graphs) or by finding a different reduction for
triangulations that bypasses the Turing reductions used for this graph problem?

In a triangulation of a polygon with holes, every hole has a diagonal connecting its
leftmost vertex to a vertex to the left of it in another boundary component. By testing all
combinations of these left diagonals, and using dynamic programming to count triangulations
of the simple polygon formed by cutting the input along one of these sets of diagonals (avoiding
triangulations that use previously-tested diagonals) it is possible to count triangulations of
an n-vertex polygon with h holes in time O(nh+3). Is the dependence on h in the exponent
of n necessary, or is there a fixed-parameter tractable algorithm for this problem?

More generally, there are many other counting problems in discrete geometry for which
we neither know a polynomial time algorithm nor a hardness proof. For instance, we do not
know the complexity of counting triangulations, planar graphs, non-crossing Hamiltonian
cycles, non-crossing spanning trees, or non-crossing matchings of sets of n points in the plane.
Are these problems hard?

References
1 Oswin Aichholzer, Victor Alvarez, Thomas Hackl, Alexander Pilz, Bettina Speckmann, and

Birgit Vogtenhuber. An improved lower bound on the minimum number of triangulations. In
Sándor Fekete and Anna Lubiw, editors, Proceedings of the 32nd International Symposium
on Computational Geometry (SoCG 2016), volume 51 of Leibniz International Proceedings in
Informatics (LIPIcs), pages A7:1–A7:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.SoCG.2016.7.

2 Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado, Hannes Krasser, and
Birgit Vogtenhuber. On the number of plane geometric graphs. Graphs and Combinatorics,
23(suppl. 1):67–84, 2007. doi:10.1007/s00373-007-0704-5.

3 Oswin Aichholzer, Ferran Hurtado, and Marc Noy. A lower bound on the number of triangu-
lations of planar point sets. Comput. Geom. Theory and Applications, 29(2):135–145, 2004.
doi:10.1016/j.comgeo.2004.02.003.

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.7
http://dx.doi.org/10.1007/s00373-007-0704-5
http://dx.doi.org/10.1016/j.comgeo.2004.02.003

D. Eppstein 33:15

4 Oswin Aichholzer, David Orden, Francisco Santos, and Bettina Speckmann. On the number of
pseudo-triangulations of certain point sets. J. Combin. Theory Ser. A, 115(2):254–278, 2008.
doi:10.1016/j.jcta.2007.06.002.

5 Victor Alvarez, Karl Bringmann, Radu Curticapean, and Saurabh Ray. Counting triangulations
and other crossing-free structures via onion layers. Discrete Comput. Geom., 53(4):675–690,
2015. doi:10.1007/s00454-015-9672-3.

6 Victor Alvarez, Karl Bringmann, Saurabh Ray, and Raimund Seidel. Counting triangulations
and other crossing-free structures approximately. Comput. Geom. Theory and Applications,
48(5):386–397, 2015. doi:10.1016/j.comgeo.2014.12.006.

7 Victor Alvarez and Raimund Seidel. A simple aggregative algorithm for counting triangulations
of planar point sets and related problems. In Timothy Chan and Rolf Klein, editors, Proceedings
of the 29th Annual Symposium on Computational Geometry (SoCG’13), pages 1–8, New York,
2013. ACM. doi:10.1145/2462356.2462392.

8 Emile E. Anclin. An upper bound for the number of planar lattice triangulations. J. Combin.
Theory Ser. A, 103(2):383–386, 2003. doi:10.1016/S0097-3165(03)00097-9.

9 Takao Asano, Tetsuo Asano, and Hiroshi Imai. Partitioning a polygonal region into trapezoids.
J. ACM, 33(2):290–312, 1986. doi:10.1145/5383.5387.

10 Andrei Asinowski and Günter Rote. Point sets with many non-crossing perfect matchings.
Comput. Geom. Theory and Applications, 68:7–33, 2018. doi:10.1016/j.comgeo.2017.05.006.

11 Marshall W. Bern and David Eppstein. Mesh generation and optimal triangulation. In
Ding-Zhu Du and Frank K. Hwang, editors, Computing in Euclidean Geometry, volume 4 of
Lecture Notes Series on Computing, pages 47–123. World Scientific, 2nd edition, 1995.

12 Sergei Bespamyatnikh. An efficient algorithm for enumeration of triangulations. Comput.
Geom. Theory and Applications, 23(3):271–279, 2002. doi:10.1016/S0925-7721(02)00111-6.

13 Hervé Brönnimann, Lutz Kettner, Michel Pocchiola, and Jack Snoeyink. Counting and
enumerating pointed pseudotriangulations with the greedy flip algorithm. SIAM J. Comput.,
36(3):721–739, 2006. doi:10.1137/050631008.

14 Jérémie Chalopin and Daniel Gonçalves. Every planar graph is the intersection graph of
segments in the plane: extended abstract. In Michael Mitzenmacher, editor, Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, pages 631–638, 2009. doi:10.1145/1536414.1536500.

15 Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid.
Combinatorica, 10:41–51, 1990. doi:10.1007/BF02122694.

16 Q. Ding, J. Qian, W. Tsang, and C. Wang. Randomly generating triangulations of a simple
polygon. In Lusheng Wang, editor, Computing and Combinatorics: 11th Annual International
Conference, COCOON 2005, Kunming, China, August 16–19, 2005, Proceedings, volume
3595 of Lecture Notes in Computer Science, pages 471–480. Springer, Berlin, 2005. doi:
10.1007/11533719_48.

17 Adrian Dumitrescu, André Schulz, Adam Sheffer, and Csaba D. Tóth. Bounds on the maximum
multiplicity of some common geometric graphs. SIAM J. Discrete Math., 27(2):802–826, 2013.
doi:10.1137/110849407.

18 Martin Dyer, Leslie Ann Goldberg, and Mike Paterson. On counting homomorphisms to
directed acyclic graphs. J. ACM, 54(6):A27:1–A27:23, 2007. doi:10.1145/1314690.1314691.

19 Peter Epstein and Jörg-Rüdiger Sack. Generating triangulations at random. ACM Trans.
Model. Comput. Simul., 4(3):267–278, 1994. doi:10.1145/189443.189446.

20 Philippe Flajolet and Marc Noy. Analytic combinatorics of non-crossing configurations. Discrete
Math., 204(1-3):203–229, 1999. doi:10.1016/S0012-365X(98)00372-0.

21 Alfredo García, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-free
subgraphs of KN . Comput. Geom. Theory and Applications, 16(4):211–221, 2000. doi:
10.1016/S0925-7721(00)00010-9.

22 Ferran Hurtado, Marc Noy, and Jorge Urrutia. Flipping edges in triangulations. Discrete
Comput. Geom., 22(3):333–346, 1999. doi:10.1007/PL00009464.

SoCG 2019

http://dx.doi.org/10.1016/j.jcta.2007.06.002
http://dx.doi.org/10.1007/s00454-015-9672-3
http://dx.doi.org/10.1016/j.comgeo.2014.12.006
http://dx.doi.org/10.1145/2462356.2462392
http://dx.doi.org/10.1016/S0097-3165(03)00097-9
http://dx.doi.org/10.1145/5383.5387
http://dx.doi.org/10.1016/j.comgeo.2017.05.006
http://dx.doi.org/10.1016/S0925-7721(02)00111-6
http://dx.doi.org/10.1137/050631008
http://dx.doi.org/10.1145/1536414.1536500
http://dx.doi.org/10.1007/BF02122694
http://dx.doi.org/10.1007/11533719_48
http://dx.doi.org/10.1007/11533719_48
http://dx.doi.org/10.1137/110849407
http://dx.doi.org/10.1145/1314690.1314691
http://dx.doi.org/10.1145/189443.189446
http://dx.doi.org/10.1016/S0012-365X(98)00372-0
http://dx.doi.org/10.1016/S0925-7721(00)00010-9
http://dx.doi.org/10.1016/S0925-7721(00)00010-9
http://dx.doi.org/10.1007/PL00009464

33:16 Counting Polygon Triangulations is Hard

23 F. Jaeger, D. L. Vertigan, and D. J. A. Welsh. On the computational complexity of the
Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc., 108(1):35–53, 1990.
doi:10.1017/S0305004100068936.

24 Volker Kaibel and Günter M. Ziegler. Counting lattice triangulations. In C. D. Wensley, editor,
Surveys in Combinatorics 2003: Papers from the 19th British Combinatorial Conference
held at the University of Wales, Bangor, June 29–July 4, 2003, volume 307 of London
Math. Soc. Lecture Note Ser., pages 277–307. Cambridge Univ. Press, Cambridge, UK, 2003.
arXiv:math/0211268.

25 Pegah Kamousi and Subhash Suri. Stochastic minimum spanning trees and related problems.
In Philippe Flajolet and Daniel Panario, editors, Proceedings of the Eighth Workshop on
Analytic Algorithmics and Combinatorics, ANALCO 2011, San Francisco, California, USA,
January 22, 2011, pages 107–116. SIAM, 2011. doi:10.1137/1.9781611973013.12.

26 Goos Kant and Hans L. Bodlaender. Triangulating planar graphs while minimizing the
maximum degree. Inform. and Comput., 135(1):1–14, 1997. doi:10.1006/inco.1997.2635.

27 Marek Karpinski, Andrzej Lingas, and Dzmitry Sledneu. A QPTAS for the base of the number
of crossing-free structures on a planar point set. Theoretical Computer Science, 711:56–65,
2018. doi:10.1016/j.tcs.2017.11.003.

28 Nathan Linial. Hard enumeration problems in geometry and combinatorics. SIAM J. Algebraic
Discrete Methods, 7(2):331–335, 1986. doi:10.1137/0607036.

29 Anna Lubiw. Decomposing polygonal regions into convex quadrilaterals. In Joseph O’Rourke,
editor, Proceedings of the 1st Symposium on Computational Geometry, Baltimore, Maryland,
USA, June 5-7, 1985, pages 97–106, New York, 1985. ACM. doi:10.1145/323233.323247.

30 Dániel Marx and Tillmann Miltzow. Peeling and nibbling the cactus: subexponential-time
algorithms for counting triangulations and related problems. In Sándor Fekete and Anna
Lubiw, editors, Proceedings of the 32nd International Symposium on Computational Geometry
(SoCG 2016), volume 51 of Leibniz International Proceedings in Informatics (LIPIcs), pages
A52:1–A52:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.SoCG.2016.52.

31 Alexander Pilz and Carlos Seara. Convex quadrangulations of bichromatic point sets.
In Proceedings of the 33rd European Workshop on Computational Geometry (EuroCG
2017), 2017. URL: https://mat-web.upc.edu/people/carlos.seara/data/publications/
internationalConferences/EuroCG-17_paper_23.pdf.

32 Saurabh Ray and Raimund Seidel. A simple and less slow method for counting triangulations
and for related problems. In Proceedings of the 20th European Workshop on Computational
Geometry (EuroCG 2004), 2004. URL: https://hdl.handle.net/11441/55368.

33 Francisco Santos and Raimund Seidel. A better upper bound on the number of triangulations
of a planar point set. J. Combin. Theory Ser. A, 102(1):186–193, 2003. doi:10.1016/
S0097-3165(03)00002-5.

34 Edward R. Scheinerman. Intersection Classes and Multiple Intersection Parameters of Graphs.
PhD thesis, Princeton University, 1984.

35 Walter Schnyder. Embedding planar graphs on the grid. In David S. Johnson, editor,
Proceedings of the First Annual ACM–SIAM Symposium on Discrete Algorithms, SODA
1990, 22-24 January 1990, San Francisco, California, USA, pages 138–148, 1990. URL:
https://dl.acm.org/citation.cfm?id=320176.320191.

36 Raimund Seidel. On the number of triangulations of planar point sets. Combinatorica,
18(2):297–299, 1998. doi:10.1007/PL00009823.

37 Micha Sharir and Adam Sheffer. Counting triangulations of planar point sets. Electron. J.
Combin., 18(1):P70:1–P70:74, 2011. URL: https://emis.ams.org/journals/EJC/Volume_
18/PDF/v18i1p70.pdf.

38 Micha Sharir, Adam Sheffer, and Emo Welzl. Counting plane graphs: perfect matchings,
spanning cycles, and Kasteleyn’s technique. J. Combin. Theory Ser. A, 120(4):777–794, 2013.
doi:10.1016/j.jcta.2013.01.002.

http://dx.doi.org/10.1017/S0305004100068936
http://arxiv.org/abs/math/0211268
http://dx.doi.org/10.1137/1.9781611973013.12
http://dx.doi.org/10.1006/inco.1997.2635
http://dx.doi.org/10.1016/j.tcs.2017.11.003
http://dx.doi.org/10.1137/0607036
http://dx.doi.org/10.1145/323233.323247
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.52
https://mat-web.upc.edu/people/carlos.seara/data/publications/internationalConferences/EuroCG-17_paper_23.pdf
https://mat-web.upc.edu/people/carlos.seara/data/publications/internationalConferences/EuroCG-17_paper_23.pdf
https://hdl.handle.net/11441/55368
http://dx.doi.org/10.1016/S0097-3165(03)00002-5
http://dx.doi.org/10.1016/S0097-3165(03)00002-5
https://dl.acm.org/citation.cfm?id=320176.320191
http://dx.doi.org/10.1007/PL00009823
https://emis.ams.org/journals/EJC/Volume_18/PDF/v18i1p70.pdf
https://emis.ams.org/journals/EJC/Volume_18/PDF/v18i1p70.pdf
http://dx.doi.org/10.1016/j.jcta.2013.01.002

D. Eppstein 33:17

39 Micha Sharir and Emo Welzl. On the number of crossing-free matchings, cycles, and partitions.
SIAM J. Comput., 36(3):695–720, 2006. doi:10.1137/050636036.

40 Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM J.
Comput., 31(2):398–427, 2001. doi:10.1137/S0097539797321602.

41 L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

42 Manuel Wettstein. Counting and enumerating crossing-free geometric graphs. J. Comput.
Geom., 8(1):47–77, 2017. URL: https://jocg.org/index.php/jocg/article/view/280.

43 Mingji Xia, Peng Zhang, and Wenbo Zhao. Computational complexity of counting problems
on 3-regular planar graphs. Theoretical Computer Science, 384(1):111–125, 2007. doi:
10.1016/j.tcs.2007.05.023.

SoCG 2019

http://dx.doi.org/10.1137/050636036
http://dx.doi.org/10.1137/S0097539797321602
http://dx.doi.org/10.1016/0304-3975(79)90044-6
https://jocg.org/index.php/jocg/article/view/280
http://dx.doi.org/10.1016/j.tcs.2007.05.023
http://dx.doi.org/10.1016/j.tcs.2007.05.023

Topologically Trivial Closed Walks in Directed
Surface Graphs
Jeff Erickson
University of Illinois at Urbana-Champaign, Urbana, IL, USA
jeffe@illinois.edu

Yipu Wang
University of Illinois at Urbana-Champaign, Urbana, IL, USA
ywang298@illinois.edu

Abstract
Let G be a directed graph with n vertices and m edges, embedded on a surface S, possibly with
boundary, with first Betti number β. We consider the complexity of finding closed directed walks
in G that are either contractible (trivial in homotopy) or bounding (trivial in integer homology)
in S. Specifically, we describe algorithms to determine whether G contains a simple contractible
cycle in O(n+m) time, or a contractible closed walk in O(n+m) time, or a bounding closed walk
in O(β(n+m)) time. Our algorithms rely on subtle relationships between strong connectivity in G
and in the dual graph G?; our contractible-closed-walk algorithm also relies on a seminal topological
result of Hass and Scott. We also prove that detecting simple bounding cycles is NP-hard.

We also describe three polynomial-time algorithms to compute shortest contractible closed walks,
depending on whether the fundamental group of the surface is free, abelian, or hyperbolic. A key
step in our algorithm for hyperbolic surfaces is the construction of a context-free grammar with
O(g2L2) non-terminals that generates all contractible closed walks of length at most L, and only
contractible closed walks, in a system of quads of genus g ≥ 2. Finally, we show that computing
shortest simple contractible cycles, shortest simple bounding cycles, and shortest bounding closed
walks are all NP-hard.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases computational topology, surface-embedded graphs, homotopy, homology,
strong connectivity, hyperbolic geometry, medial axes, context-free grammars

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.34

Category Regular Paper

Related Version A full version of this paper is available at arXiv:1812.01564 [30].

Funding Research on this paper was partially supported by NSF grant CCF-1408763.

Acknowledgements The first author would like to thank Tillmann Miltzow for asking an annoying
question that led to this work, and to apologize for still being unable to answer it.

1 Introduction

A key step in several algorithms for surface-embedded graphs is finding a shortest closed walk
and/or simple cycle in the input graph with some interesting topological property. There is a
large body of work on finding short interesting walks and cycles in undirected surface graphs,
starting with Thomassen’s seminal 3-path condition [49,55]. For example, efficient algorithms
are known for computing shortest non-contractible and non-separating cycles [7,12,27,28,46],
shortest contractible closed walks [10], simple cycles that are shortest in their own homotopy
class [11], and shortest closed walks in a given homotopy [18] or homology class [29], and for
detecting simple cycles that are either contractible, non-contractible, or non-separating [9].
On the other hand, several related problems are known to be NP-hard, including computing

© Jeff Erickson and Yipu Wang;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 34; pp. 34:1–34:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jeffe@illinois.edu
mailto:ywang298@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.34
https://arxiv.org/abs/1812.01564
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Topologically Trivial Closed Walks in Directed Surface Graphs

shortest splitting closed walks [13], computing shortest separating cycles [6], computing
shortest closed walks in a given homology class [14], and deciding whether a surface graph
contains a simple separating or splitting cycle [9].

Directed surface graphs are much less understood, in part because they do not share
convenient properties of undirected graphs, such as Thomassen’s 3-path condition [49,55],
or the assumption that if shortest paths are unique, then two shortest paths cross at most
once [26]. The first progress in this direction was a pair of algorithms by Cabello, Colin
de Verdière, and Lazarus [8], which compute shortest non-contractible and non-separating
cycles in directed surface graphs, with running times O(n2 logn) and O(g1/2n3/2 logn).
Erickson and Nayyeri described an algorithm to compute the shortest non-separating cycles
in 2O(g)n logn time [29]. Later Fox [33] described algorithms to compute shortest non-
contractible cycles in O(β3n logn) time and shortest non-separating cycles in O(β2n logn)
time on surfaces with first Betti number β. (As in previous papers, the input size n is the
total number of vertices and edges in the input graph.)

This paper describes the first algorithms and hardness results for finding topologically
trivial closed walks in directed surface graphs. Our results extend similar results of Cabello,
Colin de Verdière, and Lazarus [6, 9] for undirected surface graphs; however, our algorithms
require several new techniques, both in design and analysis. (On the other hand, our NP-
hardness proofs are actually simpler than the corresponding proofs for undirected graphs!)

We present results for eight different problems, determined by three independent design
choices. First, we consider two types of “trivial” closed walks: contractible walks, which can
be continuously deformed to a point, and bounding walks, which are weighted sums of face
boundaries. (See Section 2 for more detailed definitions.) Second, like Cabello et al. [6, 8, 9],
we carefully distinguish between closed walks and simple cycles throughout the paper. Finally,
we consider two different goals: deciding whether a given directed graph contains a trivial
cycle or closed walk, and finding the shortest trivial cycle or closed walk in a given directed
graph (possibly with weighted edges). Crucially, our algorithms do not assume that the faces
of the input embedding are open disks. Our results are summarized in Table 1.

Table 1 Our results; β is the first Betti number of the underlying surface.

Structure Surface Any Shortest
Simple contractible cycle any O(n) NP-hard
Contractible closed walk annulus O(n) O(n2 log logn)

torus O(n) O(n3 log logn)
boundary O(n) O(β5n3)

other O(n) O(β6n9)
Simple bounding cycle any NP-hard NP-hard
Bounding closed walk any O(βn) NP-hard

In Section 3, we describe linear-time algorithms to determine whether a directed surface
graph contains a simple contractible cycle or a contractible closed walk, matching similar
algorithms for undirected graphs by Cabello et al. [9]. Our algorithms are elementary: After
removing some obviously useless edges, we report success if and only if some face of the input
embedding has a (simple) contractible boundary. However, the proofs of correctness require
careful analysis of the dual graphs, and the correctness proof for contractible closed walks
relies on a subtle topological lemma of Hass and Scott [38]. These two problems are nontrivial
for directed graphs even if every face of the input embedding is a disk; see Figure 1.

J. Erickson and Y. Wang 34:3

Figure 1 A cellularly embedded directed graph with no contractible or bounding closed walks.

In Section 4, we describe an algorithm to determine whether a directed surface graph
contains a bounding closed walk in O(βn) time. We exploit a careful analysis of the interplay
between strong connectivity in the input graph G and its dual graph G?. With some
additional effort, our algorithm can return an explicit description of a bounding closed walk
in O(n2) time if one exists; in the full paper [30, Section 4.2] we prove that this quadratic
upper bound is optimal. This problem can be reduced to finding zero cycles in periodic (or
“dynamic”) graphs [17,40,45]; a periodic graph is a graph whose edges are labeled with integer
vectors; a zero cycle is a closed walk whose edge labels sum to the zero vector. However, all
algorithms known for finding zero cycles rely on linear programming, and thus are much
more complex and much less efficient than the specialized algorithm we present.

Next, we propose three polynomial-time algorithms to compute shortest contractible
closed walks. Each of our algorithms is designed for a different class of surfaces, depending
whether the surface’s fundamental group is abelian (the annulus and the torus), free (any
surface with boundary), or hyperbolic (everything else). Our algorithm for the annulus
and torus uses a standard covering-space construction, together with a recent algorithm of
Mozes et al. [50]. For graphs on surfaces with boundary, we exploit the fact that the set of
trivial words for any finitely-generated free group is a context-free language [51, 54]; this
observation allows us to reduce to a small instance of the CFG shortest path problem [3,4,56].
We describe these two algorithms in detail in the full paper [30, Section 6]. In Section 5,
we describe our algorithm for hyperbolic surfaces, which also reduces to CFG shortest
paths; the main technical hurdle is the construction of an appropriate context-free grammar.
Specifically, for any integers g ≥ 2 and L ≥ 0, we construct a context-free grammar with
O(g2L2) nonterminals, in Chomsky normal form, that generates all contractible closed walks
of length L, and only contractible closed walks, in a canonical genus-g surface map called
a system of quads [31, 47]. Our construction exploits well-known geometric properties of
hyperbolic tilings.

Finally, in the full paper [30, Section 5], we prove that detecting simple bounding
cycles, finding shortest simple contractible cycles, and finding shortest bounding closed
walks are all NP-hard. Cabello [6] described a polynomial-time algorithm to compute the
shortest simple contractible cycle in an undirected surface graph; thus, our reduction for
that problem makes essential use of the fact that the input graph is directed. Cabello [6]
and Cabello et al. [9] proved that the other two problems are NP-hard in undirected surface
graphs. Our NP-hardness proofs closely follow theirs but are slightly simpler.

2 Background

Directed graphs. Let G be an arbitrary directed graph, possibly with loops and parallel
edges. Each edge of G is directed from one endpoint, called its tail, to the other endpoint,
called its head. An edge is a loop if its head and tail coincide. At the risk of confusing the
reader, we sometimes write u�v to denote an edge with tail u and head v.

SoCG 2019

34:4 Topologically Trivial Closed Walks in Directed Surface Graphs

A walk in G is an alternating sequence of vertices and edges v0�v1� · · ·�v`, where
vi�vi+1 is an edge in G for each index i; this walk is closed if v0 = v`. A simple cycle is a
closed walk that visits each vertex at most once. An edge cut in a directed graph G is a
nonempty subset X of edges such that G \X has two components, one containing the tails
of edges in X, and other containing the heads of edges in X. A directed graph is strongly
connected if it contains a walk from any vertex to any other vertex, or equivalently, if it
contains no edge cuts.

An (integer) circulation in a directed graph G is a function φ : E(G)→ N that satisfies
the balance constraint

∑
u�v φ(u�v) =

∑
v�w φ(v�w) for every vertex v. The support of φ

is the subset of edges e such that φ(e) > 0. An Euler tour of φ is a closed walk that traverses
each edge e exactly φ(e) times; such a walk exists if and only if the support of φ is connected.

Surfaces, embeddings, and duality. A surface is a 2-manifold, possibly with boundary.
A surface is orientable if it does not contain a Möbius band; we explicitly consider only
orientable surfaces in this paper.A closed curve on a surface S is (the image of) a continuous
map γ : S1 ↪→ S; a closed curve is simple if this map is injective. The boundary ∂S of S
consists of disjoint simple closed curves; the interior of S is the complement S◦ = S \ ∂S.
The genus of S is the maximum number of disjoint simple closed curves in S◦ whose deletion
leaves the surface connected. Up to homeomorphism, there is exactly one orientable surface
with genus g and b boundary cycles, for any non-negative integers g and b. The first Betti
number of an orientable surface is either 2g if b = 0, or 2g + b− 1 if b > 0.

An embedding of G on a surface S is a continuous map that sends vertices of G to distinct
points in S◦, and sends edges to interior-disjoint simple paths in S◦ from their tails to their
heads. In particular, if G contains two anti-parallel edges u�v and its reversal v�u, those
edges are embedded as interior-disjoint paths. The embedding of G maps every (simple)
closed walk in G to a (simple) closed curve in S◦; we usually do not distinguish between a
closed walk in G and its image in S.

We explicitly consider graphs with loops and parallel edges; however, without loss of
generality, we assume that no loop edge is the boundary of a disk, and no two parallel edges
are the boundary of a disk. With this assumption, Euler’s formula implies that a graph with
n vertices on a surface with first Betti number β has at most O(n+ β) edges.

A face of an embedding is a component of the complement of the image of the graph.
An embedding is cellular if every face is homeomorphic to an open disk. Unlike most
previous papers, we explicitly consider non-cellular graph embeddings; a single face can have
disconnected boundary and/or positive genus. Each directed edge e in a surface graph lies
on the boundary of two (possibly equal) faces, called the left shore and right shore of e. We
sometimes write f�f ′ to denote a directed edge whose left shore is f and whose right shore
is f ′. A boundary face of the embedding is any face that intersects the boundary of S.

A dual walk is an alternating sequence of faces and edges f0�f1� · · · �f`, where fi�fi+1 is
an edge in G for each index i. A dual walk is closed if its initial face f0 and final face f`
coincide; a dual walk is simple if the faces fi are distinct (except possibly f0 = f`). A simple
closed dual walk is called a cocycle. A minimal edge cut in a surface graph is the disjoint
union of at most g + 1 cocycles.

Every surface embedding of a directed graph G defines a directed dual graph G?, with
one vertex f? for each face f of G, and one edge e? for each edge e of G. Specifically, for any
edge e in G, we have tail(e?) = left(e)? and head(e?) = right(e)?, as shown in Figure 2. We
will treat G? exclusively as an abstract directed graph. Every dual walk in G corresponds to
a walk in G?; in particular, every cocycle in G corresponds to a cycle in G?.

J. Erickson and Y. Wang 34:5

f g g*f*

Figure 2 Duality in directed surface graphs.

Contractible and bounding. Let α : [0, 1] → S and β : [0, 1] → S be two (not necessarily
simple) paths in S with the same endpoints. A homotopy between α and β is a continuous
function h : [0, 1]2 → S such that h(s, 0) = α(0) = β(0) and h(s, 1) = α(1) = β(1) for all s,
and h(0, t) = α(t) and h(1, t) = β(t) for all t. Two paths are homotopic, or in the same
homotopy class, if there is a homotopy between them. A closed curve γ in S (or a closed
walk in a surface graph G) is contractible if it is homotopic to a constant function. A simple
closed curve (or a simple cycle in G) is contractible in S if and only if it is the boundary of a
disk in S [25].

Mirroring classical terminology for curves in the plane [1,52], an Alexander numbering for
a surface graph G is a function α : F (G)→ Z that assigns an integer to each face of G, such
that α(f) = 0 for every boundary face f . The boundary ∂α of an Alexander numbering α is a
circulation ∂α : E(G)→ Z, defined by setting ∂α(e) = α(left(e))−α(right(e)). A closed walk
is bounding if and only if it is an Euler tour of some boundary circulation. Equivalently, a
closed walk (or its underlying circulation) is bounding if and only if its integer homology class
is trivial. (We refer to reader to Hatcher [39], Giblin [35], or Edelsbrunner and Harer [23] for
a more through introduction to homology.) On the sphere or the plane, every closed walk is
bounding, and every circulation is a boundary circulation; however, these equivalences do
not extend to other surfaces. (See Figure 1!) A simple cycle γ in G is bounding in S if and
only if S \ γ is disconnected; simple bounding cycles are often called separating cycles.

3 Contractible Cycles and Walks

3.1 Simple Cycles
I Lemma 1. Let G be a directed graph embedded on an orientable surface, and let e be a
directed edge that lies in a directed cocycle of G. No bounding closed walk (and in particular,
no simple contractible cycle) in G traverses e.

Proof. Let λ be a directed cocycle in G, and let ω be a bounding closed walk. Let
φ : E(G)→ N be the boundary circulation defined by setting φ(e) to the number of times
that ω traverses e, and let α : F (G)→ N be an Alexander numbering of ω (so that φ = ∂α).
We immediately have

∑
e∈λ φ(e) =

∑
e∈λ

(
α(right(e))− α(left(e))

)
= 0. Because φ(e) ≥ 0

for every edge e in G, it follows that φ(e) = 0 for every edge e ∈ λ. J

In light of this lemma, we can assume without loss of generality that G contains no
directed cocycles; in particular, no edge of G has the same face on both sides.

The boundary of a face f , denoted ∂f , is the set of edges that have f on one side.
The boundary of f is oriented clockwise if f is the right shore of any edge in ∂f , and
counterclockwise if f is the left shore of any edge in ∂f . Each face in G with counterclockwise

SoCG 2019

34:6 Topologically Trivial Closed Walks in Directed Surface Graphs

boundary appears as a source in the dual graph G?; each face of G with clockwise boundary
appears as a sink in G?. We call a face coherent if its boundary is oriented either clockwise
or counterclockwise, and incoherent otherwise. See Figure 3.

Figure 3 A simple clockwise contractible cycle (bold green) in a directed surface graph, enclosing
four coherent faces: two counterclockwise (shaded blue) and two clockwise (shaded pink).

I Lemma 2. Let G be a directed graph with no cocycles, embedded on an orientable surface S.
If G contains a simple contractible directed cycle, then G has a face whose boundary is a
simple contractible directed cycle.

Proof. Let γ be a simple contractible cycle in G. This cycle is the boundary of a closed
disk D [25]. Without loss of generality, assume γ is oriented clockwise around D, so the right
shore of every edge in γ is a face in D.

A dual walk that starts at a face inside D cannot visit the same face more than once,
because G has no cocycles (G? has no cycles), and cannot cross γ, because γ is oriented
clockwise (all its dual edges point into D). Thus, D must contain at least one face f with
clockwise boundary (a sink in G?). The closure of f is a subset of the closed disk D, so it
must be homeomorphic to a closed disk with zero or more interior holes.

If ∂f is a simple directed cycle, we are done. Otherwise, ∂f is the union of two or more
edge-disjoint simple directed cycles; consider the non-simple shaded face in Figure 3. Each
of these cycles is contractible, because it lies in D. Any simple cycle in ∂f that is not the
original cycle γ (for example, the boundary of any hole in the closure of f) encloses strictly
fewer faces than γ. The lemma now follows immediately by induction on the number of
enclosed faces. J

I Theorem 3. Given an arbitrary directed graph G embedded on an arbitrary orientable
surface, we can determine in O(n) time whether G contains a simple contractible cycle.

Proof. The algorithm proceeds as follows. First, we compute the strong components of the
dual graph G? in O(n) time. An edge e of G lies in a cocycle if and only if both endpoints of
the dual edge e? lie in the same strong component of G?; we remove all such edges from G

in O(n) time. Finally, we examine each face of the remaining subgraph by brute force, in
O(n) time. If any face is an open disk whose boundary is a simple directed cycle, we output
True; otherwise, we output False. Correctness follows from Lemmas 1 and 2. J

3.2 Non-simple Closed Walks
It is easy to construct directed surface graphs that contain contractible closed walks but no
simple contractible cycles. For example, the one-vertex graph in Figure 4 has two Eulerian
circuits, both of which are contractible, but the only simple cycles consist of single edges,
none of which are contractible.

J. Erickson and Y. Wang 34:7

Figure 4 A surface graph with contractible closed walks but no simple contractible cycles.

We detect contractible closed walks using essentially the algorithm described in the
previous section: After removing all cocycle edges, we look for a face whose boundary is
coherent and whose interior is an open disk. However, proving this algorithm correct requires
more subtlety. Here we only sketch a proof of correctness, deferring full details to the full
version [30, Section 3.2].

First, we observe that some shortest contractible closed walk in G is weakly simple,
meaning it can be perturbed in a small neighborhood of the graph into a simple closed
curve [15]. Let ω be a shortest contractible closed walk in G, and let ω̃ be a generic
perturbation of ω on the surface. A seminal result of Hass and Scott [38, Theorem 2.7]
implies that if ω̃ is not already simple, then it contains either a simple contractible closed
subpath, which we call a monogon, or a pair of simple interior-disjoint subpaths that bound
a disk, which we call a bigon. We call a bigon coherent if one subpath is homotopic to the
reverse of the other, and incoherent otherwise. See Figure 5. If ω̃ contained a monogon
or a coherent bigon, smoothing its endpoint(s) would give us shorter contractible closed
walk than ω, which is impossible. Smoothing the corners of incoherent bigons removes all
self-intersections from ω̃; we can mirror this smoothing by reordering subpaths of the walk ω.

Figure 5 Shortening or simplifying a contractible closed curve by smoothing at points of self-
intersection. From left to right: A monogon, a coherent bigon, and an incoherent bigon.

A simple winding-number argument implies that any weakly simple bounding walk in G
traverses each edge at most once.

Finally, we prove that if a graph G with no cocycles has a contractible closed walk,
then the boundary of some face of G is contractible, using a similar induction argument as
Lemma 2. If some weakly simple contractible closed walk ω encloses more than one face,
then it must enclose a face f with coherent boundary (a source or sink in G?). If face f is a
disk, we are done; otherwise, f is a disk with holes, and the boundary of any hole is another
weakly simple contractible closed walk that encloses fewer faces.

I Theorem 4. Given a directed graph G embedded on any surface, we can determine in
O(n) time whether there is a contractible closed walk in G.

If the face f has an interior hole, then the graph G must be disconnected, because the
interior of f is a subset of the open disk A. Thus, it may tempting to simplify our argument
by assuming “without loss of generality” that the graph G is connected. Unfortunately,
we cannot simultaneously assume that G is connected and that G contains no cocycles.
Resolving this tension lies at the core of our algorithm for finding bounding closed walks,
which we describe next.

SoCG 2019

34:8 Topologically Trivial Closed Walks in Directed Surface Graphs

4 Bounding Closed Walks

To simplify our presentation, we assume in this section that our input graphs are embedded
on surfaces without boundary; this assumption is justified by the following observation. Let G
be a directed graph embedded on a surface S with b > 0 boundary cycles, and let S• be the
surface without boundary obtained from S by attaching a single disk with b− 1 holes to all
boundary cycles of S. All boundary faces of G on the original surface S are contained in a
single face of G on S•. If S has first Betti number β, then S• has genus O(β).

I Lemma 5. A closed walk ω in G is bounding in S if and only if it is bounding in S•.

Proof. Any Alexander numbering for ω on S is also an Alexander numbering for ω on S•.
Let α be any Alexander numbering for ω on S•. For any integer k, the function α+ k

defined as (α+ k)(f) = α(f) + k for every face is also an Alexander numbering for ω on S•.
Thus, there is an Alexander numbering α• of ω such that α•(f) = 0 for the single face of G
containing S• \ S. The function α• is an Alexander numbering for ω on S. J

Our algorithm for detecting bounding closed walks relies on two elementary observations.
First, we can assume without loss of generality that G is strongly connected, because any
closed walk in the input graph G stays within a single strong component of G. On the other
hand, Lemma 1 implies that we can assume without loss of generality that the input graph G
has no cocycles; otherwise, we can remove all cocycles in O(n) time by contracting each
strong component of the dual graph G? to a single dual vertex. Indeed, if the input graph
satisfies both of these conditions, finding bounding closed walks is trivial.

I Lemma 6. Let G be a strongly connected surface graph with at least one edge, whose dual
graph G? is acyclic. There is a bounding closed walk in G.

Proof. For each face f of G, let α(f) be the rank of the dual vertex f? in an arbitrary
topological sort of the dual graph G?. For each edge e in G, we have α(left(e)) > α(right(e)).
Thus, the function ∂α : e 7→ α(left(e))−α(right(e)) is a positive integer boundary circulation
with connected support. Any Euler tour of this circulation is a bounding closed walk. J

Kao and Shannon [41,43,44] observed that these two assumptions are actually identical
for planar graphs; a planar directed graph G is strongly connected if and only if its dual
graph G∗ is acyclic. (This important observation is the basis of several efficient algorithms
for planar directed graphs [2,41–44,53].) And indeed, finding bounding closed walks in planar
graphs is trivial, because every closed walk in a planar graph is bounding.

However, this equivalence does not extend to directed graphs on more complex surfaces;
a strongly connected directed surface graph can contain many directed cocycles. Moreover,
deleting all the directed cocycles from a strongly connected surface graph can disconnect
the graph. More subtly, if H is a disconnected surface graph without cocycles, the induced
embeddings of the individual components of H can contain cocycles. See Figure 6.

Our algorithm repeatedly applies both of these simplifications, alternately removing
cocycle edges and separating components, eventually reporting success if it ever finds a
component that is both strongly connected and cocycle-free. Each iteration can be performed
in O(n) time, and each iteration removes at least one edge, so conservatively, our algorithm
runs in O(n2) time. But in fact, our algorithm converges after only O(g) iterations. We only
sketch a proof of this claim in this extended abstract; see the full paper [30, Section 4.1] for
complete proofs.

J. Erickson and Y. Wang 34:9

Figure 6 A strongly connected directed graph on the torus with cocycles (bold red). Deleting
all cocycles disconnects the graph. The components of the disconnected graph have more cocycles.
(Only one cocycle is emphasized in each component.)

I Lemma 7. Let H be a directed surface graph without cocycles. Every weak component
of H is strongly connected.

Proof. If a weak component of H is not strongly connected, then H contains a non-empty
directed edge cut. Every non-empty directed edge cut is the disjoint union of cocycles. J

We call any face of G simple if it is homeomorphic to an open disk and non-simple
otherwise. (The boundary of a simple face is not necessarily a simple cycle.)

I Lemma 8. Let G be a strongly connected surface graph, let H be the subgraph of G obtained
by deleting all cocycles, and let G′ be a (strong) component of H. Every simple face of G′ is
also a simple face of G.

I Corollary 9. Let G be a strongly connected surface graph, let H be the subgraph of G
obtained by deleting all cocycles, and let G′ be a (strong) component of H. Every directed
cocycle in G′ visits at least one non-simple face of G′.

We define the footprint JGK of a directed surface graph G as the union of the vertices,
edges, and simple faces of G. For example, the footprint of the middle graph in Figure 6 is
the disjoint union of two annuli. The embedding of G is cellular if and only if JGK is the
entire surface. Let β0(G) denote the number of (weak) components of G, or equivalently,
the number of components of its footprint JGK. Let β1(G) denote the first Betti number
of JGK, which is the rank of the first homology group of JGK. If G has at least one non-simple
face, then β1(G) := β0(G)− v(G) + e(G)− f0(G), where v(G), e(G), and f0(G) denote the
number of vertices, edges, and simple faces of G, respectively. If G (and therefore JGK) is
disconnected, then β1(G) is the sum of the first Betti numbers of its components.

I Lemma 10. Let G be a strongly connected surface graph, let H be the subgraph of G
obtained by deleting all cocycles, let G′ be a (strong) component of H, and let H ′ be the
subgraph of G′ obtained by deleting all cocycles. If H ′ 6= G′, then β1(H ′) < β1(G′).

I Theorem 11. Given a directed graph G embedded on any surface with genus g, we can
determine in O(gn) time whether there is a bounding closed walk in G.

Proof. Assume G is strongly connected, since otherwise, we can consider each strong
component of G separately. Let H be the graph obtained by deleting all cocycles of G. We
can construct H in O(n) time by computing the strong components of G? in linear time, and

SoCG 2019

34:10 Topologically Trivial Closed Walks in Directed Surface Graphs

then deleting any edge of G whose incident faces lie in the same strong component of G?.
Lemma 1 implies that any bounding closed walk in G is also a bounding closed walk in H.

If H has no edges, we return False. If H is weakly connected and has at least one edge,
then, following Lemmas 6 and 7, we immediately return True. Otherwise, we recursively
examine each (strong) component of H. Each vertex of the input graph G participates in
only one subproblem at each level of recursion, so the total time spent at each level is O(n).
Finally, Lemma 10 implies that the depth of the recursion tree is at most O(g). J

5 Shortest Contractible Closed Walks

Finally, we describe polynomial-time algorithms to compute the shortest contractible closed
walk in a directed surface graph with weighted edges. In this extended abstract, we describe
only our algorithm for surfaces without boundary and with genus g ≥ 2. These are precisely
the surfaces whose fundamental groups are hyperbolic in the sense of Gromov [37], but not
free; as already observed by Dehn [19], the natural geometry for the universal cover of these
surfaces is the hyperbolic plane. (See Figure 8 below.) We describe our (simpler) algorithms
for other types of surfaces in the full paper [30, Section 6].

Ultimately, our algorithm reduces the problem of finding the shortest contractible cycle
to the CFG shortest path problem, introduced by Yannakakis [56]. Given a directed graph
G = (V,E) with weighted edges, a labeling ` : E → Σ ∪ {ε} for some finite set Σ, and a
context-free grammar G over the alphabet Σ, the CFG shortest path problem asks for the
shortest walk (if any) in G whose label is in the language generated by G. An algorithm of
Barrett et al. [3] solves the CFG shortest path problem in O(NPn3) time, where N and P
are the numbers of nonterminals and productions in G, respectively, and n is the number of
vertices in G, when the grammar G is in Chomsky normal form and all edge weights in G are
non-negative. (Their algorithm was extended to graphs with negative edges but no negative
cycles by Bradford and Thomas [4].) The main difficulty in our algorithm is the construction
of an appropriate context-free grammar.

Fix a directed graph G with non-negatively weighted edges, embedded on an orientable
surface S with genus g ≥ 2 and no boundary. Unlike previous sections, it will prove convenient
in this section to treat G as undirected, but with asymmetric edge weights, as proposed by
Cabello et al. [10]. That is, each undirected edge uv in G is composed of two darts u�v and
v�u with independent weights; a walk is alternating series of vertices and darts; and the
length of a walk is the sum of the weights of its darts, counted with appropriate multiplicity.
We also assume without loss of generality that the given embedding of G is cellular, meaning
every face is homeomorphic to an open disk. These assumptions can be enforced if necessary
by adding at most O(m) directed edges with (symbolically) infinite weight.

5.1 Edge Labeling

The first step in our algorithm is to label the edges of G so that the labels along any closed
walk encode its homotopy type. In principle, we can derive such a labeling by reducing G
to a system of loops [12, 22, 46]; however, this labeling leads to a less efficient algorithm.1
Instead, we reduce G to a different canonical surface decomposition called a system of quads,
as proposed by Lazarus and Rivaud [47] and Erickson and Whittlesey [31].

1 Specifically, the running time of the resulting algorithm has an extra facotr of gO(g) in the running time.

J. Erickson and Y. Wang 34:11

Let (T, L,C) be an arbitrary tree-cotree decomposition of G, which partitions the edges
of G into a spanning tree T , a spanning tree C∗ of the dual graph G∗, and exactly 2g leftover
edges L [24]. Contracting every edge in T and deleting every edge in C reduces G to a
system of loops, which has one vertex a, one face f , and 2g loops L. To construct the system
of quads Q, we introduce a new vertex z in the interior of f , add edges between z and every
corner of f , and then delete the edges in L.

Next we label each directed edge e in G with a directed walk 〈e〉 in Q as follows. Every
walk 〈e〉 starts and ends at a and thus has even length. If e ∈ T , then 〈e〉 is the empty walk.
Otherwise, after contracting T , edge e connects two corners of f ; we define 〈e〉 as the walk
of length 2 in Q from the back corner of e, to z, and then to the front corner of e. (If e ∈ L,
there are two such walks; choose one arbitrarily.)

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d z

Figure 7 Left: A fundamental polygon for a surface of genus 2, obtained by contracting a spanning
tree and cutting along a system of loops. Right: Mapping a directed non-tree edge to a path of
length 2 in the corresponding system of quads.

Finally, for any closed walk ω in G, let 〈ω〉 denote the closed walk in Q obtained by
concatenating of the labels of edges in ω in order. The closed walks ω and 〈ω〉 are freely
homotopic in S; in particular, ω is contractible if and only if 〈ω〉 is contractible. Moreover,
the number of edges in 〈ω〉 is at most twice the number of edges in ω.

The universal cover Q̂ of a system of quads Q is isomorphic to a regular tiling of the
hyperbolic plane by quadrilaterals meeting at vertices of degree 4g; see Figure 8. The covering
map from Q̂ to Q is a graph homomorphism (mapping vertices to vertices and edges to
edges), which (at the risk of confusing the reader) we also denote 〈·〉 : Q̂→ Q. A closed walk
in Q is contractible if and only if it is the projection of a closed walk in Q̂. Thus, a closed
walk ω in G is contractible if and only if there is a closed walk ω̂ in Q̂ such that 〈ω̂〉 = 〈ω〉.

5.2 Hyperbolic Geometry
Our algorithm exploits two well-known geometric properties of regular hyperbolic tilings:
the area of any ball in a hyperbolic tiling grows exponentially with its radius [36,48], and
the area enclosed by any simple cycle grows at most linearly with the cycle’s length [20,21].
In particular, we rely on the following immediate corollary of these two properties: The
distance from any point in the interior of a simple cycle in a regular hyperbolic tiling is at
most logarithmic in the length of that cycle; see Figure 9.

Classical results already imply this qualitative behavior for all regular hyperbolic tilings;
indeed, Chepoi et al. [16] have derived tight asymptotic bounds. However, we require precise
upper bounds for growth, isoperimetry, and in-radius in the specific tiling Q̂; the running
time of our algorithm ultimately depends exponentially on the constants in those bounds.

For any positive integer r, let N(r) denote the number of vertices at distance at most r
from an arbitrary basepoint vertex â of Q̂; we derive tight bounds on N(r) from a recurrence

SoCG 2019

34:12 Topologically Trivial Closed Walks in Directed Surface Graphs

Figure 8 The universal cover of a genus-2 system of quads. (Compare with Figure 7.)

Figure 9 Simple closed curves in hyperbolic tilings have logarithmic in-radius.

of Floyd and Plotnick [32]. We derive our isoperimetric inequalities using the “spur and
bracket” analysis of Erickson and Whittlesey [31, Section 4.2], which is based in turn on
results of Gersten and Short [34], along with classical results of Dehn [20,21]. Our inradius
bound then follows immediately. See the full paper [30, Section 7.2] for further details.

I Lemma 12. N(r) ∼ βλr for some constants 1 < β < 2 and 4g − 3 < λ < 4g − 2. In
particular, N(r) ≥ λr for all r ≥ 0.

I Lemma 13. Any simple cycle of length L in Q̂ has less than 3L/2 faces of Q̂ in its interior.

I Lemma 14. Any simple cycle of length L in Q̂ has less than 2L/g vertices of Q̂ in its
interior.

I Lemma 15. Let γ be a simple cycle in Q̂ with length at most L. Every tiling vertex in the
interior of γ has distance at most ρ = dlogλ(2L/g)e from at least one vertex of γ.

5.3 Triangulation
Now let ω be a closed walk in Q̂ with a distinguished vertex â called its basepoint. Following
Muller and Schupp [51], define a k-triangulation of ω is a continuous map T from a reference
triangulation T of a simple polygon P to Q̂ with the following properties:
T maps vertices of P to vertices of ω.
T maps a distinguished edge of P , called the root edge, to the basepoint â.

J. Erickson and Y. Wang 34:13

T maps the boundary of P continuously onto the walk ω; in particular, every edge of P
except the root edge is mapped to a single edge of ω.
Finally, T maps each diagonal edge in T to a walk of length at most k in Q̂.

This map is not necessarily an embedding, even locally. The diagonal walks may intersect
each other or ω, even if ω is a simple cycle; moreover, some diagonal walks may have length
zero if ω is not simple.

Figure 10 Any closed walk in a hyperbolic tiling can be “triangulated” by paths of logarithmic
length.

I Lemma 16. Every simple cycle of length L in Q̂ has a (2ρ + 2)-triangulation, where
ρ = dlogλ(2L/g)e.

Proof. Let γ be a simple cycle of length L in Q̂, and let Γ denote the closed disk bounded
by γ. Intuitively, we construct a “Delaunay triangulation” of the vertices of γ inside Γ.

For each tiling vertex x in Γ, let nn(x) denote its nearest neighbor on γ, measuring
distance by counting edges in Q̂ and breaking ties arbitrarily. In particular, if x ∈ γ, then
nn(x) = x. Lemma 15 implies that the distance from any vertex x to its nearest neighbor
nn(x) is at most ρ. Arbitrarily triangulate each tile in Γ to obtain a triangulation ∆. Let M
denote the set of all edges xy in ∆ such that nn(x) 6= nn(y). (Intuitively, M is a “discrete
medial axis” of Γ [5].) For each edge xy in M , let σ(x, y) denote a shortest path in Q̂

from nn(x) to nn(y); in particular, if xy is an edge of γ, then σ(x, y) = xy. The triangle
inequality implies that each shortest path σ(x, y) has length at most 2ρ+ 2. The shortest
paths {σ(x, y) | xy ∈M} are the paths of a (2ρ+ 2)-triangulation of γ. J

y

x

z z

x x x
w z w z

x x

y

x x
x x xx x xx

Figure 11 Top: Extending a k-triangulation across a spur. Bottom: Merging two k-triangulations
across a generic repeated vertex.

SoCG 2019

34:14 Topologically Trivial Closed Walks in Directed Surface Graphs

We extend the previous construction to non-simple closed walks using a straightforward
induction argument. Any non-simple closed walk can be decomposed into two shorter closed
walks at a repeated vertex. The induction hypothesis gives us two (2ρ+ 2)-triangulations
for the shorter closed walks, which we can extend or combine into a (2ρ+ 2)-triangulation
for ω by case analysis, as suggested by Figure 11. We defer further details to the full
paper [30, Section 7.3].

I Lemma 17. Every closed walk of length L in Q̂ has a (2ρ + 2)-triangulation, where
ρ = dlogλ(2L/g)e.

5.4 Context-Free Grammar
Now finally we reach the key component of our algorithm: the construction of a small
context-free grammar G in Chomsky normal form such that the shortest contractible closed
walk in G is also the shortest walk whose label is in the language generated by G.

I Lemma 18. For any positive integer L, there is a context-free grammar G in Chomsky
normal form with O(g2L2) non-terminals, such that (1) Every string generated by G describes
a contractible closed walk in Q, and (2) every contractible closed walk in Q of length at
most L is generated by G.

Proof sketch. We closely follow a construction of Muller and Schupp [51, Theorem 1]. The
alphabet for our grammar consists of all 8g darts in Q. The variables of G correspond to
homotopy classes of walks of length at most 2ρ+ 2 in Q; in particular, the starting variable
corresponds to the class of contractible walks from vertex a to vertex a. The number of
nonterminals is

2N(2ρ+ 2) = O(λ2ρ+2) ≤ O(λ2 logλ(2L/g)+4) = O((2L/g)2 λ4) = O(g2L2)

by Lemma 12 and the definition of ρ. The non-terminal productions in G correspond to
concatenation of homotopy classes; crudely, there are at most O(g4L4) such productions.
Finally, the grammar includes a terminal production for the homotopy class of each dart. For
any closed walk ω of length L, and for any (2ρ+2)-triangulation T of ω, the dual tree of T is a
parse tree for ω in this grammar. We defer further details to the full paper [30, Section 7.4]. J

I Theorem 19. Let G be a directed graph with m non-negatively weighted edges, embedded on
the orientable surface of genus g with no boundary. We can compute the shortest contractible
closed walk in G in O(g6m9) time.

Proof. We construct the system of quads Q and label the edges of G in O(m) time. If
necessary, subdivide edges of G so that each edge is labeled with either the empty walk or a
single dart in Q. After subdivision, G has at most 2m edges, and therefore (because G is
symmetric) at most 2m vertices.

Then we build a context-free grammar G that generates only contractible walks in Q

and generates all non-empty contractible walks in Q of length at most 2m, as described in
Lemma 18. This grammar has N = O(g2m2) nonterminals and P = O(g4m4) productions.
Recall from Section 3.2 that some shortest contractible walk in G is weakly simple, and
therefore has at most 2m edges. It follows that G generates the label of some shortest
contractible walk in G.

Finally, we compute the shortest closed walk in G whose label is generated by G, using
the CFG-shortest-path algorithm of Barrett et al. [3], in O(NP (n′)3) = O(g6m9) time. J

J. Erickson and Y. Wang 34:15

References
1 James W. Alexander. Topological invariants of knots and links. Trans. Amer. Math. Soc.,

30(2):275–306, 1928. doi:10.1090/S0002-9947-1928-1501429-1.
2 Lars Arge, Laura Toma, and Norbert Zeh. I/O-efficient topological sorting of planar DAGs.

In Proc. 15th Ann. ACM Symp. Parallel Algorithms Arch., pages 85–93, 2003. doi:10.1145/
777412.777427.

3 Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained path problems.
SIAM J. Comput., 30(3):809–837, 2000. doi:10.1137/S0097539798337716.

4 Phillip G. Bradford and David A. Thomas. Labeled shortest paths in digraphs with negative
and positive edge weights. RAIRO-Theor. Inf. Appl., 43(3):567–583, 2009. doi:10.1051/ita/
2009011.

5 Jonathan W. Brandt. Convergence and continuity criteria for discrete approximations of
the continuous planar skeletons. CVGIP: Image Understanding, 59(1):116–124, 1994. doi:
10.1006/ciun.1994.1007.

6 Sergio Cabello. Finding shortest contractible and shortest separating cycles in embedded
graphs. ACM Trans. Algorithms, 6(2):24:1–24:18, 2010. doi:10.1145/1721837.1721840.

7 Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-Source Shortest Paths in
Embedded Graphs. SIAM J. Comput., 42(4):1542–1571, 2013. doi:10.1137/120864271.

8 Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Finding shortest non-trivial cycles
in directed graphs on surfaces. In Proc. 26th Ann. Symp. Comput. Geom., pages 156–165,
2010. doi:10.1145/1810959.1810988.

9 Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Finding cycles with topological
properties in embedded graphs. SIAM J. Discrete Math., 25:1600–1614, 2011. doi:10.1137/
100810794.

10 Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Finding shortest non-trivial
cycles in directed graphs on surfaces. J. Comput. Geom., 7(1):123–148, 2016. doi:10.20382/
jocg.v7i1a7.

11 Sergio Cabello, Matt DeVos, Jeff Erickson, and Bojan Mohar. Finding one tight cycle. ACM
Trans. Algorithms, 6(4):article 61, 2010. doi:10.1145/1824777.1824781.

12 Sergio Cabello and Bojan Mohar. Finding Shortest Non-Separating and Non-Contractible
Cycles for Topologically Embedded Graphs. Discrete Comput. Geom., 37(2):213–235, 2007.
doi:10.1007/s00454-006-1292-5.

13 Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus, and Kim Whittlesey.
Splitting (complicated) surfaces is hard. Comput. Geom. Theory Appl., 41(1–2):94–110, 2008.
doi:10.1016/j.comgeo.2007.10.010.

14 Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homologous
cycles. In Proc. 25th Ann. Symp. Comput. Geom., pages 377–385, 2009. doi:10.1145/1542362.
1542426.

15 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
Proc. 26th ACM-SIAM Symp. Discrete Algorithms, pages 1655–1670, 2015. doi:10.1137/1.
9781611973730.110.

16 Victor Chepoi, Feodor Dragan, Bertrand Estellon, Michel Habib, and Yann Vaxès. Diameters,
centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs. In Proc. 24th
Ann. Symp. Comput. Geom., pages 59–68, 2008. doi:10.1145/1377676.1377687.

17 Edith Cohen and Nimrod Megiddo. Strongly polynomial-time and NC algorithms for detecting
cycles in periodic graphs. J. Assoc. Comput. Mach., 40(4):791–830, 1993. doi:10.1145/
153724.153727.

18 Éric Colin de Verdière and Jeff Erickson. Tightening non-simple paths and cycles on surfaces.
SIAM J. Comput., 39(8):3784–3813, 2010. doi:10.1137/090761653.

19 Max Dehn. Über unendliche diskontinuierliche Gruppen. Math. Ann., 71(1):116–144, 1911.
URL: http://eudml.org/doc/158521.

SoCG 2019

http://dx.doi.org/10.1090/S0002-9947-1928-1501429-1
http://dx.doi.org/10.1145/777412.777427
http://dx.doi.org/10.1145/777412.777427
http://dx.doi.org/10.1137/S0097539798337716
http://dx.doi.org/10.1051/ita/2009011
http://dx.doi.org/10.1051/ita/2009011
http://dx.doi.org/10.1006/ciun.1994.1007
http://dx.doi.org/10.1006/ciun.1994.1007
http://dx.doi.org/10.1145/1721837.1721840
http://dx.doi.org/10.1137/120864271
http://dx.doi.org/10.1145/1810959.1810988
http://dx.doi.org/10.1137/100810794
http://dx.doi.org/10.1137/100810794
http://dx.doi.org/10.20382/jocg.v7i1a7
http://dx.doi.org/10.20382/jocg.v7i1a7
http://dx.doi.org/10.1145/1824777.1824781
http://dx.doi.org/10.1007/s00454-006-1292-5
http://dx.doi.org/10.1016/j.comgeo.2007.10.010
http://dx.doi.org/10.1145/1542362.1542426
http://dx.doi.org/10.1145/1542362.1542426
http://dx.doi.org/10.1137/1.9781611973730.110
http://dx.doi.org/10.1137/1.9781611973730.110
http://dx.doi.org/10.1145/1377676.1377687
http://dx.doi.org/10.1145/153724.153727
http://dx.doi.org/10.1145/153724.153727
http://dx.doi.org/10.1137/090761653
http://eudml.org/doc/158521

34:16 Topologically Trivial Closed Walks in Directed Surface Graphs

20 Max Dehn. Transformation der Kurven auf zweiseitigen Flächen. Math. Ann., 72(3):413–421,
1912. doi:10.1007/BF01456725.

21 Max Dehn. Papers on Group Theory and Topology. Springer, 1987. Translated by John
Stillwell. doi:10.1007/978-1-4612-4668-8.

22 Tamal K. Dey and Sumanta Guha. Transforming Curves on Surfaces. J. Comput. System
Sci., 58:297–325, 1999. doi:10.1006/jcss.1998.1619.

23 Herbert Edelsbrunner and John L. Harer. Computational Topology: An Introduction. Amer.
Math. Soc., 2010.

24 David Eppstein. Dynamic generators of topologically embedded graphs. In Proc. 14th Ann.
ACM-SIAM Symp. Discrete Algorithms, pages 599–608, 2003.

25 David B. A. Epstein. Curves on 2-manifolds and isotopies. Acta Mathematica, 115:83–107,
1966. doi:10.1007/BF02392203.

26 Jeff Erickson. Shortest Non-trivial Cycles in Directed Surface Graphs. In Proc. 27th Ann.
Symp. Comput. Geom., pages 236–243, 2011. doi:10.1145/1998196.1998231.

27 Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. Holiest minimum-cost paths and
flows in surface graphs. In Proc. 50th Ann. ACM Symp. Theory Comput., pages 1319–1332,
2018. doi:10.1145/3188745.3188904.

28 Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk. Discrete Comput.
Geom., 31(1):37–59, 2004. doi:10.1007/s00454-003-2948-z.

29 Jeff Erickson and Amir Nayyeri. Minimum cuts and shortest non-separating cycles via homology
covers. In Proc. 22nd Ann. ACM-SIAM Symp. Discrete Algorithms, pages 1166–1176, 2011.
doi:10.1137/1.9781611973082.88.

30 Jeff Erickson and Yipu Wang. Topologically Trivial Closed Walks in Directed Surface Graphs.
Preprint, March 2019. arXiv:1812.01564.

31 Jeff Erickson and Kim Whittlesey. Transforming Curves on Surfaces redux. In Proc.
24th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 1646–1655, 2013. doi:10.1137/1.
9781611973105.118.

32 William J. Floyd and Steven J. Plotnick. Growth functions on Fuchsian groups and the Euler
characteristic. Invent. Math., 88(1):1–29, 1987. doi:10.1007/BF01405088.

33 Kyle Fox. Shortest Non-trivial Cycles in Directed and Undirected Surface Graphs. In Proc.
24th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 352–364, 2013. doi:10.1137/1.
9781611973105.26.

34 Steve M. Gersten and Hamish B. Short. Small cancellation theory and automatic groups.
Invent. Math., 102:305–334, 1990. doi:10.1007/BF01233430.

35 Peter Giblin. Graphs, Surfaces and Homology. Cambridge Univ. Press, 3rd edition, 2010.
36 Rostislav Grigorichuk and Pierre de la Harpe. On problems related to growth, entropy and

spectrum in group theory. J. Dynam. Control Systems, 3(1):51–89, 1997. doi:10.1007/
BF02471762.

37 Mikhail Gromov. Hyperbolic Groups. In Steve M. Gersten, editor, Essays in Group Theory,
number 8 in Math. Sci. Res. Inst. Pub., pages 75–265. Springer-Verlag, 1987.

38 Joel Hass and Peter Scott. Intersections of curves on surfaces. Israel J. Math., 51:90–120,
1985. doi:10.1007/BF02772960.

39 Allen Hatcher. Algebraic Topology. Cambridge Univ. Press, 2002. URL: http://www.math.
cornell.edu/~hatcher/AT/ATpage.html.

40 Kazuo Iwano and Kenneth Steiglitz. A semiring on convex polygons and zero-sum cycle
problems. SIAM J. Comput., 19(5):883–901, 1990. doi:10.1137/0219061.

41 Ming-Yang Kao. Linear-processor NC algorithms for planar directed graphs I: Strongly
connected components. SIAM J. Comput., 22(3):431–459, 1993. doi:10.1137/0222032.

42 Ming-Yang Kao and Philip N. Klein. Toward overcoming the transitive-closure bottleneck:
Efficient parallel algorithms for planar digraphs. J. Comput. Syst. Sci., 47(3):459–500, 1993.
doi:10.1016/0022-0000(93)90042-U.

http://dx.doi.org/10.1007/BF01456725
http://dx.doi.org/10.1007/978-1-4612-4668-8
http://dx.doi.org/10.1006/jcss.1998.1619
http://dx.doi.org/10.1007/BF02392203
http://dx.doi.org/10.1145/1998196.1998231
http://dx.doi.org/10.1145/3188745.3188904
http://dx.doi.org/10.1007/s00454-003-2948-z
http://dx.doi.org/10.1137/1.9781611973082.88
http://arxiv.org/abs/1812.01564
http://dx.doi.org/10.1137/1.9781611973105.118
http://dx.doi.org/10.1137/1.9781611973105.118
http://dx.doi.org/10.1007/BF01405088
http://dx.doi.org/10.1137/1.9781611973105.26
http://dx.doi.org/10.1137/1.9781611973105.26
http://dx.doi.org/10.1007/BF01233430
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02471762
http://dx.doi.org/10.1007/BF02772960
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://dx.doi.org/10.1137/0219061
http://dx.doi.org/10.1137/0222032
http://dx.doi.org/10.1016/0022-0000(93)90042-U

J. Erickson and Y. Wang 34:17

43 Ming-Yang Kao and Gregory E. Shannon. Local reorientation, global order, and planar
topology. In Proc. 21st Ann. ACM Symp. Theory Comput., pages 286–296, 1989. doi:
10.1145/73007.73034.

44 Ming-Yang Kao and Gregory E. Shannon. Linear-processor NC algorithms for planar directed
graphs II: Directed spanning trees. SIAM J. Comput., 22(3):460–481, 1993. doi:10.1137/
0222033.

45 S. Rao Kosaraju and Gregory F. Sullivan. Detecting cycles in dynamic graphs in polynomial
time (preliminary version). In Proc. 20th ACM Symp. Theory. Comput., pages 398–406, 1988.
doi:10.1145/62212.62251.

46 Martin Kutz. Computing shortest non-trivial cycles on orientable surfaces of bounded genus
in almost linear time. In Proc. 22nd Ann. Symp. Comput. Geom., pages 430–438, 2006.
doi:10.1145/1137856.1137919.

47 Francis Lazarus and Julien Rivaud. On the homotopy test on surfaces. In Proc. 53rd Ann.
IEEE Symp. Foundations Comput. Sci., pages 440–449, 2012. doi:10.1109/FOCS.2012.12.

48 John Milnor. A note on curvature and the fundamental group. J. Diff. Geom., 2(1):1–7, 1968.
doi:10.4310/jdg/1214501132.

49 Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins Univ. Press, 2001.
50 Shay Mozes, Kirill Nikolaev, Yahav Nussbaum, and Oren Weimann. Minimum Cut of Directed

Planar Graphs in O(n log logn) Time. In Proc. 29th Ann. ACM-SIAM Symp. Discrete
Algorithms, pages 477–494, 2018. doi:10.1137/1.9781611975031.32.

51 David E. Muller and Paul E. Schupp. Groups, the theory of ends, and context-free languages.
J. Comput. System Sci., 26(3):295–310, 1983. doi:10.1016/0022-0000(83)90003-X.

52 August F. Möbius. Über der Bestimmung des Inhaltes eines Polyëders. Ber. Sächs. Akad.
Wiss. Leipzig, Math.-Phys. Kl., 17:31–68, 1865. Gesammelte Werke 2:473–512, Liepzig, 1886.

53 Vijaya Ramachandran and Honghua Yang. Finding the closed partition of a planar graph.
Algorithmica, 11(5):443–468, 1994. doi:10.1007/BF01293266.

54 L. B. Smikun. Connection between context-free groups and groups with decidable problems of
automata equivalence. Cybernetics, 12(5):687–691, 1976. Translated from Kibernetika (Kiev)
(5):33–37, 1976. doi:10.1007/BF01070252.

55 Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. J. Comb.
Theory Ser. B, 48(2):155–177, 1990. doi:10.1016/0095-8956(90)90115-G.

56 Mihalis Yannakakis. Graph-theoretic methods in database theory. In Proc. 9th ACM SIGACT-
SIGMOD-SIGART Symp. Principles Database Syst., pages 230–242, 1990. doi:10.1145/
298514.298576.

SoCG 2019

http://dx.doi.org/10.1145/73007.73034
http://dx.doi.org/10.1145/73007.73034
http://dx.doi.org/10.1137/0222033
http://dx.doi.org/10.1137/0222033
http://dx.doi.org/10.1145/62212.62251
http://dx.doi.org/10.1145/1137856.1137919
http://dx.doi.org/10.1109/FOCS.2012.12
http://dx.doi.org/10.4310/jdg/1214501132
http://dx.doi.org/10.1137/1.9781611975031.32
http://dx.doi.org/10.1016/0022-0000(83)90003-X
http://dx.doi.org/10.1007/BF01293266
http://dx.doi.org/10.1007/BF01070252
http://dx.doi.org/10.1016/0095-8956(90)90115-G
http://dx.doi.org/10.1145/298514.298576
http://dx.doi.org/10.1145/298514.298576

Packing Disks into Disks with Optimal
Worst-Case Density
Sándor P. Fekete
Department of Computer Science, TU Braunschweig
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
s.fekete@tu-bs.de

Phillip Keldenich
Department of Computer Science, TU Braunschweig
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
p.keldenich@tu-bs.de

Christian Scheffer
Department of Computer Science, TU Braunschweig
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
c.scheffer@tu-bs.de

Abstract
We provide a tight result for a fundamental problem arising from packing disks into a circular
container: The critical density of packing disks in a disk is 0.5. This implies that any set of (not
necessarily equal) disks of total area δ ≤ 1/2 can always be packed into a disk of area 1; on the
other hand, for any ε > 0 there are sets of disks of area 1/2 + ε that cannot be packed. The proof
uses a careful manual analysis, complemented by a minor automatic part that is based on interval
arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma
for the analysis of recursive packing algorithms.

2012 ACM Subject Classification Theory of computation→ Packing and covering problems; Theory
of computation → Computational geometry

Keywords and phrases Disk packing, packing density, tight worst-case bound, interval arithmetic,
approximation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.35

Related Version A full version of this paper can be found at http://arxiv.org/abs/1903.07908 [3].

Supplement Material https://github.com/phillip-keldenich/circlepacking

Funding Phillip Keldenich: Supported by the German Research Foundation under Grant No. FE
407/17-2.

Acknowledgements We thank Sebastian Morr for joint previous work.

1 Introduction

Deciding whether a set of disks can be packed into a given container is a fundamental
geometric optimization problem that has attracted considerable attention. Disk packing also
has numerous applications in engineering, science, operational research and everyday life,
e.g., for the design of digital modulation schemes [24], packaging cylinders [1, 10], bundling
tubes or cables [29, 27], the cutting industry [28], or the layout of control panels [1], or radio
tower placement [28]. Further applications stem from chemistry [30], foresting [28], and
origami design [16].

Like many other packing problems, disk packing is typically quite difficult; what is more,
the combinatorial hardness is compounded by the geometric complications of dealing with
irrational coordinates that arise when packing circular objects. This is reflected by the
limitations of provably optimal results for the optimal value for the smallest sufficient disk
container (and hence, the densest such disk packing in a disk container), a problem that was

© Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 35; pp. 35:1–35:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9062-4241
mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-6677-5090
mailto:p.keldenich@tu-bs.de
https://orcid.org/0000-0002-3471-2706
mailto:c.scheffer@tu-bs.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.35
http://arxiv.org/abs/1903.07908
https://github.com/phillip-keldenich/circlepacking
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Worst-Case Optimal Disks Packing into Disks

Figure 1 (1) An instance of critical density for packing squares into a square. (2) An example
packing produced by Moon and Moser’s shelf-packing. (3) An instance of critical density for packing
disks into a square. (4) An example packing produced by Morr’s Split Packing.

discussed by Kraviz [15] in 1967: Even when the input consists of just 13 unit disks, the
optimal value for the densest disk-in-disk packing was only established in 2003 [9], while the
optimal value for 14 unit disks is still unproven. The enormous challenges of establishing
densest disk packings are also illustrated by a long-standing open conjecture by Erdős and
Oler from 1961 [23] regarding optimal packings of n unit disks into an equilateral triangle,
which has only been proven up to n = 15. For other examples of mathematical work on
densely packing relatively small numbers of identical disks, see [11, 19, 7, 8], and [25, 18, 12]
for related experimental work. Many authors have considered heuristics for circle packing
problems, see [28, 13] for overviews of numerous heuristics and optimization methods. The
best known solutions for packing equal disks into squares, triangles and other shapes are
continuously published on Specht’s website http://packomania.com [26].

For the case of packing not necessarily equal disks into a square container, Demaine,
Fekete, and Lang in 2010 [2] showed that deciding whether a given set of disks can be packed
is NP-hard by using a reduction from 3-Partition. This means that there is (probably) no
deterministic polynomial-time algorithm that can decide whether a given set of disks can be
packed into a given container.

On the other hand, the literature on exact approximation algorithms which actually give
performance guarantees is small. Miyazawa et al. [20] devised asymptotic polynomial-time
approximation schemes for packing disks into the smallest number of unit square bins. More
recently, Hokama, Miyazawa, and Schouery [14] developed a bounded-space competitive
algorithm for the online version of that problem.

The related problem of packing square objects has also been studied for a long time. The
decision problem whether it is possible to pack a given set of squares into the unit square
was shown to be strongly NP-complete by Leung et al. [17], also using a reduction from
3-Partition. Already in 1967, Moon and Moser [21] found a sufficient condition. They
proved that it is possible to pack a set of squares into the unit square in a shelf-like manner
if their combined area, the sum of all squares’ areas, does not exceed 1

2 . At the same time,
1
2 is the largest upper area bound one can hope for, because two squares larger than the
quarter-squares shown in Figure 1 cannot be packed. We call the ratio between the largest
combined object area that can always be packed and the area of the container the problem’s
critical density, or optimal worst-case density.

The equivalent problem of establishing the critical packing density for disks in a square
was posed by Demaine, Fekete, and Lang [2] and resolved by Morr, Fekete and Scheffer [22, 4].
Making use of a recursive procedure for cutting the container into triangular pieces, they
proved that the critical packing density of disks in a square is π

3+2
√

2 ≈ 0.539.

http://packomania.com

S. P. Fekete, P. Keldenich, and C. Scheffer 35:3

Figure 2 (1) A critical instance that allows a packing density no better than 1
2 . (2) An example

packing produced by our algorithm.

It is quite natural to consider the analogous question of establishing the critical packing
density for disks in a disk. However, the shelf-packing approach of Moon and Moser [21] uses
the fact that rectangular shapes of the packed objects fit well into parallel shelves, which is
not the case for disks; on the other hand, the split packing method of Morr et al. [22, 4] relies
on recursively splitting triangular containers, so it does not work for a circular container that
cannot be partitioned into smaller circular pieces.

Note that the main objective of this line of work is to compute tight worst-case bounds.
For specific instances, a packing may still be possible, even if the density is higher; this also
implies that proofs of infeasibility for specific instances may be trickier. However, the idea of
using the total item volume for computing packing bounds can still be applied. See the work
by Fekete and Schepers [5, 6], which shows how classes of functions called dual-feasible can
be used to compute a modified volume for geometric objects, yielding good lower bounds for
one- or higher-dimensional scenarios.

1.1 Results
We prove that the critical density for packing disks into a disk is 1/2: Any set of not
necessarily equal disks with a combined area of not more than half the area of a circular
container can be packed; this is best possibly, as for any ε > 0 there are instances of total
area 1/2 + ε that cannot be packed. See Fig. 2 for the critical configuration.

Our proofs are constructive, so they can also be used as a constant-factor approximation
algorithm for the smallest-area container of a given shape in which a given set of disks can
be packed. Due to the higher geometric difficulty of fitting together circular objects, the
involved methods are considerably more complex than those for square containers. We make
up for this difficulty by developing more intricate recursive arguments, including appropriate
and powerful tools based on interval arithmetic.

2 Preliminaries

Let r1, . . . , rn be a set of disks in the plane. Two point sets A,B ⊂ R2 overlap if their
interiors have a point in common. A container disk C is a disk that may overlap with disks
from {r1, . . . , rn}. The original container disk O is the unit disk. Due to recursive calls of our
algorithm there may be several container disks that lie nested inside each other. Hence, the
largest container disk will be the unit disk O. For simplification, we simultaneously denote
by ri or C the disk with radius ri or C and its radius. Wl.o.g., we assume r1 ≥ · · · ≥ rn. We

SoCG 2019

35:4 Worst-Case Optimal Disks Packing into Disks

pack the disks r1, . . . , rn by positioning their centers inside a container disk such that ri lies
inside C and two disks from {r1, . . . , rn} do not overlap. Given two sets A ⊆ B ⊆ R2, we say
that A is a sector of B. Furthermore, we denote the volume of a point set A by |A|.

3 A Worst-Case Optimal Algorithm

I Theorem 1. Every set of disks with total area π
2 can be packed into the unit disk O with

radius 1. This induces a worst-case optimal packing density of 1
2 , i.e., a ratio of 1

2 between
the area of the unit disk and the total area to be packed.

The worst case consists of two disks D1, D2 with radius 1
2 , see Fig. 2. The total area of

these two disks is π
4 + π

4 = π
2 , while the smallest disk containing D1, D2 has an area of π.

In the remainder of Section 3, we give a constructive proof for Theorem 1. Before we
proceed to describe our algorithm in Section 3.4, we give some definitions and describe
Boundary Packing and Ring Packing as two subroutines of our algorithm.

3.1 Preliminaries for the Algorithm
We make use of the following definitions, see Fig. 3.

w

R
r

m

1

rout

r
in

Figure 3 A ring R ⊂ O with width w and a disk with its corresponding tangents.

For rout > rin > 0 and a container disk C such that rout ≤ 2rin, we define a ring
R := R[rout, rin] of C as the closure of rout \ rin, see Fig. 3. The boundary of R consists of
two connected components. The inner boundary is the component lying closer to the center
m of rout and the outer boundary is the other component. The inner radius and the outer
radius of R are the radius of the inner boundary and the radius of outer boundary. Each ring
is associated with one of three states {open,closed, full}. Initially, each ring is open.

Let r be a disk inside a container disk C. The two tangents of r are the two rays starting
in the midpoint of C and touching the boundary of r. We say that a disk lies adjacent to
rout when the disk is touching the boundary of rout from the inside of rout.

3.2 Boundary Packing: A Subroutine
Consider a container disk C, a (possibly empty) set S of already packed disks that overlap
with C, and another disk ri to be packed, see Fig. 4. We pack ri into C adjacently to the
boundary of C as follows: Let α be the maximal polar angle realized by a midpoint of a disk

S. P. Fekete, P. Keldenich, and C. Scheffer 35:5

C
2

C

Figure 4 Boundary Packing places disks into a container disk C adjacent to the boundary of C as
long as the diameter of the disks to be packed is at least as large as a given threshold T or until the
current disk does no longer fit into C. Initially, we have T = 1

4 .

from S. We choose the midpoint of ri realizing the smallest possible polar angle β ≥ α such
that ri touches the outer boundary of C from the interior of C without overlapping another
disk from S, see Fig. 4. If ri cannot be packed into C, we say that ri does not fit into R.

Let 0 < T ≤ 1
4 , called the threshold. Boundary Packing iteratively packs disks in

decreasing order into C until the current disk ri does not fit into C or the radius of ri is
smaller than T .

3.3 Ring Packing: A Subroutine
Consider a ring R := R[routrin] with inner radius rin and outer radius rout, a (possibly empty)
set S of already packed disks that overlap with R, and another disk ri to be packed, see
Fig. 5. We pack ri into R adjacent to the outer (inner) boundary of R as follows: Let α be
the maximal polar angle realized by a midpoint of a disk from S. We choose the midpoint of
ri realizing the smallest possible polar angle β ≥ α such that ri touches the outer (inner)
boundary of R from the interior of R without overlapping another disk from S. If ri cannot
be packed into R, we say that ri does not fit into R (adjacent to the outer (inner) boundary).

Ring Packing iteratively packs disks into R alternating adjacent to the inner and outer
boundary. If the current disk ri does not fit into R Ring Packing stops and we declare R to
be full. If ri−1 and ri could pass each other, i.e., the sum of the diameters of ri−1 and ri
are smaller than the width of R, Ring Packing stops and we declare R to be closed.

Figure 5 Ring Packing packs disks into a ring R[rout, rin], alternating adjacent to the outer and
to the inner boundary of R.

SoCG 2019

35:6 Worst-Case Optimal Disks Packing into Disks

3.4 Description of the Algorithm

C

r1

r2

(b)(a)

r3 r4

md

r

T ← r−d
4

C

Figure 6 (a): If r1, r2 ≥ 0495C, Boundary Packing packs r1, r2 into C. We update the current
container disk C as the largest disk that fits into C and recurse on C with r3, . . . , rn. (b): Determining
the threshold T for disks packed by Boundary Packing.

Our algorithm creates rings. A ring only exists after it is created. We stop packing at
any point in time when all disks are packed. Furthermore, we store the current threshold T
for Boundary Packing and the smallest inner radius rmin of a ring created during the entire
run of our algorithm. Initially, we set T ← 1

4 , rmin ← 1. Our algorithm works in five phases:
Phase 1 – Recursion: If r1, r2 ≥ 0.495C, apply Boundary Packing to r1, r2, update C
as the largest disk that fits into C and T as the radius of C, and recurse on C, see Fig. 6.
Phase 2 – Boundary Packing: Let r be the radius of C. If the midpoint m of C lies
inside a packed disk ri, let d be the minimal distance of m to the boundary of ri, see
Fig. 6(b). Otherwise, we set d = 0.
We apply Boundary Packing to the container disk C with the threshold T ← r−d

4 .
Phase 3 – Ring Packing: We apply Ring Packing to the ring R := R[rout, rin]
determined as follows: Let ri be the largest disk not yet packed. If there is no open ring
inside C, we create a new open ring R[rout, rin]← R[rmin, rmin− 2ri]. Else, let R[rout, rin]
be the open ring with the largest inner radius rin.
Phase 4 – Managing Rings: Let R[rout, rin] be the ring filled in Phase 3. We declare
R[rout, rin] to be closed and proceed as follows: Let ri be the largest disk not yet packed.
If ri and ri+1 can pass one another inside R[rout, rin], i.e., if 2ri + 2ri+1 ≤ rout − rin, we
create two new open rings R[rout, rout − 2ri] and R[rout − 2ri, rin].
Phase 5 – Continue: If there is an open ring, we go to Phase 3. Otherwise, we set C as
the largest disk not covered by created rings, set T as the radius of C, and go to Phase 2.

4 Analysis of the Algorithm

4.1 Analysis of Phase 1 - The Recursion
If r2 ≥ 0.495, Lemma 2 allows us to recurse on C as required by Phase 1.

I Lemma 2. If r1, r2 ≥ 0.495C, the volume of the largest container disk that fits into C after
packing r1, r2 is at least twice the total volume of r3, . . . , rn, see Fig. 7.

Proof. W.l.o.g., assume that the original container disk is the unit disk. Lemma 3 implies
r1 +r2 ≤ 1, which means r1, r2 ≤ 0.505, because r2 ≥ 0.495. Furthermore, r1 +r2 ≤ 1 implies
that we can move (w.l.o.g.) r1, r2 into two disks D1, D2 with radius 0.505, touching the

S. P. Fekete, P. Keldenich, and C. Scheffer 35:7

0.
50
5

0.
50
5

D2 D1

`1

`2
a

m2 m1

1
5

m

r2 r1

C

C

Figure 7 If r2 ≥ 0.495, we can pack r1, r2 into container disks D1, D2 and recurse on a third disk
c whose area is twice the total area of the remaining disks.

boundary of C and with their midpoints m1,m2 on the horizontal diameter of C, see Fig. 7.
This decreases the volume of the largest disk that still fits into C. Consider the disk C := 1

5
lying adjacent to C and with its midpoint m on the vertical diameter `1 of C. Pythagoras’
Theorem implies that |m1m| =

√
(1− 0.505)2 +

(
1− 1

5
)2 ≈ 0.94075 > 0.505 + 1

5 . Finally, we
observe that the area of C is π

25 = 0.4π > 0.0199 = 2
(
π
2 − 2 · π0.4952). This means that the

area of C is twice the total area of the remaining disks r3, r4, r5, . . ., concluding the proof. J

A technical key ingredient in the proof of Lemma 2 is the following lemma:

I Lemma 3. The area of two disks r1, r2 is at least π
2 (r1 + r2)2.

Proof. The first derivative of the function mapping a radius onto the area of the corresponding
disk is the periphery of the corresponding circle. As r1 ≥ r2, decreasing r1 and increasing
r2 by the same value δ reduces the total area of r1, r2, while the value r1 + r2 stays the
same. Hence, we assume w.l.o.g. that r1 = r2. This implies that the total area of r1, r2 is
2πr2

1 = π
2 (r1 + r2)2, concluding the proof. J

This allows us to assume r2 < 0.495C during the following analysis.

4.2 Outline of the Remaining Analysis
Once our algorithm stops making recursive calls, i.e., stops applying Phase 1, Phase 1 is
never applied again. W.l.o.g., let r1, . . . , rn be the remaining disks and O the container disk
after the final recursion call.

The main idea of the remaining analysis is the following: We cover the original container
disk O by a set of sectors that are subsets of O. Let ri be a disk packed by Boundary Packing
into the current container disk C. We define the cone induced by ri as the area of C between
the two tangents of ri. We say that C is the radius of the cone. textA sector is a subset of O.

Each disk pays portions, called atomic potentials, of its volume to different sectors of O.
The total atomic potential paid by a disk r will be at most the volume of the disk r. Let
A1, . . . , Ak be the total atomic potentials paid to the sectors S1, . . . , Sk ⊂ O. The potential
of a sector S ⊆ O is the sum of the proportionate atomic potentials from S1, . . . , Sk, i.e., the
sum of all |Si∩S|

|Si| Ai for i = 1, . . . , k. The (virtual packing) density ρ(S) of the sector S is
defined as the ratio between the potential of S and the volume of S. If a sector achieves a
density of 1

2 , we say that the sector is saturated, otherwise its unsaturated.

SoCG 2019

35:8 Worst-Case Optimal Disks Packing into Disks

Figure 8 Different sequences of rings packed by different applications of Ring Packing. The
minimal rings into which the orange and red disks are packed are full. The minimal ring into
which the turquoise disks are packed is open. The uncolored, crossed-out circles illustrate that the
corresponding disk did not fit into the current ring, causing it to be declared full.

Our approach for proving Theorem 1 is by induction over n. In particular, we assume
that O \ C is saturated; we show that each disk ri can be packed by our algorithm, as long as
C is unsaturated implying that each set of disks with total volume of at most |O|2 is packed.
We assume for the remainder of the paper that C is the unit disk, i.e., C = 1.

We consider the configuration achieved after termination.
If there is a ring that is neither full nor closed, all disks are packed.
Thus, we assume that all rings computed by our algorithm are full or closed. In order to

avoid that Boundary Packing stops due to a disk r not fitting, we consider the gap that is left
by Boundary Packing, see Fig. 9. This gap achieves its maximum for r = 1

4 . We guarantee
that C has a density of

ρ := 180◦

360◦ − 2 arcsin
(

1/4
3/4

) < 0.56065.

4.3 Analysis of Boundary Packing
The following lemma is the key ingredient for the analysis of Boundary Packing.

I Lemma 4. Let r ∈ [0.2019, 1
2] be a disk lying adjacent to C. The cone C induced by r has

a density better than ρ if r ∈ [1
4 , 0.495] and at least 1

2 if r ∈ [0.2019, 1
2], see Fig. 10.

density ≥ ρ density ≥ 0.5

⇒

1
1
2 1

4

C

Figure 9 Ensuring a density of at least 0.5 for a ring R needs a density of 0.5606 for R \ C.

S. P. Fekete, P. Keldenich, and C. Scheffer 35:9

r

Figure 10 A disk r ∈ [1
4 , 0.495] lying adjacent to C induces a cone with density of at least 0.56127

if r ∈ [1
4 , 0.495] and of least 1

2 if r ∈ [1
4 ,

1
2].

Proof. Let f(r) := πr2

arcsin(r
1−r) for 1

4 ≤ r ≤
1
2 . Thus we have

f ′(r) = 2πr
arcsin

(
r

1−r

) − πr2
(

1
1−r + r

(1−r)2

)
arcsin

(
r

1−r

)2√
1− r2

(1−r)2

.

Solving f ′(r) = 0 yields r ≈ 0.39464. Furthermore, we have f(1
4) ≈ 0.57776, f(0.39464) =

0.68902, f(1
2) = 0.5, and f(0.495) ≈ 0.56127. Thus, f restricted to [1

4 , 0.495] achieves at
0.495 its global minimum 0.56127. A similar approach implies that f restricted to [0.2019, 1

2]
attains its global minimum 1

2 at 1
2 . J

The following lemma proves that all disks ri ≥ C4 that are in line to be packed into a
container disk C can indeed be packed into C.

I Lemma 5. All disks ri ≥ 1
4 that are in line to be packed into C by Boundary Packing do

fit into C.

Proof. Assume that there is a largest disk rk ≥ 1
4 not packed adjacent to C. Each disk ri

from r1, . . . , rk−1 pays its entire volume to the cone induced by ri. Lemma 4 implies that
each cone is saturated. As rk does not fit between r1, rk−1 and is adjacent to C, Lemma 4
implies that the area of C that is not covered by a cone induced by r1, . . . , rk−1 has a volume
smaller than twice the volume of rk. This implies that the total volume of r1, . . . , rk is larger
than half of the volume of C. This implies that the total input volume of r1, . . . , rn is larger
than twice the volume of the container. This is a contradiction, concluding the proof. J

I Corollary 6. If rn ≥ 1
4 , our algorithm packs all input disks.

Thus, we assume w.l.o.g. rn < 1
4 , implying that our algorithm creates rings.

4.4 Analysis of Ring Packing
For the following definition, see Fig. 11 (Middle).

I Definition 7. A zipper Z is a (maximal) sequence 〈rk, . . . , r`〉 of disks that are packed
into a ring R during an application of Ring Packing. The length of Z is defined as k− `+ 1.

SoCG 2019

35:10 Worst-Case Optimal Disks Packing into Disks

Consider a zipper 〈rk, . . . , r`〉 packed into a ring R. For a simplified presentation, we
assume in Section 4.4 that the lower tangent of rk realizes a polar angle of zero, see Fig. 11.

We refine the potential assignments of zippers as follows. Let Z = 〈rk, . . . , r`〉 be an
arbitrary zipper and R the ring into which Z is packed. In order to subdivide R into sectors
corresponding to specific parts of the zipper, we consider for each disk ri the center ray,
which is the ray starting from m and passing the midpoint of ri. Let t1, t2 be two rays
starting in m. We say that t1 lies above t2 when the polar angle realized by t1 is at least
as large as the polar angle realized by t2. t1 is the minimum (maximum) of t1, t2 if t1 does
not lie above (below) t2. Furthermore, the upper tangent (lower tangent) of a disk ri is the
maximal (minimal) tangent of ri.

Figure 11 A maximal sequence of disks that are packed into a ring during an application of
Boundary Packing. The corresponding sectors are illustrated in light gray. Left: A zipper of size
one and the corresponding sector. Middle: A zipper of size 14, the resulting directed adjacency
graph (black/red), and the path (red) leading from the largest disk to the smallest disk. The first
seven edges of P are diagonal and the remaining edges of P are vertical. Right: The zipper and
the sector disassembled into smaller sectors corresponding to the edges of the red path.

If the zipper Z consists of one disk rk, the sector S of Z is that part of R between the
two tangents to rk and rk pays its entire volume to S.

I Lemma 8. The density of the sector S of a zipper of length one is at least 0.77036.

Proof. As the zipper consists of only one disk rk, rk touches both the inner and the outer
boundary of R. Hence, the density of S is not increased by assuming that the inner radius of
R is equal to the diameter of rk. Hence, the density of S is at least π

12 arcsin(1/3) ≈ 0.77036. J

Assume the zipper 〈rk, . . . , r`〉 consists of at least two disks. We define the adjacency
graph G = ({rk, . . . , r`}, E) as a directed graph as follows: There is an edge (rj , ri) if (1)
ri ≤ rj and (2) ri, rj are touching each other, see Fig. 11 (Right). As Ring Packing packs
each disk ri with midpoint mi such that mi realizes the smallest possible polar angle, there is
a path ek, . . . , e`−1 =: P connecting rk to r` in the adjacency graph G, see Fig. 11 (Middle).
ek is the start edge of P and e`−1 is the end edge of P . The remaining edges of P that
are neither the start nor the end edge of G, are middle edges of P . Furthermore, an edge
(rj , rm) = ei ∈ P is diagonal if rj , rm are touching different boundary components of R.
Otherwise, we call ei vertical.

Depending on whether ei is a start, middle, or an end edge and on whether ei is diagonal
or vertical, we classify the edges of the path P by eight different types T1-T8. For each type
we individually define the sector Ai belonging to an edge (rj , rm) = ei ∈ P and the potential
assigned to Ai, called the potential of ei. Let tlower be the minimum of the lower tangents of
rj , rm and tupper the maximum of the upper tangents of rj , rm, see Fig. 12 (a). Furthermore,
let t1, t2 be the center rays of rj , rm, such that t1 does not lie above t2.

S. P. Fekete, P. Keldenich, and C. Scheffer 35:11

For the case that ei = (rj , rm) is a vertical edge, we consider additionally the disk rp that
is packed into R after rj and before rm, see Fig. 12 (f). Let t3 be the maximum of t2 and
the upper tangent of rp, see Fig. 12.

tupper

tlower

t1

t2

tupper

tlower

t1

t2
t3

(a) (b) (c) (d)

(f) (g) (h) (i) (j)

rj

R

R

rm

rj

rm

rp

diagonal
start edge

diagonal diagonal
middle edge end edge

vertical vertical vertical vertical
start edge middle edge end edge start and end

edge

Rm

Rm

T1: T2: T3:

T5: T6: T7: T8:

(e)

diagonal
start and end
edge

T4:

Figure 12 The eight possible configurations of an edge ei (red) of P , the corresponding sectors
(light gray), and the potentials (dark gray) payed by the involved disks to the sector.

T1 The sector of ei: If ei = (rj , rm) is a diagonal start edge (as shown in Fig. 12(b)), the
sector of ei is that part of R that lies between tlower and t2.
The potential of ei: rj pays its entire volume and rm the half of its volume to the
sector of ei.

T2 The sector of ei: If ei = (rj , rm) is a diagonal middle edge, (as shown in Fig. 12(c)),
the sector of ei is that part of R that lies between t1 and t2.
The potential of ei: rj and rm pay the half of its volume to the sector of ei.

T3 The sector of ei: If ei = (rj , rm) is a diagonal end edge, (as shown in Fig. 12(d)), the
sector of ei consists of two parts: (1) The first is the part of R that lies between the
upper tangent and the center ray of rj . (2) Let Rm be the smallest ring enclosing rm.
The second part of the sector is that part of Rm that lies between the upper tangent of
rm and the minimum of t1 and the lower tangent of rm.
The potential of ei: rj pays the half of its volume and rm its entire volume to the
sector of ei.

T4 The sector of ei: If ei = (rj , rm) is a diagonal start and end edge, (as shown in
Fig. 12(e)), the sector of ei is the union of two sectors: (1) The first is the part of R that
lies between the lower and the upper tangent of rj . (2) The second is that part of Rm
that lies between the lower and the upper tangent of rm.
The potential of ei: rj , rm pay their entire volume to the sector of ei.

T5 The sector of ei: If ei = (rj , rm) is a vertical start edge, (as shown in Fig. 12(g)), the
sector of ei is that part of R that lies between the minimum of the lower tangents of
rj , rp and the center ray of rm.
The potential of ei: rj , rp pay their entire volume and rm the half of its volume to the
sector of ei.

SoCG 2019

35:12 Worst-Case Optimal Disks Packing into Disks

T6 The sector of ei: If ei = (rj , rm) is a vertical middle edge, (as shown in Fig. 12(h)),
the sector of ei is that part of R that lies between the center rays of rj , rm.
The potential of ei: rp pays its entire volume and rj , rm pay half of their respective
volume to the sector of ei.

T7 The sector of ei: If ei = (rj , rm) is a vertical end edge, (as shown in Fig. 12(i)), the
sector of ei consists of two parts: (1) The first is that part of R that lies between the
center ray of rj and the upper tangent of rp. (2) Let Rm be the smallest ring enclosing
rm. The second part of the sector is the part of Rm that lies between the center ray of rj
and the upper tangent of rm.
The potential of ei: rj pays the half of its volume and rp, rm their entire volumes to
the sector of ei.

T8 The sector of ei: If ei = (rj , rm) is a vertical start and end edge, (as shown in
Fig. 12(j)), the sector of ei is consists of two parts: (1) The first is that part of R that
lies between the minimum of the lower tangents of rj , rp and the maximum of the upper
tangents rj , rp. (2) Let Rm be the smallest ring enclosing rm. The second part of the
sector is that part of Rm that lies between the lower and the upper tangent of rm.
The potential of ei: rj , rp, rm pay their entire volume to the sector of ei.

For simplicity, we also call the density of the sector of an edge ei ∈ P the density of ei.
The sector of a zipper is the union of the sectors of the edges of P .

I Lemma 9. Let Z = 〈rk, . . . , r`〉 be a zipper of length at least two and P a path in the
adjacency graph of Z connecting rk with r`. Each edge ei ∈ P has a density of at least ρ.

The proof of Lemma 9 is the only computer-assisted proof. All remaining proofs are
analytic. Due to space constraints, the proof of Lemma 9 is given in the full version of the
paper [3]. Combining Lemmas 8 and 9 yields the following.

I Corollary 10. Sectors of zippers have a density of at least ρ.

Ring Packing stops when the sum of the diameters of the current disk ri and the disk
packed last ri−1 is smaller than the width w of the current ring, i.e., if 2ri−1 + 2ri < w. If
2ri−1 + 2ri < w, Phase 5 partitions the current ring into two new open rings with widths
2ri, w− 2ri. Hence, the sectors of zippers packed by Ring Packing become firmly interlocked
without leaving any gaps between two zippers, see Fig. 13. The only sectors that we need to

Figure 13 The sectors of rings packed by Ring Packing become firmly interlocked without leaving
any gaps between two sectors. The minimal rings into which the orange and the red zippers are
packed are full. The minimal ring into which the turquoise zipper is packed is open.

care about are the gaps that are left by Ring Packing due to the second break condition, i.e.,
the current disk does not fit into the current ring, see the black sectors in Fig. 13.

S. P. Fekete, P. Keldenich, and C. Scheffer 35:13

r`
r`−1

R rf

A unit sector of R

The lid h of R

The gap of Ru

rf

R

r`

r`−1

rf

Figure 14 The lid, the gap (shaded white-gray), and a unit sector of a ring R.

I Corollary 11. Let R be a minimal ring and G its gap. R \G has a density of at least ρ.

In order to analyze the gaps left by Ring Packing, we first need to observe for which rings
we need to consider gaps. In particular, we have two break conditions for Ring Packing:

(1) The current disk ri does not fit into the current ring R, causing us to close the ring
and disregard it for the remainder of the algorithm?

(2) The current and the last disk ri−1 packed into R can pass one another, resulting in R
to be partitioned into several rings with smaller widths. Thus, we obtain that two computed
rings R1, R2 either do not overlap or R1 lies inside R2.

I Definition 12. Consider the set of all rings R1, . . . , Rk computed by our algorithm. A ring
Ri is maximal if there is no ring Rj with Ri ⊂ Rj. A ring Ri is minimal if there is no ring
Rj with Ri ⊃ Rj.

By construction of the algorithm, each ring is partitioned into minimal rings. Thus, we
define gaps only for minimal rings, see Figure 14 and Definition 13.

I Definition 13. Let Z = 〈. . . , r`−1, r`〉 be a zipper of length at least 2 inserted into a
minimal ring R. The lid h of R is the ray above the upper tangent u of r` such that h realizes
a maximal polar angle while h∩R does not intersect an already packed disk rf with f ≤ `− 1,
see Fig. 14. The gap of R is the part of R between the upper tangent u of r`−1 and the lid of
R which is not covered by sectors of Z, see the white-gray striped sectors in Fig. 14.

A unit sector of R is a sector of R that lies between the two tangents of a disk touching
the inner and the outer boundary of R, see Fig. 14. The unit volume UR of R is the volume
of a unit sector of R.

The lid of a gap lies either inside a cone induced by a disk packed by Boundary Packing,
see Fig. 14 (Left), or inside the sector of a zipper packed by Ring Packing, see Fig. 14 (Right).
This leads to the following observation: Each minimal ring R is covered by the union of
cones induced by disks packed by Boundary Packing into R, sectors of zippers packed by
Ring Packing into R, and the gap of R.

Next, we upper bound the volume of the gap of minimal rings.

I Lemma 14. The gap of a minimal ring R has a volume of at most 1.07024UR.

SoCG 2019

35:14 Worst-Case Optimal Disks Packing into Disks

R1

r`

(a): A1 (b): A2

w.l.o.g. w.l.o.g.

(c): A3

A

λ

D

(d): A4 (e)

µ

w.l.o.g.

B

Figure 15 Simplifying assumptions that do not increase the density.

Proof. As we want to upper bound the volume of the gap w.r.t. the unit volume UR of R,
w.l.o.g. we make the following assumptions (A1)-(A4), see Fig. 15:

(A1) The largest disk λ inside R touching h from below, the upper tangent of r` from
above, and the inner boundary of R, such that λ does not overlap with any other disks
from below, has the same radius as r`, see Fig. 15(a).
(A2) The last disk r` packed into R touches the inner boundary of R, see Fig. 15(b).
(A3) The empty pocket A left by the sector of the end edge of the zipper inside R is
bounded from below by the lower tangent of r` but not by the upper tangent of r`−1, see
Fig. 15(c).
(A4) rout = 1, rin = 1

2 , see Fig. 15(d).

Let B be the sector of R that lies between the two tangents of λ, see Fig. 15(d). We
upper bound the volume of the gap of R as |A|+ |B| ≤ 1.07024UR, as follows.

Let µ ⊂ R be the disk touching the inner and the outer boundary of R1 and the upper
tangent of r` from above, see Fig. 15(e). Furthermore, let D be the part of the cone induced
by µ which lies inside R and between the upper and lower tangent of µ, see Fig. 15(e).

In the following, we show that |A| − |D| ≤ 0.07024UR.

|A| − |D| ≤
2 arcsin

(
λ

1
2 +λ

)
2π π

(
1−

(
1
2 + 2λ

)2
)

−
2 arcsin

(1
3
)
− 2 arcsin

(
λ

1
2 +λ

)
2π π

(
3
4

)
= arcsin

(
λ

1
2 + λ

)(
7
4 −

(
1
2 + 2λ

)2
)

−3
4 arcsin

(
1
3

)
=: VAD.

The first derivative of VAD is

d VAD λ

d λ
=

(
1

1
2 +λ −

λ

(1
2 +λ)2

)(
7
4 −

(
2λ+ 1

2
)2)

√
1− λ2

(1
2 +λ)2

−4 arcsin
(

λ
1
2 + λ

)(
2λ+ 1

2

)
.

Solving d VAD λ
d λ = 0 yields λ ≈ 0.196638. Finally, we observe that VAD

(1
8
)
≈ −0.01576,

VAD (0.196638) ≈ 0.01756, VAD
(1

4
)

= 0. This implies that |A|− |D| ≤ 0.01756 ≤ 0.07024UR,
because UR ≥ 1

4 . J

S. P. Fekete, P. Keldenich, and C. Scheffer 35:15

4.5 Analysis of the Algorithm for the Case r1 ≤ 0.495
We show that each computed minimal ring is saturated, see Corollary 17. Let R1, . . . , Rh ⊆ C
be the created minimal rings ordered decreasingly w.r.t. their outer radii. The inner boundary
of Ri is the outer boundary of Ri+1 for i = 1, . . . , h− 1.

We show by induction over h that R := R[rout, rin] := Rh is saturated. Thus, we assume
that R1, . . . , Rh−1 are saturated, implying that C \ rout is saturated, where rout is the outer
radius of Rh.

For the remainder of Section 4.5, each disk ri packed by Boundary Packing pays its entire
volume to the cone induced by ri.

I Lemma 15. Assume rn < 1
4 . There is at least one disk rk packed into R and touching

both the inner and the outer boundary of R.

Proof. Assume that our algorithm did not pack a disk with radius smaller than 1
4 adjacent

to C. Let rk be the largest disk not packed adjacent to C into R.
By Lemma 5, we obtain that rk is smaller than 1

4 . This implies that the volume of
the sector that is not covered by the cones induced by r1, . . . , rk−1 is upper bounded by
arcsin

(1
3
)
, see Fig. 16.

⇒

1 1
2

1
4

density ≥ ρ density ≥ 0.5

Figure 16 Ensuring density of at least ρ for all cones induced by disks packed by Boundary
Packing implies a density of at least 0.5 for the entire container disk.

Each disk ri from r1, . . . , rk−1 pays its entire volume to the cone induced by ri. Lemma 4
implies that each cone has a density of at least ρ, because r1, . . . , rn ≤ 0.495. This implies
that the total volume of r1, . . . , rk−1 is at least π ·ρ · 2π−2 arcsin(1/3)

2π = ρ(π−arcsin (1/3)) > π
2

contradicting the assumption that the total input volume is no larger than π
2 . J

I Lemma 16. Rh is saturated.

Proof. Let S1 be the sector of Rh that is covered by cones induced by disks packed by
Boundary Packing or by sectors of zippers packed by Ring Packing. Lemma 15 implies that
there is a disk rk packed into Rh such that rk touches the inner and the outer boundary of
Rh. Let S2 be the sector of Rh between the lower and the upper tangent of rk.

We move potentials δ1, δ2 from S1, S2 to a potential variable ∆ and guarantee that ∆ is
at least 1

2 times the volume of the gap G of Rh. Finally, we move ∆ to G, implying that G
is saturated, which in turn implies that Rh is saturated.

Lemma 8 implies that the density of S2 is at least 0.77036. We move a potential
δ2 := (0.77036− ρ) |S1| > 0.20971URh

from S2 to ∆, implying that S2 has still a density of ρ.

SoCG 2019

35:16 Worst-Case Optimal Disks Packing into Disks

Combining Lemma 4 and Corollary 10 yields that S1 has a density of at least ρ. Lemma 14
implies that the volume of the gap of Rh is at most 1.07024UR. The volume of Rh is at least

2π
2 arcsin(1

3)URh
> 9.24441URh

. Thus, the volume of S1 is at least (9.24441− 1.07024)URh
=

8.17417URh
. Hence, we move a potential δ1 :=

(
ρ− 1

2
)

8.17417URh
> 0.49576URh

to ∆.
We have ∆ = δ1 + δ2 > 0.49576 + 0.20971 = 0.70547, which is large enough to saturate a

sector of volume V∆ = 2 · 0.70547 = 1.41094URh
. As |G| ≤ 1.07024, moving ∆ to G yields

that G is saturated, which implies that Rh is saturated. This concludes the proof. J

I Corollary 17. Each minimal ring is saturated.

As each ring can be partitioned into minimal rings, we obtain the following.

I Corollary 18. All rings are saturated.

Combining Lemma 5 and Corollary 18 yields that all disks are packed.

I Lemma 19. Our algorithm packs all input disks.

Proof. By induction assumption we know that O \ C is saturated and Corollary 18 implies
that all rings inside C are also saturated.

Let C be the disk left after removing all rings from C, implying that C is empty. Lemma 5
implies that a final iteration of Boundary Packing to C yields that all remaining disks are
packed into C. This concludes the proof. J

4.6 Analysis of the Algorithm for the Case 0.495 ≤ r1

We prove that all disks are packed if 0.495 ≤ r1 by distinguishing whether 0.495 ≤ r1 ≤ 1
2 or

1
2 < r1. If 0.495 ≤ r1 ≤ 1

2 , we apply a similar approach as used for the case r1 ≤ 0.495. The
additional difficulty for the case of 0.495 ≤ r1 ≤ 1

2 is that the cone induced by r1 may have a
density of 1

2 . Thus, we have to generate some extra potential from the remaining sectors in
order to ensure that the gaps of the rings are saturated, see [3] for details.

I Lemma 20. If 0.495 ≤ r1 ≤ 1
2 , our algorithm packs all disks into the container disk.

If 1
2 < r1, we need to refine our analysis because the midpoint of the container disk C

lies inside r1. In particular, we consider a half disk H lying inside C such that H and r1
are touching each other. The volume of H is at least twice the volume of the remaining
disks to be packed, see Figure 17. Finally, applying a similar approach as used in the case of
0.495 ≤ r1 ≤ 1

2 to H yields that all disks are packed, see [3] for details.

I Lemma 21. If 1
2 < r1, our algorithm packs all disks into the original container disk.

Lemma 21 concludes the proof of Theorem 1.

5 Hardness

It is straightforward to see that the hardness proof for packing disks into a square can be
adapted to packing disks into a disk, as follows.

I Theorem 22. It is NP-hard to decide whether a given set of disks fits into a circular
container.

S. P. Fekete, P. Keldenich, and C. Scheffer 35:17

∑n
i=2 |ri| r1

D
H

Figure 17 The total volume of the remaining disks to be packed is smaller than the volume of
the white disk D. As |H| = 2|D|, it suffices to guarantee that H is saturated.

The proof is completely analogous to the one by Demaine, Fekete, and Lang in 2010 [2],
who used a reduction from 3-Partition. Their proof constructs a disk instance which
first forces some symmetrical free “pockets” in the resulting disk packing. The instance’s
remaining disks can then be packed into these pockets if and only if the related 3-Partition
instance has a solution. Similar to their construction, we construct a symmetric triangular
pocket by using a set of three identical disks of radius

√
3

2+
√

3 that can only be packed into
a unit disk by touching each other. Analogous to [2], this is further subdivided into a
sufficiently large set of identical pockets. The remaining disks encode a 3-Partition instance
that can be solved if and only if the disks can be partitioned into triples of disks that fit into
these pockets.

c

pi1 pi2

pi3

Ci1
Ci2

Ci3

Figure 18 Elements of the hardness proof: (1) A symmetric triangular pocket from [2], allowing
three disks with centers pi1 , pi2 , pi3 to be packed if and only if the sum of the three corresponding
numbers from the 3-Partition instance is small enough. (2) Creating a symmetric triangular pocket
in the center by packing three disks of radius

√
3

2+
√

3 and the adapted argument from [2] for creating
a sufficiently large set of symmetric triangular pockets.

6 Conclusions

We have established the critical density for packing disks into a disk, based on a number
of advanced techniques that are more involved than the ones used for packing squares or
disks into a square. Numerous questions remain, in particular the critical density for packing
disks of bounded size into a disk or the critical density of packing squares into a disk. These
remain for future work; we are optimistic that some of our techniques will be useful.

SoCG 2019

35:18 Worst-Case Optimal Disks Packing into Disks

References
1 I. Castillo, F. J. Kampas, and J. D. Pintér. Solving circle packing problems by global

optimization: numerical results and industrial applications. European Journal of Operational
Research, 191(3):786–802, 2008.

2 E. D. Demaine, S.P. Fekete, and R. J. Lang. Circle Packing for Origami Design is Hard. In
Origami5: 5th International Conference on Origami in Science, Mathematics and Education,
AK Peters/CRC Press, pages 609–626, 2011. arXiv:1105.0791.

3 S. P. Fekete, P. Keldenich, and C. Scheffer. Packing Disks into Disks with Optimal Worst-Case
Density. Computing Research Repository (CoRR), 2019. arXiv:1903.07908.

4 S. P. Fekete, S. Morr, and C. Scheffer. Split Packing: Algorithms for Packing Circles with
Optimal Worst-Case Density. Discrete & Computational Geometry, 2018. doi:10.1007/
s00454-018-0020-2.

5 S. P. Fekete and J. Schepers. New Classes of Fast Lower Bounds for Bin Packing Problems.
Math. Program., 91(1):11–31, 2001.

6 S. P. Fekete and J. Schepers. A General Framework for Bounds for Higher-Dimensional
Orthogonal Packing Problems. Math. Methods Oper. Res., 60:311–329, 2004.

7 F. Fodor. The Densest Packing of 19 Congruent Circles in a Circle. Geometriae Dedicata,
74:139–145, 1999.

8 F. Fodor. The Densest Packing of 12 Congruent Circles in a Circle. Beiträge zur Algebra und
Geometrie (Contributions to Algebra and Geometry), 41:401–409, 2000.

9 F. Fodor. The Densest Packing of 13 Congruent Circles in a Circle. Beiträge zur Algebra und
Geometrie (Contributions to Algebra and Geometry), 44:431–440, 2003.

10 H. J. Fraser and J. A. George. Integrated container loading software for pulp and paper
industry. European Journal of Operational Research, 77(3):466–474, 1994.

11 M. Goldberg. Packing of 14, 16, 17 and 20 circles in a circle. Mathematics Magazine, 44:134–139,
1971.

12 R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, and P.R.J. Östergøard. Dense Packings of
Congruent Circles in a Circle. Discrete Mathematics, 181:139–154, 1998.

13 M. Hifi and R. M’hallah. A literature review on circle and sphere packing problems: models
and methodologies. Advances in Operations Research, 2009. Article ID 150624.

14 P. Hokama, F. K. Miyazawa, and R. C. S. Schouery. A bounded space algorithm for online
circle packing. Information Processing Letters, 116(5):337–342, May 2016.

15 S. Kravitz. Packing cylinders into cylindrical containers. Mathematics Magazine, 40:65–71,
1967.

16 R. J. Lang. A computational algorithm for origami design. Proceedings of the Twelfth Annual
Symposium on Computational Geometry (SoCG), pages 98–105, 1996.

17 J. Y. T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and F. Y. L. Chin. Packing squares
into a square. Journal of Parallel and Distributed Computing, 10(3):271–275, 1990.

18 B.D. Lubachevsky and R.L. Graham. Curved Hexagonal Packings of Equal Disks in a Circle.
Discrete & Computational Geometry, 18:179–194, 1997.

19 H. Melissen. Densest Packing of Eleven Congruent Circles in a Circle. Geometriae Dedicata,
50:15–25, 1994.

20 F. K. Miyazawa, L. L. C. Pedrosa, R. C. S. Schouery, M. Sviridenko, and Y. Wakabayashi.
Polynomial-time approximation schemes for circle packing problems. In Proceedings of the
22nd European Symposium on Algorithms (ESA), pages 713–724, 2014.

21 J. W. Moon and L. Moser. Some packing and covering theorems. In Colloquium Mathematicae,
volume 17, pages 103–110. Institute of Mathematics, Polish Academy of Sciences, 1967.

22 S. Morr. Split Packing: An Algorithm for Packing Circles with Optimal Worst-Case Density.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 99–109, 2017.

23 N. Oler. A finite packing problem. Canadian Mathematical Bulletin, 4:153–155, 1961.

http://arxiv.org/abs/1105.0791
http://arxiv.org/abs/1903.07908
http://dx.doi.org/10.1007/s00454-018-0020-2
http://dx.doi.org/10.1007/s00454-018-0020-2

S. P. Fekete, P. Keldenich, and C. Scheffer 35:19

24 R. Peikert, D. Würtz, M. Monagan, and C. de Groot. Packing circles in a square: A review
and new results. In Proceedings of the 15th IFIP Conference, pages 45–54, 1992.

25 G.E. Reis. Dense Packing of Equal Circles within a Circle. Mathematics Magazine, issue
48:33–37, 1975.

26 E. Specht. Packomania, 2015. URL: http://www.packomania.com/.
27 K. Sugihara, M. Sawai, H. Sano, D.-S. Kim, and D. Kim. Disk packing for the estimation of

the size of a wire bundle. Japan Journal of Industrial and Applied Mathematics, 21(3):259–278,
2004.

28 P. G. Szabó, M. C. Markót, T. Csendes, E. Specht, L. G. Casado, and I. García. New
Approaches to Circle Packing in a Square. Springer US, 2007.

29 H. Wang, W. Huang, Q. Zhangn, and D. Xu. An improved algorithm for the packing of
unequal circles within a larger containing circle. European Journal of Operational Research,
141(2):440–453, September 2002.

30 D. Würtz, M. Monagan., and R. Peikert. The history of packing circles in a square. Maple
Technical Newsletter, page 35–42, 1994.

SoCG 2019

http://www.packomania.com/

Semi-Algebraic Colorings of Complete Graphs
Jacob Fox
Stanford University, 450 Serra Mall, Building 380, Stanford, CA 94305, USA
jacobfox@stanford.edu

János Pach
École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland,
Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary
pach@cims.nyu.edu

Andrew Suk
University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
asuk@ucsd.edu

Abstract
We consider m-colorings of the edges of a complete graph, where each color class is defined semi-
algebraically with bounded complexity. The case m = 2 was first studied by Alon et al., who applied
this framework to obtain surprisingly strong Ramsey-type results for intersection graphs of geometric
objects and for other graphs arising in computational geometry. Considering larger values of m is
relevant, e.g., to problems concerning the number of distinct distances determined by a point set.

For p ≥ 3 and m ≥ 2, the classical Ramsey number R(p; m) is the smallest positive integer
n such that any m-coloring of the edges of Kn, the complete graph on n vertices, contains a
monochromatic Kp. It is a longstanding open problem that goes back to Schur (1916) to decide
whether R(p; m) = 2O(m), for a fixed p. We prove that this is true if each color class is defined
semi-algebraically with bounded complexity, and that the order of magnitude of this bound is tight.
Our proof is based on the Cutting Lemma of Chazelle et al., and on a Szemerédi-type regularity
lemma for multicolored semi-algebraic graphs, which is of independent interest. The same technique
is used to address the semi-algebraic variant of a more general Ramsey-type problem of Erdős and
Shelah.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases Semi-algebraic graphs, Ramsey theory, regularity lemma

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.36

Funding Jacob Fox: Supported by a Packard Fellowship and by NSF CAREER award DMS 1352121.
János Pach: Supported by Swiss National Science Foundation grants 200020-162884 and 200021-
165977.
Andrew Suk: Supported by an NSF CAREER award and an Alfred Sloan Fellowship.

1 Introduction

The Ramsey number R(p;m) is the smallest integer n such that any m-coloring on the edges
of the complete n-vertex graph contains a monochromatic copy of Kp. The existence of
R(p;m) follows from the celebrated theorem of Ramsey [18] from 1930, and for the special
case when p = 3, Issai Schur proved the existence of R(3;m) in 1916 in his work related to
Fermat’s Last Theorem [19]. He showed that

Ω(2m) ≤ R(3;m) ≤ O(m!).

While the upper bound has remained unchanged over the last 100 years, the lower bound
was successively improved and the current record is R(3;m) ≥ Ω(3.199m) due to Xiaodong
et al. [22]. It is a major open problem in Ramsey theory, for which Erdős offered some price
money, to close the gap between the lower and upper bounds for R(3;m).

© Jacob Fox, János Pach, and Andrew Suk;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 36; pp. 36:1–36:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacobfox@stanford.edu
mailto:pach@cims.nyu.edu
mailto:asuk@ucsd.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.36
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Semi-Algebraic Colorings of Complete Graphs

In this paper, we study edge-colorings of complete graphs where each color class is defined
algebraically with bounded complexity. Over the last decade, several researchers have shown
that some of the classical theorems in extremal combinatorics can be significantly improved
if the underlying graphs are intersection graphs of geometric objects of bounded “description
complexity” or bounded VC-dimension, graphs of incidences between points and hyperplanes,
distance graphs, or, more generally, semi-algebraic graphs [1, 10, 5, 9, 20]. To make this
statement more precise, we need to introduce some terminology. Let V be an ordered point
set in Rd, and let E ⊂

(
V
2
)
. We say that E is a semi-algebraic relation on V with complexity

at most t if there are at most t polynomials g1, . . . , gs ∈ R[x1, . . . , x2d], s ≤ t, of degree at
most t and a Boolean formula Φ such that for vertices u, v ∈ V such that u comes before v
in the ordering,

(u, v) ∈ E ⇔ Φ(g1(u, v) ≥ 0; . . . ; gs(u, v) ≥ 0) = 1.

At the evaluation of g`(u, v), we substitute the variables x1, . . . , xd with the coordinates
of u, the variables xd+1, . . . , x2d with the coordinates of v. We may assume that the semi-
algebraic relation E is symmetric, i.e., for all points u, v ∈ Rd, (u, v) ∈ E if and only if
(v, u) ∈ E. Indeed, given such an ordered point set V ⊂ Rd and a not necessarily symmetric
semi-algebraic relation E of complexity at most t, we can define V ∗ ⊂ Rd+1 with points (v, i)
where v ∈ V and v is the ith smallest element in the given ordering of V . Then we can define
a symmetric semi-algebraic relation E∗ on the pairs of V ∗ with complexity at most 2t+ 2,
by comparing the value of the last coordinates of the two points, and checking the relation
E using the first d coordinates of the two points. We will therefore assume throughout this
paper that all semi-algebraic relations we consider are symmetric, and the vertices are not
ordered. Hence, all edges are unordered and we denote uv = {u, v}. We also assume that
the dimension d and complexity t are fixed parameters, and n = |V | tends to infinity.

Let Rd,t(p;m) be the minimum n such that every n-element point set V in Rd equipped
with m semi-algebraic binary relations (edge-colorings) E1, . . . , Em ⊂

(
V
2
)
, each of complexity

at most t, where E1 ∪ · · · ∪Em =
(
V
2
)
, contains a subset S ⊂ V of size p such that

(
S
2
)
⊂ Ek

for some k. Note that the relations Ei are not necessarily disjoint, that is, an edge uv may
have several colors. Clearly Rd,t(p;m) ≤ R(p;m). It was known that for fixed d, t ≥ 1,
Rd,t(3;m) = 2O(m log logm), which is much smaller than Schur’s bound R(3;m) = O(m!)
mentioned in the first paragraph of the Introduction; see [20]. In this paper, we completely
settle Schur’s problem for semi-algebraic graphs, by showing that in this setting Schur’s lower
bound (which is semi-algebraic with bounded complexity) is tight. In fact, we prove this in a
more general form, for any p ≥ 3.

I Theorem 1. For fixed integers d, t ≥ 1 and p ≥ 3, we have

Rd,t(p;m) = 2O(m).

Our proof uses geometric techniques and is based on the Cutting Lemma of Chazelle,
Edelsbrunner, Guibas, and Sharir [3] described in Section 2.

Edge-colorings of semi-algebraic graphs with m colors can be used, e.g., for studying
problems concerning the number of distinct distances determined by a point set; see [11].
One can explore the fact that multicolored semi-algebraic graphs have a very nice structural
characterization, reminiscent of Szemerédi’s classic regularity lemma for general graphs [21],
but possessing much stronger homogeneity properties. Our next theorem provides such a
characterization, which is of independent interest. To state our result, we need some notation
and terminology.

J. Fox, J. Pach, and A. Suk 36:3

A partition is called equitable if any two parts differ in size by at most one. According to
Szemerédi’s lemma, for every ε > 0 there is a K = K(ε) such that the vertex set of every
graph has an equitable partition into at most K parts such that all but at most an ε-fraction
of the pairs of parts are ε-regular.1 It follows from Szemerédi’s proof that K(ε) may be
taken to be an exponential tower of 2s of height ε−O(1). Gowers [13] used a probabilistic
construction to show that such an enormous bound is indeed necessary.

Alon et al. [1] (see also Fox, Gromov et al. [8]) established a strengthening of the regularity
lemma for point sets in Rd equipped with a semi-algebraic relation E. It was shown in [1]
that for any semi-algebraic graph of bounded complexity defined on the vertex set V ⊂ Rd
(that is, for any semi-algebraic binary relation E ⊂

(
V
2
)
), V has an equitable partition into

a bounded number of parts such that all but at most an ε-fraction of the pairs of parts
(V1, V2) behave not only regularly, but homogeneously in the sense that either V1 × V2 ⊆ E
or V1 × V2 ∩ E = ∅. The first proof of this theorem was essentially qualitative: it gave a
poor estimate for the number of parts in such a partition. Fox, Pach, and Suk [10] gave a
stronger quantitative form of this result, showing that the number of parts can be taken to
be polynomial in 1/ε.

Let V be an n-element point set in Rd equipped withm semi-algebraic relations E1, . . . , Em
such that E1∪· · ·∪Em =

(
V
2
)
of bounded complexity. In other words, suppose that the edges

of the complete graph on V are colored with m colors, where each color class is semi-algebraic.
Then, for any ε > 0, an m-fold repeated application of the result of Fox, Pach, and Suk
[10] gives an equitable partition of V into at most K ≤ (1/ε)cm parts such that all but an
ε-fraction of the pairs of parts are complete with respect to some relation Ek, i.e., all edges
between the two parts are of color k, for some k. In Section 4, we strengthen this result by
showing that the number of parts can be taken to be polynomial in m/ε.

I Theorem 2. For any positive integers d, t ≥ 1 there exists a constant c = c(d, t) > 0 with
the following property. Let 0 < ε < 1/2 and let V be an n-element point set in Rd equipped
with semi-algebraic relations E1, . . . , Em such that each Ek has complexity at most t and(
V
2
)

= E1 ∪ · · · ∪ Em. Then V has an equitable partition V = V1 ∪ · · · ∪ VK into at most
4/ε ≤ K ≤ (m/ε)c parts such that all but an ε-fraction of the pairs of parts are complete
with respect to some relation Ek.

In Section 5, we apply this result to solve a problem of Erdős and Shelah [6] in the
semi-algebraic setting. Let d, t, p, q, n be positive integers, p ≥ 3, and 2 ≤ q ≤

(
p
2
)
. Let

fd,t(n, p, q) be the minimum m such that there exists a semi-algebraic m-coloring of the edges
of the complete graph of n vertices (with parameters d and t, as above) with the property
that each edge has exactly one color and any set of p vertices induce at least q distinct
colors. Notice that here we must assume that the color classes Ei are disjoint, since otherwise
fd,t(n, p, q) = q by assigning all q colors to every edge. Our next theorem precisely determines
the smallest q for a given p, where fd,t(n, p, q) changes from a logn to a power of n.

I Theorem 3. For fixed integers d, t ≥ 1, there is a c = c(d, t) > 0 such that for p ≥ 3, we
have

fd,t(n, p, dlog pe+ 1) ≥ Ω
(
n

1
c log2 p

)
.

Moreover, for t ≥ 4,

fd,t(n, p, dlog pe) ≤ O(logn).

1 For a pair (Vi, Vj) of vertex subsets, e(Vi, Vj) denotes the number of edges in the graph running between
Vi and Vj . The density d(Vi, Vj) is defined as e(Vi,Vj)

|Vi||Vj | . The pair (Vi, Vj) is called ε-regular if for all
V ′

i ⊂ Vi and V ′
j ⊂ Vj with |V ′

i | ≥ ε|Vi| and |V ′
j | ≥ ε|Vj |, we have |d(V ′

i , V ′
j)− d(Vi, Vj)| ≤ ε.

SoCG 2019

36:4 Semi-Algebraic Colorings of Complete Graphs

In [11], we studied a geometric instance of this problem, where every set of p points
induces at least q distinct distances.

Our paper is organized as follows. In the next section, we describe the Cutting Lemma of
Chazelle et al., which is the main geometric tool used in all proofs. In Section 3, we establish
Theorem 1. Section 4 contains the proof of our multicolored semi-algebraic regularity lemma,
Theorem 2, which is applied in the following section to deduce Theorem 3. We end this
paper with some concluding remarks.

2 The cutting lemma

The main tool we use to prove Theorems 1 and 2 is commonly referred to as the cutting
lemma, which we now recall. A set ∆ ⊂ Rd is semi-algebraic if there are polynomials g1, . . . , gt
and a boolean formula Φ such that

A = {x ∈ Rd : Φ(g1(x) ≥ 0; . . . ; gt(x) ≥ 0) = 1}.

We say that a semi-algebraic set in d-space has description complexity at most t if the number
of inequalities is at most t, and each polynomial gi has degree at most t. Let σ ⊂ Rd be a
surface in Rd, that is, σ is the zero set of some polynomial h ∈ R[x1, . . . , xd]. The degree of
a surface σ = {x ∈ Rd : h(x) = 0} is the degree of the polynomial h. We say that the surface
σ ⊂ Rd crosses a semi-algebraic set ∆ if σ ∩∆ 6= ∅ and ∆ 6⊂ σ.

Let Σ be a collection of surfaces in Rd, each having bounded degree. A (1/r)-cutting for
Σ is a family Ψ of disjoint (possibly unbounded) semi-algebraic sets of bounded complexity
such that
1. each ∆ ∈ Ψ is crossed by at most |Σ|/r surfaces from Σ, and
2. the union of all ∆ ∈ Ψ is Rd.
In [3], Chazelle et al. (see also [14]) proved the following.

I Lemma 4 (Cutting lemma). Let Σ be a multiset of N surfaces in Rd, each surface having
degree at most t, and let r be an integer parameter such that 1 ≤ r ≤ N . Then there is a
constant c1 = c1(d, t) such that Σ admits a (1/r)-cutting Ψ, where |Ψ| ≤ c1r

2d, and each
semi-algebraic set ∆ ∈ Ψ has complexity at most c1.

We note that the original statement of Chazelle et al. [3] and Koltun [14] is stronger. Namely,
they also guarantee that the number of cells in the cutting Ψ is at most r2d−4+ε for d ≥ 4.
Here, for simplicity, we use the weaker bound of c1r

2d, as stated above.

3 Multicolor Ramsey numbers for small cliques – Proof of Theorem 1

Theorem 1 will easily follow from Theorem 5 below. For integers p1, . . . , pm ≥ 2, d, t ≥ 1,
let Rd,t(p1, . . . , pm) be the minimum integer n with the following property. Every complete
graph Kn, whose n vertices lie in Rd and whose edges are colored with m colors such that
each color class is defined by a semi-algebraic relation of description complexity t, contains a
monochromatic copy of Kpk

in color k for some 1 ≤ k ≤ m.

I Theorem 5. For any d, t ≥ 1 and p ≥ 3, there exists a constant c = c(d, t, p) satisfying
the following condition. For any m integers p1, . . . , pm ≤ p, we have

Rd,t(p1, . . . , pm) ≤ 2c
∑m

k=1
pk .

J. Fox, J. Pach, and A. Suk 36:5

Proof. Fix d, t ≥ 1, p ≥ 3 and set c = c(d, t, p) to be a large constant that will be determined
later. We will show that Rd,t(p1, . . . , pm) ≤ 2c

∑m

k=1
pk by induction on s =

∑m
k=1 pk. The

base case s ≤ 10 · 210dtp follows for c sufficiently large.
Now assume that the statement holds for s′ < s. Set n = 2cs and let V be an n-

element point set in Rd equipped with semi-algebraic relations E1, . . . , Em ⊂
(
V
2
)
such that(

V
2
)

= E1 ∪ · · · ∪ Em and each Ek has complexity at most t. Recall that an edge uv may
have several colors. We will show that there is a subset S ⊂ V of size pk such that

(
S
2
)
⊂ Ek

for some k ∈ [m], in other words, we will find a monochromatic copy of Kpk
in color k for

some k ∈ [m]. Throughout the proof, we will let c1 be as defined in Lemma 4.
For each relation Ek, there are t polynomials gk,1, . . . , gk,t of degree at most t, and a

Boolean function Φk such that

uv ∈ Ek ⇔ Φk(gk,1(u, v) ≥ 0, . . . , gk,t(u, v) ≥ 0) = 1.

For 1 ≤ k ≤ m, 1 ≤ ` ≤ t, v ∈ V , we define the surface σk,`(v) = {x ∈ Rd : gk,`(v, x) = 0}.
Before we continue, let us briefly sketch the idea of the proof. We start by applying

Lemma 4 (the cutting lemma) to Σ = {σk,`(v) : k ∈ [m], ` ∈ [t], v ∈ V }, the set of surfaces
which determines the neighborhoods of each vertex, and obtain a space partition which
induces a partition of the vertex set V = V1 ∪ · · · ∪ VK . If there is a “large” part Vj with
many distinct colors appearing in Vj × (V \ Vj), then we show that Vj induces few distinct
colors, and by induction we can find a monochromatic copy of Kpk

for some k ∈ [m]. If none
of the “large” parts has the above property, the colors of nearly all edges can be defined by
much fewer polynomial inequalities, i.e., by a much smaller set of surfaces Σ′ ⊂ Σ . Now we
can repeat.

In what follows, we spell out these ideas in full detail. Set m0 = m and define mi =
4d log(c1mi−1t) for i > 0. We will establish the following claim.

B Claim 6. Let V and E1, . . . , Em ⊂
(
V
2
)
be defined as above. Then for i ≥ 0 we will

recursively find either
1. a monochromatic copy of Kpk

in color k for some k ∈ [m], or
2. a function χi : V → 2[m] such that |χi(v)| ≤ mi, and the number of edges uv ∈

(
V
2
)
with

the property that for one of its endpoints, say u, no color assigned to uv belongs to χi(u),
is at most 4n2

tmi−1
. We will refer to these edges as bad at stage i. All edges that are not

bad are called good at this stage, meaning that, there is a color k appearing on uv such
that k ∈ χi(u), and there is a color k′ appearing on uv such that k′ ∈ χi(v).

Proof. We start by setting χ0(v) = [m] for all v ∈ V , and m0 = m. Having found χi with
the properties above, we will produce χi+1 as follows. We have mi+1 = 4d log(c1mit), and
let us assume that mi > (8c1dtp)2. Hence, there are at most 4n2

tmi−1
bad edges. Let Σ be the

set of surfaces σk,`(v), where v ∈ V , k ∈ χi(v), and 1 ≤ ` ≤ t. This implies that |Σ| ≤ nmit.
We apply Lemma 4 to Σ with parameter r = (tmi)2 to obtain a (1/(tmi)2)-cutting

Ψ = {∆1,∆2, . . . ,∆K0}, such that K0 ≤ c1(tmi)4d. Hence, we have a partition P0 : V =
V1∪· · ·∪VK0 , where Vj = V ∩∆j for ∆j ∈ Ψ. For each part Vj of size greater than 2n/(tmi),
we (arbitrarily) partition Vj into parts of size b2n/(tmi)c and possibly one additional part
of size less than 2n/(tmi). Let P : V = V1 ∪ · · · ∪ VK be the resulting partition, where
K ≤ 2c1(tmi)4d and |Vj | ≤ 2n/(tmi) for all j.

Now we define χi+1(v) for all v ∈ V .

Case 1. If v ∈ Vj for some Vj with |Vj | < n
2c1(tmi)4d+1 , we set χi+1(v) = ∅.

SoCG 2019

36:6 Semi-Algebraic Colorings of Complete Graphs

Case 2. Suppose v ∈ Vj such that |Vj | ≥ n
2c1(tmi)4d+1 . In order to define χi+1(v), we need

some preparation. Let ∆j ∈ Ψ such that Vj ⊂ ∆j . We define Xj ⊂ V \ Vj to be the set
of vertices from V \ Vj that gives rise to a surface in Σ that crosses ∆j . By Lemma 4,
the cutting lemma, we have |Xj | ≤ n/(tmi).
Fix a vertex v ∈ V \ {Vj , Xj}. Since none of the surfaces of the form σk,`(v), where
k ∈ χi(v) and ` ∈ {1, . . . , t}, cross ∆j , either v × Vj is monochromatic with color k for
some k ∈ χi(v), or none of the colors in χi(v) appear in v × Vj . Let Sj be the set of
vertices v ∈ V \{Vj , Xj} satisfying the former condition and let Tj denote a set of vertices
v ∈ V \ {Vj , Xj} satisfying the latter one. Since there are at most 4n2/(tmi−1) bad edges,
we have

|Tj |
n

2c1(tmi)4d+1 ≤
4n2

tmi−1
,

which implies

|Tj | ≤
8nc1(tmi)4d+1

tmi−1
≤ n

tmi
,

where the last inequality follows from the fact that mi−1 = 2mi/4d/(c1t), and the
assumption mi > (8c1dtp)2. Now, suppose there are at least mi+1 = 4d log(c1tmi)
distinct colors between Vj and Sj . Let I = {k1, . . . , kmi+1} ⊂ [m] be the set of these mi+1
distinct colors. Then there are mi+1 vertices v1, . . . , vmi+1 ∈ Sj , possibly with repetition,
such that vw × Vj is monochromatic with color kw ∈ I, for each w ∈ {1, . . . ,mi+1}.
Hence, if Vj contains a monochromatic copy of Kpk−1 in color k ∈ I, we would have
a monochromatic copy of Kpk

in color k. On the other hand, if Vj does not contain a
monochromatic copy of Kpk−1 in color k for no k ∈ I, then, using that

|Vj | ≥
n

2c1(tmi)4d+1 > 2cs−8d log(c1mit) > 2c(s−mi+1) = 2c
(∑

k∈I
(pk−1)+

∑
k 6∈I

pk

)
for a sufficiently large c, we obtain by induction that there is a monochromatic copy of
Kpk

in color k where k 6∈ I.
Therefore, we can assume that the number of distinct colors between Vj and Sj is less
than mi+1 = 4d log(c1mit). For every vertex v ∈ Vj , define χi+1(v) as the set of all colors
that appear on the edges belonging to v × Sj .

Now that we have defined mi+1 and χi+1 such that |χi+1(v)| ≤ mi+1 for all v ∈ V , it
remains to show that the number of edges uv ∈

(
V
2
)
with the property that for one of its

endpoints, say u, no color assigned to uv belongs to χ(u), is at most 4n2

tmi
. Let B ⊂

(
V
2
)
be

the collection of such edges. Notice that if uv ∈ B, then either
1. both u and v lie inside the same part in the partition P, or
2. u or v lies inside a part Vj such that |Vj | < n

2c1(tmi)4d+1 , or
3. u ∈ Vj with |Vj | ≥ n

2c1(tmi)4d+1 and v ∈ Xj ∪ Tj , or
4. v ∈ Vj with |Vj | ≥ n

2c1(tmi)4d+1 and u ∈ Xj ∪ Tj .
Since each part in P has at most 2n/(tmi) vertices, the number of edges of type 1 is at most
tmi

2

(
2n
tmi

)2
/2 = n2/(tmi). The number of edges of type 2 is at most(
n

2c1(tmi)4d+1

)
K · n ≤ n2

tmi
.

Since |Xj |, |Tj | ≤ n/(tmi), the number of edges of types 3 and 4 is at most∑
j

|Vj |
2n
tmi
≤ 2n2

tmi
.

J. Fox, J. Pach, and A. Suk 36:7

Hence, |B| ≤ 4n2

tmi
. Therefore, either we have found a monochromatic copy of Kpk

in color k
for some k ∈ [m], or we have found mi+1 and χi+1 with the desired properties. C

Let w be the minimum integer such that mw ≤ (8c1dtp)2. Then either we have found a
monochromatic copy of Kpk

in color k for some k ∈ [m], or we have obtained mw and χw with
the desired properties. Since there are at most 4n2/(tmw−1) < n2/8 bad edges, there is a
vertex v ∈ V incident to at least n/2 good edges. Moreover, since |χw(v)| ≤ mw ≤ (8c1dtp)2,
at least n

2(8c1dtp)2 of these edges incident to v have color k′ for some color k′ ∈ χw(v). Let
S ⊂ V be the set of endpoints of these edges. If S contains a monochromatic copy of Kpk′−1
in color k′, then we are done. On the other hand, if S does not contain a monochromatic
copy of Kpk′−1 in color k′, and using the lower bound

|S| ≥ n

2(8c1dtp)2 = 2cs

2(8c1dtp)2 ≥ 2c(
∑

k 6=k′
pk+(pk′−1))

,

for c = c(d, t, p) sufficiently large, we conclude by induction that S contains a monochromatic
copy of Kpk

for some k 6= k′. This completes the proof of Theorem 5. J

4 Multicolor semi-algebraic regularity lemma – Proof of Theorem 2

First, we prove the following variant of Theorem 2, which easily implies Theorem 2.

I Theorem 7. For any ε > 0, every n-element point set V ⊂ Rd equipped with semi-algebraic
binary relations E1, . . . , Em ⊂

(
V
2
)
such that

(
V
2
)

= E1∪· · ·∪Em and each Ek has complexity
at most t, can be partitioned into K ≤ c2(mε)5d2 parts V = V1 ∪ · · · ∪ VK , where c2 = c2(d, t),
such that∑ |Vi||Vj |

n2 ≤ ε,

where the sum is taken over all pairs (i, j) such that (Vi, Vj) is not complete with respect to
Ek for all k = 1, . . . ,m.

Proof. For each relation Ek, let gk,1, . . . , gk,t ∈ R[x1, . . . , x2d] be polynomials of degree at
most t, and let Φk be a boolean formula such that

uv ∈ Ek ⇔ Φk(gk,1(u, v) ≥ 0; . . . ; gk,t(u, v) ≥ 0) = 1.

For each point x ∈ Rd, k ∈ {1, . . . ,m}, and ` ∈ {1, . . . , t}, we define the surface

σk,`(x) = {y ∈ Rd : gk,`(x, y) = 0}.

Let Σ be the family of tmn surfaces in Rd defined by

Σ = {σk,`(u) : u ∈ V, 1 ≤ k ≤ m, 1 ≤ ` ≤ t}.

We apply Lemma 4 to Σ with parameter r = tm/ε to obtain a (1/r)-cutting Ψ, where
|Ψ| = s ≤ c1

(
tm
ε

)2d, such that each semi-algebraic set ∆i ∈ Ψ has complexity at most c1,
where c1 is defined in Lemma 4. Hence, at most tmn/r = εn surfaces from Σ cross ∆i for
every i. This implies that at most εn points in V give rise to at least one surface in Σ that
crosses ∆i.

Let Ui = V ∩∆i for each i ≤ s. We now partition ∆i as follows. For k ∈ {1, . . . ,m} and
j ∈ {1, . . . , s}, define ∆i,j,k ⊂ Rd by

∆i,j,k = {x ∈ ∆i : σk,1(x) ∪ · · · ∪ σk,t(x) crosses ∆j}.

SoCG 2019

36:8 Semi-Algebraic Colorings of Complete Graphs

That is, ∆i,j,k will correspond to the vertices in ∆i that may not be homogeneous to the set
of vertices in ∆j with respect to color k.

I Observation 8. For any i, j, and k, the semi-algebraic set ∆i,j,k has complexity at most
c3 = c3(d, t).

Proof. Set σk(x) = σk,1(x) ∪ · · · ∪ σk,t(x), which is a semi-algebraic set with complexity at
most c4 = c4(d, t). Then

∆i,j,k =
{
x ∈ ∆i : ∃y1 ∈ Rd s.t. y1 ∈ σk(x) ∩∆j , and

∃y2 ∈ Rd s.t. y2 ∈ ∆j \ σk(x).

}
.

We can apply quantifier elimination (see Theorem 2.74 in [2]) to make ∆i,j,k quantifier-free,
with description complexity at most c3 = c3(d, t). J

Set Fi = {∆i,j,k : 1 ≤ k ≤ m, 1 ≤ j ≤ s}. We partition the points in Ui into equivalence
classes, where two points u, v ∈ Ui are equivalent if and only if u belongs to the same
members of Fi as v does. Since Fi gives rise to at most c3|Fi| polynomials of degree at most
c3, by the Milnor-Thom theorem (see [16] Chapter 6), the number of distinct sign patterns of
these c3|Fi| polynomials is at most (50c3(c3|Fi|))d . Hence, there is a constant c5 = c5(d, t)
such that Ui is partitioned into at most c5(ms)d equivalence classes. After repeating this
procedure to each Ui, we obtain a partition of our point set V = V1 ∪ · · · ∪ VK with

K ≤ sc5(ms)d = c5m
dsd+1 ≤ c5t

2d(d+1)cd+1
1

(m
ε

)5d2

= c2

(m
ε

)5d2

,

where we define c2 = c5t
2d(d+1)cd+1

1 .
For fixed i, consider the part Vi. Then there is a semi-algebraic set ∆wi

obtained from
Lemma 4 such that Uwi = V ∩∆wi and Vi ⊂ Uwi ⊂ ∆wi . Now consider all other parts Vj
such that not all of their elements are related to every element of Vi with respect to any
relation Ek where 1 ≤ k ≤ m. Then each point u ∈ Vj gives rise to a surface in Σ that
crosses ∆wi . By Lemma 4, the total number of such points in V is at most εn. Therefore,
we have∑

j

|Vi||Vj | = |Vi|
∑
j

|Vj | ≤ |Vi|εn,

where the sum is over all j such that Vi × Vj is not contained in the relation Ek for any k.
Summing over all i, we have∑

i,j

|Vi||Vj | ≤ εn2,

where the sum is taken over all pairs i, j such that (Vi, Vj) is not complete with respect to
Ek for all k. J

Proof of Theorem 2. Apply Theorem 7 with approximation parameter ε/2. Hence, there
is a partition Q : V = U1 ∪ · · · ∪ UK′ into K ′ ≤ (m/ε)c parts with c = c(d, t) and∑
|Ui||Uj | ≤ (ε/2)|V |2, where the sum is taken over all pairs (i, j) such that (Ui, Uj) is not

complete with respect to Ek for all k.
Let K = 8ε−1K ′. Partition each part Ui into parts of size |V |/K and possibly one

additional part of size less than |V |/K. Collect these additional parts and divide them into
parts of size |V |/K to obtain an equitable partition P : V = V1 ∪ · · · ∪ VK into K parts. The

J. Fox, J. Pach, and A. Suk 36:9

number of vertices of V which are in parts Vi that are not contained in a part of Q is at
most K ′|V |/K. Hence, the fraction of pairs Vi × Vj with not all Vi, Vj are subsets of parts of
Q is at most 2K ′/K = ε/4. As ε/2 + ε/4 < ε, we obtain that less than an ε-fraction of the
pairs of parts of P are not complete with respect to any relation E1, . . . , Em. J

5 Generalized Ramsey numbers for semi-algebraic colorings – Proof
of Theorem 3

Due to the lack of understanding of the classical Ramsey number R(p;m), Erdős and
Shelah (see [6]) introduced the following generalization, which was studied by Erdős and
Gyárfás in [7].

I Definition 9. For integers p and q with 2 ≤ q ≤
(
p
2
)
, a (p, q)-coloring is an edge-coloring

of a complete graph in which every p vertices induce at least q distinct colors.

Let f(n, p, q) be the minimum integer m such that there is a (p, q)-coloring of Kn with at
most m colors. Here, both p and q are considered fixed integers, where p ≥ 3, 2 ≤ q ≤

(
p
2
)
,

and n tends to infinity. Trivially, we have f(n, p,
(
p
2
)
) =

(
n
2
)
, and at the other end, estimating

f(n, p, 2) is equivalent to estimating R(p;m) since f(n, p, 2) is the inverse of R(p;m). In
particular,

Ω
(

logn
log logn

)
≤ f(n, 3, 2) ≤ O(logn).

Erdős and Gyárfás [7] determined certain ranges for q ∈ {2, 3, . . . ,
(
p
2
)
} for which f(n, p, q) is

quadratic, linear, and subpolynomial in n. In particular, they showed that

Ω
(
n

1
p−2

)
≤ f(n, p, p) ≤ O

(
n

2
p−1

)
,

which implies that f(n, p, q) is polynomial in n for q ≥ p. Surprisingly, estimating f(n, p, p−1)
is much more difficult. They [7] asked for p fixed if f(n, p, p− 1) = no(1) . The trivial lower
bound is f(n, p, p − 1) ≥ f(n, p, 2) ≥ Ω

(
logn

log logn

)
, which was improved by several authors

[15, 12], and it is now known [4] that f(n, p, p−1) ≥ Ω(logn). In the other direction, Mubayi
[17] found an elegant construction which implies f(n, 4, 3) ≤ eO(

√
logn), and later, Conlon et

al. [4] gave another example which implies f(n, p, p− 1) ≤ e(logn)1−1/(p−2)+o(1) . Hence, it is
now known that f(n, p, p− 1) does not grow as a power in n.

Here, we study the variant of the function f(n, p, q) for point sets V ⊂ Rd equipped
with semi-algebraic relations. Let fd,t(n, p, q) be the minimum m such that there is a (p, q)-
coloring of Kn with m colors, whose vertices can be chosen as points in Rd, and each color
class can defined by a semi-algebraic relation on the point set with complexity at most t.
We note that here we require that each edge receives exactly one color. Clearly, we have
f(n, p, q) ≤ fd,t(n, p, q). Theorem 3 stated in the Introduction shows the exact value of q for
which fd,t(n, p, q) changes from logn to a power of n.

In the rest of this section, we prove Theorem 3. Let V be a set of points in Rd equipped
with semi-algebraic relations E1, . . . , Em such that each Ek has complexity at most t,(
V
2
)

= E1 ∪ · · · ∪ Em, and Ek ∩ E` = ∅ for all k 6= `. Let S1, S2 ⊂ V be q-element subsets
of V . We say that S1 and S2 are isomorphic, denoted by S1 ' S2, if there is a bijective
function h : S1 → S2 such that for u, v ∈ S1 we have uv ∈ Ek if and only if h(u)h(v) ∈ Ek.

Let S ⊂ V be such that |S| = 2s for some positive integer s. We say that S is s-layered
if s = 1 or if there is a partition S = S1 ∪ S2 such that |S1| = |S2| = 2s−1, S1 and S2 are
(s − 1)-layered, S1 ' S2, and for all u ∈ S1 and v ∈ S2 we have uv ∈ Ek for some fixed k.

SoCG 2019

36:10 Semi-Algebraic Colorings of Complete Graphs

Notice that given an s-layered set S, there are at most s relations Ek1 , . . . , Eks such that(
S
2
)
⊂ Ek1 ∪ · · · ∪ Eks

. Hence, the lower bound in Theorem 3 is a direct consequence of the
following result.

I Theorem 10. Let s ≥ 1 and let V be an n-element point set in Rd equipped with semi-
algebraic relations E1, . . . , Em such that each Ek has complexity at most t, E1∪· · ·∪Em =

(
V
2
)
,

and Ek ∩ E` = ∅ for all k 6= `. If m ≤ n
1

cs2 , then there is a subset S ⊂ V such that |S| = 2s
and S is s-layered, where c = c(d, t).

Proof. We proceed by induction on s. The base case s = 1 is trivial. For the inductive step,
assume that the statement holds for s′ < s. We will specify c = c(d, t) later. We start by
applying Theorem 2 with parameter ε = 1

ms to the point set V , which is equipped with semi-
algebraic relations E1, . . . , Em, and obtain an equitable partition P : V = V1∪· · ·∪VK , where

K ≤ c2

(m
ε

)5d2

≤ c2m
10sd2

,

and c2 = c2(d, t). Since all but an ε fraction of the pairs of parts in P are complete with
respect to Ek for some k, by Turán’s theorem, there are ms−1 + 1 parts V ′i ∈ P such that
each pair (V ′i , V ′j) ∈ P × P is complete with respect to some relation Ek. Since P is an
equitable partition, we have |V ′i | ≥ n

c2m10d2s
. By picking c = c(d, t) sufficiently large, we have

|V ′i |
1

c(s−1)2 ≥
(

n

c2m10d2s

) 1
c(s−1)2

≥ m
cs2−10c2d2s

c(s−1)2 ≥ m.

By the induction hypothesis, each V ′i contains an (s−1)-layered set Si for i ∈ {1, . . . ,ms−1+1}.
By the pigeonhole principle, there are two (s− 1)-layered sets Si, Sj such that Si ' Sj . Since
Si×Sj ⊂ Ek for some k, the set S = Si∪Sj is an s-layered set. This completes the proof. J

To prove the upper bound for fd,t(n, p, dlog pe), when d ≥ 1 and t ≥ 100, it is sufficient
to construct a 2m-element point set V ⊂ R equipped with m distinct semi-algebraic relations
E1, . . . , Em that is m-layered. More precisely, for each integer m ≥ 1, we construct a set Vm
of 2m points in R equipped with semi-algebraic relations E1, . . . , Em such that
1. Vm with respect to relations E1, . . . , Em is m-layered,
2. E1 ∪ · · · ∪ Em =

(
Vm

2
)
is a partition,

3. each Ei has complexity at most four, and
4. each Ei is shift invariant, that is uv ∈ Ei if and only if (u+ c, v + c) ∈ Ei for c ∈ R.

We start by setting V1 = {1, 2} and defining E1 = {u, v ∈ V1 : |u−v| = 1}. Having defined
the point set Vi and relations E1, . . . , Ei, we define Vi+1 and Ei+1 as follows. Let C = C(i)
be a sufficiently large integer such that C > 10 maxu∈Vi

u. Then we have Vi+1 = Vi∪(Vi+C),
where Vi + C is a translated copy of Vi. We now define the relation Ei+1 by

uv ∈ Ei+1 ⇔ C/2 < |u− v| < 2C.

Hence, Vi+1 with respect to relations E1, . . . , Ei+1 satisfies the properties stated above
and is clearly (i+ 1)-layered. One can easily check that any set of p points in Vm induces at
least dlog pe distinct relations (colors).

Let us remark that the arguments above hold for semi-algebraic relations E1, . . . , Em
that are not necessarily disjoint if one defines a (p, q)-coloring as follows. Given a coloring
χ :
(
V (Kn)

2
)
→ 2[m] on the edges of Kn, where each edge receives at least one color among

[m], χ is a (p, q)-coloring if for every set S ⊂ V of size p, no matter how you choose one
color in χ(uv) for each edge uv ∈

(
S
2
)
, S will induce at least q distinct colors.

J. Fox, J. Pach, and A. Suk 36:11

6 Concluding remarks

In [20], it was shown that R1,t(3;m) > (1681)m/7 for t > 5, thus implying that the upper
bound in Theorem 1 is tight up to a constant factor in the exponent. This can be improved as
follows. Let C(p) = limm→∞R(p;m)1/m. Note that this limit exists by considering product
colorings, but may be finite or infinite. Then for each C < C(p), there is a t = t(C, p), such
that for all m sufficiently large we have

R1,t(p;m) > Cm.

Indeed, take a fixed coloring of the edges of KN which realizes R(p;m0) > Cm0 , and
recursively blow up this graph by introducing m0 new colors at each stage. Then this coloring
can be realized semi-algebraically in R with t = O(m2

0) linear constraints for each color class
based on distances.

References
1 N. Alon, J. Pach, R. Pinchasi, R. Radoičić, and M. Sharir. Crossing patterns of semi-algebraic

sets. J. Combin. Theory Ser. A, 111:310–326, 2005.
2 S. Basu, R. Pollack, and M.-R. Roy. Algorithms in Real Algebraic Geometry. Springer-Verlag,

Berlin, 2003.
3 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. A singly exponential stratification

scheme for real semi-algebraic varieties and its applications. Theor. Comput. Sci., 84:77–105,
1991.

4 D. Conlon, J. Fox, C. Lee, and B. Sudakov. The Erdős-Gyárfás problem on generalized Ramsey
numbers. Proc. Lond. Math. Soc., 110:1–15, 2015.

5 D. Conlon, J. Fox, J. Pach, B. Sudakov, and A. Suk. Ramsey-type results for semi-algebraic
relations. Trans. Amer. Math. Soc., 366:5043–5065, 2014.

6 P. Erdős. Solved and unsolved problems in combinatorics and combinatorial number theory.
Proc. 12th Southeastern Conf. on Combinatorics, Graph Theory and Computing, (Baton Rouge,
La.), Congr. Numer., 1:49–62, 1981.

7 P. Erdős and A. Gyárfás. A variant of the classical Ramsey problem. Combinatorica, 17:459–467,
1997.

8 J. Fox, M. Gromov, V. Lafforgue, A. Naor, and J. Pach. Overlap properties of geometric
expanders. J. Reine Angew. Math. (Crelle’s Journal), 671:49–83, 2012.

9 J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl. A semi-algebraic version of Zarankiewicz’s
problem. J. Eur. Math. Soc., 19:1785–1810, 2017.

10 J. Fox, J. Pach, and A. Suk. A polynomial regularity lemma for semi-algebraic hypergraphs
and its applications in geometry and property testing. SIAM J. Comput., 45:2199–2223, 2016.

11 J. Fox, J. Pach, and A. Suk. More distinct distances under local conditions. Combinatorica,
38:501–509, 2018.

12 J. Fox and B. Sudakov. Ramsey-type problem for an almost monochromatic K4. SIAM J.
Discrete Math., 23:155–162, 2008.

13 W. T. Gowers. Lower bounds of tower type for Szemerédi’s uniformity lemma. Geom. Funct.
Anal., 7:322–337, 1997.

14 V. Koltun. Almost tight upper bounds for vertical decompositions in four dimensions. J.
ACM, 51:699–730, 2004.

15 A. V. Kostochka and D. Mubayi. When is an almost monochromatic K4 guaranteed? Combin.
Probab. Comput., 17:823–830, 2008.

16 J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag, New York, 2002.
17 D. Mubayi. Edge-coloring cliques with three colors on all 4-cliques. Combinatorica, 18:293–296,

1998.

SoCG 2019

36:12 Semi-Algebraic Colorings of Complete Graphs

18 F. Ramsey. On a problem in formal logic. Proc. London Math. Soc., 30:264–286, 1930.
19 I. Schur. Über die Kongruenz xm + ym = zm mod p. Jahresber. Deutch. Math. Verein.,

25:114–117, 1916.
20 A. Suk. Semi-algebraic Ramsey numbers. J. Combin. Theory Ser. B, 116:465–483, 2016.
21 E. Szemerédi. Regular partitions of graphs. Problémes Combinatoires et Théorie des Graphes,

Orsay (1976), 260:299–401, 1976.
22 X. Xiaodong, X. Zheng, G. Exoo, and S.P. Radziszowski. Constructive lower bounds on

classical multicolor Ramsey numbers. Electron. J. Combin., 11, 2004.

Chunk Reduction for Multi-Parameter Persistent
Homology
Ulderico Fugacci
Graz University of Technology, Graz, Austria
fugacci@tugraz.at

Michael Kerber
Graz University of Technology, Graz, Austria
kerber@tugraz.at

Abstract
The extension of persistent homology to multi-parameter setups is an algorithmic challenge. Since
most computation tasks scale badly with the size of the input complex, an important pre-processing
step consists of simplifying the input while maintaining the homological information. We present
an algorithm that drastically reduces the size of an input. Our approach is an extension of the
chunk algorithm for persistent homology (Bauer et al., Topological Methods in Data Analysis and
Visualization III, 2014). We show that our construction produces the smallest multi-filtered chain
complex among all the complexes quasi-isomorphic to the input, improving on the guarantees of
previous work in the context of discrete Morse theory. Our algorithm also offers an immediate
parallelization scheme in shared memory. Already its sequential version compares favorably with
existing simplification schemes, as we show by experimental evaluation.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures; Computing methodologies → Shared memory algorithms

Keywords and phrases Multi-parameter persistent homology, Matrix reduction, Chain complexes

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.37

Related Version A full version of this paper is available at https://arxiv.org/abs/1812.08580.

Funding Supported by the Austrian Science Fund (FWF) grant number P 29984-N35.

Acknowledgements We thank Sara Scaramuccia for initial discussions on this project, Wojciech
Chacholski, Michael Lesnick and Francesco Vaccarino for helpful suggestions, and Federico Iuricich
for his help on the experimental comparison with [10]. The datasets used in the experimental
evaluation are courtesy of the AIM@SHAPE data repository [9].

1 Introduction

In the last decades, topology-based tools are gaining a more and more relevant role in the
analysis and in the extraction of the core information of unorganized, high-dimensional
and potentially large datasets. Thanks to its capability of keeping track of the changes in
the homological features of a dataset which evolves with respect to a parameter, persistent
homology has represented a real game-changer in this field. Recently, an extension of persistent
homology called multi-parameter persistent homology is drawing the attention of a growing
number of researchers. In a nutshell, multi-parameter persistence generalizes the classic
persistent homology by studying multivariate datasets which are filtered by two or more
(independent) scale parameters. Multi-parameter persistent homology of a dataset cannot
be captured by complete discrete invariant [5], but this has not prevented the researchers
from defining several descriptors based on multi-parameter persistence [6, 12, 15]. Since

© Ulderico Fugacci and Michael Kerber;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 37; pp. 37:1–37:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3062-997X
mailto:fugacci@tugraz.at
https://orcid.org/0000-0002-8030-9299
mailto:kerber@tugraz.at
https://doi.org/10.4230/LIPIcs.SoCG.2019.37
https://arxiv.org/abs/1812.08580
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Chunk Reduction for Multi-Parameter Persistent Homology

these descriptors tend to have high algorithmic complexity, it is a natural pre-processing step
to pass to a smaller but equivalent representation of the input complex and to invoke any
demanding computation on this smaller representation.

Contribution. Inspired by the chunk algorithm [3] for persistent homology, we present a
reduction algorithm which for a filtered dataset returns a filtered chain complex having the
same multi-parameter persistence but a drastically smaller size. Our approach is based on the
observation that even in the absence of a global persistence diagram, local matrix reductions
yield pairs of simplices which can be eliminated from the boundary matrix without affecting
the homological information. Our approach proceeds in two steps, first identifying such local
pairs of simplices, and in a second step manipulating the non-local columns of the boundary
matrix such that all indices of locally paired simplices disappear. Both steps permit a parallel
implementation with shared memory. We prove that our simplification scheme is optimal
in the sense that any chain complex quasi-isomorphic to the input complex must contain
at least as many generators as our output complex. Our algorithm yields similar time and
space complexity bounds as its one-parameter counterpart. We implemented our algorithm,
making use of various techniques that have proven effective for persistence computation,
such as the twist reduction [8] and efficient data structure for the columns of a boundary
matrix [4]. We experimentally show that our implementation is effective (see next paragraph).
For the sake of clarity, our approach is described for the two-parameter case. No constraint
prevents the generalization of the proposed method to an arbitrary number of parameters.

Comparison with related work. Our work is motivated by a line of research on complex
simplification using discrete Morse theory (DMT) [11, 1, 2, 17]. In these works, the idea is
to build a discrete gradient locally and to return the resulting Morse complex on critical
simplices as a simplification. In analogy to the one-parameter case, our chunk algorithm
is an attempt to realize this simplification scheme using persistent homology instead of
DMT. This gives more flexibility, as in DMT, the paired cells are constrained to be incident,
while this restriction is not present for persistence pairs. Consequently, we are able to prove
optimality of our output size in general, while DMT-based approaches only succeeded to
give guarantees for special cases such as multi-filtrations of 3D regular grids and of abstract
simplicial 2-complexes [16]. In practice, the theoretical benefit in terms of output size is
rather marginal, as our experiments show; however, the timings show that our improved
theoretical guarantee comes without performance penalty; on the contrary, our algorithm is
always faster than the DMT-based approach presented in [17] on all tested examples. We
remark, however, that the DMT-based algorithm returns a complex endowed with a Forman
gradient as well as the corresponding discrete Morse complex, which can be of potential use
for other application domains than computing persistent homology.

A related question is the computation of a minimal presentation of a persistence module
induced by a simplicial or general chain complex. Roughly speaking, a presentation consists
of a finite set of (graded) generators and relations, and the minimal presentation is one with
the minimal possible number of generators and relations. Our algorithm does not yield a
minimal presentation, however, since more computations are needed to identify generators
of the chain complex as generators or as relations. An algorithm by Lesnick and Wright1
[13] computes such a minimal presentation through matrix reduction in cubic time, carefully
choosing a column order to reduce the number of reduction instances. Their algorithm is used

1 https://www.ima.umn.edu/2017-2018/SW8.13-15.18/27428

https://www.ima.umn.edu/2017-2018/SW8.13-15.18/27428

U. Fugacci and M. Kerber 37:3

in their software package RIVET [14]. Our contribution can serve as a pre-processing step
for their algorithm, reducing the size of the matrix through efficient and possibly parallelized
computation and invoking their global reduction step on a much smaller chain complex.

2 Background

Homology. Fixed a base field F and a positive integer d, let us consider, for each 0 ≤ k ≤ d, a
finite collection of elements denoted as k-generators (or, equivalently, generators of dimension
k). A finitely generated chain complex C∗ = (Ck, ∂k) over F is a collection of pairs (Ck, ∂k)
where:

Ck is the F-vector space spanned by the generators of dimension k,
∂k : Ck → Ck−1 is called boundary map and it satisfies the property that ∂k−1∂k = 0.

The elements of Ck are called k-chains and, by definition, are F-linear combinations of
the generators of dimension k. The support of a k-chain is the set of k-generators whose
coefficient in the chain is not zero. In the following, we will simply use the term chain
complex in place of finitely generated chain complex. Moreover, we will assume that, given a
chain complex, an explicit set of generators is provided.

Given a chain complex C∗, we denote as Zk := ker ∂k the space of the k-cycles of C∗, and as
Bk := Im ∂k+1 the space of the k-boundaries of C∗. The kth homology space of C∗ is defined
as the vector space Hk(C∗) := Zk/Bk. The rank βk of the kth homology space of a chain
complex C∗ is called the kth Betti number of C∗.

A chain map f∗ : C∗ → D∗ is a collection of linear maps fk : Ck → Dk which commutes
with the boundary operators of C∗ and of D∗. A simple example of a chain map is the
inclusion map, if C∗ is a subcomplex of D∗. In general, a chain map f∗ induces linear maps
Hk(C∗)→ Hk(D∗) for every k.

Chain complexes allow for capturing the combinatorial and the topological structure of a
discretized topological space. Given a finite simplicial complex K, the chain complex C∗
associated to K is defined by setting Ck as the F-vector space generated by the k-simplices
of K and the boundary ∂k(c) of a k-chain c corresponding to a k-simplex σ as the collection
of the (k − 1)-simplices lying on the geometrical boundary of σ. Consequently, homology of
a finite simplicial complex K is defined as the homology of the chain complex C∗ associated
to K. Intuitively, homology spaces of K reveal the presence of “holes” in the simplicial
complex. The non-null elements of each homology space are cycles, which do not represent
the boundary of any collection of simplices of K. Specifically, β0 counts the number of
connected components of K, β1 its tunnels and holes, and β2 the shells surrounding voids
or cavities.

Multi-parameter persistent homology. In the following, we will focus for simplicity on
datasets filtered by two independent scale parameters. All definitions and results in this paper
can be generalized to more parameters without problems. Let p = (px, py), q = (qx, qy) ∈ R2,
we will write throughout p ≤ q if px ≤ qx and py ≤ qy. Given a chain complex C∗ = (Ck, ∂k),
let us assume to have an assignment which, for each generator g ∈ Ck, returns a value
v(g) ∈ R2 such that, for any generator g′ ∈ Ck−1, if 〈∂kg, g′〉 6= 0, then v(g′) ≤ v(g). The
assignment v can be extended to a function v : C∗ → R2 assigning to each chain c the least
common upper bound v(c) of the values v(g) of the generators in the support of c. In the
following, v(c) will be called the value of c.

SoCG 2019

37:4 Chunk Reduction for Multi-Parameter Persistent Homology

Given a chain complex C∗ = (Ck, ∂k) endowed with a value function v : C∗ → R2 and fixed
a value p ∈ R2 we define Cp∗ = (Cpk , ∂

p
k) as the chain complex for which:

Cpk is the space of the k-chains of Ck having value lower than or equal to p,
∂pk is the restriction of ∂k to Cpk .

By the definition of v, for any chain c of dimension k, we have that v(∂k(c)) ≤ v(c). So, Cp∗ is
well-defined. For p, q ∈ R2 with p ≤ q, Cp∗ is a chain subcomplex of Cq∗ . For this reason, we
denote the collection C of the chain complexes Cp∗ with p ∈ R2 as bifiltered chain complex.

Given p, q ∈ R2 with p ≤ q, the inclusion map from Cp∗ to Cq∗ induces a linear map between
the corresponding homology spaces Hk(Cp∗) and Hk(Cp∗). The multi-parameter persistence
kth module Hk(C) of a bifiltered chain complex C is the collection of the homology spaces
Hk(Cp∗) with p varying in R2 along with all the linear maps induced by the inclusion maps.

Let C,D be two bifiltered chain complexes. We call C and D homology-equivalent if, for any
fixed k ∈ N, Hk(Cp∗) and Hk(Dp

∗) are isomorphic via a map ψpk and, for any p, q ∈ R2 with
p ≤ q, the diagram

Hk(Cp∗) > Hk(Cq∗)

Hk(Dp
∗)

ψp
k∨

> Hk(Dq
∗)

ψq
k∨

commutes where horizontal maps are induced by inclusion maps. Moreover, we call C and D
quasi-isomorphic if the isomorphisms of the above diagram are induced by a collection of
chain maps fp∗ : Cp∗ → Dp

∗ satisfying, for any p ≤ q and any k, the commutative diagram

Cpk > Cqk

Dp
k

fp
k∨

> Dq
k

fq
k∨

in which horizontal maps are the inclusion maps. By definition, quasi-isomorphic bifiltered
chain complexes are homology-equivalent. The converse, as depicted in Figure 1, does not
hold in general. Two chain maps α∗, β∗ : C∗ → D∗ are called chain-homotopic if there exists

Figure 1 The two depicted bifiltered chain complexes are homology-equivalent but not quasi-
isomorphic.

a collection of maps φk : Ck → Dk+1 such that, for any k, ∂Dk+1φk + φk−1∂
C
k = αk − βk.

Two bifiltered chain complexes C and D are called homotopy-equivalent if, there exist two
collections of chain maps fp∗ : Cp∗ → Dp

∗ and gp∗ : Dp
∗ → Cp∗ such that, for any p ∈ R2,

U. Fugacci and M. Kerber 37:5

fp∗ and gp∗ are homotopy-inverse one with respect to the other (i.e., gp∗fp∗ and fp∗ g
p
∗ are

chain-homotopic to idCp
∗
and idDp

∗
, respectively) and they satisfy, for any p ≤ q, the following

commutative diagram

Cpk > Cqk

Dp
k

fp
k ∨

gp
k

∧

> Dq
k

fq
k ∨

gq
k

∧

in which horizontal maps are the inclusion maps. Homotopy-equivalent bifiltered chain
complexes are necessarily quasi-isomorphic.

Representation of bifiltered chain complexes. We assume that the bifiltered chain complex
in input is provided as a finite sequence of triples of the form

(p, k,∆)

where p ∈ R2, k is a positive integer, and ∆ is a finite list of pairs (l, λ) with λ ∈ F and
l ∈ N. In order to retrieve the bifiltered chain complex C represented by this list, each triple
(p, k,∆) has to be interpreted as a k-generator c with value v(c) = p and whose boundary
is encoded through ∆. Specifically, by defining as cl the generator stored in position l of
the sequence of triples, the pair (l, λ) in ∆ represents that cl appears in the boundary of c
with coefficient λ. In order to ensure that the above-described interpretation of the input
sequence actually returns a valid bifiltered chain complex, we require that, if c′ is a generator
appearing in the boundary of c, then the value v associated to c′ is lower than or equal to
the one taken by c.

Given a chain complex C∗ endowed with a value function v, let us consider an injective
function i providing the set of generators of C∗ with a total order which is consistent with
the partial order induced by the value funtion v. More precisely, given two generators c1, c2
of C∗, the index function i has to satisfy that v(c1) ≤ v(c2) implies i(c1) ≤ i(c2).

We uniquely represent the bifiltered chain complex C as follows. Each generator c of C∗
is stored in a data structure that we call the column of the generator. A column stores:

the index i(c),
the value v(c),
the dimension k of g,
the boundary of c.

The boundary is stored as a (possibly empty) container of entries of the form (i(c′), λ), where
c′ is a generator of dimension k− 1 such that λ := 〈∂k(c), c′〉 6= 0. In such a case, we say that
c′ is in the boundary of c. The boundary of c is then the linear combination induced by this
container. The name “column” comes from the idea that the collection of all columns can
be visualized as a matrix. If we decorate the columns of the matrix with extra information
(index, value, and dimension), we obtain the data structure from above. We will also write
k-column if the column represents a generator of dimension k. Due to the fact that a column
is nothing but an encoding of a generator, in the following, with a small abuse of notation
we will often use interchangeably the two terms. Given a k-column c, we define the local
pivot of c as the generator in the boundary of c with maximal index such that v(c′) = v(c).
If no such generator exists, we simply say that c has no local pivot.

Arguably, the most common case of input data is simplicial complexes. Let K denote a
finite simplicial complex. A bifiltration is a collection (Kp)p∈R2 of subcomplexes of K such
that Kp ⊆ Kq whenever p ≤ q. Fixing a simplex σ ∈ K, we say that p ∈ R2 is critical for σ,

SoCG 2019

37:6 Chunk Reduction for Multi-Parameter Persistent Homology

if σ ∈ Kp, but σ /∈ Kp−(ε,0) ∪Kp−(0,ε) for every ε > 0. The bifiltration is called h-critical
with h ≥ 1, if for every σ ∈ K, there are at most h critical positions in R2. For instance,
1-critical means that every simplex in K enters the filtration at a unique minimal value.
Such 1-critical bifiltrations can easily be described by a sequence of the form (p, k,∆) as
above by adding one line per simplex which defines its critical position, its dimensions, and
its boundary. The case of h-critical bifiltrations can be handled with the following trick (see
also [7]). Letting p1, . . . , ph denote the critical positions of σ, sorted by x-coordinate, we
introduce h distinct k-generators c1, . . . , ch of the form (pi, k,∆), that is, h copies of the
same simplex. For two consecutive positions pi = (xi, yi) and pi+1 = (xi+1, yi+1), we add an
additional (k + 1)-generator at (xi+1, yi) (which is the smallest point q such that pi ≤ q and
pi+1 ≤ q), whose boundary is equal to ci − ci+1.

3 Algorithm

Given a bifiltered chain complex C encoded as a collection of columns, we define the chunk
algorithm that returns as output a bifiltered chain complex as a collection of columns that is
homotopy-equivalent to C and has fewer generators. The algorithm works in three phases:

local reduction;
compression;
removal of local columns.

Phase I: Local reduction. The goal of this phase is to label columns as global, local positive
or local negative columns. Initially, all columns are unlabeled. We proceed in decreasing
dimensions, from the top-dimensions of C down to 0. For dimension k, the algorithm traverses
the k-columns in increasing order with respect to i and performs the following operations on
a k-column c. If c is already labeled, do nothing. Otherwise, as long as c has a local pivot
and there is a k-column c′ with i(c′) < i(c) and the same local pivot as c, perform the column
addition c← c+ λc′, where λ is chosen such that the local pivot of c disappears. If at the
end of this loop, the column c does not have a local pivot, we label the column as global and
proceed. Otherwise, we label c as local negative and its local pivot c′ as local positive. We
call (c′, c) a local pair in this case. This ends the description of Phase I of the algorithm.

Note that within the local reduction, any column addition of the form c← c+λc′ implies
that v(c) = v(c′). Hence, the local reduction operates independently on columns of the
same value. We call blocks of columns with the same value chunks; hence the name of the
algorithm. Operations on one chunk do not affect columns on any other chunk, hence the
local reduction phase can be readily invoked in parallel on the chunks of the chain complex.

Finally, note that by proceeding in decreasing dimension, we avoid performing any column
additions on local positive columns. That is reminiscent of the clearing optimization in the
one-parameter version [3, 8].

Phase II: Compression. In the second phase, the algorithm removes local (positive or
negative) generators from the boundary of all global columns in the matrix:

For each global k-column c, while the boundary of the column contains a generator that
is local positive or local negative, the algorithm picks the local (k − 1)-generator c′ with
maximal index.

if c′ is negative, remove c′ from the boundary of c;
if c′ is positive, denote c′′ as the (unique) local negative k-column with c′ as local pivot
and perform the column addition c← c+ λc′′, where λ is chosen such that c′ disappears
in the boundary of c.

U. Fugacci and M. Kerber 37:7

This ends the description of the compression phase. On termination, all columns in the
boundary of a global k-column are global (k − 1)-columns.

The above process terminates for a column c because the index of the maximal local
generator in the boundary of c is strictly decreasing in each step. That is clear for the case
that c′ is local negative. If c′ is local positive, then c′ is the generator in the boundary of c′′
with the maximal index, so the column addition does not introduce in the boundary of c any
generators with a larger index.

Note that the compression of a global column does not affect the result on any other
global column. Thus, the phase can be parallelized as well.

Phase III: Removal of local pairs. In this step, the chain complex becomes smaller. The
procedure is simple: traverse all columns, and remove all columns labeled as local (positive or
negative). Return the remaining (global) columns as resulting chain complex. This finishes
the description of the phase and the entire chunk algorithm.

4 Correctness

In this section, we prove that the presented algorithm returns a bifiltered chain complex that
is homotopy-equivalent to the input. For that, we define two elementary operations on chain
complexes:

Order-preserving column addition. An operation of the form c ← c + λc′ is called order-
preserving if v(c′) ≤ v(c). Note that such an operation maintains the property that any
generator c′′ in the boundary of c satisfies v(c′′) ≤ v(c), by transitivity of v. We remark
that order-preserving column additions are the generalization of left-to-right column
additions in the one-parameter case.

Removal of a local pair. Fix a local pair (c1, c2), that means, c1 is a k-column, c2 is a
(k + 1)-column, v(c1) = v(c2) and c1 is the local pivot of c2. We call removal of the local
pair (c1, c2) the operation Del(c1, c2) which acts on the columns as follows.

For every (k+ 1)-column c, replace its boundary ∂k+1(c) with ∂k+1(c)−λ−1µ∂k+1(c2),
where λ and µ are the coefficients of c1 in ∂k+1(c2) and in ∂k+1(c), respectively. In
particular, after this operation, c1 disappeared from the boundary of any (k + 1)-
columns.
For every (k + 2)-column c, update its boundary by setting the coefficient of c2 in
∂k+2(c) to 0. Visualizing the chain complex as a matrix, this corresponds to removing
the row corresponding to c2.
Delete the columns c1 and c2.

Note that all column additions performed in the first step are order-preserving because
the pair (c1, c2) is local, that is, v(c1) = v(c2).

We will show at the end of this section that both elementary operations leave the homotopy
type the bifiltered chain complex unchanged.

I Theorem 1. Let C̄ denote the bifiltered chain complex computed by the chunk algorithm
from the previous section on an input bifiltered chain complex C. Then, C̄ and C are
homotopy-equivalent.

Proof. The idea is to express the chunk algorithm by a sequence of order-preserving column
additions and removals of local pairs. Because every column addition in Phase I is between
columns of the same value, all column additions are order-preserving. Hence, after Phase I,
the chain complex is equivalent to the input.

SoCG 2019

37:8 Chunk Reduction for Multi-Parameter Persistent Homology

In Phase II, note that all column additions performed are order-preserving. Indeed, if
c′ is in the boundary of column c, then v(c′) ≤ v(c) holds. If c′ is local positive, it triggers
a column addition of the form c ← c + λc′′ with its local negative counterpart c′′. Since
v(c′) = v(c′′), v(c′′) ≤ v(c) as well.

A further manipulation in Phase II is the removal of local negative columns from the
boundary of global columns. These removals cannot be directly expressed in terms of the
two elementary operations from above. Instead, we define a slight variation of our algorithm:
in Phase II, when we encounter a local negative c′, we do nothing. In other words, the
compression only removes the local positive generators from the boundary c, and keeps local
negative and global generators. In Phase III, instead of removing local columns, we perform
a removal of a local pair (c1, c2) whenever we encounter a local negative column c2 with
local pivot c1. We call that algorithm the modified chunk algorithm. Note that this modified
algorithm is a sequence of order-preserving column additions, followed by a sequence of local
pair removals, and thus produces a chain complex that is equivalent to the input C.

We argue next that the chunk algorithm and the modified chunk algorithm yield the same
output. Since both versions eventually remove all local columns, it suffices to show that they
yield the same global columns. Fix an index of a global column, and let c denote the column
of that index returned by the original chunk algorithm. Let c∗ denote the column of the
same index produced by the modified algorithm after the modified Phase II. The difference
of c∗ and c lies in the presence of local negative generators in the boundary of c∗ which have
been removed in c. The modified Phase III affects c∗ in the following way: when a local pair
(c1, c2) is removed, the local negative c2 is, if it is present, removed from the boundary of
c∗. There is no column addition during the modified Phase III involving c∗ because all local
positive columns have been eliminated. Hence, the effect of the modified Phase III on c∗ is
that all local negative columns are removed from its boundary which turns c∗ to be equal to
c at the end of the algorithm. Hence, the output of both algorithms is the same, proving
the theorem. J

We proceed with the proofs that both elementary operations yield homotopy-equivalent
bifiltered chain complexes.

Order-preserving column addition. Given two k-columns c1, c2 such that v(c1) ≤ v(c2)
and a scalar value λ ∈ F, the algorithm we propose allows for adding λ copies of the boundary
of column c1 to the boundary of column c2. In this section, we formalize that in terms of
modifications of chain complexes and we prove that this operation does not affect multi-
parameter persistent homology.

Given a chain complex C∗ = (Cl, ∂l) endowed with a value function v : C∗ → R2, let us
consider two generators c1, c2 among the ones of the space of the k-chains Ck such that
〈c1, c2〉 = 0 and v(c1) ≤ v(c2). Chosen a scalar value λ ∈ F, let us define C̄∗ = (C̄l, ∂̄l)
by setting:

C̄l = Cl,
for any c ∈ C̄l,

∂̄l(c) =

∂k(c) + λ〈c, c2〉∂k(c1) if l = k,

∂k+1(c)− λ〈∂k+1(c), c2〉c1 if l = k + 1,
∂l(c) otherwise.

As formally proven in the full version of the paper, C̄∗ is a chain complex.

U. Fugacci and M. Kerber 37:9

Let us define the maps f∗ : C∗ → C̄∗, g∗ : C̄∗ → C∗ as follows:
for any c ∈ Cl,

fl(c) =
{
c− λ〈c, c2〉c1 if l = k,

c otherwise;

for any c ∈ C̄l,

gl(c) =
{
c+ λ〈c, c2〉c1 if l = k,

c otherwise.

The just defined maps enable to prove the following result (see the full version of the
paper for detailed proofs).

I Proposition 2. C∗ and C̄∗ are isomorphic via the chain map f∗ and its inverse g∗.

Since the function v is a valid value function for C̄∗ inducing a bifiltered chain complex
C̄ and, for any p ∈ R2, the restrictions fpl : Cpl → C̄pl and gpl : C̄pl → Cpl of the maps fl and
gl, respectively, are well-defined (see the full version of the paper), we are ready to prove the
equivalence between the two bifiltered chain complexes C and C̄.

I Theorem 3. C and C̄ are homotopy-equivalent.

Proof. The previous results enables us to claim that, for any p, q ∈ R2 with p ≤ q, the
following diagram (in which horizontal maps are the inclusion maps)

Cpl > Cql

C̄pl

fp
l∨

> C̄ql

fq
l∨

commutes and the maps fpl , f
q
l are isomorphisms. J

Removal of a local pair. Given a local pair (c1, c2) of columns, the algorithm we propose
allows for deleting them from the boundary matrix. In this section, we formalize that in
terms of modifications of chain complexes and we prove that this operation does not affect
multi-parameter persistent homology.

Given a chain complex C∗ = (Cl, ∂l) endowed with a value function v : C∗ → R2, let us
consider two generators c1, c2 among the ones of the space of the k-chains Ck and of the space
of the (k + 1)-chains Ck+1, respectively, such that λ := 〈∂k+1(c2), c1〉 6= 0 and v(c1) = v(c2).
Let us define C̄∗ = (C̄l, ∂̄l) by setting:

the space of the l-chains C̄l as

C̄l =

{c ∈ Ck | 〈c, c1〉 = 0} if l = k,

{c ∈ Ck+1 | 〈c, c2〉 = 0} if l = k + 1,
Cl otherwise;

for any c ∈ C̄l,

∂̄l(c) =

∂k+1(c)− λ−1〈∂k+1(c), c1〉∂k+1(c2) if l = k + 1,
∂k+2(c)− 〈∂k+2(c), c2〉c2 if l = k + 2,
∂l(c) otherwise.

SoCG 2019

37:10 Chunk Reduction for Multi-Parameter Persistent Homology

As formally proven in the full version of the paper, C̄∗ is a chain complex.

Let us define the maps r∗ : C∗ → C̄∗, s∗ : C̄∗ → C∗ as follows:
for any c ∈ Cl,

rl(c) =

c− λ−1〈c, c1〉∂k+1(c2) if l = k,

c− 〈c, c2〉c2 if l = k + 1,
c otherwise;

for any c ∈ C̄l,

sl(c) =
{
c− λ−1〈∂k+1(c), c1〉c2 if l = k + 1,
c otherwise;

The just defined maps enable to prove the following result (see the full version of the
paper for detailed proofs).

I Proposition 4. The maps r∗ and s∗ are chain maps which are homotopy-inverse one with
respect to the other.

This latter combined with the fact that the function v is a valid value function for C̄∗
inducing a bifiltered chain complex C̄ and, for any p ∈ R2, the restrictions rpl : Cpl → C̄pl ,
spl : C̄pl → Cpl of the maps rl and sl, as well as the restrictions of the maps ensuring that r∗
and s∗ are homotopy-inverse, are well-defined (see the full version of the paper), guarantees
the homotopy-equivalence between the two bifiltered chain complexes C and C̄.

I Theorem 5. C and C̄ are homotopy-equivalent.

5 Optimality and complexity

Optimality. Let D be a bifiltered chain complex. For p ∈ R2, we define

D<p
∗ :=

∑
q<p

Dq
∗,

where the sum of chain complexes, analogously to the sum of the vector spaces, is the chain
complex spanned by the union of the generators of the summands. Moreover, let ηpk be the
homology map in dimension k induced by the inclusion of D<p

∗ into Dp
∗. We denote the

number of variations in the kth homology space occurred at value p as

δpk(D) := dim ker ηpk−1 + dim coker ηpk,

and the number of k-generators added at value p in D as

γpk(D) := dimDp
k − dimD<p

k .

I Theorem 6. Let C̄ be the bifiltered chain complex obtained by applying the chunk algorithm
to the bifiltered chain complex C. We have that δpk(C) = γpk(C̄).

The detailed proof is given in the full version of the paper and can be summarized as
follows. Every global column with value p either destroys a homology class of H(C<p), or it
creates a new homology class in H(Cp), which is not destroyed by any other column of value
p. Hence, each global column contributes a generator to ker ιpk−1 or to coker ιpk, where ι

p
l is

U. Fugacci and M. Kerber 37:11

the map between the lth homology spaces induced by the inclusion of C<p∗ into Cp∗ . Local
columns do not contribute to either of these two spaces. The result follows from the fact that
the number of global columns at value p is precisely the number of generators added at C̄.

The next statement shows that our construction is optimal in the sense that any bifiltered
chain complex D that is quasi-isomorphic to C must have at least as many generators as C̄.

I Theorem 7. Any bifiltered chain complex D quasi-isomorphic to C has to add at least
δpk(C) k-generators at value p. I.e., δpk(C) ≤ γpk(D).

The detailed proof is given in the full version of the paper. To summarize it, it is not too
hard to see that, for any bifiltered chain complex D,

δpk(D) ≤ γpk(D)

holds. Moreover, the quasi-isomorphism of C and D implies that dim ker ηpk−1 = dim ker ιpk−1
and dim coker ηpk = dim coker ιpk. So,

δpk(C) = δpk(D)

which implies that claim. The equality of the dimensions is formally verified using the
Mayer-Vietoris sequence and the 5-lemma to establish an isomorphism from Hk(C<p∗) to
Hk(D<p

∗) that commutes with the isomorphism at value p.

Complexity. In order to properly express the time and the space complexity of the proposed
algorithm, let us introduce the following parameters. Given a bifiltered chain complex C, we
denote as n the number of generators of C, as m the number of chunks (i.e., the number
of different values assumed by v), as ` the maximal size of a chunk, and as g the number
of global columns. Moreover, we assume the maximal size of the support of the boundary
of the generators of C as a constant. The latter condition is always ensured for bifiltered
simplicial complex of fixed dimension.

I Theorem 8. The chunk algorithm has time complexity O(m`3 log `+ g`n log `) and space
complexity O(n`+ g2).

Proof. Due to the similarity between the two algorithms, the analysis of complexity of the
proposed algorithm is analogous to the first two steps of the one-parameter chunk algorithm
[3]. The additional factor of log ` comes from our choice of using priority queues as column
type and could be removed by using list representations as in [3].2

On the space complexity, during the Phase I, the generators in the boundary of any
column can be at most O(`). So, O(n`) is a bound on the accumulated size of all columns
after Phase I. During Phase II, the boundary of any global column can consist of up to n
generators, but reduces to g generators at the end of the compression of the column because
all local entries have been removed. Hence, the final chain complex has at most g entries
in each of its g columns, and requires O(g2) space. Hence, the total space complexity is
O(n`+ n+ g2), where the second summand is redundant.3 J

2 We remark, however, that this would result in a performance penalty in practice. See [4].
3 We remark that this bound only holds for the sequential version of the algorithm. In a parallelized
version, it can happen that several compressed columns achieve a size of O(n) at the same time.

SoCG 2019

37:12 Chunk Reduction for Multi-Parameter Persistent Homology

6 Implementation and experimental results

We briefly introduce the developed implementation of the chunk algorithm and we evaluate
its performance. The current C++ implementation of the chunk algorithm consists of
approximately 350 lines of code. It takes as input a finite bifiltered chain complex expressed
accordingly to the representation described in Section 2 and encodes each column as a
std::priority_queue. Even if the chunk algorithm permits a parallelization in shared
memory, this first implementation does not exploit this potential. Our experiments have been
performed on a configuration Intel Xeon CPU E5-1650 v3 at 3.50 GHz with 64 GB of RAM.

For testing the implemented chunk algorithm, we have compared its performances with
the simplification process based on discrete Morse theory proposed in [17] (DMT-based
algorithm) whose implementation is publicly available [10]. We remark once more that the
DMT-based approach yields a somewhat richer output than solely a simplified chain complex
with the same homotopy; however, we only compare the size of the resulting structure (in
terms of the number of generators per chain group) in this experimental comparison.

In our experiments, we have considered both synthetic and real datasets represented as
simplicial complexes. The latter ones are courtesy of the AIM@SHAPE data repository [9].
Most of the datasets are of dimension 2 or 3 and are embedded in a 3D environment. For
our experiments, we have adopted as filtering functions the ones obtained by extending to
all the simplices of the complex the x and the y coordinates assigned to the vertices of the
datasets. Table 1 displays the achieved results.

The data sets are given in off file format, that means, as a list of triangles specified
by boundary vertices. In order to apply our algorithm, we first have to convert the data
into a boundary matrix representation. Hence, we enlist in Table 1 the preparation time to
create the boundary matrix and the simplification time to perform our chunk algorithm. In
contrast, the DMT-based approach avoids the initial construction of the boundary matrix
but transforms the input into a different data structure before starting its simplification step.
We also list the running times of these separate steps in Table 1. In both cases, we do not
list the time for reading the input file into memory and writing the output structure on disk.

The column Size in Table 1 collects the sizes (in terms of the number of simplices/columns)
of the bifiltered chain complexes in input and in output. The compression factor achieved by
both algorithms varies between 9 and 23. As average, the reduced chain complex in output
is approximately 13 times smaller than the original one. Despite of the theoretical advantage
that our approach yields an optimal size in all situations, the size of the output returned
by the two algorithms is nearly the same in all listed examples. A difference can be noticed
just for datasets including shapes that can be considered as “pathological”. For instance, an
example of such a dataset is the conification of a dunce hat.

The column Time shows the computation times of both algorithms. In all tested examples,
the chunk algorithm takes a small fraction of time with respect to the DMT-based approach.
We also see that the creation of the boundary matrix (preparation step) takes more time
than the chunk algorithm (simplification step) by a factor of 2 to 3, but even these two
steps combined are faster than the simplification step of the DMT-based approach. It is
worth investigating whether the boundary matrix creation becomes a more severe bottleneck
for other datasets (e.g., in higher dimension), where the DMT-based approach might have
advantages by not creating the boundary matrix explicitly.

The column Memory Usage shows the memory consumption of both approaches. The
chunk algorithm does not need to encode auxiliary structures like the discrete Morse gradient
stored in the DMT-based approach resulting in a slightly less amount of required space.

U. Fugacci and M. Kerber 37:13

Table 1 Results and performances obtained by the chunk and the DMT-based algorithms. The
columns from left to right indicate: the name of the dataset (Dataset), the number of cells before
and after the simplification algorithms (Size), the time (Time), expressed in seconds, needed to
perform the preparation step (Prep.) and the simplification step (Simpl.), the maximum peak of
memory, expressed in GB, required by the two algorithms (Memory Usage).

Dataset
Size Time (sec.) Memory Usage (GB)

Input Output Chunk DMT Chunk DMT
Prep. Simpl. Prep. Simpl.

Eros 2.9 M 202 K 1.7 0.8 2.7 15.8 0.36 0.46
Donna 3.0 M 217 K 1.8 0.8 2.8 16.9 0.38 0.48
Chinese Dragon 3.9 M 321 K 2.5 1.1 3.9 22.3 0.52 0.64
Circular Box 4.2 M 365 K 2.9 1.2 4.3 24.0 0.68 0.68
Ramesses 5.0 M 407 K 3.4 1.3 5.5 29.4 0.68 0.81
Pensatore 6.0 M 369 K 3.8 1.6 6.8 34.3 0.76 0.97
Raptor 6.0 M 260 K 4.4 1.7 5.4 32.3 0.73 0.93
Neptune 12.0 M 893 K 8.4 4.4 14.9 69.2 1.52 1.94
Cube 1 590 K 67 K 0.5 0.3 0.7 3.2 0.09 0.10
Cube 2 2.4 M 264 K 1.8 1.1 2.6 13.1 0.35 0.40
Cube 3 9.4 M 1.0 M 7.6 4.8 11.0 53.1 1.37 1.58
Cube 4 37.7 M 4.2 M 31.9 19.4 44.9 216.0 5.50 6.32

Depending on the dataset, the chunk approach requires between 0.09 and 5.50 GB of memory
and it is, on average, 1.2 times more compact than the DMT-based one.

In summary, the chunk algorithm satisfies a stronger optimality condition than [17], but
still is an order of magnitude faster and uses comparable memory.

7 Conclusion

We have presented a pre-processing procedure for improving the computation of multi-
parameter persistent homology and we have provided theoretical and experimental evidence
of its effectiveness. In the future, we want to further improve the proposed strategy as
follows. First, we would like to develop a parallel implementation with shared memory of
the chunk algorithm and compare its performances with the ones obtained by the current
version. Similarly to [17], we also want to evaluate the impact of the chunk algorithm for the
computation of the persistence module and of the persistence space.

Our optimality criterion is formulated for the class of chain complexes quasi-isomorphic to
the input. It is possible to produce counterexamples showing that this statement cannot be
generalized to the class of the chain complexes homology-equivalent to the input. Nevertheless,
we want to further investigate the optimality properties satisfied by our algorithm and compare
our algorithm with the minimal presentation algorithm for persistence modules from RIVET.

References
1 M. Allili, T. Kaczynski, and C. Landi. Reducing complexes in multidimensional persistent

homology theory. Journal of Symbolic Computation, 78:61–75, 2017. doi:10.1016/j.jsc.
2015.11.020.

2 M. Allili, T. Kaczynski, C. Landi, and F. Masoni. Acyclic partial matchings for multidi-
mensional persistence: algorithm and combinatorial interpretation. Journal of Mathematical
Imaging and Vision, pages 1–19, 2018.

SoCG 2019

http://dx.doi.org/10.1016/j.jsc.2015.11.020
http://dx.doi.org/10.1016/j.jsc.2015.11.020

37:14 Chunk Reduction for Multi-Parameter Persistent Homology

3 U. Bauer, M. Kerber, and J. Reininghaus. Clear and compress: computing persistent homology
in chunks. In Topological methods in data analysis and visualization III, pages 103–117.
Springer, 2014.

4 U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. Phat - persistent homology algorithms
toolbox. Journal of Symbolic Computation, 78:76–90, 2017.

5 G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete &
Computational Geometry, 42(1):71–93, 2009.

6 A. Cerri and C. Landi. The persistence space in multidimensional persistent homology. In
R. Gonzalez-Diaz, M.-J. Jimenez, and B. Medrano, editors, Discrete Geometry for Computer
Imagery, pages 180–191. Springer Berlin Heidelberg, 2013.

7 W. Chachólski, M. Scolamiero, and F. Vaccarino. Combinatorial presentation of multidi-
mensional persistent homology. Journal of Pure and Applied Algebra, 221(5):1055–1075,
2017.

8 C. Chen and M. Kerber. Persistent homology computation with a twist. In Proceedings 27th
European Workshop on Computational Geometry, volume 11, pages 197–200, 2011.

9 Digital Shape WorkBench. AIM@SHAPE project, 2006. URL: http://visionair.ge.imati.
cnr.it.

10 F. Iuricich. FG-multi, 2018. URL: http://github.com/IuricichF/fg_multi.
11 F. Iuricich, S. Scaramuccia, C. Landi, and L. De Floriani. A discrete Morse-based approach to

multivariate data analysis. In SIGGRAPH ASIA 2016 Symposium on Visualization, pages
5–12. ACM, 2016.

12 K. P. Knudson. A refinement of multi-dimensional persistence. Homology, Homotopy and
Applications, 10(1):259 – 281, 2008.

13 M. Lesnick and M. Wright. Computing minimal presentations of bipersistence modules in
cubic time. In preparation.

14 M. Lesnick and M. Wright. Interactive visualization of 2-D persistence modules. arXiv preprint,
2015. arXiv:1512.00180.

15 E. Miller. Data structures for real multiparameter persistence modules. arXiv preprint, 2017.
arXiv:1709.08155.

16 S. Scaramuccia. Computational and theoretical issues of multiparameter persistent homology
for data analysis. PhD thesis, University of Genova, Italy, 2018. URL: http://hdl.handle.
net/11567/929143.

17 S. Scaramuccia, F. Iuricich, L. De Floriani, and C. Landi. Computing multiparameter persistent
homology through a discrete Morse-based approach. arXiv preprint, 2018. arXiv:1811.05396.

http://visionair.ge.imati.cnr.it
http://visionair.ge.imati.cnr.it
http://github.com/IuricichF/fg_multi
http://arxiv.org/abs/1512.00180
http://arxiv.org/abs/1709.08155
http://hdl.handle.net/11567/929143
http://hdl.handle.net/11567/929143
http://arxiv.org/abs/1811.05396

The Crossing Tverberg Theorem
Radoslav Fulek
IST Austria, Klosterneuburg, Austria
radoslav.fulek@gmail.com

Bernd Gärtner
Department of Computer Science, ETH Zürich, Switzerland
https://people.inf.ethz.ch/gaertner/
gaertner@inf.ethz.ch

Andrey Kupavskii
University of Oxford, UK; Moscow Institute of Physics and Technology, Russia
http://kupavskii.com
kupavskii@ya.ru

Pavel Valtr
Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
Department of Computer Science, ETH Zürich, Switzerland
https://kam.mff.cuni.cz/~valtr/

Uli Wagner
IST Austria, Klosterneuburg, Austria
uli@ist.ac.at

Abstract
The Tverberg theorem is one of the cornerstones of discrete geometry. It states that, given a set X

of at least (d + 1)(r − 1) + 1 points in Rd, one can find a partition X = X1 ∪ . . . ∪Xr of X, such
that the convex hulls of the Xi, i = 1, . . . , r, all share a common point. In this paper, we prove a
strengthening of this theorem that guarantees a partition which, in addition to the above, has the
property that the boundaries of full-dimensional convex hulls have pairwise nonempty intersections.
Possible generalizations and algorithmic aspects are also discussed.

As a concrete application, we show that any n points in the plane in general position span bn/3c
vertex-disjoint triangles that are pairwise crossing, meaning that their boundaries have pairwise
nonempty intersections; this number is clearly best possible. A previous result of Alvarez-Rebollar
et al. guarantees bn/6c pairwise crossing triangles. Our result generalizes to a result about simplices
in Rd, d ≥ 2.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems; Theory of
computation → Computational geometry

Keywords and phrases Discrete geometry, Tverberg theorem, Crossing Tverberg theorem

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.38

Funding Radoslav Fulek: The author gratefully acknowledges support from Austrian Science Fund
(FWF), Project M2281-N35.
Andrey Kupavskii: The research was supported by the Advanced Postdoc.Mobility grant no.
P300P2_177839 of the Swiss National Science Foundation.
Pavel Valtr : Research by P. Valtr was supported by the grant no. 18-19158S of the Czech Science
Foundation (GAČR).

Acknowledgements Part of the research leading to this paper was done during the 16th Gremo
Workshop on Open Problems (GWOP), Waltensburg, Switzerland, June 12-16, 2018. We thank
Patrick Schnider for suggesting the problem, and Stefan Felsner, Malte Milatz and Emo Welzl for
fruitful discussions during the workshop. We also thank Stefan Felsner and Manfred Scheucher for
finding and communicating the example from Section 3.2. We thank Dömötör Pálvölgyi and the
SoCG reviewers for various helpful comments.

© Radoslav Fulek, Bernd Gärtner, Andrey Kupavskii, Pavel Valtr, and Uli Wagner;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 38; pp. 38:1–38:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8485-1774
mailto:radoslav.fulek@gmail.com
https://people.inf.ethz.ch/gaertner/
mailto:gaertner@inf.ethz.ch
http://kupavskii.com
mailto:kupavskii@ya.ru
http://orcid.org/0000-0002-3102-4166
https://kam.mff.cuni.cz/~valtr/
https://orcid.org/0000-0002-3435-0100
mailto:uli@ist.ac.at
https://doi.org/10.4230/LIPIcs.SoCG.2019.38
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 The Crossing Tverberg Theorem

1 Introduction and Results

The following theorem was published by Johann Radon in 1921 [21]: any set of d+ 2 points
in Rd can be partitioned into two (disjoint) subsets, whose convex hulls intersect. In 1966,
Helge Tverberg [26] proved the following important generalization of Radon’s result.

I Theorem 1 (Tverberg [26]). Let X be a set of at least (d+ 1)(r − 1) + 1 points in d-space.
Then X can be partitioned into r sets whose convex hulls all have a point o in common. (In
the literature, the point o is referred to as a Tverberg point and the partition as a Tverberg
partition.)

Radon’s theorem covers the case r = 2. Figure 1 illustrates the Tverberg theorem for d = 2
and r = 3.

Figure 1 The Tverberg theorem for d = 2 and r = 3: any set of at least 7 points can be partitioned
into three sets whose convex hulls all have a point in common. Our example uses 9 points and shows
two Tverberg partitions as well as corresponding Tverberg points. Many other Tverberg partitions
exist in this example.

This theorem largely influenced the course of discrete geometry and spurred a lot of
research in the area. We do not go into more details in this paper and refer the reader to a
recent survey by Bárány and Soberón [6].

Throughout this paper, a set of points in Rd is said to be in general position if no d+ 1
points are on a comon hyperplane (for example, no three points on a line in the plane).

There is a major open question from the field of geometric graphs, motivating our work.
In [2], Aronov et al. conjectured that there exists an absolute constant c > 0, such that,
given any set of n points in general position in the plane, one can find at least cn disjoint
pairs among them such that their connecting segments cross pairwise. Such a collection of
segments is called a crossing family. Despite considerable interest in this problem, the best
published bound still comes from the original paper [2], stating that one can always find
a crossing family of size at least c

√
n for some absolute c > 0. Only recently, after about

25 years, J. Pach, N. Rubin, and G. Tardos improved this lower bound to a nearly linear
one [19].

In another attempt to approach this problem, Alvarez-Rebollar et al. asked whether one
can find at least cn disjoint triples whose connecting triangles cross pairwise [1]. Throughout
this paper, we say that two convex polytopes in Rd cross if their boundaries have a non-empty
intersection. We remark that if a convex polytope in Rd is not full-dimensional then it has no
interior and therefore coincides with its boundary. Our main results below would be false, in
the absence of general position, if relative boundaries were considered in the above definition
of crossing (an easy counterexample in this situation is a set of points lying on a line in R2).

We also point out that our definition of “crossing” is different from a classical one due to
Fejes-Tóth for general convex sets [25]. According to the latter, two convex sets C,C ′ cross if

R. Fulek, B. Gärtner, A. Kupavskii, P. Valtr, and U. Wagner 38:3

neither C \C ′ nor C ′ \C are connected. Under general position, our notion of crossing convex
polytopes generalizes the notion of a crossing of two vertex-disjoint segments in a crossing
family (the two segments intersecting in their relative interiors) [2]. It also generalizes the
notion of Alvarez-Rebollar et al. for vertex-disjoint triangles (an edge of one triangle crossing
an edge of the other) [1].

Alvarez-Rebollar et al. showed the following: For every finite point set of size n in the
plane in general position, there exist

⌊
n
6
⌋
vertex-disjoint and pairwise crossing triangles with

vertices in P . As at most
⌊
n
3
⌋
disjoint triangles can be found, this leaves a factor-2 gap.

If we only want triangles that have a common point, this gap can be closed using a simple
strengthening of the Tverberg theorem for point sets of size at most (d+ 1)r that we present
next. However, these triangles might not be pairwise crossing, since triangles can be nested;
see Figure 1 (right).

I Theorem 2. Let X be a set of at least (d+ 1)(r − 1) + 1 and at most (d+ 1)r points in
d-space. Then X can be partitioned into r disjoint sets X1, . . . , Xr of size at most d + 1,
whose convex hulls all have a point in common.

To prove this, we apply Theorem 1 to X. We get sets X ′1, . . . , X ′r whose convex hulls
contain a common point, say, the origin. Using Carathéodory’s theorem, from every X ′i of
size larger than d+ 1 we can select d+ 1 points Xi ⊆ X ′i, whose convex hull still contains the
origin. Finally, some of the sets X ′i of size smaller than d+ 1 are filled up to size d+ 1 with
the points removed from other X ′i’s. The origin is still a common point for all conv(Xi)’s.

The main result of this paper provides a crossing version of the Tverberg Theorem 2.

I Theorem 3. Let X be a set of at least (d+ 1)(r − 1) + 1 and at most (d+ 1)r points in
d-space. Then X can be partitioned into r disjoint sets X1, . . . , Xr of size at most d + 1,
whose convex hulls all have a point in common. Moreover, for any Xi, Xj of size d + 1,
conv(Xi) and conv(Xj) cross, meaning that their boundaries have a non-empty intersection.

We call such a partition a crossing Tverberg partition. An easy calculation shows that
the number of sets with exactly d+ 1 elements is at least |X| − dr ∈ {r− d, r− d+ 1, . . . , r}.
In particular, for sets X of size exactly (d + 1)r, we immediately deduce the following
simpler-looking corollary.

I Corollary 4. Let X be a set of (d+ 1)r points in d-space. Then X can be partitioned into
r sets X1, . . . , Xr of size d + 1, whose convex hulls all have a point in common and such
that for any i, j ∈ [n], conv(Xi) and conv(Xj) cross, meaning that their boundaries have a
non-empty intersection.

We also obtain an optimal strenghtening of the result by Alvarez-Rebollar et al. [1] that
moreover generalizes to all dimensions d ≥ 2.

I Corollary 5. For every finite point set X of size n in the plane in general position, there
exist bn/3c vertex-disjoint and pairwise crossing triangles with vertices in X.

More generally, for every finite point set X of size n in Rd in general position, there exist
bn/(d+ 1)c vertex-disjoint and pairwise crossing simplices with vertices in X.

To derive this from Theorem 3, we remove n mod (d+ 1) points from X and then apply
Theorem 3 on the remaining set of (d+ 1)

⌊
n
d+1

⌋
points.

Finally, we get a crossing version of the actual Tverberg Theorem 1, for point sets of
arbitrarily large size.

SoCG 2019

38:4 The Crossing Tverberg Theorem

I Theorem 6 (Crossing Tverberg theorem). Let X be a set of at least (d + 1)(r − 1) + 1
points in d-space. Then X can be partitioned into r sets whose convex hulls all have a point
in common. Moreover, for any Xi, Xj of size at least d+ 1, conv(Xi) and conv(Xj) cross,
meaning that their boundaries have a non-empty intersection.

This is also easy to prove, using Theorem 3 and Corollary 4. If n := |X| ≤ (d + 1)r,
we apply Theorem 3. Otherwise, we apply Corollary 4 to an arbitrary subset Y ⊂ X of
size (d + 1)r, resulting in a crossing Tverberg partition into r sets Y1, . . . , Yr of size d + 1
each. Now we consecutively add the remaining points to suitable sets in such a way that the
crossings between the convex hulls are maintained (the Tverberg point automatically remains
valid). Suppose that some points have already been added, resulting in sets X ′1, . . . , X ′r
whose convex hulls still cross pairwise. If the next point p is contained in one of these convex
hulls, we simply add it to the corresponding set. Otherwise, we select an inclusion-minimal
set conv(X ′k ∪ {p}) among the (different) sets conv(X ′i ∪ {p}), i = 1, . . . , r, and add p to X ′k.
We claim that this cannot result in nested convex hulls. For this, we only have to rule out
that conv(X ′k ∪ {p}) “swallows” some other conv(X ′i). But this cannot happen, as otherwise
conv(X ′i ∪ {p}) ⊂ conv(X ′k ∪ {p}), contradicting the choice of k.

It remains to prove Theorem 3. We start with a Tverberg partition according to Theorem 2,
i.e. a partition into sets of size at most d+ 1 such that their convex hulls have a point in
common. Such a partition might look like in Figure 2 (left). If the full-dimensional convex
hulls (which are simplices) cross pairwise, we are done. In general, however, we still have
pairs of nested simplices. As long as this is the case, we fix one pair of nested simplices at
a time until no pair of nested simplices exists anymore, and our desired crossing Tverberg
partition is obtained.

By fixing, we mean that we repartition the 2(d+ 1) points involved in the two simplices in
such a way that the resulting simplices are not nested anymore but still contain the common
point. In the example of Figure 2 (left), there is one pair of nested simplices (red edges), and
after fixing it (blue edges), we are actually done in this case; see Figure 2 (right).

Figure 2 Fixing a pair of nested simplices spanned by the 6 black points: two nested simplices
(red) are transformed into two simplices that cross (blue).

Repartitioning the points is always possible due to the following lemma, which may be
of independent interest. This lemma is our main technical contribution, and we prove it in
Section 2.

I Lemma 7. Let T, T ′ be two disjoint (d+ 1)-element sets in Rd such that 0 ∈ conv(T) ∩
conv(T ′). Then there exist two disjoint (d+ 1)-element sets S, S′ such that S ∪ S′ = T ∪ T ′,
0 ∈ conv(S) ∩ conv(S′), and moreover, conv(S) and conv(S′) cross.

To conclude the proof of Theorem 3, we still need to show that after finitely many fixing
steps, there are no nested pairs anymore, in which case we have a crossing Tverberg partition.

R. Fulek, B. Gärtner, A. Kupavskii, P. Valtr, and U. Wagner 38:5

To see this, we observe that in any fixing operation that replaces Xi and Xj such that
conv(Xi) ⊂ conv(Xj), the simplex conv(Xj) is volume-wise the unique largest d-dimensional
simplex that can be formed from the 2(d+1) points Xi∪Xj involved in the operation. Hence,
the two simplices conv(S) and conv(S′) replacing conv(Xi) and conv(Xj) are volume-wise
both strictly smaller than conv(Xj). Therefore, if we order all full-dimensional simplices
by decreasing volume, the sequence of these volumes goes down lexicographically in every
fixing operation.

Formally, let V = (V1, V2 . . . Vs), s ≤ r be the sequence of volumes in decreasing order
before the fix, and V ′ = (V ′1 , V ′2 . . . V ′s) the decreasing order after the fix. Moreover, suppose
that k is the largest index at which the volume of conv(Xj) appears in V. The volume
of conv(Xi) appears at a position ` > k. As the fixing operation removes a volume equal
to Vk and inserts two volumes smaller than Vk, we have that V and V ′ agree in the first
k − 1 positions, but V ′k < Vk. This exactly defines the relation “V ′ < V” in decreasing
lexicographical order, and as this is a total order, fixing must eventually terminate.
I Remark. Instead of volume, we may use the number of points from X inside conv(Xj) as
a measure.

Since applications of Lemma 7 allow to keep the Tverberg point and the sizes of the parts
in the (Tverberg) partition, we actually have the following strengthening of Theorem 3.

I Theorem 8. Let X be a set of points in d-space. Suppose that there is a Tverberg partition
of X into r parts of sizes s1 . . . , sr, for which o is a Tverberg point, and si ≤ d+1, i = 1, . . . r.
Then there is also a crossing Tverberg partition of X into r parts of sizes s1 . . . , sr, for which
a Tverberg point is o.

In the next section, we prove Lemma 7. We remark that for each of the other theorems and
corollaries in this section, we have already explained how to derive them from the Tverberg
theorem, or from our main Theorem 3. In Section 3, we discuss possible generalizations as
well as some algorithmic aspects of the problem.

2 Proof of Lemma 7

We employ the following parity lemma that we prove in the next two subsections (in a
geometric way for d = 2, and in a combinatorial way for all dimensions).

I Lemma 9 (Parity lemma). Let V ⊂ Rd, |V | = 2(d + 1), such that V ∪ {0} is in general
position. Then∣∣∣{{F,G} : F,G ∈

(
V

d+ 1

)
, F ∩G = ∅,0 ∈ convF ∩ convG

}∣∣∣ is even.

In particular, if there is one such pair {F,G}, then there is another.
Before we move on to the proof, let us derive Lemma 7 from this. It suffices to handle

the case where the set T ∪ T ′ ∪ {0} is in general position. To justify this, we make two
observations. The first is that general position is achieved by some arbitrarily small (for
example, random) perturbation of T ∪ T ′. The second is that the property of not having
sets S, S′ as required is maintained under any sufficiently small perturbation. Putting the
two observations together, we see that if Lemma 7 holds for T ∪ T ′ ∪ {0} in general position,
then it holds for all T, T ′.

Then, by Lemma 9 with V = T ∪T ′, there is another pair {S, S′} such that S∪S′ = T ∪T ′,
0 ∈ conv(S) ∩ conv(S′). At most one of these pairs can yield nested simplices: the outer
simplex of a nested pair coincides with conv(T ∪ T ′) and is therefore uniquely determined.
Hence, one of the two pairs yields crossing simplices.

SoCG 2019

38:6 The Crossing Tverberg Theorem

I Remark. We note that this statement and its application is quite unusual. Typically, one
proves that the number of objects of a certain type is always odd and thus at least one object
of the type exists.

2.1 Geometric proof of the parity Lemma 9 for d = 2
The purely combinatorial proof that we give below for all d is not difficult, but does not
provide any geometric intuition. We therefore start with a simple proof in the plane.

Consider a set V of 2(d+ 1) = 6 points in the plane. We remark that the statement is
invariant under scaling points, and thus we may assume that all points lie on a circle with
the center in the origin. Due to general position, no two points from V lie on a line passing
through the origin; see Figure 3 (left).

p

q
p′

Figure 3 6 points in the plane (black) and their mirror images (white); there must be two
consecutive black points p, p′.

Now we reflect each point at the origin and obtain another 6 points, drawn in white
in Figure 3 (right). We observe that in the circular order of points, there must be two
consecutive ones of the same color. Indeed, an alternating pattern (black, white, black,
white,. . .) would lead to pairs of antipodal points having the same color. Let p, p′ be two
consecutive points of the same color; by going to the antipodal points if necessary, we may
assume that they are black and hence belong to V .

We make two observations (actually, just one). (i) p and p′ cannot belong to a triple
F ⊂ V such that 0 ∈ conv(F), as otherwise, the third point would get reflected to a white
point between p and p′; see Figure 4 (left). (ii) For any q ∈ V \ {p, p′}, the two segments
conv({p, q}) and conv({p′, q}) have the origin on the same side; see Figure 4 (right).

p

p′

q

p′

p

Figure 4 Consecutive black points are combinatorially indistinguishable.

This implies the following: if {F,G} is a partition of V that we count in Lemma 9, then
(i) p and p′ are in different parts, and (ii) swapping p and p′ between the parts leads to a
different partition {F ′, G′} that we also count. In other words, p and p′ are “combinatorially
indistinguishable” with respect to the relevant properties, and the operation of swapping
them between parts establishes a matching between the partitions that we want to count.
Hence, their number is even.

R. Fulek, B. Gärtner, A. Kupavskii, P. Valtr, and U. Wagner 38:7

2.2 Combinatorial proof of the parity Lemma 9
Recall that for |V | = 2(d+ 1), we need to show that there is an even number of partitions
{F,G} of V into parts of equal size d+ 1 such that 0 ∈ conv(F) ∩ conv(G). We show that
this follows from the fact that the (d+ 1)-element subsets F with 0 ∈ conv(F) form a cocycle,
a concept borrowed from topology.

I Definition 10. Let n ≥ k ≥ 1 be integers, and let V be a set with n elements. A family
C ⊂

(
V
k

)
of k-element subsets of V is a cocycle if

|{F ∈ C : F ⊂M}| is even for every M ⊂ V with |M | = k + 1.

I Example 11. Fix a set D ∈
(
V
k−1
)
. Then δD := {F ∈

(
V
k

)
: D ⊂ F} is a cocycle. Indeed,

a (k + 1)-element subset M ⊂ V either contains no sets in δD (if D 6⊂ M) or exactly two
sets in δD (If D = M \ {p, q}).

I Lemma 12. Let V ⊂ Rd be such that V ∪ {0} is in general position. Then

C(V) :=
{
F ∈

(
V

d+ 1

)
: 0 ∈ convF

}
is a cocycle.

Proof. LetM := {v1, . . . , vd+2} ⊂ V . Lift the points to dimension d+1 such that the convex
hull of the lifted point set M̂ is a full-dimensional simplex ∆; see Figure 5.

∆

Figure 5 Illustration of the geometric proof of Lemma 12 when d = 2.

Any set F̂ ⊂ M̂ of size d+ 1 spans a facet of ∆, and we have 0 ∈ conv(F) if and only
if the vertical line through 0 intersects that facet. As V ∪ {0} is in general position, this
line intersects the convex set ∆ in a line segment, if it intersects it at all; hence, the line
intersects the boundary of ∆ in zero or two points, each lying in the interior of some facet.
Thus, |{F ∈ C(V) : F ⊂M}| ∈ {0, 2}.

We remark that there is also an elementary linear algebra version of this “proof by picture”
(omitted in this extended abstract). J

By Lemma 12, Lemma 9 is now simply a special case of the following main result of
this section.

I Theorem 13. Let k ≥ 1, |V | = 2k and let C ⊂
(
V
k

)
be a cocycle. Set

PC :=
{
{F,G} : F,G ∈ C, F ∩G = ∅

}
.

Then |PC | is even.

SoCG 2019

38:8 The Crossing Tverberg Theorem

For the proof, we need one more concept. For a family D ⊂
(
V
k−1
)
, we define the

coboundary

δD =
{
F ∈

(
V

k

)
: F contains an odd number of sets D ∈ D

}
.

This naturally extends the definition δD = {F ∈
(
V
k

)
: D ⊂ F} for D ∈

(
V
k−1
)
from our

previous example. We call δD the elementary cocycle associated with D.
To prove Theorem 13, we use the following basic fact.

I Lemma 14. For every cocycle C ⊂
(
V
k

)
there exists a family D ⊂

(
V
k−1
)
such that C = δD.

Equivalently,

C = δD1 ⊕ δD2 ⊕ . . .⊕ δDm,

where D = {D1, . . . , Dm} and ⊕ denotes symmetric difference.

Proof of Theorem 13. The statement is trivially true when C = ∅ is the empty cocycle.
Thus, by Lemma 14, it suffices to show that the parity of |PC | does not change when we

take the symmetric difference with an elementary cocycle, i.e.,

|PC | ≡ |PC⊕δD| mod 2 (1)

for any D ∈
(
V
k−1
)
.

B Claim 15. PC⊕δD = PC ⊕R, where

R :=
{
{F,G} : F ∈ δD,G ∈ C, F ∩G = ∅

}
.

Proof. To see this, note that for pairs {F,G} with D 6⊂ F and D 6⊂ G nothing changes, i.e.,
such a pair is either in both PC and PC⊕δD or in neither. Thus, it suffices to consider pairs
{F,G}, F ∩G = ∅, such that D is contained in one of the two sets. Without loss of generality,
D ⊂ F and G ⊂ V \D.

Since D 6⊂ G, we have G ∈ C if and only if G ∈ C ⊕ δD. Since D ⊂ F , we have F ∈ δD,
and hence, F ∈ C if and only if F 6∈ C ⊕ δD. Thus, {F,G} ∈ PC⊕δD if and only if {F,G} ∈ R
and {F,G} 6∈ PC . This proves the claim. C

Since C is a cocycle and |V \D| = k+1, there is an even number of G ∈ C with G ⊂ V \D.
Since |V | = 2k, each such G determines a unique F = V \ G, F ∈ δD, with {F,G} ∈ R.
Thus,

|R| =
∣∣{G ∈ C : G ⊂ V \D}

∣∣ ≡ 0 mod 2.

Combined with the claim, we get that (1) holds, which concludes the proof of the theorem. J

For the sake completeness, we also prove Lemma 14.

Proof of Lemma 14. Let C ⊂
(
V
k

)
be a cocycle. Choose an arbitrary element v ∈ V . Define

D := Dv :=
{
D ∈

(
V \ v
k − 1

)
: D ∪ {v} ∈ C

}
.

We claim that
C = δD.

Let F ∈
(
V
k

)
. We distinguish two cases:

R. Fulek, B. Gärtner, A. Kupavskii, P. Valtr, and U. Wagner 38:9

(1) If v ∈ F then, by the definition of D ⊂
(
V \{v}
k−1

)
, we have F \ {v} ∈ D if and only if F ∈ C.

Moreover, F \ {v} is the only set in
(
V \{v}
k−1

)
that F contains. Thus,

F ∈ C ⇔ F ∈ δD in this case.

(2) Assume v /∈ F . Then M := F ∪ {v} has k+ 1 elements. Since C is a cocycle, M contains
an even number of sets from C. Thus,

F ∈ C ⇔M contains an odd number of G ∈ C with v ∈ G
⇔ F contains an odd number of sets D = G \ {v} ∈ D
⇔ F ∈ δD. J

3 Discussion

3.1 A Topological version of Theorem 3
If r is a prime power, then the Tverberg theorem admits a topological generalization, known
as the Topological Tverberg theorem:

I Theorem 16. If d ∈ N and if r is a prime power, then for every continuous map from the
(d+ 1)(r − 1)-dimensional simplex ∆(d+1)(r−1) to Rd, there exist r pairwise disjoint faces of
∆(d+1)(r−1) whose images intersect in a common point.

This result was first proved in the case when r is a prime by Bárány, Shlosman and Szücs [5]
and later extended to prime powers by Özaydin [18]. On the other hand, Theorem 16 is
false if r is not a prime power: By work of Mabillard and Wagner [14] and a result of
Özaydin [18], a closely related result (the generalized Van Kampen–Flores theorem) is false
whenever r is not a prime power and, as observed by Frick [12], the failure of Theorem 16 for
r not a prime power follows from this by a reduction due to Gromov [13] and to Blagojević,
Frick, and Ziegler [7]. The lowest dimension in which counterexamples are known to exist
is d = 2r [3, 14]. We refer to the recent surveys [6, 8, 23, 27] for more background on the
Topological Tverberg theorem and its history.

In the same vein, it is natural to wonder if our Theorem 3 also extends to the topological
setting. The straightforward approach to generalize our result would be to use the Topological
Tverberg theorem instead of the Tverberg theorem and then keep fixing the pairs of simplices
whose boundaries do not mutually intersect. To this end we need an adaptation of Lemma 12
and the fixing procedure to the topological setting. The rest of our argument is free of
any geometry except for the use of Carathéodory’s theorem which is not really crucial.
While extending Lemma 12 is easy, showing the termination of the fixing procedure appears
to be quite difficult except under the scenario which we discuss below. First, we discuss
planar extensions of Theorem 3. An arrangement of pseudolines P is a finite set of not
self-intersecting open arcs, called pseudolines, in R2 such that (i) For every pair P1, P2 ∈ P
of two distinct pseudolines, P1 and P2 intersect transversely in a single point, and (ii) R2 \P
is not connected for every P ∈ P. A drawing of a complete graph on n vertices Kn in the
plane is pseudolinear if the edges can be extended to an arrangement of pseudolines.

In the plane, it is not hard to see that Theorem 3 and its proof almost extends to the
setting of pseudolinear drawings of complete graphs. Since the Topological Tverberg theorem
is only valid for prime powers r, the number of pairwise crossing triangles is slightly smaller
than the number of vertices divided by 3.

SoCG 2019

38:10 The Crossing Tverberg Theorem

Figure 6 The allowed drawings of K4 in a pseudolinear drawing of Kn (left). The forbidden
drawing of K4 in a pseudolinear drawing of Kn (right).

I Theorem 17. In a pseudolinear drawing of a complete graph K3n we can find m =
(1− o(1))n vertex-disjoint and pairwise crossing triangles. Moreover, the topological discs
bounded by these triangles intersect in a common point.

Proof. Let D be a pseudolinear drawing of K3n. We put m to be the largest prime power not
larger than n. By the asymptotic law of distribution of prime numbers m = (1−o(1))n. Next,
apply the Topological Tverberg theorem with r = m and d = 2 to a map µ : ∆3m−3 → R2

which extends D as follows. We define µ on the 1-dimensional skeleton of ∆3m−3 as a
restriction of D to some K3m−2. Note that every triangle of K3m−2 is drawn by D as a
closed arc without self intersections. The map µ extends to the 2-dimensional skeleton of
∆3m−3 so that every 2-dimensional face is mapped homeomorphically in R2. We define the
map µ on the rest of ∆3m−3 arbitrarily while maintaining continuity.

Analogously to the proof of Theorem 3, an application of the Topological Tverberg
theorem gives us m− 1 disjoint 2-dimensional faces F1, . . . , Fm−1 of ∆3m−3 whose images
under µ intersect in a common point. To this end we apply Carathéodory’s theorem for
drawings of complete graphs [4, Lemma 4.7] instead of the original version of Carathéodory’s
theorem. Let Ti denote the boundary of Fi, for i = 1, . . . ,m − 1. Note that each Ti is a
triangle in K3m−2. If all pairs Ti and Tj are crossing then we are done. Otherwise, we
perform the fixing operations, which can be done since Lemma 12 easily extends to the
setting in which we replace simplices by images of 2-dimensional faces of ∆3m−3 under µ.

The procedure of applying successively the fixing operation terminates due to the following
argument. First, observe that every four vertices in a pseudolinear drawing of a complete
graph induce either a crossing free drawing of K4 or a drawing of K4 with exactly one pair
of crossing edges in the interior of a disc bounded by a crossing free 4-cycle, see Figure 6 for
an illustration. It follows that if µ(Ti) ∩ µ(Tj) = ∅, and let’s say µ(Fi) ⊂ µ(Fj), then the
restriction of µ to the subgraph of K3m−2 induced by V (Ti) ∪ V (Tj) is contained in µ(Fj).
Indeed, otherwise there exists a vertex u ∈ V (Ti) and v ∈ V (Tj) such that µ(uv) crosses an
edge of Tj , let us denote it by wz, that is not incident to v. Then the restriction of µ to
the subgraph of K3m−2 induced by {u, v, w, z} is a drawing of K4 that is not pseudolinear
(contradiction). Therefore the volume argument goes through if we consider, say, volumes
of µ(Fi)’s. J

A drawing of a graph in the plane is simple if every pair of edges intersect at most once
either at a common end point or in a proper crossing. Clearly, all pseudolinear drawings
of complete graphs are also simple, but not vice-versa, as illustrated in the last drawing
in Figure 6. Hence, it might be worthwhile to extend Theorem 17 to simple drawings of
complete graphs.

If we want the interiors of the triangles to be pairwise intersecting, we only known that
we can take m at least Ω(log1/6 n) which is easily derived from the following result of Pach,
Solymosi and Tóth [20]. Every simple drawing of Kn contains a drawing of Km that is weakly

R. Fulek, B. Gärtner, A. Kupavskii, P. Valtr, and U. Wagner 38:11

0 1 2 3 4 5

Figure 7 The twisted drawing of K6. The bold grey and black edges form boundaries of two
crossing triangles. The symbol x marks a point contained in the interior of these two triangles.

isomorphic to a so-called convex complete graph or a twisted complete graph, see Figure 7,
for which Theorem 17 holds. We omit the proof of the latter which is rather straightforward.
For example, if in a twisted drawing of K3n the vertices are labeled as indicated in the figure,
{{0 + i, n+ i, 2n+ i}| i = 0, . . . , n− 1} is a crossing Tverberg partition.

If we do not insist on the interiors of the triangles to be pairwise intersecting, we know
that m can be taken to be at least Ω(nε) for some small ε > 0 by the following result of
Fox and Pach [11]. Every simple drawing of Kn contains Ω(nε) pairwise crossing edges for
some ε > 0.

Theorem 17 could be generalized to hold for an appropriate high dimensional analog of
pseudolinear drawings. Since this would require introducing many technical terms and would
not offer substantially interesting content we refrain from doing so.

3.2 Stronger conditions on crossings
A pair of vertex disjoint (dd/2e − 1)-dimensional simplices in general position in d-space
does not intersect. Hence, the pairwise intersection of the boundaries of conv(Xi)’s in the
conclusion of Theorem 3, cannot be strengthened to the pairwise intersection of lower than
dd/2e-dimensional skeleta of the boundaries.

Nevertheless, for d = 3 one may ask if in the setting of Lemma 7, we get a stronger
property along the following lines. Can we guarantee the existence of a pair of vertex-disjoint
tetrahedra {S, S′} that both contain the origin and such that the boundary of a 2-dimensional
face F of S is linked with the boundary of a 2-dimensional face G of S′, meaning that the
boundary of F intersects G and the boundary of G intersects F? Again, the answer to this
question is negative. Stefan Felsner and Manfred Scheucher (personal communication) found
the following set of 8 points:

(3,−2, 2), (2,−5, 3), (−3, 0,−4), (−1, 2, 0),

(1,−5,−4), (4, 1,−2), (−2,−5,−4), (−3, 1, 3).

This set determines a pair of disjoint tetrahedra both containing the origin (0, 0, 0), but no
two disjoint linked tetrahedra both containing the origin.

The example was found using a SAT solver who found an abstract order type with the
required property. A realization of the order type with actual points was obtained with a
randomized procedure.

SoCG 2019

38:12 The Crossing Tverberg Theorem

3.3 Computational complexity of finding a crossing Tverberg partition

A natural question is whether we can find the partition of the point set given by Theorem 3
efficiently, i.e., in polynomial time in the size of X. A straightforward way to construct
an algorithm is to make the proof of Theorem 3 algorithmic. To this end we first need
an algorithm for finding a Tverberg partition and also a Tverberg point. Unfortunately,
it is neither known whether this can be done in polynomial time, nor are there hardness
results [9, Section 3.4]. Since a Tverberg partition always exists, the decision problem is
trivial, so NP-completeness cannot apply. It might still be possible to prove completeness
of the problem for a suitable subclass of TFNP (containing search problems for which a
solution is guaranteed to exist). It has been shown that the problem is contained in two
such subclasses that have complete problems, namely PPAD and PLS [15, Theorem 4.9].
While this makes it unlikely that the problem is complete for either of them, it could well be
contained in and turn out to be complete for a subclass of PPAD∩PLS, a number of which
have been introduced and studied in recent years; see [10] and the references therein.

The only closely related hardness result we are aware of is the one by Teng [24, Theorem
8.14], who proved that checking whether a given point is a Tverberg point of a given point
set is NP-complete.

A line of research on finding an approximate Tverberg partition efficiently was initiated
by Miller and Sheehy [16] and further developed in [17, 22]. In particular, Mulzer and
Werner [17] showed that it is possible to find in time dO(log d)|X| an approximate Tverberg
partition of size

⌈
|X|

4(d+1)3

⌉
, whereas Theorem 1 guarantees the partition of size

⌈
|X|
d+1

⌉
.

If we aim only at an approximate algorithmic version of our Theorem 3 along the lines of
the result of Mulzer and Werner, we face the problem of efficiently fixing an (approximate)
Tverberg partition to make it crossing. Due to the fact that our termination argument
for the iterated Fixing Pairs procedure relies on progress in the lexicographical ordering
of the simplex volumes, we may potentially need exponentially many (in the size of X)
iterations before we arrive at a crossing partition. We leave it as an interesting open problem
to prove or disprove that there is always a way to invoke the Fixing Pairs operation only
polynomially (or least subexponentially) many times in order to arrive at a partition required
by Theorem 3.

References

1 José Luis Alvarez-Rebollar, Jorge Cravioto Lagos, and Jorge Urrutia. Crossing families and
self crossing Hamiltonian cycles. XVI Encuentros de Geometría Computacional, page 13, 2015.

2 B. Aronov, P. Erdős, W. Goddard, D. J. Kleitman, M. Klugerman, J. Pach, and L. J. Schulman.
Crossing families. Combinatorica, 14(2):127–134, 1994.

3 Sergey Avvakumov, Isaac Mabillard, Arkadiy Skopenkov, and Uli Wagner. Eliminating
higher-multiplicity intersections, III. Codimension 2. Preprint, arXiv:1511.03501, 2015.

4 Martin Balko, Radoslav Fulek, and Jan Kynčl. Crossing Numbers and Combinatorial Charac-
terization of Monotone Drawings of Kn. Discrete & Computational Geometry, 53(1):107–143,
2015.

5 Imre Bárány, Senya B Shlosman, and András Szücs. On a topological generalization of a
theorem of Tverberg. Journal of the London Mathematical Society, 2(1):158–164, 1981.

6 Imre Bárány and Pablo Soberón. Tverberg’s theorem is 50 years old: A survey. Bulletin of
the American Mathematical Society, 55(4):459–492, June 2018. doi:10.1090/bull/1634.

7 Pavle V. M. Blagojević, Florian Frick, and Günter M. Ziegler. Tverberg plus constraints. Bull.
Lond. Math. Soc., 46(5):953–967, 2014.

arXiv:1511.03501
http://dx.doi.org/10.1090/bull/1634

R. Fulek, B. Gärtner, A. Kupavskii, P. Valtr, and U. Wagner 38:13

8 Pavle V. M. Blagojević and Günter M. Ziegler. Beyond the Borsuk–Ulam Theorem: The
Topological Tverberg Story. In: A Journey Through Discrete Mathematics: A Tribute to Jiří
Matoušek (M. Loebl, J. Nešetřil, and R. Thomas, eds.), Springer, pp. 273–341, 2017.

9 Jesus A. de Loera, Xavier Goaoc, Frédéric Meunier, and Nabil Mustafa. The discrete
yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Preprint,
arxiv:1706.05975, 2018.

10 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique End of Potential
Line. CoRR, abs/1811.03841, 2018. arXiv:1811.03841.

11 Jacob Fox and János Pach. Coloring Kk-free intersection graphs of geometric objects in the
plane. European Journal of Combinatorics, 33(5):853–866, 2012.

12 Florian Frick. Counterexamples to the topological Tverberg conjecture. Oberwolfach Reports,
12(1):318–321, 2015.

13 Mikhail Gromov. Singularities, expanders and topology of maps. Part 2: From combinatorics
to topology via algebraic isoperimetry. Geom. Funct. Anal., 20(2):416–526, 2010.

14 Isaac Mabillard and Uli Wagner. Eliminating Higher-Multiplicity Intersections, I. A Whitney
Trick for Tverberg-Type Problems. Preprint, arXiv:1508.02349, 2015. An extended abstract
appeared (under the title Eliminating Tverberg points, I. An analogue of the Whitney trick)
in Proc. 30th Ann. Symp. Comput. Geom., 2014, pp. 171–180.

15 Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein. The rainbow
at the end of the line—a PPAD formulation of the colorful Carathéodory theorem with
applications. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1342–1351. SIAM, 2017.

16 Gary L Miller and Donald R Sheehy. Approximate centerpoints with proofs. Computational
Geometry, 43(8):647–654, 2010.

17 Wolfgang Mulzer and Daniel Werner. Approximating Tverberg points in linear time for any
fixed dimension. Discrete & Computational Geometry, 50(2):520–535, 2013.

18 Murad Özaydin. Equivariant maps for the symmetric group. Preprint, 1987. Available at
http://minds.wisconsin.edu/handle/1793/63829.

19 János Pach, Natan Rubin, and Gábor Tardos. Planar point sets determine many pairwise
crossing segments. In Proceedings of the 51st Annual ACM Symposium on the Theory of
Computing. ACM, to appear, 2019.

20 János Pach, József Solymosi, and Géza Tóth. Unavoidable configurations in complete topolo-
gical graphs. Discrete & Computational Geometry, 30(2):311–320, 2003.

21 Johann Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Mathem-
atische Annalen, 83(1-2):113–115, 1921.

22 David Rolnick and Pablo Soberón. Algorithms for Tverberg’s theorem via centerpoint theorems.
Preprint, arXiv:1601.03083, 2016.

23 Arkadiy B. Skopenkov. A user’s guide to the topological Tverberg conjecture. Russian
Mathematical Surveys, 73(2):323, 2018.

24 Shang-Hua Teng. Points, spheres, and separators: a unified geometric approach to graph
partitioning. PhD thesis, Carnegie Mellon University, 1992.

25 László Fejes Tóth. Eine Kennzeichnung des Kreises. Elemente der Mathematik, 22:25–48,
1967.

26 Helge Tverberg. A generalization of Radon’s theorem. Journal of the London Mathematical
Society, 1(1):123–128, 1966.

27 Rade T. Živaljević. Topological Methods in Discrete Geometry. In Jacob E. Goodman, Joseph
O’Rourke, and Csaba D. Tóth, editors, Handbook of discrete and computational geometry,
CRC Press Ser. Discrete Math. Appl., chapter 21. CRC, Boca Raton, FL, 2018.

SoCG 2019

arxiv:1706.05975
http://arxiv.org/abs/1811.03841
arXiv:1508.02349
http://minds.wisconsin.edu/handle/1793/63829
arXiv:1601.03083

Z2-Genus of Graphs and Minimum Rank of Partial
Symmetric Matrices
Radoslav Fulek
IST Austria, Am Campus 1, Klosterneuburg 3400, Austria
radoslav.fulek@ist.ac.at

Jan Kynčl
Department of Applied Mathematics, Charles University, Faculty of Mathematics and Physics,
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
kyncl@kam.mff.cuni.cz

Abstract
The genus g(G) of a graph G is the minimum g such that G has an embedding on the orientable
surface Mg of genus g. A drawing of a graph on a surface is independently even if every pair of
nonadjacent edges in the drawing crosses an even number of times. The Z2-genus of a graph G,
denoted by g0(G), is the minimum g such that G has an independently even drawing on Mg.

By a result of Battle, Harary, Kodama and Youngs from 1962, the graph genus is additive
over 2-connected blocks. In 2013, Schaefer and Štefankovič proved that the Z2-genus of a graph is
additive over 2-connected blocks as well, and asked whether this result can be extended to so-called
2-amalgamations, as an analogue of results by Decker, Glover, Huneke, and Stahl for the genus.
We give the following partial answer. If G = G1 ∪G2, G1 and G2 intersect in two vertices u and v,
and G− u− v has k connected components (among which we count the edge uv if present), then
|g0(G) − (g0(G1) + g0(G2))| ≤ k + 1. For complete bipartite graphs Km,n, with n ≥ m ≥ 3, we
prove that g0(Km,n)

g(Km,n) = 1−O(1
n

). Similar results are proved also for the Euler Z2-genus.
We express the Z2-genus of a graph using the minimum rank of partial symmetric matrices over

Z2; a problem that might be of independent interest.

2012 ACM Subject Classification Mathematics of computing → Graphs and surfaces; Mathematics
of computing → Computations on matrices

Keywords and phrases graph genus, minimum rank of a partial matrix, Hanani–Tutte theorem,
graph amalgamation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.39

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.08637.

Funding Radoslav Fulek: The author gratefully acknowledges support from Austrian Science Fund
(FWF): M2281-N35.
Jan Kynčl: Supported by project 19-04113Y of the Czech Science Foundation (GAČR), by the
PRIMUS/17/SCI/3 project of Charles University and by Charles University project UNCE/SCI/004.

Acknowledgements We are grateful to anonymous referees for comments that helped us to improve
the presentation of the results.

1 Introduction

The genus g(G) of a graph G is the minimum g such that G has an embedding on the
orientable surface Mg of genus g. Similarly, the Euler genus eg(G) of G is the minimum g

such that G has an embedding on a surface of Euler genus g. We say that two edges in a
graph are independent (also nonadjacent) if they do not share a vertex. The Z2-genus g0(G)
and Euler Z2-genus eg0(G) of G are defined as the minimum g such that G has a drawing
on Mg and a surface of Euler genus g, respectively, with every pair of independent edges
crossing an even number of times. Clearly, g0(G) ≤ g(G) and eg0(G) ≤ eg(G).

© Radoslav Fulek and Jan Kynčl;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 39; pp. 39:1–39:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8485-1774
mailto:radoslav.fulek@ist.ac.at
https://orcid.org/0000-0003-4908-4703
mailto:kyncl@kam.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.SoCG.2019.39
https://arxiv.org/abs/1903.08637
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Z2-Genus of Graphs

The definition of the Z2-genus and Euler Z2-genus is motivated by the strong Hanani–Tutte
theorem [17, 35] stating that a graph is planar if and only if its Z2-genus is 0. Many variants
and extensions of the theorem have been proved [6, 14, 23, 29, 31], and they found various
applications in combinatorial and computational geometry; see the survey by Schaefer [28].

It had been a long-standing open problem whether the strong Hanani–Tutte theorem
extends to surfaces other than the plane and projective plane, although the problem was first
explicitly stated in print by Schaefer and Štefankovič [30] in 2013. They conjectured that
the strong Hanani–Tutte theorem extends to every orientable surface, that is, g0(G) = g(G)
for every graph G. They proved that a minimal counterexample to their conjecture must be
2-connected; this is just a restatement of their block additivity result, which we discuss later
in this section. In a recent manuscript [13], we provided an explicit construction of a graph
G for which g(G) = 5 and g0(G) ≤ 4, thereby refuting the conjecture. Nevertheless, the
conjecture by Schaefer and Štefankovič [30] that eg0(G) = eg(G) for every graph G might
still be true.

The conjecture has been verified only for graphs G with eg(G) ≤ 1: Pelsmajer, Schaefer
and Stasi [24] proved that the strong Hanani–Tutte theorem extends to the projective plane,
using the characterization of projective planar graphs by an explicit list of forbidden minors.
Recently, Colin de Verdière et al. [8] gave a constructive proof of the same result.

Schaefer and Štefankovič [30] also formulated a weaker form of their conjecture about the
Z2-genus, stating that there exists a function f : N→ N such that g(G) ≤ f(g0(G)) for every
graph G. Assuming the validity of an unpublished Ramsey-type result by Robertson and
Seymour, the existence of such f follows as a corollary from our recent result [15] stating
that g0(G) = g(G) for the graphs G in the so-called family of Kuratowski minors. Regarding
the asymptotics of f , we do not have any explicit upper bound on f , and the existence of G
with g(G) = 5 and g0(G) ≤ 4 implies that f(k) ≥ 5k/4 [13, Corollary 11].

As the next step towards a good understanding of the relation between the (Euler) genus
and the (Euler) Z2-genus we provide further indication of their similarity. We will build upon
techniques introduced in [30] and [15], and reduce the problem of estimating the (Euler)
Z2-genus to the problem of estimating the minimum rank of partial symmetric matrices
over Z2.

First, we extend our recent result determining the Z2-genus of K3,n [15, Proposition 18]
in a weaker form to all complete bipartite graphs. A classical result by Ringel [5, 26, 27], [22,
Theorem 4.4.7], [16, Theorem 4.5.3] states that form,n ≥ 2, we have g(Km,n) =

⌈
(m−2)(n−2)

4

⌉
and eg(Km,n) =

⌈
(m−2)(n−2)

2

⌉
.

I Theorem 1. If n ≥ m ≥ 3, then

g0(Km,n) ≥ (n− 2)(m− 2)
4 − m− 3

2 and

eg0(Km,n) ≥ (n− 2)(m− 2)
2 − (m− 3).

Our second result is a Z2-variant of the results of Stahl [32], Decker, Glover and Huneke [11,
12], Miller [20] and Richter [25] showing that the genus and Euler genus of graphs are almost
additive over 2-amalgamations, which we now describe in detail.

We say that a graph G is a k-amalgamation of graphs G1 and G2 (with respect to vertices
x1, . . . , xk) if G = (V (G1)∪V (G2), E(G1)∪E(G2)) and V (G1)∩V (G2) = {x1, . . . , xk}, and
we write G = qx1,...,xk

(G1, G2). See Figure 1 for an illustration.

R. Fulek and J. Kynčl 39:3

u

v

u

vv

u

G2G1

G

Figure 1 A 2-amalgamation G = Πu,v(G1, G2).

An old result of Battle, Harary, Kodama and Youngs [4], [22, Theorem 4.4.2], [16, Theorem
3.5.3] states that the genus of a graph is additive over its 2-connected blocks. In other words,
if G is a 1-amalgamation of G1 and G2 then g(G) = g(G1) + g(G2). Stahl and Beinecke [33,
Corollary 2], [22, Theorem 4.4.3] and Miller [20, Theorem 1] proved that the same holds for
the Euler genus, that is, eg(G) = eg(G1) + eg(G2). Neither the genus nor the Euler genus are
additive over 2-amalgamations: for example, the nonplanar graph K5 can be expressed as a
2-amalgamation of two planar graphs in several ways. Nevertheless, the additivity in this case
fails only by at most 1 for the genus and by at most 2 for the Euler genus. Formally, Stahl [32]
and Decker, Glover and Huneke [11, 12] proved that if G is a 2-amalgamation of G1 and G2
then |g(G) − (g(G1) + g(G2))| ≤ 1. For the Euler genus, Miller [20] proved its additivity
over edge-amalgamations, which implies eg(G1) + eg(G2) ≤ eg(G) ≤ eg(G1) + eg(G2) + 2.
Richter [25] later proved a more precise formula for the Euler genus of 2-amalgamations with
respect to a pair of nonadjacent vertices.

Schaefer and Štefankovič [30] showed that the Z2-genus and Euler Z2-genus are additivite
over 2-connected blocks and they asked whether |g0(G) − (g0(G1) + g0(G2))| ≤ 1 if G is
a 2-amalgamation of G1 and G2, as an analogue of the result by Stahl [32] and Decker,
Glover and Huneke [11, 12]. We prove a slightly weaker variant of almost-additivity over
2-amalgamations for both the Z2-genus and the Euler Z2-genus.

I Theorem 2. Let G be a 2-amalgamation qv,u(G1, G2). Let l be the total number of
connected components of G− u− v in G. Let k = l if uv 6∈ E(G) and k = l+ 1 if uv ∈ E(G).
Then

a) g0(G1) + g0(G2)− (k + 1) ≤ g0(G) ≤ g0(G1) + g0(G2) + 1, and
b) eg0(G1) + eg0(G2)− (2k − 1) ≤ eg0(G) ≤ eg0(G1) + eg0(G2) + 2.

Organization

We give basic definitions and tools in Sections 2 and 3. In Section 4, we present linear-
algebraic results lying at the heart of our arguments. In Section 5 and 6, we prove Theorem 1
and Theorem 2, respectively. In Section 6, in order to illustrate our techniques in a simpler
setting, we first reprove the block additivity result for the Euler Z2-genus. We finish with
concluding remarks in Section 7. Omitted proofs are in the full version.

2 Graphs on surfaces

We refer to the monograph by Mohar and Thomassen [22] for a detailed introduction into
surfaces and graph embeddings. By a surface we mean a connected compact 2-dimensional
topological manifold. Every surface is either orientable (has two sides) or nonorientable (has
only one side). Every orientable surface S is obtained from the sphere by attaching g ≥ 0
handles, and this number g is called the genus of S. Similarly, every nonorientable surface S

SoCG 2019

39:4 Z2-Genus of Graphs

D D′

Figure 2 An embedding D of K3,3 in the plane with a single crosscap (left) and its planarization
D′ (right).

is obtained from the sphere by attaching g ≥ 1 crosscaps, and this number g is called the
(nonorientable) genus of S. The simplest orientable surfaces are the sphere (with genus 0)
and the torus (with genus 1). The simplest nonorientable surfaces are the projective plane
(with genus 1) and the Klein bottle (with genus 2). We denote the orientable surface of genus
g by Mg, and the nonorientable surface of genus g by Ng. The Euler genus of Mg is 2g and
the Euler genus of Ng is g.

Let G = (V,E) be a graph or a multigraph with no loops, and let S be a surface. A
drawing of G on S is a representation of G where every vertex is represented by a unique
point in S and every edge e joining vertices u and v is represented by a simple curve in
S joining the two points that represent u and v. If it leads to no confusion, we do not
distinguish between a vertex or an edge and its representation in the drawing and we use
the words “vertex” and “edge” in both contexts. We assume that in a drawing no edge
passes through a vertex, no two edges touch, every edge has only finitely many intersection
points with other edges and no three edges cross at the same inner point. In particular,
every common point of two edges is either their common endpoint or a crossing. Let D be a
drawing of a graph G. We denote by crD(e, f) the number of crossings between the edges e
and f in D. A drawing of G on S is an embedding if no two edges cross.

A drawing of a graph is independently even if every pair of independent edges in the
drawing crosses an even number of times. In the literature, the notion of Z2-embedding is
used to denote an independently even drawing [30], but also an even drawing [6] in which all
pairs of edges cross evenly.

3 Topological and algebraic tools

3.1 Combinatorial representation of drawings

Schaefer and Štefankovič [30] used the following combinatorial representation of drawings
of graphs on Mg and Ng. First, every drawing of a graph on Mg can be considered as a
drawing on the nonorientable surface N2g+1, since Mg minus a point is homeomorphic to
an open subset of N2g+1. The surface Nh minus a point can be represented combinatorially
as the plane with h crosscaps. A crosscap at a point x is a combinatorial representation
of a Möbius strip whose boundary is identified with the boundary of a small circular hole
centered in x. Informally, the main “objective” of a crosscap is to allow a set of curves
intersect transversally at x without counting it as a crossing.

Let D be a drawing of a graph G in the plane with h crosscaps. To every edge e ∈ E(G)
we assign a vector yDe (or simply ye) from Zh2 such that (yDe)i = 1 if and only if e passes an
odd number of times through the ith crosscap.

Given a drawing D of a graph G in the plane with h crosscaps, the planarization of D is
a drawing D′ of G in the plane, obtained from D as follows; see Figure 2 for an illustration.
We turn the crosscaps into holes, fill the holes with discs, reconnect the severed edges of

R. Fulek and J. Kynčl 39:5

Figure 3 Removing a self-crossing of an edge.

G by simple curves drawn across the filling discs while avoiding creating common crossing
points of three and more edges, and finally we eliminate self-crossings of edges by cutting
and rerouting the edges at such crossings; see Figure 3. Since D represents a drawing Dh on
Nh, we denote by cr∗D(e, f) the number of crossings between the edges e and f that occur
outside crosscaps in D, which is equal to crDh

(e, f). Writing y>e yf for the scalar product of
ye and yf , we have

cr∗D(e, f) ≡ crD′(e, f) + y>e yf (mod 2), (1)

since y>e yf has the same parity as the number of new crossings between e and f introduced
during the construction of the planarization. If D represents a drawing on Mg (in the plane
with h = 2g + 1 crosscaps), we say that D is orientable. This is equivalent with every cycle
passing through the crosscaps an even number of times.

We will use the first two of the following three lemmata by Schaefer and Štefankovič [30].

I Lemma 3 ([30, Lemma 5]). Let G be a graph that has an independently even drawing D
on a surface S and let F be a forest in G. Let h = 2g + 1 if S = Mg and h = g if S = Ng.
Then G has a drawing E in the plane with h crosscaps, such that
1) for every pair of independent edges e, f the number cr∗E(e, f) is even, and
2) every edge f of F passes through each crosscap an even number of times; that is, yEf = 0.

We will be using Lemma 3 when G is connected and F is a spanning tree of G.

I Lemma 4 ([30, Lemma 3]). Let G be a graph that has an orientable drawing D in the
plane with finitely many crosscaps such that for every pair of independent edges e, f the
number cr∗D(e, f) is even. Let d be the dimension of the vector space generated by the set
{yDe ; e ∈ E(G)}. Then G has an independently even drawing on Mbd/2c.

I Lemma 5 ([30, Lemma 4]). Let G be a graph that has a drawing in the plane with finitely
many crosscaps such that for every pair of independent edges e, f the number cr∗D(e, f) is
even. Let d be the dimension of the vector space generated by the set {yDe ; e ∈ E(G)}. Then
G has an independently even drawing on a surface of Euler genus d.

3.2 Bounding Z2-genus by matrix rank
In Proposition 10 we will strengthen Lemma 4 and Lemma 5. An immediate corollary of
Proposition 10 (Corollary 11 below) can be thought of as a Z2-variant of a result of Mohar [21,
Theorem 3.1]. Roughly speaking, Proposition 10 says that we can upper bound the Z2-genus
and Euler Z2-genus of a graph G in terms of the rank of a symmetric matrix A encoding
the parity of crossings between independent edges. The entries in A representing the parity
of crossings between adjacent edges, and in the case of the Euler Z2-genus also diagonal
elements, can be chosen arbitrarily. The choice of such undetermined entries minimizing the
rank of A will play a crucial role in the proof of Theorem 2.

SoCG 2019

39:6 Z2-Genus of Graphs

We use the theory of symmetric matrices over the two-element field F2, developed by
Albert [1]. Our goal will be to express a symmetric n×n matrix A over F2 as a Gram matrix
of n vectors spanning a vector space of minimum possible dimension. This is equivalent to
finding an m× n matrix B of minimum rank such that A = B>B.

A symmetric matrix over F2 is alternate if its diagonal contains only 0-entries1. Two
square matrices A and B are congruent if there exists an invertible matrix C such that
B = C>AC. We use the following two results by Albert [1], which hold over an arbitrary field.

I Lemma 6 ([1, Theorem 3]). The rank of an alternate matrix is even.

I Lemma 7 ([1, Theorem 6]). Every non-alternate symmetric matrix is congruent to a
diagonal matrix.

MacWilliams [19] gave a concise exposition of the following result of Albert [1].

I Lemma 8 ([19, Theorem 1]). An invertible symmetric matrix A over F2 can be factored as
B>B for some square matrix B if and only if A is not alternate.

We need to extend the factorization from Lemma 8 to alternate and to non-invertible
matrices. In the case of non-alternate matrices we again obtain their rank factorization. We
use Lemma 7 to achieve this.

I Lemma 9. Let A be a symmetric n× n matrix over F2 and let r be the rank of A. If A
is non-alternate, then there is an r × n matrix B of rank r such that A = B>B. If A is
alternate, then there is an (r + 1)× n matrix B of rank r or r + 1 such that A = B>B.

Proof. If A is not alternate, let A′ = A; otherwise let A′ = (a′ij) be a symmetric matrix
obtained from A by adding a single row and single column, as the first row and the first
column of A′, with a′11 = 1 and a′1i = a′i1 = 0 for i > 1. Let r′ be the rank of A′. Clearly, if
A is alternate then r′ = r + 1.

By Lemma 7, there are an invertible matrix C and a diagonal matrix D of rank r′ such
that A′ = C>DC. Since every element of F2 is a square of itself, we have D = D>D. Let E
be the r′×n matrix obtained from D by removing all the zero rows from D. Then D = E>E

is a rank factorization of D, and hence A′ = C>E>EC = (EC)>EC is a rank factorization
of A′. If A is not alternate, we choose B as EC.

If A is alternate, we obtain B from EC by deleting the first column. By the definition of
A′, we have B>B = A. Clearly, we have r ≤ rank(B) ≤ rank(EC) = r′ = r + 1. J

Let D be a drawing of a graph G in the plane and let E(G) = {e1, . . . , em}. We say that
a symmetric m×m matrix A = (aij) over F2 represents D if for every independent pair of
edges ei, ej we have aij = crD(ei, ej) mod 2. In particular, if G has a vertex of degree at
least 2 then a matrix representing D is not unique.

I Proposition 10. Let D be a drawing of a graph G in the plane. If a matrix A represents
D then eg0(G) ≤ rank(A). If additionally A has only zeros on the diagonal then g0(G) ≤
rank(A)/2.

1 Over an arbitrary field, A is an alternate matrix if A> = −A and all the diagonal entries of A are 0.
The diagonal condition is redundant for the fields of characteristic other than 2. Alternate matrices are
precisely coordinate matrices of alternating bilinear forms.

R. Fulek and J. Kynčl 39:7

ei

ej
ej

ei

Figure 4 Pulling the edges ei and ej with the crosscap vectors y>
ei

= (1, 0, 1) and y>
ej

= (1, 1, 0),
respectively, over crosscaps.

Proof. Let r be the rank of A. If r = 0, then D is independently even, and hence eg0(G) =
g0(G) = 0. Now assume that r > 0. Let A = B>B be the factorization from Lemma 9. The
matrix B is an h×m matrix of rank r or r + 1, and r ≤ h ≤ r + 1. Moreover, if h = r + 1,
A is an alternate matrix. Write B as

(
ye1 . . . yem

)
. We will do the following. For every

i ∈ [m], we interpret yei
∈ Zh2 as a crosscap vector of the edge ei of G. Then we construct a

drawing D0 of G in the plane with h crosscaps in which cr∗D0
(e, f) is even for every pair of

independent edges e, f , and such that yD0
ei

= yei
for every i ∈ [m].

Now we describe the construction of D0 in more detail. In the complement of D in the
plane we introduce h crosscaps. For every i ∈ [m] and j ∈ [h], if (yei

)j = 1, we pull ei over
the jth crosscap (in an arbitrary order). Since every edge is pulled over each crosscap at most
once, we can easily avoid creating self-crossings of the edges. See [30, Fig. 1] or Figure 4 for
an illustration. Let D0 be the resulting drawing in the plane with h crosscaps. For every
ej ∈ E(G), the parity of cr∗D0

(ei, ej) differs from the parity of crD(ei, ej) if and only if y>ej
yei

is odd. By the definition of A, if ei and ej are independent, the parity of crD(ei, ej) is the
same as the parity of y>ej

yei
, and so cr∗D0

(ei, ej) is even as required.
The drawing D0 represents an independently even drawing on Nh. If h = r, the first

part of the proposition follows. If h = r + 1 then A is alternate, and Lemma 6 implies
that r is even. The decomposition A = B>B now also implies that y>ei

yei
mod 2 = 0 for

every i ∈ [m], and hence the drawing D0 is orientable. Therefore, by Lemma 4 we have
g0(G) ≤ b(r + 1)/2c = r/2. Since eg0(G) ≤ 2g0(G), we also get eg0(G) ≤ r. J

An almost immediate corollary of Proposition 10 is the following.

I Corollary 11. We have eg0(G) = minA,D rank(A), where we minimize over symmetric
matrices A representing a drawing D of G in the plane, and g0(G) = minA,D rank(A)/2,
where we minimize over alternate matrices A representing a drawing D of G in the plane.

4 Minimum rank of partial symmetric matrices

In this section we prove linear-algebraic results that we use to establish Theorem 1 and
Theorem 2. We write In and Jn for the n×n identity matrix and all-one matrix, respectively.

It is a basic fact that the matrix rank is subadditive over an arbitrary field, that is, for
any two matrices A1 and A2 of the same dimensions we have

rank(A1 +A2) ≤ rank(A1) + rank(A2). (2)

SoCG 2019

39:8 Z2-Genus of Graphs

4.1 Tournament matrices
All matrices in this subsection are {0, 1}-matrices and all matrix computations are performed
over F2. An n× n matrix A = (aij) is a tournament matrix if aij = aji + 1 whenever i 6= j.

The aim of this subsection is to extend de Caen’s [10] lower bound on the rank of
tournament matrices to certain block matrices. This extension lies at the heart of the proof
of Theorem 1.

De Caen [10] proved that every n× n tournament matrix A satisfies

rank(A) ≥
⌈
n− 1

2

⌉
, (3)

which can be seen as follows. We have A+A> = Jn+In, and (2) implies that rank(In+Jn) ≥
n− 1. Using (2) again, we get n− 1 ≤ rank(A) + rank(A>) = 2 · rank(A).

I Lemma 12. Let m,n ≥ 2. Let A = (Aij) be an m×m block matrix, where each block Aij
is an n× n matrix. Let B be an n× n tournament matrix. Assume that A is symmetric and
that for each off-diagonal block Aij , i 6= j, one of the matrices Aij +B or Aij +B + Jn is a
diagonal n× n matrix. Then rank(A) ≥

⌈
(m−1)(n−1)

2

⌉
− (m− 2).

4.2 Block symmetric matrices
In this section, we prove minimum rank formulas for certain partial block symmetric matrices
that play an important role in the proof of Theorem 2. The study of the rank of partial
block matrices was initiated by Cohen et al. [7], Davis [9], and Woerdeman [36]. We adapt
previous results to the setting of symmetric matrices.

Let A(X) =
(
A11 A12
A21 X

)
be a block matrix over an arbitrary field in which the block X

is treated as a variable. Woerdeman [36] and Davis [9] proved that

min
X

rank(A(X)) = rank
(
A11 A12

)
+ rank

(
A11
A12

)
− rank(A11). (4)

The following lemma shows that for symmetric A(X), the minimum in (4) is achieved for
a symmetric matrix X.

I Lemma 13. Let A21 = A>12 and let A11 be symmetric. Then

min
X

rank(A(X)) = 2 · rank
(
A11 A12

)
− rank(A11),

where we minimize over symmetric X.

Let A(X2, X3) =

A11 A12 A13
A21 X2 A23
A31 A32 X3

 be a block matrix over an arbitrary field in which

the blocks X2 and X3 are treated as variables. For matrices over fields of characteristic
different from 2, Cohen et al. [7], see also [34], proved that

min
X2,X3

rank(A(X2, X3)) = rank
(
A11 A12 A13

)
+ rank

A11
A21
A31

 (5)

+ min
{

rank
(
A11 A12
A31 A32

)
−
(

rank
(
A11 A12

)
+ rank

(
A11
A31

))
,

rank
(
A11 A13
A21 A23

)
−
(

rank
(
A11 A13

)
+ rank

(
A11
A21

))}
,

R. Fulek and J. Kynčl 39:9

a 0

1

2 b

c

Figure 5 An embedding of K3,3 in the plane with a single crosscap. The edges of the spanning
tree T are thickened.

In the following lemma, we prove an upper bound on minX2,X3 rank(A(X2, X3)), which is
equal to the right-hand side of (5), if we restrict ourselves to symmetric matrices A(X2, X3).
The lemma is valid for the symmetric matrices over an arbitrary field.

I Lemma 14. Let A21 = A>21, A31 = A>13, A32 = A>23, and let A11 be symmetric. Then

min
X2,X3

rank(A(X2, X3)) ≤ 2 · rank
(
A11 A12 A13

)
+ rank

(
A11 A12
A31 A32

)
−
(
rank

(
A11 A12

)
+ rank

(
A11 A13

))
where we minimize over symmetric matrices X2 and X3.

5 Estimating the Z2-genus and the Euler Z2-genus of Km,n

We prove Theorem 1, whose proof is based on our previous result [15, Lemma 17], which we
present next. All matrices and vectors in this subsection are {0, 1}-matrices and all matrix
and vector computations are performed over F2.

In 1976, Kleitman [18] proved that every drawing of K3,3 in the plane contains an odd
number of unordered pairs of independent edges crossings an odd number of times. Let
{a, b, c} and {0, 1, 2} be the two maximal independent sets in K3,3 and let T be the spanning
tree of K3,3 containing all the edges incident to a and 0. Let D be a drawing of K3,3 in the
plane with finitely many crosscaps in which cr∗D(e, f) is even for every pair of independent
edges e, f , and ye = 0 for every e ∈ E(T); see Figure 5 for an illustration. The result of
Kleitman implies the following lemma, restating [15, Lemma 17].

I Lemma 15. In the drawing D, y>b1yc2 + y>c1yb2 = 1.

Proof. Let D′ be the planarization of D. By (1), crD′(e, f) = y>e yf for every pair of
independent edges e and f in K3,3, since D is independently even. Using Kleitman’s result,
1 =

∑
e,f crD′(e, f) =

∑
e,f y

>
e yf , where we sum over unordered independent pairs. Hence,∑

e,f y
>
e yf = y>b1yc2 + y>c1yb2 concludes the proof. J

Proof of Theorem 1. We denote the vertices of Km,n in one part by u0, . . . , um−1 and in
the other part by v0, . . . , vn−1.

Let D be the combinatorial representation of an independently even drawing of Km,n on
a surface S in the plane with finitely many crosscaps (see Section 3.1). Let ye = yDe be the
crosscap vector of e ∈ E(Km,n) associated with D. For i1, i2 ∈ {1, . . . ,m− 1} = [m− 1], let
Ai1i2 = (aj1j2) be the (n− 1)× (n− 1) matrix with entries aj1j2 = y>i1j1

yi2j2 . Let A = (Ai1i2)
be the (m−1)×(m−1) block matrix composed of the previously defined Ai1i2 ’s. By Lemma 3,

SoCG 2019

39:10 Z2-Genus of Graphs

we assume that ye = 0 for e ∈ E′ = {u0v0, . . . , u0vn−1, v0u1, . . . , v0um−1}. Hence, we can let

A′ =
(
A 0
0 0

)
be a matrix representing D, where the rows and columns of the three all-zero

blocks correspond to the edges in E′. For every i1, i2, j1 and j2, where i1 6= i2 and j1 6= j2 we
then apply Lemma 15 to the drawing of K3,3 induced by the vertices u0, v0, ui1 , ui2 , vj1 , vj1 in
D and obtain that aj1j2 + aj2j1 = 1. In other words, Ai1i2 is a tournament matrix. We show
that either Ai1i2 = B +Di1i2 or Ai1i2 = B + Jn−1 +Di1i2 , where B is a fixed tournament
matrix and Di1i2 is a diagonal matrix.

If the previous claim holds then Lemma 12 applies to A. Thus, rank(A′) = rank(A) ≥⌈
(m−2)(n−2)

2

⌉
− (m − 3). By Corollary 11 or just by observing that rank(A′) is upper

bounded by the dimension of the space generated by the crosscap vectors associated with D,
eg0(Km,n) ≥

⌈
(m−2)(n−2)

2

⌉
− (m− 3) as desired. Similarly, 2 · g0(Km,n) ≥

⌈
(m−2)(n−2)

2

⌉
−

(m− 3) and the claimed lower bound for g0(Km,n) follows as well.
It remains to prove the claim. To this end we apply the argument that was used to

prove [15, Lemma 17]. In the drawing of K3,3 induced by the vertices u0, v0, ui1 , ui2 , vj1 , vj1 in
D we locally deform D in a close neighborhood of u0, so that the edges u0v0, u0vj1 and u0vj2

cross one another an even number of times, while keeping D independently even. It is easy
to see that this is indeed possible. Similarly, we adjust the drawing in a close neighborhood
of v0, so that the edges v0u0, v0ui1 and v0ui2 cross one another an even number of times.
Let D′ be the resulting modification of D.

We will prove below that

(*) In the block Ai1,i2 , for j1 6= j2, the value aj1,j2 = 1 if and only if up to the choice of
orientation the edges u0v0, u0vj1 , u0vj2 and v0u0, v0ui1 , v0ui2 appear in the rotation at
u0 and v0, respectively, in this order clockwise.

Hence, suppose that (*) holds and that v0u0, v0ui1 , v0ui2 appear in the rotation at v0
in D′ in this order clockwise. For i′1, i′2 ∈ [m − 1], i′1 6= i′2, we adjust the drawing in a
close neighborhood of v0, so that the edges v0u0, v0ui′1 and v0ui′2 cross one another an even
number of times. Let D′′ be the resulting drawing. By (*), Ai′1i′2 = Ai1i2 + Di′1i

′
2
, where

Di1i2 is a diagonal matrix, if v0u0, v0ui′1 , v0ui′2 in D′′ appear in the rotation at v0 in this
order clockwise; and Ai′1i′2 = Ai1i2 +Di′1i

′
2

+ Jn−1, if v0u0, v0ui′1 , v0ui′2 appear in the rotation
at v0 in D′′ in this order counterclockwise. It remains to prove (*).

Let γi,j be the closed curve representing the cycle traversing vertices u0, v0, ui and vj in
D. The condition that characterizes when aj1j2 = 1, for j1 6= j2, follows by considering a
slightly perturbed drawing of γi1,j1 and γi2,j2 , in which all their intersections become proper
edge crossings. Note that aj1j2 = 1 if and only if ui1vji

and ui2vj2 have an odd number
of intersections at crosscaps. Furthermore, γi1,j1 and γi2,j2 must have an even number of
intersections in total. Therefore as D is an independently even drawing, aj1j2 = 1 if and only
if in D′ the edge u0v0 is a transversal intersection of γi1,j1 and γi2,j2 ; in other words, up to
the choice of orientation u0v0, u0vj1 , u0vj2 and v0u0, v0ui1 , v0ui2 appear in the rotation at
u0 in this order clockwise. J

6 Amalgamations

All matrices and vectors in this subsection are {0, 1}-matrices and all matrix and vector
computations are performed over F2.

R. Fulek and J. Kynčl 39:11

6.1 1-amalgamations
In order to ease up the readability, as a warm-up we first reprove the result of Schaefer and
Štefankovič for the Euler genus. The proof of our result for 2-amalgamations follows the
same blueprint, but the argument gets slightly more technical.

I Theorem 16 ([30]). Let G1 and G2 be graphs. Let G = qv(G1, G2). Then eg0(G1) +
eg0(G2) = eg0(G).

Proof. The Euler Z2-genus of a graph is the sum of the Euler Z2-genera of its connected
components [30, Lemma 7]. Thus, we assume that both G1 and G2 are connected.

We start the argument similarly as in [30] by choosing an appropriate spanning tree T in
G and fixing an independently even drawing of G on Ng, in which each edge in E(T) passes
an even number of times through each crosscap. Nevertheless, the rest of the proof differs
considerably, one of the key differences being the use of Proposition 10 rather than Lemma 5
to bound the Euler Z2-genus of involved graphs.

The following claim is rather easy to prove.

B Claim 17. We have

eg0(G) ≤ eg0(G1) + eg0(G2). (6)

It remains to prove the opposite inequality. We first choose a spanning tree T of G with
the following property. Recall that v is a fixed cut vertex. For every e ∈ E(G)\E(T) it holds
that if v 6∈ e then the unique cycle in T ∪ e does not pass through v. The desired spanning
tree T is obtained as the exploration tree of a Depth-First-Search in G starting at v. We
consider an independently even drawing of G on a surface S witnessing its Euler genus. By
Lemma 3, we obtain a drawing D of G in the plane with finitely many crosscaps in which
cr∗D(e, f) is even for every pair of independent edges e, f , and every edge of T passes through
each crosscap an even number of times. In the following we will write ye for yDe .

First, a few words on the strategy of the rest of the proof. Let B′ =
(
B 0
0 0

)
be a matrix

representing the planarization of D, where the rows and columns of the three all-zero blocks
correspond to the edges in T . For a pair of edges e and f in G this parity is given by y>e yf .
By introducing an appropriate block structure on B, and using Lemma 13 we show that the
rank of B can be lower bounded by eg0(G1) + eg0(G2). This will conclude the proof since
the rank of B is easily upper bounded by eg0(G).

Let E1 and E2 be the set of edges in E(G1) \E(T) and E(G2) \E(T), respectively, that
are not incident to v. Let F1 and F2 be the set of edges in E(G1) \E(T) and E(G2) \E(T),
respectively, that are incident to v.

Let α, β ∈ {E1, E2, F1, F2}. Let α = {e1, . . . , e|α|}. Let β = {e′1, . . . , e′|β|}. Let Aα,β =
(aij) be the |α| × |β| matrix over Z2 such that aij = y>ei

ye′
j
. Let B = (Bij) be a 4× 4 block

matrix such that Bij = Aαi,αj
, where α1 = E1, α2 = F1, α3 = F2 and α4 = E2. Clearly, B′

represents the planarization of D.
In what follows we collect some properties of B and its submatrices, whose combination

establishes the result. The rank of B′, and therefore also B, is at most the dimension of the
space generated by the crosscap vectors of D. The latter is at most eg0(G) since crosscap
vectors have eg0(G) or eg0(G) + 1 coordinates depending on whether the original drawing of
G is on Ng or Mg, but in the latter we loose one dimension since every crosscap vector has
an even number of ones. Hence, we have

eg0(G) ≥ rank(B). (7)

SoCG 2019

39:12 Z2-Genus of Graphs

If we arbitrarily change blocks AF1,F1 and AF2,F2 of B, B′ will still represent the planariz-

ation of D. Let B1(X) =
(
AE1,E1 AE1,F1

AF1,E1 X

)
and B2(X) =

(
X AF2,E2

AE2,F2 AE2,E2

)
. Then by

Proposition 10,

eg0(Gi) ≤ min
X

(
rank(Bi(X)) 0

0 0

)
= min

X
rank(Bi(X)), (8)

where we minimize over symmetric matrices X. By Lemma 13,

min
X

rank(Bi(X)) = 2 · rank
(
AEi,Ei AEi,Fi

)
− rank(AEi,Ei

). (9)

The last ingredient in the proof is the following claim which holds due to the careful choice
of the spanning tree T .

B Claim 18. We have

2 ·
(
rank

(
AE1,E1 AE1,F1

)
+ rank

(
AE2,E2 AE2,F2

))
− (rank(AE1,E1) + rank(AE2,E2))

≤ rank(B).

We are done by the following chain of inequalities.

eg0(G)
(6)
≤ eg0(G1) + eg0(G2)

(8)
≤ min

X
rank(B1(X)) + min

X
rank(B2(X))

(9)= 2 ·
(
rank

(
AE1,E1 AE1,F1

)
+ rank

(
AE2,E2 AE2,F2

))
− (rank(AE1,E1) + rank(AE2,E2))

≤ rank(B)
(7)
≤ eg0(G) J

6.2 2-amalgamations
Proof of Theorem 2. We will prove the parts a) and b) in parallel. We assume that G−u−v
has precisely 2 connected components and that uv 6∈ E(G) (the general case is treated in
the full version). By the block additivity result [30], we assume that none of u and v is a
cut vertex of G, and by the additivity over connected components [30, Lemma 7] that G is
connected. We follow the line of thought analogous to the proof of Theorem 16.

It is easy to prove the following claim.

B Claim 19.

g0(G) ≤ g0(G1) + g0(G2) + 1 and eg0(G) ≤ eg0(G1) + eg0(G2) + 2 (10)

It remains to prove the opposite inequalities of a) and b). We choose an appropriate spanning
tree T of G and fix an independently even drawing of G on Ng, in which each edge of T
passes an even number of times through each crosscap. To this end we first choose a spanning
tree T ′ of G− v with the following property. For every e ∈ E(G− v) \ E(T ′), if u 6∈ e then
the unique cycle in T ′ ∪ e does not pass through u. The desired spanning T ′ is obtained as
the exploration tree of a Depth-First-Search in G− v starting at u. Let ui be an arbitrary
vertex such that vui ∈ E(Gi), for i = 1, 2. We obtain T as T ′ ∪ vu1.

We consider an independently even drawing of G on a surface S witnessing its genus
(respectively, Euler genus). By Lemma 3, we obtain a drawing D in the plane with finitely
many crosscaps in which cr∗D(e, f) is even for every pair of independent edges e, f , and every
edge of T passes through each crosscap an even number of times. In the following we will
write ye for yDe .

R. Fulek and J. Kynčl 39:13

First, a few words on the strategy of the rest of the proof. Let B′ =
(
B 0
0 0

)
be a

matrix representing the planarization of D, where the rows and columns of the three all-zero
blocks correspond to the edges in T . For a pair of edges e and f in G this parity is given
by y>e yf . By introducing an appropriate block structure on B, and using Lemma 14 we
show that the rank of B can be lower bounded by g0(G1) + g0(G2) − 7/2 (respectively,
eg0(G1) + eg0(G2) − 3). This will conclude the proof in this case, since the rank of B is
easily upper bounded by 2 · g0(G) (respectively, eg0(G)).

Let E1 and E2 be the set of edges in E(G1) \E(T) and E(G2) \E(T), respectively, that
are incident neither to v nor to u. Let F1 and F2 be the set of edges in E(G1) \E(T) and
E(G2) \ E(T), respectively, that are incident to u. Let H1 and H2 be the set of edges in
E(G1) \ E(T) and E(G2) \ E(T), respectively, that are incident to v. Thus, we have that
E(T), E1, E2, F1, F2, H1 and H2 form a partition of E(G).

Let α, β ∈ {E1, E2, F1, F2, H1, H2}. Let α = {e1, . . . , e|α|}. Let β = {e′1, . . . , e′|β|}. Let
Aα,β = (aij) be the |α| × |β| matrix over Z2 such that aij = y>ei

ye′
j
. Let B = (Bij) be a 6 by

6 block matrix such that Bij = Aαi,αj
, where α1 = E1, α2 = F1, α3 = H1, α4 = H2, α5 = F2

and α6 = E2. Clearly, B′ represents the planarization of D.
In what follows we collect some properties of B and its submatrices, whose combination

establishes the result. Since the rank of B′, and therefore also B, is at most the dimension
of the space generated by the crosscap vectors of D, we have the following

2 · g0(G) ≥ rank(B) (respectively, eg0(G) ≥ rank(B)). (11)

Let B1(X2, X3) =

AE1,E1 AE1,F1 AE1,H1

AF1,E1 X2 AF1,H1

AH1,E1 AH1,F1 X3

, and

let B2(X1, X2) =

 X1 AH2,F2 AH2,E2

AF2,H2 X2 AF2,E2

AE2,H2 AE2,F2 AE2,E2

.

Since changing blocks AFi,Fi
and AHi,Hi

in B, for i = 1, 2, except for the diagonal, does
not affect the property that B′ represents the planarization of D, by Proposition 10,

2 ·g0(Gi) ≤ min
X2,X3

rank(Bi(X2, X3))+2 (respectively, eg0(Gi) ≤ min
X2,X3

rank(Bi(X2, X3))),

(12)

where we minimize over symmetric matrices. We add 2 on the right hand side in the first
inequality due to the orientability. In particular, it can happen that X2 or X3 minimizing
the rank has a 1-entry on the diagonal. If this is the case, in the corresponding independently
even drawing, as constructed in the proof of Proposition 10, there exists an edge e incident
to u or v such that y>e ye = 1. In order to make y>e ye = 0, we introduce a crosscap, and pull
the edge e over it. The introduced crosscap can be shared by the edges incident to v and by
the edges incident to u. Therefore adding 2 crosscaps is sufficient. By Lemma 14,

min
X2,X3

rank(Bi(X2, X3)) ≤ 2 · rank
(
AEi,Ei

AEi,Fi
AEi,Hi

)
+ rank

(
AEi,Ei AEi,Fi

AHi,Ei
AHi,Fi

)
−
(
rank

(
AEi,Ei

AEi,Fi

)
+ rank

(
AEi,Ei

AEi,Hi

))
(13)

The inequality (13) implies the last ingredient in the proof which is stated next. The
claim holds due to the careful choice of the spanning tree T .

SoCG 2019

39:14 Z2-Genus of Graphs

B Claim 20. minX2,X3 rank(B1(X2, X3))+minX1,X2 rank(B2(X1, X2)) ≤ rank(B)+3, where
we minimize over symmetric matrices.

We are done by the following two chains of (in)equalities.

−2 + 2 · g0(G)
(10)
≤ 2 · g0(G1) + 2 · g0(G2)
(12)
≤ min

X2,X3
rank(B1(X2, X3)) + min

X1,X2
rank(B2(X1, X2)) + 4

≤ rank(B) + 7
(11)
≤ 2 · g0(G) + 7,

−2 + eg0(G)
(10)
≤ eg0(G1) + eg0(G2)
(12)
≤ min

X2,X3
rank(B1(X2, X3)) + min

X1,X2
rank(B2(X1, X2))

≤ rank(B) + 3
(11)
≤ eg0(G) + 3. J

7 Conclusion

Theorem 1 does not determine the (Euler) Z2-genus of Km,n precisely for m ≥ 4, and we find
the problem of computing the precise values interesting already for m = 4. We also leave as
an open problem whether in Theorem 2, the dependence of the upper bounds on k can be
removed. Let G be a k-amalgamation of G1 and G2 for some k ≥ 3. On the one hand, the
result of Miller [20] and Richter [25] was extended by Archdeacon [2] to k-amalgamations,
for k ≥ 3, with the error term eg(G1) + eg(G2)− eg(G) being at most quadratic in k. On
the other hand, in a follow-up paper [3] Archdeacon showed that for k ≥ 3, the genus of a
graph is not additive over k-amalgamations, in a very strong sense. In particular, the value
of g(G1) + g(G2)− g(G) can be arbitrarily large even for k = 3. We wonder if the Z2-genus
and the Euler Z2-genus behave in a similar way.

References
1 A. Adrian Albert. Symmetric and alternate matrices in an arbitrary field, I. Trans. Amer.

Math. Soc., 43(3):386–436, 1938. doi:10.2307/1990068.
2 Dan Archdeacon. The nonorientable genus is additive. J. Graph Theory, 10(3):363–383, 1986.

doi:10.1002/jgt.3190100313.
3 Dan Archdeacon. The orientable genus is nonadditive. J. Graph Theory, 10(3):385–401, 1986.

doi:10.1002/jgt.3190100314.
4 Joseph Battle, Frank Harary, Yukihiro Kodama, and J. W. T. Youngs. Additivity of the genus of

a graph. Bull. Amer. Math. Soc., 68:565–568, 1962. doi:10.1090/S0002-9904-1962-10847-7.
5 André Bouchet. Orientable and nonorientable genus of the complete bipartite graph. J.

Combin. Theory Ser. B, 24(1):24–33, 1978. doi:10.1016/0095-8956(78)90073-4.
6 G. Cairns and Y. Nikolayevsky. Bounds for generalized thrackles. Discrete Comput. Geom.,

23(2):191–206, 2000. doi:10.1007/PL00009495.
7 Nir Cohen, Charles R. Johnson, Leiba Rodman, and Hugo J. Woerdeman. Ranks of completions

of partial matrices. In The Gohberg anniversary collection, Vol. I (Calgary, AB, 1988),
volume 40 of Oper. Theory Adv. Appl., pages 165–185. Birkhäuser, Basel, 1989.

http://dx.doi.org/10.2307/1990068
http://dx.doi.org/10.1002/jgt.3190100313
http://dx.doi.org/10.1002/jgt.3190100314
http://dx.doi.org/10.1090/S0002-9904-1962-10847-7
http://dx.doi.org/10.1016/0095-8956(78)90073-4
http://dx.doi.org/10.1007/PL00009495

R. Fulek and J. Kynčl 39:15

8 Éric Colin de Verdière, Vojtěch Kaluža, Pavel Paták, Zuzana Patáková, and Martin Tancer. A
direct proof of the strong Hanani–Tutte theorem on the projective plane. J. Graph Algorithms
Appl., 21(5):939–981, 2017. doi:10.7155/jgaa.00445.

9 Chandler Davis. Completing a matrix so as to minimize the rank. In Topics in operator theory
and interpolation, volume 29 of Oper. Theory Adv. Appl., pages 87–95. Birkhäuser, Basel, 1988.

10 D. de Caen. The ranks of tournament matrices. Amer. Math. Monthly, 98(9):829–831, 1991.
doi:10.2307/2324270.

11 R. W. Decker, H. H. Glover, and J. P. Huneke. The genus of the 2-amalgamations of graphs.
J. Graph Theory, 5(1):95–102, 1981. doi:10.1002/jgt.3190050107.

12 R. W. Decker, H. H. Glover, and J. P. Huneke. Computing the genus of the 2-amalgamations
of graphs. Combinatorica, 5(4):271–282, 1985. doi:10.1007/BF02579241.

13 R. Fulek and J. Kynčl. Counterexample to an extension of the Hanani–Tutte theorem on the
surface of genus 4. Accepted to Combinatorica, 2017. arXiv:1709.00508.

14 Radoslav Fulek and Jan Kynčl. Hanani–Tutte for approximating maps of graphs. In 34th
International Symposium on Computational Geometry, volume 99 of LIPIcs. Leibniz Int.
Proc. Inform., pages 39:1–39:15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018.
doi:10.4230/LIPIcs.SoCG.2018.39.

15 Radoslav Fulek and Jan Kynčl. The Z2-genus of Kuratowski minors. In 34th International
Symposium on Computational Geometry, volume 99 of LIPIcs. Leibniz Int. Proc. Inform., pages
40:1–40:14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018. doi:10.4230/LIPIcs.
SoCG.2018.40.

16 Jonathan L. Gross and Thomas W. Tucker. Topological graph theory. Dover Publications, Inc.,
Mineola, NY, 2001. Reprint of the 1987 original [Wiley, New York; MR0898434 (88h:05034)]
with a new preface and supplementary bibliography.

17 Haim Hanani. Über wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundamenta
Mathematicae, 23:135–142, 1934.

18 D. J. Kleitman. A note on the parity of the number of crossings of a graph. J. Combinatorial
Theory Ser. B, 21(1):88–89, 1976. doi:10.1016/0095-8956(76)90032-0.

19 Jessie MacWilliams. Orthogonal matrices over finite fields. Amer. Math. Monthly, 76:152–164,
1969. doi:10.2307/2317262.

20 Gary L. Miller. An additivity theorem for the genus of a graph. J. Combin. Theory Ser. B,
43(1):25–47, 1987. doi:10.1016/0095-8956(87)90028-1.

21 Bojan Mohar. An obstruction to embedding graphs in surfaces. Discrete Math., 78(1-2):135–142,
1989. doi:10.1016/0012-365X(89)90170-2.

22 Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2001.

23 János Pach and Géza Tóth. Which crossing number is it anyway? J. Combin. Theory Ser. B,
80(2):225–246, 2000. doi:10.1006/jctb.2000.1978.

24 Michael J. Pelsmajer, Marcus Schaefer, and Despina Stasi. Strong Hanani-Tutte on the
projective plane. SIAM J. Discrete Math., 23(3):1317–1323, 2009. doi:10.1137/08072485X.

25 R. Bruce Richter. On the Euler genus of a 2-connected graph. J. Combin. Theory Ser. B,
43(1):60–69, 1987. doi:10.1016/0095-8956(87)90030-X.

26 Gerhard Ringel. Das Geschlecht des vollständigen paaren Graphen. Abh. Math. Sem. Univ.
Hamburg, 28:139–150, 1965. doi:10.1007/BF02993245.

27 Gerhard Ringel. Der vollständige paare Graph auf nichtorientierbaren Flächen. J. Reine
Angew. Math., 220:88–93, 1965. doi:10.1515/crll.1965.220.88.

28 Marcus Schaefer. Hanani-Tutte and related results. In Geometry—intuitive, discrete, and
convex, volume 24 of Bolyai Soc. Math. Stud., pages 259–299. János Bolyai Math. Soc.,
Budapest, 2013. doi:10.1007/978-3-642-41498-5_10.

29 Marcus Schaefer. Toward a theory of planarity: Hanani-Tutte and planarity variants. J. Graph
Algorithms Appl., 17(4):367–440, 2013. doi:10.7155/jgaa.00298.

SoCG 2019

http://dx.doi.org/10.7155/jgaa.00445
http://dx.doi.org/10.2307/2324270
http://dx.doi.org/10.1002/jgt.3190050107
http://dx.doi.org/10.1007/BF02579241
http://arxiv.org/abs/1709.00508
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.39
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.40
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.40
http://dx.doi.org/10.1016/0095-8956(76)90032-0
http://dx.doi.org/10.2307/2317262
http://dx.doi.org/10.1016/0095-8956(87)90028-1
http://dx.doi.org/10.1016/0012-365X(89)90170-2
http://dx.doi.org/10.1006/jctb.2000.1978
http://dx.doi.org/10.1137/08072485X
http://dx.doi.org/10.1016/0095-8956(87)90030-X
http://dx.doi.org/10.1007/BF02993245
http://dx.doi.org/10.1515/crll.1965.220.88
http://dx.doi.org/10.1007/978-3-642-41498-5_10
http://dx.doi.org/10.7155/jgaa.00298

39:16 Z2-Genus of Graphs

30 Marcus Schaefer and Daniel Štefankovič. Block additivity of Z2-embeddings. In Graph
drawing, volume 8242 of Lecture Notes in Comput. Sci., pages 185–195. Springer, Cham, 2013.
doi:10.1007/978-3-319-03841-4_17.

31 Mikhail Skopenkov. On approximability by embeddings of cycles in the plane. Topology Appl.,
134(1):1–22, 2003. doi:10.1016/S0166-8641(03)00069-5.

32 Saul Stahl. Permutation-partition pairs: a combinatorial generalization of graph embeddings.
Trans. Amer. Math. Soc., 259(1):129–145, 1980. doi:10.2307/1998149.

33 Saul Stahl and Lowell W. Beineke. Blocks and the nonorientable genus of graphs. J. Graph
Theory, 1(1):75–78, 1977. doi:10.1002/jgt.3190010114.

34 Yongge Tian. The minimum rank of a 3× 3 partial block matrix. Linear Multilinear Algebra,
50(2):125–131, 2002. doi:10.1080/03081080290019531.

35 W. T. Tutte. Toward a theory of crossing numbers. J. Combinatorial Theory, 8:45–53, 1970.
doi:10.1016/S0021-9800(70)80007-2.

36 H. J. Woerdeman. The lower order of lower triangular operators and minimal rank extensions.
Integral Equations Operator Theory, 10(6):859–879, 1987. doi:10.1007/BF01196124.

http://dx.doi.org/10.1007/978-3-319-03841-4_17
http://dx.doi.org/10.1016/S0166-8641(03)00069-5
http://dx.doi.org/10.2307/1998149
http://dx.doi.org/10.1002/jgt.3190010114
http://dx.doi.org/10.1080/03081080290019531
http://dx.doi.org/10.1016/S0021-9800(70)80007-2
http://dx.doi.org/10.1007/BF01196124

An Experimental Study of Forbidden Patterns in
Geometric Permutations by Combinatorial Lifting
Xavier Goaoc
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
xavier.goaoc@loria.fr

Andreas Holmsen
Department of Mathematical Sciences, KAIST, Daejeon, South Korea
andreash@kaist.edu

Cyril Nicaud
Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM,
F-77454, Marne-la-Vallée, France
cyril.nicaud@u-pem.fr

Abstract
We study the problem of deciding if a given triple of permutations can be realized as geometric
permutations of disjoint convex sets in R3. We show that this question, which is equivalent to
deciding the emptiness of certain semi-algebraic sets bounded by cubic polynomials, can be “lifted”
to a purely combinatorial problem. We propose an effective algorithm for that problem, and use it
to gain new insights into the structure of geometric permutations.

2012 ACM Subject Classification Theory of computation → Computational geometry; Computing
methodologies → Combinatorial algorithms

Keywords and phrases Geometric permutation, Emptiness testing of semi-algebraic sets, Computer-
aided proof

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.40

Related Version A full version of this paper, available at https://arxiv.org/abs/1903.03014,
contains some details omitted from this version due to space constraints.

Funding Xavier Goaoc: Supported by Institut Universitaire de France.
Andreas Holmsen: Supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03930998).

1 Introduction

Consider pairwise disjoint convex sets C1, C2, . . . , Cn and lines `1, `2, . . . , `k in Rd, where
every line intersects every set. Each line `i defines two orders on the sets, namely the orders
in which the two orientations of `i meet the sets; this pair of orders, one the reverse of
the other, are identified to form the geometric permutation realized by `i on C1, C2, . . . , Cn.
Going in the other direction, one may ask if a given family of permutations can occur as
geometric permutations of a family of pairwise disjoint convex sets in Rd, i.e. whether it is
geometrically realizable in Rd.

In R2 there exist pairs of permutations that are unrealizable, while in R3, every pair of
permutations is realizable by a family of segments with endpoints on two skew lines. The
simplest non-trivial question is therefore to understand which triples of permutations are
geometrically realizable. This question is equivalent to testing the non-emptiness of certain
semi-algebraic sets bounded by cubic polynomials. We show that the structure of these

© Xavier Goaoc, Andreas Holmsen, and Cyril Nicaud;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 40; pp. 40:1–40:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xavier.goaoc@loria.fr
mailto:andreash@kaist.edu
mailto:cyril.nicaud@u-pem.fr
https://doi.org/10.4230/LIPIcs.SoCG.2019.40
https://arxiv.org/abs/1903.03014
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

polynomials allow to “lift” this algebraic question to a purely combinatorial one, then propose
an algorithm for that combinatorial problem, and present some new results on geometric
permutations obtained with its assistance.

Conventions. To simplify the discussion, we work with oriented lines and thus with per-
mutations, in place of the non-oriented lines and geometric permutations customary in this
line of inquiry. We represent permutations by words such as 1423 or badc, to be interpreted
as follows. The letters of the word are the elements being permuted and they come with
a natural order, namely < for integer and the alphabetical order for letters. The word
gives the sequence of images of the elements by increasing order; for example, 312 codes the
permutation mapping 1 to 3, 2 to 1 and 3 to 2, and badc codes the permutation exchanging
a with b and c with d. The size of a permutation is the number of elements being permuted,
that is the length of this word. We say that a triple of permutations is realizable (resp.
forbidden) to mean that it is realizable (resp. not realizable) in R3.

1.1 Contributions
Our results are of two types, methodological and geometrical.

Combinatorial lifting. Our first contribution is a new approach for deciding the emptiness
of a semi-algebraic set with a special structure. We describe it for the geometric realizability
problem, here and in Section 3, but stress that it applies more broadly.

As spelled out in Section 2, deciding if a triple of permutations is realizable amounts to
testing the emptiness of a semi-algebraic set R ⊆ Rn. Let u1, u2, . . . , un denote the variables
and P1, P2, . . . , Pm the polynomials used in a Boolean formula defining R. The structure we
take advantage of is that here, each Pk can be written as a product of terms, each of which is
of the form ui − uj , ui − 1, or ui − f(uj), with f(t) = 1

1−t . If only terms of the form ui − uj
or ui − 1 occur, then we can test the emptiness of R by examining the possible orders on
(1, u1, u2, . . . , un). We propose to handle the terms of the form ui − f(uj) in the same way,
by exploring the orders that can arise on (1, u1, f(u1), u2, f(u2), . . . , un, f(un)).

The main difficulty in this approach is to restrict the exploration to the orders that can
be realized by a sequence of the form (1, u1, f(u1), u2, f(u2), . . . , un, f(un)). This turns out
to be easier if we extend the lifting to

Λ :
{

(R \ {0, 1})n → R3n

(u1, u2, . . . , un) 7→ (u1, f(u1), f (2)(u1), . . . , un, f(un), f (2)(un)).

This extended lifting allows to take advantage of the facts that f (3) = f ◦ f ◦ f is the identity,
that f permutes circularly the intervals (−∞, 0), (0, 1) and (1,∞), and that f is increasing
on each of them. In Proposition 7, we essentially show that an order on the 3n lifted variables
can be realized by a point of Λ(R3n) if and only if it is compatible with the action of f , as
captured by these properties.

Algorithm. Our second contribution is an algorithm that puts the combinatorial lifting in
practice, and decides if a triple of permutations is realizable in O

(
6nn10) time and O(n2)

space in the worst-case. We provide an implementation in Python, see the full version of
this paper.

X. Goaoc, A. Holmsen, and C. Nicaud 40:3

0

1 0

1

0 1

Figure 1 Three skew lines (left), the parallelotope (middle) and the marked points (right).

New geometric results. Our remaining contributions are new geometric results obtained
with the aid of our implementation. A first systematic exploration reveals:

I Theorem 1. Every triple of permutations of size 5 is geometrically realizable in R3.

The smallest known triple of geometric permutations forbidden in R3 has size 6 (see Sec-
tion 1.2), so Theorem 1 proves that it is minimal. We also obtained the complete list of
forbidden triples of size 6 (see the full version). Interestingly, although everything is realizable
up to size 5, something can be said on geometric permutations of size 4. Recall that the side
operator (pq)� (rs) of the two lines (pq) and (rs), oriented respectively from p to q and from
r to s, is the orientation of the tetrahedron pqrs; it captures the mutual disposition of the
two lines. We prove:

I Theorem 2. Let `1 and `2 be two oriented lines intersecting four pairwise disjoint convex
sets in the order 1234. Any oriented line `3 that intersects those four sets in the order 2143
satisfies `1 � `3 = `2 � `3.

The pattern (1234, 2143) is known to be forbidden in some cases (see Section 1.2), but this is
the first condition valid for arbitrary disjoint convex sets. We could prove Theorem 2 because
our algorithm solves a more constrained problem than just realizability of permutations.
Given three lines in general position in R3, there is a unique parallelotope with three disjoint
edges supported on these three lines (see Figure 1). Combinatorial lifting, and therefore our
algorithm, can decide whether three permutations can be realized with the vertices of that
parallelotope in prescribed positions in the permutations.

We label the vertices of the parallelotope with 0 and 1 as in Figure 1 and work with per-
mutations where two extra elements, 0 and 1, are inserted; we call them tagged permutations.
We examine triples of tagged permutations realizable on a canonical system of lines (see
Equation (1)), and characterize those minimally unrealizable up to size 4 (Proposition 10); for
size 2 and 3, we provide independent, direct, geometric proofs of unrealizability (Section 7).
We conjecture that no other minimally unrealizable triples of tagged permutations exist, and
verified this experimentally up to size 6 (not counting 0 and 1). A weaker conjecture is:

I Conjecture 3. There exists a polynomial time algorithm that decides the geometric realiz-
ability of a triple of permutations of size n in R3.

1.2 Discussion and related work

We now put our contribution in context, starting with motivations for studying geometric
permutations.

SoCG 2019

40:4 Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

Geometric transversals. In the 1950’s, Grünbaum [7] conjectured that, given a family of
disjoint translates of a convex figure in the plane, if every five members of the family can be
met by a line, then there exists a line that meets the entire family. (Such a statement, if
true, is an example of Helly-type theorem.) Progress on Grünbaum’s conjecture was slow
until the 1980’s, when the notion of geometric permutations of families of convex sets was
introduced [13, 14]. Their systematic study in the plane was refined by Katchalski [12] in
order to prove a weak version of Grünbaum’s conjecture (with 128 in place of 5). Tverberg [24]
soon followed up with a proof of the conjecture, again using a careful analysis of planar
geometric permutations. This initial success and further conjectures about Helly-type
theorems stimulated a more systematic study of geometric permutations realizable under
various geometric restrictions; cf. [10] and the references therein.

Another motivation to study geometric permutations comes from computational geometry,
more precisely the study of geometric structures such as arrangements. There, geometric
permutations appear as a coarse measure of complexity of the space of line transversals to
families of sets, and relates to various algorithmic problems such as ray-shooting or smallest
enclosing cylinder computation [18, §7.6]. From this point of view, the main question is
to estimate the maximum number gd(n) of distinct geometric permutations of n pairwise
disjoint convex sets in Rd. Broadly speaking, while g2(n) is known to equal 2n− 2 [6], even
the order of magnitude of gd(n) as n → ∞ is open for every d ≥ 3; the gap is between
Ω(nd−1) and O(n2d−3 logn). Bridging this gap has been identified as an important problem
in discrete geometry [18, §7.6], yet, over the last fifteen years, the only progress has been an
improvement of the upper bound from O(n2d−2) down to O(n2d−3 logn); moreover, while
the former bound follows from a fairly direct argument, the latter is a technical tour de force
[20]. We hope that a better understanding of small forbidden configurations will suggest new
approaches to this question.

Geometric realizability problems. Combinatorial structures that arise from geometric
configurations such as arrangements, polytopes, or intersection graphs are classical objects of
enquiry in discrete and computational geometry (see e.g. [23, § 1, 5, 6, 10, 15, 17, 28]). We
are concerned here with the membership testing problem: given an instance of a combinatorial
structure, decide if there exists a geometric configuration that induces it. Such problems can
be difficult: for instance, deciding whether a given graph can be obtained as intersection
graph of segments in the plane is NP-hard [15].

A natural approach to membership testing is to parameterize the candidate geometric
configuration and express the combinatorial structure as conditions on these parameters.
This often results in a semi-algebraic set. In the real-RAM model1, the emptiness of a
semi-algebraic set in Rd with real coefficients can be tested in time (nD)O(d) [19, Prop. 4.1],
where n is the number of polynomials and D their maximum degree. (Other approaches exist
but have worse complexity bounds, see [5, 16, 11, 4]). Given three permutations of size n,
we describe their realizations as a semi-algebraic set defined by O(n2) cubic polynomials in
n variables; the above method thus has complexity nO(n), making our O

(
6nn10) solution

competitive in theory. Practical effectiveness is usually difficult to predict as it depends on
the geometry of the underlying algebraic surfaces; for example, deciding if two geometric
permutations of size four are realizable by disjoint unit balls in R3 was recently checked to
be out of reach [9].

1 See the same reference for a similar bound in the bit model.

X. Goaoc, A. Holmsen, and C. Nicaud 40:5

Some geometric realizability problems, for example the recognition of unit disk graphs,
are ∃R-hard [21] and therefore as difficult from a complexity point of view as deciding the
emptiness of a general semi-algebraic set. We do not know whether deciding the emptiness
of semi-algebraic sets amenable to our combinatorial lifting remains ∃R-hard; we believe,
however, that deciding if a triple of permutations is realizable is not (cf. Conjecture 3).

Forbidden patterns. A dimension count shows that any k permutations are realizable
in R2k−1. Our most direct predecessor is the work of Asinowski and Katchalski [2] who
proved that this argument is sharp by constructing, for every k, a set of k permutations that
are not realizable in R2k−2. They also showed that the triple (123456, 321654, 246135) is not
realizable in R3, a fact that follows easily from our list of obstructions.

In a sense, our work tries to generalize some arguments previously used to analyze
geometric permutations in the plane. For example, the (standard) proof that the pair
(1234, 2143) is non-realizable as geometric permutations in R2 essentially analyzes tagged
permutations. Indeed, if we augment the permutations by an additional label 0 marking the
intersection of the lines realizing the two orders, we get that (0ab,0 ba), (0ab, ab0), (ba0,0 ba)
and (ba0, ab0) are forbidden, and there is nowhere to place 0 in (1234, 2143). We should,
however, emphasize that already in R3 the geometry is much more subtle.

Forbidden patterns were used to bound the number of geometric permutations for certain
restricted families of convex sets. For pairwise disjoint translates of a convex planar figure [12,
24, 25], it is known that a given family can have at most three geometric permutations,
and the possible sets of realizable geometric permutations have been characterized. The
situation is similar for families of pairwise disjoint unit balls in Rd. Here, an analysis of
forbidden patterns in geometric permutations showed that a given family can have at most
a constant number of geometric permutations (in fact only two if the family is sufficiently
large) [22, 3, 9]. Another example is [1], where it is shown that the maximum number of
geometric permutations for convex objects in Rd induced by lines that pass through the
origin, is in Θ(nd−1). The restriction that the lines pass through the origin, allows them to
deal with permutations augmented by one additional label, and their argument relies on the
forbidden tagged pattern (0ab,0 ba) [1, Lemma 2.1].

In these examples, the bounds use highly structured sets of forbidden patterns. In
general, one cannot expect polynomial bounds on the sole basis of excluding a handful of
patterns; for instance it is not hard to construct an exponential size family of permutations
of [n] which avoids the pattern (1234, 2143). Such questions are well-studied in the area of
“pattern-avoidance” and usually the best one could hope for is an exponential upper bound
on the size of the family [17].

2 Semi-algebraic parameterization

Let P = (π1, π2, π3) denote a triple of permutations of {1, 2, . . . , n}. We now describe a
semi-algebraic set that is nonempty if and only if P has a geometric realization in R3.

Canonical realizations. We say that a geometric realization of P is canonical if the oriented
line transversals are

`x =

0
1
0

+ R

1
0
0

 , `y =

0
0
1

+ R

0
1
0

 , and `z =

1
0
0

+ R

0
0
1

 , (1)

and if the convex sets are triangles with vertices on `x, `y and `z.

SoCG 2019

40:6 Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

I Lemma 4. If P is geometrically realizable in R3, then it has a canonical realization,
possibly after reversing some of the permutations πi.

Proof. Consider a realization of P by three lines and n pairwise disjoint sets. For each
convex set we select a point from the intersection with each of the lines and replace it by the
(possibly degenerate) triangle spanned by these points. This realizes P by compact convex
sets. By taking the Minkowski sum of each set with a sufficiently small ball, the sets remain
disjoint and the line intersect the sets in their interior. We may now perturb the lines into
three lines Lx, Ly and Lz that are pairwise skew and not all parallel to a common plane.
We then, again, crop each set to a triangle with vertices on Lx, Ly and Lz.

We now use an affine map to send our three lines to `x, `y and `z. An affine transform is
defined by 12 parameters and fixing the image of one line amounts to four linear conditions
on these parameters; these constraints determine a unique transform because the lines are in
general position. Note, however, that the oriented line Lx is mapped to either `x or −`x, so
π1 may have to be reversed; the same applies to the permutations π2 and π3. J

We equip the line `x (resp. `y, `z) with the coordinate system obtained by projecting
the x-coordinate (resp. y-coordinate, z-coordinate) of R3. This parameterizes the space
of canonical realizations by R3n. Specifically, we equip R3n with a coordinate system
(O, x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zn) and for any point c ∈ R3n we put

T (c) = {conv{Xi, Yi, Zi}}1≤i≤n, where Xi =

xi1
0

 , Yi =

 0
yi
1

 , and Zi =

1
0
zi

 .

Each element of T (c) is thus a triangle with a vertex on each of `x, `y and `z. We define:

R = {c ∈ R3n : T (c) consists of disjoint triangles and realizes P}.

The triple P is realizable if and only if R is non-empty.

Triangle disjointedness. We now review an algorithm of Guigue and Devillers [8] to decide
if two triangles are disjoint, and use it to formulate the condition that two triangles XiYiZi
and XjYjZj be disjoint as a semi-algebraic condition on xi, . . . , zj .

The algorithm and our description are expressed in terms of orientations, where the
orientation of four points p, q, r, s ∈ R3 is

[p, q, r, s] def= sign det

xp xq xr xs
yp yq yr ys
zp zq zr zs
1 1 1 1

 .

Intuitively, the orientation indicates whether point s is “above” (+1), on (0), or “below” (−1)
the plane spanned by p, q, r, where above and below refer to the orientation of the plane
that makes the directed triangle pqr positively oriented. We only consider orientations of
non-coplanar quadruples of points, so orientations take values in {±1}.

X. Goaoc, A. Holmsen, and C. Nicaud 40:7

If one triangle is on one side of the plane spanned by the other, then the triangles are
disjoint. We check this by computing

v(i, j) def=

[Xi, Yi, Zi, Xj]
[Xi, Yi, Zi, Yj]
[Xi, Yi, Zi, Zj]
[Xj , Yj , Zj , Xi]
[Xj , Yj , Zj , Yi]
[Xj , Yj , Zj , Zi]

∈ {−1, 1}6

and testing if v(i, j)1 = v(i, j)2 = v(i, j)3 or v(i, j)4 = v(i, j)5 = v(i, j)6. If this fails, then
we rename {Xi, Yi, Zi} into {Ai, Bi, Ci} and {Xj , Yj , Zj} into {Aj , Bj , Cj} so that

[Ai, Bi, Ci, Aj]
[Ai, Bi, Ci, Bj]
[Ai, Bi, Ci, Cj]
[Aj , Bj , Cj , Ai]
[Aj , Bj , Cj , Bi]
[Aj , Bj , Cj , Ci]

=

1
−1
−1
1
−1
−1

.

Then, the triangles are disjoint if and only if [Ai, Bi, Aj , Bj] = 1 or [Ai, Ci, Cj , Aj] = 1 [8].
The renaming is done as follows. Since the first test is inconclusive, the plane spanned by
a triple of points separates the other triple of points. We let (Ai, Bi, Ci) be the circular
permutation of (Xi, Yi, Zi) such that Ai is separated from Bi and Ci by the plane spanned by
Xj , Yj , and Zj . We let (Aj , Bj , Cj) be the circular permutation of (Xj , Yj , Zj) such that Aj
is separated from Bj and Cj by the plane spanned by Ai, Bi, and Ci. If [Ai, Bi, Ci, Aj] = −1
then we exchange Bi and Ci. If [Aj , Bj , Cj , Ai] = −1 then we exchange Bj and Cj .

Semi-algebraicity. Every step in the Guigue-Devillers algorithm can be expressed as a
logical proposition in terms of orientation predicates which are, when specialized to our
parameterization, conditions on the sign of polynomials in the coordinates of c. Checking that
each of `x, `y and `z intersects the triangles in the prescribed order amounts to comparing
coordinates of c. Altogether, the set R is a semi-algebraic subset of R3n.

3 Combinatorial lifting

We now explain how to test combinatorially the emptiness of our semi-algebraic set R.

Definitions. We start by decomposing each orientation predicate used in the definition of
R as indicated in Table 1. For the last three rows, this is not a factorization since one of the
factors is of the form u− f(v) where f : t 7→ 1

1−t .
In light of the third column of Table 1, it may seem natural to “linearize” the problem

by considering the map (x1, x2, . . . , zn) 7→ (x1, f(x1), x2, f(x2), . . . , zn, f(zn)) from R3n to
R6n. Indeed, the order on the lifted coordinates and 1 determines the sign of all polynomials
defining R. We must, however, identify the orders on the coordinates in R6n that can be
realized by lifts of points from R3n. Perhaps surprisingly, the task gets easier if we lift to
even higher dimension. For convenience we let R∗

def= R \ {0, 1}. The lifting map we use is:

Λ :
{

R3n
∗ → R9n

(x1, x2, . . . , zn) 7→
(
x1, f(x1), f (2)(x1), x2, . . . , zn, f(zn), f (2)(zn)

)
To determine the image of Λ

(
R3n
∗
)
, we will use the following properties of f :

SoCG 2019

40:8 Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

Table 1 Orientation predicates used in the Guigue-Devillers algorithm when specialized to points
from `x, `y and `z.

Orientation Determinant Decomposition

[Xa, Xb, Yc, Yd] (xa − xb)(yc − yd) (xa − xb)(yc − yd)
[Xa, Xb, Zc, Zd] (xa − xb)(zc − zd) (xa − xb)(zc − zd)
[Ya, Yb, Zc, Zd] (ya − yb)(zc − zd) (ya − yb)(zc − zd)
[Xa, Xb, Yc, Zd] (xa − xb)(yczd − zd + 1) (xa − xb)(yc − 1)

(
zd − 1

1−yc

)
[Xa, Yb, Yc, Zd] (yb − yc)(xa − xazd − 1) −(yb − yc)(zd − 1)

(
xa − 1

1−zd

)
[Xa, Yb, Zc, Zd] (zc − zd)(xayb + 1− yb) (zc − zd)(xa − 1)

(
yb − 1

1−xa

)
B Claim 5. f (3) = f ◦ f ◦ f is the identity on R∗, f permutes the intervals (−∞, 0), (0, 1)
and (1,+∞) circularly, and f is monotone on each of these intervals.

Let us denote the points of R9n by vectors (t1, t2, . . . , t9n). We next “lift” the semi-algebraic
description of R:
1. We pick a Boolean formula φ describing R in terms of orientations (for the triangle

disjointedness) and comparisons of coordinates (for the geometric permutations).
2. We decompose every orientation predicate ocurring in φ as in the third row of Table 1.
3. We then construct another Boolean formula ψ by substituting2 in φ every f(x1) by the

variable t2 (to which it is mapped under Λ). We similarly substitute every f(xi), f(yi)
and f(zi), then every remaining xi, yi and zi by the corresponding variable t∗.

4. We let S ⊂ R9n be the (semi-algebraic) set of points that satisfy ψ.
We finally let H denote the arrangement in R9n of the set of hyperplanes:

{ti = tj}1≤i<j≤9n ∪ {ti = 0}1≤i≤9n ∪ {ti = 1}1≤i≤9n.

Note that the full-dimensional (open) cells in H are in bijection with the total orders on
{0, 1, t1, . . . , t9n} in which 0 comes before 1. We write ≺A for the order associated with a
full-dimensional cell A of H.

I Lemma 6. Every full-dimensional cell of H is disjoint from or contained in S. Moreover,
R is nonempty if and only if there exists a full-dimensional cell of H that is contained in S
and intersects Λ

(
R3n
∗
)
.

Proof. The set S is defined by the positivity or negativity of polynomials, each of which
is a product of terms of the form (ti − tj) or (ti − 1). The first statement thus follows
from the fact the coordinates of all points in a full-dimensional cell realize the same order
on {0, 1, t1, . . . , t9n}. By the perturbation argument used in the proof of Lemma 4, if R is
non-empty, then it contains a point with no coordinate in {0, 1}. Thus, R is non-empty if
and only if Λ(R) is non-empty. The construction of S ensures that Λ(R) = S ∩ Λ

(
R3n
∗
)
.

Again, a perturbation argument ensures that if Λ(R) is nonempty, it contains a point outside
of the union of the hyperplanes of H. The second statement follows. J

2 For example, with n = 3, the product (x1 − x2)(y2 − 1)
(
z3 − 1

1−y2

)
= (x1 − x2)(y2 − 1)(z3 − f(y2))

appearing in φ is translated in ψ as (t1 − t4)(t13 − 1)(t25 − t14).

X. Goaoc, A. Holmsen, and C. Nicaud 40:9

Zone characterization. Inspired by Lemma 6, we now characterize the orders ≺A such that
A intersects Λ

(
R3n
∗
)
. We split the 9n variables t1, t2, . . . , t9n into 3n blocks of three

consecutive variables t3i+1, t3i+2, t3i+3 (representing xi, f(xi), f (2)(xi) for 0 ≤ i < n,
yi, f(yi), f (2)(yi) for n ≤ i < 2n, and zi, f(zi), f (2)(zi) for 2n ≤ i < 3n). We also define an
operator f that shifts the variables cyclically within each individual block:

f(t3i+1) = t3i+2, f(t3i+2) = t3i+3 and f(t3i+3) = t3i+1.

By convention, f0 means the identity. The fact that f mimicks, symbolically, the action of f
yields the following characterization.

I Proposition 7. A full-dimensional cell A of H intersects Λ
(
R3n
∗
)
if and only if

(i) For any 0 ≤ i < 3n, there exists j ∈ {0, 1, 2} s. t.

f (j)(t3i+1) ≺A 0 ≺A f (j+1)(t3i+1) ≺A 1 ≺A f (j+2)(t3i+1).

(ii) For any 1 ≤ i, j ≤ 9n, {ti ≺A tj and f(tj) ≺A f(ti)} ⇒ ti ≺A 1 ≺A tj .

Proof. Let us first see why the conditions are necessary. Let c = (x1, x2, . . . , zn) ∈ R3n
∗ such

that Λ(c) ∈ A. Fix some 0 ≤ i < n. As j ranges over {0, 1, 2}, the coordinate f (j)(t3i+i) of
Λ(c) ranges over {xi, f(xi), f (2)(xi)}, and Condition (i) holds because f permutes the intervals
(−∞, 0), (0, 1) and (1,+∞) circularly. The cases n ≤ i < 3n are similar. Condition (ii)
follows in a similar manner from the fact that f permutes the intervals (−∞, 0), (0, 1) and
(1,+∞) circularly and is increasing on each of them.

To examine sufficiency we need some notations. We let V = {0, 1, t1, . . . , t9n}. Given an
order ≺ on V and two elements a, b ∈ V we write (a, b)≺

def= {c ∈ V : a ≺ c ≺ b}. We also
write (·, a)≺ for the set of elements smaller than a, and (a, ·)≺ for the set of elements larger
than a, and [a, b)≺, [a, b)≺ or [a, b]≺ to include one or both bounds in the interval.

Let ≺∗ be an order on {0, 1, t1, . . . , t9n} such that 0 ≺∗ 1. By Condition (i), (1, ·)≺∗ has
size 3n, so let us write (1, ·)≺∗ = {b1, b2, . . . , b3n} with 1≺∗b1≺∗b2≺∗ . . .≺∗b3n. Condition (i)
also ensures that for every 0 ≤ i < 3n, exactly one of {t3i+1, f(t3i+1), f (2)(t3i+1)} belongs to
(1, ·)≺∗ . Hence, for every 0 ≤ i < 3n there are uniquely defined integers 0 ≤ α(i) ≤ 2 and
1 ≤ β(i) ≤ 3n such that bβ(i) = fα(i)(t3i+1).

We next pick 3n real numbers 1 < r1 < r2 < . . . < r3n, put

xi = f3−α(i) (rβ(i)
)
, for 0 ≤ i < n

yi = f3−α(i) (rβ(i)
)
, for n ≤ i < 2n

zi = f3−α(i) (rβ(i)
)
, for 2n ≤ i < 3n,

and let p = (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) ∈ R3n. Note that Λ(p) lies in a full-dimensional
cell of the arrangement H; let us denote it by A.

Now, 0 precedes 1 in both ≺∗ and ≺A. Also, [1, ·)≺∗ = [1, ·)≺A
and the two orders

coincide on that interval by construction of p. Remark that f acts similarly for both orders:
f maps [1, ·)≺∗ to (·, 0]≺∗ increasingly for ≺∗ by Conditions (i) and (ii).
f maps [1, ·)≺A

to (·, 0]≺A
increasingly for ≺A by definition of p and Claim 5.

We therefore also have (·, 0]≺∗ = (·, 0]≺A
and the orders coincide on that interval as well.

The same argument applied to f2 shows that [0, 1]≺∗ = [0, 1]≺A
and that the two orders

coincide on that interval as well. Altogether, ≺∗ and ≺A coincide. J

SoCG 2019

40:10 Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

0

1 0

1

0 1

Figure 2 Tagging permutations by adding the 0 and 1.

4 Tagged patterns and their canonical realization

Let us clarify the geometric problem that is really captured by our combinatorial lifting.

As it appears from Table 1, the combinatorial lift searches only for a canonical realization.
By Lemma 4, however, this is not a restriction. More importantly, the lift compares the lifted
variable to the constants 0 and 1. In the coordinate systems of `x, `y and `z, the 0 and 1 are
at certain corners of the unique parallelotope with three disjoint edges supported by these
lines. Let us label these points 0 and 1 as Figure 2. Note that fixing the comparisons of 0 and
each xi is equivalent to specifying the position of the point 0 of `x in the first permutation.
Other coordinates behave similarly.

Formally, we define a tagged permutation as a permutation of {0,1 , 1, 2, . . . , n} in which 0

precedes 1. We call a triple of tagged permutations a tagged pattern. A canonical realization
of a tagged pattern is a set of triangles, with vertices on `x, `y and `z, such that `x (resp. `y,
`z) intersects the triangles in the first (resp. second, third) permutation and such that the
tagged corners of the parallelotope appear in the right position on each line.

Our experiments will use two more notions. Two tagged patterns are equivalent for
canonical realizability if one can be transformed into the other by (i) relabeling the symbols
other than 0 and 1 bijectively, and (ii) applying a circular permutation to the triple. A
tagged pattern is minimally forbidden if it has no canonical realization, and deleting any
symbol other than 0 and 1 from the three tagged permutations produces a tagged pattern
which has a canonical realization.

5 Algorithm

We now present an algorithm that takes a tagged pattern as input and decides if it admits a
canonical realization. Our initial problem of testing the geometric realizability of a triple of
permutations of size n reduces to 8

(
n+2

2
)3 instances of that problem.

5.1 Outline
Following Sections 2 and 3, we search for an order on {0, 1, t1, t2, . . . , t9n} satisfying the
conditions of Proposition 7 and the formula ψ (which defines S). To save breath, we call
such an order good. We say that triangles i and j are disjoint in a partial order P if for
every c ∈ R3n such that the order on Λ(c) is a linear extension of P , the triangles i and j of
T (c) are disjoint.

X. Goaoc, A. Holmsen, and C. Nicaud 40:11

Our algorithm gradually refines a set of partial orders on {0, 1, t1, t2, . . . , t9n} with the
constraint that, at any time, every good order is a linear extension of at least one of these
partial orders. (Note that we do not need to make ψ explicit.) Every partial order is refined
until all or none of its extensions are good, so that we can report success or discard that
partial order. Refinements are done in two ways:

branching over an uncomparable pair, meaning duplicating the partial order and adding
the comparison in one copy, and its reverse in the other copy,
forcing a comparison when it is required for the formula S to be satisfiable.

We keep our algorithm as simple as possible to facilitate the verification of the algorithm, its
implementation, and the geometric results proven with their aid. This comes at the cost of
some efficiency, but we discuss some possible improvements in Section 5.3.

5.2 Description
Our poset representation stores (i) for each lifted variable the interval (·, 0), (0, 1) or (1, ·)
that contains it, and (ii) a directed graph over the variables contained in the interval (1, ·).
The graph has 3n vertices, by Lemma 6. To compare two variables, we first retrieve the
intervals containing them. If they differ, we can return the comparison readily. If they
agree, then up to composing by f or f (2) we can assume that both variables are in (1, ·)
and we use the graph to reply. We ensure throughout that the graph is saturated, i.e. is
its own transitive closure. In our implementation, initialization takes O(n3) time, elements
comparison takes O(1) time, and edge addition to the graph takes O(n2) time.

We start with the poset of the comparisons forced by the tagged pattern: all pairs (xi, xj),
(f(xi), f(xj)), . . . ,

(
f (2)(zi), f (2)(zj)

)
as well as pairs separated by 0 or 1. We next collect

in a set U the comparisons missing to compute the vectors v(i, j).

I Lemma 8. U contains only pairs of the form zk − f(yk), xk − f(zk), or yk − f(xk).

Proof. Every orientation predicate considered involves three points of the same index.
Consider for instance [Xi, Yi, Zi, Xj]. Following Table 1, this decomposes into (xi − xj)(yi −
1)(zi − f(yi)) and only the sign of the last term may be undecided. Other cases are similar
and show that U can only contain terms the form zk − f(yk), xk − f(zk), or yk − f(xk). J

Every pair in U corresponds to two variables with same index, so |U | ≤ 3n. If U contains
the three pairs with a given index, then two of the eight choices for these three comparisons
are cyclic, and can thus be ignored. We thus have at most 6n ways to decide the order of
the undeterminate pairs of U ; call them candidates. For each candidate, we make a separate
copy of our current graph and perform the following operations on that copy:

1. We add the |U | edges ordering the undecided pairs as fixed by the candidate and compute
its transitive closure. We check that the result is acyclic; if not, we discard that candidate
(as it makes contradictory choices) and move to the next candidate.

2. Let P denote the resulting partial order. We consider every 1 ≤ i < j ≤ n in turn. (Note
that v(i, j) is determined and equal for all linear extensions of P.)

2a If v(i, j)1 = v(i, j)2 = v(i, j)3 or v(i, j)4 = v(i, j)5 = v(i, j)6 then triangles i and j are
disjoint in P. We move on to the next pair (i, j).

SoCG 2019

40:12 Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

2b Otherwise, the extensions of P in which the triangles i and j are disjoint are those
in which [Ai, Bi, Aj , Bj] = 1 or [Ai, Ci, Cj , Aj] = 1 (in the notations of Section 2).
Lemma 9 asserts that P already determines at least one of these two predicates.

2b1 If both tests are determined to false, then triangles i and j intersect in P. We
then discard P and move on to the next candidate.

2b2 If one test is determined to false and the other is undetermined, then that second
test must evaluate to true in every good extension of P. Again, by Table 1 we
are missing exactly one comparison to decide that test. We add it to our graph.

2b3 In the remaining cases, at least one test is determined to true, so triangles i and
j are disjoint in P. We move on to the next pair (i, j).

3. If we exhaust all (i, j) for a candidate, then we report “realizable”.

4. If we exhaust the candidates without reaching step 3, then we report “unrealizable”.

This algorithm relies on property whose computer-aided proof is discussed in Section 6:

I Lemma 9. At step 2b, at least one of [Ai, Bi, Aj , Bj] or [Ai, Ci, Cj , Aj] is determined.

5.3 Discussion

Let us make a few comments on our algorithm.

Correctness. Let P0 denote the initial poset. First, remark that we explore the candidates
exhaustively, so every good extension of P0 is a good extension of P0 augmented by (at least)
one of the candidates. Next, consider the poset P obtained in step 2. When processing a
pair (i, j), we either discard P if we detect that i and j intersects in it (2b1) or we move on
to the next pair (i, j) after having checked (2a, 2b3) or ensured (2b2) that triangles i and j
are disjoint in P . If we reach step 3, then all extensions of the current partial order are good
and we correctly report feasibility. If a candidate is discarded then no linear extension of
P augmented by that candidate is a good order. If we reach Step 4, then every candidate
has been discarded, so no linear extension of P0 was a good order to begin with, and we
correctly report unfeasibility.

Complexity. Initializing the poset and computing U take O(n3) time. We have at most
6n candidates to consider. Step 1 takes O(n3) time. The steps 2a-2b3 are executed O

(
n2)

times, and the bottleneck among them is 2b2, which takes O(n2) time. Altogether, our
algorithm decides if a tagged pattern is realizable in O

(
6nn4) time.

Improvements. In practice, the algorithm we presented can be sped up in several ways.
For example, it is much better to branch over the pairs of U one by one. Once a branching
is done, we can update U by removing the pairs that have become comparable, and thus
avoid examining candidates that would get discarded at Step 1. Also, it pays off to record
the forbidden tagged patterns of small size, and, given a larger tagged pattern to test, check
first that it does not contain a small forbidden pattern.

X. Goaoc, A. Holmsen, and C. Nicaud 40:13

One-sided certificate. If the algorithm reaches Step 3, we actually know a poset for which
every linear extension is good. This means that we can compute an arbitrary linear extension
to obtain an order on the variables in (1, ·). We can then assign to these variables any values
that satisfy this order, say by choosing the integers from 2 to 3n+ 1, and then propagate
these values via f and f (2) to all lifted variables. From there, we can extract the values of
x1, x2, . . . , zn of a concrete realization of our tagged pattern. In this way, all computations
are done on (relatively small) rationals and are therefore easy to do exactly.

6 Experimental results

We now discuss our implementation of the above algorithm as well as its experimental use.
Remember that we call a tagged pattern forbidden if it admits no canonical realization. We
make the raw data available (see the full paper).

Implementation. We implemented the algorithm of Section 5 in Python 3. For simplicity,
our implementation makes one adjustment to the algorithm: we branch over all 2|U | choices
for the pairs of undecided variables; so, we take 8 choice per k, rather than 6. Altogether, the
implementation amounts to ∼ 470 lines of (commented) code and is sufficiently effective for
our experiments: on a standard desktop computer, finding all realizable triples of size 6 (and
a realization when it exists) takes about 40 minutes, whereas verifying that no minimally
forbidden tagged pattern of size 6 exists took up about a month of computer time; the
difference of course is that in the former, for realizable triples we do not have to look at all
positions of tags.

Proof of Lemma 9. The statement concerns only two triangles and can be shown by
a simple case analysis. Our code sets up an exception that is raised if the statement of
the lemma fails (cf line 94 in the code in Appendix B1 in the full version). Checking the
realizability of all tagged patterns on two elements exhausts the case analysis, and the
exception is not raised.

Minimally forbidden patterns. To state the minimally forbidden tagged patterns of size 3
we compress the notation as follows. We use {uv} to mean “uv or vu”. Symbols that are
omitted may be placed anywhere (this may include 0 and 1). We use xi = yj to mean “any
pattern in which the ith symbol on the 1st tagged permutation equals the jth symbol of the
2nd tagged permutation”.

I Proposition 10. The equivalence classes of minimally forbidden tagged patterns are:

(i) For size 2, (ab0,1 ab, ab), (0ab, ab1, ba), (ab0, ba1, ab), and (0ab,1 ba, ba).

(ii) For size 3, ({ab}0, {ab}c0, z2 = y1), ({ab}c0,1 {ab}, z2 = x1), ({ab}0,1 c{ab}, z2 = y3),
(1c{ab},1 {ab}, z2 = x3), (abc0, b1ac, ca0b), and (1abc, b1ca, ac0b).

(iii) For size 4, the taggings of (abcd, badc, cdab) that contains (0b1,1 d, a0) or (b0c,1 a, a0),
and the taggings of (abcd, badc, dcba) that contains (b0c,0 d1,1 c) or (c0, {0ba}{1dc},1 c).

(iv) None for size 5 and 6.

Realization database. For every tagged pattern that our algorithm declared realizable, we
computed a realization (as explained in Section 5.3) and checked it independently.

SoCG 2019

40:14 Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

`

`q
`p

P Q

X

Y

Y

X

Geometric permutations. It remains to prove our statements on geometric permutations:

Proof of Theorem 1. For every triple of permutations, we checked that it is realizable by
trying all 8 reversals and all

(7
2
)3 possible positions of 0 and 1, until we find a choice that

does not contain any minimally forbidden tagged pattern of Proposition 10. J

Proof of Theorem 2. We argue by contradiction. Consider four disjoint convex sets met by
lines `1, `2 in the order abcd and `3 in the order badc; assume that `1 � `3 = −`2 � `3. By
the perturbation argument of Lemma 4, we can assume that the three lines are pairwise
skew and that the convex sets are triangles with vertices on these lines. Moreover, there
exists a nonsingular affine transform A that maps the unoriented lines `1 to `x, `2 to
`y and `3 to `z. Remark that A either preserves or reverses all side operators. Since
`x � `z = `y � `z and `1 � `3 = −`2 � `3, the map A sends the oriented lines (`1, `2) to
either (`x,−`y) or (−`x, `y). We used our program to check that none of (abcd, dcba, badc),
(dcba, abcd, badc), (abcd, dcba, cdab), (dcba, abcd, cdab) admits a canonical realization. The
statement follows. J

7 Geometric analysis (size two)

We present here an independent proof that the tagged patterns of size 2 listed in Proposition 10
do not have a (canonical) realization. We have a similar proof for tagged patterns of size 3
but defer it to the full paper for lack of space. We do not prove the patterns are minimal,
nor do we prove that the list is exhaustive; these facts come from the completeness of our
computer-aided enumeration.

The following observation was used by Asinowski and Katchalski [2]:

I Observation 11. Let X and Y be compact convex sets and let P and Q be points in R3.
Assume that X,Y, P,Q are pairwise disjoint and that there exist lines inducing the geometric
permutation (PXY) and (QYX). Any oriented line with direction −−→PQ that intersects X
and Y , must intersect X before Y .

Proof. Refer to the figure. Let h be a plane that separates X and Y . The existence of the
geometric permutations (PXY) and (QYX) ensure that h also separates P and Q. Moreover,
the halfspace bounded by h that contains X also contains P , so any line with direction −−→PQ
traverses h from the side of X to the side of Y . J

Observation 11 implies that (ab0,1 ab, ab), (0ab, ab1, ba), (ab0, ba1, ab), and (0ab,1 ba, ba),
are forbidden. Indeed, consider, by contradiction, a realization of one of these tagged patterns.
Let P be the point 0 on `x and Q the point 1 on `y. In each case, we can map X and
Y to a and b so that some line `P ∈ {`x,−`x} realizes PXY and `Q ∈ {`y,−`y} realizes

X. Goaoc, A. Holmsen, and C. Nicaud 40:15

QYX. Then, Observation 11 implies that any line with same direction as the line from P to
Q must intersect X before Y ; this applies to the line `z and contradicts the fact that the
configuration realizes the chosen tagged pattern.

References
1 B Aronov and S. Smorodinsky. On geometric permutations induced by lines transversal

through a fixed point. Discrete & Computational Geometry, 34:285–294, 2005.
2 Andrei Asinowski and Meir Katchalski. Forbidden Families of Geometric Permutations in Rd.

Discrete & Computational Geometry, 34(1):1–10, 2005. doi:10.1007/s00454-004-1110-x.
3 O. Cheong, X. Goaoc, and H.-S. Na. Geometric permutations of disjoint unit spheres.

Computational Geometry: Theory & Applications, 30:253–270, 2005.
4 Felipe Cucker, Peter Bürgisser, and Pierre Lairez. Computing the homology of basic semialge-

braic sets in weak exponential time. arXiv preprint, 2017. arXiv:1706.07473.
5 James H Davenport and Joos Heintz. Real quantifier elimination is doubly exponential. Journal

of Symbolic Computation, 5(1-2):29–35, 1988.
6 Herbert Edelsbrunner and Micha Sharir. The maximum number of ways to stab n convex

non-intersecting sets in the plane is 2n − 2. Discrete & Computational Geometry, 5:35–42,
1990.

7 B. Grünbaum. On common transversals. Archiv der Mathematik, 9:465–469, 1958.
8 Philippe Guigue and Olivier Devillers. Fast and robust triangle-triangle overlap test using

orientation predicates. Journal of graphics tools, 8(1):25–32, 2003.
9 Jae-Soon Ha, Otfried Cheong, Xavier Goaoc, and Jungwoo Yang. Geometric permutations of

non-overlapping unit balls revisited. Computational Geometry, 53:36–50, 2016.
10 Andreas Holmsen and Rephael Wenger. Helly-type Theorems and geometric transversals.

Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl, pages
63–82, 2017.

11 Erich Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification in global
polynomial optimization via sums-of-squares of rational functions with rational coefficients. J.
Symb. Comput., 47(1):1–15, 2012.

12 M Katchalski. A conjecture of Grünbaum on common transversals. Math. Scand., 59:192–198,
1986.

13 M. Katchalski, T. Lewis, and J. Zaks. Geometric permutations for convex sets. Discrete Math.,
54:271–284, 1985.

14 M Katchalski, Ted Lewis, and A Liu. Geometric permutations and common transversals.
Discrete & Computational Geometry, 1(4):371–377, 1986.

15 Jan Kratochvíl and Jirí Matousek. Intersection graphs of segments. J. Comb. Theory, Ser. B,
62(2):289–315, 1994.

16 Henri Lombardi, Daniel Perrucci, and Marie-Françoise Roy. An elementary recursive bound for
effective Positivstellensatz and Hilbert 17-th problem. arXiv preprint, 2014. arXiv:1404.2338.

17 A. Marcus and G. Tardos. Excluded permutation matrices and the Stanley–Wilf conjecture.
J. Combin. Theory Ser. A, 107:153–160, 2004.

18 János Pach and Micha Sharir. Combinatorial geometry and its algorithmic applications: The
Alcalá lectures. 152. American Mathematical Soc., 2009.

19 James Renegar. On the computational complexity and geometry of the first-order theory
of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The
decision problem for the existential theory of the reals. Journal of symbolic computation,
13(3):255–299, 1992.

20 Natan Rubin, Haim Kaplan, and Micha Sharir. Improved bounds for geometric permutations.
SIAM Journal on Computing, 41(2):367–390, 2012.

21 Marcus Schaefer and Daniel Štefankovič. Fixed points, Nash equilibria, and the existential
theory of the reals. Theory of Computing Systems, 60(2):172–193, 2017.

SoCG 2019

http://dx.doi.org/10.1007/s00454-004-1110-x
http://arxiv.org/abs/1706.07473
http://arxiv.org/abs/1404.2338

40:16 Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

22 S. Smorodinsky, J.S.B Mitchell, and M. Sharir. Sharp bounds on geometric permutations for
pairwise disjoint balls in Rd. Discrete & Computational Geometry, 23:247–259, 2000.

23 Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and computa-
tional geometry. Chapman and Hall/CRC, 2017.

24 H. Tverberg. Proof of Grünbaum’s conjecture on common transversals for translates. Discrete
& Computational Geometry, 4:191–203, 1989.

25 Helge Tverberg. On geometric permutations and the Katchalski-Lewis conjecture on partial
transversals for translates. DIMACS Ser. Discrete Math. Theor. Comp. Sci., 6:351–361, 1991.

Journey to the Center of the Point Set
Sariel Har-Peled
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
https://sarielhp.org/
sariel@illinois.edu

Mitchell Jones
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
http://mfjones2.web.engr.illinois.edu/
mfjones2@illinois.edu

Abstract
We revisit an algorithm of Clarkson et al. [1], that computes (roughly) a 1/(4d2)-centerpoint in Õ(d9)
time, for a point set in Rd, where Õ hides polylogarithmic terms. We present an improved algorithm
that computes (roughly) a 1/d2-centerpoint with running time Õ(d7). While the improvements are
(arguably) mild, it is the first progress on this well known problem in over twenty years. The new
algorithm is simpler, and the running time bound follows by a simple random walk argument, which
we believe to be of independent interest. We also present several new applications of the improved
centerpoint algorithm.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Random walks and Markov chains

Keywords and phrases Computational geometry, Centerpoints, Random walks

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.41

Related Version A full version of the paper is available at https://arxiv.org/abs/1712.02949.

Funding Sariel Har-Peled: Supported in part by NSF AF awards CCF-1421231 and CCF-1217462.

1 Introduction

Notation

In the following O(·) hides constants that do not depend on the dimension. Od(·) hides
constants that depend on the dimension (usually badly – exponential or doubly exponential,
or even worse). The notation Õ(·) hides polylogarithmic factors, where the power of the
polylog is independent of the dimension.

Computing centerpoints

A classical implication of Helly’s theorem, is that for any set P of n points in Rd, there
is a 1/(d + 1)-centerpoint. Specifically, given a constant α ∈ (0, 1), a point c ∈ Rd is an
α-centerpoint if all closed halfspaces containing c also contain at least αn points of P . It
is currently unknown if one can compute a Ω(1/d)-centerpoint in polynomial time (in the
dimension). A randomized polynomial time algorithm was presented by Clarkson et al. [1],
that computes (roughly) a 1/(4d2)-centerpoint in Õ(d9) time.

Weak ε-nets

Consider the range space (P, C), where P is a set of n points in Rd, and C is the set of all
convex shapes in Rd. This range space has infinite VC dimension, and as such it is impervious
to the standard ε-net constructions. Weak ε-nets bypass this issue by using points outside the
point set. While there is significant amount of work on weak ε-nets, the constructions known
are not easy and result in somewhat large sets. The state of the art is the work by Matoušek

© Sariel Har-Peled and Mitchell Jones;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 41; pp. 41:1–41:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://sarielhp.org/
mailto:sariel@illinois.edu
http://mfjones2.web.engr.illinois.edu/
mailto:mfjones2@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.41
https://arxiv.org/abs/1712.02949
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Journey to the Center of the Point Set

and Wagner [10], which shows a weak ε-net construction of size O(ε−d(log ε−1)O(d2 log d)).
Rubin recently improved this result for points in R2, proving the existence of weak ε-nets of
size O

(
ε−(1.5+γ)) for arbitrarily small γ > 0 [15]. Such a weak ε-net W has the guarantee

that any convex set C that contains at least εn points of P , must contain at least one point
of W. See [13] for a recent survey of ε-nets and related concepts. See also the recent work
by Rok and Smorodinsky [14] and references therein.

Basis of weak ε-nets

Mustafa and Ray [12] showed that one can pick a random sample S of size cdε−1 log ε−1 from
P , and then compute a weak ε-net for P directly from S, showing that the size of the support
needed to compute a weak ε-net is (roughly) the size of a regular ε-net. Unfortunately, the
constant in their sample cd = O

(
dd(log d)cd

3 log d) is doubly exponential in the dimension.
This constant cd is related to the ((d+ 1)2, d+ 1)-Hadwiger-Debrunner number (the best
known upper bounds on (p, q)-Hadwiger-Debrunner numbers can be found in [7, 6]).

In particular, all current results about weak ε-nets suffer from the “curse of dimensionality”
and have constants that are at least doubly exponential in the dimension.

Our results

Let P be a set of n points in Rd. In addition to the improved algorithm for computing
approximate centerpoints, we also suggest two alternatives to weak ε-nets as applications,
and obtain some related results:
(a) Approximating centerpoints. We revisit the algorithm of Clarkson et al. [1] for

approximating a centerpoint. We present an improved algorithm, which is a variant of
their algorithm which runs in Õ(d7) time, and computes roughly a 1/(d+ 2)2-centerpoint.
This improves both the running time, and the quality of centerpoint computed. While
the improvements are small (a factor of d2 roughly in the running time, and a factor
of four in the centerpoint quality), we believe that the new algorithm is simpler. The
analysis is cleaner, and is of independent interest. In particular, the analysis uses a
random walk argument, which is quite uncommon in computational geometry, and (we
believe) is of independent interest. See Theorem 18. This is the first improvement of the
randomized algorithm of Clarkson et al. [1] in over twenty years. Miller and Sheehy also
derandomized the algorithm of Clarkson et al., computing a Ω(1/d2)-centerpoint in time
nO(log d) [11].

(b) Lowerbounding convex functions. Given a convex function f in Rd, such that one
can compute its value and gradient at a point efficiently, we present an algorithm that
computes quickly a realizable lower-bound on the value of f over P . Formally, the
algorithm computes a point q ∈ Rd, such that f(q) ≤ minp∈P f(p). The algorithm is
somewhat similar in spirit to the ellipsoid algorithm. The running time of the algorithm
is Õ

(
d9). See Theorem 22.

(c) Functional nets. Let C ⊆ Rd be a convex body. Suppose we are only given access to C
via a separation oracle: given a query point q, the oracle either returns that q is in C,
or alternatively, the oracle returns a hyperplane separating q and C. We show that a
random sample of size

O
(
ε−1d3 log d log3 ε−1 + ε−1 logϕ−1) = Õ

(
d3/ε

)
,

with probability ≥ 1 − ϕ, can be used to decide if a query convex body C is ε-light.
Formally, the algorithm, using only the sample, performs O(d2 log ε−1) oracle queries – if

S. Har-Peled and M. Jones 41:3

any of the query points generated stabs C, then C is considered as (potentially) containing
more than εn points. Alternatively, if all the queries missed C, then C contains less
than εn points of P . The query points can be computed in polynomial time, and we
emphasize that the dependency in the running time and sample size are polynomial in ε
and d. See Theorem 28. As such, this result can be viewed as slightly mitigating the
curse of dimensionality in the context of weak ε-nets.

(d) Center nets. Using the above, one can also construct a weak ε-net directly from such a
sample – this improves over the result of Mustafa and Ray [12] as far as the dependency
on the dimension is concerned. This is construction is described in Lemma 33.
Surprisingly, by using ideas from Theorem 28 one can get a stronger form of a weak
ε-net, which we refer to as an (ε, α)-center net. Here α = Ω(1/(d log ε−1)) and one can
compute a set W of size (roughly) Õd

(
ε−O(d2)), such that if a convex body C contains

≥ εn points of P , then W contains a point q which is an α-centerpoint of C∩P . Namely,
the net contains a point that stabs C in the “middle” as far as the point set C ∩ P . See
Theorem 38.

Paper organization

The improved centerpoint approximation algorithm is described in Section 3. Two applications
of the improved centerpoint algorithm are presented in Section 4. The construction of center
nets is described in Section 5. Background and standard tools used are described in Section 2.

2 Background

2.1 Ranges spaces, VC dimension, samples and nets
The following is a quick survey of (standard) known results about ε-nets, ε-samples, and
relative approximations [2].

I Definition 1. A range space S is a pair (X̂,R), where X̂ is a ground set (finite or
infinite) and R is a (finite or infinite) family of subsets of X̂. The elements of X̂ are points
and the elements of R are ranges.

For technical reasons, it will be easier to consider a finite subset X ⊆ X̂ as the underlining
ground set.

I Definition 2. Let S = (X̂,R) be a range space, and let X be a finite (fixed) subset of X̂.
For a range r ∈ R, its measure is the quantity m(r) = |r ∩ X|/|X|. For a subset S ⊆ X, its
estimate of m(r), for r ∈ R, is the quantity s(r) = |r ∩ S|/|S|.

I Definition 3. Let S = (X̂,R) be a range space. For Y ⊆ X̂, let R|Y =
{

r ∩ Y
∣∣∣ r ∈ R

}
denote the projection of R on Y . The range space S projected to Y is S|Y =

(
Y,R|Y

)
. If

R|Y contains all subsets of Y (i.e., if Y is finite, we have
∣∣R|Y ∣∣ = 2|Y |), then Y is shattered

by R (or equivalently Y is shattered by S).
The VC dimension of S, denoted by dimVC(S), is the maximum cardinality of a shattered

subset of X̂. If there are arbitrarily large shattered subsets, then dimVC(S) =∞.

I Definition 4. Let S = (X̂,R) be a range space, and let X be a finite subset of X̂. For
0 ≤ ε ≤ 1, a subset S ⊆ X is an ε-sample for X if for any range r ∈ R, we have
|m(r) − s(r)| ≤ ε, see Definition 2. Similarly, a set S ⊆ X is an ε-net for X if for any
range r ∈ R, if m(r) ≥ ε (i.e., |r ∩ X| ≥ ε |X|), then r contains at least one point of S (i.e.,
r ∩ S 6= ∅).

SoCG 2019

41:4 Journey to the Center of the Point Set

A generalization of both concepts is relative approximation. Let p, ε̂ > 0 be two fixed
constants. A relative (p, ε̂)-approximation is a subset S ⊆ X that satisfies (1− ε̂)m(r) ≤
s(r) ≤ (1 + ε̂)m(r), for any r ∈ C such that m(r) ≥ p. If m(r) < p then the requirement is
that |s(r)−m(r)| ≤ ε̂p.

I Theorem 5 (ε-net theorem, [5]). Let (X̂,R) be a range space of VC dimension ξ, let X be
a finite subset of X̂, and suppose that 0 < ε ≤ 1 and ϕ < 1. Let N be a set obtained by m
random independent draws from X, where m ≥ max

(
4
ε lg 4

ϕ ,
8ξ
ε lg 16

ε

)
. Then N is an ε-net

for X with probability at least 1− ϕ.

The following is a slight strengthening of the result of Vapnik and Chervonenkis [16] –
see [2, Theorem 7.13].

I Theorem 6 (ε-sample theorem). Let ϕ, ε > 0 be parameters and let
(
X̂,R

)
be a range space

with VC dimension ξ. Let X ⊂ X̂ be a finite subset. A sample of size O
(
ε−2(ξ + logϕ−1))

from X is an ε-sample for S = (X,R) with probability ≥ 1− ϕ.

I Theorem 7 ([8, 3]). A sample S of size O
(
ε̂−2p−1(ξ log p−1 + logϕ−1)) from a range

space with VC dimension ξ, is a relative (p, ε̂)-approximation with probability ≥ 1− ϕ.

The following is a standard statement on the VC dimension of a range space formed by
mixing several range spaces together (see [2]).

I Lemma 8. Let S1 = (X̂1, C1), . . . ,Sk = (X̂, Ck) be k range spaces, which all have VC
dimension ξ. Consider the new set of ranges Ĉ = {r1 ∩ . . . ∩ rk | r1 ∈ R1, . . . , rk ∈ Rk} .
Then the range space Ŝ = (X̂, Ĉ) has VC dimension O(ξk log k).

2.2 Weak ε-nets
A convex body C ⊆ Rd is ε-heavy (or just heavy) if m(C) ≥ ε (i.e., |C ∩ P | ≥ ε |P |).
Otherwise, C is ε-light.

I Definition 9 (Weak ε-net). Let P be a set of n points in Rd. A finite set S ⊂ Rd is a
weak ε-net for P if for any convex set C with m(C) ≥ ε, we have S ∩ C 6= ∅.

Note, that like (regular) ε-nets, weak ε-nets have one-sided error – if C is heavy then the
net must stab it, but if C is light then the net may or may not stab it.

2.3 Centerpoints
Given a set P of n points in Rd, and a constant α ∈ (0, 1/(d + 1)], a point c ∈ Rd is an
α-centerpoint if for any closed halfspace that contains c, the halfspace also contains at least
αn points of P . It is a classical consequence of Helly’s theorem that a 1/(d+ 1)-centerpoint
always exists. If a point c ∈ Rd is a 1/(d+ 1)-centerpoint for P , we omit the 1/(d+ 1) and
simply say that c is a centerpoint for P .

3 Approximating the centerpoint via Radon’s urn

We revisit the algorithm of Clarkson et al. [1] for approximating a centerpoint. We give a
variant of their algorithm, and present a different (and we believe cleaner) analysis of the
algorithm. In the process we improve the running time from being roughly Õ

(
d9) to Õ(d7),

and also improve the quality of centerpoint computed.

S. Har-Peled and M. Jones 41:5

3.1 Radon’s urn
3.1.1 Setup
In the Radon’s urn game there are r red balls, and b = n − r blue balls in an urn, and
there is a parameter t. An iteration of the game goes as follows:
(a) The player picks a random ball, marks it for deletion, and returns it to the urn.
(b) The player picks a sample S of t balls (with replacement – which implies that we might

have several copies of the same ball in the sample) from the urn.
(c) If at least two of the balls in the sample S are red, the player inserts a new red ball into

the urn. Otherwise, the player inserts a new blue ball.
(d) The player returns the sample to the urn.
(e) Finally, the player removes the ball marked for deletion from the urn.

Note that in each stage of the game, the number of balls in the urn remains the same.
We are interested in how many rounds of the game one has to play till there are no red balls
in the urn with high probability. Here, the initial value of r (i.e., r0) is going to be relatively
small compared to n.

3.2 Analysis
Let P (r) be the probability of picking two or more red balls into the sample, assuming that
there are r red balls in the urn. We have that

P (r) =
t∑
i=2

(
t

i

)(r
n

)i(
1− r

n

)t−i
≤
(
t

2

)(r
n

)2
≤ t2

2

(r
n

)2
.

Note, that P (r) ≤ 1/8 if n ≥ 2tr. Let P+(r) be the probability that the number of red balls
increased in this iteration. For this to happen, at least two red balls had to be in the sample,
and the deleted ball must be blue. Let P−(r) be the probability that the number of red balls
decreases – the player needs to pick strictly less than two red balls in the sample, and delete
a red ball. This implies

P+(r) = P (r)(1− r/n) ≤ P (r) and P−(r) = (1− P (r))(r/n).

The probability for a change in the number of red balls at this iteration is

P±(r) = P+(r) + P−(r) = P (r)(1− r/n) + (1− P (r))(r/n) = (1− 2r/n)P (r) + r/n.

I Lemma 10. Let ξ ∈ (0, 1/4) be a parameter. If r ≤ R, then

P+(r) ≤ 1/2− ξ
1/2 + ξ

P−(r), where R = (1− 2ξ) n
t2
.

To simplify exposition, we choose ξ = 1/6 so that P+(r) ≤ P−(r)/2. In the remaining
analysis, the proofs involving tedious calculations are given in the full version of this paper [4],
with the modification that the statement of the lemmas and proofs involve the parameter ξ.

What are we analyzing?

The value R/n is an upper bound on the ratio of red balls that the urn can have and still,
with good probability, end with zero red balls at the end of the game. If this ratio is violated
anytime during the game, then the urn might end up consisting of only red balls. We want
to start the game with an urn initially having close to R red balls, but still end up with an
entirely blue urn with sufficiently high probability.

SoCG 2019

41:6 Journey to the Center of the Point Set

The question

Let ϑ ∈ (0, 1) and r0 = (1− ϑ)R be the number of red balls in the urn at the start of the
game (note that both r0 and R are functions of n and t). Let ϕ > 0 be a parameter. The key
question is the following: How large does n need to be so that if we start with r0 red balls
(and n− r0 blue balls), the game ends with all balls being blue with probability ≥ 1− ϕ?

The game as a random walk

An iteration of the game where the number of red balls changes is an effective iteration.
Considering only the effective iterations, this can be interpreted as a random walk starting
at X0 = (1− ϑ)R and at every iteration either decreasing the value by one with probability
at least 2/3, and increasing the value with probability at most 1/3 (since P+(r) ≤ P−(r)/2).
This walk ends when either it reaches 0 or R. If the walks reaches R, then the process fails.
Otherwise if the walk reaches 0, then there are no red balls in the urn, as desired.

3.2.1 Analyzing the related walk
Consider the random walk that starts at Y0 = (1− ϑ)R. In the ith iteration, Yi = Yi−1 − 1
with probability 2/3 and Yi = Yi−1 + 1 with probability 1/3. Let Y = Y1, Y2, . . . be the
resulting random walk which stochastically dominates the walk X0, X1, This walk is
strongly biased towards going to 0, and as such it does not hang around too long before
moving on, as testified by the following lemma.

I Lemma 11. Let I be any integer number, and let ϕ > 0 be a parameter. The number of
times the random walk Y visits I is at most 9 ln(9/ϕ) times, and this holds with probability
≥ 1− ϕ.

We next bound the probability that the walk fails.

I Lemma 12. Let ϕ > 0 be a parameter. If R ≥ 3
ϑ

ln 9
ϕ

then the probability that the random

walk ever visits R (and thus fails) is bounded by ϕ.

3.2.2 Back to the urn
The number of red balls in the urn is stochastically dominated by the random walk above.
The challenge is that the number of iterations one has to play before an effective iteration
happens (thus, corresponding to one step of the above walk), depends on the number of red
balls, and behaves like the coupon collector problem. Specifically, if there are r ≤ R red balls
in the urn, then the probability for an effective step is P±(r) ≥ (1− P (r))(r/n) ≥ r/2n, as
P (r) ≤ 1/2. This implies that, in expectation, one has to wait at most 2n/r iterations before
an effective iteration happens.

I Lemma 13. Let ϕ > 0 be the probability of failure. For any value r ≤ R, the urn spends
at most O

(
(n/r) log(ϕ−1)

)
regular iterations, throughout the game, having exactly r balls in

it, with probability ≥ 1− ϕ.

I Lemma 14. Let ϕ > 0 and ϑ ∈ (0, 1) be parameters, and assume that n = Ω
(
t2

ϑ
ln 1
ϕ

)
.

The total number of regular iterations one has to play till the urn contains only blue balls, is
O
(
n logn log(nϕ−1)

)
, and this bound holds with probability ≥ 1− ϕ.

S. Har-Peled and M. Jones 41:7

3.3 Approximating a centerpoint
3.3.1 The algorithm
Before describing the algorithm, we need the following well known facts [9]:
(a) Radon’s theorem: Given a set T of d+ 2 points in Rd, one can partition T into two

non-empty sets T1, T2, such that CH(T1) ∩ CH(T2) 6= ∅. A point p ∈ CH(T1) ∩ CH(T2)
is a Radon point.

(b) Computing a Radon point can be done by solving a system of d+ 1 linear equalities in
d+ 2 variables. This can be completed in O(d3) time using Gaussian elimination.

(c) A Radon point is a 2/(d+ 2)-centerpoint of T .
(d) Let h+ be a halfspace containing only one point of T . Then, a Radon point p of T is

contained in Rd \ h+ [1].

The algorithm in detail

Let P be a set of n points in Rd for which we would like to approximate its centerpoint. To
this end, let Q be initially P . In each iteration the algorithm randomly picks d+ 2 points
(with repetition) from Q, computes their Radon point, randomly deletes any point of Q, and
inserts the new Radon point into the point set Q. The claim is that after a sufficient number
of iterations, any point of Q is a f(d)-centerpoint of P , where f(d) = Θ(1/d2) (its exact
value is specified below in Eq. (3.1)).

I Remark 15. The algorithm above is a variant of the algorithm of Clarkson et al. [1].
Their algorithm worked in rounds, in each round generating n new Radon points, and then
replacing the point set with this new set, repeating this sufficient number of times. Our
algorithm on the other hand is a “continuous” process.

Intuition

A Radon point is a decent center for the points defining it. Visually, the above algorithm
causes the points to slowly migrate towards the center region of the original point set.

To see why this is true, pick an arbitrary halfspace h+ that contains exactly f(d)n points
of P . In each iteration, only if we picked two (or more) points that are in Q ∩ h+, the new
point might be in h+. Observe that we are in the setting of Radon’s urn with t = d + 2.
Indeed, color all the points inside h+ as red, and all the points outside as blue. To apply
the Radon’s urn analysis above, we require that (1− ϑ)R = f(d)n, which by the choice of
R = (1− 2ξ)n/t2 in Lemma 10 (and recalling ξ = 1/6) implies that

(1− ϑ) 2n
3(d+ 2)2 = f(d)n ⇐⇒ f(d) = 2(1− ϑ)

3(d+ 2)2 ≥
1− ϑ

2(d+ 2)2 (3.1)

where ϑ ∈ (0, 1). We can now apply the Radon’s urn analysis to argue that after sufficient
number of iterations, all the points of Q are outside h+. Naturally, we need to apply this
analysis to all halfspaces.

3.3.2 Analysis
Consider all half-spaces that might be of interest. To this end, consider any hyperplane
passing through d points of P , and translate it so that it contains on one of its sides
exactly f(d)n points (naturally, the are two such translations). Each such hyperplane thus
defines two natural halfspaces. Let H be the resulting set of halfspaces. Observe that

SoCG 2019

41:8 Journey to the Center of the Point Set

|H| ≤ 2
(
n
d

)
≤ 2(ne/d)d. If Q does not contain any point in any of the halfspaces of H then

all its points are f(d)-centerpoints. In particular, one can think about this as playing |H|
parallel Radon’s urn games. We want the algorithm to succeed with probability ≥ 1 − ϕ.
Setting the probability of success for each halfplane of H to be ϕ/ |H|, and by Lemma 14,
we have that all of these halfspaces are empty after playing

O
(
n logn log(n|H|ϕ−1)

)
= O

(
dn logn log(n/ϕ)

)
iterations, with probability of success being 1− |H| (ϕ/ |H|) = 1− ϕ by the union bound.
Using Lemma 14 requires that n = Ω

(
t2ϑ−1 ln(|H|/ϕ)

)
= Ω

(
ϑ−1d3 lnn + ϑ−1d2 lnϕ−1)

which holds for n = Ω(ϑ−1d3 ln d+ ϑ−1d2 lnϕ−1).
Using the fact that computing a Radon point for d+ 2 points in Rd can be done in O(d3)

time, we obtain the following result.

I Lemma 16. Let ϕ > 0 and ϑ ∈ (0, 1) be parameters, and let P be a set of n =
Ω(ϑ−1d3 ln d + ϑ−1d2 lnϕ−1) points in Rd. Let α = 1−ϑ

2(d+2)2 . Then, one can compute a
α-centerpoint of P via a randomized algorithm. The running time of the randomized algo-
rithm is O

(
d3 · dn logn log(n/ϕ)

)
= O(d4n logn log(n/ϕ)), and it succeeds with probability

≥ 1− ϕ.

I Theorem 17. Given a set P of n points in Rd, a parameter ϕ, and a constant ϑ ∈
(0, 1), one can compute a 1−ϑ

2(d+2)2 -centerpoint of P . The running time of the algorithm is
O
(
ϑ−3d7 log3 d log3 ϕ−1), and it succeeds with probability ≥ 1− ϕ.

Proof. The idea is to pick a random sample S from P that is a (ρ, ϑ/8)-relative approximation
for halfspaces, where ρ = 1/(10d2). This range space has VC dimension d + 1, and by
Theorem 7, a sample of size

µ = O
(
ρ−1ϑ−2(d log ρ−1 + logϕ−1)

)
= O

(
d2ϑ−2(d log d+ logϕ−1)

)
is a (ρ, ϑ/8)-relative approximation.

Running the algorithm of Lemma 16 on S with ϑ/8 yields a τ -centerpoint c of S, where
τ = 1−ϑ/8

2(d+2)2
≥ ρ for d ≥ 2. By the relative approximation property, this is a (1 ± ϑ/8)τ -

centerpoint of P . Therefore c is an α-centerpoint for P , where

α = (1− ϑ/8)τ = (1− ϑ/8)2

(d+ 2)2 ≥ 1− ϑ
(d+ 2)2 .

By Lemma 16, the running time of the resulting algorithm is

O(d4µ logµ log(µ/ϕ)) = O
(
ϑ−2 log2 ϑ−1d7 log3 d log3 ϕ−1) = O

(
ϑ−3d7 log3 d log3 ϕ−1).J

Now, one can repeat the above calculations with the parameter ξ. Intuitively, as ξ
approaches zero, the random walk becomes less unbalanced since it will move left with
probability 1/2 + ξ and right with probability 1/2− ξ. Because of this, there is an increased
chance that the random walk will reach R (and thus fail). In order to preserve that the
random walk succeeds with probability at least 1 − ϕ, the sample size n must depend on
the parameter ξ. In fact, the parameter ξ allows us to compute centerpoints with quality
arbitrarily close to 1/(d+ 2)2.

I Theorem 18. Given a set P of n points in Rd, a parameter ϕ, and a constant γ ∈
(0, 1), one can compute a 1−γ

(d+2)2 -centerpoint of P . The running time of the algorithm is
O
(
γ−4d7 log3d log3(γ−1ϕ−1)), and it succeeds with probability ≥ 1− ϕ.

S. Har-Peled and M. Jones 41:9

I Remark 19. The above compares favorably to the result of [1, Corollary 3] – they get
a running time of O(d9 log d+ d8 log2 ϕ−1), which is slower by roughly a factor of d2, and
computes a 1

4.08(d+2)(d+1) -centerpoint of P – the quality of the centerpoint is roughly worse
by a factor of four.

4 Application I: Algorithms with oracle access

In this section we discuss two applications of the improved centerpoint algorithm. Both
applications revolve around the idea of oracle access. In the first application, we are interested
in lower bounding a convex function given an oracle to compute it’s gradient. In the second,
we utilize centerpoints in order to determine whether a given convex body C is ε-heavy using
a separation oracle.

4.1 Lowerbounding a function with a gradient oracle
I Definition 20. Let f : Rd → R be a convex function. For a number c ∈ R, define the level
set of f as Lf (c) =

{
p ∈ Rd

∣∣ f(p) ≤ c
}
. If f is a convex function, then Lf (c) is a convex

set for all c ∈ R.

I Definition 21. Let f : Rd → R be a convex (and possibly non-differentiable) function.
For a point p ∈ Rd, a vector v ∈ Rd is a subgradient of f at p if for all q ∈ Rd, f(q) ≥
f(p) + 〈v, q − p〉. The subdifferential of f at p ∈ Rd, denoted by ∂f(p), is the set of all
subgradients v ∈ Rd of f at p. When the domain of f is Rd and f is convex, then ∂f(p) is a
non-empty set for all p ∈ Rd.1

I Theorem 22. Let f : Rd → R be a convex (possibly non-differentiable) function and P a
set of n points in Rd. Assume that one has access to an oracle which given p ∈ Rd returns
an arbitrary element in the subdifferential ∂f(p). With O(d2 logn) queries to the oracle, one
can compute a point q ∈ Rd (not necessarily in P) such that f(q) ≤ minp∈P f(p).

Proof. Let P1 = P , and Pi ⊆ P denote the set of remaining points at the beginning of the
ith iteration. In iteration i, for some constant c > 0, compute a (c/d2)-centerpoint ci of Pi
using Theorem 17 in time O(d7 log3 d) with success probability 1/2. Define Ci = Lf (f(ci)).
We now use the oracle to obtain subgradient vector v ∈ ∂f(ci). Using v, we obtain a
d-dimensional hyperplane hi which is tangent to Ci at ci. Let h+

i be the halfspace formed
from hi which contains the interior of Ci. If

∣∣h−i ∩ Pi∣∣ ≥ c |Pi| /d2, then such an iteration
is successful and we set Pi+1 = Pi \ (h−i ∩ Pi) and continue to iteration i + 1. Otherwise
the iteration has failed and we repeat the ith iteration. This procedure is repeated until we
reach an iteration τ in which |Pτ | is of constant size. At this stage, the algorithm returns
the point achieving the minimum of min1≤i≤τ f(ci) and minp∈Pτ

f(p). Because f is convex,
the algorithm returns a point q such that f(q) ≤ f(p) for all p ∈ P .

As for the number of queries, note that in each iteration the expected number of centerpoint
calculations (and thus queries) until a successful iteration is O(1). It remains to bound the
number of successful iterations. In each successful iteration, a c/d2-fraction of points are
discarded. Therefore there are at most τ iterations, for which τ is the smallest number with
(1− c/d2)τn smaller than some constant. This implies τ = O(d2 logn). J

1 Indeed, consider the epigraph of the function f , S =
{

(x, c)
∣∣ x ∈ Rd, c ∈ R, f(x) ≤ c

}
⊆ Rd+1. Observe

that S is a convex set. For a given point p ∈ Rd, by the supporting hyperplane theorem, there is some
hyperplane h tangent to S at the point (p, f(p)) ∈ Rd+1. The normal to this tangent hyperplane h is
one possible subgradient of f at p.

SoCG 2019

41:10 Journey to the Center of the Point Set

4.2 Functional nets: A weak net in the oracle model
4.2.1 The model, construction, and query process
Model

Given a convex body C ⊆ Rd, we assume oracle access to it. This is a standard model in
optimization. Specifically, given a query point q, the oracle either returns that q ∈ C, or
alternatively it returns a (separating) hyperplane h, such that C lies completely on one side
of h, and q lies on the other side.

Our purpose here is to precompute a small subset S ⊆ P , such that given any convex
body C (with oracle access to it), one can decide if C is ε-light. Specifically, the query
algorithm (using only S, and not the whole point set P) generates an (adaptive) sequence of
query points q1, q2, . . ., such that if any of these query points are in C, then the algorithm
considers C to be heavy. Otherwise, if all the query points miss C, then the algorithm outputs
(correctly) that C is light (i.e., m(C) < ε).

Construction

Given P , the set S is a random sample from P of size

µ = O
(
ε−1d3 log d log3 ε−1 + ε−1 logϕ−1) = Õ

(
d3/ε

)
, (4.1)

where ϕ > 0 is a prespecified parameter.

Query process

Given a convex body C (with oracle access to it), the algorithm starts with S0 = S. In the
ith iteration, the algorithm computes a Ω(1/d2)-centerpoint qi of Si using the algorithm of
Theorem 17, with failure probability at most 1/4. If the oracle returns that qi ∈ C, then
the algorithm returns qi as a proof of why C is considered to be heavy. Otherwise, the
oracle returns a separating hyperplane hi, such that the open halfspace h−i contains qi. Let
S′i = Si−1 \ h−i . If |S′i| ≤ (1 − γ) |Si−1|, where γ = 1/16d2 then we set Si = S′i (such an
iteration is called successful). Otherwise, we set Si = Si−1. The algorithm stops when
|Si| ≤ ε |S| /8.

4.2.2 Correctness
Let I be the set of indices of all the successful iterations, and consider the convex set
CI = ∩i∈Ih+

i . The set CI is an outer approximation to C. In particular, for an index j, let
Cj = ∩i∈I,i≤jh+

i be this outer approximation in the end of the jth iteration. We have that
Sj = S ∩ Cj .

The proofs of the following results can be found in the full version of the paper [4].

I Lemma 23. There are at most τ = O(d2 log ε−1) successful iterations. For any j, the
convex polyhedron Cj is defined by the intersection of at most τ closed halfspaces.

Let Hτ be the set of all of convex polyhedra in Rd that are formed by the intersection of
τ closed halfspaces.

I Observation 24. The VC dimension of (Rd,Hτ) is

D = O(dτ log τ) = O
(
d
(
d2 log ε−1) log

(
d2 log ε−1)) = O(d3(log d) log2 ε−1).

This follows readily, as the VC dimension of the range space of points in Rd and halfspaces is
d+ 1, and by the bound of Lemma 8 for the intersection of τ such ranges.

S. Har-Peled and M. Jones 41:11

I Lemma 25. The set S is a relative (ε/8, 1/4)-approximation for (P,Hτ), with probability
1− ϕ.

Proof. Using Theorem 7 with p = ε/8, ε̂ = 1/4, and ξ = D, implies that a random sample
of P of size

O
(
ε̂−2p−1(ξ log p−1 + logϕ−1)) = O

(
ε−1(D log ε−1 + logϕ−1))

= O
(
ε−1(d3 log d log3 ε−1 + logϕ−1))

is the desired relative (p, ε̂)-approximation with probability ≥ 1− ϕ. And this is indeed the
size of S, see Eq. (4.1). J

I Lemma 26. Given a convex query body C, the expected number of oracle queries per-
formed by the algorithm is O(d2 log ε−1), and the expected running time of the algorithm is
O(d9ε−1polylog), where polylog = O

(
log(dε−1ϕ−1)O(1)).

I Lemma 27. Assuming that S is the desired relative approximation, then for any query
body C, if the algorithm declares that it is ε-light, then |C ∩ P | < εn.

The above implies the following.

I Theorem 28. Let P be a set of points in Rd, and let ε, ϕ > 0 be parameters. Let S be a
random sample of P of size

µ = O
(
ε−1d3 log d log3 ε−1 + ε−1 logϕ−1) = Õ(ε−1d3).

Then, for a given query convex body C endowed with an oracle access, the algorithm
described above, which uses only S, computes a sequence of query points q1, . . . , qm, such that
either:
(i) one of the points qi ∈ C, and the algorithm outputs qi as a “proof” that C is ε-heavy, or
(ii) the algorithm outputs that |C ∩ P | < εn.

The query algorithm has the following performance guarantees:
(a) The expected number of oracle queries is E[m] = O(d2 log ε−1).
(b) The algorithm itself (ignoring the oracle queries) runs in Õ

(
d9ε−1) time

The output of the algorithm is correct, for all convex bodies, with probability ≥ 1− ϕ.

I Remark 29. One may hope to bound the probability of the algorithm reporting a false
positive. However this is inherently not possible for any weak ε-net construction. Indeed, the
algorithm can fail to distinguish between a polygon that contains at least εn of the points
of P and a polygon that contains none of the points of P . Consider n points P lying on a
circle in R2. Choose εn of these points on the circle, and let C be the convex hull of these
points. Clearly C contains at least εn points of P . Now, take each vertex in C and “slice” it
off, forming a new polygon C′ that contains no points from P . However, C′ is still a large
polygon and as such may contain a centerpoint during the execution of the above algorithm.
Therefore our algorithm may report that C′ contains a large fraction of the points, even
though C′ is contains no points of P , and so it fails to distinguish between C and C′.
I Remark 30. Clarkson et al. [1] provide also a randomized algorithm that finds a

(1
d+1 − γ

)
-

centerpoint with probability 1− δ in time O
([
dγ−2 log(dγ−1)

]d+O(1) log δ−1). We could use
this algorithm instead of Theorem 17 in the query process. Since we are computing a better
quality centerpoint, the number of iterations τ and sample size µ would be smaller by a
factor of d. Specifically, τ = O(d log ε−1) and from Lemma 8, the VC dimension of the range

SoCG 2019

41:12 Journey to the Center of the Point Set

space S = (P,Hτ) becomes D = O(d2 log d log2 ε−1). Following the proof of Lemma 25, we
can construct a sample S which is (ε/8, 1/4)-relative approximation for S with probability
1− ϕ of size

µ = O
(
ε−1(D log ε−1 + logϕ−1)

)
= O

(
ε−1(d2 log d log3 ε−1 + logϕ−1)

)
. (4.2)

5 Application II: Constructing center nets

We next introduce a strengthening of the concept of a weak ε-net. Namely, we require that
there is a point p in the net which stabs an ε-heavy convex body C, and that p is also a good
centerpoint for C ∩ P .

I Definition 31. For a set P of n points in Rd, and parameters ε, α ∈ (0, 1), a subset
W ⊆ Rd is an (ε, α)-center net if for any convex shape C, such that |P ∩ C| ≥ εn, we have
that there is an α-centerpoint of P ∩ C in W.

In this section we prove existence of an (ε, α)-center netW of size roughly Od(ε−d
2), where

α = c1

(d+ 1) log ε−1 ,

and c1 ∈ (0, 1) is some fixed constant to be specified shortly. Note that the quality of the
centerpoint is worse by a factor of log ε−1 than the best one can hope for.

5.1 The construction
The construction of the center net will be based an algorithm for constructing a weak ε-net
for P . In particular, the construction algorithm will use the following two results (the proofs
can be found in the full version of the paper [4]).

I Lemma 32. Given a set P of n points in Rd, one can compute a set Q of O
(
nd

2) points,
such that for any subset P ′ ⊆ P , there is a 1/(d+ 1)-centerpoint of P ′ in Q.

I Lemma 33. Let P be a set of n points in Rd. Let S be a random sample from P of size
µ = Õ(ε−1d2), see Eq. (4.2) for the exact bound. Then, one can compute a set of points W
from S, of size

O(µd
2
) = O

((
ε−1(d2 log d log3 ε−1 + logϕ−1)

)d2
)

which is a weak ε-net for P with probability ≥ 1− ϕ.

I Remark 34. A similar construction of a weak ε-net, to the one in Lemma 33, from a small
sample was described by Mustafa and Ray [12]. Their sample has exponential dependency
on the dimension, so the resulting weak ε-net has somewhat worse dependency on the
dimension than our construction. In any case, these constructions are inferior as far as the
dependency on ε, compared to the work of Matoušek and Wagner [10], which shows a weak
ε-net construction of size Od(ε−d(log ε−1)O(d2 log d)).

The idea will be to repeat the construction of the net of Lemma 33, with somewhat worse
constants. Specifically, take a sample S of size µ = Õ(ε−1d2) from P , see Eq. (4.2) for the
exact bound. Next, we construct the set W for S, using the result of Lemma 32. Return W
as the desired (ε, α)-center net.

S. Har-Peled and M. Jones 41:13

5.2 Correctness
The proof is algorithmic. Fix any convex ε-heavy body C, and let S1 = S be the active set
and let P1 = C ∩ P be the residual set in the beginning of the first iteration.

We now continue in a similar fashion to the algorithm of Theorem 28. In the ith iteration,
the algorithm computes the 1/(d+ 1)-centerpoint qi of Si (running times do not matter here,
so one can afford computing the best possible centerpoint). If qi is a 2α-centerpoint for Pi,
then qi is intuitively a good centerpoint for P , and the algorithm returns qi as the desired
center point. Observe that by construction, qi ∈ W as desired.

If not, then there exists a closed halfspace h+
i containing qi and at most 2α |Pi| points of

Pi. Let

Pi+1 = Pi \ h+
i and Si+1 = Si \ h+

i .

The algorithm now continues to the next iteration.

Analysis

The key insight is that the active set Si shrinks much faster than the residual set Pi. However,
by construction, Si provides a good upper bound to the size of P . Now once the upper
bound provided by Si on the size of Pi is too small, this would imply that the algorithm
must have stopped earlier, and found a good centerpoint.

I Lemma 35. Let τ =
⌈
1 + 3(d+ 1) + (d+ 1) log ε−1⌉ , and α = 1/(4τ). Assuming that S

is a relative (ε/8, 1/4)-approximation for the range space S = (P,Hτ), the above algorithm
stops after at most τ iterations.

I Lemma 36. The above algorithm outputs a α-centerpoint of P ∩ C.

Arguing as in Remark 30 implies the following.

I Corollary 37. For the above algorithm to succeed with probability ≥ 1− ϕ, the sample S
needs to be a sample of the size specified by Eq. (4.2).

5.3 The result
I Theorem 38. Let P be a set of n points in Rd, and ε > 0 be a parameter. For γ = log(1/ε),
there exists a

(
ε,Ω(1/(dγ))

)
-center netW (which is also a weak ε-net) of P (see Definition 31).

The size of the net W is O(µd2) ≈ Od(ε−d
2), where µ = Õ(ε−1d2), see Eq. (4.2) for the exact

bound.

Proof. The theorem follows readily from the above, by setting ϕ = 1/2. J

References
1 K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating

center points with iterative Radon points. Internat. J. Comput. Geom. Appl., 6:357–377, 1996.
URL: http://cm.bell-labs.com/who/clarkson/center.html.

2 S. Har-Peled. Geometric Approximation Algorithms, volume 173 of Math. Surveys & Mono-
graphs. Amer. Math. Soc., Boston, MA, USA, 2011. doi:10.1090/surv/173.

3 S. Har-Peled and M. Sharir. Relative (p, ε)-Approximations in Geometry. Discrete Comput.
Geom., 45(3):462–496, 2011. doi:10.1007/s00454-010-9248-1.

4 Sariel Har-Peled and Mitchell Jones. Journey to the Center of the Point Set. CoRR,
abs/1712.02949, 2019. arXiv:1712.02949.

SoCG 2019

http://cm.bell-labs.com/who/clarkson/center.html
http://dx.doi.org/10.1090/surv/173
http://dx.doi.org/10.1007/s00454-010-9248-1
http://arxiv.org/abs/1712.02949

41:14 Journey to the Center of the Point Set

5 D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete Comput. Geom.,
2:127–151, 1987. doi:10.1007/BF02187876.

6 C. Keller, S. Smorodinsky, and G. Tardos. Improved bounds on the Hadwiger-Debrunner
numbers. ArXiv e-prints, December 2015. arXiv:1512.04026.

7 C. Keller, S. Smorodinsky, and G. Tardos. On Max-Clique for intersection graphs of sets and
the Hadwiger-Debrunner numbers. In Philip N. Klein, editor, Proc. 28th ACM-SIAM Sympos.
Discrete Algs. (SODA), pages 2254–2263. SIAM, 2017. doi:10.1137/1.9781611974782.148.

8 Y. Li, P. M. Long, and A. Srinivasan. Improved Bounds on the Sample Complexity of Learning.
J. Comput. Syst. Sci., 62(3):516–527, 2001.

9 J. Matoušek. Lectures on Discrete Geometry, volume 212 of Grad. Text in Math. Springer,
2002. doi:10.1007/978-1-4613-0039-7/.

10 J. Matoušek and U. Wagner. New Constructions of Weak epsilon-Nets. Discrete Com-
put. Geom., 32(2):195–206, 2004. URL: http://www.springerlink.com/index/10.1007/
s00454-004-1116-4.

11 G. L. Miller and D. R. Sheehy. Approximate centerpoints with proofs. Comput. Geom.,
43(8):647–654, 2010. doi:10.1016/j.comgeo.2010.04.006.

12 N. H. Mustafa and S. Ray. Weak ε-nets have basis of size O(ε−1 log ε−1) in any dimension.
Comput. Geom. Theory Appl., 40(1):84–91, 2008. doi:10.1016/j.comgeo.2007.02.006.

13 N. H. Mustafa and K. Varadarajan. Epsilon-approximations and epsilon-nets. CoRR,
abs/1702.03676, 2017. arXiv:1702.03676.

14 A. Rok and S. Smorodinsky. Weak 1/r-Nets for Moving Points. In Proc. 32nd Int. Annu.
Sympos. Comput. Geom. (SoCG), pages 59:1–59:13, 2016. doi:10.4230/LIPIcs.SoCG.2016.
59.

15 N. Rubin. An Improved Bound for Weak Epsilon-Nets in the Plane. In Proc. 59th Annu. Sympos.
on Found. of Comput. Sci., (FOCS), pages 224–235, 2018. doi:10.1109/FOCS.2018.00030.

16 V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory Probab. Appl., 16:264–280, 1971.

http://dx.doi.org/10.1007/BF02187876
http://arxiv.org/abs/1512.04026
http://dx.doi.org/10.1137/1.9781611974782.148
http://dx.doi.org/10.1007/978-1-4613-0039-7/
http://www.springerlink.com/index/10.1007/s00454-004-1116-4
http://www.springerlink.com/index/10.1007/s00454-004-1116-4
http://dx.doi.org/10.1016/j.comgeo.2010.04.006
http://dx.doi.org/10.1016/j.comgeo.2007.02.006
http://arxiv.org/abs/1702.03676
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.59
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.59
http://dx.doi.org/10.1109/FOCS.2018.00030

Preprocessing Ambiguous Imprecise Points
Ivor van der Hoog
Department of Information and Computing Sciences, Utrecht University, The Netherlands
i.d.vanderhoog@uu.nl

Irina Kostitsyna
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
i.kostitsyna@tue.nl

Maarten Löffler
Department of Information and Computing Sciences, Utrecht University, The Netherlands
m.loffler@uu.nl

Bettina Speckmann
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
b.speckmann@tue.nl

Abstract
Let R = {R1, R2, . . . , Rn} be a set of regions and let X = {x1, x2, . . . , xn} be an (unknown) point set
with xi ∈ Ri. Region Ri represents the uncertainty region of xi. We consider the following question:
how fast can we establish order if we are allowed to preprocess the regions in R? The preprocessing
model of uncertainty uses two consecutive phases: a preprocessing phase which has access only to
R followed by a reconstruction phase during which a desired structure on X is computed. Recent
results in this model parametrize the reconstruction time by the ply of R, which is the maximum
overlap between the regions in R. We introduce the ambiguity A(R) as a more fine-grained measure
of the degree of overlap in R. We show how to preprocess a set of d-dimensional disks in O(n logn)
time such that we can sort X (if d = 1) and reconstruct a quadtree on X (if d ≥ 1 but constant) in
O(A(R)) time. If A(R) is sub-linear, then reporting the result dominates the running time of the
reconstruction phase. However, we can still return a suitable data structure representing the result
in O(A(R)) time.

In one dimension, R is a set of intervals and the ambiguity is linked to interval entropy, which
in turn relates to the well-studied problem of sorting under partial information. The number of
comparisons necessary to find the linear order underlying a poset P is lower-bounded by the graph
entropy of P . We show that if P is an interval order, then the ambiguity provides a constant-factor
approximation of the graph entropy. This gives a lower bound of Ω(A(R)) in all dimensions for
the reconstruction phase (sorting or any proximity structure), independent of any preprocessing;
hence our result is tight. Finally, our results imply that one can approximate the entropy of interval
graphs in O(n logn) time, improving the O(n2.5) bound by Cardinal et al.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases preprocessing, imprecise points, entropy, sorting, proximity structures

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.42

Related Version Find the full version on https://arxiv.org/abs/1903.08280.

Funding Ivor van der Hoog: Supported by the Netherlands Organisation for Scientific Research
(NWO); 614.001.504.
Maarten Löffler : Partially supported by the Netherlands Organisation for Scientific Research (NWO);
614.001.504.
Bettina Speckmann: Partially supported by the Netherlands Organisation for Scientific Research
(NWO); 639.023.208.

Acknowledgements The authors would like to thank Jean Cardinal for insightful discussions.

© Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 42; pp. 42:1–42:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:i.d.vanderhoog@uu.nl
mailto:i.kostitsyna@tue.nl
mailto:m.loffler@uu.nl
mailto:b.speckmann@tue.nl
https://doi.org/10.4230/LIPIcs.SoCG.2019.42
https://arxiv.org/abs/1903.08280
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Preprocessing Ambiguous Imprecise Points

1 Introduction

A fundamental assumption in classic algorithms research is that the input data given to an
algorithm is exact. Clearly this assumption is generally not justified in practice: real-world
data tends to have (measurement or labeling) errors, heterogeneous data sources introduce
yet other type of errors, and “big data” is compounding the effects. To increase the relevance
of algorithmic techniques for practical applications, various paradigms for dealing with
uncertain data have been introduced over the past decades. Many of these approaches have
in common that they represent the uncertainty, imprecision, or error of a data point as
a disk in a suitable distance metric which we call an uncertainty region. We focus on a
fundamental problem from the realm of computation with uncertainties and errors: given a
set of imprecise points represented by uncertainty regions, how much proximity information
do the regions contain about the imprecise points?

Preprocessing model. We study this problem within the preprocessing framework initially
proposed by Held and Mitchell [11]. In this framework we have a set R = {R1, R2, . . . , Rn}
of regions and an point set X = {x1, x2, . . . , xn} with xi ∈ Ri This model has 2 consecutive
phases: a preprocessing phase followed by a reconstruction phase. In the preprocessing phase
we have access only to R and we typically want to preprocess R in O(n logn) time to create
some linear-size auxiliary data structure which we will denote by Ξ. In the reconstruction
phase, we have access to X and we want to construct a desired output on X using Ξ faster
than would be possible otherwise. Löffler and Snoeyink [18] were the first to use this model
as a way to deal with data uncertainty: one may interpret the regions R as imprecise points,
and the points in X as their true (initially unknown) locations. This interpretation of the
preprocessing framework has been successfully applied to various problems in computational
geometry [2, 3, 6, 7, 16, 23]. Several results restrict R to be a set of disjoint (unit) disks in
the plane, while others consider partially overlapping disks. Traditionally, the ply ∆(R) of
R, which measures the maximal number of overlapping regions, has been used to measure
the degree of overlap, leading, for example, to reconstruction times of O(n log ∆(R)).

The ply is arguably a somewhat coarse measure of the degree of overlap of the regions.
Consider the following example: suppose that we have a collection of

√
n disks in the plane

that overlap in one point and that the remainder of R is mutually disjoint (see Figure 1 left).
Then ∆(R) =

√
n and the resulting time complexity of the reconstruction phase is O(n logn)

even though it might be possible to achieve better bounds (R is arguably not in a worst-case
configuration for that given ply, see Figure 1 right).

Ambiguity. We introduce the ambiguity A(R) as a more fine-grained measure of the degree
of overlap in R. The ambiguity is based on the number of regions each individual region
intersects (see Figure 1). We count this number with respect to particular permutations of

Figure 1 Two sets of 16 disks each in the plane, both with a ply of 4. The ambiguity of the set
on the right is four times as large as the ambiguity of the set on the left.

I. van der Hoog, I. Kostitsyna, M. Löffler, and B. Speckmann 42:3

the regions: for each region we count only the overlap with regions that appear earlier in the
permutation. A proper technical definition of ambiguity can be found in Section 2. We also
show how to compute a 3-approximation of the ambiguity in O(n logn) time.

Ambiguity and entropy. In one dimension, R is a set of intervals and the ambiguity is
linked to interval (and graph) entropy (refer to the full version for a definition), which in turn
relates to the well-studied problem of sorting under partial information. Fredman [9] shows
that if the only information we are given about a set of values is a partial order P , and e(P)
is the number of linear extensions (total orders compatible with) of P , then we need at least
Ω(log e(P)) comparisons to sort the values. Brightwell and Winkler prove that computing
the number of linear extensions e(P) is #P -complete [1]. Hence efforts have concentrated on
computing approximations, most notably via the concept of graph entropy as introduced
by Körner [14]. Specifically, Khan and Kim [13] prove that log e(P) = Θ(n ·H(G)) where
H(G) denotes the entropy of the incomparability graph G of the poset P . To the best of our
knowledge there is currently no exact algorithm to compute H(G). Cardinal et al. [4] describe
the fastest known algorithm to approximate H(G), which runs in O(n2.5) time. Refer to the
full version for a more in-depth discussion of sorting and its relation to graph entropy.

We consider the special case where the partial order is induced by uncertainty intervals. We
define the entropy H(R) of a set of intervals as the entropy of their intersection graph (which
is also an incomparability graph) using the definition of graph entropy given by Körner. In
this setting we prove that the ambiguity A(R) provides a constant-factor approximation of the
interval entropy (see Section 2). Since we can compute a constant-factor approximation of the
ambiguity in O(n logn) time, we can hence also compute a constant-factor approximation of
the entropy of interval graphs in O(n logn) time, thereby improving the result by Cardinal et
al. [4] for this special case.

Ambiguity and reconstruction. Since Ω(log e(P)) is a lower bound for the number of
comparisons needed to complete P into a total order, Ω(A(R)) is a lower bound for the
reconstruction phase in the preprocessing model when R is a set of intervals and the goal is
to sort the unknown points in X. This lower bound extends to higher dimensions and to
proximity structures in general, independent of any preprocessing.

The ambiguity A(R) ranges between 0 and Θ(n logn) for a set of n regions R. If the
value of A(R) lies between Θ(n) and Θ(n logn) then we can preprocess R in O(n logn) time
and sort in O(A(R)) time (in one dimension for arbitrary intervals) or build a quadtree in
O(A(R)) time (in all dimensions for unit disks).

If the ambiguity lies between 0 and Θ(n), then reporting the results explicitly in Ω(n) time
dominates the reconstruction time. But the ambiguity suggests that the information-theoretic
amount of work necessary to compute the results should be lower than Θ(n). To capture
this, we hence introduce a new variant of the preprocessing model, which allows us to return
a pointer to an implicit representation of the results.

Specifically, in one dimension, R is a set of intervals and we aim to return the sorted
order of the unknown points in X. If, for example, all intervals are mutually disjoint, then
A(R) = O(1) and we have essentially no time for the reconstruction phase. However, a
binary search tree T on R, which we can construct in O(n logn) time in the preprocessing
phase, actually captures all necessary information. In the reconstruction phase we can hence
return a pointer to T as an implicit representation of the sorted order. In Section 3 we show
how to handle arbitrary sets of intervals in a similar manner. That is, we describe how to
construct in O(n logn) time an auxiliary data structure Ξ on R in the preprocessing phase
(without access to X), such that, in the reconstruction phase (using X), we can construct a
linear-size AVL-tree T on X in O(A(R)) = O(log e(R)) time, which is tight.

SoCG 2019

42:4 Preprocessing Ambiguous Imprecise Points

1

2 3

4 5

Figure 2 A set of overlapping intervals with a permutation. In this figure Γπ4 = {R1, R2, R3, R4}.
In all figures, bottom intervals are indicated in blue (in this case this is only R1).

In all dimensions, we consider R to be a set of unit disks and our aim is to return a
quadtree T on the points in X where each point in X lies in a unique quadtree cell. Note that
in 2 dimensions, T also allows us to construct e.g. the Delaunay triangulation of X in linear
time [2]. However, we show that constructing such a quadtree explicitly in O(A(R)) time is
not possible, and the work necessary to distinguish individual points could dominate the
running time and overshadow the detail in the analysis brought by the ambiguity measure.
We hence follow Buchin et al. [2] and use so-called λ-deflated quadtrees which contain up to a
constant λ points in each leaf. From T one can construct a quadtree on X where each point
lies in a unique quadtree cell in linear time. In Section 4 we describe how to reconstruct
a linear-size λ-deflated quadtree T (with a suitable constant λ) in O(A(R)) = O(log e(R))
time, which is tight (in fact, in one dimension our result also extends to non-unit intervals).

2 Ambiguity

We introduce a new measure on a set of regions R to reflect the degree of overlap, which we
call the ambiguity. The sequence in which we process regions matters (refer to Section 2.1),
thus we distinguish between the π-ambiguity defined on a given permutation of the regions
in R, and the minimum ambiguity defined over all possible permutations. We demonstrate
several properties of the ambiguity, and discuss its relation to graph entropy when R is a set
of intervals in one dimension.

Processing permutation. Let R be a set of n regions and let Rπ = 〈R1, R2, . . . , Rn〉 (note
that for all i, the region Ri could be any region depending on the permutation π) be the
sequence of elements in R according to a given permutation π. Then we say that π is a
processing permutation of R. Furthermore, let Rπ≤i := {Rj | j ≤ i} be the prefix of Rπ, that
is, the first i elements in the sequence Rπ. A permutation π is containment-compatible if
Ri ⊂ Rj implies i < j for all i and j [8]. When π is clear from context, we denote Rπ by R.

Contact set (for a permutation π). For a region Ri ∈ Rπ we define its contact set Γπi to
be the set of regions which precede or are equal to Ri in the order π, and which intersect
Ri: Γπi := {Rj ∈ Rπ≤i | Rj ∩ Ri 6= ∅}. Note that a region is always in its own contact set.
A region Ri whose contact set Γπi contains only Ri itself is called a bottom region (refer to
Figure 2).

Ambiguity. For a set of regions R and a fixed permutation π we define the π-ambiguity
Aπ(R) :=

∑
i log |Γπi | (with the logarithm to the base 2). Observe that bottom regions do

not contribute to the value of the π-ambiguity. The ambiguity of R is now the minimal
π-ambiguity over all permutations π, A(R) := minπ∈ΠA

π(R).

I. van der Hoog, I. Kostitsyna, M. Löffler, and B. Speckmann 42:5

Aπ1(R) = log 1 + log 1 + log 1 + log 1 + log 5 Aπ2(R) = log 2 + log 2 + log 2 + log 2 + log 1

R1

R2

R3

R4

R5

R1

R2 R3

R4

R5

Figure 3 An example of the π-ambiguity induced by two permutations π1 (on the left) and π2

(on the right) of the same five intervals. The π1-ambiguity is log 5 and the π2-ambiguity is 4.

2.1 Properties of ambiguity
We show the following properties of ambiguity: (1) the π-ambiguity may vary significantly
with the choice of the processing permutation π, (2) in one dimension, the π-ambiguity for
any containment-compatible permutation π on a set of intervals R implies a 3-approximation
on the entropy of the interval graph of R, and (3) the permutation that realizes the ambiguity
is containment-compatible. Therefore in one dimension, the ambiguity of a set of intervals R
implies a 3-approximation of the entropy of the interval graph of R.

We start with the first property: it is easy to see that the processing permutation π has
a significant influence on the value of the π-ambiguity (refer to Figure 3). Even though
π-ambiguity can vary considerably, we show that if we restrict the permutations to be
containment-compatible, their π-ambiguities lie within a constant factor of the ambiguity.

Interval entropy. The entropy of a graph G was first introduced by Körner [14]. Since then
several equivalent definitions appeared [22]. We define the interval entropy H(R), for a set of
intervals R, as the entropy of the intersection graph of R. While investigating the question of
sorting an arbitrary poset, Cardinal et al. [4] found an interesting geometrical interpretation
of the poset entropy, which applies to our interval entropy: let a poset P describe a set of
(open) intervals R combinatorially, that is, for each Ri we know which intervals intersect Ri,
are contained in Ri, contain Ri, and are disjoint from Ri. Denote by E(R) the infinite set of
sets of intervals on the domain (0, 1) (that is, each I ∈ E(R) is a set of intervals, where each
interval Ii ∈ I has endpoints in (0, 1)) which induce the same poset as R. Then Cardinal et
al. prove the following lemma (see Figure 4 for an illustration):

I Lemma 1 ([4], Lemma 3.2 paraphrased).

H(R) = logn− min
I∈E(R)

{
1
n

∑
Ii∈I
− log |Ii|

}
.

We show that the π-ambiguity for any containment-compatible π is a 3-approximation of
n ·H(R). To achieve this we rewrite the lemma from Cardinal et al. in the following way,

H(R) = logn− min
I∈E(R)

{
1
n

∑
Ii∈I

(logn− log(n|Ii|))
}

= max
I∈E(R)

{
1
n

∑
Ii∈I

log(n|Ii|)
}
.

An embedding I gives each interval Ii a size between 0 and 1. To simplify the algebra later,
we re-interpret this size as the fraction (weight) of the domain (0, 1) that Ii occupies. We
associate with each I ∈ E(R) a set of weights W such that for all i, wi = |Ii|; we write
W ∼ E(R). From now on we consider embeddings on the domain (0, n): an interval then
has a size n|Ii| = nwi. The formula for the entropy becomes:

H(R) = 1
n

max
W∼E(R)

{
log
(∏
wi∈W

nwi

)}
. (1)

SoCG 2019

42:6 Preprocessing Ambiguous Imprecise Points

0 1
4

1
2

3
4 1 0 1

4
1
2

3
4 1 0 1

4
1
2

3
4 1

I1 I2 I3

Figure 4 Let R be a set of five intervals, where four intervals are mutually disjoint and contained
in one larger interval. We show three embeddings I1, I2, I3 ∈ E(R) of these intervals on the domain
(0, 1) with the same combinatorial properties. Embedding I1 shows that H(R) ≥ log 5− 1

5 log(1 ·
1
8 ·

1
8 ·

1
4 ·

1
4). I2 shows that H(R) ≥ log 5− 1

5 log(1
2 ·

1
8 ·

1
8 ·

1
8 ·

1
8) and I3 is the optimal embedding

which shows that H(R) = log 5− 1
5 log(1 · 1

4 ·
1
4 ·

1
4 ·

1
4).

Ambiguity and entropy. Next, we show that the interval entropy gives an upper bound
on the ambiguity. The entropy of R is the maximum over all embeddings on (0, n), so any
embedding of R on the domain (0, n) gives a lower bound on H(R). We will create an
embedding with a corresponding weight assignment W such that:

Aπ(R) = log
(∏
Ri∈R

|Γπi |
)
≤ log

(∏
wi∈W

(nwi)2

)
≤ 2nH(R) . (2)

We start with the original input embedding of R and we sort the coordinates of all the
endpoints (both left- and right-). To each endpoint p we assign a new coordinate k

2 if p is
the kth endpoint in the sorted order (indexing from 0). Thus, we obtain an embedding of R
on (0, n− 1

2). For any containment-compatible permutation π, the length of each interval Ri
in this embedding is at least 1

2 |Γ
π
i |, as each interval Ri contains at least |Γπi | − 1 endpoints

of the intervals from its contact set in its interior. Also note that the distance between
every right endpoint and the consecutive endpoint to the right is 1

2 . Thus, we can increase
the coordinate of every right endpoint by 1

2 and obtain an embedding of R on (0, n) with
a corresponding weight assignment W , such that the length of each interval Ri is at least
1
2 (|Γπi |+ 1). This allows us to prove the following lemma:

I Lemma 2. For any containment-compatible permutation π of a set of intervals R,

Aπ(R) ≤ 2nH(R).

Proof. Consider the embedding and corresponding weight assignment W constructed above.
Consider any containment-compatible permutation π. We split the intervals of R into four
sets depending on the size of their contact set: let A := {Ri | |Γπi | = 1}, B := {Ri | |Γπi | = 2},
C := {Ri | |Γπi | = 3} and D := R\{A,B,C}. Let these sets contain a, b, c and d intervals
respectively. Then, using Equation (1) for the entropy,

2nH(R) ≥
∏
Ri∈A

|Γπi |+ 1
2

∏
Ri∈B

|Γπi |+ 1
2

∏
Ri∈C

|Γπi |+ 1
2

∏
Ri∈D

|Γπi |+ 1
2

≥
(

2
2

)a(3
2

)b(4
2

)c(4
2

)d
. (3)

On the other hand,

2nH(R) ≥
∏
Ri∈R

|Γπi |+ 1
2 ≥

∏
Ri∈A

|Γπi |
∏
Ri∈B

3
4 |Γ

π
i |
∏
Ri∈C

2
3 |Γ

π
i |
∏
Ri∈D

1
2 |Γ

π
i |

=
(

3
4

)b(2
3

)c(1
2

)d
2A

π(R),

I. van der Hoog, I. Kostitsyna, M. Löffler, and B. Speckmann 42:7

as

|Γπi |+ 1
2

1 = |Γπi | , if Ri ∈ A ,
3
2 = 3

4 |Γ
π
i | , if Ri ∈ B ,

2 = 2
3 |Γ

π
i | , if Ri ∈ C ,

|Γπi |+ 1
2 ≥ 1

2 |Γ
π
i | , if Ri ∈ D .

Then, using Equation (3) we get

2nH(R) · 2nH(R) ≥
(

3
2

)b(4
2

)c(4
2

)d
·
(

3
4

)b(2
3

)c(1
2

)d
2A

π(R) ≥ 2A
π(R) ,

and therefore

2nH(R) ≥ Aπ(R) . J

We continue by showing that the ambiguity also gives an upper-bound for the interval entropy.
Starting with a helper lemma:

I Lemma 3. Suppose R is partitioned into two sets X and Y such that for each R ∈ X,R′ ∈
Y , R and R′ are disjoint. In any weight assignment W that realizes H(R), the intervals in X
together have length |X| and the intervals in Y together have length |Y | on the domain (0, n).

Proof. In Equation (1) we rewrote the formula for entropy in terms of weights: for any
weight assignment W ∼ E(R), wi is the proportion that Ri occupies on the domain, and we
embedded R on the domain (0, n). We can similarly embed R on the domain (0, λ) for an
arbitrary scalar λ. We define the relative entropy of R (refer to Figure 5 (top)) as:

H(R, λ) := 1
n

max
W∼E(R)

{
log
(∏
wi∈W

λwi

)}
.

Observe that H(R, n) = H(R) and that:

∀λ, µ, µwi =
(µ
λ

)
λwi ⇒ 2nH(X,µ) =

(µ
λ

)|X|
2nH(X,λ) . (4)

If the intervals in X can occupy a width of at most λ, then it is always optimal to give the
intervals in Y a total width of n− λ (since the entropy maximizes the product of the lengths
of intervals in X and Y). This implies:

2nH(X∪Y) = max
λ∈[0,n]

{2nH(X,λ) · 2nH(Y,n−λ)} .

See Figure 5 (bottom) for an illustration of the argument. If we now substitute Equation (4)
into this equation we get that the maximum is realized if λ = |X| which proves the lemma. J

I Lemma 4. Let π be any containment-compatible permutation, then nH(R) ≤ 3Aπ(R).

Proof. We defined R≤i as the prefix of R. We prove the lemma with induction on i.

Induction Hypothesis: ∀j ≤ ijH(R≤j , j) ≤ 3Aπ(R≤j) .

For i = 1 both the lefthand and the righthand side are 0. So we assume that the lemma
holds for all j ≤ i and we prove it for j = i+ 1. H(R≤i+1, i+ 1) is the relative entropy of
R≤(i+1) on the domain (0, i + 1). We know that 3Aπ(R≤(i+1) = 3Aπ(R≤i) + 3 log |Γi+1|.

SoCG 2019

42:8 Preprocessing Ambiguous Imprecise Points

0 1 2 3 4

H(R) = H(R, 5)

5 0 1 2 3

H(R, 3)

0 1 2 3 4

210H(X∪Y) = maxλ{210H(X,λ) · 210H(Y,10−λ)}

5 6 7 8 9 10

λ

Figure 5 (top left) A set R of five intervals and their optimal embedding for the entropy relative
to λ = 5. (top right) The optimal embedding of R for the entropy relative to λ = 3. Observe that
the proportion that each interval obtains of the domain is the same in both embeddings. (bottom)
An illustration of the argument for Lemma 3: we see a set X of 7 intervals and a set Y of 3 intervals
with the intervals in X disjoint from the intervals in Y . If we vary λ, we vary the total width on
which X and Y are embedded. The entropy is given by the maximal embedding and therefore found
by optimizing λ.

We make a distinction between two cases: |Γi+1| = 1 or otherwise. If |Γi+1| = 1 then Ri+1 is
disjoint from R≤i. Lemma 3 guarantees, that if we want to embed R≤i ∪ {Ri+1} on (0, i+ 1)
that Ri+1 gets a size of 1. The remaining intervals get embedded with a total width of i
which they already had in the previous iteration. So:

(i+ 1)H(R≤(i+1), i+ 1) = iH(Ri, i) + log 1 ≤ 3Aπ(R≤i) + 3 log |Γi+1| = 3Aπ(R≤(i+1)) .

In the second case |Γi+1| is at least 2. The other intervals used to be optimally embedded on
(0, i) and are now embedded on (0, i+ 1). So each of them expands with at most a factor
i+1
i or algebraically:

nH(R≤(i+1), i+ 1) ≤ nH(R≤i, i) + log
((

i+ 1
i

)i)
+ log((i+ 1)wi+1) ≤

nH(R≤i, i) + log e+ log((i+ 1)wi+1) .

There are i− |Γi+1| intervals disjoint from Ri+1 so Lemma 3 guarantees that (i+ 1)wi+1 ≥
|Γi+1| ≥ 2. It follows that:

nH(R≤(i+1), i+ 1) ≤ nH(R≤i, i) + 3 log |Γi+1|

which implies the Lemma. J

Lemmas 2 and 4 imply the following theorem.

I Theorem 5. For any set of intervals R in one dimension, for any containment-compatible
permutation π on R, Aπ(R) is a 3-approximation of nH(R).

I Corollary 6. For any set of intervals R in one dimension, the ambiguity A(R) is a
3-approximation of nH(R).

I. van der Hoog, I. Kostitsyna, M. Löffler, and B. Speckmann 42:9

Figure 6 A set of intervals with a containment graph with quadratic complexity.

Proof. The permutation which realizes the ambiguity of R must always be containment-
compatible. This is because swapping a region R with a region R′ that contains R in the
permutation π always improves the π-ambiguity. J

Let e(R) be the number of linear extensions of the poset induced by R. In the proof of
Lemma 3.2 [4] Cardinal et al. show that log e(R) ≤ nH(R) ≤ 2 log e(R). This implies
that the interval graph entropy is a lower-bound for constructing any unique linear order
underlying a poset. Proximity structures depend on sorting [5]. Thus, we conclude:

I Theorem 7. Reconstructing a proximity structure on R is lower-bounded by Ω(A(R)).

3 Sorting

Let R = {R1, R2, . . . , Rn} be a set of intervals and let X = {x1, x2, . . . , xn} be a set of
points (values) with xi ∈ Ri. We show how to construct an auxiliary structure Ξ on R in
the preprocessing phase without using X, such that, in the reconstruction phase, we can
construct a linear-size binary search tree T on X in Θ(A(R)) time. To achieve this, we first
construct a specific containment-compatible permutation π of R, and then show how to
maintain Ξ when we process the intervals in this order.

3.1 Level permutation
We need a processing permutation π of R with the following conditions:
(i) π is containment-compatible,
(ii) intervals containing no interval of R come first and are ordered from right to left and
(iii) we can construct π in O(n logn) time.
In Section 2.1 we showed that if condition (i) holds, the π-ambiguity is a lower-bound for
sorting X. In Section 3.2 we show that condition (ii) is useful to reconstruct an AVL-tree on
X in O(Aπ(R)) time. Condition (iii) bounds the time used in the preprocessing phase.

Below, we define two natural partitions of R based on the containment graph of R: the
height partition and the depth partition. However, a permutation compatible with the height
partition satisfies conditions (i) and (ii) but not (iii), and a permutation compatible with the
depth partition satisfies conditions (i) and (iii) but not (ii). Therefore, we define a hybrid
partition, which we call the level partition, which implies a permutation which does satisfy
all three conditions, below.

Containment graph. For a set of intervals R, its containment graph G(R) represents the
containment relations on R. G(R) is a directed acyclic graph where Ri contains Rj if and
only if there is a directed path from Ri to Rj and all intervals R ∈ R that are contained in
no other interval of R share a common root. The bottom intervals are a subset of the leaves
of this graph. Note that G(R) can have quadratic complexity (Figure 6).

SoCG 2019

42:10 Preprocessing Ambiguous Imprecise Points

H1

H2

H3

H4

D1

D2

D3

D4

Figure 7 (left) A set of intervals R and the corresponding containment graph G(R), leaves of
G(R) are purple. (middle) The height partition. (right) The depth partition.

Height and Depth partition. We define the height partition as the partition of R into m
levels H = H1 . . . Hm, Hi ⊆ R where all R ∈ Hj have height (minimal distance from R to
a leaf) j + 1 in G(R) or equivalently: the intervals in Hj+1 contain no intervals in R\H≤j
(Figure 7). We analogously define the depth partition as the partition of R into m levels
D = D1 . . . Dm, Di ⊆ R where all R ∈ Dj have depth (maximal distance from the root to R)
(m− j) in G(R). Clearly any permutation compatible with H or D satisfies condition (i).
All leaves of G(R) have height 1 so per definition are all in H1 and thus any permutation
compatible with H that sorts H1 satisfies condition (ii). Clearly the same is not true for
D. On the other hand, in Lemma 8 we show how to construct D in O(n logn) time. It is
unknown whether the height partition can be created in O(n logn) time (refer to the full
version).

I Lemma 8. For any set of intervals R we can construct D in O(n logn) time.

Proof. We iteratively insert intervals from left to right; refer to the full version. J

Level partition. We now define the level partition: a hybrid between H and D: L =
L1 . . . Lm, where all R ∈ Lj have depth (m − j) in G(R) except for the leaves of G(R),
which are in L1 regardless of their depth. We can compute the level partition from D in
O(n logn) time by identifying all leaves of G(R) with a range query. The level permutation
is the permutation where intervals in Li precede intervals in Lj and where within each level
the intervals are ordered from right to left. It can be constructed from L in O(n logn) time
by sorting.
Theorem 9 follows directly from the preceding discussion.

I Theorem 9. The level permutation satisfies conditions (i), (ii) and (iii).

3.2 Algorithm
We continue to describe a preprocessing and reconstruction algorithm to preprocess a set of
intervals R in O(n logn) time such that we can sort X in Θ(A(R)) time.

Anchors. Let π be the level permutation of R. In the preprocessing phase we build an
AVL-tree T on the bottom intervals. In the reconstruction phase, we insert each remaining
xi ∈ X into T in the order π in O(Aπ(R)) time. This implies that for bottom intervals we
are not allowed to spend even constant time and for each non-bottom interval Ri, we want to
locate xi in T in O(log |Γπi |) time. To achieve this, we supply every non-bottom interval R
with an anchor denoted by ⊥π(Ri). For a non-bottom interval R 6∈ L1, we define its anchor

I. van der Hoog, I. Kostitsyna, M. Löffler, and B. Speckmann 42:11

L3

L2

L1

Figure 8 The auxiliary structure Ξ. In the level L1 all non-bottom intervals are shown their
anchor. (top) A schematic representation of intervals in the level permutation π (from bottom
to top). (bottom) The Fibonacci tree T containing the subset Xb corresponding to the bottom
intervals. Note that we added one dummy node in red.

as an arbitrary interval contained in R. All intervals in L1 are ordered from right to left, so
for any non-bottom interval R ∈ L1, its right endpoint is contained in the interval preceding
it and we make this interval the anchor of R (refer to Figure 8).

Preprocessing phase. The auxiliary structure Ξ is an AVL-tree T on the bottom intervals,
augmented with a set of pointers leading from intervals to their anchors. We will implement
T as a leaf-based AVL-tree, i.e., where values are stored in the leaves, and inner nodes are
decision nodes. Finally, we will use a doubly linked list to connect the leaves of the tree.

Let Xb ⊂ X be the points corresponding to bottom intervals. Bottom intervals are
mutually disjoint and we can build an AVL-tree T on Xb without knowing their true values.
Recall that a Fibonacci tree is a tree binary where for every inner node, its left subtree has a
depth 1 greater than its right subtree. A Fibonacci tree is a valid AVL-tree and we construct
the AVL-tree over Xb as a Fibonacci tree where we add at most |Xb| dummy leaves with
value ∞ to ensure that the total number of nodes is a Fibonacci number. Refer to Figure 8
for an example. We remove the bottom intervals from R and for each non-bottom interval R
we identify its anchor ⊥π(R) and we supply R with a pointer to ⊥π(R). As the final step of
the preprocessing phase we connect the leaves of T in a doubly linked list. To summarize:
Ξ consists of a graph of intervals connected by anchor pointers and an AVL-tree T . Each
bottom interval is in T and each non-bottom interval has a directed path to a node in T .

I Lemma 10. We can construct the auxiliary structure Ξ in O(n logn) time.

Proof. The level partition and permutation can be constructed in O(n logn) time and with
it we get access to the intervals in L1 sorted from right to left. We scan L1 from right to left
and for each interval R ∈ L1 we either identify it as a bottom interval or to supply it with
its anchor. We identify for each R 6∈ L1 its anchor in logarithmic time using a range query.
We construct the Fibonacci tree on Xb with leaf pointers in O(n logn) time [20]. J

Reconstruction phase. During the reconstruction phase, we need to maintain the balance
of T when we insert new values. T contains bottom intervals which we are not allowed to
charge even constant time, so the classical amortized-constant analysis [19] of AVL-trees
does not immediately apply. Nonetheless we show in the full version:

SoCG 2019

42:12 Preprocessing Ambiguous Imprecise Points

Ri

L1

L3

L2

Figure 9 The tree T from Figure 8 after two iterations in the reconstruction phase. We inserted
the true values of the two orange intervals. Note that an orange interval requested the true value of
a bottom interval. At this iteration we want to insert the point xi of Ri into T . Ri is a non-bottom
interval in W1 so its anchor must be the interval preceding it.

I Lemma 11. Let T be an AVL-tree where each inner node has two subtrees with a depth
difference of 1. We can dynamically maintain the balance of T in amortized O(1) time.

I Theorem 12. Given Ξ, we can reconstruct an AVL-tree on X in Θ(Aπ(R)) time.

Proof. Given Ξ and the level permutation π we want to sort the points in X (insert them
into T) in O(Aπ(R)) time. Because T starts as a Fibonacci tree, Lemma 11 guarantees that
we can dynamically maintain the balance of T with at most O(Aπ(R)) operations. The
bottom intervals are already in T , thus we need to insert only the remaining xi ∈ X\Xb, in
the order π, into T in log |Γπi | time plus some additional time which we charge to the anchor
(each anchor will only get charged once).

Whenever we process a non-bottom interval Ri we know that its anchor is already inserted
in T . By construction, there are at most O(|Γπi |) leaves in T which have coordinates on the
domain of Ri (because these values can come only from intervals in the contact set of Ri).
We know that we must insert xi next to one of these O(|Γπi |) leaves in T . This means that
if we have a pointer to any leaf on the domain of Ri, then we locate xi in T with at most
O(log |Γπi |) edge traversals. During these traversals, we collapse each interval we encounter
to a point. We obtain such a pointer from ⊥π(Ri). Assume ⊥π(Ri) ⊂ Ri. Then the leaf
corresponding to ⊥π(Ri) must lie on the domain of Ri. Otherwise, Ri and ⊥π(Ri) are both
in the level L1 (illustrated in Figure 9) and ⊥π(Ri) = Ri−1 and must contain the right
endpoint of Ri. With a similar analysis, Ri−1 can locate the right endpoint of Ri in T in
O(log |Γπi−1| time. In both cases we found a leaf of T in Ri and locate xi in T in O(log |Γπi |)
time. Each interval in L1 has a unique anchor, so each anchor in L1 is charged this extra
work once. J

4 Quadtrees

Let R = {R1, R2, . . . , Rn} be a set of unit intervals in a bounding box (interval) B (we discuss
how to extend the approach later) and let X = {x1, x2, . . . , xn} be a set of points (values)
with xi ∈ Ri. We show how to construct an auxiliary structure Ξ on R in the preprocessing
phase without using X, such that, in the reconstruction phase, we can construct a linear-size
quadtree T on X in Θ(A(R)) time. We recall several standard definitions.

I. van der Hoog, I. Kostitsyna, M. Löffler, and B. Speckmann 42:13

Figure 10 A set of points R where the quadtree on R has linear depth. If the blue points lie
very close, the quadtree on R needs unbounded complexity.

Point quadtrees. Suppose that we have a d-dimensional point set X in a bounding hyper-
cube B. A quadtree on (B, X) is defined as follows: split operator is an operator that splits
any d-dimensional hypercube into 2d equal-sized hypercubes called cells. We recursively
split B until each point p ∈ P lies within a unique cell [21]. A λ-deflated quadtree is a more
relaxed quadtree where B is split until each leaf cell contains at most λ points [3].

Region quadtrees. Let R be a set of d-dimensional disks in a bounding hypercube B. Let
T (B) be the infinite set of possible quadtree cells on B. For each Ri ∈ R, we define its storing
cell denoted by Ci as the largest cell in T (B) that is contained in Ri and contains the center
of Ri [17]. Ti is the subtree induced by Ci. The neighborhood of Ri is the set of possible
cells C ∈ T (B) with size |Ci| that are intersected by Ri. We consider the quadtree T on R
to be the unique compressed quadtree where for each Ri ∈ R, its neighborhood is in T .

Edge oracle tree. Depending on B and X, the quadtree on (B, X) does not necessarily
have logarithmic depth (Figure 10) thus, point location in T is non-trivial. Har-Peled [10]
introduced a fast point-location structure (later dubbed edge-oracle tree [17]) for any quadtree
T . The edge-oracle tree E is created through centroid decomposition. Any tree with bounded
degree δ has at least one centroid edge which separates a tree of n nodes into two trees with
at least n

δ and at most n− n
δ nodes each. Moreover, one of these 2 trees is a subtree of T

(a tree induced by a node as a root). For any subtree T ′ of T , we define its corresponding
node in E (edge in T) as the lowest node in E which splits T into two parts, one of which
contains T ′ and the other contains the root of T . This node must exist, is unique and the
subtree containing T ′ has O(|T ′|) nodes (refer to Figure 11).

Given a query point q, we can find the leaf cell Cq that contains q in the following way:
each decision node v of E has 2 children where 1 child node w corresponds to a subtree Tw of
T . We test whether q is contained in w in O(1) time by checking the bounding box of Tw.

We wish to preprocess R such that we can reconstruct a linear-size λ-deflated quadtree T
for X with pointers between leaves. However, T does not necessarily have linear size and
dynamically maintaining pointers between leaves is non-trivial. To achieve this, one needs
to maintain a compressed and smooth quadtree T (refer to the full version for details) and
Hoog et al. [12] show how to dynammically maintain a smooth compressed quadtree with
constant update time. We will build such a quadtree augmented with an edge-oracle tree
initialized as a Fibonacci tree. We proceed analogously to the approach in Section 3.

e1 e2
e3

e4e5

e6
e7

e1

e2
e3

e5 e4e6e7

Figure 11 (left) A tree T with recursive centroid edges. (right) The corresponding edge-oracle
tree E. The orange leaf is a subtree of T and its corresponding node in E is e3.

SoCG 2019

42:14 Preprocessing Ambiguous Imprecise Points

4.1 1-dimensional quadtrees on unit-size intervals
We show how to construct an auxiliary structure Ξ on R without using X, such that we can
construct a 2-deflated quadtree T on (B, X) in Θ(A(R)) time.

Preprocessing phase. The auxiliary structure Ξ will be a smooth compressed quadtree
T on the intervals R augmented with an edge-oracle tree E on T , anchor pointers, and
a containment-compatible processing permutation π of R. Given T , we initialize E as a
Fibonacci tree, possibly adding dummy leaves1. We supply each Ri with a pointer to the
node in E corresponding to Ti and we call this its anchor ⊥π(Ri).

I Lemma 13. The auxiliary structure Ξ can be constructed in O(n logn) time.

Proof. Hoog et al. [12] show that for any set of d-dimensional disks R, its smooth compressed
quadtree T on R with corresponding edge-oracle tree E can be constructed in O(n logn)
time and that this tree has a worst-case constant update time. We turn E into a Fibonacci
tree by inserting at most O(n) dummy leaves in O(n logn) time in total. J

Reconstruction phase. By construction, each leaf in T intersects at most 2 bottom intervals
of R (since these are mutually disjoint). Therefore, we can construct a 2-deflated quadtree
on X by inserting each xi ∈ X\Xb in the order π into T . We observe the following:

I Lemma 14. When we process an interval Ri ∈ R, Ri intersects O(|Γπi |) leaf cells of T .

Proof. There can be at most 2 bottom intervals (left and right) of Ri whose neighborhood
intersects Ri. All the other leaves on the domain of Ri are caused by either already
processed points on the domain of Ri or are dummy nodes. For each dummy node there is a
corresponding non-dummy node also on the domain of Ri. J

I Lemma 15. When we process an interval Ri, we can locate, for any point q ∈ Ri, the leaf
Cq ∈ T which contains q in O(log |Γπi |) time.

Proof. If Cq ∈ Ti then Ri has an anchor to Ti and from this anchor we locate Cq in O(log |Γπi |)
time. Suppose Cq is to the left of Ti. We locate the left-most leaf of Ti in O(log |Γπi |) time
and traverse its neighbor pointer. The neighboring cell must lie in a subtree Tq neighboring
Ti with O(|Γπi |) nodes and this tree must contain Cq (Lemma 14). We now have a pointer to
a node in Tq and from this node we locate Cq in O(log |Γπi |) time. J

I Theorem 16. Given Ξ, we can construct a 2-deflated quadtree on X in Θ(Aπ(R)) time.

Proof. Given Ξ and any containment-compatible permutation π, we want to insert X into
T in O(Aπ(R)) time. An insertion in T creates 2 additional leaves in T (and therefore also
in E) and Lemma 11 guarantees that we can dynamically maintain the balance of E with
at most O(Aπ(R)) operations. If we only consider the point set Xb ⊂ X corresponding to
the bottom intervals then T is already a 2-deflated quadtree on Xb independent of where
the points of Xb lie in their uncertainty intervals. Therefore, we only need to insert the
remaining xi ∈ X\Xb, in the order π, into T in log |Γπi | time (potentially collapsing some of
the bottom intervals when necessary). Using Lemma 15 we can locate the quadtree leaf Cxi
that contains xi in O(log |Γπi |) time. This leaf is intersected by at most 2 bottom intervals,
which we collapse into points whose location we locate in constant time using the leaf pointers.
Thus each non-bottom interval inserts at most 3 points into T in O(log |Γπi |) time. J

1 We may need to allow parents of leaves of T to have a single dummy leaf.

I. van der Hoog, I. Kostitsyna, M. Löffler, and B. Speckmann 42:15

4.2 Generalization
If we stay in one dimension, then the result of Theorem 16 in fact generalizes to the case
where R is a set of arbitrary intervals since Lemma 14 and 15 do not depend on the intervals
being unit size. However, the result also generalizes to the case where R is a set of unit-size
disks in d (constant) dimensions: first of all, any permutation of R is containment-compatible.
If the disks are unit size then each disk intersects at most Kd bottom disks where Kd is
the kissing number so Lemma 14 generalizes. For any disk Ri ∈ R, recall that Ti was the
subtree of the storing cell of Ri. Any point q ∈ Ri must lie in the perimeter of Ti which
consists of at most O(5d) subtrees of size O(|Γπi |) therefore, Lemma 15 also generalizes. The
result is even more general: this approach works for any collection R of unit-size fat convex
regions similar to, e.g. [2]. Interestingly, generalizing the result of Theorem 16 both to higher
dimensions and to non-unit regions at the same time is not possible: in the full version we
show that, independent of preprocessing, reconstructing a λ-deflated quadtree has a lower
bound of Ω(logn), which could be more than A(R).

5 Conclusion

We introduced the ambiguity A(R) of a set of regions R as a more fine-grained measure
of the degree of their overlap. We applied this concept to uncertainty regions representing
imprecise points. In the preprocessing model we show that the ambiguity is a natural lower
bound for the time complexity of the reconstruction of any proximity structure. We achieved
these results via a link to the entropy of partial orders which is of independent interest. If
the regions are intervals in 1D we show how to sort in Θ(A(R)) time, if the regions are unit
balls in any dimension we show how to reconstruct quadtrees Θ(A(R)) time.

In the future we plan to investigate if our results can be generalized to other promixity
structures such as Delaunay triangulations, minimum spanning trees, and convex hulls. In
principle it is possible to convert quadtrees into all of these structures in linear time [15].
However, it is not clear how to do so, when working with an implicit representation of the
results in the case that A(R) is sub-linear.

References
1 Graham Brightwell and Peter Winkler. Counting linear extensions. Order, 8(3):225–242, 1991.
2 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Delaunay triangulation

of imprecise points simplified and extended. Algorithmica, 61:674–693, 2011. doi:10.1007/
s00453-010-9430-0.

3 Kevin Buchin and Wolfgang Mulzer. Delaunay triangulations in O (sort (n)) time and more.
Journal of the ACM (JACM), 58(2):6, 2011.

4 Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M Jungers, and J Ian Munro. Sorting
under partial information (without the ellipsoid algorithm). Combinatorica, 33(6):655–697,
2013.

5 Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. Computational
Geometry: Introduction. Springer, 2008.

6 Olivier Devillers. Delaunay triangulation of imprecise points, preprocess and actually get a
fast query time. Journal of Computational Geometry, 2(1):30–45, 2011.

7 Esther Ezra and Wolfgang Mulzer. Convex hull of points lying on lines in o(n logn) time after
preprocessing. Computational Geometry, 46(4):417–434, 2013.

8 P.C. Fishburn and W.T. Trotter. Geometric containment orders: a survey. Order, 15:167–182,
1998.

SoCG 2019

http://dx.doi.org/10.1007/s00453-010-9430-0
http://dx.doi.org/10.1007/s00453-010-9430-0

42:16 Preprocessing Ambiguous Imprecise Points

9 Michael L Fredman. How good is the information theory bound in sorting? Theoretical
Computer Science, 1(4):355–361, 1976.

10 Sariel Har-Peled. Geometric approximation algorithms. Number 173 in Mathematical Surveys
and Monographs. American Mathematical Soc., 2011.

11 Martin Held and Joseph SB Mitchell. Triangulating input-constrained planar point sets.
Information Processing Letters, 109(1):54–56, 2008.

12 Ivor Hoog vd, Elena Khramtcova, and Maarten. Löffler. Dynamic Smooth Compressed
Quadtrees. In LIPIcs-Leibniz International Proceedings in Informatics, volume 99. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

13 Jeff Kahn and Jeong Han Kim. Entropy and sorting. Journal of Computer and System
Sciences, 51(3):390–399, 1995.

14 János Körner. Coding of an information source having ambiguous alphabet and the entropy
of graphs. In 6th Prague conference on information theory, pages 411–425, 1973.

15 Maarten Löffler and Wolfgang Mulzer. Triangulating the square and squaring the triangle:
quadtrees and Delaunay triangulations are equivalent. SIAM Journal on Computing, 41(4):941–
974, 2012.

16 Maarten Löffler and Wolfgang Mulzer. Unions of onions: Preprocessing imprecise points for
fast onion decomposition. Journal of Computational Geometry, 5:1–13, 2014.

17 Maarten Löffler, Joseph A Simons, and Darren Strash. Dynamic planar point location with
sub-logarithmic local updates. In Workshop on Algorithms and Data Structures, pages 499–511.
Springer, 2013.

18 Maarten Löffler and Jack Snoeyink. Delaunay triangulation of imprecise points in linear time
after preprocessing. Computational Geometry, 43(3):234–242, 2010.

19 Kurt Mehlhorn and Athanasios Tsakalidis. An amortized analysis of insertions into AVL-trees.
SIAM Journal on Computing, 15(1):22–33, 1986.

20 Jürg Nievergelt and Edward M Reingold. Binary search trees of bounded balance. SIAM
journal on Computing, 2(1):33–43, 1973.

21 Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys
(CSUR), 16(2):187–260, 1984.

22 Gábor Simonyi. Graph entropy: a survey. Combinatorial Optimization, 20:399–441, 1995.
23 Marc Van Kreveld, Maarten Löffler, and Joseph SB Mitchell. Preprocessing imprecise points

and splitting triangulations. SIAM Journal on Computing, 39(7):2990–3000, 2010.

Rods and Rings: Soft Subdivision Planner for
R3 × S2

Ching-Hsiang Hsu
Department of Computer Science, Courant Institute, New York University, New York, NY, USA
chhsu@nyu.edu

Yi-Jen Chiang
Department of Computer Science and Engineering, Tandon School of Engineering, New York
University, Brooklyn, NY, USA
chiang@nyu.edu

Chee Yap
Department of Computer Science, Courant Institute, New York University, New York, NY, USA
yap@cs.nyu.edu

Abstract
We consider path planning for a rigid spatial robot moving amidst polyhedral obstacles. Our robot
is either a rod or a ring. Being axially-symmetric, their configuration space is R3×S2 with 5 degrees
of freedom (DOF). Correct, complete and practical path planning for such robots is a long standing
challenge in robotics. While the rod is one of the most widely studied spatial robots in path planning,
the ring seems to be new, and a rare example of a non-simply-connected robot. This work provides
rigorous and complete algorithms for these robots with theoretical guarantees. We implemented the
algorithms in our open-source Core Library. Experiments show that they are practical, achieving
near real-time performance. We compared our planner to state-of-the-art sampling planners in
OMPL [31].

Our subdivision path planner is based on the twin foundations of ε-exactness and soft predicates.
Correct implementation is relatively easy. The technical innovations include subdivision atlases for
S2, introduction of Σ2 representations for footprints, and extensions of our feature-based technique
for “opening up the blackbox of collision detection”.

2012 ACM Subject Classification Theory of computation → Computational geometry; Computing
methodologies → Robotic planning

Keywords and phrases Algorithmic Motion Planning, Subdivision Methods, Resolution-Exact Al-
gorithms, Soft Predicates, Spatial Rod Robots, Spatial Ring Robots

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.43

Related Version Full version [16] hosted on arXiv as arXiv:1903.09416 [cs.CG], available at https:
//arxiv.org/abs/1903.09416. Also available at http://cse.poly.edu/chiang/rod-ring18.pdf.

Funding Supported in part by NSF Grants #CCF-1423228 and #CCF-1563942.
Ching-Hsiang Hsu: Supported by NSF Grant #CCF-1423228.
Chee Yap: Supported in part by NSF Grants #CCF-1423228 and #CCF-1563942.

1 Introduction

Motion planning [18, 5] is a fundamental topic in robotics because the typical robot is capable
of movement. Such algorithms are increasingly relevant with the current surge of interest in
inexpensive commercial mobile robots, from domestic robots that vacuum the floor to drones
that deliver packages. We focus on what is called path planning which, in its elemental form,
asks for a collision-free path from a start to a goal position, assuming a known environment.
Path planning is based on robot kinematics and collision-detection only, and the variety of
such problems are surveyed in [14]. The output of a “path planner” is either a path or a

© Ching-Hsiang Hsu, Yi-Jen Chiang, and Chee Yap;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 43; pp. 43:1–43:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chhsu@nyu.edu
mailto:chiang@nyu.edu
mailto:yap@cs.nyu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.43
https://arxiv.org/abs/1903.09416
https://arxiv.org/abs/1903.09416
http://cse.poly.edu/chiang/rod-ring18.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Rods and Rings Planner

NO-PATH, signifying that no path exists. Remarkably, the single bit of information encoded
by NO-PATH is often missing in discussions. The standard definitions of correctness for path
planners (resolution completeness and probabilistic completeness) omit this bit [32].
The last 30 years have seen a flowering of practical path planning algorithms. The dominant
algorithmic paradigm of these planners has been variants of the Sampling Approach such
as PRM, EST, RRT, SRT, etc (see [5, p. 201]). Because this bit of information is not built
into the specification of such algorithms, it has led to non-termination issues and a large
literature addressing the “narrow passage problem” (e.g., [22, 8]). Our present paper is
based on the Subdivision Approach. This approach has a venerable history in robotics –
see [3, 40] for early planners based on subdivision.

Exact path planning has many issues including a serious gap between theory and imple-
mentability. In [32, 36], we introduced a theoretical framework based on subdivision to close
this gap. This paper demonstrates for the first time that our framework is able to achieve
rigorous state-of-the-art planners in 3D. Figure 1 shows our rod robot in an environment with
100 random tetrahedra. Figure 6 shows our ring robot in an environment with pillars and
L-shaped posts. See a video demo from http://cs.nyu.edu/exact/gallery/rod-ring/
rod_ring.html.

Figure 1 Rod robot amidst 100 random tetrahedra: (a) trace of a found path; (b) subdivision of
translational boxes on the path.

In this paper, we consider a rigid spatial robot R0 that has an axis of symmetry. See
Figure 2(a) for several possibilities for R0: rod (“ladder”), cone (“space shuttle”), disc
(“frisbee”) and ring (“space station”). Our techniques easily allow these robots to be
“thickened” by Minkowski sum with balls (see [33]). The configuration space may be taken
to be Cspace = R3 × S2 where S2 is the unit 2-sphere. We identify R0 with a closed subset
of R3, called its “canonical footprint”. E.g., if R0 is a rod (resp., ring), then the canonical
footprint is a line segment (resp., circle) in R3. Each configuration γ ∈ Cspace corresponds
to a rotated translated copy of the canonical footprint, which we denote by Fp(γ). Path
planning involves another input, the obstacle set Ω ⊆ R3 that the robot must avoid. We
assume that Ω is a closed polyhedral set. Say γ is free if Fp(γ)∩Ω is empty. The free space
comprising all the free configurations is an open set by our assumptions, and is denoted
Cfree = Cfree(Ω). A parametrized continuous curve µ : [0, 1] → Cspace is called a path if
the range of µ is in Cfree. Path planning amounts to finding such paths. Following [40],
we need to classify boxes B ⊆ Cspace into one of three types: FREE, STUCK or MIXED. Let
C(B) denote the classification of B: C(B) = FREE if B ⊆ Cfree, and C(B) = STUCK if B is
in the interior of Cspace \ Cfree. Otherwise, C(B) = MIXED. One of our goals is to introduce
classifications C̃(B) that are “soft versions” of C(B) (see the full paper [16] Appendix A).

http://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html
http://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html

C.-H. Hsu, Y.-J. Chiang, and C. Yap 43:3

S−z

Rod Cone Disc Ring

Y

Z

S+x

S−y

S+y

S+z
S−xModel

of S2:

(a)

(b)
X

O

Figure 2 (a) 3D rigid robots with Cspace = R3 × S2. (b) Subdivision atlas for S2 via Ŝ2.

We present four desiderata in path planning:
(G0) the planner must be mathematically rigorous and complete;
(G1) it must have correct implementations which are also:
(G2) relatively easy to achieve and
(G3) practically efficient.
In (G0), we use the standard Computer Science notion of an algorithm being complete if
(a) it is partially complete1 and (b) it halts. The notions of resolution completeness and
probabilistic completeness in robotics have requirement (a) but not (b). In probabilistic-
complete algorithms, halting with NO-PATH is achieved heuristically by putting limits on
time and/or number of samples. But such limits are not intrinsic to the input instance. In
resolution-complete algorithms, NO-PATH halting is based on width w of subdivision box
being small enough (say w < ε). One issue is that the width of a box is a direct measure of
clearance (but there is a nontrivial correlation); secondly, box predicates are numerical and
“accurate enough” (σ-effective in our theory). These issues are exacerbated when algorithms
do not use box predicates, but perform sampling at grid points of the subdivision. In contrast,
our NO-PATH guarantees an intrinsic property: there is no path of clearance Kε (see below).

But desideratum (G0) is only the base line. A (G0)-planner may not be worth much in a
practical area like robotics unless it also has implementations with properties (G1-G3). E.g.,
the usual exact algorithms satisfy (G0) but their typical implementations fail (G1). With
proper methods [30], it is possible to satisfy (G1); Halperin et al [13] give such solutions in
2D using CGAL. Both (G0) and (G1) can be formalized (see next), but (G2) and (G3) are
informal. The robotics community has developed various criteria to evaluate (G2) and (G3).
The accepted practice is having an implementation (proving (G2)) that achieves “real time”
performance on a suite of non-trivial instances (proving (G3)).

The main contribution of this paper is the design of planners for spatial robots with 5
DOFs that have the “good” properties (G0-G3). This seems to be the first for such robots.
To achieve our results, we introduce theoretical innovations and algorithmic techniques that
may prove to be more widely applicable.

In path planning and in Computational Geometry, there is a widely accepted interpretation
of desideratum (G0): it is usually simply called “exact algorithms”. But to stress our interest
in alternative notions of exactness, we refer to the standard notion as exact (unqualified).
Planners that are exact (unqualified) are first shown in [26]; this can be viewed as a
fundamental result on decidability of connectivity in semi-algebraic sets [1]. The curse of

1 Partial completeness means the algorithm produces a correct output provided it halts.

SoCG 2019

43:4 Rods and Rings Planner

exact (unqualified) algorithms is that the algorithm must detect any degeneracies in the input
and handle them explicitly. But exact (unqualified) algorithms are rare, mainly because
degeneracies are numerous and hard to analyze: the usual expedient is to assume “nice”
(non-degenerate) inputs. So the typical exact (unqualified) algorithms in the literature are
conditional algorithms, i.e., its correctness is conditioned on niceness assumptions. Such
gaps in exact (unqualified) algorithms are not an issue as long as they are not implemented.
For non-linear problems beyond 2D, complete degeneracy analysis is largely non-existent. This
is vividly seen in the fact that, despite long-time interest, there is still no exact (unqualified)
algorithm for the Euclidean Voronoi diagram of a polyhedral set (see [15, 12, 11, 34]). For
similar reasons, unconditional exact (unqualified) path planners in 3D are unknown.

We now address (G1-G3). The typical implementation is based on machine arithmetic
(the IEEE standard), which may satisfy (G2) but almost certainly not (G1). We regard this
as a (G1-G2) trade-off. In fact, our implementations here as well as in our previous papers
[32, 20, 33] are such machine implementations. This follows the practice in the robotics
community, in order to have a fair comparison against other implementations. Below, we
shall expand on our claims about (G1-G3) including how to achieve theoretically correct
implementation (G1). What makes this possible is our replacement of “exact (unqualified)”
planners by “exact (up to resolution)” planners, defined below:

Resolution-Exact Path Planning for robot R0:
Input: (α, β,Ω;B0, ε)

where α, β ∈ Cspace(R0) is the start and goal, Ω ⊆ R3

the obstacle set, B0 ⊆ Cspace(R0) is a box, and ε > 0.
Output: Halt with either an Ω-free path from α to β in B0,

or NO-PATH satisfying the conditions (P) and (N) below.

The resolution-exact planner (or, ε-exact planner) has an accuracy constant K > 1
(independent of input) such that its output satisfies two conditions:

(P) If there is a path (from α to β in B0) of clearance Kε, the output must be2 a path.
(N) If there is no path in B0 of clearance ε/K, the output must be NO-PATH.

Here, clearance of a path is the minimum separation of the obstacle set Ω from the robot’s
footprint on the path. Note that the preconditions for (P) and (N) are not exhaustive: in
case the input fails both preconditions, our planner may either output a path or NO-PATH.
This indeterminacy is essential to escape from exact computation (and arguably justified
for robotics [36]). The constant K > 1 is treated in more detail in [32, 37]. But resolution-
exactness is just a definition. How do we design such algorithms? We propose to use
subdivision, and couple with soft predicates to exploit resolution-exactness. We replace
the classification C(B) by a soft version C̃(B) [32]. This leads to a general resolution-exact
planner which we call Soft Subdivision Search (SSS) [36, 37] that shares many of the
favorable properties of sampling planners (and unlike exact planners). We demonstrated
in [32, 20, 33] that for planar robots with up to 4 DOFs, our planners can consistently
outperform state-of-the-art sampling planners.

1.1 What is New: Contributions of This Paper
In this work, we design ε-exact planners for rods and rings, with accompanying implementation
that addresses the desiderata (G0-G3). This fulfills a long-time challenge in robotics. We are
able to do this because of the twin foundations of resolution-exactness and soft-predicates.

2 For simplicity, we do not require the output path to have any particular clearance, but we could require
clearance ≥ ε/K as in [32].

C.-H. Hsu, Y.-J. Chiang, and C. Yap 43:5

Although we had already used this foundation to implement a variety of planar robots
[32, 20, 33, 39] that can match or surpass state-of-the-art sampling methods, it was by no
means assured that we can extend this success to 3D robots. Indeed, the present work
required a series of technical innovations: (I) One major technical difference from our previous
work on planar robots is that we had to give up the notion of “forbidden orientations” (which
seems “forbidding” for 3D robots). We introduced an alternative approach based on the
“safe-and-effective” approximation of footprint of boxes. We then show how to achieve such
approximations for the rod and ring robots separately. (II) The approximated footprints
of boxes are represented by what we call Σ2-sets (Sec. 4.1); this representation supports
desideratum (G2) for easy implementation. One side benefit of Σ2-sets is that they are
very flexible; thus, we can now easily extend our planners to “thick” versions of the rod or
ring. In contrast, the forbidden orientation approach requires non-trivial analysis to justify
the “thick” version [33]. The trade-off in using Σ2-sets is a modest increase in the accuracy
constant K. (III) We also need good representations of the 5-DOF configuration space.
Here we introduce the square model of S2 to avoid the singularities in the usual spherical
polar coordinates [19], and also to support subdivision in non-Euclidean spaces. (IV) Not
only is the geometry in 3D more involved, but the increased degree of freedom requires
new techniques to further improve efficiency. Here, the search heuristic based on Voronoi
diagrams becomes critical to achieve real-time performance (desideratum (G3)).

Overview of the Paper

Section 2 is a brief literature review. Section 3 explains an essential preliminary to doing
subdivision in S2. Sections 4–6 describe our techniques for computing approximate footprints
of rods and rings. We discuss efficiency and experimental results in Section 7. We conclude
in Section 8. All proofs and some background are given in the full paper [16] (in appendices).

2 Literature Review

Halperin et al [14] gave a general survey of path planning. An early survey is [35] where
two universal approaches to exact path planning were described: cell-decomposition [25]
and retraction [24, 23, 4]. Since exact path planning is a semi-algebraic problem [26], it
is reducible to general (double-exponential) cylindrical algebraic decomposition techniques
[1]. But exploiting path planning as a connectivity problem yields singly-exponential time
(e.g, [10]). The case of a planar rod (called “ladder”) was first studied in [25] using cell-
decomposition. More efficient (quadratic time) methods based on the retraction method
were introduced in [28, 29]. On-line versions for a planar rod are also available [7, 6].

Spatial rods were first treated in [27]. The combinatorial complexity of its free space
is Ω(n4) in the worst case and this can be closely matched by an O(n4+ε) time algorithm
[17]. The most detailed published planner for a 3D rod is Lee and Choset [19]. They
use a retraction approach. The paper exposes many useful and interesting details of their
computational primitives (see its appendices). In particular, they follow a Voronoi edge by
a numerical path tracking. But like most numerical code, there is no a priori guarantee of
correctness. Though the goal is an exact path planner, degeneracies are not fully discussed.
Their two accompanying videos have no timing or experimental data.

One of the few papers to address the non-existence of paths is Zhang et al [38]. Their
implementation work is perhaps the closest to our current work, using subdivision. They
noted that “no good implementations are known for general robots with higher than three
DOFs”. They achieved planners with 3 and 4 DOFs (one of which is a spatial robot). Although
their planners can detect NO-PATH, they do not guarantee detection (this is impossible without
exact computation).

SoCG 2019

43:6 Rods and Rings Planner

3 Subdivision Charts and Atlas for S2

Terminology. We fix some terminology for the rest of the paper. The fundamental footprint
map Fp from configuration space Cspace = Cspace(R0) to subsets of R3 was introduced above.
If B ⊆ Cspace is any set of configurations, we define Fp(B) as the union of Fp(γ) as γ
ranges over B. Typically, B is a “box” of Cspace (see below for its meaning in non-Euclidean
space S2). We may assume Ω ⊆ R3 is regular (i.e., equal to the closure of its interior).
Although Ω need not be bounded (e.g., it may be the complement of a box), we assume
its boundary ∂(Ω) is a bounded set. Then ∂(Ω) is partitioned into a set of (boundary)
features: corners (points), edges (relatively open line segments), or walls (relatively open
triangles). Let Φ(Ω) denote the set of features of Ω. The (minimal) set of corners and edges
is uniquely defined by Ω, but walls depend on a triangulation of ∂Ω. If A,B ⊆ R3, define
their separation Sep(A,B) := inf {‖a− b‖ : a ∈ A, b ∈ B} where ‖a‖ is the Euclidean norm.
The clearance of γ is Sep(Fp(γ),Ω). Say γ is Ω-free (or simply free) if it has positive
clearance. Let Cfree = Cfree(Ω) be the set of Ω-free configurations. The clearance of a
path µ : [0, 1]→ Cspace is the minimum clearance attained by µ(t) as t ranges over [0, 1].

Subdivision in Non-Euclidean Spaces. Our Cspace has an Euclidean part (R3) and a non-
Euclidean part (S2). We know how to do subdivision in R3 but it is less clear for S2.
Non-Euclidean spaces can be represented either (1) as a submanifold of Rm for some m (e.g.,
SO(3) ⊆ R9 viewed as orthogonal matrices) or (2) as a subset of Rm subject to identification
(in the sense of quotient topology [21]). A common representation of S2 (e.g., [19]) uses a pair
of angles (i.e., spherical polar coordinates) (θ, φ) ∈ [0, 2π]× [−π/2, π/2] with the identification
(θ, φ) ≡ (θ′, φ′) iff {θ, θ′} = {0, 2π} or φ = φ′ = π/2 (North Pole) or φ = φ′ = −π/2 (South
Pole). Thus an entire circle of values θ is identified with each pole, causing severe distortions
near the poles which are singularities. So the numerical primitives in [19, Appendix F] have
severe numerical instabilities.

To obtain a representation of S2 without singularities, we use the map [37]

q ∈ R3 7→ q̂ := q/‖q‖∞

whose range is the boundary of a 3D cube Ŝ2 := ∂([−1, 1]3). This map is a bijection when
its domain is restricted to S2, with inverse map q ∈ Ŝ2 7→ q := q/‖q‖2 ∈ S2. Thus q̂ is the
identity for q ∈ S2. We call Ŝ2 the square model of S2. We view S2 and Ŝ2 as metric
spaces: S2 has a natural metric whose geodesics are arcs of great circles. The geodesics on
S2 are mapped to the corresponding polygonal geodesic paths on Ŝ2 by q 7→ q̂. Define the
constant

C0 := sup
p 6=q∈S2

{
max

{
d2(p, q)
d̂2(p̂, q̂)

,
d̂2(p̂, q̂)
d2(p, q)

}}

where d2 and d̂2 are the metrics on S2 and Ŝ2 respectively. Clearly C0 ≥ 1. Intuitively, C0
is the largest distortion factor produced by the map q 7→ q̂ (by definition the inverse map
has the same factor).

I Lemma 1. C0 =
√

3.

The proof in the full paper [16] Appendix B.1 also shows that the worst distortion is near the
corners of Ŝ2. The constant C0 is one of the 4 constants that go into the ultimate accuracy
constant K in the definition of ε-exactness (see [37] for details).

C.-H. Hsu, Y.-J. Chiang, and C. Yap 43:7

It is obvious how to do subdivision in Ŝ2. This is illustrated in Figure 2(b). After the first
subdivision of Ŝ2 into 6 faces, subsequent subdivision is just the usual quadtree subdivision
of each face. We interpret the subdivision of Ŝ2 as a corresponding subdivision of S2. In
[37], we give the general framework using the notion of subdivision charts and atlases
(borrowing terms from manifold theory).

4 Approximate Footprints for Boxes in R3 × S2

We focus on soft predicates because, in principle, once we have designed and implemented such
a predicate, we already have a rigorous and complete planner within the Soft Subdivision
Search (SSS) framework [32, 37]. (The SSS framework is summarized in the full paper [16]
Appendix A.) As noted in the introduction, our soft predicate C̃ classifies any input box
B ⊆ Cspace into one 3 possible values. A key idea of our 2-link robot work [20, 33] is the
notion of “forbidden orientations” (of a box B, in the presence of Ω). The same concept
may be attempted for R3 × S2, except that the details seem to be formidable to analyze and
to implement. Instead, this paper introduces a direct approximation of the footprint of
a box, Fp(B) :=

⋃
{Fp(γ) : γ ∈ B}. We now introduce F̃p(B) ⊆ R3 as the approximate

footprint, and discuss its properties. This section is abstract, in order to expose the
mathematical structure of what is needed to achieve resolution-exactness for our planners.
The reader might peek at the next two sections to see the instantiations of these concepts
for the rod/ring robot.

To understand what is needed of this approximation, recall that our approach to soft
predicates is based on the “method of features” [32]. The idea is to maintain a set φ̃(B)
of approximate features for each box B. We softly classify B as C̃(B) = MIXED as long as
φ̃(B) is non-empty; otherwise, we can decide whether C̃(B) = C(B) is FREE or STUCK. This
decision is relatively easy in 2D, but is more involved in 3D and detailed in the full paper [16]
Appendix B.2. For correctness of this procedure, we require

φ̃(B/σ) ⊆ φ(B) ⊆ φ̃(B). (1)

Here σ > 1 is some global constant and “B/σ” denotes the box B shrunk by factor σ.
Basically, (1) guarantees that our soft predicate C̃(B) is conservative and σ-effective (i.e.,
if B is free then C̃(B/σ) = FREE). For computational efficiency, we want the approximate
feature sets to have inheritance property, i.e.,

φ̃(B) ⊆ φ̃(parent(B)). (2)

We now show what this computational scheme demands of our approximate footprint.
Define the exact feature set of box B as usual: φ(B) := {f ∈ Φ(Ω) : f ∩ Fp(B) 6= ∅} and
(tentatively) the approximate feature set of box B as

φ̃(B) :=
{
f ∈ Φ(Ω) : f ∩ F̃p(B) 6= ∅

}
. (3)

The important point is that F̃p(B) is defined prior to φ̃(B). We need the fundamental
inclusions

F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B). (4)

Note that this immediately implies (1). Unfortunately, (3) and (4) together do not guarantee
inheritance, i.e., (2). Instead, we define φ̃′(B) recursively as follows:

φ̃′(B) :=

{
f ∈ Φ(Ω) : f ∩ F̃p(B) 6= ∅

}
if B is the root,{

f ∈ φ̃′(parent(B)) : f ∩ F̃p(B) 6= ∅
}

else.
(5)

SoCG 2019

43:8 Rods and Rings Planner

Notice that this only defines φ̃′(B) when B is an aligned box (i.e., obtained by recursive
subdivision of the root box). But B/σ is never aligned when B is aligned, and thus φ̃′(B/σ)
is not captured by (5). Therefore we introduce a parallel definition:

φ̃′(B/σ) :=

{
f ∈ Φ(Ω) : f ∩ F̃p(B/σ) 6= ∅

}
if B is the root,{

f ∈ φ̃′(parent(B)/σ) : f ∩ F̃p(B/σ) 6= ∅
}

else.
(6)

Now, φ̃′(B) satisfies (2). But does it satisfy (1), which is necessary for correctness? This is
answered affirmatively by the following lemma (proved in the full paper [16] Appendix B.3):

I Lemma 2. If the approximate footprint F̃p(B) satisfies Eq. (4), then φ̃′(B) satisfies Eq. (1),
i.e.,

φ̃′(B/σ) ⊆ φ(B) ⊆ φ̃′(B).

Since φ̃′(B) has all the properties we need, we have no further use for the definition of φ̃(B)
given in (3). Henceforth, we simply write “φ̃(B)” to refer to the set φ̃′(B) defined in (5)
and (6).

Geometric Notations. We will be using planar concepts like circles, squares, etc, for sets
that lie in some plane of R3. We shall call them embedded circles, squares, etc. By
definition, if X is an embedded object then it defines a unique plane Plane(X) (unless X
lies in a line). Let Ball(r, c) ⊆ R3 denote a ball of radius r centered at c. If c is the origin,
we simply write Ball(r). Suppose X ⊆ R3 is any non-empty set. Let Ball(X) denote the
circumscribing ball of X, defined as the smallest ball containing X. Next, if c /∈ X then
Cone(c,X) denotes the union of all the rays from c through points in X, called the cone
of X with apex c. We consider two cases of X in this cone definition: if X is a ball, then
Cone(c,X) is called a round cone. If the radius of ball X is r and the distance from the
center of Ball(X) to c is h ≥ r, then call arcsin(r/h) the half-angle of the cone; note that
the angle at the the apex is twice this half-angle. If X is an embedded square, we call
Cone(c,X) a square cone, and the ray from c through the center of the square is called the
axis of the square cone. If P is any plane that intersects the axis of a square cone Cone(c,X),
then P ∩ Cone(c,X) is a square iff P is parallel to square X. A ring (resp., cylinder)
is the Minkowski sum of an embedded circle (resp., a line) with a ball. Finally consider
a box B = Bt × Br ⊆ R3 × Ŝ2 where Bt and Br are the translational and rotational
components of B, and Br is either Ŝ2 or a subsquare of a face of Ŝ2. We let mB and rB
denote the center and radius (distance from the center to any corner) of Bt. The cone of
B, denoted Cone(B), is the round cone Cone(mB , Ball(mB +Br)). If the center of square
mB +Br is c and width of Br is w, then Cone(B) is just Cone(mB , Ball(c, w/

√
2)).

4.1 On Σ2-Sets
Besides the above inclusion properties of F̃p(B), we also need to decide if F̃p(B) intersects a
given feature f . We say F̃p(B) is “nice” if there are intersection algorithms that are easy to
implement (desideratum G2) and practically efficient (desideratum G3). We now formalize
and generalize some “niceness” properties of F̃p(B) that were implicit in our previous work
([32, 20, 33], especially [39]).

An elementary set (in R3) is defined to be one of the following sets or their complements:
half space, ball, ring, cone or cylinder. Let E (or E3) denote the set of elementary sets in R3.
In R2, we have a similar notion of elementary sets E2 comprising half-planes, discs or their
complements. All these elementary sets are defined by a single polynomial inequality – so

C.-H. Hsu, Y.-J. Chiang, and C. Yap 43:9

technically, they are all “algebraic half-spaces”. The sets in E are evidently “nice” (niceness
of a ring has some subtleties – see Sec. 6). We next extend our collection of nice sets: define
a Π1-set to be a finite intersection of elementary sets. We regard a Π1-set S = ∩ni=1Si to
be “nice” because we can easily check if a feature f intersects S by a simple while-loop (see
below). Notice that Π1 contains all convex polytopes in R3. Our definitions of F̃p(B) in
[32, 20, 33] are all Π1-sets. But in [39], we make a further extension: define a Σ2-set to be a
finite union of the Π1-sets, i.e., each Σ2-set S has the form

S =
n⋃
i=1

mi⋂
j=1

Sij (7)

where Sij ’s are elementary sets. We still say such an S is “nice” since checking if a feature f
intersects S can be written in a doubly-nested loop (see below). Although this intersection is
more expensive to check than with a Π1-set, it may result in fewer subdivisions and better
efficiency in the overall algorithm. Thus, there is an accuracy-efficiency trade-off. Good
approximations of footprints are harder to do accurately in 3D, and the extra power of Σ2
seems critical.

We can put all these in the framework of a well-known3 construction of an infinite
hierarchy of sets, starting from some initial collection of sets. If ∆ is any collection of sets,
let Π(∆) denote the collection of finite intersections of sets in ∆; similarly, Σ(∆) denotes the
collection of finite unions of sets in ∆. Then, starting with any collection ∆1 of sets, define
the infinite hierarchy of sets:

Σi,Πi,∆i (i ≥ 1) (8)

where Σi := Σ(∆i), Πi := Π(∆i), and ∆i+1 := Σi∪Πi. An element of Σi or Πi is simply called
a Σi-set or a Πi-set.

We call (7) a Σ2-decomposition of S, where ∆1 := E . Note that this decomposition
may not be unique, but in the cases arising from our simple robots, there is often an obvious
optimal description. Moreover, n and mi’s are small constants. We can construct new sets
by manipulating such a decomposition, e.g., replacing each Sij by its τ-expansion, i.e.,
Sij ⊕ Ball(τ) (where ⊕ denotes the Minkowski sum), which remains elementary. Under
certain conditions, the corresponding set is a reasonable approximation to S ⊕Ball(τ). If so,
we can generalize the corresponding soft predicate to robots with thickness τ .

Once we have a Σ2-decomposition of F̃p(B), we can implement the intersection test with
relative ease (G2) and quite efficiently (G3). For instance we can test intersection of the set
S in (7) with a feature f by writing a doubly nested loop. At the beginning of the inner loop,
we can initialize a set f0 to f . Then the inner loop amounts to the update “f0 ← f0 ∩ Sij”
for j = 1, . . . ,mi. If ever f0 becomes empty, we know that the set Si =

⋂mi

j=1 Sij has empty
intersection with f . The possibility of such representations is by no means automatic but in
the next two sections we verify that they can be achieved for our rod and ring robots. These
sections make our planners fully “explicit” for an implementation.

5 Soft Predicates for a Rod Robot

In this section, R0 is a rod with length r0; we choose one endpoint of the rod as the rotation
center. Let B = Bt × Br ⊆ R3 × Ŝ2 be a box. Our main goal is to define approximate
footprint F̃p(B), and to prove the basic inclusions in Eqs. (4) and (1). This turns out to be
a Π1-set (we also indicate a more accurate Σ2-set.)

3 From mathematical analysis, constructive set theory and complexity theory.

SoCG 2019

43:10 Rods and Rings Planner

D
1

D
2

D
3

D
4

D
5

Br

r
0

Figure 3 Rod Robot: Fp(B) = Fp 0(B)⊕ (Bt−mB) where Fp 0(B) is indicated by the four green
rays.

It is useful to define the inner footprint of B, Fp 0(B), as Fp(mB ×Br).
This set is the intersection of a ball and a square cone:

Fp 0(B) = Ball(r0,mB) ∩ Cone(mB , B
r +mB). (9)

The edges of this square cone is shown as green lines in Figure 3; furthermore, the brown
box is Ŝ2 +mB (translation of Ŝ2 so that it is centered at mB). Note that the box footprint
Fp(B) is the Minkowski sum of Fp 0(B) with Bt −mB (the translation of Bt to make it
centered at the origin). It is immediate that

Fp 0(B) ⊆ Cone(B).

Thus we may write Cone(mB , B
r + mB) as the intersection of four half spaces Hi (i =

1, . . . , 4). Let Cone(+rB)(mB , B
r +mB) denote the intersection of the expanded half-spaces,

Hi⊕Ball(rB) (i = 1, . . . , 4). In general, Cone(+rB)(mB , B
r +mB) is not a cone (it may not

have a unique “apex”). Similarly we “expand” the inner footprint of (9) into

“F̃p(B)” :=Ball(r0 + rB ,mB) ∩ Cone(+rB)(mB , B
r +mB). (10)

We use quotes for “F̃p(B)” in (10) because we view it as a candidate for an approximate
footprint of B. Certainly, it has the desired property of containing the exact footprint Fp(B).
Unfortunately, this is not good enough. To see this, let θ be the half-angle of the round
cone Cone(B) = Cone(mB , Ball(Br + mB)). Then Hausdorff distance of “F̃p(B)” from
Fp(B) can be arbitrarily big as θ becomes arbitrarily small. Indeed θ can be arbitrarily small
because it can be proportional to the input resolution ε. We conclude that such a planner is
not resolution-exact. To fix this problem, we finally define

F̃p(B) := “F̃p(B)” ∩H0 (11)

where H0 is another half space. A natural choice for H0 is the half-space “above” the
pink-color plane of Figure 3, defined as the plane normal to the axis of cone Cone(B) and
at distance rB “below” mB. We can also use the “horizontal” plane that is parallel to Br
and containing the “lower” face of Bt. We adopt this latter H0 to have a simpler geometric
structure.

This completes the description of F̃p(B). It should be clear that checking if F̃p(B)
intersects any feature f is relatively easy (since it is even a Π1-set). In the full paper [16]
Appendix C we prove the following theorem:

I Theorem 3. The approximate footprint F̃p(B) as defined for a rod robot satisfies Eq. (4),
i.e., there exists some fixed constant σ > 1 such that F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B).

C.-H. Hsu, Y.-J. Chiang, and C. Yap 43:11

6 Soft Predicates for a Ring Robot

Let R0 be a ring robot. Its footprint is an embedded circle of radius r0. First we show how
to compute Sep(C, f), the separation of an embedded circle C from a feature f . This was
treated in detail by Eberly [9]. This is easy when f is a point or a plane. When f is a line,
Eberly gave two formulations: they reduce to solving a system of 2 quadratic equations in
2 variables, and hence to solving a quartic equation; see the full paper [16] Appendix D.1
for more details. The predicate “Does f intersect C ⊕Ball(r′), a ring of thickness r′?” is
needed later; it reduces to “Is Sep(C, f) ≤ r′?”.

Our next task is to describe an approximate footprint, First recall the round cone of box
B defined in the previous section: Cone(B) = Cone(mB , Ball(mB + Br)). Let θ = θ(B)
be the half-angle of this cone, and c the center of Br. Here, we think of c as a point of
Ŝ2, and define γ(B) :=mB × c viewed as an element of R3 × Ŝ2. Call γ(B) the central
configuration of box B. Let Ray(B) be the ray from mB through mB + c. If Plane(B) is
the plane through mB and normal to Ray(B), then the footprint Fp(γ(B)) is an embedded
circle lying in Plane(B). We define the inner footprint of B as Fp 0(B) :=Fp(mB ×Br).
The map q 7→ q is the inverse of q 7→ q̂, taking c ∈ Ŝ2 to c ∈ S2. It is hard to work with
Fp 0(B). Instead consider the set D(B) of all points in S2 whose distance4 from c is at most
θ(B). So D(B) is the intersection of S2 with a round cone with ray from the origin to c.
Then we have Fp0(B) ⊆ Fp1(B) where

Fp1(B) :=Fp(mB ×D(B)). (12)

Our main computational interest is the approximate footprint of B defined as

Plane(B)

θ

θ

Cone(B)

P1

P2

C1 C1

C2 C2

Ball Ball

BallBall
O1

O2

mB

r

Figure 4 Ring Robot: central cross-section of Fp1(B) appears as two blue arcs. F̃p(B) equals the
union of two “thick rings” and a “truncated annulus”. The axis of Cone(B) is shown as a vertical
ray. Each Ball has radius rB .

F̃p(B) :=Fp1(B)⊕Ball(rB). (13)

Note that Fp1(B) has a simple geometric description. We illustrate this in Figure 4 using a
central cross-section with a plane through mB containing the axis of Cone(B) (the axis of
Cone(B) is drawn vertically). The footprint of γ(B) is a circle that appears as two red dots
in the horizontal line (i.e., Plane(B)). Let S2(mB , r0) denote the 2-sphere centered at mB

with radius r0. Then Fp1(B) is the intersection of S2(mB , r0) with a slab (i.e., intersection
of two half-spaces whose bounding planes P1 and P2 are parallel to Plane(B)). These planes

4 Recall that S2 is a metric space whose geodesics are arcs of great circles.

SoCG 2019

43:12 Rods and Rings Planner

appear as two horizontal blue lines in Figure 4. In the cross section, Fp1(B) are seen as
two blue circular arcs. For i = 1, 2, let Ci = Pi ∩ S2(mB , r0); it is an embedded circle
that appears as a pair of green points in Figure 4. Each Ci is centered at Oi, with radius
r = r0 cos θ; see Figure 4.

We can now describe a Σ2-decomposition of F̃p(B): it is the union of two “thick rings”,
C1⊕Ball(rB) and C2⊕Ball(rB) (both of thickness rB), and a shape Ann(B) which we call
a truncated annulus. First of all, the region bounded between the spheres S2(mB , r0 + rB)
(the brown arcs in the figure) and S2(mB , r0 − rB) (the magenta arcs) is called a (solid)
annulus. Let C∗i denote the embedded disc whose relative boundary is Ci. Then we have two
round cones, Cone(mB , C

∗
1)) and Cone(mB , C

∗
2)). Together, they form a double cone that is

actually a simpler object for computation! Finally, define Ann(B) to be the intersection of
the annulus with the complements of the double cone.

For each thick ring Ci ⊕Ball(rB), deciding “Does a feature f intersect Ci ⊕Ball(rB)?”
is equivalent to “Is Sep(Ci, f) ≤ rB?” (see beginning of this section). In the full paper [16],
Appendix D.1 discusses this computation and Appendix D.2 proves the following theorem:

I Theorem 4. The approximate footprint F̃p(B) as defined for a ring robot satisfies Eq. (4),
i.e., there exists some fixed constant σ > 1 such that F̃p(B/σ) ⊆ Fp(B) ⊆ F̃p(B).

7 Practical Efficiency of Correct Implementations

We have developed ε-exact planners for rod and ring robots. We have explicitly exposed all
the details necessary for a correct implementation, i.e., criterion (G1). The careful design of
the approximate footprints of boxes as Σ2-sets ensures (G2), i.e., it would be relatively easy
to implement. We now address (G3) or practical efficiency. For robots with 5 or more DOFs,
it becomes extremely critical that good search strategies are deployed. In this paper, we have
found that some form of Voronoi heuristic is extremely effective: the idea is to find paths
along Voronoi curves (in the sense of [24, 28]), and exploit subdivision Voronoi techniques
based (again) on the method of features [34, 2]. There are subtleties necessitating the use of
pseudo-Voronoi curves [19, 28, 29]. Since we do not rely on Voronoi heuristics for correctness,
simple expedients are available. To recognize Voronoi curves, we maintain (in addition to
the collision-detection feature set φ̃(B)), the Voronoi feature set φ̃V (B). These two sets
have some connection but there are no obvious inclusion relationships.

Figure 5 Ring robot amidst 40 random tetrahedra: (a) trace of a found path; (b) subdivision of
translational boxes on the path.

Our current implementation achieves near real-time performance (see video
http://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html). Table 1 summarizes ex-

http://cs.nyu.edu/exact/gallery/rod-ring/rod_ring.html

C.-H. Hsu, Y.-J. Chiang, and C. Yap 43:13

Figure 6 Ring robot amidst pillars and L-shaped posts (Posts): (a) trace of a found path; (b)
subdivision of translational boxes on the path.

Figure 7 Ring robot amidst another set of pillars and posts (Posts2): (a) start and goal
configurations (no path found); (b) subdivision of translational boxes during the search.

Table 1 Rod and Ring Experiments.

SoCG 2019

43:14 Rods and Rings Planner

periments on our rod and ring robots. The environments Rand100, Rand40 (100 and 40
random tetrahedra), Posts and Posts2 are shown in Figs. 1, 5, 6 and 7. The dimensions of
the environments are 5123. Our implementation uses C++ and OpenGL on the Qt platform.
Our code, data and experiments are distributed5 with our open source Core Library. We
ran our experiments on a MacBook Pro under Mac OS X 10.10.5 with a 2.5 GHz Intel
Core i7 processor, 16GB DDR3-1600 MHz RAM and 500GB Flash Storage. Details about
these experiments are found in a folder in Core Library for this paper; a Makefile there
can automatically run all the experiments. Thus these results are reproducible from the
data there.

Table 2 (correlated with Table 1 by the Exp #’s) compares our methods with various
sampling-based planners in OMPL [31], where we accepted the default parameters and
each instance was run 10 times, with the “average time (in s)/standard deviation/success
rate” reported. This comparison has various caveats: we simulated the rod and ring robots
by polyhedral approximations. We usually outperform RRT in cases of PATH. In case of
NO-PATH, we terminated in real time while all sampling methods timed out (300s).

Table 2 Comparison with Sampling Methods in OMPL (the best run-time is shown in bold).

8 Conclusions

Path planning in 3D has many challenges. Our 5-DOF spatial robots have pushed the
current limits of subdivision methods. To our knowledge there is no similar algorithm with
comparable rigor or guarantees. Conventional wisdom says that sampling methods can
achieve higher DOFs than subdivision. By an estimate of Choset et al [5, p. 202], sampling
methods are limited to 5−12 DOFs. We believe our approach can reach 6-DOF spatial robots.
Since resolution-exactness delivers stronger guarantees than probabilistic-completeness, we
expect a performance hit compared to sampling methods. But for simple planar robots (up to
4 DOFs) [32, 20, 33, 39] we observed no such trade-offs because we outperform state-of-the-art
sampling methods (such as OMPL [31]) often by two orders of magnitude. But in the 5-DOF
robots of this paper, we see that our performance is competitive with sampling methods. It
is not clear to us that subdivision is inherently inferior to sampling (we can also do random
subdivision). It is true that each additional degree of freedom is conquered only with effort
and suitable techniques. This remark seems to cut across both subdivision and sampling
approaches; but it hits subdivision harder because of our stronger guarantees.

5 http://cs.nyu.edu/exact/core/download/core/

http://cs.nyu.edu/exact/core/download/core/

C.-H. Hsu, Y.-J. Chiang, and C. Yap 43:15

References
1 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic

Geometry. Algorithms and Computation in Mathematics. Springer, 2nd edition, 2006.
2 Huxley Bennett, Evanthia Papadopoulou, and Chee Yap. Planar minimization diagrams via

subdivision with applications to anisotropic Voronoi diagrams. Eurographics Symposium on
Geometric Processing, 35(5), 2016. SGP 2016, Berlin, Germany. June 20-24, 2016.

3 Rodney A. Brooks and Tomas Lozano-Perez. A subdivision algorithm in configuration space
for findpath with rotation. In Proc. 8th Intl. Joint Conf. on Artificial intelligence - Volume 2,
pages 799–806, San Francisco, CA, USA, 1983. Morgan Kaufmann Publishers Inc.

4 John Canny. Computing roadmaps of general semi-algebraic sets. The Computer Journal,
36(5):504–514, 1993.

5 H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston,
2005.

6 Howie Choset, Brian Mirtich, and Joel Burdick. Sensor based planning for a planar rod robot:
Incremental construction of the planar Rod-HGVG. In IEEE Intl. Conf. on Robotics and
Automation (ICRA’97), pages 3427–3434, 1997.

7 James Cox and Chee K. Yap. On-line motion planning: case of a planar rod. Annals of
Mathematics and Artificial Intelligence, 3:1–20, 1991. Special journal issue. Also: NYU-Courant
Institute, Robotics Lab., No.187, 1988.

8 Jory Denny, Kensen Shi, and Nancy M. Amato. Lazy Toggle PRM: a Single Query approach
to motion planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2407–2414, 2013.
Karlsrube, Germany. May 2013.

9 David Eberly. Distance to circles in 3D, May 31 2015. Downloaded from
https://www.geometrictools.com/Documentation/Documentation.html.

10 Mohab Safey el Din and Eric Schost. A baby steps/giant steps probabilistic algorithm for
computing roadmaps in smooth bounded real hypersurface. Discrete and Comp. Geom.,
45(1):181–220, 2011.

11 Hazel Everett, Christian Gillot, Daniel Lazard, Sylvain Lazard, and Marc Pouget. The Voronoi
diagram of three arbitrary lines in R3. In 25th European Workshop on Computational Geometry
(EuroCG’09), 2009. March 2009, Bruxelles, Belgium.

12 Hazel Everett, Daniel Lazard, Sylvain Lazard, and Mohab Safey el Din. The Voronoi diagram
of three lines. Discrete and Comp. Geom., 42(1):94–130, 2009. See also 23rd SoCG, 2007.
pp.255–264.

13 Dan Halperin, Efi Fogel, and Ron Wein. CGAL Arrangements and Their Applications.
Springer-Verlag, Berlin and Heidelberg, 2012.

14 Dan Halperin, Oren Salzman, and Micha Sharir. Algorithmic motion planning. In Jacob E.
Goodman, Joseph O’Rourke, and Csaba Toth, editors, Handbook of Discrete and Computational
Geometry, chapter 50. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition, 2017. Expanded
from second edition.

15 Michael Hemmer, Ophir Setter, and Dan Halperin. Constructing the exact Voronoi diagram of
arbitrary lines in three-dimensional space. In Algorithms – ESA 2010, volume 6346 of Lecture
Notes in Computer Science, pages 398–409. Springer Berlin / Heidelberg, 2010.

16 Ching-Hsiang Hsu, Yi-Jen Chiang, and Chee Yap. Rods and rings: Soft subdivision planner
for Rˆ3 x Sˆ2, 2019. Hosted on arXiv as arXiv:1903.09416 [cs.CG]. Also available at
http://cse.poly.edu/chiang/rod-ring18.pdf.

17 V. Koltun. Pianos are not flat: rigid motion planning in three dimensions. In Proc. 16th
ACM-SIAM Sympos. Discrete Algorithms, pages 505–514, 2005.

18 Steven M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, 2006.
19 Ji Yeong Lee and Howie Choset. Sensor-based planning for a rod-shaped robot in 3 dimensions:

Piecewise retracts of R3 × S2. Int’l. J. Robotics Research, 24(5):343–383, 2005.

SoCG 2019

https://arxiv.org/abs/1903.09416
http://cse.poly.edu/chiang/rod-ring18.pdf

43:16 Rods and Rings Planner

20 Zhongdi Luo, Yi-Jen Chiang, Jyh-Ming Lien, and Chee Yap. Resolution exact algorithms for
link robots. In Proc. 11th Intl. Workshop on Algorithmic Foundations of Robotics (WAFR
’14), volume 107 of Springer Tracts in Advanced Robotics (STAR), pages 353–370, 2015. 3-5
Aug 2014, Boǧazici University, Istanbul, Turkey.

21 James R. Munkres. Topology. Prentice-Hall, Inc, second edition, 2000.
22 Michal Nowakiewicz. MST-Based method for 6DOF rigid body motion planning in narrow

passages. In Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems, pages
5380–5385, 2010. Oct 18–22, 2010. Taipei, Taiwan.

23 Colm Ó’Dúnlaing, Micha Sharir, and Chee K. Yap. Retraction: a new approach to motion-
planning. ACM Symp. Theory of Comput., 15:207–220, 1983.

24 Colm Ó’Dúnlaing and Chee K. Yap. A “Retraction” method for planning the motion of a disc.
J. Algorithms, 6:104–111, 1985. Also, Chapter 6 in Planning, Geometry, and Complexity, eds.
Schwartz, Sharir and Hopcroft, Ablex Pub. Corp., Norwood, NJ. 1987.

25 J. T. Schwartz and M. Sharir. On the piano movers’ problem: I. The case of a two-dimensional
rigid polygonal body moving amidst polygonal barriers. Communications on Pure and Applied
Mathematics, 36:345–398, 1983.

26 Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: II. General techniques
for computing topological properties of real algebraic manifolds. Advances in Appl. Math.,
4:298–351, 1983.

27 Jacob T. Schwartz and Micha Sharir. On the piano movers’ problem: V. the case of a rod
moving in three-dimensional space amidst polyhedral obstacles. Comm. Pure and Applied
Math., 37(6):815–848, 1984. doi:10.1002/cpa.3160370605.

28 M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi diagrams for moving a ladder
I: topological analysis. Communications in Pure and Applied Math., XXXIX:423–483, 1986.
Also: NYU-Courant Institute, Robotics Lab., No. 32, Oct 1984.

29 M. Sharir, C. O’D’únlaing, and C. Yap. Generalized Voronoi diagrams for moving a ladder
II: efficient computation of the diagram. Algorithmica, 2:27–59, 1987. Also: NYU-Courant
Institute, Robotics Lab., No. 33, Oct 1984.

30 Vikram Sharma and Chee K. Yap. Robust geometric computation. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba Tóth, editors, Handbook of Discrete and Computational Geometry,
chapter 45, pages 1189–1224. Chapman & Hall/CRC, Boca Raton, FL, 3rd edition, 2017.
Revised and expanded from 2004 version.

31 I.A. Şucan, M. Moll, and L.E. Kavraki. The Open Motion Planning Library. IEEE Robotics
& Automation Magazine, 19(4):72–82, 2012. doi:10.1109/MRA.2012.2205651.

32 Cong Wang, Yi-Jen Chiang, and Chee Yap. On soft predicates in subdivision motion planning.
Comput. Geometry: Theory and Appl. (Special Issue for SoCG’13), 48(8):589–605, September
2015.

33 Chee Yap, Zhongdi Luo, and Ching-Hsiang Hsu. Resolution-exact planner for thick non-
crossing 2-link robots. In Proc. 12th Intl. Workshop on Algorithmic Foundations of Robotics
(WAFR ’16), 2016. 13-16 Dec 2016, San Francisco. The appendix in the full paper (and
arXiv from http://cs.nyu.edu/exact/ (and arXiv:1704.05123 [cs.CG]) contains proofs
and additional experimental data.

34 Chee Yap, Vikram Sharma, and Jyh-Ming Lien. Towards exact numerical Voronoi diagrams.
In 9th Int’l Symp. of Voronoi Diagrams in Science and Engineering (ISVD)., pages 2–16. IEEE,
2012. Invited Talk. June 27-29, 2012, Rutgers University, NJ. doi:10.1109/ISVD.2012.31.

35 Chee K. Yap. Algorithmic motion planning. In J.T. Schwartz and C.K. Yap, editors, Advances
in Robotics, Vol. 1: Algorithmic and geometric issues, volume 1, pages 95–143. Lawrence
Erlbaum Associates, 1987.

36 Chee K. Yap. Soft subdivision search in motion planning. In A. Aladren et al., editor,
Proceedings, 1st Workshop on Robotics Challenge and Vision (RCV 2013), 2013. A Computing
Community Consortium (CCC) Best Paper Award, Robotics Science and Systems Conference
(RSS 2013), Berlin. In arXiv:1402.3213.

http://dx.doi.org/10.1002/cpa.3160370605
http://dx.doi.org/10.1109/MRA.2012.2205651
http://dx.doi.org/10.1109/ISVD.2012.31

C.-H. Hsu, Y.-J. Chiang, and C. Yap 43:17

37 Chee K. Yap. Soft subdivision search and motion planning, II: Axiomatics. In Frontiers in
Algorithmics, volume 9130 of Lecture Notes in Comp.Sci., pages 7–22. Springer, 2015. Plenary
Talk at 9th FAW. Guilin, China. Aug 3-5, 2015.

38 Liangjun Zhang, Young J. Kim, and Dinesh Manocha. Efficient cell labeling and path non-
existence computation using C-obstacle query. Int’l. J. Robotics Research, 27(11–12):1246–1257,
2008.

39 Bo Zhou, Yi-Jen Chiang, and Chee Yap. Soft subdivision motion planning for complex planar
robots. In Proc. 26th European Symp. Algo.(ESA), pages 73:1–73:14, 2018. Helsinki, Finland,
Aug 20-24, 2018.

40 D.J. Zhu and J.-C. Latombe. New heuristic algorithms for efficient hierarchical path planning.
IEEE Transactions on Robotics and Automation, 7:9–20, 1991.

SoCG 2019

3-Manifold Triangulations with Small Treewidth
Kristóf Huszár
Institute of Science and Technology Austria (IST Austria),
Am Campus 1, 3400 Klosterneuburg, Austria
kristof.huszar@ist.ac.at

Jonathan Spreer
Institut für Mathematik, Freie Universität Berlin,
Arnimallee 2, 14195 Berlin, Germany
jonathan.spreer@fu-berlin.de

Abstract
Motivated by fixed-parameter tractable (FPT) problems in computational topology, we consider
the treewidth tw(M) of a compact, connected 3-manifold M, defined to be the minimum treewidth
of the face pairing graph of any triangulation T of M. In this setting the relationship between the
topology of a 3-manifold and its treewidth is of particular interest.

First, as a corollary of work of Jaco and Rubinstein, we prove that for any closed, orientable
3-manifold M the treewidth tw(M) is at most 4g(M)-2, where g(M) denotes Heegaard genus of M.
In combination with our earlier work with Wagner, this yields that for non-Haken manifolds the
Heegaard genus and the treewidth are within a constant factor.

Second, we characterize all 3-manifolds of treewidth one: These are precisely the lens spaces
and a single other Seifert fibered space. Furthermore, we show that all remaining orientable Seifert
fibered spaces over the 2-sphere or a non-orientable surface have treewidth two. In particular, for
every spherical 3-manifold we exhibit a triangulation of treewidth at most two.

Our results further validate the parameter of treewidth (and other related parameters such as
cutwidth or congestion) to be useful for topological computing, and also shed more light on the
scope of existing FPT-algorithms in the field.

2012 ACM Subject Classification Mathematics of computing → Geometric topology; Theory of
computation → Fixed parameter tractability

Keywords and phrases computational 3-manifold topology, fixed-parameter tractability, layered
triangulations, structural graph theory, treewidth, cutwidth, Heegaard genus, lens spaces, Seifert
fibered spaces

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.44

Related Version A full version of this paper is available at https://arxiv.org/abs/1812.05528.

Funding Kristóf Huszár : Partially supported by the Einstein Foundation Berlin (grant EVF-2015-
230) for his visits at Freie Universität Berlin.
Jonathan Spreer : Supported by grant EVF-2015-230 of the Einstein Foundation Berlin as well as by
the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry and Dynamics”.

Acknowledgements We thank the developers of the free software Regina [11, 12] for creating a
fantastic tool, and the anonymous reviewers for useful comments and suggestions regarding the
exposition. KH thanks the people at the Discrete Geometry Group, Freie Universität Berlin, for
their hospitality.

1 Introduction

Any given topological 3-manifold M admits infinitely many combinatorially distinct tri-
angulations T , and the feasibility of a particular algorithmic task aboutM might greatly
depend on the choice of the input triangulation T . Hence, it is an important question in

© Kristóf Huszár and Jonathan Spreer;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 44; pp. 44:1–44:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5445-5057
mailto:kristof.huszar@ist.ac.at
https://orcid.org/0000-0001-6865-9483
mailto:jonathan.spreer@fu-berlin.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.44
https://arxiv.org/abs/1812.05528
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 3-Manifold Triangulations with Small Treewidth

computational topology, how “well-behaved” a triangulation can be, taking into account
“topological properties” of the underlying 3-manifold.

More concretely, there exist several algorithms in computational 3-manifold topology
which solve inherently difficult (e.g., NP-hard) problems in linear time in the input size,
once the input triangulation has a dual graph of bounded treewidth [13, 14, 15, 16, 32]. Such
fixed-parameter tractable (FPT) algorithms are not only of theoretical importance but also
provide practical tools: some of them are implemented in software packages such as Regina
[11, 12] and, in selected cases, outperform previous state-of-the-art methods.

The presence of algorithms FPT in the treewidth of the dual graph of a triangulation
immediately poses the following question. Given a 3-manifoldM, how small can the treewidth
of the dual graph of a triangulation ofM be? This question has recently been investigated
in a number of contexts, settling, for instance, that for some 3-manifolds there is no hope
of finding triangulations with dual graphs of small treewidth [25] (see [17] for related work
concerning the respective question about knots and their diagrams). Hyperbolic 3-manifolds
nevertheless always admit triangulations of treewidth upper-bounded by their volume [31].

In this article we also focus on constructing small treewidth triangulations informed by
the topological structure of a 3-manifold. To this end, we consider the notion of treewidth
(cutwidth) of a 3-manifold as being the smallest treewidth (cutwidth) of a dual graph ranging
over all triangulations thereof. The necessary background is introduced in Section 2.

In Section 3, building on [27], we show that the Heegaard genus dominates the cutwidth
(and thus the treewidth as well) by virtue of the following statement.

I Theorem 1. LetM be a closed, orientable 3-manifold, and let cw(M) and g(M) respect-
ively denote the cutwidth and the Heegaard genus ofM. We have cw(M) ≤ 4g(M)− 2.

Theorem 1, in combination with recent work by the authors and Wagner [25], implies
that for the class of so-called non-Haken 3-manifolds, the Heegaard genus is in fact within
a constant factor of both the cutwidth and the treewidth of a 3-manifold, providing an
interesting connection between a classical topological invariant and topological properties
directly related to the triangulations of a manifold. In Section 4, we further strengthen this
link by looking at very small values of Heegaard genus and treewidth:

I Theorem 2. The class of 3-manifolds of treewidth at most one coincides with that of
Heegaard genus at most one together with the Seifert fibered space SFS[S2 : (2, 1), (2, 1), (2,−1)]
of Heegaard genus two.

In contrast, in Section 5 we show – by exhibiting treewidth two triangulations for all
orientable Seifert fibered spaces over S2 (Theorem 15) or a non-orientable surface (Theorem 16)
– that linking Heegaard genus to treewidth fails to hold in general in a very strong sense:
There are infinite families of 3-manifolds of unbounded Heegaard genus which are all of
treewidth two (Corollary 21). Extending these observations we deduce that the treewidth of
all 3-manifolds with spherical or S2 × R geometry equals two (Corollary 18).

Finally, combining these results, we determine the treewidth of 4889 out of the 4979
manifolds in the (≤ 10)-tetrahedra census (Table 1). Specifically, only 90 of them have
treewidth possibly higher than two. These computations also confirm that not all minimal
triangulations are of minimum treewidth (Corollary 20).

Altogether, our results and experiments further suggest that the treewidth of a 3-manifold
is an interesting notion at the interface of topology and combinatorics which is well-suited to
indicate the power of FPT algorithms in computational 3-manifold topology.
I Remark 3. The various triangulations described in Section 5 are available in form of a
short Regina script [11, 12] in the full version of this article [24].

K. Huszár and J. Spreer 44:3

2 Preliminaries

2.1 Graphs
A graph (more precisely, a multigraph) G = (V,E) is an ordered pair consisting of a finite set
V = V (G) of nodes and of a multiset E = E(G) of unordered pairs of nodes, called arcs.1 A
loop is an arc e ∈ E which is a multiset itself, e.g., e = {v, v} for some v ∈ V . The degree
deg(v) of a node v ∈ V equals the number of arcs containing it, counted with multiplicity. If
all of its nodes have the same degree k ∈ N, a graph is called k-regular. A tree is a connected
graph with n nodes and n− 1 arcs. The term leaf denotes a node of degree one.

For general background on graph theory we refer to [19].

Treewidth. Originating from graph minor theory [29] and central to parametrized complex-
ity [20, Part III], treewidth [5, 7, 41] measures the similarity of a given graph to a tree. More
precisely, a tree decomposition of G = (V,E) is a pair ({Bi : i ∈ I}, T = (I, F)) with bags
Bi ⊆ V , i ∈ I, and a tree T = (I, F), such that a)

⋃
i∈I Bi = V , b) for every arc {u, v} ∈ E,

there exists i ∈ I with {u, v} ⊆ Bi, and c) for every v ∈ V , Tv = {i ∈ I : v ∈ Bi} spans a
connected subtree of T . The width of a tree decomposition equals maxi∈I |Bi| − 1, and the
treewidth tw(G) is the smallest width of any tree decomposition of G.

On one hand, treewidth is useful in the analysis of algorithms [8]. On the other hand,
congestion (also known as carving-width) and cutwidth have recently turned out to be helpful
mediators to connect treewidth with classical topological invariants [17, 25, 31]. In this work,
alongside with treewidth, we also work with cutwidth.

Cutwidth. Consider an ordering (v1, . . . , vn) of V . The set C` = {{vi, vj} ∈ E : i ≤ ` < j},
where 1 ≤ ` < n, is called a cutset. The width of the ordering is the size of the largest cutset.
The cutwidth [18], denoted by cw(G), is the minimum width over all orderings of V .

2.2 Triangulations and Heegaard splittings of 3-manifolds
The main objects of study in this article are 3-manifolds, i.e., topological spaces in which
every point has a neighborhood homeomorphic to R3 or to the closed upper half-space
{(x, y, z) ∈ R3 : z ≥ 0}. For a 3-manifoldM, its boundary ∂M consists of all points ofM
not having a neighborhood homeomorphic to R3. A 3-manifold is closed if it is compact and
has an empty boundary. Two 3-manifolds are considered equivalent if they are homeomorphic.
We refer to [44] for an introduction to 3-manifolds (cf. [22], [23], [26] and [48]), and to [42,
Lecture 1] for an overview of the key concepts defined in this subsection.

All 3-manifolds considered in this paper are compact and orientable.

Triangulations. In the field of computational topology, a 3-manifold is often presented
as a triangulation [4, 34], i.e., a finite collection of abstract tetrahedra “glued together”
by identifying pairs of their triangular faces called triangles. Due to these face gluings,
several tetrahedral edges (or vertices) are also identified and we refer to the result as a
single edge (or vertex) of the triangulation. The face gluings, however, cannot be arbitrary.
For a triangulation T to describe a closed 3-manifold, it is necessary and sufficient that no

1 Throughout the article, the terms edge and vertex denote an edge or vertex of a triangulated surface or
3-manifold, while the words arc and node refer to an edge or vertex in a graph.

SoCG 2019

44:4 3-Manifold Triangulations with Small Treewidth

tetrahedral edge is identified with itself in reverse, and the boundary of a small neighborhood
around each vertex is S2, a 2-sphere. If, in addition, the boundaries of small neighborhoods
of some of the vertices are disks, then T describes a 3-manifold with boundary.

To study a triangulation T , it is often useful to consider its dual graph Γ(T), whose
nodes and arcs correspond to the tetrahedra of T and to the face gluings between them,
respectively. By construction, Γ(T) is a multigraph with maximum degree ≤ 4.

Heegaard splittings. Handlebodies, which can be thought of as thickened graphs, provide
another way to describe 3-manifolds. A Heegaard splitting [43] is a decomposition M =
H∪fH′, where we start with the disjoint union of two homeomorphic handlebodies, H and H′
and then identify their boundary surfaces via a homeomorphism f : ∂H → ∂H′ referred to as
the attaching map. Every closed, compact, and orientable 3-manifoldM can be obtained this
way. Moreover, we may assume, without loss of generality, that f is orientation-preserving.
The smallest genus of a boundary surface ranging over all Heegaard splittings ofM, denoted
by g(M), is called the Heegaard genus ofM. Heegaard splittings with isotopic attaching
maps yield homeomorphic 3-manifolds, hence are considered equivalent.

2.3 Orientable Seifert fibered spaces
Seifert fibered spaces, see [46], comprise an important class of 3-manifolds. Here we describe
the orientable ones following [42] (cf. [22, Sec. 2.1], [26, Ch. VI], [35], [36], or [44, Sec. 3.7]).

Let us consider the surface Fg,r = Fg \ (intD1 ∪ · · · ∪ intDr) obtained from the closed
orientable genus g surface by removing the interiors of r pairwise disjoint disks. Taking the
product with the circle S1 yields an orientable 3-manifold Fg,r × S1 whose boundary consists
of r tori; namely, ∂(Fg,r×S1) = (∂D1)×S1∪· · ·∪(∂Dr)×S1. For each (∂Di)×S1, 1 ≤ i ≤ r,
we glue in a solid torus so that its meridian wraps ai times around the meridian (∂Di)×{yi}
and bi times around the longitude {xi}× S1 of (∂Di)× S1. Here ai and bi are assumed to be
coprime integers with ai ≥ 2, and the point (xi, yi) ∈ (∂Di)× S1 is chosen arbitrarily. This
way we obtain a closed orientable 3-manifoldM = SFS[Fg : (a1, b1), . . . , (ar, br)] which is
called the Seifert fibered space over Fg with r exceptional (or singular) fibers. In relation to
M, the surface Fg is referred to as the base space (or orbit surface).

I Example 4. Lens spaces, the 3-manifolds of Heegaard genus one, coincide with Seifert
fibered spaces over S2 having at most one (or two, cf. [42, p. 27]) exceptional fiber(s).2

Non-orientable base spaces. With a slight modification of the above construction, one
can obtain additional orientable Seifert fibered spaces having non-orientable base spaces.
Beginning with Ng, the non-orientable genus g surface, we pass to Ng,r by adding r punctures
(i.e., by removing r pairwise disjoint open disks). At this point, however, instead of taking
the product Ng,r × S1 (which yields a non-orientable 3-manifold) we consider the “orientable
S1-bundle” over Ng,r, which has again r torus boundary components. As before, we conclude
by gluing in r solid tori, specified by pairs of coprime integers (ai, bi) with ai ≥ 2, where
1 ≤ i ≤ r. The notation for the resulting 3-manifold remains the same.

See [30, Section 2] for a concrete and detailed description of Seifert fibered spaces both
over orientable and non-orientable surfaces (cf. the classes {Oo, g} and {On, g} therein).

2 In particular, we regard S2 × S1 (the SFS over S2 without exceptional fibers) to be a lens space as well.

K. Huszár and J. Spreer 44:5

Geometric structures on 3-manifolds. The significance of Seifert fibered spaces is exem-
plified by their role in the geometrization of 3-manifolds – a celebrated program initiated
by Thurston [47], influenced by Hamilton [21], and completed by Perelman [37, 39, 38], cf.
[3, 28, 33, 40] – as they account for six out of the eight possible “model geometries” [45] the
building blocks may admit in the “canonical decomposition” of a closed 3-manifold.

3 The treewidth of a 3-manifold

In this section we prove Theorem 1. For this, we first recall how to turn graph-theoretical
parameters, such as treewidth or cutwidth, into topological invariants of 3-manifolds. This is
followed by a very brief and selective introduction to the theory layered triangulations as
defined by Jaco and Rubinstein [27]. We then present the proof of Theorem 1 which, on the
topological level, is a direct consequence of this theory, and conclude with a remark on some
practical aspects derived from the constructive nature of the proof.

3.1 Topological invariants from graph parameters
Recall the notions of treewidth and cutwidth from Section 2.1.

I Definition 5. LetM be a 3-manifold and let T be a triangulation ofM. By the treewidth
of T we mean tw(Γ(T)), i.e., the treewidth of its dual graph, and the treewidth tw(M) of
M is defined to be the smallest treewidth of any triangulation ofM. In other words,

tw(M) = min{tw(Γ(T)) : T is a triangulation ofM}. (1)

The definition of cutwidth cw(M) is analogous. Using [6, Theorems 47 and 49] it follows
that tw(M) ≤ cw(M). Complementing Definition 5, we note that there are simple arguments
proving that any 3-manifold admits triangulations of arbitrarily high treewidth (cf. [24]).

3.2 Layered triangulations
The theory of layered triangulations of 3-manifolds, due to Jaco and Rubinstein [27], captures
the inherently topological notion of a Heegaard splitting, see Section 2.2, in a combinatorial
way. Here we outline the terminology important for our purposes. Despite all the technicalities,
the nomenclature is very expressive and encapsulates much of the intuition.

Spines and layerings. Let Ng,r denote the non-orientable surface of genus g with r punctures
(i.e., boundary components). A g-spine is a 1-vertex triangulation of Ng,1. It has one vertex,
3g − 1 edges (out of which 3g − 2 are interior and one is on the boundary), and 2g − 1
triangles. In particular, the Euler characteristic of any g-spine equals 1− g.

−→ −→ i i

b

−→ −→

Figure 1 Transforming the (well-known depiction of the) Möbius band – the non-orientable
surface of genus one with one puncture – into a 1-spine with interior edge i.

SoCG 2019

44:6 3-Manifold Triangulations with Small Treewidth

Now consider a triangulation S of a surface – usually seen as a g-spine or as the boundary
of a triangulated 3-manifold – and let e be an interior edge of S with t1 and t2 being the two
triangles of S containing e. Gluing a tetrahedron ∆ along t1 and t2 without a twist is called
a layering onto the edge e of the surface S, cf. Figure 2(i). Importantly, we allow t1 and t2
to coincide, e.g., when layering on the interior edge of a 1-spine (Figure 1, right).

e

t1

t2

S = ∂T

(i)

∆

e′

(ii)

S ′ = ∂T ′

Figure 2 (i) Layering onto the edge e of S = ∂T , (ii) which has the effect of “flipping” e.

Layered handlebodies. It is a pleasant fact that by layering a tetrahedron onto each of the
3g − 2 interior edges of a g-spine we obtain a triangulation of the genus g handlebody Hg,
called a minimal layered triangulation thereof (see Figure 4). More generally, we call any
triangulation obtained by additional layerings a layered triangulation of Hg [26, Section 9].

The case g = 1 is of particular importance. Starting with a 1-spine (Figure 1) and layering
on its interior edge i produces a 1-tetrahedron triangulation T of the solid torus H1 ([24]).
Its boundary S = ∂T is the unique 2-triangle triangulation of the torus with one vertex and
three edges, and layering onto any edge of S yields another triangulation of H1. We may
iterate this procedure to obtain further triangulations, any of which we call a layered solid
torus (cf. [10, Section 1.2] for a detailed exposition). By construction, its dual graph consists
of a single loop at the end of a path of double arcs; see, e.g, Figure 3(v).

Figure 3

While combinatorially the same, boundary triangulations of layered solid tori generally
are not isotopic; they can be described as follows. Consider a “reference torus” T with a fixed
meridian µ, Figure 3(i). Given a layered solid torus, its boundary induces a triangulation of T.
Label the two triangles with + and −, and the three edges with e1, e2, and e3, Figure 3(ii);
and orientation of µ. Let p, q and r denote the geometric intersection number of µ with e1,
e2 and e3, respectively. We say that the corresponding layered solid torus is of type (p, q, r),
or LST(p, q, r) for short. See, e.g., Figure 3(iii)–(iv).

It can be shown that p, q, r are always coprime with p+ q + r = 0. Conversely, for any
such triplet, one can construct a layered solid torus of type (p, q, r), cf. [10, Algorithm 1.2.17].

K. Huszár and J. Spreer 44:7

Layered 3-manifolds. Let M be a closed, orientable 3-manifold given via a Heegaard
splittingM = H ∪f H′. If H and H′ can be endowed with layered triangulations T and T ′,
respectively, such that the attaching map f is simplicial, then the union T ∪f T ′ triangulates
M and is called a layered triangulation ofM. The next theorem is fundamental.

I Theorem 6 (Jaco–Rubinstein, Theorem 10.1 of [27]). Every closed, orientable 3-manifold
admits a layered triangulation (which is a one-vertex triangulation by construction).

3.3 Treewidth versus Heegaard genus
In [25, Theorem 4] it was shown that for a closed, orientable, irreducible, non-Haken (cf. [25,
Section 2.2]) 3-manifoldM, the Heegaard genus g(M) and the treewidth tw(M) satisfy

g(M) < 24(tw(M) + 1). (2)

In this section we further explore the connection between these two parameters, guided by
two questions: 1. Does a reverse inequality hold? 2. Can one refine the assumptions?

For the first one, we give an affirmative answer (Theorem 1). The result is almost
immediate if one inspects a layered triangulation of a closed, orientable 3-manifold. Due to
work of Jaco and Rubinstein, this approach is always possible (cf. Theorem 6).

The second question is more open-ended. As a first step, we observe the following.

I Proposition 7. There exists an infinite family of 3-manifolds of bounded cutwidth – hence
of bounded treewidth – with unbounded Heegaard genus.

This follows from the fact that, while Heegaard genus is additive under taking connected
sums, cutwidth essentially is not affected by this operation, see the full version [24].

I Remark 8. Proposition 7 shows that among reducible 3-manifolds one can easily find
infinite families which violate (2). Nevertheless, irreducibility alone is insufficient for (2)
to hold. In particular, in Section 5 we prove that orientable Seifert fibered spaces over S2

have treewidth at most two (Theorem 15). However, all but two of them are irreducible [44,
Theorem 3.7.17] and they can have arbitrarily large Heegaard genus [9, Theorem 1.1].

Recent work of de Mesmay, Purcell, Schleimer, and Sedgwick [17] suggests that one
might be able to obtain an inequality similar to (2) for (closed) Haken manifolds as well, by
imposing appropriate conditions on the (incompressible) surfaces they contain.

Nevertheless, as mentioned before, a reverse inequality always holds. In order to establish
that, we utilize layered triangulations. See Section 3.2 for a brief introduction.

Proof of Theorem 1. Let g = g(M). Consider the g-spine S in Figure 4(i) together with
the indicated order in which we layer onto the 3g − 2 interior edges of S to build two copies
T ′ and T ′′ of a minimal layered triangulation of the genus g handlebody. See Figure 4(ii) for
the dual graph of T ′ (and of T ′′). Note that ∂T ′ and ∂T ′′ consist of 4g − 2 triangles each.

By Theorem 6, we may extend T ′ to a layered triangulation T ′′′ which can be glued to
T ′′ along a simplicial map f : ∂T ′′′ → ∂T ′′ to yield a triangulation T = T ′′′ ∪f T ′′ ofM.
This construction imposes a natural ordering on the tetrahedra of T : 1. Start by ordering
the tetrahedra of T ′ according to the labels of the edges of S onto which they are initially
layered. 2. Continue with all tetrahedra between T ′ and T ′′ in the order they are attached
to T ′ in order to build up T ′′′. 3. Finish with the tetrahedra of T ′′ again in the order of the
labels of the edges of S onto which they are layered. This way we obtain a linear layout of
the nodes of Γ(T) which realizes width 4g − 2 (Figure 5). Therefore cw(M) ≤ 4g − 2. J

SoCG 2019

44:8 3-Manifold Triangulations with Small Treewidth

··
·

1 1

4

7

10

3g − 2

4

7

10

3g − 2

2

5

8

11
··
·

··
·

3g − 4

3

6

9

3g − 3

∂

··
·

··
·

2

3

5

6

8

3g − 4

3g − 3

4

7

3g − 2

1

(i) (ii)

Figure 4 A g-spine S together with the order in which we layer onto its interior edges (i), and
the dual graph of resulting minimal layered triangulation of the genus g handlebody (ii).

··· ···

· · ·

T ′

T ′′′

T ′′

≤ 4g − 2 = 4g − 2 ≤ 4g − 2

Figure 5 A linear layout showing that cw(M) is bounded above by 4g(M)− 2.

Combining Theorem 1 with tw(M) ≤ cw(M), we directly deduce the following.

I Corollary 9. For any closed, orientable, irreducible, non-Haken 3-manifoldM the Heegaard
genus g(M) and the treewidth tw(M) satisfy

1
4 tw(M) + 2 ≤ g(M) < 24(tw(M) + 1). (3)

In [1, Question 5.3] the authors ask whether computing the Heegaard genus of a 3-manifold
is still hard when restricting to the set of non-Haken 3-manifolds. Corollary 9 implies that the
answer to this question also has implications on the hardness of computing or approximating
the treewidth of non-Haken manifolds.

3.4 An algorithmic aspect of layered triangulations
Layered triangulations are intimately related to the rich theory of surface homeomorphisms,
and in particular the notion of the mapping class group. Making use of this connection, as
well as some very useful results due to Bell [2], we present a general algorithmic method to
turn a 3-manifoldM, given by a small genus Heegaard splitting in some reasonable way, into
a triangulation ofM while staying in full control over the size of this triangulation.

K. Huszár and J. Spreer 44:9

Namely, ifM is given by a genus g Heegaard splitting with the attaching map presented
as a word w over a set of Dehn twists X generating the genus g mapping class group, then
there exists a constant K(g) such that we can construct a layered triangulation ofM of size
O(K(g)|w|), cutwidth ≤ 4g − 2, in time O (K(g)(|X|+ |w|)).

See the full version of this article [24] for the definition of all notions underlying this
observation, a precise formulation of the above statement, and a proof.

4 3-Manifolds of treewidth at most one

This section is dedicated to the proof of Theorem 2. As the treewidth is not sensitive to
multiple arcs or loops, it is helpful to also consider simplifications of multigraphs, in which
we forget about loops and reduce each multiple arc to a single one (Figure 6).

−→

Figure 6 The local effect of simplification in a multigraph.

One direction in Theorem 2 immediately follows from work of Jaco and Rubinstein.

I Theorem 10 (cf. Theorem 6.1 of [27]). Every lens space admits a layered triangulation T
with the simplification of Γ(T) being a path. In particular, all 3-manifolds of Heegaard genus
at most one have treewidth at most one.

For the proof of the other direction, the starting point is the following observation.

I Lemma 11. If the simplification of a 4-regular multigraph G is a tree, then it is a path.

Proof. Let S(G) denote the simplification of G. Call an arc of S(G) even (resp. odd) if its
corresponding multiple arc in G consist of an even (resp. odd) number of arcs. Let Odd(G)
be the subgraph of S(G) consisting of all odd arcs. It follows from a straightforward parity
argument that all nodes in Odd(G) have an even degree. In particular, if the set E(Odd(G))
of arcs is nonempty, then it necessarily contains a cycle. However, this cannot happen as
S(G) is a tree by assumption. Consequently, all arcs of S(G) must be even. This implies
that every node of S(G) has degree at most 2 (otherwise there would be a node in G with
degree > 4), which in turn implies that S(G) is a path. J

∆n∆1 ∆2 ∆3

· · ·(iii)(ii)(i)

Figure 7 The only possible dual graphs (corresp. to closed 3-manifolds) of treewidth at most one.

Consequently, if tw(Γ(T)) ≤ 1 for a triangulation T of a closed 3-manifold, then Γ(T) is
a “thick” path. If tw(Γ(T)) = 0, then Γ(T) is a single node with two loops (Figure 7(i)). By
looking at the Closed Census [12], the only orientable 3-manifolds admitting a dual graph
of this kind are S3 and two lens spaces. If Γ(T) has a quadruple arc, then it must be a
path of length two (Figure 7(ii)), and the only 3-manifold not a lens space appearing here is
SFS[S2 : (2, 1), (2, 1), (2,−1)] which has Heegaard genus two, cf. [42, p. 27]. Otherwise, order
the tetrahedra ∆1, . . . ,∆n of T as shown in Figure 7(iii), and define Ti ⊂ T to be the ith
subcomplex of T consisting of ∆1, . . . ,∆i.

SoCG 2019

44:10 3-Manifold Triangulations with Small Treewidth

T1 is obtained by identifying two triangles of ∆1. Without loss of generality, we may
assume that these are the triangles ∆1(013) and ∆1(023). A priori, there are six possible
face gluings between them (corresponding to the six bijections {0, 1, 2} → {0, 2, 3}).

The gluing ∆1(013) 7→ ∆1(023) yields a 3-vertex triangulation of the 3-ball, called a
snapped 3-ball, and is an admissible choice for T1, Figure 8(i). ∆1(013) 7→ ∆1(032) and
∆1(013) 7→ ∆1(203) both create Möbius bands as vertex links of the vertices (0) and
(2), respectively, and thus these 1-tetrahedron complexes cannot be subcomplexes of a 3-
manifold triangulation. ∆1(013) 7→ ∆1(230) and ∆1(013) 7→ ∆1(302) both produce valid but
isomorphic choices for T1: the minimal layered solid torus of type LST(1, 2,−3), Figure 8(ii).
Lastly, ∆1(013) 7→ ∆1(320) identifies the edge (03) with itself in reverse, it is hence invalid.

We discuss the two valid cases separately, starting with the latter one.

0 3

2

1

(iii) (iv)(i) ∆1(013) 7→ ∆1(023) (ii) ∆1(013) 7→ ∆1(230)

0 3

2

1

30

2

1

Figure 8 The snapped 3-ball (i). A layered solid torus (ii), with four normal triangles comprising
the single vertex link (iii), which is a triangulated hexagonal disk (iv).

I Lemma 12. Let T be a triangulation of a closed, orientable 3-manifold of treewidth one,
with T1 being a solid torus. Then T triangulates a 3-manifold of Heegaard genus one.

Proof. The proof consists of the following parts. 1. We systematize all subcomplexes T2 ⊂ T
which arise from gluing a tetrahedron ∆2 to T1 along two triangular faces, and discard all
complexes which cannot be part of a 3-manifold triangulation. 2. We discuss the possible
combinatorial types of subcomplexes Ti, i > 2, and triangulations of 3-manifolds arising from
the remaining cases. 3. We show for all resulting triangulations, that the fundamental group
of the underlying manifold i, and is thus of Heegaard genus at most one.

To enumerate all possibilities for T2, assume, without loss of generality, that T1 is obtained
by ∆1(013) 7→ ∆1(230). The boundary ∂T1 is built from two triangles (012)∂ and (123)∂ ,
sharing an edge (12), via the identifications (01) = (23) and (02) = (13), see Figure 8(ii).
The vertex link of T1 is a triangulated hexagon as shown in Figure 8(iii)–(iv).

The second subcomplex T2 is obtained from T1 by gluing ∆2 to the boundary of T2 along
two of its triangles. By symmetry, we are free to choose the first gluing. Hence, without
loss of generality, let T ′2 be the complex obtained from T1 by gluing ∆2 to T1 with gluing
∆2(012) 7→ (012)∂ . The result is a 2-vertex triangulated solid torus with four boundary
triangles ∆2(013), ∆2(023), ∆2(123) and (123)∂ , see Figure 9(ii). Since adjacent edges in the
boundary of the unique vertex link of T1 are always normal arcs in distinct triangles of ∂T1,
the vertex links of T ′2 must be a triangulated 9-gon and a single triangle, see Figure 9(iii).

Note that both vertex links of T ′2 are symmetric with respect to the normal arcs coming
from boundary triangles ∆2(013), ∆2(023) and ∆2(123). By this symmetry, we are free to
choose whether to glue ∆2(013), ∆2(023) or ∆2(123) to (123)∂ , in order to obtain T2.

K. Huszár and J. Spreer 44:11

(i)

20

1 3

20

1 3
(ii) (iii)

Figure 9 The solid torus T1 (i), the complex T ′
2 (ii), and the vertex links of T ′

2 (iii).

(i) ∆2(123) 7→ (123)∂ (ii) ∆2(123) 7→ (132)∂ (iii) ∆2(123) 7→ (213)∂

(iv) ∆2(123) 7→ (231)∂ (v) ∆2(123) 7→ (312)∂ (vi) ∆2(123) 7→ (321)∂

INVALID EDGE

(12) ↔ (21)

disk 1-punctured Klein bottle

3-punctured sphere3-punctured sphere 1-punctured Klein bottle

Figure 10

Therefore we have the following six possibilities to consider (Figure 10).

∆2(123) 7→ (123)∂ is a layering onto (12). It yields another layered solid torus with vertex
link a triangulated hexagon with edges adjacent in the boundary of the link being normal
arcs in distinct faces in ∂T2. Hence, in this case we have the same options for T3 as the
ones in this list. Any complex obtained by iterating this case is of this type.

Here, as well as for the remainder of this proof, whenever we obtain a subcomplex with all
cases for the next subcomplex equal to a case already considered (i.e., isomorphic boundary
complexes compatible with isomorphic boundaries of vertex links), we talk about these cases
to be of the same type. We denote the one obtained via ∆2(123) 7→ (123)∂ by TI.

∆2(123) 7→ (132)∂ is invalid, as it creates a punctured Klein bottle as vertex link.

SoCG 2019

44:12 3-Manifold Triangulations with Small Treewidth

∆2(123) 7→ (213)∂ is invalid, as it identifies (12) on the boundary with itself in reverse.
∆2(123) 7→ (231)∂ results in a 1-vertex complex with triangles (013)∂ and (023)∂ com-

prising its boundary, which is isomorphic to the boundary of the snapped 3-ball with all
of its three vertices identified. The vertex link is a 3-punctured sphere with two boundary
components being normal loop arcs and one consisting of the remaining four normal arcs.
This complex is discussed in detail below, and we denote its type by TII.

∆2(123) 7→ (312)∂ gives a 1-vertex complex of type TII as in the previous case.
∆2(123) 7→ (321)∂ is invalid: it produces a punctured Klein bottle in the vertex link.

Now we discuss complexes of type TII. To this end, let T2 be the complex in Figure 11(ii)
defining this type. By gluing ∆3 to T2 along a boundary triangle, say ∆3(013) 7→ (013)∂ , we
obtain a complex T ′3 (see Figure 11(iii)). Note that no boundary edge of the 3-punctured
sphere vertex link L can be identified with an edge in another boundary component of L,
for that would create genus in L (an obstruction to being a subcomplex of a 3-manifold
triangulation in which all vertex links must be S2). As shown in Figure 12, there is a unique
gluing to avoid this, namely ∆3(023) 7→ (023)∂ , which yields a 1-vertex complex T3 with
vertex link still being a 3-punctured sphere, but now with three boundary components
consisting of two edges each, as indicated in Figure 12(i). Let TIII denote its type. Repeating
the same argument for T3 implies that a valid T4 must be again of type TII.

(iii)

20

1 3

20

1 3

20

1 3

(ii)(i)

−→ −→

−→ −→−→ −→∆2(123) 7→ (231)∂ ∆3(013) 7→ (013)∂

TII

Figure 11

Altogether, the type of each intermediate complex Ti (i < n) is either TI (layered solid
torus), or one of the two types TII and TIII of 1-vertex complexes with a 3-punctured sphere as
vertex link and boundary isomorphic to that of the snapped 3-ball with all vertices identified.
If Tn−1 is of type TI, then it can always be completed to a triangulation of a closed 3-manifold
by either adding a minimal layered solid torus or a snapped 3-ball. If Tn−1 is of type TII or
TII, then it may be completed – if possible – by adding a snapped 3-ball.

To conclude that any resulting T triangulates a 3-manifold of Heegaard genus at most
one, first we observe that the fundamental group of π1(T) is generated by one element.

K. Huszár and J. Spreer 44:13

(iv) ∆3(023) 7→ (230)∂ (v) ∆3(023) 7→ (302)∂ (vi) ∆3(023) 7→ (320)∂
3-punctured torus3-punctured torus

(i) ∆3(023) 7→ (023)∂ (ii) ∆3(023) 7→ (032)∂ (iii) ∆3(023) 7→ (203)∂
3-punctured sphere surface with genus surface with genus

INVALID EDGE

(03) ↔ (30)

Figure 12

Indeed, π1(T1) is isomorphic to Z and is generated by a boundary edge. Furthermore,
since T1 only has one vertex, all edges in T1 must be loop edges, and no edge which is trivial
in π1(T1) can become non-trivial in the process of building up the triangulation of the closed
3-manifold. When we extend T1 by attaching further tetrahedra along two triangles each,
then either all edges of the newly added tetrahedron are identified with edges of the previous
complex, or – in case of a layering – the unique new boundary edge can be expressed in terms
of the existing generator. In both cases, the fundamental group of the new complex admits
a presentation with one generator. Moreover, no new generator can arise from inserting a
minimal layered solid torus or snapped 3-ball in the last step.

So either π1(T) is infinite cyclic, i.e., isomorphic to Z, in which case T must be a
triangulation of S2×S1 [22]; or π1(T) is finite, but then it is spherical by the Geometrization
Theorem [40, p. 104], and thus must be a lens space [47, Theorem 4.4.14.(a)]. J

I Lemma 13. Let T be an n-tetrahedron triangulation of a closed, orientable 3-manifold
of treewidth one, with both T1 and T \ Tn−1 being a snapped 3-ball. Then T triangulates a
3-manifold of Heegaard genus one.

The proof follows the same structure as the one of Lemma 12 (cf. [24]).

5 Some 3-manifolds of treewidth two

In what follows, we use the classification of 3-manifolds of treewidth one (Theorem 2) to
show that a large class of orientable Seifert fibered spaces and some graph manifolds have
treewidth two. This is done by exhibiting appropriate triangulations, which have all the
hallmarks of a space station. First, we give an overview of the building blocks.

SoCG 2019

44:14 3-Manifold Triangulations with Small Treewidth

Robotic arms. These are just the layered triangulations of the solid torus with 2-triangle
boundaries introduced in Section 3.2 and encountered in the proof of Theorem 2. Their dual
graphs are thick paths, see Figure 3(v). A layered solid torus is of type LST(p, q, r) if its
meridional disk intersects its boundary edges p, q and r times. For any coprime p, g, r with
p+ q + r = 0, a triangulation of type LST(p, q, r) can be realized by [10, Algorithm 1.2.17].

I Example 14. A special class of robotic arms are the ones of type LST(0, 1, 1), as they
can be used to trivially fill-in superfluous torus boundary components without inserting an
unwanted exceptional fiber into a Seifert fibered space (cf. descriptions of A2 and A1 below).
One of the standard triangulations of robotic arms of type LST(0, 1, 1) has three tetrahedra
∆i, 0 ≤ i ≤ 2, and is given by the gluing relations (4).

∆0(023) 7→ ∆1(013), ∆0(123) 7→ ∆1(120), ∆1(023) 7→ ∆2(201),
∆1(123) 7→ ∆2(301), ∆2(023) 7→ ∆2(312). (4)

Core unit with three docking sites. Start with a triangle t, take the product t × [0, 1],
triangulate it using three tetrahedra, Figure 13(i)–(ii), and glue t× {0} to t× {1} without a
twist, Figure 13(iii). The dual graph of the resulting complex A3 – topologically a solid torus
– is K3, hence of treewidth two. Its boundary – a 6-triangle triangulation of the torus – can
be split into three 2-triangle annuli, corresponding to the edges of t, each of which we call a
docking site. Edges running along a fiber and thus of type “vertex of base triangle cross circle”
are termed vertical edges. Edges orthogonal to the fibers, i.e., the edges of t× {0} = t× {1},
are termed horizontal edges. The remaining edges are referred to as diagonal edges. More
concisely, the triangulation of A3 has gluing relations

∆0(012) 7→ ∆1(012), ∆1(013) 7→ ∆2(013), ∆2(023) 7→ ∆0(312). (5)

∆0

∆1

∆2

2

1

1

1

3

3

2

2

0

0

0

3

∆0 ∆1 ∆2

(i) (iii)(ii)

∆0

∆1

∆2

Figure 13 Construction of the core unit A3 with three docking sites.

Core assembly with r docking sites. For r = 2 (resp. r = 1), take a core unit A3 and glue
a robotic arm of type LST(0, 1, 1) onto one (resp. two) of its docking sites such that the
unique boundary edge of the robotic arm (i.e., the boundary edge which is only contained
in one tetrahedron of the layered solid torus) is glued to a horizontal boundary edge of A3
(see Example 14 for a detailed description of the a particular triangulation of a layered solid
torus of type LST(0, 1, 1) with unique boundary edge being ∆0(01)). The resulting complex

K. Huszár and J. Spreer 44:15

(i) Γ(A1) (ii) Γ(A2)

Figure 14

is denoted by A2 (resp. A1) and their dual graphs are shown in Figure 13. Observe that they
have treewidth two.

For Ar (r ≥ 3) take r− 2 copies of A3, denote them by Ai
3, 1 ≤ i ≤ r− 2 with tetrahedra

∆i
0, ∆i

1 and ∆i
2, 1 ≤ i ≤ r − 2. Glue them together by mirroring them across one of their

boundary components as shown by Equation (6) for 1 ≤ i ≤ r − 3 odd, and by Equation (7)
for 2 ≤ i ≤ r − 3 even. See also Figure 15 on the top for the case r = 5.

The resulting complex, denoted by Ar, has 2r boundary triangles which become r 2-
triangle torus boundary components once identifications of vertical edges are introduced by
gluing complexes with 2-triangle torus boundary components to them.

i odd: ∆i
1(123) 7→ ∆i+1

1 (123), ∆i
2(123) 7→ ∆i+1

2 (123). (6)
i even: ∆i

0(023) 7→ ∆i+1
0 (023), ∆i

1(023) 7→ ∆i+1
1 (023). (7)

∆1
0

∆1
1

∆1
2 ∆2

0

∆2
1

∆2
2 ∆3

0

∆3
1

∆3
2

A5

Γ(A5)

Figure 15

Möbius laboratory module. Such a complex, denoted by M, is given by

T0(123) 7→ T1(123), T0(023) 7→ T1(031), T1(012) 7→ T2(201)
T1(023) 7→ T2(023), T0(013) 7→ T2(132). (8)

Its dual graph is a triangle with two double edges, and hence of treewidth two (see, for
instance, Figure 17). M has one torus boundary component given by the two triangles
T0(012) and T2(013) with edges T0(01) = T2(13), T0(02) = T2(03), and T0(12) = T2(01).

SoCG 2019

44:16 3-Manifold Triangulations with Small Treewidth

··
·

··
·

··
·

· · ·
· · ·

· · ·
Ar· · ·

Figure 16 Dual graph of treewidth two triangulation of an orientable SFS over S2.

I Theorem 15. Orientable Seifert fibered spaces over S2 have treewidth at most two.

Proof. To obtain a treewidth two triangulation of SFS[S2 : (a1, b1), . . . , (ar, br)], start with
the core assembly Ar and a collection of robotic arms LST(ai,±|bi|,−a∓|bi|), 1 ≤ i ≤ r. The
robotic arms are then glued to the r docking sites (2-triangle torus boundary components,
separated by the vertical boundary edges) of Ar, such that boundary edges of type ai are
glued to vertical boundary edges, and edges of type ±|bi| are glued to horizontal boundary
edges. The sign in LST(ai,±|bi|,−a∓ |bi|) is then determined by the type of diagonal edge
in the ith docking site of Ar and by the sign of bi. J

See Figure 16 for a picture of the dual graph of the resulting complex. It is of treewidth
two. Note that, in some cases, a fibre of type (2, 1) can be realized by directly identifying
the two triangles of a torus boundary component of Ar with a twist. In the dual graph this
then appears as a double edge rather than the attachment of a thick path. See Figure 18 on
the right for an example in the treewidth two triangulation of the Poincaré homology sphere.

I Theorem 16. An orientable SFS over a non-orientable surface is of treewidth at most two.

Proof. To obtain a treewidth two triangulation of the orientable Seifert fibered space
SFS[Ng : (a1, b1), . . . , (ar, br)] over the non-orientable surface Ng of genus g, start with a
core assembly Ar+g and attach g copies Mj , 1 ≤ j ≤ g, of the Möbius laboratory module via

T j
0 (012) 7→ ∆j

2(201) and T j
2 (013) 7→ ∆j

0(013), (9)

where T j
0 , T

j
1 and T j

2 are the tetrahedra comprising Mj , and ∆j
0, ∆j

1 and ∆j
2 denote the

tetrahedra making up the first g core units (each being a copy of A3) in Ar+g.
Proceed by attaching a robotic arm of type LST(ai,±|bi|,−ai ∓ |bi|), 1 ≤ i ≤ r, to each

of the remaining r docking sites. Again, for the gluings between the robotic arms and the
core assembly Ar+g, the edges of type ai must be glued to the vertical boundary edges, the
edges of type bi must be glued to the horizontal boundary edges, and attention has to be
paid to the signs of the bi and to how exactly diagonal edges run. See Figure 17 for a picture
of the dual graph of the resulting complex, which is of treewidth two by inspection. J

Combining Theorems 2, 15 and 16 immediately gives the following statement.

I Corollary 17. An orientable Seifert fibered spaceM over S2 or a non-orientable surface is
of treewidth one, ifM is a lens space or SFS[S2 : (2, 1), (2, 1), (2,−1)], and two otherwise.

K. Huszár and J. Spreer 44:17

··
·

··
·

··
·

· · ·
· · ·

· · ·
Ar+g

· · ·

· · ·

Figure 17 Dual graph of a treewidth two triangulation of an orientable SFS over Ng.

I Corollary 18. Orientable spherical or “S2 × R” 3-manifolds are of treewidth at most two.

This follows directly from Theorems 15 and 16, see also [24].

I Corollary 19. Graph manifoldsMT modeled on a tree T with nodes being orientable Seifert
fibered spaces over S2 or Ng, g > 0, have treewidth at most two.

See [24] for a proof of this statement and an example.

I Corollary 20. Minimal triangulations are not always of minimum treewidth.

Proof. The Poincaré homology sphere Σ3 = SFS[S2 : (2, 1), (3, 1), (5,−4)] has treewidth two
but its minimal triangulation has treewidth four, see Figure 18. J

(i) (ii)

Figure 18 Dual graph of the minimal (i), and of a treewidth two (ii) triangulation of Σ3.

SoCG 2019

44:18 3-Manifold Triangulations with Small Treewidth

I Corollary 21. There exist irreducible 3-manifolds with treewidth two, but arbitrarily high
Heegaard genus.

This now follows from [9, Theorem 1.1 (i)], see the full version [24] for a proof.
Using Theorems 2, 15 and 16 we can now determine the treewidth of most of the

3-manifolds from the 10-tetrahedra census, see Table 1.

Table 1 The 4979 3-manifolds triangulable with ≤ 10 tetrahedra and their treewidths.

n # mfds. M tw(M) = 0 tw(M) = 1 tw(M) = 2 unknown

1 3 3 0 0 0
2 7 0 7 0 0
3 7 0 6 1 0
4 14 0 10 4 0
5 31 0 20 11 0
6 74 0 36 36 2
7 175 0 72 100 3
8 436 0 136 297 3
9 1154 0 272 861 21

10 3078 0 528 2489 61

Σ 4979 3 1087 3799 90

I Remark 22. Using similar constructions it can be shown that orientable Seifert fibered
spaces over orientable surfaces have treewidth at most four. However, since this only provides
an upper bound rather than determining the treewidth of some family of 3-manifolds, we refer
the reader to the full version of this article for a detailed description of these triangulations.

References
1 D. Bachman, R. Derby-Talbot, and E. Sedgwick. Computing Heegaard genus is NP-hard. In

M. Loebl, J. Nešetřil, and R. Thomas, editors, A Journey Through Discrete Mathematics: A
Tribute to Jiří Matoušek, pages 59–87. Springer, 2017. doi:10.1007/978-3-319-44479-6.

2 M. C. Bell. Recognising mapping classes. PhD thesis, University of Warwick, June 2015. URL:
https://wrap.warwick.ac.uk/77123.

3 L. Bessières, G. Besson, S. Maillot, M. Boileau, and J. Porti. Geometrisation of 3-manifolds,
volume 13 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich,
2010. doi:10.4171/082.

4 R. H. Bing. An alternative proof that 3-manifolds can be triangulated. Ann. of Math. (2),
69:37–65, 1959. doi:10.2307/1970092.

5 H. L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybern., 11(1-2):1–21, 1993.
URL: https://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/Bodlaender_1993_
ActaCybernetica.xml.

6 H. L. Bodlaender. A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor. Comput.
Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

7 H. L. Bodlaender. Discovering Treewidth. In SOFSEM 2005: Theory and Practice of
Computer Science, 31st Conference on Current Trends in Theory and Practice of Computer
Science, Liptovský Ján, Slovakia, January 22–28, 2005, Proceedings, pages 1–16, 2005. doi:
10.1007/978-3-540-30577-4_1.

8 H. L. Bodlaender and A. M. C. A. Koster. Combinatorial Optimization on Graphs of Bounded
Treewidth. Comput. J., 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

http://dx.doi.org/10.1007/978-3-319-44479-6
https://wrap.warwick.ac.uk/77123
http://dx.doi.org/10.4171/082
http://dx.doi.org/10.2307/1970092
https://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/Bodlaender_1993_ActaCybernetica.xml
https://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/Bodlaender_1993_ActaCybernetica.xml
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1007/978-3-540-30577-4_1
http://dx.doi.org/10.1007/978-3-540-30577-4_1
http://dx.doi.org/10.1093/comjnl/bxm037

K. Huszár and J. Spreer 44:19

9 M. Boileau and H. Zieschang. Heegaard genus of closed orientable Seifert 3-manifolds. Invent.
Math., 76(3):455–468, 1984. doi:10.1007/BF01388469.

10 B. A. Burton. Minimal triangulations and normal surfaces. PhD thesis, University of Mel-
bourne, September 2003. URL: https://people.smp.uq.edu.au/BenjaminBurton/papers/
2003-thesis.html.

11 B. A. Burton. Computational topology with Regina: algorithms, heuristics and implementa-
tions. In Geometry and topology down under, volume 597 of Contemp. Math., pages 195–224.
Amer. Math. Soc., Providence, RI, 2013. doi:10.1090/conm/597/11877.

12 B. A. Burton, R. Budney, W. Pettersson, et al. Regina: Software for low-dimensional topology,
1999–2017. URL: https://regina-normal.github.io.

13 B. A. Burton and R. G. Downey. Courcelle’s theorem for triangulations. J. Comb. Theory,
Ser. A, 146:264–294, 2017. doi:10.1016/j.jcta.2016.10.001.

14 B. A. Burton, T. Lewiner, J. Paixão, and J. Spreer. Parameterized Complexity of Discrete
Morse Theory. ACM Trans. Math. Softw., 42(1):6:1–6:24, 2016. doi:10.1145/2738034.

15 B. A. Burton, C. Maria, and J. Spreer. Algorithms and complexity for Turaev–Viro invariants.
J. Appl. Comput. Topol., 2(1–2):33–53, 2018. doi:10.1007/s41468-018-0016-2.

16 B. A. Burton and J. Spreer. The complexity of detecting taut angle structures on triangulations.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6–8, 2013, pages 168–183, 2013. doi:
10.1137/1.9781611973105.13.

17 A. de Mesmay, J. Purcell, S. Schleimer, and E. Sedgwick. On the tree-width of knot diagrams,
2018. 13 pages, 4 figures. arXiv:1809.02172.

18 J. Díaz, J. Petit, and M. J. Serna. A survey of graph layout problems. ACM Comput. Surv.,
34(3):313–356, 2002. doi:10.1145/568522.568523.

19 R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin,
fifth edition, 2017. doi:10.1007/978-3-662-53622-3.

20 R. G. Downey and M. R. Fellows. Fundamentals of parameterized complexity. Texts in
Computer Science. Springer, London, 2013. doi:10.1007/978-1-4471-5559-1.

21 R. S. Hamilton. Three-manifolds with positive Ricci curvature. J. Differential Geom., 17(2):255–
306, 1982. doi:10.4310/jdg/1214436922.

22 A. Hatcher. Notes on Basic 3-Manifold Topology, 2007. URL: https://pi.math.cornell.
edu/~hatcher/3M/3Mfds.pdf.

23 J. Hempel. 3-manifolds. AMS Chelsea Publishing, Providence, RI, 2004. Reprint of the 1976
original. doi:10.1090/chel/349.

24 K. Huszár and J. Spreer. 3-Manifold triangulations with small treewidth, 2018. 34 pages, 30
figures, 1 table. arXiv:1812.05528.

25 K. Huszár, J. Spreer, and U. Wagner. On the treewidth of triangulated 3-manifolds, 2017.
25 pages, 6 figures, 1 table. An extended abstract of this paper appeared in the Proceedings
of the 34th International Symposium on Computational Geometry (SoCG 2018), Budapest,
June 11–14 2018. arXiv:1712.00434.

26 W. Jaco. Lectures on three-manifold topology, volume 43 of CBMS Regional Conference Series in
Mathematics. American Mathematical Society, Providence, R.I., 1980. doi:10.1090/cbms/043.

27 W. Jaco and J. H. Rubinstein. Layered-triangulations of 3-manifolds, 2006. 97 pages, 32
figures. arXiv:math/0603601.

28 B. Kleiner and J. Lott. Notes on Perelman’s papers. Geom. Topol., 12(5):2587–2855, 2008.
doi:10.2140/gt.2008.12.2587.

29 L. Lovász. Graph minor theory. Bull. Amer. Math. Soc. (N.S.), 43(1):75–86, 2006. doi:
10.1090/S0273-0979-05-01088-8.

30 F. H. Lutz. Triangulated Manifolds with Few Vertices: Geometric 3-Manifolds, 2003. 48 pages,
18 figures. arXiv:math/0311116.

31 C. Maria and J. Purcell. Treewidth, crushing, and hyperbolic volume, 2018. 20 pages, 12
figures. arXiv:1805.02357.

SoCG 2019

http://dx.doi.org/10.1007/BF01388469
https://people.smp.uq.edu.au/BenjaminBurton/papers/2003-thesis.html
https://people.smp.uq.edu.au/BenjaminBurton/papers/2003-thesis.html
http://dx.doi.org/10.1090/conm/597/11877
https://regina-normal.github.io
http://dx.doi.org/10.1016/j.jcta.2016.10.001
http://dx.doi.org/10.1145/2738034
http://dx.doi.org/10.1007/s41468-018-0016-2
http://dx.doi.org/10.1137/1.9781611973105.13
http://dx.doi.org/10.1137/1.9781611973105.13
http://arxiv.org/abs/1809.02172
http://dx.doi.org/10.1145/568522.568523
http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.4310/jdg/1214436922
https://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf
https://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf
http://dx.doi.org/10.1090/chel/349
http://arxiv.org/abs/1812.05528
http://arxiv.org/abs/1712.00434
http://dx.doi.org/10.1090/cbms/043
http://arxiv.org/abs/math/0603601
http://dx.doi.org/10.2140/gt.2008.12.2587
http://dx.doi.org/10.1090/S0273-0979-05-01088-8
http://dx.doi.org/10.1090/S0273-0979-05-01088-8
http://arxiv.org/abs/math/0311116
http://arxiv.org/abs/1805.02357

44:20 3-Manifold Triangulations with Small Treewidth

32 C. Maria and J. Spreer. A polynomial time algorithm to compute quantum invariants of
3-manifolds with bounded first Betti number. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16–19, pages 2721–2732, 2017. doi:10.1137/1.9781611974782.180.

33 J. Milnor. Towards the Poincaré conjecture and the classification of 3-manifolds. Notices
Amer. Math. Soc., 50(10):1226–1233, 2003.

34 E. E. Moise. Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermu-
tung. Ann. of Math. (2), 56:96–114, 1952. doi:10.2307/1969769.

35 J. M. Montesinos. Classical tessellations and three-manifolds. Universitext. Springer-Verlag,
Berlin, 1987. doi:10.1007/978-3-642-61572-6.

36 P. Orlik. Seifert manifolds, volume 291 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin-New York, 1972. doi:10.1007/BFb0060329.

37 G. Perelman. The entropy formula for the Ricci flow and its geometric applications, 2002. 39
pages. arXiv:math/0211159.

38 G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds,
2003. 7 pages. arXiv:math/0307245.

39 G. Perelman. Ricci flow with surgery on three-manifolds, 2003. 22 pages. arXiv:math/0303109.
40 J. Porti. Geometrization of three manifolds and Perelman’s proof. Rev. R. Acad. Cienc.

Exactas Fís. Nat. Ser. A Math. RACSAM, 102(1):101–125, 2008. doi:10.1007/BF03191814.
41 N. Robertson and P. D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-Width. J.

Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.
42 N. Saveliev. Lectures on the topology of 3-manifolds. De Gruyter Textbook. Walter de Gruyter

& Co., Berlin, 2nd edition, 2012. doi:10.1515/9783110250367.
43 M. Scharlemann. Heegaard splittings of compact 3-manifolds. In Handbook of geometric

topology, pages 921–953. North-Holland, Amsterdam, 2002. doi:10.1016/B978-044482432-5/
50019-6.

44 J. Schultens. Introduction to 3-manifolds, volume 151 of Graduate Studies in Mathematics.
Amer. Math. Soc., Providence, RI, 2014. doi:10.1090/gsm/151.

45 P. Scott. The geometries of 3-manifolds. Bull. London Math. Soc., 15(5):401–487, 1983.
doi:10.1112/blms/15.5.401.

46 H. Seifert. Topologie Dreidimensionaler Gefaserter Räume. Acta Math., 60(1):147–238, 1933.
doi:10.1007/BF02398271.

47 W. P. Thurston. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull.
Amer. Math. Soc. (N.S.), 6(3):357–381, 1982. doi:10.1090/S0273-0979-1982-15003-0.

48 W. P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton
Mathematical Series. Princeton University Press, Princeton, NJ, 1997. Edited by S. Levy.
doi:10.1515/9781400865321.

http://dx.doi.org/10.1137/1.9781611974782.180
http://dx.doi.org/10.2307/1969769
http://dx.doi.org/10.1007/978-3-642-61572-6
http://dx.doi.org/10.1007/BFb0060329
http://arxiv.org/abs/math/0211159
http://arxiv.org/abs/math/0307245
http://arxiv.org/abs/math/0303109
http://dx.doi.org/10.1007/BF03191814
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1515/9783110250367
http://dx.doi.org/10.1016/B978-044482432-5/50019-6
http://dx.doi.org/10.1016/B978-044482432-5/50019-6
http://dx.doi.org/10.1090/gsm/151
http://dx.doi.org/10.1112/blms/15.5.401
http://dx.doi.org/10.1007/BF02398271
http://dx.doi.org/10.1090/S0273-0979-1982-15003-0
http://dx.doi.org/10.1515/9781400865321

Algorithms for Metric Learning via Contrastive
Embeddings
Diego Ihara
University of Illinois at Chicago, USA
https://dihara2.people.uic.edu/
dihara2@uic.edu

Neshat Mohammadi
University of Illinois at Chicago, USA
nmoham24@uic.edu

Anastasios Sidiropoulos
University of Illinois at Chicago, USA
http://sidiropoulos.org
sidiropo@uic.edu

Abstract
We study the problem of supervised learning a metric space under discriminative constraints. Given
a universe X and sets S,D ⊂

(
X
2

)
of similar and dissimilar pairs, we seek to find a mapping

f : X → Y , into some target metric space M = (Y, ρ), such that similar objects are mapped to
points at distance at most u, and dissimilar objects are mapped to points at distance at least `. More
generally, the goal is to find a mapping of maximum accuracy (that is, fraction of correctly classified
pairs). We propose approximation algorithms for various versions of this problem, for the cases of
Euclidean and tree metric spaces. For both of these target spaces, we obtain fully polynomial-time
approximation schemes (FPTAS) for the case of perfect information. In the presence of imperfect
information we present approximation algorithms that run in quasi-polynomial time (QPTAS). We
also present an exact algorithm for learning line metric spaces with perfect information in polynomial
time. Our algorithms use a combination of tools from metric embeddings and graph partitioning,
that could be of independent interest.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases metric learning, contrastive distortion, embeddings, algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.45

Related Version A full version of this paper is available at https://arxiv.org/abs/1807.04881.

Funding Supported by NSF under award CAREER 1453472, and grants CCF 1815145 and CCF
1423230.

1 Introduction

Geometric algorithms have given rise to a plethora of tools for data analysis, such as
clustering, dimensionality reduction, nearest-neighbor search, and so on; we refer the reader
to [20, 19, 25] for an exposition. A common aspect of these methods is that the underlying
data is interpreted as a metric space. That is, each object in the input is treated as a point,
and the pairwise dissimilarity between pairs of objects is encoded by a distance function on
pairs of points. An important element that can critically determine the success of this data
analytic framework, is the choice of the actual metric. Broadly speaking, the area of metric
learning is concerned with methods for recovering an underlying metric space that agrees
with a given set of observations (we refer the reader to [29, 23] for a detailed exposition).
The problem of learning the distance function is cast as an optimization problem, where the
objective function quantifies the extend to which the solution satisfies the input constraints.

© Diego Ihara, Neshat Mohammadi, and Anastasios Sidiropoulos;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 45; pp. 45:1–45:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://dihara2.people.uic.edu/
mailto:dihara2@uic.edu
mailto:nmoham24@uic.edu
http://sidiropoulos.org
mailto:sidiropo@uic.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.45
https://arxiv.org/abs/1807.04881
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Algorithms for Metric Learning via Contrastive Embeddings

Figure 1 An illustration of the metric learning framework. The input consists of a set of objects
(here, a set of photos), with some pairs labeled as “similar” (depicted in green), and some pairs
labeled “dissimilar” (depicted in red). The output is an embedding into some metric space (here, the
Euclidean plane), such that similar objects are mapped to nearby points, while dissimilar objects
are mapped to points that are far from each other.

Supervised vs. unsupervised metric learning. The problems studied in the context of
metric learning generally fall within two main categories: supervised and unsupervised
learning. In the case of unsupervised metric learning, the goal is to discover the intrinsic
geometry of the data, or to fit the input into some metric space with additional structure. A
prototypical example of an unsupervised metric learning problem is dimensionality reduction,
where one is given a high-dimensional point set and the goal is to find a mapping into some
space of lower dimension, or with a special structure, that approximately preserves the
geometry of the input (see e.g. [15, 26, 12]).

In contrast, the input in a supervised metric learning problem includes label constrains,
which encode some prior knowledge about the ground truth. As an example, consider the
case of a data set where experts have labeled some pairs of points as being “similar” and
some pairs as being “dissimilar”. Then, a metric learning task is to find a transformation
of the input such that similar points end up close together, while dissimilar points end up
far away from each other. As an illustrative example of the above definition, consider the
problem of recognizing a face from a photo. More concretely, a typical input consists of some
universe X, which is a set of photos of faces, together with some S,D ⊆

(
X
2
)
. The set S

consists of pairs of photos that correspond to the same person, while D consists of pairs of
photos from different people. A typical approach for addressing this problem (see e.g. [14]) is
to find a mapping f : X → Rd, for some d ∈ N, such that for all similar pairs {x, y} ∈ S we
have ‖f(x)− f(y)‖2 ≤ u, and for all dissimilar pairs {x, y} ∈ D we have ‖f(x)− f(y)‖2 ≥ `,
for some u, ` > 0. More generally, one seeks to find a mapping f that maximizes the fraction
of correctly classified pairs of photos (see Figure 1).

1.1 Problem formulation
At the high level, an instance of a metric learning problem consists of some universe of objects
X, together with some similarity information on subsets of these objects. Here, we focus on
similarity and dissimilarity constraints. Specifically, an instance is a tuple φ = (X,S,D, u, `),
where X is a finite set, with |X| = n, S,D ⊂

(
X
2
)
, which are sets of pairs of objects that are

labeled as “similar” and “dissimilar” respectively, and u, ` > 0. We refer to the elements
of S ∪ D as constraints. We focus on the case where S ∩ D = ∅, and S ∪ D =

(
X
2
)
. Let

D. Ihara, N. Mohammadi, and A. Sidiropoulos 45:3

f : X → Y be a mapping into some target metric space (Y, ρ). As it is typical with geometric
realization problems, we relax the definition to allow for a small multiplicative error c ≥ 1 in
the embedding. We say that f satisfies {x, y} ∈ S, if

ρ(f(x), f(y)) ≤ u · c, (1)

and we say that it satisfies {x, y} ∈ D if

ρ(f(x), f(y)) ≥ `/c. (2)

If f does not satisfy some {x, y} ∈ S ∪ D, then we say that it violates it. We refer to the
parameter c as the contrastive distortion of f . We also refer to f as a constrastive embedding,
or c-embedding.

1.2 Our contribution
We now briefly discuss our main contributions.

We focus on the problem of computing an embedding with low contrastive distortion, and
with maximum accuracy, which is defined to be the fraction of satisfied constraints. Since
we are assuming complete information, that is S ∪ D =

(
X
2
)
, it follows that the accuracy

is equal to k/
(
n
2
)
, where k is the number of satisfied constraints. We remark that the

setting of complete information requires a dense set of constraints. This case is important in
applications when learning a metric space based on a set of objects with fully-labeled pairs.
This is also the setting of other important machine learning primitives, such as Correlation
Clustering (see [7]), which we discuss in Section 1.4.

Our results are concerned with two main cases: perfect and imperfect information. Here,
the case of perfect information corresponds to the promise problem where there exists
an embedding that satisfies all constraints. On the other hand, in the case of imperfect
information, no such promise is given. As we shall see, the latter scenario appears to be
significantly more challenging. Our results are concerned with two different families of target
spaces: d-dimensional Euclidean space, and trees.

Learning Euclidean metric spaces. We begin our investigation by observing that the
problem of computing a contrastive embedding into d-dimensional Euclidean space with
perfect information is polynomial-time solvable for d = 1, and it becomes NP-hard even for
d = 2. The result for d = 1 is obtained via a simple greedy algorithm, while the NP-hardness
proof uses a standard reduction from the problem of recognizing unit disk graphs (see [11]).

I Theorem 1 (Learning the line with perfect information). Let γ = (X,S,D, u, `) be an
instance of the metric learning problem. Then there exists a polynomial-time algorithm which
given γ, either computes an 1-embedding f̂ : X → R, with accuracy 1, or correctly decides
that no such embedding exists.

I Theorem 2 (Hardness of learning the plane with perfect information). Given an instance
γ = (X,S,D, u, `) of the metric learning problem, it is NP-hard to decide whether there exists
an 1-embedding f̂ : X → R2, with accuracy 1.

The above two results indicate that, except for what is essentially its simplest possible case,
the problem is generally intractable. This motivates the study of approximation algorithms.
Our first main result in this direction is a FPTAS for the case of perfect information,
summarized in the following.

SoCG 2019

45:4 Algorithms for Metric Learning via Contrastive Embeddings

I Theorem 3 (Learning Euclidean metric spaces with perfect information). Let u, ` > 0 be fixed
constants. Let γ = (X,S,D, u, `) be an instance of the problem of learning a d-dimensional
Euclidean metric space with perfect information, with |X| = n, for some d ≥ 2. Suppose that
γ admits an 1-embedding f∗ : X → Rd with accuracy 1. Then for any ε, ε′ > 0, there exists
a randomized algorithm which given γ, ε, and ε′, computes a (1 + ε′)-embedding f̂ : X → Rd,
with accuracy at least 1− ε, in time nO(1)g(ε, ε′, d) = nO(1)2(d

εε′)
O(d2)

, with high probability.
In particular, for any fixed d, ε, and ε′, the running time is polynomial.

We also obtain the following QPTAS for the case of imperfect information.

I Theorem 4 (Learning Euclidean metric spaces with imperfect information). Let d ≥ 1. Let
u, ` > 0 be fixed constants. Let γ = (X,S,D, u, `) be an instance of the problem of learning a
d-dimensional Euclidean metric space, with |X| = n, for some d ≥ 1. Suppose that γ admits
an 1-embedding f∗ : X → Rd with accuracy 1−ζ, for some ζ > 0. Then for any ε, ε′ > 0, there
exists an algorithm which given γ, ε, ε′, and ζ, computes a (1 + ε′)-embedding f̂ : X → Rd,
with accuracy at least 1−O(ζ1/2 log3/4 n(log logn)1/2)− ε, in time nO(1)2ε

−2(d logn
ζε′)O(d)

. In
particular, for any fixed d, ε, ε′, and ζ, the running time is quasi-polynomial.

Learning tree metric spaces. We next consider the case of embedding into tree metric
spaces. More precisely, we are given an instance (X,S,D, u, `) of the metric learning problem,
and we wish to find a tree T̂ , and an embedding f̂ : X → T̂ , with maximum accuracy. Note
that the tree T̂ is not part of the input. Our results closely resemble the ones from the
case of learning Euclidean metric spaces. Specifically, for the case of perfect information we
obtain a PTAS, summarized in the following.

I Theorem 5 (Learning tree metric spaces with perfect information). Let u, ` > 0 be fixed
constants. Let γ = (X,S,D, u, `) be an instance of the problem of learning a tree metric
space with perfect information, with |X| = n. Suppose that γ admits an 1-embedding
f∗ : X → V (T ∗), for some tree T ∗, with accuracy 1. Then for any ε, ε′ > 0, there exists a
randomized algorithm which given γ, ε, and ε′, computes some tree T̂ , and a (1+ε′)-embedding
f̂ : X → V (T̂), with accuracy at least 1− ε, in time nO(1)g(ε, ε′) = nO(1)21/(εε′)O(1/ε) , with
high probability. In particular, for any fixed ε and ε′, the running time is polynomial.

As in the case of learning Euclidean metric spaces, we also obtain a QPTAS for learning
tree metric spaces in the presence of imperfect information, summarized in the following.

I Theorem 6 (Learning tree metric spaces with imperfect information). Let u, ` > 0 be fixed
constants. Let γ = (X,S,D, u, `) be an instance of the problem of learning a tree metric
space with imperfect information, with |X| = n. Suppose that γ admits an 1-embedding
f∗ : X → V (T ∗), for some tree T ∗, with accuracy 1−ζ, for some ζ > 0. Then for any ε, ε′ > 0,
there exists a randomized algorithm which given γ, ε, ε′, and ζ, computes some tree T̂ , and a
(1 + ε′)-embedding f̂ : X → V (T̂), with accuracy at least 1−O(ζ1/2 log3/4 n(log logn)1/2)− ε,
in time 2((logn)/(ζ1/2εε′))O(1/ε) . In particular, for any fixed ε, ε′, and ζ, the running time is
quasi-polynomial.

1.3 Overview of our techniques
We now give a brief overview of the techniques used in obtaining our approximation algorithms
for the metric learning problem. Interestingly, our algorithms for the Euclidean case closely
resemble our algorithms for tree metric spaces.

D. Ihara, N. Mohammadi, and A. Sidiropoulos 45:5

Learning Euclidean metric spaces. At the high level, our algorithms for learning Euclidean
metric spaces consist of the following steps:
Step 1: Partitioning. We partition the instance into sub-instances, each admitting an em-

bedding into a ball of small diameter. For the case of perfect information, it is easy to
show that such a partition exists, using a Lipschitz partition of Rd (see [13]). Such a
partition can be chosen so that only a small fraction of similarity constraints are “cut”
(that is, their endpoints fall in different clusters of the partition). However, computing
such a partition is a difficult task, since we do not have an optimal embedding (which is
what we seek to compute). We overcome this obstacle by using a result of Krauthgamer
and Roughgarden [22], which allows us to compute such a partition, without access to an
optimal embedding.
For the case of imperfect information, the situation is somewhat harder since there might
be no embedding that satisfies all the constraints. This implies that the partition that
we use in the case of perfect information, is not guaranteed to exist anymore. Therefore,
instead of using a geometric partitioning procedure, we resort to graph-theoretic methods.
We consider the graph GS , with V (G) = X, and with E(G) = S. Roughly speaking, we
partition GS into expanding subgraphs. This can be done by deleting only a relatively
small fraction of edges. For each expanding subgraph, we can show that the corresponding
sub-instance admits an embedding into a subspace of small diameter.

Step 2: Embedding each sub-instance. Once we have partitioned the instance into sub-
instances, with each one admitting an embedding into a ball of small diameter, it remains
to find such an embedding. This is done by first discretizing the target ball, and then
using the theory of pseudoregular partitions (see e.g. [17]) to exhaustively find a good
embedding. The discretization step introduces contrastive distortion 1 + ε′, for some
ε′ > 0 that can be made arbitrarily small in expense of the running time.

Step 3: Combining the embeddings. Finally, we need to combine the embeddings of the
sub-instances to an embedding of the original instance. This can easily be done by
ensuring that the images of different clusters are sufficiently far from each other. Since
only a small fraction of similarity constraints are cut by the original partition, it follows
that the resulting accuracy is high.

Learning tree metric spaces. Surprisingly, the above template is also used, almost verbatim,
for the case of learning tree metric spaces. The only difference is that the partitioning step
now resembles the random partitioning scheme of Klein, Plotkin and Rao [21] for minor-free
graphs. The embedding step requires some modification, since the space of trees of bounded
diameter is infinite, and thus exhaustive enumeration is not directly possible. We resolve
this issue by first showing that if there exists an embedding into a tree of small diameter,
then there also exists an embedding into a single tree, which we refer to as canonical, and
with only slightly worse accuracy.

1.4 Related work
Metric embeddings. The theory of metric embeddings is the source of several successful
methods for processing metrical data sets, which have found applications in metric learning
(see, e.g. [29, 23]). Despite the common aspects of the use of metric embeddings in metric
learning and in algorithm design, there are some key differences. Perhaps the most important
difference is that the metric embedding methods being used in algorithm design often
correspond to unsupervised metric learning tasks. Consequently, problems and methods that
are studied in the context of metric learning, have not received much attention from the

SoCG 2019

45:6 Algorithms for Metric Learning via Contrastive Embeddings

theoretical computer science community. Many of the existing methods used in supervised
metric learning tasks are based on convex optimization, and are thus limited to specific kinds
of objective functions and constraints (see e.g. [30, 16]).

The problems considered in this paper are closely related to questions studied in the
context of computing low-distortion embeddings. For example, the problem of learning a tree
metric space is closely related to the problem of embedding into a tree, which has been studied
under various classical notions of distortion (see e.g. [12, 9, 28, 2, 1]). Similarly, several
algorithms have been proposed for the problem of computing low-distortion embeddings
into Euclidean space (see e.g. [24, 3, 26, 27, 5]). Various extensions and generalizations have
also been considered for maps that approximately preserve the relative ordering of distances
(see e.g. [10, 2, 6]). However, we remark that all of the above results correspond to the
unsupervised version of the metric learning problem, and are thus not directly applicable in
the supervised setting considered here.

Other types of supervision and embeddings. We note that other notions of supervision
have also been considered in the metric learning literature. For example, instead of pairs of
objects that are labeled either “similar” or “dissimilar”, another possibility is to have triple
constraints of the form (x, y, z) ∈

(
X
3
)
, encoding the fact that “x is more similar to y than z”. In

this case, one seeks to find a mapping f : X → Y , such that ρ(f(x), f(y)) < ρ(f(x), f(z))−m,
for some margin parameter m > 0 (see e.g. [30]). However, the form of supervision that we
consider is one of the most popular ones in practice. Furthermore, it is often desirable that
the mapping f has a special form, such as linearity (when X is a subset of some linear space),
or being specified implicitly via a set of parameters, as is the case of mappings computed by
neural networks. We believe that our work can lead to further theoretical understanding
of the metric learning problem under different types of supervision, and for specific classes
of embeddings.

Correlation Clustering. The supervised metric learning problem considered here can be
thought of as a generalization of the classical Correlation Clustering problem [7]. More
specifically, the Correlation Clustering problem is precisely the metric learning problem with
finite contrastive distortion, for the special case when the host is the uniform metric space,
with u = 0 and ` = 1.

1.5 Organization

The rest of the paper is organized as follows. Section 2 introduces some notation and
definitions. Section 3 shows how pseudoregular partitions can be used to compute near-
optimal embeddings into spaces of bounded cardinality. Section 4 presents the algorithm for
learning Euclidean spaces with perfect information. The algorithm for learning Euclidean
spaces with imperfect information is given in Section 5.

The algorithms for learning tree metric spaces under perfect and imperfect information,
the exact algorithm for learning line metric spaces with perfect information, and the NP-
hardness proof of learning the plane with perfect information can be found in the full version
of this paper.

D. Ihara, N. Mohammadi, and A. Sidiropoulos 45:7

2 Preliminaries

For any non-negative integer n, we use the notation [n] = {1, . . . , n}, with the convention
[0] = ∅. Let M = (X, ρ) be some metric space. We say that M is a line metric space if it
can be realized as a submetric of R, endowed with the standard distance. For a graph G and
some v ∈ V (G), we write

NG(v) = {u ∈ V (G) : {v, u} ∈ E(G)}.

For some U ⊂ V (G), we denote by E(U) the set of edges in G that have both endpoints
in U ; that is E(U) = {{u, v} ∈ E(G) : {u, v} ⊆ U}. For some U,U ′ ⊂ V (G), we also write
E(U,U ′) = {{u, v} ∈ E(G) : u ∈ U, v ∈ U ′}.

3 Pseudoregular partitions and spaces of bounded cardinality

In this Section we present an algorithm for computing a nearly-optimal embedding, provided
that there exists a solution contained inside a ball of small cardinality.

Let G be a n-vertex graph. For any disjoint A,B ⊆ V (G), let e(A,B) = |E(A,B)|,
where E(A,B) denotes the set of edged with one endpoint in A and one in B, and let
d(A,B) = e(A,B)

|A|·|B| . Let V = V1, . . . , Vk be a partition of V (G). For any i, j ∈ [k], let
di,j = d(Vi, Vj). For any U ⊆ V (G), let Ui = U∩Vi. The partition V is called ε-pseudoregular
if for all disjoint S, T ⊆ V (G), we have

∣∣∣e(S, T)−
∑
i∈[k]

∑
j∈[k] di,j |S ∩ Vi||T ∩ Vj |

∣∣∣ ≤ εn2.
It is also called equitable if for all i, j ∈ [k], we have ||Vi| − |Vj || ≤ 1. We recall the following
result due to Frieze and Kannan [18] on computing pseudoregular partitions (see also [17, 8]).

I Theorem 7 ([18]). There exists a randomized algorithm which given an n-vertex graph G,
and ε, δ > 0, computes an equitable ε-pseudoregular partition of G with at most k = 2O(ε−2)

parts, in time 2O(ε−2)n2/(ε2δ3), with probability at least 1− δ.

The following is the main result of this Section.

I Lemma 8 (Pseudoregular partitions and embeddings into spaces of small cardinality). Let
ε, ε′ > 0. Let γC = (C,S,D, u, `) be an instance of the metric learning problem, with
|C| = n. Let M = (N, ρ) be some metric space. Suppose that γC admits a (1 + ε′)-embedding
g∗ : C → N with accuracy r∗. Then, there exists an algorithm which given γC and M ,
computes a (1 + ε′)-embedding ĝ : C → N , with accuracy at least r∗ − ε. The running time
is nO(1)2O(|N |5/ε2).

Due to lack of space, the proof of Lemma 8 is available in the full version of this paper.

4 Learning Euclidean metric spaces with perfect information

It this section we describe our algorithm for learning d-dimensional Euclidean metric spaces
with perfect information. First, we present some tools from the theory of random metric
partitions, and show how they can be used to partition an instance to smaller ones, each corre-
sponding to a subspace of bounded diameter. The final algorithm combines this decomposition
with the algorithm from Section 3 for learning metric spaces of bounded diameter.

SoCG 2019

45:8 Algorithms for Metric Learning via Contrastive Embeddings

4.1 Euclidean spaces and Lipschitz partitions
We introduce the necessary tools for randomly partitioning a metric space, and use them to
obtain a decomposition of the input into pieces, each admitting an embedding into a ball in
Rd of small diameter.

Let M = (X, ρ) be a metric space. A partition P of X is called ∆-bounded, for some
∆ > 0, if every cluster in P has diameter at most ∆. Let P be a probability distribution
over partitions of X. We say that P is (β,∆)-Lipschitz, for some β,∆ > 0, if the following
conditions are satisfied:

Any partition in the support of P, is ∆-bounded.
For all p, q ∈ X, PrP∼P [P (x) 6= P (y)] ≤ β · ρ(x, y).

I Lemma 9 ([13]). For any d ≥ 1, and any ∆ > 0, we have that d-dimensional Euclidean
space admits a (O(

√
d/∆),∆)-Lipschitz distribution.

Let GS be the graph with vertex set V (GS) = X, and edge set E(GS) = S. We use ρS
to denote the shortest-path distance of GS , where the length of each edge is set to u.

I Lemma 10. Let X ′ ⊂ X, such that the subgraph of GS induced on X ′ (i.e. GS [X ′]) is
connected. Suppose further that diam(f∗(X ′)) ≤ ∆, for some ∆ > 0. Then, for any p, q ∈ X ′,
we have ρS(p, q) ≤ 2u(1 + 4∆/u)d.

Proof. Let G′ = GS [X ′]. Let Q = x1, . . . , xL be the shortest path between p and q in G′,
with x1 = p, xL = q. We first claim that for all i, j ∈ {1, . . . , L}, with i < j− 1, we have that

‖f∗(xi), f∗(xj)‖2 > u. (3)

Indeed, note that if ‖f∗(xi), f∗(xj)‖2 ≤ u, then since γ has full information, i.e. S ∪D =
(
X
2
)
,

it must be that {xi, xj} ∈ S, and thus the edge {xi, xj} is present in the graph G′. This
implies that ρG′(xi, xj) = u, which contradicts the fact that Q is a shortest path. We have
thus established (3).

For each i ∈ {1, . . . , L}, let Bi be the ball in Rd centered at f∗(xi) and of radius u/2. By
(3) we get that the balls B2, B4, . . . , B2bL/2c are pairwise disjoint. Since diam(f∗(X ′)) ≤ ∆,
it follows that there exists some x∗ ∈ Rd, such that f∗(X ′) ⊂ ball(x∗, 2∆). Therefore

bL/2c⋃
i=1

B2i ⊆
bL/2c⋃
i=1

ball(x2i, u/2) ⊆ ball(x∗, 2∆ + u/2). (4)

Recall that the volume of the ball of radius r in Rd is equal to Vd(r) = πd/2

Γ(1+d/2)r
d. From

(4) we get bL/2c · Vd(u/2) ≤ Vd(2∆ + u/2), and thus ρS(p, q) ≤ ρG′(p, q) = u · (L − 1) ≤
2uVd(2∆+u/2)

Vd(u/2) = 2u(1 + 4∆/u)d, which concludes the proof. J

We now show that the shortest-path metric of the similarity constraint graph admits a
Lipschitz distribution.

I Lemma 11. For any ∆ > 0, the metric space (X, ρS) admits a (O(
√
d/∆), u(1 + 4∆/u)d)-

Lipschitz distribution.

Proof. Let f∗ : X → Rd be some mapping with accuracy 1. By Lemma 9 there exist some
(O(
√
d/∆),∆)-Lipschitz distribution, P , of (Rd, ‖ · ‖2). Let P be a random partition sampled

from P. We define a partition P ′ of X as follows. Let G′S be the graph obtained from
GS by deleting all edges whose endpoints under f∗ are in different clusters of P . That is,

D. Ihara, N. Mohammadi, and A. Sidiropoulos 45:9

V (G′S) = X, and E(G′S) = {{p, q} ∈ S : P (f∗(p)) = P (f∗(q))}, where P (p) denotes the
cluster of P containing p. We define P ′ to be the set of connected components of G′S . Let
P ′ be the induced distribution over partitions of (X, ρS). It remains to show that P ′ is
(O(
√
d/∆), u(1 + 4∆/u)d)-Lipschitz.

Let us first bound the probability of separation. Let p, q ∈ X. Let x1, . . . , xt, with
x1 = p, xt = q, be a shortest-path in GS between p and q. Since P is (O(

√
d/∆),∆)-

Lipschitz, it follows that Pr[f∗(p) 6= f∗(q)] ≤ O(
√
d)

∆ ‖f∗(p)−f∗(q)‖2 ≤ O(
√
d)

∆
∑t−1
i=1 ‖f∗(xi)−

f∗(xi+1)‖2 ≤ O(
√
d)

∆
∑t−1
i=1 ρS(xi, xi+1) = O(

√
d)

∆ ρS(p, q).
Finally, let us bound the diameter of the clusters in P ′. Let C be a cluster in P ′. By

construction, diam(f∗(C)) ≤ ∆, and GS [C] is a connected subgraph, thus by Lemma 10 we
obtain that the diameter of C in the metric space (X, ρ) is at most u(1 + 4∆/u)d. Thus P ′
is (O(

√
d/∆), u(1 + 4∆/u)d)-Lipschitz, concluding the proof. J

The following result allows us to sample from a Lipschitz distribution, without additional
information about the geometry of the underlying space.

I Lemma 12 ([22]). Let M = (X, ρ) be a metric space, and let ∆ > 0. Suppose that M
admits a (β,∆)-Lipschitz distribution, for some β > 0. Then there exists a randomized
polynomial-time algorithm, which given M and ∆, outputs a random partition P of X, such
that P is sampled from a (2β,∆)-Lipschitz distribution P.

4.2 The algorithm: Combining Lipschitz and pseudoregular partitions
We now present our final algorithm for learning Euclidean metric spaces with perfect infor-
mation. First, we show that, using the algorithm from Section 3, we can learn d-dimensional
Euclidean metric spaces of bounded diameter. The final algorithm combines this result with
an efficient procedure for decomposing the instance using a random Lipschitz partition.

I Lemma 13 (Computing Euclidean embeddings of small diameter). Let ε, ε′ > 0. Let
γC = (C,S,D, u, `), with |C| = n, be an instance of the metric learning problem. Suppose
that γC admits an embedding g∗ : C → Rd with accuracy r∗, such that diam(g∗(C)) ≤ ∆, for
some ∆ > 0. Then, there exists an algorithm which given γC and ∆, computes a (1 + ε′)-
embedding ĝ : C → Rd, with accuracy at least r∗ − ε. Furthermore for any fixed u and `, the
running time is T (n, d,∆, ε, ε′) = 2ε−2(∆

√
d/ε′)O(d) .

Proof. Let c1 = ε′

2
√
d

min{`, u}. Since diam(g∗(C)) ≤ ∆, it follows that there exists some
ball B ⊂ Rd of radius 2∆ such that g∗(C) ⊂ B. Let c1Zd denote the integer lattice scaled
by a factor of c1. Let N = B ∩ (c1Zd). Note that |N | ≤ (2∆/c1)d. Let g′ : C → Rd
be defined such that for each p ∈ C, we have that g′(p) is a nearest neighbor of g∗(p)
in N , breaking ties arbitrarily. For any {p, q} ∈ S ∩

(
C
2
)
, we have ‖g′(p) − g′(q)‖2 ≤

‖g′(p)− g∗(p)‖2 + ‖g∗(p)− g∗(q)‖2 + ‖g∗(q)− g′(q)‖2
≤ u +

√
dc1 ≤ u(1 + ε′). Similarly, for any {p, q} ∈ D ∩

(
C
2
)
, we have ‖g′(p) − g′(q)‖2 ≥

−‖g′(p)− g∗(p)‖2 + ‖g∗(p)− g∗(q)‖2 − ‖g∗(q)− g′(q)‖2
≥ `−

√
dc1 ≤ `/(1 + ε′), and thus g′ is a (1 + ε′)-embedding, with accuracy r∗.

Let M = (N, ‖ · ‖2); that is, the metric space on N endowed with the Euclidean distance.
By Lemma 8 we can therefore compute a (1 + ε′)-embedding ĝ : C → N , with accuracy
r∗ − ε, in time nO(1)2O(|N |5/ε2) = 2ε−2(∆

√
d/ε′)O(d) . J

We are now ready to prove the main result in this Section.

SoCG 2019

45:10 Algorithms for Metric Learning via Contrastive Embeddings

Proof of Theorem 3. We first construct the graph GS as above. Let ∆ = c
√
du/ε, for some

universal constant c > 0. By Lemma 11 the metric space (X, ρS) admits some (O(
√
d/∆),∆′)-

Lipschitz distribution, for some ∆′ = u(1 + 4∆/u)d. By Lemma 12 we can compute, in
polynomial time, some random partition P of X, such that P is distributed according to
some (O(

√
d/∆),∆′)-Lipschitz distribution P.

Let S ′ = {{p, q} ∈ S : P (p) 6= P (q)}. Since P is (O(
√
d/∆),∆′)-Lipschitz, it follows by

the linearity of expectation that

E[|S ′|] =
∑
{p,q}∈S

Pr[P (p) 6= P (q)] ≤
∑
{p,q}∈S

O(
√
d)ρS(p, q)

∆ = O(
√
d) u∆ |S| ≤ ε|S|/4, (5)

where the last inequality holds for some large enough constant c > 0.
Fix some optimal embedding f∗ : X → Rd, that satisfies all the constraints in γ. Let C

be a cluster in P . Since P is ∆′-bounded, it follows that the diameter of C in (X, ρS) is at
most ∆′. Thus, for any p, q ∈ C, there exists in GS some path Q = x0, . . . , xL between p and
q, with L ≤ ∆′/u edges. Thus ‖f∗(p)− f∗(q)‖2 ≤

∑L−1
i=0 ‖f∗(xi)− f∗(xi+1)‖2 ≤ L · u ≤ ∆′,

which implies that diam(f∗(C)) ≤ ∆′. Furthermore f∗ has accuracy 1.
Let SC = S∩

(
C
2
)
, DC = D∩

(
C
2
)
. Then γC = (C,SC ,DC , u, u) is an instance of non-linear

metric learning in d-dimensional Euclidean space that admits a solution f∗ : C → Rd with
accuracy 1, with diam(f∗(C)) ≤ ∆′. Therefore, for each C ∈ P , using Lemma 13 we can
compute some (1 + ε′)-embedding fC : C → Rd, with accuracy at least 1 − ε/2, in time
T (n, d,∆′, ε/2, ε′) = nO(1)2(d

εε′)
O(d2)

. We can now combine all these maps fC into a single
map f̂ : X → Rd, by translating each image fC(C) such that for any distinct C,C ′ ∈ P , for
any p ∈ C, p′ ∈ C ′, we have ‖fC(p) − fC′(p′)‖2 ≥ u. For any p ∈ C, we set f(p) = fC(p),
where C is the unique cluster in P containing p. It is immediate that any constraint {p, q} ∈ S,
with p and q in different clusters is violated by f . The total number of such violations is
|S ′|. By Markov’s inequality and (5), these violations are at most ε|S|/2, with probability at
least 1/2. Similarly, any {p, q} ∈ D, with p and q in different clusters is satisfied by f . All
remaining violations are on constraints with both endpoints in the same cluster of P . Since
the accuracy of each fC is at least 1− ε, it follows that the total number of these violations
is at most ε(|S|+ |D|)/2. Therefore, the total number of violations among all constraints is
at most ε(|S|+ |D|)/2 + ε|S|/2 ≤ ε(|S|+ |D|), with probability at least 1/2. In other words,
the accuracy of f is at least 1 − ε, with probability at least 1/2. The success probability
can be increased to 1− 1/nc, for any constant c > 0, by repeating the algorithm O(logn)
times and returning the best embedding found. Finally, the running time is dominated by
the computation of the maps fC , for all clusters C in P . Since there are at most n such
clusters, the total running time is nO(1)2(d

εε′)
O(d2)

, concluding the proof. J

5 Learning Euclidean metric spaces with imperfect information

In this Section we describe our algorithm for learning d-dimensional Euclidean metric spaces
with imperfect information. We first obtain some preliminary results on graph partitioning
via sparse cuts. We next show that for any instance whose similarity constraints induce an
expander graph, the optimal solution must be contained inside a ball of small diameter. Our
final algorithm combines these results with the algorithm from Section 3 for embedding into
host metric spaces of bounded cardinality.

Fix some instance γ = (X,S,D, u, `). For the remainder of this Section we define the
graphs GS = (X,ES), GD = (X,ED), and GS∪D = (X,ES∪D), where ES = S, ED = D,
and ES∪D = S ∪ D.

D. Ihara, N. Mohammadi, and A. Sidiropoulos 45:11

5.1 Well-linked decompositions
We recall some results on partitioning graphs into well-connected components. An instance to
the Sparsest-Cut problem consists of a graph G, with each edge {x, y} ∈ E(G) having capacity
cap(x, y) ≥ 0, and each pair x, y ∈ V (G) having demand dem(x, y) ≥ 0. The goal is to find a
cut (U,U) of minimum sparsity, denoted by φ(U), which is defined as φ(U) = cap(U,U)

dem(U,U)
, where

cap(U,U) =
∑
{x,y}∈E(U,U) cap(x, y), dem(U,U) =

∑
{x,y}∈E(U,U) dem(x, y), and E(U,U)

denotes the set of edges between U and U . We recall the following result of Arora, Lee and
Naor [3] on approximating the Sparsest-Cut problem (see also [4]).

I Theorem 14 ([3]). There exists a polynomial-time O(
√

logn log logn)-approximation for
the Sparsest-Cut problem on n-vertex graphs.

I Lemma 15. Let α > 0. There exists a polynomial-time algorithm which computes some
E′ ⊂ S ∪ D, with |E′| ≤ α|S ∪ D|, such that for every connected component C of GS \ E′,
and any U ⊂ C, we have |ES(U,C \ U)| = Ω

(
α

log3/2 n log logn

)
|U | · |C \ U |.

Proof. We compute E′ inductively starting with E′ = ∅. We construct an instance of the
Sparsest-Cut problem on graph GS , where for any {x, y} ∈ S we have cap(x, y) = 1, and for
any x, y ∈ X, we have dem(x, y) = 1. Let χ = α

c log3/2 n log logn , for some universal constant
c > 0 to be specified. If there exists a cut of sparsity at most χ, then by Theorem 14 we can
compute a cut (U,U) of sparsity O(χ

√
logn log logn). We add to E′ all the edges in ES(U,U),

and we recurse on the subgraphs GS [U] and GS [U]. If no cut with the desired sparsity
exists, then we terminate the recursion. For each cut (U,U) found, the edges in ES(U,U)
that were added to E′ are charged to the edges in ES∪D(U,U). In total, we charge only
O(χ
√

logn log logn)-fraction of all edges, and thus |E′| = O(χn log3/2 n log logn) ≤ α|S ∪D|,
where the last inequality follows for some sufficiently large constant c > 0, concluding
the proof. J

5.2 Isoperimetry and the diameter of embeddings
Here we show that if the graph GS of similarity constraints is “expanding” relative to GS∪D,
then there exists an embedding with near-optimal accuracy, that has an image of small
diameter. Technically, we require that in any cut in GS∪D, a significant fraction of its edges
are in S. Intuitively, this condition forces almost all points to be mapped within a small ball.
The next Lemma formalizes this statement.

I Lemma 16. Let F ⊂ S, with |F | ≤ ζ
(|X|

2
)
, for some ζ > 0. Suppose that for all U ⊂ X,

we have

|ES(U,X \ U)| ≥ α′ · |U | · |X \ U |, (6)

for some α′ > 0. Then there exists J ⊆ X, satisfying the following conditions:
(1) No edge in F has both endpoints in J ; that is, F ∩ ES(J) = ∅.
(2) |ES∪D(J)| ≥ (1− ζ/α′)

(|X|
2
)
.

(3) For all U ⊂ J , we have

|ES(U, J \ U)| = Ω(α′)|U | · |J \ U |. (7)

Proof. Let C be the largest connected component of GS \ F , and let C ′ = X \ C. By (6)
we get

|ES∪D(C,C ′)| = |C| · |C ′| = O (1/α′) |ES(C,C ′)| = O (1/α′) |F | = O (ζ/α′) |X|2. (8)

SoCG 2019

45:12 Algorithms for Metric Learning via Contrastive Embeddings

Since GS∪D is a complete graph, it follows from (8) that the number of edges not in GS∪D[C]
is at most O(ζ/α′)|X|2, and therefore

|ES∪D(C)| ≥ (1−O(ζ/α′))
(
|X|
2

)
. (9)

Next, we compute some J ⊆ C such that for all U ⊂ C,

ES(U, J \ U) ≥ c′α′ · |U | · |J \ U |, (10)

for some universal constant c′ to be determined. This is done as follows. If there is no U ⊂ C
violating (10), then we set J = C. Otherwise, pick some U ⊂ C, such that

ES(U,C \ U) < c′α′ · |U | · |C \ U |. (11)

Assume w.l.o.g. that |U | ≤ |C \ U |. We delete U and we recurse on C \ U . All deleted
edges are charged to the edges in F that are incident to U . It follows by (11) and (6) that,
for some sufficiently small constant c′ > 0, at least a 2/3-fraction of the edges incident to
U are in F . Thus |F ∩ ES(U,X \ U)| = Ω(α′)|U | · |X \ U |. We charge the deleted edges
(that is, the edges inside the deleted component U and in ES(U,X \ U)) to the edges in
F ∩ ES(U,X \ U), with each edge thus receiving O(1/α′) units of charge. When we recurse
on C \ U , the part of F that was incident to U is replaced by ES(U,C \ U), and thus it
decreases in size by at least a factor of 2. Therefore, the total charge that we pay throughout
the construction is at most O(1/α′)|F | = O(ζ/α′)|X|2, which is an upper bound on the
number of all deleted edges. This completes the construction of J . Combining with (9) we get
|ES∪D(J)| ≥ |ES∪D(C)|−O(ζ/α′)|X|2 ≥ (1−O(ζ/α′))

(|X|
2
)
, which concludes the proof. J

I Lemma 17. Let M = (Y, ρ) be any metric space. Suppose that γ admits an embedding
f∗ : X → Y with accuracy 1 − ζ, for some ζ > 0. Suppose further that for all U ⊂ X,
we have

ES(U,X \ U) ≥ α′ · |U | · |X \ U |, (12)

for some α′ > 0. Then there exists an embedding f ′ : X → Y , with accuracy at least
1−O(ζ/α′), such that diamM (f ′(X)) = O

(
u logn
α′

)
.

Proof. Let J ⊆ X be given by Lemma 16, where we set F to be the set of constraints in
S that are violated by f∗. We define f ′ : X → Y by mapping each x ∈ J to f∗(x), and
each x ∈ X \ J to some arbitrary point in f∗(J). All constraints in ES(J) are satisfied by
f∗, and thus also by f ′. It follows that f ′ can only violate constraints that are violated
by f∗, and constraints that are not in ES∪D(J). Therefore the accuracy of f ′ is at least
1− ζ −O(ζ/α′) = 1−O(ζ/α′).

By Lemma 16 we have that for all U ⊂ J , |ES(U, J \U)| = Ω(α′)|U |·|J \U |. Therefore, the
combinatorial diameter (that is, the maximum number of edges in any shortest path) of GS [J]
is at mostO((logn)/α′). For all {x, y} ∈ ES(J) we have ρ(f ′(x), f ′(y)) = ρ(f∗(x), f∗(y)) ≤ u,
it follows that diamM (f ′(X)) = diamM (f ′(J)) = O(u logn

α′). J

D. Ihara, N. Mohammadi, and A. Sidiropoulos 45:13

5.3 The algorithm
We are now ready to prove the main result of this Section.

Proof of Theorem 4. Fix some optimal embedding f∗ : X → Rd, with accuracy 1− ζ. Let
E′ ⊂ S ∪ D be the set of constraints computed by the algorithm in Lemma 15. We have
|E′| ≤ α|S ∪ D|, for some α > 0 to be determined.

For each connected component C of GS \E′, let γC = (C,SC ,DC , u, `) be the restriction
of γ on C; that is, SC = S ∩

(
C
2
)
, and SD = D ∩

(
C
2
)
. Let f∗C be the restriction of f∗ on C,

and let the accuracy of f∗C be 1− ζC , for some ζC ∈ [0, 1]. Let FC be the set of constraints
in ES(C) that are violated by f∗C . By Lemma 17 it follows that there exists an embedding
f ′C : X → Rd, with accuracy 1−O(ζC/α′), and such that diam(f ′C(C)) = O(u logn

α′), for some
α′ = Ω(α

log3/2 n log logn).
Using Lemma 13 we can compute a (1+ε′)-embedding f̂C : C → Rd with accuracy at least

1−O(ζC/α)− ε, in time nO(1)2ε
−2(∆

√
d

ε′)O(d)
. We can combine all the embeddings f̂C into a

single embedding f̂ : X → Rd by translating the images of f̂C(C) and f̂C′(C ′) in Rd to that
their distance is at least `, for all distinct components C, C ′. It is immediate that the resulting
embedding f̂ can only violate the constraints in E′, and the constraints violated by all the f̂C .
Thus, the accuracy of f̂ is at least 1−α−O(ζ/α′)−ε. Setting α = ζ1/2 log3/4 n(log logn)1/2,
we get that the accuracy of f̂ is at least 1−O(ζ1/2 log3/4 n(log logn)1/2)− ε. The running
time is dominated by the at most n executions of the algorithm from Lemma 13, and thus it
is at most nO(1)2ε

−2(d logn
ζε′)O(d)

, for any fixed u > 0, concluding the proof. J

References
1 Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny.

In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on,
pages 73–82. IEEE, 2005.

2 Noga Alon, Mihai Bădoiu, Erik D Demaine, Martin Farach-Colton, MohammadTaghi Haji-
aghayi, and Anastasios Sidiropoulos. Ordinal embeddings of minimum relaxation: general
properties, trees, and ultrametrics. ACM Transactions on Algorithms (TALG), 4(4):46, 2008.

3 Sanjeev Arora, James Lee, and Assaf Naor. Euclidean distortion and the sparsest cut. Journal
of the American Mathematical Society, 21(1):1–21, 2008.

4 Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

5 Mihai Badoiu. Approximation algorithm for embedding metrics into a two-dimensional space.
In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages
434–443. Society for Industrial and Applied Mathematics, 2003.

6 Mihai Bădoiu, Erik D Demaine, MohammadTaghi Hajiaghayi, Anastasios Sidiropoulos, and
Morteza Zadimoghaddam. Ordinal embedding: Approximation algorithms and dimensionality
reduction. In Approximation, Randomization and Combinatorial Optimization. Algorithms
and Techniques, pages 21–34. Springer, 2008.

7 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning,
56(1-3):89–113, 2004.

8 Nikhil Bansal and Ryan Williams. Regularity lemmas and combinatorial algorithms. In
Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages
745–754. IEEE, 2009.

9 Yair Bartal. Probabilistic Approximations of Metric Spaces and Its Algorithmic Applications.
In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 184–193. IEEE Computer Society, 1996. doi:
10.1109/SFCS.1996.548477.

SoCG 2019

http://dx.doi.org/10.1109/SFCS.1996.548477
http://dx.doi.org/10.1109/SFCS.1996.548477

45:14 Algorithms for Metric Learning via Contrastive Embeddings

10 Yonatan Bilu and Nati Linial. Monotone maps, sphericity and bounded second eigenvalue.
Journal of Combinatorial Theory, Series B, 95(2):283–299, 2005.

11 Heinz Breu and David G Kirkpatrick. Unit disk graph recognition is NP-hard. Computational
Geometry, 9(1-2):3–24, 1998.

12 Mihai Bǎdoiu, Piotr Indyk, and Anastasios Sidiropoulos. Approximation algorithms for embed-
ding general metrics into trees. In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 512–521. Society for Industrial and Applied Mathematics, 2007.

13 Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin. Approxi-
mating a finite metric by a small number of tree metrics. In Foundations of Computer Science,
1998. Proceedings. 39th Annual Symposium on, pages 379–388. IEEE, 1998.

14 Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively,
with application to face verification. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 539–546. IEEE, 2005.

15 Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

16 Jason V Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S Dhillon. Information-
theoretic metric learning. In Proceedings of the 24th international conference on Machine
learning, pages 209–216. ACM, 2007.

17 Alan Frieze and Ravi Kannan. The regularity lemma and approximation schemes for dense
problems. In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium
on, pages 12–20. IEEE, 1996.

18 Alan Frieze and Ravi Kannan. Quick approximation to matrices and applications. Combina-
torica, 19(2):175–220, 1999.

19 Sariel Har-Peled. Geometric approximation algorithms, volume 173. American mathematical
society Boston, 2011.

20 Piotr Indyk, Jiří Matoušek, and Anastasios Sidiropoulos. Low-Distortion Embeddings of
Finite Metric Spaces. In Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Toth, editors,
Handbook of Discrete and Computational Geometry, Second Edition. Chapman and Hall/CRC,
2017.

21 Philip Klein, Serge A Plotkin, and Satish Rao. Excluded minors, network decomposition, and
multicommodity flow. In Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pages 682–690. ACM, 1993.

22 Robert Krauthgamer and Tim Roughgarden. Metric Clustering via Consistent Labeling.
Theory OF Computing, 7:49–74, 2011.

23 Brian Kulis et al. Metric learning: A survey. Foundations and Trends® in Machine Learning,
5(4):287–364, 2013.

24 Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2):215–245, 1995.

25 Jiří Matoušek. Lectures on discrete geometry, volume 212. Springer Science & Business Media,
2002.

26 Jiří Matoušek and Anastasios Sidiropoulos. Inapproximability for metric embeddings into Rd.
Transactions of the American Mathematical Society, 362(12):6341–6365, 2010.

27 Amir Nayyeri and Benjamin Raichel. Reality distortion: Exact and approximate algorithms
for embedding into the line. In Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on, pages 729–747. IEEE, 2015.

28 Amir Nayyeri and Benjamin Raichel. A Treehouse with Custom Windows: Minimum Distortion
Embeddings into Bounded Treewidth Graphs. In Philip N. Klein, editor, Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 724–736. SIAM, 2017. doi:10.
1137/1.9781611974782.46.

29 Gregory Shakhnarovich. Learning task-specific similarity. PhD thesis, Massachusetts Institute
of Technology, 2005.

30 Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research, 10(Feb):207–244, 2009.

http://dx.doi.org/10.1137/1.9781611974782.46
http://dx.doi.org/10.1137/1.9781611974782.46

Exact Computation of the Matching Distance on
2-Parameter Persistence Modules
Michael Kerber
Graz University of Technology, Graz, Austria
kerber@tugraz.at

Michael Lesnick
University at Albany, SUNY, United States
mlesnick@albany.edu

Steve Oudot
Inria Saclay – Île-de-France, Palaiseau, France
steve.oudot@inria.fr

Abstract
The matching distance is a pseudometric on multi-parameter persistence modules, defined in terms
of the weighted bottleneck distance on the restriction of the modules to affine lines. It is known that
this distance is stable in a reasonable sense, and can be efficiently approximated, which makes it a
promising tool for practical applications. In this work, we show that in the 2-parameter setting, the
matching distance can be computed exactly in polynomial time. Our approach subdivides the space
of affine lines into regions, via a line arrangement. In each region, the matching distance restricts
to a simple analytic function, whose maximum is easily computed. As a byproduct, our analysis
establishes that the matching distance is a rational number, if the bigrades of the input modules
are rational.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Mathematics
of computing → Mathematical optimization

Keywords and phrases Topological Data Analysis, Multi-Parameter Persistence, Line arrangements

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.46

Related Version A full version of this paper is available at https://arxiv.org/abs/1812.09085.

Funding Michael Kerber : Supported by Austrian Science Fund (FWF) grant number P 29984-N35.

Acknowledgements This work was initiated at the BIRS workshop “Multiparameter Persistent
Homology” (18w55140) in Oaxaca, Mexico (Aug. 2018). We thank Jan Reininghaus and the other
members of the discussion group on this topic for fruitful initial exchanges. We thank Matthew
Wright for helpful discussions about line arrangements, slices, and the computational aspects of
2-parameter persistence.

1 Introduction

Multi-parameter persistent homology is receiving growing attention, both from the theoretical
and computational points of view. Its motivation lies in the possibility of extending the
success of topological data analysis to settings where the structure of data is best captured
by 2-parameter rather than 1-parameter constructions. The basic algebraic objects of study
in multi-parameter persistence are certain commutative diagrams of vector spaces called
persistence modules. In the 1-parameter setting, persistence modules decompose in an
essentially unique way into simple summands called interval modules. The decomposition
is specified by a discrete invariant called a persistence diagram. In contrast, the algebraic

© Michael Kerber, Michael Lesnick, and Steve Oudot;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 46; pp. 46:1–46:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8030-9299
mailto:kerber@tugraz.at
https://orcid.org/0000-0003-1924-3283
mailto:mlesnick@albany.edu
https://orcid.org/0000-0003-2939-9417
mailto:steve.oudot@inria.fr
https://doi.org/10.4230/LIPIcs.SoCG.2019.46
https://arxiv.org/abs/1812.09085
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Exact Computation of the Matching Distance on 2-Parameter Persistence Modules

structure of a 2-parameter persistence module (henceforth, bipersistence module) can be
far more complex. As a result, a good definition of persistence diagram is unavailable for
bipersistence modules [5].

Nevertheless, it is still possible to define meaningful notions of distance between multi-
parameter persistence modules. Distances on 1-parameter persistence modules play an
essential role in both theory and applications. To extend such theory and applications to the
multi-parameter setting, one needs to select a suitable distance on multi-parameter persistence
modules. However, progress on finding well-behaved, efficiently computable distances on
multi-parameter persistence modules has been slow, and this is been an impediment to
progress in practical applications.

The most widely studied and applied distances in the 1-parameter setting are the bottleneck
distance and the Wasserstein distance [11, 21]. Both can be efficiently computed via publicly
available code [15]. In the multi-parameter setting, the distance that has received the most
attention is the interleaving distance. On 1-parameter persistence modules, the interleaving
and bottleneck distances are equal [17]. The interleaving distance is theoretically well-
behaved; in particular, on modules over prime fields, it is the most discriminative distance
among the ones satisfying a certain stability condition [17]. However, it was proven recently
to be NP-hard to compute or even approximate to any constant factor less than three on
bipersistence modules, even under the restriction that the modules decompose as direct sums
of interval modules [4]. While the problem lies in P when further restricting the focus to the
sub-class of interval modules themselves [10], in practice one often encounters modules that
are not interval modules (nor even direct sums thereof).

This motivates the search for a more computable surrogate for the interleaving distance.
One natural candidate is the matching distance, introduced by Cerri et al. [6]. It is a
lower bound for the interleaving distance; this is implicit in [6] and shown explicitly in [16].
In the 2-parameter setting, the matching distance is defined as follows: Given a pair of
bipersistence modules, we call an affine line ` in parameter space with positive slope a slice.
Restricting the modules to ` yields a pair of 1-parameter persistence modules, which we
call slice modules. These slice modules have a well-defined bottleneck distance, which we
multiply by a positive weight to ensure that the matching distance will be a lower bound
for the interleaving distance. The matching distance is defined as the supremum of these
weighted bottleneck distances over all slices. See Section 3 for the precise definition. The
definition generalizes readily to n-parameter persistence modules, for any n ≥ 1; when n = 1,
the matching distance is equal to the bottleneck distance.

As Cerri et al. have observed, to approximate the matching distance up to any (absolute)
precision, it suffices to sample the space of slices sufficiently densely and to return the maxi-
mum weighted bottleneck distance encountered. For a constant number of scale parameters
and approximation quality ε, a polynomial number of slices are sufficient in terms of module
size and 1

ε , yielding a polynomial time approximation algorithm. [3]. This approach has been
recently applied to the virtual ligand screening problem in computational chemistry [13]. To
the best of our knowledge, there is no other previous work in which the problem of computing
the matching distance has been considered.

Our contribution. We give an algorithm that computes the exact matching distance between
a pair of bipersistence modules in time polynomial with respect to the size of the input. We
assume that each persistence module is specified by a presentation. Concretely, this means
that the module is specified by a matrix encoding the generators and relations, with each
row and each column labeled by a point in R2; see Section 2.

M. Kerber, M. Lesnick, and S. Oudot 46:3

To explain our strategy for computing the matching distance, consider the function F
that assigns a slice to its weighted bottleneck distance. The matching distance is then simply
the supremum of F , taken over all slices. F has a rather complicated structure, since it
depends on the longest edge of a perfect matching in a bipartite graph whose edges lengths
depend on both the slice and the two modules given as input. When the slice changes, the
matching realizing the bottleneck distance undergoes combinatorial changes, making the
function F difficult to treat analytically.

We show, however, that the space of slices can be divided into polynomially many regions
so that the restriction of F to each region takes a simple closed from. Perhaps surprisingly,
if we parameterize the space of slices by the right half plane Ω ⊂ R2, the boundary between
these regions can be expressed by the union of polynomially many lines in Ω, making each
region convex and bounded by (possibly unbounded) line segments. (This is analogous
to the observation of [18] that for a single persistence module, the locus of lines where
the combinatorial structure underlying the slice module can change is described by a line
arrangement.) Moreover, the restriction of F to each cell attains its supremum at a boundary
vertex of the cell, or as the limit of an unbounded line segment in Ω; this follows from a
straightforward case analysis. These observations together lead to a simple polynomial time
algorithm to compute the matching distance.

The characterization of the matching distance underlying our algorithm also makes clear
that if the row and column labels of the presentations of the input modules have rational
coordinates, then the matching distance is rational as well. We are not aware of a simpler
argument for this property.

Outline. We introduce the underlying topological concepts in Section 2, and introduce the
matching distance in Section 3. We define the line arrangement subdividing the slice space
in Section 4 and give the algorithm to maximize each cell of the arrangement in Section 5.
We conclude in Section 6.

2 Persistence modules

Single-parameter modules. Let K be a fixed finite field throughout. A persistence module
M over R is an assignment of K-vector spaces Mx to real numbers x, and linear maps
Mx→y : Mx → My to a pair of real numbers x ≤ y, such that Mx→x is the identity and
My→z ◦Mx→y = Mx→z. Equivalently, in categorical terms, a persistence module is a functor
from R (considered as a poset category) to the category of K-vector spaces.

A common way to arrive at a persistence module is to consider a nested sequence

X1 ⊆ X2 ⊆ . . . ⊆ Xn

of simplicial complexes and to apply homology with respect to a fixed dimension and base
field K. This yields a sequence

Hp(X1,K)→ Hp(X2,K)→ . . .→ Hp(Xn,K)

of vector spaces and linear maps. To obtain a persistence module over R, we pick grades
s1 < s2 < . . . < sn and setMx := 0 if x < s1 andMx := Hp(Xi,K) with i = max{j | sj ≤ x}
otherwise. For y ≥ x and My = Hp(Xj ,K), we define Mx→y as the map Hp(Xi,K) →
Hp(Xj ,K) induced by the inclusion map Xi → Xj .

SoCG 2019

46:4 Exact Computation of the Matching Distance on 2-Parameter Persistence Modules

Finite presentations. In this work, we restrict our attention to persistence modules that
are finitely presented in the following sense. A finite presentation is an k ×m matrix P over
K, where each row and each column is labeled by a number in R, called the grade, such that
if Pij 6= 0, then gr(rowi) ≤ gr(colj); here gr(−) denotes the grade of a row or column. We
refer to the multiset of grades of all rows and columns of P simply as the set of grades of
P , and denote this set as gr(P). A finite presentation gives rise to a persistence module, as
we describe next. The rows of P represent the generators of the module, while the columns
of P encode relations (or syzygies) on the generators. Concretely, let e1, . . . , ek denote the
standard basis of Kk, and for x ∈ R define the subset

Genx := {ei | gr(rowi) ≤ x}

Likewise, define

Relx := {colj | gr(colj) ≤ x}

Then, we define

MP
x := span(Genx)/span(Relx)

and MP
x→y simply as the map induced by the inclusion map span(Genx)→ span(Geny). It

can be checked easily that this indeed defines a persistence module MP . If a persistence
module N is isomorphic to MP , we say that P is a presentation of N . We call a persistence
module N finitely presented if there exists a finite presentation of N . For instance, persistence
modules as above arising from a finite simplicial filtration are finitely presented. Also, the
representation theorem of persistence [22, 7] states that the category of persistence modules
over K is isomorphic to the category of graded R-modules with an appropriately chosen ring
R. With that, a persistence module is finitely presented if and only if the corresponding
R-module is finitely presented (in the sense of a module).

We assume for concreteness that a finite presentation is encoded in terms of a sparse
matrix representation [11]; the size of the presentation is understood to be the bitsize of this
sparse matrix. In what follows, for finite a presentation with k generators and m relations,
we will express complexity bounds in terms of n := k +m, the number of generators and
relations. Note that an algorithm polynomial in n is also polynomial in the size of the
presentation.

Persistence diagrams. A persistence diagram is a finite multi-set of points of the form
(b, d) ∈ R × (R ∪ {∞}) with b < d. A well-known structure theorem tells us that we can
associate to any finitely presented persistence module M a persistence diagram D(M), and
that this determines M up to isomorphism [8].

Given a presentation of M , the persistence diagram can be computed by bringing the
presentation matrix into echelon form. This process takes cubic time in n using Gaussian
elimination [11, 22], or O(nω) time using fast matrix multiplication, where ω ≤ 2.373 [20].

I Lemma 1. For P a finite presentation of a persistence module M and (b, d) ∈ D(M),
1. b is the grade of some row of P ,
2. if d <∞, then d is the grade of some column of P .

Proof. This follows from the correctness of the basic matrix reduction algorithm for comput-
ing persistent homology, as described in [22]. J

M. Kerber, M. Lesnick, and S. Oudot 46:5

Bottleneck distance. Consider two persistence diagrams D1 and D2 and a bijection σ :
D′1 → D′2 for D′1 ⊆ D1 and D′2 ⊆ D2. For δ > 0, we define cost(σ) := max(A,B), where

A = max {max(|a− c|, |b− d|) | (a, b) ∈ D′1, σ(a, b) = (c, d)},
B = max {(b− a)/2 | (a, b) ∈ (D1 \D′1) ∪ (D2 \D′2)},

and it is understood that ∞−∞ = 0. We define the bottleneck distance dB by

dB(D1, D2) = min{ε | there exists a matching of cost ε between D1 and D2}.

For persistence modules M and N , we write dB(D(M), D(N)) simply as dB(M,N).

I Lemma 2. Let PM and PN be finite presentations of persistence modules M and N ,
respectively. dB(M,N) is equal to one of the following:
1. The difference of a grade of PM and a grade of PN ,
2. half the difference of two grades in PM ,
3. half the difference of two grades in PN .

Proof. This follows immediately from Lemma 1 and the definition of dB . J

Given two finite persistence diagrams D, D′ with m points each, we can compute
dB(D,D′) in time to O(m1.5 logm) [12]; see [15] for details, including a report on practical
efficiency. The number of points in a diagram is at most the number of generators of the
corresponding module, and hence upper-bounded by n. Thus, the complexity of computing
the bottleneck distance of two persistence modules is dominated by the computation of the
persistence diagrams, and has worst-case complexity O(nω).

Bipersistence modules. The definitions of persistence modules and presentations extend
to higher dimensions without difficulty. In the 2-parameter setting, this goes as follows:
Define a partial order ≤ on R2 by p ≤ q if px ≤ qx and py ≤ qy. A bipersistence module is
an assignment of K-vector spaces Mp to points p ∈ R2, and linear maps Mp→q : Mp →Mq

to pairs of points p ≤ q ∈ R2, such that Mp→p is the identity and Mq→r ◦Mp→q = Mp→r
whenever p ≤ q ≤ r. In topological data analysis, 2-dimensional persistence modules typically
arise by applying homology to a bifiltered simplicial complex

A finite presentation of a bipersistence module R2 is defined in the same way as for
one-parameter persistence modules, except that the labels of each row/column are elements
of R2, and the ≤ relation appearing in the definition means the partial order over R2. From
now on, we will assume that all bipersistence modules considered are finitely presented.

In topological data analysis, we do not typically have immediate access to a presentation
of a bipersistence module M , but rather to a chain complex of bipersistence modules for
which M is a homology module. However, it has recently been observed that from such a
chain complex, a (minimal) presentation of M can be computed in cubic time [19]. The
algorithm for this is practical, and has been implemented in the software package RIVET [9].

3 The matching distance

Slices. We define a slice as a line ` : y = sx+ t where s and t are real numbers with s > 0.
Let λ : R → ` be an order-preserving, isometric parameterization of the slice. Concretely,
such a parameterization is given by λ(x) = 1√

1+s2 (x, sx+ t). Given a bipersistence module
M and slice `, we define a (1-parameter) persistence module M ` via M `

x := Mλ(x), with its
linear maps induced by M . We call M ` a slice module.

SoCG 2019

46:6 Exact Computation of the Matching Distance on 2-Parameter Persistence Modules

Matching distance. For a slice ` : y = sx+ t, we define a weight

w(`) :=

1√

1+s2 s ≥ 1
1√

1+ 1
s2

0 < s < 1

w(`) is maximized for slices with slope 1, and gets smaller when the slope goes to 0 or to ∞.
Let Λ denote the set of all slices. Writing Ω := (0,∞)×R, the map α : Ω→ Λ that sends

(s, t) to the line y = sx+ t is clearly a bijective parameterization of Λ. We equip Λ with the
topology induced by α, using the subset topology Ω ⊂ R2.

For two persistence modules M , N over R2, we define a function FM,N : Λ→ [0,∞) by

FM,N (`) := w(`) · dB(M `, N `).

and we define the matching distance between M and N as dmatch(M,N) := supFM,N . As
noted in the introduction, the weights w(`) are chosen to ensure that dmatch is a lower bound
for the interleaving distance.

I Lemma 3. Given two bipersistence modules M , N , the map FM,N is continuous.

Proof. w is clearly continuous, so it suffices to show that the function ` 7→ dB(M `, N `) is
continuous. Let D denote the metric space of all finite persistence diagrams, with metric the
bottleneck distance. It follows from [16, Theorem 2] that the map sending a slice ` to the
persistence diagram D(M `) is continuous with respect to the topology on D. Thus the map
sending ` to the pair (D(M `), D(N `)) is also continuous. Moreover, the bottleneck distance
is clearly continuous as a map D × D → [0,∞), thanks to the triangle inequality. Thus,
` 7→ dB(M `, N `) is a composition of continuous functions, hence continuous. J

4 The arrangement

In what follows, we fix two bipersistence modules M , N (each with at most n generators and
relations) and write F := FM,N . Using the parameterization α from above, we also have a
function F ◦ α : Ω→ [0,∞); slightly abusing notation, we will also denote this map by F .

In this section, we construct a line arrangement in Ω in such a way that it is simple
to compute supF on each face. Recall that a line arrangement of Ω is the subdivision of
Ω into vertices, edges, and faces induced by a finite set of distinct lines L1, . . . , Ln. The
vertices of the arrangement are the intersection points of (at least) two lines, the edges are
maximal connected subsets of lines not containing any vertex, and the faces are the connected
components of Ω \

⋃n
i=1 Li. Clearly, each vertex, edge, and face of the arrangement is a

convex set. The boundary of each face consists of a finite number of edges and vertices.

A first line arrangement. For v ∈ R2, let Lv denote the line y = −vx x + vy. Note that
Lv ∩ Ω is exactly the set of parameterizations of slices containing v. Now, fix presentations
PM and PN of M and N . Let A0 denote the arrangement in Ω induced by the set of lines

{Lv | v ∈ gr(PM) ∪ gr(PN)}.

In what follows, we will refine A0 by adding more lines into the arrangement. For this we
first need to introduce some definitions.

M. Kerber, M. Lesnick, and S. Oudot 46:7

p

q

Figure 1 The pushes of two points p and q to three different slices. The length of the thick (red)
line corresponds to the δp,q value of the corresponding slice.

Pushes. For a point p = (px, py) ∈ R2 and a slice ` : y = sx + t, we define the push of p
onto ` as

push(p, `) :=
{

(px, s · px + t) if p lies below `

(py−t
s , py) if p lies on or above `

Geometrically, push(p, `) gives the intersection point of ` and a vertical upward ray emanating
from p in the first case, and the intersection of ` with a horizontal right ray emanating from
p in the second case. See Figure 1 for an illustration.
I Remark 4. A finite presentation of M induces a finite presentation of M ` with the same
underlying matrix, and each row or column grade p ∈ R2 replaced with λ−1(push(p, `)).
Clearly, this presentation can be obtained in time linear in the size of the presentation of M .

For p, q ∈ R2, define δp,q : Ω→ [0,∞) by

δp,q(s, t) := ‖push(p, `)− push(q, `)‖2 = |λ−1 ◦ push(p, `)− λ−1 ◦ push(q, `)|

with ` the slice defined by s and t. Again, see Figure 1 for an illustration.
We now give piecewise analytic formulae for δp,q, which depend on whether the slice ` is

below or above p and q.

(I) slice is below both p and q.

δp,q(s, t) = ‖(py − t
s

, py)−(qy − t
s

, qy)‖2 =

√(
py − qy

s

)2
+ (py − qy)2 = |py−qy|

√
1 + 1

s2 .

(II) slice is above both p and q.

δp,q(s, t) = ‖(px, spx+t)−(qx, sqx+t)‖2 =
√

(px − qx)2 + (spx − sqx)2 = |px−qx|
√

1 + s2.

(III) slice is between p and q. There are two subcases, which we will call (IIIa) and (IIIb):
Assuming p lies above the slice (IIIa), the formula is

δp,q(s, t) = ‖(py − t
s

, py)− (qx, sqx + t)‖2 =

√(
py − t
s
− qx

)2
+ (py − sqx − t)2

=
√

1
s2 (py − t− sqx)2 + (py − sqx − t)2 = |py − t− sqx|

√
1 + 1

s2 .

If p lies below the slice (IIIb), the formula is the same, with the roles of p and q exchanged.

SoCG 2019

46:8 Exact Computation of the Matching Distance on 2-Parameter Persistence Modules

The push map is easily seen to be continuous with respect to the slice `, so these formulae
also extend to boundaries of the cases, i.e., when the slice contains p or q.

I Lemma 5. If p, q ∈ gr(PM)∪gr(PN), then in each face of A0, exactly one of the conditions
(I), (II), (IIIa), (IIIb) holds everywhere. Hence, δp,q can be expressed on the entire face by
one of the analytic formulae above.

Proof. Assume for a contradiction that two points x, x′ in a face f of A0 are of two different
types among (I), (II), (IIIa), (IIIb). Let ` = α(x), `′ = α(x′) denote the corresponding slices.
Then either p or q (or both) switch sides from ` to `′. Assume that p lies above ` and p lies
below `′ – all other cases are analogous. Then, on the line segment from x to x′, there is
some point x′′ such that p lies on the slice α(x′′). Hence, x′′ lies on Lp and is therefore not
in f . This contradicts the convexity of the faces. J

In view of Lemma 5, for p, q ∈ gr(PM) ∪ gr(PN) we may define the type of δp,q on a face
of A0 to be the case (I), (II), (IIIa), or (IIIb) which holds on that face.

Refinement of the arrangement. Now we further subdivide the arrangement A0. For that,
consider the set of equations of the form

δp,q(s, t) = 0 for p, q ∈ gr(PM) or p, q ∈ gr(PN),

cpqδp,q(s, t) = cp′q′δp′,q′(s, t) for p, q, p′, q′ ∈ gr(PM) t gr(PN),
(1)

where

cpq :=
{

1
2 if p, q ∈ gr(PM) or p, q ∈ gr(PN),
1 otherwise.

I Lemma 6. The solution set of each of the above equations restricted to a face f is either
the empty set, the entire face, the intersection of f with a line, or intersection of f with the
union of two lines.

Proof. First we show the statement for equations of type δp,q(s, t) = 0. There are 3 cases:
δp,q is of type (I). the equation becomes

|py − qy|
√

1 + 1
s2 = 0

for which either all (s, t) ∈ f are a solution (if py = qy), or no (s, t) is a solution.
δp,q is of type (II). the same argument holds for the equation

|px − qx|
√

1 + s2 = 0.

δp,q is of type (III). Swapping p and q if necessary, we obtain the equation

|py − t− sqx|
√

1 + 1
s2 = 0

and the solution set is made of all (s, t) ∈ f for which py − t − sqx = 0, which is the
equation of a line.

For the remaining equations, we give the proof in the special case that cpq = cp′q′ ; the proof
in the other cases is essentially the same. For equations of the form δp,q(s, t) = δp′,q′(s, t),
there are six cases to check, depending on the type of the δ-functions on the left and right
sides of the equation:

M. Kerber, M. Lesnick, and S. Oudot 46:9

Both δp,q(s, t) and δp′,q′(s, t) are of type (I). the equation is

|py − qy|
√

1 + 1
s2 = |p′y − q′y|

√
1 + 1

s2

and the equation is satisfied if and only if |py − qy| = |p′y − q′y|, independent of s and t.
Hence, the solution set is either f or ∅.

Both δp,q(s, t) and δp′,q′(s, t) are of type (II). the same argument as in the previous case
applies, so the solution set is either f or ∅.

δp,q is of type (I) and δp′,q′ of type (II). we get the equation

|py − qy|
√

1 + 1
s2 = |p′x − q′x|

√
1 + s2.

Since 1 + 1
s2 = 1+s2

s2 , this simplifies to

|py − qy| = s|p′x − q′x|

and the solution set is either all of f (if both absolute values vanish), the empty set (if
only p′x − q′x = 0), or the intersection of f with the vertical line s = |py−qy|

|p′
x−q′

x|
(otherwise).

Both δp,q and δp′,q′ are of type (III). Swapping p, q or p′, q′ if necessary, we get

|py − t− sqx|
√

1 + 1
s2 = |p′y − t− sq′x|

√
1 + 1

s2

hence, (s, t) is a solution if and only if py − t − sqx = p′y − t − sq′x or py − t − sqx =
−(p′y − t− sq′x). The first equations yields again either f , ∅, or a vertical line as solution
set, the second equation always defines a line. Exchanging the roles of p and q, or the
roles of p′ and q′, or both, does not change the conclusion.

δp,q is of type (I) and δp′,q′ is of type (III). Swapping p′ and q′ if necessary, the formula is

|py − qy|
√

1 + 1
s2 = |py − t− sqx|

√
1 + 1

s2 .

(s, t) ∈ f is a solution if py − t− sqx = py − qy or py − t− sqx = qy − py, which is a line
equation in both cases.

δp,q is of type (II) and δp′,q′ is of type (III). Swapping p′ and q′ if necessary, we get

|px − qx|
√

1 + s2 = |p′y − t− sq′x|
√

1 + 1
s2

which simplifies to

s|px − qx| = |p′y − t− sq′x|

Here (s, t) ∈ f is a solution if and only if s(px − qx) = p′y − t − sq′x or s(px − qx) =
−(p′y − t− sq′x). Again, we obtain a line in both cases. J

I Definition 7. Let A denote the line arrangement in Ω formed by the lines in A0, all lines
from the case analysis above, and the vertical line s = 1.

I Lemma 8. The arrangement A consists of O(n4) lines.

SoCG 2019

46:10 Exact Computation of the Matching Distance on 2-Parameter Persistence Modules

Proof. The case analysis in the proof of Lemma 6 was performed relative to a choice of face
f in A0. However, for a fixed choice of an equation in the set of equations (1), the lines
which arise in the case analysis depend only on the types of δp,q and δp′,q′ on f . There are
at most 4× 4 = 16 possible ways of jointly choosing those types, and for a given choice, at
most two lines are added to the arrangement. Hence, each of the O(n4) equations in the
set of equations (1) contributes at most a constant number of lines to A. The result now
follows easily. J

Note that the arrangement A depends on the choice of presentations for M and N . The
next statement says that within a face of the arrangement, the bottleneck distance is realized
by the difference of the pushes of two fixed grades of the presentations.

I Theorem 9. For any face f of A, there is some choice of p, q ∈ gr(PM) ∪ gr(PN) such
that dB(M `, N `) = cpqδp,q(`) for all ` ∈ α(f).

See the full version [14, App. A] for a complete proof. It can be summarized as follows: By
Remark 4 and Lemma 1, for each ` ∈ f there is a collection T `M of pairs

(b, d) ∈ gr(PM)× (gr(PM) ∪ {(∞,∞)})

such that D(M `) is obtained by pushing the elements of T `M onto `. Call such T `M a template
for D(M `). For ` and `′ such that the grades of PM push onto ` and `′ in the same order,
the templates for D(M `) and D(M `′) are the same. But in fact, the grades of PM push
onto all lines ` ∈ f in the same order, because whenever the order changes, we need to cross
one of the lines of the arrangement A. Hence, there exists T fM that is a template for D(M `),
for all ` ∈ f . Similarly for N .

By Lemma 2, for any fixed `′ ∈ f we have that dB(M `′
, N `′) = cpqδp,q(`′), for p and q

each some coordinate of a pair in T fM ∪ T
f
N . The order of the values of the functions

{crsδr,s | r, s ∈ gr(PM) ∪ gr(PN)}

remains the same across f , because any change in the order will result again in crossing one
of the lines of the arrangement A. Thus, in fact dB(M `, N `) = cpqδp,q(`) for all ` ∈ f .

5 Maximization

We define a region of A as the closure of a face of A within Ω. We can compute the matching
distance by determining supF (s, t) separately for each region in A. We will show now that
in each region, supF (s, t) is either realized at a boundary vertex, or as the limit of an
unbounded boundary edge, which can be computed easily.

We fix the following notation: A region R ⊆ Ω is an inner region if it is bounded as a set
in R2 and it has a positive distance to the vertical line s = 0 in R2 (in other words, R does
not reach the boundary of Ω). An inner region is a convex polygon. Regions that are not
inner region are called outer regions. Outer regions have exactly two outer segments in their
boundary, which are infinite or converge to a point on the vertical line s = 0 (except for the
empty arrangement, which only consists of one outer region). See Figure 2 for an illustration.

For a fixed region R of A, Theorem 9 ensures that there is a pair of grades (p, q) whose
δ-function realizes dB within the interior of R (a face of A). By continuity, this implies that
δp,q also realizes dB on the entire region.

I Lemma 10. The supremum of F within R is attained either at a vertex on the boundary
of R, or as the limit of F along an outer segment. In the latter case, the limit can be expressed
in simple terms based on the equation of the line segment and one of the functions δp,q.

M. Kerber, M. Lesnick, and S. Oudot 46:11

s=0

Figure 2 The lightly shaded regions show outer regions. The outer segments of these are drawn
more thickly. The darkly shaded region is an example of an inner region.

Proof. We distinguish 6 cases based on the type of the δ-function and on whether s ≤ 1 or
s ≥ 1 (note that each cell belongs to one of these cases, because the line s = 1 is in A).

δp,q of type (I), s ≤ 1. In that case,

F (`) = w(`)δp,q(`) = 1√
1 + 1

s2

|py − qy|
√

1 + 1
s2 = |py − qy|,

a constant function. Clearly, the supremum is attained everywhere, in particular at the
boundary vertices of R.

δp,q of type (I), s ≥ 1. We get

F (`) = 1√
1 + s2

|py − qy|
√

1 + 1
s2 = 1

s
|py − qy|

Clearly, this function becomes larger when s gets smaller. Moreover, because s ≥ 1 within
the cell, there is a leftmost vertex on the boundary, which minimizes s and therefore
attains the supremum within the cell.

δp,q of type (II), s ≤ 1. We obtain

F (`) = 1√
1 + 1

s2

|px − qx|
√

1 + s2 = s|px − qx|.

Similarly to the previous case, there exists a rightmost boundary vertex in the cell
(because s ≤ 1), which realizes the supremum.

δp,q of type (II), s ≥ 1. The function simplifies to

F (`) = 1√
1 + s2

|px − qx|
√

1 + s2 = |px − qx|,

a constant function, which attains its supremum at any boundary vertex.
δp,q of type (III), s ≤ 1. Assuming that p lies above the slice, we get

F (`) = 1√
1 + 1

s2

|py − t− sqx|
√

1 + 1
s2 = |py − t− sqx|.

If R is an inner region, we are maximizing the above function over a closed convex
polygon, and the maximum is achieved at a boundary vertex, because |py − t− sqx| is
the maximum of two linear functions in s and t.

SoCG 2019

46:12 Exact Computation of the Matching Distance on 2-Parameter Persistence Modules

It remains to analyze the case that R is an outer region. We argue first that R is bounded
in t-direction from above and below: Since δp,q is of type (III), with p lying above `, (s, t)
must be below the (non-vertical) line t = −spx + py in the dual space. Likewise, since q
is below `, (s, t) must be above t = −sqx + qy. Moreover, we have 0 < s ≤ 1. If the above
lines intersect at a point r with s-value in (0, 1), R is contained in the triangle spanned
by the two lines and the vertical line s = 0. Otherwise, R is contained in the trapezoid
induced by these two lines and the vertical lines s = 0 and s = 1.
It follows that the two outer segments of R converge to the vertical line s = 0. Let
(0, t1) denote the limit of the lower outer segment and (0, t2) the limit of the upper outer
segment. Clearly t1 ≤ t2. Let R̄ denote the union of R with the vertical line segment from
(0, t1) to (0, t2); note that R̄ is the closure of R considered as a subset of R2. Observe
that |py − t− sqx| is continuous over R2; therefore F can be continuously extended to R̄.
It follows that the supremum of F over R̄ is attained at a boundary vertex, since R̄ is a
convex closed polygon. There are two cases: either the maximum is attained at a vertex
of A, or at (0, t1) or (0, t2). As we can readily see, the function values at the latter two
points are |py − t1| and |py − t2|, respectively. The case where p is below the slice and q
is above is analyzed in the same way, with the roles of p and q swapped.

δp,q of type (III), s ≥ 1 Assuming that p lies above the slice, we get

F (`) = 1√
1 + s2

|py − t− sqx|
√

1 + 1
s2 = |py

s
− t

s
− qx|

We first consider the case where R is an inner region, and we show that the function is
maximized at a boundary vertex of R. The function |py

s −
t
s − qx| has no local maximum

over R2 since it is the absolute value of a linear function in t for any fixed s. Hence, the
supremum over R must be attained on the boundary. We have to exclude the case that
the maximum lies in the interior of an edge. For vertical edges this is obvious, because for
a constant s, the function simplifies to the absolute value of a linear function in t which
must be maximized at a boundary vertex. For a non-vertical line of the form t = as+ b,
plugging in this equation for t yields a function of the form

|py
s
− as+ b

s
− qx| = |

1
s

(py − b)− a− qx|.

This is the absolute value of a monotone function in s and hence has no local maximum.
Again, this implies that it is maximized at a boundary vertex.

Consider now the case where R is an outer region. As in the previous case, R is upper
and lower bounded by two non-vertical lines, because we assume type (III). Hence, the
two outer segments of R cannot be vertical; the lower outer segment has a slope r1 and
the upper outer segment has a slope r2 with r1 < r2. We argue next that the supremum
of py

s −
t
s − qx is either attained at a boundary vertex, or equal to |r1 + qx|, or equal to

|r2 + qx|. Let (si, ti) denote a sequence of points in R such that F (si, ti) converges to the
supremum. If (si, ti) converges to a point in R (or has at least a convergent subsequence),
it follows (similarly to the case of an inner region) that the limit point is a boundary
vertex. Otherwise, we can assume (by passing to a subsequence) that the sequence si
is unbounded. Moreover, the sequence ti

si
is bounded by [r1, r2] and therefore has a

convergent subsequence with limit r′. Passing to this subsequence, we obtain that

lim
i→∞

F (si, ti) = lim
i→∞

|py
si
− ti
si
− qx| = | − r′ − qx| = |r′ + qx|

M. Kerber, M. Lesnick, and S. Oudot 46:13

Hence, the supremum must be of the form |r′ + qx| for some r′ ∈ [r1, r2]. On the other
hand, this expression is clearly maximized for either |r1 + qx| or |r2 + qx|, and there exist
sequences attaining these values, for instance when choosing (si, ti) on either of the outer
segments. The case where p lies below the slice and q lies above is treated similarly, with
the roles of p and q exchanged. J

The algorithm. We now give the algorithm to compute the matching distance:
Compute the arrangement induced by A from Definition 7.
For each vertex (s, t) in the arrangement, compute F (s, t). Let m be the maximum among
all the values.
For each outer region R, pick a point (s, t) in the interior. Compute the bottleneck
distance and identify a pair (p, q) of grades that realizes the bottleneck. Determine
whether p and q are above or below the slice (s, t). If the region is of type (IIIa) with
respect to p and q, then do the following:

If R is to the left of s = 1, compute the intersections (0, t1), (0, t2) of the outer segments
of R with the vertical line s = 0. Set m← max{m, |py − t1|, |py − t2|}.
If R is to the right of s = 1, let r1, r2 denote the slopes of the outer segments of R.
Set m← max{m, |r1 + qx|, |r2 + qx|}.

If the region is of type (IIIb), proceed analogously, with the roles of p and q exchanged.
Return m.

By “computing the arrangement”, we mean to store the planar subdivision induced by
the lines of the arrangement (e.g.[2, Ch.2]). In fact, it is possible to implement the algorithm
without explicitly constructing the line arrangement A or even storing its entire set of vertices.
This reduces the space complexity of the algorithm. See [14, App. B] for details.

I Theorem 11. The above algorithm computes the matching distance in polynomial time.

Proof. Correctness follows from Lemma 10: as we check all vertices of the arrangement, we
cover the supremum of all inner regions. The outer regions are handled separately in the last
steps of the algorithm.

Running time: recall from Lemma 8 that we have O(n4) lines in the arrangement A.
Hence, the arrangement has O(n8) vertices, O(n4) outer regions, and can be computed in
O(n8 logn) time using an extension of the Bentley-Ottman sweep-line algorithm [1]. For
each vertex and each outer region, we have to compute two persistence diagrams, which can
be done in O(n3) time, and a bottleneck distance whose complexity can be neglected. The
remaining computations are negligible. Hence, we arrive at a O(n11) algorithm. J

We remark that the algorithm can be realized entirely with rational arithmetic if all
grades are rational numbers. Indeed, all lines in the arrangement have rational coefficients,
and so do their intersection points. An intersection points corresponds to a slice along which
we are required to compute the bottleneck distance. Recall from Section 3 that the definition
of the slice ` module introduces a grade of λ−1(push(p, `)) where λ−1(px, py) =

√
1 + s2px.

Hence, these grades are not rational numbers. However, the bottleneck distance is multiplied
with the weight w(`) of the slice afterwards, and instead of doing so, one can as well scale all
grades with w(`) in advance. A simple calculation shows that this indeed turns the grades
into rational values.

A simple analysis also reveals that if the input coordinates are rational and of bitsize ≤ b,
all intermediate computations in the algorithm can be performed with a bitsize of ≤ cb, with
c a (small) constant. Hence, the algorithm is strongly polynomial.

SoCG 2019

46:14 Exact Computation of the Matching Distance on 2-Parameter Persistence Modules

6 Discussion

We have presented the first polynomial time algorithm to exactly compute the matching
distance for 2-parameter persistence modules. It is natural to ask about practicality of our
approach. The large exponent of n11 seems discouraging at first, but we mention first that
the worst-case running time of O(n3) for persistent homology is usually not appearing for
real instances; indeed an almost linear behavior can be expected. Still, the large number of
O(n4) lines in the arrangement constitutes a computational barrier in practice. There are
several possibilities, however, to reduce this effect:

Instead of computing the arrangement A globally, we could compute the intermediate
arrangement A0 and refine each face of it separately, using only those lines that affect
the δ-functions within this face.
As a follow-up to the previous point, it might be possible to compute a smaller arrangement
per face adaptively. The idea is to start at some interior point in a face of A0, identifying
a pair (p, q) that realizes the bottleneck distance and then to determine the boundary of
the region where (p, q) realizes the bottleneck distance.
As a preprocessing step, we can minimize the input presentations, yielding presentations
for the same modules with the smallest possible number of generators and relations (hence
minimizing n) [19].

We pose the question of whether an implementation realizing the above ideas is competitive
to an approximative, sampling-based approach for computing the matching distance.

Our algorithm needs to treat the outer edges of the arrangement A separately since our
analysis does not rule out the possibility that the supremum is realized at the boundary of
Ω. On the other hand, we are not aware of an example of two finite presentations whose
matching distance is not realized by a particular slice in Ω. A proof that the supremum
in the definition of the matching distance is in fact a maximum would greatly simplify our
algorithm, since it would boil down to computing the intersection points of all lines and
searching for the maximal F -value among them.

Finally, we have restricted attention to the case of two-parameter persistence modules. It
is natural to conjecture that our algorithm extends to more parameters by constructing a
hyperplane arrangement. It would be worthwhile to check this conjecture in future work.

References
1 J. Bentley and T. Ottmann. Algorithms for Reporting and Counting Geometric Intersections.

IEEE Transactions on Computers, 28:643–647, 1979.
2 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd ed. edition,
2008.

3 S. Biasotti, A. Cerri, P. Frosini, and D. Giorgi. A new algorithm for computing the 2-dimensional
matching distance between size functions. Pattern Recognition Letters, 32(14):1735–1746,
2011.

4 H. Bjerkevik, M. Botnan, and M. Kerber. Computing the interleaving distance is NP-hard.
arXiv, abs/1811.09165, 2018. arXiv:1811.09165.

5 G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete &
Computational Geometry, 42(1):71–93, 2009.

6 A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, and C. Landi. Betti numbers in multidimensional
persistent homology are stable functions. Mathematical Methods in the Applied Sciences,
36(12):1543–1557, 2013.

http://arxiv.org/abs/1811.09165

M. Kerber, M. Lesnick, and S. Oudot 46:15

7 R. Corbet and M. Kerber. The representation theorem of persistence revisited and generalized.
Journal of Applied and Computational Topology, 2(1):1–31, 2018.

8 W. Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules.
Journal of Algebra and its Applications, 14(05):1550066, 2015.

9 The RIVET Developers. RIVET: Software for visualization and analysis of 2-parameter
persistent homology. http://repo.rivet.online/, 2014-2018.

10 T. Dey and C. Xin. Computing Bottleneck Distance for 2-D Interval Decomposable Modules.
In International Symposium on Computational Geometry (SoCG), pages 32:1–32:15, 2018.

11 H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. American Mathe-
matical Society, Providence, RI, USA, 2010.

12 A. Efrat, A. Itai, and M. Katz. Geometry Helps in Bottleneck Matching and Related Problems.
Algorithmica, 31(1):1–28, 2001. doi:10.1007/s00453-001-0016-8.

13 B. Keller, M. Lesnick, and T. L. Willke. Persistent Homology for Virtual Screening. ChemRxiv
preprint, October 2018.

14 M. Kerber, M. Lesnick, and S. Oudot. Exact computation of the matching distance on
2-parameter persistence modules. CoRR, abs/1812.09085, 2018.

15 M. Kerber, D. Morozov, and A. Nigmetov. Geometry Helps to Compare Persistence Diagrams.
Journal of Experimental Algorithms, 22:1.4:1–1.4:20, September 2017.

16 C. Landi. The Rank Invariant Stability via Interleavings. In Research in Computational
Topology, pages 1–10. Springer International Publishing, 2018.

17 M. Lesnick. The theory of the interleaving distance on multidimensional persistence modules.
Foundations of Computational Mathematics, 15(3):613–650, 2015.

18 M. Lesnick and M. Wright. Interactive visualization of 2-D persistence modules.
arXiv:1512.00180, 2015. arXiv:1512.00180.

19 M. Lesnick and M. Wright. Computing Minimal Presentations and Betti Numbers of 2-
Parameter Persistent Homology. arXiv:1902.05708, 2019. arXiv:1902.05708.

20 N. Milosavljevic, D. Morozov, and P. Skraba. Zigzag persistent homology in matrix multi-
plication time. In ACM Symposium on Computational Geometry (SoCG), pages 216–225,
2011.

21 S. Oudot. Persistence theory: From Quiver Representation to Data Analysis, volume 209 of
Mathematical Surveys and Monographs. American Mathematical Society, 2015.

22 A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete and Computational
Geometry, 33(2):249–274, 2005.

SoCG 2019

http://repo.rivet.online/
http://dx.doi.org/10.1007/s00453-001-0016-8
http://arxiv.org/abs/1512.00180
http://arxiv.org/abs/1902.05708

Probabilistic Smallest Enclosing Ball in High
Dimensions via Subgradient Sampling
Amer Krivošija
Department of Computer Science, TU Dortmund, Germany
amer.krivosija@tu-dortmund.de

Alexander Munteanu
Department of Computer Science, TU Dortmund, Germany
alexander.munteanu@tu-dortmund.de

Abstract
We study a variant of the median problem for a collection of point sets in high dimensions. This
generalizes the geometric median as well as the (probabilistic) smallest enclosing ball (pSEB)
problems. Our main objective and motivation is to improve the previously best algorithm for the
pSEB problem by reducing its exponential dependence on the dimension to linear. This is achieved
via a novel combination of sampling techniques for clustering problems in metric spaces with the
framework of stochastic subgradient descent. As a result, the algorithm becomes applicable to
shape fitting problems in Hilbert spaces of unbounded dimension via kernel functions. We present
an exemplary application by extending the support vector data description (SVDD) shape fitting
method to the probabilistic case. This is done by simulating the pSEB algorithm implicitly in the
feature space induced by the kernel function.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms; The-
ory of computation → Streaming, sublinear and near linear time algorithms; Theory of computation
→ Computational geometry

Keywords and phrases geometric median, convex optimization, smallest enclosing ball, probabilistic
data, support vector data description, kernel methods

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.47

Related Version A full version of the paper is available at https://arxiv.org/abs/1902.10966.

Funding This work was supported by the German Science Foundation (DFG) Collaborative Research
Center SFB 876 “Providing Information by Resource-Constrained Analysis”, projects A2 and C4.

1 Introduction

The (probabilistic) smallest enclosing ball (pSEB) problem in Rd is to find a center that
minimizes the (expected) maximum distance to the input points (see Definition 13). It
occurs often as a building block for complex data analysis and machine learning tasks like
estimating the support of high dimensional distributions, outlier detection, novelty detection,
classification and robot gathering [9, 27, 28, 30]. It is thus very important to develop highly
efficient approximation algorithms for the base problem. This involves reducing the number of
points but also keeping the dependence on the dimension as low as possible. Both objectives
will be studied in this paper. We will focus on a small dependence on the dimension. This is
motivated as follows.

Kernel methods are a common technique in machine learning. These methods implicitly
project the d-dimensional input data into much larger dimension D where simple linear
classifiers or spherical data fitting methods can be applied to obtain a non-linear separation
or non-convex shapes in the original d-dimensional space. The efficiency of kernel methods is
usually not harmed. Despite the large dimension D � d, most important kernels, and thus
inner products and distances in the D-dimensional space, can be evaluated in O(d) time [25].

© Amer Krivošija and Alexander Munteanu;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amer.krivosija@tu-dortmund.de
mailto:alexander.munteanu@tu-dortmund.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.47
https://arxiv.org/abs/1902.10966
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Probabilistic Smallest Enclosing Ball in High Dimensions

In some cases, however, a proper approximation relying on sampling and discretizing the
ambient solution space may require a polynomial or even exponential dependence on D. The
algorithm of Munteanu et al. [22] is the only fully polynomial time approximation scheme
(FPTAS) and the fastest algorithm to date for the pSEB problem in fixed dimension. However,
it suffers from the stated problems. In particular, the number of realizations sampled by
their algorithm had a linear dependence on D stemming from a ball-cover decomposition
of the solution space. The actual algorithm made a brute force evaluation (on the sample)
of all centers in a grid of exponential size in D. This is prohibitive in the setting of kernel
methods since the implicit feature space may have infinite dimension. Even if it is possible
to exploit the up to n-dimensional subspace spanned by n points in infinite dimensions, we
would still have D = n� d leading to exponential time algorithms.

To make the probabilistic smallest enclosing ball algorithm viable in the context of kernel
methods and generally in high dimensions, it is highly desirable to reduce the dependence
on the dimension to a small polynomial occurring only in evaluations of inner products and
distances between two (low dimensional) vectors.

1.1 Related work
Probabilistic smallest enclosing ball. The study of probabilistic clustering problems was

initiated by Cormode and McGregor [11]. They developed approximation algorithms
for the probabilistic settings of k-means, k-median as well as k-center clustering. For
the metric 1-center clustering problem their results are bi-criteria O(1)-approximation
algorithms with a blow-up on the number of centers. Guha and Munagala [14] improved
the previous work by giving O(1)-approximations that preserve the number of centers.
Munteanu et al. [22] gave the first fully polynomial time (1 + ε)-approximation scheme
(FPTAS) for the probabilistic Euclidean 1-center, i.e., the probabilistic smallest enclosing
ball problem, in fixed dimensions. The algorithm runs in linear time for sampling a
constant number of realizations. Solving the subsampled problem takes only constant
time, though exponential in the dimension. This yields a total running time of roughly
O(nd/εO(1) + 1/εO(d)). Based on ε-kernels for probabilistic data [16], Huang and Li
[15] generalized the (1 + ε)-approximation of [22] to a polynomial time approximation
scheme (PTAS) for Euclidean k-center in Rd for fixed constants k and d. We note that
the running time of the algorithm in [15] grows as a double exponential function of the
dimension and it is unclear how to reduce this. We thus base our work on the FPTAS of
[22] and reduce its exponential dependence to linear.

Sampling techniques for 1-median. The work of [22] showed a reduction from the proba-
bilistic smallest enclosing ball to 1-median problems on (near)-metric spaces. We thus
review relevant results on sampling techniques for metric 1-median. Bădoiu et al. [7]
showed that with constant probability, the span of a uniform sample of a constant number
of input points contains a (1 + ε)-approximation for the 1-median. This was used to
construct a set of candidate solutions of size O(21/εO(1) logn). A more refined estimation
procedure based again on a small uniform sample was used by Kumar et al. [19] to reduce
this to O(21/εO(1)). Indyk and Thorup [17, 29] showed that a uniform sample of size
O(logn/ε2) is sufficient to approximate the discrete metric 1-median on n points within
a factor of (1 + ε). Ackermann et al. [1] showed how this argument can be adapted to
doubling spaces which include the continuous Euclidean space. We adapt these ideas to
find a (1 + ε)-approximation to the best center in our setting.

Stochastic subgradient descent. One quite popular and often only implicitly used technique
in the coreset literature is derived from convex optimization, see [21]. One of the first
results of that kind is given in the uniform sampling algorithm of Bădoiu et al. [7] for
1-median stated above. In each iteration a single point is sampled uniformly. With high

A. Krivošija and A. Munteanu 47:3

probability moving the current center towards that point for a carefully chosen step size
improves the solution. Each step can be seen as taking a descent towards a uniformly
random direction from the subgradient which equals roughly the sum of directions to
all points. Another example is the coreset construction for the smallest enclosing ball
problem by Bădoiu and Clarkson [5], where the next point included in the coreset is the
one maximizing the distance to the current best center. The direction taken towards that
point is again related to the subgradient of the objective function at the current center
position. The authors also gave a more explicit application of subgradient descent to
the problem with a slightly larger number of iterations. More recently, Cohen et al. [10]
developed one of the fastest (1 + ε)-approximation algorithms to date for the geometric
median problem via stochastic subgradient methods.

Kernel methods in machine learning. Kernel functions simulate an inner product space in
large or even unbounded dimensions but can be evaluated via simple low dimensional
vector operations in the original dimension of input points [26]. This enables simple
spherical shape fitting via a smallest enclosing ball algorithm in the high dimensional
feature space, which implicitly defines a more complex and even non-convex shape in the
original space. The smallest enclosing ball problem in kernel spaces is well-known as the
support vector data description (SVDD) by Tax and Duin [28]. A more subtle connection
between (the dual formulations of) several kernel based methods in machine learning and
the smallest enclosing ball problem was established by Tsang et al. [30].

1.2 Our contributions and outline
We extend in Section 2 the geometric median in Euclidean space to the more general
set median problem. It consists of finding a center c ∈ Rd that minimizes the sum of
maximum distances to sets of points in a given collection of N point sets. We show how
to solve this problem via estimation and sampling techniques combined with a stochastic
subgradient descent algorithm.
The elements in the collection are sets of up to n points in Rd. We discuss in Section 2.1 the
possibility of further reducing their size. In the previous work [22] they were summarized
via strong coresets of size 1/εΘ(d) for constant dimension d. This is not an option in high
dimensions where, e.g. d ≈ n. Reviewing the techniques of Agarwal and Sharathkumar
[2] we can show that no reduction below min{n, exp(d1/3)} is possible unless one is willing
to sacrifice an additional approximation factor of roughly

√
2. However, we discuss

the possibility to achieve roughly a factor (
√

2 + ε)-approximation in streaming via the
blurred-ball-cover [2] of size O(1/ε3 · log 1/ε), and in an off-line setting via weak coresets
[5, 6] of size O(1/ε).
We show in Section 3.1 how this improves the previously best FPTAS for the probabilistic
smallest enclosing ball problem from O(dn/ε3 · log 1/ε+ 1/εO(d)) to O(dn/ε4 · log2 1/ε).
In particular the dependence on the dimension d is reduced from exponential to linear
and more notably occurs only in distance evaluations between points in d-dimensional
Euclidean space, but not in the number of sampled points nor in the number of candidate
centers to evaluate.
This enables in Section 3.2 working in very high D-dimensional Hilbert spaces whose
inner products and distances are given implicitly via positive semidefinite kernel functions.
These functions can be evaluated in O(d) time although D is large or even unbounded
depending on the kernel function. As an example we extend the well-known support
vector data description (SVDD) method to the probabilistic case. SVDD is equivalent to
the smallest enclosing ball problem in the implicit high-dimensional feature space.

Please find the missing proofs in the full version of this paper.

SoCG 2019

47:4 Probabilistic Smallest Enclosing Ball in High Dimensions

1.3 General notation
We denote the set of positive integers up to n ∈ N by [n] = {1, . . . , n}. For any vec-
tors x, y ∈ Rd we denote their inner product by 〈x, y〉 = xT y =

∑d
i=1 xiyi and the

Euclidean norm by ‖x‖ =
√
〈x, x〉 = (

∑d
i=1 x

2
i)1/2. The Cauchy-Schwarz inequality

(CSI) states that 〈x, y〉 ≤ ‖x‖ ‖y‖. For any convex function f : Rd → R we denote by
∂f(x) =

{
g ∈ Rd | ∀y ∈ Rd : f(x)− f(y) ≤ 〈g, x− y〉

}
the subdifferential, i.e., the set of sub-

gradients of f at x. For any event E let the indicator function be 1E = 1 if E happens and 0
otherwise. We denote by B(c, r) = {x | ‖c− x‖ ≤ r} the Euclidean ball centered at c ∈ Rd

with radius r ≥ 0. We assume the error parameter satisfies 0 < ε < 1/9. All our results hold
with constant probability, say 1/8, which can be amplified to arbitrary 1− η, 0 < η < 1, by
running O(log 1/η) independent repetitions and returning the minimum found.

2 A generalized median problem

The probabilistic smallest enclosing ball (pSEB) problem is to find a center that minimizes
the expected maximum distance to points drawn from the input distributions (see Section 3.1
and Definition 13), and it can be reduced to two different types of 1-median problems [22].
One of them is defined on the set of all non-empty locations in Rd where probabilistic points
may appear, equipped with the Euclidean distance. The other is defined on the collection
of all possible realizations of probabilistic point sets, and the distance measure between a
center c ∈ Rd and a realization Pi ⊂ Rd is the maximum distance between the center and
any of the realized points, i.e., maxp∈Pi

‖c− p‖.
We begin our studies with a generalized median problem that we call the set median

problem and covers both of these cases.

I Definition 1 (set median problem). Let P = {P1, . . . , PN} be a family of finite non-empty
sets where ∀i ∈ [N] : Pi ⊂ Rd and n = max{|Pi| | i ∈ [N]}. The set median problem on P
consists in finding a center c ∈ Rd that minimizes the cost function

f(c) =
N∑

i=1
m(c, Pi),

where m(c, Pi) = maxp∈Pi
‖c− p‖.

It was noted in [22] that the distance measure m between any two sets A,B ⊂ Rd defined
by the maximum distance m(A,B) = maxa∈A,b∈B ‖a− b‖ is not a metric since for any
non-singleton set C ⊂ Rd it holds that m(C,C) > 0. We stress here that we consider only
cases where, as in Definition 1, one of the sets A = {c} is a singleton, and B = P is an
arbitrary non-empty set of points from Rd. In order to directly apply results from the theory
of metric spaces we thus simply define m(A,B) = 0 whenever A = B.

I Lemma 2. Let X be the set of all finite non-empty subsets of Rd. We define

m(A,B) =
{

maxa∈A,b∈B ‖a− b‖ if A 6= B

0 if A = B

for any A,B ∈ X . Then (X ,m) is a metric space.

Note that in case of singleton sets, the set median problem in Definition 1 is equivalent to
the well-known Fermat-Weber problem also known as 1-median or geometric median. Also,
for N = 1 it coincides with the smallest enclosing ball or 1-center problem.

A. Krivošija and A. Munteanu 47:5

For both of these problems there are known algorithms based on the subgradient method
from convex optimization. Bădoiu and Clarkson [5] gave a simple algorithm for approximating
the 1-center within (1 + ε)-error. Starting from an initial center, it is iteratively moved a
little towards the input point that is furthest away. Note that a suitable subgradient at the
current center points exactly into the opposite direction. More precisely if q ∈ P is a point
that is furthest away from the current center c then (c − q)/ ‖c− q‖ ∈ ∂maxp∈P ‖c− p‖.
The algorithm can thus be interpreted as a subgradient descent minimizing maxp∈P ‖c− p‖.
Weiszfeld’s algorithm [31, 32] was the first that solved the 1-median problem within additive
O(ε)-error in O(1/ε) subgradient iterations. And indeed one of the fastest algorithms to
approximate the geometric median problem to date relies on a stochastic subgradient descent
[10]. The crucial ingredients to turn the additive error to a relative error are finding a suitable
starting point that achieves a constant approximation and estimating its initial distance
to the optimal solution. Another important step is a bound on the Lipschitz constant of
the cost function, see also [3]. We will generalize these approaches to minimizing the cost
function f of the set median problem from Definition 1.

First note that f is a convex function which implies that we can apply the theory of
convex analysis and optimization. In particular, it implies that the subdifferential ∂f(c) is
non-empty for any center c ∈ Rd and c is locally optimal if and only if 0 ∈ ∂f(c). Moreover,
any local optimum is also globally optimal by convexity [4, 23]. This implies that if we find
a (1 + ε)-approximation to a local minimum of the convex function, the convexity implies
that it is a (1 + ε)-approximation to the global minimum as well.

To see that f is convex, note that the Euclidean norm is a convex function. Therefore
the Euclidean distance to some fixed point is a convex function since every translation of
a convex function is convex. The maximum of convex functions is a convex function and
finally the sum of convex functions is again convex. We prove this claim for completeness.

I Lemma 3. The objective function f of the set median problem (see Definition 1) is convex.

Next we bound the Lipschitz constant of the function f by N . We may get a better
bound if we limit the domain of f to a ball of small radius centered at the optimal solution,
but the Lipschitz constant cannot be bounded by o(N) in general. We will see later how we
can remove the dependence on N .

I Lemma 4. The objective function f of the set median problem (see Definition 1) is
N -Lipschitz continuous, i.e., |f(x)− f(y)| ≤ N · ‖x− y‖ for all x, y ∈ Rd.

We want to minimize f via the subgradient method, see [23]. For that sake we need to
compute a subgradient g(ci) ∈ ∂f(ci) at the current center ci. To this end we prove the
following lemma.

I Lemma 5. Let ci ∈ Rd be any center. For each set Pj ∈ P, let pj ∈ Pj be a point with
‖ci − pj‖ = m(ci, Pj). We have

g(ci) =
N∑

j=1

ci − pj

‖ci − pj‖
· 1ci 6=pj

∈ ∂f(ci),

i.e., g(ci) is a valid subgradient of f at ci.

For brevity of presentation we omit the indicator function in any use of the above Lemma
in the remainder of this paper and simply define (ci − pj) / ‖ci − pj‖ = 0 whenever ci = pj .

The subgradient computation takes O(dnN) time to calculate, since in each of the N
terms of the sum we maximize over |Pi| ≤ n distances in d dimensions to find a point in Pi

that is furthest away from c. We are going to discuss the possibility of reducing n later. For

SoCG 2019

47:6 Probabilistic Smallest Enclosing Ball in High Dimensions

now we focus on removing the dependence on N . To this end we would like to replace the
exact subgradient g(ci) by a uniform sample of only one nonzero term which points into the
right direction in expectation. We formalize this in the following lemma.

I Lemma 6. Let ci ∈ Rd be any fixed center. For each set Pj ∈ P, let pj ∈ Pj be
a point with ‖ci − pj‖ = m(ci, Pj). Let g̃(ci) be a random vector that takes the value
g̃(ci) = (ci − pj) / ‖ci − pj‖ for j ∈ [N] with probability 1/N each. Then E

[
‖g̃(ci)‖2

]
≤ 1

and E [g̃(ci)] = g(ci)/N , where g(ci) ∈ ∂f(ci) is the subgradient given in Lemma 5.

We can now adapt the deterministic subgradient method from [23] using the random
unbiased subgradient of Lemma 6 in such a way that the result is in expectation a (1 + ε)-
approximation to the optimal solution. This method is presented in Algorithm 1. Given an
initial center c0, a fixed step size s, and a number of iterations `, the Algorithm iteratively
picks a set Pj ∈ P uniformly at random and chooses a point pj ∈ Pj that attains the maximum
distance to the current center. This point is used to compute an approximate subgradient
via Lemma 6. The Algorithm finally outputs the best center found in all iterations.

Algorithm 1: Stochastic subgradient method.
Data: A family of non-empty sets P = {P1, . . . , PN}, where Pi ⊂ Rd

Result: A center c̃ ∈ Rd

1 Determine an initial center c0
2 Fix a step size s
3 Fix the number of iterations `
4 for i← 1 to ` do
5 Choose an index j ∈ [N] uniformly at random and compute g̃(ci−1), cf. Lemma 6
6 ci = ci−1 − s · g̃(ci−1)
7 return c̃ ∈ argminc∈{ci|i=0,...,`} f(c)

The following theorem bounds in expectation the quality of the output that our subgradient
algorithm returns. It is a probabilistic adaptation of a result in convex optimization [23].

I Theorem 7. Consider Algorithm 1 on input P = {P1, . . . , PN} for the set median problem
with objective function f , see Definition 1. Let c∗ ∈ argminc∈Rd f(c). Let R = ‖c0 − c∗‖.
Then

Ec̃ [f(c̃)− f (c∗)] ≤ N · R
2 + (`+ 1)s2

2(`+ 1)s ,

where the expectation is taken over the random variable c̃ ∈ argminc∈{ci|i=0,...,`} f (c), i.e.,
the output of Algorithm 1.

Our aim now is to choose the parameters `, s, and c0 of Algorithm 1 in such a way that
the bound given in Theorem 7 becomes at most εf(c∗). To this end we can choose the
initial center c0 and bound its initial distance R = ‖c0 − c∗‖ proportional to the average cost
O(f(c∗)/N) with constant probability using a simple Markov argument.

I Lemma 8. Choose a set P from P = {P1, . . . , PN} uniformly at random and let c0 be
an arbitrary point of P . Then for any constant 0 < δ1 < 1 it holds that R = ‖c0 − c∗‖ ≤
f(c∗)/(δ1N) with probability at least 1− δ1.

A. Krivošija and A. Munteanu 47:7

Assume that we know the value of R, and set the step size to s = R/
√
`+ 1, then

Theorem 7 and Lemma 8 imply that for some constant C

Ec̃ [f(c̃)− f (c∗)] ≤ NR√
`+ 1

≤ Cf(c∗)√
`+ 1

holds with constant probability. We thus only need to run the algorithm for ` ∈ O(1/ε2)
iterations to get within εf(c∗) error. But choosing this particular step size requires to know
the optimal center in advance. To get around this, we attempt to estimate the average cost.
More formally, we are interested in a constant factor approximation of f(c∗)/N . It turns
out that we can do this based on a small sample of the input sets unless our initial center is
already a good approximation. But in the latter case we do not care about all the subsequent
steps or step sizes, since we are already done after the initialization. The proof technique is
originally from [19] and is adapted here to work in our setting with sets of points.

I Lemma 9. There exists an algorithm that based on a sample S ⊆ P of size |S| = 1/ε
returns an estimate R̃ and an initial center c0 in time O(dn/ε) such that with constant
probability one of the following holds:
a) εf(c∗)/N ≤ R̃ ≤

(
2/ε3) · f(c∗)/N and ‖c0 − c∗‖ ≤ 8f(c∗)/N ;

b) ‖c0 − c∗‖ ≤ 4εf(c∗)/N .

Lemma 9 has the following consequence. Either the initial center c0 is already a (1 + 4ε)-
approximation, in which case we are done. Or we are close enough to an optimal solution
and have a good estimate on the step size to find a (1 + 4ε)-approximation in a constant
number of iterations.

Another issue that we need to take care of, is finding the best center in the last line of
Algorithm 1 efficiently. We cannot do this exactly since evaluating the cost even for one single
center takes time O(dnN). However, we can find a point that is a (1 + ε)-approximation of
the best center in a finite set of candidate centers using a result from the theory of discrete
metric spaces.

To this end we can apply our next theorem which is originally due to Indyk and Thorup
in [17, 29] and adapted here to work in our setting. The main difference is that in the original
work the set of input points and the set of candidate solutions are identical. In our setting,
however, we have that the collection of input sets and the set of candidate solutions may be
completely distinct and the distance measure is the maximum distance (see Lemma 2).

I Theorem 10. Let Q be a set of uniform samples with repetition from P. Let C be a set of
candidate solutions. Let a ∈ C minimize

∑
Q∈Qm(a,Q) and let ĉ = argminc∈C f(c). Then

Pr
[∑

P∈P
m (a, P)> (1 + ε)

∑
P∈P

m (ĉ, P)
]
≤ |C| · e−ε2|Q|/64.

Putting all pieces together we have the following Theorem.

I Theorem 11. Consider an input P = {P1, . . . , PN}, where for every i ∈ [N] we have
Pi ⊂ Rd and n = max{|Pi| | i ∈ [N]}. There exists an algorithm that computes a center c̃
that is with constant probability a (1 + ε)-approximation to the optimal solution c∗ of the set
median problem (see Definition 1). Its running time is O(dn/ε4 · log2 1/ε).

2.1 On reducing the size of the input sets
We would like to remove additionally the linear dependence on n for the maximum distance
computations. This is motivated from the streaming extension of [22] where one aims at
reading the input once in linear time and all subsequent computations should be sublinear,

SoCG 2019

47:8 Probabilistic Smallest Enclosing Ball in High Dimensions

or preferably independent of n. To this end a grid based strong coreset of size 1/εΘ(d) was
used. However, here we focus on reducing the dependence on d, and exponential is not
an option if we want to work in high dimensions. It turns out that without introducing
an exponential dependence on d, we would have to lose a constant approximation factor.
Pagh et al. [24] showed that if the coreset is a subset of the input and approximates
furthest neighbor queries to within less than a factor of roughly

√
2, then it must consist of

Ω
(
min{n, exp(d1/3)}

)
points. This was shown via a carefully constructed input point set of

Agarwal and Sharathkumar [2] who used it to prove lower bounds on streaming algorithms
for several extent problems.

In the next theorem, we review the techniques of the latter reference to show a slightly
stronger result, namely no small data structure can exist for answering maximum distance
queries to within a factor of less than roughly

√
2. In comparison to the previous results

[2, 24], it is not limited to the streaming setting, and it is not restricted to subsets of the input.

I Theorem 12. Any data structure that, with probability at least 2/3, α-approximates
maximum distance queries on a set S ⊂ Rd of size |S| = n, for α <

√
2
(
1− 2/d1/3), requires

Ω
(
min{n, exp

(
d1/3)}) bits of storage.

On the positive side it was shown by Goel et al. [13] that a
√

2-approximate furthest
neighbor to the point c ∈ Rd can always be found on the surface of the smallest enclosing ball
of the sets Pi, using linear preprocessing time Õ (dn) and Õ

(
d2) query time. Thus, if we plug

in the coresets of Bădoiu and Clarkson [5, 6] of size O(1/ε) instead of the entire sets Pi ∈ P
to evaluate m(c, Pi), we would have a sublinear time algorithm (in n) after reading the input
via a

√
2 (1 + ε)-approximation to any query m(c, Pi). In a streaming setting the same bound

can be achieved via the blurred-ball-cover of Agarwal and Sharathkumar [2] of slightly larger
size O(1/ε3 · log 1/ε). Otherwise, Goel et al. [13] have shown that using O(dn1+1/(1+ε))
preprocessing time and Õ

(
dn1/(1+ε)) query time, one can obtain a (1 + ε)-approximation

for the furthest neighbor problem. Note that in this case the preprocessing time is already
superlinear in n, and in particular the exponent is already larger than 1.7 for 1 + ε <

√
2.

3 Applications

3.1 Probabilistic smallest enclosing ball

We apply our result to the probabilistic smallest enclosing ball problem, as given in [22].
In such a setting, the input is a set D = {D1, . . . , Dn} of n discrete and independent
probability distributions. The i-th distribution Di is defined over a set of z possible locations
qi,j ∈ Rd ∪ {⊥}, for j ∈ [z], where ⊥ indicates that the i-th point is not present in a sampled
set, i.e., qi,j = ⊥ ⇔ {qi,j} = ∅. We call these points probabilistic points. Each location qi,j

is associated with the probability pi,j , such that
∑z

j=1 pi,j = 1, for every i ∈ [n]. Thus the
probabilistic points can be considered as independent random variables Xi.

A probabilistic set X consisting of probabilistic points is also a random variable, where
for each random choice of indices (j1, . . . , jn) ∈ [z]n there is a realization P(j1,...,jn) =
X (j1, . . . , jn) = (q1,j1 , . . . , qn,jn

). By independence of the distributions Di, i ∈ [n], it holds
that Pr

[
X = P(j1,...,jn)

]
=
∏n

i=1 pi,ji .
The probabilistic smallest enclosing ball problem is defined as follows. Here we may

assume that the distance of any point c ∈ Rd to the empty set is 0.

A. Krivošija and A. Munteanu 47:9

I Definition 13 ([22]). Let D be a set of n discrete distributions, where each distribution is
defined over z locations in Rd ∪ {⊥}. The probabilistic smallest enclosing ball problem is to
find a center c∗ ∈ Rd that minimizes the expected smallest enclosing ball cost, i.e.,

c∗ ∈ argminc∈Rd EX [m(c,X)] ,

where the expectation is taken over the randomness of X ∼ D.

The authors of [22] showed a reduction of the probabilistic smallest enclosing ball problem
to computing a solution for the set median problem of Definition 1. Their algorithm
distinguishes between two cases. In the first case the probability of obtaining a nonempty
realization P 6= ∅ is small, more formally

∑
qi,j∈Q pi,j ≤ ε, where Q = {qi,j | qi,j 6= ⊥, i ∈

[n], j ∈ [z]}, and thus we have little chance of gaining information by sampling realizations.
However, it was shown that

(1− ε) · EX

∑
p∈X

‖c− p‖

 ≤ EX [m(c,X)] ≤ EX

∑
p∈X

‖c− p‖

 ,
where EX

[∑
p∈X ‖c− p‖

]
=
∑

i,j pi,j · ‖c− qi,j‖ is a weighted version of the deterministic
1-median problem, cf. [11], and thus also a weighted instance of the set median problem. In
the second case, the probability that a realization contains at least one point is reasonably
large. Therefore by definition of the expected value and m(c, ∅) = 0 we have

EX [m(c,X)] =
∑

P 6=∅
Pr [X = P] ·m(c, P),

which is a weighted version of the set median problem. Depending on these two cases, we
sample a number of elements, non-empty locations or non-empty realizations, and solve the
resulting set median problem using the samples in Theorem 11 for computing the approximate
subgradients.

Algorithm 2 adapts this framework. It differs mainly in three points from the previous
algorithm of [22]. First, the number of samples had a dependence on d hidden in the
O-notation. This is not the case any more. Second, the sampled realizations are not sketched
via coresets of size 1/εΘ(d) any more, as discussed in Section 2.1. Third, the running time of
the actual optimization task is reduced via Theorem 11 instead of an exhaustive grid search.

I Theorem 14. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. Let c̃ ∈ Rd denote the output of Algorithm 2 on input D, and
let the approximation parameter be ε < 1/9. Then with constant probability the output is a
(1 + ε)-approximation for the probabilistic smallest enclosing ball problem. I.e., it holds that

EX [m(c̃, X)] ≤ (1 + ε) minc∈Rd EX [m(c,X)] .

The running time of Algorithm 2 is O(dn · (z/ε3 · log 1/ε+ 1/ε4 · log2 1/ε)).

Comparing to the result of [22], the running time is reduced from O(dnz/εO(1) + 1/εO(d))
to O(dnz/εO(1)), i.e., our dependence on the dimension d is no longer exponential but only
linear. Note, in particular, that the factor of d plays a role only in computations of distances
between two points in Rd. Further the sample size and the number of centers that need
to be evaluated do not depend on the dimension d any more. This will be crucial in the
next application.

SoCG 2019

47:10 Probabilistic Smallest Enclosing Ball in High Dimensions

Algorithm 2: Probabilistic smallest enclosing ball.
Data: A set D of n point distributions over z locations in Rd, a parameter ε < 1/9
Result: A center ĉ ∈ Rd

1 Q← {qi,j | qi,j 6= ⊥, i ∈ [n], j ∈ [z]} /* the set of non-empty locations */
2 Set a sample size k ∈ O(1/ε2 log(1/ε))
3 if

∑
qi,j∈Q pi,j ≤ ε then

4 - Pick a random sample R of k locations from P = Q, where for every r ∈ R we
have r = qij with probability proportional to pij

5 - Compute ĉ ∈ Rd that is a (1 + ε)-approximation using the sampled points R
one-by-one for computing the approximate subgradients in the algorithm of
Theorem 11

6 else
7 - Sample a set R of k non-empty realizations from the input distributions D
8 - Compute ĉ ∈ Rd that is a (1 + ε)-approximation using the sampled realizations

R one-by-one for computing the approximate subgradients in the algorithm of
Theorem 11

9 return ĉ

3.2 Probabilistic support vector data description
Now we turn our attention to the support vector data description (SVDD) problem [28] and
show how to extend it to its probabilistic version. To this end, let K : Rd × Rd → R be a
positive semidefinite kernel function. It is well known by Mercer’s theorem, cf. [26], that such
a function implicitly defines the inner product of a high dimensional Hilbert space H, say
RD where D � d. This means we have K(x, y) = 〈ϕ(x), ϕ(y)〉, where ϕ : Rd → H is the so
called feature mapping associated with the kernel. Examples for such kernel functions include
polynomial transformations of the standard inner product in Rd such as the constant, linear
or higher order polynomial kernels. In these cases D remains bounded but grows as a function
of d raised to the power of the polynomials’ degree. Other examples are the exponential,
squared exponential, Matérn, or rational quadratic kernels, which are transformations of
the Euclidean distance between the two low dimensional vectors. The dimension D of their
implicit feature space is in principle unbounded. Despite the large dimension D � d, all
these kernels can be evaluated in time O(d) [25].

It is known that the SVDD problem is equivalent to the smallest enclosing ball problem
in the feature space induced by the kernel function [30], i.e., given the kernel K with implicit
feature mapping ϕ : Rd → H, and an input set P ⊆ Rd, the task is to find

c∗ ∈ argminc∈Hmaxp∈P ‖c− ϕ(p)‖ = argminc∈Hm(c, ϕ(P)), (1)

where ϕ(P) = {ϕ(p) | p ∈ P}.
Now we extend this to the probabilistic setting as we did in Section 3.1. The input is

again a set D of n discrete and independent probability distributions, where Di ∈ D is defined
over a set of z locations qi,j ∈ Rd ∪ {⊥}. Note that the mapping ϕ maps the locations qi,j

from Rd to ϕ(qi,j) in H, and we assume ϕ(⊥) = ⊥. Then the probabilistic SVDD problem is
given by the following adaptation of Definition 13.

A. Krivošija and A. Munteanu 47:11

I Definition 15. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. Let K : Rd × Rd → R be a kernel function with associated
feature map ϕ : Rd → H. The probabilistic support vector data description (pSVDD) problem
is to find a center c∗ ∈ H that minimizes the expected SVDD cost, i.e.,

c∗ ∈ argminc∈H EX [m(c, ϕ(X))] ,

where the expectation is taken over the randomness of X ∼ D.

Note that the deterministic problem, see Equation (1), is often stated with squared distances
[28, 30]. It does not matter whether we minimize the maximum distance or any of its powers
or any other monotone transformation. In the probabilistic case this is not true. Consider
for instance squared distances. The resulting problem would be similar to a 1-means rather
than a 1-median problem. Huang et al. [16] have observed that minimizing the expected
maximum squared distance corresponds to minimizing the expected area of an enclosing ball
in R2. This observation can be generalized to the expected volume of an enclosing ball in
Rp when the p-th powers of distances are considered. Considering p = 2 might also have
advantages when dealing with Gaussian input distributions due to their strong connection to
squared Euclidean distances. In a general setting of the probabilistic smallest enclosing ball
problem however, it is natural to minimize in expectation the maximum Euclidean distance,
as in Definitions 13 and 15, since its radius is the primal variable to minimize.

Next we want to show how to find a (1 + ε)-approximation for the pSVDD problem.
Explicitly computing any center c ∈ H takes Ω(D) time and space which is prohibitive not
only when D =∞. Note that for the SEB and SVDD problems, any reasonable center lies
in the convex hull of the input points. Since taking the expectation is simply another linear
combination over such centers, we can express any center c ∈ H as a linear combination of
the set of non-empty locations, i.e.,

c =
∑

qu,v∈Q
γu,vϕ(qu,v)

The idea is to exploit this characterization to simulate Algorithm 1 and thereby Algorithm 2
to work in the feature space H by computing the centers and distances only implicitly.

For now, assume that any distance computation can be determined. Note that sampling a
set Pi ⊂ Rd is the same as sampling the set ϕ(Pi) of corresponding points in H from the same
distribution. We assume that we have a set of locations or realizations P = {P1, . . . , PN},
with Pi ⊂ Rd. The remaining steps are passed to Theorem 11 which is based on Algorithm 1.
First, we show the invariant that each center ci reached during its calls to Algorithm 1 can
be updated such that we maintain a linear combination ci =

∑
u,v γu,vϕ(qu,v), where at most

i+ 1 terms have γu,v 6= 0.
The initial center c0 ∈ H is chosen by sampling uniformly at random a set P ∈ P via
Lemma 8. We take any point q ∈ P , q 6= ⊥, which maps to c0 = ϕ(q). Thus the invariant
is satisfied at the beginning, where the corresponding coefficient is γ = 1 and all other
coefficients are zero.
In each iteration we randomly sample a set P ∈ P to simulate the approximate subgradient
g̃ (ci) at the current point ci. The vector g̃ (ci) is a vector between ci and some point
pj,k = ϕ(qj,k) ∈ H, such that qj,k maximizes ‖ci − ϕ(q′)‖ over all q′ ∈ P (cf. Lemma 6).
To implicitly update to the next center ci+1 note that (cf. Algorithm 1)

ci+1 = ci − s ·
ci − ϕ(qj,k)
‖ci − ϕ(qj,k)‖ =

(
1− s

‖ci − ϕ(qj,k)‖

)
· ci + s

‖ci − ϕ(qj,k)‖ · ϕ(qj,k).

SoCG 2019

47:12 Probabilistic Smallest Enclosing Ball in High Dimensions

Assume the invariant was valid that ci was represented as ci =
∑

u,v γu,vϕ(qu,v) with at
most i+ 1 non-zero coefficients. Then it also holds for the point ci+1 since the previous
non-zero coefficients of ϕ(qu,v) are multiplied by 1 − s/ ‖ci − ϕ(qj,k)‖ and the newly
added ϕ(qj,k) is assigned the coefficient s/ ‖ci − ϕ(qj,k)‖. So there are at most i + 2
non-zero coefficients.

Therefore, we do not have to store the points ci explicitly while performing Algorithm 1.
The implicit representation can be maintained via a list storing points that appear in the
approximate subgradients and their corresponding non-zero coefficients.

To actually compute the coefficients, we need to be able to compute Euclidean distances
as well as determine s. Using Lemma 9 we determined the step size s via an estimator
R̃ =

∑
P∈S m(c0, P) based on a small sample S. In particular this requires distance

computations again. To this end, we show how to compute ‖ci − ϕ(q)‖ for any location
q ∈ Rd. Recall that the kernel function implicitly defines the inner product in H. It thus
holds that

‖ci − ϕ(q)‖2 =
∥∥∥∑

u,v
γu,vϕ(qu,v)− ϕ(q)

∥∥∥2
=
∥∥∥∥∑i

w=0
γwϕ(qw)− ϕ(q)

∥∥∥∥2

=
∥∥∥∥∑i

w=0
γwϕ(qw)

∥∥∥∥2
+ ‖ϕ(q)‖2 − 2

∑i

w=0
γw 〈ϕ(qw), ϕ(q)〉

=
∑i

w=0

∑i

w′=0
γwγw′K(qw, qw′) +K(q, q)− 2

∑i

w=0
γwK(qw, q), (2)

where w,w′ ∈ {0, . . . , i} index the locations qw, qw′ with corresponding γw, γw′ 6= 0 in
iteration i. Therefore, we have the following Theorem.

I Theorem 16. Let D be a set of n discrete distributions, where each distribution is defined
over z locations in Rd ∪ {⊥}. There exists an algorithm that implicitly computes c̃ ∈ H that
with constant probability is a (1 + ε)-approximation for the probabilistic support vector data
description problem. I.e., it holds that

EX [m(c̃, ϕ(X))] ≤ (1 + ε) minc∈H EX [m(c, ϕ(X))] ,

where the expectation is taken over the randomness of X ∼ D. The running time of the
algorithm is O(dn ·

(
z/ε3 · log 1/ε+ 1/ε8 · log2 1/ε

)
).

4 Conclusion and open problems

We studied the set median problem in high dimensions that minimizes the sum of maximum
distances to the furthest point in each input set. We presented a (1 + ε)-approximation
algorithm whose running time is linear in d and independent of the number of input sets.
We further discussed that in high dimensions the size of the input sets cannot be reduced
sublinearly without losing a factor of roughly

√
2. Our work resolves an open problem of

[22] and improves the previously best algorithm for the probabilistic smallest enclosing ball
problem in high dimensions by reducing the dependence on d from exponential to linear.
This enables running the algorithm in high dimensional Hilbert spaces induced by kernel
functions which makes it more flexible and viable as a building block in machine learning
and data analysis. As an example we transferred the kernel based SVDD problem of [28]
to the probabilistic data setting. Our algorithms assume discrete input distributions. It
would be interesting to extend them to various continuous distributions. The pSEB problem
minimizes the expected maximum distance. When it comes to minimizing volumes of balls or

A. Krivošija and A. Munteanu 47:13

in the context of Gaussian distributions it might be interesting to study higher moments of
this variable. This corresponds to a generalization of the set median problem to minimizing
the sum of higher powers of maximum distances. Finally we hope that our methods may
help to extend more shape fitting and machine learning problems to the probabilistic setting.

References
1 Marcel R. Ackermann, Johannes Blömer, and Christian Sohler. Clustering for metric and

nonmetric distance measures. ACM Transactions on Algorithms, 6(4):59:1–59:26, 2010.
2 Pankaj K. Agarwal and R. Sharathkumar. Streaming Algorithms for Extent Problems in High

Dimensions. Algorithmica, 72(1):83–98, 2015. doi:10.1007/s00453-013-9846-4.
3 Amir Beck and Shoham Sabach. Weiszfeld’s Method: Old and New Results. Journal of

Optimization Theory and Applications, pages 1–40, 2014.
4 Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,

2004.
5 Mihai Bădoiu and Kenneth L. Clarkson. Smaller core-sets for balls. In Proceedings of the 14th

ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 801–802, 2003.
6 Mihai Bădoiu and Kenneth L. Clarkson. Optimal core-sets for balls. Computational Geometry,

40(1):14–22, 2008.
7 Mihai Bădoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In

Proceedings of the 34th ACM Symposium on Theory of Computing, STOC, pages 250–257,
2002.

8 M. T. Chao. A general purpose unequal probability sampling plan. Biometrika, 69(3):653–656,
1982.

9 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Com-
puting by Mobile Robots: Gathering. SIAM Journal on Computing, 41(4):829–879, 2012.
doi:10.1137/100796534.

10 Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the 48th ACM Symposium on Theory of
Computing, STOC, pages 9–21, 2016. doi:10.1145/2897518.2897647.

11 Graham Cormode and Andrew McGregor. Approximation algorithms for clustering uncertain
data. In Proceedings of the 27th ACM Symposium on Principles of Database Systems, PODS,
pages 191–200, 2008.

12 Pavlos S. Efraimidis. Weighted Random Sampling over Data Streams. In Algorithms,
Probability, Networks, and Games, pages 183–195. Springer International, 2015. doi:
10.1007/978-3-319-24024-4_12.

13 Ashish Goel, Piotr Indyk, and Kasturi R. Varadarajan. Reductions among high dimensional
proximity problems. In Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 769–778, 2001.

14 Sudipto Guha and Kamesh Munagala. Exceeding expectations and clustering uncertain data.
In Proceedings of the 28th ACM Symposium on Principles of Database Systems, PODS, pages
269–278, 2009.

15 Lingxiao Huang and Jian Li. Stochastic k-Center and j-Flat-Center Problems. In Proceedings
of the 28th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 110–129, 2017.
doi:10.1137/1.9781611974782.8.

16 Lingxiao Huang, Jian Li, Jeff M. Phillips, and Haitao Wang. ε-Kernel Coresets for Stochastic
Points. In Proceedings of the 24th Annual European Symposium on Algorithms, ESA, pages
50:1–50:18, 2016.

17 Piotr Indyk. High-dimensional Computational Geometry. PhD thesis, Stanford University,
2000.

18 Ilan Kremer, Noam Nisan, and Dana Ron. On Randomized One-Round Communication
Complexity. Computational Complexity, 8(1):21–49, 1999. doi:10.1007/s000370050018.

SoCG 2019

http://dx.doi.org/10.1007/s00453-013-9846-4
http://dx.doi.org/10.1137/100796534
http://dx.doi.org/10.1145/2897518.2897647
http://dx.doi.org/10.1007/978-3-319-24024-4_12
http://dx.doi.org/10.1007/978-3-319-24024-4_12
http://dx.doi.org/10.1137/1.9781611974782.8
http://dx.doi.org/10.1007/s000370050018

47:14 Probabilistic Smallest Enclosing Ball in High Dimensions

19 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. Journal of the Association for Computing Machinery,
57(2):5:1–5:32, 2010.

20 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

21 Alexander Munteanu and Chris Schwiegelshohn. Coresets-Methods and History: A Theoreti-
cians Design Pattern for Approximation and Streaming Algorithms. Künstliche Intelligenz,
32(1):37–53, 2018. doi:10.1007/s13218-017-0519-3.

22 Alexander Munteanu, Christian Sohler, and Dan Feldman. Smallest enclosing ball for proba-
bilistic data. In Proceedings of the 30th ACM Symposium on Computational Geometry, SoCG,
pages 214–223, 2014.

23 Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Applied
Optimization. Springer, New York, 2004.

24 Rasmus Pagh, Francesco Silvestri, Johan Sivertsen, and Matthew Skala. Approximate furthest
neighbor with application to annulus query. Information Systems, 64:152–162, 2017. doi:
10.1016/j.is.2016.07.006.

25 Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. MIT Press, 2006. URL: http://www.
worldcat.org/oclc/61285753.

26 Bernhard Schölkopf and Alexander Johannes Smola. Learning with Kernels: support vector
machines, regularization, optimization, and beyond. Adaptive computation and machine
learning series. MIT Press, 2002. URL: http://www.worldcat.org/oclc/48970254.

27 Marco Stolpe, Kanishka Bhaduri, Kamalika Das, and Katharina Morik. Anomaly Detection in
Vertically Partitioned Data by Distributed Core Vector Machines. In Proceedings of Machine
Learning and Knowledge Discovery in Databases, ECML/PKDD Part III, pages 321–336, 2013.
doi:10.1007/978-3-642-40994-3_21.

28 David M. J. Tax and Robert P. W. Duin. Support Vector Data Description. Machine Learning,
54(1):45–66, 2004. doi:10.1023/B:MACH.0000008084.60811.49.

29 Mikkel Thorup. Quick k-Median, k-Center, and Facility Location for Sparse Graphs. SIAM
Journal on Computing, 34(2):405–432, 2005.

30 Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core Vector Machines: Fast SVM
Training on Very Large Data Sets. Journal of Machine Learning Research, 6:363–392, 2005.

31 Endre Weiszfeld. Sur le point pour lequel la somme des distances de n points donnés est
minimum. Tohoku Mathematical Journal, 43(2):355–386, 1937.

32 Endre Weiszfeld. On the point for which the sum of the distances to n given points is
minimum. Annals of Operations Research, 167:7–41, 2009. Translated from the French original
and annotated by Frank Plastria.

http://dx.doi.org/10.1007/s13218-017-0519-3
http://dx.doi.org/10.1016/j.is.2016.07.006
http://dx.doi.org/10.1016/j.is.2016.07.006
http://www.worldcat.org/oclc/61285753
http://www.worldcat.org/oclc/61285753
http://www.worldcat.org/oclc/48970254
http://dx.doi.org/10.1007/978-3-642-40994-3_21
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49

A Weighted Approach to the Maximum
Cardinality Bipartite Matching Problem with
Applications in Geometric Settings
Nathaniel Lahn
Virginia Tech, Blacksburg, VA, USA
lahnn@vt.edu

Sharath Raghvendra
Virginia Tech, Blacksburg, VA, USA
sharathr@vt.edu

Abstract
We present a weighted approach to compute a maximum cardinality matching in an arbitrary
bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite graph
G(A ∪ B,E) with edge weights of 0 or 1. Let w ≤ n be an upper bound on the weight of any
matching in G. Consider the subgraph induced by all the edges of G with a weight 0. Suppose
every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We present an
algorithm to compute a maximum cardinality matching in G in Õ(m(

√
w +
√
r + wr

n
)) time.1

When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will be
identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m

√
n) time. However,

if we can carefully assign weights of 0 and 1 on its edges such that both w and r are sub-linear in n
and wr = O(nγ) for γ < 3/2, then we can compute maximum cardinality matching in G in o(m

√
n)

time. Using our algorithm, we obtain a new Õ(n4/3/ε4) time algorithm to compute an ε-approximate
bottleneck matching of A,B ⊂ R2 and an 1

εO(d) n
1+ d−1

2d−1 poly logn time algorithm for computing
ε-approximate bottleneck matching in d-dimensions. All previous algorithms take Ω(n3/2) time.
Given any graph G(A ∪B,E) that has an easily computable balanced vertex separator for every
subgraph G′(V ′, E′) of size |V ′|δ, for δ ∈ [1/2, 1), we can apply our algorithm to compute a maximum
matching in Õ(mn

δ
1+δ) time improving upon the O(m

√
n) time taken by the HK-Algorithm.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis; Theory of computation → Network flows

Keywords and phrases Bipartite matching, Bottleneck matching

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.48

Related Version A full version of this paper is available at https://arxiv.org/abs/1903.10445.

1 Introduction

We consider the classical matching problem in an arbitrary unweighted bipartite graph
G(A ∪ B,E) with |A| = |B| = n and E ⊆ A × B. A matching M ⊆ E is a set of vertex-
disjoint edges. We refer to a largest cardinality matching M in G as a maximum matching.
A maximum matching is perfect if |M | = n. Now suppose the graph is weighted and every
edge (a, b) ∈ E has a weight specified by c(a, b). The weight of any subset of edges E′ ⊆ E
is given by

∑
(a,b)∈E c(a, b). A minimum-weight maximum matching is a maximum matching

with the smallest weight. In this paper, we present an algorithm to compute a maximum
matching faster by carefully assigning weights of 0 and 1 to the edges of G.

1 We use Õ to suppress poly-logarithmic terms.

© Nathaniel Lahn and Sharath Raghvendra;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 48; pp. 48:1–48:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lahnn@vt.edu
mailto:sharathr@vt.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.48
https://arxiv.org/abs/1903.10445
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Weighted Approach to Maximum Cardinality Bipartite Matching

Maximum matching in graphs. In an arbitrary bipartite graph with n vertices and m

edges, Ford and Fulkerson’s algorithm [7] iteratively computes, in each phase, an augmenting
path in O(m) time, leading to a maximum cardinality matching in O(mn) time. Hopcroft
and Karp’s algorithm (HK-Algorithm) [10] reduces the number of phases from n to O(

√
n) by

computing a maximal set of vertex-disjoint shortest augmenting paths in each phase. A single
phase can be implemented in O(m) time leading to an overall execution time of O(m

√
n). In

weighted bipartite graphs with n vertices and m edges, the well-known Hungarian method
computes a minimum-weight maximum matching in O(mn) time [11]. Gabow and Tarjan
designed a weight-scaling algorithm (GT-Algorithm) to compute a minimum-weight perfect
matching in O(m

√
n log(nC)) time, provided all edge weights are integers bounded by C [8].

Their method, like the Hopcroft-Karp algorithm, computes a maximal set of vertex-disjoint
shortest (for an appropriately defined augmenting path cost) augmenting paths in each
phase. For the maximum matching problem in arbitrary graphs (not necessarily bipartite), a
weighted approach has been applied to achieve a simple O(m

√
n) time algorithm [9].

Recently Lahn and Raghvendra [12] gave Õ(n6/5) and Õ(n7/5) time algorithms for
finding a minimum-weight perfect bipartite matching in planar and Kh-minor2 free graphs
respectively, overcoming the Ω(m

√
n) barrier; see also Asathulla et al. [4]. Both these

algorithms are based on the existence of an r-clustering which, for a parameter r > 0, is
a partitioning of G into edge-disjoint clusters {R1, . . . ,Rk} such that k = Õ(n/

√
r), every

cluster Rj has O(r) vertices, and each cluster has Õ(
√
r) boundary vertices. A boundary

vertex has edges from two or more clusters incident on it. Furthermore, the total number
of boundary vertices, counted with multiplicity, is Õ(n/

√
r). The algorithm of Lahn and

Raghvendra extends to any graph that admits an r-clustering. There are also algebraic
approaches for the design of fast algorithms for bipartite matching; see for instance [14, 15].

Matching in geometric settings. In geometric settings, A and B are points in a fixed
d-dimensional space and G is a complete bipartite graph on A and B. For a fixed integer
p ≥ 1, the weight of an edge between a ∈ A and b ∈ B is ‖a − b‖p, where ‖a − b‖
denotes the Euclidean distance between a and b. The weight of a matching M is given by(∑

(a,b)∈M ‖a−b‖p
)1/p. For any fixed p ≥ 1, we wish to compute a perfect matching with the

minimum weight. When p = 1, the problem is the well-studied Euclidean bipartite matching
problem. A minimum-weight perfect matching for p =∞ will minimize the largest-weight
edge in the matching and is referred to as a bottleneck matching. The Euclidean bipartite
matching in a plane can be computed in Õ(n3/2+δ) [17] time for an arbitrary small δ > 0;
see also Sharathkumar and Agarwal [19]. Efrat et al. present an algorithm to compute a
bottleneck matching in the plane in Õ(n3/2) [6] time. Both these algorithms use geometric
data structures in a non-trivial fashion to speed up classical graph algorithms.

When p = 1, for any 0 < ε ≤ 1, there is an ε-approximation algorithm for the Euclidean
bipartite matching problem that runs in Õ(n/εd) time [18]. However, for p > 1, all known
ε-approximation algorithms take Ω(n3/2/εd) time. We note that it is possible to find a
Θ(1)-approximate bottleneck matching in 2-dimensional space by reducing the problem to
finding maximum flow in a planar graph and then finding the flow using an Õ(n) time
max-flow algorithm [5]. There are numerous other results; see also [2, 3, 16]. Designing exact
and approximation algorithms that break the Ω(n3/2) barrier remains an important research
challenge in computational geometry.

2 They assume h = O(1).

N. Lahn and S. Raghvendra 48:3

Our results. We present a weighted approach to compute a maximum cardinality matching
in an arbitrary bipartite graph. Our main result is a new matching algorithm that takes
as input a weighted bipartite graph G(A ∪B,E) with every edge having a weight of 0 or 1.
Let w ≤ n be an upper bound on the weight of any matching in G. Consider the subgraph
induced by all the edges of G with a weight 0. Let {K1,K2, . . . ,Kl} be the connected
components in this subgraph and let, for any 1 ≤ i ≤ l, Vi and Ei be the vertices and
edges of Ki. We refer to each connected component Ki as a piece. Suppose |Vi| = O(r) and
|Ei| = O(mr/n). Given G, we present an algorithm to compute a maximum matching in G
in Õ(m(

√
w+
√
r+ wr

n)) time. Consider any graph in which removal of sub-linear number of
“separator” vertices partitions the graph into connected components with O(r) vertices and
O(mr/n) edges. We can apply our algorithm to any such graph by simply setting the weight
of every edge incident on any separator vertex to 1 and weights of all other edges to 0.

When all the edge weights are 1 or all edge weights are 0, our algorithm will be identical
to the HK-Algorithm algorithm and runs in O(m

√
n) time. However, if we can carefully

assign weights of 0 and 1 on the edges such that both w and r are sub-linear in n and for
some constant γ < 3/2, wr = O(nγ), then we can compute a maximum matching in G in
o(m
√
n) time. Using our algorithm, we obtain the following result for bottleneck matching:

Given two point sets A,B ⊂ R2 and an 0 < ε ≤ 1, we reduce the problem of computing
an ε-approximate bottleneck matching to computing a maximum cardinality matching in
a subgraph G of the complete bipartite graph on A and B. We can, in O(n) time assign
0/1 weights to the O(n2) edges of G with so that any matching has a weight of O(n2/3).
Despite possibly Θ(n2) edges in G, we present an efficient implementation of our graph
algorithm with Õ(n4/3/ε4) execution time that computes an ε-approximate bottleneck
matching for d = 2; all previously known algorithms take Ω(n3/2) time. Our algorithm,
for any fixed d ≥ 2 dimensional space, computes an ε-approximate bottleneck matching
in 1

εO(d)n
1+ d−1

2d−1 poly logn time. (See Section 5).
The algorithm of Lahn and Raghvendra [12] for Kh-minor free graphs requires the clusters to
have a small number of boundary vertices, which is used to create a compact representation
of the residual network. This compact representation becomes prohibitively large as the
number of boundary vertices increase. For instance, their algorithm has an execution time of
Ω(m

√
n) for the case where G has a balanced vertex separator of Θ(n2/3). Our algorithm,

on the other hand, extends to any graph with a sub-linear vertex separator. Given any graph
G(A ∪ B,E) that has an easily computable balanced vertex separator for every subgraph
G′(V ′, E′) of size |V ′|δ, for δ ∈ [1/2, 1), there is a 0/1 weight assignment on edges of the
graph so that the weight of any matching is O(n

2δ
1+δ) and r = O(n

1
1+δ). This assignment can

be obtained by simply recursively sub-dividing the graph using balanced separators until
each piece has O(r) vertices and O(mr/n) edges. All edges incident on the separator vertices
are then assigned a weight of 1 and all other edges are assigned a weight of 0. As a result, we
obtain an algorithm that computes the maximum cardinality matching in Õ(mn

δ
1+δ) time.

Our approach. Initially, we compute, in O(m
√
r) time, a maximum matching within all

pieces. Similar to the GT-Algorithm, the rest of our algorithm is based on a primal-dual
method and executes in phases. Each phase consists of two stages. The first stage conducts
a Hungarian search and finds at least one augmenting path containing only zero slack (with
respect to the dual constraints) edges. Let the admissible graph be the subgraph induced by
the set of all zero slack edges. Unlike in the GT-Algorithm, the second stage of our algorithm
computes augmenting paths in the admissible graph that are not necessarily vertex-disjoint.
In the second stage, the algorithm iteratively initiates a DFS from every free vertex. When a

SoCG 2019

48:4 Weighted Approach to Maximum Cardinality Bipartite Matching

DFS finds an augmenting path P , the algorithm will augment the matching immediately
and terminate this DFS. Let all pieces of the graph that contain the edges of P be affected.
Unlike the GT-Algorithm, which deletes all edges visited by the DFS, our algorithm deletes
only those edges that were visited by the DFS and did not belong to an affected piece.
Consequently, we allow for visited edges from an affected piece to be reused in another
augmenting path. As a result, our algorithm computes several more augmenting paths per
phase than the GT-Algorithm, leading to a reduction of number of phases from O(

√
n) to

O(
√
w). Note, however, that the edges of an affected piece may now be visited multiple times

by different DFS searches within the same phase. This increases the cumulative time taken
by all the DFS searches in the second stage. However, we are able to bound the total number
of affected pieces across all phases of the algorithm by O(w logw). Since each piece has
O(mr/n) edges, the total time spent revisiting these edges is bounded by O(mrw log(w)/n).
The total execution time can therefore be bounded by Õ(m(

√
w +
√
r + wr

n)).

2 Preliminaries

We are given a bipartite graph G(A ∪B,E), where any edge (a, b) ∈ E has a weight c(a, b)
of 0 or 1. Given a matching M , a vertex is free if it is not matched in M . An alternating
path (resp. cycle) is a simple path (resp. cycle) that alternates between edges in M and not
in M . An augmenting path is an alternating path that begins and ends at a free vertex.

A matching M and an assignment of dual weights y(·) on the vertices of G is feasible if
for any (a, b) ∈ A×B:

y(b)− y(a) ≤ c(a, b) if (a, b) 6∈M, (1)
y(a)− y(b) = c(a, b) if (a, b) ∈M. (2)

To assist in describing our algorithm, we first define a residual network and an augmented
residual network with respect to a feasible matching M,y(·). A residual network GM with
respect to a feasible matching M is a directed graph where every edge (a, b) is directed from
b to a if (a, b) 6∈ M and from a to b if (a, b) ∈ M . The weight s(a, b) of any edge is given
by the slack of this edge with respect to feasibility conditions (1) and (2), i.e., if (a, b) 6∈M ,
then s(a, b) = c(a, b) + y(a)− y(b) and s(a, b) = 0 otherwise. An augmented residual network
is obtained by adding to the residual network an additional vertex s and additional directed
edges from s to every vertex in BF , each of having a weight of 0. We denote the augmented
residual network as G′M .

3 Our algorithm

Throughout this section we will use M to denote the current matching maintained by the
algorithm and AF and BF to denote the vertices of A and B that are free with respect
to M . Initially M = ∅, AF = A, and BF = B. Our algorithm consists of two steps.
The first step, which we refer to as the preprocessing step, will execute the Hopcroft-Karp
algorithm and compute a maximum matching within every piece. Any maximum matching
MOpt has at most w edges with a weight of 1 and the remaining edges have a weight of
0. Therefore, |MOpt| − |M | ≤ w. The time taken by the preprocessing step for Ki is
O(|Ei|

√
|Vi|) = O(|Ei|

√
r). Since the pieces are vertex disjoint, the total time taken across

all pieces is O(m
√
r). After this step, no augmenting path with respect to M is completely

contained within a single piece. We set the dual weight y(v) of every vertex v ∈ A ∪B to 0.
The matching M along with the dual weights y(·) satisfies (1) and (2) and is feasible.

N. Lahn and S. Raghvendra 48:5

The second step of the algorithm is executed in phases. We describe phase k of the
algorithm. This phase consists of two stages.

First stage. In the first stage, we construct the augmented residual network G′M and execute
Dijkstra’s algorithm with s as the source. Let `v for any vertex v denote the shortest path
distance from s to v in G′M . If a vertex v is not reachable from s, we set `v to ∞. Let

` = min
v∈AF

`v. (3)

SupposeM is a perfect matching or ` =∞, then this algorithm returns withM as a maximum
matching. Otherwise, we update the dual weight of any vertex v ∈ A ∪ B as follows. If
`v ≥ `, we leave its dual weight unchanged. Otherwise, if `v < `, we set y(v)← y(v) + `− `v.
After updating the dual weights, we construct the admissible graph which consists of a subset
of edges in the residual network GM that have zero slack. After the first stage, the matching
M and the updated dual weights are feasible. Furthermore, there is at least one augmenting
path in the admissible graph. This completes the first stage of the phase.

Second stage: In the second stage, we initialize G′ to be the admissible graph and execute
DFS to identify augmenting paths. For any augmenting path P found during the DFS, we
refer to the pieces that contain its edges as affected pieces of P .

Similar to the HK-Algorithm, the second stage of this phase will initiate a DFS from
every free vertex b ∈ BF in G′. If the DFS does not lead to an augmenting path, we delete
all edges that were visited by the DFS. On the other hand, if the DFS finds an augmenting
path P , then the matching is augmented along P , all edges that are visited by the DFS and
do not lie in an affected piece of P are deleted, and the DFS initiated at b will terminate.

Now, we describe in detail the DFS initiated for a free vertex b ∈ BF . Initially P = 〈b =
v1〉. Every edge of G′ is marked unvisited. At any point during the execution of DFS, the
algorithm maintains a simple path P = 〈b = v1, v2, . . . , vk〉. The DFS search continues from
the last vertex of this path as follows:

If there are no unvisited edges that are going out of vk in G′,
If P = 〈v1〉, remove all edges that were marked as visited from G′ and terminate the
execution of DFS initiated at b.
Otherwise, delete vk from P and continue the DFS search from vk−1,

If there is an unvisited edge going out of vk, let (vk, v) be this edge. Mark (vk, v) as
visited. If v is on the path P , continue the DFS from vk. If v is not on the path P , add
(vk, v) to P , set vk+1 to v, and,

Suppose v ∈ AF , then P is an augmenting path from b to v. Execute the Augment
procedure which augments M along P . Delete from G′ every visited edge that does
not belong to any affected piece of P and terminate the execution of DFS initiated at
b.
Otherwise, v ∈ (A ∪B) \AF . Continue the DFS from vk+1.

The Augment procedure receives a feasible matching M , a set of dual weights y(·),
and an augmenting path P as input. For any (b, a) ∈ P \M , where a ∈ A and b ∈ B, set
y(b) ← y(b) − 2c(a, b). Then augment M along P by setting M ← M ⊕ P . By doing so,
every edge of M after augmentation satisfies the feasibility condition (2). This completes
the description of our algorithm. The algorithm maintains the following invariants during its
execution:

SoCG 2019

48:6 Weighted Approach to Maximum Cardinality Bipartite Matching

(I1) The matching M and the set of dual weights y(·) are feasible. Let ymax = maxv∈B y(v).
The dual weight of every vertex v ∈ BF is ymax and the dual weight for every vertex
v ∈ AF is 0.

(I2) For every phase that is fully executed prior to obtaining a maximum matching, at least
one augmenting path is found and the dual weight of every free vertex of BF increases
by at least 1.

Comparison with the GT-Algorithm. In the GT-Algorithm, the admissible graph does
not have any alternating cycles. Also, every augmenting path edge can be shown to not
participate in any future augmenting paths that are computed in the current phase. By
using these facts, one can show that the edges visited unsuccessfully by a DFS will not lead
to an augmenting path in the current phase. In our case, however, admissible cycles can
exist. Also, some edges on the augmenting path that have zero weight remain admissible
after augmentation and may participate in another augmenting path in the current phase.
We show, however, that any admissible cycle must be completely inside a piece and cannot
span multiple pieces (Lemma 2). Using this fact, we show that edges visited unsuccessfully
by the DFS that do not lie in an affected piece will not participate in any more augmenting
paths (Lemma 6 and Lemma 7) in the current phase. Therefore, we can safely delete them.

Correctness. From Invariant (I2), each phase of our algorithm will increase the cardinality
of M by at least 1 and so, our algorithm terminates with a maximum matching.

Efficiency. We use the following notations to bound the efficiency of our algorithm. Let
{P1, . . . , Pt} be the t augmenting paths computed in the second step of the algorithm. Let
Ki be the set of affected pieces with respect to the augmenting path Pi. Let M0 be the
matching at the end of the first step of the algorithm. Let, for 1 ≤ i ≤ t, Mi = Mi−1 ⊕ Pi,
i.e., Mi is the matching after the ith augmentation in the second step of the algorithm.

The first stage is an execution of Dijkstra’s algorithm which takes O(m+ n logn) time.
Suppose there are λ phases; then the cumulative time taken across all phases for the first
stage is O(λm+λn logn). In the second stage, each edge visited by a DFS is discarded for the
remainder of the phase, provided it is not in an affected piece. Since each affected piece has
O(mr/n) edges, the total time taken by all the DFS searches across all the λ phases is bounded
by O((m+ n logn)λ+ (mr/n)

∑t
i=1 |Ki|). In Lemma 3, we bound λ by

√
w and

∑t
i=1 |Ki|

by O(w logw). Therefore, the total time taken by the algorithm including the time taken by
preprocessing step is O(m

√
r +m

√
w + n

√
w logn+ mrw logw

n) = Õ(m(
√
w +
√
r + wr

n)).

I Lemma 1. For any feasible matching M,y(·) maintained by the algorithm, let ymax be the
dual weight of every vertex of BF . For any augmenting path P with respect to M from a free
vertex u ∈ BF to a free vertex v ∈ AF ,

c(P) = ymax +
∑

(a,b)∈P

s(a, b).

Proof. The weight of P is

c(P) =
∑

(a,b)∈P

c(a, b) =
∑

(a,b)∈P\M

(y(b)− y(a) + s(a, b)) +
∑

(a,b)∈P∩M

(y(a)− y(b)).

Since every vertex on P except for u and v participates in one edge of P ∩M and one edge
of P \M , we can write the above equation as

c(P) = y(u)− y(v) +
∑

(a,b)∈P\M

s(a, b) = y(u)− y(v) +
∑

(a,b)∈P

s(a, b). (4)

N. Lahn and S. Raghvendra 48:7

The last equality follows from the fact that edges of P ∩M satisfy (2) and have a slack
of zero. From (I1), we get that y(u) = ymax and y(v) = 0, which gives,

c(P) = ymax +
∑

(a,b)∈P

s(a, b). J

I Lemma 2. For any feasible matching M,y(·) maintained by the algorithm, and for any
alternating cycle C with respect to M , if c(C) > 0, then∑

(a,b)∈P

s(a, b) > 0,

i.e., C is not a cycle in the admissible graph.

Proof. The claim follows from (4) and the fact that the first vertex u and the last vertex v
in a cycle are the same. J

I Lemma 3. The total number of phases is O(
√
w) and the total number of affected pieces

is O(w logw), i.e.,
∑t
i=1 |Ki| = O(w logw).

Proof. Let MOpt be a maximum matching, which has weight at most w. Consider any phase
k of the algorithm. By (I2), the dual weight ymax of every free vertex in BF is at least
k. The symmetric difference of M and MOpt will contain j = |MOpt| − |M | vertex-disjoint
augmenting paths. Let {P1, . . . ,Pj} be these augmenting paths. These paths contain edges
of MOpt and M , both of which are of weight at most w. Therefore, the sum of weights of
these paths is

j∑
i=1

c(Pi) ≤ 2w.

Let ymax be the dual weight of every vertex b of B that is free with respect to M . i.e.,
b ∈ BF . From (I2), ymax ≥ k. From Lemma 1 and the fact that the slack on every edge is
non-negative, we immediately get,

2w ≥
j∑
i=1

c(Pi) ≥ jymax ≥ jk. (5)

When
√
w ≤ k <

√
w + 1, it follows from the above equation that j = |MOpt| − |M | ≤ 2

√
w.

From (I2), we will compute at least one augmenting path in each phase and so the remaining
j unmatched vertices are matched in at most 2

√
w phases. This bounds the total number of

phases by 3
√
w.

Recollect that {P1, . . . , Pt} are the augmenting paths computed by the algorithm. The
matchingM0 has |MOpt|−t edges. Let ylmax correspond to the dual weight of the free vertices
of BF when the augmenting path Pl is found by the algorithm. From Lemma 1, and the fact
that Pl is an augmenting path consisting of zero slack edges, we have ylmax = c(Pl). Before
augmenting along Pl, there are |MOpt| − t+ l− 1 edges in Ml−1 and j = |MOpt| − |Ml−1| =
t− l + 1. Plugging this in to (5), we get c(Pl) = ylmax ≤ 2w

t−l+1 . Summing over all 1 ≤ l ≤ t,
we get,

t∑
l=1

c(Pl) ≤ w
t∑
l=1

2
t− l + 1 = O(w log t) = O(w logw). (6)

SoCG 2019

48:8 Weighted Approach to Maximum Cardinality Bipartite Matching

For any augmenting path Pl, the number of affected pieces is upper bounded by the number
of non-zero weight edges on Pl, i.e., |Kl| ≤ c(Pl). Therefore,

t∑
l=1
|Kl| ≤

t∑
l=1

c(Pl) = O(w logw). J

4 Proof of invariants

We now prove (I1) and (I2). Consider any phase k in the algorithm. Assume inductively
that at the end of phase k − 1, (I1) and (I2) hold. We will show that (I1) and (I2) also hold
at the end of the phase k.

I Lemma 4. Any matching M and dual weights y(·) maintained during the execution of the
algorithm are feasible.

Next we show that the dual weights AF are zero and the dual weights of all vertices of
BF are equal to ymax. At the start of the second step, all dual weights are 0. During the
first stage, the dual weight of any vertex v will increase by `− `v only if `v < `. By (3), for
every free vertex a ∈ AF , `a ≥ `, and so the dual weight of every free vertex of A remains
unchanged at 0. Similarly, for any free vertex b ∈ BF , `b = 0, and the dual weight increases
by `, which is the largest possible increase. This implies that every free vertex in BF will
have the same dual weight of ymax. In the second stage, matched vertices of B undergo a
decrease in their dual weights, which does not affect vertices in BF . Therefore, the dual
weights of vertices of BF will still have a dual weight of ymax after stage two. This completes
the proof of (I1).

Before we prove (I2), we will first establish a property of the admissible graph after the
dual weight modifications in the first stage of the algorithm.

I Lemma 5. After the first stage of each phase, there is an augmenting path consisting of
admissible edges.

Proof of (I2). From Lemma 5, there is an augmenting path of admissible edges at the end
of the first stage of any phase. Since we execute a DFS from every free vertex b ∈ BF in the
second stage, we are guaranteed to find an augmenting path. Next, we show in Corollary 8
that there is no augmenting path of admissible edges at the end of stage two of phase k, i.e.,
all augmenting paths in the residual network have a slack of at least 1. This will immediately
imply that the first stage of phase k + 1 will have to increase the dual weight of every free
vertex by at least 1 completing the proof for (I2).

Edges that are deleted during a phase do not participate in any augmenting path for the
rest of the phase. We show this in two steps. First, we show that at the time of deletion of
an edge (u, v), there is no path in the admissible graph that starts from the edge (u, v) and
ends at a free vertex a ∈ AF (Lemma 7). In Lemma 6, we show that any such edge (u, v)
will not participate in any admissible alternating path to a free vertex of AF for the rest of
the phase.

I Lemma 6. Consider some point during the second stage of phase k where there is an edge
(u, v) that does not participate in any admissible alternating path to a vertex of AF . Then,
for the remainder of phase k, (u, v) does not participate in any admissible alternating path
to a vertex of AF .

N. Lahn and S. Raghvendra 48:9

I Lemma 7. Consider a DFS initiated from some free vertex b ∈ BF in phase k. Let M
be the matching at the start of this DFS and M ′ be the matching when the DFS terminates.
Suppose the edge (u, v) was deleted during this DFS. Then there is no admissible path starting
with (u, v) and ending at a free vertex a ∈ AF in GM ′ .

By combining Lemmas 6 and 7, we get the following corollary.

I Corollary 8. At the end of any phase, there is no augmenting path of admissible edges.

5 Minimum bottleneck matching

We are given two sets A and B of n d-dimensional points. Consider a weighted and complete
bipartite graph on points of A and B. The weight of any edge (a, b) ∈ A×B is given by its
Euclidean distance and denoted by ‖a− b‖. For any matching M of A and B let its largest
weight edge be its bottleneck edge. In the minimum bottleneck matching problem, we wish to
compute a matching MOpt of A and B with the smallest weight bottleneck edge. We refer
to this weight as the bottleneck distance of A and B and denote it by β∗. An ε-approximate
bottleneck matching of A and B is any matching M with a bottleneck edge weight of at
most (1 + ε)β∗. We present an algorithm that takes as input A,B, and a value δ such that
β∗ ≤ δ ≤ (1 + ε/3)β∗, and produces an ε-approximate bottleneck matching. For simplicity in
presentation, we describe our algorithm for the 2-dimensional case when all points of A and
B are in a bounding square S. The algorithm easily extends to any arbitrary fixed dimension
d. For 2-dimensional case, given a value δ, our algorithm executes in Õ(n4/3/ε3) time.

Although, the value of δ is not known to the algorithm, we can first find a value α that is
guaranteed to be an n-approximation of the bottleneck distance [1, Lemma 2.2] and then select
O(logn/ε) values from the interval [α/n, α] of the form (1+ε/3)iα/n, for 0 ≤ i ≤ O(logn/ε).
We will then execute our algorithm for each of these O(logn/ε) selected values of δ. Our
algorithm returns a maximum matching whose edges are of length at most (1 + ε/3)δ in
O(n4/3/ε3) time. At least one of the δ values chosen will be a β∗ ≤ δ ≤ (1 + ε/3)β∗.
The matching returned by the algorithm for this value of δ will be perfect (|M | = n) and
have a bottleneck edge of weight at most (1 + ε/3)2β∗ ≤ (1 + ε)β∗ as desired. Among all
executions of our algorithm that return a perfect matching, we return a perfect matching
with the smallest bottleneck edge weight. Therefore, the total time taken to compute the
ε-approximate bottleneck matching is Õ(n4/3/ε4).

Given the value of δ, the algorithm will construct a graph as follows: Let G be a grid on
the bounding square S. The side-length of every square in this grid is εδ/(6

√
2). For any

cell ξ in the grid G, let N(ξ) denote the subset of all cells ξ′ of G such that the minimum
distance between ξ and ξ′ is at most δ. By the use of a simple packing argument, it can be
shown that |N(ξ)| = O(1/ε2).

For any point v ∈ A∪B, let ξv be the cell of grid G that contains v. We say that a cell ξ
is active if (A ∪B) ∩ ξ 6= ∅. Let Aξ and Bξ denote the points of A and B in the cell ξ. We
construct a bipartite graph G(A ∪B, E) on the points in A ∪B as follows: For any pair of
points (a, b) ∈ A×B, we add an edge in the graph if ξb ∈ N(ξa). Note that every edge (a, b)
with ‖a − b‖ ≤ δ will be included in G. Since δ is at least the bottleneck distance, G will
have a perfect matching. The maximum distance between any cell ξ and a cell in N(ξ) is
(1 + ε/3)δ. Therefore, no edge in G will have a length greater than (1 + ε/3)δ. This implies
that any perfect matching in G will also be an ε-approximate bottleneck matching. We use
our algorithm for maximum matching to compute this perfect matching in G. Note, that
G can have Ω(n2) edges. For the sake of efficiency, our algorithm executes on a compact
representation of G that is described later. Next, we assign weights of 0 and 1 to the edges
of G so that the any maximum matching in G has a small weight w.

SoCG 2019

48:10 Weighted Approach to Maximum Cardinality Bipartite Matching

For a parameter3 r > 1, we will carefully select another grid G′ on the bounding square
S, each cell of which has a side-length of

√
r(εδ/(6

√
2)) and encloses

√
r ×
√
r cells of G.

For any cell ξ of the grid G, let �ξ be the cell in G′ that contains ξ. Any cell ξ of G is a
boundary cell with respect to G′ if there is a cell ξ′ ∈ N(ξ) such that �ξ′ 6= �ξ. Equivalently,
if the minimum distance from ξ to �ξ is at most δ, then ξ is a boundary cell. For any
boundary cell ξ of G with respect to grid G′, we refer to all points of Aξ and Bξ that lie in
ξ as boundary points. All other points of A and B are referred to as internal points. We
carefully construct this grid G′ such that the total number of boundary points is O(n/ε

√
r)

as follows: First, we will generate the vertical lines for G′, and then we will generate the
horizontal lines using a similar construction. Consider the vertical line yij to be the line
x = i(εδ)/(6

√
2) + j

√
r(εδ/(6

√
2)). For any fixed integer i in [1,

√
r], consider the set of

vertical lines Yi = {yij | yij intersects the bounding square S}. We label all cells ξ of G as
boundary cells with respect to Yi if the distance from ξ to some vertical line in Yi is at most
δ. We designate the points inside the boundary cells as boundary vertices with respect to Yi.
For any given i, let Ai and Bi be the boundary vertices of A and B with respect to the lines
in Yi. We select an integer κ = arg min1≤i≤

√
r |Ai ∪Bi| and use Yκ as the vertical lines for

our grid G′. We use a symmetric construction for the horizontal lines.

I Lemma 9. Let Ai and Bi be the boundary points with respect to the vertical lines Yi. Let
κ = arg min1≤i≤

√
r |Ai ∪Bi|. Then, |Aκ ∪Bκ| = O(n/(ε

√
r)).

Proof. For any fixed cell ξ in G, of the
√
r values of i, there are O(1/ε) values for which Yi

has a vertical line at a distance at most δ from ξ. Therefore, each cell ξ will be a boundary
cell in only O(1/ε) shifts out of

√
r shifts. So, Aξ and Bξ will be counted in Ai ∪ Bi for

O(1/ε) different values of i. Therefore, if we take the average over choices of i, we get

min
1≤i≤

√
r
|Ai ∪Bi| ≤

1√
r

√
r∑

i=1
|Ai ∪Bi| ≤ O(n/(ε

√
r)). J

Using a similar construction, we guarantee that the boundary points with respect to the
horizontal lines of G′ is also at most O(n/(ε

√
r)).

I Corollary 10. The grid G′ that we construct has O(n/(ε
√
r)) many boundary points.

For any two cells ξ and ξ′ ∈ N(ξ) of the grid G, suppose �ξ 6= �ξ′ . Then the weights of
all edges of Aξ ×Bξ′ and of Bξ ×Aξ′ are set to 1. All other edges have a weight of 0. We do
not make an explicit weight assignment as it is expensive to do so. Instead, we can always
derive the weight of an edge when we access it. Only boundary points will have edges of
weight 1 incident on them. From Corollary 10, it follows that any maximum matching will
have a weight of w = O(n/(ε

√
r)).

The edges of every piece in G have endpoints that are completely inside a cell of G′. Note,
however, that there is no straight-forward bound on the number of points and edges of G
inside each piece. Moreover, the number of edges in G can be Θ(n2). Consider any feasible
matching M,y(·) in G. Let GM be the residual network. In order to obtain a running time of
Õ(n4/3/ε3), we use the grid G to construct a compact residual network CGM for any feasible
matching M,y(·) and use this compact graph to implement our algorithm. The following
lemma assists us in constructing the compressed residual network.

3 Assume r to be a perfect square.

N. Lahn and S. Raghvendra 48:11

I Lemma 11. Consider any feasible matching M,y(·) maintained by our algorithm on G
and any active cell ξ in the grid G. The dual weight of any two points a, a′ ∈ Aξ can differ
by at most 2. Similarly, the dual weights of any two points b, b′ ∈ Bξ can differ by at most 2.

Proof. We present our proof for two points b, b′ ∈ Bξ. A similar argument will extend
for a, a′ ∈ Aξ. For the sake of contradiction, let y(b) ≥ y(b′) + 3. b′ must be matched
since y(b′) < y(b) ≤ ymax. Let m(b′) ∈ A be the match of b′ in M . From (2), y(m(b′)) −
y(b′) = c(b′,m(b′)). Since both b and b′ are in ξ, the distance c(b,m(b′)) = c(b′,m(b′)).
So, y(b) − y(m(b′)) ≥ (y(b′) + 3) − y(m(b′)) = 3 − c(b,m(b′)). This violates (1) leading
to a contradiction. J

For any feasible matching and any cell ξ of G, we divide points of Aξ and Bξ based on their
dual weight into at most three clusters. Let A1

ξ , A
2
ξ and A3

ξ be the three clusters of points in
Aξ and let B1

ξ , B
2
ξ and B3

ξ be the three clusters of points in Bξ. We assume that points with
the largest dual weights are in A1

ξ (resp. B1
ξ), the points with the second largest dual weights

are in A2
ξ (resp. B2

ξ), and the points with the smallest dual weights are in A3
ξ (resp. B3

ξ).

Compact residual network. Given a feasible matching M , we construct a compact residual
network CGM to assist in the fast implementation of our algorithm. This vertex set A∪B for
the compact residual network is constructed as follows. First we describe the vertex set A.
For every active cell ξ in G, we add a vertex a1

ξ (resp. a2
ξ , a

3
ξ) to represent the set A1

ξ (resp.
A2
ξ , A

3
ξ) provided A1

ξ 6= ∅ (resp. A2
ξ 6= ∅, A3

ξ 6= ∅). We designate a1
ξ (resp. a2

ξ , a
3
ξ) as a free

vertex if A1
ξ ∩ AF 6= ∅ (resp. A2

ξ ∩ AF 6= ∅, A3
ξ ∩ AF 6= ∅). Similarly, we construct a vertex

set B by adding a vertex b1
ξ (resp. b2

ξ , b
3
ξ) to represent the set B1

ξ (resp. B2
ξ , B

3
ξ) provided

B1
ξ 6= ∅ (resp. B2

ξ 6= ∅, B3
ξ 6= ∅). We designate b1

ξ (resp. b2
ξ , b

3
ξ) as a free vertex if B1

ξ ∩BF 6= ∅
(resp. B2

ξ ∩BF 6= ∅, B3
ξ ∩BF 6= ∅). Each active cell ξ of the grid G therefore has at most six

points. Each point in A ∪ B will inherit the dual weights of the points in its cluster; for any
vertex a1

ξ ∈ A (resp. a2
ξ ∈ A, a3

ξ ∈ A), let y(a1
ξ)(resp. y(a2

ξ), y(a3
ξ)) be the dual weight of all

points in A1
ξ (resp. A2

ξ , A
3
ξ). We define y(b1

ξ), y(b2
ξ), and y(b3

ξ) as dual weights of points in
B1
ξ , B

2
ξ , and B3

ξ respectively. Since there are at most n active cells, |A ∪ B| = O(n).
Next, we create the edge set for the compact residual network CG. For any active cell ξ

in the grid G and for any cell ξ′ ∈ N(ξ),
We add a directed edge from aiξ to bjξ′ , for i, j ∈ {1, 2, 3} if there is an edge (a, b) ∈ (Aiξ ×
Bjξ′)∩M . We define the weight of (aiξ, b

j
ξ′) to be c(a, b). We also define the slack s(aiξ, b

j
ξ′) to

be c(aiξ, b
j
ξ′)−y(aiξ)+y(bjξ′) which is equal to s(aiξ, b

j
ξ′) = c(a, b)−y(a)+y(b) = s(a, b) = 0.

We add a directed edge from biξ to ajξ′ , for i, j ∈ {1, 2, 3} if (Biξ × A
j
ξ′) \M 6= ∅. Note

that the weight and slack of every directed edge in Biξ × A
j
ξ′ are identical. We define

the weight of (biξ, a
j
ξ′) to be c(a, b) for any (a, b) ∈ Ajξ′ × Biξ. We also define the slack

s(biξ, a
j
ξ′) = c(biξ, a

j
ξ′)− y(biξ) + y(ajξ′) which is equal to the slack s(a, b).

For each vertex in A ∪ B, we added at most two edges to every cell ξ′ ∈ N(ξ). Since
N(ξ) = O(1/ε2), the total number of edges in E is O(n/ε2). For a cell � in G′, let A� be
the points of A generated by cells of G that are contained inside the cell �. A piece K� has
A� ∪B� as the vertex set and E� = ((A�×B�)∪ (B�×A�)∩E) as the edge set. Note that
the number of vertices in any piece K� is O(r) and the number of edges in K� is O(r/ε2).
Every edge (u, v) of any piece K� has a weight c(u, v) = 0 and every edge (u, v) with a
weight of zero belongs to some piece of CG.

The following lemma shows that the compact graph CG preserves all minimum slack
paths in GM .

SoCG 2019

48:12 Weighted Approach to Maximum Cardinality Bipartite Matching

I Lemma 12. For any directed path P in the compact residual network CG, there is a
directed path P in the residual network such that

∑
(u,v)∈P s(u, v) =

∑
(u,v)∈P s(u, v). For

any directed path P in GM , there is a directed path P in the compact residual network such
that

∑
(u,v)∈P s(u, v) ≥

∑
(u,v)∈P s(u, v).

Preprocessing step. At the start, M = ∅ and all dual weights are 0. Consider any cell � of
the grid G′ and any cell ξ of G that is contained inside �. Suppose we have a point a1

ξ . We
assign a demand da1

ξ
= |A1

ξ | = |Aξ| to a1
ξ . Similarly, suppose we have a point b1

ξ , we assign a
supply sb1

ξ
= |B1

ξ | = |Bξ|. The preprocessing step reduces to finding a maximum matching of
supplies to demand. This is an instance of the unweighted transportation problem which can
be solved using the algorithm of [13] in Õ(|E�|

√
|A� ∪ B�|) = Õ(|E�|

√
r). Every edge of E

participates in at most one piece. Therefore, the total time taken for preprocessing across
all pieces is Õ(|E|

√
r) = Õ(n

√
r/ε2). We can trivially convert the matching of supplies to

demand to a matching in G.

Efficient implementation of the second step. Recollect that the second step of the al-
gorithm consists of phases. Each phase has two stages. In the first stage, we execute
Dijkstra’s algorithm in O(n logn/ε2) time by using the compact residual network CG. After
adjusting the dual weight of nodes in the compact graph, in the second stage, we iteratively
compute augmenting paths of admissible edges by conducting a DFS from each vertex. Our
implemnetation of DFS has the following differences from the one described in Section 3.

Recollect that each free vertex v ∈ B may represent a cluster that has t > 0 free vertices.
We will execute DFS from v exactly t times, once for each of the free vertices of B.

During the execution of any DFS, unlike the algorithm described in Section 3, the DFS
will mark an edge as visited only when it backtracks from the edge. Due to this change, all
edges on the path maintained by the DFS are marked as unvisited. Therefore, unlike the
algorithm from Section 3, this algorithm will not discard weight 1 edges of an augmenting
path after augmentation. From Lemma 3, the total number of these edges is O(w logw).

Efficiency. The first stage is an execution of Dijkstra’s algorithm which takes O(|E| +
|V| log |V|) = O(n logn/ε2) time. Suppose there are λ phases; then the cumulative time
taken across all phases for the first stage is Õ(λn/ε2). In the second stage of the algorithm,
in each phase, every edge is discarded once it is visited by a DFS, unless it is in an
affected piece or it is an edge of weight 1 on an augmenting path. Since each affected
piece has O(r/ε2) edges, and since there are O(w logw) edges of weight 1 on the computed
augmenting paths, the total time taken by all the DFS searches across all the λ phases is
bounded by Õ(nλ/ε2 + r/ε2∑t

i=1 |Ki| + w logw). In Lemma 3, we bound λ by
√
w and∑t

i=1 |Ki| by O(w logw). Therefore, the total time taken by the algorithm including the
time taken by preprocessing step is Õ((n/ε2)(

√
r +
√
w + wr

n)). Setting r = n2/3, we get
w = O(n/(ε

√
r)) = O(n2/3/ε), and the total running time of our algorithm is Õ(n4/3/ε3). To

obtain the bottleneck matching, we execute this algorithm on O(log(n/ε)) guesses; therefore,
the total time taken to compute an ε-approximate bottleneck matching is Õ(n4/3/ε4). For
d > 2, we choose r = n

d
2d−1 and w = O(n/(dεr1/d)). With these values, the execution time

of our algorithm is 1
εO(d)n

1+ d−1
2d−1 poly logn.

N. Lahn and S. Raghvendra 48:13

References
1 P. K. Agarwal and K. R. Varadarajan. A near-linear constant-factor approximation for

euclidean bipartite matching? In Proc. 12th Annual Sympos. Comput. Geom., pages 247–252,
2004.

2 Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen
Xiao. Faster Algorithms for the Geometric Transportation Problem. In 33rd International
Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017, Brisbane, Australia,
pages 7:1–7:16, 2017.

3 Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching
with metric and geometric costs. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 555–564, 2014.

4 Mudabir Kabir Asuthulla, Sanjeev Khanna, Nathaniel Lahn, and Sharath Raghvendra. A
Faster Algorithm for Minimum-Cost Bipartite Perfect Matching in Planar Graphs. In SODA,
pages 457–476, 2018.

5 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. In FOCS, pages 170–179, 2011.

6 A. Efrat, A. Itai, and M. J. Katz. Geometry Helps in Bottleneck Matching and Related
Problems. Algorithmica, 31(1):1–28, September 2001. doi:10.1007/s00453-001-0016-8.

7 L. R. Ford Jr and D. R. Fulkerson. A simple algorithm for finding maximal network flows and
an application to the Hitchcock problem. No. RAND/P-743, 1955.

8 H. N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems. SIAM J.
Comput., 18:1013–1036, October 1989. doi:10.1137/0218069.

9 Harold N Gabow. The weighted matching approach to maximum cardinality matching.
Fundamenta Informaticae, 154(1-4):109–130, 2017.

10 J. Hopcroft and R. Karp. An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs.
SIAM Journal on Computing, 2(4):225–231, 1973.

11 Harold Kuhn. Variants of the Hungarian method for assignment problems. Naval Research
Logistics, 3(4):253–258, 1956.

12 Nathaniel Lahn and Sharath Raghvendra. A Faster Algorithm for Minimum-Cost Bipartite
Matching in Minor Free Graphs. In SODA, pages 569–588, 2019.

13 Yin Tat Lee and Aaron Sidford. Following the Path of Least Resistance : An Õ(m sqrt(n))
Algorithm for the Minimum Cost Flow Problem. CoRR, abs/1312.6713, 2013. arXiv:1312.
6713.

14 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In Foundations of Computer Science (FOCS), pages 253–262. IEEE, 2013.

15 Marcin Mucha and Piotr Sankowski. Maximum matchings via Gaussian elimination. In FOCS,
pages 248–255, 2004.

16 Jeff M. Phillips and Pankaj K. Agarwal. On Bipartite Matching under the RMS Distance. In
Proceedings of the 18th Annual Canadian Conference on Computational Geometry, CCCG
2006, August 14-16, 2006, Queen’s University, Ontario, Canada, 2006.

17 R. Sharathkumar. A sub-quadratic algorithm for bipartite matching of planar points with
bounded integer coordinates. In SOCG, pages 9–16, 2013.

18 R. Sharathkumar and P. K. Agarwal. A Near-Linear time Approximation Algorithm for
Geometric Bipartite Matching. In Proc. 44th Annual ACM Annual Sympos. on Theory of
Comput., pages 385–394, 2012.

19 R. Sharathkumar and P. K. Agarwal. Algorithms for Transportation Problem in Geometric
Settings. In Proc. 23rd Annual ACM/SIAM Sympos. on Discrete Algorithms, pages 306–317,
2012.

SoCG 2019

http://dx.doi.org/10.1007/s00453-001-0016-8
http://dx.doi.org/10.1137/0218069
http://arxiv.org/abs/1312.6713
http://arxiv.org/abs/1312.6713

The Unbearable Hardness of Unknotting
Arnaud de Mesmay
Univ. Grenoble Alpes, CNRS, Grenoble INP1, GIPSA-lab, 38000 Grenoble, France
arnaud.de-mesmay@gipsa-lab.fr

Yo’av Rieck
Department of Mathematical Sciences, University of Arkansas Fayetteville, AR 72701, USA
yoav@uark.edu

Eric Sedgwick
School of Computing, DePaul University, 243 S. Wabash Ave, Chicago, IL 60604, USA
ESedgwick@cdm.depaul.edu

Martin Tancer
Department of Applied Mathematics, Charles University,
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
tancer@kam.mff.cuni.cz

Abstract

We prove that deciding if a diagram of the unknot can be untangled using at most k Reidemeister
moves (where k is part of the input) is NP-hard. We also prove that several natural questions
regarding links in the 3-sphere are NP-hard, including detecting whether a link contains a trivial
sublink with n components, computing the unlinking number of a link, and computing a variety
of link invariants related to four-dimensional topology (such as the 4-ball Euler characteristic, the
slicing number, and the 4-dimensional clasp number).

2012 ACM Subject Classification Mathematics of computing → Geometric topology; Theory of
computation → Problems, reductions and completeness

Keywords and phrases Knot, Link, NP-hard, Reidemeister move, Unknot recognition, Unlinking
number, intermediate invariants

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.49

Related Version A full version of this paper is available at https://arxiv.org/abs/1810.03502.

Funding Arnaud de Mesmay: Partially supported by the French ANR projects ANR-16-CE40-
0009-01 (GATO), the CNRS PEPS project COMP3D and the Czech-French collaboration project
EMBEDS II (CZ: 7AMB17FR029, FR: 38087RM).
Yo’av Rieck: This work was partially supported by a grant from the Simons Foundation (grant
number 283495 to Yo’av Rieck).
Martin Tancer : Partially supported by the Czech-French collaboration project EMBEDS II (CZ:
7AMB17FR029, FR: 38087RM), by the project CE-ITI (GAČR P202/12/G061) and by the Charles
University projects PRIMUS/17/SCI/3 and UNCE/SCI/004.

Acknowledgements We thank Amey Kaloti and Jeremy Van Horn Morris for many helpful conver-
sations. We are grateful to the anonymous referees for a careful reading of the paper and many
helpful suggestions.

1 Institute of Engineering Univ. Grenoble Alpes

© Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, and Martin Tancer;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 49; pp. 49:1–49:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnaud.de-mesmay@gipsa-lab.fr
mailto:yoav@uark.edu
mailto:ESedgwick@cdm.depaul.edu
mailto:tancer@kam.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.SoCG.2019.49
https://arxiv.org/abs/1810.03502
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 The Unbearable Hardness of Unknotting

1 Introduction

Unknot recognition via Reidemeister moves. The unknot recognition problem asks whether
a given knot is the unknot. Decidability of this problem was established by Haken [10], and
since then several other algorithms were constructed (see, e.g., the survey of Lackenby [20]).

One can ask, naively, if one can decide whether a given knot diagram represents the
unknot simply by untangling the diagram: trying various Reidemeister moves until there
are no more crossings. The problem is knowing when to stop: if we have not been able to
untangle the diagram using so many moves, is the knot in question necessarily knotted or
should we keep on trying? “Hard unknots” can be found, for example, in [14].

In [11], Hass and Lagarias gave an explicit (albeit rather large) bound on the number of
Reidemeister moves needed to untangle a diagram of the unknot. Lackenby [18] improved the
bound to polynomial thus showing that the unknot recognition problem is in NP (this was
previously proved in [12]). The unknot recognition problem is also in co-NP [19] (assuming
the Generalized Riemann Hypothesis, this was previously shown by Kuperberg [16]). Thus if
the unknot recognition problem were NP-complete (or co-NP-complete) we would have that
NP and co-NP coincide which is commonly believed not to be the case; see, for example, [9,
Section 7.1]. This suggests that the unknot recognition problem is not NP-hard.

It is therefore natural to ask if there is a way to use Reidemeister moves leading to a
better solution than a generic brute-force search. Our main result suggests that there may
be serious difficulties in such an approach: given a 3-SAT instance Φ we construct an unknot
diagram and a number k, so that the diagram can be untangled using at most k Reidemeister
moves if and only if Φ is satisfiable. Hence any algorithm that can calculate the minimal
number of Reidemeister moves needed to untangle unknot diagrams will be robust enough to
tackle any problem in NP:

I Theorem 1. Given an unknot diagram D and an integer k, deciding if D can be untangled
using at most k Reidemeister moves is NP-complete.

NP-membership follows from the result of Lackenby [18], so we only show NP-hardness.
For the reduction in the proof of Theorem 1 we have to construct arbitrarily large diagrams
of the unknot. The difficulty in the proof is to establish tools powerful enough to provide
useful lower bounds on the minimal number of Reidemeister moves needed to untangle these
diagrams. For instance, the algebraic methods of Hass and Nowik [13] do not appear strong
enough for our reduction. It is also quite easy to modify the construction and give more
easily lower bounds on the number of Reidemeister moves needed to untangle unlinks if one
allows the use of arbitrarily many components of diagrams with constant size, but those
techniques too cannot be used for Theorem 1. We develop the necessary tools in Section 4.

Computational problems for links. Our approach for proving Theorem 1 partially builds
on techniques to encode satisfiability instances using Hopf links and Borromean rings, that we
previously used in [7] (though the technical details are very different). With these techniques,
we also show that a variety of link invariants are NP-hard to compute. Precisely, we prove:

I Theorem 2. Given a link diagram L and an integer k, the following problems are NP-hard:
(a) deciding whether L admits a trivial unlink with k components as a sublink.
(b) deciding whether an intermediate invariant has value k on L,
(c) deciding whether χ4(L) = 0,
(d) deciding whether L admits a smoothly slice sublink with k components.

A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:3

We refer to Definition 13 for the definitions of χ4(L), the 4-ball Euler characteristic,
and intermediate invariants. These are broadly related to the topology of the 4-ball, and
include the unlinking number, the ribbon number, the slicing number, the concordance
unlinking number, the concordance ribbon number, the concordance slicing number, and the
4-dimensional clasp number. See, e.g., [25] for a discussion of many intermediate invariants.

Related results. The complexity of problems with knots and links is poorly understood. In
particular, only very few computational lower bounds are known, and, as far as we know,
almost none concern classical knots (i.e., knots embedded in S3): apart from our Theorem 1,
the only other such hardness proof we know of [17, 24] concerns counting coloring invariants
of knots. More lower bounds are known for classical links. Lackenby [21] showed that
determining if a link is a sublink of another one is NP-hard. Our results strengthen this by
showing that even finding a trivial sublink is already NP-hard. Agol, Hass and Thurston [1]
showed that computing the genus of a knot in a 3-manifold is NP-hard, and Lackenby [21]
showed that computing the Thurston complexity of a link in S3 is also NP-hard. Our results
complement this by showing that the 4-dimensional version of this problem is also NP-hard.

Regarding upper bounds, the current state of knowledge is only slightly better. While, as
we mentioned before, it is now known that the unknot recognition problem is in NP∩ co-NP,
many natural link invariants are not even known to be decidable. In particular, this is the
case for all the invariants for which we prove NP-hardness, except for the problem of finding
the maximal number of components of a trivial sublink, which is in NP (see Theorem 5).

Shortly before we finished our manuscript, Koenig and Tsvietkova posted a preprint [15]
that also shows that certain computational problems on links are NP-hard, with some
overlap with the results obtained in this paper (the trivial sublink problem and the unlinking
number). They also show NP-hardness of computing the number of Reidemeister moves
for turning one unlink diagram into another, but their construction does not untangle the
diagram and requires arbitrarily many components. Theorem 1 of the current paper is
stronger and answers Question 17 of [15].

Organization. After some preliminaries in Section 2, we start by sketching the hardness
of the trivial sublink problem in Section 3 because it is very simple and provides a good
introduction for our other reductions. We then proceed to prove Theorem 1 in Sections 4
and 5 and the hardness of the unlinking number and the other invariants in Sections 6 and 7.
These three proofs are mostly independent and the reader can read any of them separately.

2 Preliminaries

Notation. Most of the notation we use is standard. By knot we mean a tame piecewise
linear embedding of the circle S1 into the 3-sphere S3. By link we mean a tame, piecewise
linear embedding of the disjoint union of any finite number of copies of S1. We assume basic
familiarity with computational complexity and knot theory, and refer to basic textbooks
such as Arora and Barak [5] for the former and Rolfsen [23] for the latter.

Diagram of a knot or a link. All the computational problems that we study in this paper
take as input the diagram of a knot or a link, which we define here. A diagram of a knot is a
piecewise linear map D : S1 → R2 in general position, obtained by composing the embedding
S1 → R3 with a projection R3 → R2. For such a map, every point in R2 has at most two
preimages, and there are finitely many points in R2 with exactly two preimages (called
crossings); at each crossing we indicate which arc crosses over and which crosses under. We
similarly define a link diagram; for details see, for example [23].

SoCG 2019

49:4 The Unbearable Hardness of Unknotting

x ¬x

x

y

z

y ¬y z ¬z t ¬t

x

¬y

t

Figure 1 LΦ for Φ = (x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ t), a satisfying assignment is dashed.

By an arc in the diagram D we mean a set D(α) where α is an arc in S1, i.e., a subset of
S1 homeomorphic to the closed interval (note that this definition is slightly non-standard).

The size of a knot or a link diagram is its number of crossings plus number of components
of the link. Up to a constant factor, this complexity exactly describes the complexity of
encoding the combinatorial information contained in a knot or link diagram.

3-satisfiability. In our reductions, we use the NP-hardness of the 3-SAT problem. An input
is a formula in conjunctive normal form and we assume that each clause contains exactly
three literals. For the proof of Theorem 1, we need a slightly restricted form of the 3-SAT
problem given in the lemma below. The proof is simple (see Lemma 5 of the full version [8]).

I Lemma 3 (Probably folklore). Deciding whether a formula Φ in conjunctive normal form
is satisfiable is NP-hard even if we assume the following conditions on Φ.

Each clause contains exactly three literals.
No clause contains both x and ¬x for some variable x.
Each pair of literals {`1, `2} occurs in at most one clause.

3 Trivial sublink

Informally, the trivial sublink problem asks, given a link L and a positive integer n, whether
L admits the n-component unlink as a sublink. We define:

I Definition 4 (The Trivial Sublink Problem). An unlink, or a trivial link, is a link in S3

whose components bound disjointly embedded disks. A trivial sublink of a link L is an unlink
formed by a subset of the components of L. The trivial sublink problem asks, given a link L
and a positive integer n, whether L admits an n component trivial sublink.

I Theorem 5. The trivial sublink problem is NP-complete.

For a complete proof of this theorem see Theorem 4 of the full version [8], yet it is simple
and intuitive enough to be explained in a few words and a picture here.

A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:5

I−

I+

II−

II+

IIIri

si
ti ti+1

si+1

ri+1

Figure 2 Reidemeister moves.

Sketch. NP membership follows from Hass, Lagarias and Pippenger [12] (also Lackenby [18]).
For NP-hardness, starting with a 3-SAT instance Φ with n variables, we construct a 2n-
component link LΦ (see Figure 1) consisting of a Hopf link for each variable and Borromean
rings for each clause (each component corresponds to a literal as labeled). Each Borromean
rings component is banded to the Hopf link component with the same label.

Given a satisfying assignment (x = z = false, y = t = true in Figure 1), remove the
components of satisfied literals (dashed yellow). Then from each set of Borromean rings at
least one ring was removed; thus the sublink retracts into n separated unknots.

Conversely, let Un be an n-component trivial sublink of LΦ (black in Figure 1). Since the
Hopf link cannot be found in Un, for each variable x, one of the components corresponding
to x and ¬x is in Un, and the other is not. Since the Borromean rings cannot be found
in Un from each set Borromean rings at least one ring is not in Un. We conclude that the
components not in Un define a satisfying assignment for Φ. J

4 The defect

Reidemeister moves. Reidemeister moves are local modifications of a diagram depicted in
Figure 2 (the labels at the crossings in a III move will be used only later on). We distinguish
the I move (left), the II move (middle) and the III move (right). The first two moves affect the
number of crossings, thus we further distinguish the I− and the II− moves which reduce the
number of crossings from the I+ and the II+ moves which increase the number of crossings.

The number of Reidemeister moves for untangling a knot. A diagram of the unknot
is untangled if it does not contain any crossings. The untangled diagram is denoted by
U . Given a diagram D of an unknot, an untangling of D is a sequence D = (D0, . . . , Dk)
where D0 = D, Dk = U (recall that diagrams are only considered up to isotopy) and Di is
obtained from Di−1 by a single Reidemeister move. The number of Reidemeister moves in
D is denoted by rm(D), that is, rm(D) = k. We also define rm(D) := min rm(D) where the
minimum is taken over all untanglings D of D.

The defect. Let us denote by cross(D) the number of crossings in D. We define the defect
of an untangling D by the formula

def(D) := 2 rm(D)− cross(D).

The defect of a diagram D is defined as def(D) := 2 rm(D) − cross(D). Equivalently,
def(D) = min def(D) where the minimum is taken over all untanglings D of D. The defect
is a convenient way to reparametrize 2 rm(D) due to the following observation.

I Observation 6. For any diagram D of the unknot and any untangling D of D we have
def(D) ≥ 0. Equality holds if and only if D uses only II− moves.

SoCG 2019

49:6 The Unbearable Hardness of Unknotting

This notion of defect is different from the one that was introduced by Chang and
Erickson [6] (following Arnold [3, 4] and Aicardi [2]) to study homotopy moves.

Proof. A Reidemeister move in D = (D0, . . . , Dk) removes at most two crossings and the
II− move is the only move that removes exactly two crossings. Thus, the number of crossings
in D = D0 is at most 2k and equality holds if and only if every move is a II− move. J

Crossings contributing to the defect. Let D = (D0, . . . , Dk) be an untangling of a diagram
D = D0 of an unknot. Given a crossing ri in Di, for 0 ≤ i ≤ k − 1, it may vanish by the
move transforming Di into Di+1 if this is a I− or a II− move affecting the crossing. In all
other cases it survives and we denote by ri+1 the corresponding crossing in Di+1. Note that
in the case of a III move there are three crossings affected by the move and three crossings
afterwards. Both before and after, each crossing is the unique intersection between a pair of
the three arcs of the knot that appear in this portion of the diagram. So we may say that
these three crossings survive the move though they change their actual geometric positions
(they swap the order in which they occur along each of the three arcs); see Figure 2.

With a slight abuse of terminology, by a crossing in D we mean a maximal sequence
r = (ra, ra+1, . . . , rb) such that ri+1 is the crossing in Di+1 corresponding to ri in Di for any
a ≤ i ≤ b− 1. By maximality we mean that rb vanishes after the (b+ 1)st move and either
a = 0 or ra is introduced by the ath Reidemeister move (which must be a I+ or II+ move).

An initial crossing is a crossing r = (r0, r1, . . . , rb) in D. Initial crossings in D are in
one-to-one correspondence with crossings in D = D0. For simplicity of notation, r0 is also
denoted r (as a crossing in D).

A Reidemeister II− move in D is economical if both crossings removed by this move are
initial crossings; otherwise, it is wasteful. Let m3(r) be the number of III moves affecting a
crossing r. The weight of an initial crossing r is defined in the following way.

w(r) = 2
3m3(r) +

0 if r vanishes by an economical II− move;
1 if r vanishes by a I− move;
2 if r vanishes by a wasteful II− move.

For later purposes, we also define w(r) := w(r) and w(R) :=
∑

r∈R w(r) for a subset R
of the set of all crossings in D.

I Lemma 7. Let D be an untangling of a diagram D. Then

def(D) ≥
∑

r
w(r),

where the sum is over all initial crossings r of D. If, in addition, D uses only the the I−
and II− moves only, then (for the same sum) we get

def(D) =
∑

r
w(r) = number of I− moves.

The proof uses a discharging technique; see Lemmas 7 and 8 of the full version [8].

Twins and the preimage of a bigon. Let r be an initial crossing in an untangling D =
(D0, . . . , Dk) removed by an economical II− move. The twin of r, denoted by t(r) is the
other crossing in D removed by the same II− move. Note that t(r) is also an initial
crossing (because the move is economical). We also get t(t(r)) = r. If r = (r0, . . . , rb), then
we extend the definition of a twin to Di in such a way that t(ri) is uniquely defined by
t(r) = (t(r0), . . . , t(rb)). In particular, t(r) is a twin of a crossing r = r0 in D (if it exists).

A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:7

Furthermore, the crossings rb and t(rb) in Db form a bigon that is removed by the
forthcoming II− move. Let αb(r) and βb(r) be the two arcs of the bigon (with endpoints
rb and t(rb)) so that αb(r) is the arc that, after extending slightly, overpasses the crossings
rb and t(rb) whereas a slight extension of βb(r) underpasses these crossings. (The reader
may remember this as α is “above” and β is “below”.) Now we can inductively define arcs
αi(r) and βi(r) for 0 ≤ i ≤ b − 1 so that αi(r) and βi(r) are the unique arcs between ri

and t(ri) which are transformed to (already defined) αi+1(r) and βi+1(r) by the (i+ 1)st
Reidemeister move. We also set α(r) = α0(r) and β(r) = β0(r). Intuitively, α(r) and β(r)
form a preimage of the bigon removed by the bth move and we call them the preimage arcs
between r and t(r).

Close neighbors. Let R be a subset of the set of crossings in D. Let r and s be any two
crossings in D (not necessarily in R) and let c ≥ 0 be an integer. We say that r and s are
c-close neighbors with respect to R if r and s can be connected by two arcs α and β such that

α enters r and s as an overpass and β enters r and s as an underpass;
α and β may have self-crossings; however, neither r nor s is in the interior of α or β; and
α and β together contain at most c crossings from R in their interiors. (If there is a
crossing in the interior of both α and β, this crossing is counted only once.)

I Lemma 8. Let R be a subset of the set of crossings in D, let c ∈ {0, 1, 2, 3}. Let r be the
crossing in R which is the first of the crossings in R removed by an economical II− move (we
allow a draw). If w(R) ≤ c, then r and its twin t(r) are c-close neighbors with respect to R.

Sketch. See Lemma 9 of the full version [8]. Let α(r) and β(r) be the preimage arcs between
r and t(r). We want to verify that they satisfy the properties of the arcs from the definition
of the close neighbors. The first item follows immediately from the definition of preimage
arcs. For the second item, if we had r or t(r) in the interior of α or β then we cannot get a
bigon between rb and t(rb) by subsequent moves. The third item is verified by an analysis
of Reidemeister moves removing the crossings of α and β before we get a bigon between rb

and t(rb), using c ≤ 3: if r and t(r) are not c-close with respect to R, then the Reidemeister
moves needed to “clean” the bigon for the II− move contribute more than c to w(R). J

5 The reduction

Let Φ be a formula in conjunctive normal form satisfying the conditions stated in Lemma 3 and
let n be the number of variables. Our aim is to build a diagram D(Φ) by a polynomial-time
algorithm such that def(D(Φ)) ≤ n if and only if Φ is satisfiable.

The variable gadget. First we describe the variable gadget. For every variable x we consider
the diagram depicted at Figure 3 and we denote it V (x).

The gadget contains 17 crossings p[x], p[¬x], q[x], q[¬x], r(x) and si(x) for 1 ≤ i ≤ 12.
The variable gadget also contains six distinguished arcs γi[x] and γi[¬x] (for i = 1, 2),

δ(x) and ε(x) and six distinguished auxiliary points a1(x), . . . , a6(x) which will be useful
later on in order to describe how the variable gadget is used in the diagram D(Φ).

We also call the arc between a1(x) and a2(x) which contains γ1[¬x] and γ2[¬x] the ¬x
tentacle, and similarly, we have removed ¬x tentacle between a2(x) and a3(x). Informally, a
satisfying assignment to Φ will correspond to the choice whether we will decide to remove
first the loop at p[x] by a I− move and simplify the x tentacle or whether we remove first
the loop at p[¬x] and remove the ¬x tentacle in the final construction of D(Φ).

SoCG 2019

49:8 The Unbearable Hardness of Unknotting

δ(x)

ε(x)

p[x] q[x]

p[¬x] q[¬x]
r(x)

s10(x)

s12(x)s9(x)

s11(x)

s5(x)

s6(x)

s8(x)

s7(x)

s2(x)

s4(x)s1(x)

s3(x)

γ1[x]

γ2[x]

γ1[¬x]

γ2[¬x]

x tentacle

¬x tentacle

a1(x) a5(x)

a2(x)

a4(x) a6(x)

a3(x)

Figure 3 The variable gadget V (x).

`1
`2

`3

Figure 4 The clause gadget for clause c = (`1 ∨ `2 ∨ `3).

We also remark that in the notation, we use square brackets for objects that come in
pairs and will correspond to a choice of literal ` ∈ {x,¬x}. This regards p[`], q[`], γ1[`] and
γ2[`] whereas we use parentheses for the remaining objects.

The clause gadget. Given a clause c = (`1 ∨ `2 ∨ `3) in Φ, the clause gadget is depicted at
Figure 4.The construction is based on the Borromean rings. It contains three pairs of arcs
(distinguished by color) and with a slight abuse of notation, we refer to each of the three
pairs of arcs as a “ring”. Note that each ring has four pendent endpoints (or leaves) as in the
picture. Each ring corresponds to one of the literals `1, `2, and `3.

A blueprint for the construction. Now we build a blueprint for the construction of D(Φ).
Let x1, . . . , xn be the variables of Φ and let c1, . . . , cm be the clauses of Φ. For each clause
cj = (`1 ∨ `2 ∨ `3) we take a copy of the graph K1,3 (also known as the star with three leaves).
We label the vertices of degree 1 of such a K1,3 by the literals `1, `2, and `3. Now we draw
these stars into the plane sorted along a horizontal line; see Figure 5. Next for each literal
` ∈ {x1, . . . , xn,¬x1, . . . ,¬xn} we draw a piecewise linear segment containing all vertices
labelled with that literal according to the following rules (follow Figure 5).

A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:9

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

x1 x2

x3

¬x1
x2

¬x3

¬x1 ¬x2

x4

x1
¬x3

¬x4

x1
x2
x3
x4

¬x1
¬x2
¬x3
¬x4

x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

c1 c2 c3 c4

Figure 5 A blueprint for the construction of D(Φ).

The segments start on the right of K1,3’s in the top down order x1,¬x1, x2, . . . , xn,¬xn.
They continue to the left while we permute them to the order x1, . . . , xn, ¬x1, . . . ,¬xn.
We also require that x1, . . . , xn occur above the graphs K1,3 and ¬x1, . . . ,¬xn occur
below these graphs (everything is still on the right of the graphs).
For each literal ` the segment for ` continues to the left while it makes a “detour” to each
vertex v labelled `. If v is not the leftmost vertex labelled `, then the detour is done by a
“finger” of two parallel lines. Each finger avoids K1,3’s except of v. If v is the leftmost,
then we perform only a half of the finger so that v is the endpoint of the segment.

Note that the segments often intersect each other; however, for any i the segments for xi

and ¬xi do not intersect (as we assume that no clause contains both xi and ¬xi).

The final diagram. Finally, we explain how to build the diagram D(Φ) from the blueprint.

Step I (four parallel segments): We replace each segment for a literal ` with four parallel
segments; see Figure 6. The outer two will correspond to the arc γ1[`] from the variable
gadget and the inner two will correspond to γ2[`]; compare with Figure 3.

x1

γ1[x1]

γ1[x1]

γ2[x1]
γ2[x1]

Step I

Figure 6 Step I: Replacing segments.

Step II (clause gadgets): We replace each copy of K1,3 by a clause gadget for the cor-
responding clause c; see Figure 7. Now we aim to describe how is the clause gadget
connected to the quadruples of parallel segments obtained in Step I. Let v be a degree 1
vertex of the K1,3 we are just replacing. Let ` be the literal which is the label of this
vertex. Then c may or may not be the leftmost clause containing a vertex labelled `.
If c is the leftmost clause containing a vertex labelled `, then there are four parallel
segments for ` with pendent endpoints (close to the original position of v) obtained in

SoCG 2019

49:10 The Unbearable Hardness of Unknotting

¬x1 ¬x2

x4

¬x1

¬x2

x4

γ1[¬x2]

γ1[¬x2]

γ2[x4]

Step II

γ1[¬x1]

γ1[¬x1]

Figure 7 Step II: Replacing the K1,3.

Step I. We connect them to the pendent endpoints of the clause gadget (on the ring for `);
see ¬x2 and x4 in Figure 7. Note also that at this moment the two γ1[`] arcs introduced
in Step I merge as well as the two γ2[`] arcs merge.
If c is not the leftmost clause labelled ` then there are four parallel segments passing
close to v (forming a tip of a finger from the blueprint). We disconnect the two segments
closest to the tip of the finger and connect them to the pendent endpoints of the clause
gadget (on the ring for `); see ¬x1 in Figure 7.

Step III (resolving crossings): If two segments in the blueprint, corresponding to literals
` and `′ cross, Step I blows up each such crossing into 16 crossing of corresponding
quadruples. We resolve overpasses/underpasses at these crossings in the same way; see
Figure 8.

Step I Step III
`
`′

γ1[`′]
γ2[`′]
γ2[`′]
γ1[`′]

γ1[`]

γ2[`]

Figure 8 Step III: Resolving crossings.

However, we require one additional condition on the choice of overpasses/underpasses. If
` and `′ appear simultaneously in some clause c we have 8 crossings on the rings for `
and `′ in the clause gadget for c. We can assume that the ring of ` passes over the ring
of `′ at all these crossings (otherwise we swap ` and `′). Then for the 16 crossings on
segments for ` and `′ we pick the other option, that is we want that the γ1[`] and γ2[`]
arcs underpass the γ1[`′] and γ2[`′] arcs at these crossings. This is a globally consistent
choice because we assume that there is at most one clause containing both ` and `′, this
is the third condition in the statement of Lemma 3.

Step IV (the variable gadgets): For each variable xi, the segments γ1[xi], γ2[xi], γ1[¬xi]
and γ2[¬xi] do not intersect each other. We extend them to a variable gadget as in
Figure 9. Namely, to the bottom right endpoints of γ1[xi], γ2[xi], γ1[¬xi] and γ2[¬xi]
we glue the parts of the variable gadget containing the crossings p[xi] and p[¬xi] and
to the top right endpoints of γ1[xi], γ2[xi], γ1[¬xi] and γ2[¬xi] we glue the remainder of
the variable gadget. At this moment, we obtain a diagram of a link, where each link
component has a diagram isotopic to the diagram on Figure 3.

A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:11

δ(x1)

ε(x1)

γ1[x1]

γ1[x1]

γ2[¬x1]

x1

¬x1

Step I Step IV

Figure 9 Step IV: Adding the variable gadgets.

δ(x1)

V (x1)

V (x2)

a4(x1) = a1(x2) a6(x1) = a5(x2)

Figure 10 Step V: Interconnecting the variable gadgets.

Step V (interconnecting the variable gadgets): Finally, we form a connected sum of indi-
vidual components. Namely, for every 1 ≤ i ≤ n− 1 we perform the knot sum along the
arcs δ(xi) and ε(xi+1) by removing them and identifying a4(xi) with a1(xi+1) and a6(xi)
with a5(xi+1) as on Figure 10. The arcs δ(x1) and ε(xn) remain untouched. This way we
obtain the desired unknot diagram D(Φ); see Figure 11.

The core of the NP-hardness reduction is the following theorem.

I Theorem 9. Let Φ be a formula with n variables in conjunctive normal form satisfying the
conditions in the statement of Lemma 3. Then def(D(Φ)) ≤ n if and only if Φ is satisfiable.

Theorem 1 immediately follows from Theorem 9 and Lemma 3:

Proof of Theorem 1 modulo Theorem 9. Due to the definition of the defect, the minimum
number of Reidemeister moves required to untangle D equals 1

2 (def(D(Φ)) + cross(D(Φ)).
Therefore, with k = 1

2 (n+ cross(D(Φ)), Theorem 9 gives that D(Φ) can be untangled with
at most k moves if and only if Φ is satisfiable. This gives the required NP-hardness via
Lemma 3. (Note that D(Φ) and k can be obtained in polynomial time in the size of Φ.) J

The remainder of this section is devoted to the proof of Theorem 9.

5.1 Satisfiable implies small defect
In this subsection we show that given a satisfying assignment for Φ, def(D(Φ)) ≤ n.

SoCG 2019

49:12 The Unbearable Hardness of Unknotting

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

x1

x2 x3
x4

¬x1
¬x2

¬x3
¬x4

Figure 11 The final construction for the formula Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨
¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4). For simplicity of the picture, we do not visualize how the crossings
are resolved in Step III. (Unfortunately, we cannot avoid tiny pictures of gadgets.)

I− II− II− II−p[`]

Figure 12 Initial simplifications.

For any literal ` = true, we remove the crossing p[`] by a I− move (see Figure 3). This
uses exactly n I− moves. Next we finish the untangling of the diagram by II− moves only.
Once this is done, we get an untangling with defect n by Lemma 7, completing the proof.

Thus it remains to finish the untangling with II− moves only. For any ` = true, we
shrink the ` tentacle by II− moves (see Figure 12). By construction of D(Φ) we can continue
shrinking the ` tentacle until we get a loop next to the q[`] vertex; see Figure 13.

We continue the same process for every literal ` = true. Along the way, some of the arcs
meeting γ1[`] and γ2[`] might have already been removed but it is still possible to simplify
the ` tentacle as before. See Figure 14 for the result after shrinking all satisfied tentacles.

Because the assignment was satisfying, in each clause gadget at least one ring of the
Borromean rings disappears. Consequently, if there are two remaining rings in some clause
gadget, then they can be pulled apart from each other by II− moves as in Figure 15.

After this step, for each ` = true, the γ1[¬`] and γ2[¬`] form “fingers” of four parallel
curves that can be further simplified by II− moves so that any crossings among different

V (xi)

q[¬`]

q[`]
p[¬`]

` = ¬xi

Figure 13 The ` tentacle was shrunk to a loop next to q[`]. In this example we have ` = ¬xi.

A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:13

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)
TRUE

TRUE

FALSE

TRUE

V (x1)

V (x2)

V (x3)

V (x4)

Figure 14 Simplified D(Φ) following a satisfying assignment x1 = x2 = x4 = true and
x3 = false.

2 steps

Figure 15 Untangling two rings in the clause gadget via II− moves.

fingers are removed; see Figure 16. For each variable gadget we get one of the two pictures
at Figure 17 left, and can be simplified to the picture on the right using II− moves.

Finally, we recall how the variable gadgets are interconnected (compare the right picture
at Figure 17 with Figure 10). Then it is easy to remove all remaining 2n crossings by II−

moves gradually from top to bottom. This finishes the proof of the “if” part of Theorem 9.

5.2 Small defect implies satisfiable
The purpose of this subsection is to sketch a proof of the “only if” part of the statement of
Theorem 9. Recall that this means that we assume def(D(Φ)) ≤ n and we want to deduce
that Φ is satisfiable. (Along the way we will actually also deduce that def(D(Φ)) = n.) In
this subsection, we heavily use the terminology introduced in Section 4.

Let D = (D0, . . . , Dk) be an untangling of D with def(D) ≤ n. For a variable x let
R(x) = {p[x], p[¬x], q[x], q[¬x], s1(x), . . . , s12(x)} be the set of 16 out of the 17 self-crossings
in the variable gadget V (x) (we leave out r(x)) and let the weight of x, denoted by w(x), be
the sum of weights of the crossings in R(x).

Figure 16 Simplifying γ1[¬`] and γ2[¬`] via II− moves. First, we untangle the inner (horizontal)
“finger” and then we untangle the outer (horizontal) “finger”.

SoCG 2019

49:14 The Unbearable Hardness of Unknotting

p[x] q[x]

q[¬x]

p[¬x]

q[x]

q[¬x]

x assigned TRUE

x assigned FALSE

Figure 17 Results of the simplifications on the previous picture on the level of variable gadgets.

Now we provide two claims on the order of removals of the crossings. Both claims are
proved using Lemma 8 via a careful case analysis, see Claims 10.1 and 10.2 of the full
version [8]. The first claim analyzes the first economical II− move that removes some of the
crossings in R(x). For these claims, recall Figure 3.

B Claim 10. Let x be a variable with w(x) ≤ 1. Let r be the first crossing in R(x) which
is removed by an economical II− move (we allow a draw). Then one of the following cases
holds (note that in both cases w(x) = 1):
(i) {r, t(r)} = {s1(x), s2(x)}, w(p[x]) = w(x) = 1 and p[x] is removed by a I− move prior

to removing r and t(r).
(ii) {r, t(r)} = {s1(x), s3(x)}, w(p[¬x]) = w(x) = 1 and p[¬x] is removed by a I− move

prior to removing r and t(r).

Now, let us set ` := `(x) := x if the conclusion (i) of Claim 10 holds and ` := `(x) := ¬x
if (ii) holds (assuming w(x) ≤ 1). (We identify ¬¬x with x, that is, if ` = ¬x, then ¬` = x.)

B Claim 11. If w(x) ≤ 1, then p[¬`] and q[¬`] are twins. In addition, the preimage arcs α
and β between p[¬`] and q[¬`] contain γ1[¬`] and γ2[¬`].

Now, we have acquired enough tools to finish the proof of the theorem. By Claim 10, we
have w(x) ≥ 1 for any variable x. By Lemma 7, we deduce

def(D) ≥
∑

x

w(x) ≥ n,

where the sum is over all variables. On the other hand, we assume def(D) ≤ n. Therefore
both inequalities above have to be equalities and in particular w(x) = 1 for any variable x.
In particular, the assumptions of Claims 10 and 11 are satisfied for any variable x.

A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:15

γ1[`1] γ1[`2]

γ1[`3]

u′

u

z′ γ2[`2]γ2[`1]

γ2[`3]

z p[`2] or q[`2]

Figure 18 The clause gadget and some of the crossings of R′′(c).

Given a variable x, we assign x with true if the conclusion (i) of Claim 10 holds (that
is, if x = `(x)). Otherwise, if the conclusion (ii) of Claim 10 holds (i.e. ¬x = `(x)), we set x
to false. It remains to prove that we get a satisfying assignment this way.

For contradiction, suppose there is a clause c = (`1 ∨ `2 ∨ `3) which is not satisfied with
this assignment. Let xi be the variable of `i, that is, `i = xi or `i = ¬xi. The fact that c is
not satisfied with the assignment above translates as `(xi) = ¬`i for any i ∈ {1, 2, 3}.

By Claim 11, we get that p[`i] and q[`i] are twins for any i ∈ {1, 2, 3}. Let R′′(c) be the
set of crossings in the clause gadget of c union the sets {p[`i], q[`i]} for i ∈ {1, 2, 3}. All the
crossings in R′′(c) have weight 0 and they have to be removed by economical II− moves as
all defect is realized on points p[`(x)] (but p[`i] = p[¬`(xi)] are not among these points).

Let r be the first removed crossing among the crossings in R′′(c). Our aim is to rule
out all options in which a crossing of R′′(c) can be r. This way, we will obtain the required
contradiction. First, we observe that r cannot be any of p[`i] or q[`i] for i ∈ {1, 2, 3}. This
follows from Claim 11 as the arcs γ1[`i] and γ2[`i] contain some crossings in R′′(c).

Next we apply Lemma 8 (for 0-close neighbors) with R = R′′(c). For sake of example, in
this sketch we rule out the (interesting) option r = u, where u is the vertex on Figure 18.
Let α and β be the arcs between r and t(r) from the definition of 0-close neighbors (α and β
exist by Lemma 8). In particular, neither α nor β has a crossing from R′′(c) in its interior.
The only option for α is to emanate to the left reaching the crossing u′ as emanating to the
right reaches a crossing z ∈ R′′(c) as an underpass. In particular, t(u) = u′. Consequently, β
has to emanate to the right since emanating to the left would reach z′. However, before β
reaches u′, it has to pass through p[`2] or q[`2] in R′′(c) which rules out this option.

6 Intermediate invariants

In this section we describe the family of link invariants from the statement of Theorem 2.
The material presented here is standard and details can be found in various textbooks; since
every piecewise linear knot can be smoothed in a unique way, we assume that the knots
discussed are smooth. In Sections 6 and 7 we work in the smooth category. We first define:

SoCG 2019

49:16 The Unbearable Hardness of Unknotting

Figure 19 Some Whitehead doubles.

I Definition 12. Let L be a link in the 3-sphere. We now give a list of the invariants that
we will be using; for a detailed discussion see, for example, [23].
1. A smooth slice surface for L is an orientable surface with no closed components, properly

and smoothly embedded in the 4-ball, whose boundary is L.
2. The 4-ball Euler characteristic of L, denoted χ4(L), is the largest integer so that L bounds

a smooth slice surface of Euler characteristic χ4(L).
3. A link is called smoothly slice if it bounds a slice surface that consists entirely of disks;

equivalently, the χ4(L) equals the number of components of L.
4. The unlinking number, denoted u(L), is the smallest nonnegative integer so that L admits

some diagram D so that after u(L) crossing changes on D a trivial link is obtained.
5. By transversality, every link L bounds smoothly immersed disks in B4 with finitely many

double points. The 4-dimensional clasp number (sometimes called the 4-ball crossing
number) of L, denoted cs(L), is the minimal number of double points for such disks.

Finally, we define intermediate invariants, whose existence follows from Theorem 2 of [25].

I Definition 13 (intermediate invariant). A real valued link invariant i(L) is called an
intermediate invariant if u(L) ≥ i(L) ≥ cs(L).

Many invariants are known to be intermediate (see, for example, [25]). We list a few (and
prove that they are intermediate) in Lemma 13 of the full version [8]. Shibuya [25] proved:

I Lemma 14. Let L be a link with µ components. Then χ4(L) ≥ µ− 2cs(L).

7 Unlinking, 4-ball Euler characteristic, and intermediate invariants

In this section we will show that the link invariants defined in the previous section are
NP-hard. Our reduction relies on the use of Whitehead doubles, which we now define:

I Definition 15 (Whitehead Double). Let L be a link. A Whitehead double of L is a link
obtained by taking two parallel copies of each component of L and joining them together with
a clasp (see Figure 19). A Whitehead double is called positive if the crossings at the clasp
are positive. If the linking number of the two copies of each component is zero the Whitehead
double is called untwisted. It is easy to see that the untwisted positive Whitehead double is
uniquely determined by L.

One last piece of background we will need is a result of Levine [22, Theorem 1.1]:

I Lemma 16. The untwisted positive Whitehead double of the Hopf link, and that of the
Borromean rings, are not smoothly slice.

We are now ready to describe our construction:

A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:17

The construction of LWH
Φ . Given a 3-SAT instance Φ, recall the link LΦ from Section 3,

and let LWH
Φ be its positive untwisted Whitehead double. There is a natural bijection between

components before and after taking a Whitehead double; let κWH
xi

denote the component
corresponding to κxi and let κWH

¬xi
denote the component corresponding to κ¬xi

The goal of this section is to prove:

I Theorem 17. Given a 3-SAT instance Φ with n variables, let LWH
Φ be the link constructed

above. Then the following are equivalent, where here i is any intermediate invariant:
1. Φ is satisfiable.
2. u(LWH

Φ) = n.
3. i(LWH

Φ) = n.
4. cs(LWH

Φ) = n.
5. χ4(LWH

Φ) = 0.
6. LWH

Φ admits a smoothly slice sublink with n components.

Theorem 2(b) – (d) directly follows from Theorem 17.

Proof. The proof of this Theorem is split in the following steps:
(a) Φ is satisfiable implies that u(LWH

Φ) ≤ n.
(b) cs(LWH

Φ) ≤ i(LWH
Φ) ≤ u(LWH

Φ).
(c) χ4(LWH

Φ) ≥ 2n− 2cs(LWH
Φ).

(d) If χ4(LWH
Φ) ≥ 0 then the following two conditions hold:

(d.I) χ4(LWH
Φ) = 0

(d.II) LWH
Φ admits a smoothly slice sublink with n components.

(e) If LWH
Φ admits a smoothly slice sublink with n components, then Φ is satisfiable.

We first show how (a) – (e) prove Theorem 17. Assume first that Φ is satisfiable. Then
by (a) and (b) we have that cs(LWH

Φ) ≤ n, and by (c) we have that χ4(LWH
Φ) ≥ 0. Then (d.I)

shows that χ4(LWH
Φ) = 0. Working our way back, we see that cs(LWH

Φ) = i(LWH
Φ) = u(LWH

Φ) =
n, establishing (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5). In addition, (d.II) shows directly that (5)⇒ (6).
Finally, (e) establishes (6)⇒ (1).

We complete the proof of Theorem 17 by establishing (a) – (e):
(a) Suppose we have a satisfying assignment for Φ (for this implication, cf. the proof of

Theorem 5). By a single crossing change we resolve the clasp of every component that
correspond to a satisfied literal, that is, if xi = true we change one of the crossings
of the clasp of κWH

xi
and if xi = false we do it for κWH

¬xi
; as a result, the components

corresponding to satisfied literals now form unlinks that are not linked with the remaining
components, and we can isotope them away. Since the assignment is satisfying, from each
copy of the Borromean rings at least one ring is removed, and the remaining components
retract into the first n disks that contained the Hopf links. In each disk we have an
untwisted Whitehead double of the unknot which is itself an unknot. Thus we see that
the unlink on 2n component is obtained, showing that u(LWH

Φ) ≤ n.
(b) By definition of intermediate invariant we have that cs ≤ i ≤ u.
(c) This is Lemma 14.
(d) This step is the crux of the proof and relies on the computation of the signature of our

link; see step (d) in the proof of Theorem 20 of the full version [8].

SoCG 2019

49:18 The Unbearable Hardness of Unknotting

(e) Finally, assume that LWH
Φ admits an n component smoothly slice sublink Lslice. By

Lemma 16 we have that the positive untwisted Whitehead double of the Hopf link is not
a sublink of Lslice and therefore for each i exactly one of κWH

xi
and κWH

¬xi
is in Lslice. If κWH

xi

is in Lslice we set xi = false and if κWH
¬xi

is in Lslice we set xi = true. Using Lemma 16
again we see that Lslice does not admit the positive untwisted Whitehead double of the
Borromean rings as a sublink. Therefore, from every set of Borromean rings, at least
one component does not belong to Lslice; therefore the assignment is satisfying. J

References
1 Ian Agol, Joel Hass, and William Thurston. The computational complexity of knot genus

and spanning area. Transactions of the American Mathematical Society, 358:3821–3850, 2006.
doi:10.1090/S0002-9947-05-03919-X.

2 Francesca Aicardi. Tree-like curves. Singularities and bifurcations, 21:1–31, 1994.
3 Vladimir I Arnold. Plane curves, their invariants, perestroikas and classifications. Advances in

Soviet Mathematics, 21:33–91, 1994.
4 Vladimir Igorevich Arnold. Topological invariants of plane curves and caustics, volume 5.

American Mathematical Soc., 1994.
5 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge

University Press, Cambridge, 2009. doi:10.1017/CBO9780511804090.
6 Hsien-Chih Chang and Jeff Erickson. Untangling planar curves. Discrete & Computational

Geometry, 58(4):889–920, 2017. doi:10.1007/s00454-017-9907-6.
7 Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, and Martin Tancer. Embeddability in R3 is

NP-hard. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1316–1329. Society for Industrial and Applied Mathematics, 2018. Full
version on arXiv:1604.00290. doi:10.1137/1.9781611975031.86.

8 Arnaud de Mesmay, Yo’av Rieck, Eric Sedgwick, and Martin Tancer. The unbearable hardness
of unknotting. arXiv:1810.03502 (for numbering of claims, we refer to the version v1), 2018.

9 Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman and
Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series of Books
in the Mathematical Sciences.

10 Wolfgang Haken. Theorie der Normalflächen. Acta Mathematica, 105(3-4):245–375, 1961.
11 Joel Hass and Jeffrey Lagarias. The number of Reidemeister moves needed for unknot-

ting. Journal of the American Mathematical Society, 14(2):399–428, 2001. doi:10.1090/
S0894-0347-01-00358-7.

12 Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of
knot and link problems. Journal of the ACM (JACM), 46(2):185–211, 1999. doi:10.1145/
301970.301971.

13 Joel Hass and Tahl Nowik. Unknot diagrams requiring a quadratic number of Reidemeister
moves to untangle. Discrete & Computational Geometry, 44(1):91–95, 2010. doi:10.1007/
s00454-009-9156-4.

14 Louis H Kauffman and Sofia Lambropoulou. Hard unknots and collapsing tangles. In
Introductory Lectures on Knot Theory, 2014. doi:10.1142/9789814313001_0009.

15 Dale Koenig and Anastasiia Tsvietkova. NP-hard problems naturally arising in knot theory,
2018. arXiv:1809.10334.

16 Greg Kuperberg. Knottedness is in NP, modulo GRH. Adv. Math., 256:493–506, 2014.
doi:10.1016/j.aim.2014.01.007.

17 Greg Kuperberg and Eric Samperton. Coloring invariants of knots and links are often
intractable. Manuscript.

18 Marc Lackenby. A polynomial upper bound on Reidemeister moves. Ann. Math. (2), 182(2):491–
564, 2015. doi:10.4007/annals.2015.182.2.3.

http://dx.doi.org/10.1090/S0002-9947-05-03919-X
http://dx.doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1007/s00454-017-9907-6
https://arxiv.org/abs/1604.00290
http://dx.doi.org/10.1137/1.9781611975031.86
https://arxiv.org/abs/1810.03502
http://dx.doi.org/10.1090/S0894-0347-01-00358-7
http://dx.doi.org/10.1090/S0894-0347-01-00358-7
http://dx.doi.org/10.1145/301970.301971
http://dx.doi.org/10.1145/301970.301971
http://dx.doi.org/10.1007/s00454-009-9156-4
http://dx.doi.org/10.1007/s00454-009-9156-4
http://dx.doi.org/10.1142/9789814313001_0009
http://arxiv.org/abs/1809.10334
http://dx.doi.org/10.1016/j.aim.2014.01.007
http://dx.doi.org/10.4007/annals.2015.182.2.3

A. de Mesmay, Y. Rieck, E. Sedgwick, and M. Tancer 49:19

19 Marc Lackenby. The efficient certification of knottedness and Thurston norm, 2016. arXiv:
1604.00290.

20 Marc Lackenby. Elementary knot theory. In Lectures on Geometry (Clay Lecture Notes).
Oxford University Press, 2017.

21 Marc Lackenby. Some conditionally hard problems on links and 3-manifolds. Discrete &
Computational Geometry, 58(3):580–595, 2017. doi:10.1007/s00454-017-9905-8.

22 Adam Simon Levine. Slicing mixed Bing–Whitehead doubles. Journal of Topology, 5(3):713–
726, 2012. doi:10.1112/jtopol/jts019.

23 Dale Rolfsen. Knots and links, volume 7 of Mathematics Lecture Series. Publish or Perish,
Inc., Houston, TX, 1990. Corrected reprint of the 1976 original.

24 Eric Samperton. Computational Complexity of Enumerative 3-Manifold Invariants. arXiv
preprint, 2018. arXiv:1805.09275.

25 Tetsuo Shibuya. Some relations among various numerical invariants for links. Osaka J.
Math., 11:313–322, 1974. URL: http://0-projecteuclid.org.library.uark.edu/euclid.
ojm/1200757391.

SoCG 2019

http://arxiv.org/abs/1604.00290
http://arxiv.org/abs/1604.00290
http://dx.doi.org/10.1007/s00454-017-9905-8
http://dx.doi.org/10.1112/jtopol/jts019
http://arxiv.org/abs/1805.09275
http://0-projecteuclid.org.library.uark.edu/euclid.ojm/1200757391
http://0-projecteuclid.org.library.uark.edu/euclid.ojm/1200757391

On Grids in Point-Line Arrangements in the Plane
Mozhgan Mirzaei
Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA
momirzae@ucsd.edu

Andrew Suk
Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA
asuk@ucsd.edu

Abstract
The famous Szemerédi-Trotter theorem states that any arrangement of n points and n lines in the
plane determines O(n4/3) incidences, and this bound is tight. In this paper, we prove the following
Turán-type result for point-line incidence. Let La and Lb be two sets of t lines in the plane and let
P = {`a ∩ `b : `a ∈ La, `b ∈ Lb} be the set of intersection points between La and Lb. We say that
(P,La ∪ Lb) forms a natural t × t grid if |P | = t2, and conv(P) does not contain the intersection
point of some two lines in La and does not contain the intersection point of some two lines in Lb.

For fixed t > 1, we show that any arrangement of n points and n lines in the plane that does not
contain a natural t× t grid determines O(n 4

3 −ε) incidences, where ε = ε(t) > 0. We also provide
a construction of n points and n lines in the plane that does not contain a natural 2× 2 grid and
determines at least Ω(n1+ 1

14) incidences.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases Szemerédi-Trotter Theorem, Grids, Sidon sets

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.50

Funding Mozhgan Mirzaei: Supported by NSF grant DMS-1800746.
Andrew Suk: Supported by an NSF CAREER award and an Alfred Sloan Fellowship.

1 Introduction

Given a finite set P of points in the plane and a finite set L of lines in the plane, let
I(P,L) = {(p, `) ∈ P × L : p ∈ `} be the set of incidences between P and L. The incidence
graph of (P,L) is the bipartite graph G = (P ∪ L, I), with vertex parts P and L, and
E(G) = I(P,L). If |P | = m and |L| = n, then the celebrated theorem of Szemerédi and
Trotter [16] states that

|I(P,L)| ≤ O(m2/3n2/3 +m+ n). (1.1)

Moreover, this bound is tight which can be seen by taking the
√
m×

√
m integer lattice and

bundles of parallel “rich” lines (see [13]). It is widely believed that the extremal configurations
maximizing the number of incidences between m points and n lines in the plane exhibit
some kind of lattice structure. The main goal of this paper is to show that such extremal
configurations must contain large natural grids.

Let P and P0 (respectively, L and L0) be two sets of points (respectively, lines) in the
plane. We say that the pairs (P,L) and (P0,L0) are isomorphic if their incidence graphs are
isomorphic. Solymosi made the following conjecture (see page 291 in [2]).

I Conjecture 1.1. For any set of points P0 and for any set of lines L0 in the plane, the
maximum number of incidences between n points and n lines in the plane containing no
subconfiguration isomorphic to (P0,L0) is o(n 4

3).
© Mozhgan Mirzaei and Andrew Suk;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 50; pp. 50:1–50:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:momirzae@ucsd.edu
mailto:asuk@ucsd.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.50
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 On Grids in Point-Line Arrangements in the Plane

Figure 1 An example with |La| = |Lb| = 3 and |P | = 9 in Theorem 1.3.

In [15], Solymosi proved this conjecture in the special case that P0 is a fixed set of points
in the plane, no three of which are on a line, and L0 consists of all of their connecting lines.
However, it is not known if such configurations satisfy the following stronger conjecture.

I Conjecture 1.2. For any set of points P0 and for any set of lines L0 in the plane, there is
a constant ε = ε(P0,L0), such that the maximum number of incidences between n points and
n lines in the plane containing no subconfiguration isomorphic to (P0,L0) is O(n4/3−ε).

Our first theorem is the following.

I Theorem 1.3. For fixed t > 1, let La and Lb be two sets of t lines in the plane, and let
P0 = {`a ∩ `b : `a ∈ La, `b ∈ Lb} such that |P0| = t2. Then there is a constant c = c(t)
such that any arrangement of m points and n lines in the plane that does not contain a
subconfiguration isomorphic to (P0,La∪Lb) determines at most c(m

2t−2
3t−2n

2t−1
3t−2 +m1+ 1

6t−3 +n)
incidences.

See the Figure 1. As an immediate corollary, we prove Conjecture 1.2 in the following
special case.

I Corollary 1.4. For fixed t > 1, let La and Lb be two sets of t lines in the plane, and let
P0 = {`a ∩ `b : `a ∈ La, `b ∈ Lb}. If |P0| = t2, then any arrangement of n points and n lines
in the plane that does not contain a subconfiguration isomorphic to (P0,La ∪ Lb) determines
at most O(n

4
3−

1
9t−6) incidences.

In the other direction, we prove the following.

I Theorem 1.5. Let La and Lb be two sets of 2 lines in the plane, and let P0 = {`a ∩ `b :
`1 ∈ La, `b ∈ Lb} such that |P0| = 4. For n > 1, there exists an arrangement of n points and
n lines in the plane that does not contain a subconfiguration isomorphic to (P0,La ∪ Lb),
and determines at least Ω(n1+ 1

14) incidences.

Given two sets La and Lb of t lines in the plane, and the point set P0 = {`a ∩ `b : `a ∈
La, `b ∈ Lb}, we say that (P0,La ∪Lb) forms a natural t× t grid if |P0| = t2, and the convex
hull of P0, conv(P0), does not contain the intersection point of any two lines in La and does
not contain the intersection point of any two lines in Lb. See Figure 2.

I Theorem 1.6. For fixed t > 1, there is a constant ε = ε(t), such that any arrangement of
n points and n lines in the plane that does not contain a natural t × t grid determines at
most O(n 4

3−ε) incidences.

M. Mirzaei and A. Suk 50:3

Figure 2 An example of a natural 3× 3 grid.

Let us remark that ε = Ω(1/t2) in Theorem 1.6, and can be easily generalized to the
off-balanced setting of m points and n lines.

We systemically omit floor and ceiling signs whenever they are not crucial for the sake
of clarity of our presentation. All logarithms are assumed to be base 2. For N > 0, we let
[N] = {1, . . . , N}.

2 Proof of Theorem 1.3

In this section we will prove Theorem 1.3. We first list several results that we will use. The
first lemma is a classic result in graph theory.

I Lemma 2.1 (Kövari-Sós-Turán [10]). Let G = (V,E) be a graph that does not contain a
complete bipartite graph Kr,s (1 ≤ r ≤ s) as a subgraph. Then |E| ≤ cs|V |2−

1
r , where cs > 0

is constant which only depends on s.

The next lemma we will use is a partitioning tool in discrete geometry known as simplicial
partitions. We will use the dual version which requires the following definition. Let L be
a set of lines in the plane. We say that a point p crosses L if it is incident to at least one
member of L, but not incident to all members in L.

I Lemma 2.2 (Matousek [12]). Let L be a set of n lines in the plane and let r be a parameter
such that 1 < r < n. Then there is a partition on L = L1 ∪ · · · ∪ Lr into r parts, where
n
2r ≤ |Li| ≤

2n
r , such that any point p ∈ R2 crosses at most O(

√
r) parts Li.

Proof of Theorem 1.3. Set t ≥ 2. Let P be a set of m points in the plane and let L be a
set of n lines in the plane such that (P,L) does not contain a subconfiguration isomorphic to
(P0,La ∪ Lb).

If n ≥ m2/100, then (1.1) implies that |I(P,L)| = O(n) and we are done. Likewise, if
n ≤ m

t
2t−1 , then (1.1) implies that |I(P,L)| = O(m1+ 1

6t−3) and we are done. Therefore, let us
assume m

t
2t−1 < n < m2/100. In what follows, we will show that |I(P,L)| = O(m

2t−2
3t−2n

2t−1
3t−2).

For sake of contradiction, suppose that I(P,L) ≥ cm
2t−2
3t−2n

2t−1
3t−2 , where c is a large constant

depending on t that will be determined later.
Set r = d10n

4t−2
3t−2 /m

2t
3t−2 e. Let us remark that 1 < r < n/10 since we are assuming

m
t

2t−1 < n < m2/100. We apply Lemma 2.2 with parameter r to L, and obtain the partition
L = L1 ∪ · · · ∪ Lr with the properties described above. Note that |Li| > 1. Let G be the
incidence graph of (P,L). For p ∈ P, consider the set of lines in Li. If p is incident to exactly
one line in Li, then delete the corresponding edge in the incidence graph G. After performing

SoCG 2019

50:4 On Grids in Point-Line Arrangements in the Plane

this operation between each point p ∈ P and each part Li, by Lemma 2.2, we have deleted
at most c1m

√
r edges in G, where c1 is an absolute constant. By setting c sufficiently large,

we have

c1m
√
r =
√

10c1m
2t−2
3t−2n

2t−1
3t−2 < (c/2)m

2t−2
3t−2n

2t−1
3t−2 .

Therefore, there are at least (c/2)m
2t−2
3t−2n

2t−1
3t−2 edges remaining in G. By the pigeonhole

principle, there is a part Li such that the number of edges between P and Li in G is at least

cm
2t−2
3t−2n

2t−1
3t−2

2r = cm
4t−2
3t−2

20n
2t−1
3t−2

.

Hence, every point p ∈ P has either 0 or at least 2 neighbors in Li in G. We claim that
(P,Li) contains a subconfiguration isomorphic to (P0,La ∪ Lb). To see this, let us construct
a graph H = (Li, E) as follows. Set V (H) = Li. Let Q = {q1, . . . , qw} ⊂ P be the set of
points in P that have at least two neighbors in Li in the graph G. For qj ∈ Q, consider the
set of lines {`1, . . . , `s} from Li incident to qj , such that {`1, . . . , `s} appears in clockwise
order. Then we define Ej ⊂

(Li
2
)
to be a matching on {`1, . . . , `s}, where

Ej =

{(`1, `2), (`3, `4), . . . , (`s−1, `s)} if s is even.

{(`1, `2), (`3, `4), . . . , (`s−2, `s−1)} if s is odd.

Set E(H) = E1 ∪ E2 ∪ · · · ∪ Ew. Note that Ej and Ek are disjoint, since no two points are
contained in two lines. Since |Ej | ≥ 1, we have

|E(H)| ≥ cm
4t−2
3t−2

60n
2t−1
3t−2

.

Since

|V (H)| = |Li| ≤
m

2t
3t−2

5n
t

3t−2
,

this implies

|E(H)| ≥ c

60 · 25(V (H))2− 1
t .

By setting c = c(t) to be sufficiently large, Lemma 2.1 implies that H contains a copy of Kt,t.

Let L′1,L′2 ⊂ Li correspond to the vertices of this Kt,t in H, and let P ′ = {`1 ∩ `2 ∈ P : `1 ∈
L′1, `2 ∈ L′2}. We claim that (P ′,L′1 ∪ L′2) is isomorphic to (P0,La ∪ Lb). It suffices to show
that |P ′| = t2. For the sake of contradiction, suppose p ∈ `1 ∩ `2 ∩ `3, where `1, `2 ∈ L′1 and
`3 ∈ L′2. This would imply (`1, `3), (`2, `3) ∈ Ej for some j which contradicts the fact that
Ej ⊂

(Li
2
)
is a matching. Same argument follows if `1 ∈ L′1 and `2, `3 ∈ L′2. This completes

the proof of Theorem 1.3. J

3 Natural Grids

Given a set of n points P and a set of n lines L in the plane, if |I(P,L)| ≥ cn
4
3−

1
9k−6 , where

c is a sufficiently large constant depending on k, then Corollary 1.4 implies that there are
two sets of k lines such that each pair of them from different sets intersects at a unique point
in P. Therefore, Theorem 1.6 follows by combining Theorem 1.3 with the following lemma.

M. Mirzaei and A. Suk 50:5

Figure 3 Sets R,B1,B2 in the proof of Lemma 3.1.

I Lemma 3.1. There is a natural number c such that the following holds. Let B be a set
of ct2 blue lines in the plane, and let R be a set of ct2 red lines in the plane such that for
P = {`1 ∩ `2 : `1 ∈ B, `2 ∈ R} we have |P | = c2t4. Then (P,B ∪ R) contains a natural
t× t grid.

To prove Lemma 3.1, we will need the following lemma which is an immediate consequence
of Dilworth’s Theorem.

I Lemma 3.2. For n > 0, let L be a set of n2 lines in the plane, such that no two members
intersect the same point on the y-axis. Then there is a subset L′ ⊂ L of size n such that the
intersection point of any two members in L′ lies to the left of the y-axis, or the intersection
point of any two members in L′ lies to the right of the y-axis.

Proof. Let us order the elements in L = {`1, . . . , `n2} from bottom to top according to their
y-intercept. By Dilworth’s Theorem [5], L contains a subsequence of n lines whose slopes
are either increasing or decreasing. In the first case, all intersection points are to the left of
the y-axis, and in the latter case, all intersection points are to the right of the y-axis. J

Proof of Lemma 3.1. Let (P,B∪R) be as described above, and let `y be the y-axis. Without
loss of generality, we can assume that all lines in B ∪R are not vertical, and the intersection
point of any two lines in B ∪R lies to the right of `y. Moreover, we can assume that no two
lines intersect at the same point on `y.

We start by finding a point y1 ∈ `y such that at least |B|/2 blue lines in B intersect `y on
one side of the point y1 (along `y) and at least |R|/2 red lines in R intersect `y on the other
side. This can be done by sweeping the point y1 along `y from bottom to top until ct2/2
lines of the first color, say red, intersect `y below y1. We then have at least ct2/2 blue lines
intersecting `y above y1. Discard all red lines in R that intersect `y above y1, and discard all
blue lines in B that intersect `y below y1. Hence, |B| ≥ ct2/2.

Set s = bct2/4c. For the remaining lines in B, let B = {b1, . . . , b2s}, where the elements
of B are ordered in the order they cross `y, from bottom to top. We partition B = B1 ∪ B2
into two parts, where B1 = {b1, . . . , bs} and B2 = {bs+1, . . . , b2s}. By applying an affine
transformation, we can assume all lines in R have positive slope and all lines in B1 ∪B2 have
negative slope. See Figure 3.

SoCG 2019

50:6 On Grids in Point-Line Arrangements in the Plane

Figure 4 An example for the line `1.

Let us define a 3-partite 3-uniform hypergraph H = (R∪B1 ∪B2, E), whose vertex parts
are R,B1,B2, and (r, bi, bj) ∈ R×B1×B2 is an edge in H if and only if the intersection point
p = bi ∩ bj lies above the line r. Note, if bi and bj are parallel, then (r, bi, bj) /∈ E. Then a
result of Fox et al. on semi-algebraic hypergraphs implies the following (see also [3] and [9]).

I Lemma 3.3 (Fox et al. [8], Theorem 8.1). There exists a positive constant α such that
the following holds. In the hypergraph above, there are subsets R′ ⊆ R,B′1 ⊆ B1,B′2 ⊆ B2,

where |R′| ≥ α|R|, |B′1| ≥ α|B1|, |B′2| ≥ α|B2|, such that either R′ × B′1 × B′2 ⊆ E, or
(R′ × B′1 × B′2) ∩ E = ∅.

We apply Lemma 3.3 to H and obtain subsets R′,B′1,B′2 with the properties described
above. Without loss of generality, we can assume that R′ × B′1 × B′2 ⊂ E, since a symmetric
argument would follow otherwise. Let `1 be a line in the plane such that the following holds.

1. The slope of `1 is negative.
2. All intersection points between R′ and B′1 lie above `1.

3. All intersection points between R′ and B′2 lie below `1.

See Figure 4.

I Observation 3.4. Line `1 defined above exists.

Proof. Let U be the upper envelope of the arrangement
⋃
`∈R′ `, that is, U is the closure of

all points that lie on exactly one line of R′ and strictly above exactly the |R′| − 1 lines in R′.
Let P1 be the set of intersection points between the lines in B′1 with U. Likewise, we define

P2 to be the set of intersection points between the lines in B′2 with U. Since U is x-monotone
and convex the set P2 lies to the left of the set P1. Then the line `1 that intersects U between
P1 and P2 and intersects `y between B′1 and B′2 satisfies the conditions above. J

Now we apply Lemma 3.2 to R′ with respect to the line `1, to obtain
√
αc/2 · t members

in R′ such that every pair of them intersects on one side of `1. Discard all other members in
R′. Without loss of generality, we can assume that all intersection points between any two
members in R′ lie below `1, since a symmetric argument would follow otherwise. We now
discard the set B′2.

Notice that the order in which the lines in R′ cross b ∈ B′1 will be the same for any line
b ∈ B′1. Therefore, we order the elements in R′ = {r1, . . . , rm} with respect to this ordering,
from left to right, where m = d

√
αc/2 · te. We define `2 to be the line obtained by slightly

perturbing the line rbm/2c such that:

M. Mirzaei and A. Suk 50:7

Figure 5 An example for the line `2.

1. The slope of `2 is positive.
2. All intersection points between B′1 and {r1, . . . , rbm/2c} lie above `2.

3. All intersection points between B′1 and {rbm/2c+1, . . . , rm} lie below `2.

See the Figure 5.
Finally, we apply Lemma 3.2 to B′1 with respect to the line `2, to obtain at least

√
αc · t/2

members in B′1 with the property that any two of them intersect on one side of `2. Without
loss of generality, we can assume that any two such lines intersect below `2 since a symmetric
argument would follow. Set B∗ ⊂ B′1 to be these set of lines. Then B∗ ∪ {r1, . . . , rbm/2c} and
their intersection points form a natural grid. By setting c = c(t) to be sufficiently large, we
obtain a natural t× t grid. J

4 Lower Bound Construction

In this section, we will prove Theorem 1.5. First, let us recall the definitions of Sidon and
k-fold Sidon sets.

Let A be a finite set of positive integers. Then A is a Sidon set if the sum of all pairs are
distinct, that is, the equation x+ y = u+ v has no solutions with x, y, u, v ∈ A, except for
trivial solutions given by u = x, y = v and x = v, y = u. We define s(N) to be the size of the
largest Sidon set A ⊂ {1, . . . , N}. Erdős and Turán proved the following.

I Lemma 4.1 (See [7] and [14]). For N > 1, we have s(N) = Θ(
√
N).

Let us now consider a more general equation. Let u1, . . . , u4 be integers such that
u1 + u2 + u3 + u4 = 0, and consider the equation

u1x1 + u2x2 + u3x3 + u4x4 = 0. (4.1)

We are interested in solutions to (4.1) with x1, x2, x3, x4 ∈ Z. Suppose (x1, x2, x3, x4) =
(a1, a2, a3, a4) is an integer solution to (4.1). Let d ≤ 4 be the number of distinct integers in
the set {a1, a2, a3, a4}. Then we have a partition on the indices

{1, 2, 3, 4} = T1 ∪ · · · ∪ Td,

where i and j lie in the same part Tν if and only if xi = xj . We call (a1, a2, a3, a4) a trivial
solution to (4.1) if∑

i∈Tν

ui = 0, ν = 1, . . . , d.

Otherwise, we will call (a1, a2, a3, a4) a nontrivial solution to (4.1).

SoCG 2019

50:8 On Grids in Point-Line Arrangements in the Plane

In [11], Lazebnik and Verstraëte introduced k-fold Sidon sets which are defined as follows.
Let k be a positive integer. A set A ⊂ N is a k-fold Sidon set if each equation of the form

u1x1 + u2x2 + u3x3 + u4x4 = 0, (4.2)

where |ui| ≤ k and u1 + · · ·+ u4 = 0, has no nontrivial solutions with x1, x2, x3, x4 ∈ A. Let
r(k,N) be the size of the largest k-fold Sidon set A ⊂ {1, . . . , N}.

I Lemma 4.2. There is an infinite sequence 1 = a1 < a2 < · · · of integers such that

am ≤ 28k4m3,

and the system of equations (4.2) has no nontrivial solutions in the set A = {a1, a2, . . .}.
In particular, for integers N > k4 ≥ 1, we have r(k,N) ≥ ck−4/3N1/3, where c is a
positive constant.

The proof of Lemma 4.2 is a slight modification of the proof of Theorem 2.1 in [14]. For
the sake of completeness, we include the proof here.

Proof. We put a1 = 1 and define am recursively. Given a1, . . . , am−1, let am be the smallest
positive integer satisfying

am 6= −
(∑
i∈S

ui

)−1 ∑
1≤i≤4,i/∈S

uixi, (4.3)

for every choice ui such that |ui| ≤ k, for every set S ⊂ {1, . . . , 4} of subscripts such that(∑
i∈S ui

)
6= 0, and for every choice of xi ∈ {a1, . . . , am−1}, where i /∈ S. For a fixed S with

|S| = j, this excludes (m − 1)4−j numbers. Since |ui| ≤ k, the total number of excluded
integers is at most

(2k + 1)4
3∑
j=1

(
4
j

)
(m− 1)4−j = (2k + 1)4(m4 − (m− 1)4 − 1) < 28k4m3.

Consequently, we can extend our set by an integer am ≤ 28k4m3. This will automatically
be different from from a1, . . . , am−1, since putting xi = aj for all i /∈ S in (4.3) we get
am 6= aj . It will also satisfy am > am−1 by minimal choice of am−1.

We show that the system of equations (4.2) has no nontrivial solutions in the set
{a1, . . . , am}.We use induction onm. The statement is obviously true form = 1.We establish
it for m assuming for m− 1. Suppose that there is a nontrivial solution (x1, x2, x3, x4) to
(4.2) for some u1, u2, u3, u4 with the properties described above. Let S denote the set of those
subscripts for which xi = am. If

∑
i∈S ui 6= 0, then this contradicts (4.3). If

∑
i∈S ui = 0,

then by replacing each occurrence of am by a1, we get another nontrivial solution, which
contradicts the induction hypothesis. J

For more problems and results on Sidon sets and k-fold Sidon sets, we refer the interested
reader to [11, 14, 4].

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We start by applying Lemma 4.1 to obtain a Sidon set M ⊂ [n1/7],
such that |M | = Θ(n1/14). We then apply Lemma 4.2 with k = n1/7 and N = 1

4n
11/14, to

obtain a k-fold Sidon set A ⊂ [N] such that

|A| ≥ cn1/14,

where c is defined in Lemma 4.2. Without loss of generality, let us assume |A| = cn1/14.

M. Mirzaei and A. Suk 50:9

Let P = {(i, j) ∈ Z2 : i ∈ A, 1 ≤ j ≤ n13/14}, and let L be the family of lines in the plane
of the form y = mx+ b, where m ∈M and b is an integer such that 1 ≤ b ≤ n13/14/2.
Hence, we have

|P | = |A| · n13/14 = Θ(n),

|L| = |M | · n
13/14

2 = Θ(n).

Notice that each line in L has exactly |A| = cn1/14 points from P since 1 ≤ b ≤ n13/14/2.
Therefore,

|I(P,L)| = |L||A| = Θ(n1+1/14).

B Claim 4.3. There are no four distinct lines `1, `2, `3, `4 ∈ L and four distinct points
p1, p2, p3, p4 ∈ P such that `1 ∩ `2 = p1, `2 ∩ `3 = p2, `3 ∩ `4 = p3, `4 ∩ `1 = p4.

Proof. For the sake of contradiction, suppose there are four lines `1, `2, `3, `4 and four points
p1, p2, p3, p4 with the properties described above. Let `i = mix + bi and let pi = (xi, yi).
Therefore,

`1 ∩ `2 = p1 = (x1, y1),

`2 ∩ `3 = p2 = (x2, y2),

`3 ∩ `4 = p3 = (x3, y3),

`4 ∩ `1 = p4 = (x4, y4).

Hence,

p1 ∈ `1, `2 =⇒ (m1 −m2)x1 + b1 − b2 = 0,

p2 ∈ `2, `3 =⇒ (m2 −m3)x2 + b2 − b3 = 0,

p3 ∈ `3, `4 =⇒ (m3 −m4)x3 + b3 − b4 = 0,

p4 ∈ `4, `1 =⇒ (m4 −m1)x4 + b4 − b1 = 0.

By summing up the four equations above, we get

(m1 −m2)x1 + (m2 −m3)x2 + (m3 −m4)x3 + (m4 −m1)x4 = 0.

By setting u1 = m1 −m2, u2 = m2 −m3, u3 = m3 −m4, u4 = m4 −m1, we get

u1x1 + u1x2 + u3x3 + u4x4 = 0, (4.4)

where u1 + u2 + u3 + u4 = 0 and |ui| ≤ n1/7. Since x1, . . . , x4 ∈ A, (x1, x2, x3, x4) must be a
trivial solution to (4.4). The proof now falls into the following cases, and let us note that no
line in L is vertical.

Case 1. Suppose x1 = x2 = x3 = x4. Then `i is vertical and we have a contradiction.
Case 2. Suppose x1 = x2 = x3 6= x4 and u1 + u2 + u3 = 0 and u4 = 0. Then `1 and `4 have

the same slope which is a contradiction. The same argument follows if x1 = x2 = x4 6= x3,

x1 = x3 = x4 6= x2, or x2 = x3 = x4 6= x1.

SoCG 2019

50:10 On Grids in Point-Line Arrangements in the Plane

Case 3. Suppose x1 = x2 6= x3 = x4, u1 + u2 = 0, and u3 + u4 = 0. Since p1, p2 ∈ `2 and
x1 = x2, this implies that `2 is vertical which is a contradiction. A similar argument
follows if x1 = x4 6= x2 = x3, u1 + u4 = 0, and u2 + u3 = 0.

Case 4. Suppose x1 = x3 6= x2 = x4, u1 +u3 = 0, and u2 +u4 = 0. Then u1 +u3 = 0 implies
that m1 +m3 = m2 +m4. Since M is a Sidon set, we have either m1 = m2 and m3 = m4
or m1 = m4 and m2 = m3. The first case implies that `1 and `2 are parallel which is a
contradiction, and the second case implies that `2 and `3 are parallel, which is again a
contradiction. C

This completes the proof of Theorem 1.5. J

5 Concluding Remarks

An old result of Erdős states that every n-vertex graph that does not contain a cycle of
length 2k, has Ok(n1+1/k) edges. It is known that this bound is tight when k = 2, 3, and
5, but it is a long standing open problem in extremal graph theory to decide whether
or not this upper bound can be improved for other values of k. Hence, Erdős’s upper
bound of O(n5/4) when k = 4 implies Theorem 1.3 when t = 2 and m = n. It would be
interesting to see if one can improve the upper bound in Theorem 1.3 when t = 2. For
more problems on cycles in graphs, see [17].
The proof of Lemma 3.1 is similar to the proof of the main result in [1]. The main
difference is that we use the result of Fox et al. [8] instead of the Ham-Sandwich Theorem.
We also note that a similar result was established by Dujmović and Langerman (see
Theorem 6 in [6]).

References
1 Boris Aronov, Paul Erdős, Wayne Goddard, Daniel Kleitman, Michael Klugerman, János

Pach, and Leonard J. Schulman. Crossing families. Combinatorica, 14(2):127–134, 1994.
2 Peter Brass, William O.J. Moser, and János Pach. Research problems in discrete geometry.

Springer Science & Business Media, 2006.
3 Boris Bukh and Alfredo Hubard. Space crossing numbers. Combin. Probab. Comput., 21(3):358–

373, 2012.
4 Javier Cilleruelo and Craig Timmons. k-Fold Sidon Sets. Electron. J. Combin., 21(4):P4–12,

2014.
5 Robert P Dilworth. A decomposition theorem for partially ordered sets. Ann. of Math., pages

161–166, 1950.
6 Vida Dujmović and Stefan Langerman. A Center Transversal Theorem for Hyperplanes

and Applications to Graph Drawing. Discrete Comput. Geom., 49(1):74–88, January 2013.
doi:10.1007/s00454-012-9464-y.

7 Paul Erdös and Pál Turán. On a problem of Sidon in additive number theory, and on some
related problems. J. Lond. Math. Soc. (2), 1(4):212–215, 1941.

8 Jacob Fox, Mikhail Gromov, Vincent Lafforgue, Assaf Naor, and János Pach. Overlap
properties of geometric expanders. J. Reine Angew. Math., 2012(671):49–83, 2012.

9 Jacob Fox, János Pach, and Andrew Suk. A polynomial regularity lemma for semialgebraic
hypergraphs and its applications in geometry and property testing. SIAM J. Comput.,
45(6):2199–2223, 2016.

10 Tamás Kovári, Vera Sós, and Pál Turán. On a problem of K. Zarankiewicz. 3(1):50–57, 1954.
11 Felix Lazebnik and Jacques Verstraëte. On hypergraphs of girth five. Electron. J. Combin.,

10:1–25, 2003.
12 Jiří Matoušek. Efficient partition trees. Discrete Comput. Geom., 8(3):315–334, 1992.

http://dx.doi.org/10.1007/s00454-012-9464-y

M. Mirzaei and A. Suk 50:11

13 János Pach and Pankaj K Agarwal. Combinatorial geometry, volume 37. John Wiley & Sons,
2011.

14 Imre Z Ruzsa. Solving a linear equation in a set of integers I. Acta Arith., 65(3):259–282, 1993.
15 József Solymosi. Dense arrangements are locally very dense I. SIAM J. Discrete Math.,

20(3):623–627, 2006.
16 Endre Szemerédi and William T. Trotter. Extremal problems in discrete geometry. Combinat-

orica, 3(3-4):381–392, 1983.
17 Jacques Verstraëte. Extremal problems for cycles in graphs. In Recent Trends in Combinatorics,

pages 83–116. Springer, 2016.

SoCG 2019

On Weak ε-Nets and the Radon Number
Shay Moran
Department of Computer Science, Princeton University, Princeton, USA
shaym@cs.princeton.edu

Amir Yehudayoff
Department of Mathematics, Techion-IIT, Haifa, Israel
amir.yehudayoff@gmail.com

Abstract
We show that the Radon number characterizes the existence of weak nets in separable convexity
spaces (an abstraction of the Euclidean notion of convexity). The construction of weak nets when
the Radon number is finite is based on Helly’s property and on metric properties of VC classes.
The lower bound on the size of weak nets when the Radon number is large relies on the chromatic
number of the Kneser graph. As an application, we prove an amplification result for weak ε-nets.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Combinatoric problems

Keywords and phrases abstract convexity, weak epsilon nets, Radon number, VC dimension, Haussler
packing lemma, Kneser graphs

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.51

Funding Shay Moran: supported by the Simons Foundation and the NSF; part of this project was
carried while the author was at the Institute for Advanced Study and was supported by the National
Science Foundation under agreement No. CCF-1412958.
Amir Yehudayoff : Research supported by ISF grant 1162/15. Part of this work was done while the
author was visiting the Simons Institute for the Theory of Computing.

Acknowledgements We thank Noga Alon, Yuval Dagan, and Gil Kalai for helpful conversations.
We also thank the anonymous reviewers assigned by SoCG ’19 for their helpful comments which
improved the presentation of this work.

1 Introduction

Weak and strong ε-nets were defined by Haussler and Welzl as a tool for fast processing of
geometric range queries [20]. They have been consequently studied in many areas, including
computational geometry, combinatorics, and machine learning, and they were used in many
algorithmic applications, including range searching and geometric optimization.

An ε-net is a set that pierces all large sets in a given family of sets. Formally, let µ be a
probability distribution over a domain X and let1 C ⊆ 2X be a family of sets. A subset S of
X is called a weak ε-net for C over µ if S ∩ c 6= ∅ for every c ∈ C with µ(c) ≥ ε. A subset S
is called a strong ε-net if in addition S is contained in the support of µ. We say that C has
weak/strong ε-nets of size β = β(C, ε) if for every distribution µ there is a weak/strong ε-net
for C over µ of size at most β (we stress that β may depend on ε, but not on µ).

To illustrate the difference between weak and strong nets, consider the uniform distribution
on n points on the unit circle in the plane X = R2, and the family C to be all convex hulls of
subsets of these n points. Any strong ε-net must contain at least (1− ε)n points, but there

1 Here and below we assume that all sets considered are measurable.

© Shay Moran and Amir Yehudayoff;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shaym@cs.princeton.edu
mailto:amir.yehudayoff@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2019.51
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 On Weak ε-Nets and the Radon Number

are weak ε-nets of size O(α(ε)/ε), where α(·) is the inverse Ackermann function [5]; using
points inside the unit disc allows to use significantly less points. In general, weak nets may
be much smaller than strong nets.

The main question we address is under what conditions do weak nets exist. This question
for strong ε-nets is fairly well understood; the fundamental theorem of statistical learning,
which shows that the VC dimension characterizes PAC learnability, also shows that the VC
dimension characterizes the existence of strong nets (see [20, 29] and references within). We
show that the Radon number characterizes the existence of weak nets in a pretty general
setting (viz. separable convexity spaces).

Weak nets

Weak ε-nets were mostly studied in the context of discrete and convex geometry, where they
are related to several deep phenomena. For example, Alon and Kleitman [6] used weak nets
in their famous solution of the (p, q)-conjecture by Hadwiger and Debrunner [16].

Barany, Furedi, and Lovasz [8] showed that convex sets in the plane admit weak nets,
and Alon, Barany, Furedi, and Kleitman [3] established a bound of O(1/ε2) on their size.
Recently Rubin improved this bound to O(1/ε3/2+γ), where γ > 0 is arbitrarily small [28].
Alon, Barany, Furedi, and Kleitman [3] extended the existence of weak nets for convex sets to
all dimensions d; there are weak ε-nets of size at most roughly (1/ε)d+1. Their proof relies on
several results from convex geometry, like Tverberg’s theorem and the colorful Caratheodory
theorem. Chazelle, Edelsbrunner, Grigni, Guibas, Sharir, and Welzl [11] later improved the
bound to at most roughly (1/ε)d. Overall, there are at least three different constructions
of weak nets for convex sets. Matousek [26] showed that any weak ε-net for convex sets in
Rd must contain at least Ω(exp(

√
d/2)) points for ε ≤ 1/50. Later, Alon [2] proved the first

lower bound that is superlinear in 1/ε; this was later improved to Ω
(
(1/ε) logd(1/ε)

)
by Bukh,

Matousek, and Nivasch [10]. Ezra [14] constructed weak ε-nets for the more restricted class
of axis-parallel boxes in Rd. Alon, Kalai, Matousek, and Meshulam [4] defined weak nets in
an abstract setting, and asked about combinatorial conditions that yield their existence.

We identify that the existence of weak nets follows from a basic combinatorial property
of convex sets, Radon’s theorem:

I Theorem 1 (Radon). Any set of d+ 2 points in Rd can be partitioned into two disjoint
subsets whose convex hulls intersect.

We show that this property alone is sufficient and necessary for the existence of weak
nets in a general setting, which we describe next.

It is worth mentioning that Radon’s theorem also plays a central role in the context of
strong nets. Indeed, it implies that the VC dimension of half-spaces in Rd is at most d+ 1,
which consequently bounds the VC dimension of many geometrically defined classes.

Convexity spaces

We consider an abstraction of Euclidean convexity that originated in a paper by Levi [24],
and defined in the form presented here by Kay and Womble [21]. For a thorough introduction
to this subject see the survey by Danzer, Grunbaum, and Klee [13] or the more recent book
by van de Vel [30].

S. Moran and A. Yehudayoff 51:3

A convexity space is a pair (X,C) where C ⊆ 2X is a family of subsets that satisfies2:
∅, X ∈ C.
C is closed under intersections3: ∩C ′ ∈ C for every C ′ ⊆ C.

The members of C are called convex sets. The convex-hull of a set Y ⊆ X, denoted by
conv(Y) = convC(Y), is the intersection of all convex sets c ∈ C that contain Y . A convex
set b ∈ C is called a half-space if its complement is also convex.

We next define the notion of separability, which is an abstraction of the hyperplane
separation theorem (and the more general Hahn-Banach theorem). The convexity space
(X,C) is separable, if for every c ∈ C and x ∈ X \ c there exists a half-space b ∈ C so that
c ⊆ b and x 6∈ b. It can be verified that (X,C) is separable if and only if every convex set
c ∈ C is the intersection of all half-spaces containing it. This form of separability, as well as
other forms, have been extensively studied (e.g. [15, 18, 17, 22, 12]).

Convexity spaces appear in many contexts in mathematics. For instance, the family of
closed subsets in a topological space, the subgroups of a given groups, and the subrings of
a ring are all examples4 of convexity spaces. They are also closely related to the notion of
π-systems in probability theory. In Section 1.1 below we discuss a few examples of convexity
spaces that arise in algebra and combinatorics.

Main results
The combinatorial property that characterizes the existence of weak nets is the Radon
number [24, 21], which is an abstraction of Radon’s theorem: we say that C Radon-shatters a
set Y ⊆ X if for every partition of Y into two parts Y1, Y2 it holds that conv(Y1)∩conv(Y2) = ∅.
The Radon number of (X,C) is the minimum number r such that C does not Radon-shatter
any set of size r. Radon’s theorem states that the Radon number of the space of convex sets
in Rd is at most d+ 2.

I Theorem 2. Let (X,C) be a finite separable convexity space.
1. If the Radon number of (X,C) is at most r then it has weak ε-nets of size at most

(120r2/ε)4r2 ln(1/ε) for every ε > 0.
2. If the Radon number of (X,C) is more than r then there is a distribution µ over X such

that every 1
4 -net for C over µ has size at least r/2.

We often refer to a construction of small weak ε-nets as an upper bound, and to a proof
that no small weak ε-nets exists as a lower bound. The upper bound in 1 above is quantitively
worse than the one for Euclidean convex sets [11], but holds in a more general setting. We
do not know what is the optimal bound in this generality.

A possible interpretation of the upper bound is that the existence of weak nets is
not directly related to “geometric” properties of the underlying space (as in the various
constructions surveyed above). This is somewhat surprising: consider a family C and a
distribution µ such that C has no strong ε-net with respect to µ; in order to construct a
weak ε-net we should have a mechanism that suggests “good points” outside the support of
µ. In Euclidean geometry there are such natural choices, like “center of mass”. We notice
that the Radon number provides such a mechanism (see Section 1.2).

2 Note that van de Vel [30] also requires that the union of an ascending chain of convex sets is convex.
3 We use the standard notation ∩C′ =

⋂
c∈C′ c.

4 One should sometimes add the empty set in order to satisfy all axioms of a convexity space.

SoCG 2019

51:4 On Weak ε-Nets and the Radon Number

We next discuss conditions that are equivalent to the existence of small ε-nets. It is
convenient to present these equivalences for infinite spaces. Quantitative variants of these
statements apply to finite spaces as well.

We use the following standard notion of compactness; a family C is compact if for every
C ′ ⊆ C so that ∩C ′ = ∅ there is a finite C ′′ ⊆ C ′ so that ∩C ′′ = ∅. This condition is satisfied
e.g. by closed sets in a compact topological space.

I Corollary 3 (Equivalences). The following are equivalent for a compact separable convexity
space (X,C):
1. (X,C) has a finite Radon number.
2. (X,C) has weak ε-nets of finite size for some 0 < ε < 1/2.
3. (X,C) has weak ε-nets of finite size for every ε > 0.

The proof of Corollary 3 appears in Section 4.1. It shows that the role of the Radon
number in the existence of weak nets is similar to the role of the VC dimension in the
existence of strong nets, at least for separable compact convexity spaces.

In Section 1.4, we provide an example showing that the compactness assumption in
Corollary 3 is necessary. We do not know if the separability assumption is necessary.

The implication 2⇒ 3 in Corollary 3 is an amplification statement for the parameter ε in
weak nets. In Section 4.2 we give an example showing that the threshold 1/2 in item 2 is
sharp for amplification of weak nets:

I Example 4. There is a compact separable convexity space that has weak ε-nets of finite
size for every ε > 1/2 but has no weak ε-nets of finite size for ε < 1

2 .

This demonstrates an interesting difference with strong ε-nets, for which there is no such
threshold: if C has strong ε-nets for some ε < 1 then it has finite VC dimension, which
implies the existence of strong ε-net for all ε > 0.

Organization
In Section 1.1 we provide some examples of convexity spaces. In Section 1.2 we outline the
construction that leads to the upper bound in Theorem 2, in Section 1.3 we outline the lower
bound in Theorem 2, and in Section 1.4 we provide some examples that demonstrate the
necessity of some of our assumptions.

In Section 2 we prove the upper bound, and in Section 3 we prove the lower bound.
In Section 4 we prove the characterizations (Corollary 3), and in Section 5 we discuss an
extension to convexity spaces that are not necessarily separable or compact (like bounded
convex sets in Rd). Finally, in Section 6 we conclude the paper and offer some directions for
future research.

1.1 Some convexity spaces
We now present a few examples of “non Euclidean” convexity spaces. These examples will
be used later on to show that some of our theorems/lemmas are tight in the sense that each
premise is necessary. More examples can be found in the book [30].

Example 1 (power set). Let X be a set. Perhaps the simplest convexity space is (X, 2X).
Here every convex set is a half-space and therefore this space is separable. When X is finite,
the Radon number of this space is |X|+ 1. When X is infinite, the Radon number is ∞.

S. Moran and A. Yehudayoff 51:5

Example 2 (subgroups). Let G be a group with identity e. The space (G \ {e}, {H \ {e} :
H ≤ G}) of all subgroups of G (with the identity removed) is a convexity space. Here, Y ⊆ G
is Radon-shattered, if every two disjoint subsets of Y generate groups whose intersection
is {e}.

Example 3 (cylinders). Let X = {0, 1}n, and let the C be the family of cylinders: a set
c ⊆ {0, 1}n is called a cylinder if there exists Y ⊆ [n], and v ∈ {0, 1}Y such that

c =
{
u ∈ {0, 1}n : u|Y = v

}
.

The size of Y is called the co-dimension of the cylinder. This is a separable convexity space.
Its half-spaces are the cylinders with co-dimension 1, and its Radon number is Θ(logn).

Example 4 (subtrees). Let T = (V,E) be a finite tree. Consider the convexity space
(V,C), where

C =
{
U ⊆ V : the induced subgraph on U is connected

}
.

It is a separable convexity space and its Radon number is at most 4. Theorem 2 hence implies
the existence of weak nets of size depending only on ε (in this case there are elementary
constructions of ε-nets of size O(1/ε)). This example is a special case of geodesic convexity
in metric spaces (see [30]).

Example 5 (convex lattice sets). Consider the space (Zd, C), where C is the family of
convex lattice sets in Rd; these are sets of the form K ∩ Zd for some convex K ⊆ Rd.

This is a separable convexity space. Indeed, let c = K ∩ Zd ∈ C and x ∈ Zd \ c. Since
x 6∈ c it follows that x 6∈ K. and therefore there is a half-space in Rd separating x and K.
This half-space induces a half-space in (Zd, C).

Onn [27] proved that the Radon number of this space is at most O(d2d) and at least 2d.
Our results imply that weak ε-nets exist in this case as well.

Note that the family of half-spaces has VC dimension d+ 1, which is much smaller than
the Radon number. Thus, Theorem 6 (which we state in the next subsection) gives better
bounds on the size of the ε-net than Theorem 2.

Example 6 (linear extensions of posets). Let Ω be a set. For a partial order P on Ω, let
c(P) ⊆ X denote the set of all linear orders that extend P . Fix a partial order P0, and
consider the family C of all sets of the form c(P), where P is a partial order that extends
P0. The space

(
c(P0), C

)
is a separable convexity space whose half-spaces correspond to

partial orders defined by taking two P0-incomparable elements x, y ∈ Ω and extending P0 by
setting x < y.

1.2 Upper bound

From Radon to Helly and VC
Let (X,C) be a separable convexity space and let B denote the family of half-spaces of C (the
notation B is chosen to reflect that B generates all convex sets in C by taking intersection,
and hence can be seen as a basis).

SoCG 2019

51:6 On Weak ε-Nets and the Radon Number

We first observe that the Radon number is an upper bound on the Helly number and
the VC dimension of B. The Helly number of a family B is the minimum number h such
that every finite5 B′ ⊆ B with ∩B′ = ∅ contains a subfamily B′′ with at most h sets such
that already the intersection of the sets in B′′ is empty. Helly theorem states that the Helly
number of half-spaces in Rd is at most d+ 1. The VC dimension of B ⊆ 2X is the supremum
over v for which there exists Y ⊆ X of size |Y | = v so that for every Z ⊆ Y there is a
member of the family that contains Z and is disjoint from Y \ Z.

I Lemma 5. Let B the family of half-spaces of a separable convexity space C. If the Radon
number of C is r then the VC dimension and the Helly number of B are less than r.

The bound on the Helly number follows from a result by Levi [24], and the bound on the
VC dimension is straightforward. The proof appears in Appendix A.

Lemma 5 reduces the construction of weak nets for separable convexity spaces to the
following, more general construction.

I Theorem 6. Let X be a set, let B ⊆ 2X be a compact family with V C dimension v and
Helly number h, and let B∩ denote the family generated by taking arbitrary intersections of
members of B. Then B∩ has weak ε-nets of size at most β < (120h2/ε)4hv ln(1/ε) for every
ε > 0.

We next give an overview of the proof of Theorem 6; the complete proof appears in
Section 2.

Outline of construction
The construction of weak nets underlying Theorem 6 is short and simple. We want to pierce
all convex sets c ∈ C such that µ(c) ≥ ε. We distinguish between two cases. The simpler case
is when c can be written as the intersection of half-spaces, each of which has µ-measure more
than 1− 1/h. By Helly’s property, it follows that there is a single point that pierces all such
c’s. In the complementary case, when c can not be written in this way, we use Haussler’s
packing lemma [19] and show that there is a small collection A ⊆ B such that conditioning
µ on a single a ∈ A increases the measure of c by a factor of at least 1 + 1/(2h). The size of
A can be bounded from above in terms of the VC dimension of B. So, constructing a set
that pierces all c’s with measure at least ε is reduced to constructing a bounded number of
nets for larger density ε′ ≥ (1 + 1/(2h))ε.

To summarize, the Helly number yields the theorem for ε close to 1, and the VC dimension
allows to keep increasing the density until the Helly number becomes relevant.

Going back to the discussion after Theorem 2 concerning the mechanism that suggests
“good points” we see that this mechanism is based on the Helly property (roughly speaking,
the Helly property is a mechanism that given a collection of sets outputs a point).

1.3 Lower bound
The following lemma is a slight generalization of the lower bound in Theorem 2 (we do not
assume separability or compactness, and replace 1/4 by any ε > 0).

I Lemma 7. Let (X,C) be a convexity space. If the Radon number of C is greater than
r > 0 then there is a distribution µ on X so that every weak ε-net for C over µ has size at
least (1− 2ε)r.

5 The finiteness assumption can be removed when B is compact.

S. Moran and A. Yehudayoff 51:7

This gives a non-trivial lower bound as long as ε < 1/2. Example 4 shows that this is
sharp in the sense that when ε > 1/2 there is no lower bound that tends to infinity with the
Radon number.

The proof of Lemma 7, as well as a finer distribution dependent lower bound, appear in
Section 3. The proof is essentially by reduction to the chromatic number of Kneser graphs.

1.4 The necessity of assumptions

Assumptions in Theorem 6

We first show that if either of the assumptions of having bounded VC dimension or of having
bounded Helly number is removed then Theorem 6 ceases to hold.

To see why bounded Helly number is necessary, let X be any finite set and set B =
{X} ∪ {X \ {x} : x ∈ X}. The VC dimension of B is 1, but any subset of X can be
represented as an intersection of members of B. Thus, B∩ = 2X , which does not have weak
ε-nets of size which is independent of |X|.

To see why bounded VC dimension is necessary, consider the convexity space (X,C) of
cylinders (Example 3 in Section 1.1). Here, X = {0, 1}n, C is the family of cylinders, and
the family of half-spaces B consists of cylinders with co-dimension 1: B = B0 ∪B1 with

Bt =
{
{x ∈ X : xi = t} : i ∈ [n]

}
.

The Helly number of B is 2, since an intersection of half-spaces is empty if and only if two
complementing cylinders with co-dimension 1 participate in it.

The following claim gives a lower bound on weak 1
4 -nets for C over the uniform distribution

µ over X.

B Claim 8. Every weak (1/4)-net for C over µ has size at least logn.

Proof. S ⊆ X pierces every cylinder with measure 1/4 only if for every i 6= j in [n] there
is x ∈ S with xi = 0 and xj = 1. Now, consider the mapping from [n] to {0, 1}S , which
maps i ∈ [n] to (xi)x∈S . By the above, this mapping is one-to-one, and in particular
2|S| =

∣∣{0, 1}S∣∣ ≥ n. C

Assumptions in Corollary 3

We now describe an example showing that the compactness assumption in Corollary 3 is
necessary (a related example appears in [9, 31] in the context of strong ε-nets). Let X = ω1
be the first uncountable ordinal, and C be the family of all intervals in the well-ordering of
X (a set I ⊆ X is an interval if whenever a, b ∈ I and a ≤ x ≤ b then also x ∈ I). The space
(X,C) is separable with Radon number 3, but is not compact.

We claim that it does not have finite weak ε-nets, even for ε = 1. Indeed, let µ be the
probability distribution defined over the σ-algebra generated by countable subsets of X and
assigns every countable subset of X measure 0. Every interval is either countable or has a
countable complement, and is therefore measurable.

We now claim that there is no finite S ⊆ X that pierces all intervals of measure 1. Indeed,
let S be finite, and let m be the maximum element in S. The interval {x ∈ X : x > m} has
measure 1 but is not pierced by S.

SoCG 2019

51:8 On Weak ε-Nets and the Radon Number

2 Proof of upper bound

Here we construct weak ε-nets when the Helly number and the VC dimension of the half-
spaces are bounded (Theorem 6). The property of VC classes that we use is the following
packing lemma due to Haussler [19].

I Theorem 9 (Haussler). Let B ⊆ 2X be a class of VC dimension v. For every distribution
µ on X and for every δ > 0, there is A ⊆ B of size |A| ≤ (4e2/δ)v such that for every b ∈ B
there is a ∈ A with µ(a∆b) ≤ δ.

Haussler’s stated the lemma in a dual way; the number of disjoint balls of a given radius
in a VC class is small. Haussler’s proof is elaborate, but a weaker bound can be proved
fairly easily. Indeed, consider a finite set A so that µ(a∆a′) > δ for all a 6= a′ in A . Let
x1, . . . , xm be m independent samples from µ for m ≥ 2 log(|A|)/δ. Let Y = {x1, . . . , xm},
and let A|Y = {a ∩ Y : a ∈ A}. On one hand, the Sauer-Shelah-Perles lemma implies that
A|Y is small:

∣∣A|Y ∣∣ ≤ (em/v)v. On the other hand, by the union bound,
∣∣A|Y ∣∣ = |A| with

positive probability. This implies that A is small.

Proof of Theorem 6. We start by focusing on the set B0 = {b ∈ B : µ(b) > 1− 1/h}. By
the union bound, every h members of B0 intersect. Since B0 ⊆ B is compact with Helly
number h, there is a single point x0 ∈ X that pierces all sets in B0.

Let 0 < ε < 1. We construct the ε-net by induction on N(ε), which is defined to be the
minimum integer n such that ε

(
1 + 1/(2h)

)n
> 1− 1/h.

Induction base
If N(ε) = 0, define the piercing set S = S(µ, ε) as

S = {x0},

where x0 is the point that pierces all half-spaces in B0. Indeed, S is an ε-net as every c ∈ C
with µ(c) ≥ ε > 1− 1/h is the intersection of half-spaces from B0, so x0 pierces c as well.

Induction step
Let 1 > ε > 0 such that N(ε) > 0. We construct the piercing set S = S(µ, ε) as follows:
Set δ = ε/(2h)2 and pick some A ⊆ B as in Theorem 9. Also set ε′ = (1 + 1/(2h))ε. Note
that N(ε′) = N(ε) − 1. By induction, for each a ∈ A with µ(a) > 0, pick a piercing set
Sa = S(µ|a, ε′), where µ|a denotes the distribution µ conditioned on a. Finally, let

S = {x0} ∪
⋃

a∈A:µ(a)>0

Sa.

It remains to prove that S satisfies the required properties.

S is piercing. Let c ∈ C with µ(c) ≥ ε. If c is generated6 by B0 then x0 pierces c. Otherwise,
there is some b ∈ B with µ(b) ≤ 1−1/h that contains c. Pick a ∈ A such that µ(a∆b) ≤ δ.
Since µ(b) ≥ ε and µ(a∆b) ≤ δ,

µ(a) ≥ µ(b)− µ(b \ a) ≥ ε− δ > 0,

6 I.e. c can be presented as an intersection of sets from B0.

S. Moran and A. Yehudayoff 51:9

which means that µ|a is well-defined. We claim that S(µ|a, ε′) pierces c. To this end, it
suffices to show that µ|a(c) ≥ ε′:

µ|a(c) = µ(c ∩ a)
µ(a)

=
µ(c)− µ

(
c ∩ (b \ a)

)
µ(a) (c ⊆ b)

≥ µ(c)− µ(b \ a)
µ(a)

≥ ε− δ
1− 1/h+ δ

(µ(c) ≥ ε, µ(b) ≤ 1− 1/h, µ(a∆b) ≤ δ)

≥ ε(1− 1/(2h)2)
1− 1/(2h) (δ = ε/(2h)2)

= ε′.

S is small. Let β(n) denote the maximum possible size of S for ε with N(ε) = n. The
argument above yields

β(n) ≤ 1 + (4e2/δ)v · β(n− 1) = 1 + (16e2h2/ε)v · β(n− 1).

Since β(0) = 1, we get

β(n) ≤ (120h2/ε)vn.

Finally, since N(ε) ≤ 4h ln(1/ε)), we get the bound

|S(µ, ε)| ≤ (120h2/ε)4hv ln(1/ε). J

3 Proof of lower bound

The proof of Lemma 7 is based on the following distribution-dependent lower bound on the
size of weak nets:

I Lemma 10. Let C be a family of subsets over a domain X and let µ be a distribution on
X. For ε > 0 define a graph G = G(µ, ε) whose vertices are the sets c ∈ C such that µ(c) ≥ ε,
and two sets are connected by an edge if and only if they are disjoint. Then, every weak ε-net
for C over µ has size at least the chromatic number of G, which is denoted by χ(G).

Proof. Let S be a set that pierces all c ∈ C with µ(c) ≥ ε. Define a coloring of G by
assigning to every vertex c an element x ∈ S ∩ c. This is a proper coloring of G, since if
{c, c′} is an edge of G then c and c′ are disjoint and therefore can not be pierced by the same
element of S. J

Lemma 10 is tight whenever the class C has Helly number 2 (like in examples 3 and 4
in Section 1.1). Indeed, consider an optimal coloring of G(µ, ε). Every color class is an
independent set in G (which means that every two sets in it have a non-empty intersection).
So, when the Helly number is 2, each color class can be pierced by a single element, and we
get a piercing set of size χ(G).

The proof Lemma 7 thus reduces to a lower bound on the chromatic number of the
relevant graph, which in our case contains a copy of the Kneser graph. The Kneser graph
KGn,k is the graph whose vertices correspond to the k-element subsets of a set of n elements,
and where two vertices are adjacent if and only if the two corresponding sets are disjoint.

SoCG 2019

51:10 On Weak ε-Nets and the Radon Number

Lovasz [25] proved Kneser’s conjecture on the chromatic number of this graph (this proof
is considered seminal in the topological method in combinatorics):

I Theorem 11 (Lovasz). The chromatic number of KGn,k is n− 2k + 2.

We actually do not need the full strength of Lovasz’s result. A lower bound of the form
χ(KGn,n/4) ≥ n/10 suffices for deducing the equivalence between the existence of weak nets
and finite Radon number (in fact, even much weaker bounds suffice). Noga Alon informed us
that for this range of the parameters there is a short and elementary proof [1]. Since this
argument does not appear in the literature and may be useful elsewhere, we include Alon’s
proof in Section B.

Proof of Lemma 7. Since the Radon number is greater than r, it follows that there is a set
Y ⊆ X of size r that is Radon-shattered by C. Pick µ to be the uniform distribution over Y .
By Lemma 10 it suffices to show that χ

(
G(µ, ε)

)
≥ (1− 2ε)r. This follows by noticing that

since Y is Radon-shattered, it follows that the subgraph of G(µ, ε) induced by the vertices
conv(Z), for Z ⊆ Y is of size dεre, is isomorphic to KGr,dεre. J

4 Proof of equivalences

4.1 The existence of weak nets

Proof of Corollary 3. Let (X,C) be a compact separable convexity space.
1 ⇒ 3. By Lemma 5, the family B of half-spaces of C has finite VC dimension and Helly

number. Theorem 6 now implies that B∩ = C has finite weak ε-nets for every ε > 0.
3 ⇒ 2. Obvious.
2 ⇒ 1. Assume that C has weak ε-nets of size β = β(ε) <∞ for some ε < 1/2. By Lemma 7,

the Radon number of (X,C) is at most β
1−2ε . J

4.2 The threshold 1/2 is sharp

Here we describe Example 4. Let X = {0, 1}N be the Cantor space, and let C be the family
of all cylinders; recall that c ⊆ X is a cylinder if there exist Y ⊆ N and u ∈ {0, 1}Y such that
c = {v ∈ X : v|Y = u}. The space (X,C) is a separable convexity space. It is also compact
(this follows e.g. from Tychonoff’s theorem).

We claim that (X,C) has ε-nets of size 1 for every ε > 1/2. This follows since for every
distribution µ the family {c ∈ C : µ(c) > 1/2} is intersecting7, and since C has Helly number
2. Hence, ∩{c ∈ C : µ(c) > 1/2} 6= ∅ for all µ, as claimed.

It remains to show that (X,C) has no finite weak ε-nets for ε < 1/2. By Corollary 3, it
suffices to consider the case ε = 1/4. Let µ be the Bernoulli measure on the Cantor space;
namely the infinite product of uniform measure on {0, 1}. Now, S ⊆ X is a weak ε-net over
µ if and only if it intersects every cylinder with co-dimension 2. In particular for every i 6= j

in N there must be x ∈ S with xi = 0 and xj = 1. By the proof of Claim 8 it follows that
such an S must be infinite.

7 A family of sets is intersecting if every two members of it intersect.

S. Moran and A. Yehudayoff 51:11

5 An extension

Consider the space of bounded closed convex sets in Rd. The corresponding convexity space
in not separable nor compact. Nevertheless, our results extend to this space as well.

The following variants of separability and compactness suffice. A convexity space is called
locally-separable if there is a set B ⊆ C so that C = B∩ and for every finite Y ⊆ X and for
every b ∈ B there is b̄ ∈ B so that b ∩ Y and b̄ ∩ Y form a partition of Y . Every separable
space is locally-separable, but there are convexity spaces which are locally separable but
not separable (like the space of bounded convex sets in Rd). A convex set c ∈ C is called
compact if the restricted convexity space (c, {c′ ∩ c : c′ ∈ C}) is compact. The Radon number
of c is the Radon number of the space (c, {c′ ∩ c : c′ ∈ C}).

I Theorem 12. Let (X,C) be a locally separable convexity space such that there exists a
chain c1 ⊆ c2 ⊆ . . . of compact convex sets each of which has Radon number at most r such
that

⋃
i ci = X. Then (X,C) has finite weak ε-nets for every ε > 0.

Theorem 2 and its proof apply for locally-separable and compact convexity spaces.
Theorem 12 therefore follows by applying it to a ci in the chain such that µ(ci) ≥ 1− ε/2.

6 Future research

We showed that for compact separable convexity spaces, the existence of weak nets is equival-
ent to having a finite Radon number. We now suggest several directions for future research.

One interesting direction is to find a characterization that is valid even more generally
(i.e. for families that are not necessarily separable convexity spaces). It is worth noting in this
context that the definition of the Radon number can be extended to arbitrary families. One
may extend the definition of Radon-shattering as follows: A family C ⊆ 2X Radon-shatters
the set Y ⊆ X if for every partition of Y into two parts Y1, Y2 there are two disjoint sets
c1, c2 ∈ C such that c1 ∩ Y = Y1 and c2 ∩ Y = Y2.

This extension of the Radon number does not characterize the existence of weak nets
for arbitrary families. For instance, let C = {Y ⊆ [n] : |Y | > n/2}. The Radon number is 2
since every two sets in C intersect, but every weak 1

2 -net over the uniform distribution has
size at least n/2− 1. However, this family C is not convex (closed under intersection), which
is a crucial property in our work. It may also be interesting to fully understand the role of
convexity in the context of weak nets.

Alon et al. [4] studied weak nets and the (p, q)-property in an abstract setting and described
connections to fractional Helly properties. It may further be interesting to investigate which
other combinatorial properties of convex sets apply in more general settings.

An additional question that comes to mind is the dependence of the size of weak ε-nets
on ε. In this direction, Bukh, Matousek and Nivasch proved an Ω

(
1
ε logd−1 1

ε

)
lower bound

on the size of weak ε-nets for convex sets in Rd [10], and recently Rubin [28] proved an
upper bound of roughly O(1/ε3/2) in R2 (which improves upon the general bound in Rd
of roughly O(1/εd) by [11]). Proving tight bounds on the size of weak ε-nets is a central
open problem in this area. The general framework developed here may be useful in proving
stronger lower bounds.

SoCG 2019

51:12 On Weak ε-Nets and the Radon Number

References
1 Noga Alon. Private communication.
2 Noga Alon. A Non-linear Lower Bound for Planar Epsilon-nets. Discrete & Computational

Geometry, 47(2):235–244, 2012. doi:10.1007/s00454-010-9323-7.
3 Noga Alon, Imre Bárány, Zoltán Füredi, and Daniel J Kleitman. Point selections and weak

ε-nets for convex hulls. Combinatorics, Probability and Computing, 1(03):189–200, 1992.
4 Noga Alon, Gil Kalai, Jiri Matousek, and Roy Meshulam. Transversal numbers for hypergraphs

arising in geometry. Advances in Applied Mathematics, 29(1):79–101, 2002.
5 Noga Alon, Haim Kaplan, Gabriel Nivasch, Micha Sharir, and Shakhar Smorodinsky. Weak

ε-nets and interval chains. J. ACM, 55(6):28:1–28:32, 2008. doi:10.1145/1455248.1455252.
6 Noga Alon and Daniel J Kleitman. Piercing convex sets and the Hadwiger-Debrunner (p,

q)-problem. Advances in Mathematics, 96(1):103–112, 1992.
7 Noga Alon and Joel H. Spencer. The probabilistic method. John Wiley & Sons, Inc., 2000.
8 Imre Bárány, Zoltán Füredi, and László Lovász. On the number of halving planes. Combinat-

orica, 10(2):175–183, 1990.
9 A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. J. Assoc. Comput. Mach., 36(4):929–965, 1989. doi:10.1145/76359.
76371.

10 Boris Bukh, Jiří Matoušek, and Gabriel Nivasch. Lower bounds for weak epsilon-nets and
stair-convexity. Israel Journal of Mathematics, 182(1):199–228, 2011.

11 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas Guibas, Micha Sharir,
and Emo Welzl. Improved bounds on weak ε-nets for convex sets. In STOC, pages 495–504,
1993.

12 Victor Chepoi. Separation of two convex sets in convexity structures. Journal of Geometry,
50(1):30–51, 1994. doi:10.1007/BF01222661.

13 L. Danzer, B. Grünbaum, and V. Klee. Helly’s Theorem and Its Relatives. Proceedings
of symposia in pure mathematics: Convexity. American Mathematical Society, 1963. URL:
https://books.google.com/books?id=I1l5HAAACAAJ.

14 Esther Ezra. A note about weak epsilon-nets for axis-parallel boxes in d-space. Inf. Process.
Lett., 110(18-19):835–840, 2010. doi:10.1016/j.ipl.2010.06.005.

15 Branko Grünbaum and Theodore S. Motzkin. On Components in Some Families of Sets.
Proceedings of the American Mathematical Society, 12(4):607–613, 1961. URL: http://www.
jstor.org/stable/2034254.

16 Hugo Hadwiger and H Debrunner. Über eine variante zum hellyschen satz. Archiv der
Mathematik, 8(4):309–313, 1957.

17 P.C. Hammer. Semispaces and the Topology of Convexity, 1961. URL: https://books.google.
com/books?id=0Vk_ngAACAAJ.

18 Preston C. Hammer. Maximal convex sets. Duke Math. J., 22(1):103–106, March 1955.
doi:10.1215/S0012-7094-55-02209-2.

19 David Haussler. Sphere packing numbers for subsets of the Boolean n-cube with bounded
Vapnik-Chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–232,
1995.

20 David Haussler and Emo Welzl. Epsilon-Nets and Simplex Range Queries. Discrete &
Computational Geometry, 2:127–151, 1987.

21 David Kay and Eugene W Womble. Axiomatic convexity theory and relationships between
the Carathéodory, Helly, and Radon numbers. Pacific Journal of Mathematics, 38(2):471–485,
1971.

22 V. L. Klee. The Structure Of Semispaces. Mathematica Scandinavica, 4(1):54–64, 1956. URL:
http://www.jstor.org/stable/24490011.

23 D. J. Kleitman. Families of non-disjoint subsets. J. Combinatorial Theory, pages 153–155,
1966.

http://dx.doi.org/10.1007/s00454-010-9323-7
http://dx.doi.org/10.1145/1455248.1455252
http://dx.doi.org/10.1145/76359.76371
http://dx.doi.org/10.1145/76359.76371
http://dx.doi.org/10.1007/BF01222661
https://books.google.com/books?id=I1l5HAAACAAJ
http://dx.doi.org/10.1016/j.ipl.2010.06.005
http://www.jstor.org/stable/2034254
http://www.jstor.org/stable/2034254
https://books.google.com/books?id=0Vk_ngAACAAJ
https://books.google.com/books?id=0Vk_ngAACAAJ
http://dx.doi.org/10.1215/S0012-7094-55-02209-2
http://www.jstor.org/stable/24490011

S. Moran and A. Yehudayoff 51:13

24 Friedrich W Levi. On Helly’s theorem and the axioms of convexity. J. Indian Math. Soc,
15:65–76, 1951.

25 László Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal of Combinat-
orial Theory, Series A, 25(3):319–324, 1978.

26 Jiří Matoušek. A Lower Bound for Weak epsilon-Nets in High Dimension. Discrete &
Computational Geometry, 28(1):45–48, 2002. doi:10.1007/s00454-001-0090-3.

27 Shmuel Onn. On the Geometry and Computational Complexity of Radon Partitions in the
Integer Lattice. SIAM J. Discrete Math., 4(3):436–447, 1991. doi:10.1137/0404039.

28 Natan Rubin. An Improved Bound for Weak Epsilon-Nets in the Plane. In FOCS, pages
224–235. IEEE Computer Society, 2018.

29 Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

30 M.L.J. van de Vel. Theory of Convex Structures, volume 50 of North-Holland mathematical
library. North-Holland, 1993. URL: https://books.google.com/books?id=xt9-lAEACAAJ.

31 Roberta S Wenocur and Richard M Dudley. Some special vapnik-chervonenkis classes. Discrete
Mathematics, 33(3):313–318, 1981.

A Radon, Helly and VC

Here we prove that the Radon number bounds from above both the Helly number and the VC
dimension (Lemma 5). The proof follows from the following two claims. Levi [24] proved that

B Claim 13. Let C be a convexity space. If the Radon number of C is r then its Helly
number is smaller than r.

Proof (for completeness). Let C ′ ⊆ C be a finite family so that
⋂
c∈C′ c = ∅. Let K ⊆ C ′

be a minimal subfamily so that
⋂
c∈K c = ∅. Assume towards a contradiction that |K| ≥ r.

Minimality implies that for each k ∈ K we have Ck :=
⋂
c∈K\{k} c 6= ∅. Let xk ∈ Ck. The

xk’s must be distinct (otherwise
⋂
c∈K c 6= ∅). Thus, there is a partition of {xk : k ∈ K} to

two parts Y1, Y2 such that conv(Y1) ∩ conv(Y2) 6= ∅. But

conv(Y1) ⊆
⋂

k∈K:xk∈Y2

k and conv(Y2) ⊆
⋂

k∈K:xk∈Y1

k,

by construction. This is a contradiction, so |K| < r. C

We observe that

B Claim 14. Let C be a convexity space and B be its half-spaces. If the Radon number of
C is r then the VC dimension of B is smaller than r.

Proof. Let Y ⊆ X be of size r. The set Y can thus be partitioned to Y1, Y2 so that
conv(Y1) ∩ conv(Y2) 6= ∅. Assume, towards a contradiction, that there is b ∈ B so that
b ∩ Y = Y1. Since B consists of half-spaces8, there is b̄ ∈ B ⊆ C so that Y2 = b̄ ∩ Y . This
implies that conv(Y1) ∩ conv(Y2) = ∅, which is a contradiction. Thus, for all b ∈ B we have
b ∩ Y 6= Y1 which means that the VC dimension is less than |Y | = r. C

8 Here we use a more general definition of half-spaces, as in the definition of locally-separable in Section 5.

SoCG 2019

http://dx.doi.org/10.1007/s00454-001-0090-3
http://dx.doi.org/10.1137/0404039
https://books.google.com/books?id=xt9-lAEACAAJ

51:14 On Weak ε-Nets and the Radon Number

B The chromatic number of the Kneser graph

Here we prove a lower bound on the chromatic number of the Kneser graph (which is weaker
than Lovasz’s). We follow an argument of Alon [1], who informed us that a similar argument
was independently found by Szemeredi. We focus on the following case, but the argument
applies more generally.

I Theorem 15. For n be divisible by 4 we have χ(KGn,n/4) > n/10.

The first step in the proof is the following lemma proved by Kleitman [23]. A family
F ⊆ 2X is called intersecting if f ∩ f ′ 6= ∅ for all f, f ′ ∈ F .

I Lemma 16. If F1, . . . , Fs ⊂ 2[n], where each Fi is intersecting, then∣∣∣ ⋃
i∈[s]

Fi

∣∣∣ ≤ 2n − 2n−s.

The lemma can proved by induction on s. The case s = 1 just says that an intersecting
family has size at most 2n−1. The induction step is based on correlation of monotone events
(for more details see, e.g. [7]).

Proof of Theorem 15. Consider a proper coloring of KGn,n/4 with s colors. Let V1, . . . , Vs
be the partition of the vertices to color classes. Each Vi is an intersecting family. Let Fi be
the family of sets u ⊆ [n] that contain some set in Vi. Each Fi is also intersecting. By the
lemma above,

2n −
∣∣∣ ⋃
i∈[s]

Fi

∣∣∣ ≥ 2n−s.

On the other hand, the complement of
⋃
i∈[s] Fi is of size less than

∑n/4
k=0

(
n
k

)
≤ 2nH(1/4),

where H(p) = −p log(p)− (1− p) log(1− p) is the binary entropy function. Hence,

s > n(1−H(1/4)) ≥ n/10. J

Dynamic Planar Point Location in External
Memory
J. Ian Munro
Cheriton School of Computer Science, University of Waterloo, Canada
imunro@uwaterloo.ca

Yakov Nekrich
Cheriton School of Computer Science, University of Waterloo, Canada
yakov.nekrich@googlemail.com

Abstract
In this paper we describe a fully-dynamic data structure for the planar point location problem in
the external memory model. Our data structure supports queries in O(logB n(log logB n)3)) I/Os
and updates in O(logB n(log logB n)2)) amortized I/Os, where n is the number of segments in the
subdivision and B is the block size. This is the first dynamic data structure with almost-optimal query
cost. For comparison all previously known results for this problem require O(log2

B n) I/Os to answer
queries. Our result almost matches the best known upper bound in the internal-memory model.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation

Keywords and phrases Data Structures, Dynamic Data Structures, Planar Point Location, External
Memory

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.52

Related Version A full version of the paper is available at http://arxiv.org/abs/1903.06601.

1 Introduction

Planar point location is a classical computational geometry problem with a number of
important applications. In this problem we keep a polygonal subdivision Π of the two-
dimensional plane in a data structure; for an arbitrary query point q, we must be able to find
the face of Π that contains q. In this paper we study the dynamic version of this problem in
the external memory model. We show that a planar subdivision can be maintained under
insertions and deletions of edges, so that the cost of queries and updates is close to O(logB n),
where n is the number of segments in the subdivision and B is the block size.

Planar point location problem was studied extensively in different computational mod-
els. Dynamic internal-memory data structures for general subdivisions were described by
Bentley [11], Cheng and Janardan [16], Baumgarten et al. [9], Arge et al. [3], and Chan
and Nekrich [13]. Table 1 lists previous results. We did not include in this table many
other results for special cases of the point location problem, such as the data structures
for monotone, convex, and orthogonal subdivisions, e.g., [25, 26, 18, 17, 21, 20, 14]. The
currently best data structure [13] achieves1 O(logn) query time and O(log1+ε n) update
time or O(log1+ε n) query time and O(logn) update time; the best query-update trade-off
described in [13] is O(logn log logn) randomized query time and O(logn log logn) update
time. See Table 1.

1 In this paper logn denotes the binary logarithm of n when the logarithm base is not specified.

© J. Ian Munro and Yakov Nekrich;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 52; pp. 52:1–52:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:imunro@uwaterloo.ca
mailto:yakov.nekrich@googlemail.com
https://doi.org/10.4230/LIPIcs.SoCG.2019.52
http://arxiv.org/abs/1903.06601
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Dynamic Point Location in External Memory

Table 1 Previous results on dynamic planar point location in internal memory. Entries marked †
and ‡ require amortization and (Las Vegas) randomization respectively, ε > 0 is an arbitrarily small
constant. Results marked ∗ are in the RAM model, all other results are in the pointer machine
model. Space usage is measured in words.

Reference Space Query Time Insertion Time Deletion Time
Bentley [11] n logn log2 n log2 n log2 n

Cheng–Janardan [16] n log2 n logn logn
Baumgarten et al. [9] n logn log logn logn log logn log2 n †

Arge et al. [3] n logn log1+ε n log2+ε n †

Arge et al. [3] n logn logn(log logn)1+ε log2 n/ log logn †‡∗

Chan and Nekrich [13] n logn(log logn)2 logn log logn logn log logn
Chan and Nekrich [13] n logn log1+ε n log1+ε n

Chan and Nekrich [13] n logn log1+ε n logn(log logn)1+ε ∗

Chan and Nekrich [13] n log1+ε n logn logn
Chan and Nekrich [13] n logn log logn logn log logn logn log logn ‡∗

In the external memory model [2] the data can be stored in the internal memory of size
M or on the external disk. Arithmetic operations can be performed only on data in the
internal memory. Every input/output operation (I/O) either reads a block of B contiguous
words from the disk into the internal memory or writes B words from the internal memory
into disk. Measures of efficiency in this model are the number of I/Os needed to solve a
problem and the amount of used disk space.

Goodrich et al. [22] presented a linear-space static external data structure for point
location in a monotone subdivision with O(logB n) query cost. Arge et al. [5] designed
a data structure for a general subdivison with the same query cost. Data structures for
answering a batch of point location queries were considered in [22] and [8]. Only three
external-memory results are known for the dynamic case. The data structure of Agarwal,
Arge, Brodal, and Vitter [1] supports queries on monotone subdivisions in O(log2

B n) I/Os
and updates in O(log2

B n) I/Os amortized. Arge and Vahrenhold [7] considered the case of
general subdivisons; they retain the same cost for queries and insertions as [1] and reduce the
deletion cost to O(logB n). Arge, Brodal, and Rao [4] reduced the insertion cost to O(logB n).
Thus all previous dynamic data structures did not break O(log2

B n) query cost barrier. For
comparison the first internal-memory data structure with query time close to logarithmic
was presented by Baumgarten et al [9] in 1994. See Table 2. All previous data structures use
O(n) words of space (or O(n/B) blocks of B words2).

In this paper we show that it is possible to break the O(log2
B n) barrier for the dynamic

point location problem. Our data structure answers queries in O(logB n(log logB n)3) I/Os,
supports updates in O(logB n(log logB n)2) I/Os amortized, and uses linear space. Thus we
achieve close to logarithmic query cost and a query-update trade-off almost matching the
state-of-the-art upper bounds in the internal memory model. Our result is within double-
logarithmic factors from optimal. Additionally we describe a data structure that supports
point location queries in an orthogonal subdivision with O(logB n log logB n) query cost and
O(logB n log logB n) amortized update cost. The computational model used in this paper is
the standard external memory model [2].

2 Space usage of external-memory data structures is frequently measured in disk blocks of B words. In
this paper we measure the space usage in words. But the space usage of O(n) words is equivalent to
O(n/B) blocks of space.

J. I. Munro and Y.Nekrich 52:3

Table 2 Previous and new results on dynamic planar point location in external memory. G
denotes most general subdivisions, M denotes monotone subdivision, and O denotes orthogonal
subdivision. Space usage is measured in words and update cost is amortized.

Reference Space Query Cost Insertion Cost Deletion Cost
Agarwal et al [1] n log2

B n log2
B n log2

B n M
Arge and Vahrenhold [7] n log2

B n log2
B n logB n G

Arge et al [4] n log2
B n logB n logB n G

This paper n logB n(log logB n)3 logB n(log logB n)2 logB n(log logB n)2 G
This paper n logB n log logB n logB n log logB n logB n log logB n O

2 Overview

2.1 Overall Structure
As in the previous works, we concentrate on answering vertical ray shooting queries. The
successor segment of a point q in a set S of non-intersecting segments is the first segment
that is hit by a ray emanating from q in the +y-direction. Symmetrically, the predecessor
segment of q in S is the first segment hit by a ray emanating from q in the −y direction.
A vertical ray shooting query for a point q on a set of segments S asks for the successor
segment of q in S. If we know the successor segment or the predecessor segment of q among
all segments of a subdivision Π, then we can answer a point location query on Π (i.e., identify
the face of Π containing q) in O(logB n) I/Os [7]. In the rest of this paper we will show how
to answer vertical ray shooting queries on a dynamic set of non-intersecting segments.

Our base data structure is a variant of the segment tree. Let S be a set of segments. We
store a tree T on x-coordinates of segment endpoints. Every leaf contains Θ(B) segment
endpoints and every internal node has r = Θ(Bδ) children for δ = 1/8. Thus the height of T
is O(logB n). We associate a vertical slab with every node u of T . The slab of the root node
is [xmin, xmax]× R, where xmin and xmax denote the x-coordinates of the leftmost and the
rightmost segment endpoints. The slab of an internal node u is divided into Θ(Bδ) slabs
that correspond to the children of u. A segment s spans the slab of a node u (or simply
spans u) if it crosses its vertical boundaries.

A segment s is assigned to an internal node u, if s spans at least one child ui of u but
does not span u. We assign s to a leaf node ` if at least one endpoint of s is stored in `. All
segments assigned to a node u are trimmed to slab boundaries of children and stored in a
multi-slab data structure C(u): Suppose that a segment s is assigned to u and it spans the
children uf , . . ., ul of u. Then we store the segment su = [pf , pl] in C(u), where pf is the
point where s intersect the left slab boundary of uf and pl is the point where s intersects
the right boundary of ul. See Fig. 1. Each segment is assigned to O(logB n) nodes of T .

In order to answer a vertical ray shooting query for a point q, we identify the leaf ` such
that the slab of ` contains q. Then we visit all nodes u on the path π` from the root of T to
` and answer vertical ray shooting queries in multi-slab structures C(u).

2.2 Our Approach
Thus our goal is to answer O(logB n) ray shooting queries in multi-slab structures along a
path in the segment tree T with as few I/Os as possible. Segments stored in a multi-slab
are not comparable in the general case; see Fig. 2. It is possible to impose a total order ≺
on all segments in the following sense: let l be a vertical line that intersects segments s1
and s2; if the intersection of l with s1 is above the intersection of l with s2, then s2 ≺ s1.

SoCG 2019

52:4 Dynamic Point Location in External Memory

pf

pl

u1 u2 u3 u4 u5

u

s

Figure 1 Segment s is assigned to node u. The trimmed segment [pf , pl] is stored in C(u).

s9
s8
s7

s6

s5
s4
s3
s2
s1

s9
s8
s7

s5
s4
s3
s2
s1

s0

Figure 2 Left: example of segment order in a multi-slab; s1≺ s2≺ s3≺ s4≺ s5≺ s6≺ s7≺ s8≺ s9.
Right: a deletion and an insertion of one new segment in a multi-slab changes the order of segments
to s7≺s8≺s9≺s0≺s1≺s2≺s3≺s4≺s5.

We can find such a total order in O((K/B) logM/BK) I/Os, where K is the number of
segments [8, Lemma 3]. But this ordering is not stable under updates: even a single deletion
and a single insertion can lead to significant changes in the order of segments. See Fig. 2.
Therefore it is hard to apply standard techniques, such as fractional cascading [15, 23],
in order to speed-up ray shooting queries. Previous external-memory solutions in [1, 4]
essentially perform O(logB n) independent searches in the nodes of a segment tree or an
interval tree in order to answer a query. Each search takes O(logB n) I/Os, hence the total
query cost is O(log2

B n).
Internal memory data structures achieve O(logn) query cost using dynamic fractional

cascading [15, 23]. Essentially the difference with external memory is as follows: since we aim
for O(log2 n) query cost in internal memory, we can afford to use base tree T with small node
degree. In this special case the segments stored in sets C(u), u ∈ T , can be ordered resp.
divided into a small number of ordered sets. When the order of segments in C(u) is known,
we can apply the fractional cascading technique [15, 23] to speed up queries. Unfortunately
dynamic fractional cascading does not work in the case when the total order of segments in
C(u) is not known. Hence we cannot use previous internal memory solutions of the point
location problem [16, 9, 3, 13] to decrease the query cost in external memory.

In this paper we propose a different approach. Searching in a multi-slab structure C(u)
is based on a weighted search among segments of C(u). Weights of segments are chosen
in such way that the total cost of searching in all multi-slab structures along a path π is
logarithmic. We also use fractional cascading, but this technique plays an auxiliary role: we

J. I. Munro and Y.Nekrich 52:5

apply fractional cascading to compute the weights of segments and to navigate between the
tree nodes. Interestingly, fractional cascading is usually combined with the union-split-find
data structure, which is not used in our construction.

This paper is structured as follows. In Section 3 we show how our new technique, that
will be henceforth called weighted telescoping search, can be used to solve the static vertical
ray shooting problem. Next we turn to the dynamic case. In our exposition we assume, for
simplicity, that the set of segment x-coordinates is fixed, i.e., the tree T does not change. We
also assume that the block size B is sufficiently large, B > log8 n. We show how our static
data structure from Section 3 can be modified to support insertions in Section 4. To maintain
the order of segments in a multi-slab under insertions we pursue the following strategy: when
a new segment is inserted into the multi-slab structure C(u), we split it into a number of
unit segments, such that every unit segment spans exactly one child of u. Unit segments
can be inserted into a multi-slab so that the order of other segments is not affected. The
number of unit segments per inserted segment can be large; however we can use buffering to
reduce the cost of updates.3 We need to make some further changes in our data structure in
order to support deletions; the fully-dynamic solution for large B is described in Section 5.
The main result of Section 5, summed up in Lemma 2, is the data structure that answers
queries in O(logB n log logB n) I/Os; insertions and deletions are supported in O(log2

B n) and
O(logB n) amortized I/Os respectively. We show how to reduce the cost of insertions in
Section 6. We address some missing technical details and consider the case of small block size
B in Section 7. In the full version of this paper [24] we will show how the space usage can be
reduced to linear and address some issues related to updates of bridge segments. The special
case of vertical ray shooting among horizontal segments is also considered in the full version.

3 Ray Shooting: Static Structure

In this section we show how the weighted telescoping search can be used to solve the static
point location problem. Let T be the tree, defined in Section 2.1, with node degree r = Bδ

for δ = 1/8. Let C(u) be the set of segments that span at least one child of u but do not
span u.

Augmented Catalogs. We keep augmented catalogs AC(u) ⊃ C(u) in every node u. Each
AC(u) is divided into subsets ACij(u) for 1 ≤ i ≤ j ≤ r; ACij(u) contains segments that
span children ui, . . ., uj of u and only those children. Augmented catalogs AC(u) satisfy the
following properties:
(i) If a segment s ∈ (AC(u) \ C(u)), then s ∈ C(v) for an ancestor v of u and s spans u.
(ii) Let Ei(u) = AC(u) ∩AC(ui) for a child ui of u. For any f and l, f ≤ i ≤ l, there are

at most d = O(r4) elements of ACfl(u) between any two consecutive elements of Ei(u).
(iii) If i 6= j, then Ei(u) ∩ Ej(u) = ∅.

Elements of Ei(u) for some 1 ≤ i ≤ r will be called down-bridges; elements of the
set UP (u) = AC(u) ∩ AC(par(u)), where par(u) denotes the parent node of u, are called
up-bridges. We will say that a sub-list of a catalog AC(u) bounded by two up-bridges is
a portion of AC(u). We refer to e.g., [3] or [13] for an explanation how we can construct

3 As a side remark, this approach works with weighted telescoping search, but it would not work with
the standard fractional cascading used in internal-memory solutions [16, 9, 3, 13]. The latter technique
relies on a union-split-find data structure (USF) and it is not known how to combine buffering with
USF.

SoCG 2019

52:6 Dynamic Point Location in External Memory

s7

s6

s5

s4
s3 s1

s2

s1

s2

Figure 3 Computation of segment weights. Left: segments s1 and s2 are down-bridges from E2(u).
Segments s3, s4, s5, s6, and s7 are in AC(u)\E2(u). For 3 ≤ j ≤ 7, weight2(sj , u) = W (s1, s2, u2)/d.
Right: portion of AC(u2) for the child u2 of u. W (s1, s2, u2) is equal to the total weight of all
segments between s1 and s2. If u2 is a leaf node, then W (s1, s2, u2) equals the total number of
segments in AC(u2) that are situated between s2 and s1.

and maintain AC(u). We assume in this section that all segments in every catalog AC(u)
are ordered. We can easily order a set ACfl(u) or any set of segments that cross the same
vertical line `: the order of segments is determined by (y-coordinates of) intersection points of
segments and `. Therefore we will speak of e.g., the largest/smallest segments in such a set.

Element weights. We assign the weight to each element of AC(u) in a bottom-to-top
manner: All segments in a set AC(`) for every leaf node ` are assigned weight 1. Consider
a segment s ∈ ACfl(u), i.e., a segment that spans children uf , . . ., ul of some internal
node u. For f ≤ i ≤ l let s1 denote the largest bridge in Ei(u) that is (strictly) smaller
than s and let s2 denote the smallest bridge in Ei(u) that is (strictly) larger than s; we
let W (s1, s2, ui) =

∑
s1<s′<s2

weight(s′, ui), where the sum is over all segments s′ ∈ AC(ui)
and weighti(s, u) = W (s1, s2, ui)/d. See Fig. 3 for an example. We set weight(s, u) =∑l
i=f weighti(s, u). We keep a weighted search tree for every portion P(u) of the list AC(u)

By a slight misuse of notation this tree will also be denoted by P(u). Thus every catalog
AC(u) is stored in a forest of weighted trees Pj(u) where every tree corresponds to a portion
of AC(u) 4. We also store a data structure supporting finger searches on AC(u).

Weighted Trees. Each weighted search tree is implemented as a biased (a, b)-tree with
parameters a = Bδ/2 and b = Bδ [10, 19]. The depth of a leaf λ in a biased (Bδ/2, Bδ)-tree
is bounded by O(logB(W/wλ)), where wλ is the weight of an element in the leaf λ and W
is the total weight of all elements in the tree. Every internal node ν has Bδ children and
every leaf holds Θ(B) segments5. In each internal node ν we keep B3δ segments ν.maxjk[i].
For every child νi of ν and for all j and k, 1 ≤ j ≤ k ≤ r, ν.maxjk[i] is the highest segment
from ACjk in the subtree of νi ; if there are no segments from ACjk in the subtree of νi,
then ν.maxjk[i] = NULL. Using values of ν.max we can find, for any node ν of the biased
search tree, the child νi of ν that holds the successor segment of the query point q. Hence

4 In most cases we will omit the subindex and will speak of a weighted tree P(u) because it will be clear
from the context what portion of AC(u) is used.

5 In the standard biased (a, b)-tree [10, 19], every leaf holds one element. But we can modify it so that
every leaf holds Θ(B) different elements (segments). The weight of a leaf λ is the total weight of all
segments stored in λ.

J. I. Munro and Y.Nekrich 52:7

s2

s3

s1

Figure 4 Segments in a group. Segments s1, s2, and s3 are stored in V2: s1 and s2 are the highest
and the lowest segments that span the second child u2; s3 is a bridge segment from E2(u).

we can find the smallest segment n(u) in a portion P(u) that is above a query point q in
O(logB(WP /ωn)) I/Os where WP is the total weight of all segments in P(u) and ωn is the
weight of n(u).

Additional Structures. When the segment n(u) is known, we will need to find the bridges
that are closest to n(u) in order to continue the search. We keep a list Vi(u) ⊆ AC(u) for
each node u and for every i, 1 ≤ i ≤ r. Vi(u) contains all segments of Ei(u) and some
additional segments chosen as follows: AC(u) is divided into groups so that each group
consists of Θ(r6) consecutive segments; the only exception is the last group in AC(u) that
contains O(r6) segments (here we use the fact that segments in AC(u) are ordered). We
choose the constant in such way that every group but the last one contains d · r2 segments.
If a group G contains a segment that spans ui, then we select the highest segment from G

that spans ui and the lowest segment from G that spans ui; we store both segments in Vi.
See Fig. 4. For every segment in Vi we also store a pointer to its group in AC(u). We keep
Vi in a B-tree that supports finger search queries.

Suppose that we know the successor segment n(u) of a query point q in AC(u). We can
find the successor segment bn(u) of q in Ei(u) using Vi: Let G denote the group that contains
n(u). We search in G for the segment bn(u) ≥ n(u) using finger search. If bn(u) is not in
G, we consider the highest segment s1 ∈ G that spans ui. By definition of AC(u), there are
at most dr2 segments between n(u) and bn(u). We can find bn(u) in O(logB(dr2)) = O(1)
I/Os by finger search on Vi using s1 as the finger. Using a similar procedure, we can find the
highest bridge segment bp(u) ≤ n(u) in Ei(u).

Queries. A vertical ray shooting query for a point q = (qx, qy) is answered as follows. Let `
denote the leaf such that the slab of ` contains q. We visit all nodes v0, v1, . . ., vh on the
root-to-leaf path π(`) where v0 is the root node and vh = `. We find the segment n(vi) in
every visited node, where n(vi) is the successor segment of q in AC(vi). Suppose that vi+1 is
the j-th child of vi; n(vi) spans the j-th child of vi. First we search for n(v0) in the weighted
tree of AC(v0). Next, using the list Vj , we identify the smallest bridge bn(v0) ∈ Ej(v0) such
that bn(v0) ≥ n(v0) and the largest bridge segment bp(v0) ∈ Ej(v0) such that bp(v0) ≤ n(v0).
The index j is chosen so that v1 is the j-th child of v0. We execute the same operations
in nodes v1, . . ., vh. When we are in a node vi we consider the portion P(vi) between
bridges bp(vi−1) and bn(vi−1); we search in the weighted tree of P(vi) for the successor
segment n(vi) of q. Then we identify the lowest bridge bn(vi) ≥ n(vi) and the highest bridge
bp(vi) ≤ n(vi). When all n(vi) are computed, we find the lowest segment n∗ among n(vi).
Since ∪hi=0AC(vi) = ∪hi=0C(vi), n∗ is the successor segment of a query point q.

SoCG 2019

52:8 Dynamic Point Location in External Memory

The cost of a ray shooting query can be estimated as follows. Let ωi denote the
weight of n(vi). Let Wi denote the total weight of all segments of P(vi) (we assume that
P(v0) = AC(v0)). Search for n(vi) in the weighted tree P(vi) takes O(logB(Wi/ωi)) I/Os.
By definition of weights, ωi ≥Wi+1/d. Hence

h∑
i=0

logB(Wi/ωi) = logBW0 +
h−1∑
i=0

(logBWi+1 − logB ωi)− logB ωh

≤ logB(W0/ωh) + 2(h+ 1) logB r.

We have ωh = 1 and we will show below that W0 ≤ n. Since r = Bδ, h = O(logB n) and
logB r = O(1). Hence the sum above can be bounded by O(logB n). When n(vi) is known,
we can find bp(vi) and bn(vi) in O(1) I/Os, as described above. Hence the total cost of
answering a query is O(logB n). Since every segment is stored in O(logB n) lists AC(u), the
total space usage is O(n logB n).

It remains to prove that W0 ≤ n. We will show by induction that the total weight of all
elements on every level of T is bounded by n: Every element in a leaf node has weight 1;
hence their total weight does not exceed n. Suppose that, for some k ≥ 1, the total weight of
all elements on level k− 1 does not exceed n. Consider an arbitrary node v on level k, let v1,
. . ., vr be the children of v, and let mi denote the total weight of elements in AC(vi). Every
element in AC(vi) contributes 1/d fraction of its weight to at most d different elements in
AC(v). Hence

∑
e∈AL(v) weighti(v) ≤ mi and the total weight of all elements in AC(v) does

not exceed
∑r
i=1 mi. Hence, for any level k ≥ 1, the total weight of AC(v) for all nodes v

on level k does not exceed n. Hence the total weight of AC(u0) for the root node u0 is also
bounded by n.

I Lemma 1. There exists an O(n logB n)-space static data structure that supports point
location queries on n non-intersecting segments in O(logB n) I/Os.

The result of Lemma 1 is not new. However we will show below that the data structure
described in this section can be dynamized.

4 Semi-Dynamic Ray Shooting for B ≥ log8 n: Main Idea

Now we turn to the dynamic problem. In Sections 4 and 5 we will assume6 that B ≥ log8 n.

Overview. The main challenge in dynamizing the static data structure from Section 3 is
the order of segments. Deletions and insertions of segments can lead to significant changes in
the segment order, as explained in Section 2. However segment insertions within a slab are
easy to handle in one special case. We will say that a segment s ∈ AC(u) is a unit segment
if s ∈ ACii(u) for some 1 ≤ i ≤ r. In other words a unit segment spans exactly one child
ui of u. Let Li(u) = ∪f≤i≤lACfl(u) denote the conceptual list of all segments that span ui.
When a unit segment s ∈ ACii(u) is inserted, we find the segments sp and sn that precede
and follow s in Li(u); we insert s at an arbitrary position in AC(u) so that sp < s < sn. It is
easy to see that the correct order of segments is maintained: the correct order is maintained
for the segments that span ui and other segments are not affected.

6 Probably a smaller power of log can be used, but we consider B ≥ log8 n to simplify the analysis.

J. I. Munro and Y.Nekrich 52:9

s9
s8
s7

s6

s5
s4
s3
s2
s1

s9
s8
s7

s5
s4
s3
s2
s1

s0

s0,3

s0,2

s0,1

Figure 5 Example from Fig. 2 revisited. Left: original segment order s1≺s2≺s3≺s4≺s5≺s6≺
s7≺s8≺s9. Right: segment s6 is deleted, the new inserted segment s0 is split into unit segments.
The new segment order is e.g., s0,3≺s1≺s2≺s4≺s5≺s0,2≺s7≺s8≺s9≺s0,1. Thus new unit segments
are inserted, but the relative order of other segments does not change.

An arbitrary segment s that is to be inserted into AC(u) can be represented as Bδ unit
segments. See Fig. 5 for an example. However we cannot afford to spend Bδ operations for
an insertion. To solve this problem, we use bufferization: when a segment is inserted, we
split it into Bδ unit segments and insert them into a buffer B. A complete description of the
update procedure is given below.

Buffered Insertions. We distinguish between two categories of segments, old segments and
new segments. We know the total order in the set of old segments in the portion P(u) (and
in the list AC(u)). New segments are represented as a union of up to r unit segments. When
the number of new segments in a portion P(u) exceeds the threshold that will be specified
below, we re-build P(u): we compute the order of old and new segments and declare all
segments in P(u) to be old.

As explained in Section 3 every portion P(u) of AC(u) is stored in a biased search tree
data structure. Each node of P(u) has a buffer B(ν) that can store up to B3δ segments.
When a new segment is inserted into P(u), we split it into unit segments and add them to
the insertion buffer of νr, where νr is the root node of P(u). When the buffer of an internal
node ν is full, we flush it, i.e., we move all segments from B(ν) to buffers in the children of ν.
We keep values ν.maxkj [i], defined in Section 3, for all internal nodes ν. All ν.maxkl[·] and
all segments in B(ν) fit into one block of memory; hence we can flush the buffer of an internal
node in O(Bδ) I/Os. When the buffer of an internal node is flushed, we do not change the
shape of the tree. When the buffer B(λ) of a leaf node λ is full, we insert segments from
B(λ) into the set of segments stored in λ. If necessary we create a new leaf λ′ and update
the weights of λ and λ′. We can update the biased search tree P(u) in O(logn) time. We
also update data structures Vi for i = 1, . . ., r. Since a leaf node contains the segments from
at most two different groups, we can update all Vi in O(r) I/Os. The biased tree is updated
in O(logn) I/Os. The total amortized cost of a segment insertion into a portion P(u) is
O(1 + logn+r

B3δ + logB n
B2δ) = O(1) because Bδ > logn.

When the number of new segments in P(u) is equal to nold/r, where nold is the number of
old segments in P(u), we rebuild P(u). Using the method from [8], we order all segments in
P(u) and update the biased tree. Sorting of segments takesO((nold/B) logM/B nold) = o(nold)
I/Os. We can re-build the weighted tree P(u) in O((nold/B

3δ) lognold) = o(nold) I/Os by
computing the weights of leaves and inserting the leaves into the new tree one-by-one.

SoCG 2019

52:10 Dynamic Point Location in External Memory

When a new segment s is inserted, we identify all nodes ui where s must be stored. For
every corresponding list AC(ui), we find the portion P(ui) where s must be stored. This
takes O(log2

B n) I/Os in total. Then we insert the trimmed segment s into each portion as
described above. The total insertion cost is O(log2

B n). Queries are supported in the same
way as in the static data structure described in Section 3. The only difference is that biased
tree nodes have associated buffers. Many technical aspects are not addressed in this section.
We fill in the missing details and provide the description of the data structure that also
supports deletions in Section 5.

5 Ray Shooting for B ≥ log8 n: Fully-Dynamic Structure

Now we give a complete description of the fully-dynamic data structure for vertical ray
shooting queries. Deletions are also implemented using bufferization: deleted segments are
inserted into deletion buffers D(ν) that are kept in the nodes of trees P(u). Deletion buffers
are processed similarly to the insertion buffers. There are, however, a number of details
that were not addressed in the previous section. When a new bridge Ei is inserted we need
to change weights for a number of segments. When the segment n(u) is found, we need to
find the bridges bp(u) and bn(u). The complete solution that addresses all these issues is
more involved. First, we apply weighted search only to segments from E(u) = ∪ri=1Ei(u).
We complete the search and find the successor segment in AC(u) using some auxiliary sets
stored in the nodes of P(u). Second, we use a special data structure to find the bridges bp(u)
and bn(u). We start by describing the changed structure of weighted trees P(u).

Segments stored in the leaves of P(u) are divided into weighted and unweighted segments.
Weighted segments are segments from E(u), i.e., weighted segments are used as down-bridges.
All other segments are unweighted. Every leaf contains Θ(r2) weighted segments. There are
at Ω(r2) and O(r4) unweighted segments between any two weighted segments. Hence the
total number of segments in a leaf is between Ω(r4) and O(r6). Only weighted segments in a
leaf have non-zero weights. Weights of weighted segments are computed in the same way
as explained in Section 3. Hence the weight of a leaf λ is the total weight of all weighted
segments in λ. The search for a successor of q in P(u) is organized in such way that it ends
in the leaf holding the successor of q in E(u). Then we can find the successor of q in AC(u)
using auxiliary data stored in the nodes of P(u).

We keep the following auxiliary sets and buffers in nodes ν of every weighted tree P(u).
Let ACfl(u, ν) denote the set of segments from ACfl(u) that are stored in leaf descendants
of a node ν.
(i) Sets Maxfl(ν) and Minfl(ν) for all f, l such that 1 ≤ f ≤ l ≤ r and for all nodes

ν. Maxfl(ν) (Minfl(ν)) contains min(r4, |ACfl(u, ν)|) highest (lowest) segments from
ACfl(u, ν). For every segment s in sets Maxfl(ν) and Minfl(ν) we record the index i
such that s ∈ Ei(u) (or NULL if s is not a bridge segment).

(ii) The set Nav(ν) for an internal node ν is the union of all sets Maxfl(νi) and Minfl(νi)
for all children νi of ν.

(iii) The set Max′fl(ν), 1 ≤ f ≤ l ≤ r contains highest segments from ACfl(u, ν) that are
not stored in any set Max′(u, µ) for an ancestor µ of ν. Either Max′fl(ν) holds at least
r4 and at most 2r4 segments or Max′fl(ν) holds less than r4 segments and Max′fl(ρ) for
all descendants ρ of ν are empty. In other words, Max′fl(·) are organized as external
priority search trees [6]. The set Min′fl(ν) is defined in the same way with respect to
the lowest segments. We use Max′ and Min′ to maintain sets Max and Min.

(iv) Finally we keep an insertion buffer B(ν) and a deletion buffer D(ν) in every node ν.

J. I. Munro and Y.Nekrich 52:11

Deletions. If an old segment s is deleted, we insert it into the deletion buffer D(νR) of the
root node νR. If a new segment s is deleted, we split s into O(r) unit segments and insert
them into D(νR). When one or more segments are inserted into D(νr), we also update sets
Maxfl(νR) and Minfl(νR). For any node ν ∈ P(u), when the number of segments in D(ν)
exceeds r3, we flush both D(ν) and B(ν) using the following procedure. First we identify
segments s ∈ B(ν) ∩ D(ν) and remove such s from both B(ν) and D(ν). Next we move
segments from B(ν) and D(ν) to buffers B(νi) and D(νi) in the children νi of ν. For every
child νi of ν, first we update setsMax′fl(νi) by removing segments from D(νi) (resp. inserting
segments from B(νi)) if necessary. Then we take care that the size of Max′fl(νi) is not too
small. If some Max′fl(νi) contains less than r4 segments and more than 0 segments, we move
up segments from the children of νi into νi, so that the total size of Max′fl(νi) becomes equal
to 2r4 or all segments are moved from the corresponding sets Max′fl(·) in the children of νi
into Max′fl(νi). We recursively update Max′fl(·) in each child of νi using the same procedure.

Next, we update sets Maxfl(νi). We compute Mfl = ∪Max′fl(µ) where the union is
taken over all proper ancestors µ of ν. Every segment in Maxfl(ν) is either from Max′fl(ν)
or from Max′fl(µ) for a proper ancestor µ of ν. Hence we can compute all Maxfl(νi) when
Mfl and Max′fl(νi) are known. Sets Min′fl(νi) and Minfl(νi) are updated in the same way.
Finally we update the set Nav(ν) by collecting segments from Maxfl(νi) and Minfl(νi).

All segments needed to re-compute sets after flushing buffers D(ν) and B(ν) fit into one
block of space. Hence we can compute the setM in O(logB n) = O(r) I/Os and all sets in
each node νi in O(1) I/Os. The set Nav(ν) is updated in O(r) I/Os. Since each node has
O(r) children, the total number of I/Os needed to flush a buffer is O(r). Every segment
can be divided into up to r unit segments and each unit segment can contribute to logB n
buffer flushes. Hence the total amortized cost per segment is O(r

2 logB n
r3) = O(1). We did

not yet take into account the cost of refilling the buffers Max′; using the analysis similar to
the analysis in [12, Section 4], we can estimate the cost of re-filling Max′ as O(logB n

r3) = o(1).
We do not store buffers in the leaf nodes. Let S(λ) be the set of segments kept in a leaf

λ and let SW (λ) be the set of weighted segments stored in λ. When we move segments from
B(ν) or D(ν) to its leaf child λ, we update S(λ) accordingly. This operation changes the
weight of λ. Hence we need to update the weighted tree P(u) in O(logn) I/Os. Sets Maxfl(·)
and Minfl(·) are also updated.

After an insertion of new segments into a leaf node, we may have to insert or remove
some bridges in Ei(u) for 1 ≤ i ≤ r. When we insert a new bridge b into Ei(u), we must
split some portion P(ui) into two new portions, P1(ui) and P2(ui). Additionally we must
change the weights of the bridge segments in Ei(u) that precede and follow b. The cost of
splitting P(ui) is O(logn). We also need O(logn) I/Os to change the weights of two neighbor
bridges. Hence the total cost of inserting a new bridge is O(logn). We insert a bridge at
most once per O(r) insertions into AC(u) because every new segment is divided into up to
r unit segments. We remove a bridge at most once after O(r) deletions. See [13] for the
description of the method to maintain bridges in catalogs AC(u). Thus the total amortized
cost incurred by a bridge insertion or deletion is O(logn

r) = O(1).

Insertions. Insertions are executed in a similar way. A new inserted segment is split into
O(r) unit segments that are inserted into the buffer B(νR) for the root node νR. The buffers
and auxiliary sets are updated and flushed in the same way as in the case of deletions. When
the number of new segments in some portion P(u) is equal to nold/r, where nold is the
number of old segments in P(u), we rebuild P(u). As explained in Section 4, rebuilding of
P(u) incurs an amortized cost of o(1).

SoCG 2019

52:12 Dynamic Point Location in External Memory

Queries. The search for the successor segment n(u) in the weighted tree P(u) consists of
two stages. Suppose that the query point q is in the slab of the i-th child ui of u. First we
find the successor bn(u) of q in Ei(u) by searching in P(u). We traverse the path from the
root to the leaf λn holding bn(u). In every node ν we select its leftmost child νj , such that
Maxfl(νj) for some f ≤ i ≤ l contains a segment s that is above q and s is not deleted (i.e.,
s 6∈ D(µ) for all ancestors µ of ν). The size of each set Maxfl(νk) is larger than the total
size of all D(µ) in all ancestors µ of ν. Hence every Maxfl(νi) contains some elements that
are not deleted unless the set Cfl(u, νi) is empty. Therefore we select the correct child νj in
every node. Since P(u) is a biased search tree [10, 19], the total cost of finding the leaf λn is
bounded by O(log(WP /ωλ)) = O(log(WP /ωn)) where ωλ is the total weight of all segments
in λn and ωn ≤ ωλ is the weight of the bridge segment bn(u).

During the second stage we need to find the successor segment n(u) of q in AC(u).
The distance between n(u) and bn(u) in AC(u) can be arbitrarily large. Nevertheless n(u)
is stored in one of the sets Nav(µ) for some ancestor µ of λn. Suppose that n(u) is an
unweighted segment stored in a leaf λ′ of P(u) and let µ denote the lowest common ancestor
of λ and λ′. Let µk be the child of µ that is an ancestor of λ′. There are at most r4 segments
in ACfl(u) between n(u) and bn(u). Hence, n(u) is stored in the set Maxfl(µk). Hence, n(u)
is also stored in Nav(µ). We visit all ancestors µ of λn and compute D = ∪µD(µ). Then we
visit all ancestors one more time and find the successor of q in Nav(µ) \ D. The asymptotic
query cost remains the same because we only visit the nodes between λn and the root and
each node is visited a constant number of times.

We need to consider one additional special case. It is possible that there are no bridge
segments s ∈ Ei(u) stored in the leaves of P(u). In this case there are at most r2 segments
in ACfl(u) for every pair f, l, satisfying f ≤ i ≤ l, stored in the leaves of P(u). For each
portion P(u), if there are at most r2 segments in ACfl(u)∩P(u), we keep the list of all such
segments. All such lists fit into one block of memory. We also keep the list of indexes i, such
that Ei(u)∩P(u) is empty.Suppose that we need to find the successor of q and P(u)∩Ei(u)
is empty. Then we simply examine all segments in ACfl(u) ∩ P(u) for all f ≤ i ≤ l and find
the successor of q in O(1) I/Os.

When n(u) is known, we need to find bp(u) and bn(u), if bn(u) was not computed at
the previous step. It is not always possible to find these bridges using P(u) because bp(u)
and bn(u) can be outside of P(u). To this end, we use the data structure for colored
union-split-find problem on a list (list-CUSF) that will be described in the full version of
this paper [24]. We keep the list V (u) containing all down-bridges from Ei(u), for 1 ≤ i ≤ r,
and all up-bridges from UP (u). Each segment in e ∈ V (u) is associated to an interval; a
segment e ∈ Vi(u) is associated to an interval [i, i] and a segment from UP (u) is associated
to a dummy interval [−1,−1]. For any segment e ∈ V (u) we can find the preceding/following
segment associated to an interval [i, i] for any i, 1 ≤ i ≤ r, in O(log logB n) I/Os. Updates of
V (u) are supported in O(log logB n) I/Os. Since we insert or remove bridge segments once
per r2 updates, the amortized cost of maintaining the list-CUSF structure is O(1).

Summing up. By the same argument as in Section 3, weighted searches in all nodes take
O(logB n) I/Os in total. Additionally we spend (log logB n) I/Os in every node with a query
to list-CUSF. Thus the total query cost is O(logB n log logB n). When a segment is deleted,
we remove it from O(logB n) lists AC(u) and from secondary structures (weighted trees etc.)
in these nodes. The deletions take O(1) I/Os per node or O(logB n) I/Os in total. When a
segment is inserted, it must be inserted into O(logB n) lists AC(u). We first have to spend
O(logB n) I/Os to find the portion P(u) of each AC(u) where it must be stored. When P(u)

J. I. Munro and Y.Nekrich 52:13

is known, an insertion takes O(1) amortized I/Os as described above. The total cost of an
insertion is O(log2

B n) I/Os. Since every segment is stored in O(logB n) lists, the total space
is O(n logB n).

I Lemma 2. If B > log8 n, then there exists an O(n logB n) space data structure that
supports vertical ray shooting queries on a dynamic set of n non-intersecting segments in
O(logB n log logB n) I/Os. Insertions and deletions of segments are supported in O(log2

B n)
and O(logB n) amortized I/Os respectively.

6 Faster Insertions

When a new segment s is inserted into our data structure, we need to find the position
of s in O(logB n) lists AC(u) (to be precise, we need to know the portion P(u) of AC(u)
that contains s). When positions of s in AC(u) are known, we can finish the insertion in
O(logB n) I/Os. In order to speed-up insertions, we use the multi-colored segment tree
of Chan and Nekrich [13]. Segments in lists C(u) are assigned colors χ, so that the total
number of different colors is O(logH) where H = O(logB n) is the height of the segment
tree. Let Cχ(u) denote the set of segments of color χ in C(u). We apply the technique
of Sections 3- 5 to each color separately. That is, we create augmented lists ACχ(u) and
construct weighted search trees Pχ(u) for each color separately. The query cost is increased
by factor O(logH), the number of colors. The deletion cost is also increased by O(logH)
factor because we update the data structure for each color separately. When a new segment
s is inserted, we insert it into some lists ACχi(ui) where ui is the node such that s spans
ui but does not span its parent and χi is some color (the same segment can be assigned
different colors χi in different nodes ui). We can find the position of s in all ACχi(ui) with
O(logB n logH + H · tusf) = O(logB n log logB n) I/Os where tusf = O(log logB n) is the
query cost in a union-split-find data structure in the external memory model. See [13] for a
detailed description.

I Lemma 3. If B > log8 n, then there exists an O(n logB n) space data structure that
supports vertical ray shooting queries on a dynamic set of non-intersecting segments in
O(logB n(log logB n)2) I/Os. Insertions and deletions of segments can be supported in
O(logB n log logB n) amortized I/Os.

7 Missing Details

Using the method from [13] we can reduce the space usage of our data structure to linear
at the cost of increasing the query and update complexity by O(log logB n) factor.The
resulting data structure supports queries in O(logB n(log logB n)2) I/Os and updates in
O(logB n(log logB n)3) amortized I/Os. Details will be provided in the full version [24].

In our exposition we assumed for simplicity that the tree T does not change, i.e., the set
of x-coordinates of segment endpoints is fixed and known in advance. To support insertions
of new x-coordinate, we can replace the static tree T with a weight-balanced tree with node
degree Θ(r) = Θ(Bδ). We also assumed that the block size B is large, B > log8 n. If B ≤
log8 n, the linear-space internal memory data structure [13] achieves O(logn(log logn)2) =
O(logB n(log logB n)3) query cost and O(logn log logn) = O(logB n(log logB n)2) update
cost because logn = O(logB n log logB n) and log logn = O(log logB n) for B ≤ log8 n. Thus
we obtain our main result.

SoCG 2019

52:14 Dynamic Point Location in External Memory

I Theorem 4. There exists an O(n) space data structure that supports vertical ray shooting
queries on a dynamic set of n non-intersecting segments in O(logB n(log logB n)3) I/Os.
Insertions and deletions of segments are supported in O(logB n(log logB n)2) amortized I/Os.

References
1 Pankaj K. Agarwal, Lars Arge, Gerth Stølting Brodal, and Jeffrey Scott Vitter. I/O-efficient

dynamic point location in monotone planar subdivisions. In Proc. 10th Annual ACM-SIAM
Symposium on Discrete Algorithms, (SODA), pages 11–20, 1999.

2 Alok Aggarwal and Jeffrey Scott Vitter. The Input/Output Complexity of Sorting and Related
Problems. Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.

3 Lars Arge, Gerth Stølting Brodal, and Loukas Georgiadis. Improved dynamic planar point
location. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, pages 305–314, 2006. doi:10.1109/FOCS.2006.40.

4 Lars Arge, Gerth Stølting Brodal, and S. Srinivasa Rao. External Memory Planar Point
Location with Logarithmic Updates. Algorithmica, 63(1-2):457–475, 2012. doi:10.1007/
s00453-011-9541-2.

5 Lars Arge, Andrew Danner, and Sha-Mayn Teh. I/O-efficient point location using persistent
B-trees. ACM Journal of Experimental Algorithmics, 8, 2003. doi:10.1145/996546.996549.

6 Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On Two-Dimensional Indexability and
Optimal Range Search Indexing. In Proc. 18th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), pages 346–357, 1999. doi:10.1145/303976.
304010.

7 Lars Arge and Jan Vahrenhold. I/O-efficient dynamic planar point location. Computational
Geometry, 29(2):147–162, 2004. doi:10.1016/j.comgeo.2003.04.001.

8 Lars Arge, Darren Erik Vengroff, and Jeffrey Scott Vitter. External-Memory Algorithms for
Processing Line Segments in Geographic Information Systems. Algorithmica, 47(1):1–25, 2007.
doi:10.1007/s00453-006-1208-z.

9 Hanna Baumgarten, Hermann Jung, and Kurt Mehlhorn. Dynamic point location in general
subdivisions. J. Algorithms, 17(3):342–380, 1994. doi:10.1006/jagm.1994.1040.

10 Samuel W. Bent, Daniel Dominic Sleator, and Robert Endre Tarjan. Biased Search Trees.
SIAM J. Comput., 14(3):545–568, 1985. doi:10.1137/0214041.

11 Jon Louis Bentley. Algorithms for Klee’s rectangle problems. Unpublished manuscript,
Department of Computer Science, Carnegie-Mellon University, 1977.

12 Gerth Stølting Brodal. External Memory Three-Sided Range Reporting and Top-k Queries
with Sublogarithmic Updates. In Proc. 33rd Symposium on Theoretical Aspects of Computer
Science (STACS), pages 23:1–23:14, 2016. doi:10.4230/LIPIcs.STACS.2016.23.

13 Timothy M. Chan and Yakov Nekrich. Towards an Optimal Method for Dynamic Planar
Point Location. In Proc. 56th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 390–409, 2015. doi:10.1109/FOCS.2015.31.

14 Timothy M. Chan and Konstantinos Tsakalidis. Dynamic Planar Orthogonal Point Location in
Sublogarithmic Time. In Bettina Speckmann and Csaba D. Tóth, editors, 34th International
Symposium on Computational Geometry (SoCG 2018), volume 99 of LIPIcs, pages 25:1–25:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.SoCG.2018.
25.

15 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring technique.
Algorithmica, 1(2):133–162, 1986. doi:10.1007/BF01840440.

16 Siu-Wing Cheng and Ravi Janardan. New results on dynamic planar point location. SIAM J.
Comput., 21(5):972–999, 1992. doi:10.1137/0221057.

17 Yi-Jen Chiang, Franco P. Preparata, and Roberto Tamassia. A unified approach to dynamic
point location, ray shooting, and shortest paths in planar maps. SIAM J. Comput., 25(1):207–
233, 1996. doi:10.1137/S0097539792224516.

http://dx.doi.org/10.1145/48529.48535
http://dx.doi.org/10.1109/FOCS.2006.40
http://dx.doi.org/10.1007/s00453-011-9541-2
http://dx.doi.org/10.1007/s00453-011-9541-2
http://dx.doi.org/10.1145/996546.996549
http://dx.doi.org/10.1145/303976.304010
http://dx.doi.org/10.1145/303976.304010
http://dx.doi.org/10.1016/j.comgeo.2003.04.001
http://dx.doi.org/10.1007/s00453-006-1208-z
http://dx.doi.org/10.1006/jagm.1994.1040
http://dx.doi.org/10.1137/0214041
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.23
http://dx.doi.org/10.1109/FOCS.2015.31
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.25
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.25
http://dx.doi.org/10.1007/BF01840440
http://dx.doi.org/10.1137/0221057
http://dx.doi.org/10.1137/S0097539792224516

J. I. Munro and Y.Nekrich 52:15

18 Yi-Jen Chiang and Roberto Tamassia. Dynamization of the trapezoid method for planar
point location in monotone subdivisions. Int. J. Comput. Geometry Appl., 2(3):311–333, 1992.
doi:10.1142/S0218195992000184.

19 Joan Feigenbaum and Robert Endre Tarjan. Two New Kinds of Biased Search Trees. Bell
Systems Technical Journal, 62(10):3139–3158, 1983.

20 Yoav Giora and Haim Kaplan. Optimal dynamic vertical ray shooting in rectilinear planar sub-
divisions. ACM Transactions on Algorithms, 5(3):28, 2009. doi:10.1145/1541885.1541889.

21 Michael T. Goodrich and Roberto Tamassia. Dynamic trees and dynamic point location.
SIAM J. Comput., 28(2):612–636, 1998. doi:10.1137/S0097539793254376.

22 Michael T. Goodrich, Jyh-Jong Tsay, Darren Erik Vengroff, and Jeffrey Scott Vitter. External-
Memory Computational Geometry (Preliminary Version). In Proc. 34th Annual Symposium
on Foundations of Computer Science (FOCS), pages 714–723, 1993. doi:10.1109/SFCS.1993.
366816.

23 Kurt Mehlhorn and Stefan Näher. Dynamic fractional cascading. Algorithmica, 5(2):215–241,
1990. doi:10.1007/BF01840386.

24 J. Ian Munro and Yakov Nekrich. Dynamic Planar Point Location in External Memory. CoRR,
abs/1903.06601, 2019. arXiv:1903.06601.

25 Franco P. Preparata and Roberto Tamassia. Fully dynamic point location in a monotone
subdivision. SIAM J. Comput., 18(4):811–830, 1989. doi:10.1137/0218056.

26 Franco P. Preparata and Roberto Tamassia. Efficient point location in a convex spatial
cell-complex. SIAM J. Comput., 21(2):267–280, 1992. doi:10.1137/0221020.

SoCG 2019

http://dx.doi.org/10.1142/S0218195992000184
http://dx.doi.org/10.1145/1541885.1541889
http://dx.doi.org/10.1137/S0097539793254376
http://dx.doi.org/10.1109/SFCS.1993.366816
http://dx.doi.org/10.1109/SFCS.1993.366816
http://dx.doi.org/10.1007/BF01840386
http://arxiv.org/abs/1903.06601
http://dx.doi.org/10.1137/0218056
http://dx.doi.org/10.1137/0221020

Efficient Algorithms for Ortho-Radial Graph
Drawing
Benjamin Niedermann
University of Bonn, Germany
niedermann@uni-bonn.de

Ignaz Rutter
University of Passau, Germany
rutter@fim.uni-passau.de

Matthias Wolf
Karlsruhe Institute of Technology, Germany
matthias.wolf@kit.edu

Abstract
Orthogonal drawings, i.e., embeddings of graphs into grids, are a classic topic in Graph Drawing.
Often the goal is to find a drawing that minimizes the number of bends on the edges. A key
ingredient for bend minimization algorithms is the existence of an orthogonal representation that
allows to describe such drawings purely combinatorially by only listing the angles between the edges
around each vertex and the directions of bends on the edges, but neglecting any kind of geometric
information such as vertex coordinates or edge lengths.

Barth et al. [2] have established the existence of an analogous ortho-radial representation for
ortho-radial drawings, which are embeddings into an ortho-radial grid, whose gridlines are concentric
circles around the origin and straight-line spokes emanating from the origin but excluding the origin
itself. While any orthogonal representation admits an orthogonal drawing, it is the circularity of
the ortho-radial grid that makes the problem of characterizing valid ortho-radial representations all
the more complex and interesting. Barth et al. prove such a characterization. However, the proof
is existential and does not provide an efficient algorithm for testing whether a given ortho-radial
representation is valid, let alone actually obtaining a drawing from an ortho-radial representation.

In this paper we give quadratic-time algorithms for both of these tasks. They are based on
a suitably constrained left-first DFS in planar graphs and several new insights on ortho-radial
representations. Our validity check requires quadratic time, and a naive application of it would
yield a quartic algorithm for constructing a drawing from a valid ortho-radial representation. Using
further structural insights we speed up the drawing algorithm to quadratic running time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Graph Drawing, Ortho-Radial Graph Drawing, Ortho-Radial Representation,
Topology-Shape-Metrics, Efficient Algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.53

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.05048.

Funding Matthias Wolf : Matthias Wolf was funded by the Helmholtz Program Storage and Cross-
linked Infrastructures, Topic 6 Superconductivity, Networks and System Integration.

1 Introduction

Grid drawings of graphs embed graphs into grids such that vertices map to grid points
and edges map to internally disjoint curves on the grid lines that connect their endpoints.
Orthogonal grids, whose grid lines are horizontal and vertical lines, are popular and widely
used in graph drawing. Among others, orthogonal graph drawings are applied in VLSI design
(e.g., [31, 6]), diagrams (e.g., [4, 19, 14, 33]), and network layouts (e.g., [27, 23]). They have

© Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 53; pp. 53:1–53:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6638-7250
mailto:niedermann@uni-bonn.de
https://orcid.org/0000-0002-3794-4406
mailto:rutter@fim.uni-passau.de
https://orcid.org/0000-0003-1411-6330
mailto:matthias.wolf@kit.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.53
https://arxiv.org/abs/1903.05048
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Efficient Algorithms for Ortho-Radial Graph Drawing

up

left right

c

down

(a) Ortho-radial grid. (b) Cylinder drawing.

Figure 1 An ortho-radial drawing of a graph
on a grid (a) and its equivalent interpretation as
an orthogonal drawing on a cylinder (b).

Figure 2Metro map of Berlin using an ortho-
radial layout1. Image copyright by Maxwell
J. Roberts. Reproduced with permission.

been extensively studied with respect to their construction and properties (e.g., [30, 7, 8, 26, 1]).
Moreover, they have been generalized to arbitrary planar graphs with degree higher than
four (e.g., [29, 18, 9]).

Ortho-radial drawings are a generalization of orthogonal drawings to grids that are
formed by concentric circles and straight-line spokes from the center but excluding the center.
Equivalently, they can be viewed as graphs drawn in an orthogonal fashion on the surface of
a standing cylinder, see Figure 1, or a sphere without poles. Hence, they naturally bring
orthogonal graph drawings to the third dimension.

Among other applications, ortho-radial drawings are used to visualize network maps; see
Figure 2. Especially, for metro systems of metropolitan areas they are highly suitable. Their
inherent structure emphasizes the city center, the metro lines that run in circles as well as
the metro lines that lead to suburban areas. While the automatic creation of metro maps
has been extensively studied for other layout styles (e.g., [22, 25, 32, 17]), this is a new and
wide research field for ortho-radial drawings.

Adapting existing techniques and objectives from orthogonal graph drawings is a promising
step to open up that field. One main objective in orthogonal graph drawing is to minimize
the number of bends on the edges. The core of a large fraction of the algorithmic work on
this problem is the orthogonal representation, introduced by Tamassia [28], which describes
orthogonal drawings listing (i) the angles formed by consecutive edges around each vertex
and (ii) the directions of bends along the edges. Such a representation is valid if (I) the
angles around each vertex sum to 360°, and (II) the sum of the angles around each face
with k vertices is (k − 2) · 180° for internal faces and (k + 2) · 180° for the outer face. The
necessity of the first condition is obvious and the necessity of the latter follows from the sum of
inner/outer angles of any polygon with k corners. It is thus clear that any orthogonal drawing
yields a valid orthogonal representation, and Tamassia [28] showed that the converse holds
true as well; for a valid orthogonal representation there exists a corresponding orthogonal
drawing that realizes this representation. Moreover, the proof is constructive and allows the
efficient construction of such a drawing, a process that is referred to as compaction.

Altogether this enables a three-step approach for computing orthogonal drawings, the
so-called Topology-Shape-Metrics Framework, which works as follows. First, fix a topology, i.e.,
combinatorial embedding of the graph in the plane (possibly planarizing it if it is non-planar);

1 Note that ortho-radial drawings exclude the center of the grid, which is slightly different to the concentric
circles maps by Maxwell J. Roberts.

B. Niedermann, I. Rutter, and M. Wolf 53:3

second, determine the shape of the drawing by constructing a valid orthogonal representation
with few bends; and finally, compactify the orthogonal representation by assigning suitable
vertex coordinates and edge lengths (metrics). As mentioned before, this reduces the problem
of computing an orthogonal drawing of a planar graph with a fixed embedding to the purely
combinatorial problem of finding a valid orthogonal representation, preferably with few bends.
The task of actually creating a corresponding drawing in polynomial time is then taken over
by the framework. It is this approach that is at the heart of a large body of literature on
bend minimization algorithms for orthogonal drawings (e.g., [5, 15, 13, 16, 10, 11, 12]).

Very recently Barth et al. [2] proposed a generalization of orthogonal representations
to ortho-radial drawings, called ortho-radial representations, with the goal of establishing
an ortho-radial analogue of the TSM framework for ortho-radial drawings. They show that
a natural generalization of the validity conditions (I) and (II) above is not sufficient, and
introduce a third, less local condition that excludes so-called monotone cycles, which do
not admit an ortho-radial drawing. They show that these three conditions together fully
characterize ortho-radial drawings. Before that, characterizations for bend-free ortho-radial
drawings were only known for paths, cycles and theta graphs [21]. Further, for the special
case that each internal face is a rectangle, a characterization for cubic graphs was known [20].

With the result by Barth et al. finding an ortho-radial drawing for a planar graph with
fixed-embedding reduces to the purely combinatorial problem of finding a valid ortho-radial
representation. In particular, since bends can be seen as additionally introduced vertices
subdividing edges, finding an ortho-radial drawing with minimum number of bends reduces
to finding a valid ortho-radial representation with minimum number of such additionally
introduced vertices. In this sense, the work by Barth et al. constitutes a major step towards
computing ortho-radial drawings with minimum number of bends.

Yet, it is here where their work still contains a major gap. While the work of Barth et al.
shows that valid ortho-radial representations fully characterize ortho-radial drawings, it is
unclear if it can be checked efficiently whether a given ortho-radial representation is valid.
Moreover, while their existential proof of a corresponding drawing is constructive, it needs to
repeatedly test whether certain ortho-radial representations are valid.

Contribution and Outline. We develop such a test running in quadratic time, thus imple-
menting the compaction step of the TSM framework with polynomial running time. While
this does not yet directly allow us to compute ortho-radial drawings with few bends, our
result paves the way for a purely combinatorial treatment of bend minimization in ortho-
radial drawings, thus enabling the same type of tools that have proven highly successful in
minimizing bends in orthogonal drawings.

At the core of our validity testing algorithm are several new insights into the structure
of ortho-radial representations. The algorithm itself is a left-first DFS that uses suitable
constraints to determine candidates for monotone cycles in such a way that if a given ortho-
radial representation contains a monotone cycle, then one of the candidates is monotone.
While it may be obvious to use a DFS for finding cycles in general, it is far from clear
how such a search works for monotone cycles in ortho-radial representations. Plugging
this test as a black box into the drawing algorithm of Barth et al. yields an O(n4)-time
algorithm for computing a drawing from a valid ortho-radial representation, where n is the
number of vertices. Using further structural insights on the augmentation process we improve
the running time of this algorithm to O(n2). Hence, our result is not only of theoretical
interest, but the algorithm can be actually deployed. We believe that the algorithm is a
useful intermediate step for providing initial network layouts to map designers and layout
algorithms such as force directed algorithms; see also Section 5.

SoCG 2019

53:4 Efficient Algorithms for Ortho-Radial Graph Drawing

In Section 2 we present preliminaries that are used throughout the paper. First we
formally define ortho-radial representations and recall the most important results from [2].
Afterwards we show that for the purpose of validity checking and determining the existence
of a monotone cycle, we can restrict ourselves to so-called normalized instances. In Section 3
we give a validity test for ortho-radial representations that runs in O(n2) time. Afterwards,
in Section 4, we revisit the rectangulation procedure from [2] and show that using the
techniques from Section 3 it can be implemented to run in O(n2) time, improving over a
naive application which would yield running time O(n4). Together with [2] this enables a
purely combinatorial treatment of ortho-radial drawings. We conclude with a summary and
some open questions in Section 5.

2 Preliminaries

We first formally introduce ortho-radial drawings and ortho-radial representations. Afterwards
we present two transformations that we use to simplify the discussion of symmetric cases.

2.1 Ortho-Radial Drawings and Representations
We use the same definitions and conventions on ortho-radial drawings as presented by Barth
et al. [2]; for the convenience of the reader we briefly repeat them here. In particular, we only
consider drawings and representations without bends on the edges. As argued in [2], this
is not a restriction, since it is always possible to transform a drawing/representation with
bends into one without bends by subdividing edges so that a vertex is placed at each bend.

We are given a planar 4-graph G = (V, E) with n vertices and fixed embedding, where a
graph is a 4-graph if it has only vertices with degree at most four. We define that a path P

in G is always simple, while a cycle C may contain vertices multiple times but may not cross
itself. All cycles are oriented clockwise, so that their interiors are locally to the right. A
cycle is part of its interior and exterior. We denote the subpath of P from u to v by P [u, v]
assuming that u and v are included. For any path P = v1, . . . , vk its reverse is P = vk, . . . , v1.
The concatenation of two paths P1 and P2 is written as P1 + P2. For a cycle C in G that
contains any edge at most once, the subpath C[e, e′] between two edges e and e′ on C is the
unique path on C that starts with e and ends with e′. If the start vertex u of e is contained
in C only once, we also write C[u, e′], because then e is uniquely defined by u. Similarly, if
the end vertex v of e′ is contained in C only once, we also write C[e, v]. We also use this
notation to refer to subpaths of simple paths.

In an ortho-radial drawing ∆ of G each edge is directed and drawn either clockwise,
counter-clockwise, towards the center or away from the center. Hence, using the metaphor of
a cylinder, the edges point right, left, down or up, respectively. Moreover, horizontal edges
point left or right, while vertical edges point up or down; see Figure 1.

We distinguish two types of simple cycles. If the center of the grid lies in the interior
of a simple cycle, the cycle is essential and otherwise non-essential. Further, there is an
unbounded face in ∆ and a face that contains the center of the grid; we call the former the
outer face and the latter the central face; in our drawings we mark the central face using a
small “x”. All other faces are regular.

For two edges uv and vw incident to the same vertex v, we define the rotation rot(uvw)
as 1 if there is a right turn at v, 0 if uvw is straight and −1 if there is a left turn at v. In
the special case that u = w, we have rot(uvw) = −2.

The rotation of a path P = v1, . . . , vk is the sum of the rotations at its internal vertices,
i.e.,

∑k−1
i=2 rot(vi−1vivi+1). Similarly, for a cycle C = v1, . . . , vk, v1, its rotation is the

sum of the rotations at all its vertices (where we define v0 = vk and vk+1 = v1), i.e.,

B. Niedermann, I. Rutter, and M. Wolf 53:5

rot(C) =
∑k

i=1 rot(vi−1vivi+1). We observe that rot(P) = rot(P [s, e]) + rot(P [e, t]) for any
path P from s to t and any edge e on P . Further, we have rot(P) = − rot(P). For a face f

we use rot(f) to denote the rotation of the facial cycle that bounds f (oriented such that f

lies on the right side of the cycle).
As introduced by Barth et al. [2], an ortho-radial representation Γ of a 4-planar graph G

fixes the central and outer face of G as well as a reference edge e? on the outer face such
that the outer face is locally to the left of e?. Following the convention established by Barth
et al. [2] the reference edge always points right. Further, Γ specifies for each face f of G a
list H(f) that contains for each edge e of f the pair (e, a), where a ∈ {90°, 180°, 270°, 360°}.
The interpretation of (e, a) is that the edge e is directed such that the interior of f locally
lies to the right of e and a specifies the angle inside f from e to the following edge. The
notion of rotations can be extended to these descriptions since we can compute the angle at
a vertex v enclosed by edges uv and vw by summing the corresponding angles in the faces
given by the a-values. For such a description to be an ortho-radial representation, two local
conditions need to be satisfied:
1. The angle sum of all edges around each vertex given by the a-fields is 360°.
2. For each face f , we have

rot(f) =

4, f is a regular face
0, f is the outer or the central face but not both
−4, f is both the outer and the central face.

These conditions ensure that angles are assigned correctly around vertices and inside
faces, which implies that all properties of rotations mentioned above hold. An ortho-radial
representation Γ of a graph G is drawable if there is a drawing ∆ of G embedded as specified
by Γ such that the corresponding angles in ∆ and Γ are equal and the reference edge e?

points to the right. Unlike for orthogonal representations the two conditions do not guarantee
that the ortho-radial representation is drawable. Therefore, Barth et al. [2] introduced a
third condition, which is formulated in terms of labelings of essential cycles.

For a simple, essential cycle C in G and a path P from the target vertex s of the
reference edge e? to a vertex v on C the labeling `P

C assigns to each edge e on C the label
`P

C(e) = rot(e? + P + C[v, e]). In this paper we always assume that P is elementary, i.e.,
P intersects C only at its endpoints. For these paths the labeling is independent of the
actual choice of P , which was shown by Barth et al. [2]. We therefore drop the superscript
P and write `C(e) for the labeling of an edge e on an essential cycle C. We call an essential
cycle monotone if either all its labels are non-negative or all its labels are non-positive. A
monotone cycle is a decreasing cycle if it has at least one strictly positive label, and it is an
increasing cycle if C has at least one strictly negative label. An ortho-radial representation
is valid if it contains neither decreasing nor increasing cycles. The validity of an ortho-radial
representation ensures that on each essential cycle with at least one non-zero label there is
at least one edge pointing up and one pointing down. The main theorem of Barth et al. [2]
can be stated as follows.2

I Proposition 1 (Reformulation of Theorem 5 in [3]). An ortho-radial representation is
drawable if and only if it is valid.

2 In the following we refer to the full version [3] of [2], when citing lemmas and theorems.

SoCG 2019

53:6 Efficient Algorithms for Ortho-Radial Graph Drawing

To that end, Barth et al. [3] prove the following results among others. Since we use them
throughout this paper, we restate them for the convenience of the reader. Both assume
ortho-radial representations that are not necessarily valid.

I Proposition 2 (Lemma 12 in [3]). Let C1 and C2 be two essential cycles and let H = C1+C2
be the subgraph of G formed by these two cycles. For any common edge vw of C1 and C2
where v lies on the central face of H, the labels of vw are equal, i.e., `C1(vw) = `C2(vw).

I Proposition 3 (Lemma 16 in [3]). Let C and C ′ be two essential cycles that have at least one
common vertex. If all edges on C are labeled with 0, C ′ is neither increasing nor decreasing.

Proposition 2 is a useful tool for comparing the labels of two interwoven essential cycles.
For example, if C1 is decreasing, we can conclude for all edges of C2 that also lie on C1 and
that are incident to the central face of H that they have non-negative labels. Proposition 3
is useful in the scenario where we have an essential cycle C with non-negative labels, and
a decreasing cycle C ′ that shares a vertex with C. We can then conclude that C is also
decreasing. In particular, these two propositions together imply that the central face of the
graph H formed by two decreasing cycles is bounded by a decreasing cycle.

2.2 Symmetries and Normalization
In our arguments we frequently exploit certain symmetries. For an ortho-radial representation
Γ we introduce two new ortho-radial representations, its flip Γ and itsmirror Γ̂. Geometrically,
viewed as a drawing on a cylinder, a flip corresponds to rotating the cylinder by 180° around
a line perpendicular to the axis of the cylinder so that it is upside down, whereas mirroring
corresponds to mirroring it at a plane that is parallel to the axis of the cylinder. Intuitively,
the first transformation exchanges left/right and top/bottom, and thus preserves monotonicity
of cycles, while the second transformation exchanges left/right but not top/bottom, and thus
maps increasing cycles to decreasing ones and vice versa. This intuition is indeed true with
the correct definitions of Γ and Γ̂, but due to the non-locality of the validity condition for
ortho-radial representations and the dependence on a reference edge this requires some care.

Moreover, in the following sections we restrict ourselves to instances with minimum
degree 2, which we call normalized instances. To this end we replace each degree-1 vertex v

by a 4-cycle forming a rectangle. Since v is not part of any simple essential cycle, this does
not affect the validity of the representation. Normalized instances do not contain 360◦ turns
at vertices, which simplifies our arguments. See the full version of this paper for details [24].

3 Finding Monotone Cycles

The two conditions for ortho-radial representations are local and checking them can easily be
done in linear time. We therefore assume in this section that we are given a planar 4-graph
G with an ortho-radial representation Γ. The condition for validity however references all
essential cycles of which there may be exponentially many. We present an algorithm that
checks whether Γ contains a monotone cycle and computes such a cycle if one exists. The
main difficulty is that the labels on a decreasing cycle C depend on an elementary path P

from the reference edge to C. However, we know neither the path P nor the cycle C in
advance, and choosing a specific cycle C may rule out certain paths P and vice versa.

We only describe how to search for decreasing cycles; increasing cycles can be found
by searching for decreasing cycles in the mirrored representation. A decreasing cycle C is
outermost if it is not contained in the interior of any other decreasing cycle. Clearly, if Γ
contains a decreasing cycle, then it also has an outermost one. We first show that in this
case this cycle is uniquely determined.

B. Niedermann, I. Rutter, and M. Wolf 53:7

v w
−4/0

0/4

0/4

C v

Q

w

x
y

P

p

b

Figure 3 The search from vw finds the non-
decreasing cycle C. Edges are labeled `C(e)/˜̀(e).

Figure 4 Path Q and its prefix P that
leaves C once and ends at a vertex p of C.

I Lemma 4. If Γ contains a decreasing cycle, there is a unique outermost decreasing cycle.

Proof. Assume that Γ has two outermost decreasing cycles C1 and C2, i.e., C1 does not
lie in the interior of C2 and vice versa. Let C be the cycle bounding the outer face of the
subgraph H = C1 + C2 that is formed by the two decreasing cycles. By construction, C1 and
C2 lie in the interior of C, and we claim that C is a decreasing cycle contradicting that C1
and C2 are outermost. To that end, we show that `C(e) = `C1(e) for any edge e that belongs
to both C and C1, and `C(e) = `C2(e) for any edge e that belongs to both C and C2. Hence,
all edges of C have a non-negative label since C1 and C2 are decreasing. By Proposition 3
there is at least one label of C that is positive, and hence C is a decreasing cycle.

It remains to show that `C(e) = `C1(e) for any edge e that belongs to both C and C1;
the case that e belongs to both C and C2 can be handled analogously. Let ΓH be the
ortho-radial representation Γ restricted to H. We flip the cylinder to exchange the outer
face with the central face and vice versa. More precisely, the reverse edge e of e lies on the
central face of the flipped representation ΓH of ΓH . Further, it proves that `C(e) = `C(e)
and `C1

(e) = `C1(e), where ` is the labeling in ΓH . Hence, by Proposition 2 we obtain
`C(e) = `C1

(e). Flipping back the cylinder, we obtain `C(e) = `C1(e). J

The core of our algorithm is an adapted left-first DFS. Given a directed edge e it determines
the outermost decreasing cycle C in Γ such that C contains e in the given direction and e

has the smallest label among all edges on C, if such a cycle exists. By running this test for
each directed edge of G as the start edge, we find a decreasing cycle if one exists.

Our algorithm is based on a DFS that visits each vertex at most once. A left-first search
maintains for each visited vertex v a reference edge ref(v), the edge of the search tree via
which v was visited. Whenever it has a choice which vertex to visit next, it picks the first
outgoing edge in clockwise direction after the reference edge that leads to an unvisited vertex.
In addition to that, we employ a filter that ignores certain outgoing edges during the search.
To that end, we define for all outgoing edges e incident to a visited vertex v a search label ˜̀(e)
by setting ˜̀(e) = ˜̀(ref(v)) + rot(ref(v) + e) for each outgoing edge e of v. In our search we
ignore edges with negative search labels. For a given directed edge vw in G we initialize the
search by setting ref(w) = vw, ˜̀(vw) = 0 and then start searching from w.

Let T denote the directed search tree with root w constructed by the DFS in this fashion.
If T contains v, then this determines a candidate cycle C containing the edge vw. If C is
a decreasing cycle, which we can easily check by determining an elementary path from the
reference edge to C, we report it. Otherwise, we show that there is no outermost decreasing
cycle C such that vw lies on C and has the smallest label among all edges on C.

It is necessary to check that C is essential and decreasing. For example the cycle in
Figure 3 is found by the search and though it is essential, it is nondecreasing. This is caused
by the fact that the label of vw is actually −4 on this cycle but the search assumes it to be 0.

SoCG 2019

53:8 Efficient Algorithms for Ortho-Radial Graph Drawing

v w P

p
b

(a) The edge vw lies on the outer face of H.

v w
P

a
b
c

d

x y

p

(b) The edge vw does not lie on the outer face of H.

Figure 5 The two possible embeddings of the subgraph formed by the decreasing cycle C and
the path P , which was found by the search.

I Lemma 5. Assume Γ contains a decreasing cycle. Let C be the outermost decreasing cycle
of Γ and let vw be an edge on C with the minimum label, i.e., `C(vw) ≤ `C(e) for all edges e

of C. Then the left-first DFS from vw finds C.

Proof. Assume that the search does not find C. Let T be the tree formed by the edges
visited by the search. Since the search does not find C by assumption, a part of C[w, v] does
not belong to T . Let xy be the first edge on C[w, v] that is not visited, i.e., C[w, x] is a
part of T but xy 6∈ T . There are two possible reasons for this. Either ˜̀(xy) < 0 or y has
already been visited before via another path Q from w with Q 6= C[w, y]. The case ˜̀(xy) < 0
can be excluded as follows. By the construction of the labels ˜̀, for any path P from w to a
vertex z in T and any edge e′ incident to z we have ˜̀(e′) = rot(vw + P + e′). In particular,
˜̀(xy) = rot(C[vw, xy]) = `C(xy)− `C(vw) ≥ 0 since the rotation can be rewritten as a label
difference (see [3, Obs. 7]) and vw has the smallest label on C.

Hence, T contains a path Q from w to x that was found by the search before and Q does
not completely lie on C. There is a prefix of Q (possibly of length 0) lying on C followed
by a subpath not on C until the first vertex p of Q that again belongs to C; see Figure 4.
We set P = Q[w, p] and denote the vertex where P leaves C by b. By construction the
edge vw lies on C[p, b]. The subgraph H = P + C that is formed by the decreasing cycle
C and the path P consists of the three internally vertex-disjoint paths P [b, p], C[b, p] and
C[b, p] between b and p. Since edges that are further left are preferred during the search, the
clockwise order of these paths around b and p is fixed. In H there are three faces, bounded
by C, C[b, p] + P [p, b] and P [b, p] + C[p, b], respectively. Since C is an essential cycle and
a face in H, it is the central face and one of the two other faces is the outer face. These
two possibilities are shown in Figure 5. We denote the cycle bounding the outer face but
in which the edges are directed such that the outer face lies locally to the left by C ′. That
is, the boundary of the outer face is C ′. We distinguish cases based on which of the two
possible cycles constitutes C ′.

If C ′ = C[b, p] + P [p, b] forms the outer face of H, vw lies on C ′ as illustrated in Figure 5a
and we show that C ′ is a decreasing cycle, which contradicts the assumption that C is the
outermost decreasing cycle. Since P is simple and lies in the exterior of C, the path P

is contained in C ′, which means C ′[w, p] = P . The other part of C ′ is formed by C[p, w].
Since C forms the central face of H, the labels of the edges on C[p, w] are the same for C

and C ′ by Proposition 2. In particular, `C(vw) = `C′(vw) and all the labels of edges on
C[p, w] are non-negative because C is decreasing. The label of any edge e on both C ′ and
P is `C′(e) = `C′(vw) + rot(vw + P [w, e]) = `C(vw) + ˜̀(e) ≥ 0. Thus, the labeling of C ′ is
non-negative. Further, not all labels of C ′ are 0 since otherwise C would not be a decreasing
cycle by Proposition 3. Hence, C ′ is decreasing and contains C in its interior, a contradiction.

If C ′ = C[p, b] + P [b, p], the edge vw does not lie on C ′; see Figure 5b. We show that
C ′ is a decreasing cycle containing C in its interior, again contradicting the choice of C.
As above, Proposition 2 implies that the common edges of C and C ′ have the same labels

B. Niedermann, I. Rutter, and M. Wolf 53:9

f

u e1

e2

e3

v

w

z

(a) Multiple edge candidates.

u

wv z

(b) Vertical.

u w

v

C
x

z

(c) Horizontal.

C ′

v

z
w

u
x

(d) Horizontal.

u wi

vi
vi+1

wi+1

(e) Horizontal.

Figure 6 Examples of augmentations. (a) The candidate edges of u are e1, e2 and e3. (b) Insertion
of vertical edge uz. (c) Γu

vw contains a decreasing cycle. (d) Γu
vw is valid. (e) Insertion of horizontal

edge uwi because there is a horizontal path from wi to u.

on both cycles. It remains to show that all edges xy on P [p, b] have non-negative labels.
To establish this we use paths to the edge that follows b on C. This edge bc has the same
label on both cycles and thus provides a handle on `C′(xy). We make use of the following
equations, which follow immediately from the definition of the (search) labels.

`C′(bc) = `C′(xy) + rot(P [xy, db]) + rot(dbc) = `C′(xy)− rot(P [bd, yx])− rot(cbd)
`C(bc) = `C(vw) + rot(C[vw, ab]) + rot(abc)
˜̀(yx) = rot(C[vw, ab]) + rot(abd) + rot(P [bd, yx])

Since `C(bc) = `C′(bc) and rot(abd) = − rot(dba), we thus get

`C′(xy) = `C(vw) + rot(C[vw, ab]) + rot(abc) + rot(P [bd, yx]) + rot(cbd)
= `C(vw) + ˜̀(yx) + rot(dba) + rot(abc) + rot(cbd).

Since `C(vw) ≥ 0 and ˜̀(yx) ≥ 0 (as yx was not filtered out), it follows that `C′(xy) ≥
rot(abc) + rot(dba) + rot(cbd) = 2 as this is the sum of clockwise rotations around a degree-3
vertex. Hence, C ′ is decreasing and contains C in its interior, a contradiction. Since both
embeddings of H lead to a contradiction, we obtain a contradiction to our initial assumption
that the search fails to find C. J

The left-first DFS clearly runs in O(n) time. In order to guarantee that the search finds a
decreasing cycle if one exists, we run it for each of the O(n) directed edges of G. Since some
edge must have the lowest label on the outermost decreasing cycle, Lemma 5 guarantees that
we eventually find a decreasing cycle if one exists. Increasing cycles can be found by finding
decreasing cycles in the mirror representation Γ̂.

I Theorem 6. Let G be a planar 4-graph on n vertices and let Γ be an ortho-radial repres-
entation of G. It can be determined in O(n2) time whether Γ is valid.

4 Rectangulation

The core of the algorithm for drawing a valid ortho-radial representation Γ of a graph G by
Barth et al. [2] is a rectangulation procedure that successively augments G with new vertices
and edges to a graph G∗ along with a valid ortho-radial representation Γ∗ where every face of
G∗ is a rectangle. A regular face is a rectangle if it has exactly four turns, which are all right
turns. The outer and central faces are rectangles if they have no turns. The ortho-radial
representation Γ∗ is then drawn by computing flows in two flow networks [3, Thm. 18].

SoCG 2019

53:10 Efficient Algorithms for Ortho-Radial Graph Drawing

To facilitate the analysis, we briefly sketch the augmentation procedure. Here it is crucial
that we assume our instances to be normalized; in particular they do not have degree-1
vertices. The augmentation algorithm works by augmenting non-rectangular faces one by
one, thereby successively removing concave angles at the vertices until all faces are rectangles.
Consider a face f with a left turn (i.e., a concave angle) at u such that the following two
turns when walking along f (in clockwise direction) are right turns; see Figure 6. We call
u a port of f . We define a set of candidate edges that contains precisely those edges vw of
f , for which rot(f [u, vw]) = 2; see Figure 6a. We treat this set as a sequence, where the
edges appear in the same order as in f , beginning with the first candidate after u. The
augmentation Γu

vw with respect to a candidate edge vw is obtained by splitting the edge vw

into the edges vz and zw, where z is a new vertex, and adding the edge uz in the interior of
f such that the angle formed by zu and the edge following u on f is 90°. The direction of the
new edge uz in Γu

vw is the same for all candidate edges. If this direction is vertical, we call
u a vertical port and otherwise a horizontal port. We note that any vertex with a concave
angle in a face becomes a port during the augmentation process. In particular, the incoming
edge of the vertex determines whether the port is horizontal or vertical. The condition for
candidates guarantees that Γu

vw is an ortho-radial representation. It may, however, not be
valid. The crucial steps in [2] are establishing the following facts.
Fact 1) Let u be a vertical port. Augmenting with the first candidate never produces a

monotone cycle [3, Lemma 21].
Fact 2) Let u be a horizontal port. Augmenting with the first candidate never produces

an increasing cycle [3, Lemma 22] and augmenting with the last candidate never
produces a decreasing cycle [3, Lemma 24].

Fact 3) Let u be a horizontal port. If two consecutive candidates ei = viwi and ei+1 =
vi+1wi+1 produce a decreasing and an increasing cycle, respectively, then wi, vi+1
and u lie on a path that starts at wi or vi+1, and whose edges all point right; see
Figure 6e. A suitable augmentation can be found in O(n) time. [3, Lemmas 25, 26].

It thus suffices to test for each candidate whether Γu
vw is valid until either such a valid

augmentation is found or we find two consecutive candidate edges where the first produces a
decreasing cycle and the second produces an increasing cycle. Then, Fact 3 yields the desired
valid augmentation. Since each valid augmentation reduces the number of concave angles, we
obtain a rectangulation after O(n) valid augmentations. Moreover, there are O(n) candidates
for each augmentation, each of which can be tested for validity (and increasing/decreasing
cycles can be detected) in O(n2) time by Theorem 6. Thus, the augmentation algorithm can
be implemented to run in O(n4) time.

In the remainder of this section we outline an improvement to O(n2) time, which is
achieved in two steps. First, we show that due to the nature of augmentations the validity
test can be done in O(n) time. Second, for each augmentation we execute a post-processing
that reduces the number of validity tests to O(n) in total. The detailed constructions and
omitted proofs of both steps are deferred to [24].

4.1 1st Improvement – Faster Validity Test
Recall from above that, once we picked a port u in a face f , there is an ordered set of
candidate edges e1, . . . , ek. We know from [2] that one of the augmentations Γu

ei
leads to a

valid augmentation. We improve on naively testing the validity of Γu
ei

in quadratic time.
If u is a vertical port (Figure 6b), Fact 1 guarantees that Γu

e1
is valid, so no validity test

is required. If u is a horizontal port (Figure 6c–e), we assume w.l.o.g. that the inserted edge
points to the right; otherwise we consider the flipped representation Γ.

B. Niedermann, I. Rutter, and M. Wolf 53:11

v

z
w

u

e1

e2

f ′

C ′

C

Figure 7 A decreasing cycle C that uses
uz and an essential cycle C′ derived from C.

z

w′

v′
C

u

Figure 8 Here, the insertion of the edge uz

to the last candidate v′w′ introduces an in-
creasing cycle C with `C(uz) = −4.

We show that in this case we can strongly restrict the direction of a monotone cycle as
well as its label for the new edge uz. We start with the detection of decreasing cycles and
show that for the augmentation with the first candidate edge e1 = vw a decreasing cycle C in
Γu

vw may only use the new edge uz in the direction from u to z and in this case its label is 0.

I Lemma 7. Let vw be the first candidate on f after u. If Γu
vw contains a decreasing cycle C,

then C contains uz in this direction and `C(uz) = 0.

Proof. We first consider the case that C uses uz (and not zu) and assume that `C(uz) 6= 0;
see Figure 7. Since uz points right, `C(uz) is divisible by 4. Together with `C(uz) ≥ 0
because C is decreasing, we obtain `C(uz) ≥ 4. By Lemma 14 of [3] there is an essential
cycle C ′ without uz in the subgraph H that is formed by the new rectangular face f ′ and
C. The labels of any common edge e of C and C ′ are equal and `C′(e) = `C(e) ≥ 0. All
other edges of C ′ lie on f ′. Since f ′ is rectangular, the labels of these edges differ by at
most 1 from `C(uz). By assumption it is `C(uz) ≥ 4 and therefore `C′(e) ≥ 3 for all edges
e ∈ C ′ ∩ f ′. Hence, C ′ is a decreasing cycle in G contradicting the validity of Γ. If zu ∈ C,
it is `C(zu) ≥ 2 and a similar argument yields a decreasing cycle in Γ. J

While the same statement does not generally hold for all candidates, it does hold if the
first candidate creates a decreasing cycle.

I Lemma 8. Let vw be the first candidate and v′w′ be another candidate. Denote the edge
inserted in Γu

v′w′ by uz′. If Γu
vw contains a decreasing cycle, any decreasing cycle C ′ in Γu

v′w′

uses uz′ in this direction and `C′(uz′) = 0.

Altogether, we can efficiently test which of the candidates produce decreasing cycles as
follows. By Lemma 7, if the first candidate is not valid, then Γu

e1
has a decreasing cycle that

contains the new edge uz with label 0, which is hence the minimum label for all edges on the
cycle. This can be tested in O(n) time by Lemma 5. Fact 2 guarantees that we either find
a valid augmentation or a decreasing cycle. In the former case we are done, in the second
case Lemma 8 allows us to similarly restrict the labels of uz to 0 for the remaining candidate
edges, thus allowing us to detect decreasing cycles in Γu

ei
in O(n) time for i = 2, . . . , k.

It is tempting to use the mirror symmetry to exchange increasing and decreasing cycles
to deal with increasing cycles in an analogous fashion. However, this fails as mirroring
invalidates the property that u is followed by two right turns in clockwise direction. For
example, in Figure 8 inserting the edge to the last candidate introduces an increasing cycle C

with `C(uz) = −4. We therefore give a direct algorithm for detecting increasing cycles
in this case.

Let ei = viwi and ei+1 = vi+1wi+1 be two consecutive candidates for u such that Γu
ei

contains a decreasing cycle but Γu
ei+1

does not. If Γu
ei+1

contains an increasing cycle, then by
Fact 3 the vertices wi, vi+1 and u lie on a path that starts at wi or vi+1, and whose edges

SoCG 2019

53:12 Efficient Algorithms for Ortho-Radial Graph Drawing

all point right. The presence of such a horizontal path P can clearly be checked in linear
time, thus allowing us to also detect increasing cycles provided that the previous candidate
produced a decreasing cycle. If P exists, we insert the edge uwi or uvi+1 depending on
whether P starts at wi or vi+1, respectively; see Figure 6e for the first case. By Proposition 3
this does not produce monotone cycles. Otherwise, if P does not exist, the augmentation
Γu

ei+1
is valid. In both cases we have resolved the horizontal port u successfully.

Summarizing, the overall algorithm for augmenting from a horizontal port u now works
as follows. By exploiting Lemmas 7 and 8, we test the candidates in the order as they
appear on f until we find the first candidate e for which Γu

e does not contain a decreasing
cycle. Using Fact 3 we either find that Γu

e is valid, or we find a horizontal path as described
above. In both cases this allows us to determine an edge whose insertion does not introduce
a monotone cycle. Since in each test for a decreasing cycle the edge uz can be restricted
to have label 0, each of the tests takes linear time. This improves the running time of the
rectangulation algorithm to O(n3).

Instead of linearly searching for a suitable candidate for u we can employ a binary search
on the candidates, which reduces the overall running time to O(n2 log n).

4.2 2nd Improvement – 2-Phase Augmentation Step
We add a second phase to our augmentation step that post-processes the resulting augment-
ation after each step to reduce the total number of validity tests to O(n).

More precisely, the first phase of the augmentation step inserts a new edge uz in a given
ortho-radial representation Γ for a port u as before; we denote the resulting valid ortho-radial
representation by Γ′. Afterwards, if u is a horizontal port, we apply the second phase on
u. Let e1, . . . , ek be the candidates of u, where ek is the candidate for the first validity test
that does not fail in the first phase. We call e1, ek−1 and ek boundary candidates and the
others intermediate candidates. The second phase augments Γ′ such that afterwards each
intermediate candidate belongs to a rectangle in the resulting ortho-radial representation Γ′′.
Further, Γ′′ has fewer vertices with concave angles becoming horizontal ports and at most two
more vertices with concave angles becoming vertical ports during the remaining augmentation
process. As the second phase is skipped for vertical ports, O(n) augmentation steps are
executed overall. Moreover, each edge can be an intermediate candidate for at most one
vertex, which yields that there are O(n) intermediate candidates over all augmentation
steps. Finally, for each port there are at most three boundary candidates, which yields
O(n) boundary candidates over all augmentation steps. Assigning the validity tests to their
candidates, the algorithm executes O(n) validity tests overall. Altogether, this yields O(n2)
running time in total.

I Theorem 9. Given a valid ortho-radial representation Γ of a graph G, a corresponding
rectangulation can be computed in O(n2) time.

In particular, using Corollary 19 from [3], given a graph G with valid ortho-radial
representation Γ, a corresponding ortho-radial drawing ∆ can be computed in O(n2) time.

5 Conclusion

In this paper, we have described an algorithm that checks the validity of an ortho-radial
representation in O(n2) time. In the positive case, we can also produce a corresponding
drawing in the same running time, whereas in the negative case we find a monotone cycle.
This answers an open question of Barth et al. [2] and allows for a purely combinatorial

B. Niedermann, I. Rutter, and M. Wolf 53:13

treatment of the bend minimization problem for ortho-radial drawings. It is an interesting
open question whether the running time can be improved to near-linear. However, our main
open question is how to find valid ortho-radial representations with few bends.

References
1 Md. Jawaherul Alam, Stephen G. Kobourov, and Debajyoti Mondal. Orthogonal layout with

optimal face complexity. Computational Geometry, 63:40–52, 2017.
2 Lukas Barth, Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. Towards a Topology-

Shape-Metrics Framework for Ortho-Radial Drawings. In Boris Aronov and Matthew J. Katz,
editors, Computational Geometry (SoCG’17), volume 77 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 14:1–14:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2017.

3 Lukas Barth, Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. Towards a Topology-
Shape-Metrics Framework for Ortho-Radial Drawings. CoRR, arXiv:1703.06040, 2017. arXiv:
1703.06040.

4 Carlo Batini, Enrico Nardelli, and Roberto Tamassia. A layout algorithm for data flow
diagrams. IEEE Transactions on Software Engineering, SE-12(4):538–546, 1986.

5 P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the
minimum number of bends. IEEE Transactions on Computers, 49(8):826–840, 2000.

6 Sandeep N. Bhatt and Frank Thomson Leighton. A framework for solving VLSI graph layout
problems. Journal of Computer and System Sciences, 28(2):300–343, 1984.

7 Therese Biedl. New lower bounds for orthogonal graph drawings. In Franz J. Brandenburg,
editor, Graph Drawing (GD’96), Lecture Notes of Computer Science, pages 28–39. Springer
Berlin Heidelberg, 1996.

8 Therese Biedl and Goos Kant. A better heuristic for orthogonal graph drawings. Computational
Geometry, 9(3):159–180, 1998.

9 Therese C. Biedl, Brendan P. Madden, and Ioannis G. Tollis. The three-phase method: A
unified approach to orthogonal graph drawing. In Giuseppe DiBattista, editor, Graph Drawing
(GD’97), Lecture Notes in Computer Science, pages 391–402. Springer Berlin Heidelberg, 1997.

10 Thomas Bläsius, Ignaz Rutter, and Dorothea Wagner. Optimal orthogonal graph drawing
with convex bend costs. ACM Transactions on Algorithms, 12(3):33, 2016.

11 Thomas Bläsius, Sebastian Lehmann, and Ignaz Rutter. Orthogonal graph drawing with
inflexible edges. Computational Geometry, 55:26–40, 2016.

12 Yi-Jun Chang and Hsu-Chun Yen. On Bend-Minimized Orthogonal Drawings of Planar 3-
Graphs. In Boris Aronov and Matthew J. Katz, editors, Computational Geometry (SoCG’17),
volume 77 of Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

13 Sabine Cornelsen and Andreas Karrenbauer. Accelerated Bend Minimization. In Marc van
Kreveld and Bettina Speckmann, editors, Graph Drawing (GD’12), Lecture Notes of Computer
Science, pages 111–122. Springer Berlin Heidelberg, 2012.

14 Markus Eiglsperger, Carsten Gutwenger, Michael Kaufmann, Joachim Kupke, Michael Jünger,
Sebastian Leipert, Karsten Klein, Petra Mutzel, and Martin Siebenhaller. Automatic Layout
of UML Class Diagrams in Orthogonal Style. Information Visualization, 3(3):189–208, 2004.

15 Markus Eiglsperger, Michael Kaufmann, and Martin Siebenhaller. A Topology-shape-metrics
Approach for the Automatic Layout of UML Class Diagrams. In Software Visualization
(SoftVis’03), pages 189–ff. ACM, 2003.

16 Stefan Felsner, Michael Kaufmann, and Pavel Valtr. Bend-optimal orthogonal graph drawing
in the general position model. Computational Geometry, 47(3, Part B):460–468, 2014. Special
Issue on the 28th European Workshop on Computational Geometry (EuroCG 2012).

17 Martin Fink, Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian Schuhmann, and
Alexander Wolff. Drawing Metro Maps Using Bézier Curves. In W Didimo and M Patrignani,
editors, Graph Drawing (GD’13), Lecture Notes in Computer Science, pages 463–474. Springer
International Publishing, 2013.

SoCG 2019

http://arxiv.org/abs/1703.06040
http://arxiv.org/abs/1703.06040

53:14 Efficient Algorithms for Ortho-Radial Graph Drawing

18 Ulrich Fößmeier and Michael Kaufmann. Drawing high degree graphs with low bend numbers.
In Franz J. Brandenburg, editor, Graph Drawing (GD’96), Lecture Notes in Computer Science,
pages 254–266. Springer Berlin Heidelberg, 1996.

19 Carsten Gutwenger, Michael Jünger, Karsten Klein, Joachim Kupke, Sebastian Leipert, and
Petra Mutzel. A New Approach for Visualizing UML Class Diagrams. In Symposium on
Software Visualization (SoftVis’03), pages 179–188, New York, NY, USA, 2003. ACM.

20 Madieh Hasheminezhad, S. Mehdi Hashemi, Brendan D. McKay, and Maryam Tahmasbi.
Rectangular-Radial Drawings of Cubic Plane Graphs. Computational Geometry: Theory and
Applications, 43:767–780, 2010.

21 Madieh Hasheminezhad, S. Mehdi Hashemi, and Maryam Tahmasbi. Ortho-radial drawings of
graphs. Australasian Journal of Combinatorics, 44:171–182, 2009.

22 Seok-Hee Hong, Damian Merrick, and Hugo A. D. do Nascimento. Automatic Visualisation of
Metro Maps. Journal of Visual Languages and Computing, 17(3):203–224, 2006.

23 S. Kieffer, T. Dwyer, K. Marriott, and M. Wybrow. HOLA: Human-like Orthogonal Network
Layout. IEEE Transactions on Visualization and Computer Graphics, 22(1):349–358, 2016.

24 Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. Efficient Algorithms for Ortho-Radial
Graph Drawing. CoRR, arXiv:1903.05048, 2019. arXiv:1903.05048.

25 Martin Nöllenburg and Alexander Wolff. Drawing and Labeling High-Quality Metro Maps
by Mixed-Integer Programming. Transactions on Visualization and Computer Graphics,
17(5):626–641, 2011.

26 Achilleas Papakostas and Ioannis G. Tollis. Algorithms for area-efficient orthogonal drawings.
Computational Geometry, 9(1):83–110, 1998.

27 Ulf Rüegg, Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. Stress-Minimizing
Orthogonal Layout of Data Flow Diagrams with Ports. In Christian Duncan and Antonios
Symvonis, editors, Graph Drawing (GD’14), Lecture Notes in Computer Science, pages 319–330.
Springer Berlin Heidelberg, 2014.

28 R. Tamassia. On Embedding a Graph in the Grid with the Minimum Number of Bends.
Journal on Computing, 16(3):421–444, 1987.

29 Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. Automatic graph drawing and
readability of diagrams. IEEE Transactions on Systems, Man, and Cybernetics, 18(1):61–79,
1988.

30 Roberto Tamassia, Ioannis G. Tollis, and Jeffrey Scott Vitter. Lower bounds for planar
orthogonal drawings of graphs. Information Processing Letters, 39(1):35–40, 1991.

31 L. G. Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Computers,
30(02):135–140, 1981.

32 Yu-Shuen Wang and Ming-Te Chi. Focus+Context Metro Maps. Transactions on Visualization
and Computer Graphics, 17(12):2528–2535, 2011.

33 Michael Wybrow, Kim Marriott, and Peter J. Stuckey. Orthogonal Connector Routing. In
David Eppstein and Emden R. Gansner, editors, Graph Drawing (GD’10), Lecture Notes in
Computer Science, pages 219–231. Springer Berlin Heidelberg, 2010.

http://arxiv.org/abs/1903.05048

On the Chromatic Number of Disjointness Graphs
of Curves
János Pach
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Rényi Institute, Budapest, Hungary
janos.pach@epfl.ch

István Tomon
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
istvan.tomon@epfl.ch

Abstract

Let ω(G) and χ(G) denote the clique number and chromatic number of a graph G, respectively.
The disjointness graph of a family of curves (continuous arcs in the plane) is the graph whose
vertices correspond to the curves and in which two vertices are joined by an edge if and only if the
corresponding curves are disjoint. A curve is called x-monotone if every vertical line intersects it in
at most one point. An x-monotone curve is grounded if its left endpoint lies on the y-axis.

We prove that if G is the disjointness graph of a family of grounded x-monotone curves such that
ω(G) = k, then χ(G) ≤

(
k+1

2

)
. If we only require that every curve is x-monotone and intersects the

y-axis, then we have χ(G) ≤ k+1
2

(
k+2

3

)
. Both of these bounds are best possible. The construction

showing the tightness of the last result settles a 25 years old problem: it yields that there exist
Kk-free disjointness graphs of x-monotone curves such that any proper coloring of them uses at least
Ω(k4) colors. This matches the upper bound up to a constant factor.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases string graph, chromatic number, intersection graph

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.54

Related Version https://arxiv.org/abs/1811.09158

Funding János Pach: Research partially supported by Swiss National Science Foundation grants no.
200020-162884 and 200021-175977.
István Tomon: Research partially supported by Swiss National Science Foundation grants no.
200020-162884 and 200021-175977.

Acknowledgements We would like to thank Andrew Suk, Gábor Tardos, Géza Tóth and Bartosz
Walczak for fruitful discussions.

1 Introduction

Given a family of sets, C, the intersection graph of C is the graph, whose vertices correspond
to the elements of C, and two vertices are joined by an edge if the corresponding sets have a
nonempty intersection. Also, the disjointness graph of C is the complement of the intersection
graph of C, that is, two vertices are joined by an edge if the corresponding sets are disjoint.
As usual, we denote the clique number, the independence number, and the chromatic number
of a graph G by ω(G), α(G) and χ(G), respectively.

© János Pach and István Tomon;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 54; pp. 54:1–54:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:janos.pach@epfl.ch
mailto:istvan.tomon@epfl.ch
https://doi.org/10.4230/LIPIcs.SoCG.2019.54
https://arxiv.org/abs/1811.09158
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 On the Chromatic Number of Disjointness Graphs of Curves

1.1 Clique number vs. chromatic number
Computing these parameters for intersection graphs of various classes of geometric objects
(segments, boxes, disks etc.) or for other geometrically defined graphs (such as visibility
graphs) is a computationally hard problem and a classic topic in computational and com-
binatorial geometry [1, 5, 10, 17, 23, 24]. There are many interesting results connecting the
clique number and the chromatic number of geometric intersection graphs, starting with a
beautiful theorem of Asplund and Grünbaum [2], which states that every intersection graph
G of axis-parallel rectangles in the plane satisfies χ(G) ≤ 4(ω(G))2.

A family G of graphs is χ-bounded if there exists a function f : Z+ → Z+ such that
every G ∈ G satisfies χ(G) ≤ f(ω(G)). In this case, say that the function f is χ-bounding
for G. Using this terminology, the result of Asplund and Grünbaum [2] mentioned above
can be rephrased as follows: The family of intersection graphs of axis-parallel rectangles
in the plane is χ-bounded with bounding function f(k) = 4k2. (It is conjectured that the
same is true with bounding function f(k) = O(k).) However, an ingenious construction of
Burling [4] shows that the family of intersection graphs of axis-parallel boxes in R3 is not
χ-bounded. The χ-boundedness of intersection graphs of chords of a circle was established
by Gyárfás [14, 15]; see also Kostochka et al. [22, 19, 20].

Computing the chromatic number of the disjointness graph of a family of objects, C, is
equivalent to determining the clique cover number of the corresponding intersection graph
G, that is, the minimum number of cliques whose vertices together cover the vertex set of
G. This problem can be solved in polynomial time only for some very special families (for
instance, if C consists of intervals along a line or arcs along a circle [13]). On the other
hand, the problem is known to be NP-complete if C is a family of chords of a circle [16, 12]
or a family of unit disks in the plane [38, 6], and in many other cases. There is a vast
literature providing approximation algorithms or inapproximability results for the clique
cover number [8, 9].

1.2 Families of curves
A curve or string in R2 is the image of a continuous function φ : [0, 1]→ Rd. A curve C ⊂ R2

is called x-monotone if every vertical line intersects C in at most one point. Note that any
convex set can be approximated arbitrarily closely by x-monotone curves, so the notion of
x-monotone curve extends the notion of convex sets. We say that C is grounded at the curve
L if one of the endpoints of C is in L, and this is the only intersection point of C and L.
A grounded x-monotone curve is an x-monotone curve that is contained in the half-plane
{x ≥ 0}, and whose left endpoint lies on the vertical line {x = 0}.

It was first suggested by Erdős in the 1970s, and remained the prevailing conjecture for 40
years, that the family of intersection graphs of curves (the family of so-called “string graphs”)
is χ-bounded [3, 21]. There were many promising facts pointing in this direction. Extending
earlier results of McGuinness [28], Suk [37], and Lasoń et al. [27], Rok and Walczak [35, 36]
proved the conjecture for grounded families of curves. Nevertheless, in 2014, Pawlik et
al. [34] disproved Erdős’s conjecture. They managed to modify Burling’s above-mentioned
construction to obtain a sequence of finite families of segments in the plane whose intersection
graphs, Gn, are triangle-free (that is, ω(Gn) = 2), but their chromatic numbers tend to
infinity, as n→∞.

Recently, Pach, Tardos and Tóth [32] proved that the family of disjointness graphs of
curves in the plane is not χ-bounded either; see also [30]. However, the situation is different
if we restrict our attention to x-monotone curves. It was shown in [33, 26] that the family

J. Pach and I. Tomon 54:3

of disjointness graphs of x-monotone curves in the plane is χ-bounded with a bounding
function f(k) = k4. For grounded x-monotone curves, the same proof provides a better
bounding function: f(k) = k2. These results proved 25 years ago were not likely to be tight.
However, in spite of many efforts, no-one has managed to improve them or to show that they
are optimal.

1.3 Our results
The aim of the present paper is to fill this gap. We proved, much to our surprise, that the
order of magnitude of the last two bounds cannot be improved. In fact, in the case of grounded
x-monotone curves, we determined the exact value of the best bounding function for every
k ≥ 2. To the best of our knowledge, this is the first large family of non-perfect geometric
disjointness graphs, for which one can precisely determine the best bounding function.

I Theorem 1. Let G be the disjointness graph of a family of grounded x-monotone curves.
If ω(G) = k, then χ(G) ≤

(
k+1

2
)
.

I Theorem 2. For every positive integer k ≥ 2, there exists a family C of grounded x-
monotone curves such that if G is the disjointness graph of C, then ω(G) = k and χ(G) =(
k+1

2
)
.

It turns out that disjointness graphs of grounded x-monotone curves can be characterized
by two total orders defined on their vertex sets that satisfy some special properties. This
observation is the key idea behind the proof of the above two theorems.

The disjointness graph of any collection of x-monotone curves, each of which intersects a
given vertical line (the y-axis, say), is the intersection of two disjointness graphs of grounded
x-monotone curves. The methods used for proving Theorems 1 and 2 can be extended to
such disjointness graphs and yield sharp bounds.

I Theorem 3. Let G be the disjointness graph of a family C of x-monotone curves such
that all elements of C have nonempty intersection with a vertical line l. If ω(G) = k, then
χ(G) ≤ k+1

2
(
k+2

3
)
.

I Theorem 4. For every positive integer k ≥ 2, there exists a family C of x-monotone curves
such that all elements of C have nonempty intersection with a vertical line l, the disjointness
graph G of C satisfies ω(G) = k, and χ(G) = k+1

2
(
k+2

3
)
.

As we have mentioned before, according to [33, 26], k4 is a bounding function for
disjointness graphs of any family of x-monotone curves. Theorem 4 implies that the order of
magnitude of this bounding function is best possible. Actually, we can obtain a little more.

I Theorem 5. For any positive integer k, let f(k) denote the smallest m such that any
Kk+1-free disjointness graph of x-monotone curves can be properly colored with m colors.
Then we have

k + 1
2

(
k + 2

3

)
≤ f(k) ≤ k2

(
k + 1

2

)
.

Here the lower and upper bounds differ by a factor of less than 6, and there is some
hope that one can determine the exact value of f(k). The lower bound follows directly from
Theorem 4.

Our paper is organized as follows. In Section 2, we prove Theorem 1 and the upper bound
in Theorem 5. The existence of the graphs satisfying Theorem 2 is proved in Section 3, using
probabilistic techniques. The proofs of Theorems 3 and 4 are presented in Sections 4 and 5,
respectively. The last section contains open problems and concluding remarks.

SoCG 2019

54:4 On the Chromatic Number of Disjointness Graphs of Curves

2 A bounding function for grounded curves – Proofs of Theorems 1
and 5

First, we establish Theorem 1. As usual, we denote the set {1, 2, . . . , n} by [n].
An ordered graph G< is a graph, whose vertex set is endowed with a total ordering <.

Ordered graphs are often more suitable for modelling geometric configurations than unordered
ones; see, e.g., [11, 31]. To model families of grounded x-monotone curves, we introduce a
class of ordered graphs.

I Definition 6. An ordered graph G< is called a semi-comparability graph, if it has
no 4 vertices a, b, c, d ∈ V (G<) such that a < b < c < d and ab, bc, cd ∈ E(G<), but
ac, bd 6∈ E(G<).

An unordered graph G is said to be a semi-comparability graph, if its vertex set has a
total ordering < such that G< is a semi-comparability graph.

Obviously, every comparability graph (that is, every graph whose edge set consists of all
comparable pairs of a partially ordered set) is a semi-comparability graph.

I Lemma 7. The disjointness graph of every family C of grounded x-monotone curves is a
semi-comparability graph.

Proof. Let G be the disjointness graph of C. Identify the vertices of G with the elements
of C. For any γ ∈ C, let (0, yγ) be the left endpoint of γ. Slightly perturbing the curves if
necessary, we can assume without loss of generality that no two yγs coincide. Let < be the
total ordering on V (G), according to which γ < γ′ if and only if yγ < yγ′ .

Suppose for contradiction that there exist 4 curves a, b, c, d such that a < b < c < d and
ab, bc, cd ∈ E(G), but ac, bd 6∈ E(G). Then a and c must intersect, which means that a, c,
and the ground line x = 0 enclose a region A. Since b does not intersect either of a or c, it
must lie in A. In order to intersect b, d has to cross c, which is a contradiction. J

By the dual of Dilworth’s theorem [7], also known as Mirsky’s theorem [29], comparability
graphs are perfect. Thus, any comparability graph G can be properly colored with ω(G)
colors. While not all semi-comparability graphs are perfect, they are χ-bounded.

I Lemma 8. For any semi-comparability graph G with ω(G) = k, we have χ(G) ≤
(
k+1

2
)
.

Proof. Fix an ordering < of V (G) such that G< is a semi-comparability graph. For every
v ∈ V (G), let f(v) denote the size of the largest clique with minimal element v. Then
f(v) ∈ [k]. For i = 1, . . . , k, let Vi = {v ∈ G : f(v) = i}.

The main observation is that G[Vi] is a partial order. Indeed, suppose to the contrary that
there exist 3 vertices a, b, c ∈ Vi such that a < b < c and ab, bc ∈ E(G), but ac 6∈ E(G). Let
C ⊂ V (G) be a clique of size i with minimal element c. If d ∈ C \ {c}, then b and d must be
joined by an edge, otherwise the quadruple a, b, c, d satisfies the conditions ab, bc, cd ∈ E(G)
and ac, bd 6∈ E(G). Thus, b is joined to every vertex in C by an edge, which means that
C ∪ {b} is a clique of size i+ 1 with minimal element b, contradicting our assumption that
b ∈ Vi.

Hence, every G[Vi] is a partial order. Using the fact that G[Vi] does not contain a clique
of size i+ 1, by Mirsky’s theorem [7] we obtain that χ(G[Vi]) ≤ i. Summing up for all i, we
get that χ(G) ≤

∑k
i=1 χ(G[Vi]) ≤

(
k+1

2
)
, as required. J

The combination of Lemmas 7 and 8 immediately implies Theorem 1.
Next, we prove the upper bound in Theorem 5.

J. Pach and I. Tomon 54:5

I Theorem 9. Let G be the disjointness graph of a collection of x-monotone curves with
ω(G) = k. Then we have χ(G) ≤ k2(k+1

2
)
.

Proof. Let C be a collection of x-monotone curves satisfying the conditions in the theorem.
For any γ ∈ C, let x(γ) denote the projection of γ to the x-axis. For α, β ∈ C, let α ≺ β if
min x(α) < min x(β) and max x(α) < max x(β).

Suppose that α and β are disjoint. Let α <1 β if α ≺ β and α is below β, that is, if
on every vertical line that intersects both α and β, the intersection point of α lies below
the intersection point of β. Let α <2 β if α ≺ β and β is below α. Clearly, <1 and <2 are
partial orders.

As ω(G) ≤ k, the size of the longest chains with respect to <1 and <2 is at most k.
Therefore, the vertices of G can be colored with k2 colors such that each color class is an
antichain in both <1 and <2.

It remains to show that each of these color classes can be properly colored with
(
k+1

2
)

colors. Let C′ ⊂ C such that no two elements of C′ are comparable by <1 or <2. Then, if
α, β ∈ C′, then either α and β intersect, or one of the intervals x(α) or x(β) contains the
other. In either case, x(α) and x(β) have a nonempty intersection, so any two elements of
{x(γ) : γ ∈ C′} intersect. Hence,

⋂
γ∈C′ x(γ) is nonempty, and there exists a vertical line l

that intersects every element of C′.
Let G′ denote the disjointness graph of C′. Order the elements of C′ with respect to

their intersections with l, from bottom to top. We claim that the resulting ordered graph
G′< is a semi-comparability graph. Indeed, suppose to the contrary that there are four
vertices a, b, c, d ∈ V (G′) such that a < b < c < d and ab, bc, cd ∈ E(G′), but ac, bd 6∈ E(G′).
Without loss of generality, suppose that the length of x(b) is larger than the length of x(c);
the other case can be handled similarly. As bc ∈ E(G′), we have x(c) ⊂ x(b) and b is below c,
so every vertical line intersecting c intersects b as well, and its intersection with b lies below
its intersection with c. Also, as ab ∈ E(G′), we have that a is below b. But then a and c
must be disjoint, contradicting the condition ac 6∈ E(G′).

Thus, we can apply Lemma 8 to conclude that G′ can be properly colored with
(
k+1

2
)

colors. This completes the proof. J

Let g(n) denote the maximal number m such that every collection of n convex sets in the
plane contains m elements that are either pairwise disjoint, or pairwise intersecting. Larman
et al. [26] proved that g(n) ≥ n1/5, while the best known upper bound, due to Kynčl [25] is
g(n) < nlog 8/ log 169 ≈ n0.405. Theorem 9 implies the following modest improvement on the
lower bound.

I Corollary 10. Every collection of n x-monotone curves (or convex sets) in the plane contains
((2 + o(1))n)1/5 ≈ 1.15n1/5 elements that are either pairwise disjoint or pairwise intersecting.

Proof. In every graph G on n vertices, we have α(G)χ(G) ≥ n. In view of Theorem 9, this
implies that if C is a collection of n x-monotone curves and G is the disjointness graph of C,
then we have

α(G)(ω(G))3ω(G) + 1
2 ≥ n.

Therefore, max{α(G), ω(G)} ≥ ((2 + o(1))n)1/5, as claimed. J

Many attempts were made to improve the order of magnitude of the lower bound on
g(n). It appeared to be conceivable to cover the disjointness graph G of any collection
of x-monotone curves with fewer than 4 comparability graphs, which would have yielded
χ(G) ≤ (ω(G))3 and g(n) ≥ n1/4. These hopes are shattered by Theorem 4.

SoCG 2019

54:6 On the Chromatic Number of Disjointness Graphs of Curves

3 Magical graphs – Proof of Theorem 2

The converse of Lemma 7 is not true: not every semi-comparability graph can be realized
as the disjointness graph of a collection of grounded x-monotone curves. See Section 6, for
further discussion. To characterize such disjointness graphs, we need to introduce a new
family of graphs.

A graph G<1,<2 with two total orderings, <1 and <2, on its vertex set is called double-
ordered. If the orderings <1, <2 are clear from the context, we shall write G instead of G<1,<2 .

I Definition 11. A double-ordered graph G<1,<2 is called magical if for any three distinct
vertices a, b, c ∈ V (G) with a <1 b <1 c, if ab, bc ∈ E(G) and ac 6∈ E(G), then b <2 a and
b <2 c.

A graph G is said to be magical, if there exist two total orders <1, <2 on V (G) such that
G<1,<2 is magical. In this case, we say that the pair (<1, <2) witnesses G.

It easily follows from the above definition that if G<1,<2 is magical, then G<1 is a
semi-comparability graph.

I Lemma 12. If C is a collection of grounded x-monotone curves, then the disjointness
graph of C is magical.

Proof. Let G be the disjointness graph of C, and identify the vertices of G with the elements
of C. For any γ ∈ C, let (0, yγ) be the endpoint of γ lying on the vertical axis {x = 0}, and
let (xγ , y′γ) be the other endpoint of γ.

Define the total orderings <1 and <2 on V (G), as follows. Let γ <1 γ
′ if and only if

yγ < yγ′ , and let γ <2 γ
′ if and only if xγ < xγ′ .

Suppose that for a triple a, b, c ∈ C we have that a <1 b <1 c and ab, bc ∈ E(G), but
ac 6∈ E(G). Then a and c intersect. Hence, a, c, and the ground curve {x = 0} enclose a
region A, and b ⊂ A. This implies that the x-coordinate of the right endpoint of b is smaller
than the x-coordinates of the right endpoints of a and c. Therefore, we have b <2 a and
b <2 c, showing that G is magical. J

I Lemma 13. Let G be a magical graph. Then there exists a family C of grounded x-monotone
curves such that the disjointness graph of C is isomorphic to G.

Proof. Let n be the number of vertices of G. Let <1 and <2 be total orderings on V (G)
witnessing that G is magical. For any vertex v ∈ V (G), let y(v) ∈ [n] denote the position of
v in the ordering <1, and let x(v) denote the position of v in the ordering <2.

For any v ∈ V (G), we define an x-monotone curve Cv, which will be composed of
x(v) smaller x-monotone pieces, Cv(1), . . . , Cv(x(v)), such that Cv(i) starts at the point
(i− 1, y(v)), and ends at the point (i, y(v)). The pieces Cv(i) are defined as follows.

Let ui ∈ V (G) be such that x(ui) = i. If ui = v or there is an edge between ui and v,
then let Cv(i) be the horizontal line segment connecting (i− 1, y(v)) and (i, y(v)). Otherwise,
let Cv(i) be the polygonal curve consisting of two segments whose three vertices are

(i− 1, y(v)) ,
(
i− 2

3 , y(ui)−
1
10 + y(v)

10n

)
, (i, y(v)) if y(ui) < y(v),

or

(i− 1, y(v)) ,
(
i− 1

3 , y(ui) + y(v)
10n

)
, (i, y(v)) if y(ui) > y(v).

J. Pach and I. Tomon 54:7

(i− 1, y(v)) (i, y(v))

(i− 1, y(w)) (i, y(w))
Cw(i)

Cv(i)

Cui
(i)

(i− 1, y(ui)) (i, y(ui))

Figure 1 An illustration of the curves Cv(i) in the proof of Lemma 13.

See Figure 1 for an illustration. One can easily check the following property of the curves
{Cv(i)}v∈V (G). If v, w ∈ V (G) are distinct vertices such that Cv(i) and Cw(i) intersect, then
(i) x(v), x(w) ≥ i.
(ii) Exactly one of v and w is joined to ui in G. Without loss of generality, assume that it

is w.
(iii) Then y(ui) ≤ y(w) < y(v) or y(v) < y(w) ≤ y(ui).
Now we show that G is the disjointness graph of C = {Cv : v ∈ V (G)}.

If v and w are not joined by an edge in G, then Cv(min{x(v), x(w)}) and Cw(min{x(v),
x(w)}) intersect by definition, so Cv and Cw have a nonempty intersection.

Our task is reduced to showing that if v and w are joined by an edge, then Cv and Cw
do not intersect. Suppose to the contrary that Cv and Cw intersect. Then there exists
i ∈ [min{x(v), x(w)} − 1] such that Cv(i) and Cw(i) intersect. Then either y(ui) ≤ y(v), y(w)
or y(ui) ≥ y(v), y(w). Without loss of generality, let y(ui) ≤ y(v), y(w), the other case can
be handled in a similar manner. Again, without loss of generality, we can assume that
y(w) < y(v). Then Cv(i) intersects Cui

(i), and Cw(i) is disjoint from Cui
(i), or equivalently,

uiw ∈ E(G), but uiv 6∈ E(G). However, this is impossible, because wv ∈ E(G), so the triple
ui, w, v would contradict the assumption that G is magical. J

By Lemma 13, in order to prove Theorem 2, it is enough to verify the corresponding
statement for magical graphs. In other words, we have to prove the following.

I Theorem 14. For every positive integer k ≥ 2, there exists a magical graph G such that
ω(G) = k and χ(G) =

(
k+1

2
)
.

SoCG 2019

54:8 On the Chromatic Number of Disjointness Graphs of Curves

x1

xr<1

<2

Figure 2 A mountain path. The dotted line shows the minimum of x1 and xr in <2, so all the
other points of the path must be above it.

The rest of this section is devoted to the proof of this theorem. The proof is probabilistic
and is inspired by a construction of Korándi and Tomon [18]. We shall consider a random
double-ordered graph with certain parameters, and show that the smallest magical graph
covering its edges meets the requirements in Theorem 14. To accomplish this plan, we
first examine how the smallest magical graph covering the edges of a given double-ordered
graph looks.

Let G<1,<2 be a double-ordered graph. A sequence of vertices x1, . . . , xr ∈ V (G) is said
to form a mountain-path, if x1 <1 · · · <1 xr, xixi+1 ∈ E(G) for every i, where 1 ≤ i < r,
and either x1 <2 x2, . . . , xr−1 or xr <2 x2, . . . , xr−1. See Figure 2.

I Lemma 15. Let G<1,<2 be a double-ordered graph. There exists a unique minimal graph
G′<1,<2

on V (G) such that E(G) ⊂ E(G′) and G′<1,<2
is magical. Moreover, if u, v ∈ V (G),

then u and v are joined by an edge in G′ if and only if there exists a mountain-path connecting
u and v.

Proof. LetH = H<1,<2 be any magical graph on the vertex set V (G) such that E(G) ⊆ E(H).
Let x1, . . . , xr be a mountain-path in G with x1 <2 xr. Using the definition of magical
graphs, it is easy to prove by induction on i that x1 and xi are joined by an edge in E(H),
for every i > 1. Therefore, we have x1xr ∈ E(H). (We can proceed similarly if xr <2 x1.)

With a slight abuse of notation, from now on let H = H<1,<2 denote the double-
ordered graph on V (G), in which u and v are joined by an edge if and only if there exists
a mountain-path connecting u to v. We will show that H is magical, that is, for every
triple u, v, w ∈ V (G), the following holds: if u <1 v <1 w such that uv, vw ∈ E(H), and
u <2 v or w <2 v, then uw ∈ E(H). As uv, vw ∈ E(H), there exist two mountain-paths
u = x1, x2, . . . , xr = v and v = xr, xr+1, . . . , xs = w. By the assumption that u <2 v or
w <2 v, the path u = x1, . . . , xs = w is a mountain-path as well, so uw ∈ E(H). J

For the rest of the discussion, we need to introduce a few parameters that depend on k.
Set λ = 1/k2, t = 100k2 log k, h = 3tk2

k2k2+8, n = 9h and p = t/n.
Let S = {(a, b) ∈ [k]2 : a+ b ≥ k+ 1}. For each (a, b) ∈ S, let Aa,b be a set of n arbitrary

points in the interior of the unit square [ak+ b, ak+ b+ 1]× [bk+ a, bk+ a+ 1] with distinct
x and y coordinates, see Figure 3. Let V =

⋃
(a,b)∈S Aa,b, and let <1 and <2 be the total

orderings on V induced by the x and y coordinates of the elements of V , respectively. A pair
of vertices {u, v} in V is called available if u ∈ Aa,b, v ∈ Aa′,b′ with (a, b) 6= (a′, b′).

Let G0 denote the random graph on V in which every available pair of vertices is connected
by an edge with probability p, independently from each other. G0 does not have any edge
whose endpoints belong to the same set Aa,b. Let G′<1,<2

be the minimal magical graph on
V containing all edges of G0.

J. Pach and I. Tomon 54:9

<1

<2

A1,4

A2,3

A2,4

A3,2

A3,3

A3,4

A4,1

A4,2

A4,3

A4,4

u

v

w

Puv

Puw

Pvw

Figure 3 An illustration of the sets Aa,b for k = 4, and a hole (u, v, w) which induces a triangle
in G′.

B Claim 16. With probability at least 2/3, G′ has no independent set larger than (1 + λ)n.

Proof. As G0 is a subgraph of G′, it is enough to show that G0 has no independent set of
size greater than (1 + λ)n, with probability at least 2/3.

Let I ⊂ V such that |I| > (1 + λ)n. Then there are at least λn2/2 available pairs of
vertices, whose both endpoints belong to I. Indeed, if u ∈ Aa,b, then {u, v} is available for
every v ∈ (I \Aa,b), so there are at least |I \Aa,b| ≥ λn available pairs containing u. Hence,
the total number of available pairs in I is at least |I|λn/2 > λn2/2.

Thus, the probability that I is an independent set in G0 is at most

(1− p)λn
2/2 < e−pλn

2/2 = e−tλn/2.

As the number of (1 + λ)n-sized subsets of V is(
|V |

(1 + λ)n

)
<

(
e|V |

(1 + λ)n

)(1+λ)n
< (ek2)(1+λ)n,

the probability that there is a (1 + λ)n-sized independent set is less than

(ek2)(1+λ)ne−tλn/2 = e(1+2 log k)(1+λ)n−tλn/2 < 1/3. C

A triple (u, v, w) ∈ V 3 is said to form a hole, if u <1 v <1 w and v <2 u,w. Recall that
h = 3tk2

k2k2+8.

B Claim 17. Let N be the number of holes in V that induce a triangle in G′. Then E(N) < h.

Proof. Let (u, v, w) be a hole, and let us bound the probability that u, v, w induce a triangle
in G′. Suppose that u ∈ Aa1,b1 , v ∈ Aa2,b2 and w ∈ Aa3,b3 . We can assume that the pairs
(a1, b1), (a2, b2), (a3, b3) are distinct, otherwise u, v, w cannot induce a triangle.

If uv, vw, uw ∈ E(G′), then there exist three mountain-paths, Pu,v, Pv,w and Pu,w, with
endpoints {u, v}, {v, w} and {u,w}, respectively. See Figure 3. Note that each of these
paths intersects every Aa,b in at most one vertex. As u <1 v <1 w, the only vertex in the
intersection of Puv and Pvw is v. Moreover, Puw cannot contain v as v <2 u and v <2 w.

SoCG 2019

54:10 On the Chromatic Number of Disjointness Graphs of Curves

Consider the graph P = Puv ∪ Pvw ∪ Puw. It is a connected graph, but not a tree,
because there are two distinct paths between u and w: Puv ∪ Pvw and Puw. Hence, we have
|E(P)| ≥ |V (P)|. Let P denote the set of all such graphs P that appear in G0 with positive
probability. Then

P({u, v, w} induces a triangle in G′) = P(P is a subgraph of G0 for some P ∈ P)

≤
∑
P∈P

P(P is a subgraph of G0).

For a fixed P ∈ P, every edge of P is present in G0 independently with probability p.
Hence, the probability that P is a subgraph of G0 is p|E(P)|, which is at most p|V (P)|. The
number of graphs in P with exactly m vertices is at most

(|V |
m−3

)
< (k2n)m−3, as each member

of P contains the vertices u, v, w. Finally, every member of P has at most 3|S| ≤ 3k2 vertices,
so we can write

∑
P∈P

P(P is a subgraph of G0) ≤
3k2∑
m=3

pm(k2n)m−3 < 3tk
2
k2k2+2n−3.

Since the number of holes in V is at most
(|V |

3
)
< |V |3 < k6n3, we obtain

E(N) < 3tk
2
k2k2+8 = h. C

Applying Markov’s inequality, the probability that V contains more than 3h holes that
induce a triangle in G′ is at most 1/3. Hence, there exists a magical graph G′ on V such
that G′ has no independent set of size (1 + λ)n, and G′ contains at most 3h triangles whose
vertices form a hole. By deleting a vertex of each such hole in G′, we obtain a magical graph
G with at least |S|n− 3h vertices, which has no triangle whose vertices form a hole, and no
independent set of size (1 + λ)n.

First, we show that χ(G) ≥ |S| =
(
k+1

2
)
. Indeed, if χ(G) ≤ |S| − 1, then G contains an

independent set of size

|V (G)|
|S| − 1 ≥

|S|n− 3h
|S| − 1 =

(
1 + 1
|S| − 1

)
n− 3h
|S| − 1 > (1 + λ)n,

contradiction.
It remains to prove that ω(G) = k. Clearly, ω(G) ≥ k, otherwise, by Lemma 8, we would

have χ(G) ≤
(
k
2
)
, contradicting the last paragraph. Thus, we have to show that G has no

clique of size k + 1. For this, we need the following observation.

B Claim 18. LetK be a subset of S that does not contain three points (a1, b1), (a2, b2), (a3, b3)
such that a1 < a2 ≤ a3 and b2 ≤ b1 and b2 < b3. Then we have |K| ≤ k.

Proof. We call (a1, b1), (a2, b2), (a3, b3) a bad triple, if a1 < a2 ≤ a3 and b2 ≤ b1 and b2 < b3.
Let S = Sk. We prove the claim by induction on k. For k = 1, the claim is trivial.

Suppose that k ≥ 2 and that the statement has already been verified for k−1. We distinguish
two cases.

Case 1: K contains at most 1 element from the column {(k, b) : b ∈ [k]}. Let

K ′ = {(a, b) : (a, b+ 1) ∈ K and a < k}.

Then |K ′| ≥ |K|−1 and K ′ ⊂ Sk−1 does not contain a bad triple. Thus, by the induction
hypothesis, we have |K ′| ≤ k − 1, which implies that |K| ≤ k.

J. Pach and I. Tomon 54:11

Case 2: K contains 2 distinct elements of the form (k, b) and (k, b′), where b < b′. Then K
cannot contain (a, k) for any a ∈ [k − 1], otherwise (a, k), (k, b), (k, b′) would be a bad
triple. Thus, K contains at most one element from the row {(a, k) : a ∈ [k]} (it might
contain (k, k)). Let

K ′ = {(a, b) : (a+ 1, b) ∈ K and b ≤ k − 1}.

Again, |K ′| ≥ |K| − 1 and K ′ ⊂ Sk−1 does not contain a bad triple. By the induction
hypothesis, we have |K ′| ≤ k − 1 and, hence, |K| ≤ k. C

Now we are in a position to finish the proof of Theorem 14. Let G denote the magical
graph obtained from G′ by deleting a vertex from each of its holes that form a triangle (see
right before Claim 18). Suppose that C ⊂ V is a clique in G. Then C does not contain a
hole and it intersects each Aa,b in at most one vertex. Let K = {(a, b) ⊂ S : Aa,b ∩ C 6= ∅}.
The condition that C does not contain a hole implies that K does not contain three points
(a1, b1), (a2, b2), (a3, b3) such that a1 < a2 ≤ a3 and b2 ≤ b1 and b2 < b3. Hence, by Claim
18, we have |C| = |K| ≤ k. This completes the proof of Theorem 14 and, hence, the proof of
Theorem 2.

4 Bounding function for curves that intersect a vertical line–Proof of
Theorem 3

A triple-ordered graph is a graph G<1,<2,<3 with three total orders <1, <2, <3 on its vertex set.

I Definition 19. A triple-ordered graph G<1,<2,<3 is called double-magical, if there exist
two magical graphs G1

<1,<2
and G2

<1,<3
on V (G) such that E(G<1,<2,<3) = E(G1

<1,<2
) ∩

E(G2
<1,<3

). An unordered graph G is said to be double-magical, if there exist three total
orders <1, <2, <3 on V (G) such that the triple-ordered graph G<1,<2,<3 is double-magical.
We say that G is witnessed by (<1, <2, <3).

By Lemmas 12 and 13, it is not hard to characterize disjointness graphs of x-monotone
curves intersected by a vertical line.

I Lemma 20. Let C be a collection of x-monotone curves such that each member of C
intersects the vertical line l. Then the disjointness graph of C is double-magical.

Proof. Without loss of generality, let l = {x = 0}. For each γ ∈ C, let (−x−γ , y−γ) be the left
endpoint of γ, let (0, yγ) be the intersection point of γ and l, and let (x+

γ , y
+
γ) be the right

endpoint of γ. Also, let γ− = γ ∩ {x ≤ 0} and γ+ = γ ∩ {x ≥ 0}, and let C− = {γ− : γ ∈ C}
and C+ = {γ+ : γ ∈ C}. Then C+ is a collection of grounded curves, and C− is the reflection
of a collection of grounded curves to the line l.

Let G, G− and G+ be the disjointness graphs of C, C− and C+, respectively, such
that we identify γ, γ− and γ+ as the vertices of these graphs for every γ ∈ C. Then
E(G) = E(G−) ∩E(G+). Let <1 be the total ordering on C defined by γ <1 γ

′ if yγ < yγ′ ,
let <2 be the ordering defined by γ <2 γ

′ if x−γ < x−γ′ , and let <3 be the ordering defined
by γ <3 γ

′ if x+
γ < x+

γ′ . By Lemma 12, G−<1,<2 and G+
<1,<3 are magical, so G<1,<2,<3 is

double-magical. J

We can just as easily prove the converse of Lemma 20, using Lemma 13.

I Lemma 21. Let G be a double-magical graph. Then there exists a collection of curves C
such that each member of C has a nonempty intersection with the vertical line {x = 0}, and
the disjointness graph of C is isomorphic to G.

SoCG 2019

54:12 On the Chromatic Number of Disjointness Graphs of Curves

Proof. Let (<1, <2, <3) be total orders on V (G) witnessing that G is double-magical, and
let G1

<1,<2
, G2

<1,<3
be two magical graphs on V (G) such that E(G) = E(G1) ∩ E(G2).

Let |V (G)| = n. By Lemma 13, there exist n grounded x-monotone curves γ+
1 , . . . , γ

+
n

such that γ+
i is contained in the nonnegative plane {x ≥ 0} with one endpoint at (0, i), the

disjointness graph of {γ+
1 , . . . , γ

+
n } is G1, and γ+

i corresponds to the i-th vertex of G1 in the
order <1. Also, there exist n x-monotone curves γ−1 , . . . , γ−n such that γ−i is contained in the
nonpositive plane {x ≤ 0} with one endpoint at (0, i), the disjointness graph of {γ−1 , . . . , γ−n }
is G2, and γ−i corresponds to the i-th vertex of G2 in the order <1. For i = 1, . . . , n, set
γi = γ−i ∪ γ

+
i , then the disjointness graph of C = {γi : i ∈ [n]} is isomorphic to G, and every

curve in G has a nonempty intersection with the vertical line {x = 0}. J

For any double-magical graph G = G<1,<2,<3 , define four partial orders ≺1,≺2,≺3,≺4
on V (G), as follows. For a, b ∈ V (G), let
(i) a ≺1 b if a <1 b, a <2 b, a <3 b, and ab ∈ E(G);
(ii) a ≺2 b if a <1 b, b <2 a, b <3 a, and ab ∈ E(G);
(iii) a ≺3 b if a <1 b, a <2 b, b <3 a, and ab ∈ E(G);
(iv) a ≺4 b if a <1 b, b <2 a, a <3 b, and ab ∈ E(G).

It follows easily from the definition of double-magical graphs that these are indeed partial
orders. Moreover, they satisfy the following conditions.
(1) If ab ∈ E(G), then a and b are comparable by precisely one of these 4 partial orders.
(2) For any a, b, c ∈ V (G) and i ∈ [4], if a ≺1 b and b ≺i c, then ac ∈ E(G).
(3) For any a, b, c ∈ V (G) and i ∈ [4], if a ≺i b and b ≺2 c, then ac ∈ E(G).

I Theorem 22. Let G be a double-magical graph. If ω(G) = k, then χ(G) ≤ k+1
2
(
k+2

3
)
.

Proof. Let <1, <2, <3 be total orders on V (G) witnessing G, and let ≺1,≺2,≺3,≺4 denote
the partial orders defined above. Clearly, there is no chain of length k + 1 with respect to
any of the partial orders ≺i, because that would contradict the assumption ω(G) = k.

For h = 1, . . . , k, let Sh denote the set of vertices v ∈ V (G) for which the size of a longest
≺1-chain with maximal element v is k − h + 1. Then the sets S1, . . . , Sk form a partition
of V (G), where each Sh is a ≺1-antichain that contains no clique of size h + 1. Indeed,
suppose that C ⊂ Sh induces a clique of size h+ 1 in G, and consider the smallest vertex
v ∈ C with respect to the order <1. There exists a ≺1-chain D of size k − h + 1 ending
at v. This implies that for every a ∈ D and b ∈ C, we have a ≺1 v and v ≺i b for some
i ∈ {2, 3, 4}. Then, by (2), we would have ab ∈ E(G). Hence, D ∪ C would induce a clique
of size k + 1, contradiction.

For h = 1, . . . , k and m = 1, . . . , h, let Sh,m denote the set of vertices in Sh for which
the largest ≺2-chain in Sh with smallest element v has size h −m + 1. As ω(G[Sh]) ≤ h,
the sets Sh,1, . . . , Sh,h are ≺1- and ≺2-antichains partitioning Sl. Further, Sh,m contains no
clique of size m+ 1. Otherwise, if C ⊂ Sh,m forms a clique of size m+ 1 in G, then consider
the largest vertex v ∈ C with respect to the order <1. There exists a ≺2-chain D of size
h−m+ 1 whose smallest element is v. Hence, for every a ∈ C and b ∈ D, we have a ≺i v
and v ≺2 b for some i ∈ {3, 4}, which implies, by (3), that ab ∈ E(G). Hence, C ∪D would
induce a clique of size h+ 1 in Sh, contradiction.

Thus, we obtained that Sh,m is a ≺1- and ≺2-antichain, which does not contain a clique
of size m+ 1. In particular, the size of the longest ≺3- and ≺4-chains in Sl,m is at most m.
This means that G[Sh,m] can be properly colored with m2 colors. Indeed, set the color of
v ∈ Sh,m to be φ(v) = (r, q), where r is the size of the largest ≺3-chain with smallest element
v, and q is the size of the largest ≺4-chain with smallest element v. Then φ : Sh,m → [m]2 is
a proper coloring of G[Sh,m].

J. Pach and I. Tomon 54:13

As Sh =
⋃h
m=1 Sh,m, we have

χ(G[Sh]) ≤
h∑

m=1
χ(G[Sh,m]) ≤

h∑
m=1

m2 = h(h+ 1)(2h+ 1)
6 .

Finally, since V (G) =
⋃k
h=1 Sh, we obtain

χ(G) ≤
k∑
h=1

χ(G[Sh]) ≤
k∑
h=1

h(h+ 1)(2h+ 1)
6 = k + 1

2

(
k + 2

3

)
. J

5 Construction of double-magical graphs–Proof of Theorem 4

In view of 21, to prove Theorem 4, it is enough to construct a double-magical graph with
the desired clique and chromatic numbers.

I Theorem 23. For every positive integer k ≥ 2, there exists a double-magical graph G
satisfying ω(G) = k and χ(G) = k+1

2
(
k+2

3
)
.

In the rest of this section, we prove this theorem. The proof of Lemma 22 reveals a lot
about the structure of double-magical graphs satisfying the properties of Theorem 23, if they
exist. To construct them, we use reverse engineering.

For any vector v ∈ Rd and any j ∈ [d], let v(j) denote the jth coordinate of v. The sign
vector of v ∈ Rd is the d-dimensional vector sg(v) with

sg(v)(i) =

1 if v(i) > 0,
−1 if v(i) < 0,
0 if v(i) = 0.

Let v1 = (1, 1, 1), v2 = (1,−1,−1), v3 = (1, 1,−1) and v4 = (1,−1, 1). For any
i ∈ [k]4, let

P (i) = k3i(1)v1 + k2i(2)v2 + ki(3)v3 + i(4)v4.

These k4 points have the useful property that if i 6= i′, then the relative position of P (i)
and P (i′) depends only on the smallest coordinate in which i and i′ differ. We refer to this
property as the LEX property (short for “lexicographic”), which is formally defined as follows.

LEX property. Let i, i′ ∈ [k]4 be such that i 6= i′, and let r be the smallest index such that
i(r) 6= i′(r). If i(r) > i′(r), then

sg(P (i)− P (i′)) = vr.

Let

S = {i ∈ [k]4 : i(1) + i(2) ≤ k + 1, i(2) ≥ i(3), and i(2) ≥ i(4)},

so that we have

|S| =
k∑
i=1

(k + 1− i)i2 = k + 1
2

(
k + 2

3

)
.

An ordered triple of points (u, v, w) ∈ R3×R3×R3 is called a hole if u(1) < v(1) < w(1),
and either v(2) < min{u(2), w(2)}, or v(3) < min{u(3), w(3)}.

SoCG 2019

54:14 On the Chromatic Number of Disjointness Graphs of Curves

v1

v2

v3

v4

T1

T2

P (3, 1, 1, 1)

P (1, 1, 1, 1)

P (1, 2, 1, 1) P (1, 2, 2, 2)

P (2, 1, 1, 1)

P (2, 2, 1, 1)

Figure 4 An illustration of the points P (i) for i ∈ S, k = 3.

B Claim 24. Let H ⊂ S. If the set {P (i) : i ∈ H} does not contain a hole, then |H| ≤ k.

Proof. Let S = Sk. We prove this claim by induction on k. If k = 1, S contains one element,
so there is nothing to prove.

Suppose that k ≥ 2. Let T1 = {i ∈ S : i(1) = 1} and H1 = H ∩ T1. (See Figure 4 for an
illustration.) We distinguish two cases.

Case 1: |H1| ≤ 1. Define

H ′ = {(i1 − 1, i2, i3, i4) : (i1, i2, i3, i4) ∈ H \H1}.

Then H ′ ⊂ Sk−1 and H ′ does not contain a hole. Hence, we obtain |H ′| ≤ k − 1, by the
induction hypothesis. On the other hand, |H ′| ≥ |H| − 1, which yields that |H| ≤ k.

Case 2: |H1| ≥ 2. In this case, we must have H = H1. Otherwise, choose i, i′ ∈ H1,
j ∈ H \ H1, and let u = P (i), v = P (i′), and w = P (j). Assume without loss of
generality that u(1) < v(1). Then u(1) < v(1) < w(1), and by the LEX property we have
w(2) > max{u(2), v(2)} and w(3) > max{u(3), v(3)}. Therefore, if (u, v, w) is not a hole,
then we must have u(2) < v(2) < w(2) and u(3) < v(3) < w(3). However, this means
that sg(v − u) = (1, 1, 1) = v1, which contradicts the LEX property, as i(1) = i′(1).
Hence, we can assume that H = H1 ⊂ T1. Let T2 = {i ∈ S : i(1) = 1, i(2) = k} ⊂ T1 and
H2 = H ∩ T2. Again, we distinguish two subcases.

J. Pach and I. Tomon 54:15

Subcase 1: |H2| ≤ 1. Define H ′ = H \H2. Then H ′ ⊂ Sk−1 and H ′ does not contain a
hole, which yields, by the induction hypothesis, that |H ′| ≤ k − 1. On the other hand,
|H ′| ≥ |H| − 1, so |H| ≤ k.

Subcase 2: |H2| ≥ 2. In this case, we show that H = H2. Otherwise, let i, i′ ∈ H2,
j ∈ H \ H2, and u = P (j), v = P (i) and w = P (i′). Assume without loss of
generality that v(1) < w(1). Then u(1) < v(1) < w(1), u(2) > max{v(2), w(2)},
and u(3) > max{v(3), w(3)}, by the LEX property. Thus, (u, v, w) is a hole, unless
u(2) > v(2) > w(2) and u(3) > v(3) > w(3), which would mean that the sg(w − v) =
(1,−1,−1) = v2. However, this contradicts the LEX property, because i(2) = i′(2).
Hence, we can suppose that H = H2 ⊂ T2. Here, T2 is partitioned into k sets
U1, . . . , Uk, where Ul = {(1, k, l,m) : m = 1, . . . , k} for l = 1, . . . , k. Note that |Ul| = k.
We show that H is either completely contained in one of the sets Ul, or H intersects
each of U1, . . . , Uk in at most one element. In either case, we get |H| ≤ k. Suppose
to the contrary that there exists l 6= l′ and three elements i, i′ ∈ Ul ∩H, j ∈ Ul′ ∩H.
Let u = P (i), v = P (i′), and w = P (j). Without loss of generality, assume that
u(1) < v(1). Now there are two cases depending on the order of l and l′. If l < l′, then
by the LEX property u(1) < v(1) < w(1), v(2) < u(2) < w(2), and w(3) < u(3) < v(3),
so (u, v, w) is a hole. If l′ < l, then w(1) < u(1) < v(1), w(2) < v(2) < u(2), and
u(3) < v(3) < w(3), so (w, u, v) is a hole. C

The rest of the proof of Theorem 23 is very similar to that of the proof of Theorem 14.
We omit its proof here.

6 Concluding remarks

We proved that the best χ-bounding function for the family of disjointness graphs of x-
monotone curves satisfies f(k) = Θ(k4). What can we say about the chromatic number
of Kk-free families of disjointness graphs of segments or convex sets? For both of these
families, the best known upper bound on the chromatic number is also O(k4), but there are
no matching lower bounds.

References
1 Pankaj K Agarwal and Nabil H Mustafa. Independent set of intersection graphs of convex

objects in 2D. Computational Geometry, 34(2):83–95, 2006.
2 Edgar Asplund and Branko Grünbaum. On a coloring problem. Mathematica Scandinavica,

8(1):181–188, 1960.
3 Peter Brass, William OJ Moser, and János Pach. Research problems in discrete geometry.

Springer Science & Business Media, 2006.
4 James Perkins Burling. On Coloring Problems of Families of Polytopes, 1965.
5 Sergio Cabello, Jean Cardinal, and Stefan Langerman. The clique problem in ray intersection

graphs. Discrete & computational geometry, 50(3):771–783, 2013.
6 Márcia R Cerioli, Luerbio Faria, Talita O Ferreira, and Fábio Protti. On minimum clique

partition and maximum independent set on unit disk graphs and penny graphs: complexity
and approximation. Electronic Notes in Discrete Mathematics, 18:73–79, 2004.

7 Robert P Dilworth. A decomposition theorem for partially ordered sets. Annals of mathematics,
pages 161–166, 1950.

8 Adrian Dumitrescu and János Pach. Minimum clique partition in unit disk graphs. In Graphs
and Combinatorics, volume 27(3), pages 399–411. Springer, 2011.

SoCG 2019

54:16 On the Chromatic Number of Disjointness Graphs of Curves

9 Stephan Eidenbenz and Christoph Stamm. Maximum clique and minimum clique partition in
visibility graphs. In IFIP International Conference on Theoretical Computer Science, pages
200–212. Springer, 2000.

10 Jacob Fox and János Pach. Computing the independence number of intersection graphs. In
Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms, pages
1161–1165. Society for Industrial and Applied Mathematics, 2011.

11 Zoltán Füredi. The maximum number of unit distances in a convex n-gon. J. Comb. Theory,
Ser. A, 55(2):316–320, 1990.

12 Michael R Garey and David S Johnson. Computers and intractability, volume 29. wh freeman
New York, 2002.

13 Fanika Gavril. Algorithms for a maximum clique and a maximum independent set of a circle
graph. Networks, 3(3):261–273, 1973.

14 András Gyárfás. On the chromatic number of multiple interval graphs and overlap graphs.
Discrete mathematics, 55(2):161–166, 1985.

15 András Gyárfás. Problems from the world surrounding perfect graphs. Applicationes Mathem-
aticae, 19(3-4):413–441, 1987.

16 J Mark Keil and Lorna Stewart. Approximating the minimum clique cover and other hard
problems in subtree filament graphs. Discrete Applied Mathematics, 154(14):1983–1995, 2006.

17 Chaya Keller, Shakhar Smorodinsky, and Gábor Tardos. On Max-Clique for intersection
graphs of sets and the Hadwiger-Debrunner numbers. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2254–2263. SIAM, 2017.

18 Dániel Korándi and István Tomon. Improved Ramsey-type results in comparability graphs.
arXiv preprint, 2018. arXiv:1810.00588.

19 Alexandr Kostochka. Coloring intersection graphs of geometric figures with a given clique
number. Contemporary mathematics, 342:127–138, 2004.

20 Alexandr Kostochka and Jan Kratochvíl. Covering and coloring polygon-circle graphs. Discrete
Mathematics, 163(1-3):299–305, 1997.

21 Alexandr Kostochka and Jaroslav Nešetril. Chromatic number of geometric intersection graphs.
In 1995 Prague Midsummer Combinatorial Workshop, volume 95(309), pages 43–45. KAM
Series, 1995.

22 Alexandr V Kostochka. Upper bounds on the chromatic number of graphs. Trudy Inst. Mat,
10:204–226, 1988.

23 Jan Kratochvíl and Jirí Matousek. Intersection graphs of segments. Journal of Combinatorial
Theory, Series B, 62(2):289–315, 1994.

24 Jan Kratochvíl and Jaroslav Nešetřil. Independent set and clique problems in intersection-
defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae, 31(1):85–93,
1990.

25 Jan Kynčl. Ramsey-type constructions for arrangements of segments. European Journal of
Combinatorics, 33(3):336–339, 2012.

26 David Larman, Jiří Matoušek, János Pach, and Jenő Törőcsik. A Ramsey-Type Result for
Convex Sets. Bulletin of the London Mathematical Society, 26(2):132–136, 1994.

27 Michał Lasoń, Piotr Micek, Arkadiusz Pawlik, and Bartosz Walczak. Coloring intersection
graphs of arc-connected sets in the plane. Discrete & Computational Geometry, 52(2):399–415,
2014.

28 Sean McGuinness. Colouring arcwise connected sets in the plane I. Graphs and Combinatorics,
16(4):429–439, 2000.

29 Leon Mirsky. A dual of Dilworth’s decomposition theorem. The American Mathematical
Monthly, 78(8):876–877, 1971.

30 Torsten Mütze, Bartosz Walczak, and Veit Wiechert. Realization of shift graphs as disjointness
graphs of 1-intersecting curves in the plane. arXiv preprint, 2018. arXiv:1802.09969.

31 János Pach and Gábor Tardos. Forbidden paths and cycles in ordered graphs and matrices.
Israel Journal of Mathematics, 155(1):359–380, 2006.

http://arxiv.org/abs/1810.00588
http://arxiv.org/abs/1802.09969

J. Pach and I. Tomon 54:17

32 János Pach, Gábor Tardos, and Géza Tóth. Disjointness graphs of segments. arXiv preprint,
2017. arXiv:1704.01892.

33 János Pach and Jenő Törőcsik. Some geometric applications of Dilworth’s theorem. Discrete
& Computational Geometry, 12(1):1–7, 1994.

34 Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Michał Lasoń, Piotr Micek, William T
Trotter, and Bartosz Walczak. Triangle-free intersection graphs of line segments with large
chromatic number. Journal of Combinatorial Theory, Series B, 105:6–10, 2014.

35 Alexandre Rok and Bartosz Walczak. Outerstring graphs are χ-bounded. In Symposium on
Computational Geometry, page 136, 2014.

36 Alexandre Rok and Bartosz Walczak. Coloring curves that cross a fixed curve. Discrete &
Computational Geometry, pages 1–22, 2017.

37 Andrew Suk. Coloring intersection graphs of x-monotone curves in the plane. Combinatorica,
34(4):487–505, 2014.

38 Kenneth Jay Supowit. TOPICS IN COMPUTATIONAL GEOMETRY. UIUCDCS-R, 1982.

SoCG 2019

http://arxiv.org/abs/1704.01892

Computing Persistent Homology of Flag
Complexes via Strong Collapses
Jean-Daniel Boissonnat
Université Côte d’Azur, INRIA, Sophia Antipolis, France
Jean-Daniel.Boissonnat@inria.fr

Siddharth Pritam
Université Côte d’Azur, INRIA, Sophia Antipolis, France
siddharth.pritam@inria.fr

Abstract
In this article, we focus on the problem of computing Persistent Homology of a flag tower, i.e. a
sequence of flag complexes connected by simplicial maps. We show that if we restrict the class of
simplicial complexes to flag complexes, we can achieve decisive improvement in terms of time and
space complexities with respect to previous work. We show that strong collapses of flag complexes
can be computed in time O(k2v2) where v is the number of vertices of the complex and k is the
maximal degree of its graph. Moreover we can strong collapse a flag complex knowing only its
1-skeleton and the resulting complex is also a flag complex. When we strong collapse the complexes
in a flag tower, we obtain a reduced sequence that is also a flag tower we call the core flag tower.
We then convert the core flag tower to an equivalent filtration to compute its PH. Here again, we
only use the 1-skeletons of the complexes. The resulting method is simple and extremely efficient.

2012 ACM Subject Classification Mathematics of computing; Theory of computation → Computa-
tional geometry; Mathematics of computing → Algebraic topology

Keywords and phrases Computational Topology, Topological Data Analysis, Strong Collapse, Per-
sistent homology

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.55

Funding This research has received funding from the European Research Council (ERC) under the
European Union’s Seventh Framework Programme (FP/2007- 2013) / ERC Grant Agreement No.
339025 GUDHI (Algorithmic Foundations of Geometry Understanding in Higher Dimensions).

1 Introduction

This paper is a continuation of the research reported in [8] on the usage of strong collapses
to accelerate the computation of the Persistent Homology (PH) of a sequence of simplicial
complexes. Computing PH efficiently is a very well studied problem in Computational Topo-
logy and Topological Data Analysis. The time complexity to compute persistent homology is
O(nω), where n is the total number of simplices and ω ≤ 2.4 is the matrix multiplication
exponent [38, 31]. In practice, when we encounter massive and high-dimensional datasets,
n may be very large n (of order of billions) and computing PH is then slow and memory
intensive. This especially occurs for flag complexes since the simplices of a flag complex are
the cliques of the 1-skeleton of the complex.

There has been a lot of progress in the recent years along two directions. On one hand,
efficient implementations and optimizations have led to a new generation of software for PH
computation [32, 6, 4, 40]. Another complementary direction has been explored to reduce
the size of the complexes in the sequence while preserving (or approximating in a controlled
way) the persistent homology of the sequence [39, 26, 14, 9, 45, 36, 16, 23]. Most of the
methods are for general simplicial complexes except [4, 45] which focus on the Vietoris-Rips
complex, an example of a flag complex. In this paper, we build on the initial success of

© Jean-Daniel Boissonnat and Siddharth Pritam;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jean-Daniel.Boissonnat@inria.fr
mailto:siddharth.pritam@inria.fr
https://doi.org/10.4230/LIPIcs.SoCG.2019.55
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Computing Persistent Homology of Flag Complexes via Strong Collapses

[8] and show that further decisive progress can be obtained if one restricts the family of
simplicial complexes to flag complexes. Flag complexes are fully characterized by their graph
(or 1-skeleton), the other faces being obtained by computing the cliques of the graph. Hence,
a flag complex can be represented by its 1-skeleton, which is a very compact representation.
Flag complexes are very popular and, in particular, Vietoris-Rips complexes are widely used
in Topological Data Analysis.

It has been shown in [8] that the persistent homology of a sequence of simplicial complexes
can be computed very efficiently using strong collapses. The basic idea is to simplify the
complexes of the input sequence by using strong collapses, as introduced by J. Barmak and E.
Miniam [3], and to compute the PH of an induced sequence of reduced simplicial complexes
that has the same PH as the initial one. This reduced sequence is unique up to isomorphism
and is called the core sequence. A crucial advantage of the method is that it only needs to
store the maximal simplices of the complex, not the full set of the simplices of all dimensions,
which saves space and time by a factor that can be exponential in the dimension of the
complex. Still, in the case of a flag complex and, in particular, in the case of the widely
used Vietoris-Rips complex, the maximal simplices are the maximal cliques of the 1-skeleton
of the complex and their number can be very large (exponential in the dimension of the
complex). As a result, the method of [8] devoted most of the time to compute the maximal
faces of the complexes prior to their strong collapse.

In this paper, we avoid computing maximal cliques and show that we can strong collapse
any flag complex using only the 1-skeleton or graph of the complex. Another crucial
observation is that the reduced complex obtained by strong collapsing a flag complex is itself
a flag complex.

Furthermore, if we consider a sequence of flag complexes connected by simplicial maps
(a flag tower), we can strong collapse all the complexes of the sequence. The obtained core
sequence is also a flag tower with smaller complexes that are connected by simplicial maps
that are induced from the maps of the original sequence and the strong collapses. In the
general case where the core sequence is not a filtration (which usually happens even if the
original sequence is a filtration), we need to convert the flag tower to an equivalent filtration
to compute its PH using known algorithms. To do so, we build on the work of [22, 35] that
we restrict to flag complexes and strong collapses. This allows us to convert a flag tower to
an equivalent flag filtration using again only the 1-skeleton.

The major advantages of our approach are:

We can compute PH for large complexes of high dimensions as we don’t need to compute
the maximal simplices.

The dimension of the original sequence is in fact irrelevant and what matters is the
dimension of the core sequence, which is usually quite small.

Instead of computing the exact PH, we can compute an approximate PH which is
substantially faster at a very minimal cost. We will explain more about the approximation
scheme in Sections 2 and 5.

The resulting method is simple and extremely efficient. On the theory side, we show
that strong collapses can be computed in time O(k2v2) where v is the number of vertices of
the complex and k the maximal degree of its graph. The algorithm described in this paper
has been implemented. Numerous experiments show that the computation of the persistent
homology of flag complexes can be obtained much faster than with previous methods, e.g.
Ripser [4]. The code will be soon released in the Gudhi library [32].

J-D. Boissonnat and S. Pritam 55:3

2 Preliminaries

In this section, we provide a brief review of the notions of simplicial complex and strong
collapse as introduced in [3] and recalled in [8]. We use the same notations and conventions
as in [8] and just recall, in addition, some basic facts about Flag complexes. Readers can
refer to [33] for a comprehensive introduction to these topics.

Simplex, simplicial complex and simplicial map. An abstract simplicial complex K is
a collection of subsets of a non-empty finite set X, such that for every subset A in K, all the
subsets of A are in K. From now on we will call an abstract simplicial complex simply a
simplicial complex or just a complex. An element of K is called a simplex. An element of
cardinality k + 1 is called a k-simplex and k is called its dimension. A simplex is called
maximal if it is not a proper subset of any other simplex in K. A sub-collection L of K is
called a subcomplex, if it is a simplicial complex itself.

A map ψ : K → L between two simplicial complexes is called a simplicial map, if it
always maps a simplex in K to a simplex in L. Simplicial maps are induced by vertex-
to-vertex maps. In particular, there is a finite number of simplicial maps between two
given finite simplicial complexes. Simplicial maps induce continuous maps between the
underlying geometric realisations of the simplicial complexes. Any general simplicial map
can be decomposed into more elementary simplicial maps, namely elementary inclusions
(i.e., inclusions of a single simplex) and elementary contractions {{u, v} 7→ u} (where a
vertex is mapped onto another vertex). Two simplicial maps φ : K → L and ψ : K → L

are contiguous if, for all σ ∈ K, φ(σ) ∪ ψ(σ) ∈ L. Two contiguous maps are known to be
homotopic [41, Theorem 12.5].

Flag complex. A complex K is a flag or a clique complex if, when a subset of its vertices has
pairwise edges between them, they span a simplex. It follows that the full structure of K is
determined by its 1-skeleton we denote by G. For a vertex v in G, the open neighborhood
NG(v) of v in G is defined as NG(v) := {u ∈ G | [uv] ∈ E}. The closed neighborhood
NG[v] is NG[v] := NG(v)∪ {v}. We further define the relative closed neighborhood of u by v
in G as the set of vertices in NG[u] that are not in NG[v]. We denote it by NG[u \ v].

Dominated vertex. Let σ be a simplex of a simplicial complex K, the closed star of σ in
K, stK(σ) is a subcomplex of K which is defined as follows, stK(σ) := {τ ∈ K| τ ∪ σ ∈ K}.
The link of σ in K, lkK(σ) is defined as the set of simplices in stK(σ) which do not intersect
with σ, lkK(σ) := {τ ∈ stK(σ)|τ ∩ σ = ∅}.

Taking a join with a vertex transforms a simplicial complex into a simplicial cone.
Formally if L is a simplicial complex and a is a vertex not in L then the simplicial cone aL
is defined as aL := {a, τ | τ ∈ L or τ = σ ∪ a; where σ ∈ L}. A vertex v in K is called a
dominated vertex if the link of v in K, lkK(v) is a simplicial cone, that is, there exists a
vertex v′ 6= v and a subcomplex L in K, such that lkK(v) = v′L. We say that the vertex v′
is dominating v and v is dominated by v′. The symbol K \ v (deletion of v from K) refers
to the subcomplex of K which has all simplices of K except the ones containing v. Below
is an important remark from [3, Remark 2.2], which proposes an alternative definition of
dominated vertices.

I Remark 1. A vertex v ∈ K is dominated by another vertex v′ ∈ K, if and only if all the
maximal simplices of K that contain v also contain v′ [3].

SoCG 2019

55:4 Computing Persistent Homology of Flag Complexes via Strong Collapses

v′v v′ v′v′

Figure 1 Illustration of an elementary strong collapse. In the complex on the left, v is dominated
by v′. The link of v is highlighted in red. Removing v leads to the complex on the right.

Strong collapse. An elementary strong collapse is the deletion of a dominated vertex
v from K, which we denote with K ↘↘ K \ v. Figure 1 illustrates an easy case of an
elementary strong collapse. There is a strong collapse from a simplicial complex K to its
subcomplex L, if there exists a series of elementary strong collapses from K to L, denoted as
K ↘↘ L. The inverse of a strong collapse is called a strong expansion. If there exists a
combination of strong collapses and/or strong expansions from K to L, then K and L are
said to have the same strong homotopy type.

The notion of strong homotopy type is stronger than the notion of simple homotopy type
in the sense that if K and L have the same strong homotopy type, then they have the same
simple homotopy type, and therefore the same homotopy type [3]. There are examples of
contractible or simply collapsible simplicial complexes that are not strong collapsible.

A complex without any dominated vertex will be called a minimal complex. A core
of a complex K is a minimal subcomplex Kc ⊆ K, such that K ↘↘ Kc. Every simplicial
complex has a unique core up to isomorphism. The core decides the strong homotopy type
of the complex, and two simplicial complexes have the same strong homotopy type if and
only if they have isomorphic cores [3, Theorem 2.11].

Retraction map. If a vertex v ∈ K is dominated by another vertex v′ ∈ K, the vertex map
r : K → K \ v defined as: r(w) = w if w 6= v and r(v) = v′, induces a simplical map that is a
retraction map. The homotopy between r and the identity iK\v over K \ v is in fact a strong
deformation retract. Furthermore, the composition (iK\v)r is contiguous to the identity iK
over K [3, Proposition 2.9].

Sequences of complexes. A sequence of simplicial complexes T : {K1
f1−→ K2

f2−→ K3
f3−→

· · ·
f(m−1)−−−−→ Km}, connected through simplicial maps fi is called a simplicial tower or simply

a tower. We call a tower a flag tower if all the simplicial complexes Ki are flag complexes.
When all the simplicial maps fis are inclusions, then the tower is called a filtration and a
flag tower is called a flag filtration.

Persistent homology. If we compute the homology classes of all the Ki, we get the sequence

P(T) : {Hp(K1) f∗1−→ Hp(K2) f∗2−→ Hp(K3) f∗3−→ · · ·
f∗(m−1)−−−−→ Hp(Km)}. Here Hp() denotes the

homology class of dimension p with coefficients from a field F and ∗ denotes an induced
homomorphism. P(T) is a sequence of vector spaces connected through homomorphisms,
called a persistence module. More formally, a persistence module V is a sequence of vector
spaces {V1 −→ V2 −→ V3 −→ · · · −→ Vm} connected with homomorphisms {−→} between them.
A persistence module arising from a sequence of simplicial complexes captures the evolution
of the topology of the sequence.

J-D. Boissonnat and S. Pritam 55:5

Any persistence module can be decomposed into a collection of intervals of the form [i, j)
[10]. The multiset of all the intervals [i, j) in this decomposition is called the persistence
diagram of the persistence module. An interval of the form [i, j) in the persistence diagram
of P(T) corresponds to a homological feature (a ‘cycle’) which appeared at i and disappeared
at j. The persistence diagram (PD) completely characterizes the persistence module, that
is, there is a bijective correspondence between the PD and the equivalence class of the
persistence module [10, 51].

Two different persistence modules V : {V1 −→ V2 −→ · · · −→ Vm} and W : {W1 −→ W2 −→
· · · −→Wm}, connected through a set of homomorphisms φi : Vi →Wi are equivalent if the
φi are isomorphisms and the following diagram commutes [10, 20].

V1 V2 · · · Vm−1 Vm

W1 W2 · · · Wm−1 Wm

φ1 φ2 φm−1 φm

The equivalent persistence modules will have the same interval decomposition, therefore the
same diagram.

Overview of the algorithm and approximation scheme. The algorithm presented in this
paper adopts the same strategy as the algorithm reported in [8]. However we just focus on
flag towers instead of general sequences.

Let T : {K1
f1−→ K2

f2−→ · · ·
f(m−1)−−−−→ Km} be a flag tower of which we want to compute

the persistence diagram. We first strong collapse the various complexes Ki, i = 1, ...,m
as suggested in [8]. Since each Ki is a flag complex, the computation of its core can be
computed much more efficiently using only its 1-skeleton. The new algorithm is discussed in
detail in Section 3.

We then compute a core tower that connects the Kis through induced simplicial maps.
This is again an adaptation of what has been done in [8] for general simplicial complexes to
the case of flag complexes. Lastly, we compute a flag filtration with the same PH as the core
tower. This is similar to what has been done in [22, 35], and is detailed in Section 4. This
filtration can then be sent to any algorithm that computes the persistence homology of a
flag filtration [40, 4, 6, 32].

It is important to note that the algorithm computes the exact PH of the input flag tower
T . However, instead of considering all the Kis and the associated simplicial maps, we can
select some of the Kis we rename K ′1, ...,K ′q, and compose the original maps f1, ..., fm−1
to obtain simplicial maps f ′1, ..., f ′q−1 connecting the selected complexes. We thus obtain a
sub-tower T ′ and the algorithm will then compute the exact PH of T ′. An application of
this idea will be presented for Vietoris-Rips filtrations in Section 5. By rounding the values
of the threshold parameter to a given number of snapshots of the threshold value, we will be
able to approximate in a controlled way the PH of the initial filtration T .

3 Strong Collapse of a Flag complex

In this section, we show that the core of a flag complex K is itself a flag complex whose graph
is called the core graph of K. The core graph of K can be computed from the 1-skeleton G
of K in time O(v2k2), where v is the number of vertices in K and k is an upper bound on
the degree of G (i.e. the number of edges that are incident on a vertex in K).

SoCG 2019

55:6 Computing Persistent Homology of Flag Complexes via Strong Collapses

Although this change wrt the algorithm in [8] might look minor, it is crucial in practice as
the time to compute all the maximal simplices of a flag complex from its graph is exponential
in the number of its vertices. We thus reduce immensely the time and space complexity of
the general algorithm of [8] whose complexity is O(v2Γ0d+m2Γ0d), where Γ0 is an upper
bound on the number of maximal simplices incident to a vertex.

In the following lemma, we describe a condition in terms of the closed neighborhood
NG[v] of a vertex v of a flag complex K under which v will be dominated by another vertex
v′ of K. This result has been studied in another context in [30, Lemma 4.1].

I Lemma 2. Let K be a flag complex. A vertex v ∈ K is dominated by v′ iff NG[v] ⊆ NG[v′].

Proof. If v is dominated by v′, then, according to Remark 1, the set of maximal simplices
that contain v is a subset of the set of maximal simplices that contain v′. It follows that
NG[v] ⊆ NG[v′].

Now we prove the other direction. Let σ be a maximal simplex of K containing v. Any
other vertex x of σ is joined to v by an edge [x, v] ∈ σ. Moreover, since NG[v] ⊆ NG[v′],
[v, v′] and [x, v′] are in K. It follows that every vertex in σ has an edge with both v and v′
and, since K is a flag complex and σ is maximal, v′ must be in σ. This implies that all the
maximal simplices that contain v also contain v′. Hence v is dominated by v′. J

As mentioned before, an elementary strong collapse consists in removing a dominated
vertex, and it can be easily observed that removing a vertex does not affect the ‘flagness’
of the residual complex K \ v. In other words, if σ is a maximal clique with vertex v, the
resultant clique σ \ v is still a maximal clique in K \ v. Moreover, all the other cliques that
do not contain v still span the complete simplices. This implies that the core Kc of a flag
complex K with graph G is a flag complex of a sub-graph Gc of G.

In what follows next, we describe an algorithm to compute the core graph Gc ⊆ G whose
flag complex is the core Kc of K.

Data structure. We represent G with its adjacency matrix M , where the rows and the
columns of M represent the vertices of G. An entry M [vi][vj] associated with vertices vi and
vj is set to 1 if either the edge [vi, vj] ∈ G or i = j, and to 0 otherwise. Note that we set
M [vi][vj] = 1 for i = j to be able to consider closed neighborhood. We will say that a row
v is contained in another row v′ if the set of column indices of the non-zero entries of v is
a subset of the indices of the non-zero entries of v′. It is clear that if a row v is contained
in another row v′, we have NG[v] ⊆ NG[v′] and therefore the vertex v is dominated by the
vertex v′.

Core graph algorithm. Given the adjacency matrix M of G, we compute the adjacency
matrix C of the core graph Gc. In view of Lemma 2, we can easily compute C from M

using basic row removal operations. Loosely speaking, we remove the rows of M that are
contained in another row. After removing the row associated to v, we simultaneously update
the matrix by removing the column associated to v. The process is iterated as long as the
matrix can be reduced. Upon termination, we output the reduced matrix C, which is the
adjacency matrix of the core graph Gc of K. Since the core of a complex is always unique,
the order in which vertices are removed does not matter [3].

Retraction map computation. We can easily compute the retraction map r defined in
Section 2 using the above core graph algorithm. A row v being removed in M corresponds to
a dominated vertex in K and the row which contains v corresponds to a dominating vertex.
Therefore we map the dominated vertex to the dominating vertex.

J-D. Boissonnat and S. Pritam 55:7

Domination tests optimization. Let us observe that, to check if a row v is dominated by
some other row v′, it is sufficient to compare v with its neighbors, which are at most k in
number, if k denotes the maximum degree of the vertices in G.

We define a row v to be a candidate row for the next iteration if at least one of its
neighbors has been removed in a previous row removal iteration. We observe that the
candidate rows are the only rows that need to be considered in the domination tests of
the algorithm. Indeed, a row w of M whose set of neighbors has not been modified at the
previous iteration cannot be dominated by another row v′ of M , as w was not dominated in
the previous iteration and all other vertices can only loose neighbors. This ensures that w
will still remain un-dominated.

We maintain a queue, for the candidate rows (rowQueue) which is implemented as a First
in First out (FIFO) queue. At each iteration, we pop out a candidate row from rowQueue
for domination test. After each successful domination test, we push the new candidate rows
in the queue in preparation for the subsequent iteration. In the first iteration, we push all
the rows in rowQueue. Algorithm 1 gives the pseudo code of our algorithm.

Algorithm 1 Core graph algorithm.
1: procedure Core(M)
2: input : the adjacency matrix M of the graph of a flag complex K
3: rowQueue← push all rows of M (all vertices of K)
4: while rowQueue is not empty do
5: v ← pop(rowQueue)
6: NG[v]← the non-zero columns of v
7: for w in NG[v] do
8: if NG[v] ⊆ NG[w] then
9: Remove from M the column and the row associated to v
10: push all the entries of NG(v) to rowQueue if not pushed before
11: break
12: end if
13: end for
14: end while
15: return M . M is now the adjacency matrix of the core of K
16: end procedure

Time Complexity. Let us start by analyzing the most basic operation in our algorithm
which is to determine if a row is dominated by another row. We store the rows of the matrix
as sorted lists. Deciding if a sorted list is included in another sorted list (Line 8) can be done
in time O(l), where l is the size of the longer list. In our case, the length of a row list is at
most k + 1 where k denotes as before the maximal degree of any vertex. Hence lines 8-12
takes O(k) time.

As explained in the paragraph Domination tests optimization, each row is checked against
at most k other rows. Hence the for loop (Lines 7-13) is executed at most k times. Moreover,
since at each iteration we ought to remove at least one row, the total number of iterations
on the rows, i.e. the number of times the while loop is executed, is at most O(v2), where v is
the total number of vertices of the complex K. It follows that the worst-case time complexity
of our algorithm is O(v2k2).

SoCG 2019

55:8 Computing Persistent Homology of Flag Complexes via Strong Collapses

4 From a Flag Tower to a Flag Filtration

In this section, we show that, thanks to the notion of strong collapses, we can efficiently
turn a flag tower into a flag filtration using only edge inclusions over the 1-skeletons of
the complexes.

4.1 Previous work

It is known that any general simplicial map can be decomposed into elementary inclusions and
elementary contractions. Hence if we can replace an elementary contraction {{u, v} 7→ u} by
an equivalent (not necessarily elementary) inclusion, we transform a tower into an equivalent
filtration. This was the philosophy introduced by Dey et al. [22]. This idea has been further
refined by Kerber and Schreiber [35] who introduced a slightly different approach based
on coning. They provided theoretical bounds on the size and time to construct the final
equivalent filtration. Specifically, they proved that the size of the equivalent filtration is
O(d ∗ n ∗ logn0), where d is the maximal dimension of the complexes in the input tower and
n (resp. n0) the total number of elementary inclusions (resp. vertex inclusions) in the input
tower [35, Theorem 2].

4.2 A new construction

We now present an algorithm that turns a flag tower into a flag filtration with the same
PH. Our work builds upon the above mentioned previous works [22, 35]. The difference
is that we use strong expansion which is the inverse operation of a strong collapse. The
main advantage of strong expansions is that, when the input is a flag tower, we can use the
domination criterion of Lemma 2. This leads to a simple algorithm that only deals with
edges. The output filtration is a flag filtration, which can be represented very compactly.
Moreover, since a strong expansion is a coning, we will be able to use the theoretical results
of [35]. Now we describe our construction.

Let Ki be a flag complex and Gi be its 1-skeleton. We associate to Ki an augmented
complex Ki ⊇ Ki. As will be seen below, Ki is also a flag complex whose 1-skeleton will be
denoted by Gi. Following the terminology of [35], we call a vertex v ∈ Ki to be active if it is
currently not dominated. The active closed neighborhood ActNGi [v] is then defined as the set
of all active vertices in NGi

[v]. Similarly, ActNGi
[v \ u] denotes the set of active vertices in

the closed neighborhood NGi
[v] of v that are not in NGi

[u]. Finally, let {[u,ActNGi
[v \ u]]}

denote the set of edges between u and ActNGi
[v \ u].

Using the notions defined above, we now explain how to inductively construct a filtration
associated to a given flag tower. The construction operates in a streaming fashion on the
1-skeleton. We distinguish two kinds of inputs: elementary inclusions (of a vertex or an edge)
and elementary contractions. For i = 0, we set G0 = ∅. We then define Gi as follows.

1. if Gi
∪σ−−→ Gi+1 is an elementary inclusion where σ is either a vertex or an edge, we set

Gi+1 := Gi ∪ σ.

2. if Gi
{u,v}7→u−−−−−−→ Gi+1 is an elementary contraction

2.1. if |ActNGi [v \ u]| ≤ |ActNGi [u \ v]|, we set Gi+1 := Gi ∪ {[u,ActNGi [v \ u]} and v as
contracted

2.2. otherwise, we set Gi+1 := Gi ∪ {[v,ActNGi
[u \ v]} and u as contracted.

J-D. Boissonnat and S. Pritam 55:9

v

u

IGi IGi+1

Note that Gi ⊆ Gi+1 and thus Ki ⊆ Ki+1. We continue the construction until the end of
our input tower.

Complexity Analysis. The vertices marked contracted during our construction are exactly
the same as the inactive vertices defined in [35]. By construction, any contracted vertex will
be dominated permanently in the filtration. Since such a vertex stops existing in the tower
later on, its neighborhood stays the same and the vertex remains dominated. Therefore, at
any point in our construction, the number of active vertices is less than the number of active
vertices that are used in [35]. Moreover, since a strong expansion is a coning, the size of the
final filtration in our construction is at most that obtained by the construction prescribed in
[35]. Moreover, since we are working with 1-skeletons only, the space and time complexity of
our method is much lower than that of [35].

Let us now analyze the time complexity of the algorithm. Notice that there are two
basic operations on the 1-skeleton, elementary inclusions in Line 1, and the computation and
comparison of ActNGi [v \ u] and ActNGi [u \ v] in Lines 2.1 and 2.2. Elementary inclusions
can be performed in constant time O(1). To compute ActNGi

[v \ u] we need to compute
NGi

[v], NGi
[u] and the subset of vertices that are dominated (inactive) in NGi

[v \ u]. We can
access NGi [v] and NGi [u] in constant time O(1) and compute the set-difference NGi [v \ u]
in O(k log k) time, where k is the maximum degree of a vertex. Finally computing the
dominated vertices in NGi [v \ u] can be done in O(k3) time as |NGi [v \ u]| ≤ k. Therefore
computing ActNGi

[v \u] and ActNGi
[u \ v] takes O(k3) time. Since the size of active relative

closed neighborhoods are bounded by k, for each elementary contraction, we include at most
k edges in O(k) time. It follows that the worst-case time complexity for each elementary
contraction is O(k3).

We conclude that the time complexity of the algorithm is O(|Gm|+ nc ∗ k3) where nc
is the number of elementary contractions in the input tower and |Gm| is the size of the
1-skeleton of the output flag filtration. The space complexity of our construction is O(n0 ∗ k)
which is the size of a sparse adjacency matrix of a flag complex with n0 vertices.

Correctness. Finally we prove few lemmas and state our main result Theorem 7 to certify
the correctness of the output of our construction.

I Lemma 3. Let fi : Ki
{u,v}7→u−−−−−−→ Ki+1 be the first elementary contraction in the tower

T : K0
f0−→ K1

f1−→ ...
fm−1−−−→ Km. Then the complex Ki+1 is a subcomplex of Ki+1 and

Ki+1 ↘↘ Ki+1.

Proof. We prove the second part Ki+1 ↘↘ Ki+1 of the statement which then implies
the first part Ki+1 ⊂ Ki+1. Since fi is the first contraction Ki = Ki and Gi = Gi. Let
Gi+1 := Gi ∪ {[u,ActNGi

[v \ u]} be the graph defined in the construction Line 2.1. By
construction, contracting v to u in both graphs Gi and Gi+1 yields the same graph Gi+1.

SoCG 2019

55:10 Computing Persistent Homology of Flag Complexes via Strong Collapses

Let x′ ∈ ActNGi [v \ u]. We observe that adding the edge [ux′] to Gi does not change the
fact that all x ∈ {NGi

[v \ u] \ActNGi
[v \ u]} are dominated since the addition of [ux′] only

adds neighbors to NGi
[x′] and NGi

[u]. Removing all the dominated vertices in NGi
[v \ u]

thus provides a sequence of elementary strong collapses. By performing all such elementary
strong collapses, Ki+1 is eventually transformed into a complex K0

i+1. By doing so, we have
removed all the dominated vertices from NGi [v \ u] and added edges between u and the
non dominated vertices that are in NGi

[v \ u]. This implies that v is dominated by u in
K0
i+1. The elementary strong collapse of v onto u, implies K0

i+1 ↘↘ Ki+1 and therefore
Ki+1 ↘↘ Ki+1. J

I Lemma 4. Let fi : Ki
{u,v}7→u−−−−−−→ Ki+1 be the first elementary contraction in the tower

T : K0
f0−→ K1

f1−→ ...
fm−1−−−→ Km. Then the following diagram commutes

Hp(Ki) Hp(Ki+1)

Hp(Ki+1)

f∗i

i∗ (i′)∗

Here i′ : Ki+1 ↪→ Ki+1 is the inclusion induced by the strong collapse. i∗ and (i′)∗ are
homomorphisms induced by the inclusion maps.

Proof. Using the fact that fi is the first contraction, we have the inclusion Ki = Ki ⊆ Ki+1.
Let K0

i+1 be the complex as defined in the proof of Lemma 3. Consider the following diagram
of simplicial complexes, and note that i′ = i1 ◦ i0 where i0 and i1 are both inclusions induced
by the respective strong collapses.

Ki Ki+1

Ki+1 K0
i+1

fi

i i0

i1

We claim that the maps i′ ◦ fi and i are contiguous, which we denote i′ ◦ fi ∼ i. Indeed, let
σ be any simplex in Ki. Since i is an inclusion, i(σ) = σ.

Case 1. If v /∈ σ, then i′ ◦ fi(σ) = σ = i(σ).
Case 2. If v ∈ σ, fi(σ) is a simplex γ ∈ Ki+1 that contains u and, since i0 is an inclusion,

i0 ◦ fi(σ) = γ. Observe that, in the retraction map associated to the strong collapse
r1 : Ki+1 ↘↘ K0

i+1, v is not contracted (by construction of K0
i+1). Therefore r1 ◦ i(σ) is

a simplex γ′ ∈ K0
i+1 that contains v.

Now, as mentioned in the proof of Lemma 3, u dominates v in K0
i+1. Therefore all the

maximal simplices in K0
i+1 that contain v also contain u (Remark 1). Therefore, γ′ is a

face of a maximal simplex τ ∈ K0
i+1 that contains u (in addition to v).

Since γ is obtained by contracting v to u, γ must be a face of τ that contains both u
and v. This implies that γ′ ∪ γ ⊆ τ , which in turn implies that r1 ◦ i(σ) is contiguous
to i0 ◦ fi(σ). After composing both sides with i1, we get i1 ◦ r1 ◦ i(σ) ∼ i1 ◦ i0 ◦ fi(σ).
Now since Ki+1 ↘↘ K0

i+1, i1 ◦ r1 ∼ 1Ki+1 [3], where 1Ki+1 is the identity over Ki+1. As
i1 ◦ i0 = i′, we have i′ ◦ fi(σ) ∼ i(σ).

Combining both the cases we conclude i′ ◦ fi ∼ i.
Since contiguous maps are homotopic at the level of geometric realizations, the diagram

in the lemma commutes. J

J-D. Boissonnat and S. Pritam 55:11

Proceeding by induction, Lemma 3 then immediately implies the following result.

I Lemma 5. Given a tower T : K0
f0−→ K1

f1−→ ...
fm−1−−−→ Km. For each 0 ≤ i ≤ m,

Ki ↘↘ Ki.

Again, using an inductive argument along with Lemmas 4 and 5, we can deduce the
following result.

I Theorem 6. The following diagram commutes and all the vertical maps φ∗i are isomorph-
isms. As a consequence, the tower T : K0

f0−→ K1
f1−→ ...

fm−1−−−→ Km and the constructed
filtration F : K0 ↪→ K1 ↪→ ... ↪→ Km have the same persistence diagram.

Hp(K1) Hp(K2) · · · Hp(Km−1) Hp(Km)

Hp(K1) Hp(K2) · · · Hp(Km−1) Hp(Km)

∗

φ∗1

∗

φ∗2

∗

φ∗m−1 φ∗m

f∗1 f∗2 f∗m−1

Here φi is a strong collapse for each i ∈ {0, · · · ,m} and ∗ indicates the induced homo-
morphisms.

We summarize our result in the following theorem. We write T : K0
f0−→ K1

f1−→ ...
fm−1−−−→

Km for the given flag tower where, w.l.o.g., K0 = ∅. and each fi is either an inclusion or an
elementary contraction. The inclusions are not necessarily elementary but corresponds to an
elementary inclusion on the graphs Gi. We denote by d the maximal dimension of the Kis
in T , and by n the total number of elementary inclusions of simplices in T , by nc the total
number of elementary contractions and by n0 the number of vertex inclusions in T .

I Theorem 7. There exists a filtration F : K0 ↪→ K1 ↪→ ... ↪→ Km, where the inclusions are
not necessarily elementary, such that T and F have the same persistence diagram and the
size of the filtration |Km| is at most O(d ∗ n ∗ logn0). Moreover, F is a flag filtration which
can be computed from T using only the 1-skeletons Gis of the Kis. The time complexity
of the algorithm is O(|Gm| + nc ∗ k3) time and its space complexity O(n0 ∗ k), where Gm
denotes the 1-skeleton of Km and k is an upper bound on the degree of the vertices in Gm.

5 Computational experiments

Our algorithm has been implemented for Vietoris-Rips (VR) filtrations as a C++ module
named RipsCollapser. Recall that, for VR-filtrations, the filtration value of a simplex is the
length of the longest edge of the simplex. RipsCollapser takes as input a VR filtration and
returns the reduced flag filtration as shown above. RipsCollapser can be used in two modes:
in the exact mode, the output filtration has the same PD as the input filtration while, in the
approximate mode to be described below, a certified approximation is returned. The output
filtration can then be sent to any software that computes the PD of a VR-filtration such
as the Gudhi library (the one we chose for our experiments) [32] or Ripser [4]. Therefore
RipsCollapser is to be considered as an ad-on to software computing PD. RipsCollapser will
be available as an open-source package of a next release of the Gudhi library.

Approximate persistence diagram. Given a VR filtration, one can choose to collapse the
original complexes after each edge inclusion. However, as mentioned in Section 2, we can also
choose to strong collapse the complexes less often, i.e. after several edge inclusions rather
than just one. This will result in a faster algorithm but comes with a cost: the computed PD

SoCG 2019

55:12 Computing Persistent Homology of Flag Complexes via Strong Collapses

is then only approximate. We call snapshots the values of the scale parameter at which we
choose to strong collapse the complex. The difference between two consecutive snapshots is
called a step. We approximate the filtration value of a simplex as the value of the snapshot
at which it first appears. We can observe that our algorithm will report all persistence pairs
that are separated by at least one snapshot. Hence if all steps are equal to some ε > 0,
we will compute all the persistence pairs whose lengths are at least ε. It follows that the
l∞-bottleneck distance between the computed PD and the exact one is at most ε. If instead
the ratio between any two consecutive steps is taken to a constant ρ > 1, the l∞-bottleneck
distance will be at most log ρ after reparameterizing the filtrations on a log-log-scale [45].

Experimental setup. We present results on five datasets netw-sc, senate, eleg, HIV and
drag 1 that are publicly available [18]. Each dataset is given as the interpoint distance
matrix. The reported time includes the time of RipsCollapser and the time to compute
the persistent diagram (PD). The time of RipsCollapser includes: 1. The time taken to
compute the largest 1-skeleton associated to the maximum threshold value, 2. The time
taken to collapse all the sub-skeletons and assemble their cores. 3. To transform them into
an equivalent flag-filtration.

The code has been compiled using the compiler ‘clang-900.0.38’ and all computations
were performed on a ‘2.8 GHz Intel Core i5’ machine with 16 GB of available RAM. We
took all steps to be equal. Parameter Step controls the quality of the approximation : if
Step = 0, we obtain the exact PD, otherwise Step is an upper bound on the l∞-bottleneck
distance between the output diagram and the exact one. RipsCollapser works irrespective of
the dimension of the input complexes. However, the size of the complexes in the reduced
filtration, even if much smaller than in the original filtration, might exceed the capacities of
the PD computation algorithm. For this reason, we introduced a parameter dim and restricts
PD computation to dimension at most dim.

Some experimental results are reported in Table 1. We first observe that the reduction
done by RipsCollapser is enormous. The reduced complexes are small and of low dimension
(column Size/Dim) compared to the input VR-complexes which are of dimensions respectively
57, 54 and 105 for the first three datasets netw-sc, senate and eleg. We also observe that,
while the time taken by RipsCollapser is large for exact persistence computation, very good
approximations can be obtained fast. Moreover the computing time mildly increases with
the number of snapshots. This suggests that implementing the collapses in parallel would
lead to further substantial improvement.

Comparison with Ripser. Ripser [4] is the state of the art software to compute persistent
diagrams of VR filtrations. It computes the exact PD associated to the input filtration
up to dimension dim. Although RipsCollapser is more complementary to Ripser than a
competitor, we run Ripser1 on the same datasets as in Table 1 to demonstrate the benefit of
using RipsCollapser.

Results are presented in Table 2. The main observation is that Ripser performs quite
well in low dimensions but its ability to handle higher dimensions is limited.

1 We used the command
<./ripser inputData –format distances –threshold inputTh –dim inputDim >.

J-D. Boissonnat and S. Pritam 55:13

Table 1 The columns are, from left to right: dataset (Data), number of points (Pnt), maximum
value of the scale parameter (Thrsld), number of simplices (Size) and dimension of the final filtration
(Dim), parameter (dim), time (in seconds) taken by RipsCollapser, total time (in seconds) including
PD computation (Tot-Time), parameter Step and the number of snapshots used (Snaps).

Data Pnt Thrsld RipsCollapser +PD
Size/Dim dim Pre-Time Tot-Time Step Snaps

netw-sc 379 5.5 155/3 ∞ 7.28 7.38 0.02 263
” ” ” 155/3 ∞ 13.93 14.03 0.01 531
” ” ” 175/3 ∞ 366.46 366.56 0 8420

senate 103 0.415 405/4 ∞ 2.53 2.54 0.001 403
” ” ” 417/4 ∞ 15.96 15.98 0 2728

eleg 297 0.3 577K/15 ∞ 11.65 26.02 0.001 284
” ” ” 835K/16 ∞ 518.36 540.40 0 9850

HIV 1088 1050 127.3M/? 4 660 3,955 4 184
drag1 1000 0.05 478.3M/? 4 687 14,170 0.0002 249

Table 2 Time is the total time (in seconds) taken by Ripser. ∞ means that the experiment ran
longer than 12 hours or crashed due to memory overload.

Data Pnt Threshold Val Val Val
dim Time dim Time dim Time

netw-sc 379 5.5 4 25.3 5 231.2 6 ∞
senate 103 0.415 3 0.52 4 5.9 5 52.3

” ” ” 6 406.8 7 ∞
eleg 297 0.3 3 8.9 4 217 5 ∞
HIV 1088 1050 2 31.35 3 ∞
drag1 1000 0.05 3 249 4 ∞

References
1 M. Adamaszek and J. Stacho. Complexity of simplicial homology and independence complexes

of chordal graphs. Computational Geometry: Theory and Applications, 57:8–18, 2016.
2 D. Attali, A. Lieutier, and D. Salinas. Efficient data structure for representing and simplifying

simplicial complexes in high dimensions. International Journal of Computational Geometry
and Applications (IJCGA), 22:279–303, 2012.

3 J. A. Barmak and E. G. Minian. Strong homotopy types, nerves and collapses. Discrete and
Computational Geometry, 47:301–328, 2012.

4 U. Bauer. Ripser. URL: https://github.com/Ripser/ripser.
5 U. Bauer, M. Kerber, and J. Reininghaus. Clear and compress: Computing persistent homology

in chunks. In Topological Methods in Data Analysis and Visualization III, Mathematics and
Visualization, pages 103–117. Springer, 2014.

6 U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. PHAT – persistent homology algorithms
toolbox. Journal of Symbolic Computation, 78, 2017.

7 J-D. Boissonnat and C. S. Karthik. An Efficient Representation for Filtrations of Simplicial
Complexes. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017.

8 J-D. Boissonnat, S.Pritam, and D. Pareek. Strong Collapse for Persistence. In 26th Annual
European Symposium on Algorithms (ESA 2018), volume 112, 2018.

SoCG 2019

https://github.com/Ripser/ripser

55:14 Computing Persistent Homology of Flag Complexes via Strong Collapses

9 M. Botnan and G. Spreemann. Approximating persistent homology in Euclidean space through
collapses. Applicable Algebra in Engineering, Communication and Computing, 26:73–101, 2015.

10 G. Carlsson and V. de Silva. Zigzag Persistence. Found Comput Math, 10, 2010.
11 G. Carlsson, V. de Silva, and D. Morozov. Zigzag persistent homology and real-valued functions.

SOCG, pages 247–256, 2009.
12 G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the Local Behavior of Spaces

of Natural Images. In: International Journal of Computer Vision, 76:1–12, 2008.
13 J. M. Chan, G. Carlsson, and R. Rabadan. Topology of viral evolution. In: Proceedings of the

National Academy of Sciences, 110:18566–18571, 2013.
14 F. Chazal and S. Oudot. Towards Persistence-Based Reconstruction in Euclidean Spaces.

SOCG, 2008.
15 C. Chen and M. Kerber. Persistent homology computation with a twist. In European Workshop

on Computational Geometry (EuroCG), pages 197–200, 2011.
16 Aruni Choudhary, Michael Kerber, and Sharath Raghvendra. Polynomial-Sized Topological

Approximations Using the Permutahedron. In Sándor Fekete and Anna Lubiw, editors, 32nd
International Symposium on Computational Geometry (SoCG 2016), volume 51 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 31:1–31:16, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/
volltexte/2016/5923, doi:10.4230/LIPIcs.SoCG.2016.31.

17 H. Edelsbrunner D. Cohen-Steiner and J. Harer. Stability of Persistence Diagrams. Discrete
and Compututaional Geometry, 37:103–120, 2007.

18 Datasets. URL: https://github.com/n-otter/PH-roadmap/’’.
19 V. de Silva and R. Ghrist. Coverage in sensor networks via persistent homology. In: Algebraic

and Geometric Topology, 7:339 – 358, 2007.
20 H. Derksen and J. Weyman. Quiver representations. Notices of the American Mathematical

Society, 52(2):200–206, February 2005.
21 T. K. Dey, H. Edelsbrunner, S. Guha, and D. Nekhayev. Topology preserving edge contraction.

Publications de l’Institut Mathematique (Beograd), 60:23–45, 1999.
22 T. K. Dey, F. Fan, and Y. Wang. Computing Topological Persistence for Simplicial Maps. In

Symposium on Computational Geometry (SoCG, pages 345–354, 2014.
23 T. K. Dey, D. Shi, and Y. Wang. SimBa: An efficient tool for approximating Rips-filtration

persistence via Simplicial Batch-collapse. In European Symp. on Algorithms (ESA), pages
35:1–35:16, 2016.

24 T. K. Dey and R. Slechta. Filtration Simplification for Persistent Homology via Edge
Contraction. International Conference on Discrete Geometry for Computer Imagery, 2019.

25 C. H. Dowker. Homology groups of relations. The Annals of Mathematics, 56:84–95, 1952.
26 P. Dłotko and H. Wagner. Simplification of complexes for persistent homology computations,.

Homology, Homotopy and Applications, 16:49–63, 2014.
27 H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. American Mathem-

atical Society, 2010.
28 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.

Discrete and Compututational Geometry, 28:511–533, 2002.
29 B. T. Fasy, J. Kim, F. Lecci, and C. Maria:. Introduction to the R package TDA. CoRR

abs/1411.1830, 2014.
30 E. Fieux and J. Lacaze. Foldings in graphs and relations with simplicial complexes and posets.

Discrete Mathematics, 312(17):2639–2651, 2012.
31 F. Le Gall. Powers of tensors and fast matrix multiplication. ISSAC ’, 14:296–303, 2014.
32 Gudhi: Geometry understanding in Higher Dimensions. URL: http://gudhi.gforge.inria.

fr/.
33 A. Hatcher. Algebraic Topology. Univ. Press Cambridge, 2001.
34 C. S. Karthik J-D. Boissonnat and S. Tavenas. Building Efficient and Compact Data Structures

for Simplicial Complexes. Algorithmica, 79:530–567, 2017.

http://drops.dagstuhl.de/opus/volltexte/2016/5923
http://drops.dagstuhl.de/opus/volltexte/2016/5923
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.31
https://github.com/n-otter/PH-roadmap/''
http://gudhi.gforge.inria.fr/
http://gudhi.gforge.inria.fr/

J-D. Boissonnat and S. Pritam 55:15

35 M. Kerber and H. Schreiber:. Barcodes of Towers and a Streaming Algorithm for Persistent
Homology. 33rd International Symposium on Computational Geometry, 2017. arXiv:1701.
02208.

36 M. Kerber and R. Sharathkumar. Approximate Čech Complex in Low and High Dimensions. In
Algorithms and Computation, pages 666–676. by Leizhen Cai, Siu-Wing Cheng, and Tak-Wah
Lam. Vol. 8283. Lecture Notes in Computer Science, 2013.

37 C. Maria and S. Oudot. Zigzag Persistence via Reflections and Transpositions. In Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA) pp. 181–199, January 2015.

38 N. Milosavljevic, D. Morozov, and P. Skraba. Zigzag persistent homology in matrix multiplic-
ation time. In Symposium on Computational Geometry (SoCG), 2011.

39 K. Mischaikow and V. Nanda. Morse Theory for Filtrations and Efficient Computation of
Persistent Homology. Discrete and Computational Geometry, 50:330–353, September 2013.

40 D. Mozozov. Dionysus. URL: http://www.mrzv.org/software/dionysus/.
41 J. Munkres. Elements of Algebraic Topology. Perseus Publishing, 1984.
42 N. Otter, M. Porter, U. Tillmann, P. Grindrod, and H. Harrington. A roadmap for the

computation of persistent homology. EPJ Data Science, Springer Nature, page 6:17, 2017.
43 J. Perea and G. Carlsson. A Klein-Bottle-Based Dictionary for Texture Representation. In:

International Journal of Computer Vision, 107:75–97, 2014.
44 H. Schreiber. Sophia. URL: https://bitbucket.org/schreiberh/sophia/.
45 D. Sheehy. Linear-Size Approximations to the Vietoris–Rips Filtration. Discrete and Compu-

tational Geometry, 49:778–796, 2013.
46 M. Tancer. Recognition of collapsible complexes is NP-complete. Discrete and Computational

Geometry, 55:21–38, 2016.
47 J. H. C Whitehead. Simplicial spaces nuclei and m-groups. Proc. London Math. Soc, 45:243–327,

1939.
48 A. C. Wilkerson, H. Chintakunta, and H. Krim. Computing persistent features in big data: A

distributed dimension reduction approach. In International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pages 11–15, 2014.

49 A. C. Wilkerson, T. J. Moore, A. Swami, and A. H. Krim. Simplifying the homology of
networks via strong collapses. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 11–15, 2013.

50 A. Zomorodian. The Tidy Set: A Minimal Simplicial Set for Computing Homology of Clique
Complexes. In Proceedings of the Twenty-sixth Annual Symposium on Computational Geometry,
pages 257–266, 2010.

51 A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete and Computational
Geometry, 33:249–274, 2005.

SoCG 2019

http://arxiv.org/abs/1701.02208
http://arxiv.org/abs/1701.02208
http://www.mrzv.org/software/dionysus/
https://bitbucket.org/schreiberh/sophia/

Ham-Sandwich Cuts and Center Transversals in
Subspaces
Patrick Schnider
Department of Computer Science, ETH Zürich
http://people.inf.ethz.ch/schnpatr/
patrick.schnider@inf.ethz.ch

Abstract
The Ham-Sandwich theorem is a well-known result in geometry. It states that any d mass distributions
in Rd can be simultaneously bisected by a hyperplane. The result is tight, that is, there are examples
of d + 1 mass distributions that cannot be simultaneously bisected by a single hyperplane. In this
abstract we will study the following question: given a continuous assignment of mass distributions to
certain subsets of Rd, is there a subset on which we can bisect more masses than what is guaranteed
by the Ham-Sandwich theorem?

We investigate two types of subsets. The first type are linear subspaces of Rd, i.e., k-dimensional
flats containing the origin. We show that for any continuous assignment of d mass distributions to
the k-dimensional linear subspaces of Rd, there is always a subspace on which we can simultaneously
bisect the images of all d assignments. We extend this result to center transversals, a generalization
of Ham-Sandwich cuts. As for Ham-Sandwich cuts, we further show that for d− k + 2 masses, we
can choose k − 1 of the vectors defining the k-dimensional subspace in which the solution lies.

The second type of subsets we consider are subsets that are determined by families of n

hyperplanes in Rd. Also in this case, we find a Ham-Sandwich-type result. In an attempt to solve a
conjecture by Langerman about bisections with several cuts, we show that our underlying topological
result can be used to prove this conjecture in a relaxed setting.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Ham-Sandwich cuts, center transversal, topological methods

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.56

Related Version https://arxiv.org/abs/1903.12516

1 Introduction

The famous Ham-Sandwich theorem (see e.g. [15, 19], Chapter 21 in [20]) is a central result
in geometry that initiated a significant amount of research on several ways to partition mass
distributions. It states that any d mass distributions in Rd can be simultaneously bisected by
a hyperplane. A (d-dimensional) mass distribution µ on Rd is a measure on Rd such that all
open subsets of Rd are measurable, 0 < µ(Rd) <∞ and µ(S) = 0 for every lower-dimensional
subset S of Rd. An intuitive example of a mass distribution is, for example, the volume
of some full-dimensional geometric object in Rd. The Ham-Sandwich theorem has been
generalized in several ways. One famous generalization is the polynomial Ham-Sandwich
theorem, which states that any

(
n+d

d

)
− 1 mass distributions in Rd can be simultaneously

bisected by an algebraic surface of degree n [19]. Another extension is the center transversal
theorem, which generalizes the result to flats of lower dimensions:

I Theorem 1 (Center transversal theorem [8, 22]). Let µ1, . . . , µk be k mass distributions
in Rd, where k ≤ d. Then there is a (k − 1)-dimensional affine subspace g such that every
halfspace containing g contains at least a 1

d−k+2 -fraction of each mass.

We call such an affine subspace a (k − 1, d)-center transversal. For k = d, we get the
statement of the Ham-Sandwich theorem. Further, for k = 1, we get another well-known
result in geometry, the so called Centerpoint theorem [17].

© Patrick Schnider;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 56; pp. 56:1–56:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://people.inf.ethz.ch/schnpatr/
mailto:patrick.schnider@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.SoCG.2019.56
https://arxiv.org/abs/1903.12516
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Ham-Sandwich Cuts and Center Transversals in Subspaces

In this work we will consider two different generalizations of the Ham-Sandwich theorem.
The first one is about Ham-Sandwich cuts in linear subspaces. More precisely, we define a
mass assignment on Gk(Rd) as a continuous assignment µ : Gk(Rd)→ Mk, where Gk(Rd)
denotes the Grassmann manifold consisting of all k-dimensional linear subspaces of Rd and
Mk denotes the space of all k-dimensional mass distributions. In other words, µ continuously
assigns a mass distribution µh := µ(h) to each k-dimensional linear subspace h of Rd.
Examples of mass assignments include projections of higher dimensional mass distributions to
h or the volume of intersections of h with (sufficiently smooth) higher dimensional geometric
objects. Also, mass distributions in Rd can be viewed as mass assignments on Gd(Rd). In
fact, in this paper, we will use the letter µ both for mass distributions as well as for mass
assignments. The Ham-Sandwich theorem says that on every subspace we can simultaneously
bisect the images of k mass assignments. But as there are many degrees of freedom in choosing
subspaces, it is conceivable that there is some subspace on which we can simultaneously
bisect more than k images of mass assignments. We will show that this is indeed the case,
even for the more general notion of center transversals:

I Theorem 2. Let µ1, . . . , µn+d−k be mass assignments on Gk(Rd), where n ≤ k ≤ d. Then
there exists a k-dimensional linear subspace h such that µh

1 , . . . , µ
h
n+d−k have a common

(n− 1, k)-center transversal.

In particular, for k = n we get that there is always a subspace on which we can
simultaneously bisect d images of mass assignments. This result will only be proved in
Section 4. First we will look at a conjecture by Barba [2] which motivated this generalization:
Let ` and `′ be two lines in R3 in general position. We say that ` is above `′ if the unique
vertical line that intersects both ` and `′ visits first ` and then `′ when traversed from top
to bottom.

I Conjecture 3. Given three sets R,B and G of lines in R3 in general position, each with
an even number of lines, there is a line ` in R3 such that ` lies below exactly |R|/2 lines of
R, |B|/2 lines of B and |G|/2 lines of G. That is, there is some Ham-Sandwich line that
simultaneously bisects (with respect to above-below relation) the lines of R,B and G.

It should be mentioned that Barba et al. have shown that the analogous statement
for four sets of lines is false [2]. The conjecture can also be phrased in a slightly different
terminology: Given three sets R,B and G of lines in R3 in general position, each with an
even number of lines, there is a vertical plane h such that R ∩ h, B ∩ h and G ∩ h can be
simultaneously bisected by a line in h. Here, h is not restricted to contain the origin, but it
is restricted to be vertical, i.e., it has to be parallel to the z-axis. We will prove a stronger
statement of this conjecture by showing that h can always be chosen to contain the origin.

More generally, in the setting of mass assignments, we show that at the cost of some
masses, we can always fix k−1 vectors in the considered subspaces. Without loss of generality,
we assume that these vectors are vectors of the standard basis of Rd. We say that a linear
subspace of Rd is m-horizontal, if it contains e1, . . . , em, where ei denotes the i’th unit
vector of Rd, and we denote the space of all m-horizontal, k-dimensional subspaces of Rd

by Horm
k (Rd).

I Theorem 4. Let µ1, . . . , µd−k+2 be mass assignments on Hork−1
k (Rd), where 2 ≤ k ≤ d.

Then there exists a k-dimensional (k − 1)-horizontal linear subspace h where µh
1 , . . . , µ

h
d−k+2

have a common Ham-Sandwich cut.

This result will be proved in Section 2. The proof of Conjecture 3 follows, after some
steps to turn the lines into mass assignments, from the case d = 3 and k = 2. This will be
made explicit in Section 3.

P. Schnider 56:3

R+

R−

Figure 1 The regions R+ (light blue) and R− (green).

The second generalization of the Ham-Sandwich theorem that we investigate in this
paper considers bisections with several cuts, where the masses are distributed into two parts
according to a natural 2-coloring of the induced arrangement. More precisely, let L be a set of
oriented hyperplanes. For each ` ∈ L, let `+ and `− denote the positive and negative side of `,
respectively (we consider the sign resulting from the evaluation of a point in these sets into the
linear equation defining `). For every point p ∈ Rd, define λ(p) := |{` ∈ L | p ∈ `+}| as the
number of hyperplanes that have p in their positive side. Let R+ := {p ∈ Rd | λ(p) is even}
and R− := {p ∈ Rd | λ(p) is odd}. More intuitively, this definition can also be understood
the following way: if C is a cell in the hyperplane arrangement induced by L, and C ′ is
another cell sharing a facet with C, then C is a part of R+ if and only if C ′ is a part of R−.
See Figure 1 for an example. A similar setting, where the directions of the hyperplanes are
somewhat restricted, has been studied by several authors [1, 5, 13].

We say that L bisects a mass distribution µ if µ(R+) = µ(R−). Note that reorienting
one hyperplane just maps R+ to R− and vice versa. In particular, if a set L of oriented
hyperplanes simultaneously bisects a family of mass distributions µ1, . . . , µk, then so does
any set L′ of the same hyperplanes with possibly different orientations. Thus we can ignore
the orientations and say that a set L of (undirected) hyperplanes simultaneously bisects a
family of mass distributions if some orientation of the hyperplanes does. Langerman [14]
conjectured the following:

I Conjecture 5. Any dn mass distributions in Rd can be simultaneously bisected by n

hyperplanes.

For n = 1, this is again the Ham-Sandwich theorem. For d = 1, this conjecture is also
true, this result is known as the Necklace splitting theorem [11, 15]. Recently, the conjecture
has been proven for several values of n and d [3, 4, 6, 12], but it is still open in its full
generality. In this work, we will not prove this conjecture, but we will consider a relaxed
version of it: We say that L almost bisects µ if there is an ` ∈ L such that L \ {`} bisects µ.
For a family of mass distributions µ1, . . . , µk we say that L almost simultaneously bisects
µ1, . . . , µk if for every i ∈ {1, . . . , k} L either bisects or almost bisects µi. See Figure 2 for
an illustration. In this relaxed setting, we are able to prove the following:

SoCG 2019

56:4 Ham-Sandwich Cuts and Center Transversals in Subspaces

`1 `1

`1`1

`2 `2

`2 `2

Figure 2 The lines `1 and `2 almost simultaneously bisect four masses.

I Theorem 6. Let µ1, . . . , µdn be dn mass distributions in Rd. Then there are n hyperplanes
that almost simultaneously bisect µ1, . . . , µdn.

We hope that our methods might extend to a proof of Conjecture 5. We will first prove
a similar result where we enforce that all bisecting hyperplanes contain the origin. The
general version then follows from lifting the problem one dimension higher. The proof is
based on the following idea: for each mass, n− 1 of the hyperplanes define two regions, one
we take with positive sign, the other with negative sign. This defines a so called charge
(a mass distribution, which unfortunately is locally negative, which is why we will need
the relaxed setting). The n’th hyperplane should now bisect this new mass distribution.
However, this n’th hyperplane now again changes the other mass distributions, so in the end
we want to guarantee that there are n hyperplanes such that all of them correctly bisect the
masses. More precisely, let Gd−1(Rd)n be the space of all sets of n hyperplanes containing
the origin (i.e., linear subspaces) in Rd. Similar to before, we define a mass assignment
µ on Gd−1(Rd)n as a continuous assignment Gd−1(Rd)n → Md, where Md again denotes
the space of all d-dimensional mass distributions. In other words, µ continuously assigns a
mass distribution µp := µ(p) to Rd for each p = (h1, . . . , hn) ∈ Grd−1(Rd)n. An example of
such mass assignments could be the intersection of a fixed d-dimensional mass distribution
with the Minkowski sum of the hyperplanes with a unit ball. In Section 5, we will prove
the following:

I Theorem 7. Let µ1, . . . , µ(d−1)n be (d− 1)n mass assignments on Gd−1(Rd)n. Then there
exists p = (h1, . . . , hn) ∈ Grd−1(Rd)n such that for every i ∈ {1, . . . , n}, the hyperplane hi

simultaneously bisects µp
(d−1)(i−1)+1, . . . , µ

p
(d−1)i.

We then use the underlying topological result to prove Theorem 6 in Section 6. All the
results are proved using topological methods, and the underlying topological results might
be of independent interest. For an introduction to topological methods, we refer to the

P. Schnider 56:5

books by Matoušek [15] and de Longueville [7]. Most of the proofs in this work use so-called
Stiefel-Whitney classes of vector bundles. The standard reference for this concept is the
classic book by Milnor and Stasheff [16].

2 Ham Sandwich Cuts in horizontal subspaces

In order to prove Theorem 4, we establish a few preliminary lemmas. Consider the following
space, which we denote by Fhor: the elements of Fhor are pairs (h,

−→
`), where h is an

(unoriented) k-dimensional (k − 1)-horizontal linear subspace of Rd and
−→
` is an oriented

1-dimensional linear subspace of h, that is, an oriented line in h through the origin. The space
Fhor inherits a topology from the Stiefel manifold. Furthermore, inverting the orientation of−→
` is a free Z2-action, giving Fhor the structure of a Z2-space.

We will first give a different description of the space Fhor. Define

F ′ := Sd−k × Sk−2 × [0, 1]�(≈0,≈1),

where (x, y, 0) ≈0 (x, y′, 0) for all y, y′ ∈ Sk−2 and (x, y, 1) ≈1 (−x, y, 1) for all x ∈ Sd−k.
Further, define a free Z2-action on F ′ by −(x, y, t) := (−x,−y, t). We claim that the Z2-space
F ′ is “the same” as Fhor:

I Lemma 8. There is a Z2-equivariant homeomorphism between F ′ and Fhor.

Proof. Consider the subspace Y ⊂ Rd spanned by e1, . . . , ek−1. The space of unit vectors
in Y is homeomorphic to Sk−2. Similarly let X ⊂ Rd be spanned by ek, . . . , ed. Again, the
space of unit vectors in X is homeomorphic to Sd−k. In a slight abuse of notation, we will
write y and x both for a unit vector in Y and X as well as for the corresponding points in
Sk−2 and Sd−k, respectively.

We first construct a map ϕ from Sd−k×Sk−2×[0, 1] to Fhor as follows: for every x ∈ Sd−k

let h(x) be the unique (k − 1)-horizontal subspace spanned by x, e1, . . . , ek−1. See Figure 3
for an illustration. Note that h(−x) = h(x). Further, define v(x, y, t) := (1− t)x+ ty and let
−→
` (x, y, t) be the directed line defined by the vector v(x, y, t). Note that

−→
` (x, y, t) lies in the

plane spanned by x and y and thus also in h(x). Finally, set ϕ(x, y, t) := (h(x),
−→
` (x, y, t)).

Both h and v are both open and closed continuous maps, and thus so is ϕ. Also, we have
that v(−x− y, t) = −(1− t)x− ty = −v(x, y, t), so ϕ is Z2-equivariant.

Note that for t = 0 we have v(x, y, 0) = x, so ϕ(x, y, 0) does not depend on y, and in
particular ϕ(x, y, 0) = ϕ(x, y′, 0) or all y, y′ ∈ Sk−2. Similarly, for t = 1 we have v(x, y, 1) = y

and h(−x) = h(x), and thus ϕ(x, y, 1) = ϕ(−x, y, 1) for all x ∈ Sd−k. Hence, ϕ induces a
map ϕ′ from F ′ to Fhor which is still open, closed, continuous and Z2-equivariant. Finally,
it is easy to see that ϕ′ is bijective. Thus, ϕ′ is a Z2-equivariant homeomorphism between
F ′ and Fhor, as required. J

We now prove a Borsuk-Ulam-type statement for Fhor.

I Lemma 9. There is no Z2-map f : Fhor → Sd−k.

Proof. Assume for the sake of contradiction that f exists. Then, by Lemma 8, f induces a
map F : Sd−k × Sk−2 × [0, 1]→ Sd−k with the following properties:

(1) F (−x,−y, t) = −F (x, y, t) for all t ∈ (0, 1);
(2) F (x, y, 0) = F (x, y′, 0) for all y, y′ ∈ Sk−2 and F (−x, y, 0) = −F (x, y, 0) for all x ∈ Sd−k;
(3) F (x,−y, 1) = −F (x, y, 1) for all y ∈ Sk−2 and F (−x, y, 1) = F (x, y, 1) for all x ∈ Sd−k.

SoCG 2019

56:6 Ham-Sandwich Cuts and Center Transversals in Subspaces

Sk−2 (here: S0)

Sd−k (here: S1)

e1

x

y

v(x, y, t)

h(x)

Figure 3 The map ϕ for d = 3 and k = 2.

In particular, F is a homotopy between f0(x, y) := F (x, y, 0) and f1(x, y) := F (x, y, 1). Fix
some y0 ∈ Sk−2. Then F induces a homotopy between g0(x) := f0(x, y0) and g1(x) :=
f1(x, y0). Note that g0 : Sd−k → Sd−k has odd degree by property (2). On the other hand,
g1 : Sd−k → Sd−k has even degree by property (3). Thus, F induces a homotopy between a
map of odd degree and a map of even degree, which is a contradiction. J

We now have all tools that are necessary to prove Theorem 4.

I Theorem 4. Let µ1, . . . , µd−k+2 be mass assignments on Hork−1
k (Rd), where 2 ≤ k ≤ d.

Then there exists a k-dimensional (k − 1)-horizontal linear subspace h where µh
1 , . . . , µ

h
d−k+2

have a common Ham-Sandwich cut.

Proof. For each µi and (h,
−→
`), consider the point vi on

−→
` for which the orthogonal hyperplane

bisects µh
i . (If vi is not unique, the set of all possible such points is an interval, in which

case we choose vi as the midpoint of this interval.) This induces a continuous Z2-map
g : Fhor → Rd−k+2. For i ∈ {1 . . . , d− k + 1}, set wi := vi − vd−k+2. The wi’s then induce
a continuous Z2-map f : Fhor → Rd−k+1. We want to show that there exists (h,

−→
`) where

v1 = v2 = . . . = vd−k+2, or equivalently, w1 = . . . , wd−k+1 = 0, i.e., f has a zero. Assume
that this is not the case. Then normalizing f induces a Z2-map f ′ : Fhor → Sd−k, which is a
contradiction to Lemma 9. J

Note that the higher k is chosen, the weaker our result. In fact, for k > d
2 + 1, our result

is weaker than what we would get from the Ham-Sandwich theorem. We conjecture that this
trade-off is not necessary:

I Conjecture 10. Let µ1, . . . , µd be mass assignments in Rd and k ≥ 2. Then there exists
a k-dimensional (k − 1)-horizontal linear subspace h such that µh

1 , . . . , µ
h
d have a common

Ham-Sandwich cut.

3 Application: bisecting lines in space

Recall the setting of Conjecture 3: Given three sets R,B and G of lines in R3 in general
position, each with an even number of lines, is there a line ` in R3 such that ` lies below
exactly |R|/2 lines of R, |B|/2 lines of B and |G|/2 lines of G? Here, general position means

P. Schnider 56:7

that (i) no two lines are parallel, (ii) no line is vertical (i.e., parallel to the z-axis), (iii) no
line intersects the z-axis and (iv) for any four lines, if there is a line intersecting all of them,
the (unique) vertical plane containing this common intersecting line does not go through
the origin.

We want to prove that there always is such a line ` using Theorem 4. In order to apply
Theorem 4, we need to define a mass assignment. To this end, we replace every line r in R
by a very thin infinite cylinder of radius ε, centered at r. Denote the collection of cylinders
obtained this way by R∗. Define B∗ and G∗ analogously. For each vertical plane h through
the origin, let Dh

K be a disk in h centered at the origin, with some (very large) radius K.
Define µh

R as (R∗ ∩ h) ∩Dh
K . It is straightforward to show that µh

R is a mass assignment.
Analogously we can define mass assignments µh

B and µh
G. From Theorem 4, where we set e1

to be the unit vector on the z-axis, we deduce that there is a vertical plane h0 and a line
` ∈ h0 such that ` simultaneously bisects µh0

R , µh0
B and µh0

G . We claim that this ` gives a
solution to Conjecture 3.

To show this, we distinguish two cases: The first case is that all the cylinders in R∗∪B∗∪G∗
intersect Dh0

K . In this case, it is a standard argument to show that ` is a Ham-Sandwich cut
of the point set (R ∪ B ∪ G) ∩ h0. Note that because of general position assumptions (ii)
and (iv), at most one triple of points in (R ∪B ∪G) ∩ h0 is collinear. As all three sets have
an even number of lines, we thus have that ` either contains two points or no point at all.
Further, if it contains two points p1 and p2, then they must have the same color. In this
case, slightly rotate ` such that p1 lies above ` and p2 lies below `. Now, in any case, ` is a
Ham-Sandwich cut that contains no points. In particular, ` lies below exactly |R|/2 lines of
R, |B|/2 lines of B and |G|/2 lines of G, which is what we required.

The second case is that some cylinders in R∗ ∪ B∗ ∪ G∗ do not intersect Dh0
K . By the

general position assumption (i), choosing K sufficiently large, we can assume that exactly
one cylinder c∗ does not intersect Dh0

K . Without loss of generality, let c∗ ∈ R∗, defined by
some line c ∈ R. If K is chosen sufficiently large, by general position assumption (iii) we can
further assume that c is parallel to h0. Thus, similar to above, ` is a Ham-Sandwich cut of
the point set ((R \ {c}) ∪B ∪G) ∩ h0. Again, at most one triple of points is collinear. As
(R \ {c}) contains an odd number of lines, ` passes through either 1 or 3 points. If ` passes
through 3 points p1, p2 and p3, then without loss of generality p1 ∈ (R \ {c}) ∩ h0. Further,
p2 and p3 must be induced by the same set of lines, without loss of generality B. In both
cases, we can slightly rotate ` such that p1 is above ` and p2 and p3 lie on different sides of `.
Similarly, if ` contains 1 point p1, then p1 ∈ (R \ {c}) ∩ h0, and we can slightly translate `
such that p1 lies above `. Now again, ` lies below exactly |R|/2 lines of R, |B|/2 lines of B
and |G|/2 lines of G, which is what we required.

Thus, we have proved the following Theorem:

I Theorem 11. Given three sets R,B and G of lines in R3 in general position, each with
an even number of lines, there is a line ` in R3 such that ` lies below exactly |R|/2 lines of
R, |B|/2 lines of B and |G|/2 lines of G.

4 Center Transversals in general subspaces

In this section we consider the more general case of assignments of mass distributions to all
linear subspaces. The space of all linear subspaces of fixed dimension defines in a natural
way a vector bundle. Recall the following definition: a vector bundle consists of a base space
B, a total space E, and a continuous projection map π : E 7→ B. Furthermore, for each
b ∈ B, the fiber π−1(b) over b has the structure of a vector space over the real numbers.

SoCG 2019

56:8 Ham-Sandwich Cuts and Center Transversals in Subspaces

Finally, a vector bundle satisfies the local triviality condition, meaning that for each b ∈ B
there is a neighborhood U ⊂ B containing p such that π−1(U) is homeomorphic to U × Rd.
A section of a vector bundle is a continuous mapping s : B 7→ E such that πs equals the
identity map, i.e., s maps each point of B to its fiber. Recall that we denote by Gm(Rn)
the Grassmann manifold consisting of all m-dimensional subspaces of Rn. Let γd

m be the
canonical bundle over Gm(Rn). The bundle γn

m has a total space E consisting of all pairs
(L, v), where L is an m-dimensional subspace of Rn and v is a vector in L, and a projection
π : E 7→ Gm(Rn) given by π((L, v)) = L. Another space that we will be working with is the
complete flag manifold Ṽn,n: a flag F in a vector space V of dimension n is an increasing
sequence of subspaces of the form

F = {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V.

A flag is a complete flag if dimVi = i for all i (and thus k = n). The complete flag manifold
Ṽn,n is the manifold of all complete flags of Rn. Similar to the Grassmann manifold, we can
define a canonical bundle for each Vi, which we will denote by ϑn

i . For details on vector
bundles and sections, see [16].

I Lemma 12. Let s1, . . . , sm+1 be m+ 1 sections of the canonical bundle ϑm+l
l . Then there

is a flag F ∈ Ṽm+l,m+l such that s1(F) = . . . = sm+1(F).

This Lemma is a generalization of Proposition 2 in [22] and Lemma 1 in [8]. Our proof
follows the proof in [22].

Proof. Consider the sections qi := sm+1 − si. We want to show that there exists a flag F
for which q1(F) = . . . = qm(F) = 0. The sections q1, . . . , qm determine a unique section in
the m-fold Whitney sum of ϑm+l

l , which we denote by W . Note that W has base Ṽm+l,m+l

and fiber dimension ml. We will show that W does not admit a nowhere zero section. For
this, it suffices to show that the highest Stiefel-Whitney class wml(W) is nonzero (see [16],
§4, Proposition 3).

By the Whitney product formula we have wml(W) = wl(ϑm+l
l)m. Note that the projection

f : Ṽm+l,m+l → Gl(Rm+l) which maps (V0, . . . , Vl, . . . , Vm+l) to Vl induces a bundle map
from ϑm+l

l to γm+l
l . Thus by the naturality of Stiefel-Whitney classes we have wl(ϑm+l

l)m =
f∗(wl(γm+l

l)m) = f∗(wl(γm+l
l))m. Further, we have the following commutative diagram

Ṽm+l,m+l Ṽ∞,m+l

Gl(Rm+l) Gl(R∞)

i

f g

j

,

where i and j are inclusions and g is the canonical map from Ṽ∞,m+l to Gl(R∞) (see e.g.
[10, 22]). In Z2-cohomology, we get the following diagram:

H∗(Ṽm+l,m+l) H∗(Ṽ∞,m+l)

H∗(Gl(Rm+l)) H∗(Gl(R∞))

i∗

f∗

j∗

g∗ .

It is known that H∗(Ṽ∞,m+l) is a polynomial algebra Z2[t1, . . . , tm+l] and that g∗ maps
H∗(Gl(R∞)) injectively onto the algebra Z2[σ1, . . . , σl] ⊂ Z2[t1, . . . , tl] ⊂ Z2[t1, . . . , tm+l],
where σi denotes the i’th symmetric polynomial in the variables t1, . . . , tl [16, 10]. Further,

P. Schnider 56:9

H∗(Ṽm+l,m+l) is a polynomial algebra Z2[t1, . . . , tm+l]�(σ1, . . . , σm+l) and i∗ is the corre-
sponding quotient map. Since wl(γm+l

l) = j∗(σl), we have wl(ϑm+l
l)m = f∗(j∗(σl))m and

in particular wl(ϑm+l
l)m = 0 would imply that (σl)m ∈ ker i∗, i.e. (t1 · · · tl)m is in the ideal

(σ1, . . . , σm+l). But this is a contradiction to Proposition 2.21 in [21]. J

Consider now a continuous map µ : Ṽm+l,m+l →Ml, which assigns an l-dimensional mass
distribution to Vl for every flag. We call such a map an l-dimensional mass assignment on
Ṽm+l,m+l.

I Corollary 13. Let µ1, . . . , µm+1 be l-dimensional mass assignments on Ṽm+l,m+l. Then
there exists a flag F 3 Vl such that some point p ∈ Vl is a centerpoint for all µF1 , . . . , µFm+1.

Proof. For every µi and every flag F , the centerpoint region of µFi is a convex compact
region in the respective Vl. In particular, for each µi we get a multivalued, convex, compact
section si in ϑm+l

l . Using Proposition 1 from [22], Lemma 12 implies that there is a Flag in
which all si’s have a common point p. J

From this we can now deduce Theorem 2

I Theorem 2. Let µ1, . . . , µn+d−k be mass assignments on Gk(Rd), where n ≤ k ≤ d. Then
there exists a k-dimensional linear subspace h such that µh

1 , . . . , µ
h
n+d−k have a common

(n− 1, k)-center transversal.

Proof. Note that a (n − 1, k)-center transversal in a k-dimensional space is a common
centerpoint of the projection of the masses to a k − (n− 1)-dimensional subspace. Consider
a flag F = (V0, . . . , Vd). For each mass assignment µi define µ′i(F) := πk−(n−1)(µVk

i), where
πk−(n−1) denotes the projection from Vk to Vk−(n−1). Every µ′i is an (k−(n−1))-dimensional
mass assignment on Ṽd,d. The result now follows from Corollary 13 by setting l = k− (n− 1)
and m = d− k + n− 1. J

5 Sections in product bundles

Similar to before, we again work with vector bundles, but now over a different space. Recall
that a mass assignment µ on Gd−1(Rd)n assigns a d-dimensional mass distribution µp to Rd

for each p = (h1, . . . , hn) ∈ Grd−1(Rd)n. We want to show that given (d − 1)n such mass
assignments, there is a p such that each hi bisects d − 1 of their images. The idea is the
following: we assign d− 1 masses to each hi. For every p, we now sweep a copy of hi along a
line ` orthogonal to hi and for every mass assigned to hi we look at the point on ` for which
the swept copy through that point bisects the mass. We want to show that for some p, all
these points coincide with the origin.

I Lemma 14. Consider the vector bundle ξ := (γd
m)k (the k-fold Cartesian product of γd

m)
over the space B := Gm(Rd)k. Let q := d−m. Then for any q sections s1, . . . , sq of ξ there
exists b ∈ B such that s1(b) = . . . = sq(b) = 0.

This Lemma is another generalization of Proposition 2 in [22] and Lemma 1 in [8]. Our
proof follows the proof in [8].

Proof. The sections s1, . . . , sq determine a unique section in the q-fold Whitney sum of ξ,
which we denote by ξq. ξq has base B and fiber dimension kqm. We want to show that ξq

does not allow a nowhere zero section. For this, it is again enough to show that the highest
Stiefel-Whitney class wkqm(ξq) does not vanish. Denote by Γd

m the q-fold Whitney sum

SoCG 2019

56:10 Ham-Sandwich Cuts and Center Transversals in Subspaces

of γd
m and consider the vector bundle ζ := (Γd

m)k. Note that ζ also has base B and fiber
dimension kqm. Furthermore, there is a natural bundle map from ζ to ξq, and as they have
the same base space, ζ and ξq are isomorphic (see [16], §3, Lemma 3.1). Thus, it is enough
to show that the highest Stiefel-Whitney class wkqm(ζ) does not vanish. The Stiefel-Whitney
classes of a Cartesian product of vector bundles can be computed as the cross product of the
Stiefel-Whitney classes of its components in the following way (see [16], §4, Problem 4-A):

wj(η1 × η2) =
j∑

i=0
wi(η1)× wj−i(η2).

It was shown by Dol’nikov [8] that wqm(Γd
m) = 1 ∈ Z2 = Hqm(Gm(Rd);Z2). By the Künneth

theorem and induction it follows that wkqm((Γd
m)k) = 1 ∈ Z2 = Hkqm((Gm(Rd))k;Z2). J

In the following, we will use Lemma 14 only for the case m = 1, i.e., for products of line
bundles. This case could also be proved using a Borsuk-Ulam-type result on product of spheres
(Theorem 4.1 in [9], for n1 = . . . = nr = d− 1, see also [18]). Consider now B := G1(Rd)n,
i.e., all n-tuples of lines in Rd through the origin. Further, for every i ∈ {1, . . . , n} we define
ξi as the following vector bundle: the base space is B, the total space Ei is the set of all
pairs (b, v), where b = (`1(b), · · · , `n(b)) is an element of B and v is a vector in `i(b), and
the projection π is given by π((b, v)) = b. It is straightforward to show that this is indeed
a vector bundle. In other words, we consider one line to be marked and the fiber over an
n-tuple of lines is the 1-dimensional vector space given by the marked line. We are now ready
to prove Theorem 7.

I Theorem 7. Let µ1, . . . , µ(d−1)n be (d− 1)n mass assignments on Gd−1(Rd)n. Then there
exists p = (h1, . . . , hn) ∈ Grd−1(Rd)n such that for every i ∈ {1, . . . , n}, the hyperplane hi

simultaneously bisects µp
(d−1)(i−1)+1, . . . , µ

p
(d−1)i.

Proof. Consider ξ = (γd
1)n. Recall that B = G1(Rd)n. For an element b = (`1(b), · · · , `n(b))

of B, consider for every i ∈ {1, . . . , n} the (d− 1)-dimensional hyperplane through the origin
that is orthogonal to `i(b) and denote it by hi(b). Similarly, for every (b, v) ∈ Ei, let gi(b, v)
be the hyperplane through v orthogonal to `i(b). Note that gi(b, 0) = hi(b).

Consider now the mass µ1. The set of all pairs (b, v) such that (g1(b, v), h2(b), . . . , hn(b))
bisects µ1 defines a section s1

1 in ξ1. Analogously, use µ(d−1)(j−1)+1 to define s1
j for all

j ∈ {2, . . . , n}. Then s1 := (s1
1, . . . , s

1
n) is a section in (γd

1)n. Similarly, for i ∈ {2, . . . , d− 1},
using the masses µ(d−1)(j−1)+i for all j ∈ {2, . . . , n} define a section si in (γd

1)n.
We have thus defined d − 1 sections in (γd

1)n. Hence, by applying Lemma 14, we get
that there is a point b0 in B such that s1(b0), . . . , sd−1(b0) = 0. In particular, all orthogonal
hyperplanes gi(b, v) contain the origin, so their collection is an element of Gd−1(Rd)n.
Further, it follows from the definition of the sections si that hi simultaneously bisects
µp

(d−1)(i−1)+1, . . . , µ
p
(d−1)i. J

6 Application: bisections with several cuts

The objective of this section is to prove Theorem 6. Before we dive into the technicalities,
let us briefly discuss the main ideas. We first show that any (d− 1)n mass distributions in
Rd can be almost simultaneously bisected by n hyperplanes through the origin. The idea
of this proof is very similar to the proof of Theorem 7: consider some mass µ and assume
that n− 1 of the hyperplanes are fixed. Sweep the last hyperplane along a line through the
origin and stop when the resulting arrangement of n hyperplanes almost bisects µ. We do

P. Schnider 56:11

Figure 4 Two graphs of limit antipodal functions.

the same for every mass, one hyperplane is swept, the others are considered to be fixed. Each
hyperplane is swept for (d− 1) masses. Using Lemma 12, we want to argue, that there is a
solution, such that all the swept hyperplanes are stopped at the origin. The only problem
with this approach is, that the points where we can stop the hyperplane are in general not
unique. In fact, the region of possible solutions for one sweep can consist of several connected
components, so in particular, it is not a section, and we cannot use Lemma 12 directly. We
will therefore need another Lemma, that says that we can find find a section in this space of
possible solutions. This Lemma is actually the only reason why our approach only works
for the relaxed setting: we need to sometimes ignore certain hyperplanes to construct such
a section. However, constructing a section that lies completely in the space of solutions is
stronger than what we would need to use Lemma 12. It would be enough to argue, that
assuming no almost simultaneous bisection exists, we could find a nowhere zero section
contradicting Lemma 12. It is thus possible that our approach could be strengthened to
prove Conjecture 5.

Let us now start by stating the aforementioned result for bisections with hyperplanes
containing the origin:

I Theorem 15. Let µ1, . . . , µ(d−1)n be (d− 1)n mass distributions in Rd. Then there are n
hyperplanes, all containing the origin, that almost simultaneously bisect µ1, . . . , µ(d−1)n.

As mentioned, in order to prove this result, we need a few additional observations. In the
following, by a limit antipodal function we mean a continuous function f : R 7→ R with the
following two properties:
1. limx→∞ f = − limx→−∞ f ,
2. the set of zeroes of f consists of finitely many connected components.
See Figure 4 for an illustration. Note that these two conditions imply that if limx→∞ f 6= 0
and if the graph of f is never tangent to the x-axis, the zero set consists of an odd number
of components. For any subset A of a vector bundle ξ = (E,B, π), denote by Z(A) the set
of base points on whose fiber A contains 0 or A is unbounded. In particular, for any section
s, Z(s) denotes the set of zeroes of the section (as a section is a single point on every fiber,
and thus never unbounded).

Consider again B := G1(Rd)n, i.e., all n-tuples of lines in Rd through the origin and the
vector bundles ξi. Note that ξi has a natural orientable cover ξ′i = (E′, B′, π′) where all the
lines are oriented. Denote by p the covering map from ξ′i to ξi.

Assume now that we are given a continuous function f : E′ → R with the following
properties:
(a) for every point b′ ∈ B, the restriction of f to the fiber π−1(b′), denoted by fb′ , is a limit

antipodal function;
(b) for any point b ∈ B and any two lifts b′1, b′2 ∈ p−1(b) we have either fb′1

(x) = fb′2
(x) or

fb′1
(x) = −fb′2

(x) or fb′1
(x) = fb′2

(−x) or fb′1
(x) = −fb′2

(−x).

SoCG 2019

56:12 Ham-Sandwich Cuts and Center Transversals in Subspaces

Let V ′f := {e ∈ E′|f(e) = 0} be the zero set of f . Note that the second condition ensures
that V ′f is the lift of a set Vf ⊆ E. We call Vf a quasi-section in ξi. Further note that Z(Vf)
consists of the base points where fb(0) = 0 or limx→∞ fb = 0.

I Lemma 16. Let Vf be a quasi-section in ξi. Then there is a section s such that Z(s) ⊂
Z(Vf). In particular, if Z(Vf) = ∅, then ξi allows a nowhere zero section.

Before proving this lemma, we show how to apply it to prove Theorem 15.

Proof of Theorem 15. Define hi(b) and gi(b, v) as in the proof of Theorem 7.
Consider now the mass µ1. For each b ∈ B, choose some orientations of h2(b), . . . , hn(b)

and an orientation of `1(b) arbitrarily. Then for each v ∈ `1(b), we have well-defined regions
R+(b, v) and R−(b, v). In particular, taking µ1(R+(b, v))− µ1(R−(b, v)) for all orientations
defines a function f1 : E′ → R which satisfies condition (a) and (b) from above. Let V1
be the set of all pairs (b, v) such that (g1(b, v), h2(b), h3(b), . . . , hn(b)) bisects µ1. As this is
exactly the set of pairs (b, v) for which f1(b, v) = 0, it follows that V1 is a quasi-section.

Let now s1
1 be a section in ξ1 with Z(s1) ⊂ Z(V1), the existence of which we get

from Lemma 16. Analogously, use µi to define Vi and s1
i for all i ∈ {2, . . . , n}. Then

s1 := (s1
1, . . . , s

1
n) is a section in (γd

1)n. Similarly, for k ∈ 2, . . . , d− 1, using the masses
µ(k−1)n+1, . . . , µkn define a section sk in (γd

1)n.
We have thus defined d − 1 sections in (γd

1)n. Hence, by applying Lemma 14, we get
that there is a point b0 in B such that s1(b0), . . . , sd−1(b0) = 0. We claim that H :=
(h1(b0), . . . , hn(b0)) almost simultaneously bisects µ1, . . . , µ(d−1)n: without loss of generality,
consider the mass µ1. As s1

1(b0) = 0, we know by the definition of s1
1 that (b0, 0) is in

Z(V1). By the definition of Z(V1) this means that V1 ∩ π−1(b0) (1) contains (b0, 0) or (2) is
unbounded.

In case (1), we get that (g1(b0, 0), h2(b0), . . . , hn(b0)) bisects µ1. But since gi(b0, 0) =
hi(b0), this set is exactly H. In case (2), we notice that V1 is unbounded on π−1(b0) if
and only if limx→∞ f1,b0 = 0. But this means that (h2(b0), . . . , hn(b0)) bisects µ1. Thus, H
indeed almost bisects µ1. J

From Theorem 15 we also deduce the main result of this section:

I Theorem 6. Let µ1, . . . , µdn be dn mass distributions in Rd. Then there are n hyperplanes
that almost simultaneously bisect µ1, . . . , µdn.

Proof. Map Rd to the hyperplane p : xd+1 = 1 in Rd+1. This induces an embedding of the
masses µ1, . . . , µdn. By defining µ′i(S) = µ(S ∩ p) for every full-dimensional open subset
of Rd+1, we get dn mass distributions µ′1, . . . , µ′dn in Rd+1. By Theorem 15, there are n
hyperplanes `′1, . . . `′n of dimension d through the origin that almost simultaneously bisect
µ′1, . . . , µ

′
dn. Define `i := `′i ∩ p. Note that each `i is a hyperplane of dimension d− 1. By the

definition of µ′i, the hyperplanes `1, . . . `n then almost simultaneously bisect µ1, . . . , µdn. J

It remains to prove Lemma 16.

Proof of Lemma 16. Consider again the bundle ξ′i = (E′, B′, π′), which is a cover of ξi. The
set Z(V ′f) partitions B′ \ Z(V ′f) into connected components. Consider two lifts b′1, b′2 of a
point b ∈ B with the property that the marked line `i is oriented differently in b′1 than in b′2.
We will call a pair of such lifts antipodal. We claim that if b′1, b′2 6∈ Z(V ′f) then b′1 and b′2 are
not in the same connected component. If this is true, then we can assign 1 or −1 to each
connected component in such a way that for any antipodal pair b′1, b′2, whenever we assign 1 to
the connected component containing b′1 we assign −1 to the connected component containing

P. Schnider 56:13

0

f0

f1/3

f2/3

f1

W

W1 W2 W3

0

1/3

2/3

1

Figure 5 The set W for a family of limit antipodal functions between two antipodal lifts.

b′2. We the define s′ as follows: for every b′, let d(b′) be the distance to the boundary of its
connected component (note that there are several ways to define distance measures on B′,
any of them is sufficient for our purposes). Place a point at distance d(b′) from the origin on
the positive side of `i if the connected component containing b′ was assigned a 1, and on the
negative side otherwise. This gives a section on ξ′. Further, for any two antipodal lifts b′1, b′2,
we have s(b′1) = −s(b′2). Also, for any two lifts b′3, b′4, that are not antipodal, that is, `i is
oriented the same way for both of them, we have s(b′3) = s(b′4). Thus, s′ projects to a section
s in ξ with the property that s(b) = 0 only if b ∈ Z(Vf), which is want we want to prove.

Hence, we only need to show that a pair b′1, b′2 of antipodal lifts is not in the same
connected component. To this end, we will show that every path in B′ from b′1 to b′2 crosses
Z(Vf). Let γ be such a path. Then γ induces a continuous family of limit antipodal functions
ft, t ∈ [0, 1], with f0 = fb′1

and f1 = fb′2
. Further, as b′1 and b′2 are antipodal, we have

f0(x) = ±f1(−x). If for any t we have limx→∞ ft = 0 we are done, so assume otherwise.
Then, it is not possible that f0(x) = f1(−x), as in this case limx→∞ f0 = − limx→∞ f1,
so by continuity, there must be a t with limx→∞ ft = 0 . Thus, assume that we have
f0(x) = −f1(x).

The set of zeroes of the ft defines a subset of R × [0, 1], which we denote by W . See
Figure 5 for an illustration. In general W is not connected, but has finitely many connected
components, as by the second condition for limit antipodality each ft has finitely many
connected components of zeroes. We say that a connected component Wi of W has full
support if for every t ∈ [0, 1|, ft has a zero inWi. It can be deduced from the limit antipodality
of the ft’s that W has an odd number of connected components with full support, denoted
by W1, . . . ,W2k+1. Consider the median component Wk+1. Without loss of generality, Wk+1
is a path in R× [0, 1] from (x, 0) to (−x, 1). By a simple continuity argument, we see that
Wk+1 must cross the line (0, t), t ∈ [0, 1]. At this crossing, we are at a base point b′ ∈ Z(Vf),
which concludes the proof. J

In order to prove Conjecture 5, we would like to choose Z(Vf) as the set of base points
where fb(0) = 0. Let us briefly give an example where our arguments fail for this definition.
Consider µ as the area of a unit disk in R2. If we want to simultaneously bisect µ with two
lines `1, `2 through the origin, these lines need to be perpendicular. Further, any single
line through the origin bisects µ into two equal parts. Imagine now the line `1 to be fixed,
and consider the limit antipodal function fb defined by sweeping `2 along an oriented line

SoCG 2019

56:14 Ham-Sandwich Cuts and Center Transversals in Subspaces

perpendicular to `1. Without loss of generality, this function can be written as

fb(x) =

0 x ∈ [−∞,−1]
1 + x x ∈ [−1, 0]
1− x x ∈ [0, 1]
0 x ∈ [1,∞].

Note that this holds whenever `1 and the sweep line for `2 are perpendicular, so in
particular, continuously rotating the arrangement by 180◦ induces a path between two
antipodal lifts in the cover. Further, along this path we never had fb(0) = 0, so the two
antipodal lifts would be in the same connected component, which would break the proof of
Lemma 16 under this definition of Z(Vf). Thus, conjecture 5 remains open for now.

References
1 Noga Alon and Douglas B West. The Borsuk-Ulam theorem and bisection of necklaces.

Proceedings of the American Mathematical Society, 98(4):623–628, 1986.
2 Luis Barba. personal communication, 2017.
3 Luis Barba and Patrick Schnider. Sharing a pizza: bisecting masses with two cuts. CCCG

2017, page 174, 2017.
4 Sergey Bereg, Ferran Hurtado, Mikio Kano, Matias Korman, Dolores Lara, Carlos Seara,

Rodrigo I. Silveira, Jorge Urrutia, and Kevin Verbeek. Balanced partitions of 3-colored
geometric sets in the plane. Discrete Applied Mathematics, 181:21–32, 2015. doi:10.1016/j.
dam.2014.10.015.

5 Pavle Blagojević, Florian Frick, Albert Haase, and Günter Ziegler. Topology of the Grünbaum–
Hadwiger–Ramos hyperplane mass partition problem. Transactions of the American Mathe-
matical Society, 370(10):6795–6824, 2018.

6 Pavle VM Blagojević, Aleksandra Dimitrijević Blagojević, and Roman Karasev. More bisections
by hyperplane arrangements. arXiv preprint, 2018. arXiv:1809.05364.

7 Mark De Longueville. A course in topological combinatorics. Springer Science & Business
Media, 2012.

8 V.L. Dol’nikov. Transversals of families of sets in Rn and a connection between the Helly and
Borsuk theorems. Russian Academy of Sciences. Sbornik Mathematics, 184(5):111–132, 1994.
URL: http://mi.mathnet.ru/msb989.

9 Zdzisław Dzedzej, Adam Idzik, and Marek Izydorek. Borsuk-Ulam type theorems on product
spaces II. Topological Methods in Nonlinear Analysis, 14(2):345–352, 1999.

10 Jean-Claude Hausmann. Mod Two Homology and Cohomology, 2016.
11 Charles R. Hobby and John R. Rice. A Moment Problem in L1 Approximation. Proceedings

of the American Mathematical Society, 16(4):665–670, 1965. URL: http://www.jstor.org/
stable/2033900.

12 Alfredo Hubard and Roman Karasev. Bisecting measures with hyperplane arrangements.
arXiv preprint, 2018. arXiv:1803.02842.

13 Roman N Karasev, Edgardo Roldán-Pensado, and Pablo Soberón. Measure partitions using
hyperplanes with fixed directions. Israel Journal of Mathematics, 212(2):705–728, 2016.

14 Stefan Langerman. personal communication, 2017.
15 Jiří Matoušek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combi-

natorics and Geometry. Springer Publishing Company, Incorporated, 2007.
16 John Milnor and James D Stasheff. Characteristic Classes, volume 76. Princeton university

press, 2016.
17 Richard Rado. A Theorem on General Measure. Journal of the London Mathematical Society,

21:291–300, 1947.

http://dx.doi.org/10.1016/j.dam.2014.10.015
http://dx.doi.org/10.1016/j.dam.2014.10.015
http://arxiv.org/abs/1809.05364
http://mi.mathnet.ru/msb989
http://www.jstor.org/stable/2033900
http://www.jstor.org/stable/2033900
http://arxiv.org/abs/1803.02842

P. Schnider 56:15

18 Edgar A Ramos. Equipartition of mass distributions by hyperplanes. Discrete & Computational
Geometry, 15(2):147–167, 1996.

19 Arthur H. Stone and John W. Tukey. Generalized “sandwich” theorems. Duke Math. J.,
9(2):356–359, June 1942. doi:10.1215/S0012-7094-42-00925-6.

20 Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and computa-
tional geometry. Chapman and Hall/CRC, 2017.

21 Rade T. Zivaljević. User’s guide to equivariant methods in combinatorics. II. Publications de
l’Institut Mathématique. Nouvelle Série, 64(78):107–132, 1998.

22 Rade T. Zivaljević and Siniša T Vrećica. An extension of the ham sandwich theorem. Bulletin
of the London Mathematical Society, 22(2):183–186, 1990.

SoCG 2019

http://dx.doi.org/10.1215/S0012-7094-42-00925-6

Distribution-Sensitive Bounds on Relative
Approximations of Geometric Ranges
Yufei Tao
Chinese University of Hong Kong, Hong Kong
taoyf@cse.cuhk.edu.hk

Yu Wang
Chinese University of Hong Kong, Hong Kong
yuwang@cse.cuhk.edu.hk

Abstract
A family R of ranges and a set X of points, all in Rd, together define a range space (X,R|X), where
R|X = {X ∩ h | h ∈ R}. We want to find a structure to estimate the quantity |X ∩ h|/|X| for any
range h ∈ R with the (ρ, ε)-guarantee: (i) if |X ∩ h|/|X| > ρ, the estimate must have a relative error
ε; (ii) otherwise, the estimate must have an absolute error ρε. The objective is to minimize the size
of the structure. Currently, the dominant solution is to compute a relative (ρ, ε)-approximation,
which is a subset of X with Õ(λ/(ρε2)) points, where λ is the VC-dimension of (X,R|X), and Õ
hides polylog factors.

This paper shows a more general bound sensitive to the content of X. We give a structure
that stores O(log(1/ρ)) integers plus Õ(θ · (λ/ε2)) points of X, where θ – called the disagreement
coefficient – measures how much the ranges differ from each other in their intersections with X.
The value of θ is between 1 and 1/ρ, such that our space bound is never worse than that of relative
(ρ, ε)-approximations, but we improve the latter’s 1/ρ term whenever θ = o(1

ρ log(1/ρ)). We also prove
that, in the worst case, summaries with the (ρ, 1/2)-guarantee must consume Ω(θ) words even for
d = 2 and λ ≤ 3.

We then constrain R to be the set of halfspaces in Rd for a constant d, and prove the existence of
structures with o(1/(ρε2)) size offering (ρ, ε)-guarantees, when X is generated from various stochastic
distributions. This is the first formal justification on why the term 1/ρ is not compulsory for
“realistic” inputs.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Relative Approximation, Disagreement Coefficient, Data Summary

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.57

Related Version A full version of this paper is available at http://arxiv.org/abs/1903.06617.

Funding This work was partially supported by a direct grant (Project Number: 4055079) from
CUHK and by a Faculty Research Award from Google.

1 Introduction

A (data) summary, in general, refers to a structure that captures certain information up
to a specified precision about a set of objects, but using space significantly smaller than
the size of the set. These summaries have become important tools in algorithm design,
especially in distributed/parallel computing where the main performance goal is to minimize
the communication across different servers.

In this paper, we revisit the problem of finding a small-space summary to perform range
estimation in Rd with relative-error guarantees. Let R be a family of geometric ranges in Rd
(e.g., a “halfspace family” R is the set of all halfspaces in Rd), and X be a set of points in Rd.
R and X together define a range space (X,R|X), where R|X = {X ∩ h | h ∈ R}. Denote by
λ the VC-dimension of (X,R|X).

© Yufei Tao and Yu Wang;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 57; pp. 57:1–57:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:taoyf@cse.cuhk.edu.hk
mailto:yuwang@cse.cuhk.edu.hk
https://doi.org/10.4230/LIPIcs.SoCG.2019.57
http://arxiv.org/abs/1903.06617
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges

Following the notations of [6, 11], define

X(h) = |X ∩ h|/|X|

for each h ∈ R, namely, X(h) is the fraction of points in X that are covered by h. Given
real-valued parameters 0 < ρ, ε < 1, we need to produce a structure – called a (ρ, ε)-summary
henceforth – that allows us to obtain, for every range h ∈ R, a real-valued estimate τ
satisfying the following (ρ, ε)-guarantee:∣∣X(h)− τ

∣∣ ≤ ε ·max{ρ,X(h)}. (1)

Phrased differently, the guarantee says that (i) if X(h) > ρ, τ must have a relative error at
most ε; (ii) otherwise, τ must have an absolute error at most ρε. The main challenge is to
minimize the size of the structure.

1.1 Previous results
Throughout the paper, all logarithms have base 2 by default.

1.1.1 Sample-Based (ρ, ε)-Summaries
We say that a (ρ, ε)-summary of (X,R|X) is sample-based if it meets the requirements below:
it stores a subset Z ⊆ X such that, for any range h ∈ R with Z ∩ h = ∅, it returns an
estimate 0 for X(h).

A relative (ρ, ε)-approximation [11, 17] is a subset Z ⊆ X such that
∣∣X(h)− Z(h)

∣∣ ≤
ε ·max{ρ,X(h)} holds for all ranges h ∈ R. Hence, the (ρ, ε)-guarantee can be fulfilled by
simply setting τ to Z(h), rendering Z a legal (sample-based) (ρ, ε)-summary. Strengthening
earlier results [3, 12, 21], Li et al. [17] proved that a random sample of X with size O(1

ρ ·
1
ε2 (λ log 1

ρ + log 1
δ)) is a relative (ρ, ε)-approximation with probability at least 1 − δ. This

implies the existence of a (ρ, ε)-summary of size O(1
ρ ·

λ
ε2 log 1

ρ).
A range space (X,R|X) of a constant VC-dimension is said to be well-behaved, if R|X

contains at most O(|X|) · kO(1) sets of size not exceeding k, for any integer k from 1 to
|X|. Ezra [6] showed that such a range space admits a sample-based (ρ, ε)-summary of
size O(1

ρ ·
1
ε2 (log 1

ε + log log 1
ρ)); note that this is smaller than the corresponding result

O(1
ρ ·

1
ε2 log 1

ρ) of [17] when ρ � ε. It is worth mentioning that, when d ≤ 3 and R is the
halfspace family, any (X,R|X) is well-behaved; this, however, is not true when d ≥ 4.

As opposed to the above “generic” bounds, Har-Peled and Sharir [11] proved specific
bounds on the halfspace family R. For d = 2, they showed that any (X,R) has a relative
(ρ, ε)-approximation of size O(1

ρ ·
1
ε4/3 log4/3 1

ρε); similarly, for d = 3, the bound becomes
O(1

ρ ·
1
ε3/2 log3/2 1

ρε). Combining these results and those of [6] gives the currently best bounds
for these range spaces.

1.1.2 A Lower Bound of Ω(1/ρ)
Notice that all the above bounds contain a term 1/ρ. This is not a coincidence, but instead
is due to a connection to “ε-nets”. Given a range space (X,R|X), an ε-net [13] is a subset
Z ⊆ X such that Z(h) > 0 holds for any range h ∈ R satisfying X(h) ≥ ε. As can be verified
easily, any sample-based (ρ, 1/2)-summary of (X,R|X) must also be a ρ-net. This implies
that the smallest size of sample-based (ρ, 1/2)-summaries must be at least that of ρ-nets.

Regarding the sizes of ε-nets, a lower bound of Ω(1
ε log 1

ε) is known for many range families
R (see [14, 15, 20] and the references therein). More precisely, this means that, for each such
family R, one cannot hope to obtain an ε-net of size o(1

ε log 1
ε) for every possible X. It thus

Y. Tao and Y. Wang 57:3

follows that, for these families R, Ω(1
ρ log 1

ρ) is a lower bound on the sizes of sample-based
(ρ, 1/2)-summaries. This, in turn, indicates that range spaces (X,R|X) defined by such an
R cannot always be well-behaved.

Coming back to the sizes of ε-nets, a weaker lower bound of Ω(1/ε) holds quite commonly
even on the range families that evade the Ω(1

ε log 1
ε) bound. Consider, for example, the

halfspace family R in R2. For any X, the range space (X,R|X) definitely has an ε-net of
size O(1/ε) [10, 19]. This is tight: place a set X of points on the boundary of a circle; and it
is easy to show that any ε-net of (X,R|X) must have a size of at least 1/ε. This means that
the size of any sample-based (ρ, 1/2)-summary of (X,R|X) must be Ω(1/ρ).

1.2 Our results

1.2.1 On One Input: Moving Beyond Ω(1/ρ)

The Ω(1/ρ) lower bound discussed earlier holds only in the worst case, i.e., it is determined
by the “hardest” X. For other X, the range space (X,R|X) may admit much smaller
(ρ, ε)-summaries. For example, let R be again the set of halfplanes in R2. When all the points
of X lie on a line, (X,R) has a sample-based (ρ, ε)-approximation of size only O(1

ε log 1
ρ);

also, it would be interesting to note that (X,R) has an ε-net that contains only 2 points! In
general, the existing bounds on (ρ, ε)-summaries can be excessively loose on individual inputs
X. This calls for an alternative, distribution-sensitive, analytical framework that is able to
prove tighter bounds using extra complexity parameters that depend on the content of X.

The first contribution of this paper is to establish such a framework by resorting to the
concept of disagreement coefficient [8] from active learning. This notion was originally defined
in a context different from ours; and we will adapt it to range spaces in the next section.
At this moment, it suffices to understand that the disagreement coefficient θ is a real value
satisfying: 1 ≤ θ ≤ 1/ρ. The coefficient quantifies the differences among the sets in R|X
(a larger θ indicates greater differences). Even under the same R, θ may vary considerably
depending on X.

We will show that, for any range space (X,R|X) of VC-dimension λ, there is a (ρ, ε)-
summary that keeps O(log(1/ρ)) integers plus

O

(
min

{1
ρ
, θ log 1

ρ

}
· λ
ε2

log 1
ρ

)
(2)

points of X. The above is never worse than the general bound O(1
ρ ·

λ
ε2 log 1

ρ) of relative
(ρ, ε)-approximations.

We will also prove that Ω(θ) is a lower bound on the number of words needed to encode
a (ρ, 1/2)-summary even when d = 2 and λ ≤ 3. This generalizes the Ω(1/ρ) lower bound
in Section 1.1 because θ is at most, but can reach, 1/ρ. Thus, our result in (2) reflects the
hardness of the input, and is tight within polylog factors for constant ε. Our lower bound is
information-theoretic, and does not require the summary to be sample-based.

1.2.2 On a Distribution of Inputs: Small Summaries for Halfspaces
Our framework allows us to explain – for the first time we believe – why Ω(1/ρ) · poly(1/ε)
is too pessimistic a bound on the sizes of (ρ, ε)-summaries for inputs encountered in practice.
For this purpose, we must not allow arbitrary inputs because of the prevalent Ω(1/ρ) lower
bound; instead, we will examine a class of inputs following a certain distribution.

SoCG 2019

57:4 Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges

Figure 1 Mixture of 3 truncated Gaussian distributions in 2D space.

In this paper, we demonstrate the above by concentrating on the family R of halfspaces
in Rd where the dimensionality d is a constant; this is arguably the “most-studied” family
in the literature of relative (ρ, ε)-approximations. The core of our solutions concerns two
stochastic distributions that have drastically different behavior:

(Box Uniform) Suppose that X is obtained by drawing n points uniformly at random
from the unit box [0, 1]d. When ρ = Ω(logn

n), we will prove that θ = O(polylog 1
ρ)

with high probability (i.e., at least 1− 1/n2). Accordingly, (2) becomes O(1
ε2 polylog 1

ρ),
improving the general bound of relative (ρ, ε)-approximations by almost a factor of
O(1/ρ).
(Ball Uniform) Consider instead that the n points are drawn uniformly at random from
the unit ball: {x ∈ Rd |

∑d
i=1 x[i]2 ≤ 1}, where x[i] represents the i-th coordinate of point

x. This time, we will prove that θ = O((1
ρ)

d−1
d+1) with high probability for ρ = Ω(logn

n).
(2) indicates the existence of a (ρ, ε)-summary with size Õ((1

ρ)
d−1
d+1 · 1

ε2) for ρ = Ω(logn
n),

again circumventing the Ω(1/ρ) lower bound.

The very same bounds can also be obtained in non-uniform settings. Suppose that X
is obtained by drawing n points in an iid manner, according to a distribution that can be
described by a probabilistic density function (pdf) π(x) over Rd where d = O(1). Define the
support region of π as supp(π) = {x ∈ Rd | π(x) > 0}. When π satisfies:

C1: supp(π) is the unit box (or unit ball, resp.);
C2: for every point x ∈ supp(π), it holds that π(x) = Ω(1);

we will show that (X,R|X) has a (ρ, ε)-summary whose size is asymptotically the same as
the aforementioned bound for box uniform (or ball uniform, resp.). Conditions C1 and C2
are satisfied by many distributions encountered in practice (e.g., the truncated versions of
the Gaussian, Elliptical, and Laplace distributions, etc.), suggesting that real-world datasets
may have much smaller (ρ, ε)-summaries than previously thought.

Even better, the linearity of halfspaces implies that, the same bounds still hold even
when the shape of supp(π) in Condition C1 is obtained from the unit box/ball by an
affine transformation. Call a distribution atomic if it satisfies C1 (perhaps after an affine
transformation) and C2. Our results hold also on “composite distributions” synthesized
from a constant z number of atomic distributions whose support regions may overlap
arbitrarily. Specifically, let π1, π2, ..., πz be the pdfs of atomic distributions; and define
π(x) =

∑z
i=1 γi · π(x), for arbitrary positive constants γ1, γ2, ..., γz that sum up to 1; see

Figure 1 for an example. Then, the (ρ, ε)-summary bound on π is asymptotically determined
by the highest of the (ρ, ε)-summary bounds on π1, ..., πc.

Y. Tao and Y. Wang 57:5

2 Disagreement coefficients

2.1 Existing Definitions on Distributions
Disagreement coefficient was introduced by Hanneke [8] to analyze active learning algorithms
(although a similar concept had been coined earlier [1] in statistics).

Let D be a distribution over Rd. For any region A ⊆ Rd, we denote by PrD[A] the
probability of x ∈ A when x is drawn from D. Let R be a family of geometric ranges. Given
a subset R′ ⊆ R, define the disagreement region DIS(R′) of R′ as

DIS(R′) = {x ∈ Rd | ∃h1, h2 ∈ R′ s.t. x ∈ h1 and x /∈ h2}.

That is, DIS(R′) includes every such point x ∈ Rd that does not fall in all the ranges in R′,
and in the meantime, does not fall outside all the ranges in R′, either. Given a range h ∈ R
and a real value r > 0, define its r-ball BD(h, r) as the set of all ranges h′ ∈ R satisfying
PrD[DIS({h, h′})] ≤ r. It is worth mentioning that DIS({h, h′}) is simply the symmetric
difference between h and h′.

Now, fix a range h, and consider increasing r continuously; this can only expand the set
BD(h, r), and hence, also DIS(BD(h, r)). Interestingly, even though PrD[DIS(BD(h, r))] is
monotonically increasing, the ratio PrD[DIS(BD(h, r))]/r may remain bounded by a certain
quantity. Given a real value σ ≥ 0, the disagreement coefficient θhD(σ) of h measures this
quantity with respect to all r > σ:

θhD(σ) = max
{

1, sup
r>σ

PrD[DIS(BD(h, r))]
r

}
. (3)

The function θhD(σ) has several useful properties:

1. By definition, θhD(σ) is between 1 and 1/σ, regardless of D and h.
2. The supremum in (3) ensures that θhD(σ) is monotonically decreasing.
3. For any c ≥ 1, it holds that θhD(σ) ≤ c · θhD(cσ) (see Corollary 7.2 of [9]).

2.2 New Definitions on Range Spaces
The above definitions rely on D, and are not suitable for our problem settings where the
input X is a finite set. Next, we present a way to adapt the definitions to a range space
(X,R|X) for analyzing geometric algorithms.

We impose a uniform distribution over X: let U(X) be the distribution of a random
point drawn uniformly from X. By replacing D with U(X) in (3), we rewrite (3) into the
following for any σ ≥ 0:

θhU(X)(σ) = max
{

1, sup
r>σ

PrU(X)[DIS(BU(X)(h, r))]
r

}
. (4)

Set

σmin = minh∈R |X ∩ h|
n

(5)

We define the disagreement coefficient of the range space (X,R|X) as a function θX(σ) :
[σmin,∞)→ R where

θX(σ) = min
h∈R s.t. X(h)≤σ

{
θhU(X)(σ)

}
. (6)

SoCG 2019

57:6 Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges

It is clear from the above discussion that 1 ≤ θX(σ) ≤ 1/σ and θX(σ) is monotonically
decreasing.

As a remark, the finiteness of X gives a simpler interpretation of the r-ball BU(X)(h, r):
it is the set of ranges h′ ∈ R such that DIS({h, h′}) covers no more than r|X| points in X.
Also, PrU(X)[A] for any region A ⊆ Rd is simply |X ∩A|/|X|.

3 Small (ρ, ε)-summaries based on disagreement coefficients

Given a range space (X,R) with VC-dimension λ, we will show how to find a (ρ, ε)-summary
whose size can be bounded using disagreement coefficients. Our algorithm is randomized,
and succeeds with probability at least 1 − δ for a real-valued parameter 0 < δ < 1. Set
n = |X|. We require that ρ ≥ σmin; otherwise, manually increasing ρ to σmin achieves the
same approximation guarantee.

3.1 Algorithms

3.1.1 Computing a (ρ, ε)-Summary
We will shrink R progressively by removing a range h from R once we are sure we can
provide an accurate estimate for X(h). Define R0 = R. We perform at most dlog(1/ρ)e
rounds. Given Ri−1, Round i ≥ 1 is executed as follows:

1. mi ← the number of points x ∈ X such that x falls in all the ranges in Ri−1
2. Xi ← X ∩DIS(Ri−1)
3. draw a set Si of points uniformly at random from Xi with

|Si| = O

(
|Xi|
n
· 2i

ε2

(
λ log 1

ρ
+ log log(1/ρ)

δ

))
(7)

4. Ri = {h ∈ Ri−1 | Si(h) · |Xi|+mi < n/2i}

The algorithm terminates when either i = dlog(1/ρ)e or Ri = ∅. Suppose that in total
t rounds are performed. The final (ρ, ε)-summary consists of sets S1, S2, ..., St, and 2t + 1
integers n,m1,m2, ...,mt, |X1|, |X2|, ..., |Xt|.

3.1.2 Performing Estimation
Given a range h ∈ R, we deploy the summary to estimate X(h) in two steps:

1. j ← the largest i ∈ [1, t] such that h ∈ Ri
2. return Sj(h) · |Xj |

n + mj

n as the estimate

Regarding Step 1, whether h ∈ Ri can be detected as follows. First, if h /∈ Ri′ for any
i′ < i, then immediately h /∈ Ri. Otherwise, compute Si(h), and declare h ∈ Ri if and only
if Si(h) · |Xi|+mi < n/2i.

3.2 Analysis
We now proceed to prove the correctness of our algorithms, and bound the size of the
produced summary. It suffices to consider ε ≤ 1/3 (otherwise, lower ε to 1/3 and then apply
the argument below).

Y. Tao and Y. Wang 57:7

The subsequent discussion is carried out under the event that, for every i ∈ [1, t], Si is a
relative (ρi, ε/4)-approximation of Xi with respect to the ranges in R where

ρi = n(1 + ε)
2i · |Xi|

.

By the result of [17] (reviewed in Section 1.1), with |Si| shown in (7), the event happens
with a probability at least 1− δ · t

dlog(1/ρ)e ≥ 1− δ.

3.2.1 Correctness

To show that our algorithm indeed outputs a (ρ, ε)-summary, we prove in the full version:

I Lemma 1. The following are true for all i ∈ [1, t]: (i) for every range h ∈ Ri, X(h) <
(1 + ε)/2i; (ii) for every range h /∈ Ri, X(h) ≥ (1− ε)/2i.

Now consider the estimation algorithm in Section 3.1.2. Given the value j obtained at
Step 1 for the input range h ∈ R, the above lemma suggests that

(1− ε)/2j+1 ≤ X(h) < (1 + ε)/2j .

This, together with Sj being a (ρj , ε/4)-approximation of Xj , ensures that our estimate
satisfies the (ρ, ε)-guarantee for h. The details can be found in the full version.

3.2.2 Bounding the Size

To bound the size of our (ρ, ε)-summary, we will focus on bounding
∑t
i=1 |Si|, because the

rest of the summary clearly needs O(t) = O(log(1/ρ)) extra integers. Let us start with a
trivial bound that follows directly from |Xi| ≤ n:

t∑
i=1
|Si| = O

(
t∑
i=1

2i

ε2

(
λ log 1

ρ
+ log log(1/ρ)

δ

))

= O

(
1
ρε2

(
λ log 1

ρ
+ log log(1/ρ)

δ

))
. (8)

Next, we use disagreement coefficients to prove a tighter bound. Fix h ∈ R to be an
arbitrary range such that X(h) ≤ ρ (h definitely exists because ρ ≥ σmin).

I Lemma 2. Ri ⊆ B(h, ρ+ (1 + ε)/2i).

Proof. It suffices to prove that, for any h′ ∈ Ri, PrU(X)[DIS({h, h′})] ≤ ρ+ (1 + ε)/2i, or
equivalently, |X ∩DIS({h, h′})| ≤ n(ρ+ (1 + ε)/2i).

This holds because |X ∩ DIS({h, h′})| ≤ |(X ∩ h) ∪ (X ∩ h′)|. By definition of h, we
know |X ∩ h| ≤ nρ, while By Lemma 1, we know |X ∩ h′| ≤ n(1 + ε)/2i. Therefore,
|X ∩DIS({h, h′})| ≤ n(ρ+ (1 + ε)/2i). J

I Lemma 3. |Xi|/n ≤ θhU(X)(2ρ) · (ρ+ 1+ε
2i−1).

SoCG 2019

57:8 Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges

Proof. Lemma 2 tells us that DIS(Ri−1) ⊆ DIS(BU(X)(h, ρ+ 1+ε
2i−1)). Thus:

|Xi|/n = PrU(X)(DIS(Ri−1))

≤ PrU(X)

(
DIS

(
BU(X)

(
h, ρ+ 1 + ε

2i−1

)))
(by (4)) ≤ θhU(X)

(
ρ+ 1 + ε

2i−1

)
·
(
ρ+ 1 + ε

2i−1

)
By 1/2i−1 > ρ, and the fact that θhU(X) is monotonically decreasing, the above leads to

θhU(X)

(
ρ+ 1 + ε

2i−1

)
·
(
ρ+ 1 + ε

2i−1

)
≤ θhU(X)(ρ+ ρ) ·

(
ρ+ 1 + ε

2i−1

)
= θhU(X)(2ρ) ·

(
ρ+ 1 + ε

2i−1

)
. J

Therefore:
t∑
i=1

|Xi| · 2i

n
≤ θhU(X)(2ρ) ·

t∑
i=1

2i ·
(
ρ+ 1 + ε

2i−1

)

= θhU(X)(2ρ) ·
t∑
i=1

(
2i · ρ+O(1)

)
(by 1/2i = Ω(ρ)) = θhU(X)(2ρ) ·O(t)

= θhU(X)(2ρ) ·O(log(1/ρ))

= θhU(X)(ρ) ·O(log(1/ρ)) (9)

where the last equality used the fact that θhU(X)(2ρ) ≤ 2 · θhU(X)(ρ).
Remember that the above holds for all h ∈ R satisfying X(h) ≤ ρ. By the definition in

(6), we can improve the bound of (9) to

t∑
i=1

|Xi| · 2i

n
= θX(ρ) ·O(log(1/ρ)). (10)

Combining the above with (7) gives
∑t
i=1|Si|=O(1

ε2 ·θX(ρ) log(1/ρ)·(λ log(1/ρ)+log log(1/ρ)
δ)).

Putting this together with (8) and setting δ to a constant gives:

I Theorem 4. For any ρ ≥ σmin and any 0 < ε < 1, a range space (X,R|X) of VC-dimension
λ has a (ρ, ε)-summary which keeps O(log(1/ρ)) integers and O(min

{ 1
ρ , θX(ρ)·log 1

ρ

}
· λε2 log 1

ρ)
points of X. Here, σmin is defined in (5), and θX is the disagreement coefficient function
defined in (6).

3.2.3 A Remark
Our (ρ, ε)-summary is currently not sample-based, but this can be fixed by keeping – at Step
1 of the computation algorithm in Section 3.1 – an arbitrary point counted by mi.

The (ρ, ε)-summary after the fix also serves as a ρ-net. Thus, by setting ε to a constant
in Theorem 4, we know that for any ρ ≥ σmin, the range space (X,R|X) in Theorem 4 has
an ρ-net of size O(min

{ 1
ρ , θX(ρ) · log 1

ρ

}
· λ log 1

ρ). However, it should be pointed out that
this bound on ρ-nets can be slightly improved, as is implied by Theorem 5.1 of [9] and made
explicit in [16].

Y. Tao and Y. Wang 57:9

4 Bridging distribution and finite-set disagreement coefficients

This section will establish another theorem which will be used together with Theorem 4
to explain why we are able to obtain (ρ, ε)-summarizes of o(1/ρ) size on practical datasets.
Suppose that the input X has been generated by taking n points independently following
the same distribution D over Rd. The learning literature (see, e.g., [9]) has developed a solid
understanding on when the quantity θhD(σ) is small. Unfortunately, those findings can rarely
be applied to θhU(X)(σ) because they are conditioned on requirements that must be met by
D, e.g., one common requirement is continuity. U(X), due to its discrete nature, seldom
meets the requirements.

On the other hand, clearly U(X) approximates D increasingly better as n grows. Thus,
we ask the question:

How large n needs to be for θhU(X)(σ) to be asymptotically the same as θhD(σ)?

We partially answer the question in the next theorem:

I Theorem 5 (The Bridging Theorem). Let D be a distribution over Rd, and R be a family
of ranges. Denote by λ the VC-dimension of the range space (Rd,R).

Fix an arbitrary range h ∈ R, an arbitrary integer n, a real value 0 < δ < 1, a real value σ
satisfying n ≥ c

σ (log n
δ +λ log 1

σ) for some universal constant c. If we draw a set X of n points
independently from D, then with probability at least 1− δ, it holds that θhU(X)(σ) ≤ 8 · θhD(2σ).

The rest of the section serves as a proof of the theorem. Let us first get rid of two
easy cases:

If σ ≥ 1, θhU(X)(σ) = θhD(2σ) = 1 by definition of (4); and the theorem obviously holds.
If σ < 1/n, observe that every range h′ ∈ BU(X)(h, σ) covers exactly the same set of points
in X as h. Hence, PrU(X)[DIS(BU(X)(h, r))] = 0. It follows from (4) that θhU(X)(σ) = 1.
The theorem again obviously holds because θhD(2σ) ≥ 1, by definition.

Hence, it suffices to consider 1/n ≤ σ < 1. Define S = {i/n | i is an integer in [σn, n]}.
For σ ≥ 1/n, (4) implies

θhU(X)(σ) ≤ max
{

1, 2 ·max
r∈S

PrU(X)[DIS(BU(X)(h, r))]
r

}
. (11)

Consider an arbitrary r ∈ S. We will show that, when n satisfies the condition in the theorem,
with probability at least 1− δ/n, it holds that

PrU(X)[DIS(BU(X)(h, r))]
r

≤ 4 · θhD(2σ). (12)

Once this is done, applying the union bound on all the r ∈ S will prove that (11) is at most
8 · θhD(2σ) with probability at least 1− δ, as claimed in the theorem.

We aim to establish the following equivalent form of (12):

|X ∩DIS(BU(X)(h, r))|
nr

≤ 4 · θhD(2σ). (13)

For the above purpose, the most crucial step is to prove:

I Lemma 6. When n ≥ c1
r (λ log 1

r + log n
δ) for some universal constant c1, it holds with

probability at least 1− δ/(2n) that BU(X)(h, r) ⊆ BD(h, 2r).

SoCG 2019

57:10 Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges

Proof. The rationale of our proof is that any h′ /∈ BD(h, 2r) is unlikely to appear in
BU(X)(h, r) when n is large. Indeed, h′ /∈ BD(h, 2r) indicates that a point x drawn from D

has probability over 2r to fall in DIS({h, h′}). Hence, |X ∩DIS({h, h′})| should be sharply
concentrated around 2r · n, rendering h′ /∈ BU(X)(h, r). The challenge, however, is that there
can be an infinite number of ranges h′ to consider. To tackle the challenge, we need to bring
down the number of ranges somehow to nO(λ). We achieve the purpose by observing that we
can define another range space with VC-dimension O(λ) to capture the disagreement regions
of range pairs from R, as shown below.

Define Rdis = {DIS({h, h′}) | h, h′ ∈ R}. We observe that the range space (Rd,Rdis) has
VC-dimension O(λ). To explain why, for any h ∈ R, define h = Rd \ h. Accordingly, define
R = {h | h ∈ R}. The two range spaces (Rd,R) and (Rd,R) have the same VC-dimension
λ. Therefore, the range space (Rd,R∪R) has VC-dimension at most 2λ+ 1. Now apply a
2-fold intersection on (Rd,R ∪R) to create (Rd,R1) where R1 = {h ∩ h′ | h, h′ ∈ R ∪R}.
By a result of [2], the VC dimension of (Rd,R1) is bounded by O(λ). Finally, apply a 2-fold
union on (Rd,R1) to create (Rd,R2) where R2 = {h ∪ h′ | h, h′ ∈ R1}. By another result
of [2], the VC dimension of (Rd,R2) is bounded by O(λ). Notice that Rdis is a subset of R2.
It thus follows that the VC-dimension of (Rd,Rdis) must be O(λ).

Essentially, now the task is to draw a sufficiently large set X of points from D to guarantee
with probability at least 1− δ/(2n): for every range h ∈ Rdis with PrD(h) > 2r, we ensure
|X ∩ h|/|X| > r. By applying a result of [17] on general range spaces, we know that |X|
only needs to be c1

r (λ log 1
r + log n

δ) for some constant c1 which does not depend on r, δ,
and n. J

Set r′ = PrD(DIS(BD(h, 2r)); notice that, by definition of θhD(2r), r′ ≤ 2r · θhD(2r). We
want to draw a sufficiently large set X of points from D to guarantee, with probability at
least 1− δ/(2n), |X ∩DIS(BD(h, 2r))| ≤ 2n ·max{r, r′}. By Chernoff bounds, n only needs
to be at least c2

r log n
δ for some universal constant c2.

Now, set c = max{c1, c2} and n = c
r (λ log 1

r + log n
δ). With probability at least 1− δ/n,

we can derive (13) from the above discussion as follows:

|X ∩DIS(BU(X)(h, r))|
nr

≤ |X ∩DIS(BD(h, 2r))|
nr

(by Lemma 6)

≤ 2n ·max{r, r′}
nr

= 2 ·max{1, r′/r}

≤ 2 ·max{1, 2 · θhD(2r)} = 4 · θhD(2r) ≤ 4 · θhD(2σ)

where the last inequality used r ≥ σ and the fact that θhD is monotonically decreasing. This
establishes (13) and hence completes the proof of Theorem 5.

5 o(1/ρ)-size summaries for halfspace ranges

We are ready to explain why a set of points generated from a stochastic distribution often
admits (ρ, ε)-summaries of o(1/ρ) size for fixed ε. This requires specializing R into a concrete
range family. We will do so by constraining R to be the set of halfspaces in Rd, because this
family has received considerable attention (as reviewed in Section 1.1).

We prove in the full version the next two technical lemmas regarding the disagreement
coefficients on box-uniform and ball-uniform distributions:

I Lemma 7. Let U be the distribution where a point is drawn uniformly at random from
the unit box [0, 1]d with d = O(1). For any halfspace h disjoint with the box, it holds that
θhU (σ) = O(logd−1 1

σ) for all σ > 0.

Y. Tao and Y. Wang 57:11

I Lemma 8. Let U be the distribution where a point is drawn uniformly at random from the
unit ball {x ∈ Rd |

∑d
i=1 x[i]2 ≤ 1} with d = O(1). For any halfspace h disjoint with the ball,

it holds that θhU (σ) = O((1
σ)

d−1
d+1) for all σ > 0.

Next, we establish our main result for non-uniform distributions:

I Theorem 9. Let R be the family of halfspaces in Rd with a constant dimensionality d.
Let D be a distribution over Rd such that the pdf π of D satisfies Conditions C1 and C2 as
prescribed in Section 1.2. Suppose that we draw a set X of n points independently from D.
Both of the following hold with probability at least 1− 1/n2:

When supp(π) is the unit box, for any 0 < ε < 1 and any ρ ≥ c logn
n where c > 0 is

a constant, X has a (ρ, ε)-summary that keeps O(log(1/ρ)) integers and O(1
ε2 logd+1 1

ρ)
points of X.
When supp(π) is the unit ball, for any 0 < ε < 1 and any ρ ≥ c logn

n where c > 0 is a
constant, X has a (ρ, ε)-summary that keeps O(log(1/ρ)) integers and O(1

ε2 ·(1
ρ)

d−1
d+2 ·log2 1

ρ)
points of X.

The constant c in the above does not depend on D, n, ρ, and ε.

Proof. We will prove only the case where supp(π) is the unit box because the unit-ball case
is similar. Set σ∗ = c·logn

n where c is some constant to be determined later. Thanks to
Theorem 4, it suffices to prove that with probability at least 1− 1/n2, θX(ρ) = O(logd−1 1

ρ)
at every ρ ≥ σ∗. We will argue that, with probability at least 1 − 1/n2, there exists a
halfspace h ∈ R such that X(h) ≤ ρ and θhU(X)(ρ) = O(logd−1 1

ρ). Once this is done, we
know θX(ρ) = O(logd−1 1

ρ) from (6).
Condition C2 says that the pdf π satisfies π(x) ≥ γ for any point x in supp(π) (i.e., the

unit box), where γ is a positive constant. Remember that, by definition of supp(π), π(x) = 0
for any x outside supp(π).

Simply set h to a halfspace as stated in Lemma 7, i.e., θhU (σ) = O(logd−1 1
σ). Let πU be

the pdf of U : πU (x) equals 1 if x ∈ [0, 1]d, or 0 otherwise. Define α as any constant such
that α ≤ γ. We have α · πU (x) ≤ π(x) ≤ 1 ≤ 1

α · πU (x) for all x ∈ Rd. Given this, Theorem
7.6 of [9] tells us that θhD(σ) = O(θhU (σ/α)). It thus follows that θhD(σ) = O(logd−1 1

σ)
for all σ > 0.

Now, apply Theorem 5 on h by setting δ = 1/n2 and λ = O(1). The theorem shows that,
when n ≥ β·logn

ρ for some constant β, θhU(X)(ρ) ≤ 8 · θhD(ρ) = O(logd−1 1
ρ) with probability at

least 1− 1/n2. We set c ≥ β to ensure n ≥ α·logn
ρ . Note also that the choice of h guarantees

X(h) = 0 < ρ. This makes h a halfspace we are looking for, and concludes the proof. J

Some remarks are in order:

(Composite Distributions) Let D1 and D2 be two distributions over Rd with pdfs π1 and
π2, respectively (the support regions of π1 and π2 may overlap). Define a distribution D
with pdf π(x) = γ · π1(x) + (1 − γ) · π2(x), for some constant 0 < γ < 1. Theorem 7.7
of [9] tells us that, for any halfspace h ∈ R and any σ > 0, θhD(σ) ≤ θhD1

(σγ) + θhD2
(σ

1−γ).
It thus follows from Lemma 7 that, when D1 and D2 are atomic distributions with support
regions obtainable from the unit box through affine transformations, θhD(σ) = O(logd−2 1

σ)
for any h disjoint with supp(D1) ∪ supp(D2). The unit-box result of Theorem 9 can
be easily shown to hold on this D as well, by adapting the proof in a straightforward
manner. The same is true for the unit-ball result of Theorem 9. All these results can now
be extended to a composite distribution synthesized from a constant number of atomic
distributions (see Section 1.2).

SoCG 2019

57:12 Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges

(More Distributions with Near-Constant θ) What is given in Lemma 7 is only one
scenario where θhD(σ) is nearly a constant. There are other combinations of D and R
where θhD(σ) = Õ(1) for all h ∈ R; see [5, 7, 8, 9, 22] (in some of those combinations,
R may not contain all the halfspaces in Rd; e.g., a result of [8] concerns only the
halfspaces whose boundary planes pass the origin). The proof of Theorem 9 can be
adapted to show that X has a (ρ, ε)-summary of size Õ(1/ε2) with high probability when
ρ = Ω(max{ logn

n ,minh∈RPrD(h)}).
(Time Complexity) In general, for any X, a (ρ, ε)-summary (for the halfspace family R
in constant-dimensional space) can be found in polynomial time even by implementing
the algorithm of Section 3.1 naively. The time can be improved to O(n polylogn) +
n1−Ω(1) · sO(1), where s is the size of the returned summary, by utilizing specialized data
structures [4, 18].

6 A lower bound with disagreement coefficients

In this section, we will prove a lower bound on the sizes of (ρ, 1/2)-summaries in relation to
disagreement coefficients. Our core result is:

I Theorem 10. Let R be the family of all halfplanes in R2. Fix any integer w as the number
of bits in a word. Choose arbitrary integers η, q, and k such that η ≥ 4, q is a multiple of η,
and 1 ≤ k ≤ q/(4η). There must exist a set C of range spaces (X,R|X), each satisfying the
following conditions:

X is a set of q + k points in R2.
The disagreement coefficient of (X,R|X) satisfies θX(k

q+k) = k+q
k+q/η .

Any encoding, which encodes a (k
q+k , 1/2)-summary for each range space in C, must use

at least η · w bits on at least one range space in C.

Therefore, for ρ = k
q+k , if one wishes to store a (ρ, 1/2)-summary for each range space

in C, at least η · w bits (namely, η words) are needed on at least one range space. Since
θX(ρ) = k+q

k+q/η ≤ η, this establishes θX(ρ) as a space lower bound for (ρ, 1/2)-summaries. In
the theorem, any X has dimensionality d = 2 and any (X,R) has VC-dimension at most 3;
hence, Theorem 4 is tight up to polylog factors on constant λ and ε.

The flexibility of η, q, and k allows the lower bound to hold in a variety of more concrete
settings. For example, by adjusting k and q, one sees that θX(ρ) is a lower bound for the
whole range of ρ ∈ (0, O(1)]. On the other hand, by focusing on any specific ρ ∈ (0, O(1)]
but adjusting η, one sees that θX(ρ) remains as a lower bound when θX(ρ) goes from O(1)
to Ω(1/ρ).1

Proving Theorem 10. Fix integers η, q, and k as stated in Theorem 10. Define n = q + k.
Next, we construct a class X of point sets, each consisting of n points in R2. First, place k
points at coordinates (0,∞). Call them the outer points; they belong to all the sets in X .

For each set X ∈ X , we generate q extra inner points. For this purpose, place an arbitrary
polygon Ψ with η vertices, making sure that all the vertices fall on the upper arc of the unit
circle (i.e., the arc is {(x[1], x[2]) | x[1]2 + x[2]2 = 1 and x[2] ≥ 0}). Then, given each vertex

1 This rules out, for example, a claim of the form: “when θX(ρ) ≥
√

1/ρ, there is a (ρ, 1/2)-summary of
size O(

√
θX(ρ))”.

Y. Tao and Y. Wang 57:13

k far away outer points at the same location

q/η points at each vertex

Ψ

Figure 2 A set of points in X (η = 4).

of Ψ, we add q/η inner points to X, all of which are located at that vertex. See Figure 2
for an example with η = 4. This finishes the construction of X. It is important to note
that a different Ψ is used for each X. Thus, X includes an infinite number of inputs, each
corresponding to a possible Ψ. Our construction ensures a nice property:

I Lemma 11. Fix any X ∈ X . Given any (k/n, 1/2)-summary of X, we are able to infer
all the vertices of Ψ used to construct X.

Proof. We say that a halfplane in R is upward if it covers the point (0,∞). Our aim is
to prove that, the summary allows us to determine whether an arbitrary upward halfplane
covers any inner point of X. This implies that we can reconstruct all the vertices of Ψ using
the summary.2

Given an upward halfplane h, we use the summary to obtain an estimate – denoted as τ –
of X(h). If τ ≥ 2k/n, we return “yes” (i.e., h covers at least one inner point); otherwise, we
return “no”. To see that this is correct, first note that X(h) must be at least k/n, and hence
0.5X(h) ≤ τ ≤ 1.5X(h). Therefore, if h covers no inner points, X(h) = k/n, indicating
τ < 1.5k/n. Otherwise, X(h) ≥ k+q/η

n ≥ 5k/n, indicating τ ≥ 2.5k/n. J

We prove in the full version:

I Lemma 12. For each X ∈ X , the disagreement coefficient of (X,R|X) satisfies θX(k/n) =
n

k+q/η .

The set C is simply the set {(X,R) | X ∈ X}. Recall that each X ∈ X corresponds to
a distinct η-vertex polygon Ψ. Hence, by Lemma 11, the (k/n, 1/2)-summaries associated
with the range spaces in C serve as an encoding of all such Ψ’s.

So far the number of Ψ’s is infinite, which does not fit the purpose of arguing for a space
lower bound in RAM with a finite word length w. This can be easily fixed by creating
2w choices for each vertex of Ψ, such that each of the η vertices can independently take
a choice of its own. This generates 2ηw polygons for Ψ, and hence, the same number of
inputs in C. Lemmas 11 and 12 are still valid. Therefore, any encoding, which encodes
a (k/n, 1/2)-summary for each range space in C, can be used to distinguish all those 2ηw
choices of Ψ. The encoding, therefore, must use η · w bits for at least one range space. This
completes the proof of Theorem 10. J

2 To see this, consider any vertex v of Ψ, and use the summary to distinguish the line ` tangent to the
arc at v and a line that is parallel to `, but moves slightly away from the arc.

SoCG 2019

57:14 Distribution-Sensitive Bounds on Relative Approximations of Geometric Ranges

References
1 Kenneth S. Alexander. Rates of Growth and Sample Moduli for Weighted Empirical Processes

Indexed by Sets. Probability Theory and Related Fields, 75:379–423, 1987.
2 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability

and the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965, 1989.
3 Hervé Brönnimann, Bernard Chazelle, and Jiří Matoušek. Product Range Spaces, Sensitive

Sampling, and Derandomization. SIAM Journal on Computing, 28(5):1552–1575, 1999.
4 Timothy M. Chan. Optimal Partition Trees. Discrete & Computational Geometry, 47(4):661–

690, 2012.
5 Ran El-Yaniv and Yair Wiener. Active Learning via Perfect Selective Classification. Journal

of Machine Learning Research, 13:255–279, 2012.
6 Esther Ezra. Small-size relative (p, ε)-approximations for well-behaved range spaces. In

Proceedings of Symposium on Computational Geometry (SoCG), pages 233–242, 2013.
7 Wayne A. Fuller. Sampling Statistics. Wiley, 2009.
8 Steve Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings

of International Conference on Machine Learning (ICML), pages 353–360, 2007.
9 Steve Hanneke. Theory of Active Learning, 2014. Manuscript downloadable at http://www.

stevehanneke.com.
10 Sariel Har-Peled, Haim Kaplan, Micha Sharir, and Shakhar Smorodinsky. Epsilon-Nets for

Halfspaces Revisited. CoRR, abs/1410.3154, 2014. arXiv:1410.3154.
11 Sariel Har-Peled and Micha Sharir. Relative (p, ε)-Approximations in Geometry. Discrete &

Computational Geometry, 45(3):462–496, 2011.
12 David Haussler. Decision Theoretic Generalizations of the PAC Model for Neural Net and

Other Learning Applications. Inf. Comput., 100(1):78–150, 1992.
13 David Haussler and Emo Welzl. Epsilon-Nets and Simplex Range Queries. Discrete &

Computational Geometry, 2:127–151, 1987.
14 János Komlós, János Pach, and Gerhard J. Woeginger. Almost Tight Bounds for epsilon-Nets.

Discrete & Computational Geometry, 7:163–173, 1992.
15 Andrey Kupavskii, Nabil H. Mustafa, and János Pach. New Lower Bounds for epsilon-Nets.

In Proceedings of Symposium on Computational Geometry (SoCG), pages 54:1–54:16, 2016.
16 Andrey Kupavskii and Nikita Zhivotovskiy. When are epsilon-nets small? CoRR,

abs/1711.10414, 2017. arXiv:1711.10414.
17 Yi Li, Philip M. Long, and Aravind Srinivasan. Improved Bounds on the Sample Complexity

of Learning. Journal of Computer and System Sciences (JCSS), 62(3):516–527, 2001.
18 Jiří Matoušek. Efficient Partition Trees. Discrete & Computational Geometry, 8:315–334,

1992.
19 Jiří Matoušek, Raimund Seidel, and Emo Welzl. How to Net a Lot with Little: Small epsilon-

Nets for Disks and Halfspaces. In Proceedings of Symposium on Computational Geometry
(SoCG), pages 16–22, 1990.

20 János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. In Proceedings
of Symposium on Computational Geometry (SoCG), pages 458–463, 2011.

21 D. Pollard. Rates of uniform almost-sure convergence for empirical processes indexed by
unbounded classes of functions. Manuscript, 1986.

22 Liwei Wang. Smoothness, Disagreement Coefficient, and the Label Complexity of Agnostic
Active Learning. Journal of Machine Learning Research, 12:2269–2292, 2011.

http://www.stevehanneke.com
http://www.stevehanneke.com
http://arxiv.org/abs/1410.3154
http://arxiv.org/abs/1711.10414

DTM-Based Filtrations
Hirokazu Anai
Fujitsu Laboratories, AI Lab, Kawasaki, Japan
anai@jp.fujitsu.com

Frédéric Chazal
Datashape, Inria Paris-Saclay, France
frederic.chazal@inria.fr

Marc Glisse
Datashape, Inria Paris-Saclay, France
marc.glisse@inria.fr

Yuichi Ike
Fujitsu Laboratories, AI Lab, Kawasaki, Japan
ike.yuichi@jp.fujitsu.com

Hiroya Inakoshi
Fujitsu Laboratories, AI Lab, Kawasaki, Japan
hiroya.inakoshi@jp.fujitsu.com

Raphaël Tinarrage
Datashape, Inria Paris-Saclay, France
raphael.tinarrage@inria.fr

Yuhei Umeda
Fujitsu Laboratories, AI Lab, Kawasaki, Japan
umeda.yuhei@jp.fujitsu.com

Abstract
Despite strong stability properties, the persistent homology of filtrations classically used in Topological
Data Analysis, such as, e.g. the Čech or Vietoris-Rips filtrations, are very sensitive to the presence
of outliers in the data from which they are computed. In this paper, we introduce and study a
new family of filtrations, the DTM-filtrations, built on top of point clouds in the Euclidean space
which are more robust to noise and outliers. The approach adopted in this work relies on the notion
of distance-to-measure functions and extends some previous work on the approximation of such
functions.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Topological Data Analysis, Persistent homology

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.58

Related Version The complete version of the paper, including proofs and additional comments, can
be found at https://arxiv.org/abs/1811.04757.

Funding This work was partially supported by a collaborative research agreement between Inria
and Fujitsu, and the Advanced Grant of the European Research Council GUDHI (Geometric
Understanding in Higher Dimensions).

1 Introduction

The inference of relevant topological properties of data represented as point clouds in
Euclidean spaces is a central challenge in Topological Data Analysis (TDA).

Given a (finite) set of points X in Rd, persistent homology provides a now classical
and powerful tool to construct persistence diagrams whose points can be interpreted as

© Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi,
Raphaël Tinarrage, and Yuhei Umeda;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 58; pp. 58:1–58:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anai@jp.fujitsu.com
mailto:frederic.chazal@inria.fr
mailto:marc.glisse@inria.fr
mailto:ike.yuichi@jp.fujitsu.com
mailto:hiroya.inakoshi@jp.fujitsu.com
mailto:raphael.tinarrage@inria.fr
mailto:umeda.yuhei@jp.fujitsu.com
https://doi.org/10.4230/LIPIcs.SoCG.2019.58
https://arxiv.org/abs/1811.04757
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 DTM-Based Filtrations

homological features of X at different scales. These persistence diagrams are obtained from
filtrations, i.e. nested families of subspaces or simplicial complexes, built on top of X. Among
the many filtrations available to the user, unions of growing balls ∪x∈XB(x, t) (sublevel
sets of distance functions), t ∈ R+, and their nerves, the Čech complex filtration, or its
usually easier to compute variation, the Vietoris-Rips filtration, are widely used. The main
theoretical advantage of these filtrations is that they have been shown to produce persistence
diagrams that are stable with respect to perturbations of X in the Hausdorff metric [6].

Unfortunately, the Hausdorff distance turns out to be very sensitive to noise and outliers,
preventing the direct use of distance functions and classical Čech or Vietoris-Rips filtrations
to infer relevant topological properties from real noisy data. Several attempts have been
made in the recent years to overcome this issue. Among them, the filtration defined by the
sublevel sets of the distance-to-measure (DTM) function introduced in [4], and some of its
variants [10], have been proven to provide relevant information about the geometric structure
underlying the data. Unfortunately, from a practical perspective, the exact computation
of the sublevel sets filtration of the DTM, that boils down to the computation of a k-th
order Voronoï diagram, and its persistent homology turn out to be far too expensive in most
cases. To address this problem, [8] introduces a variant of the DTM function, the witnessed
k-distance, whose persistence is easier to compute and proves that the witnessed k-distance
approximates the DTM persistence up to a fixed additive constant. In [3, 2], a weighted
version of the Vietoris-Rips complex filtration is introduced to approximate the persistence of
the DTM function, and several stability and approximation results, comparable to the ones
of [8], are established. Another kind of weighted Vietoris-Rips complex is presented in [1].

Contributions. In this paper, we introduce and study a new family of filtrations based on
the notion of DTM. Our contributions are the following:

Given a set X ⊂ Rd, a weight function f defined on X and p ∈ [1,+∞], we introduce
the weighted Čech and Rips filtrations that extend the notion of sublevel set filtration of
power distances of [3]. Using classical results, we show that these filtrations are stable
with respect to perturbations of X in the Hausdorff metric and perturbations of f with
respect to the sup norm (Propositions 3 and 4).
For a general function f , the stability results of the weighted Čech and Rips filtrations
are not suited to deal with noisy data or data containing outliers. We consider the
case where f is the empirical DTM-function associated to the input point cloud. In
this case, we show an outliers-robust stability result: given two point clouds X,Y ⊆ Rd,
the closeness between the persistence diagrams of the resulting filtrations relies on the
existence of a subset of X which is both close to X and Y in the Wasserstein metric
(Theorems 15 and 20).

Practical motivations. Even though this aspect is not considered in this paper, it is
interesting to mention that the DTM filtration was first experimented in the setting of
an industrial research project whose goal was to address an anomaly detection problem
from inertial sensor data in bridge and building monitoring [9]. In this problem, the input
data comes as time series measuring the acceleration of devices attached to the monitored
bridge/building. Using sliding windows and time-delay embedding, these times series are
converted into a series of fixed size point clouds in Rd. Filtrations are then built on top
of these point clouds and their persistence is computed, giving rise to a time-dependent
sequence of persistence diagrams that are then used to detect anomalies or specific features
occurring along the time [11, 13]. In this practical setting it turned out that the DTM

H. Anai, F. Chazal, M. Glisse, Y. Ike, H. Inakoshi, R. Tinarrage, and Y. Umeda 58:3

filtrations reveal to be not only more resilient to noise but also able to better highlight
topological features in the data than the standard Vietoris-Rips filtrations, as illustrated on
a basic synthetic example on Figure 1. One of the goals of the present work is to provide
theoretical foundations to these promising experimental results by studying the stability
properties of the DTM filtrations.

Figure 1 A synthetic example comparing Vietoris-Rips filtration to DTM filtration. The first row
represents two time series with very different behavior and their embedding into R3 (here a series
(x1, x2, . . . , xn) is converted in the 3D point cloud {(x1, x2, x3), (x2, x3, x4), . . . , (xn−2, xn−1, xn)}).
The second row shows the persistence diagrams of the Vietoris-Rips filtration built on top of the two
point clouds (red and green points represent respectively the 0-dimensional 1-dimensional diagrams);
one observes that the diagrams do not clearly ‘detect’ the different behavior of the time series. The
third row shows the persistence diagrams of the DTM filtration built on top of the two point clouds;
a red point clearly appears away from the diagonal in the second diagram that highlights the rapid
shift occurring in the second time series.

Organisation of the paper. Preliminary definitions, notations, and basic notions on filtra-
tions and persistence modules are recalled in Section 2. The weighted Čech and Vietoris-Rips
filtrations are introduced in Section 3, where their stability properties are established. The
DTM-filtrations are introduced in Section 4. Their main stability properties are established in
Theorems 15 and 20, and their relation with the sublevel set filtration of the DTM-functions
is established in Proposition 16.

The various illustrations and experiments of this paper have been computed with the
GUDHI library on Python [14].

For the complete version of this paper, including proofs and additional comments, see
the online version at https://arxiv.org/abs/1811.04757.

2 Filtrations and interleaving distance

In the sequel, we consider interleavings of filtrations, interleavings of persistence modules and
their associated pseudo-distances. Their definitions, restricted to the setting of the paper,
are briefly recalled in this section.

Let T = R+ and E = Rd endowed with the standard Euclidean norm.

SoCG 2019

https://arxiv.org/abs/1811.04757

58:4 DTM-Based Filtrations

Filtrations of sets and simplicial complexes. A family of subsets (V t)t∈T of E = Rd is a
filtration if it is non-decreasing for the inclusion, i.e. for any s, t ∈ T , if s ≤ t then V s ⊆ V t.
Given ε ≥ 0, two filtrations (V t)t∈T and (W t)t∈T of E are ε-interleaved if, for every t ∈ T ,
V t ⊆W t+ε and W t ⊆ V t+ε. The interleaving pseudo-distance between (V t)t∈T and (W t)t∈T
is defined as the infimum of such ε:

di((V t)t∈T , (W t)t∈T) = inf{ε : (V t) and (W t) are ε-interleaved}.

Filtrations of simplicial complexes and their interleaving distance are similarly defined:
given a set X and an abstract simplex S with vertex set X, a filtration of S is a non-decreasing
family (St)t∈T of subcomplexes of S. The interleaving pseudo-distance between two filtrations
(St1)t∈T and (St2)t∈T of S is the infimum of the ε ≥ 0 such that they are ε-interleaved, i.e. for
any t ∈ T , St1 ⊆ St+ε2 and St2 ⊆ St+ε1 .

Notice that the interleaving distance is only a pseudo-distance, as two distinct filtrations
may have zero interleaving distance.

Persistence modules. Let k be a field. A persistence module V over T = R+ is a pair V =
((Vt)t∈T , (vts)s≤t∈T) where (Vt)t∈T is a family of k-vector spaces, and (vts : Vs → Vt)s≤t∈T a
family of linear maps such that:

for every t ∈ T , vtt : V t → V t is the identity map,
for every r, s, t ∈ T such that r ≤ s ≤ t, vts ◦ vsr = vtr.

Given ε ≥ 0, an ε-morphism between two persistence modules V and W is a family of linear
maps (φt : Vt →Wt+ε)t∈T such that the following diagrams commute for every s ≤ t ∈ T :

Vs Vt

Ws+ε Wt+ε

φs

vts

φt

wt+εs+ε

If ε = 0 and each φt is an isomorphism, the family (φt)t∈T is said to be an isomorphism of
persistence modules.

An ε-interleaving between two persistence modules V and W is a pair of ε-morphisms
(φt : Vt → Wt+ε)t∈T and (ψt : Wt → Vt+ε)t∈T such that the following diagrams commute
for every t ∈ T :

Vt Vt+2ε

Wt+ε

φt

vt+2ε
t

ψt+ε

Vt+ε

Wt Wt+2ε

φt+εψt

wt+2ε
t

The interleaving pseudo-distance between V and W is defined as

di(V,W) = inf{ε ≥ 0,V and W are ε-interleaved}.

In some cases, the proximity between persistence modules is expressed with a function.
Let η : T → T be a non-decreasing function such that for any t ∈ T , η(t) ≥ t. A η-
interleaving between two persistence modules V and W is a pair of families of linear maps
(φt : Vt →Wη(t))t∈T and (ψt : Wt → Vη(t))t∈T such that the following diagrams commute
for every t ∈ T :

Vt Vη(η(t))

Wη(t)

φt

v
η(η(t))
t

ψη(t)

Vη(t)

Wt Wη(η(t))

φη(t)ψt

v
η(η(t))
t

H. Anai, F. Chazal, M. Glisse, Y. Ike, H. Inakoshi, R. Tinarrage, and Y. Umeda 58:5

When η is t 7→ t+ c for some c ≥ 0, it is called an additive c-interleaving and corresponds
with the previous definition. When η is t 7→ ct for some c ≥ 1, it is called a multiplicative
c-interleaving.

A persistent module V is said to be q-tame if for every s, t ∈ T such that s < t, the
map vts is of finite rank. The q-tameness of a persistence module ensures that we can
define a notion of persistence diagram – see [5]. Moreover, given two q-tame persistence
modules V,W with persistence diagrams D(V), D(W), the so-called isometry theorem states
that db(D(V), D(W)) = di(V,W) ([5, Theorem 4.11]) where db(·, ·) denotes the bottleneck
distance between diagrams.

Relation between filtrations and persistence modules. Applying the homology functor to
a filtration gives rise to a persistence module where the linear maps between homology groups
are induced by the inclusion maps between sets (or simplicial complexes). As a consequence,
if two filtrations are ε-interleaved then their associated homology persistence modules are also
ε-interleaved, the interleaving homomorphisms being induced by the interleaving inclusion
maps. Moreover, if the modules are q-tame, then the bottleneck distance between their
persistence diagrams is upperbounded by ε.

The filtrations considered in this paper are obtained as union of growing balls. Their
associated persistence module is the same as the persistence module of a filtered simplicial
complex via the persistent nerve lemma ([7], Lemma 3.4). Indeed, consider a filtration
(V t)t∈T of E and assume that there exists a family of points (xi)i∈I ∈ EI and a family of
non-decreasing functions ri : T → R+ ∪ {−∞}, i ∈ I, such that, for every t ∈ T , V t is equal
to the union of closed balls

⋃
I B(xi, ri(t)), with the convention B(xi,−∞) = ∅. For every

t ∈ T , let Vt denote the cover {B(xi, ri(t)), i ∈ I} of V t, and St be its nerve. Let V be the
persistence module associated with the filtration (V t)t∈T , and VN the one associated with
the simplicial filtration (St)t∈T . Then V and VN are isomorphic persistence modules. In
particular, if V is q-tame, V and VN have the same persistence diagrams.

3 Weighted Čech filtrations

In order to define the DTM-filtrations, we go through an intermediate and more general
construction, namely the weighted Čech filtrations. It generalizes the usual notion of Čech
filtration of a subset of Rd, and shares comparable regularity properties.

3.1 Definition
In the sequel of the paper, the Euclidean space E = Rd, the index set T = R+ and a real
number p ≥ 1 are fixed. Consider X ⊆ E and f : X → R+. For every x ∈ X and t ∈ T , we
define

rx(t) =
{
−∞ if t < f(x),(
tp − f(x)p

) 1
p otherwise.

We denote by Bf (x, t) = B(x, rx(t)) the closed Euclidean ball of center x and radius rx(t).
By convention, a Euclidean ball of radius −∞ is the empty set. For p =∞, we also define

rx(t) =
{
−∞ if t < f(x),
t otherwise,

and the balls Bf (x, t) = B(x, rx(t)). Some of these radius functions are represented in
Figure 2.

SoCG 2019

58:6 DTM-Based Filtrations

Figure 2 Graph of t 7→ rx(t) for f(x) = 1 and several values of p.

I Definition 1. Let X ⊆ E and f : X → R+. For every t ∈ T , we define the following set:

V t[X, f] =
⋃
x∈X

Bf (x, t).

The family V [X, f] = (V t[X, f])t≥0 is a filtration of E. It is called the weighted Čech
filtration with parameters (X, f, p). We denote by V[X, f] its persistent (singular) homology
module.

Note that V [X, f] and V[X, f] depend on fixed parameter p, that is not made explicit in
the notation.

Introduce Vt[X, f] = {Bf (x, t)}x∈X . It is a cover of V t[X, f] by closed Euclidean balls.
Let N (Vt[X, f]) be the nerve of the cover Vt[X, f]. It is a simplicial complex over the vertex
set X. The family N (V [X, f]) = (N (Vt[X, f]))t≥0 is a filtered simplicial complex. We denote
by VN [X, f] its persistent (simplicial) homology module. As a consequence of the persistent
nerve theorem [7, Lemma 3.4], V[X, f] and VN [X, f] are isomorphic persistent modules.

When f = 0, V [X, f] does not depend on p ≥ 1, and it is the filtration of E by the sublevel
sets of the distance function to X. In the sequel, we denote it by V [X, 0]. The corresponding
filtered simplicial complex, N (V[X, 0]), is known as the usual Čech complex of X.

When p = 2, the filtration value of y ∈ E, i.e. the infimum of the t such that y ∈ V t[X, f],
is called the power distance of y associated to the weighted set (X, f) in [3, Definition 4.1].
The filtration V [X, f] is called the weighted Čech filtration ([3, Definition 5.1]).

Example. Consider the point cloud X drawn on the left of Figure 3 (black). It is a 200-
sample of the uniform distribution on [−1, 1]2 ⊆ R2. We choose f to be the distance function
to the lemniscate of Bernoulli (magenta). Let t = 0.2. Figure 3 represents the sets V t[X, f]
for several values of p. The balls are colored differently according to their radius.

X p = 1 p = 2 p = ∞

Figure 3 The set X and the sets V t[X, f] for t = 0.2 and several values of p.

H. Anai, F. Chazal, M. Glisse, Y. Ike, H. Inakoshi, R. Tinarrage, and Y. Umeda 58:7

The following proposition states the regularity of the persistent module V[X, f].

I Proposition 2. If X ⊆ E is finite and f is any function, then V[X, f] is a pointwise
finite-dimensional persistence module.

More generally, if X is a bounded subset of E and f is any function, then V[X, f] is
q-tame.

3.2 Stability
We still consider a subset X ⊆ E and a function f : X → R+. Using the fact that two
ε-interleaved filtrations induce ε-interleaved persistence modules, the stability results for
the filtration V [X, f] of this subsection immediately translate as stability results for the
persistence module V[X, f].

The following proposition relates the stability of the filtration V [X, f] with respect to f .

I Proposition 3. Let g : X → R+ be a function such that supx∈X |f(x)− g(x)| ≤ ε. Then
the filtrations V [X, f] and V [X, g] are ε-interleaved.

The following proposition states the stability of V [X, f] with respect to X. It generalizes
[3, Proposition 4.3] (case p = 2).

I Proposition 4. Let Y ⊆ E and suppose that f : X ∪ Y → R+ is c-Lipschitz, c ≥ 0.
Suppose that X and Y are compact and that the Hausdorff distance dH(X,Y) ≤ ε. Then the
filtrations V [X, f] and V [Y, f] are k-interleaved with k = ε(1 + cp)

1
p .

One can show that the bounds in Proposition 3 and 4 are tight.

When considering data with outliers, the observed set X may be very distant from the
underlying signal Y in Hausdorff distance. Therefore, the tight bound in Proposition 4 may
be unsatisfactory. Moreover, a usual choice of f would be dX , the distance function to X. But
the bound in Proposition 3 then becomes ‖dX − dY ‖∞ = dH(X,Y). We address this issue
in Section 4 by considering an outliers-robust function f , the so-called distance-to-measure
function (DTM).

3.3 Weighted Vietoris-Rips filtrations
Rather than computing the persistence of the Čech filtration of a point cloud X ⊆ E,
one sometimes consider the corresponding Vietoris-Rips filtration, which is usually easier
to compute.

If G is a graph with vertex set X, its corresponding clique complex is the simplicial
complex over X consisting of the sets of vertices of cliques of G. If S is a simplicial complex,
its corresponding flag complex is the clique complex of its 1-skeleton.

Recall that N (Vt[X, f]) denotes the nerve of Vt[X, f], where Vt[X, f] is the cover
{Bf (x, t)}x∈X of V t[X, f].

I Definition 5. We denote by Rips(Vt[X, f]) the flag complex of N (Vt[X, f]), and by
Rips(V[X, f]) the corresponding filtered simplicial complex. It is called the weighted Rips
complex with parameters (X, f, p).

The following proposition states that the filtered simplicial complexes N (V[X, f]) and
Rips(V[X, f]) are 2-interleaved multiplicatively, generalizing the classical case of the Čech
and Vietoris-Rips filtrations (case f = 0).

SoCG 2019

58:8 DTM-Based Filtrations

I Proposition 6. For every t ≥ 0,

N (Vt[X, f]) ⊆ Rips(Vt[X, f]) ⊆ N (V2t[X, f])

Using Theorem 3.1 of [1], the multiplicative interleaving Rips(Vt[X, f]) ⊆ N (V2t[X, f])
can be improved to Rips(Vt[X, f]) ⊆ N (Vct[X, f]), where c =

√
2d
d+1 and d is the dimension

of the ambient space E = Rd.

Note that weighted Rips filtration shares the same stability properties as the weighted
Čech filtration. Indeed, the proofs of Proposition 3 and 4 immediately extend to this case.

In order to compute the flag complex Rips(Vt[X, f]), it is enough to know the filtration
values of its 0- and 1-simplices. The following proposition describes these values.

I Proposition 7. Let p < +∞. The filtration value of a vertex x ∈ X is given by tX({x}) =
f(x).
The filtration value of an edge {x, y} ⊆ E is given by

tX({x, y}) =
{

max{f(x), f(y)} if ‖x− y‖ ≤ |f(x)p − f(y)p|
1
p ,

t otherwise,

where t is the only positive root of

‖x− y‖ = (tp − f(x)p)
1
p + (tp − f(y)p)

1
p (1)

When ‖x − y‖ ≥ |f(x)p − f(y)p|
1
p , the positive root of Equation (1) does not always

admit a closed form. We give some particular cases for which it can be computed.
For p = 1, the root is tX({x, y}) = f(x)+f(y)+‖x−y‖

2 ,

for p = 2, it is tX({x, y}) =

√(
(f(x)+f(y))2+‖x−y‖2

)(
(f(x)−f(y))2+‖x−y‖2

)
2‖x−y‖ ,

for p =∞, the condition reads ‖x− y‖ ≥ max{f(x), f(y)}, and the root is tX({x, y}) =
‖x−y‖

2 . In either case, tX({x, y}) = max{f(x), f(y), ‖x−y‖2 }.

We close this subsection by discussing the influence of p on the weighted Čech and
Rips filtrations. Let D0(N (V[X, f, p])) be the persistence diagram of the 0th-homology
of N (V[X, f, p]). We say that a point (b, d) of D0(V[X, f, p]) is non-trivial if b 6= d. Let
D0(Rips(V[X, f, p])) be the persistence diagram of the 0th-homology of Rips(V[X, f, p]).
Note that D0(N (V [X, f, p])) = D0(Rips(V [X, f, p])) since the corresponding filtrations share
the same 1-skeleton.

I Proposition 8. The number of non-trivial points in D0(Rips(V [X, f, p])) is non-increasing
with respect to p ∈ [1,+∞). The same holds for D0(N (V[X, f, p])).

Figure 7 in Subsection 4.4 illustrates the previous proposition in the case of the DTM-
filtrations. Greater values of p lead to sparser 0th-homology diagrams.

Now, consider k > 0, and let Dk(N (V[X, f, p])) be the persistence diagram of the kth-
homology of N (V[X, f, p]). In this case, one can easily build examples showing that the
number of non-trivial points of Dk(N (V[X, f, p])) does not have to be non-increasing with
respect to p. The same holds for Dk(Rips(V[X, f, p])).

H. Anai, F. Chazal, M. Glisse, Y. Ike, H. Inakoshi, R. Tinarrage, and Y. Umeda 58:9

4 DTM-filtrations

The results of previous section suggest that in order to construct a weighted Čech filtration
V [X, f] that is robust to outliers, it is necessary to choose a function f that depends on
X and that is itself robust to outliers. The so-called distance-to-measure function (DTM)
satisfies such properties, motivating the introduction of the DTM-filtrations in this section.

4.1 The distance to measure (DTM)
Let µ be a probability measure over E = Rd, and m ∈ [0, 1) a parameter. For every x ∈ Rd,
let δµ,m be the function defined on E by δµ,m(x) = inf{r ≥ 0, µ(B(x, r)) > m}.

I Definition 9. Let m ∈ [0, 1[. The DTM µ of parameter m is the function:

dµ,m : E −→ R
x 7−→

√
1
m

∫m
0 δ2

µ,t(x)dt

When m is fixed – which is the case in the following subsections – and when there is no risk
of confusion, we write dµ instead of dµ,m.

Notice that when m = 0, dµ,m is the distance function to supp(µ), the support of µ.

I Proposition 10 ([4], Corollary 3.7). For every probability measure µ and m ∈ [0, 1), dµ,m
is 1-Lipschitz.

A fundamental property of the DTM is its stability with respect to the probability
measure µ in the Wasserstein metric. Recall that given two probability measures µ and ν
over E, a transport plan between µ and ν is a probability measure π over E × E whose
marginals are µ and ν. The Wasserstein distance with quadratic cost between µ and ν is

defined as W2(µ, ν) =
(

infπ
∫
E×E ‖x− y‖

2dπ(x, y)
) 1

2 , where the infimum is taken over all
the transport plans π. When µ = µX and ν = µY are the empirical measures of the finite
point clouds X and Y , i.e the normalized sums of the Dirac measures on the points of X
and Y respectively, we write W2(X,Y) instead of W2(µX , µY).

I Proposition 11 ([4], Theorem 3.5). Let µ, ν be two probability measures, and m ∈ (0, 1).
Then

‖dµ,m − dν,m‖∞ ≤ m−
1
2W2(µ, ν).

Notice that for every x ∈ E, dµ(x) is not lower than the distance from x to supp(µ), the
support of µ. This remark, along with the propositions 10 and 11, are the only properties of
the DTM that will be used to prove the results in the sequel of the paper.

In practice, the DTM can be computed. If X is a finite subset of E of cardinal n, we
denote by µX its empirical measure. Assume that m = k0

n , with k0 an integer. In this case,
dµX ,m reformulates as follows: for every x ∈ E,

d2
µX ,m(x) = 1

k0

k0∑
k=1
‖x− pk(x)‖2,

where p1(x), ..., pk0(x) are a choice of k0-nearest neighbors of x in X.

SoCG 2019

58:10 DTM-Based Filtrations

4.2 DTM-filtrations
In the following, the two parameters p ∈ [1,+∞] and m ∈ (0, 1) are fixed.

I Definition 12. Let X ⊆ E be a finite point cloud, µX the empirical measure of X, and
dµX the corresponding DTM of parameter m. The weighted Čech filtration V [X, dµX], as
defined in Definition 1, is called the DTM-filtration associated with the parameters (X,m, p).
It is denoted by W [X]. The corresponding persistence module is denoted by W[X].

Let Wt[X] = Vt[X, dµX] denote the cover of W t[X] as defined in section 3, and let
N (Wt[X]) be its nerve. The family N (W[X])) = (N (Wt[X]))t≥0 is a filtered simplicial
complex, and its persistent (simplicial) homology module is denoted by WN [X]. By the
persistent nerve lemma, the persistence modules W[X] and WN [X] are isomorphic.

As in Definition 5, Rips(Wt[X]) denotes the flag complex of N (Wt[X]), and Rips(W [X])
the corresponding filtered simplicial complex.

Example. Consider the point cloud X drawn on the left of Figure 4. It is the union of
X̃ and Γ, where X̃ is a 50-sample of the uniform distribution on [−1, 1]2 ⊆ R2, and Γ is a
300-sample of the uniform distribution on the unit circle. We consider the weighted Čech
filtrations V [Γ, 0] and V [X, 0], and the DTM-filtration W [X], for p = 1 and m = 0.1. They
are represented in Figure 4 for the value t = 0.3.

X V t[Γ, 0] V t[X, 0] W t[X]

Figure 4 The set X and the sets V t[Γ, 0], V t[X, 0] and W t[X] for p = 1, m = 0.1 and t = 0.3.

Because of the outliers X̃, the value of t from which the sets V t[X, 0] are contractible is
small. On the other hand, we observe that the set W t[X] does not suffer too much from the
presence of outliers.

We plot in Figure 5 the persistence diagrams of the persistence modules associated to
Rips(V[Γ, 0]), Rips(V[X, 0]) and Rips(W[X]) (p = 1, m = 0.1).

D(Rips(V[Γ, 0])) D(Rips(V[X, 0])) D(Rips(W[X]))

Figure 5 Persistence diagrams of some simplicial filtrations. Points in red (resp. green) represent
the persistent homology in dimension 0 (resp. 1).

H. Anai, F. Chazal, M. Glisse, Y. Ike, H. Inakoshi, R. Tinarrage, and Y. Umeda 58:11

Observe that the diagrams D(Rips(V[Γ, 0])) and D(Rips(W[X])) appear to be close to
each other, while D(Rips(V[X, 0])) does not.

Applying the results of Section 3, we immediately obtain the following proposition.

I Proposition 13. Consider two measures µ, ν on E with compact supports X and Y . Then

di(V [X, dµ], V [Y, dν]) ≤ m− 1
2W2(µ, ν) + 2

1
p dH(X,Y).

In particular, if X and Y are finite subsets of E, using µ = µX and ν = νY , we obtain

di(W [X],W [Y]) ≤ m− 1
2W2(X,Y) + 2

1
p dH(X,Y).

Note that this stability result is worse than the stability of the usual Čech filtrations,
which only involves the Hausdorff distance: di(V [X, 0], V [Y, 0]) ≤ dH(X,Y). However, the
term W2(X,Y) is inevitable.

In the case where the Hausdorff distance dH(X,Y) is small, it would be more robust to
consider these usual Čech filtrations. However, in the case where is it large, the usual Čech
filtrations may be very distant. On the other hand, the DTM-filtrations may still be close,
as we discuss in the next subsection.

4.3 Stability when p = 1
We first consider the case p = 1, for which the proofs are simpler and results are stronger. We
fix m ∈ (0, 1). If µ is a probability measure on E with compact support supp(µ), we define

c(µ,m) = sup
supp(µ)

(dµ,m).

If µ = µΓ is the empirical measure of a finite set Γ ⊆ E, we denote it c(Γ,m).

I Proposition 14. Let µ be a probability measure on E with compact support Γ. Let dµ
be the corresponding DTM. Consider a set X ⊆ E such that Γ ⊆ X. The weighted Čech
filtrations V [Γ, dµ] and V [X, dµ] are c(µ,m)-interleaved.

Moreover, if Y ⊆ E is another set such that Γ ⊆ Y , V [X, dµ] and V [Y, dµ] are c(µ,m)-
interleaved.

In particular, if Γ is a finite set and µ = µΓ its empirical measure, W [Γ] and V [X, dµΓ]
are c(Γ,m)-interleaved.

I Theorem 15. Consider two measures µ, ν on E with supports X and Y . Let µ′, ν′ be two
measures with compact supports Γ and Ω such that Γ ⊆ X and Ω ⊆ Y . We have

di(V [X, dµ], V [Y, dν]) ≤ m− 1
2W2(µ, µ′)+m− 1

2W2(µ′, ν′)+m− 1
2W2(ν′, ν)+c(µ′,m)+c(ν′,m).

In particular, if X and Y are finite, we have

di(W [X],W [Y]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(Γ,Ω) +m−

1
2W2(Ω, Y) + c(Γ,m) + c(Ω,m).

Moreover, with Ω = Y , we obtain

di(W [X],W [Ω]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(Γ,Ω) + c(Γ,m) + c(Ω,m).

The last inequality of Theorem 15 can be seen as an approximation result. Indeed,
suppose that Ω is some underlying set of interest, and X is a sample of it with, possibly,
noise or outliers. If one can find a subset Γ of X such that X and Γ are close to each other –
in the Wasserstein metric – and such that Γ and Ω are also close, then the filtrations W [X]

SoCG 2019

58:12 DTM-Based Filtrations

and W [Ω] are close. Their closeness depends on the constants c(Γ,m) and c(Ω,m). More
generally, if X is finite and µ′ is a measure with compact support Ω ⊂ X not necessarily
finite, note that the first inequality gives

di(W [X], V [Ω, dµ′]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(µΓ, µ

′) + c(Γ,m) + c(µ′,m).

For any probability measure µ of support Γ ⊆ E, the constant c(µ,m) might be seen as a
bias term, expressing the behaviour of the DTM over Γ. It relates to the concentration of µ
on its support. Recall that a measure µ with support Γ is said to be (a, b)-standard, with
a, b ≥ 0, if for all x ∈ Γ and r ≥ 0, µ(B(x, r)) ≥ min{arb, 1}. For example, the Hausdorff
measure associated to a compact b-dimensional submanifold of E is (a, b)-standard for some
a > 0. In this case, a simple computation shows that there exists a constant C, depending
only on a and b, such that for all x ∈ Γ, dµ,m(x) ≤ Cm 1

b . Therefore, c(µ,m) ≤ Cm 1
b .

Regarding the second inequality of Theorem 15, suppose for the sake of simplicity that
one can choose Γ = Ω. The bound of Theorem 15 then reads

di(W [X],W [Y]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(Γ, Y) + 2c(Γ,m).

Therefore, the DTM-filtrations W [X] and W [Y] are close to each other if µX and µY are
both close to a common measure µΓ. This would be the case if X and Y are noisy samples
of Γ. This bound, expressed in terms of Wasserstein distance rather than Hausdorff distance,
shows the robustness of the DTM-filtration to outliers.

Notice that, in practice, for finite data sets X,Y and for given Γ and Ω, the constants
c(Γ,m) and c(Ω,m) can be explicitly computed, as it amounts to evaluating the DTM on Γ
and Ω. This remark holds for the bounds of Theorem 15.

Example. Consider the set X = X̃ ∪Γ as defined in the example page 10. Figure 6 displays
the sets W t[X], V t[X, dµΓ] and W t[Γ] for the values p = 1, m = 0.1 and t = 0.4 and the
persistence diagrams of the corresponding weighted Rips filtrations, illustrating the stability
properties of Proposition 14 and Theorem 15.

W t[X] V t[X, dµΓ] W t[Γ]

D(Rips(W[X])) D(Rips(V[X, dµΓ])) D(Rips(W[Γ]))

Figure 6 Filtrations for t = 0.4, and their corresponding persistence diagrams.

H. Anai, F. Chazal, M. Glisse, Y. Ike, H. Inakoshi, R. Tinarrage, and Y. Umeda 58:13

The following proposition relates the DTM-filtration to the filtration of E by the sublevels
sets of the DTM.

I Proposition 16. Let µ be a probability measure on E with compact support K. Let
m ∈ [0, 1) and denote by V the sublevel sets filtration of dµ. Consider a finite set X ⊆ E.
Then

di(V,W [X]) ≤ m− 1
2W2(µ, µX) + 2ε+ c(µ,m),

with ε = dH(K ∪X,X).

As a consequence, one can use the DTM-filtration to approximate the persistent homology
of the sublevel sets filtration of the DTM, which is expensive to compute in practice.

We close this subsection by noting that a natural strengthening of Theorem 15 does not
hold: let m ∈ (0, 1) and E = Rn with n ≥ 1. There is no constant C such that, for every
probability measure µ, ν on E with supports X and Y , we have:

di(V [X, dµ,m], V [Y, dν,m]) ≤ CW2(µ, ν).

The same goes for the weaker statement

di(V[X, dµ,m],V[Y, dν,m]) ≤ CW2(µ, ν).

4.4 Stability when p > 1
Now assume that p > 1, m ∈ (0, 1) being still fixed. In this case, stability properties turn out
to be more difficult to establish. For small values of t, Lemma 18 gives a tight non-additive
interleaving between the filtrations. However, for large values of t, the filtrations are poorly
interleaved. To overcome this issue we consider stability at the homological level, i.e. between
the persistence modules associated to the DTM filtrations.

If µ is a probability measure on E with compact support Γ, we define

c(µ,m, p) = sup
Γ

(dµ,m) + κ(p)tµ(Γ),

where κ(p) = 1 − 1
p , and tµ(Γ) is the filtration value of the simplex Γ in N (V[Γ, dµ]), the

(simplicial) weighted Čech filtration. Equivalently, tµ(Γ) is the value t from which all the
balls Bdµ(γ, t), γ ∈ Γ, share a common point.
If µ = µΓ is the empirical measure of a finite set Γ ⊆ E, we denote it c(Γ,m, p).

Note that we have the inequality 1
2diam(Γ) ≤ tµ(Γ) ≤ 2diam(Γ).

I Proposition 17. Let µ be a measure on E with compact support Γ, and dµ be the corres-
ponding DTM of parameter m. Consider a set X ⊆ E such that Γ ⊆ X. The persistence
modules V[Γ, dµ] and V[X, dµ] are c(µ,m, p)-interleaved.

Moreover, if Y ⊆ E is another set such that Γ ⊆ Y , V[X, dµ] and V[Y, dµ] are c(µ,m, p)-
interleaved.

In particular, if Γ is a finite set and µ = µΓ its empirical measure, W[Γ] and V[X, dµΓ]
are c(Γ,m, p)-interleaved.

The proof involves the two following ingredients. The first lemma gives a (non-additive)
interleaving between the filtrations W [Γ] and V [X, dµΓ], relevant for low values of t, while
the second proposition gives a result for large values of t.

SoCG 2019

58:14 DTM-Based Filtrations

I Lemma 18. Let µ,Γ and X be as defined in Proposition 17. Let φ : t 7→ 21− 1
p t+ supΓ dµ.

Then for every t ≥ 0,

V t[Γ, dµ] ⊆ V t[X, dµ] ⊆ V φ(t)[Γ, dµ].

I Proposition 19. Let µ,Γ and X be as defined in Proposition 17. Consider the map vt∗ :
Vt[X, dµ]→ Vt+c[X, dµ] induced in homology by the inclusion vt : V t[X, dµ]→ V t+c[X, dµ].
If t ≥ tµ(Γ), then vt is trivial.

I Theorem 20. Consider two measures µ, ν on E with supports X and Y . Let µ′, ν′ be two
measures with compact supports Γ and Ω such that Γ ⊆ X and Ω ⊆ Y . We have

di(V[X, dµ],V[Y, dν]) ≤ m− 1
2W2(µ, µ′) +m−

1
2W2(µ′, ν′) +m−

1
2W2(ν′, ν)

+ c(µ′,m, p) + c(ν′,m, p).

In particular, if X and Y are finite, we have

di(W[X],W[Y]) ≤ m− 1
2W2(X,Γ)+m− 1

2W2(Γ,Ω)+m− 1
2W2(Ω, Y)+c(Γ,m, p)+c(Ω,m, p).

Moreover, with Ω = Y , we obtain

di(W[X],W[Γ]) ≤ m− 1
2W2(X,Γ) +m−

1
2W2(Γ,Ω) + c(Γ,m, p) + c(Ω,m, p).

Notice that when p = 1, the constant c(Γ,m, p) is equal to the constant c(Γ,m) defined
in Subsection 4.3, and we recover Theorem 15 in homology.

As an illustration of these results, we represent in Figure 7 the persistence diagrams
associated to the filtration Rips(W [X]) for several values of p. The point cloud X is the one
defined in the example page 10. Observe that, as stated in Proposition 8, the number of red
points (homology in dimension 0) is non-increasing with respect to p.

p = 1 p = 2 p = ∞

Figure 7 Persistence diagrams of the simplicial filtrations Rips(W[X]) for several values of p.

5 Conclusion

In this paper we have introduced the DTM-filtrations that depend on a parameter p ≥ 1.
This new family of filtrations extends the filtration introduced in [3] that corresponds to the
case p = 2.

The established stability properties are, as far as we know, of a new type: the closeness
of two DTM-filtrations associated to two data sets relies on the existence of a well-sampled
underlying object that approximates both data sets in the Wasserstein metric. This makes

H. Anai, F. Chazal, M. Glisse, Y. Ike, H. Inakoshi, R. Tinarrage, and Y. Umeda 58:15

the DTM filtrations robust to outliers. Even though large values of p lead to persistence
diagrams with less points in the 0th homology, the choice of p = 1 gives the strongest stability
results. When p > 1, the interleaving bound is less significant since it involves the diameter
of the underlying object, but the obtained bound is consistent with the case p = 1 as it
converges to the bound for p = 1 as p goes to 1.

It is interesting to notice that the proofs rely on only a few properties of the DTM. As a
consequence, the results should extend to other weight functions, such that the DTM with an
exponent parameter different from 2, or kernel density estimators. Some variants concerning
the radius functions in the weighted Čech filtration, are also worth considering. The analysis
shows that one should choose radius functions whose asymptotic behaviour look like the one
of the case p = 1. In the same spirit as in [12, 3] where sparse-weighted Rips filtrations were
considered, it would also be interesting to consider sparse versions of the DTM-filtrations
and to study their stability properties.

Last, the obtained stability results, depending on the choice of underlying sets, open the
way to the statistical analysis of the persistence diagrams of the DTM-filtrations, a problem
that will be addressed in a further work.

References
1 Greg Bell, Austin Lawson, Joshua Martin, James Rudzinski, and Clifford Smyth. Weighted

Persistent Homology. arXiv preprint, 2017. arXiv:1709.00097.
2 Mickaël Buchet. Topological inference from measures. PhD thesis, Paris 11, 2014.
3 Mickaël Buchet, Frédéric Chazal, Steve Y Oudot, and Donald R Sheehy. Efficient and robust

persistent homology for measures. Computational Geometry, 58:70–96, 2016.
4 F. Chazal, D. Cohen-Steiner, and Q. Mérigot. Geometric Inference for Probability Measures.

Journal on Found. of Comp. Mathematics, 11(6):733–751, 2011.
5 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The Structure and Stability of

Persistence Modules. SpringerBriefs in Mathematics, 2016.
6 Frédéric Chazal, Vin De Silva, and Steve Oudot. Persistence stability for geometric complexes.

Geometriae Dedicata, 173(1):193–214, 2014.
7 Frédéric Chazal and Steve Yann Oudot. Towards persistence-based reconstruction in euclidean

spaces. In Proceedings of the twenty-fourth annual symposium on Computational geometry,
SCG ’08, pages 232–241, New York, NY, USA, 2008. ACM.

8 Leonidas Guibas, Dmitriy Morozov, and Quentin Mérigot. Witnessed k-distance. Discrete &
Computational Geometry, 49(1):22–45, 2013.

9 Fujitsu Laboratories. Estimating the Degradation State of Old Bridges-Fijutsu Supports
Ever-Increasing Bridge Inspection Tasks with AI Technology. Fujitsu Journal, March 2018.
URL: https://journal.jp.fujitsu.com/en/2018/03/01/01/.

10 J. Phillips, B. Wang, and Y Zheng. Geometric Inference on Kernel Density Estimates. In
Proc. 31st Annu. Sympos. Comput. Geom (SoCG 2015), pages 857–871, 2015.

11 Lee M Seversky, Shelby Davis, and Matthew Berger. On time-series topological data analysis:
New data and opportunities. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 59–67, 2016.

12 Donald R. Sheehy. Linear-Size Approximations to the Vietoris-Rips Filtration. Discrete &
Computational Geometry, 49(4):778–796, 2013.

13 Yuhei Umeda. Time Series Classification via Topological Data Analysis. Transactions of the
Japanese Society for Artificial Intelligence, 32(3):D–G72_1, 2017.

14 Gudhi: Geometry understanding in higher dimensions. http://gudhi.gforge.inria.fr/.

SoCG 2019

http://arxiv.org/abs/1709.00097
https://journal.jp.fujitsu.com/en/2018/03/01/01/
http://gudhi.gforge.inria.fr/

A Divide-and-Conquer Algorithm for Two-Point
L1 Shortest Path Queries in Polygonal Domains
Haitao Wang
Department of Computer Science, Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu

Abstract
Let P be a polygonal domain of h holes and n vertices. We study the problem of constructing a data
structure that can compute a shortest path between s and t in P under the L1 metric for any two
query points s and t. To do so, a standard approach is to first find a set of ns “gateways” for s and
a set of nt “gateways” for t such that there exist a shortest s-t path containing a gateway of s and a
gateway of t, and then compute a shortest s-t path using these gateways. Previous algorithms all
take quadratic O(ns · nt) time to solve this problem. In this paper, we propose a divide-and-conquer
technique that solves the problem in O(ns + nt logns) time. As a consequence, we construct a
data structure of O(n+ (h2 log3 h/ log log h)) size in O(n+ (h2 log4 h/ log log h)) time such that each
query can be answered in O(logn) time.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry

Keywords and phrases shortest paths, two-point queries, L1 metric, polygonal domains

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.59

Related Version A full version of this paper is available at https://arxiv.org/abs/1903.01417.

1 Introduction

Let P be a polygonal domain of h holes with a total of n vertices, i.e., there is an outer
simple polygon containing h disjoint holes and each hole itself is a simple polygon. If h = 0,
then P becomes a simple polygon. For any two points s and t, an L1 shortest path from s to
t in P is a path connecting s and t with the minimum length under the L1 metric.

We consider the two-point L1 shortest path query problem: Construct a data structure
for P that can compute an L1 shortest path in P for any two query points s and t. To do so,
a standard approach is to first find a set of ns “gateways” for s and a set of nt “gateways” for
t such that there exist a shortest s-t path containing a gateway of s and a gateway of t, and
then compute a shortest s-t path using these gateways. Previous algorithms [6,7] all take
quadratic O(ns ·nt) time to solve this problem. In this paper, we propose a divide-and-conquer
technique that solves the problem in O(ns + nt logns) time.

As a consequence, we construct a data structure of O(n+ (h2 log3 h/ log log h)) size in
O(n+ (h2 log4 h/ log log h)) time such that each query can be answered in O(logn) time1.
Previously, Chen et al. [7] built a data structure of O(n2 logn) size in O(n2 log2 n) time that
can answer each query in O(log2 n) time. Later Chen et al. [6] achieved O(logn) time queries
by building a data structure of O(n+ h2 · log h · 4

√
logh) space in O(n+ h2 · log2 h · 4

√
logh)

time. The preprocessing complexities of our result improve the previous work [6] by a
super polylogarithmic factor. More importantly, our divide-and-conquer technique may be
interesting in its own right.

1 Throughout the paper, unless otherwise stated, when we say that the query time of a data structure is
O(T), we mean that the shortest path length can be computed in O(T) time and an actual shortest
path can be output in additional linear time in the number of edges of the path.

© Haitao Wang;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 59; pp. 59:1–59:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8134-7409
mailto:haitao.wang@usu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.59
https://arxiv.org/abs/1903.01417
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Two-Point L1 Shortest Path Queries

Related Work. Better results exist for certain special cases. If P is a simple polygon, then
a shortest path in P with minimum Euclidean length is also an L1 shortest path [20], and
thus by using the data structure in [17,19] for the Euclidean metric, one can build a data
structure in O(n) time and space that can answer each query in O(logn) time; recently Bae
and Wang [2] proposed a simpler approach that can achieve the same performance. If P and
all holes of it are rectangles with axis-parallel edges, then ElGindy and Mitra [14] constructed
a data structure of O(n2) size in O(n2) time that supports O(logn) time queries.

Better results are also known for one-point queries in the L1 metric [8, 11,12,22,24,25],
i.e., s is fixed in the input and only t is a query point. In particular, Mitchell [24, 25] built a
data structure of O(n) size in O(n logn) time that can answer each such query in O(logn)
time. Later Chen and Wang [8] reduced the preprocessing time to O(n + h log h) if P is
already triangulated (which can be done in O(n logn) or O(n + h log1+ε h) time for any
ε > 0 [3, 4]), while the query time is still O(logn).

The Euclidean counterparts have also been studied. For one-point queries, Hershberger
and Suri [21] built a shortest path map of O(n) size with O(logn) query time and the map can
be built in O(n logn) time and space. For two-point queries, Chiang and Mitchell [10] built
a data structure of O(n11) size that can support O(logn) time queries, and they also built
a data structure of O(n+ h5) size with O(h logn) query time. Other results with tradeoff
between preprocessing and query time were also proposed in [10]. Also, Chen et al. [5] showed
that with O(n2) space one can answer each two-point query in O(min{|Qs|, |Qt|} · logn)
time, where Qs (resp., Qt) is the set of vertices of P visible to s (resp., t). Guo et al. [18]
gave a data structure of O(n2) size that can support O(h logn) time two-point queries.

Our Techniques. We follow a similar scheme as in [6, 7], using a “path-preserving” graph
G proposed by Clarkson et al. [11, 12] to determine a set Vg(q) of O(logn) points (called
“gateways”) for each query point q ∈ {s, t}, such that there exists an L1 shortest s-t path that
contains a gateway in Vg(s) and a gateway in Vg(t). To find a shortest s-t path, the main
difficulty is to solve the following sub-problem. Let π(p, q) denote a shortest path between
two points p and q in P, and let d(p, q) denote its length. Suppose that the gateways of
s (resp., t) are formed as a cycle around s (resp., t) such that there is a shortest s-t path
containing a gateway of s and a gateway of t (e.g., see Fig. 1). The point s is visible to
each gateway p in Vg(s), and thus d(s, p) can be obtained in O(1) time. The same applies to
t. Also suppose in the preprocessing we have computed d(p, q) for any p ∈ Vg(s) and any
q ∈ Vg(t). The goal of the problem is to find p ∈ Vg(s) and q ∈ Vg(t) such that the value
d(s, p) + d(p, q) + d(q, t) is minimized, so that a shortest s-t path contains both p and q.

To solve the sub-problem, a straightforward method is to try all pairs of p and q with
p ∈ Vg(s) and q ∈ Vg(t), which is the approach used in both algorithms in [6, 7]. This takes
O(ns · nt) time, where ns = |Vg(s)| and nt = |Vg(t)|. In [7], both ns and nt are O(logn),
which results in O(log2 n) query time. In [6], both ns and nt are reduced to O(

√
logn),

and thus the query time becomes O(logn), by using a larger “enhanced graph” GE (than
the original graph G). More specifically, the size of G is O(n logn) while the size of GE is
O(n
√

logn2
√

logn) (which is further reduced to O(h
√

log h2
√

logh) by other techniques [6]).
Our main contribution is to develop an O(ns + nt logns) time algorithm for solving the

above sub-problem. To this end, we explore the geometric structures of the problem and
propose a divide-and-conquer technique, which can be roughly described as follows. For
simplicity, suppose we only consider one piece of the gateway cycle of s (e.g., those in the
first quadrant of s) and order the gateways of s on that piece by p1, p2, . . . , pk (e.g., see
Fig. 2). Then, in a straightforward way, for p1, we find a gateway, denoted by q1, of t that

H. Wang 59:3

s t

p

q

Figure 1 Illustrating the gateways of s and t
and a shortest s-t path.

t
qm

p1

pk

q1

qk

pm

Q

s

Figure 2 Illustrating our divide-and-conquer
scheme.

t

p1

pk

q1

s

Figure 3 A non-ideal situation: The shortest
path from p1 to q1 crosses the gateway cycle of s.

t
qm

p1

pk

q1

qk

pm

Q

s

Figure 4 A non-ideal situation: The shortest
path from pm to qm is not inside the region Q.

minimizes the value d(p1, q) + d(q, t) for all q ∈ Vg(t). Similarly, we find such a gateway
qk of t for pk. Let P1 be the s-t path sp1 ∪ π(p1, q1) ∪ q1t. Similarly, let P2 be the path
spk ∪ π(pk, qk) ∪ qkt. In the “ideal” situation, the two paths do not intersect except at s
and t, and they together form a cycle enclosing a plane region Q that contains all gateways
p1, p2, . . . , pk (e.g., see Fig. 2), and let V ′g(t) be the gateways of t that are also contained in
Q. The next step is to process the median gateway pm of s with m = k

2 . The key observation
is that we only need to consider the gateways in V ′g(t) instead of all the gateways of t, i.e.,
if a shortest s-t path contains pm, then there must be a shortest s-t path containing pm
and a gateway in V ′g(t). In this way, we only need to find the point, denoted by qm, that
minimizes the value d(pm, q) + d(q, t) for all q ∈ V ′g(t). Further, in the “ideal” situation, the
path Pm = spm ∪ π(pm, qm) ∪ qmt is inside the region Q and divides Q into two sub-regions
(e.g., see Fig. 2). We then proceed on the two sub-regions recursively.

The above exhibits our algorithm in an “ideal” situation. Our major effort is to deal with
the “non-ideal” situations. For example, what if the path P1 crosses the cycle piece of s (e.g.,
see Fig. 3), what if the path Pm is not in the region Q (e.g., see Fig. 4), what if q1 = qk, etc.

Our divide-and-conquer scheme may be somewhat similar to that for two-vertex shortest
path queries in planar graphs, e.g., [9, 13]. However, a main difference is that in the planar
graph case the query vertices are both from the input graph and the gateways are already
known for each vertex (more specifically, the gateways in the planar graph case are the
“border vertices” of the subgraphs in the decomposition of the input graph by separators),
and thus one can compute certain information for the gateways in the preprocessing (many
other techniques for shortest path queries in planar graphs, e.g., [15, 16, 26], also rely on
this), while in our problem the gateways are only determined “online” during queries because
query points can be anywhere in P. This causes us to develop different techniques to tackle
the problem (especially to resolve the non-ideal situations).

It might be tempting to see whether the Monge matrix searching techniques [1, 23] can
be applied to further shave the logarithmic factor. However, due to the non-ideal situations
such as those shown in Fig. 3 and Fig. 4, it is not clear to us whether this is possible.

SoCG 2019

59:4 Two-Point L1 Shortest Path Queries

With the above O(ns + nt logns) time algorithm, if both ns and nt are bounded by
O(logn), we can only obtain an O(logn log logn) time query algorithm. To reduce the time
to O(logn), we borrow some idea from the previous work [6] to construct a larger graph
G1, so that we can guarantee ns = O(logn) and nt = O(logn/ log logn), which leads to
an O(logn) time query algorithm. The size of G1 is only O(n log2 n/ log logn), which is
slightly larger than the original O(n logn)-sized graph G [7, 11,12] and much smaller than
the O(n

√
logn2

√
logn)-sized enhanced graph GE in [6]. Further, by the techniques similar

to those used in [6], we can reduce the graph size to O(h log2 h/ log log h).
The rest of the paper is organized as follows. In Section 2, we define notation and review

some previous work. In Section 3, we solve the sub-problem discussed above. In Section 4, we
present our overall result. For ease of exposition, we make a general position assumption that
no two vertices of P including s and t have the same x- or y-coordinate. Unless otherwise
stated, “length” refers to L1 length and “shortest paths” refers to L1 shortest paths. Due to
the space limit, proofs and many details are omitted but can be found in the full paper.

2 Preliminaries

We introduce some notation and concepts, some of which are borrowed from the previous
work [6, 7, 11, 12]. Two points p and q are visible to each other if the line segment pq is in
P. For a point p and a vertical line segment l in P, if there is a point q ∈ l such that pq
is horizontal and is in P, then we say p is horizontally visible to l and call q the horizontal
projection of p on l. For any point p in the plane, we use x(p) and y(p) to denote its x- and
y-coordinates, respectively. For a path π in P, we use |π| to denote its length.

For two points p and q in P , we use π(p, q) to denote a shortest path from p to q and define
d(p, q) = |π(p, q)|. For a segment pq, let |pq| denote its length. A path in P is x-monotone
if its intersection with any vertical line is either empty or connected. The y-monotone is
defined similarly. If a path is both x-monotone and y-monotone, then it is xy-monotone.
Note that an xy-monotone path in P is a shortest path. Also, if there is an xy-monotone
path between p and q in P, then d(p, q) = |pq| (although p may not be visible to q).

Let V denote the set of all vertices of P . To differentiate from the vertices/edges in some
graphs we define later, we often refer to the vertices/edges of P as polygon vertices/edges.
Let ∂P denote the boundary of P (including the boundaries of all the holes). For any point
p ∈ P, if we shoot a ray rightwards from p, let pr denote the first point of ∂P hit by the
ray and call it the rightward projection of p on ∂P. Similarly, we can define the leftward,
upward, downward projections of p and denote them by pl, pu, pd, respectively.

A “path-preserving” graph G. Clarkson et al. [11] proposed a graph G for computing L1
shortest paths in P . We sketch G below since our algorithm will use a modified version of it.

To define G, there are two types of Steiner points. For each vertex of P , its four projections
on ∂P are type-1 Steiner points. Hence, there are O(n) Steiner points on ∂P. The type-2
Steiner points are defined on cut-lines, which can be organized into a binary tree T , called
the cut-line tree. Each node u of T corresponds to a set V(u) of vertices of P and stores a
cut-line l(u) that is a vertical line through the median x-coordinate of all vertices of V(u). If
u is the root, then V(u) = V . In general, for the left (resp., right) child v of u, V(v) consists
of all vertices of V(u) to the left (resp., right) of l(u). For each node u ∈ T and each vertex
p of V(u), if p is horizontally visible to l(u), then the horizontal projection of p on l(u) is
a type-2 Steiner point. Therefore, l(u) has at most |V(u)| Steiner points. Since the total
size |V(u)| for all u in the same level of T is O(n) and the height of T is O(logn), the total
number of type-2 Steiner points is O(n logn).

H. Wang 59:5

The graph G is thus defined as follows. First of all, the vertex set of G consists of all
Steiner points (including all polygon vertices). Hence, it has O(n logn) nodes. For the edges
of G, for each vertex p of P, if q is a Steiner point defined by p, then G has an edge pq.
For each polygon edge e of P, e may contain multiple Steiner points, and G has an edge
connecting each adjacent pair of them. Further, for each cut-line l and for any two adjacent
Steiner points on l, if they are visible to each other, then G has an edge connecting them.

Clearly, G has O(n logn) nodes and edges. It was shown in [11, 12] that for any two
polygon vertices of P , the shortest path between them in the graph G is also a shortest path
in P (and thus the graph “preserves” shortest paths of the polygon vertices of P).

Gateways. To answer shortest path queries, Chen et al. [7] “insert” the two query points s
and t into G by connecting them to some “gateways”. Intuitively, the gateways would be
the vertices of G that connect to s and t respectively if s and t were vertices of P, and thus
they control shortest paths from s to t. Specifically, let Vg(s,G) denote the set of gateways
for s, which has two subsets V 1

g (s,G) and V 2
g (s,G) of sizes O(1) and O(logn), respectively.

We first define V 1
g (s,G). For each projection point q of s on ∂P, if v1 and v2 are the two

Steiner points adjacent to q on the edge of P containing q, then v1 and v2 are in V 1
g (s,G).

For V 2
g (s,G), it is defined recursively on the cut-line tree T . Let u be the root of T . If s

is horizontally visible to the cut-line l(u), then l(u) is called a projection cut-line of s and
the Steiner point on l(u) immediately above (resp., below) the horizontal projection s′ of s
on l(u) is a gateway in V 2

g (s,G) if it is visible to s′. Regardless of whether s is horizontally
visible to l(u) or not, if s is to the left (resp., right) of l(u), then we proceed to the left (resp.,
right) child of u until we reach a leaf of T . Clearly, s has O(logn) projection cut-lines, on a
path from the root to a leaf in T . Hence, |V 2

g (s,G)| = O(logn). Similarly we can define the
gateway set Vg(t, G) for t. As will be shown later, for each gateway p of s, sp is in P, and
thus d(s, p) = |sp|. The same applies to t. It is known [7] that if there is a shortest s-t path
containing a vertex of P, then there must be a shortest s-t path containing a gateway of s
and a gateway of t; otherwise, there must exist a shortest s-t path π(s, t) that is xy-monotone
with the following property: either π(s, t) consists of a horizontal segment and a vertical
segment, or π(s, t) consists of three segments: ss′, s′t′, and t′t, where s′ is a vertical (resp.,
horizontal) projection of s and t′ is the horizontal (resp., vertical) projection of t on the same
polygon edge, and we call such a shortest path a trivial shortest path.

A straightforward query algorithm. Given s and t, we can compute d(s, t) as follows. First,
we check whether there exists a trivial shortest s-t path, which can be done in O(logn) time
by using vertical and horizontal ray-shootings, after O(n logn) time (or O(n + h log1+ε h)
time for any ε > 0 [3]) preprocessing to build the vertical and horizontal decompositions of
P. If yes, then we are done. Otherwise, we compute Vg(s,G) and Vg(t, G) in O(logn) time
after certain preprocessing [6, 7]. Suppose we have computed d(u, v) for any two vertices u
and v of G in the preprocessing. Then, d(s, t) = minp∈Vg(s,G),q∈Vg(t,G)(|sp|+ d(p, q) + |qt|)
can be computed in O(log2 n) time since both |Vg(s,G)| and |Vg(t, G)| are O(logn).

The main sub-problem. To reduce the query time, since |V 1
g (s,G)| = O(1) and |V 1

g (t, G)| =
O(1), the main sub-problem is to determine the value minp∈V 2

g (s,G),q∈V 2
g (t,G)(|sp|+ d(p, q) +

|qt|). This is the sub-problem we discussed in Section 1. Note that the case p ∈ V 1
g (s,G) and

q ∈ V 2
g (t, G), or the case p ∈ V 2

g (s,G) and q ∈ V 1
g (t, G) can be handled in O(logn) time.

SoCG 2019

59:6 Two-Point L1 Shortest Path Queries

3 Solving the Main Sub-Problem

In this section, we present an O(ns + nt logns) time algorithm for our main sub-problem,
where ns = |V 2

g (s,G)| and nt = |V 2
g (t, G)|.

We consider the vertices of G also as the corresponding points in P. Note that although
G preserves shortest paths between all polygon vertices of P, it may not preserve shortest
paths for all vertices of G, i.e., for two vertices p and q of G, the shortest path from p to
q in G may not be a shortest path in P. For this reason, as preprocessing, for each vertex
q of G, we compute a shortest path tree T (q) in P from q to all vertices of G using the
algorithm in [24,25], which can be done in O(n log2 n) time since G has O(n logn) vertices.
For each vertex p of G, we use πq(p) to denote the path in T (q) from the root q to p, which
is a shortest path in P, and we refer to the edge incident to p as the last edge of πq(p);
we explicitly store d(p, q) and the last edge of πq(p). Note that πq(p), computed by the
algorithm [24,25], has the following property [24,25]: all vertices of the path other than p
and q are polygon vertices of P. Doing the above for all vertices q of G takes O(n2 log3 n)
time and O(n2 log2 n) space.

Given s and t, following the discussion in Section 2, we assume that there are no trivial
shortest s-t paths and there is a shortest s-t path containing a gateway in V 2

g (s,G) and a
gateway in V 2

g (t, G). To simplify the notation, let V (s) = V 2
g (s,G) and V (t) = V 2

g (t, G).
A gateway of V (s) is called a via gateway if there is a shortest s-t path containing it. Our

goal is to find a via gateway, after which a shortest s-t path can be computed in additional
O(logn) time by checking each gateway of t. In the following, we present an O(ns+nt logns)
time algorithm. Without loss of generality, we assume that the first quadrant of s has a via
gateway. Below, we will describe our algorithm only on the gateways of V (s) in the first
quadrant of s (our algorithm will run on each quadrant of s separately). By slightly abusing
the notation, we still use V (s) to denote the gateways of V (s) in the first quadrant of s.

Before describing our algorithm, we introduce some geometric structures, among which
the most important ones are a gateway region of s and an extended gateway region of t.
Chen et al. [7] introduced the gateway region for rectilinear polygonal domains and here
we extend the concept to the arbitrary polygonal domain case. In particular, our extended
gateway region has several new components that are critical to our algorithm, and it may be
interesting in its own right. Due to the space limit, we only discuss some of their properties
that are needed for describing our algorithm later, and other properties that are used to
prove the correctness of our algorithm are omitted.

The Gateway Region R(s). We define a gateway region R(s) for s. Let p1, p2, . . . , pk be
the gateways of s ordered from left to right (e.g., see Fig. 5). Note that each pi is a type-2
Steiner point on a projection cut-line of s. Let l1, l2, . . . , lk be the projection cut-lines of s
that contain these gateways, respectively, and thus they are also sorted from left to right. It
is known [6,7] that the y-coordinates of p1, p2, . . . , pk are in non-increasing order.

Let s1 be the intersection of l1 with the horizontal line through pk (e.g., see Fig. 6).
For each pi with i ∈ [2, k], project pi leftwards horizontally onto li−1 at a point p′i (note
that p′i = pi−1 if y(pi−1) = y(pi)). Define R(s) as the region bounded by the line segments
connecting the points s1, p1, p′2, p2, . . . , p′k, pk, and s1 in this cyclic order.

We use βs to denote the boundary portion of R(s) from p1 to pk that contains all gateways
of V (s). We call βs the ceiling, s1p′2 the left boundary, and s1p′k the bottom boundary of R(s).
We refer to the region R(s) excluding the points on βs as the interior of R(s).

I Observation 1. R(s) is in P, and the interior of R(s) does not contain any polygon vertex.

H. Wang 59:7

p1

pk

s

p2
p3

pk−1

Figure 5 Illustrating the gateways of V (s) and
the cut-lines containing them.

s1

p1

pk

s

p2p′2 p3
p′3

p′k

R(s)
pk−1

Figure 6 Illustrating the gateway region R(s).
The red points are gateways of V (s).

t

Figure 7 Illustrating R(t), bounded by the
solid segments. The black points other than t are
all gateways and the three red points are special
gateways.

t

p
q

Figure 8 Illustrating the transparent edges (the
dotted segments). The three red points are special
gateways. For Lemma 1, a point p on a transparent
edge as well as an endpoint q of the edge is also shown.

The Extended Gateway Region R(t). For t, we define an extended gateway region R(t).
Unlike R(s), which does not contain s, R(t) contains t, e.g., see Fig. 7. Instead of giving the
detailed definition of R(t), which is quite lengthy, we only discuss several key properties of it.

Let V1 denote the set consisting of all polygon vertices and their projection points on ∂P .
In general, R(t) is a simple polygon that contains t, with O(logn) vertices. Let ∂R(t)

denote its boundary. Each edge of ∂R(t) is vertical, horizontal, or on a polygon edge. If an
edge of ∂R(t) is not on a polygon edge, then we call it a transparent edge (e.g., see Fig. 8). It
is the transparent edges that separate the interior of R(t) from the outside (i.e., for any point
p of P outside R(t), any path from p to t in P must intersect a transparent edge of R(t)).
All gateways of V (t) are on ∂R(t). In addition, at most four points of V1 are considered as
special gateways that are also on ∂R(t), and we include them in V (t).

I Lemma 1. The point t is visible to each gateway in V (t) and R(t) is in P. For any point
p outside R(t), there is a shortest path from p to t that contains a gateway in V (t). For any
point p on a transparent edge e, one of the endpoints q of e is a gateway in V (t) such that
pq ∪ qt is an xy-monotone (and thus a shortest) path from p to t (e.g., see Fig. 8).

In addition, the properties of R(t) guarantee that for any point p outside R(t), a shortest
path from p to t cannot separate ∂R(t) into two disjoint pieces (see Fig. 9).

If we store the four projections on ∂P for each Steiner point of G (this costs O(n logn)
additional space), then R(t) can be explicitly computed in O(logn) time.

SoCG 2019

59:8 Two-Point L1 Shortest Path Queries

t
p

q

R(t)

Figure 9 The following situation cannot occur: A shortest path from t to a point p outside R(t)
separates the boundary of R(t) (the solid circle) into two or more disjoint pieces.

We remark that R(s) and R(t) are defined differently because s and t are not treated
symmetrically in our algorithm. For example, we need R(t) to have the properties in Lemma 1,
which are not necessary for R(s). Also, as will be clear later, treating s and t differently
helps us to further reduce the complexities of our data structure.

3.1 The Query Algorithm
Consider the gateway region R(s) of s. Note that for any pi ∈ V (s), there is always a shortest
path from s to pi containing s1 as we can show that ss1 in P. Recall that we have assumed
that there exists a shortest s-t path that contains a gateway of V (s). The above implies that
there exists a shortest path from s1 to t that contains a gateway of V (s), and if we can find
such a path, by attaching ss1 to the path, we can obtain a shortest s-t path. For convenience,
in the following, we will focus on finding a shortest path from s1 to t that contains a gateway
of V (s). By slightly abusing the notation, we still use s to represent s1. Again, our goal is to
compute a via gateway of s in V (s). We first check whether there is a trivial shortest s-t
path in O(logn) time. If yes, we are done. Otherwise, we have the following lemma.

I Lemma 2. If R(t) contains a gateway p of V (s), then sp ∪ pt is a shortest s-t path;
otherwise, R(s) does not intersect R(t).

We check whether R(t) contains a gateway of V (s). Due to the properties of R(t), this
can be done in O(nt + ns) time, as follows. We check the four quadrants of t separately. Let
R1(t) be R(t) in the first quadrant of t. To check whether R1(t) contains a gateway of V (s),
we can simply scan the gateways of V (s) and the gateways of V (t) in R1(t) simultaneously
from left to right (somewhat like merge sort). We do the same for other quadrants of t.

If R(t) contains a gateway of V (s), then by Lemma 2, we have found a shortest s-t path.
Otherwise, R(s) and R(t) are disjoint and we proceed as follows. By Lemma 1, for each
p ∈ V (s), d(p, t) = minq∈V (t)(d(p, q) + |qt|), and we call such a gateway q of V (t) minimizing
the above value a coupled gateway of p and use c(p) to denote it.

Our algorithm will compute a “candidate” coupled gateway c′(p) for every gateway p of
V (s) such that if p ∈ V (s) is via gateway, then c(p) = c′(p). Therefore, once the algorithm is
done, the gateway p that minimizes the value |sp|+ d(p, c′(p)) + |c′(p)t| is a via gateway.

For any two points a and b on the ceiling βs of R(s), we use βs[a, b] to denote the
sub-path of βs between a and b, which is xy-monotone. This means that we can compute
d(pi, pj) = |pipj | in constant time for every two gateways pi and pj in V (s).

We consider V (t) as a cyclic list of points in counterclockwise order around t (we use
“counterclockwise” since the list of V (s) = {p1, p2, . . . , pk} are in clockwise order around s).

We first compute c(p1) in a straightforward manner, i.e., check every gateway of V (t).
This takes O(nt) time (since d(p, q) for any p ∈ V (s) and q ∈ V (t) is already computed in our
preprocessing). We also compute c(pk) in the same way. If there are multiple c(pk)’s, then

H. Wang 59:9

s

p1

pa1

pk

q1

pa1+1

p′a1+1

Figure 10 The shortest path πq1 (pa1) goes through the interior of R(s).

we let c(pk) refer to the first one from c(p1) in the counterclockwise order around t. Further,
if there is more than one c(p1) from the current c(p1) to c(pk) in the counterclockwise order,
then we update c(p1) to the one closest to c(pk). To simplify the notation, let q1 = c(p1)
and qk = c(pk). Note that q1 = qk is possible. The following lemma will be useful for
circumventing the “non-ideal” situation depicted in Fig. 3. Its correctness relies on the fact
that the ceiling βs of R(s) is xy-monotone (and thus is a shortest path).

I Lemma 3. For any pi of V (s), if d(p1, pi)+d(pi, q1) = d(p1, q1), then d(p1, pj)+d(pj , q1) =
d(p1, q1) and c(pj) = q1 for each j ∈ [1, i]; similarly, if d(pk, pi) + d(pi, qk) = d(pk, qk), then
d(pk, pj) + d(pj , qk) = d(pk, qk) and c(pj) = qk for each j ∈ [i, k].

Let a1 be the largest index i ∈ [1, k] such that d(p1, pi) + d(pi, q1) = d(p1, q1), which
can be computed in O(a1) time, as follows. Starting from i = 2, we simply check whether
d(p1, pi) + d(pi, q1) = d(p1, q1), which can be done in O(1) time since d(p1, pi) = |p1pi| can
be computed in constant time and d(pi, q1) has been computed in the preprocessing. If yes,
we proceed with i+ 1; otherwise, we stop the algorithm and set a1 = i− 1. We call the above
a stair-walking procedure. The correctness is due to Lemma 3.

Similarly, define bk to be the smallest index i ∈ [1, k] such that d(pk, pi) + d(pi, qk) =
d(pk, qk). By a symmetric stair-walking procedure, we can compute bk as well. By Lemma 3,
for each i ∈ [1, a1] ∪ [bk, k], c(pi) is known. Hence, if a1 ≥ bk, then c(p) for each p ∈ V (s) is
computed and we can finish the algorithm. Otherwise, we proceed as follows.

Recall that πq1(pa1) is the shortest path from q1 to pa1 obtained from the shortest path
tree T (q1), and πqk

(pbk
) is from T (qk). Lemmas 4 and 5 are for dealing with the non-ideal

situation in which πq1(pa1) (resp., πqk
(pbk

)) goes through the interior of R(s) (see Fig. 10).

I Lemma 4. (1) πq1(pa1) contains a point in the interior of R(s) only if its last edge (i.e.,
the edge incident to pa1) intersects the bottom boundary of R(s). (2) πqk

(pbk
) contains a

point in the interior of R(s) only if its last edge (i.e., the edge incident to pbk
) intersects the

left boundary of R(s).

I Lemma 5. If the last edge of πq1(pa1) intersects the bottom boundary of R(s), or the last
edge of πq1(pbk

) intersects the left boundary of R(s), then pj for each j ∈ [a1 + 1, bk − 1]
cannot be a via gateway.

Due to our preprocessing, we can check in constant time whether the last edge of πq1(pa1)
intersects the bottom boundary of R(s). Similarly, we can check whether the last edge of
πq1(pbk

) intersects the left boundary of R(s). If the answer is yes for either case, then by
Lemma 5, we can stop the algorithm (i.e., no need to compute the coupled gateways for any
pi with i ∈ [a1 + 1, bk − 1]). Otherwise, by Lemma 4, neither πq1(pa1) nor πq1(pbk

) contains
a point in the interior of R(s). We proceed as follows.

SoCG 2019

59:10 Two-Point L1 Shortest Path Queries

s

p1

pk
bk

am

bm

a1

m

t

q1

qk
q2m

q1m

Figure 11 Illustrating a schematic view of the indices: a1, bm, m, am, and bk.

Recall that q1 = qk is possible. Depending on whether q1 = qk, there are two cases. In
the sequel, we describe our algorithm for the unequal case q1 6= qk. The equal-case q1 = qk
can be reduced to the unequal case, which is omitted and can be found in the full paper.

In the following, we assume that q1 6= qk. Since q1 6= qk, q1 and qk partition the cyclic
list V (t) into two sequential lists, one of which has q1 as the first point and qk as the last
point following the counterclockwise order around t, and we use Vt(1, k) to denote that list.
Lemma 6 follows from our particular way of defining q1 and qk.

I Lemma 6. The two paths πq1(pa1) and πqk
(pbk

) do not intersect.

For any i and j with 1 ≤ i ≤ j ≤ k, we use the interval [i, j] to represent the gateways
pi, pi+1, . . . , pj . Our algorithm works on the interval [1, k] and Vt(1, k).

I Lemma 7. For any gateway pj with j ∈ [a1 + 1, bk − 1], if pj is a via gateway, then it has
a coupled gateway in Vt(1, k).

By Lemma 7, to compute the candidate coupled gateways for all pi with i ∈ [a1 +1, bk−1],
we only need to consider Vt(1, k). In the following, we work on the problem recursively. We
may consider each recursive step as working on a subproblem, denoted by ([i′, j′], [i, j], Vt(i, j))
with [i′, j′] ⊆ [i, j] ⊆ [1, k], where the goal is to find candidate coupled gateways from a
sublist Vt(i, j) of Vt(1, k) for the gateways in [i′, j′], and further, there exist a shortest path
from pai to the first point of Vt(i, j) and a shortest path from pbj to the last point of Vt(i, j)
such that the two paths do not intersect and neither path contains a point in the interior of
R(s). Initially, our subproblem is ([a1 + 1, bk − 1], [1, k], Vt(1, k)). We proceed as follows.

If bk−1 = a1 +1, then the interval [a1 +1, bk−1] has only one gateway p. We simply check
all gateways of Vt(1, k) to find the point q that minimizes the value d(p, q) + d(q, t) among
all q ∈ Vt(1, k), and then return q as the candidate coupled gateway of p. The algorithm can
stop. Otherwise, we proceed as follows.

Let m = b(a1 + bk)/2c. We compute a gateway in Vt(1, k) that minimizes the value
d(pm, q) + d(q, t) for all q ∈ Vt(1, k), and in case of a tie, we use q1

m and q2
m to refer to the

first and the last such gateways in Vt(1, k), respectively. Let Vt(1,m) and Vt(m, k) denote
the sublists of Vt(1, k) from q1 to q1

m and from q2
m to qk, respectively.

Define am to be the largest index i ∈ [m, bk−1] such that d(pm, q2
m) = d(pm, pi)+d(pi, q2

m)
and bm the smallest index i ∈ [a1 + 1,m] such that d(pm, q1

m) = d(pm, pi) + d(pi, q1
m). See

Fig. 11. We can compute am and bm by a similar stair-walking procedure as before. With
Lemma 7 and similarly as Lemma 3, for each i ∈ [bm,m− 1], if pi is a via gateway, then q1

m

is a coupled gateway of pi, and for each i ∈ [m+ 1, am], if pi is a via gateway, then q2
m is a

coupled gateway of pi. Thus we can set candidate coupled gateways accordingly.

H. Wang 59:11

If am = bk − 1 and bm = a1 + 1, then the candidate coupled gateways of all gateways in
[1, k] have been computed and we can stop the algorithm. If am = bk − 1 but bm > a1 + 1,
we work recursively on the subproblem ([a1 + 1, bm − 1], [1, k], Vt(1, k)) (note that the size of
the first interval is reduced by at least half). Similarly, if bm = a1 + 1 but am < bk − 1, then
we work recursively on the subproblem ([am + 1, bk − 1], [1, k], Vt(1, k)). Otherwise, both
bm > a1 + 1 and am < bk − 1 hold, and we proceed as follows. We have the following two
lemmas that are similar to Lemmas 4 and 5. By definition, either am > bm or am = bm = m.

I Lemma 8. (1) The path πq2
m

(pam
) contains a point in the interior of R(s) only if the

last edge of the path intersects the bottom boundary of R(s), in which the intersection at
the bottom boundary of R(s) has x-coordinate in [x(s), x(pam+1)]. (2) The path πq1

m
(pbm

)
contains a point in the interior of R(s) only if the last edge of the path intersects the left
boundary of R(s), in which case the intersection at the left boundary of R(s) has y-coordinate
in [y(s), y(pbm−1)].

I Lemma 9. (1) If the last edge of πq2
m

(pam) intersects the bottom boundary of R(s), then pi
cannot be a via gateway for any i ∈ [am+1, bk−1]. (2) If the last edge of πq1

m
(pbm

) intersects
the left boundary of R(s), then pi cannot be a via gateway for any i ∈ [a1 + 1, bm − 1].

In constant time we can check whether the two cases in Lemma 9 happen. If both
cases happen, then we can stop the algorithm. If the second case happens and the first
one does not, then we recursively work on the subproblem ([am + 1, bk − 1], [1, k], Vt(1, k)).
If the first case happens and the second one does not, then we recursively work on the
subproblem ([a1 + 1, bm − 1], [1, k], Vt(1, k)). In the following, we assume that neither case
happens. By Lemma 8, neither πq2

m
(pam) nor πq1

m
(pbm) contains a point in the interior of

R(s). Consequently, we have the following lemma.

I Lemma 10. (1) For each i ∈ [am + 1, bk − 1], if pi is a via gateway, then pi has a coupled
gateway in Vt(m, k). If q2

m 6= qk, then πq2
m

(pam) does not intersect πqk
(pbk

). (2) For each
i ∈ [a1 + 1, bm − 1], if pi is a via gateway, then pi has a coupled gateway in Vt(1,m). If
q1
m 6= q1, then πq1

m
(pbm) does not intersect πq1(pa1).

Based on Lemma 10, our algorithm proceeds as follows. If q2
m = qk, then we set qk as the

candidate coupled gateway for each pi with i ∈ [am+1, bk−1]. Otherwise, we call the algorithm
recursively on the subproblem ([am + 1, bk − 1], [m, k], Vt(m, k)). Similarly, if q1

m = q1, then
we set q1 as the candidate coupled gateway for each pi with i ∈ [a1 + 1, bm − 1]. Otherwise,
we call the algorithm recursively on the subproblem ([a1 + 1, bm − 1], [1,m], Vt(1,m)).

For the running time, notice that the stair-walking procedure spends O(1) time on finding
a coupled gateway for a gateway of V (s). Hence, the overall time of the procedure in the
entire algorithm is O(ns). Consider a subproblem ([i′, j′], [i, j], Vt(i, j)). To solve it, after
spending O(|Vt(i, j)|) time, we either reduce the problem to another subproblem in which
the first interval is at most half the size of [i′, j′] and the third gateway set is still Vt(i, j), or
reduce it to two sub-problems such that each of them has the first interval at most half the
size of [i′, j′] and the third gateway sets of the two sub-problems are two disjoint subsets
of Vt(i, j). Hence, if we consider the algorithm as a tree structure, the height of the tree
is O(logns) and the total time we spend on each level of the tree is O(nt). Therefore, the
overall time of the algorithm is O(ns + nt logns).

The above describes our algorithm on the gateways of s in the first quadrant of s. We
run the same algorithm for all quadrants of s, and for each quadrant, we will find an s-t
path. Finally, we return the path with the smallest length as our solution.

I Lemma 11. The running time of the query algorithm is O(logn+ ns + nt logns).

SoCG 2019

59:12 Two-Point L1 Shortest Path Queries

4 Reducing the Query Time to O(log n)

Since both ns and nt are O(logn), the query time of Lemma 11 is O(logn log logn). To
further reduce it to O(logn), we need to change our graph G to a slightly larger graph G1
such that t only needs O(logn/ log logn) gateways while s still has O(logn) gateways, i.e.,
ns = O(logn) and nt = O(logn/ log logn). To this end, we introduce more Steiner points
on the cut-lines. A similar idea was also used in [6] to reduce the number of gateways to
O(
√

logn). However, since we are allowed to have more gateways than O(
√

logn), we do not
need as many Steiner points as those in [6], which is the reason why we use less preprocessing.

Specifically, comparing with G, the new graph G1 has the following changes. As in [6], we
first define “super-levels”. Recall that the cut-line tree T has O(logn) levels (with the root at
the first level). We further partition all levels of the tree into O(logn/ log logn) super-levels:
For any i, the i-th super-level contains the levels from (i − 1) · log logn + 1 to i · log logn.
Hence, each super-level has at most log logn levels.

Let u be a node at the highest level of the i-th super level of T . Let Tu be the sub-tree
of T rooted at u excluding the nodes outside the i-th level (thus Tu has at most logn− 1
nodes). Recall that u is associated with a subset V(u) of polygon vertices and each vertex
v ∈ Tu is associated with a cut-line l(v). For each point p ∈ V(u) and each vertex v ∈ Tu, if
p is horizontally visible to l(v), then p defines a type-3 Steiner point on l(v). In this way,
p defines O(logn) type-3 Steiner points on the cut-lines of Tu (in contrast, p defines only
O(log logn) type-2 Steiner points on the cut-lines of Tu in our original graph G). Hence,
each polygon vertex p defines a total of O(log2 n/ log logn) type-3 Steiner points since T has
O(logn/ log logn) super-levels. The total number of type-3 Steiner points on all cut-lines is
O(n log2 n/ log logn). Note that each type-2 Steiner point in our original graph G becomes
a type-3 Steiner point. For convenience of discussion, those type-3 Steiner points of G1 that
are originally type-2 Steiner points of G are also called type-2 Steiner points of G1.

Type-1 Steiner points are defined in the same way as before, so their number is O(n).
We still use V1 to denote the set of all type-1 Steiner points and all polygon vertices. We use
V2 to denote the set of all type-2 Steiner points of G1.

The edges of G1 are defined with respect to all Steiner points in the same way as G. We
omit the details. In summary, G1 has O(n log2 n/ log logn) vertices and edges. Note that
the original graph G is a sub-graph of G1 in that every vertex of G is also a vertex of G1
and each path of G corresponds to a path in G1 with the same length.

Consider a query point t. The gateway set V 1
g (t, G1) is defined the same as before, and

thus its size is O(1). Thanks to more Steiner points, the size of V 2
g (t, G1) can now be reduced

to O(logn/ log logn). Specifically, V 2
g (t, G1) is defined as follows (similar to that in [6]).

As in [6], we first define the relevant projection cut-lines of t. We only discuss the right
side of t, and the left side is symmetric. Recall that t has at most one projection cut-line
in each level of T . Among all projection cut-lines that are in the same super-level, the one
closest to t is called a relevant projection cut-line of t. Since there are O(logn/ log logn)
super-levels and each super-level has at most one relevant projection cut-line to the right of
t, t has O(logn/ log logn) relevant projection cut-lines. For each such cut-line l, the type-3
Steiner point (if any) immediately above (resp., below) the horizontal projection t′ of t on l
is included in V 2

g (t, G1) if it is visible to t′. Thus, |V 2
g (t, G1)| = O(logn/ log logn).

By Lemma 11, if |V 2
g (t, G1)| = O(logn/ log logn), the query time becomes O(logn) as

long as |V 2
g (s,G1)| = O(logn). This implies that for s, we can simply use its original gateway

set on type-2 Steiner points, i.e., V 2
g (s,G1) = V 2

g (s,G). As will be clear later, this will help
save time and space in the preprocessing. We also define V 1

g (s,G1) in the same way as before.

H. Wang 59:13

I Lemma 12. For any two query points s and t, if there does not exist a trivial shortest s-t
path, then there is a shortest s-t path containing a gateway of s and a gateway of t.

I Lemma 13. With O(n log3 n/ log logn) time and O(n log2 n/ log logn) space preprocessing,
we can compute Vg(s,G1) and Vg(t, G1) in O(logn) time for any two query points s and t.

In the preprocessing, for each vertex q of G1 (which is also considered as a point in
P), we compute a shortest path tree T (q) but only for the points in V1 ∪ V2 using the
algorithm [24, 25]. Since |V1 ∪ V2| = O(n logn), T (p) has O(n logn) vertices and can be
computed in O(n log2 n) time [24, 25]. Since G1 has O(n log2 n/ log logn) vertices, the
preprocessing takes O(n2 log4 n/ log logn) time and O(n2 log3 n/ log logn) space in total.

With Lemma 11 and the new gateway sets, we can reduce the query time to O(logn).
Using the techniques in [6], we can further reduce the complexities of the preprocessing

so that they are functions of h, in addition to O(n), as shown in the following theorem.

I Theorem 14. With O(n+ h2 log4 h/ log log h) time and O(n+ h2 log3 h/ log log h) space
preprocessing, given s and t, we can compute their shortest path length in O(logn) time and
an actual shortest s-t path can be output in time linear in the number of edges of the path.

References
1 A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilbur. Geometric Applications of a

Matrix-Searching Algorithm. Algorithmica, 2:195–208, 1987.
2 S.W. Bae and H. Wang. L1 shortest path queries in simple polygons, 2018. arXiv:1809.07481.
3 R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. International Journal

of Computational Geometry and Applications, 4(4):475–481, 1994.
4 B. Chazelle. Triangulating a Simple Polygon in Linear Time. Discrete and Computational

Geometry, 6:485–524, 1991.
5 D.Z. Chen, O. Daescu, and K.S. Klenk. On geometric path query problems. International

Journal of Computational Geometry and Applications, 11(6):617–645, 2001.
6 D.Z. Chen, R. Inkulu, and H. Wang. Two-Point L1 Shortest Path Queries in the Plane.

Journal of Computational Geometry, 1:473–519, 2016.
7 D.Z. Chen, K.S. Klenk, and H.-Y.T. Tu. Shortest path queries among weighted obstacles in

the rectilinear plane. SIAM Journal on Computing, 29(4):1223–1246, 2000.
8 D.Z. Chen and H. Wang. Computing L1 Shortest Paths Among Polygonal Obstacles in the

Plane. Algorithmica, 2019. https://doi.org/10.1007/s00453-018-00540-x.
9 D.Z. Chen and J. Xu. Shortest path queries in planar graphs. In Proceedings of the 32nd

Annual ACM Symposium on Theory of Computing (STOC), pages 469–478, 2000.
10 Y.-J. Chiang and J.S.B. Mitchell. Two-point Euclidean shortest path queries in the plane. In

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
215–224, 1999.

11 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal obstacles
in O(n log2 n) time. In Proceedings of the 3rd Annual Symposium on Computational Geometry
(SoCG), pages 251–257, 1987.

12 K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal obstacles
in O(n log2/3 n) time. Manuscript, 1988.

13 H.N. Djidjev. Efficient algorithms for shortest path queries in planar digraphs. In Proceedings
of the 22nd International Workshop on Graph-Theoretic Concepts in Computer Science, pages
151–165, 1996.

14 H.A. ElGindy and P. Mitra. Orthogonal shortest route queries among axis parallel rectangular
obstacles. International Journal of Computational Geometry and Application, 4:3–24, 1994.

15 J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths, and near
linear time. Journal of Computer and System Sciences, 72:868–889, 2006.

SoCG 2019

http://arxiv.org/abs/1809.07481

59:14 Two-Point L1 Shortest Path Queries

16 P. Gawrychowski, S. Mozes, O. Weimann, and C. Wulff-Nilsen. Better tradeoffs for exact
distance oracles in planar graphs. In Proceedings of the 29rd Annual Symposium on Discrete
Algorithms (SODA), pages 515–529, 2018.

17 L.J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. Journal
of Computer and System Sciences, 39(2):126–152, 1989.

18 H. Guo, A. Maheshwari, and J.-R. Sack. Shortest Path Queries in Polygonal Domains. In
Proceedings of the 4th International Conference on Algorithmic Aspects in Information and
Management (AAIM), pages 200–211, 2008.

19 J. Hershberger. A new data structure for shortest path queries in a simple polygon. Information
Processing Letters, 38(5):231–235, 1991.

20 J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class.
Computational Geometry: Theory and Applications, 4(2):63–97, 1994.

21 J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.
SIAM Journal on Computing, 28(6):2215–2256, 1999.

22 R. Inkulu and S. Kapoor. Planar rectilinear shortest path computation using corridors.
Computational Geometry: Theory and Applications, 42(9):873–884, 2009.

23 M.M. Klawe and D.J. Kleitman. An Almost Linear Time Algorithm for Generalized Matrix
Searching. SIAM Journal on Discrete Mathematics, 3:81–97, 1990.

24 J.S.B. Mitchell. An optimal algorithm for shortest rectilinear paths among obstacles. Abstracts
of the 1st Canadian Conference on Computational Geometry, 1989.

25 J.S.B. Mitchell. L1 shortest paths among polygonal obstacles in the plane. Algorithmica,
8(1):55–88, 1992.

26 S. Mozes and C. Sommer. Exact distance oracles for planar graphs. In Proceedings of the 23rd
Annual Symposium on Discrete Algorithms (SODA), pages 209–222, 2012.

Near-Optimal Algorithms for Shortest Paths in
Weighted Unit-Disk Graphs∗

Haitao Wang
Department of Computer Science, Utah State University, Logan, UT 84322, USA
https://cs.usu.edu/people/haitaowang
haitao.wang@usu.edu

Jie Xue
Department of Computer Science and Engineering, University of Minnesota – Twin Cities,
Minneapolis, MN 55455, USA
http://cs.umn.edu/~xuexx193
xuexx193@umn.edu

Abstract
We revisit a classical graph-theoretic problem, the single-source shortest-path (SSSP) problem, in
weighted unit-disk graphs. We first propose an exact (and deterministic) algorithm which solves the
problem in O(n log2 n) time using linear space, where n is the number of the vertices of the graph.
This significantly improves the previous deterministic algorithm by Cabello and Jejčič [CGTA’15]
which uses O(n1+δ) time and O(n1+δ) space (for any small constant δ > 0) and the previous
randomized algorithm by Kaplan et al. [SODA’17] which uses O(n log12+o(1) n) expected time
and O(n log3 n) space. More specifically, we show that if the 2D offline insertion-only (additively-
)weighted nearest-neighbor problem with k operations (i.e., insertions and queries) can be solved in
f(k) time, then the SSSP problem in weighted unit-disk graphs can be solved in O(n logn+ f(n))
time. Using the same framework with some new ideas, we also obtain a (1+ε)-approximate algorithm
for the problem, using O(n logn+ n log2(1/ε)) time and linear space. This improves the previous
(1 + ε)-approximate algorithm by Chan and Skrepetos [SoCG’18] which uses O((1/ε)2n logn) time
and O((1/ε)2n) space. Because of the Ω(n logn)-time lower bound of the problem (even when
approximation is allowed), both of our algorithms are almost optimal.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Single-source shortest paths, Weighted unit-disk graphs, Geometric graph
algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.60

Related Version A full version of this paper is available at https://arxiv.org/abs/1903.05255.

Funding The research of Jie Xue is supported, in part, by a Doctoral Dissertation Fellowship from
the Graduate School of the University of Minnesota.

Acknowledgements The authors would like to thank Timothy Chan for the discussion, and in
particular, for suggesting the algorithm for Lemma 7. Jie Xue would like to thank his advisor Ravi
Janardan for his consistent advice and support.

1 Introduction

Given a set S of n points in the plane, its unit-disk graph is an undirected graph in which the
vertices are points of S and two vertices are connected by an edge iff the (Euclidean) distance
between them is at most 1. Unit-disk graphs can be viewed as the intersection graphs of
equal-sized disks in the plane, and find many applications such as modeling the topology of
ad-hoc communication networks. As an important class of geometric intersection graphs,

∗ The work was partially done when Jie Xue was visiting Utah State University.

© Haitao Wang and Jie Xue;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 60; pp. 60:1–60:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://cs.usu.edu/people/haitaowang
mailto:haitao.wang@usu.edu
http://cs.umn.edu/~xuexx193
mailto:xuexx193@umn.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.60
https://arxiv.org/abs/1903.05255
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Near-Optimal Algorithms for Shortest Paths in Weighted Unit-Disk Graphs

unit-disk graphs have been extensively studied in computational geometry. Many problems
that are difficult in general graphs have been efficiently solved (exactly or approximately) in
unit-disk graphs by exploiting their underlying geometric structures.

In this paper, we consider a classical graph-theoretic problem, the single-source shortest-
path (SSSP) problem, in unit-disk graphs. Given an edge-weighted graph G = (V,E) and
a source vertex s ∈ V , the SSSP problem aims to compute shortest paths from s to all
other vertices in G (or equivalently a shortest-path tree from s). In unit-disk graphs, there
are two natural ways to weight the edges. The first way is to equally weight all the edge
(usually called unweighted unit-disk graphs), while the second way is to assign each edge
(a, b) a weight equal to the (Euclidean) distance between a and b (usually called weighted
unit-disk graphs). The SSSP problem in a general graph has a trivial Ω(|E|)-time lower
bound, because specifying the edges of the graph already takes Ω(|E|) time. However, this
lower bound does not hold in unit-disk graphs. A unit-disk graph (either unweighted or
weighted), though having quadratic number of edges in worst case (e.g., all the vertices are
very close to each other), can be represented by only giving the locations of its vertices in the
plane. This linear-complexity representation allows us to solve the SSSP problem without
explicitly constructing the graph and hence beat the Ω(|E|)-time lower bound.

In unweighted unit-disk graphs, the SSSP problem is relatively easy, and various algorithms
are known for solving it optimally in O(n logn) time [2, 3]. However, the weighted case is
much more challenging. Despite of much effort made over years [2, 5, 9, 10, 12], state-of-the-
art algorithms are still far away from being optimal. In this paper, we present new exact and
approximation algorithms for the problem in weighted unit-disk graphs, which significantly
improve the previous results and almost match the lower bound of the problem.

Organization. The remaining paper is organized as follows. In Sect. 1.1, we discuss the
related work and our contributions. Sect. 1.2 presents some notations used throughout the
paper. Our exact and approximation algorithms are given in Sect. 2 and 3, respectively. Due
to the page limit, some lemma proofs are omitted but can be found in the full version [13].

1.1 Related work and our contributions

Besides the SSSP problem, many graph-theoretic problems have also been studied in unit-disk
graphs, such as maximum independent set [11], maximum clique [6], distance oracle [5, 9],
diameter computing [5, 9], all-pair shortest paths [3, 4], etc. Most of these problems have
much more efficient solutions in unit-disk graphs than in general graphs.

The SSSP problem in unit-disk graphs has received a considerable attention in the last
decades. The problem has an Ω(n logn)-time lower bound even when approximation is
allowed, because deciding the connectivity of a unit-disk graph requires Ω(n logn) time [2].
In unweighted unit-disk graphs, at least two O(n logn)-time SSSP algorithms were known
[2, 3], which are optimal. If the vertices are pre-sorted by their x- and y-coordinates, the
algorithm in [3] can solve the problem in O(n) time. In weighted unit-disk graphs, the SSSP
problem was studied in [2, 5, 9, 10, 12]. Both exact and approximation algorithms were given
to solve the problem in sub-quadratic time. For the exact case, the best known results are
the deterministic algorithm by Cabello and Jejčič [2] which uses O(n1+δ) time and O(n1+δ)
space (for any small constant δ > 0) and the randomized algorithm by Kaplan et al. [10]
which uses O(n log12+o(1) n) expected time and O(n log3 n) space. For the approximation
case, the best known result is the (1 + ε)-approximate algorithm by Chan and Skrepetos [5]
which uses O((1/ε)2n logn) time and O((1/ε)2n) space.

H. Wang and J. Xue 60:3

In this paper, we first propose an exact SSSP algorithm in weighted unit-disk graphs
which uses O(n log2 n) time and O(n) space, significantly improving the results in [2, 10].
Using the same framework together with some new ideas, we also obtain a (1+ε)-approximate
algorithm which uses O(n logn+ n log2(1/ε)) time and O(n) space, improving the result in
[5]. Table 1 presents the comparison of our new algorithms with the previous results.

Table 1 Summary of the previous and our new algorithms for SSSP in weighted unit-disk graphs.

Type Source Time Space Rand./Det.

Exact

[12] O(n4/3+δ) O(n1+δ) Deterministic
[2] O(n1+δ) O(n1+δ) Deterministic
[10] O(n log12+o(1) n) O(n log3 n) Randomized

Corollary 9 O(n log2 n) O(n) Deterministic

Approximate
[9] O((1/ε)3n1.5√logn) O((1/ε)4n logn) Deterministic
[5] O((1/ε)2n logn) O((1/ε)2n) Deterministic

Corollary 15 O(n logn+ n log2(1/ε)) O(n) Deterministic

More specifically, our algorithms solve the SSSP problem in weighted unit-disk graphs by
reducing it to the (2D) offline insertion-only additively-weighted nearest-neighbor (OIWNN)
problem, in which we are given a sequence of operations each of which is either an insertion
(inserting a weighted point in R2 to the dataset) or a weighted nearest-neighbor query (asking
for the additively-weighted nearest neighbor of a given query point in the dataset) and our
goal is to answer all the queries. The reductions imply the following results.

If the OIWNN problem with k operations can be solved in f(k) time, then the exact
SSSP problem in weighted unit-disk graphs can be solved in O(n logn+ f(n)) time.
If the OIWNN problem with k1 operations in which at most k2 operations are insertions
can be solved in f(k1, k2) time, then the (1 + ε)-approximate SSSP problem in weighted
unit-disk graphs can be solved in O(n logn+ n log(1/ε) + f(n,O(ε−2))) time.

Our time bounds in Table 1 are derived from the above results by arguing that f(k) =
O(k log2 k) and f(k1, k2) = O(k1 log2 k2). Therefore, the bottleneck of our algorithms in fact
comes from the OIWNN problem.

As an immediate application, our approximation algorithm can be applied to improve
the preprocessing time of the distance oracles in weighted unit-disk graphs given by Chan
and Skrepetos [5] (see the full version [13] for the details).

1.2 Notations

Basic notations. Throughout the paper, the notation ‖·‖ denotes the Euclidean norm;
therefore, for two points a, b ∈ R2, ‖a− b‖ is the Euclidean distance between a and b. For a
point a ∈ R2, we use �a to denote the unit disk (i.e., disk of radius 1) centered at a.

Graphs. Let G = (V,E) be an edge-weighted undirected graph. A path in G is represented
as a sequence π = 〈z1, . . . , zt〉 where z1, . . . , zt ∈ V and (zi, zi+1) ∈ E for all i ∈ {1, . . . , t−1};
the length of π is the sum of the weights of the edges (z1, z2), . . . , (zt−1, zt). For two vertices
u, v ∈ V , we use πG(u, v) to denote the shortest path from u to v in G and use dG(u, v) to
denote the length of πG(u, v). We say v′ ∈ V is the u-predecessor of v if (v′, v) ∈ E is the
last edge of πG(u, v). For two paths π and π′ in G where π is from u to v and π′ is from v

to w, we denote by π ◦ π′ the concatenation of π and π′, which is a path from u to w in G.

SoCG 2019

60:4 Near-Optimal Algorithms for Shortest Paths in Weighted Unit-Disk Graphs

2 The exact algorithm

In this section, we describe our exact algorithm. Given a set S of n points in the plane
and a source s ∈ S, our goal is to compute a shortest-path tree from s in the weighted
unit-disk graph G induced by S. For all a ∈ S, we use λa ∈ S to denote the s-predecessor of
a. Specifically, we aim to compute two tables dist[·] and pred[·] indexed by the points in S,
where dist[a] = dG(s, a) and pred[a] = λa.

We first briefly review how the well-known Dijkstra’s algorithm computes shortest paths
from a source s in a graph G. Initially, the algorithm sets all dist-values to infinity except
dist[s] = 0, and sets A = S. Then it keeps doing the following procedure until A = ∅.

1. Pick the vertex c ∈ A with the smallest dist-value.
2. For all b ∈ A that are neighbors of c, update the value dist[b] using c, i.e., dist[b] ←

min{dist[b],dist[c] + w(c, b)}, where w(c, b) is the weight of the edge (c, b).
3. Remove c from A.

Directly applying Dijkstra’s algorithm to solve the SSSP problem in a weighted unit-disk
graph takes quadratic time, since the graph can have Ω(n2) edges in worst-case.

Our algorithm will follow the spirit of Dijkstra’s algorithm in a high level and exploit
many insights of unit-disk graphs in order to achieve a near-linear running time. First of all,
we (implicitly) build a grid Γ on the plane, which consists of square cells with side-length
1/2 (a similar grid is also used in [3]). Assume for convenience that no point in S lies on a
grid line, and hence each point in S is contained in exactly one cell of Γ . A patch of Γ is
a square area consisting of 5× 5 cells of Γ . For a point a ∈ S, let �a denote the cell of Γ
containing a and �a denote the patch of Γ whose central cell is �a. For a set P of points in
R2 and a cell � (resp., a patch �) of Γ , define P� = P ∩� (resp., P� = P ∩�). We notice
the following simple fact.

I Fact 1. For all a ∈ S, we have S�a
⊆ NBG(a) ⊆ S�a

, where NBG(a) is the set of all
neighbors of a in G.

We compute and store S� (resp., S�) for all cells � (resp., patches �) of Γ that contain
at least one point in S. In addition, we associate pointers to each a ∈ S so that from a one
can get access to the stored sets S�a

and S�a
. The above preprocessing can be easily done in

O(n logn) time and O(n) space after computing �a for all a ∈ S. We give in the full version
a method to compute �a for all a ∈ S in O(n logn) time without using the floor function.

In order to present our algorithm, we first define a sub-routine Update as follows.
Suppose we are now at some point of the algorithm. If U and V are two subsets of S, then
the procedure Update(U, V) conceptually does the following.
1. dist′[u]← dist[u] for all u ∈ U .
2. pv ← arg minu∈U∩�v

{dist′[u] + ‖u− v‖} for all v ∈ V .
3. For all v ∈ V , if dist[v] > dist′[pv] + ‖pv − v‖, then update dist[v]← dist′[pv] + ‖pv − v‖

and pred[v]← pv.
In words, Update(U, V) updates the shortest-path information of the points in V using the
shortest-path information of the points in U . We use lazy update by copying the dist[·] table
to dist′[·] to guarantee that the order we consider the points in V does not influence the
result of the update (note that U and V may not be disjoint). However, when U and V are
not disjoint, lazy update may result in an inconsistency of shortest-path information, i.e.,
dist[v] > dist[pred[v]] + ‖pred[v]− v‖ for some v ∈ V after Update(U, V). This can happen
when pv ∈ U ∩ V : for example, we update dist[v] to dist′[pv] + ‖pv − v‖ and at the same

H. Wang and J. Xue 60:5

time dist[pv] also gets updated (hence dist[pv] < dist′[pv]), then dist[v] > dist[pv] + ‖pv − v‖
after Update(U, V). We call such a phenomenon data inconsistency. Although Update can
result in data inconsistency in general, we shall guarantee it never happens in our algorithm.

The main framework of our algorithm is quite simple, which is presented in Algorithm 1.
Similarly to Dijkstra’s algorithm, we also maintain a subset A ⊆ S during the algorithm and
pick the point c ∈ A with the smallest dist-value in each iteration (line 6). The difference
is that, instead of using c to update (the shortest-path information of) its neighbors, our
algorithm tries to use all points in A�c

to update their neighbors (line 8) and then remove
them simultaneously from A (line 9). However, it is not guaranteed that the shortest-path
information of all the points in A�c

is correct when c is picked. Therefore, before using the
points in A�c

to update their neighbors, we use an extra procedure to “correct” the shortest-
path information of these points, which is not needed in Dijkstra’s algorithm. Surprisingly,
we achieve this by simply updating the points in A�c

once using the current shortest-path
information of their neighbors (line 7).

Algorithm 1 SSSP(S, s).
1: dist[a]←∞ for all a ∈ S
2: pred[a]← NIL for all a ∈ S
3: dist[s]← 0
4: A← S

5: while A 6= ∅ do . Main loop
6: c← arg mina∈A{dist[a]}
7: Update(A�c

, A�c
) . First update

8: Update(A�c
, A�c

) . Second update
9: A← A\A�c

10: return dist[·] and pred[·]

The correctness of our algorithm is non-obvious. Supposem is the number of the iterations
in the main loop. Let ci be the point c picked in the i-th iteration.

I Fact 2. The points c1, . . . , cm belong to different cells in Γ .

To prove the algorithm correctness, we first show that the dist-values of all points in S are
correctly computed eventually. Clearly, during the entire algorithm, the dist-values can only
decrease and never become smaller than the true shortest-path distances, i.e., we always
have dist[a] ≥ dG(s, a) for all a ∈ S. Keeping this in mind, we prove the following lemma.

I Lemma 3. Algorithm 1 has the following properties.
(1) When the i-th iteration begins, dist[a] = dG(s, a) for all a ∈ S with dG(s, a) ≤ dG(s, ci).
(2) After the first update of the i-th iteration, dist[a] = dG(s, a) for all a ∈ S�ci

.
(3) When the i-th iteration ends, dist[a] = dG(s, a) for all a ∈ S with λa ∈ S�ci

.

Proof. We first notice that the property (3) follows immediately from the property (2)
due to the second update. Indeed, for a point a ∈ S, if λa ∈ S�ci

, then a ∈ S�ci
. If

a ∈ A�ci
, then the property (2) implies that the second update makes dist[a] = dG(s, a). If

a ∈ S�ci
\A�ci

, then a ∈ A�cj
for some j < i (since a got removed from A in a previous

iteration) and the property (2) guarantees that dist[a] = dG(s, a) after the first update of the
j-th iteration. As such, we only need to verify the first two properties. We achieve this using
induction on i. The base case is i = 1. Note that c1 = s and dG(s, c1) = 0. Thus, to see (1),
we only need to guarantee that dist[s] = dG(s, s) = 0 when the first iteration begins, which is

SoCG 2019

60:6 Near-Optimal Algorithms for Shortest Paths in Weighted Unit-Disk Graphs

ck

a

r

r′

s

Figure 1 Illustrating points a, r, and r′. The solid path is πG(s, a). The solid square is �ck .

clearly true. After the first update of the first iteration, we have dist[a] = ‖s− a‖ = dG(s, a)
for all a ∈ S�c1

, hence the property (2) is satisfied. Assume the lemma holds for all i < k,
and we show it also holds in the k-th iteration.

To see the property (1), let a ∈ S be a point such that dG(s, a) ≤ dG(s, ck). Consider the
moment when the k-th iteration begins. Assume for a contradiction that dist[a] > dG(s, a) at
that time. Suppose πG(s, a) = 〈z0, z1, . . . , zt〉 where z0 = s and zt = a. Define j as the largest
index such that dist[zj] = dG(s, zj). Note that j ∈ {0, . . . , t− 1} because dist[s] = dG(s, s)
and dist[a] 6= dG(s, a). Therefore, dist[zj] = dG(s, zj) < dG(s, a) ≤ dG(s, ck) ≤ dist[ck].
This implies zj /∈ A (otherwise it contradicts the fact that ck is the point in A with the
smallest dist-value). It follows zj ∈ S�ci

for some i < k, as it got removed from A in
some previous iteration. Then by our induction hypothesis and the property (3), we have
dist[zj+1] = dG(s, zj+1) at the end of the i-th iteration and thus at the beginning of the k-th
iteration, because λzj+1 = zj . However, this contradicts the fact that dist[zj+1] > dG(s, zj+1).
As such, dist[a] = dG(s, a) when the k-th iteration begins.

Next, we prove the property (2). For convenience, in what follows, we use A to denote
the set A during the k-th iteration (before line 9). We have S�ck

= A�ck
, since A =

S\(
⋃k−1
i=1 S�ci

) and ck /∈ �ci
for all i < k by Fact 2. Let a ∈ A�ck

be a point and r = λa.
We want to show that dist[a] = dG(s, a) after the first update of the k-th iteration. If r /∈ A,
then r got removed from A in the i-th iteration for some i < k, namely, r ∈ S�ci

. By our
induction hypothesis and the property (3), we have dist[a] = dG(s, a) at the end of i-th
iteration (and thus in all the next iterations). So assume r ∈ A (this implies that r 6= s and
thus λr exists). In this case, a key observation is that before the first update of the k-th
iteration, dist[r] = dG(s, r). To see this, let r′ = λr (e.g., see Fig. 1). Note that ‖r′ − a‖ > 1,
otherwise the path πG(s, r′) ◦ 〈r′, a〉 would be shorter than πG(s, r′) ◦ 〈r′, r, a〉 = πG(s, a),
contradicting the fact that πG(s, a) is the shortest path from s to a. It follows that

dG(s, a) = dG(s, r′) + dG(r′, a) ≥ dG(s, r′) + ‖r′ − a‖ > dG(s, r′) + 1.

On the other hand, since a ∈ �ck
, we have

dG(s, a) ≤ dG(s, ck) + dG(ck, a) = dG(s, ck) + ‖ck − a‖ ≤ dG(s, ck) + 1.

Therefore, dG(s, r′) < dG(s, ck), and by the property (1) we have dist[r′] = dG(s, r′) when
the k-th iteration begins. This further implies r′ /∈ A, since dist[r′] = dG(s, r′) < dG(s, ck) =
dist[ck] when the k-th iteration begins. Hence, r′ got removed from A in the i-th iteration for
some i < k. Using our induction hypothesis and the property (3), we have dist[r] = dG(s, r)
at the end of the i-th iteration (and thus in all the next iterations). Note that r ∈ �ck

,
because r ∈ �a. We further have r ∈ A�ck

, as we assumed r ∈ A. Hence, the first update of
the k-th iteration makes dist[a] = dG(s, a). This proves the property (2). J

H. Wang and J. Xue 60:7

Lemma 3 implies that dist[a] = dG(s, a) for all a ∈ S at the end of Algorithm 1. Indeed,
any point a ∈ S belongs to S�ci

for some i ∈ {1, . . . ,m}, thus the property (2) of Lemma 3
guarantees dist[a] = dG(s, a). Next, we check the correctness of the pred[·] table. We want
dist[a] = dist[pred[a]] + ‖pred[a] − a‖ for all a ∈ S. However, as mentioned before, the
sub-routine Update in general may result in data inconsistency, making this equation false.
The next lemma shows this can not happen in our algorithm.

I Lemma 4. At any moment of Algorithm 1, we always have dist[a] = dist[pred[a]] +
‖pred[a]− a‖ for all a ∈ S.

Now we see that Algorithm 1 correctly computes shortest paths from s. However, it is
still not clear why simultaneously processing all points in one cell in each iteration makes our
algorithm faster than the standard Dijkstra’s algorithm. In what follows, we focus on the
time complexity of the algorithm. At this point, let us ignore the two Update sub-routines
and show how to efficiently implement the remaining part of the algorithm. In each iteration,
all the work can be done in constant time except lines 6 and 9. To efficiently implement lines 6
and 9, we maintain the set A in a (balanced) binary search tree using the dist-values as keys.
In this way, line 6 can be done in O(logn) time, and lines 9 can be done in O(|S�c

| · logn)
time. Note that whenever the dist-value of a point in A is updated, we also need to update
the binary search tree in O(logn) time. This occurs in the two Update sub-routines, which
has at most O(|S�c

|+ |S�c
|) = O(|S�c

|) modifications of the dist-values. Therefore, the time
for updating the binary search tree is O(|S�c

| · logn). To summarize, the time cost of the i-th
iteration, without the Update sub-routines, is O(|S�ci

| · logn). Since
∑m
i=1 |S�ci

| ≤ 25n
by Fact 2, the overall time is O(n logn). In the following two sections, we shall consider
the time complexities of the two Update sub-routines. To efficiently implement the first
Update is relatively easy, while the second one is more challenging.

2.1 First update
In this section, we show how to implement the first update (line 7) in O(|S�c

| · logn) time.
As mentioned before, we can obtain the points in S�c

using the pointer associated to c, and
then further find the points in A�c

and A�c
. After this, we do dist′[a] ← dist[a] for all

a ∈ A�c
. To implement Update(A�c

, A�c
), the critical step is to find, for every r ∈ A�c

,
a point p ∈ A�c

∩ �r that minimizes dist′[p] + ‖p− r‖. This is equivalent to searching the
weighted nearest-neighbor of r in the unit disk �r (if we regard A�c

as a weighted dataset
where the weight of each point equals its dist′-value). Unfortunately, it is currently not
known how to efficiently solve this problem. Therefore, we need to exploit some special
property of the problem in hand. An observation here is that c is the point in A�c

with
the smallest dist′-value and all the points in A�c

are of distance at most 1 to c (because
c ∈ A�c

). Using this observation, we prove the following key lemma.

I Lemma 5. Before the first update of each iteration, for all r ∈ A�c
, we have

arg min
a∈A�c

∩�r

{dist′[a] + ‖a− r‖} = arg min
a∈A�c

{dist′[a] + ‖a− r‖}.

Proof. Let p = arg mina∈A�c
∩�r
{dist′[a]+‖a−r‖}. Define B = A�c

\(A�c
∩�r). It suffices

to show that dist′[p] + ‖p− r‖ < dist′[b] + ‖b− r‖ for all b ∈ B. Fix a point b ∈ B (e.g., see
Fig. 2). We have ‖b− r‖ > 1 by construction. On the other hand, since r ∈ A�c

, we have
c ∈ �r and hence ‖c − r‖ ≤ 1. Furthermore, dist′[c] ≤ dist′[b], because b ∈ A and c is the
point in A with the smallest dist-value (as well as the smallest dist′-value). It follows that

dist′[p] + ‖p− r‖ ≤ dist′[c] + ‖c− r‖ < dist′[b] + ‖b− r‖,

where the first “≤” follows from the definition of p and the fact that c ∈ A�c
∩ �r. J

SoCG 2019

60:8 Near-Optimal Algorithms for Shortest Paths in Weighted Unit-Disk Graphs

c
r

b

Figure 2 Illustrating the proof of Lemma 5. The solid square is �c and the solid circle is �r.

The above lemma makes the problem easy. Indeed, for every r ∈ A�c
, we only need to find a

point p ∈ A�c
that minimizes dist′[p] + ‖p− r‖ and Lemma 5 guarantees that p ∈ �r. This

is just the standard (additively-)weighted nearest-neighbor search, which can be solved by
building a weighted Voronoi Diagram (WVD) on A�c

and then querying for each r ∈ A�c
.

Building the WVD takes O(|A�c
| · log |A�c

|) time and linear space [8], and each query can be
answered in O(log |A�c

|) time. The last step, updating the dist-values and pred-values of the
points in A�c

, is easy. So the first update of the i-th iteration can be done in O(|S�ci
| · logn)

time. Since
∑m
i=1 |S�ci

| ≤ 25n, the total time for the first update is O(n logn).

2.2 Second update
In this section, we consider the second update (line 8) in Algorithm 1. Unfortunately, the
trick used in the first update does not apply, which makes the second update more difficult.
Here we design a more general algorithm, which can implement Update(U, V) for arbitrary
subsets U, V ⊆ S in O(f(k) + k log k) time where k = |U |+ |V | and f(k) is the time cost of
the OIWNN problem with k operations (i.e., insertions and queries). The framework of the
algorithm is presented in Algorithm 2. After copying dist[·] to dist′[·], we first sort the points
in U in increasing order of their dist′-values (line 2). Then we compute |U | disjoint subsets
V1, . . . , V|U | of V (line 4), where Vi consists of the points contained in �ui

but not contained
in �uj

for any j < i. Note that
⋃|U |
i=1 Vi consists of all the points in V who have neighbors in

U , and hence we only need to update the shortest-path information of these points. For each
point v ∈ Vi, what we do is to find its weighted nearest-neighbor p in {ui, . . . , u|U |} where
the weights are the dist-values (line 9), and update the shortest-path information of v by
attempting to use p as predecessor (line 10-12).

We first prove the correctness of Algorithm 2. Consider a point v ∈ Vi. The purpose
of Update(U, V) is to find the weighted nearest-neighbor of v in U ∩ �v (and use it to
update the shortest-path information of v), while what we find in line 9 is the weighted
nearest-neighbor p in {ui, . . . , u|U |}. We notice that U ∩�v ⊆ {ui, . . . , u|U |} because v /∈ �uj

for all j < i by the definition of Vi. Therefore, we only need to show that the point p
computed by line 9 is contained in U ∩ �v.

I Lemma 6. At line 9 of Algorithm 2, we have p ∈ U ∩ �v.

Proof. Clearly, we have p ∈ U since B = {ui, . . . , u|U |} ⊆ U . It suffices to show ‖p− v‖ ≤ 1.
Assume for a contradiction that ‖p−v‖ > 1. We have ‖ui−v‖ ≤ 1 since v ∈ Vi. Furthermore,
dist′[ui] ≤ dist′[p] because p ∈ {ui, . . . , u|U |} and dist′[ui] ≤ dist′[uj] for all j ≥ i. Hence,

dist′[ui] + ‖ui − v‖ ≤ dist′[ui] + 1 ≤ dist′[p] + 1 < dist′[p] + ‖p− v‖,

which contradicts the fact that p is the weighted nearest-neighbor of v in {ui, . . . , u|U |}. J

H. Wang and J. Xue 60:9

Algorithm 2 Update(U, V).
1: dist′[u]← dist[u] for all u ∈ U .
2: Sort the points in U = {u1, . . . , u|U |} such that dist′[u1] ≤ · · · ≤ dist′[u|U |]
3: for i = 1, . . . , |U | do
4: Vi ← {v ∈ V : v ∈ �ui

and v /∈ �uj
for all j < i}

5: B ← ∅
6: for i = |U |, . . . , 1 do
7: B ← B ∪ {ui}
8: for v ∈ Vi do
9: p← arg minb∈B{dist′[b] + ‖b− v‖}
10: if dist[v] > dist′[p] + ‖p− v‖ then
11: dist[v]← dist′[p] + ‖p− v‖
12: pred[v]← p

Next, we analyze the time complexity of Algorithm 2. At the beginning, we need to sort
the points in U in increasing order of their dist-values, which can be done in O(|U | · log |U |)
time and hence O(k log k) time. Algorithm 2 basically consists of two loops. We first consider
the second loop (line 6-12). In this loop, what we do is weighted nearest-neighbor search
on B (line 9) with insertions (line 7), where the weight of each point b ∈ B is dist′[b]. Note
that all insertions and queries here are offline, since the points u1, . . . , u|U | and the sets
V1, . . . , V|U | are already known before the loop. We have |U | insertions and |V | queries, and
hence k operations in total. Recall that f(k) is the time for solving the OIWNN problem
with k operations. So this loop takes f(k) time.

Now we consider the first loop (line 3-4). This loop requires us to compute Vi, the subset
of V consisting of the points contained in �ui

but not contained in �j for all j < i, for
i ∈ {1, . . . , |U |}. We have the following lemma. With the lemma, Update(U, V) can be done
in O(f(k) + k log k) time.

I Lemma 7. The first loop of Algorithm 2 takes O(k log k) time where k = |U |+ |V |.

2.3 Putting everything together
As argued before, except the two Update sub-routines, Algorithm 1 runs in O(n logn) time.
Section 2.1 shows that the first update can be done in O(|S�c

| · logn) time. Section 2.2
demonstrates that the second update of each iteration can be done in O(f(k) + k log k) time
where k = |A�c

|+ |A�c
| = O(|S�c

|) and f(k) is the time for solving the OIWNN problem
with k operations. Noting the fact

∑m
i=1 |S�ci

| ≤ 25n, we can conclude the following.

I Theorem 8. Suppose the OIWNN problem with k operations can be solved in f(k) time,
where f(k)/k is a non-decreasing function. Then there exists an SSSP algorithm in weighted
unit-disk graphs with O(n logn+ f(n)) running time, where n is the number of the vertices.

Proof. According to our analysis and the fact
∑m
i=1 |S�ci

| ≤ 25n, the overall time of
Algorithm 1 is O(n logn+

∑m
i=1 f(|S�ci

|)). Since f(k)/k is non-decreasing, we have

m∑
i=1

f(|S�ci
|) =

m∑
i=1
|S�ci

| ·
f(|S�ci

|)
|S�ci

|
≤

m∑
i=1
|S�ci

| · f(n)
n
≤ 25f(n).

Therefore, Algorithm 1 runs in O(n logn+ f(n)) time. J

SoCG 2019

60:10 Near-Optimal Algorithms for Shortest Paths in Weighted Unit-Disk Graphs

Using the standard logarithmic method [1] (see also [7] with an additional “bulk update”
operation), we can solve the OIWNN problem (even the online version) with k operations
in O(k log2 k) time using linear space, implying f(k) = O(k log2 k). To explore the offline
nature of our OIWNN problem, we give in the full version [13] an easier solution with the
same performance. By plugging in this algorithm, we obtain the following corollary.

I Corollary 9. There exists an SSSP algorithm in weighted unit-disk graphs with O(n log2 n)
time and O(n) space, where n is the number of the vertices.

3 The approximation algorithm

We now modify our algorithm framework in the last section (Algorithm 1) to obtain a
(1 + ε)-approximate algorithm for any ε > 0. Again, let (S, s) be the input of the problem
where |S| = n and G be the weighted unit-disk graph induced by S. Formally, a (1 + ε)-
approximate algorithm computes two tables dist[·] and pred[·] indexed by the points in S
such that dist[a] ≤ (1 + ε) · dG(s, a) and dist[a] = dist[pred[a]] + ‖pred[a]− a‖ for all a ∈ S.
Note that the two tables dist[·] and pred[·] enclose, for each point a ∈ S, a path from s to a
in G that is a (1 + ε)-approximation of the shortest path from s to a.

Our algorithm is shown in Algorithm 3, which differs from our exact algorithm (Algo-
rithm 1) as follows. First, in the initialization, we directly compute the dist-values and
pred-values of all the neighbors of s in G (line 4-6); note that if a is a neighbor of s then
the shortest path from s to a is 〈s, a〉, because G is a weighted unit-disk graph. Second, the
first update in Algorithm 1 is replaced with two update procedures (line 10-11). Finally,
the second update in Algorithm 1 is replaced with an approximate update (line 12) in
Algorithm 3, which involves a new sub-routine ApproxUpdate defined as follows. If U and
V are two disjoint subsets of S, ApproxUpdate(U, V) conceptually does the following.
1. For each v ∈ V , pick a point pv ∈ U∩�v such that dist[pv]+‖pv−v‖ ≤ dist[u]+‖u−v‖+ε/2

for all u ∈ U ∩ �v.
2. For all v ∈ V , if dist[v] < dist[pv] + ‖pv − v‖, then dist[v] ← dist[pv] + ‖pv − v‖ and

pred[v]← pv.
Unlike the Update sub-routine, ApproxUpdate cannot result in data inconsistency because
we require U and V to be disjoint.

The basic idea of Algorithm 3 is similar to that of our exact algorithm. To verify the
correctness of the algorithm, we need to introduce some notations. For a ∈ S, let la be the
number of the edges on the path πG(s, a) and define τa = dG(s, a) + (la − 1) · (ε/2). Also, as
in Section 2, we use λa to denote the s-predecessor of a. We first notice the following fact.

I Fact 10. For all a ∈ S, τa ≤ (1 + ε) · dG(s, a).

Proof. Suppose πG(s, a) = 〈z0, z1, . . . , zla〉 where z0 = s and zla = a. Note that ‖zi−zi+2‖ >
1 for all i ∈ {0, . . . , la − 2}, for otherwise 〈z0, z1, . . . , ẑi+1, . . . , zla〉 would be a shorter path
from s to a than πG(s, a) (here ẑi+1 means zi+1 is absent in the sequence). Therefore,
dG(s, a) ≥ (la − 1)/2, and τa = dG(s, a) + (la − 1) · (ε/2) ≤ (1 + ε) · dG(s, a). J

Let m be the number of iterations of the main loop and ci be the point c picked in the
i-th iteration. Note that Fact 2 also holds for Algorithm 3. Further, we have the following
observation, which is similar to Lemma 3 in Section 2.

I Lemma 11. Algorithm 3 has the following properties.
(1) When the i-th iteration begins, dist[a] ≤ τa for all a ∈ S with τa ≤ dist[ci].
(2) After line 11 of the i-th iteration, dist[a] ≤ τa for all a ∈ S�ci

.
(3) When the i-th iteration ends, dist[a] ≤ τa for all a ∈ S with λa ∈ S�ci

.

H. Wang and J. Xue 60:11

Algorithm 3 ApproxSSSP(S, s).
1: dist[a]←∞ for all a ∈ S
2: pred[a]← NIL for all a ∈ S
3: dist[s]← 0
4: for a ∈ (S\{s}) ∩ �s do
5: dist[a]← ‖s− a‖
6: pred[a]← s

7: A← S

8: while A 6= ∅ do . Main loop
9: c← arg mina∈A{dist[a]}
10: Update(A�c

\A�c
, A�c

)
11: Update(A�c

, A�c
)

12: ApproxUpdate(A�c
, A�c

\A�c
) . Approximate update

13: A← A\A�c

14: return dist[·] and pred[·]

By the above lemma, we see that dist[a] ≤ τa for all a ∈ S at the end of Algorithm 3.
Indeed, any point a ∈ S belongs to S�ci

for some i ∈ {1, . . . ,m}, thus the property
(2) of Lemma 11 guarantees that dist[a] ≤ τa. Using Fact 10, we further conclude that
dist[a] ≤ (1 + ε) · dG(s, a) for all a ∈ S at the end of Algorithm 3. Next, we need to check the
correctness of the pred[·] table. We want dist[a] = dist[pred[a]] + ‖pred[a]− a‖ for all a ∈ S.
As mentioned in Section 2, the procedure Update(U, V) may result in data inconsistency,
namely dist[v] > dist[pred[v]] + ‖pred[v]− v‖ for some v ∈ V , when U and V are not disjoint.
In Algorithm 3, the only place where this can happen is line 11 (note that the Update
sub-routine in line 10 acts on two disjoint sets). However, the following lemma shows that
even line 11 cannot result in data inconsistency.

I Lemma 12. After line 11 of each iteration in Algorithm 3, we have dist[a] ≤ dist[b]+‖b−a‖
for all a, b ∈ A�c

. In particular, at any moment of Algorithm 3, we always have dist[a] =
dist[pred[a]] + ‖pred[a]− a‖ for all a ∈ S.

The correctness of Algorithm 3 is thus proved. Later, the first statement of Lemma 12 will
also be used to obtain an efficient implementation of the approximate update.

Next, we consider the time complexity of Algorithm 3. Using the same argument as
in Section 2, we see that the running time of Algorithm 3 without line 10-12 is O(n logn).
Line 10 can be implemented using the same method as in Section 2.1, namely building a
WVD on the points in A�c

\A�c
and querying for each point in A�c

(the correctness follows
from the argument in Section 2.1). Also, line 11 can be implemented in this way, because
the points in A�c

are pairwise adjacent in G. Therefore, the total running time for line 10
and 11 is O(n logn). It suffices to analyze the time cost of line 12, the approximate update.

3.1 Approximate update
In order to implement the approximate update (line 12) in Algorithm 3, we (implicitly) build
another grid Γ ′ on the plane, which consists of square cells with side-length ε/8. To avoid
confusion, we use � to denote a cell in Γ ′. For a point a ∈ S, let �a denote the cell in Γ ′
containing a. For a set P of points in R2 and a cell � in Γ ′, define P� = P ∩�.

SoCG 2019

60:12 Near-Optimal Algorithms for Shortest Paths in Weighted Unit-Disk Graphs

Line 12 of Algorithm 3 is ApproxUpdate(A�c
, A�c

\A�c
). Let U = A�c

and V =
A�c
\A�c

. We shall use two special properties of the set U : (i) all the points in U are contained
in one cell in Γ and (ii) dist[u] ≤ dist[u′] + ‖u′ − u‖ for all u, u′ ∈ U before the procedure
ApproxUpdate(U, V), which follows from Lemma 12. Our algorithm for implementing
ApproxUpdate(U, V) is shown in Algorithm 4, which is a variant of Algorithm 2. Here we
no longer need the dist′[·] table because U and V are disjoint.

Algorithm 4 ApproxUpdate(U, V).
1: Sort the points in U = {u1, . . . , u|U |} such that dist[u1] ≤ · · · ≤ dist[u|U |]
2: for i = 1, . . . , |U | do
3: Vi ← {v ∈ V : v ∈ �ui

and v /∈ �uj
for all j < i}

4: U ′ ← {uj : j ≥ k for all k such that uk ∈ �uj}
5: B ← ∅
6: for i = |U |, . . . , 1 do
7: if ui ∈ U ′ then B ← B ∪ {ui}
8: for v ∈ Vi do
9: p← arg minb∈B{dist[b] + ‖b− v‖}

10: if p /∈ �v then p← ui
11: if dist[v] > dist[p] + ‖p− v‖ then
12: dist[v]← dist[p] + ‖p− v‖
13: pred[v]← p

Recall the definition of the sub-routine ApproxUpdate in Section 3. To verify the
correctness of Algorithm 4, it suffices to show that just before line 11, the point p satisfies
that p ∈ U ∩ �v and dist[p] + ‖p − v‖ ≤ dist[r] + ‖r − v‖ + ε/2 for all r ∈ U ∩ �v. The
condition p ∈ �v is clearly satisfied, because of line 10 (note that ui ∈ �v). To verify the
latter condition, we establish the following lemma.

I Lemma 13. Just before line 11 of Algorithm 4, we have dist[p] + ‖p− v‖ ≤ dist[r] + ‖r −
v‖+ ε/2 for all r ∈ U ∩ �v.

For the time complexity of Algorithm 4, let k = |U |+ |V |. The sorting in line 1 takes
O(|U | · log |U |) time. The loop in line 2-3 can be implemented in O(k log |U |) time using the
same method as in Section 2.2. In line 4, we can compute the set U ′ in O(|U | · log(|S�c

|/ε))
time by grouping the points in U that belong to the same Γ ′-cell (see the full version [13]
for a more detailed discussion). The loop in line 6-13 is basically weighted nearest-neighbor
search (line 9) with insertions (line 7). There are O(|V |) queries and O(|U ′|) insertions.
Note that |U ′| = O(ε−2), because of the property (i) of U . Therefore, if we use f(k1, k2) to
denote the time cost for solving the OIWNN problem with k1 operations in which at most
k2 operations are insertions, then the loop in line 6-13 takes f(k,O(ε−2)) time. In sum, the
running time of Algorithm 4 is O(f(k,O(ε−2)) + k log k) time. Therefore, the approximate
update in Algorithm 3 can be done in O(f(|S�c

|, O(ε−2)) + |S�c
| · log(|S�c

|/ε)) time.

3.2 Putting everything together
Except the approximate update, Algorithm 1 runs in O(n logn) time. Section 3.1 shows that
the approximate update of each iteration can be done in O(f(k,O(ε−2))+k log k+k log(1/ε))
time where k = |A�c

|+ |A�c
| = O(|S�c

|) and f(k1, k2) is the time for solving the OIWNN
problem with k1 operations in which at most k2 operations are insertions. Noting the fact∑m
i=1 |S�ci

| ≤ 25n, we can conclude the following.

H. Wang and J. Xue 60:13

I Theorem 14. Suppose the OIWNN problem with k1 operations in which at most k2
operations are insertions can be solved in f(k1, k2) time, and assume f(k1, k2)/k1 is a non-
decreasing function of k1 for any fixed k2. Then there exists a (1 + ε)-approximate SSSP
algorithm in weighted unit-disk graphs with O(n logn+ n log(1/ε) + f(n,O(ε−2))) running
time, where n is the number of the vertices.

We give in the full version [13] a linear-space algorithm with f(k1, k2) = O(k1 log2 k2). By
plugging in this algorithm, we can obtain the following corollary.

I Corollary 15. For any ε > 0, there exists a (1+ε)-approximate SSSP algorithm in weighted
unit-disk graphs with O(n logn+ n log2(1/ε)) time and O(n) space, where n is the number
of the vertices.

Our algorithm in the above corollary further improves the preprocessing time of the
distance oracles in weighted unit-disk graphs given by Chan and Skrepetos [5] (see the full
version [13] for details).

References
1 Jou L. Bentley. Decomposable searching problems. Information Processing Letters, 8:244–251,

1979.
2 Sergio Cabello and Miha Jejčič. Shortest paths in intersection graphs of unit disks. Computa-

tional Geometry: Theory and Applications, 48:360–367, 2015.
3 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in unit-disk graphs in

slightly subquadratic time. In Proceedings of the 27th International Symposium on Algorithms
and Computation (ISAAC), pages 24:1–24:13, 2016.

4 Timothy M. Chan and Dimitrios Skrepetos. All-Pairs Shortest Paths in Geometric Intersection
Graphs. In Proceedings of the 15th Algorithms and Data Structures Symposium (WADS),
pages 253–264, 2017.

5 Timothy M Chan and Dimitrios Skrepetos. Approximate Shortest Paths and Distance Oracles
in Weighted Unit-Disk Graphs. In Proceedings of the 34th International Symposium on
Computational Geometry (SoCG), pages 24:1–24:13, 2018.

6 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86:165–177, 1990.

7 Mark de Berg, Kevin Buchin, Bart M.P. Jansen, and Gerhard Woeginger. Fine-Grained
Complexity Analysis of Two Classic TSP Variants. In Proceedings of the 43rd International
Colloquium on Automata, Languages, and Programming (ICALP), pages 5:1–5:14, 2016.

8 Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174, 1987.
9 Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and

its applications. SIAM Journal on Computing, 35:151–169, 2005.
10 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic

planar Voronoi diagrams for general distance functions and their algorithmic applications.
In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2495–2504, 2017.

11 Tomomi Matsui. Approximation algorithms for maximum independent set problems and
fractional coloring problems on unit disk graphs. In Proceedings of Japanese Conference on
Discrete and Computational Geometry (JCDCG), pages 194–200, 1998.

12 Liam Roditty and Michael Segal. On bounded leg shortest paths problems. Algorithmica,
59:583–600, 2011.

13 Haitao Wang and Jie Xue. Near-Optimal Algorithms for Shortest Paths in Weighted Unit-Disk
Graphs. arXiv preprint, 2019. arXiv:1903.05255.

SoCG 2019

http://arxiv.org/abs/1903.05255

Searching for the Closest-Pair in a Query
Translate
Jie Xue
University of Minnesota, Twin Cities, Minneapolis, MN, USA
http://cs.umn.edu/~xuexx193
xuexx193@umn.edu

Yuan Li
Facebook Inc., Seattle, WA, USA
lydxlx@fb.com

Saladi Rahul
University of Illinois at Urbana-Champaign, Urbana, IL, USA
http://cs.umn.edu/~rahuls
saladi.rahul@gmail.com

Ravi Janardan
University of Minnesota, Twin Cities, Minneapolis, MN, USA
http://cs.umn.edu/~janardan
janardan@umn.edu

Abstract
We consider a range-search variant of the closest-pair problem. Let Γ be a fixed shape in the plane.
We are interested in storing a given set of n points in the plane in some data structure such that for
any specified translate of Γ , the closest pair of points contained in the translate can be reported
efficiently. We present results on this problem for two important settings: when Γ is a polygon
(possibly with holes) and when Γ is a general convex body whose boundary is smooth. When
Γ is a polygon, we present a data structure using O(n) space and O(logn) query time, which is
asymptotically optimal. When Γ is a general convex body with a smooth boundary, we give a
near-optimal data structure using O(n logn) space and O(log2 n) query time. Our results settle
some open questions posed by Xue et al. at SoCG 2018.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Closest pair, Range search, Geometric data structures, Translation query

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.61

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.09498.

Funding The research of Jie Xue is supported, in part, by a Doctoral Dissertation Fellowship from
the Graduate School of the University of Minnesota.

1 Introduction

The range closest-pair (RCP) problem, as a range-search version of the closest-pair problem,
aims to store a given set S of n points in some data structure such that for a specified query
range X ∈ X chosen from a certain query space X , the closest pair of points in S ∩X can be
reported efficiently. As a range-search problem, the RCP problem is non-decomposable in
the sense that even if the query range X can be written as X = X1 ∪X2, the closest-pair
in S ∩X cannot be determined efficiently knowing the closest-pairs in S ∩X1 and S ∩X2.
The non-decomposability makes the problem quite challenging and interesting, as many
traditional range-search techniques are inapplicable.

The RCP problem in R2 has been well-studied over years [1, 4, 6, 7, 10, 11, 13, 14, 15].
Despite of much effort, the query ranges considered are still restricted to very simple shapes,
typically orthogonal rectangles and halfplanes. It is then interesting to ask what if the query

© Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 61; pp. 61:1–61:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://cs.umn.edu/~xuexx193
mailto:xuexx193@umn.edu
mailto:lydxlx@fb.com
http://cs.umn.edu/~rahuls
mailto:saladi.rahul@gmail.com
http://cs.umn.edu/~janardan
mailto:janardan@umn.edu
https://doi.org/10.4230/LIPIcs.SoCG.2019.61
https://arxiv.org/abs/1807.09498
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Searching for the Closest-Pair in a Query Translate

ranges are of more general shapes. In this paper, we consider a new variant of the RCP
problem in which the query ranges are translates of a fixed shape (which can be quite general).
Formally, let Γ be a fixed shape in R2 called base shape and LΓ be the collection of all
translates of Γ . We investigate the RCP problem with the query space LΓ (or the LΓ -RCP
problem). This type of query, which is for the first time mentioned in [15] (as an open
question), is natural and well-motivated. First, in range-search problems, the query spaces
considered are usually closed under translation; in this sense, the query space consisting
of translates of a single shape seems the most “fundamental” query type. Some of the
previously studied query ranges, e.g., quadrants and halfplanes [1, 7, 15], are in fact instances
of translation queries (halfplanes can be viewed as translates of an “infinitely” large disc).
Also, translation queries find motivation in practice. For instance, in many applications, the
user may be interested in the information within a certain distance r from him/her. In this
situation, the query ranges are discs of a fixed radius r, i.e., translates of a fixed disc; or
more generally, if the distance r is considered under a general distance function induced by
a norm ‖·‖, then the query ranges are translates of a ‖·‖-disc of radius r. Finally, there is
another view of the translation queries: the base shape Γ can be viewed as static while the
dataset is translating. With this view, a motivation of the translation queries is to monitor
the information in a fixed region (i.e., Γ) for moving points (where the movement pattern
only includes translation).

We investigate the problem in two important settings: when Γ is a polygon (possibly
with holes) and when Γ is a general convex body whose boundary is smooth (i.e., through
each point on the boundary there is a unique tangent line to Γ). Our main goal is to design
optimal or near-optimal data structures for the problems in terms of space cost and query
time. The preprocessing of these data structures is left as an open question for future study.

Although we restrict the query ranges to be translates of a fixed shape, the problem is still
challenging for a couple of reasons. First, the base shape Γ to be considered is quite general
in both of our settings. When Γ is a polygon, it needs not be convex, and indeed can even
have holes. In the case where Γ is a general convex body, we only need the aforementioned
smoothness of its boundary. Second, we want the RCP data structures to be optimal or
near-optimal, namely, use O(n · poly(logn)) space and have O(poly(logn)) query time. This
is usually difficult for a non-decomposable range-search problem.

1.1 Related work and our contributions
Related work. The closest-pair problem and range search are both classical topics; some
surveys can be found in [3, 12]. The RCP problem in R2 has been studied in prior work
[1, 4, 6, 7, 10, 11, 13, 14, 15]. State-of-the-art RCP data structures for quadrant, strip,
rectangle, and halfplane queries were given in the recent work [15]. The quadrant and
halfplane RCP data structures are optimal (i.e., with linear space and logarithmic query
time). The strip RCP data structure uses O(n logn) space and O(logn) query time, while
the rectangle RCP data structure uses O(n log2 n) space and O(log2 n) query time. The work
[13] considered a colored version of the RCP problem and gave efficient approximate data
structures. The paper [14] studied an approximate version of the RCP problem in which the
returned answer can be slightly outside the query range.

Our contributions. We investigate a new variant of the RCP problem in which the query
ranges are translates of a fixed shape Γ . In the first half of the paper, we assume Γ is a fixed
polygon (possibly with holes), and give an RCP data structure for Γ -translation queries
using O(n) space and O(logn) query time, which is asymptotically optimal. In the second

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:3

half of the paper, we assume Γ is a general convex body with a smooth boundary, and give
a near-optimal RCP data structure for Γ -translation queries using O(n logn) space and
O(log2 n) query time. The O(·) above hides constants depending on Γ . Our results settle
some open questions posed in [15], e.g., the RCP problem with fixed-radius disc queries,
etc. In order to design these data structures, we make nontrivial geometric observations and
exploit the properties of the problem itself (i.e., we are searching for the closest-pair in a
translate). Many of our intermediate results are of independent interest and can probably be
applied to other related problems. We describe our key ideas and techniques in Section 1.3
after establishing relevant notations in Section 1.2.

Organization. Section 1.2 presents the notations and preliminaries used throughout the
paper. Section 1.3 gives an overview of the techniques we use to solve the problems. In
Section 2, we study the problem when Γ is a polygon. In Section 3, we study the problem
when Γ is a general convex body with a smooth boundary. Due to limited space, some proofs
and details are omitted; these can be found in the full version [16]. For the convenience of
the reader, we give short proof sketches for some technical lemmas.

1.2 Preliminaries
Basic notations and concepts. For a, b ∈ R2, we use dist(a, b) to denote the Euclidean
distance between a and b, and use [a, b] to denote the segment connecting a and b. The
length of a pair φ = (a, b) of points, denoted by |φ|, is the length of the segment [a, b], i.e.,
|φ| = dist(a, b). For a shape Γ in R2 and a point p ∈ R2, we denote by Γp the Γ -translate
p+ Γ . We write LΓ = {Γp : p ∈ R2}, i.e., the collection of all Γ -translates.

Candidate pairs. Let S be a set of points in R2 and X a collection of ranges. A candidate
pair in S with respect to X refers to a pair of points in S that is the closest-pair in S ∩X
for some X ∈ X . We denote by Φ(S,X) the set of the candidate pairs in S w.r.t. X .

θ θθ

θ

Figure 1 Examples of wedges and co-wedges.

Wedges and co-wedges. A wedge is a range in R2 defined by an angle θ ∈ (0, π), which
is the intersection of two halfplanes (see the left figure in Figure 1). A co-wedge is a range
in R2 defined by an angle θ ∈ (π, 2π), which is the union of two halfplanes (see the right
figure in Figure 1). The boundary of a wedge or co-wedge W consists of two rays sharing a
common initial point, called the two branches of W . When appropriate, we refer to wedges
and co-wedges collectively as (co-)wedges.

Convex bodies. A convex body in R2 refers to a compact convex shape with a nonempty
interior. If C is a convex body in R2, we denote by ∂C the boundary of C, which is a simple
cycle, and by C◦ the interior of C, i.e., C◦ = C\∂C.
The following two lemmas will be used in various places in this paper.

SoCG 2019

61:4 Searching for the Closest-Pair in a Query Translate

I Lemma 1. Let Γ be a fixed bounded shape in R2, and µ > 0 be a constant. Also, let S be
a set of points in R2. Then for any point p ∈ R2, either the closest-pair in S ∩ Γp has length
smaller than µ, or |S ∩ Γp| = O(1).

I Lemma 2. Let S be a set of points in R2 and X be a collection of ranges in R2. Suppose
(a, b), (a′, b′) ∈ Φ(S,X) are two pairs such that the segments [a, b] and [a′, b′] cross. Then
there exists X ∈ X such that either X ∩ {a, b, a′, b′} = {a, b} or X ∩ {a, b, a′, b′} = {a′, b′}.

1.3 Overview of key ideas and techniques
When Γ is a polygon (possibly with holes), we solve the problem as follows. First, we use a
grid-based approach to reduce the LΓ -RCP problem to the RCP problem with wedge/co-
wedge translation queries and the range-reporting problem with Γ -translation queries. The
range-reporting problem can be easily solved by again reducing to the wedge/co-wedge case.
Therefore, it suffices to study the RCP problem with wedge/co-wedge translation queries.
For both wedge and co-wedge translation queries, we solve the problem by using candidate
pairs. Specifically, we store the candidate pairs and search for the answer among them. In
this approach, the critical point is the number of the candidate pairs, which determines the
performance of our data structures. For both wedge and co-wedge, we prove linear upper
bounds on the number of the candidate pairs. Although the bounds are the same, the wedge
case and co-wedge case require very different proofs, both of which are quite technical and
may be of independent geometric interest. These upper bounds and the above-mentioned
reduction are our main technical contributions for the polygonal case.

When Γ is a general convex body with a smooth boundary, we solve the problem as
follows. First, exploiting the smoothness of ∂Γ , we show that “short” candidate pairs (i.e.,
of length upper bounded by some constant τ) cannot “cross” each other1. It immediately
follows that there are only a linear number of short candidate pairs (because they form
a planar graph). We try to store these short candidate pairs in a data structure D1 such
that the shortest one contained in any query Γq can be found efficiently. However, this is a
nontrivial task, as Γ is quite general here. To this end, we reduce the task of “searching for
the shortest pair in Γq” to several point-location queries for q in planar subdivisions. We
bound the complexity of these subdivisions (and thus the cost of D1) by making geometric
observations for convex translates and using properties of the pseudo-discs. Using D1, we
can answer any query Γq in which the closest-pair is short. What if the closest-pair in Γq is
long (i.e., of length greater than τ)? In this case, Γq contains only O(1) points by Lemma 1.
Therefore, if D1 fails to find the answer, we can simply report the O(1) points contained in
Γq and find the closest-pair by brute-force. The range-reporting is done by point location in
the ≤ k-level of a pseudo-disc arrangement. These are our main contributions for this part.

2 Translation RCP queries for polygons

Let Γ be a fixed polygon (possibly with holes). Assume the boundary of Γ has no self-
intersection2. We investigate the LΓ -RCP problem (where the closest-pair is in terms of the
Euclidean metric). Throughout this section, O(·) hides constants depending on Γ . Our main
result is the following theorem, to prove which is the goal of this section.

1 We say two pairs (a, b) and (a′, b′) cross if the segments [a, b] and [a′, b′] cross.
2 That is, the outer boundary and the boundaries of holes are disjoint simple cycles.

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:5

I Theorem 3. Let Γ be a fixed polygon (possibly with holes) in R2. Then there is an
O(n)-space LΓ -RCP data structure with O(logn) query time.

Let S be the given dataset in R2 of size n. Suppose for convenience that the pairwise
distances of the points in S are distinct (so the closest-pair in any subset of S is unique).

2.1 Reduction to (co-)wedge translation queries
Our first step is to reduce a Γ -translation RCP query to several wedge/co-wedge translation
RCP queries and a range-reporting query. For a vertex v of Γ (either on the outer boundary
or on the boundary of a hole), we define a wedge (or co-wedge) W v as follows. Consider the
two edges adjacent to v in Γ . These two edges define two (explementary) angles at v, one of
which (say σ) corresponds to the interior of Γ (while the other corresponds to the exterior of
Γ). Let W v be the (co-)wedge defined by σ depending on whether σ < π or σ > π.

Let WΓ = {W v : v is a vertex of Γ}. Without loss of generality, suppose that the outer
boundary of Γ consists of at least four edges, and so does the boundary of each hole3; with
this assumption, no three edges of Γ are pairwise adjacent. For two edges e and e′ of Γ , let
dist(e, e′) denote the minimum distance between one point on e and one point on e′. Define
δ = min{dist(e, e′) : e and e′ are non-adjacent edges of Γ}. Clearly, δ is a positive constant
depending on Γ only. Let � be a square of side-length less than δ/

√
2. Due to the choice

of δ, for any q ∈ R2, � cannot intersect two non-adjacent edges of Γq. It follows that �
intersects at most two edges of Γq (as no three edges of Γ are pairwise adjacent); moreover,
if � intersects two edges, they must be adjacent. Thus, � ∩ Γq = � ∩Wq for some W ∈ WΓ .

For a decomposable range-search problem (e.g. range reporting) on S, the above simple
observation already allows us to reduce a Γ -translation query to (co-)wedge translation
queries (roughly) as follows. Let G be a grid of width δ/2 on the plane. For a cell � of G,
we define S� = S ∩�. Due to the decomposability of the problem, to answer a query Γq on
S, it suffices to answer the query Γq on S� for all � that intersect Γq. Since each cell � of
G is a square of side-length δ/2 (which is smaller than δ/

√
2), we have � ∩ Γq = � ∩Wq for

some W ∈ WΓ and thus S� ∩ Γq = S� ∩Wq. In other words, the query Γq on each S� is
equivalent to a (co-)wedge translation query for some (co-)wedge W ∈ WΓ . Applying this
idea to range-reporting, we conclude the following.

I Lemma 4. There exists an O(n)-space range-reporting data structure for Γ -translation
queries, which has an O(logn+ k) query time, where k is the number of the reported points.

However, the above argument fails for a non-decomposable range-search problem, since when
the problem is non-decomposable, we are not able to recover efficiently the global answer
even if the answer in each cell is known. Unfortunately, our RCP problem belongs to this
category. Therefore, more work is required to do the reduction. We shall take advantage of
our observation in Lemma 1. We still lay a planar grid G. But this time, we set the width of
G to be δ/4. A quad-cell � of G is a square consisting of 2× 2 adjacent cells of G. For a
quad-cell � of G, let S� = S ∩�. Note that the side-length of a quad-cell of G is δ/2, and
each cell of G is contained in exactly four quad-cells of G, so is each point in S. Consider a
query range Γq ∈ LΓ . The following observation follows from Lemma 1.

I Lemma 5. For a a quad-cell � of G such that |S� ∩ Γq| ≥ 2, let φ� be the closest-pair in
S� ∩ Γq. Define φ∗ as the shortest element among all φ�. If the length of φ∗ is at most δ/4,
then φ∗ is the closest-pair in S ∩ Γq; otherwise |S ∩ Γq| = O(1).

3 If this is not the case, we can add a new vertex at the midpoint of each edge to “break” it into two.

SoCG 2019

61:6 Searching for the Closest-Pair in a Query Translate

Using the above observation, we are able to do the reduction.

I Theorem 6. Let f, g : N→ N be increasing functions where f(a+ b) ≥ f(a) + f(b). If for
any W ∈ WΓ there is an O(f(n))-space LW -RCP data structure with O(g(n)) query time,
then there is an O(f(n) + n)-space LΓ -RCP data structure with O(g(n) + logn) query time.

Proof. For a quad-cell � of G, let m� be the number of the points in S�. First, we notice
that there are O(n) quad-cells � of G such that m� > 0 since each point in S is contained
in at most four quad-cells; we call them nonempty quad-cells. For each nonempty quad-cell
� and each W ∈ WΓ , we build an LW -RCP data structure on S�; by assumption, this data
structure uses O(f(m�)) space. Now observe that m� ≤ n for all � and

∑
m� ≤ 4n. From

the condition f(a+b) ≥ f(a)+f(b), it follows that
∑
f(m�) = O(f(n)). Since |WΓ | = O(1),

the total space cost of these data structures is O(f(n)). Besides these data structures, we
also build a range-reporting data structure on S for Γ -translation queries. As argued in
Lemma 4, this data structure uses O(n) space.

To answer a query Γq ∈ LΓ , we first find all nonempty quad-cells of G that intersect Γq.
The number of these quad-cells is O(1), as it is bounded by O(∆2/δ2) where ∆ is the diameter
of Γ . These quad-cells can be found in O(logn) time (see [16]). For each such quad-cell �,
we find W ∈ WΓ such that �∩Γq = �∩Wq and query the LW -RCP data structure built on
S� to obtain the closest-pair φ� in S� ∩ Γq, which takes O(g(m�)) time. Since only O(1)
quad-cells are considered, the time for this step is O(g(n)). Once these φ� are computed,
we take the shortest element φ∗ among them. If the length of φ∗ is at most δ/4, then φ∗ is
the closest-pair in S ∩ Γq by Lemma 5 and we just report φ∗. Otherwise, |S ∩ Γq| = O(1)
by Lemma 5. We then compute the O(1) points in S ∩ Γq using the range-reporting data
structure, and compute the closest-pair in S ∩ Γq by brute-force (in constant time). Since
the query time of the range-reporting data structure is O(logn+ k) and k = O(1) here, the
overall query time is O(g(n) + logn), as desired. J

By the above theorem, it now suffices to give efficient RCP data structures for wedge and
co-wedge translation RCP queries. We resolve these problems in the following two sections.

2.2 Handling wedge translation queries
Let W be a fixed wedge in R2 and θ ∈ (0, π) be the angle of W . We denote by r and r′

the two branches of W . For convenience, assume the vertex of W is the origin, and thus
the vertex of a W -translate Wp is the point p. In this section, we shall give an O(n)-space
LW -RCP data structure with O(logn) query time.

The key ingredient of our result is a nontrivial linear upper bound for the number of
the candidate pairs in S with respect to LW . This generalizes a result in [7], and requires a
much more technical proof. Before working on the proof, we first establish an easy fact.

I Lemma 7. Let A ⊆ R2 be a finite set. There exists a (unique) smallest W -translate
(under the ⊆-order) that contains A. Furthermore, a W -translate is the smallest W -translate
containing A iff it contains A and its two branches both intersect A.

We notice that if φ = (a, b) is a pair of points in S and Wp is the smallest W -translate
containing {a, b} described in Lemma 7, then φ ∈ Φ(S,LW) iff φ is the closest-pair in S ∩Wp.
Using Lemma 7, we define the following notions.

I Definition 8. Let φ = (a, b) be a pair of points in R2, and Wp be the smallest W -translate
containing {a, b} described in Lemma 7. If p /∈ {a, b} and the smallest angle of the triangle
4pab is ∠apb, then we say φ is steep; otherwise, we say φ is flat. See Figure 2 for examples.

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:7

p = a b Wp

(a) Flat (as p = a).
a

b

Wpp

(b) Flat (as ∠apb > ∠pba).
a

b

Wpp

(c) Steep.

Figure 2 Examples of flat and steep pairs (the wedge Wp shown in the figures is the smallest
W -translate containing {a, b} described in Lemma 7).

Our first observation is the following.

I Lemma 9. If two candidate pairs φ, φ′ ∈ Φ(S,LW) cross, then either φ or φ′ is steep.

Proof. Suppose φ = (a, b) and φ′ = (a′, b′). Since φ and φ′ cross, by Lemma 2 there
exists some Wt ∈ LW whose intersection with {a, b, a′, b′} is either {a, b} or {a′, b′}; assume
Wt ∩ {a, b, a′, b′} = {a, b}. Let p ∈ R2 be the point such that Wp is the smallest W -translate
containing {a, b}. It follows that Wp ∩ {a, b, a′, b′} = {a, b}, because Wp ⊆Wt. Let c be the
intersection point of the segments [a, b] and [a′, b′]. Since a, b ∈Wp and Wp is convex, c ∈Wp.
The two endpoints a′, b′ of the segment [a′, b′] are not contained in Wp (by assumption), but
c ∈Wp. Hence, the segment [a′, b′] intersects the boundary of Wp at two points, say a∗ and

b
b′

a

b

a′
p′

Wp′
a

b

Wp

c

a∗

p

b∗

(a) The points a∗, b∗, and p′.

a

b
b′

a

b

a′
p′

Wp′

(b) Illustrating why (a′, b′) is steep.

Figure 3 Illustrating Lemma 9.

b∗; assume a∗ (resp., b∗) is the point adjacent to a′ (resp., b′). Clearly, there exists a unique
point p′ ∈ R2 such that 4pa∗b∗ ⊆ 4p′a′b′ and 4pa∗b∗ is similar to 4p′a′b′. See Figure 3a.
It is easy to see that Wp′ is the smallest W -translate containing {a′, b′}. Indeed, Wp′ just
corresponds to the angle ∠a′p′b′, so a′ and b′ lie on the two branches of Wp′ respectively
(see Figure 3b). Thus, by the criterion given in Lemma 7, Wp′ is the smallest W -translate
containing {a′, b′}. Now we have p ∈ Wp′ , which implies Wp ⊆ Wp′ and a, b, a′, b′ ∈ Wp′ .
Since the segments [a, b] and [a′, b′] cross, one of a and b must lie in the triangle 4p′a′b′, say
a ∈ 4p′a′b′. Note that φ′ = (a′, b′) is the closest-pair in Wp′ , thus dist(a′, b′) < dist(a, a′)
and dist(a′, b′) < dist(a, b′). It follows that ∠a′ab′ < ∠ab′a′ and ∠a′ab′ < ∠aa′b′. We further
observe that ∠aa′b′ < ∠p′a′b′ and ∠ab′a′ < ∠p′b′a′, and hence ∠a′ab′ > ∠a′p′b′. Thus, we
have ∠a′p′b′ < ∠p′a′b′ and ∠a′pb′ < ∠p′b′a′, i.e., ∠a′p′b′ is the smallest angle of the triangle
4p′a′b′. As a result, φ′ is steep. J

Lemma 9 implies that the flat candidate pairs in Φ(S,LW) do not cross each other. Therefore,
the segments corresponding to the flat candidate pairs are edges of a planar graph with
vertices in S, which gives a linear upper bound for the number of flat candidate pairs.

It now suffices to bound the number of steep candidate pairs in Φ(S,LW). Unfortunately,
two steep candidate pairs (or even one steep candidate pair and one flat candidate pair) can
cross, making the above non-crossing argument fail. Therefore, we need some new ideas.

I Definition 10. Two pairs φ, φ′ ∈ Φ(S,LW) are adjacent if we can write φ = (a, b) and
φ′ = (a, b′) such that b 6= b′; we call ∠bab′ the angle between φ and φ′, denoted by ang(φ, φ′).

SoCG 2019

61:8 Searching for the Closest-Pair in a Query Translate

b

a
p

Wpb′

rp

r′p

(a) When b′ ∈ 4pab.

b

p
b′

rp

r′p

a

b′ Wp′

p′

r′p′c

(b) When b′ /∈ 4pab.

Figure 4 Illustrating Lemma 11.

I Lemma 11. For adjacent φ, φ′ ∈ Φ(S,LW), if φ and φ′ are both steep, then ang(φ, φ′) ≥ θ.

Proof sketch. Suppose φ = (a, b) and φ′ = (a, b′). Let p ∈ R2 be the point such that Wp

is the smallest W -translate containing {a, b, b′} described in Lemma 7. We denote by rp
and r′p the r-branch and r′-branch of Wp, respectively. Using Lemma 7 and the fact that φ
and φ′ are steep, we can deduce p /∈ {a, b, b′}; see the complete proof in [16] for details. We
distinguish two cases: a is on the boundary of Wp or a is in the interior of Wp. Here we only
discuss the first case. The second one is deferred to the complete proof.

Assume a is on the boundary of Wp. Since p /∈ {a, b, b′}, we have a 6= p. Thus a must lie
on exactly one of rp and r′p, say a ∈ rp. Because Wp is the smallest W -translate containing
{a, b, b′}, one of b and b′ must lie on r′p by the criterion given in Lemma 7. Without loss of
generality, assume b ∈ r′p. Using the criterion in Lemma 7 again, we see that Wp is also the
smallest W -translate containing {a, b}. Thus, φ is the closest-pair in S∩Wp and in particular
we have dist(a, b) < dist(b, b′). It follows that ∠ab′b < ∠bab′ = ang(φ, φ′). If b′ ∈ 4pab, we
are done, because in this case ∠ab′b ≥ ∠apb = θ and thus ang(φ, φ′) = ∠bab′ > ∠ab′b ≥
∠apb = θ. See Figure 4a for an illustration of this case. Next, assume b′ /∈ 4pab. This case
is presented in Figure 4b. Let p′ ∈ R2 be the point such that Wp′ is the smallest W -translate
containing {a, b′}; thus, we have Wp′ ⊆Wp and in particular p′ ∈Wp. Furthermore, p′ must
lie on the segment [p, a], as a ∈ Wp′ . Since φ′ = (a, b′) is steep, a and b′ lie on the two
branches of Wp′ respectively, and ∠p′b′a > ∠ap′b′ = θ. Clearly, b′ lies on the r′-branch of
Wp′ , which we denote by r′p′ . Let c be the intersection point of r′p′ and the segment [a, b].
See Figure 4b. We then have ∠ab′b = ∠ab′c+ ∠cb′b ≥ ∠ab′c = ∠pb′a > ∠ap′b′ = θ. Using
the fact ∠ab′b < ∠bab′ = ang(φ, φ′) obtained before, we conclude ang(φ, φ′) ≥ θ. J

For a point a ∈ S, consider the subset Ψa ⊆ Φ(S,LW) consisting of all steep candidate pairs
having a as one point. We claim |Ψa| = O(1). Suppose Ψa = {ψ1, . . . , ψr} where ψi = (a, bi)
and b1, . . . , br are sorted in polar-angle order around a. By Lemma 11, ang(ψi, ψj) ≥ θ for
any distinct i, j ∈ {1, . . . , r}. Since

∑r−1
i=1 ang(ψi, ψi+1) ≤ 2π, we have r ≤ 2π/θ + 1 = O(1).

As such,
∑
a∈S |Ψa| = O(n), implying that the number of steep candidate pairs is linear. As

the numbers of flat and steep candidate pairs are both linear, we conclude the following.

I Lemma 12. |Φ(S,LW)| = O(n), where n = |S|.

Suppose Φ(S,LW) = {φ1, . . . , φm} where φi = (ai, bi) and φ1, . . . , φm are sorted in increasing
order of their lengths. We have m = O(n) by Lemma 12. Now we only need a data
structure which can report, for a query Wq ∈ LW , the smallest i such that ai, bi ∈ Wq

(note that φi is the closest-pair in S ∩Wq). We design this data structure as follows. Let
W̃ = {(x, y) : (−x,−y) ∈W}, which is a wedge obtained by rotating W around the origin
with angle π. For a point p ∈ R2, it is clear that ai, bi ∈ Wp iff p ∈ W̃ai

∩ W̃bi
. Since the

intersection of finitely many W̃ -translates is a W̃ -translate, we may write W̃ai ∩ W̃bi = W̃ci

for some ci ∈ R2. It follows that φi is contained in Wp iff p ∈ W̃ci
. By successively

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:9

overlaying W̃c1 , . . . , W̃cm , we obtain a planar subdivision whose cells are Σ1, . . . , Σm where
Σi = W̃ci

\
⋃i−1
j=1 W̃cj

. This subdivision has O(m) complexity as overlaying a new W̃ -translate
can create at most two new vertices. The answer for a query Wq is i iff q ∈ Σi. Therefore,
the problem can be solved by building on the subdivision an O(m)-space point-location data
structure with O(logm) query time. Since m = O(n), we have the following conclusion.

I Theorem 13. There is an O(n)-space LW -RCP data structure with O(logn) query time.

2.3 Handling co-wedge translation queries
Let C be a fixed co-wedge in R2 and W be the complementary wedge of C, i.e., the closure
of R2\C. We denote by r and r′ the two branches of C (and also of W). For convenience,
assume r = {(t, 0) : t ≥ 0} and r′ = {(αt, t) : t ≥ 0} for some α ∈ R. With this assumption,
the vertex of C (resp., W) is the origin and the vertex of Cp (resp., Wp) is p for all p ∈ R2.
In this section, we present an O(n)-space LC-RCP data structure with O(logn) query time.

Similar to the wedge case, the key step here is to establish a linear upper bound for
|Φ(S,LC)|. However, the techniques used here are very different. First of all, we exclude from
Φ(S,LC) the candidate pairs with respect to halfplanes. Let H be the collection of halfplanes,
and Φ∗ = Φ(S,LC)\Φ(S,H). It was shown in [1] that |Φ(S,H)| = O(n). Therefore, it suffices
to prove that |Φ∗| = O(n). For a pair φ = (a, b) ∈ Φ∗, define its associated C-translate,
Ass(φ), as the smallest W -translate containing {a, b} (Lemma 7). The pairs in Φ∗ and their
associated C-translates has the following property.

I Lemma 14. Let φ = (a, b) ∈ Φ∗ and Cp = Ass(φ) ∈ LC . Then p /∈ {a, b} and a, b lie on
the two branches of Cp respectively. Furthermore, φ is the closest-pair in S ∩ Cp.

Consider a pair φ ∈ Φ∗ and its associated C-translate Cp = Ass(φ). By Lemma 14, one point
of φ lies on the r-branch of Cp and the other lies on the r′-branch of Cp; we call them the
r-point and r′-point of φ, respectively. Let R ⊆ S (resp., R′ ⊆ S) be the subset consisting of
all the r-points (resp., r′-points) of the pairs in Φ∗.

I Lemma 15. We have R ∩R′ = ∅, and thus the graph G = (S, Φ∗) is bipartite.

For a pair φ = (a, b) ∈ Φ∗ where a ∈ R and b ∈ R′, we define a vector vφ =
−→
ab. Our key

lemma is the following. Let ang(·, ·) denote the angle between two vectors.

I Lemma 16. Let Ψ ⊆ Φ∗ be a subset such that ang(vψ,vψ′) ≤ π/4 for all ψ,ψ′ ∈ Ψ . Then
the graph GΨ = (S, Ψ) is acyclic, and in particular |Ψ | = O(n).

b′

p

b

a

a′

p2

p1

C

r

r′

Figure 5 Illustrating Lemma 16.

Proof sketch. Suppose there is a cycle in GΨ . Let ψ = (a, a′) be the shortest edge in
the cycle where a ∈ R and a′ ∈ R′. Let ψ1 = (b, a′) ∈ Ψ and ψ2 = (a, b′) ∈ Ψ be the
two adjacent edges of ψ in the cycle (so b ∈ R and b′ ∈ R′). Let Cp, Cp1 , Cp2 be the

SoCG 2019

61:10 Searching for the Closest-Pair in a Query Translate

associated C-translates of ψ,ψ1, ψ2, respectively. See Figure 5 for an example. We deduce
that a′, b, b′ ∈ Cp1 , Cp2 ⊆ Cp, and a, a′, b, b′ ∈ Cp; see the complete proof in [16] for an
argument. Since a, a′, b, b′ ∈ Cp and φ is the closest-pair in Cp by Lemma 14, we have
|φ| < dist(a, b) and hence ∠aba′ < ∠aa′b = ang(vψ,vψ1) ≤ π/4. It follows that

ang(
−→
ba,vψ) ≤ ang(

−→
ba,vψ1) + ang(vψ,vψ1) = ∠aba′ + ang(vψ,vψ1) < π/2.

From this we can further deduce that

ang(
−→
bb′,vψ) = ang(

−→
ba + vψ2 ,vψ) ≤ max{ang(

−→
ba,vψ), ang(vψ2 ,vψ)} < π/2.

Next, we establish an inequality that contradicts the above inequality. Let l be the bisector of
[b, b′]. Since a′, b, b′ ∈ Cp1 and ψ1 is the closest-pair in Cp1 , we have dist(a′, b′) > dist(b, a′),
i.e., a′ is on the same side of l as b. Using the same argument symmetrically, we can
deduce that a is on the same side of l as b′. As l is the bisector of [b, b′], this implies
ang(
−→
bb′,vψ) = ang(

−→
bb′,
−→
aa′) > π/2, which is a contradiction. Thus, GΨ is acyclic. J

With the above lemma in hand, it is quite straightforward to prove |Φ∗| = O(n). We evenly
separate the plane into 8 sectors K1, . . . ,K8 around the origin. Define Ψi = {φ ∈ Φ∗ : vφ ∈
Ki} for i ∈ {1, . . . , 8}. Now each Ψi satisfies the condition in Lemma 16 and thus |Ψi| = O(n).
Since Φ∗ =

⋃8
i=1 Ψi, we have |Φ∗| = O(n). Therefore, we conclude the following.

I Lemma 17. |Φ(S,LC)| = O(n), where n = |S|.

Suppose Φ(S,LC) = {φ1, . . . , φm} where m = O(n) and φ1, . . . , φm are sorted in increasing
order of their lengths. Now we only need a data structure which can report, for a query
Cq ∈ LC , the smallest i such that φi is contained in Cq. Similar to the wedge case, we obtain
such a data structure with O(m) space and O(logm) query time (see [16]).

I Theorem 18. There is an O(n)-space LC-RCP data structure with O(logn) query time.

Theorem 3 now follows from Theorem 6, 13, and 18.

3 Translation RCP queries for smooth convex bodies

Let Γ be a fixed convex body whose boundary is smooth (or smooth convex body), that
is, through each point on the boundary there is a unique tangent line to Γ . Assume we
can compute in O(1) time, for any line l in R2, the segment Γ ∩ l. We investigate the LΓ -
RCP problem (under the Euclidean metric). Throughout this section, O(·) hides constants
depending on Γ . Our main result is the following, to prove which is the goal of this section.

I Theorem 19. Let Γ be a fixed smooth convex body in R2. Then there is an O(n logn)-space
LΓ -RCP data structure with O(log2 n) query time.

Let S be the given dataset in R2 of size n. Suppose for convenience that the pairwise
distances of the points in S are distinct (so that the closest-pair in any subset of S is unique).
Also, suppose that no three points in S are collinear. Our data structure is based on the two
technical results presented below, both of which are of geometric interest. The first result
states that sufficiently short candidate pairs do not cross when Γ is a smooth convex body.

I Theorem 20. Let Γ be a smooth convex body. Then there exists a constant τ > 0
(depending on Γ only) such that if (a, b), (c, d) ∈ Φ(S,LΓ) are two pairs whose lengths are
both at most τ , then the segments [a, b] and [c, d] do not cross.

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:11

To introduce the second result, we need an important notion. For two convex bodies C,D in
R2 such that C ∩D 6= ∅, we say C and D intersect plainly if ∂C ∩D and ∂D ∩ C are both
connected; see Figure 6 for an illustration. (The reader can intuitively understand this as
“the boundaries of C and D cross each other at most twice”, but it is in fact stronger.) Note
that a collection of convex bodies in R2 in which any two are disjoint or intersect plainly
form a family of pseudo-discs [2]. Our second result is the following theorem.

(a) Intersect plainly. (b) Not intersect plainly.

Figure 6 An illustration the concept of “intersect plainly”.

I Theorem 21. Let C be a convex body in R2, and p1, p2, p
′
1, p
′
2 ∈ R2 be four points (not

necessarily distinct) such that I◦ 6= ∅ and I ′◦ 6= ∅, where I = Cp1 ∩ Cp2 and I ′ = Cp′
1
∩ Cp′

2
.

Suppose that any three of p1, p2, p
′
1, p
′
2 are not collinear unless two of them coincide. If the

segments [p1, p2], [p′1, p′2] do not cross and I ∩ I ′ 6= ∅, then I and I ′ intersect plainly.

Figure 7 gives an illustration of Theorem 21 in the case where C is a disc. Note that, even
for the disc-case, without the condition that [p1, p2], [p′1, p′2] do not cross, one can easily
construct a counterexample in which I and I ′ do not intersect plainly.

p1 p2

p′2p′1

I◦

I ′◦

Figure 7 Illustration of Theorem 21 when C is a disc.

The proof of Theorem 20 is presented later in Section 3.3. The proof of Theorem 21 is
more involved and is presented the full version [16]. Next, we first assume the correctness
of the two theorems and present our LΓ -RCP data structure. Our data structure consists
of two parts D1 and D2 where D1 handles the queries for which the length of the answer
(closest-pair) is “short” and D2 handles the queries for which the answer is “long”.

3.1 Handling short-answer queries
We describe the first part D1 of our data structure. Let τ > 0 be the constant in Theorem 20
such that any two candidate pairs of lengths at most τ do not cross. For a query Γq ∈ LΓ ,
D1 reports the closest-pair in S ∩ Γq if its length is at most τ , and reports nothing otherwise.

Let Φ≤τ ⊆ Φ(S,LΓ) be the sub-collection consisting of the candidate pairs of lengths at
most τ , and suppose m = |Φ≤τ |. We have m = O(n), because the graph G = (S, Φ≤τ) is
planar by Theorem 20. Define Γ̃ = {(x, y) ∈ R2 : (−x,−y) ∈ Γ}. For a pair θ = (a, b) ∈ Φ≤τ ,
we write Iθ = Γ̃a ∩ Γ̃b. Then θ is contained in a query range Γq ∈ LΓ iff q ∈ Iθ.

SoCG 2019

61:12 Searching for the Closest-Pair in a Query Translate

In order to design D1, we first introduce a so-called membership data structure (MDS).
Let Ψ = {θ1, . . . , θr} ⊆ Φ≤τ and U =

⋃
θ∈Ψ I

θ. An MDS on Ψ can decide, for a given
Γq ∈ LΓ , whether Γq contains a pair in Ψ or not. As argued before, Γq contains a pair in Ψ
iff q ∈ U . Thus, to have an MDS on Ψ , it suffices to have a data structure that can decide if
a given point is in U . By Theorem 20, the segments corresponding to any two pairs θi, θj
do not cross each other. Also, no three points in S are collinear by assumption. Thus, by
Theorem 21, Iθi and Iθj intersect plainly for any i, j ∈ {1, . . . , r} such that Iθi ∩ Iθj 6= ∅. It
follows that {Iθ1 , . . . , Iθr} is a family of pseudo-discs [2], and hence the complexity of their
union U is O(r) by [8]. As such, optimal point location data structures (e.g., [5, 9]) can be
applied to decide whether a point is contained in U in O(log r) time, using O(r) space. We
remark that, although the edges defining the boundary of U are not line-segments (existing
point-location results we know of work on polygonal subdivisions), each edge is a connected
portion of ∂Γ̃ and hence can be decomposed into constant number of “fragments” that are
both x-monotone and y-monotone. Recall our assumption that we can compute (in constant
time) Γ ∩ l for any line l in R2, and thus also Γ̃ ∩ l for any line l. With this assumption, the
existing data structures [5, 9] can be generalized straightforwardly for our purpose. Thus,
we have an MDS on Ψ with O(r) space and O(log r) query time, which we denote byM(Ψ).

With the MDS in hand, we can now design D1. For a sub-collection Ψ = {θ1, . . . , θr} ⊆
Φ≤τ where θ1, . . . , θr are sorted in increasing order of their lengths, let D1(Ψ) be a data
structure defined as follows. If r = 1, then D1(Ψ) simply stores the only pair θ1 ∈ Ψ . If
r > 1, let Ψ1 = {θ1, . . . , θbr/2c} and Ψ2 = {θbr/2c+1, . . . , θr}. Then D1(Ψ) consists of three
parts: D1(Ψ1), D1(Ψ2), and MΨ1 , where D1(Ψ1) and D1(Ψ2) are defined recursively. We
show that we can use D1(Ψ) to find, for a query Γq ∈ LΓ , the shortest pair θ∗ ∈ Ψ contained
in Γq. We first queryM(Ψ1) to see if Γq contains a pair in Ψ1. If so, θ∗ must be in Ψ1, so we
recursively query D1(Ψ1) to find it. Otherwise, we recursively query D1(Ψ2). In this way, we
can eventually find θ∗. Now we simply define D1 = D1(Φ≤τ). A direct analysis shows that
the space of D1 is O(m logm) and the query time of D1 is O(log2 m) (see [16]).

3.2 Handling long-answer queries
If D1 fails to answer the query Γq, then the length of the closest-pair in S ∩ Γq is greater
than τ . In this case, we shall use the second part D2 of our data structure to answer the
query. D2 simply reports all the points in S∩Γq and computes the closest-pair by brute-force.
Since the length of the closest-pair in S ∩ Γq is greater than τ , we have |S ∩ Γq| = O(1) by
Lemma 1 and hence computing the closest-pair takes O(1) time. In order to do reporting,
we consider the problem in the dual setting. Again, define Γ̃ = {(x, y) ∈ R2 : (−x,−y) ∈ Γ}.
Clearly, for any a ∈ R2, a ∈ Γq iff q ∈ Γ̃a. Thus, the problem is equivalent to reporting the
ranges in S = {Γ̃a : a ∈ S} that contain q. Define the depth, dep(p), of a point p ∈ R2 as the
number of the ranges in S containing p. Let A be the arrangement of the ranges in S, and k
be a sufficiently large constant. The ≤ k-level of A, denoted by A≤k, is the sub-arrangement
of A contained in the region R≤k = {p ∈ R2 : dep(p) ≤ k}. By Theorem 21, any two
ranges Γ̃a, Γ̃b ∈ S intersect plainly if they intersect (setting p1 = p2 = a and p′1 = p′2 = b

when applying Theorem 21), which implies that S is a family of n pseudo-discs and A is a
pseudo-disc arrangement. So we have the following well-known lemma.

I Lemma 22. The complexity of A≤k is O(n) for a constant k.

By the above lemma, we can build a point-location data structure on A≤k with O(n) space
and O(logn) query time. Also, we associate to each cell ∆ of A≤k the (at most k) ranges
in S containing ∆. Now we can report the ranges in S containing q as follows. Since

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:13

|S ∩Γq| = O(1) and k is sufficiently large, we have |S ∩Γq| ≤ k and hence q is in A≤k. Using
the point-location data structure, we find in O(logn) time the cell ∆ of A≤k containing
q. Then the ranges associated to ∆ are exactly those containing q. Together with our
argument above, this gives us the desired data structure D2 with O(n) space and O(logn)
time. Combining D2 with the data structure D1 in the last section, Theorem 19 is proved.

3.3 Proof of Theorem 20
We begin with introducing some basic notions and geometric results regarding convex bodies
in R2. Let C be a convex body in R2. For a line l in R2, we denote by lenC(l) the length
of the segment C ∩ l. Suppose l is ax + by + c = 0, then it cuts R2 into two halfplanes,
ax+ by + c ≥ 0 and ax+ by + c ≤ 0 (called the two sides of l hereafter). Let H be one side
of l. For a number t ≥ 0, let lt denote the (unique) line parallel to l satisfying lt ⊆ H and
dist(l, lt) = t. Set λ = sup{t ≥ 0 : C ∩ lt 6= ∅} (if {t ≥ 0 : C ∩ lt 6= ∅} = ∅, set λ = 0).

I Definition 23. We say H is a C-vanishing (resp., strictly C-vanishing) side of l, if
f(t) = lenC(lt) is a non-increasing (resp., decreasing) function in the domain [0, λ].

Figure 8 gives an intuitive illustration of the above definition. Note that for any convex body
C and line l in R2, at least one side of l is C-vanishing due to the convexity of C.

C

l

strictly C-vanishing not C-vanishing

(a) A line with a strictly C-vanishing side
and a side that is not C-vanishing.

C

l

C-vanishing C-vanishing

(b) A line with two C-vanishing sides.

Figure 8 An illustration of “C-vanishing”.

In order to prove Theorem 20, we establish the following key observations.

I Lemma 24. Let C be a convex body in R2, p1, p2 ∈ R2 be two points, and l be an arbitrary
line in R2. Then we have the following facts.
(1) If Cp1 ∩ l (Cp2 ∩ l and V is a Cp1-vanishing side of l, then Cp1 ∩ V ⊆ Cp2 .
(2) If Cp1 ∩ l is contained in the “interior” of Cp2 ∩ l (i.e., Cp2 ∩ l excluding both endpoints)
and V is a Cp1-vanishing side of l, then Cp1 ∩ (V \l) ⊆ Cp2\∂Cp2 .

I Lemma 25. Let C be a smooth convex body in R2. Then there exists a number τ > 0 such
that, for any line l with 0 < lenC(l) < τ and any point r ∈ C on a C-vanishing side of l, the
distance between r and an (arbitrary) endpoint of C ∩ l is less than lenC(l).

Now we are able to prove Theorem 20. Suppose Γ is a smooth convex body in R2. Taking
C = Γ , we can find a constant τ satisfying the condition in Lemma 25. We claim that τ also
satisfies the condition in Theorem 20. Let (a, b), (c, d) ∈ Φ(S,LΓ) be two pairs of lengths
at most τ . Assume that [a, b] and [c, d] cross. By Lemma 2, there exists Γp ∈ LΓ such that
either Γp ∩ {a, b, c, d} = {a, b} or Γp ∩ {a, b, c, d} = {c, d}; assume Γp ∩ {a, b, c, d} = {a, b}.
Suppose (c, d) is the closest-pair in Γq ∈ LΓ . Let l be the line through c, d, and V be a

SoCG 2019

61:14 Searching for the Closest-Pair in a Query Translate

a b

c

d

c′

d′

Γp
Γq

l
V

Figure 9 Illustrating the proof of Theorem 20.

Γp-vanishing side of l. See Figure 9 for an illustration of the notations. Since the segments
[a, b] and [c, d] cross, [c, d] must intersect Γp. But c, d /∈ Γp, thus Γp ∩ l ([c, d]. Furthermore,
because [c, d] ⊆ Γq ∩ l, we have Γp ∩ l (Γq ∩ l. This implies Γp ∩V ⊆ Γq by (1) of Lemma 24.
Note that one of a, b must be contained in Γp ∩ V , say b ∈ Γp ∩ V . Thus b ∈ Γq. We now
show that dist(b, c) < dist(c, d) and dist(b, d) < dist(c, d). As Γp ∩ l ([c, d] and the length of
[c, d] is at most τ , we have lenΓp(l) < τ . We denote by c′, d′ the two endpoints of the segment
Γp ∩ l; see Figure 9. By Lemma 25, the distance from c′ (or d′) to any point in Γp ∩ V is less
than lenΓp(l) = dist(c′, d′). In particular, dist(b, c′) < dist(c′, d′) and dist(b, d′) < dist(c′, d′).
Now dist(b, c) ≤ dist(b, c′) + dist(c′, c) < dist(c′, d′) + dist(c′, c) = dist(c, d′) < dist(c, d). For
the same reason, we have dist(b, d) < dist(c, d). Since b, c, d ∈ Γq, this contradicts the fact
that (c, d) is the closest-pair in Γq. The proof of Theorem 20 is now complete.

References
1 M. A. Abam, P. Carmi, M. Farshi, and M. Smid. On the power of the semi-separated pair

decomposition. In Workshop on Algorithms and Data Structures, pages 1–12. Springer, 2009.
2 P. K. Agarwal, J. Pach, and M. Sharir. State of the union (of geometric objects): A review.

Computational Geometry: Twenty Years Later. American Mathematical Society, 2007.
3 Pankaj K Agarwal, Jeff Erickson, et al. Geometric range searching and its relatives. Contem-

porary Mathematics, 223:1–56, 1999.
4 Sang Won Bae and Michiel Smid. Closest-Pair Queries in Fat Rectangles. arXiv preprint,

2018. arXiv:1809.10531.
5 Herbert Edelsbrunner, Leonidas J Guibas, and Jorge Stolfi. Optimal point location in a

monotone subdivision. SIAM Journal on Computing, 15(2):317–340, 1986.
6 Prosenjit Gupta. Range-aggregate query problems involving geometric aggregation operations.

Nordic Journal of Computing, 13(4):294–308, 2006.
7 Prosenjit Gupta, Ravi Janardan, Yokesh Kumar, and Michiel Smid. Data structures for range-

aggregate extent queries. Computational Geometry: Theory and Applications, 2(47):329–347,
2014.

8 K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-
free translational motion amidst polygonal obstacles. Discrete & Computational Geometry,
1(1):59–71, 1986.

9 N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Communica-
tions of the ACM, 29(7):669–679, 1986.

10 Jing Shan, Donghui Zhang, and Betty Salzberg. On spatial-range closest-pair query. In
International Symposium on Spatial and Temporal Databases, pages 252–269. Springer, 2003.

11 R. Sharathkumar and P. Gupta. Range-aggregate proximity queries. Technical Report
IIIT/TR/2007/80. IIIT Hyderabad, Telangana, 500032, 2007.

12 Michiel Smid. Closest-point problems in computational geometry. In Handbook of computational
geometry, pages 877–935. Elsevier, 2000.

http://arxiv.org/abs/1809.10531

J. Xue, Y. Li, S. Rahul, and R. Janardan 61:15

13 Jie Xue. Colored range closest-pair problem under general distance functions. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 373–390. SIAM,
2019.

14 Jie Xue, Yuan Li, and Ravi Janardan. Approximate range closest-pair search. In Proceedings
of the 30th Canadian Conference on Computational Geometry, pages 282–287, 2018.

15 Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan. New Bounds for Range Closest-Pair
Problems. In Proceedings of the 34th International Symposium on Computational Geometry,
pages 73:1–73:14, 2018.

16 Jie Xue, Yuan Li, Saladi Rahul, and Ravi Janardan. Searching for the closest-pair in a query
translate. arXiv preprint, 2018. arXiv:1807.09498.

SoCG 2019

http://arxiv.org/abs/1807.09498

On the Complexity of the k-Level in
Arrangements of Pseudoplanes
Micha Sharir
School of Computer Science, Tel Aviv University, Tel Aviv, Israel
http://www.cs.tau.ac.il/~michas/
michas@post.tau.ac.il

Chen Ziv
School of Computer Science, Tel Aviv University, Tel Aviv, Israel
henziv@gmail.com

Abstract
A classical open problem in combinatorial geometry is to obtain tight asymptotic bounds on the
maximum number of k-level vertices in an arrangement of n hyperplanes in Rd (vertices with exactly
k of the hyperplanes passing below them). This is essentially a dual version of the k-set problem,
which, in a primal setting, seeks bounds for the maximum number of k-sets determined by n points
in Rd, where a k-set is a subset of size k that can be separated from its complement by a hyperplane.
The k-set problem is still wide open even in the plane. In three dimensions, the best known upper
and lower bounds are, respectively, O(nk3/2) [15] and nk · 2Ω(

√
log k) [19].

In its dual version, the problem can be generalized by replacing hyperplanes by other families
of surfaces (or curves in the planes). Reasonably sharp bounds have been obtained for curves in
the plane [16, 18], but the known upper bounds are rather weak for more general surfaces, already
in three dimensions, except for the case of triangles [1]. The best known general bound, due to
Chan [7] is O(n2.997), for families of surfaces that satisfy certain (fairly weak) properties.

In this paper we consider the case of pseudoplanes in R3 (defined in detail in the introduction),
and establish the upper bound O(nk5/3) for the number of k-level vertices in an arrangement of n
pseudoplanes. The bound is obtained by establishing suitable (and nontrivial) extensions of dual
versions of classical tools that have been used in studying the primal k-set problem, such as the
Lovász Lemma and the Crossing Lemma.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Theory of compu-
tation → Computational geometry

Keywords and phrases k-level, pseudoplanes, arrangements, three dimensions, k-sets

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.62

Related Version A full version of this paper is available at https://arxiv.org/abs/1903.07196.

Funding Work on this paper was supported by Grants 892/13 and 260/18 from the Israel Science
Foundation.
Micha Sharir : Work on this paper was also supported by Grant G-1367-407.6/2016 from the
German-Israeli Foundation for Scientific Research and Development, by the Blavatnik Research
Fund in Computer Science at Tel Aviv University, and by the Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11).

1 Introduction

Let Λ be a set of n non-vertical planes (resp., pseudoplanes, as will be formally defined
shortly) in R3, in general position. We say that a point p lies at level k of the arrangement
A(Λ), and write λ(p) = k, if exactly k planes (resp., pseudoplanes) of Λ pass below p. The
k-level of A(Λ) is the closure of the set of points that lie on the planes of Λ and are at level
k. Our goal is to obtain an upper bound on the complexity of the k-level of A(Λ), which is

© Micha Sharir and Chen Ziv;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 62; pp. 62:1–62:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.cs.tau.ac.il/~michas/
mailto:michas@post.tau.ac.il
mailto:henziv@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2019.62
https://arxiv.org/abs/1903.07196
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 On the Complexity of the k-Level in Arrangements of Pseudoplanes

measured by the number of vertices of A(Λ) that lie at level k. (The level may also contain
vertices at level k − 1 or k − 2, but we ignore this issue – it does not effect the worst-case
asymptotic bound that we are after.) Using a standard duality transform that preserves
the above/below relationship (see, e.g., [10]), the case of planes is the dual version of the
following variant of the k-set problem: given a set of n points in R3 in general position, how
many triangles spanned by P are such that the plane supporting the triangle has exactly
k points of P below it? We refer to these triangles as k-triangles. This has been studied
by Dey and Edelsbrunner [9], in 1994, for the case of halving triangles, namely k-triangles
with k = (n − 3)/2 (and n odd). They have shown that the number of halving triangles
is O(n8/3). In 1998, Agarwal et al. [1] generalized this result for k-triangles, for arbitrary
k, showing that their number is O(nk5/3), using a probabilistic argument. In 1999, Sharir,
Smorodinsky and Tardos [15] improved the upper bound for the number of k-triangles in
S to O(nk3/2). Chan [6] has adapted a dualized view of the technique of Sharir et al. [15]
in order to study the bichromatic k-set problem: given two sets R and B of points in R2

of total size n and an integer k, how many subsets of the form (R ∩ h) ∪ (B \ h) can have
size exactly k over all halfplanes h? This problem arises when we estimate the number of
vertices at level k, in an arrangement of n planes in 3-space, that lie on one specific plane.

The three-dimensional case extends the more extensively studied planar case. In its
primal setting, we have a set S of n points in the plane in general position, and a parameter
k < n, and we seek bounds on the maximum number of k-edges, which are segments spanned
by pairs of points of S so that one of the halfplanes bounded by the line supporting the
segment, say the lower halfplane, contains exactly k points of S. In the dual version, we
seek bounds on the maximum number of vertices of an arrangement of n nonvertical lines
in general position that lie at level k. The best known upper bound for this quantity, due
to Dey [8], is O(nk1/3), and the best known lower bound, due to Tóth [19] is neΩ(

√
ln k)

(Nivasch [13] has slightly improved this bound for the case of halving edges).
In this paper we consider the dual version of the problem in three dimensions, where the

points are mapped to planes, and the k-triangles are mapped to vertices of the arrangement
of these planes at level k. We translate parts of the machinery developed in [15] to the dual
setting, and then extend it to handle the case of pseudoplanes. In the primal setting, we
have a set S of n points in R3 in general position, and the set T of k-triangles spanned by S.
We say that triangle ∆1 crosses another triangle ∆2 if the triangles share exactly one vertex,
and the edge opposite to that vertex in ∆1 intersects the interior of ∆2. Denote the number
of ordered pairs of crossing k-triangles by Xk. The general technique in [15] is to establish
an upper bound and a lower bound on Xk, and to combine these two bounds to derive an
upper bound for the number of k-triangles in S.

The upper bound in [15] is based on the 3-dimensional version of the Lovász Lemma,
as in [5]: Any line crosses at most O(n2) interiors of k-triangles. The lemma follows from
the main property of the set T , which is its antipodality. Informally, the property asserts
that for each pair of points a, b ∈ S, the k-triangles having ab as an edge form an antipodal
system, in the sense that for any pair ∆abc,∆abd of such triangles that are consecutive in the
circular order around ab, the dihedral wedge that is formed by the two halfplanes that contain
∆abc,∆abd, and are bounded by the line through ab, has the property that its antipodal
wedge, formed by the two complementary halfplanes within the planes supporting ∆abc,∆abd,
contains a point e ∈ S such that ∆abe is also a k-triangle; See Figure 1.

To obtain a lower bound on Xk, the technique in [15] defines, for each a ∈ S, a graph
Ga = (Va, Ea) drawn in a horizontal plane h+

a slightly above a, whose edges are, roughly,
the cross-sections of the k-triangles incident to a with the plane (see Figure 2). The analysis

M. Sharir and C. Ziv 62:3

Figure 1 The antipodality property of k-triangles: the edge ab is drawn from a side-view as
a point. The triangles ∆abc,∆abd and ∆abe, drawn as segments, are all k-triangles, where e is
contained in the antipodal wedge formed by the two complementary halfplanes within the planes
supporting ∆abc,∆abd.

in [15] shows that Ga inherits the antipodality property of the k-triangles, and uses this fact
to decompose Ga into a collection of convex chains, and to estimate the number of crossings
between the chains. Summing these bounds over all a ∈ S, the lower bound on Xk follows.

Figure 2 (i) The graph Ga on h+
a . ∆auw,∆auv are halving triangles. uv is mapped to the segment

u∗v∗, and uw is mapped to a ray emanating from u∗ on h+
a . (ii) The antipodality property in Ga.

We omit further details of the way in which these lower bounds are derived in [15],
because, in the dual version that we present here, we use a weaker lower bound, which is
based on a dual version of the Crossing Lemma (see [4]), and which is easier to extend to
the case of pseudoplanes. Let G = (V,E) be a simple graph, and define the crossing number
of G as the minimum number of intersecting pairs of edges in any drawing of G in the plane.
In the primal setting, the Crossing Lemma asserts that any simple graph G = (V,E) drawn
in the plane, with |E| > 4|V |, has crossing number at least1 |E|3

64|V |2 . Using this technique for
deriving a lower bound on Xk, instead of the refined technique in [15], one can show that
the number of k-triangles is O(n8/3), or, with the additional technique of [1], O(nk5/3).

We now present the dual setting for the problem, where the input is a set Λ of n
non-vertical planes in R3 in general position.

I Definition 1. Let a, b, c ∈ Λ. The open region between the lower envelope and the upper
envelope of a, b, c is called the corridor of a, b, c and is denoted by Ca,b,c.

The planes a, b, c ∈ Λ divide the space into eight disjoint octant-like portions, and Ca,b,c
is the union of six of those portions, excluding the upper and the lower octants. We will be
mostly interested in corridors Ca,b,c for which the point pa,b,c = a ∩ b ∩ c (the unique vertex
of Ca,b,c) is at level k. We will refer to such corridors as k-corridors, and define Ck as the
collection of k-corridors in A(Λ); k-corridors serve as a dual version of k-triangles.

1 The constant of proportionality has been improved in subsequent works, but we will stick to this bound.

SoCG 2019

62:4 On the Complexity of the k-Level in Arrangements of Pseudoplanes

I Definition 2. We say that a corridor C1 is immersed in a corridor C2 in A(Λ) if they
share exactly one plane, and the intersection line of the other two planes of C1 is fully
contained in C2. Let Xk denote the number of ordered pairs of immersed corridors in Ck.

Immersion of k-corridors is the dual notion of crossings of k-triangles. Note that if a
corridor C1 is immersed in a corridor C2, it cannot be that C2 is also immersed in C1.

In the full version of the paper [17] (see also [20]), we provide details of this dual setup.
We define Xk as the number of ordered pairs of immersed k-corridors, and present the
derivation of the upper bound and the lower bound on Xk. In this abstract, we only consider
in detail the extension to the case of pseudoplanes, which is our main topic of interest. We
remark, though, that this translation to the dual context, although routine in principle, is
rather involved and nontrivial, and requires careful handling of quite a few details.

2 The case of pseudoplanes

We say that a family Λ of n surfaces in R3 is a family of pseudoplanes in general position if

(i) The surfaces of Λ are graphs of total bivariate continuous functions.
(ii) The intersection of any pair of surfaces in Λ is a connected x-monotone unbounded

curve.
(iii) Any triple of surfaces in Λ intersect in exactly one point.
(iv) The xy-projections of the set of all

(
n
2
)
intersection curves of the surfaces form a family

of pseudolines in the plane. That is, this is a collection of
(
n
2
)
x-monotone unbounded

curves, each pair of which intersect exactly once; see [3] for more details.

The assumption that the pseudoplanes of Λ are in general position means that no point
is incident to more than three pseudoplanes, no intersection curve of two pseudoplanes is
tangent to a third pseudoplane, and no two pseudoplanes are tangent to each other. We note
that conditions (i)–(iii) are natural, but condition (iv) might appear somewhat restrictive,
although it obviously holds for planes. For any a, b, c ∈ Λ, we denote the intersection curve
a ∩ b by γa,b, and the intersection point a ∩ b ∩ c by pa,b,c.

I Definition 3. Let γ be a curve in R3. The vertical curtain through γ, denoted by Υγ , is
the collection of all z-vertical lines that intersect γ. The portion of Υγ above (resp., below) γ
is called the upper (resp., lower) curtain of γ, and is denoted by Υu

γ (resp., Υd
γ).

Let γ be an x-monotone unbounded connected curve in R3, and let p ∈ γ. We call each
of the two connected components of γ \ {p} a half-curve of γ emanating from p.

The following lemma is derived from the general position of the pseudoplanes in Λ:

I Lemma 4. Let a, b, c ∈ Λ, and let γa,b = a ∩ b, pa,b,c = a ∩ b ∩ c.
(a) One of the two half-curves of γa,b that emanates from pa,b,c lies fully below c, and the

other half-curve lies fully above c.
(b) The collection of intersections between the surfaces of Λ and Υγa,b forms an arrangement

of unbounded x-monotone curves on Υγa,b , each pair of which intersect at most once.2

Proof. The proof of (a) is straightforward and is omitted here. For (b), property (iv) implies
that, for any c, d ∈ Λ\{a, b}, the projection on the xy-plane of γa,b and γc,d = c ∩ d intersect
at most once. Thus, the intersection curves c ∩Υγa,b , d ∩Υγa,b intersect at most once. J

2 In a sense, this is a collection of pseudolines, except that they are, in general, not drawn in a plane.

M. Sharir and C. Ziv 62:5

Another property of A(Λ), shown in Agarwal and Sharir [2], is:

I Lemma 5. The complexity of the lower envelope of Λ is O(n).

The notion of corridors can easily be extended to the case of pseudoplanes. That is,
for any a, b, c ∈ Λ, denote by Ca,b,c the open region between the lower envelope and the
upper envelope of a, b, c, and call it the corridor of a, b, c. Refer to corridors Ca,b,c for which
the intersection point pa,b,c lies at level k as k-corridors, and define Ck as the collection of
k-corridors in A(Λ). The following is an extension of Definition 2:

I Definition 6. A corridor C1 is immersed in a corridor C2 if they share exactly one
pseudoplane, and the intersection curve of the other two pseudoplanes of C1 is fully contained
in C2. Let Xk denote the number of ordered pairs of immersed corridors in Ck.

Organization of this section. In Section 2.1 we derive an upper bound for Xk, using an
extended dual version of the Lovász Lemma. In Section 2.2 we obtain a lower bound for Xk,
using a dual version of the Crossing Lemma. In Section 2.3 we combine those two bounds to
obtain an upper bound on the complexity of the k-level of the arrangement.

2.1 An extension of the dual version of the Lovász Lemma
The following lemma is an extension to the case of pseudoplanes of a dual version of the
antipodality property in the primal setup.

I Lemma 7. Let Λ be as above, let a, b ∈ Λ, and let γa,b = a ∩ b denote their intersection
curve. Let h be a z-vertical line (i.e., parallel to the z-axis) that intersects γa,b at some point
p. Let D = Λ \ {a, b}, and Dk = {d ∈ D | Ca,b,d ∈ Ck}. Denote hup = {d ∈ D | zd∩h > zp}
and hdown = {d ∈ D | zd∩h < zp} (by choosing p generically, we may assume that all these
inequalities are indeed sharp). We then have

∣∣∣|hup ∩Dk| − |hdown ∩Dk|
∣∣∣ ≤ 2.

Proof. Denote the two half-curves of γa,b emanating from p by η1 and η2, and denote
Dη1 =

{
d ∈ D | d intersects η1

}
, Dη2 =

{
d ∈ D | d intersects η2

}
. Clearly, with a generic

choice of p, Dη1 ∪Dη2 = D, and since each triple of pseudoplanes in Λ intersects only once,
Dη1 ∩Dη2 = ∅. Enumerate the pseudoplanes in Dη1 as d1, . . . , dj , according to the order in
which their respective intersection points with η1, denoted p1, . . . , pj , appear on η1 in the
direction from p to the end of the half-curve. Assume there are 1 ≤ r < s ≤ j such that
dr, ds ∈ Dη1 ∩ (hdown ∩Dk), and denote Dr,s = {di ∈ Dη1 | r ≤ i ≤ s}.

It is easy to show that, for each point pi, the following properties hold (as they do in the
case of planes. See the full version [17]); see Figure 3.

(i) λ(pi) = λ(pi−1)− 1 if and only if both di−1, di ∈ hdown.
(ii) λ(pi) = λ(pi−1) + 1 if and only if both di−1, di ∈ hup.
(iii) λ(pi) = λ(pi−1) if and only if one of di−1, di is in hup and the other one is in hdown.

We claim that there must exist a pseudoplane d′ ∈ Dr,s that is in hup ∩Dk. If dr+1 ∈ hup
then, by property (iii), λ(dr+1) = λ(dr) = k and we are done. Otherwise, dr+1 ∈ hdown,
and by (i) above, the level of pr+1 is k − 1. Note that r + 1 < s because the level of ps is
k. Because the level can change only by 0, +1, or −1 between two consecutive points pi,
pi+1, there must be a point pi ∈ Dr,s ⊆ Dη1 , so that the level of pi is k and the level of the
previous point on la,b is k − 1, which means, by (ii) above, that di ∈ hup. That is, between
each pair pr, ps ∈ η1 so that dr, ds ∈ hdown ∩Dk, there exists pi so that di ∈ hup ∩Dk, and
our claim is established.

SoCG 2019

62:6 On the Complexity of the k-Level in Arrangements of Pseudoplanes

Figure 3 Both di, di−1 intersect the same half-curve of γa,b emanating from p: (i) The case where
both di, di−1 ∈ hdown. (ii) The case where both di, di−1 ∈ hup. (iii.a-b) The case where one of
di, di−1 is in hdown, and the other one is in hup.

Similarly, between each pair pr, ps ∈ η1 so that dr, ds ∈ hup∩Dk, there exists pi, for some
r < i < s, so that di ∈ hdown ∩Dk. Both of these properties are easily seen to imply that∣∣∣|hup ∩Dk ∩Dη1 | − |hdown ∩Dk ∩Dη1 |

∣∣∣ ≤ 1.

The same reasoning applies to η2, and yields
∣∣∣|hup ∩Dk ∩Dη2 | − |hdown ∩Dk ∩Dη2 |

∣∣∣ ≤ 1.

Thus,
∣∣∣|hup ∩Dk| − |hdown ∩Dk|

∣∣∣ ≤ 2. J

We next apply this lemma to obtain an extended dual version of the Lovász Lemma.
Concretely, we derive an upper bound on the number of k-corridors that fully contain an
intersection curve γa,b = a ∩ b. In the case of planes (see [17]), the curve in question is the
intersection line of two dual planes, which is dual to the line connecting the two corresponding
primal points. The k-corridors are dual to the k-triangles in the primal, and a k-corridor
fully contains a ∩ b if and only if the corresponding primal line crosses the corresponding
primal k-triangle. The Lovász Lemma, in the primal, asserts that a line crosses at most O(n2)
k-triangles. In the standard proof of the lemma, we translate a line from infinity towards the
target line, and keep track of the number of k-triangles crossed by the line. This number
changes only when the moving line sweeps through a segment connecting two input points,
and we use the antipodality property to argue that the change in the number of crossed
k-triangles at such an event is only ±1, from which the lemma follows. In the dual setup,
antipodality is replaced by a suitable version of Lemma 7 (for planes), and the sweeping of
the primal line becomes a sweeping of the dual line, moving in a vertical plane from, say
+∞ towards the line a ∩ b. The critical primal events are transformed into events where the
moving line touches some intersection line c ∩ d, for c, d ∈ Λ \ {a, b}. A suitable application
of Lemma 7 then implies that the number of k-corridors that fully contain the moving curve
changes by at most ±2.3

In the case of pseudoplanes, the sweeping is performed in the reverse order, from γa,b
upwards to a curve at z = +∞. More importantly, the sweeping is no longer by translating (a
copy of) γa,b, but follows the topological sweeping paradigm of Edelsbrunner and Guibas [11]
(see also [12]); the sweep curve is always fully contained in the curtain Υγa,b .

In the context considered here, we have an arrangement of curves within Υγa,b , so that
each pair of them intersects once, and sweep it with a curve γ, so that initially, and at every
instance during the sweep, γ intersects every other curve at most once. The sweep is a

3 The reason why in the dual the change is ±2 instead of ±1 in the primal is that, for convenience in the
presentation, we allow the point p in Lemma 7 to be somewhere at the middle of the curve; placing p at
the “end” of the curve (at ±∞) would make the change go down to ±1.

M. Sharir and C. Ziv 62:7

continuous motion of γ, given as a function τ → γτ , for τ ∈ R+, where γ0 = γ is the initial
placement of the sweeping curve and γτ approaches the curve z = +∞ on Υγa,b as τ tends
to ∞. Moreover, γτ lies fully below γτ ′ , for τ < τ ′.

The sweeping curve γ is given a left-to-right orientation. Then γ intersects some subset of
the other curves of Γ in some order. This ordered sequence changes when γ passes through a
vertex of the arrangement or when the set of curves intersecting γ changes by an insertion or
deletion of a curve, necessarily at the first or the last place in the sequence. We disregard
the continuous nature of the sweep, and discretize it into a sequence of discrete steps, where
each step represents one of these changes. As shown in [12], we have:

I Lemma 8 (Hershberger and Snoeyink [12]). Any planar arrangement of a set Γ of bi-infinite
curves, any pair of which intersect at most once, can be swept topologically, starting with any
curve γ ∈ Γ, so that, at any time during the sweep, the sweeping curve intersects any other
curve at most once.

Although in our case the sweep takes place within Υγa,b , which is not a plane in general,
we can flatten it in the x-direction into a plane, keeping the z-vertical direction unchanged,
and thereby apply the topological sweeping machinery of [11, 12] within this curtain.

The sweeping mechanism, as described in [12], proceeds in a sequence of discrete steps,
each of which implements one of three kinds of local moves, listed below, allowing to advance
the sweeping curve past an intersection point, and to add or to remove curves from the set
of curves intersected by the sweeping curve, without violating the 1-intersection property.

Let c ∈ Γ be the sweeping curve, and denote by Ξ(c) =
(
c1, c2, c3, . . .

)
the sequence of

curves of Γ that intersect c, sorted in the left-to-right order of their intersections along c.
The basic steps of the sweep are of the following three types (see Figure 4):

Figure 4 Operations by which the sweep progresses: (i) Passing over an empty triangle. (ii)
Taking on the first ray. (iii) Passing over the first ray.

1. Passing over an empty triangle: We have a consecutive pair of curves ci, ci+1 along c that
intersect above c, and no other curve passes through the triangle formed by c, ci, ci+1.
Then c can move past the intersection point of ci, ci+1. See Figure 4(i).

2. Taking on the first ray: We have a curve c0 that does not intersect c, but c0 and c are
adjacent on the left (i.e., at x = −∞). Then we can move c upwards, make it intersect c0
at a point that lies to the left of all other intersection points, both on c and on c0. This
increases the intersection sequence Ξ(c) by one element, now its first element.

3. Passing over the first ray: Here the first intersection point along c is with a curve c1 so
that c ∩ c1 is also the first intersection along c1 from the left. Then c can move upwards,
disentangling itself from c1, and losing its intersection point with c1, this time removing
his first element of Ξ(c).

As shown in [12], we can implement the sweep so that it only performs steps of these
three types, and does not have to perform the symmetric operations to (ii) and (iii), of taking
on or passing over the last ray.

SoCG 2019

62:8 On the Complexity of the k-Level in Arrangements of Pseudoplanes

We now establish the generalized dual version of the Lovász Lemma.

I Lemma 9. Any bi-infinite x-monotone curve γ0 such that (i) γ0 intersects each pseudoplane
in Λ in exactly one point, and (ii) the xy-projection of γ0 intersects the xy-projection of any
intersection curve of two surfaces of Λ at most once, is fully contained in at most n(n− 1)/2
corridors in Ck.

Proof. Let γ0 be a curve as in the lemma, and consider the vertical curtain Υγ0 that it
spans. For each pseudoplane a ∈ Λ, denote by σa the intersection curve a ∩Υγ0 , and put
Σ =

{
σa | a ∈ Λ

}
. By the assumptions of the lemma, the collection of bi-infinite curves

{γ0}∪Σ has the property that any two curves in this family intersect at most once. Moreover,
as already remarked earlier, by regarding the xy-projection γ∗0 of γ0 as a homeomorphic copy
of the real line, we can identify Υγ0 as a homeomorphic copy of a vertical plane, where vertical
lines are mapped to vertical lines. It follows that we can apply Lemma 8 to the arrangement
of {σa | a ∈ Λ} within Υγ0 , and conclude that this arrangement can be topologically swept
with a curve that starts at γ0 and proceeds upwards, to infinity.

Denote by γτ the sweeping curve at some moment τ , where the curve coincides with γ0 at
τ = 0. At the beginning of the sweep, γ0 is fully contained in some number Y of k-corridors,
and at the end of the sweep, γτ is not contained in any of the corridors in Ck. We will
establish an upper bound on the difference between the number of k-corridors that γτ gets
out of (i.e., stops being fully contained in) and the number of k-corridors that it gets into
(i.e., starts being fully contained in), at any critical event during the sweep. Summing those
differences will yield the asserted upper bound on Y .

Consider γτ at some instance τ during the sweep, and let a ∈ Λ. If σa is fully above
γτ , we get that γ0, which is obtained by some motion of γτ downwards, is fully below a,
a contradiction to the assumption that γ0 intersects all the pseudoplanes in Λ. Therefore,
each pseudoplane in Λ is either fully below γτ , or intersects it (exactly once). Hence, during
the sweeping from γ0, the only valid sweeping steps are passing over an empty triangle and
passing over the first ray.

Clearly, it suffices to consider what happens at instances τ at which γ is about to pass
through a vertex of the arrangement of {σa | a ∈ Λ} on Υγ0 , or at instances at which γτ is
about to pass over the first ray. So let τ− and τ+ denote instances immediately before and
after such a critical transition. We distinguish between three types of sweeping steps.

Figure 5 (i) The intersection point pa,b = σa ∩ σb is directly above the curve γτ− somewhere
between pa,γ

τ−
= σa ∩ γτ− and pb,γ

τ−
= σb ∩ γτ− . (ii) The intersection point pa,b is not directly

above any point on the curve γτ− between pa,γ
τ−

and pb,γ
τ−

.

Case 1: The transition at τ is that we pass over an empty triangle, defined by some pair of
curves σa, σb and γτ− , such that the point on γτ− directly below the intersection point
pa,b is somewhere between pa,γτ− and pb,γτ− (see Figure 5(i)). Since γτ intersects each of

M. Sharir and C. Ziv 62:9

σa, σb at most once, almost all of the curve γτ− is between the lower envelope and the
upper envelope of {σa, σb}, except for its portion between pa,γτ− and pb,γτ− . Since the
triangle defined by σa, σb and γτ− is empty, each curve in Σ that lies below pa,b, defines a
corridor with σa, σb, such that γτ− lies fully in that corridor. Symmetrically, γτ+ , for τ+

sufficiently close to τ , lies fully in each corridor defined by σa, σb and a curve in Σ that
passes above pa,b (see, e.g., Figure 6(i)). Hence, by Lemma 7, the absolute value of the
difference between the number of k-corridors that γτ gets out of at τ , and the number of
k-corridors that γτ gets into, is at most 2.

Figure 6 The three cases of critical events during the sweep.

Case 2: The transition at τ is that we pass over an empty triangle, defined by σa, σb and γτ− ,
where now the vertical projection of the intersection point pa,b onto γτ− is not between
pa,γτ− and pb,γτ− , but lies on one side of both, say past pa,γτ− to the right (see Figure
5(ii)). We claim that neither γτ− nor γτ+ is fully contained in any corridor Ca,b,c, for
σc ∈ Σ. Indeed (refer again to Figure 5), by Lemma 4, the half-curve emanating from
pa,γτ− on γτ− to the right is below the lower envelope of {σa, σb}, and the half-curve
emanating from pb,γτ− on γτ− to the left is above the upper envelope of {σa, σb}. Hence,
in order for γτ− to be fully contained in a corridor Ca,b,c for some σc ∈ Σ, σc must
pass above pb,γτ− and below ab,γτ− , and therefore it must intersect the triangle defined
by σa, σb and γτ− (see Figure 6(ii)). Since this triangle is empty, there is no such σc.
Symmetrically4, γτ+ is not contained in any corridor Ca,b,c for any c. Hence, at this step
in the sweeping process, there is no change in the set of corridors that fully contain γτ .

Case 3: The transition at τ is passing over the first ray, belonging to some σa ∈ Σ. We
claim that here too γτ− and γτ+ are fully contained in the same corridors. Indeed, except
for the left ray of σa, γτ− and γτ+ are fully above σa. Moreover, the only corridors that
γ can get into or out of at this transition must involve σa. Let Ca,b,c be such a corridor.
If σa appears on both the upper and the lower envelopes of {σa, σb, σc} then, as is easily
checked, neither γτ− nor γτ+ can be fully contained in Ca,b,c. Hence, σa must appear on
exactly one of the envelopes, and then it must appear there as the middle portion of the
envelope (see Figure 6(iii)). But then the left ray of σa over which γ is swept cannot
appear on either envelope, so the transition does not cause γ to enter or leave Ca,b,c, as
claimed.

In summary, the only kind of step during the sweep in which the number of k-corridors
that the sweeping curve is contained in changes, is passing over an empty triangle with the
structure considered in Case 1 and then, as argued above, this number can change by at
most 2. There are

(
n
2
)

= n(n−1)
2 intersection points on Υγ0 , since each pair of curves in Σ

4 Indeed, right after the transition, σa, σb and γτ+ form an empty triangle above pa,b, with similar
properties that allow us to apply a symmetric variant of the argument just presented.

SoCG 2019

62:10 On the Complexity of the k-Level in Arrangements of Pseudoplanes

intersects at most once. Assume without loss of generality that at most half of them are
above γ0 (otherwise, consider sweeping γ0 in the opposite direction, downwards to infinity).
The sweeping curve can encounter at most 1

2 ·
n(n−1)

2 empty triangles whose middle vertex
lies above the opposite edge. Thus, at the beginning of the process, γ0 is fully contained in
at most n(n−1)

2 k-corridors and the claim follows. J

As a corollary (see also the full version [17]), we obtain the following upper bound on Xk:

I Lemma 10. The number Xk of ordered pairs of k-corridors such that the first corridor is
immersed in the second one, in the arrangement A(Λ), is at most 3n4

4 .

Proof. Fix an intersection curve γa,b = a∩ b of two pseudoplanes from Λ. By Lemma 9, γa,b
is fully contained in at most n(n−1)/2 k-corridors. For each containing k-corridor Cc,d,e, γa,b
can contribute at most three ordered pairs to Xk, namely an immersion of Ca,b,c in Cc,d,e, of
Ca,b,d in Cc,d,e, and of Ca,b,e in Cc,d,e. Since there are only

(
n
2
)
intersection curves in A(Λ),

we get that there are at most 3n(n−1)
2

(
n
2
)
< 3n4

4 ordered pairs of immersed k-corridors. J

2.2 The dual version of the Crossing Lemma
In this subsection we derive a lower bound on Xk, using a dual version of the Crossing
Lemma (see [4]), extended to the case of pseudoplanes. For each pseudoplane a ∈ Λ, denote
by za the intersection point of a with the z-axis. We can choose the position of the z-axis so
as to ensure that (a) all the values za are distinct and (b) for each a ∈ Λ, za lies above (in
the y-direction of the xy-projection of a) all the intersection curves γa,b, for b ∈ Λ \ {a}.

I Definition 11. Let a ∈ Λ. Denote by Γa the collection of the intersection curves of a and
the other pseudoplanes b ∈ Λ with zb > za. That is, Γa = {γb := a ∩ b | b ∈ Λ \ {a}, zb > za}.

By the assumptions on Λ, the xy-projection of any intersection curve of two pseudoplanes
in Λ is an x-monotone curve. Therefore, Γa forms a family of x-monotone curves on the
surface a. Since a is the graph of a bivariate continuous function, it will be convenient to
identify it with its xy-projection, and think of it, for the purpose of the current analysis, as
a horizontal plane. Each pair of curves from Γa intersects exactly once, because each triple
of pseudoplanes in Λ intersects exactly once. Each curve in Γa is bi-infinite and divides a
into two unbounded regions. These considerations allow us to interpret Γa as a family of
x-monotone pseudolines in the plane.

I Definition 12. Let a ∈ Λ, and let Γa be as above. Each d ∈ Λ \ {a} for which γd ∈ Γa
divides a into two disjoint regions: the region a−d on a that is fully above the pseudoplane d,
and the region a+

d on a that is fully below d (so a−d means that d is below a, and a+
d means

that d is above a). These two regions are delimited by the intersecion curve γd on a. Note
that za ∈ a+

d . That is, a+
d is the region that lies above (in the y-direction) the intersection

curve γd, and a−d is the region below γd.
For each pair of distinct pseudoplanes b, c ∈ Λ \ {a} such that γb, γc ∈ Γa, define the

x-horizontal wedge W a
b,c as the region on the pseudoplane a that is contained in exactly

one of the two regions a+
b , a

+
c , that is, in exactly one of the regions that are bounded by γb, γc

and contain za (see Figure 7(1)).

Note that our assumption on the position of za in a allows to regard the wedges W a
b,c as

being indeed “x-horizontal” within the xy-frame in a.

M. Sharir and C. Ziv 62:11

Continue to fix the pseudoplane a, let Ea be some subset of vertices of A(Γa), and let
Ga = (Γa, Ea) denote the graph whose vertices are the pseudolines in Γa and whose edges
are the pairs that form the vertices of Ea. A diamond in Ga is two pairs {γb, γc}, {γd, γe}
of curves of Γa on a, both pairs belonging to Ea, with all four pseudoplanes b, c, d, e distinct,
such that pa,b,c = γb ∩ γc ∈W a

d,e and pa,d,e = γd ∩ γe ∈W a
b,c. See Figure 7(2.i) and 7(2.ii).

Figure 7 1. The x-horizontal wedge W a
b,c on the pseudoplane a. The regions a+

b and a+
c lie

above (in the y-direction) the respective curves γb and γc, and they both contain za. 2. The two
pairs {γb, γc}, {γd, γe} on a form a diamond in Ga. (i) The blue area is the x-horizontal wedge W a

b,c,
and it contains pa,d,e = γd ∩ γe. (ii) The red area is the x-horizontal wedge W a

d,e, and it contains
pa,b,c = γb ∩ γc.

The following is our version of an extension of the dual version of Euler’s formula for
planar maps, derived in Tamaki and Tokuyama [18], for the case of pseudolines in R2:

I Lemma 13 (Tamaki and Tokuyama [18]). For a pseudoplane a ∈ Λ, let Ga be as defined
above, with |Γa| > 3. If Γa is diamond-free, then Ga is planar, and so |Ea| ≤ 3|Γa| − 6.

As a corollary of Lemma 13, we have:

I Lemma 14 (Generalized dual version of the Crossing Lemma). Let Γa and Ga be as above,
so that |Ea| > 4|Γa|. The number of diamonds in Ga is at least |Ea|3

64|Γa|2 .

The proof follows more or less the standard probabilistic proof of the Crossing Lemma.
That is, Lemma 13 easily implies that the number of diamonds in Ga is at least |Ea| −
3|Γa|+ 6 > |Ea| − 3|Γa|. One then draws a random sample G′a of Ga, by picking each curve
γb ∈ Γa independently with probability p = 4|Γa|/|Ea|, and applies the above bootstrapping
bound to G′a, to obtain the improved bound in the lemma. This works, as in the planar case,
provided that |Ea| > 4|Γa|, as the lemma assumes.

We now specialize this result to our context. For each a ∈ Λ, consider the set Eka =
{pa,b,c = γb ∩ γc | γb, γc ∈ Γa, Ca,b,c ∈ Ck}, and the graph Gka = (Γa, Eka) defined as above.
Lemma 14 implies the following:

I Lemma 15. The number Xk of ordered pairs of immersed k-corridors in the arrangement
A(Λ) is at least |C

k|3
64n4 − n2.

Proof. Let a ∈ Λ, Gka = (Γa, Eka) be as above, and define ∆a as the number of diamonds in
Gka. Let {γb, γc}, {γd, γe} be a pair that form a diamond. Since the pseudoplanes in Λ satisfy
property (iv) and are in general position, the xy-projections of the curves γb,c and γd,e have
exactly one intersection point (but γb,c and γd,e do not intersect in 3-space). Moreover, since
b, c are the graphs of total bivariate functions, the projection of their intersection curve γb,c
on a is fully contained in the region {pa,b,c}∪

{
a+
b ∩a+

c

}
∪
{
a−b ∩a−c

}
. That is, the projection

of γb,c is disjoint from the interior of W a
b,c. Similarly, the projection of the intersection curve

γd,e on a is fully contained in the region {pa,d,e} ∪
{
a+
d ∩ a+

e

}
∪
{
a−d ∩ a−e

}
, and is disjoint

from W a
d,e. In addition, the portion of γb,c that projects to a+

b ∩ a+
c lies above a and the

portion projecting to a−b ∩ a−c lies below a. A similar property holds for γd,e.

SoCG 2019

62:12 On the Complexity of the k-Level in Arrangements of Pseudoplanes

Assume without loss of generality that the pseudoplanes b, c, d, e intersect a as in Figure
8(i); that is, pa,b,c is contained in a−d ∩a+

e and pa,d,e is contained in a−b ∩a+
c . Since {γb, γc} and

{γd, γe} form a diamond and each pair of curves on a intersects exactly once, the intersection
of the boundary of a+

d ∩a+
e and the boundary of a−b ∩a−c is empty. Indeed, the interior of the

arc pa,b,cpa,d,e is fully contained in a−b ∩ a+
c , and the half-curve of γd emanating from pa,b,d

and not containing pa,d,e, is fully contained in a+
b (otherwise, γd would intersect γb more

than once). On the other hand, the half-curve of γe emanating from pa,d,e and not containing
pa,c,e, is fully contained in a+

c , since γc already intersects the other half-curve of γe. These
two observations establish our claim. The regions a−b ∩ a−c and a+

d ∩ a+
e are not contained in

one another, and therefore their intersection is empty. Similarly, The intersection of a+
b ∩ a+

c

and a−d ∩ a−e is empty.

Figure 8 The two pairs {γb, γc}, {γd, γe} on a form a diamond in Gka. (i) The diamond, where
pa,b,c is contained in a−

d ∩ a
+
e and pa,d,e is contained in a−

b ∩ a
+
c . (ii) The intersection curve γb,c is

below the intersection curve γd,e. The pseudoplane d (resp., e) meets γb,c at a point q between pa,b,c
and p1 (resp., at a point, not drawn, outside this arc).

Assume without loss of generality that γb,c passes below γd,e. That is, letting l denote
the unique z-vertical line that meets both γb,c, γd,e, the points p1 = l ∩ γb,c, p2 = l ∩ γd,e
satisfy zp1 < zp2 . Assume without loss of generality that l intersects a in the region on a
that is the intersection of a+

b , a
+
c , a

+
d , a

+
e (the regions on a induced by the curves γb, γc, γd, γe

and containing za). The case where l intersects a in the region on a that is the intersection
of a−b , a−c , a

−
d , a

−
e , is handled symmetrically. These are the only two possibilities, since the

intersection of a+
b , a

+
c , a

−
d , a

−
e is empty, and so is the intersection of a−b , a−c , a

+
d , a

+
e .

Since γd,e is above p1, it follows that both d and e themselves are above p1. Moreover,
since pa,b,c lies in a−d , d must lie below pa,b,c. Hence d must intersect γb,c at some point q
between pa,b,c and p1. Moreover, since e satisfies ze > za and pa,b,c lies in a+

e , as in Figure
8(ii), e is above pa,b,c. Since e is also above p1 and e is the graph of a bivariate continuous
function, its single intersection point with γb,c must be outside the arc pa,b,cp1 of γb,c.

We claim that γb,c ⊆ Ca,d,e. Indeed, γb,c is fully above the lower envelope of {a, d, e}:
the half-curve of γb,c that emanates from pa,b,c and contains p1 lies above the pseudoplane
a (γb,c intersects a at pa,b,c), and the complementary half-curve lies above d, because the
intersection point q of γb,c and d lies between pa,b,c and p1. The intersection curve γb,c also
lies fully below the upper envelope of {a, d, e}. That is because (i) the half-curve of γb,c
that emanates from the intersection point q of γb,c and d, and contains p1, lies below the
pseudoplane d, since p2 ∈ d is higher than p1; (ii) the half-curve of γb,c that emanates from
pa,b,c and does not contain p1, lies below the pseudoplane a (again, γb,c intersects a at pa,b,c);
and (iii) the arc pa,b,cq is below e, since e is above both pa,b,c, p1 and therefore must be above
the complete arc pa,b,cp1, and in particular e is above the smaller arc pa,b,cq. The other cases
behave similarly and lead to similar conclusions.

M. Sharir and C. Ziv 62:13

Thus for each pair {γb, γc}, {γd, γe} that form a diamond, either γb,c ⊆ Ca,d,e, or γd,e ⊆
Ca,b,c. Either way, one of the corridors Ca,b,c, Ca,d,e is immersed in the other one. Notice that
every diamond in {Gka}a∈Λ yields a distinct ordered pair of immersed k-corridors, because
for each k-corridor Ca,b,c, the intersection point pa,b,c = a ∩ b ∩ c represents an edge of
only the graph associated with the pseudoplane with the lowest intersection point with
the z-axis. Hence, by the dual version of the Crossing Lemma, namely Lemma 14, we
have Xk ≥

∑
a

|Eka |
3

64|Γa|2 , where the sum is over all those a for which |Eka | ≥ 4|Γa|. Any other

pseudoplane a satisfies |Eka |
3

64|Γa|2 ≤ |Γa|, which implies the somewhat weaker lower bound

Xk ≥
∑
a∈Λ

(|Eka |3
64|Γa|2

− |Γa|
)
. (1)

By the definition of Gka, and as just noted, each k-corridor Ca,b,c in A(Λ) appears in
exactly one of Eka , Ekb , Ekc (in the graph of the pseudoplane that intersects the z-axis at the
lowest point among the three). Thus,

∑
a∈Λ
|Eka | = |Ck|. The number of curves in Γa is at

most n− 1. Therefore, using (1) and Hölder’s inequality, we get the following lower bound

Xk ≥
∑
a∈Λ

(
|Eka |

3

64|Γa|2 − |Γa|
)
≥ 1

64n2

∑
a∈Λ
|Eka |3 − n2 ≥ 1

64n2 ·

(∑
a∈Λ

|Eka |

)3

n2 − n2 = |Ck|3
64n4 − n2. J

2.3 The complexity of the k-level of A(Λ)
We are now ready to obtain the upper bound on the complexity of the k-level of A(Λ).

I Lemma 16. The complexity of the k-level of A(Λ) is O(n8/3).

Proof. We compare the upper bound in Lemma 10 and the lower bound in Lemma 15 for
the number Xk of ordered pairs of immersed k-corridors in A(Λ), and get:

3n4

4 ≥ Xk ≥ |C
k|3

64n4 − n
2.

Hence we get that |Ck|3 ≤ 48n8 + 64n6, which implies that |Ck| = O(n8/3). The number
of k-corridors is the number of vertices of A(Λ) at level k, which implies that the complexity
of the k-level of A(Λ) is O(n8/3). J

Combining the upper bound in Lemma 16 with the general technique of [1], we get the
following k-sensitive result, whose proof is reviewed in the full version [17].

I Theorem 17. The complexity of the k-level of A(Λ) is O(nk5/3).

3 Discussion

In this paper we have shown that, for any set Λ of n surfaces in R3 that form a family of
pseudoplanes, in the sense of satisfying properties (i)–(iv) of Section 2, the complexity of the
k-level of A(Λ) is O(nk5/3). Our analysis is based on ingredients from the technique of [15],
for the primal version of bounding the number of k-sets in a set of n points in R3. The
upper bound established in [15] is O(nk3/2), and is thus better than the bound we obtain
here, for the case of (planes and) pseudoplanes (see full version [17]). The main reason for
following this weaker analysis is the availability of the result of Tamaki and Tokuyama [18] on

SoCG 2019

62:14 On the Complexity of the k-Level in Arrangements of Pseudoplanes

diamond-free graphs in arrangements of pseudolines, which leads to an extended dual version
of the Crossing Lemma. It is definitely an intriguing hopefully not too difficult, challenge to
extend, to the case of pseudoplanes, a dual version of the sharper analysis in [15].

Another line of research is to relax one or more of properties (i)–(iv), defining a family of
pseudoplanes, as described in Section 2, with the goal of extending our analysis and obtaining
nontrivial bounds for the complexity of the k-level in arrangements of more general surfaces.
Property (iv) seems to be the most restrictive property among the four, namely requiring
the xy-projections of all intersection curves from Λ to form a family of pseudolines in the
plane (although it trivially holds for the case of planes). The main use of this property in our
analysis is in proving a generalized dual version of the Lovász Lemma (Lemma 9), as it (a)
facilitates the applicability of topological sweeping, and (b) allows us to exploit the extended
notion of antipodality, as in Lemma 7. It is an interesting challenge to find refined techniques
that can extend this analysis to situations where the arrangement within the curtain is not
an arrangement of pseudolines. One open direction is to find a different proof technique of
the Lovász Lemma that is not based on sweeping. This would also be very interesting for
the original case of planes (or of lines in the plane).

In studying the complexity of a level in an arrangement of more general surfaces, how far
can we relax the constraints that these surfaces must satisfy in order to enable us to obtain
sharp (significantly subcubic) bounds on the complexity of a level?

Finally, can our technique be extended to higher dimensions? For example, can we obtain
a sharp bound in four dimensions, similar to the bound in Sharir [14] for k-sets in R4?

References
1 P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir. On levels in arrangements of lines,

segments, planes, and triangles. Discrete Comput. Geom., 19:315–331, 1998.
2 P. K. Agarwal and M. Sharir. Davenport-Schinzel Sequences and Their Geometric Applications,

pages 216–217. Cambridge University Press, NY, USA, 1995.
3 P. K. Agarwal and M. Sharir. Pseudo-line arrangements: duality, algorithms, and appliations.

SIAM J. Comput., pages 34:526–552, 2005.
4 M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi. Crossing-free subgraphs, pages 9–12.

North-Holland Mathematics Studies, Amsterdam, 1982.
5 I. Bárány, Z. Füredi, and L. Lovász. On the number of halving planes. Combinatorica,

10:175–183, 1990.
6 T. M. Chan. On the bichromatic k-set problem. ACM Transactions on Algorithms, 6(4):62:1–

62:20, 2010.
7 T. M. Chan. On levels in arrangements of surfaces in three dimensions. Discrete Comput.

Geom., 48:1–18, 2012.
8 T. K. Dey. Improved bounds on planar k-sets and related problems. Discrete Comput. Geom.,

19:373–382, 1998.
9 T. K. Dey and H. Edelsbrunner. Counting triangle crossing and halving planes. Discrete

Comput. Geom., 12:281–289, 1994.
10 H. Edelsbrunner. Algorithms in Combinatorial Geometry, pages 271–291. Springer Verlag,

Heidelberg, 1987.
11 H. Edelsbrunner and L. Guibas. Topologically sweeping an arrangement. J. Computer Systems

Sci., 38:165–194, 1989.
12 J. Hershberger and J. Snoeyink. Sweeping arrangements of curves. Proc. 5th ACM Sympos.

on Computational Geometry, pages 354–363, 1989.
13 G. Nivasch. An improved, simple construction of many halving edges. Contemporary Mathem-

atics, 453:299–306, 2008.

M. Sharir and C. Ziv 62:15

14 M. Sharir. An improved bound for k-sets in four dimensions. Combinatorics, Probability and
Computing, 20:119–129, 2011.

15 M. Sharir, S. Smorodinsky, and G. Tardos. An improved bound for k-sets in three dimensions.
Discrete Comput. Geom., 26:195–204, 2001.

16 M. Sharir and J. Zahl. Cutting algebraic curves into pseudo-segments and applications. J.
Combinat. Theory, Ser. A, pages 150:37–42, 2017.

17 M. Sharir and C. Ziv. On the complexity of the k-level in arrangements of pseudoplanes, 2019.
arXiv:1903.07196.

18 H. Tamaki and T. Tokuyama. A characterization of planar graphs by pseudo-line arrangements.
Algorithmica, 35:269–285, 2003.

19 G. Tóth. Point sets with many k-sets. Proc. 16th Annual Sympos. on Computational Geometry,
35:37–42, 2000.

20 C. Ziv. On the Complexity of the k-Level in Arrangements of Pseudoplanes. Master’s thesis,
School of Computer Science, Tel Aviv University, 2019.

SoCG 2019

http://arxiv.org/abs/1903.07196

Packing Geometric Objects with Optimal
Worst-Case Density
Aaron T. Becker
Department of Electrical and Computer Engineering, University of Houston
Houston, TX 77204-4005 USA
atbecker@uh.edu

Sándor P. Fekete
Department of Computer Science, TU Braunschweig
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
s.fekete@tu-bs.de

Phillip Keldenich
Department of Computer Science, TU Braunschweig
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
p.keldenich@tu-bs.de

Sebastian Morr
Department of Computer Science, TU Braunschweig
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
sebastian@morr.cc

Christian Scheffer
Department of Computer Science, TU Braunschweig
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany
c.scheffer@tu-bs.de

Abstract

We motivate and visualize problems and methods for packing a set of objects into a given container,
in particular a set of different-size circles or squares into a square or circular container. Questions of
this type have attracted a considerable amount of attention and are known to be notoriously hard.
We focus on a particularly simple criterion for deciding whether a set can be packed: comparing
the total area A of all objects to the area C of the container. The critical packing density δ∗ is the
largest value A/C for which any set of area A can be packed into a container of area C. We describe
algorithms that establish the critical density of squares in a square (δ∗ = 0.5), of circles in a square
(δ∗ = 0.5390 . . .), regular octagons in a square (δ∗ = 0.5685 . . .), and circles in a circle (δ∗ = 0.5).

2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory
of computation → Computational geometry

Keywords and phrases Packing, complexity, bounds, packing density

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.63

Category Multimedia Exposition

Related Version Parts of this contribution describe the conference paper [3], which is part of SoCG
2019; a full version of that paper can be found at https://arxiv.org/abs/1903.07908.

Funding Aaron T. Becker : Supported by the National Science Foundation under Grant No. IIS-
1553063.
Phillip Keldenich: Supported by the German Research Foundation under Grant No. FE 407/17-2.

© Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Sebastian Morr, and
Christian Scheffer;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 63; pp. 63:1–63:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7614-6282
mailto:atbecker@uh.edu
https://orcid.org/0000-0002-9062-4241
mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-6677-5090
mailto:p.keldenich@tu-bs.de
https://orcid.org/0000-0003-0198-0162
mailto:sebastian@morr.cc
https://orcid.org/0000-0002-3471-2706
mailto:c.scheffer@tu-bs.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.63
https://arxiv.org/abs/1903.07908
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Packing Geometric Objects with Optimal Worst-Case Density

1 Introduction

Deciding whether a set of disks can be packed into a given container is a fundamental
geometric optimization problem that has attracted considerable attention. Disk packing also
has numerous applications in engineering, science, operational research and everyday life,
e.g., for packaging cylinders [1, 8], bundling tubes or cables [22, 24], or the cutting industry
[23]. Further applications stem from forestry [23] and origami design [13].

Like many other packing problems, disk packing is typically quite difficult; what is more,
the combinatorial hardness is compounded by the geometric complications of dealing with
irrational coordinates that arise when packing circular objects. This is reflected by the
limitations of provably optimal results for the optimal value for the smallest sufficient disk
container (and hence, the densest such disk packing in a disk container), a problem that was
discussed by Kravitz [12] in 1967: Even when the input consists of just 13 unit disks, the
optimal value for the densest disk-in-disk packing was only established in 2003 [7], while the
optimal value for 14 unit disks is still unproven. The enormous challenges of establishing
densest disk packings are also illustrated by a long-standing open conjecture by Erdős and
Oler from 1961 [19] regarding optimal packings of n unit disks into an equilateral triangle,
which has only been proven up to n = 15. For other examples of mathematical work on
densely packing relatively small numbers of identical disks, see [5, 6, 9, 16], and [10, 15, 20]
for related experimental work. Many authors have considered heuristics for circle packing
problems, see [11, 23] for overviews of numerous heuristics and optimization methods. The
best known solutions for packing equal disks into squares, triangles and other shapes are
continuously published on Specht’s website http://packomania.com [21].

The related problem of packing square objects has also been studied for a long time.
The decision problem whether it is possible to pack a given set of squares into the unit
square was shown to be strongly NP-complete by Leung et al. [14], using a reduction from
3-Partition. Already in 1967, Moon and Moser [17] found a sufficient condition. They
proved that it is possible to pack a set of squares into the unit square in a shelf-like manner
if their combined area (i.e., the sum over all square areas) does not exceed 1

2 . At the same
time, 1

2 is the largest upper area bound one can hope for, because two squares larger than
the quarter-squares shown in Fig. 1 cannot be packed. We call the ratio between the largest
combined object area that can always be packed and the area of the container the problem’s
critical packing density.

Figure 1 (1) An instance of critical packing density for squares in a square. (2) An example
packing produced by Moon and Moser’s Shelf Packing. (3) An instance of critical packing density
for disks in a square. (4) An example packing produced by Morr’s Split Packing.

The equivalent problem of establishing the critical packing density for disks in a square
was posed by Demaine, Fekete, and Lang [2] and resolved relatively recently by Morr, Fekete
and Scheffer [4, 18]. Making use of Split Packing, a recursive procedure for cutting the

http://packomania.com

A.T. Becker, S. P. Fekete, P. Keldenich, S. Morr, and C. Scheffer 63:3

Figure 2 An example run of Split Packing.

Figure 3 (1) An instance of critical packing density for regular octagons in a square. (2) An
example packing produced by Split Packing. (3) An instance of critical packing density for circles
in a circles. (4) An example packing produced by Boundary/Ring Packing of Fekete, Keldenich,
and Scheffer.

container into hats, i.e., triangular pieces with rounded corners, they proved that the critical
packing density of disks in a square is π

3+2
√

2 ≈ 0.539. As illustrated in Fig. 3 (1) and (2),
Split Packing can be generalized to also achieve critical packing density for other shapes such
as regular octagons.

The analogous question of establishing the critical packing density for disks in a disk has
just been resolved by Fekete, Keldenich and Scheffer [3]. As illustrated in Fig. 3 (3) and (4),
it is 0.5.

2 Squares in a Square: Shelf Packing

The basic idea for Shelf Packing (see Fig. 1 (2)) is to greedily insert the items in order of
decreasing size, starting in the lower left corner. Items are placed from left to right with
aligned bottoms, until an item no longer fits to the right of its predecessor; when that
happens, an item is placed on top of the leftmost item in the previous row. Assuming that
this fails to place the last item completely inside the container yields an estimate for the
packed area that exceeds 1/2; this involves relatively simple algebraic transformations, as
shown in the video.

3 Circles in a Square: Split Packing

The key idea for Split Packing is to recursively subdivide both the set of items and the
container in a fashion that yields a similar, balanced split for both. A schematic overview
is shown in Fig. 4: After sorting the circles by decreasing size (Step 1), the set of items is
greedily split into two subsets, such that the difference between their total area does not
exceed the area of the last subset (Step 2); the area split is also applied to the container
along a diagonal cut (Step 3). A finer point is to notice that a guaranteed minimum size
of circles in a subset makes it sufficient to consider triangular subcontainers with rounded
corners (“hats”), as the acute corners will not be required to accommodate bigger circles; as
a consequence, asymmetric diagonal cuts leave a bigger piece that can still be treated as such
a hat, allowing recursion. This is carried out recursively on both subsets (Steps 4 and 5),

SoCG 2019

63:4 Packing Geometric Objects with Optimal Worst-Case Density

until a subset consists of a single circle, which is then simply packed into its corresponding
triangle (Step 6). The resulting subdivision and packing are shown in Steps 7 and 8. In the
end, each subcontainer achieves a packing density of at least π

3+2
√

2 ≈ 0.539, establishing the
critical bound; see Fig. 2 for an example run.

Figure 4 A schematic illustration of Split Packing.

The key insight (a balanced, recursive split into subsets can be used analogously to the
container by a diagonal cut) can also be applied to other kinds of objects: See Fig. 3 for the
case of regular octagons, for which the critical packing density is 8(5

√
2− 7) ≈ 0.5685

Similar results can be obtained for other shapes and triangular containers, see the paper [4]
for details.

4 Circles in a Circle: Boundary/Ring Packing

For the scenario of packing circles into a circle, the curved container boundary requires a
different approach. The algorithm of Fekete, Keldenich and Scheffer [3] applies subroutines.
The circles we want to pack into a circle container C are considered in decreasing order of
radius. In the following, we sketch the algorithm of Fekete, Keldenich and Scheffer; see the
full paper [3] for details.

First we check whether the two largest circles allow a recursive packing of the remaining
circles, see Figure 5 (top-left). If we cannot apply the recursion, two subroutines are used:
Ring Packing and Boundary Packing, see Figures 5 (top-middle) and (top-right).

Ring Packing packs circles into a ring R, alternating between touching the inner and
outer boundary of the ring. If the current circle and the previously packed circle could pass
each other in R, Ring Packing partitions the ring into two rings and continues by packing
into these two rings. Ring Packing continues until the current circle cannot be packed into
any open ring, see Figure 5 (bottom).

A.T. Becker, S. P. Fekete, P. Keldenich, S. Morr, and C. Scheffer 63:5

r1

r2

r3 r4

Figure 5 The approach of Fekete, Keldenich and Scheffer [3]: (Top, left to right) Recursion, Ring
Packing and Boundary Packing. (Bottom) A stepwise run of the algorithm.

Boundary Packing packs the input circles into the container, touching its boundary and
the previously packed circle until the radius of the current circle is below a given threshold.

Using a combination of manual and automated case checking, the analysis ensures a
packing density of at least 0.5; see Figure 6 for an illustration and the full paper for details.

density ≥ ρ density ≥ 0.5

⇒

Figure 6 The analytic approach for ensuring a packing density of at least 0.5.

5 The Video

The video opens with a number of practical illustrations for packing problems, followed by
a sketch of NP-hardness proofs and additional geometric difficulties when packing circles.
After introducing the concept of critical packing density, we sketch the algorithmic proof
by Moon and Moser for the critical packing density of squares in a square. This is followed
by an illustrated description of Morr’s Split Packing algorithm for circles in a square, along
with extensions to other shapes and containers. Finally, we sketch a current result on the
critical packing density of circles in a circle.

References
1 Ignacio Castillo, Frank J. Kampas, and János D. Pintér. Solving circle packing problems

by global optimization: numerical results and industrial applications. European Journal of
Operational Research, 191(3):786–802, 2008.

2 Erik D. Demaine, Sándor P. Fekete, and Robert J. Lang. Circle Packing for Origami Design is
Hard. In Origami5: 5th International Conference on Origami in Science, Mathematics and
Education, AK Peters/CRC Press, pages 609–626, 2011. arXiv:1105.0791.

SoCG 2019

http://arxiv.org/abs/1105.0791

63:6 Packing Geometric Objects with Optimal Worst-Case Density

3 Sándor P. Fekete, Phillip Keldenich, and Christian. Scheffer. Packing Disks into Disks with
Optimal Worst-Case Density. In Proceedings of the 35th Annual Symposium on Computational
Geometry (SoCG), LIPIcs, pages 35:1–35:19, 2019. These proceedings; full version at https:
//arxiv.org/abs/1903.07908.

4 Sándor P. Fekete, Sebastian Morr, and Christian Scheffer. Split Packing: Algorithms for
Packing Circles with Optimal Worst-Case Density. Discrete & Computational Geometry, page
562–594, 2018. doi:10.1007/s00454-018-0020-2.

5 F. Fodor. The Densest Packing of 19 Congruent Circles in a Circle. Geometriae Dedicata,
74:139–145, 1999.

6 F. Fodor. The Densest Packing of 12 Congruent Circles in a Circle. Beiträge zur Algebra und
Geometrie (Contributions to Algebra and Geometry), 41:401–409, 2000.

7 F. Fodor. The Densest Packing of 13 Congruent Circles in a Circle. Beiträge zur Algebra und
Geometrie (Contributions to Algebra and Geometry), 44:431–440, 2003.

8 Hamish J. Fraser and John A. George. Integrated container loading software for pulp and
paper industry. European Journal of Operational Research, 77(3):466–474, 1994.

9 M. Goldberg. Packing of 14, 16, 17 and 20 circles in a circle. Mathematics Magazine, 44:134–139,
1971.

10 R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, and P.R.J. Östergøard. Dense Packings of
Congruent Circles in a Circle. Discrete Mathematics, 181:139–154, 1998.

11 Mhand Hifi and Rym M’Hallah. A literature review on circle and sphere packing problems:
Models and methodologies. Advances in Operations Research, 2009. Article ID 150624.

12 S. Kravitz. Packing cylinders into cylindrical containers. Mathematics Magazine, 40:65–71,
1967.

13 Robert J. Lang. A computational algorithm for origami design. Proceedings of the Twelfth
Annual Symposium on Computational Geometry (SoCG), pages 98–105, 1996.

14 Joseph Y. T. Leung, Tommy W. Tam, Chin S. Wong, Gilbert H. Young, and Francis Y. L. Chin.
Packing squares into a square. Journal of Parallel and Distributed Computing, 10(3):271–275,
1990.

15 B.D. Lubachevsky and R.L. Graham. Curved Hexagonal Packings of Equal Disks in a Circle.
Discrete & Computational Geometry, 18:179–194, 1997.

16 H. Melissen. Densest Packing of Eleven Congruent Circles in a Circle. Geometriae Dedicata,
50:15–25, 1994.

17 John W. Moon and Leo Moser. Some packing and covering theorems. In Colloquium
Mathematicae, volume 17, pages 103–110. Institute of Mathematics, Polish Academy of
Sciences, 1967.

18 Sebastian Morr. Split Packing: An Algorithm for Packing Circles with Optimal Worst-Case
Density. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 99–109, 2017.

19 Norman Oler. A finite packing problem. Canadian Mathematical Bulletin, 4:153–155, 1961.
20 G.E. Reis. Dense Packing of Equal Circles within a Circle. Mathematics Magazine, issue

48:33–37, 1975.
21 Eckard Specht. Packomania, 2015. URL: http://www.packomania.com/.
22 Kokichi Sugihara, Masayoshi Sawai, Hiroaki Sano, Deok-Soo Kim, and Donguk Kim. Disk

packing for the estimation of the size of a wire bundle. Japan Journal of Industrial and Applied
Mathematics, 21(3):259–278, 2004.

23 Péter Gábor Szabó, Mihaly Csaba Markót, Tibor Csendes, Eckard Specht, Leocadio G. Casado,
and Inmaculada García. New Approaches to Circle Packing in a Square. Springer US, 2007.

24 Huaiqing Wang, Wenqi Huang, Quan Zhang, and Dongming Xu. An improved algorithm
for the packing of unequal circles within a larger containing circle. European Journal of
Operational Research, 141(2):440–453, September 2002.

https://arxiv.org/abs/1903.07908
https://arxiv.org/abs/1903.07908
http://dx.doi.org/10.1007/s00454-018-0020-2
http://www.packomania.com/

Properties of Minimal-Perimeter Polyominoes
Gill Barequet
Technion – Israel Inst. of Technology, Haifa, Israel
barequet@cs.technion.ac.il

Gil Ben-Shachar
Technion – Israel Inst. of Technology, Haifa, Israel
gilbe@cs.technion.ac.il

Abstract
In this video, we survey some results concerning polyominoes, which are sets of connected cells on
the square lattice, and specifically, minimal-perimeter polyominoes, that are polyominoes with the
minimal-perimeter from all polyominoes of the same size.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases Polyominoes, Perimeter, Minimal-Perimeter

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.64

Category Multimedia Exposition

Supplement Material https://www.youtube.com/watch?v=hmMewVI1RIg&rel=0

Funding Work on this paper by both authors has been supported in part by ISF Grant 575/15 and
by BSF Grant 2017684.

1 Introduction

In this video, we discuss the combinatorial and geometric properties of minimal-perimeter
polyominoes. A polyomino is a set of edge-connected squares on the square lattice. The size
of a polyomino is the number of squares composing it. The problem of counting polyominoes
dates back to the 1950s, when it was studied in parallel in the fields of combinatorics [7]
and statistical physics [6]. The number of polyominoes of area n is denoted in the literature
by A(n). No formula for A(n) is known as of today, but there exist a few algorithms for
computing values of A(n), such as those of Redelmeier [12] and Jensen [8]. Using Jensen’s
algorithm, values of A(n) were computed up to n = 56. The existence of the growth constant
of A(n), namely, λ := limn→∞

n
√
A(n), was shown by Klarner [9]. More than 30 years

later, Madras [11] showed that limn→∞ A(n+ 1)/A(n) exists and, thus, is equal to λ. The
best known lower and upper bounds on λ are 4.0025 [5] and 4.6496 [10], respectively. The
currently best estimate of λ is 4.0625696± 0.0000005 [8].

The perimeter of a polyomino is the set of empty squares adjacent to the polyomino. The
number of polyominoes with a given size and perimeter size was studied in several papers.
Recently, Asinowski et al. [2] provided formulae for the number of polyominoes of a given
area and perimeter that is close to the maximum possible perimeter.

In contrast to polyominoes with large perimeter size, a minimal-perimeter polyomino is a
polyomino with the minimum possible perimeter for its size. Minimal-perimeter polyominoes
were studied by Altshular et al. [1] and by Sieben [13], providing formulae for the minimum
perimeter size possible for a given size of a polyomino. Recently, we provided some combin-
atorial results about the sets of minimal-perimeter polyominoes [3, 4]. In this video, we show
some of these results.

© Gill Barequet and Gil Ben-Shachar;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 64; pp. 64:1–64:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barequet@cs.technion.ac.il
mailto:gilbe@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.SoCG.2019.64
https://www.youtube.com/watch?v=hmMewVI1RIg&rel=0
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 Properties of Minimal-Perimeter Polyominoes

(a) Q (b) I(Q) (c) D(Q)

Figure 1 A polyomino Q and the respective inflated and deflated polyominoes. The gray cells
represent polyomino cells, while the white cells represent perimeter cells.

2 Results

As mentioned in the introduction, a polyomino, denoted by Q, is a set of edge-connected
cells. The perimeter of a polyomino, denoted by P(Q), is the set of empty cells adjacent to
the polyomino.

In this video, we present several results about the properties of minimal-perimter
polyominoes, namely, polyominoes with the minimum number of perimeter cells for their
size. A key concept for these results is the inflation operation. Formally, the inflation of
a polyomino Q, denoted by I(Q), is defined as I(Q) = Q ∪ P(Q), or in words, inflating a
polyomino is the operation of expanding a polyomino by its perimeter. Similarly, the deflation
of a polyomino Q, denoted by D(Q), is the removal of the cells adjacent to some perimeter
cells. Formally, we define the border of Q, denoted by B(Q) as the set of cells adjacent to a
perimeter cell. Similarly to inflation, the deflated polyomino is defined as D(Q) = Q\B(Q).
Those concepts are depicted in Figure 1.

2.1 Inflating Minimal-Perimeter Polyominoes
Using the above concepts, we present in the video the following theorems [3].

I Theorem 1. [3, Thm. 3] If Q is a minimal-perimeter polyomino, then I(Q) is a minimal-
perimeter polyomino as well.

I Theorem 2. [3] Let Q be a polyomino for which D(Q) is a minimal-perimeter polyomino.
Then, for any other minimal-perimeter polyomino Q′ of the same size as Q, we have that D(Q′)
is a minimal-perimeter polyomino as well.

Combining these results, we obtain the following theorem.

I Theorem 3. [3, Thm. 4] Let Mn be the set of minimal-perimeter polyominoes of size n.
Then, for n ≥ 3, we have that |Mn| =

∣∣Mn+ε(n)
∣∣, where ε(n) is the perimeter size of a

minimal-perimeter polyomino of size n.

Theorem 3 is demonstrated in Figure 2. Theorem 3 is the main result shown in [3]; we
refer the reader to the full paper for more details.

2.2 Counting Minimal-Perimeter Polyominoes
The bijection shown in Theorem 3 provides the number of minimal-perimeter polyominoes for
any size which is obtained by inflating a set of minimal-perimeter polyominoes of some smaller
size n, for which we know the cardinality of Mn. However, there are sizes of polyominoes, for
which the set of minimal-perimeter polyominoes is not created by inflating the polyominoes

G. Barequet and G. Ben-Shachar 64:3

Figure 2 A demonstration of Theorem 3. The first row contains all the minimal-perimeter
polyominoes of size 7, the second row contains all the minimal-perimeter polyominoes of size 17, and
the last row contains all the minimal-perimeter polyominoes of size 31. Notice that the polyominoes
in each row are the inflated versions of the respective polyominoes in the previous row.

Figure 3 An example of the decomposition of two minimal-perimeter polyominoes into their the
body (gray) and caps (red).

in another set of minimal-perimeter polyominoes. The properties of those sizes are discussed
in [4]. However, due to time constraints, we focus in the video only on the question of how
many minimal-perimeter polyominoes there are for a given size.

In order to count the minimal-perimeter polyominoes of a given size, we show that any
minimal-perimeter polyomino can be decomposed into an octogonal shaped polyomino, with
the same perimeter as the original polyomino (referred to as the “body” of the polyomino),
and “caps,” which are added on top of the octagon edges and do not change the perimeter.
This decomposition is depicted in Figure 3. Using this decomposition, we were able to devise
an efficient algorithm for counting minimal-perimeter polyominoes of a given size. Data we
obtained are shown in Figure 4. For more information, we refer the reader to [4].

3 Future Work

Several questions in this area are yet to be answered. First, how do those results generalize
to other lattices, such as polyiamonds on the triangular lattice, polyhexes on the hexagonal
lattice, and polycubes on the cubical lattice in higher dimensions?

Second, the results shown in Figure 4 raise some questions about the behavior of the
upper envelope of the sequence |Mn|. It seems that this sequence is exponential, and if it is,
we would like to achieve good bounds on its growth rate.

4 The Video

The video depicts the above results. It was created mostly using Powtoon. The 3-dimensional
animation was created using Maya Autodesk, and the graph animation was created progra-
matically using the D3.js library.

SoCG 2019

www.powtoon.com

64:4 Properties of Minimal-Perimeter Polyominoes

0 200 400 600 800 1000 1200
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Figure 4 Values of |Mn|. The values which are not created by the inflation operation are shown
in red.

References
1 Y. Altshuler, V. Yanovsky, D. Vainsencher, I.A. Wagner, and A.M. Bruckstein. On minimal

perimeter polyminoes. In Proc. Conf. Discrete Geometry for Computer Imagery, pages 17–28.
Springer, 2006.

2 A. Asinowski, G. Barequet, and Y. Zheng. Enumerating polyominoes with fixed perimeter
defect. In Proc. 9th European Conf. on Combinatorics, Graph Theory, and Applications,
volume 61, pages 61–67, Vienna, Austria, August 2017. Elsevier.

3 G. Barequet and G. Ben-Shachar. Properties of Minimal-Perimeter polyominoes. In Interna-
tional Computing and Combinatorics Conference, Qingdao, China, 2018. Springer.

4 G. Barequet and G. Ben-Shachar. Minimal-Perimeter Polyominoes: Chains, Roots, and
Algorithms. In Conference on Algorithms and Discrete Applied Mathematics, pages 109–123.
Springer, 2019.

5 G. Barequet, G. Rote, and M. Shalah. λ > 4: An improved lower bound on the growth
constant of polyominoes. Comm. of the ACM, 59(7):88–95, 2016.

6 S.R. Broadbent and J.M. Hammersley. Percolation processes: I. Crystals and Mazes. In
Mathematical Proceedings of the Cambridge Philosophical Society, volume 53, pages 629–641.
Cambridge University Press, 1957.

7 S.W. Golomb. Checker boards and polyominoes. The American Mathematical Monthly,
61(10):675–682, 1954.

8 I. Jensen. Counting Polyominoes: A Parallel Implementation for Cluster Computing. In
Peter M. A. Sloot, David Abramson, Alexander V. Bogdanov, Yuriy E. Gorbachev, Jack J.
Dongarra, and Albert Y. Zomaya, editors, Proc. Int. Conf. on Computational Science, pages
203–212, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

9 D.A. Klarner. Cell growth problems. Canadian J. of Mathematics, 19:851–863, 1967.
10 D.A. Klarner and R.L. Rivest. A procedure for improving the upper bound for the number of

n-ominoes. Canadian J. of Mathematics, 25(3):585–602, 1973.
11 N. Madras. A pattern theorem for lattice clusters. Annals of Combinatorics, 3(2):357–384,

June 1999.
12 D.H. Redelmeier. Counting polyominoes: Yet another attack. Discrete Mathematics, 36(2):191–

203, 1981.
13 N. Sieben. Polyominoes with minimum site-perimeter and full set achievement games. European

J. of Combinatorics, 29(1):108–117, 2008.

A Manual Comparison of Convex Hull Algorithms
Maarten Löffler
Dept. of Information and Computing Sciences, Utrecht University, The Netherlands
m.loffler@uu.nl

Abstract
We have verified experimentally that there is at least one point set on which Andrew’s algorithm
(based on Graham’s scan) to compute the convex hull of a set of points in the plane is significantly
faster than a brute-force approach, thus supporting existing theoretical analysis with practical
evidence. Specifically, we determined that executing Andrew’s algorithm on the point set

P = {(1, 4), (2, 8), (3, 10), (4, 1), (5, 7), (6, 3), (7, 9), (8, 5), (9, 2), (10, 6)}

takes 41 minutes and 18 seconds; the brute-force approach takes 3 hours, 49 minutes, and 5 seconds.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases convex hull, efficiency

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.65

Category Multimedia Exposition

Funding Maarten Löffler : Partially supported by the Netherlands Organisation for Scientific Re-
search (NWO); 614.001.504.

1 Introduction

Computational efficiency lies at the heart of the research area of computational geometry,
and more broadly at that of algorithm design. As we explain in every single paper, it is of
vital importance, since data sets are growing ever larger, and advancing hardware cannot
compete with the pitiless mathematics of asymptotic behaviour. The same growth in both
data size and computation speed is also making the notion of efficiency more abstract, and
more difficult to explain to inhabitants of a world in which instant computation is the norm.

In an attempt to make the concept of efficiency more tangible by scaling both the size of
the data set and the speed of the computation to something more human, we report on a
manual execution of two different algorithms to compute the convex hull of the set

P = {(1, 4), (2, 8), (3, 10), (4, 1), (5, 7), (6, 3), (7, 9), (8, 5), (9, 2), (10, 6)} (Figure 1)

of ten points in R2. The execution has been recorded and timed.

Figure 1 Left: the set P of 10 points in the plane. Right: the convex hull of P .

The experiment is inspired by the introductory chapter of the well-known computational
geometry textbook of de Berg et al. [2], which uses the convex hull problem to illustrate the
value of efficient algorithms by comparing a brute-force algorithm which runs in O(n3) time
to the O(n log n) time algorithm by Andrew [1], which is in turn based on Graham’s scan
algorithm [3].

© Maarten Löffler;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 65; pp. 65:1–65:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.loffler@uu.nl
https://doi.org/10.4230/LIPIcs.SoCG.2019.65
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 A Manual Comparison of Convex Hull Algorithms

Figure 2 Pseudocode of the two algorithms. Left: a cubic-time brute-force algorithm. Right:
Adrew’s adaptation of Graham’s scan algorithm.

2 Implementation

We chose two different algorithms to test: a fairly straightforward cubic-time algorithm, and
the algorithm of Andrew [1]. We made some minor adaptations out of practical considerations.
Pseudocode of the two algorithms is provided in Figure 2.

We implemented the algorithms using light cardboard points and semi-transparant tape
for the edges (or potential edges) of the hull. Points are stored in standard postal envelopes,
and geometric predicates are tested by (temporarily) embedding the points physically on a
30-centimeter unit grid and sticking tape edges onto the grid. As coordinates range from 1
to 10, this causes some fluctuation in the time required to perform an operation, depending
on the walking distance to the respective point.

We expect there is additional bias in the results, due to several environmental factors. In
particular, over the course of the execution of the brute-force algorithm, there is a measurable
increase in the number of operations per minute.

3 Results

The execution of the brute-force algorithm took 3 hours, 49 minutes, and 5 seconds. The
execution of Andrew’s algorithm took 41 minutes and 18 seconds.

References
1 A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information

Processing Letters, 9(5):216–219, 1979. doi:10.1016/0020-0190(79)90072-3.
2 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 3rd edition, 2008.
3 R.L. Graham. An efficient algorith for determining the convex hull of a finite planar set.

Information Processing Letters, 1(4):132–133, 1972. doi:10.1016/0020-0190(72)90045-2.

http://dx.doi.org/10.1016/0020-0190(79)90072-3
http://dx.doi.org/10.1016/0020-0190(72)90045-2

Fréchet View – A Tool for Exploring
Fréchet Distance Algorithms
Peter Schäfer
FernUniversität in Hagen, Germany
peter.schaefer1@studium.fernuni-hagen.de

Abstract
The Fréchet-distance is a similarity measure for geometric shapes. Alt and Godau presented the
first algorithm for computing the Fréchet-distance and introduced a key concept, the free-space
diagram. Since then, numerous variants of the Fréchet-distance have been studied.

We present here an interactive, graphical tool for exploring some Fréchet-distance algorithms.
Given two curves, users can experiment with the free-space diagram and compute the Fréchet-
distance. The Fréchet-distance can be computed for two important classes of shapes: for polygonal
curves in the plane, and for simple polygonal surfaces.

Finally, we demonstrate an implementation of a very recent concept, the k-Fréchet-distance.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Fréchet distance, free-space diagram, polygonal curves, simple polygons

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.66

Category Multimedia Exposition

Supplement Material https://hrimfaxi.bitbucket.io/fv

Binaries (for Windows, Linux, macOS), sample data and source code
Brief user guide
Video presentation

Acknowledgements This program was developed as part of my master thesis at the chair of
Prof. Dr. André Schulz, supervised by Dr. Lena Schlipf.

1 The Fréchet-distance

The Fréchet-distance is a metric for describing similarity between two continuous shapes.
The need for comparing shapes arises in many fields of applications, like computer vision,
handwriting recognition, proteine matching, map construction, analysis of movement data,
and more. The Fréchet-distance is similar to the Hausdorff-metric, but it better captures
the notion of similarity. It is defined as the minimum bottleneck-cost over all possible
homeomorphisms.

I Definition 1. Let P and Q be two given curves in a metric space S. A reparametrization
α of [0, 1] is a continuous, non-decreasing surjection α : [0, 1] 7→ [0, 1].

The Fréchet-distance between P and Q is the infimum over all reparametrizations α
and β of the maximum over all t ∈ [0, 1] of the distance between P (α(t)) and Q(β(t)):

δF (P,Q) = inf
α,β

max
t∈[0,1]

||P (α(t))−Q(β(t)) || ,

where || · || denotes the distance function of S. In the following sections we will always assume
the Euclidean norm in R2, and we will only consider polygonal curves and shapes.

© Peter Schäfer;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 66; pp. 66:1–66:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peter.schaefer1@studium.fernuni-hagen.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.66
https://hrimfaxi.bitbucket.io/fv
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 Fréchet View

An intuitive explanation of the Fréchet-distance is this: imagine a man walking his dog
on a leash. The man walks on one curve, while the dog follows the other curve. Both the
man and the dog must move forward. The weak Fréchet-distance would allow for backward
movement, also. We will come back to it in section 3.

the decision problem asks: is it possible to walk the curves with a leash of given length ε?
the optimization problem asks for the shortest possible leash.

Figure 1 Two curves, and a dog on a leash. Right: the corresponding free-space diagram with a
feasible path.

Alt and Godau [2] presented an algorithm for computing the Fréchet-distance for polygonal
curves in the plane. The key concept of this algorithm is the free-space diagram: one
curve is mapped to the x-axis of the diagram, the second curve is mapped to the y-axis,
spanning a two-dimensional grid, or configuration space.

The free-space represents all pairs of points whose distance is less than or equal to ε.
In Figure 1 the free-space is indicated by the shaded area (which is composed of numerous
ellipse sections).

We have dF (P,Q) ≤ ε, if there is a monotone path in the free-space diagram starting at
the lower left corner (0, 0) and ending in the upper right corner (p, q) (where p and q denote
the number of vertices in the curves). We call that a feasible path.

For closed curves, the left and right edges of the free-space diagram coincide. Just imagine
the diagram to wrap around at the egdes, creating a cylinder (or a torus, though the latter
is not relevant for our algorithms).1 The starting point of a feasible path may be located
anywhere on the x-axis. Alt and Godau’s [2] algorithm finds such a path in O(pq log pq)
time. We can thus solve the decision problem.

The optimization problem is solved by applying the algorithm repeatedly on a set of
critical values, i. e. values of ε for which the structure of the free-space diagram changes
significantly. Fréchet View is a useful tool for examining the structue of free-space diagrams.

2 The Fréchet-distance for Simple Polygons

The Fréchet-distance easily extends to higher dimensions. As it turns out, computation
becomes significantly harder, already for two-dimensional surfaces. Buchin et al. [3] presented
a polynomial-time algorithm for a natural subset of surfaces, namely simple polygons (i. e.

1 In the literature this is often referred to as a double-free-space diagram

P. Schäfer 66:3

Figure 2 Triangulated polygons and their free-space diagram.

Figure 3 The Fréchet-distance of the polygonal surfaces differs from the Fréchet-distance of their
boundary curves.

polygons without holes and self-intersection). Basically, their algorithm is able to break down
the problem to a convex decomposition and triangulation of the polygons (see Figure 2).
It is sufficient to consider certain diagonals, which are mapped to shortest paths in the other
polygon, with additional conditions applying. To the best of our knowledge, ours is the first
practical implementation of this algorithm.

In many cases, the Fréchet-distance for simple polygons is just identical to the Fréchet-
distance of their boundary curves. Figure 3 shows an example where they actually differ.

3 The k-Fréchet-distance

Buchin and Ryvkin [4, 1] recently introduced a new concept, the k-Fréchet-distance. It
represents a connecting bridge between the Hausdorff-metric and the well-known weak
Fréchet-distance. Roughly speaking, the input curves are cut into parts and each part is
mapped using the weak Fréchet-distance. With the weak Fréchet-distance, reparametrizations
are not required to be monotone; man and dog are allowed to move backwards.

The question is: can we find a mapping with at most k parts? This adds a strong
combinatorial aspect to the problem. In fact, the problem was shown to be NP-complete by
Buchin and Ryvkin [4, 1].

SoCG 2019

66:4 Fréchet View

We present implementations of two algorithms: an exponential-time “brute-force” exact
algorithm, and a greedy approximation algorithm.

(a) Input curves. (b) Result of the greedy algorithm. (c) Optimal result.

Figure 4 k-Fréchet-distance: greedy vs. optimal results. The approximation factor can be shown
to approach 2.

Many questions regarding the k-Fréchet-distance are still open to research. For one, the
exact approximation factor of the greedy algorithm was not yet known. With the help of
Fréchet View we were able to construct curves whose approximation ratio comes arbitrarily
close to 2 (see Figure 4).

4 Fréchet View – the Implementation

Fréchet View is a tool for exploring various aspects of the Fréchet-distance algorithms.
It expects two polygonal curves as input data. These curves are stored in vector graphics
files (in SVG, or IPE format) and can be edited with any usual vector graphics editor,
like InkScape, or IPE. In addition, we provide an implementation to assemble curves from
straightforward JavaScript code.

Both curves and the correspoding free-space diagram are displayed on screen. The user
can manipulate the parameter ε and watch the changes to the free-space diagram. Whenever
a feasible path is found, it is drawn within the free-space diagram. Moving the mouse pointer
over the path displays the mapped sections on the input curves (and vice versa).

Graphics produced by Fréchet View can be stored to disk. For example, all figures in
this document have been created using Fréchet View.

The program is written in C++, making use of the Computational Geometry Algorithms
Library [5], and a number of development frameworks like Qt, Boost, TBB, and more. It can
be run from the command line with additional options for multi-core and GPGPU-support.
However, these features are not part of our presentation.

References
1 Hugo A. Akitaya, Maike Buchin, Leonie Ryvkin, and Jérôme Urhausen. The k-Fréchet distance

revisited and extended. In 35th European Workshop on Computational Geometry, 2019. URL:
http://www.eurocg2019.uu.nl/papers/41.pdf.

2 Helmut Alt and Michael Godau. Computing the Fréchet Distance between two Polygonal
Curves. International Journal of Computational Geometry and Applications, 5(1-2):75–91,
1995. doi:10.1142/S0218195995000064.

http://www.eurocg2019.uu.nl/papers/41.pdf
http://dx.doi.org/10.1142/S0218195995000064

P. Schäfer 66:5

3 Kevin Buchin, Maike Buchin, and Carola Wenk. Computing the Fréchet Distance Between
Simple Polygons in Polynomial Time. In Proceedings of the Twenty-second Annual Symposium
on Computational Geometry, SCG ’06, pages 80–87, 2006. doi:10.1145/1137856.1137870.

4 Maike Buchin and Leonie Ryvkin. The k-Fréchet distance of polygonal curves. In 34th European
Workshop on Computational Geometry, 2018. URL: https://conference.imp.fu-berlin.
de/eurocg18/download/paper_43.pdf.

5 The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.12 edition,
2018. URL: https://doc.cgal.org/4.12/Manual/packages.html.

SoCG 2019

http://dx.doi.org/10.1145/1137856.1137870
https://conference.imp.fu-berlin.de/eurocg18/download/paper_43.pdf
https://conference.imp.fu-berlin.de/eurocg18/download/paper_43.pdf
https://doc.cgal.org/4.12/Manual/packages.html

	p000-Frontmatter
	Foreword
	Conference Organization
	Additional Reviewers

	p001-Dasgupta
	p002-Donald
	p003-Afshani
	Introduction
	The Previous Results
	Our Results

	Preliminaries
	The Lower Bound
	Definitions and Set up
	The Main Lemma
	Notation and Setup

	The Lower Bound Proof

	The Upper Bounds
	Conclusions

	p004-Afshani
	Introduction
	A Randomized Data Structure
	3D Halfspace Sampling
	Preliminaries
	A Solution with Expected Query Time
	Worst-Case Time with Approximate Weights
	Generating Candidate Points
	Constructing the k Samples

	Lower Bound for Worst-Case Time with Exact Weights

	p005-Agarwal
	Introduction
	Preliminaries
	Polynomials, partitioning, and quantifier elimination
	Range spaces, VC dimension, and epsilon-samples

	Computing Generalized Polynomial Partition
	The parameter space of semi-algebraic sets
	A singly-exponential algorithm
	Speeding up the algorithm using epsilon-sampling

	Applications
	Point-enclosure queries
	Range searching
	Vertical ray shooting
	Cutting algebraic curves into pseudo-segments

	p006-Agarwal
	Introduction
	Minimum-cost partial matchings using Hungarian algorithm
	Approximating min-cost partial matching through cost-scaling
	From matching to circulation
	A cost-scaling algorithm
	Fast implementation of refinement stage

	Transportation algorithm
	Overview of the algorithm
	An efficient implementation

	p007-Agrawal
	Introduction
	Our Contribution
	Related Works

	Preliminaries
	NP-hardness for CM-PM
	FPT Algorithm for CM-PM

	p008-Aiger
	Introduction
	From camera positioning to approximate incidences
	Camera posing as an {epsilon}-incidences problem
	The surfaces sigma_w
	Measuring proximity

	Primal-dual algorithm for geometric proximity
	Running time analysis

	Geometric proximity via canonical surfaces
	Canonizing the input surfaces
	Approximately counting {epsilon}-incidences
	Error analysis
	Experimental Results: Summary

	p009-Akitaya
	Introduction
	Large Subsets with Circumscribing Polygons
	Disjoint Segments versus Disjoint Rays
	Hardness for Circumscribing Polygons
	Simple Polygonizations of Disjoint Segments
	Conclusions
	Geometric Matching or Few Slopes
	Higher Dimensions
	Open Problems

	p010-Angelini
	Introduction
	Definitions and Preliminaries
	RT-Representations of Plane Triangulations
	From RT-Representations to Schnyder Woods
	From Schnyder Woods to RT-Representations

	Geometric Tools
	A Morphing Algorithm
	Moving a Triangle Along a Diagonal
	A Flipping Algorithm
	Morphing Representations with the same Schnyder Wood

	A Decision Algorithm
	Conclusions and Open Problems

	p011-Attali
	Introduction
	Preliminaries
	Euclidean space, distances and convex sets
	Abstract simplicial complexes
	Collapses
	Filtrations

	Collapsing nerves of compact convex sets
	Statement of results
	Building a filtration
	Perturbing filtrations
	Studying events in the filtration

	Collapsing Rips complexes
	Two geometric lemmas

	Future work

	p012-Barba
	Introduction
	Preliminaries
	The simplification transformation

	Computing the FVD
	First phase: the partition
	A smaller polygon
	Preprocessing the red sites

	Inserting back the red sites
	The envelope
	The insertion process
	Algorithmic description

	p013-Binucci
	Introduction
	Preliminaries
	NP-Completeness for kUBE (k >= 3)
	Existential Results for 2UBE
	Testing 2UBE for Plane Graphs with Special Faces
	Testing Algorithms for 2UBE Parameterized by the Branchwidth
	Conclusion and Open Problems

	p014-Bokal
	Introduction
	Graphs and the crossing number
	Crossing-critical graphs with at most 12 crossings
	Explicit 13-crossing-critical graphs with large degree
	Extended crossing-critical constructions
	Concluding remarks and open problems

	p015-Khesin
	Introduction
	Our results and methods

	Notation and basic notions
	Reduction to minimum cost flow on a sparse graph
	Graph construction
	Preserving Euclidean distance
	Approximating the transportation cost with minimum cost flow

	Solving the minimum cost flow problem
	Generalized preconditioning framework
	Preconditioner construction

	Generating a transportation map

	p016-Braverman
	Introduction
	Our results

	Preliminaries
	Technical overview
	The bounded -DTW problem

	p017-Bringmann
	Introduction
	Preliminaries
	Preprocessing

	Complete decider
	Free-space diagram
	Basic algorithm
	Pruning rules
	Implementation details of simple boundaries
	Effects of combined pruning rules

	Decider with filters
	Experiments
	Decider setting
	Query setting

	p018-Bringmann
	Introduction
	Contribution 1: Algorithm for Global-Fréchet simplification
	Contribution 2: Conditional lower bound
	Further related work
	Organization

	Preliminaries
	Algorithms for Global-Fréchet simplification
	An O(kn^5) algorithm for Global Fréchet simplification
	An O(n^3) algorithm for Global-Fréchet simplification
	Implementing the kappa_2-subroutine(i)
	Cell Reachability
	Implementing kappa_2-subroutine(i) using Cell Reachability

	Conditional lower bound for curve simplification
	Overview of the reduction
	Cordinate gadgets
	Vector gadgets
	The vectors a', b', c', and s'
	The vectors a'',b'', c'', and s''

	p019-Buchin
	Introduction
	Our results

	Preliminaries
	Problem definition and notations
	Expander construction
	Expanders are reliable

	Building reliable spanners in one dimension
	Bounding the size of the shadow
	Construction of O(1)-reliable exact spanners in one dimension
	Constructing the graph H
	Analysis

	Construction of theta-reliable exact spanners in one dimension

	Building a reliable spanner in Rd
	Construction
	Analysis

	Construction for points with bounded spread in Rd
	The construction of G phi
	Analysis

	Conclusions

	p020-Cabello
	Introduction
	Preliminaries
	Convex hull
	Axis-parallel problems
	Notation for axis-parallel problems
	Interpreting Shapley values geometrically
	Handling empty blocks
	Chains
	General point sets
	Area of the bounding box

	Conclusions

	p021-Carriere
	Introduction
	Background
	Persistence Diagrams
	Bi-Lipschitz embeddings.

	Mapping into separable Hilbert spaces
	Mapping into finite-dimensional Hilbert spaces
	Experiments
	Conclusion

	p022-DeCarufel
	Introduction
	Extremal bounds for convex polytopes in Cartesian products
	Lower bounds in the plane
	Upper bounds in the plane
	Upper bounds in higher dimensions
	Lower bounds in higher dimensions

	Algorithms
	Convex caps

	The maximum number of convex polygons
	Upper bounds
	Lower bounds
	The maximum number of weakly convex polygons

	p023-Chan
	Introduction
	Smallest k-enclosing rectangle
	An exact near-quadratic algorithm
	k-sensitive running time for smallest area
	An approximation algorithm for smallest area

	Extensions
	3-sided smallest k-enclosing rectangle
	Arbitrarily oriented smallest k-enclosing rectangle
	Minimum-weight k-enclosing rectangle
	Subset sum for k-enclosing rectangle
	Conditional lower bounds

	p024-Chan
	Introduction
	Dynamic 3D Convex Hull Size
	Dynamic 2D Hausdorff Distance
	Dynamic 3D Convex Hull Queries
	Dynamic 2D Bichromatic Closest Pair

	p025-Chang
	Introduction
	Background
	Types of electrical transformations
	Multicurves and medial graphs
	Local moves

	Connection between electrical and homotopy moves
	Smoothing lemma
	Equivalence of tightness
	Monotonicity of electrical moves

	Two-terminal plane graphs
	Tight annular curves
	Smoothing lemma in the annulus
	Quadratic lower bound

	Planar electrical transformations
	Defect
	Navigating between planar embeddings
	Tangle flips
	Back to planar electrical moves

	Open problems

	p026-Agarwal
	Introduction
	Dynamic lower envelope for pseudo-lines
	Preliminaries
	Data structure and operations
	Finding the intersection point of two lower envelopes

	Maintaining the union of unit discs under insertions
	Preliminaries
	Data structures
	Dynamically maintaining the lower curves
	Dynamically maintaining the upper curves

	Maintaining the area of the union

	Intersection-searching of unit arcs with unit disc

	p027-Cohen-Addad
	Introduction
	Preliminaries
	The 4-regular graph tiling problem
	Multiway cut with four terminals
	Shortest cut graph
	Multiway cut with a large number of terminals

	p028-Driemel
	Introduction
	Definitions
	Distance measures
	Range spaces
	Range spaces induced by distance measures

	Our Results
	Our Approach
	Basic Idea: Discrete Fréchet and Hausdorff
	Preliminaries
	A simple model of computation
	Geometric primitives
	Bounding the VC-Dimension
	Representation by predicates

	The Fréchet distance
	Fréchet distance predicates
	Fréchet distance VC dimension bounds

	Hausdorff distance
	Lower bounds
	Implications

	p029-Dujmovic
	Introduction
	Proof of Theorem 1
	Faces that are Touched, Pinched, and Caressed
	Auxilliary Graphs and Trees: H, H˜, T_0, and T_1
	Bad Nodes
	Interactions Between Bad Nodes
	Really Bad Nodes
	Tree/Cycle Surgery

	Discussion

	p030-Dumitrescu
	Introduction
	Setup of the proof
	Charging scheme
	Charging scheme analysis
	Conclusion of the proof

	p031-Edelsbrunner
	Introduction
	Entropy and Relative Entropy
	Fisher Information Metric
	Information and Loss
	TDA in Information Space
	Discussion

	p032-Eppstein
	Introduction
	Counterexamples of cubic size
	Overview
	Nested polygons with no surrounded crossings
	The main result

	Series-parallel graphs
	Apex-tree graphs
	Apex-tree graphs requiring many lines
	Drawing apex-tree graphs on few lines

	Conclusions and open problems

	p033-Eppstein
	Introduction
	Preliminaries
	Polygons and triangulation
	Counting complexity
	Counting independent sets

	Red–blue arrangements
	Reduction to triangulation
	From segments to polygons
	Triangulation within a gadget
	Counting within a gadget
	Global counting
	Completing the reduction

	Conclusions and open problems

	p034-Erickson
	Introduction
	Background
	Contractible Cycles and Walks
	Simple Cycles
	Non-simple Closed Walks

	Bounding Closed Walks
	Shortest Contractible Closed Walks
	Edge Labeling
	Hyperbolic Geometry
	Triangulation
	Context-Free Grammar

	p035-Fekete
	Introduction
	Results

	Preliminaries
	A Worst-Case Optimal Algorithm
	Preliminaries for the Algorithm
	Boundary Packing: A Subroutine
	Ring Packing: A Subroutine
	Description of the Algorithm

	Analysis of the Algorithm
	Analysis of Phase 1 - The Recursion
	Outline of the Remaining Analysis
	Analysis of Boundary Packing
	Analysis of Ring Packing
	Analysis of the Algorithm for the Case r_1 <= 0.495
	Analysis of the Algorithm for the Case 0.495 <= r_1

	Hardness
	Conclusions

	p036-Fox
	Introduction
	The cutting lemma
	Multicolor Ramsey numbers for small cliques – Proof of Theorem 1
	Multicolor semi-algebraic regularity lemma – Proof of Theorem 2
	Generalized Ramsey numbers for semi-algebraic colorings – Proof of Theorem 3
	Concluding remarks

	p037-Fugacci
	Introduction
	Background
	Algorithm
	Correctness
	Optimality and complexity
	Implementation and experimental results
	Conclusion

	p038-Fulek
	Introduction and Results
	Proof of Lemma 7
	Geometric proof of the parity Lemma 9 for d=2
	Combinatorial proof of the parity Lemma 9

	Discussion
	A Topological version of Theorem 3
	Stronger conditions on crossings
	Computational complexity of finding a crossing Tverberg partition

	p039-Fulek
	Introduction
	Graphs on surfaces
	Topological and algebraic tools
	Combinatorial representation of drawings
	Bounding Z2-genus by matrix rank

	Minimum rank of partial symmetric matrices
	Tournament matrices
	Block symmetric matrices

	Estimating the Z2-genus and the Euler Z2-genus of Km,n
	Amalgamations
	1-amalgamations
	2-amalgamations

	Conclusion

	p040-Goaoc
	Introduction
	Contributions
	Discussion and related work

	Semi-algebraic parameterization
	Combinatorial lifting
	Tagged patterns and their canonical realization
	Algorithm
	Outline
	Description
	Discussion

	Experimental results
	Geometric analysis (size two)

	p041-Har-Peled
	Introduction
	Background
	Ranges spaces, VC dimension, samples and nets
	Weak epsilon-nets
	Centerpoints

	Approximating the centerpoint via Radon's urn
	Radon's urn
	Setup

	Analysis
	Analyzing the related walk
	Back to the urn

	Approximating a centerpoint
	The algorithm
	Analysis

	Application I: Algorithms with oracle access
	Lowerbounding a function with a gradient oracle
	Functional nets: A weak net in the oracle model
	The model, construction, and query process
	Correctness

	Application II: Constructing center nets
	The construction
	Correctness
	The result

	p042-VanDerHoog
	Introduction
	Ambiguity
	Properties of ambiguity

	Sorting
	Level permutation
	Algorithm

	Quadtrees
	1-dimensional quadtrees on unit-size intervals
	Generalization

	Conclusion

	p043-Hsu
	Introduction
	What is New: Contributions of This Paper

	Literature Review
	Subdivision Charts and Atlas for S^2
	Approximate Footprints for Boxes in R^{3} x S^{2}
	On Sigma_2-Sets

	Soft Predicates for a Rod Robot
	Soft Predicates for a Ring Robot
	Practical Efficiency of Correct Implementations
	Conclusions

	p044-Huszar
	Introduction
	Preliminaries
	Graphs
	Triangulations and Heegaard splittings of 3-manifolds
	Orientable Seifert fibered spaces

	The treewidth of a 3-manifold
	Topological invariants from graph parameters
	Layered triangulations
	Treewidth versus Heegaard genus
	An algorithmic aspect of layered triangulations

	3-Manifolds of treewidth at most one
	Some 3-manifolds of treewidth two

	p045-Ihara
	Introduction
	Problem formulation
	Our contribution
	Overview of our techniques
	Related work
	Organization

	Preliminaries
	Pseudoregular partitions and spaces of bounded cardinality
	Learning Euclidean metric spaces with perfect information
	Euclidean spaces and Lipschitz partitions
	The algorithm: Combining Lipschitz and pseudoregular partitions

	Learning Euclidean metric spaces with imperfect information
	Well-linked decompositions
	Isoperimetry and the diameter of embeddings
	The algorithm

	p046-Kerber
	Introduction
	Persistence modules
	The matching distance
	The arrangement
	Maximization
	Discussion

	p047-Krivosija
	Introduction
	Related work
	Our contributions and outline
	General notation

	A generalized median problem
	On reducing the size of the input sets

	Applications
	Probabilistic smallest enclosing ball
	Probabilistic support vector data description

	Conclusion and open problems

	p048-Lahn
	Introduction
	Preliminaries
	Our algorithm
	Proof of invariants
	Minimum bottleneck matching

	p049-DeMesmay
	Introduction
	Preliminaries
	Trivial sublink
	The defect
	The reduction
	Satisfiable implies small defect
	Small defect implies satisfiable

	Intermediate invariants
	Unlinking, 4-ball Euler characteristic, and intermediate invariants

	p050-Mirzaei
	Introduction
	Proof of Theorem 1.3
	Natural Grids
	Lower Bound Construction
	Concluding Remarks

	p051-Moran
	Introduction
	Some convexity spaces
	Upper bound
	Lower bound
	The necessity of assumptions

	Proof of upper bound
	Proof of lower bound
	Proof of equivalences
	The existence of weak nets
	The threshold 1/2 is sharp

	An extension
	Future research
	Radon, Helly and VC
	The chromatic number of the Kneser graph

	p052-Munro
	Introduction
	Overview
	Overall Structure
	Our Approach

	Ray Shooting: Static Structure
	Semi-Dynamic Ray Shooting for B >= log^{8}n: Main Idea
	Ray Shooting for B >= log^{8}n: Fully-Dynamic Structure
	Faster Insertions
	Missing Details

	p053-Niedermann
	Introduction
	Preliminaries
	Ortho-Radial Drawings and Representations
	Symmetries and Normalization

	Finding Monotone Cycles
	Rectangulation
	1st Improvement – Faster Validity Test
	2nd Improvement – 2-Phase Augmentation Step

	Conclusion

	p054-Pach
	Introduction
	Clique number vs. chromatic number
	Families of curves
	Our results

	A bounding function for grounded curves – Proofs of Theorems 1 and 5
	Magical graphs – Proof of Theorem 2
	Bounding function for curves that intersect a vertical line–Proof of Theorem 3
	Construction of double-magical graphs–Proof of Theorem 4
	Concluding remarks

	p055-Boissonnat
	Introduction
	Preliminaries
	Strong Collapse of a Flag complex
	From a Flag Tower to a Flag Filtration
	Previous work
	A new construction

	Computational experiments

	p056-Schnider
	Introduction
	Ham Sandwich Cuts in horizontal subspaces
	Application: bisecting lines in space
	Center Transversals in general subspaces
	Sections in product bundles
	Application: bisections with several cuts

	p057-Tao
	Introduction
	Previous results
	Sample-Based (rho,epsilon)-Summaries
	A Lower Bound of Omega(1/rho)

	Our results
	On One Input: Moving Beyond Omega(1/rho)
	On a Distribution of Inputs: Small Summaries for Halfspaces

	Disagreement coefficients
	Existing Definitions on Distributions
	New Definitions on Range Spaces

	Small (rho, epsilon)-summaries based on disagreement coefficients
	Algorithms
	Computing a (rho,epsilon)-Summary
	Performing Estimation

	Analysis
	Correctness
	Bounding the Size
	A Remark

	Bridging distribution and finite-set disagreement coefficients
	o(1/rho)-size summaries for halfspace ranges
	A lower bound with disagreement coefficients

	p058-Anai
	Introduction
	Filtrations and interleaving distance
	Weighted Cech filtrations
	Definition
	Stability
	Weighted Vietoris-Rips filtrations

	DTM-filtrations
	The distance to measure (DTM)
	DTM-filtrations
	Stability when p=1
	Stability when p>1

	Conclusion

	p059-Wang
	Introduction
	Preliminaries
	Solving the Main Sub-Problem
	The Query Algorithm

	Reducing the Query Time to O(log n)

	p060-Wang
	Introduction
	Related work and our contributions
	Notations

	The exact algorithm
	First update
	Second update
	Putting everything together

	The approximation algorithm
	Approximate update
	Putting everything together

	p061-Xue
	Introduction
	Related work and our contributions
	Preliminaries
	Overview of key ideas and techniques

	Translation RCP queries for polygons
	Reduction to (co-)wedge translation queries
	Handling wedge translation queries
	Handling co-wedge translation queries

	Translation RCP queries for smooth convex bodies
	Handling short-answer queries
	Handling long-answer queries
	Proof of Theorem 20

	p062-Sharir
	Introduction
	The case of pseudoplanes
	An extension of the dual version of the Lovász Lemma
	The dual version of the Crossing Lemma
	The complexity of the k-level of A(Lambda)

	Discussion

	p063-Becker
	Introduction
	Squares in a Square: Shelf Packing
	Circles in a Square: Split Packing
	Circles in a Circle: Boundary/Ring Packing
	The Video

	p064-Barequet
	Introduction
	Results
	Inflating Minimal-Perimeter Polyominoes
	Counting Minimal-Perimeter Polyominoes

	Future Work
	The Video

	p065-Loffler
	Introduction
	Implementation
	Results

	p066-Schafer
	The Fréchet-distance
	The Fréchet-distance for Simple Polygons
	The k-Fréchet-distance
	Fréchet View – the Implementation

