
4th International Conference on
Formal Structures for
Computation and Deduction

FSCD 2019, June 24–30, 2019, Dortmund, Germany

Edited by

Herman Geuvers

LIPIcs – Vo l . 131 – FSCD 2019 www.dagstuh l .de/ l ip i c s

Editors

Herman Geuvers
Radboud University Nijmegen, The Netherlands
Technical University Eindhoven, The Netherlands
herman@cs.ru.nl

ACM Classification 2012
Theory of computation → Models of computation; Theory of computation → Formal languages and
automata theory; Theory of computation → Logic; Theory of computation → Semantics and reasoning;
Software and its engineering → Language features; Software and its engineering → Formal language
definitions; Software and its engineering → Formal methods

ISBN 978-3-95977-107-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-107-8.

Publication date
June, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSCD.2019.0

ISBN 978-3-95977-107-8 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-2522-2980
mailto:herman@cs.ru.nl
https://www.dagstuhl.de/dagpub/978-3-95977-107-8
https://www.dagstuhl.de/dagpub/978-3-95977-107-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.FSCD.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-107-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

FSCD 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Herman Geuvers . 0:ix–0:x

Steering Committee
. 0:xi

Program Committee
. 0:xiii

External Reviewers
. 0:xv

List of Authors
. 0:xvii–0:xix

Invited Talk

A Fresh Look at the λ-Calculus
Beniamino Accattoli . 1:1–1:20

A Linear Logical Framework in Hybrid
Amy P. Felty . 2:1–2:2

Extending Maximal Completion
Sarah Winkler . 3:1–3:15

Some Semantic Issues in Probabilistic Programming Languages
Hongseok Yang . 4:1–4:6

Regular Paper

Bicategories in Univalent Foundations
Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide 5:1–5:17

Modular Specification of Monads Through Higher-Order Presentations
Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi 6:1–6:19

Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus
Maciej Bendkowski . 7:1–7:21

Deriving an Abstract Machine for
Strong Call by Need

Małgorzata Biernacka and Witold Charatonik . 8:1–8:20

Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting
Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant . 9:1–9:21

A Generic Framework for Higher-Order Generalizations
David M. Cerna and Temur Kutsia . 10:1–10:19

Homotopy Canonicity for Cubical Type Theory
Thierry Coquand, Simon Huber, and Christian Sattler . 11:1–11:23

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Polymorphic Higher-Order Termination
Łukasz Czajka and Cynthia Kop . 12:1–12:18

On the Taylor Expansion of Probabilistic λ-terms
Ugo Dal Lago and Thomas Leventis . 13:1–13:16

Proof Normalisation in a Logic Identifying Isomorphic Propositions
Alejandro Díaz-Caro and Gilles Dowek . 14:1–14:23

λ!-calculus, Intersection Types, and Involutions
Alberto Ciaffaglione, Pietro Di Gianantonio, Furio Honsell, Marina Lenisa, and
Ivan Scagnetto . 15:1–15:16

Template Games, Simple Games, and Day Convolution
Clovis Eberhart, Tom Hirschowitz, and Alexis Laouar . 16:1–16:19

Differentials and Distances in Probabilistic Coherence Spaces
Thomas Ehrhard . 17:1–17:17

Modal Embeddings and Calling Paradigms
José Espírito Santo, Luís Pinto, and Tarmo Uustalu . 18:1–18:20

Probabilistic Rewriting: Normalization, Termination, and Unique Normal Forms
Claudia Faggian . 19:1–19:25

A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4
Yosuke Fukuda and Akira Yoshimizu . 20:1–20:24

Sparse Tiling Through Overlap Closures for Termination of String Rewriting
Alfons Geser, Dieter Hofbauer, and Johannes Waldmann . 21:1–21:21

Proof Nets for First-Order Additive Linear Logic
Willem B. Heijltjes, Dominic J.D. Hughes, and Lutz Straßburger 22:1–22:22

The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear
Logic

Ross Horne . 23:1–23:16

A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods
Mirai Ikebuchi . 24:1–24:18

Gluing for Type Theory
Ambrus Kaposi, Simon Huber, and Christian Sattler . 25:1–25:20

The Discriminating Power of the Let-In Operator in the Lazy Call-by-Name
Probabilistic λ-Calculus

Simona Kašterović and Michele Pagani . 26:1–26:20

Hilbert’s Tenth Problem in Coq
Dominique Larchey-Wendling and Yannick Forster . 27:1–27:20

The ∆-calculus: Syntax and Types
Luigi Liquori and Claude Stolze . 28:1–28:20

Pointers in Recursion: Exploring the Tropics
Paulin Jacobé de Naurois . 29:1–29:18

Contents 0:vii

Typed Equivalence of Effect Handlers and Delimited Control
Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski . 30:1–30:16

Cubical Syntax for Reflection-Free Extensional Equality
Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer . 31:1–31:25

Guarded Recursion in Agda via Sized Types
Niccolò Veltri and Niels van der Weide . 32:1–32:19

Sequence Types for Hereditary Permutators
Pierre Vial . 33:1–33:15

System Description

Model Checking Strategy-Controlled Rewriting Systems
Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, and Alberto Verdejo 34:1–34:18

FSCD 2019

Preface

The 4th International Conference on Formal Structures for Computation and Deduction
(FSCD 2019) was held June 24–30, 2019 in Dortmund, Germany. FSCD (http://fscd-
conference.org/) covers all aspects of formal structures for computation and deduction, from
theoretical foundations to applications. Building on two communities, RTA (Rewriting
Techniques and Applications) and TLCA (Typed Lambda Calculi and Applications), FSCD
embraces their core topics and broadens their scope to closely related areas in logics and
proof theory, new emerging models of computation (e.g. homotopy type theory or quantum
computing), semantics and verification in new challenging areas (e.g. blockchain protocols or
deep learning algorithms). The FSCD program featured four invited talks given by Beniamino
Accattoli (Inria, Paris, France), Amy Felty (University of Ottawa, Canada), Sarah Winkler
(University of Innsbruck, Austria) and Hongseok Yang (KAIST, South Korea). FSCD 2019
received 69 submissions with contributing authors from 18 countries. The program committee
consisted of 32 members from 18 countries. Each submitted paper has been reviewed by
at least three PC members with the help of 105 external reviewers. The reviewing process,
which included a rebuttal phase, took place over a period of eight weeks. A total of 30 papers,
29 regular research papers and one system description paper, were accepted for publication
and are included in these proceedings.

The Program Committee awarded two FSCD 2019 Best Paper Awards for Junior Re-
searchers: Mirai Ikebuchi for the paper “A Lower Bound of The Number of Rewrite Rules
Obtained by Homological Methods”, and Jonathan Sterling, Carlo Angiuli and Daniel Gratzer
for the paper “Cubical Syntax for Reflection-Free Extensional Equality”. Mirai Ikebuchi is
a graduate student and Jonathan Sterling, Carlo Angiuli and Daniel Gratzer are all PhD
students.

In addition to the main program, 7 FSCD-associated workshops were planned on days
before and mostly after the conference:

8th International Workshop on Confluence, IWC 2019,
10th Workshop on Higher Order Rewriting, HOR 2019,
IFIP Working Group 1.6: Rewriting IFIP Meeting 2019 - 22nd edition,
3d Workshop on Trends in Linear Logic and Applications, TLLA 2019,
6th International Workshop on Rewriting Techniques for Program Transformations and
Evaluation, WPTE 2019,
33nd International Workshop on Unification, UNIF 2019,
5th International Workshop on Structures and Deduction, SD 2019.

This volume of the proceedings of FSCD 2019 is published in the LIPIcs series under a
Creative Common license: online access is free to all papers and authors retain rights over
their contributions. We thank the Leibniz Center for Informatics at Schloss Dagstuhl, in
particular Michael Wagner for his efficient and reactive support during the production of
these proceedings.

Many people have helped to make FSCD 2019 a successful meeting. On behalf of the
Program Committee, I thank the many authors of submitted papers for considering FSCD
as a venue for their work and the invited speakers who have agreed to speak at this meeting.
The Program Committee and the external reviewers deserve big thanks for their careful
review and evaluation of the submitted papers. (The members of the Program Committee
and the list of external reviewers can be found on the following pages.) The EasyChair
conference management system has been a useful tool in all phases of the work of the Program
4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://fscd-conference.org/
http://fscd-conference.org/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

Committee. The associated workshops have made a big contribution to the lively scientific
atmosphere of this meeting and I thank the workshop organizers for their efforts in bringing
their meetings to Dortmund and the local Workshop Chair, Boris Düdder, for making the
workshops run smoothly. Jakob Rehof, the Conference Chair for FSCD 2019, deserves a very
warm thanks for the over all organisation of FSCD 2019, for the smooth functioning of the
meeting and for producing the web site. Sandra Alves, as Publicity Chair, made a great
contribution in advertising the Conference. The steering committee, lead by Delia Kesner,
provided valuable guidance in setting up this meeting and in ensuring that FSCD will have a
bright and enduring future. Finally, I thank all participants of the conference for creating a
lively and interesting event.

On behalf of the FSCD community, I would like to thank the City of Dortmund, the
TU Dortmund University, and the U-Tower for providing the venue of FSCD 2019. I
furthermore would like to thank MAXIMAGO, the Friends of the TU Dortmund, and the
Alumni of the Faculty of Informatics (aido) for supporting FSCD 2019. The Center of
Excellence Logistics & IT (Leistungszentrum Logistik und IT), is gratefully acknowledged as
scientific partner of FSCD 2019.

Herman Geuvers
Program Chair of FSCD 2019

Steering Committee

S. Alves Porto U.
M. Ayala-Rincón Brasilia U.
C. Fuhs Birkbeck, London U.
D. Kesner (Chair) Paris U.
H. Kirchner Inria
N. Kobayashi U. Tokyo
C. Kop Radboud U.
D. Miller Inria
L. Ong Oxford U.
B. Pientka McGill U.
S. Staton Oxford U.
J. Vicary Oxford U.

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Zena Ariola U. of Oregon USA
Mauricio Ayala Rincón U. of Brasília Brazil
Andrej Bauer U. of Ljubljana Slovenia
Filippo Bonchi U. of Pisa Italy
Sabine Broda U. of Porto Portugal
Ugo Dal Lago U. of Bologna & Inria Italy
Ugo De’Liguoro U. of Torino Italy
Deepak Kapur U. of New Mexico USA
Peter Dybjer Chalmers U. of Technology Sweden
Maribel Fernández King’s College London UK
Herman Geuvers (Program Chair) Radboud U. Nijmegen & TU Eindhoven Netherlands
Jürgen Giesl RWTH Aachen Germany
Nao Hirokawa JAIST Japan
Salvador Lucas U. Politècnica de València Spain
Aart Middeldorp U. of Innsbruck Austria
Frank Pfenning Carnegie Mellon U. USA
Brigitte Pientka McGill U. Canada
Jaco van de Pol Aarhus U. & U. Twente Denmark
Femke van Raamsdonk VU Amsterdam Netherlands
Carsten Schürmann ITU Copenhagen Denmark
Paula Severi U. of Leicester UK
Alexandra Silva U. College London UK
Sam Staton Oxford U. UK
Thomas Streicher TU Darmstadt Germany
Aaron Stump U. of Iowa USA
Nicolas Tabareau Inria France
Sophie Tison U. of Lille France
Alwen Tiu Australian National U. Australia
Takeshi Tsukada U. of Tokyo Japan
Josef Urban CTU Prague Czech Republic
Paweł Urzyczyn U. of Warsaw Poland
Johannes Waldmann Leipzig U. of Applied Sciences Germany

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Andreas Abel
Beniamino Accattoli
Ki Yung Ahn
Ariane A. Almeida
María Alpuente
Takahito Aoto
Steffen van Bakel
Paolo Baldan
Franco Barbanera
João Barbosa
Henning Basold
Stefano Berardi
Marc Bezem
Andreas Billig
Frédéric Blanqui
Rafaël Bocquet
Guillaume Bonfante
Chad Brown
Guillaume Brunerie
Paul Brunet
Roberto Bruni
Andrea Corradini
Roy Crole
Łukasz Czajka
Fredrik Dahlqvist
Flavio L. C. De Moura
Mariangiola Dezani
Paul Downen
Burak Ekici
Jacopo Emmenegger
Santiago Escobar
Claudia Faggian
Bertram Felgenhauer
Eric Finster
Marcelo Fiore

Mário Florido
Yannick Forster
Florian Frohn
Thibault Gauthier
Silvia Ghilezan
Raúl Gutiérrez
Masahiro Hamano
Marcel Hark
Willem Heijltjes
Jera Hensel
Dieter Hofbauer
Simon Huber
Jelena Ivetić
Ambrus Kaposi
G. A. Kavvos
Edon Kelmendi
Delia Kesner
Helene Kirchner
Jetty Kleijn
Yuji Kobayashi
Cynthia Kop
James Laird
Isabella Larcher
Andreas Lochbihler
Tim Lyon
Philippe Malbos
Giulio Manzonetto
Narciso Martí-Oliet
Paul-André Melliès
Étienne Miquey
Rasmus Ejlers Møgelberg
Gopalan Nadathur
Keiko Nakata
Daniele Nantes-Sobrinho
Renato Neves

Andreas Nuyts
Pascal Ochem
Vincent van Oostrom
Dominic Orchard
David Pereira
Paolo Pistone
Thiago M. F. Ramos
Yves Roos
Matteo Sammartino
Davide Sangiorgi
Ulrich Schöpp
Sibylle Schwarz
Jens Seeber
Michael Shulman
Kiraku Shintani
Sergey Slavnov
Jonathan Sterling
Claude Stolze
René Thiemann
Riccardo Treglia
Tarmo Uustalu
Gabriele Vanoni
Pedro Vasconcelos
Niccolò Veltri
Daniel Ventura
Andrea Vezzosi
Alicia Villanueva
Niels Voorneveld
Niels van der Weide
Jonathan Weinberger
Freek Wiedijk
Sarah Winkler
Akihisa Yamada
Hans Zantema
Steve Zdancewic

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Beniamino Accattoli (1)
Inria & LIX, École Polytechnique, UMR 7161,
France

Benedikt Ahrens (5, 6)
School of Computer Science, University of
Birmingham, United Kingdom

Carlo Angiuli (31)
Carnegie Mellon University, Pittsburgh, USA

Maciej Bendkowski (7)
Jagiellonian University, Faculty of Mathematics
and Computer Science, Theoretical Computer
Science Department, ul. Prof. Łojasiewicza 6, 30
- 348 Kraków, Poland

Małgorzata Biernacka (8)
Institute of Computer Science, University of
Wrocław, Poland

Frédéric Blanqui (9)
INRIA, France; LSV, ENS Paris-Saclay, CNRS,
Université Paris-Saclay, France

David M. Cerna (10)
FMV and RISC, Johannes Kepler University
Linz, Austria

Witold Charatonik (8)
Institute of Computer Science, University of
Wrocław, Poland

Alberto Ciaffaglione (15)
Department of Mathematics, Computer Science
and Physics, University of Udine, Italy

Thierry Coquand (11)
Department of Computer Science and
Engineering, University of Gothenburg, Sweden

Łukasz Czajka (12)
Faculty of Informatics, TU Dortmund, Germany

Ugo Dal Lago (13)
University of Bologna, Italy; INRIA Sophia
Antipolis, France

Pietro Di Gianantonio (15)
Department of Mathematics, Computer Science
and Physics, University of Udine, Italy

Gilles Dowek (14)
Inria, LSV, ENS Paris-Saclay, France

Alejandro Díaz-Caro (14)
Instituto de Ciencias de la Computación
(CONICET-Universidad de Buenos Aires),
Ciudad Autónoma de Buenos Aires, Argentina;
Universidad Nacional de Quilmes, Bernal
(Buenos Aires), Argentina

Clovis Eberhart (16)
National Institute of Informatics, Tokyo, Japan

Thomas Ehrhard (17)
CNRS, IRIF, Université de Paris, France

José Espírito Santo (18)
Centre of Mathematics, University of Minho,
Portugal

Claudia Faggian (19)
Université de Paris, IRIF, CNRS, F-75013 Paris,
France

Amy P. Felty (2)
University of Ottawa, Canada

Yannick Forster (27)
Saarland University, Saarland Informatics
Campus, Saarbrücken, Germany

Dan Frumin (5)
Institute for Computation and Information
Sciences, Radboud University, Nijmegen, The
Netherlands

Yosuke Fukuda (20)
Graduate School of Informatics, Kyoto
University, Japan

Guillaume Genestier (9)
LSV, ENS Paris-Saclay, CNRS, Université
Paris-Saclay, France; MINES ParisTech, PSL
University, Paris, France

Alfons Geser (21)
HTWK Leipzig, Germany

Daniel Gratzer (31)
Aarhus University, Denmark

Willem B. Heijltjes (22)
University of Bath, United Kingdom

Olivier Hermant (9)
MINES ParisTech, PSL University, Paris, France

André Hirschowitz (6)
Université Côte d’Azur, CNRS, LJAD, Nice,
France

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.1
https://orcid.org/0000-0002-6786-4538
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.5
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.6
https://orcid.org/0000-0002-9590-3303
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.7
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.8
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.9
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.10
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.8
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.15
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.11
https://orcid.org/0000-0001-8083-4280
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.12
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.13
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.15
https://orcid.org/0000-0001-6253-935X
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.14
https://orcid.org/0000-0002-5175-6882
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.14
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.16
https://orcid.org/0000-0001-5231-5504
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.17
https://orcid.org/0000-0002-6348-5653
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.18
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.19
https://orcid.org/0000-0001-7195-2613
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.2
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.27
https://orcid.org/0000-0001-5864-7278
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.5
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.20
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.9
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.21
https://orcid.org/0000-0003-1944-0789
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.9
https://orcid.org/0000-0003-2523-1481
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.6
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xviii Authors

Tom Hirschowitz (16)
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc,
CNRS, LAMA, 73000, Chambéry, France

Dieter Hofbauer (21)
ASW - Berufsakademie Saarland, Germany

Furio Honsell (15)
Department of Mathematics, Computer Science
and Physics, University of Udine, Italy

Ross Horne (23)
Computer Science and Communications,
University of Luxembourg, Esch-sur-Alzette,
Luxembourg

Simon Huber (11, 25)
Department of Computer Science and
Engineering, University of Gothenburg, Sweden

Dominic J. D. Hughes (22)
Logic Group, UC Berkeley, USA

Mirai Ikebuchi (24)
Massachusetts Institute of Technology,
Computer Science and Artificial Intelligence
Laboratory, Cambridge, USA

Paulin Jacobé de Naurois (29)
CNRS, Université Paris 13, Sorbonne Paris Cité,
LIPN, UMR 7030, F-93430 Villetaneuse, France

Ambrus Kaposi (25)
Eötvös Loránd University, Budapest, Hungary

Simona Kašterović (26)
Faculty of Technical Sciences, University of Novi
Sad , Trg Dositeja Obradovića 6, 21000 Novi
Sad, Serbia

Cynthia Kop (12)
Institute of Computer Science, Radboud
University Nijmegen, The Netherlands

Temur Kutsia (10)
RISC, Johannes Kepler University Linz, Austria

Ambroise Lafont (6)
IMT Atlantique, Inria, LS2N CNRS, Nantes,
France

Alexis Laouar (16)
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc,
CNRS, LAMA, 73000, Chambéry, France

Dominique Larchey-Wendling (27)
Université de Lorraine, CNRS, LORIA,
Vandœuvre-lès-Nancy, France

Marina Lenisa (15)
Department of Mathematics, Computer Science
and Physics, University of Udine, Italy

Thomas Leventis (13)
INRIA Sophia Antipolis, France

Luigi Liquori (28)
Université Côte d’Azur, Inria, Sophia Antipolis,
France

Marco Maggesi (5, 6)
Dipartimento di Matematica e Informatica
“Dini”, Università degli Studi di Firenze, Italy

Narciso Martí-Oliet (34)
Facultad de Informática, Universidad
Complutense de Madrid, Spain

Michele Pagani (26)
IRIF, University Paris Diderot - Paris 7, France

Luís Pinto (18)
Centre of Mathematics, University of Minho,
Portugal

Maciej Piróg (30)
University of Wrocław, Poland

Isabel Pita (34)
Facultad de Informática, Universidad
Complutense de Madrid, Spain

Piotr Polesiuk (30)
University of Wrocław, Poland

Rubén Rubio (34)
Facultad de Informática, Universidad
Complutense de Madrid, Spain

Christian Sattler (11, 25)
Department of Computer Science and
Engineering, University of Gothenburg, Sweden

Ivan Scagnetto (15)
Department of Mathematics, Computer Science
and Physics, University of Udine, Italy

Filip Sieczkowski (30)
University of Wrocław, Poland

Jonathan Sterling (31)
Carnegie Mellon University, Pittsburgh, USA

Claude Stolze (28)
Université Côte d’Azur, Inria, Sophia Antipolis,
France

Lutz Straßburger (22)
Inria Saclay, Palaiseau, France; LIX, École
Polytechnique, Palaiseau, France

Tarmo Uustalu (18)
School of Computer Science, Reykjavik
University, Iceland; Dept. of Software Science,
Tallinn University of Technology, Estonia

https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.16
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.21
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.15
https://orcid.org/0000-0003-0162-1901
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.23
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.11
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.25
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.22
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.24
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.29
https://orcid.org/0000-0001-9897-8936
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.25
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.26
https://orcid.org/0000-0002-6337-2544
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.12
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.10
https://orcid.org/0000-0002-9299-641X
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.6
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.16
https://orcid.org/0000-0001-9860-7203
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.27
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.15
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.13
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.28
https://orcid.org/0000-0003-4380-7691
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.5
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.6
https://orcid.org/0000-0002-6576-762X
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.34
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.26
https://orcid.org/0000-0003-1338-2688
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.18
https://orcid.org/0000-0002-5889-3388
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.30
https://orcid.org/0000-0003-4915-5452
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.34
https://orcid.org/0000-0002-7012-4346
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.30
https://orcid.org/0000-0003-2983-3404
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.34
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.11
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.25
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.15
https://orcid.org/0000-0001-5011-3458
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.30
https://orcid.org/0000-0002-0585-5564
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.28
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.22
https://orcid.org/0000-0002-1297-0579
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.18

Authors 0:xix

Niels van der Weide (5, 32)
Institute for Computation and Information
Sciences, Radboud University, Nijmegen, The
Netherlands

Niccolò Veltri (32)
Department of Computer Science, IT University
of Copenhagen, Denmark

Alberto Verdejo (34)
Facultad de Informática, Universidad
Complutense de Madrid, Spain

Pierre Vial (33)
Inria, Nantes, France

Johannes Waldmann (21)
HTWK Leipzig, Germany

Sarah Winkler (3)
University of Innsbruck, Austria

Hongseok Yang (4)
School of Computing, KAIST, South Korea

Akira Yoshimizu (20)
French Institute for Research in Computer
Science and Automation (INRIA), France

FSCD 2019

https://orcid.org/0000-0003-1146-4161
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.5
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.32
https://orcid.org/0000-0002-7230-3436
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.32
https://orcid.org/0000-0002-7374-3214
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.34
https://orcid.org/0000-0002-1825-0097
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.33
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.21
https://orcid.org/0000-0001-8114-3107
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.3
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.4
https://dx.doi.org/10.4230/LIPIcs.FSCD.2019.20

A Fresh Look at the λ-Calculus
Beniamino Accattoli
Inria & LIX, École Polytechnique, UMR 7161, France
beniamino.accattoli@inria.fr

Abstract
The (untyped) λ-calculus is almost 90 years old. And yet – we argue here – its study is far from
being over. The paper is a bird’s eye view of the questions the author worked on in the last few years:
how to measure the complexity of λ-terms, how to decompose their evaluation, how to implement it,
and how all this varies according to the evaluation strategy. The paper aims at inducing a new way
of looking at an old topic, focussing on high-level issues and perspectives.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Software and its
engineering → Functional languages; Theory of computation → Operational semantics

Keywords and phrases λ-calculus, sharing, abstract machines, type systems, rewriting

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.1

Category Invited Talk

Funding Beniamino Accattoli: This work has been partially funded by the ANR JCJC grant COCA
HOLA (ANR-16-CE40-004-01).

Acknowledgements To Herman Geuvers, Giulio Guerrieri, and Gabriel Scherer for comments on a
first draft.

1 Introduction

The λ-calculus is as old as computer science. Many programming languages incorporate
its key ideas, many proof assistants are built on it, and various research fields – such as
proof theory, category theory, or linguistics – use it as a tool. Books are written about it,
it is taught in most curricula on theoretical computer science, and it is the basis of many
fashionable trends in programming languages such as probabilistic or quantum programming,
or gradual type systems. Is there anything left to say about it? The aim of this informal
paper is to provide evidence that yes, the theory of λ-calculus is less understood and stable
than it may seem and there still are things left to say about it.

A first point is the solution of the schism between Turing machines and the λ-calculus as
models of computation. The schism happened mostly to the detriment of the λ-calculus, that
became a niche model. Despite belonging to computer science, indeed, the whole theory of
the λ-calculus was developed paying no attention to cost issues. Adopting a complexity-aware
point of view sheds a new light on old topics and poses new fundamental questions.

A second point is the fact that the λ-calculus does not exist. Despite books such as
Barendregt’s [31] and Krivine’s [54], devoted to the λ-calculus, it is nowadays clear that,
even if one sticks to the untyped λ-calculus with no additional features, there are a number
of λ-calculi depending at least on whether evaluation is call-by-name, call-by-value, or
call-by-need, and – orthogonally – whether evaluation is strong or weak (that is, whether
abstraction bodies are evaluated or not) and, when it is weak, whether terms are closed or
can also be open. These choices affect the theory and impact considerably on the design of
abstract machines. A comparative study of the various dialects allows to identify principles
and differences, and to develop a deeper understanding of higher-order computations.

© Beniamino Accattoli;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 1; pp. 1:1–1:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beniamino.accattoli@inria.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A Fresh Look at the λ-Calculus

A third point is about decomposing λ-calculi and the role of sharing. More or less
ubiquitously, for practical as well as for theoretical reasons, λ-calculi are presented with let
expressions, that are nothing else but constructs for first-class sharing, logically corresponding
to the logical rule behind computation, the cut rule. Sharing is also essential for the
two previous points, complexity-aware understandings of λ-calculi and defining evaluation
strategies such as call-by-need. Perhaps surprisingly, there are simple extensions with sharing
that have important properties that “the” λ-calculus lacks. Therefore, there is a third sharing
axis – beyond the strong/weak axis and the call-by-name/value/need axis – along which
the λ-calculus splits into various calculi, that should gain the same relevant status of the
other λ-calculi.

This paper tries to explain and motivate these points, through an informal overview of
the author’s research. The unifying theme is the ambition to harmonise together theoretical
topics such as denotational semantics or advanced rewriting properties and practical studies
such as abstract machines and call-by-need, using as key ingredients sharing and cost analyses.

2 The Higher-Order Time Problem

The higher-order time problem is the problem of how to measure the time complexity of
programs expressed as λ-terms. It is a subtle and neglected problem. There are indeed no
traces of the question in the two classic books on the λ-calculus, Barendegt’s and Krivine’s,
for instance.

Size Explosion. The λ-calculus has only one computational rule, β-reduction, and the
question is whether it is possible to take the number of β-steps as a reasonable time measure
or not. Of course, the question is subtler than that, because a λ-term in general admits
many different evaluation sequences, of different length, so that one should rather first fix an
evaluation strategy. Unfortunately, we have to first deal with a deeper difficulty that affects
every strategy.

The essence of the problem indeed amounts to a degeneracy, called size explosion: there
are families of programs {tn}n∈N such that tn evaluates in n β steps to a result sn of size
exponential in n (and in the size |tn| of tn). Now, it seems that the number of β-steps cannot
be a reasonable measure, because n – the candidate measure of time complexity – does not
even account for the time to write down the exponential result sn.

Size explosion is extremely robust: there is an exploding family {tn}n∈N (for details
see [6]) such that

tn is closed;
all its evaluation sequences to normal form have the same length;
strong and weak evaluations produce the same result, in the same number of steps;
lives in the continuation-passing style fragment of the λ-calculus, what is sometimes
considered as a sort of simpler kernel;
can even be typed with simple types.

Moreover, even if one restricts to, say, terms evaluating to booleans, for which normal forms
have constant size, size explosion can still happen along the way: evaluation can produce a
sub-term of exponential size and then erase it, making the number of steps a doubtful notion
of cost model even if it is no longer possible to produce an exponential normal form.

Phrased differently, there are no easy tricks: size explosion is here to stay.
Surprisingly, until very recently size explosion was folklore. There are no traces of it in

the major literature on the λ-calculus. It was known that duplications in the λ-calculus can
have a nasty behaviour, and this is why the λ-calculus is never implemented as it is defined –

B. Accattoli 1:3

all implementations indeed rely on some form of sharing. In 2006, Dal Lago and Martini
started the first conscious exploration of the higher-order time problem [39], having instances
of size explosion in mind. But it is only in 2014 that Accattoli and Dal Lago named the
degeneracy size explosion [17], taking it out from the collective unconscious, and starting a
systematic exploration.

Reasonable Cost Models. What does it exactly mean for a cost measure to be reasonable?
First of all, one has to fix a computational model M , whose role in our case is played by the
λ-calculus. As proposed by Slot and van Emde Boas in 1984 [88], a time cost model for M is
reasonable when there are simulations of M by Turing machines and of Turing machines by
M having overhead bounded by a polynomial of the input and of the number of steps (in
the source model). For space, similarly, one requires a linear overhead. The basic idea is
to preserve the complexity class ¶, that then becomes robust, that is, model-independent.
Random access machines for instance are a reasonable model (if multiplication is a primitive
operation, they need to be endowed with a logarithmic cost model).

The question becomes: are there reasonable cost models for the λ-calculus? At least for
time? In principle, everything can be a cost model, but of course one is mainly interested in
the natural one, the number of β-steps. The precise question then is: are there reasonable
evaluation strategies, that is, strategies whose number of steps is a reasonable time cost model?

Sharing. The good news is that there are strategies for which size explosion is avoidable,
or, rather, it can be circumvented, and so, the answer is yes, reasonable strategies do exist.
The price to pay is the shift to a λ-calculus enriched with sharing of subterms. Roughly, size
explosion is based on the blind duplication of useless sub-terms – by keeping these sub-terms
shared, the exponential blow up of the size can be avoided and the number of β-steps can be
taken as a reasonable measure of time complexity.

Fix a dialect λX of the λ-calculus with a deterministic evaluation strategy →X , and note
nfX(t) the normal form of t with respect to →X . The idea is to introduce an intermediate
setting λshX where λX is refined with sharing (we are vague about sharing on purpose) and
evaluation in λX is simulated by some refinement →shX of →X . The situation can then be
refined as in the following diagram:

λX RAM

λshX

polynomial

polynomial polynomial

(1)

In the best cases [85, 13, 21] the simulations have bilinear overhead, that is, linear in the
number of steps and in the size of the initial term. A term with sharing t represents the
ordinary term t

→ obtained by unfolding the sharing in t – the key point is that t can be
exponentially smaller than t → . Evaluation in λshX produces a shared normal form nfshX(t)
that is a compact representation of the ordinary result, that is, such that nfshX(t) → = nfX(t).

Let us stress that one needs sharing to obtain the simulations but then the strategy
proved to be reasonable is the one without sharing (that is, →X) – here sharing is the key
tool for the proof, but the cost model is not taken on the calculus with sharing.

Sharing and Reasonable Strategies. The kind of sharing at work in diagram (1), and
therefore the definitions of λshX and →shX , depends very much on the strategy →X . Let us
fix some terminology.

FSCD 2019

1:4 A Fresh Look at the λ-Calculus

The weak λ-calculus is the sub-calculus in which evaluation does not enter into abstractions,
and, with the additional hypothesis that terms are closed, it models functional programming
languages. The strong λ-calculus is the case where evaluation enters into function bodies,
and its main domain of application are proof assistants.

The first result for weak strategies is due to Blelloch and Greiner in 1995 [32] and concerns
weak CbV evaluation. Similar results were then proved again, independently, by Sands,
Gustavsson, and Moran in 2002 [85] who also addressed CbN and CbNeed, and by combining
the results by Dal Lago and Martini in 2009 in [41] and [40], who also addressed CbN in [61].
Actually already in 2006, Dal Lago and Martini proposed a reasonable cost model for the
CbV case [39], but that cost model does not count 1 for each β-step.

Note, en passant, that reasonable does not mean efficient: CbN and CbV are incomparable
for efficiency, and CbNeed is more efficient than CbN, and yet they are all reasonable.
reasonable and efficient are indeed unrelated properties of strategies. Roughly, efficiency is
a comparative property, it makes sense only if there are many strategies and one aims at
comparing them. Being reasonable instead is a property of the strategy itself, independently
of any other strategy, and it boils down to the fact that the strategy can be implemented
with a negligible overhead.

In the strong case, at present, only one reasonable strategy is known, the leftmost-
outermost (LO) strategy, that is the extension of the CbN strategy to the strong case. The
result is due to Accattoli and Dal Lago [17] (2014), and it is inherently harder than the weak
case, as a more sophisticated notion of sharing is required.

There also is an example of an unreasonable strategy. Asperti and Mairson in [27]
(1998) proved that Lévy’s parallel optimal evaluation [67] is unreasonable. Careful again:
unreasonable does not mean inefficient (but it does not mean efficient either).

An Anecdote. To give an idea of the subtlety but also of how much these questions are
neglected by the community, let us report an anecdote. In 2011, we attended a talk where
the speaker started by motivating the study of strong evaluation as follows. There exists
a family {sn}n∈N of terms such that sn evaluates in Ω(2n) steps with any weak strategy
while it takes O(n) steps with rightmost-innermost strong evaluation. Thus, the speaker
concluded, strong evaluation can be faster than weak evaluation, and it is worth studying it.

Such a reasoning is wrong (but the conclusion is correct, it is worth studying strong
evaluation!). It is based on the hidden assumption that it makes sense to count the number
of β-steps and compare strategies accordingly. Such an assumption, however, is valid only if
the compared strategies are reasonable, that is, if it is proved that their number of steps is a
reasonable time measure. In the talk, the speaker was comparing weak strategies, of which
we have various reasonable examples, together with a strong strategy that is not known to
be reasonable. In particular, rightmost-innermost evaluation is probably unreasonable, given
that even when decomposed with sharing it lacks one of the key properties (the sub-term
property) used in all proofs of reasonability in the literature.

That talk was given in front of an impressive audience, including many big names and
historical figures of the λ-calculus. And yet no one noticed that identifying the number of β
steps with the actual cost was naive and improper.

Apart from avoiding traps as the one of the anecdote, a proper approach to the cost of
computation sheds a new light on questions of various nature. The next two subsections discuss
the practical case of abstract machines and the theoretical case of denotational semantics.

B. Accattoli 1:5

2.1 Abstract Machines

The first natural research direction is the re-understanding of implementation techniques
from a quantitative point of view.

Environment-Based Abstract Machines. The theory of implementations of λ-calculi is
mainly based on environment-based abstract machines, that use environments to implement
sharing and avoid size explosion. Having a reasonable cost model of reference, namely the
number of β-steps of the strategy implemented by the machine, it is possible to bound the
complexity of the machine overhead as a function of the size of the initial term and the
number of steps taken by the strategy in the calculus.

A complexity-based approach to abstract machines is not a pedantic formality: Cregut’s
machine [37], that was the only known machine for strong evaluation for 25 years, has an
exponential overhead with respect to the number of β-steps. Essentially, Cregut machine is
as bad as implementing β-reduction literally as it is defined, without any form of sharing.

Similarly, the abstract machine for open terms described by Grégoire and Leroy in [50]
suffers of exponential overhead, even if the authors in practice implement a slightly different
machine with polynomial overhead.

In collaboration with Barenbaum, Mazza, Sacerdoti Coen, Guerrieri, Barras, and Con-
doluci, we developed a new theory of abstract machines [9, 10, 13, 7, 14, 11, 21, 15], where
different term representations, data structures, and evaluation techniques are studied from a
complexity point of view, compared, and sometimes improved to match a certain complexity.
Some of the outcomes have been:

A reasonable variant of Cregut’s machine [7].
A detailed study of how to improve Grégoire and Leroy’s machine [13, 21].
The first results showing that de Bruijn indices bring no asymptotic speed-up with respect
to using names and perform α-renaming [11].
The proof that administrative normal forms bring no asymptotic slowdown [15] (in
contrast to what claimed by Kennedy in [52]).
and, as a side contribution, the simplest presentations of CbNeed [9].

Apart from two exceptions actually focusing on other topics (the already cited studies by
Blelloch and Greiner [32] and by Sands, Gustavsson, and Moran [85]), the literature before
this new wave never studied the complexity of abstract machines.

Token-Based Abstract Machines. There is another class of abstract machines that is much
less famous than those based on environments. These are so-called token-based abstract
machines, introduced by Danos and Regnier [43], then studied by Mackie [69], Schöpp [86]
and more recently by Mazza [72], Muroya and Ghica [78], and Dal Lago and coauthors
[56, 57, 62, 58]. Their theoretical background is Girard’s geometry of interaction. The basic
idea is that, instead of storing all previously encountered β-redexes in environments, these
machines keep a minimalistic amount of information inside a data structure called token, that
is used to navigate the program without ever modifying it. The aim is to have an execution
model that sacrifices time, by possibly repeating some work already done, in order to be
efficient with respect to space. Various researchers conjecture the size of the token to be a
reasonable cost model for space, but there are no results in the literature.

FSCD 2019

1:6 A Fresh Look at the λ-Calculus

2.2 Denotational Semantics
Another research direction is the connection between the cost of computations and denota-
tional semantics. At first sight, it looks like a non-topic, because denotational semantics
are invariant under evaluation, and so it seems that they cannot be sensitive to intensional
properties such as evaluation lengths. There are however hints that the question is subtler
than it seems at first sight.

There are works in the literature trying to address somehow the question, by either
building model of logics / λ-calculi with bounded complexity [77, 28, 59, 66], or by designing
resource-sensitive models [48, 60, 63], or by extracting evaluation bounds from some semantics,
typically game semantics [34, 35, 26]. The questions we propose here are related, but – at
present – very open and somewhat vague. They stem from the work of Daniel de Carvalho
on non-idempotent intersection types [44] (finally published in 2018 but first appeared in
2007), or, as we prefer to call them, multi types (because non-idempotent intersections can
be seen as multi-sets).

One of de Carvalho’s ideas is that even if the interpretation [[t]] of a λ-term t cannot tell us
anything about the evaluation of t itself, there is still hope that (when t and s are normal) [[t]]
and [[s]] provide information about the evaluation of ts, typically about the number of steps
to normal form and the size of the normal form. De Carvalho studies the CbN relational
model (induced by the relational model of linear logic via the call-by-name translation of
λ-calculus into linear logic), that can be syntactically presented via multi types. The key
points of his study are:
1. the size of a type derivation π of Γ ` t : A provides bounds to both the number of CbN

steps to evaluate t to its normal form nf(t) and the size |nf(t)| of nf(t).
2. the size of the types themselves – more precisely A plus the types in the typing context Γ

– bounds |nf(t)|.
3. the interpretation of a term in the model is the set of type judgements – again, A plus the

types in the typing context Γ – that can be derived for it in the typing system, that is,

[[t]] := {((M1, . . . ,Mn), A) | x1 :M1, . . . , xn :Mn ` t : A} .

where the Mi are multi-sets of types.
4. Minimal derivations provide the exact measure of the number of steps plus the size of

the normal form. Similarly the minimal derivable types provide the exact measure of the
normal form.

5. From [[t]] and [[s]] one can bound the number of steps plus the size of the normal form
of ts.

Such a strong correspondence does not happen by chance. Further work [45, 19] has shown
that multi types and the relational model compute according to natural strategies in linear
logic proof nets, including in particular CbN evaluation. The link is natural: multi types are
intersection types without idempotency, that is, without the principle A ∩A = A, or, said
differently, the number of times that A is appear does matter... exactly as in linear logic.
Similar results connect strategies in linear logic proof nets and game semantics [42, 34, 35].

The Extraction of Computational Mechanisms from Models. De Carvalho’s work sug-
gests that denotational models hide a computational machinery behind their compositional
principles. The one between relational and game semantics and evaluation strategies may be
only the easiest one to observe. A natural question is: what about (idempotent) intersection
types? They are syntactic presentations of domain-based semantics à la Scott. Despite being
the first discovered model of the λ-calculus, nothing is known about their hidden evaluation

B. Accattoli 1:7

scheme, apart from the fact that it is not the one behind the relational model, for which
non-idempotency is required. Intuition says that idempotency may model some form of
sharing. The question is however open.

Models Internalising Sharing. The key points about size explosion and reasonable cost
models are:
1. In an evaluation to normal form t→n

β nf(t) the size |nf(t)| of the normal form may be
exponential in n;

2. n is nonetheless a reasonable measure of complexity (if evaluation is done according to a
reasonable strategy);

3. this is possible because sharing allows to compute a compact representation nfshX(t) of
the normal form that is polynomial in n.

Now, the interpretation of a term t in de Carvalho’s CbN relational model is a set whose
smallest element is as large as the normal form nf(t). It seems then difficult that such a
model may give accurate information about the time cost of λ-terms, as in general from [[t]]
and [[s]] one can only obtain information about the evaluation of ts together with the size of
nf(ts), which may however be much larger than the length of evaluation to normal form.

For such a reason, Accattoli, Graham-Lengrand, and Kesner in [19] refined de Carvalho’s
type system as to have type derivations that provide separate bounds with respect to
evaluation lengths and the size of normal forms. The idea is that judgements now have
the form:

x1 :M1, . . . , xn :Mn `(b,r) t : A

where b provides a bound to number of β-steps to evaluate t to its normal form nf(t) (that
is, the evaluation length) and r is a bound to the size of nf(t). This is a slight improvement,
but still not enough, as such a refined information is on type derivations but not on the types
themselves, that are what defines the semantical interpretation.

An important open question is then whether there are models where the (smallest point
in the) interpretation of t is of the order of the size of the compact representation nfshX(t) of
the normal form, and not of the order of |nf(t)|. Roughly, it would be a model whose hidden
computational mechanism uses sharing as it is needed to obtain reasonable implementations.

We believe that this is an important question to answer in order to establish a semantical
understanding of sharing and close the gap between semantical and syntactical studies.

We conjecture that the CbV relational model may have this property, as – despite being
built from non-idempotent intersection types – it allows a special use of the empty intersection,
which is the only idempotent type of the model (as the intersection of two empty intersections
is still empty) and that may be the key tool to internalise sharing.

Lax and Tight Models with Respect to Strategies. A related question is how to refine
the notion of model as to be relative to an evaluation strategy. The need for a refined notion
of model arises naturally when studying CbNeed evaluation. CbNeed is sometimes considered
simply as an optimisation of CbN. It is however better understood as an evaluation scheme
on its own, obtained by mixing the good aspects of both CbN and CbV, and observationally
equivalent to CbN. Because of such an equivalence, every model of CbN provides a model
of CbNeed. In particular, the relational model built on multi types discussed above is a
model of CbNeed – Kesner used it to provide a simple proof of the equivalence of CbN and
CbNeed [53].

FSCD 2019

1:8 A Fresh Look at the λ-Calculus

The bounds provided by that relational model, however, are not exact for CbNeed, since
they are exact for CbN, and thus cannot capture its faster alternative. Recently, Accattoli,
Guerrieri, and Leberle have obtained a multi type system providing exact bounds for CbNeed
[23]. The type system induces a model, which is “better” than de Carvalho’s one, as it more
precisely captures CbNeed evaluation lengths. There is however no abstract, categorical
way – at present – to separate the two models, as there are no abstract notions of lax or
tight model with respect to an evaluation strategy. To be fair, there is not even a notion of
categorical model of CbNeed, that should certainly be developed.

3 From the λ-calculus to λ-calculi

There are at least two theories of the λ-calculus, the strong and the weak. Historically, the
theory of λ-calculus rather dealt with strong evaluation, and it is only since the seminal
work of Abramsky and Ong [2] that the theory took weak evaluation seriously. Dually, the
practice of functional languages mostly ignored strong evaluation, with the notable exception
of Crégut [36, 37] (1990) and, more recently, the semi-strong approach of Grégoire and
Leroy [50] (2002), following the idea that a function is an algorithm to apply to some data
rather than data by itself. Strong evaluation is nonetheless essential in the implementation of
proof assistants or higher-order logic programming, typically for type-checking in frameworks
with dependent types as the Edinburgh Logical Framework or the Calculus of Constructions,
as well as for unification modulo βη in simply typed frameworks like λ-prolog.

There is also another axis of duplication of work. Historically, the theory is mostly studied
with respect to CbN evaluation, while functional programming languages tend to employ
CbV (of which there are no traces in Barendregt’s and Krivine’s books) or CbNeed. The
differences between these settings is striking. What is considered the λ-calculus is the strong
CbN λ-calculus, and it has been studied in depth, despite the fact that no programming
language or proof assistant implements it. Given the practical relevance of weak CbV with
closed terms, that is the backbone of the languages of the ML family, such a setting is also well
known, even if its theory is anyway less developed than the one for strong CbN. Weak CbN
is also reasonably well studied. But as soon as one steps out of these settings the situation
changes drastically. The simple extension of weak CbV to open terms is already a delicate
subject, not to speak of strong CbV. About CbNeed– that is the strategy implemented by
Haskell – the situation is even worse, as its logical (Curry-Howard) understanding is less
satisfactory than for CbN and CbV, its semantical understanding essentially inexistent, and
there is only one paper about Strong CbNeed, by Balabonski et al. [29].

We believe that there is a strong need of reconciling theory and practice. A key step has
to be a change of perspective. The λ-calculus comes in different flavors, and in my experience
a comparative study is very fruitful, as it identifies commonalities, cleaning up concepts, and
also stresses differences and peculiar traits of each setting.

The Open Setting. There actually is an intermediate setting between the weak and the
strong λ-calculi. First of all, it is important to stress that weak evaluation is usually paired
with the hypothesis that terms are closed, which is essential in order to obtain the key
property that weak normal forms are all and only abstractions – this is why we rather prefer
to call it the closed λ-calculus. On the other hand, in the strong case it does not make sense
to restrict to closed terms, because evaluation enters into function bodies, that cannot be
assumed closed. Such a difference forbids to see the strong case as the iteration of the closed
one under abstraction, as the closed hypothesis is not stable under iterations.

B. Accattoli 1:9

It is then natural to consider the case of weak evaluation with open terms, what we like
to refer to as the open λ-calculus. The open λ-calculus can be iterated under abstraction
providing a procedure for strong evaluation – this is for instance done by Grégoire and Leroy
in [50]. Historically, the open case was neglected. The reason is that the differences between
the closed and open case are striking in CbV but negligible in CbN. Since the CbV literature
focused on the closed setting, the open case sat in a blind spot.

The study of reasonable cost models made evident that different, increasingly sophisticated
techniques are needed in the three settings – closed, open, and strong – in order to obtain
reasonable abstract machines. Moreover, such a classification is stable by moving on the
other axis, that is, closed CbN, closed CbV, and closed CbNeed share the same issues, and
similarly for the three open cases and the three strong cases.

3.1 Open Call-by-Value
The ordinary approach to CbV, due to Plotkin, has a famous property that we like to call
harmony: a closed term either is a value or it CbV reduces.

The Issue with Open Terms. Plotkin’s operational semantics for CbV does have some
good properties on open terms. For instance, it is confluent and it admits a standardisation
theorem, as Plotkin himself proved [81]. It comes however also with deep problems. First,
open terms bring stuck β-redexes such as

(λx.t)(yz)

the argument is not a value and will never become one, thus the term is CbV normal (there
is a β-redex but it is not a βv-redex) – that is, harmony is lost.

Unfortunately, stuck redexes induce a further problem: they block creations. Consider
the open term (where δ is the usual duplicator)

((λx.δ)(yz))δ

As before, it is normal in Plotkin’s traditional λ-calculus for CbV. Now, however, there are
semantic reasons to consider it as a divergent term. Roughly, there are denotational semantics
that are adequate on closed terms (adequacy means that the semantical interpretation of
a term t is non-empty if and only if t evaluates to a value; by harmony, it is equivalent to
say that t is not divergent) and with respect to which (λx.δ)(yz)δ has empty interpretation
(that is, it is considered as being a divergent term, while it is normal). This semantical
mismatch has first been pointed out by Paolini and Ronchi Della Rocca [80, 79, 82]. A
similar phenomenon happens if one looks at the interpretation of the term according to the
CbV translation into linear logic, as pointed out by the author in [5]. Essentially, that term
is expected to reduce as follows

((λx.δ)(yz))δ → δδ

and create the redex δδ. Evaluation then would go on forever. If one sticks to Plotkin’s
rewriting rule, however, the creation is blocked by the stuck redex (λx.δ)(yz) and the term
is normal – quite a mismatch with what is expected semantically and logically. A similar
problem affects the term δ((λx.δ)(yz)) that is also normal while it should be divergent.

The subtlety of the problem is that one would like to have a notion of CbV evaluation on
open terms making terms such as ((λx.δ)(yz))δ and δ((λx.δ)(yz)) divergent, thus extending
Plotkin’s evaluation, but at the same time preserving CbV divergence without collapsing on
CbN, that is, such that (λx.y)(δδ) has no normal form.

FSCD 2019

1:10 A Fresh Look at the λ-Calculus

Open CbV. In his seminal work, Plotkin already pointed out an asymmetry between CbN
and CbV: his continuation-passing style (CPS) translation is sound and complete for CbN,
but only sound for CbV. This fact led to a number of studies about monad, CPS, and logical
translations [76, 83, 84, 70, 46, 51] that introduced many proposals of improved calculi for
CbV. The dissonance between open terms and CbV has been repeatedly pointed out and
studied per se via various calculi related to linear logic [24, 5, 33, 13]. To improve the
implementation of the Coq proof assistant, Grégoire and Leroy introduced another extension
of CbV to open terms [50]. A further point of view on CbV comes from the computational
interpretation of sequent calculus due to Curien and Herbelin [38]. An important point is
that most of these works focus on strong CbV.

Inspired by the robustness of complexity classes via reasonable cost models, in a series of
works Accattoli, Guerrieri and Sacerdoti Coen define what they call open CbV, that is the
isolation of the case of weak evaluation with open terms (rather than strong evaluation) that
they show to be a simpler abstract framework with many different incarnations:

Operational semantics: in [20], 4 representative calculi extending Plotkin’s CbV are
compared, and showed to be termination equivalent (the evaluation of a fixed term
t terminates in one of the calculi if and only if terminates in the others). Moreover,
evaluation lengths (in 3 of them) are linearly related;
Cost model: In [13, 21], such a common evaluation length is proved to be a reasonable
cost model, by providing abstract machines that are proved reasonable;
Denotational semantics: In [22], Ehrhard’s relational model of CbV [47] is shown to be
an adequate denotational model of open CbV, providing exact bounds along the lines of
de Carvalho’s work.

Last, let us stress both the termination equivalence of the 4 presentations of open CbV and
the relationship with the denotational semantics make crucial use of formalisms with sharing.

A key point is that each presentation of open CbV has its pros and cons, but none of
them is perfect. This is in contrast to CbN, where there are no doubts about the canonicity
of its presentation.

Strong CbV. The obvious next step is to lift the obtained relationships to strong evaluation.
This is a technically demanding ongoing work.

3.2 Benchmark for λ-Calculi
The work on open CbV forced to ask ourselves what are the guiding principles that define a
good λ-calculus. This is especially important if one takes seriously the idea that there is not
just one λ-calculus but a rich set of λ-calculi, in order to fix standards and allow comparisons.

It is of course impossible to give an absolute answer, because different applications value
different properties. It is nonetheless possible to collect requirements that seem desirable in
order to have an abstract framework that is also useful in practice. We can isolate at least
six principles to be satisfied by a good λ-calculus:
1. Rewriting: there should be a small-step operational semantics having nice rewriting

properties. Typically, the calculus should be non-deterministic but confluent, and a
deterministic evaluation strategy should emerge naturally from some good rewriting
property (factorisation / standardisation theorem, or the diamond property). The strategy
emerging from the calculus principle guarantees that the chosen evaluation is not ad-hoc.

2. Logic: typed versions of the calculus should be in Curry-Howard correspondences with
some proof systems, providing logical intuitions and guiding principles for the features of
the calculus and the study of its properties.

B. Accattoli 1:11

3. Implementation: there should be a good understanding of how to decompose evaluation
in micro-steps, that is, at the level of abstract machines, in order to guide the design of
languages or proof assistants based on the calculus.

4. Cost model: the number of steps of the deterministic evaluation strategy should be a
reasonable time cost model, so that cost analyses of λ-terms are possible and independent
of implementative choices.

5. Denotations: there should be denotational semantics that reflect some of its properties,
typically an adequate semantics reflecting termination. Well-behaved denotations guaran-
tee that the calculus is somewhat independent from its own syntax, which is a further
guarantee that it is not ad-hoc.

6. Equality: contextual equivalence can be characterised by some form of bisimilarity, showing
that there is a robust notion of program equivalence. Program equivalence is indeed
essential for studying program transformations and optimisations at work in compilers.

Finally, there is a sort of meta-principle: the more principles are connected, the better.
For instance, it is desirable that evaluation in the calculus correspond to cut-elimination in
some logical interpretation of the calculus. Denotations are usually at least required to be
adequate with respect to the rewriting: the denotation of a term is non-degenerate if and
only if its evaluation terminates. Additionally, denotations are fully abstract if they reflect
contextual equivalence. And implementations have to work within an overhead that respects
the intended cost semantics. Ideally, all principles are satisfied and perfectly interconnected.

Of course, some specific cases may drop some requirements – for instance, a probabilistic
λ-calculus would not be confluent – some properties may also be strengthened – for instance,
equality may be characterised via a separation theorem akin to Böhm’s – and other principles
may be added – categorical semantics, graphical representations, etc. As concrete cases, the
strong CbN λ-calculus satisfies all these principles, while at present open CbV satisfies the
first 5, with an high degree of connection between them, strong CbNeed only 2 or 3 of them,
and strong CbV none of them.

We are here exposing these principles hoping to receive feedback from the community,
for instance, helping us identifying further essential principles, if any. We also believe that
single researchers tend to specialise excessively in one of the principles, forgetting the global
picture, which is instead where the meaning of the single studies stems, in our opinion. A
new book or new introductory notes on the λ-calculus should be developed around the idea
of connecting these principles, to form students in the field.

4 Sharing

The aim of this section is to convince the reader that sharing is an unavoidable ingredient
of a modern understanding of λ-calculi. This is done by pointing out a number of reasons,
including a historical perspective, and giving some examples coming from the work of the
author. In particular, we would like to stress that, rather than a feature such as continuations
or pattern matching that can be added on top of λ-calculi, sharing is the éminence grise of
the higher-order world.

Sharing is a vague term that means different things in different contexts. For instance,
sharing as in environment-based abstract machines or sharing as in Lamping’s sharing
graphs [64] implementing Lévy’s parallel optimal strategy [67] have not much in common.

FSCD 2019

1:12 A Fresh Look at the λ-Calculus

Here we refer to the simplest possible form, that is closer to sharing as it appears in
abstract machines. While we do want to commit to a certain style, as it shall be evident
below, we also want to stay vague about it, as such a style can be realized in various ways.

The simplest construct for sharing is a let x = s in t expression, that is a syntactic
annotation for t where x will be substituted by s. We also write it more concisely as t[x�s]
(not to be confused with meta-level substitution, noted t{x�s}) and call it ES (for explicit
sharing, or explicit substitution). Thanks to ES, β-reduction can be decomposed into more
atomic steps. The simplest decomposition splits β-reduction as follows:

(λx.t)s →B t[x�s] →ES t{x�s}

It is well-known that ES are somewhat redundant, as they can always be removed, by simply
coding them as β-redexes. They are however more than syntactic sugar, as they provide
a simple and yet remarkably effective tool to understand, implement, and program with
λ-calculi and functional programming languages:

From a logical point of view ES are the proof terms corresponding to the extension of
natural deduction with a cut rule, and the cut rule is the rule representing computation,
according to Curry-Howard.
From an operational semantics point of view, they allow elegant formulations of subtle
strategies such as call-by-need evaluation – various presentations of call-by-need use ES
[89, 65, 71, 25, 87, 55] and a particularly simple one is in [9].
From a programming point of view, let expressions are part of the syntax of all functional
programming languages we are aware of.
From a rewriting point of view, they enable proof techniques that are not available within
the λ-calculus, as we are going to explain below.
Finally, sharing is used in all implementations of tools based on the λ-calculus to
circumvent size explosion.

A Historical Perspective. Between the end of the eighties and the beginning of the nineties,
three independent decompositions of the λ-calculus arose with different aims and techniques:
1. Girard’s linear logic [49], where the λ-calculus is decomposed in two layers, multiplicative

and exponential;
2. Abadi, Cardelli, Curien, and Lévy’s explicit substitutions [1], that are refinements of the

λ-calculus where meta-level substitution is delayed, by introducing explicit annotations,
and then computed in a micro-step fashion.

3. Milner, Parrow, and Walker’s π-calculus [75], where the λ-calculus can be represented,
as shown by Milner [73], by decomposing evaluation into message passing and process
replication.

All these settings introduce an explicit treatment of sharing – called exponentials in linear
logic, or explicit substitutions, or replication in the π-calculus. At first sight these approaches
look quite different. It took more than 20 years to obtain the Linear Substitution Calculus
(LSC), a λ-calculus with sharing that captures the essence of all three approaches in a simple
and manageable formalism.

The LSC [3, 12] is a refinement of the λ-calculus with sharing, introduced by Accattoli
and Kesner as a minor variation over a calculus by Milner [74]. The rest of the section is
a gentle introduction to some of its unique features. We shall also discuss an even simpler
setting, the substitution calculus, that is probably the most basic setting for sharing.

B. Accattoli 1:13

4.1 Rewriting at a Distance, or Disentangling Search and Substitution
Usually, λ-calculi with ES have rules accounting for two tasks, one is decomposing (or just
executing) the substitution process and one is commuting ES with other constructs. For the
time being, let us simplify the first task, and assume that ES are executed in just one step,
as follows

t[x�s] →ES t{x�s}

The second task is required for instance in situations such as

(λx.t)[y�s]u

where the ES [y�s] is blocking the possibility of reducing the β redex (λx.t)u. Usually the
calculus is endowed with one of the two following rules

(λx.t)[y�s]→λ λx.t[y�s] t[y�s]u→@ (tu)[y�s]

that incarnate opposite approaches to expose the β-redex and continue the computation.
There is however a simpler alternative. Instead of adding a rule to commute ES, one can

generalise the notion of β-redex, by allowing the abstraction and the argument to interact at
a distance, that is, even if there are ES in between:

(λx.t)[y1�s1] . . . [yk�sk]u →dB t[x�u][y1�s1] . . . [yk�sk]

The name of the rule stands for distant B, where B is the variant of β that creates an ES.
The rule can be made compact by employing contexts. Define substitution contexts as

follows

L ::= 〈·〉 | L[x�t]

Then the previous rule can be rewritten as:

L〈λx.t〉u→dB L〈t[x�u]〉

Define the substitution calculus as the language of the λ-calculus with ES plus rules →dB and
→ES. Such a simple formalism already provides relevant insights.

First of all, it has a strong connection with the linear logic proof nets representation
of the λ-calculus [8]. Rules →dB and →ES indeed correspond exactly to multiplicative and
exponential cut-elimination in such a representation (if one assumes a one shot cut-elimination
rule for the exponentials), where exactly means that there is a bijection of redexes providing a
strong bisimulation between terms and proof nets (of that fragment). This happens because
the trick of rewriting at a distance captures exactly the graphical dynamics of proof nets.
Phrased differently, commuting rules such as →λ or →@ have no analogous on proof nets.

4.2 A Rewriting Pearl: Confluence from Local Diagrams
The substitution calculus already allows to show that sharing enables simple and elegant
proof techniques that are impossible in λ-calculi without sharing.

The best example concerns confluence. In rewriting, termination often allows to lift local
properties to the global level. The typical example is Newman lemma, that in presence of
strong normalisation lifts local confluence to confluence. The λ-calculus is locally confluent
but not strongly normalising (not even weakly!), so Newman lemma cannot be applied. It is
then necessary, for instance, to introduce parallel steps and adopt the Tait and Martin Löf
proof technique.

FSCD 2019

1:14 A Fresh Look at the λ-Calculus

In the substitution calculus, instead, we can prove confluence from local confluence.
Newman lemma does not apply directly, but an elegant alternative reasoning is possible.

The key observation is that having decomposed β in two rules →dB and →ES, one still has
that the whole calculus may not terminate, but a new local termination principle is available:
→dB and →ES are strongly normalising when considered separately. Local termination can
be seen as the internalisation of a classic result, the finite developments theorem, stating that
in the λ-calculus every evaluation that does not reduce redexes created by the sequence itself
terminates. The proof of confluence of the substitution calculus goes as follows:

Rules →dB and →ES are both locally confluent, so that by Newman lemma they are
(separately) confluent.
To obtain confluence of the full calculus we need another classic rewriting lemma by
Hindley and Rosen: the union of confluent and commuting relations is confluent.
We then need to prove commutation of →dB and →ES, that is, if s ∗ES← t →∗dB u then
there exists r such that s→∗dB r

∗
ES← u.

Again, commutation is a global property that can be obtained via a local one. In this case
there are no lemmas analogous to Newman (commutation is more general than confluence),
but the fact that→dB cannot duplicate→ES implies that their local commutation diagram
trivially lifts to global commutation.
Then →dB ∪ →ES is confluent.

This proof scheme was used for the first time by Accattoli and Paolini in [24]. In [3], Accattoli
uses the local termination principle to prove the head factorisation theorem for the LSC in a
way that is impossible in the λ-calculus.

The moral is that introducing sharing enables rewriting proof techniques that are im-
possible without it.

4.3 Linear Substitutions, Weak Evaluation, and Garbage Collection
Let’s now decompose the substitution rule and define the LSC. Most of the literature of ES
decomposes the substitution process using rules that are entangled with commuting rules
such as →λ and →@ described above. The special ingredient of the LSC is that substitution
is decomposed but also disentangled from the commuting process. To properly define the
rules we need to introduce a general notion of context:

ES contexts C,D ::= 〈·〉 | λx.C | Ct | tC | C[x�t] | t[x�C]

Now, there are only two rules for evaluating explicit substitutions at a distance (plus dB, to
create them):

Linear substitution C〈〈x〉〉[x�s] →ls C〈〈t〉〉[x�s]
Garbage collection t[x�s] →gc t if x /∈ fv(t)

The idea is that given t[x�s] either x has no occurrences in t, and so the garbage collection
rule →gc applies, or x does occur in t, which can then be written as C〈x〉 for some context
C (not capturing x), potentially in more than one way. The linear substitution rule then
allows to replace the occurrence of x isolated by C without moving the ES [x�s].

The LSC is given by rules →dB, →ls, and →gc. More precisely, the definition of these
rules includes a further contextual closure (as it is standard also in the λ-calculus), that is,
one defines C〈t〉 →dB C〈s〉 if t→dB s, and similarly for the other rules.

Confluence for the LSC can be proved following exactly the same schema used for the
substitution calculus.

B. Accattoli 1:15

Confluence of Weak Evaluation. One of the nice features of the LSC is that its definition
is parametric in the grammar of contexts. For instance, we can define the Weak LSC by
simply restricting general contexts C (used both to define rule →ls at top level and to
give the contextual closure of the three rules) to weak contexts W that do not enter into
abstractions:

Weak ES contexts W,W ′ ::= 〈·〉 |Wt | tW |W [x�t] | t[x�W]

The Weak LSC is confluent, and the proof goes always along the same lines.
Note that this is in striking contrast to what happens in the λ-calculus. Defining the

weak λ-calculus by simply restricting the contextual closure to weak contexts produces a
non-confluent calculus. For instance, the following diagram cannot be closed:

(λx.λy.yx)I β← (λx.λy.yx)(II)→β λy.(y(II))

because II in the right reduct occurs under abstraction and it is then frozen. There are
solutions to this issue, see Lévy and Maranget’s [68], but they are all ad-hoc. In the LSC,
instead, everything is as natural as it can possibly be.

Garbage Collection. Another natural property that holds in the LSC but not in the λ-
calculus is the postponement of garbage collection. Rule →gc can indeed be postponed, that
is, one has that if t→∗LSC s then t→∗dB,ls→∗gc s. Since →gc is also strongly normalising, it is
then safe to remove it and only consider the two other rules, →dB and →ls.

The postponement of garbage collection models the fact that in programming languages
the garbage collector acts asynchronously with respect to the execution flow.

In the λ-calculus, erasing steps are the analogous of garbage collection. A step (λx.t)s→β

t{x�s} is erasing if – like for garbage collection – the abstracted variable x does not occur
in t, so that t{x�s} = t, and s is simply erased.

The key point is that erasing steps cannot be postponed in the λ-calculus. Consider
indeed the following sequence:

(λx.λy.y)ts→β (λy.y)s→β s

The first step is erasing but it cannot be postponed after the second one, because the second
step is created by the first one.

A Bird’s Eye View. The list of unique elegant properties of the LSC is long. For instance,
it has deep and simple connections to linear logic proof nets [8], the π-calculus [4], abstract
machines and CbNeed [9], reasonable cost models [16, 18], open CbV [20], linear head
reduction [3], multi types [19], it admits a residual system and a rich theory of standardisation
[12], and even Lévy optimality [30]. Essentially, it is the canonical decomposition of the
λ-calculus, and, in many respects, it is more expressive and flexible than the λ-calculus – it
is a sort of λ-calculus 2.0.

Should then the LSC replace the λ-calculus? No. The point is not which system is the
best. The point is acknowledging that the field is rich, and that even the simplest higher-order
framework declines itself in a multitude of ways (weak/open/strong, cbn/cbv/cbneed, no
sharing/one shot sharing/linear sharing), each one with its features and being a piece of a
great puzzle.

FSCD 2019

1:16 A Fresh Look at the λ-Calculus

References
1 Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit Substitu-

tions. J. Funct. Program., 1(4):375–416, 1991. doi:10.1017/S0956796800000186.
2 Samson Abramsky and C.-H. Luke Ong. Full Abstraction in the Lazy Lambda Calculus. Inf.

Comput., 105(2):159–267, 1993.
3 Beniamino Accattoli. An Abstract Factorization Theorem for Explicit Substitutions. In RTA,

pages 6–21, 2012. doi:10.4230/LIPIcs.RTA.2012.6.
4 Beniamino Accattoli. Evaluating functions as processes. In TERMGRAPH, pages 41–55, 2013.

doi:10.4204/EPTCS.110.6.
5 Beniamino Accattoli. Proof nets and the call-by-value λ-calculus. Theor. Comput. Sci.,

606:2–24, 2015. doi:10.1016/j.tcs.2015.08.006.
6 Beniamino Accattoli. The Complexity of Abstract Machines. In WPTE@FSCD 2016, pages

1–15, 2016. doi:10.4204/EPTCS.235.1.
7 Beniamino Accattoli. The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus.

In WoLLIC 2016, pages 1–21, 2016. doi:10.1007/978-3-662-52921-8_1.
8 Beniamino Accattoli. Proof Nets and the Linear Substitution Calculus. In ICTAC 2018, pages

37–61, 2018. doi:10.1007/978-3-030-02508-3_3.
9 Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. Distilling abstract machines.

In ICFP 2014, pages 363–376, 2014. doi:10.1145/2628136.2628154.
10 Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. A Strong Distillery. In APLAS

2015, pages 231–250, 2015. doi:10.1007/978-3-319-26529-2_13.
11 Beniamino Accattoli and Bruno Barras. Environments and the complexity of abstract machines.

In PPDP 2017, pages 4–16, 2017. doi:10.1145/3131851.3131855.
12 Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A nonstandard

standardization theorem. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014,
pages 659–670, 2014. doi:10.1145/2535838.2535886.

13 Beniamino Accattoli and Claudio Sacerdoti Coen. On the Relative Usefulness of Fireballs. In
LICS 2015, pages 141–155, 2015. doi:10.1109/LICS.2015.23.

14 Beniamino Accattoli and Claudio Sacerdoti Coen. On the value of variables. Inf. Comput.,
255:224–242, 2017. doi:10.1016/j.ic.2017.01.003.

15 Beniamino Accattoli, Andrea Condoluci, Giulio Guerrieri, and Claudio Sacerdoti Coen. Crum-
bling Abstract Machines. Submitted, 2019.

16 Beniamino Accattoli and Ugo Dal Lago. On the Invariance of the Unitary Cost Model for
Head Reduction. In RTA, pages 22–37, 2012. doi:10.4230/LIPIcs.RTA.2012.22.

17 Beniamino Accattoli and Ugo Dal Lago. Beta reduction is invariant, indeed. In CSL-LICS
’14, pages 8:1–8:10, 2014. doi:10.1145/2603088.2603105.

18 Beniamino Accattoli and Ugo Dal Lago. (Leftmost-Outermost) Beta-Reduction is Invariant,
Indeed. Logical Methods in Computer Science, 12(1), 2016. doi:10.2168/LMCS-12(1:4)2016.

19 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split
bounds. PACMPL, 2(ICFP):94:1–94:30, 2018. doi:10.1145/3236789.

20 Beniamino Accattoli and Giulio Guerrieri. Open Call-by-Value. In APLAS 2016, pages
206–226, 2016. doi:10.1007/978-3-319-47958-3_12.

21 Beniamino Accattoli and Giulio Guerrieri. Implementing Open Call-by-Value. In FSEN
2017, Tehran, Iran, April 26-28, 2017, Revised Selected Papers, pages 1–19, 2017. doi:
10.1007/978-3-319-68972-2_1.

22 Beniamino Accattoli and Giulio Guerrieri. Types of Fireballs. In Programming Languages
and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6,
2018, Proceedings, pages 45–66, 2018. doi:10.1007/978-3-030-02768-1_3.

23 Beniamino Accattoli, Giulio Guerrieri, and Maico Leberle. Types by need. In Programming
Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

http://dx.doi.org/10.1017/S0956796800000186
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.6
http://dx.doi.org/10.4204/EPTCS.110.6
http://dx.doi.org/10.1016/j.tcs.2015.08.006
http://dx.doi.org/10.4204/EPTCS.235.1
http://dx.doi.org/10.1007/978-3-662-52921-8_1
http://dx.doi.org/10.1007/978-3-030-02508-3_3
http://dx.doi.org/10.1145/2628136.2628154
http://dx.doi.org/10.1007/978-3-319-26529-2_13
http://dx.doi.org/10.1145/3131851.3131855
http://dx.doi.org/10.1145/2535838.2535886
http://dx.doi.org/10.1109/LICS.2015.23
http://dx.doi.org/10.1016/j.ic.2017.01.003
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.22
http://dx.doi.org/10.1145/2603088.2603105
http://dx.doi.org/10.2168/LMCS-12(1:4)2016
http://dx.doi.org/10.1145/3236789
http://dx.doi.org/10.1007/978-3-319-47958-3_12
http://dx.doi.org/10.1007/978-3-319-68972-2_1
http://dx.doi.org/10.1007/978-3-319-68972-2_1
http://dx.doi.org/10.1007/978-3-030-02768-1_3

B. Accattoli 1:17

2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, pages 410–439, 2019. doi:
10.1007/978-3-030-17184-1_15.

24 Beniamino Accattoli and Luca Paolini. Call-by-Value Solvability, revisited. In FLOPS, pages
4–16, 2012. doi:10.1007/978-3-642-29822-6_4.

25 Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The Call-
by-Need Lambda Calculus. In POPL’95, pages 233–246, 1995. doi:10.1145/199448.199507.

26 Federico Aschieri. Game Semantics and the Geometry of Backtracking: a New Complexity
Analysis of Interaction. J. Symb. Log., 82(2):672–708, 2017. doi:10.1017/jsl.2016.48.

27 Andrea Asperti and Harry G. Mairson. Parallel Beta Reduction is not Elementary Recursive.
In POPL, pages 303–315, 1998. doi:10.1145/268946.268971.

28 Patrick Baillot. Stratified coherence spaces: a denotational semantics for light linear logic.
Theor. Comput. Sci., 318(1-2):29–55, 2004. doi:10.1016/j.tcs.2003.10.015.

29 Thibaut Balabonski, Pablo Barenbaum, Eduardo Bonelli, and Delia Kesner. Foundations of
strong call by need. PACMPL, 1(ICFP):20:1–20:29, 2017. doi:10.1145/3110264.

30 Pablo Barenbaum and Eduardo Bonelli. Optimality and the Linear Substitution Calculus. In
FSCD 2017, pages 9:1–9:16, 2017. doi:10.4230/LIPIcs.FSCD.2017.9.

31 Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1984.

32 Guy E. Blelloch and John Greiner. Parallelism in Sequential Functional Languages. In FPCA,
pages 226–237, 1995. doi:10.1145/224164.224210.

33 Alberto Carraro and Giulio Guerrieri. A Semantical and Operational Account of Call-by-
Value Solvability. In Foundations of Software Science and Computation Structures - 17th
International Conference, FOSSACS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings,
pages 103–118, 2014. doi:10.1007/978-3-642-54830-7_7.

34 Pierre Clairambault. Estimation of the Length of Interactions in Arena Game Semantics. In
FOSSACS, pages 335–349, 2011. doi:10.1007/978-3-642-19805-2_23.

35 Pierre Clairambault. Bounding Skeletons, Locally Scoped Terms and Exact Bounds for Linear
Head Reduction. In TLCA, pages 109–124, 2013. doi:10.1007/978-3-642-38946-7_10.

36 Pierre Crégut. An Abstract Machine for Lambda-Terms Normalization. In LISP and Functional
Programming, pages 333–340, 1990.

37 Pierre Crégut. Strongly reducing variants of the Krivine abstract machine. Higher-Order and
Symbolic Computation, 20(3):209–230, 2007. doi:10.1007/s10990-007-9015-z.

38 Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP, pages 233–243,
2000. doi:10.1145/351240.351262.

39 Ugo Dal Lago and Simone Martini. An Invariant Cost Model for the Lambda Calculus. In
CiE 2006, pages 105–114, 2006. doi:10.1007/11780342_11.

40 Ugo Dal Lago and Simone Martini. Derivational Complexity Is an Invariant Cost Model. In
FOPARA 2009, pages 100–113, 2009. doi:10.1007/978-3-642-15331-0_7.

41 Ugo Dal Lago and Simone Martini. On Constructor Rewrite Systems and the Lambda-Calculus.
In ICALP (2), pages 163–174, 2009. doi:10.1007/978-3-642-02930-1_14.

42 Vincent Danos, Hugo Herbelin, and Laurent Regnier. Game Semantics & Abstract Machines.
In LICS, pages 394–405, 1996. doi:10.1109/LICS.1996.561456.

43 Vincent Danos and Laurent Regnier. Reversible, Irreversible and Optimal lambda-Machines.
Theor. Comput. Sci., 227(1-2):79–97, 1999. doi:10.1016/S0304-3975(99)00049-3.

44 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Mathematical Structures in Computer Science, 28(7):1169–1203, 2018. doi:10.1017/
S0960129516000396.

45 Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure
of the execution time in linear logic. Theor. Comput. Sci., 412(20):1884–1902, 2011. doi:
10.1016/j.tcs.2010.12.017.

FSCD 2019

http://dx.doi.org/10.1007/978-3-030-17184-1_15
http://dx.doi.org/10.1007/978-3-030-17184-1_15
http://dx.doi.org/10.1007/978-3-642-29822-6_4
http://dx.doi.org/10.1145/199448.199507
http://dx.doi.org/10.1017/jsl.2016.48
http://dx.doi.org/10.1145/268946.268971
http://dx.doi.org/10.1016/j.tcs.2003.10.015
http://dx.doi.org/10.1145/3110264
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.9
http://dx.doi.org/10.1145/224164.224210
http://dx.doi.org/10.1007/978-3-642-54830-7_7
http://dx.doi.org/10.1007/978-3-642-19805-2_23
http://dx.doi.org/10.1007/978-3-642-38946-7_10
http://dx.doi.org/10.1007/s10990-007-9015-z
http://dx.doi.org/10.1145/351240.351262
http://dx.doi.org/10.1007/11780342_11
http://dx.doi.org/10.1007/978-3-642-15331-0_7
http://dx.doi.org/10.1007/978-3-642-02930-1_14
http://dx.doi.org/10.1109/LICS.1996.561456
http://dx.doi.org/10.1016/S0304-3975(99)00049-3
http://dx.doi.org/10.1017/S0960129516000396
http://dx.doi.org/10.1017/S0960129516000396
http://dx.doi.org/10.1016/j.tcs.2010.12.017
http://dx.doi.org/10.1016/j.tcs.2010.12.017

1:18 A Fresh Look at the λ-Calculus

46 Roy Dyckhoff and Stéphane Lengrand. Call-by-Value lambda-calculus and LJQ. J. Log.
Comput., 17(6):1109–1134, 2007. doi:10.1093/logcom/exm037.

47 Thomas Ehrhard. Collapsing non-idempotent intersection types. In CSL, pages 259–273, 2012.
doi:10.4230/LIPIcs.CSL.2012.259.

48 Dan R. Ghica. Slot games: a quantitative model of computation. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005,
Long Beach, California, USA, January 12-14, 2005, pages 85–97, 2005. doi:10.1145/1040305.
1040313.

49 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

50 Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction. In
(ICFP ’02)., pages 235–246, 2002. doi:10.1145/581478.581501.

51 Hugo Herbelin and Stéphane Zimmermann. An Operational Account of Call-by-Value Minimal
and Classical lambda-Calculus in “Natural Deduction” Form. In TLCA, pages 142–156, 2009.
doi:10.1007/978-3-642-02273-9_12.

52 Andrew Kennedy. Compiling with continuations, continued. In Proceedings of the 12th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2007, Freiburg,
Germany, October 1-3, 2007, pages 177–190, 2007. doi:10.1145/1291151.1291179.

53 Delia Kesner. Reasoning About Call-by-need by Means of Types. In FOSSACS 2016, pages
424–441, 2016. doi:10.1007/978-3-662-49630-5_25.

54 Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series in computers
and their applications. Masson, 1993.

55 Arne Kutzner and Manfred Schmidt-Schauß. A Non-Deterministic Call-by-Need Lambda
Calculus. In ICFP 1998, pages 324–335, 1998. doi:10.1145/289423.289462.

56 Ugo Dal Lago, Claudia Faggian, Ichiro Hasuo, and Akira Yoshimizu. The geometry of
synchronization. In Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 35:1–
35:10, 2014. doi:10.1145/2603088.2603154.

57 Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. Parallelism and
Synchronization in an Infinitary Context. In 30th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 559–572, 2015.
doi:10.1109/LICS.2015.58.

58 Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. The geometry of
parallelism: classical, probabilistic, and quantum effects. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 833–845, 2017. URL: http://dl.acm.org/citation.cfm?id=
3009859.

59 Ugo Dal Lago and Martin Hofmann. Quantitative Models and Implicit Complexity. In
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science, 25th
International Conference, Hyderabad, India, December 15-18, 2005, Proceedings, pages 189–200,
2005. doi:10.1007/11590156_15.

60 Ugo Dal Lago and Olivier Laurent. Quantitative Game Semantics for Linear Logic. In
Computer Science Logic, 22nd International Workshop, CSL 2008, 17th Annual Conference
of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings, pages 230–245, 2008.
doi:10.1007/978-3-540-87531-4_18.

61 Ugo Dal Lago and Simone Martini. On Constructor Rewrite Systems and the Lambda Calculus.
Logical Methods in Computer Science, 8(3), 2012. doi:10.2168/LMCS-8(3:12)2012.

62 Ugo Dal Lago, Ryo Tanaka, and Akira Yoshimizu. The geometry of concurrent interaction:
Handling multiple ports by way of multiple tokens. In 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12,
2017. doi:10.1109/LICS.2017.8005112.

http://dx.doi.org/10.1093/logcom/exm037
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.259
http://dx.doi.org/10.1145/1040305.1040313
http://dx.doi.org/10.1145/1040305.1040313
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1145/581478.581501
http://dx.doi.org/10.1007/978-3-642-02273-9_12
http://dx.doi.org/10.1145/1291151.1291179
http://dx.doi.org/10.1007/978-3-662-49630-5_25
http://dx.doi.org/10.1145/289423.289462
http://dx.doi.org/10.1145/2603088.2603154
http://dx.doi.org/10.1109/LICS.2015.58
http://dl.acm.org/citation.cfm?id=3009859
http://dl.acm.org/citation.cfm?id=3009859
http://dx.doi.org/10.1007/11590156_15
http://dx.doi.org/10.1007/978-3-540-87531-4_18
http://dx.doi.org/10.2168/LMCS-8(3:12)2012
http://dx.doi.org/10.1109/LICS.2017.8005112

B. Accattoli 1:19

63 Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted Relational
Models of Typed Lambda-Calculi. In 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 301–310,
2013. doi:10.1109/LICS.2013.36.

64 John Lamping. An Algorithm for Optimal Lambda Calculus Reduction. In POPL, pages
16–30, 1990. doi:10.1145/96709.96711.

65 John Launchbury. A Natural Semantics for Lazy Evaluation. In POPL, pages 144–154, 1993.
doi:10.1145/158511.158618.

66 Olivier Laurent and Lorenzo Tortora de Falco. Obsessional Cliques: A Semantic Charac-
terization of Bounded Time Complexity. In 21th IEEE Symposium on Logic in Computer
Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, pages 179–188, 2006.
doi:10.1109/LICS.2006.37.

67 Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul. Thése d’Etat,
Univ. Paris VII, France, 1978.

68 Jean-Jacques Lévy and Luc Maranget. Explicit Substitutions and Programming Languages.
In Foundations of Software Technology and Theoretical Computer Science, 19th Conference,
Chennai, India, December 13-15, 1999, Proceedings, pages 181–200, 1999. doi:10.1007/
3-540-46691-6_14.

69 Ian Mackie. The Geometry of Interaction Machine. In Conference Record of POPL’95: 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Francisco,
California, USA, January 23-25, 1995, pages 198–208, 1995. doi:10.1145/199448.199483.

70 John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, Call-by-
value, Call-by-need and the Linear lambda Calculus. Theor. Comput. Sci., 228(1-2):175–210,
1999. doi:10.1016/S0304-3975(98)00358-2.

71 John Maraist, Martin Odersky, and Philip Wadler. The Call-by-Need Lambda Calculus.
J. Funct. Program., 8(3):275–317, 1998. URL: http://journals.cambridge.org/action/
displayAbstract?aid=44169.

72 Damiano Mazza. Simple Parsimonious Types and Logarithmic Space. In Stephan Kreutzer,
editor, 24th EACSL Annual Conference on Computer Science Logic (CSL 2015), volume 41 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 24–40, Dagstuhl, Germany,
2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2015.24.

73 Robin Milner. Functions as Processes. Math. Str. in Comput. Sci., 2(2):119–141, 1992.
doi:10.1017/S0960129500001407.

74 Robin Milner. Local Bigraphs and Confluence: Two Conjectures. Electr. Notes Theor. Comput.
Sci., 175(3):65–73, 2007. doi:10.1016/j.entcs.2006.07.035.

75 Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes, I. Inf.
Comput., 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

76 Eugenio Moggi. Computational λ-Calculus and Monads. In LICS ’89, pages 14–23, 1989.
77 Andrzej S. Murawski and C.-H. Luke Ong. Discreet Games, Light Affine Logic and PTIME

Computation. In Computer Science Logic, 14th Annual Conference of the EACSL, Fisc-
hbachau, Germany, August 21-26, 2000, Proceedings, pages 427–441, 2000. doi:10.1007/
3-540-44622-2_29.

78 Koko Muroya and Dan R. Ghica. The Dynamic Geometry of Interaction Machine: A Call-by-
Need Graph Rewriter. In CSL 2017, pages 32:1–32:15, 2017. doi:10.4230/LIPIcs.CSL.2017.
32.

79 Luca Paolini. Call-by-Value Separability and Computability. In ICTCS, pages 74–89, 2001.
doi:10.1007/3-540-45446-2_5.

80 Luca Paolini and Simona Ronchi Della Rocca. Call-by-value Solvability. ITA, 33(6):507–534,
1999. doi:10.1051/ita:1999130.

81 Gordon D. Plotkin. Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput.
Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

FSCD 2019

http://dx.doi.org/10.1109/LICS.2013.36
http://dx.doi.org/10.1145/96709.96711
http://dx.doi.org/10.1145/158511.158618
http://dx.doi.org/10.1109/LICS.2006.37
http://dx.doi.org/10.1007/3-540-46691-6_14
http://dx.doi.org/10.1007/3-540-46691-6_14
http://dx.doi.org/10.1145/199448.199483
http://dx.doi.org/10.1016/S0304-3975(98)00358-2
http://journals.cambridge.org/action/displayAbstract?aid=44169
http://journals.cambridge.org/action/displayAbstract?aid=44169
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.24
http://dx.doi.org/10.1017/S0960129500001407
http://dx.doi.org/10.1016/j.entcs.2006.07.035
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1007/3-540-44622-2_29
http://dx.doi.org/10.1007/3-540-44622-2_29
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.32
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.32
http://dx.doi.org/10.1007/3-540-45446-2_5
http://dx.doi.org/10.1051/ita:1999130
http://dx.doi.org/10.1016/0304-3975(75)90017-1

1:20 A Fresh Look at the λ-Calculus

82 Simona Ronchi Della Rocca and Luca Paolini. The Parametric λ-Calculus. Springer Berlin
Heidelberg, 2004.

83 Amr Sabry and Matthias Felleisen. Reasoning about Programs in Continuation-Passing Style.
Lisp and Symbolic Computation, 6(3-4):289–360, 1993. doi:10.1007/BF01019462.

84 Amr Sabry and Philip Wadler. A Reflection on Call-by-Value. ACM Trans. Program. Lang.
Syst., 19(6):916–941, 1997. doi:10.1145/267959.269968.

85 David Sands, Jörgen Gustavsson, and Andrew Moran. Lambda Calculi and Linear Speedups.
In The Essence of Computation, pages 60–84, 2002. doi:10.1007/3-540-36377-7_4.

86 Ulrich Schöpp. Space-Efficient Computation by Interaction. In CSL 2006, pages 606–621,
2006. doi:10.1007/11874683_40.

87 Peter Sestoft. Deriving a Lazy Abstract Machine. J. Funct. Program., 7(3):231–264, 1997.
URL: http://journals.cambridge.org/action/displayAbstract?aid=44087.

88 Cees F. Slot and Peter van Emde Boas. On Tape Versus Core; An Application of Space
Efficient Perfect Hash Functions to the Invariance of Space. In STOC 1984, pages 391–400,
1984. doi:10.1145/800057.808705.

89 Christopher P. Wadsworth. Semantics and pragmatics of the lambda-calculus. PhD Thesis,
Oxford, 1971.

http://dx.doi.org/10.1007/BF01019462
http://dx.doi.org/10.1145/267959.269968
http://dx.doi.org/10.1007/3-540-36377-7_4
http://dx.doi.org/10.1007/11874683_40
http://journals.cambridge.org/action/displayAbstract?aid=44087
http://dx.doi.org/10.1145/800057.808705

A Linear Logical Framework in Hybrid
Amy P. Felty
University of Ottawa, Canada
http://www.site.uottawa.ca/~afelty/
afelty@uottawa.ca

Abstract
We present a linear logical framework implemented within the Hybrid system [2]. Hybrid is designed
to support the use of higher-order abstract syntax for representing and reasoning about formal
systems, implemented in the Coq Proof Assistant. In this work, we extend the system with two
linear specification logics, which provide infrastructure for reasoning directly about object languages
with linear features.

We originally developed this framework in order to address the challenges of reasoning about
the type system of a quantum lambda calculus. In particular, we started by considering the Proto-
Quipper language [6], which contains the core of Quipper [3, 7]. Quipper is a relatively new quantum
programming language under active development with a linear type system. We have completed a
formal proof of type soundness for Proto-Quipper [5]. Our current work includes extending this work
to other properties of Proto-Quipper, reasoning about other quantum programming languages [4],
and reasoning about other languages such as the meta-theory of low-level abstract machine code.

We are also interested in applying this framework to applications outside the domain of meta-
theory of programming languages and have focused on two areas – formal reasoning about the proof
theory of focused linear sequent calculi and modeling biological processes as transition systems and
proving properties about them. We found that a slight extension of the initial linear specification
logic allowed us to provide succinct encodings and facilitate reasoning in these new domains. We
illustrate by discussing a model of breast cancer progression as a set of transition rules and proving
properties about this model [1]. Current work also includes modeling stem cells as they mature into
different types of blood cells.

This work illustrates the use of Hybrid as a meta-logical framework for fast prototyping of logical
frameworks, which is achieved by defining inference rules of a specification logic inductively in Coq
and building a library of definitions and lemmas used to reason about a class of object logics. Our
focus here is on linear specification logics and their applications.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of com-
putation → Operational semantics; Theory of computation → Type theory; Theory of computation
→ Functional constructs; Theory of computation → Type structures

Keywords and phrases Logical frameworks, proof assistants, linear logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.2

Category Invited Talk

Funding Amy P. Felty: The author acknowledges the support of the Natural Sciences and Engineering
Research Council of Canada.

References

1 Joëlle Despeyroux, Amy Felty, Pietro Lio, and Carlos Olarte. A Logical Framework for
Modelling Breast Cancer Progression. In International Symposium on Molecular Logic and
Computational Synthetic Biology (MLCSB), 2018.

2 Amy P. Felty and Alberto Momigliano. Hybrid: A Definitional Two-Level Approach to
Reasoning with Higher-Order Abstract Syntax. Journal of Automated Reasoning, 48(1):43–105,
2012.

© Amy P. Felty;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 2; pp. 2:1–2:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7195-2613
http://www.site.uottawa.ca/~afelty/
mailto:afelty@uottawa.ca
https://doi.org/10.4230/LIPIcs.FSCD.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 A Linear Logical Framework in Hybrid

3 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.
Quipper: A Scalable Quantum Programming Language. In Thirty-Fourthh ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages 333–342.
ACM, 2013.

4 Mohamed Yousri Mahmoud and Amy P. Felty. Formal Meta-level Analysis Framework for
Quantum Programming Languages. In 12th Workshop on Logical and Semantic Frameworks
with Applications (LSFA 2017), volume 338 of Electronic Notes in Theoretical Computer
Science, pages 185–201, 2018.

5 Mohamed Yousri Mahmoud and Amy P. Felty. Formalization of Metatheory of the Quipper
Quantum Programming Language in a Linear Logic. CoRR, 2018. arXiv:1812.03624.

6 Neil J. Ross. Algebraic and Logical Methods in Quantum Computation. PhD thesis, Dalhousie
University, August 2015. arXiv:1510.02198.

7 Peter Selinger and Benoît Valiron. A Lambda Calculus for Quantum Computation with
Classial Control. Mathematical Structures in Computer Science, 16(3):527–552, 2006.

http://arxiv.org/abs/1812.03624
http://arxiv.org/abs/1510.02198

Extending Maximal Completion
Sarah Winkler
University of Innsbruck, Austria
http://cl-informatik.uibk.ac.at/users/swinkler
sarah.winkler@uibk.ac.at

Abstract
Maximal completion (Klein and Hirokawa 2011) is an elegantly simple yet powerful variant of
Knuth-Bendix completion. This paper extends the approach to ordered completion and theorem
proving as well as normalized completion. An implementation of the different procedures is described,
and its practicality is demonstrated by various examples.

2012 ACM Subject Classification Theory of computation → Automated reasoning

Keywords and phrases automated reasoning, completion, theorem proving

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.3

Category Invited Talk

Funding Supported by FWF (Austrian Science Fund) project T789.

Acknowledgements The author is grateful to Deepak Kapur for his insightful comments.

1 Introduction

Knuth-Bendix completion [18] constitutes a milestone in the history of equational theorem
proving and automated deduction in general. Given a set of input equalities E0, it can
generate a presentation of the equational theory as a complete rewrite system R which may
serve to decide the validity problem for the theory.

I Example 1. In order to simplify proofs found by SMT solvers, Wehrman and Stump [32]
pursue an algebraic approach: proofs are represented by first-order terms, and the equivalences
usable for simplification are described by 20 equations like the following ones:

(x · y) · z ≈ x · (y · z) (refl · x) ≈ x (x · refl) ≈ x
or1(refl) ≈ refl and1(refl) ≈ refl not(refl) ≈ refl

or1(x) · orT
2 ≈ orT

2 and1(x) · andF
2 ≈ andF

2 or2(x) · orF
1 ≈ (orF

1 · x)
or1(x) · orF

2 ≈ (orF
2 · x) not(x) · not(y) ≈ not(x · y) or2(x) · orT

1 ≈ orT
1

Here · denotes concatenation, refl is the reflexivity proof, the symbols andi, ori and not are
used for congruence, and constants like orT

1 stand for operations with boolean constants.
A Knuth-Bendix completion procedure can transform this set of equations into a termin-

ating and confluent rewrite system R consisting of 45 rules, including the following:

(x · y) · z → x · (y · z) or1(x) · orT
2 → orT

2 (refl · x)→ x

(or2(x) · or1(y)) · orT
1 → or1(y) · orT

1 or2(x) · orT
1 → orT

1 or1(refl)→ refl
(x · and2(y)) · and2(z)→ x · and2(y · z) or2(refl)→ refl or2(x) · orT

1 → orT
1

This rewrite system can be used to simplify an arbitrary proof (represented by a term) into
its unique normal form. Moreover, any two proofs can be tested for equivalence simply by
checking whether their normal forms are the same.

© Sarah Winkler;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8114-3107
http://cl-informatik.uibk.ac.at/users/swinkler
mailto:sarah.winkler@uibk.ac.at
https://doi.org/10.4230/LIPIcs.FSCD.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Extending Maximal Completion

find
R ⊆ E±

R
complete for E0?

E := E ∪ CP(R)

R

no

E Ryes

SMT solver

Figure 1 Maximal completion.

Knuth and Bendix presented completion as a concrete algorithm. Pioneered by Bachmair,
Dershowitz, and Hsiang [5], it is nowadays more common to describe completion by an
inference system, thus abstracting from concrete implementations.

More recently, Klein and Hirokawa [17] proposed a radically different approach: Maximal
completion first approximates a complete presentation by extracting a terminating rewrite
system from an equation pool. It then checks whether the candidate system is complete, and
if a counterexample was found the procedure is repeated with an extended equation pool.
Figure 1 illustrates the approach. Maximal completion has the advantage that the reduction
order, a typically critical input parameter, need not be fixed in advance and can be changed
at any point. The candidate rewrite systems are generated by means of SAT/SMT solvers;
thus also advanced termination methods can be used in this setting and the search can be
guided towards different objectives [25]. Despite the simple, declarative formulation of the
procedure, the authors’ implementation resulted in a competitive tool [17, 25].

Apart from these improvements of classical Knuth-Bendix completion, numerous variants
have by now joined the family of completion calculi, aiming to make completion more versatile
and powerful. One of the most prominent variants is ordered completion. It was developed
by Bachmair, Dershowitz, and Plaisted to remedy the shortcoming that classical completion
fails if unorientable equations like commutativity are encountered [6].

Another line of research tackled the development of dedicated completion procedures
for equational systems which incorporate common algebraic theories such as associativity
and commutativity [23, 12]. The latest and most generally applicable method of this kind is
normalized completion, developed by Marché [22].

In this paper maximal completion is revisited (Section 3) and extended to ordered and
normalized completion. More specifically, the contributions of this paper are as follows:

Maximal ordered completion and an according equational theorem proving method are
explained in detail. In particular a completeness proof is presented, showing that a ground
complete system can always be found.
The proofs for (ordered) completion require only prime critical pairs to be considered.
For the case of linear input equalities, it is proven that even a complete system can be
found if it exists (Section 4.2), and a bound on the number of iterations is derived.
A maximal completion version of normalized completion (Section 5) is presented. This
covers AC completion, as well as the computation of Gröbner bases [22].

Section 6 is devoted to the implementation of these procedures in the tool MædMax. Some
example use cases from different application areas are demonstrated along the way. Finally,
Section 7 concludes.

S. Winkler 3:3

2 Preliminaries

In the sequel familiarity with the basics of term rewriting is assumed [2], but some key notions
are recalled in this section. Let T (F ,V) denote the set of all terms over a signature F and
an infinite set of variables V, and T (F) the set of all ground terms over F . A substitution
σ is a mapping from variables to terms. As usual, tσ denotes the application of σ to the
term t. A pair of terms (s, t) is sometimes considered an equation, which is expressed by
writing s ≈ t, and sometimes a (rewrite) rule, denoted s→ t. An equational system (ES) is
a set of equations, a term rewrite system (TRS) is a set of rewrite rules. Given an ES E ,
we write E± to denote its symmetric closure E ∪ {t ≈ s | s ≈ t ∈ E}. A reduction order is a
proper and well-founded order on terms which is closed under contexts and substitutions. It
is ground total if it is total on T (F). In the remainder most examples use the Knuth-Bendix
order (KBO), written >kbo, and the lexicographic path order (LPO), written >lpo.

A TRS R is terminating if →R is well-founded. It is (ground) confluent if s ∗R← · →∗R t

implies s→∗R · ∗R← t for all (ground) terms s and t. It is (ground) complete if it is terminating
and (ground) confluent. We say that R is a complete presentation of an ES E if R is complete
and ↔∗R =↔∗E . Similarly, R is a ground complete presentation of an ES E if R is ground
complete and the equivalence ↔∗R =↔∗E holds on ground terms. For a TRS R and terms
s and t, the notation s ↓R t expresses existence of a joining sequence s →∗R · ∗R← t. If R
is terminating then t↓R denotes some fixed normal form of t, and NF(R) denotes the set
of all normal forms of R. This notation is extended to ESs E by writing E↓R for the ES
{s↓R ≈ t↓R | s ≈ t ∈ E and s↓R 6= t↓R}.

Completion procedures are based on critical pair analysis. To that end, an overlap of
a TRS R is a triple 〈`1 → r1, p, `2 → r2〉 such that `1 → r1 and `2 → r2 are variants of
rules in R without common variables, p ∈ PosF (`2), `1 and `2|p are unifiable, and if p = ε

then `1 → r1 and `2 → r2 are not variants of each other. Suppose 〈`1 → r1, p, `2 → r2〉 is
an overlap of a TRS R and σ is a most general unifier of `1 and `2|p. Then the equation
`2[r1]pσ ≈ r2σ is a critical pair of R. The set of all critical pairs of R is denoted by CP(R).
A critical pair is prime if no proper subterm of `1σ is reducible in R. The set of all prime
critical pairs of R is denoted by PCP(R). It is known that only prime critical pairs need to
be considered for confluence of terminating TRSs:

I Lemma 2 ([14]). A terminating TRS R is confluent if and only if PCP(R) ⊆ ↓R.

Further preliminaries will be introduced in later sections as necessary.

3 Maximal Completion

This section recapitulates the maximal completion approach by Klein and Hirokawa [17]. A
TRS R is said to be over an ES E if R ⊆ E±. The set of all terminating TRSs R over E is
denoted T(E). We assume two functions R and Ext such that R(E) ⊆ T(E) returns a set of
terminating TRSs over E , and the extension function Ext satisfies Ext(E) ⊆ ↔∗E for all ESs
E . We define maximal completion by means of the following transformation.

I Definition 3. Given a set of input equalities E0 and an ES E, let

ϕ(E) =
{
R if R ∈ R(E) such that PCP(R) ∪ E0 ⊆ ↓R
ϕ(E ∪ Ext(E)) otherwise.

Note that this definition differs from [17, Definition 2] by the use of prime critical pairs.
In general ϕ does not need to be defined, nor is it necessarily unique. But if ϕ(E0) is
defined then we can assume a sequence of ESs E1, . . . , Ek called maximal completion sequence

FSCD 2019

3:4 Extending Maximal Completion

such that Ei+1 = Ei ∪ Ext(Ei) for all 0 6 i < k, and there is some R ∈ R(Ek) such that
PCP(R) ∪ E0 ⊆ ↓R. The following theorem expresses correctness of maximal completion [17,
Theorem 3]:

I Lemma 4. If ϕ(E0) is defined then it is a complete presentation of E0.

Proof. Let ϕ(E0) = R and E1, . . . , Ek be an according maximal completion sequence. The
TRS R must be terminating since it was returned by R. Because of PCP(R) ⊆ ↓R it is
confluent by Lemma 2, and hence complete.

A simple induction argument using the global assumption Ext(E) ⊆ ↔∗E for all ESs E
shows that Ei ⊆ ↔∗E0

for all i > 0. Since R is over Ek, also ↔∗R ⊆ ↔∗E0
holds. Conversely,

E0 ⊆ ↓R ensures ↔∗E0
⊆ ↔∗R. So R is a complete presentation of E0. J

Note that maximal completion is based on just three ingredients: (1) completeness is
overapproximated by termination using the function R, (2) a success check determines
whether some TRS R ∈ R(E) is complete, and (3) the current set of equations E is extended
by means of a theory-preserving function Ext.

It is natural to choose Ext(E) such that Ext(E) ⊆
⋃
R∈R(E) CP(R)↓R. Klein and Hirokawa

moreover proposed R(E) to return elements of T(E) with maximal cardinality, hence the
name. The rationale for this choice is that adding rules to a complete presentation R of E0
does not hurt this property, as long as termination and the equational theory are preserved.
This is formally expressed by the following lemma.

I Lemma 5 ([17, Lemma 4]). Let R be a complete presentation of E0 and R′ a terminating
TRS such that R ⊆ R′ ⊆ ↔∗E0

. Then also R′ is a complete presentation of E0. J

Nevertheless a maximal terminating TRS may constitute an unfortunate choice in maximal
completion, as illustrated by the next example.

I Example 6. Let E0 consist of the following four equations:

x+ 0 ≈ x s(x+ y) ≈ x+ s(y) z(x) ≈ 0 z(s(x+ y)) ≈ z(x+ s(0))

Let R1 be the TRS obtained by orienting all equations from left to right:

x+ 0→ x s(x+ y)→ x+ s(y) z(x)→ 0 z(s(x+ y))→ z(x+ s(0))

Termination of R1 can e.g. be verified using a KBO with s > + and w0 = w(f) = 1 for all
function symbols f . Thus R(E0) = {R1} is a valid choice for maximal completion. Now the
first two rules admit the overlap s(x) ← s(x + 0) → x + s(0) which creates an irreducible
critical pair s(x) ≈ x+ s(0). There are also three critical pairs involving the last rule, but
they are all joinable. Let thus E1 be E0 ∪ {s(x) ≈ x+ s(0)}. Using the same reduction order,
all equations can be oriented into the TRS R2 = R1 ∪ {x+ s(0)→ s(x)}. Suppose R(E1) is
{R2}. There is only one new non-joinable overlap: s(s(x))← s(x+ s(0))→ x+ s(s(0)), so
let E2 = E1 ∪ {s(s(x)) ≈ x + s(s(0))}. Repeating this strategy will fail to produce a finite
complete system, as it gives rise to infinitely many equations sn(x) ≈ x+ sn(0).

So this reduction order does not lead to a finite complete presentation of E0. But in
fact R1 is the only terminating TRS over E0 which has four rules: This is because the last
equation can only be oriented from left to right, and the second cannot be oriented from
right to left in combination with the last without violating termination.

Suppose that R(E0) contains instead the following TRS R′1 which has only three rules:

x+ 0→ x x+ s(y)→ s(x+ y) z(x)→ 0

Termination of R′1 can be shown by changing the precedence in the above KBO to + > s.
There are no critical pairs, and R′1 joins the input equalities E0. So maximal completion can
succeed immediately by returning R′1.

S. Winkler 3:5

In the implementation in the tool MædMax the function R chooses rewrite systems R
over E which can reduce rather than orient a maximal number of equations in E . Note that
the TRS R′1 in Example 6 is optimal in this sense, since it reduces all equations in E0.

I Example 7. In nine iterations of maximal completion, that is within nine recursive calls
of the procedure ϕ, the proof reduction system described in Example 1 can be transformed
into a complete rewrite system R. The maximal completion run produces 150 equations and
takes about 10 seconds. It is worth noting that to complete this system, LPO or KBO alone
do not suffice; advanced termination techniques like dependency pairs are required, see [25].

4 Ordered Completion and Theorem Proving

This section is devoted to the extension of maximal completion to ordered completion and
equational theorem proving. The basic procedure was already outlined in [36].

First some concepts specific to this setting are introduced. In this section a ground total
reduction order > is considered, unless stated otherwise. Given a reduction order > and an
ES E , the ordered rewrite system E> consists of all rules sσ → tσ such that s ≈ t ∈ E and
sσ > tσ. A triple (R, E , >) of a TRS R, an ES E , and a reduction order > is called ground
complete if the (possibly infinite) TRS R∪ E> is. An equation s ≈ t is ground joinable over
a TRS R if sσ ↓R tσ for all grounding substitutions σ. Ordered completion uses a relaxed
definition of critical pairs. Given a reduction order > and an ES E , an extended overlap
consists of two variable-disjoint variants `1 ≈ r1 and `2 ≈ r2 of equations in E± such that
p ∈ PosF (`2) and `1 and `2|p are unifiable with most general unifier σ. An extended overlap
which satisfies r1σ 6> `1σ and r2σ 6> `2σ gives rise to the extended critical pair `2[r1]pσ ≈ r2σ.
The set CP>(E) consists of all extended critical pairs between equations in E . An extended
critical pair is prime if all proper subterms of `1σ are E>-normal forms. The set of prime
extended critical pairs among equations in E is denoted by PCP>(E).

Next, an ordered version of maximal completion gets defined. Let Ro be a function such
that Ro(E) ⊆ T(E) returns a set of totally terminating TRSs over E , that is TRSs R which
are contained in a ground total reduction order >. Moreover, the extension function Exto is
supposed to satisfy Exto(E) ⊆ ↔∗E for all ESs E .

I Definition 8. Given a set of input equalities E0 and an ES E, let

ϕo(E) =


(R, E↓R, >) if R ∈ Ro(E) and all equations in E0 ∪ PCP>(E↓R ∪R)

are ground joinable in R∪ (E↓R)>
ϕo(E ∪ Exto(E)) otherwise.

In order to show correctness of this procedure, the following auxiliary result is useful:

I Lemma 9. Suppose R ⊆ >, R ∪ E ⊆ ↔∗E0
and all equations in E0 ∪ PCP>(E ∪ R) are

ground joinable in R∪ E>. Then (R, E , >) is a ground complete presentation of E0.

Proof. Let S denote the TRS R∪ E>, which terminates because it is contained in >. We
can thus show ground confluence of S via local ground confluence. The inclusion

←−−−−→
PCP(S)

⊆ ←−−−−−−−→
PCP>(R∪E)

∪↓S (1)

holds on ground terms according to [11, Lemma 26]. By assumption we have S-ground
joinability of PCP>(R∪ E), and hence ↔PCP(S) ⊆ ↓S on ground terms. So by Lemma 2 the
TRS S is confluent on ground terms.

FSCD 2019

3:6 Extending Maximal Completion

Since R∪E ⊆ ↔∗E0
was assumed, also↔∗S ⊆ ↔∗E0

holds. Moreover E0 is S-ground joinable
by assumption. Hence the equivalence ↔∗S = ↔∗E0

is satisfied on ground terms, so S is a
ground complete presentation of E0. J

Now correctness of the transformation ϕo is obvious:

I Lemma 10. If ϕo(E0) is defined then it is a ground complete presentation of E0.

Note that Definition 8 uses the idea of Definition 3 in the setting of ground completeness
but suffers the major drawback of an undecidable success check since ground joinability
of ordered rewriting is undecidable [20]. An implementation thus has to rely on sufficient
ground joinability criteria, an example of which is stated next. Its correctness follows from
the more sophisticated test presented in [33].

I Lemma 11. An equation s ≈ t is ground joinable in R∪ E> if s ↓R t or s↓R ≈ t↓R ∈ E.

In our implementation Exto(E) is chosen as a subset of
⋃
R∈Ro(E) PCP>(R∪ E↓R)↓R.

Bachmair, Dershowitz, and Plaisted showed that their ordered completion procedures
always succeed in producing a ground complete system (though possibly in the limit) [6].
Next, we derive a similar property for maximal ordered completion, under the assumption
that all prime critical pairs are considered. To this end, we consider an infinite maximal
ordered completion sequence E0, E1, E2, . . . such that Ei+1 = Ei ∪ Exto(Ei) for all i > 0. Let
moreover E∞ denote the limit

⋃
i Ei. The following statement holds by the global assumption

on Exto.

I Lemma 12. The conversion equivalence ↔∗E0
=↔∗Ei

holds for all i > 0.

It is known that ground complete systems remain ground complete when they get
(moderately) reduced, the following result follows from Lemma 5 and [11, Theorem 43].

I Lemma 13. If R∪ E> is ground complete then so is R∪ (E↓R)>.

Next we show the main completeness result for maximal ordered completion:

I Theorem 14. Suppose Exto(E) ⊇
⋃
R∈Ro(E) PCP>(R ∪ E)↓R for all ESs E. For any

R ∈ Ro(E∞) the system R∪ (E∞↓R)> is a ground complete presentation of E0.

Proof. Let R ∈ Ro(E∞). The following arguments show that S = R ∪ (E∞)> is ground
complete. The claim then follows from Lemma 13.

The TRS S is terminating because S ⊆ >. In order to show that S considered as a TRS
on ground terms is also confluent, according to Lemma 2 applied to S it suffices to show that
all prime critical pairs of S are joinable. So consider an equation s ≈ t ∈ PCP(S). Like in
the proof of Lemma 9, we can use [11, Lemma 26] to obtain inclusion (1). So we have s ↓S t,
or there is some equation u ≈ v ∈ PCP>(R∪ E∞) such that s↔u≈v t. In the former case,
there is nothing to show. Otherwise, we have u↓R ≈ v↓R ∈ Exto(E∞) ⊆ E∞ by assumption.
But then u↓R ≈ v↓R is S-ground joinable by Lemma 11, and hence s ≈ t is joinable.

By Lemma 12 and the definition of E∞, the inclusion E∞ ⊆ ↔∗E0
holds. The equivalence

↔∗E∞ =↔∗E0
thus follows from E0 ⊆ E∞. Because > is ground complete, ↔S =↔E∞ holds

on ground terms, which implies ↔∗S =↔∗E0
. J

S. Winkler 3:7

I Example 15. Consider the following ES E0 axiomatizing a Boolean ring, where multiplica-
tion is denoted by concatenation.

(1) (x+ y) + z ≈ x+ (y + z) (2) x+ y ≈ y + x (3) 0 + x ≈ x
(4) x(y + z) ≈ xy + xz (5) (xy)z ≈ x(yz) (6) xy ≈ yx
(7) (x+ y)z ≈ xz + yz (8) xx ≈ x (9) x+ x ≈ 0
(10) 1x ≈ x

Let (i) denote equation (i) oriented from left to right, and (i) the reverse orientation. Suppose
R1 is the TRS {(1), (3), (4), (5), (7), (8), (9), (10)}, and Ro(E0) = {R1}. Now the set Exto(E0)
may consist of the following extended critical pairs of rules among R1 and the unorientable
commutativity equation:

(11) x+ (y + z) ≈ y + (x+ z) (12) x(yz) ≈ y(xz) (13) x+ 0 ≈ x
(14) y + (x+ y) ≈ x (15) x(yx) ≈ xy (16) x1 ≈ x
(17) y + (y + x) ≈ x (18) x(xy) ≈ xy (19) 0x ≈ 0

(where all R1-joinable critical pairs, like x + (x + 0) ≈ 0 or x0 ≈ y0, are omitted). We
obtain E1 = E0 ∪ Exto(E0). Now Ro(E1) may contain the TRS R2 consisting of the rules
(1), (3), (4), (5), (7), . . . , (10), (13), . . . , (19). This TRS is LPO-terminating, so there is a
ground-total reduction order > that contains →R2 . We have E1↓R2 = {(2), (6), (11), (12)},
and it can be shown that for E = E1↓R2 the system R2 ∪ E> is ground complete. Despite its
simplicity, neither WM [1] nor E [28] or Vampire [19] succeed on this example.

4.1 Theorem Proving
Next the approach is extended to purely equational theorem proving: Given a set of equations
E0 and a goal equation s ≈ t as input, the aim is to decide whether s↔∗E0

t holds. Let Extg
be a binary function on ESs such that Extg(G, E) ⊆ ↔∗E∪G \↔∗E for all ESs E and G. In our
implementation, Extg(G, E) consists of extended critical pairs between an equation in G and
an equation in E . The following relation ϕg maps a pair of ESs E and G to YES or NO.

I Definition 16. Given an ES E0, an initial ground goal s0 ≈ t0 and ESs E and G, let

ϕg(E ,G) =


YES if s ↓R∪E> t for some s ≈ t ∈ G and R ∈ Ro(E),
NO if R∪ (E↓R)> is a ground complete presentation of E0

but s0 6↓R∪E>
t0, for some R ∈ Ro(E), and

ϕg(E ∪ E ′,G ∪ G′) for G′ = Extg(G,R∪ E) and E ′ = Exto(E).

For a set of input equations E0 and an initial goal s0 ≈ t0, a maximal ordered completion
procedure can then be run on the tuple (E0, {s0 ≈ t0}). Note that the parameter G of ϕg
denotes a disjunction of goals, not a conjunction. Due to the declarative nature of ϕg the
following correctness result is straightforward.

I Lemma 17. Let E0 be an ES and s0 ≈ t0 be a ground goal. If ϕg(E0, {s0 ≈ t0}) is defined
then ϕg(E0, {s0 ≈ t0}) = YES if and only if s0 ↔∗E0

t0.

I Example 18. The conditional confluence tool ConCon [29] interfaces equational theorem
provers like MædMax to show infeasibility of conditional critical pairs, which can be used
to prove confluence of conditional TRSs. Here a conditional critical pair is called infeasible

FSCD 2019

3:8 Extending Maximal Completion

if the involved conditions s1 ≈ t1, . . . , sn ≈ tn do not admit a substitution σ such that
siσ ↔∗E0

tiσ for all i. For example, ConCon encounters for Cops #340 the axioms E0:

f(x1, y1) ≈ g(z1) f(x1, h(y1)) ≈ g(z1)

and the conditions x1 ≈ y1, h(x2) ≈ y1, x1 ≈ y2, x2 ≈ y2. Let s ≈ t be the goal equation
conds(x1, h(x2), x1, x2) ≈ conds(y1, y1, y2, y2), using a fresh symbol conds. In order to decide
whether there is a substitution σ such that sσ ↔∗E0

tσ holds, a common trick is used [6]:
existence of such a σ can be refuted if the (ground) goal true ≈ false is not entailed by E0
extended with the following two equations:

eq(x, x) ≈ true (1) eq(conds(x1, h(x2), x1, x2), conds(y1, y1, y2, y2)) ≈ false (2)

For this extended ES E ′0 a maximal ordered procedure call ϕg(E ′0, {true ≈ false}) can result
in the answer NO immediately because a ground complete system exists, consisting of the
two rewrite rules obtained when orienting (1) and (2) from left to right plus the following
(unoriented) equations:

f(x1, y1) ≈ g(z1) f(x1, y1) ≈ f(x2, y2) g(x1) ≈ g(y1)

Both true and false are in normal form with respect to this system, so no suitable σ exists.

4.2 Completeness for Linear Systems
We conclude this section with a completeness result. A natural question in the context of
completion is whether a complete system can be found by a completion procedure whenever it
exists. For standard completion, it is well known that this is not the case: for example, the ES
consisting of the equations f(x) ≈ f(a) and f(b) ≈ b cannot be completed by Knuth-Bendix
completion, or (standard) maximal completion if Ext(E) ⊆

⋃
R∈R(E) CP(R). Nevertheless a

complete presentation is given by the TRS {f(x)→ b} [16].
For ordered completion, two sufficient conditions are known to answer this question

in the positive: Bachmair, Dershowitz, and Plaisted showed that a complete system can
always be found if the reduction order is ground total [6], and Devie proved that complete
representations are invariably found for linear systems, irrespective of the order’s totality [8].

Next, a completeness result for linear systems in the spirit of the result by Devie [8] is
presented. To that end, the reduction order > does not need to be ground total. In order
to express that the reduction order leading to the presupposed completion system must be
considered by the procedure, the function R is said to support a reduction order > if R(E)
contains a maximal TRS R such that R ⊆ >, for all ESs E .

Devie’s notion of linear overlaps refers to extended overlaps which satisfy `1 > r1 and
r2 6> `2, or `2 > r2 and r1 6> `1. Critical pairs originating from such overlaps are called linear
critical pairs, and the set of all linear critical pairs formed using equations in E is denoted
by LCP>(E). A TRS R is called reduced if for all rules ` → r in R both r ∈ NF(R) and
` ∈ NF(R \ {`→ r}) hold.

I Theorem 19. Let E0 be a linear ES which admits a complete and reduced presentation
as the TRS C such that C ⊆ >. Suppose moreover that R supports >, Exto(E) is linear
whenever E is linear, and Exto(E) ⊇

⋃
R∈R(E) LCP>(R∪ E) for all ESs E.

Then ϕo(E0) is defined and constitutes a complete TRS.

Proof. Let E0, E1, E2, . . . be a maximal ordered completion sequence, and Si denote the
TRS Ei>. It can be assumed that Ei is linear for all i > 0, because E0 is linear and Exto is
supposed to preserve linearity.

http://cops.uibk.ac.at/?q=340

S. Winkler 3:9

Consider a cost function c defined on equation steps as follows: for ` ≈ r ∈ Ei, let
c(s = C[`σ] ↔`≈r C[rσ] = t) be {t} if `σ > rσ, {s} if rσ > `σ, and {s, t} otherwise. This
measure is extended to conversions P : t0 ↔ t1 ↔ . . .↔ tn by defining c(P) as the multiset
union

⋃
06i<n c(ti ↔ ti+1). In the sequel P � Q is written to abbreviate c(P) >mul c(Q).

Consider a rule `→ r in C. As C is assumed to be a complete presentation of E0, there is
a conversion `↔∗E0

r. According to Lemma 12, also `↔∗Ei
r holds for all i > 0. Let P i`→r be

fixed conversions `↔∗Ei
r which are minimal with respect to �, for all i > 0.

We show that for every i, if P i`→r is not of the form `→∗Si
r then there is a conversion

P i+1
`→r which has fewer steps and satisfies P i`→r � P i+1

`→r. Note that all conversions `↔∗Ei
r

must have at least one step: otherwise, we would have ` = r, which contradicts C ⊆ >

because > is well-founded.
Let P i`→r be a minimal conversion `↔∗Ei

r. Since it has at least one step, we can assume
some term r′ such that P i`→r has the form ` ↔∗Ei

r′ ↔Ei
r, and r′ 6= r. Note that the last

step r′ ↔Ei
r must satisfy r′ > r: By conversion equivalence, we must have r′ ↔∗C r. Since C

is complete, r′ ↓C r holds. Because C is also reduced, the term r is irreducible, so we have
r′ →∗C r. By the above assumption that r′ 6= r this means that r′ →+

C r, which implies r′ > r

because C ⊆ >. So the equation step r′ ↔Ei r is an ordered rewrite step r′ →Si r.
If ` ↔∗Ei

r is not of the form ` →∗Si
r then it must therefore contain a peak involving

non-Si step followed by an Si step, that is, a peak of the form

Q : s←−−−−→
`1≈r1,σ

u −−−−−→
`2≈r2,σ

t

for some terms s, t, and u, equations `1 ≈ r1, `2 ≈ r2 ∈ Ei, and a substitution σ such that
`1σ 6> r1σ but `2σ > r2σ, so `2σ → r2σ ∈ Si. Note that c(Q) = {s, u, t}.
(a) If `1 ≈ r1 and `2 ≈ r2 form a proper overlap then s↔LCP>(Ei) t because `1σ 6> r1σ and

`2σ > r2σ. By assumption LCP>(Ei) ⊆ Ei+1. Hence there is a conversion P i+1
`→r : `↔∗Ei+1

r

where Q is replaced by Q′ : s↔Ei+1 t and c(Q) >mul {s, t} >mul c(Q′). Moreover, P i+1
`→r

has fewer steps than P i`→r.
(b) Suppose `1 ≈ r1 and `2 ≈ r2 occur in parallel. Then the two steps can be swapped, so

there is a term v which allows for the conversion Q′ : s →`2σ→r2σ v ↔`1σ≈r1σ t. This
contradicts the assumption that P i`→r was minimal: we have c(Q) >mul {v, v, t} = c(Q′)
because s > v.

(c) Similarly, if `1 ≈ r1 and `2 ≈ r2 form a variable overlap then because Ei is linear there is
a term v such that there is a conversion Q : s →=

`2σ→r2σ
v ↔=

`1σ≈r1σ
t. But this again

contradicts minimality of P i`→r because C(Q) >mul {v, v, t} >mul c(Q′) due to s > v.
Let k be the maximal number of steps of P 0

`→r, for `→ r ∈ C. The above argument shows
that `→∗Sk

r holds for all `→ r ∈ C. Hence we have NF(Sk) ⊆ NF(C).
Let S be the TRS R∪ (Ek↓R)>. Any term reducible by Sk must also be reducible in S,

which implies NF(S) ⊆ NF(Sk) and hence NF(S) ⊆ NF(C). Since moreover R∪ Ek ⊆ ↔∗C
implies →Sk

⊆ ↔∗C and S is terminating because S ⊆ >, the TRS S is complete according
to [11, Lemma 31]. J

Note that the above proof implies a bound on the number of iterations needed to derive
a complete system, namely the number of E0-steps required for conversions of the rules in
the complete system C. Naturally, due to incompleteness of implementations, this bound
cannot be kept up in practice.

FSCD 2019

3:10 Extending Maximal Completion

I Example 20. Consider the linear ES E consisting of the following three equations:

f(a, i(x)) ≈ f(b, b) g(b, x) ≈ g(a, a) f(a, x) ≈ f(a, y)

The TRS R = {f(a, x)→ f(b, b), g(b, x)→ g(a, a)} is terminating and confluent, as is easily
checked by state-of the art tools. We also have E0 ⊆ ↓R, and from the conversion

f(a, x)↔ f(a, i(x))↔ f(b, b) (2)

we can conclude↔∗E0
=↔∗R, so R is a complete presentation of E0. By Theorem 19, maximal

ordered completion supporting > =→+
R will succeed with a complete system, and according

to the bound derived in the proof, this takes at most two iterations since (2) has two steps.

5 Normalized Completion

Many algebraic theories like groups and rings feature associative and commutative operators.
However, since the commutativity equation cannot be oriented into a terminating rewrite
rule, such theories cannot be handled by standard Knuth-Bendix completion. This triggered
the development of dedicated completion calculi that can deal with such cases [23, 12].

Various generalizations have been proposed to extend completion to different algebraic
theories, apart from plain AC. A version for general theories T has been proposed in [12, 4],
provided that T admits finitary unification and the subterm ordering modulo T is well-
founded. Constrained completion [13] constitutes an attempt to overcome these restrictions
on the theory, it admits for instance completion modulo AC with a unit element (ACU).
However, it excludes other theories such as Abelian groups.

Normalized completion [21, 22, 34] can be seen as the last result in this line of research.
It has three advantages over earlier methods. (1) It allows completion modulo any theory T
that can be represented as an AC-complete rewrite system S. (2) Critical pairs need not be
computed for the theory T , which may not be finitary or even have a decidable unification
problem. Instead, any theory between AC and T can be used. (3) The AC-compatible
reduction order used to establish termination need not be compatible with T . This is
beneficial for theories like ACU where no T -compatible simplification order exists.

I Example 21. Consider an Abelian group with AC operator · and an endomorphism f as
described by the following three equations:

e · x ≈ x i(x) · x ≈ e f(x · y) ≈ f(x) · f(y)

together with ACRPO [24] with precedence f > i > · > e. Using AC completion, or
equivalently normalized completion with respect to S = ∅, one obtains the following AC
complete TRS RAC:

e · x→ x i(x) · x→ e i(e)→ e
i(i(x))→ x i(x · y)→ i(x) · i(y) f(x · y)→ f(x) · f(y)

f(e)→ e f(i(x))→ i(f(x))

Alternatively, one can perform normalized completion with respect to an AC complete
representation of Abelian groups, like for example the following TRS SG [3]:

e · x→ x i(x) · x→ e i(e)→ e i(i(x))→ x i(x · y)→ i(x) · i(y)

Note that SG ⊆ >. Normalized completion with respect to SG results in the TRS RG:

f(x · y)→ f(x) · f(y) f(e)→ e f(i(x))→ i(f(x))

S. Winkler 3:11

Before proposing a maximal normalized completion procedure, we recall some concepts
and notations related to AC rewriting and normalized rewriting.

AC Rewriting and Unification. A TRS R terminates modulo AC whenever the relation
→R/AC is well-founded. To establish AC termination we will consider AC-compatible
reduction orders >, i.e., reduction orders that satisfy ↔∗AC ·> · ↔∗AC ⊆ >. The TRS R is
complete modulo AC if it terminates modulo AC and the relation ↔∗AC∪R coincides with
→∗R/AC · ↔

∗
AC · ←∗R/AC. It is an AC-complete presentation of an ES E if R is AC complete

and ↔∗E∪AC =↔∗R∪AC.
Let L be a theory with finitary and decidable unification problem. A substitution σ

constitutes an L-unifier of two terms s and t if sσ ↔∗L tσ holds. An L-overlap is a quadruple
〈`1 → r1, p, `2 → r2〉Σ consisting of rewrite rules `1 → r1, `2 → r2, a position p ∈ PosF (`2),
and a complete set Σ of L-unifiers of `2|p and `1. Then `2[r1]pσ ≈ r2σ constitutes an L-critical
pair for every σ ∈ Σ. For two sets of rewrite rules R1 and R2, we also write CPL(R1,R2) for
the set of all L-critical pairs emerging from an overlap where `1 → r1 ∈ R1 and `2 → r2 ∈ R2,
and CPL(R1) for the set of all L-critical pairs such that `1 → r1, `2 → r2 ∈ R1.

We assume there is a fixed set of AC symbols FAC ⊆ F . For a rewrite rule `→ r with
+ ∈ FAC the notation (` → r)e refers to the extended rule ` + x → r + x, where x ∈ V is
fresh. The TRS Re contains all rules in R plus all extended rules `+ x→ r + x such that
`→ r ∈ R [3].

Normalized Rewriting. We define normalized rewriting as in [22] but use a different notation
to distinguish it from the common notation for rewriting modulo. Let T be a theory which
has an AC-complete presentation as a TRS S.

Two terms s and t admit an S-normalized R-rewrite step if

s
!−−−−→

S/AC
· ∗←−→

AC
· p−−−→
`→r

· ∗←−→
AC

t (3)

for some rule ` → r in R and position p. We abbreviate (3) by s →p
`→r\S t and write

s→R\S t if s→p
`→r\S t for a rule `→ r in R and position p. Let > be an AC-compatible

reduction order such that S ⊆ >. For any set of rewrite rules R satisfying R ⊆ > the
normalized rewrite relation →R\S is well-founded [21, 22], so we can consider equational
proofs of the form s→!

R\S · ↔
∗
T · ←!

R\S t. These normal form proofs play a special role and
are called normalized rewrite proofs. Because S is AC-complete for T , any such proof can be
transformed into a proof s ⇓R\S t, where ⇓R\S abbreviates the relation

!−−−→
R\S

· !−−−−→
S/AC

· ∗←−→
AC
· !←−−−−
S/AC

· !←−−−
R\S

A TRS R is an S-complete presentation of a set of equations E if →R\S is terminating and
the relations ↔∗E ∪T and →!

R\S · ↔
∗
T · ←!

R\S , hence ⇓R\S , coincide.
In the remainder of this section we assume that RS(E) is a finite set of rewrite systems

R such that R∪ S is AC terminating, for all ESs E . Moreover, let the function ExtS satisfy
ExtS(E) ⊆ ↔∗AC∪S ∪E for all ESs E . We write CPS(R) for the set of critical pairs

CPL(Re) ∪ CPAC(Se,Re) ∪ CPAC(Re,Se)

I Definition 22. Given a set of input equalities E0 and an ES E, let

ϕS(E) =
{
R if R ∈ RS(E) such that CPS(R) ∪ E0 ⊆ ⇓R\S
ϕS(E ∪ ExtS(E)) otherwise.

FSCD 2019

3:12 Extending Maximal Completion

The proof of the following correctness statement is a straightforward adaptation of the
respective result for standard completion (Lemma 4).

I Lemma 23. If ϕS(E) is defined then it is an S-complete presentation of E0.

Proof. Suppose ϕS(E0) = R, soR∪S is AC terminating since it was returned byRS . Because
of CPS(R) ⊆ ⇓R\S the TRS R is S-complete according to the results by Marché [22].

Let E1, . . . , Ek be a sequence of normalized maximal completion, that is Ei+1 = Ei ∪
ExtS(Ei) for all 1 6 i < k and there is some R ∈ RS(Ek) such that CPS(R) ∪ E0 ⊆ ⇓R\S .
A simple induction argument using the global assumption that ExtS(E) ⊆ ↔∗AC∪S ∪E for
all ESs E shows that Ek ⊆ ↔∗AC∪S ∪E0

. Since R is over Ek, also ↔∗R ⊆ ↔∗AC∪S ∪E0
holds.

Conversely, E0 ⊆ ⇓R\S is assumed. So R is an S-complete presentation of E0. J

The maximal normalized completion implementation in MædMax can for instance complete
the ES in Example 21 with respect to both AC (so S = ∅) or group theory (using SG).

6 Implementation

In this section we briefly summarize an implementation of the discussed variants of maximal
completion in the tool MædMax [36]. MædMax is implemented in OCaml and available as a
command-line tool as well as via a web interface, on the accompanying website also example
input can be found.1 Input problems can be submitted in the TPTP [31] as well as the trs
format.2 The tool supports standard maximal completion, maximal ordered completion and
theorem proving, as well as normalized completion. However, many modules are used for all
of these modes. For the former, MædMax incorporates the extended Maxcomp version [25]
which supports advanced termination techniques like dependency pairs.

In the following paragraphs we comment on the implementation of the three components
corresponding to the main steps in maximal completion: (1) finding (AC) terminating TRSs,
(2) success checks, and (3) selection of new equations and goals.

Finding rewrite systems. In order to find (AC) terminating rewrite systems that play the
role of R(E) and RS(E), respectively, MædMax adheres to the basic approach of Maxcomp [17]
in that it solves optimization problems by means of a maxSAT/maxSMT solver. The objective
of this optimization can be to (a) maximize the number of oriented equations as done in
Maxcomp, or (b) the equations in E that are reducible, or to (c) minimize the number of rules
or (d) the number of critical pairs. These optimization targets can also be combined, and
completeness requirements as described in [25] can be added. Strategy (b) in combination
with (c) has proved to be particularly useful, because it prefers small TRSs which can simplify
many equations. This is especially beneficial in presence of AC symbols, where many rewrite
rules and hence many critical pairs can drastically impact performance.

In order to guarantee termination of the resulting system, SMT encodings of termination
techniques are used. These are LPO, KBO, and linear polynomials for ordered completion,
where a ground-total reduction order is desired. For standard completion, MædMax addition-
ally supports dependency pairs, a dependency graph approximation, and argument filterings
for LPO and KBO, as described earlier [25]. These techniques can also be combined in a
strategy involving sequential composition and choice. As a means to ensure AC termination,
ACRPO is encoded [24]. The supported SMT solvers are Yices 1.0 [10] and Z3 [7].

1 http://cl-informatik.uibk.ac.at/software/maedmax/
2 https://www.lri.fr/~marche/tpdb/format.html

http://cl-informatik.uibk.ac.at/software/maedmax/
https://www.lri.fr/~marche/tpdb/format.html

S. Winkler 3:13

Success checks. For standard and normalized completion, it is straightforward to check
whether all critical pairs are joinable. In the latter case, MædMax only supports AC critical
pairs. To conclude ground confluence, our tool supports the criterion of [33].

Selection. The extension functions Ext, Extg, and ExtS are implemented to add a subset
of (extended, AC) critical pairs among rules in R, and equations/goal for the case of ordered
completion. In any case the selected equations get reduced to R-normal form before they are
added. MædMax severely limits the number of critical pairs that are added in every iteration
to confine the exponential blowup. The selection heuristic prefers small equations and old,
but not yet reducible equations.

Furthermore, MædMax can output equational (dis)proofs and ground completion proofs
in a format that can be validated by the proof checker CeTA [30]. Further implementation
details and evaluations on standard benchmark sets can be found in [36, 25].

We conclude with a final example illustrating a practical application. The tool AQL3
performs functorial data integration by means of a category-theoretic approach [27], taking
advantage of (ground) completion. The following problem was communicated by the authors.

I Example 24. Consider two database tables yIsAL and yIsAW relating amphibians to land
and water animals, respectively. The relationship between their entries are described by 400
ground equations over symbols yIsAL, yIsALL, yIsAW, yIsAWW (which correspond to fields in
the schemas) and 449 constants of the form ai,wi, li representing data items. The following
six example equations may convey an impression:

yIsAW(a1) ≈ w29 yIsAW(a78) ≈ w16 yIsAW(a61) ≈ w30

yIsAL(a37) ≈ l80 yIsAL(a84) ≈ l6 yIsAL(a29) ≈ l47

In addition, the equation yIsALL(yIsAL(x)) ≈ yIsAWW(yIsAW(x)) describes a mapping to
a second database schema. A ground complete presentation of the entire system thus
constitutes a representation of the data, translated to the second schema. MædMax discovers
a complete presentation of 889 rules in less then 20 seconds, while AQL’s internal completion
prover fails. MædMax’ automatic mode switches to linear polynomials for such systems with
many symbols, which turned out to be faster than LPO or KBO in this situation.

7 Conclusion

This paper explored variants of maximal completion, corresponding to ordered and normalized
completion. These methods have multiple advantages over earlier approaches:

The reduction order, a notoriously critical parameter, need not be fixed in advance. This
also holds for tools with an automatic mode such as RRL [15], but there it is unsound to
change the order once it was fixed [26]. In contrast, no such problem occurs in maximal
completion.
Using maxSMT encodings, the choice of an ordering can be “steered” towards beneficial
properties of the resulting system (e.g. to orient a maximal number of equations, to
reduce a maximal number of equations, or to stimulate complete systems [25]).
Maximal completion exploits the advantage of parallelization in that multiple reduction
orders can be considered (by choosing multiple rewrite systems in every iteration).
Theorem 19 shows that in the linear case any complete system for a supported ordering
will be found. But at the same time rewriting and critical pair computation are shared
among the processes corresponding to the different choices of an ordering.

3 http://categoricaldata.net/aql.html

FSCD 2019

http://categoricaldata.net/aql.html

3:14 Extending Maximal Completion

Efficiency is gained by orienting multiple equations at the same time. Theorem 19 shows
that this also admits a (theoretical) bound on the number of required iterations.
Finally, the definitions and the corresponding proofs are concise and simple: neither proof
orders [5] nor notions like peak or source decreasingness [11] are required.

Several directions for future work arise. First, we believe that also the completeness
result for ground-total reduction orders carries over to maximal ordered completion [6].
The general case of completeness is still an open problem. Another interesting because
practically relevant variant of completion operates on logically constrained rewrite systems
(LCTRSs) [35]. Supporting maximal completion procedure for this setting might thus be
a useful addition to MædMax. Maximal completion can be considered an approximation-
and conflict-based approach: complete TRSs are overapproximated by terminating TRSs,
and if a conflict (that is a non-joinable critical pair) is encountered, the approximation is
refined. It would be interesting to investigate connections to other conflict-driven learning
approaches such as lazy SMT solving or DPLL [9].

References
1 J. Avenhaus, T. Hillenbrand, and B. Löchner. On using ground joinable equations in equational

theorem proving. J. Symb. Comput., 36(1–2):217–233, 2003. doi:10.1016/S0747-7171(03)
00024-5.

2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
doi:10.1017/CBO9781139172752.

3 L. Bachmair. Canonical Equational Proofs. Progress in Theoretical Computer Science.
Birkhäuser, 1991.

4 L. Bachmair and N. Dershowitz. Completion for Rewriting Modulo a Congruence. Theor.
Comput. Sci., 67(2,3):173–201, 1989. doi:10.1016/0304-3975(89)90003-0.

5 L. Bachmair, N. Dershowitz, and Jieh Hsiang. Orderings for Equational Proofs. In Proc. 1st
LICS, pages 346–357, 1986.

6 L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion Without Failure. In H. Aït Kaci
and M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 2 of Rewriting
Techniques, pages 1–30. Academic Press, 1989. doi:10.1016/B978-0-12-046371-8.50007-9.

7 N. Bjørner. Taking Satisfiability to the Next Level with Z3. In Proc. 6th IJCAR, volume 7364
of LNCS, pages 1–8, 2012. doi:10.1007/978-3-642-31365-3_1.

8 H. Devie. Linear Completion. In Proc. 2nd CTRS, pages 233–245. Springer, 1991. doi:
10.1007/3-540-54317-1_94.

9 V. D’Silva, L. Haller, and D. Kroening. Abstract Conflict Driven Learning. ACM SIGPLAN
Notices, 48(1):143–154, 2013. doi:10.1145/2480359.2429087.

10 B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In Proc. 18th
CAV, volume 4144 of LNCS, pages 81–94, 2006. doi:10.1007/11817963_11.

11 N. Hirokawa, A. Middeldorp, C. Sternagel, and S. Winkler. Infinite Runs in Abstract
Completion. In Proc. 2nd FSCD, volume 84 of LIPIcs, pages 19:1–19:16, 2017. doi:10.4230/
LIPIcs.FSCD.2017.19.

12 J.-P. Jouannaud and H. Kirchner. Completion of a Set of Rules Modulo a Set of Equations.
SIAM Journal of Computation, 15(4):1155–1194, 1986. doi:10.1137/0215084.

13 J.-P. Jouannaud and C. Marché. Termination and Completion Modulo Associativity, Commut-
ativity and Identity. Theor. Comput. Sci., 104(1):29–51, 1992. doi:10.1016/0304-3975(92)
90165-C.

14 D. Kapur, D. R. Musser, and P. Narendran. Only Prime Superpositions Need be Considered
in the Knuth-Bendix Completion Procedure. J. Symb. Comput., 6(1):19–36, 1988. doi:
10.1016/S0747-7171(88)80019-1.

http://dx.doi.org/10.1016/S0747-7171(03)00024-5
http://dx.doi.org/10.1016/S0747-7171(03)00024-5
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1016/0304-3975(89)90003-0
http://dx.doi.org/10.1016/B978-0-12-046371-8.50007-9
http://dx.doi.org/10.1007/978-3-642-31365-3_1
http://dx.doi.org/10.1007/3-540-54317-1_94
http://dx.doi.org/10.1007/3-540-54317-1_94
http://dx.doi.org/10.1145/2480359.2429087
http://dx.doi.org/10.1007/11817963_11
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.19
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.19
http://dx.doi.org/10.1137/0215084
http://dx.doi.org/10.1016/0304-3975(92)90165-C
http://dx.doi.org/10.1016/0304-3975(92)90165-C
http://dx.doi.org/10.1016/S0747-7171(88)80019-1
http://dx.doi.org/10.1016/S0747-7171(88)80019-1

S. Winkler 3:15

15 D. Kapur and H. Zhang. An overview of Rewrite Rule Laboratory (RRL). Comput. Math.
Appl., 29(2):91–114, 1995. doi:10.1016/0898-1221(94)00218-A.

16 D. Klein. Equational Reasoning and Completion. PhD thesis, Japan Advanced Institute of
Science and Technology, 2012.

17 D. Klein and N. Hirokawa. Maximal Completion. In Proc. 22nd RTA, volume 10 of LIPIcs,
pages 71–80, 2011. doi:10.4230/LIPIcs.RTA.2011.71.

18 D. E. Knuth and P. Bendix. Simple Word Problems in Universal Algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.
doi:10.1016/B978-0-08-012975-4.

19 L. Kovács and A. Voronkov. First-Order Theorem Proving and Vampire. In Proc. 25th CAV,
volume 8044 of LNCS, pages 1–35, 2013. doi:10.1007/978-3-642-39799-8_1.

20 B. Löchner. A Redundancy Criterion Based on Ground Reducibility by Ordered Re-
writing. In Proc. 2nd IJCAR, volume 3097 of LNCS, pages 45–59, 2004. doi:10.1007/
978-3-540-25984-8_2.

21 C. Marché. Normalised Rewriting and Normalised Completion. In LICS 1994, pages 394–403.
IEEE Computer Society, 1994. doi:10.1109/LICS.1994.316050.

22 C. Marché. Normalized Rewriting: An Alternative to Rewriting Modulo a Set of Equations.
J. Symb. Comput., 21(3):253–288, 1996. doi:10.1006/jsco.1996.0011.

23 G. E. Peterson and M. E. Stickel. Complete Sets of Reductions for Some Equational Theories.
J. ACM, 28(2):233–264, 1981. doi:10.1145/322248.322251.

24 A. Rubio. A fully syntactic AC-RPO. Inform. Comput., 178(2):515–533, 2002. doi:10.1006/
inco.2002.3158.

25 H. Sato and S. Winkler. Encoding Dependency Pair Techniques and Control Strategies for
Maximal Completion. In Proc. 25th CADE, volume 9195 of LNCS, pages 152–162, 2015.
doi:10.1007/978-3-319-21401-6_10.

26 A. Sattler-Klein. About changing the ordering during Knuth-Bendix completion. In Proc.
11th STACS, volume 775 of LNCS, pages 175–186, 1994. doi:10.1007/3-540-57785-8_140.

27 P. Schultz and R. Wisnesky. Algebraic data integration. J. Funct. Program., 27(e24):51 pages,
2017. doi:10.1017/S0956796817000168.

28 S. Schulz. System Description: E 1.8. In Proc. 19th LPAR, volume 8312 of LNCS, pages
735–743, 2013. doi:10.1007/978-3-642-45221-5_49.

29 T. Sternagel and A. Middeldorp. Conditional Confluence (System Description). In
Proc. RTA/TLCA 2014, volume 8560 of LNCS, pages 456–465, 2014. doi:10.1007/
978-3-319-08918-8_31.

30 T. Sternagel, S. Winkler, and H. Zankl. Recording Completion for Certificates in Equational
Reasoning. In Proc. 4th CPP, pages 41–47, 2015. doi:10.1145/2676724.2693171.

31 G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts. J. Autom. Reasoning, 43(4):337–362, 2009. doi:10.1007/s10817-009-9143-8.

32 I. Wehrman and A. Stump. Mining Propositional Simplification Proofs for Small Validating
Clauses. Theor. Comput. Sci., 144(2):79–91, 2006. doi:10.1016/j.entcs.2005.12.008.

33 S. Winkler. A Ground Joinability Criterion for Ordered Completion. In Proc. 6th IWC, pages
45–49, 2017.

34 S. Winkler and A. Middeldorp. Normalized Completion Revisited. In Proc. 24th RTA,
volume 21 of LIPIcs, pages 319–334, 2013. doi:10.4230/LIPIcs.RTA.2013319.

35 S. Winkler and A. Middeldorp. Completion for Logically Constrained Rewriting. In Proc. 3rd
FSCD, volume 108 of LIPIcs, pages 30:1–30:18, 2018. doi:10.4230/LIPIcs.FSCD.2018.30.

36 S. Winkler and G. Moser. MaedMax: A Maximal Ordered Completion Tool. In Proc. 9th
IJCAR, volume 10900 of LNCS, pages 472–480, 2018. doi:10.1007/978-3-319-94205-6_31.

FSCD 2019

http://dx.doi.org/10.1016/0898-1221(94)00218-A
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.71
http://dx.doi.org/10.1016/B978-0-08-012975-4
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-540-25984-8_2
http://dx.doi.org/10.1007/978-3-540-25984-8_2
http://dx.doi.org/10.1109/LICS.1994.316050
http://dx.doi.org/10.1006/jsco.1996.0011
http://dx.doi.org/10.1145/322248.322251
http://dx.doi.org/10.1006/inco.2002.3158
http://dx.doi.org/10.1006/inco.2002.3158
http://dx.doi.org/10.1007/978-3-319-21401-6_10
http://dx.doi.org/10.1007/3-540-57785-8_140
http://dx.doi.org/10.1017/S0956796817000168
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1007/978-3-319-08918-8_31
http://dx.doi.org/10.1007/978-3-319-08918-8_31
http://dx.doi.org/10.1145/2676724.2693171
http://dx.doi.org/10.1007/s10817-009-9143-8
http://dx.doi.org/10.1016/j.entcs.2005.12.008
http://dx.doi.org/10.4230/LIPIcs.RTA.2013319
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.30
http://dx.doi.org/10.1007/978-3-319-94205-6_31

Some Semantic Issues in Probabilistic
Programming Languages
Hongseok Yang
School of Computing, KAIST, South Korea
hongseok.yang@kaist.ac.kr

Abstract
This is a slightly extended abstract of my talk at FSCD’19 about probabilistic programming and a
few semantic issues on it. The main purpose of this abstract is to provide keywords and references
on the work mentioned in my talk, and help interested audience to do follow-up study.

2012 ACM Subject Classification Theory of computation → Probabilistic computation; Theory of
computation → Program semantics; Theory of computation → Denotational semantics; Mathematics
of computing → Bayesian nonparametric models; Mathematics of computing → Bayesian computation

Keywords and phrases Probabilistic Programming, Denotational Semantics, Non-differentiable
Models, Bayesian Nonparametrics, Exchangeability

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.4

Category Invited Talk

1 Introduction

Probabilistic programming [11, 9, 35, 8] refers to the idea of developing a programming
language for writing and reasoning about probabilistic models from machine learning and
statistics. Such a language comes with the implementation of several generic inference
algorithms that answer various queries about the models written in the language, such
as posterior inference and marginalisation. By providing these algorithms, a probabilistic
programming language enables data scientists to focus on designing good models based
on their domain knowledge, instead of building effective inference engines for their models,
a task that typically requires expertise in machine learning, statistics and systems. Even
experts in machine learning and statistics may benefit from such a probabilistic program-
ming system because using the system they can easily explore highly advanced models.
Several probabilistic programming languages have been built. Good examples are Stan [8],
PyMC [23], Church [9], Venture [19], Anglican [35, 30], Turing [7], Pyro [3], Edward [32, 31],
ProbTorch [26] and Hakaru [20].

In the past five years, with colleagues from programming languages, machine learning and
probability theory, I have worked on developing the semantic foundations, efficient inference
algorithms, and static program analysis for such probabilistic programming languages,
especially those that support expressive language features such as higher-order functions,
continuous distributions and general recursion. At FSCD’19, I plan to talk about some of
these projects related to semantics and the lessons that I learnt.

This document is a companion to my FSCD’19 talk. Its primary goal is to provide
keywords and references to the work mentioned in the talk, and help interested people
start their follow-up study. If the reader looks for systematic introduction to probabilistic
programming, I recommend to look at books [10, 34, 6] and teaching materials on probabilistic
programming instead.

© Hongseok Yang;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 4; pp. 4:1–4:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hongseok.yang@kaist.ac.kr
https://doi.org/10.4230/LIPIcs.FSCD.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Some Semantic Issues in Probabilistic Programming Languages

Listing 1 Anglican program with undefined posterior. (normal_pdf x 0 1) computes the density
of the standard normal distribution at x. The program defines a model with two random variables
x and y, the former being sampled from the standard normal distribution and the latter from the
exponential distribution. The random variable y is observed to have the value 0, and the program
expresses the posterior of x under this observation.
(let [x (sample (normal 0 1))

x_pdf (normal_pdf x 0 1)
y (observe (exponential (/ 1 x_prob)) 0)]

x)

2 Some research questions

A large part of my research has been about building a solid theoretical foundation for
probabilistic programming languages. Doing so is particularly needed for such languages,
because programs in those languages are run by inference engines but these inference
engines only approximate the ideal mathematical semantics of these programs, namely,
their posterior distributions. Even worse, sometimes probabilistic programs do not have
posterior distributions at all, and I do not know of any inference engines that can detect
it. Listing 1 shows one such program in Anglican, whose posterior distribution (or more
precisely posterior density) is undefined.1 Also, I found this foundation building intellectually
rewarding, because, as I will explain shortly, it made me think about unexpected connections
among multiple disciplines and revisit old concepts in programming languages, such as data
abstraction, from a new perspective.

Here are three specific research questions about the foundation for probabilistic program-
ming that intrigued me and my colleagues.

Q1: How to define a good denotational semantics for higher-order probabilistic pro-
gramming languages with continuous distributions and general recursions?

A standard tool for defining a continuous probability distribution rigorously is measure
theory. But it turns out that measure theory is not good enough for defining the denotational
semantics of higher-order probabilistic programming languages, such as Church, Venture
and Anglican, because measure theory does not support higher-order functions well. The
category of measurable spaces is not Cartesian closed, because the set of measurable functions
[R →m R] cannot be turned into a measurable space that makes the following evaluation
map measurable [1]:

ev : [R→m R]× R→ R, ev(f, r) = f(r).

I have been involved in the joint efforts to address this semantic issue [29, 12, 25]. Using
tools from category theory, we developed a theory of quasi-Borel spaces [12], which extends
measure theory, and used our theory to define the denotational semantics of higher-order
probabilistic programming languages and to prove the correctness of inference algorithms for

1 Let pn(x, 0, 1) be the density at x of the normal distribution with mean 0 and standard deviation 1, and
pλ(y) be the density of the exponential distribution with rate λ. The prior of the program in Listing 1
is pn(x, 0, 1), and the likelihood is the density of the 1/pn(x, 0, 1)-rate exponential distribution at y = 0,
which is p1/pn(x,0,1)(y = 0) = 1/pn(x, 0, 1). Thus, the joint density is 1. The marginal likelihood is ∞.
Thus, the posterior density p(x|y = 0) is undefined.

H. Yang 4:3

Listing 2 Anglican program with non-differentiable density. The program denotes a model with
three random variables x1, x2, y, all three being drawn from the normal distribution with different
parameters. It expresses the posterior distribution of x1 under the condition that y has the value 4.
(let [x1 (sample (normal 0 1))

x2 (sample (normal (* x1 x1) 1))
x3 (if (> x2 0) x1 x2)
y (observe (normal x3 1) 4)]

x1)

such languages [25]. Recently, Vákár, Kammar and Staton built a domain theory on top
of quasi-Borel spaces, and showed how to handle term and type recursions in denotational
semantics in the presence of continuous probability distributions [33].

An interesting future direction is to generalise well-known results from probability theory
using the theory of quasi-Borel spaces. Our initial investigation with de Finetti’s theorem
for exchangeable random sequences shows a promise [12].

Q2: Can a probabilistic program denote a distribution with a density that is not
differentiable at some non-measure-zero set?

This question assumes a typical setting that gradient-based inference algorithms operate.
In the setting, all sampling statements in probabilistic programs use distributions on Rn for
some n that have densities with respect to the Lebesgue measure, and those probabilistic
programs mean distributions on traces of sampled values during execution. For instance, the
posterior distribution of the program in Listing 2 has the following density f : R2 → [0,∞)
with respect to the Lebesgue measure on R2: for x1, x2 ∈ R,

f(x1, x2) = pn(x1, 0, 1) · pn(x2, x
2
1, 1) · (1[x2>0] · pn(4, x1, 1) + 1[x2≤0] · pn(4, x2, 1))

where pn(x,m, σ) is the density at x of the normal distribution with mean m and standard
deviation σ and 1[ϕ] is the indicator function returning 1 if ϕ holds and 0 otherwise.

The negative answer to the question is needed in order for these gradient-based inference
algorithms to work correctly [21, 18]. Intuitively, it ensures that the algorithms never attempt
to compute gradients at non-differentiable points, and the effects of these non-differentiable
points to the algorithms can be estimated algorithmically.

Currently we have only a partial answer to the question. We proved that for a first-order
probabilistic programming language without loops, if a program in the language uses only
analytic operations as its primitive operations, the set of its non-differentiable points has
measure zero [36]. The question is open for a language that supports higher-order functions,
includes loops, or permits non-analytic primitive operations.

Q3: What is a good theory of data abstraction for probabilistic programming languages,
which in particular can let us analyse modules from Bayesian nonparametrics?

Sophisticated probabilistic models from Bayesian nonparametrics are implemented as
modules in some probabilistic programming languages, such as Church and Anglican [24, 30].
This question asks for extending the theory of data abstraction to account for such modules.
Ideally, the theory should provide guidance about how to implement such modules, and help
programmers understand the consequences of using these modules.

I became interested in the question because of an intriguing feature of these modules.
They are often implemented using impure features, such as mutable state, but they still
satisfy a type of equations that typically hold for pure modules, such as commutativity of

FSCD 2019

4:4 Some Semantic Issues in Probabilistic Programming Languages

module operations. It turns out that this phenomenon is not an accident; the probabilistic
models that the modules denote satisfy symmetry properties such as exchangeability and
contractibility [22, 16], and the equations for the modules come from these properties [28, 27].

Answering the question amounts to connecting the theory of data abstraction in pro-
gramming languages to the study on these symmetry properties in probability theory. So far
we found a connection for the Beta-Bernoulli process, one of the simplest models [27], and
inspired by this connection, we defined a new type of symmetry properties for probabilistic
models and proved a representation theorem for them [15]. These results are far from
answering the question posed, and I expect (and hope) that more deep results are waiting to
be discovered.

The three questions are chosen mainly based on my personal taste. If the reader wants
to gain a broad view on what semantics researchers care about regarding probabilistic
programming languages, I recommend to read the following papers [17, 14, 13, 4, 2, 5].

3 Final remark

Probabilistic programming is an exciting topic that raises several fresh theoretical and
practical questions in programming languages, statistics, machine learning and probability
theory. I hope that my FCSD’19 talk and (highly incomplete and biased) list of research
questions in the previous section helps the reader partially understand why I and my colleagues
are excited about the topic. This document conveys the view of one programming-language
researcher on probabilistic programming. To understand how machine learning researchers
think about probabilistic programming, I recommend to watch the video recording of Josh
Tenenbaum’s ICML’18 invited talk, and read the introduction of the book on probabilistic
programming [34]; the introduction is written mostly by Frank Wood.

References
1 R. J. Aumann. Borel structures for function spaces. Illinois Journal of Mathematics, 5:614–630,

1961.
2 Sooraj Bhat, Johannes Borgström, Andrew D. Gordon, and Claudio V. Russo. Deriving

Probability Density Functions from Probabilistic Functional Programs. Logical Methods in
Computer Science, 13(2), 2017.

3 Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman.
Pyro: Deep Universal Probabilistic Programming. Journal of Machine Learning Research,
20:28:1–28:6, 2019.

4 J. Borgström, A. D. Gordon, M. Greenberg, J. Margetson, and J. van Gael. Measure
Transformer Semantics for Bayesian Machine Learning. LMCS, 9(3):11, 2013.

5 Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A lambda-
calculus foundation for universal probabilistic programming. In ICFP, pages 33–46, 2016.

6 Cameron Davidson-Pilon. Bayesian Methods for Hackers: Probabilistic Programming and
Bayesian Inference. Addison-Wesley Professional, 2015.

7 Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: Composable inference for probabilistic
programming. In AISTATS, pages 1682–1690, 2018.

8 Andrew Gelman, Daniel Lee, and Jiqiang Guo. Stan: A Probabilistic Programming Language
for Bayesian Inference and Optimization. Journal of Educational and Behavioral Statistics,
40(5):530–543, 2015.

9 Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. Church: A Language for Generative Models. In UAI, pages 220–229, 2008.

H. Yang 4:5

10 Noah D Goodman and Andreas Stuhlmüller. The Design and Implementation of Probabilistic
Programming Languages. http://dippl.org, 2014. Accessed: 2019-4-11.

11 Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. Probabilistic
programming. In Proceedings of the on Future of Software Engineering, FOSE 2014, pages
167–181, 2014.

12 Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for
higher-order probability theory. In LICS, pages 1–12, 2017.

13 Daniel Huang and Greg Morrisett. An Application of Computable Distributions to the
Semantics of Probabilistic Programming Languages. In ESOP, pages 337–363, 2016.

14 Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel. A Provably Correct
Sampler for Probabilistic Programs. In FSTTCS, pages 475–488, 2015.

15 Paul Jung, Jiho Lee, Sam Staton, and Hongseok Yang. A Generalization of Hierarchical
Exchangeability on Trees to Directed Acyclic Graphs. arXiv preprint, 2018. arXiv:1812.06282.

16 Olav Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, 2005.
17 D. Kozen. Semantics of Probablistic Programs. Journal of Computer and System Sciences,

22:328–350, 1981.
18 Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. Reparameterization Gradient for Non-

differentiable Models. In NeurIPS, pages 5558–5568, 2018.
19 Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-order probabilistic

programming platform with programmable inference. arXiv preprint, 2014. arXiv:1404.0099.
20 Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov.

Probabilistic inference by program transformation in Hakaru (system description). In Pro-
ceedings of the 13th International Symposium on Functional and Logic Programming, FLOPS
2016, pages 62–79, 2016.

21 Akihiko Nishimura, David Dunson, and Jianfeng Lu. Discontinuous Hamiltonian Monte Carlo
for Sampling Discrete Parameters. arXiv preprint, 2017. arXiv:1705.08510.

22 Peter Orbanz and Daniel M. Roy. Bayesian Models of Graphs, Arrays and Other Exchangeable
Random Structures. IEEE Trans. Pattern Anal. Mach. Intell., 37(2):437–461, 2015.

23 Anand Patil, David Huard, and Christopher J Fonnesbeck. PyMC: Bayesian Stochastic
Modelling in Python. Journal of Statistical Software, 35(4):1, 2010.

24 Daniel M. Roy, Vikash Mansinghka, Noah Goodman, and Joshua Tenenbaum. A stochastic
programming perspective on nonparametric Bayes. In ICML Workshop on Nonparametric
Bayesian, 2008.

25 Adam Scibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus
Ostermann, Sean K. Moss, Chris Heunen, and Zoubin Ghahramani. Denotational validation
of higher-order Bayesian inference. PACMPL, 2(POPL):60:1–60:29, 2018.

26 N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman,
Pushmeet Kohli, Frank Wood, and Philip Torr. Learning Disentangled Representations with
Semi-Supervised Deep Generative Models. In NIPS, pages 5927–5937, 2017.

27 Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron Freer, and
Daniel M Roy. The Beta-Bernoulli Process and Algebraic Effects. In ICALP, 2018.

28 Sam Staton, Hongseok Yang, Nathanael L. Ackerman, Cameron Freer, and Daniel M Roy.
Exchangeable random process and data abstraction. In Workshop on Probabilistic Programming
Semantics, PPS 2017, 2017.

29 Sam Staton, Hongseok Yang, Chris Heunen, Ohad Kammar, and Frank Wood. Semantics
for probabilistic programming: higher-order functions, continuous distributions, and soft
constraints. In LICS, pages 525–534, 2016.

30 David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank D. Wood. Design and
Implementation of Probabilistic Programming Language Anglican. In Proceedings of the 28th
Symposium on the Implementation and Application of Functional Programming Languages,
IFL 2016, pages 6:1–6:12, 2016.

FSCD 2019

http://dippl.org
http://arxiv.org/abs/1812.06282
http://arxiv.org/abs/1404.0099
http://arxiv.org/abs/1705.08510

4:6 Some Semantic Issues in Probabilistic Programming Languages

31 Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, and
Alexey Radul. Simple, Distributed, and Accelerated Probabilistic Programming. In NeurIPS,
pages 7609–7620, 2018.

32 Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja R. Rudolph, Dawen Liang, and David M. Blei.
Edward: A library for probabilistic modeling, inference, and criticism. CoRR, abs/1610.09787,
2016.

33 Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statistical probabilistic
programming. PACMPL, 3(POPL):36:1–36:29, 2019.

34 Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An Introduction
to Probabilistic Programming. arXiv preprint, 2018. arXiv:1809.10756.

35 Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A New Approach to Probabilistic
Programming Inference. In AISTATS, pages 1024–1032, 2014.

36 Yuan Zhou, Bradley Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, and Frank
Wood. A Low-Level Probabilistic Programming Language for Non-Differentiable Models. In
AISTATS, 2019.

http://arxiv.org/abs/1809.10756

Bicategories in Univalent Foundations
Benedikt Ahrens
School of Computer Science, University of Birmingham, United Kingdom
b.ahrens@cs.bham.ac.uk

Dan Frumin
Institute for Computation and Information Sciences,
Radboud University, Nijmegen, The Netherlands
dfrumin@cs.ru.nl

Marco Maggesi
Dipartimento di Matematica e Informatica “Dini”, Università degli Studi di Firenze, Italy
marco.maggesi@unifi.it

Niels van der Weide
Institute for Computation and Information Sciences,
Radboud University, Nijmegen, The Netherlands
nweide@cs.ru.nl

Abstract

We develop bicategory theory in univalent foundations. Guided by the notion of univalence for
(1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories.
To construct examples of those, we develop the notion of “displayed bicategories”, an analog of
displayed 1-categories introduced by Ahrens and Lumsdaine. Displayed bicategories allow us to
construct univalent bicategories in a modular fashion. To demonstrate the applicability of this
notion, we prove several bicategories are univalent. Among these are the bicategory of univalent
categories with families and the bicategory of pseudofunctors between univalent bicategories. Our
work is formalized in the UniMath library of univalent mathematics.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases bicategory theory, univalent mathematics, dependent type theory, Coq

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.5

Funding Work on this article was supported by a grant from the COST Action EUTypes CA15123.
Benedikt Ahrens: This material is based upon work supported by the Air Force Office of Scientific
Research under award number FA9550-17-1-0363. Ahrens acknowledges the support of the Centre
for Advanced Study (CAS) in Oslo, Norway, which funded and hosted the research project Homotopy
Type Theory and Univalent Foundations during the 2018/19 academic year.
Dan Frumin: Supported by the Netherlands Organisation for Scientific Research (NWO/TTW)
under the STW project 14319.
Marco Maggesi: MIUR, GNSAGA-INdAM.

Acknowledgements We would like to express our gratitude to all the EUTypes actors for their
support. We also thank Niccolò Veltri for commenting on a draft of this paper. Finally, we thank
the referees for their careful reading and thoughtful and constructive criticism.

© Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6786-4538
mailto:b.ahrens@cs.bham.ac.uk
https://orcid.org/0000-0001-5864-7278
mailto:dfrumin@cs.ru.nl
https://orcid.org/0000-0003-4380-7691
mailto:marco.maggesi@unifi.it
https://orcid.org/0000-0003-1146-4161
mailto:nweide@cs.ru.nl
https://github.com/UniMath/UniMath
https://doi.org/10.4230/LIPIcs.FSCD.2019.5
https://eutypes.cs.ru.nl/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Bicategories in Univalent Foundations

1 Introduction

Category theory (by which we mean 1-category theory) is established as a convenient
language to structure, and discuss, mathematical objects and maps between them. To
axiomatize the fundamental objects of category theory itself – categories, functors, and
natural transformations – the theory of 1-categories is not enough. Instead, category-like
structures allowing for “morphisms between morphisms” were developed to account for the
natural transformations. Among those are bicategories.

Bicategory theory was originally developed by Bénabou [5] in set-theoretic foundations.
The goal of our work is to develop bicategory theory in univalent foundations. Specifically,
we give here a notion of univalent bicategory and show that some bicategories of interest
are univalent. To this end, we generalize displayed categories [2] to the bicategorical setting,
and prove that the total bicategory spanned by a displayed bicategory is univalent, if the
constituent pieces are.

Univalent foundations and categories therein. According to Voevodsky, a foundation of
mathematics consists of three things:
1. a language for mathematical objects;
2. a notion of proposition and proof; and
3. an interpretation of those into a world of mathematical objects.
By “univalent foundations”, we mean the foundation given by univalent type theory as
described, e.g., in the HoTT book [21], with its notion of “univalent logic”, and the inter-
pretation of univalent type theory in simplicial sets expected to arise from Voevodsky’s
simplicial set model [14].

In the simplicial set model, univalent categories (just called “categories” in [1]) correspond
to truncated complete Segal spaces, which in turn are equivalent to ordinary (set-theoretic)
categories. This means that univalent categories are “the right” notion of categories in
univalent foundations: they correspond exactly to the traditional set-theoretic notion of
category. Similarly, the notion of univalent bicategory, studied in this paper, provides the
correct notion of bicategory in univalent foundations.

Throughout this article, we work in type theory with function extensionality. We
explicitly mention any use of the univalence axiom. We use the notation standardized in [21];
a significantly shorter overview of the setting we work in is given in [1]. As a reference for
1-category theory in univalent foundations, we refer to [1], which follows a path suggested by
Hofmann and Streicher [13, Section 5.5].

Bicategories for Type Theory. Our motivation for this work stems from several particular
(classes of) bicategories, that come up in our work on the semantics of type theories and
Higher Inductive Types (HITs).

Firstly, we are interested in the “categories with structure” that have been used in the
model theory of type theories. The purpose of the various categorical structures is to model
context extension and substitution. Prominent such notions are categories with families (see,
e.g., [8, 9]), categories with attributes (see, e.g., [19]), and categories with display maps (see,
e.g., [20]). Each notion of “categorical structure” gives rise to a bicategory whose objects are
categories equipped with such a structure. Secondly, in the study of HITs, bicategories of
algebras feature prominently, see, e.g., work by Dybjer and Moenclaey [10]. Our long term
goal is to show that these bicategories are univalent.

B. Ahrens, D. Frumin, M. Maggesi, and N. van der Weide 5:3

Displayed bicategories. In this work, we develop the notion of displayed bicategory anal-
ogous to the 1-categorical notion of displayed category introduced in [2]. Intuitively, a
displayed bicategory D over a bicategory B represents data and properties to be added to B
to form a new bicategory: D gives rise to the total bicategory

∫
D. Its cells are pairs (b, d)

where d in D is a “displayed cell” over b in B.
When a bicategory is built as the total bicategory

∫
D of a displayed bicategory D over

base B, univalence of
∫

D can be shown from univalence of B and “displayed univalence” of
D. The latter two conditions are easier to show, sometimes significantly easier.

Two features make the displayed point of view particularly useful: firstly, displayed
structures can be iterated, making it possible to build bicategories of very complicated objects
layerwise. Secondly, displayed “building blocks” can be provided, for which univalence
is proved once and for all. These building blocks, e.g., cartesian product, can be used
like LEGO™ pieces to modularly build complicated bicategories that are automatically
accompanied by a proof of univalence.

We demonstrate these features in examples, proving univalence of three complicated
(classes of) bicategories: first, the bicategory of pseudofunctors between two univalent bicate-
gories; second, bicategories of algebraic structures; and third, the bicategory of categories
with families.

Formalization. The results presented here are mechanized in the UniMath library [22],
which is based on the Coq proof assistant [17]. The UniMath library is under constant
development; in this paper, we refer to the version with git hash ab97d96. Throughout the
paper, definitions and statements are accompanied by a link to the online documentation of
that version. For instance, the link bicat points to the definition of a bicategory.

Related work. Our work extends the notion of univalence from 1-categories [1] to bicate-
gories. Similarly, we extend the notion of displayed 1-category [2] to the bicategorical setting.

Capriotti and Kraus [7] study univalent (n, 1)-categories for n ∈ {0, 1, 2}. They only
consider bicategories where the 2-cells are equalities between 1-cells; in particular, all 2-cells
in [7] are invertible, and their (2, 1)-categories are by definition locally univalent. Consequently,
the condition called univalence by Capriotti and Kraus is what we call global univalence,
cf. Definition 3.1, Item 2. In this work, we study bicategories, a.k.a. (2, 2)-categories, that
is, we allow for non-invertible 2-cells. The examples we study in Section 6 are proper
(2, 2)-categories and are not covered by [7].

Lafont, Hirschowitz, and Tabareau [15] are working on formalizing ω-categories in type
theory. Their work is guided by work by Finster and Mimram [11], who develop a type
theory for which the models (in set theory) are precisely weak ω-categories.

2 Bicategories and Some Examples

Bicategories were introduced by Bénabou [5] in 1967, encompassing monoidal categories,
2-categories (in particular, the 2-category of categories), and other examples. He (and
later many other authors) defines bicategories in the style of “categories weakly enriched
in categories”. That is, the homs B1(a, b) of a bicategory B are taken to be (1-)categories,
and composition is given by a functor B1(a, b) × B1(b, c) → B1(a, c). This presentation of
bicategories is concise and convenient for communication between mathematicians.

In this article, we use a different, more unfolded definition of bicategories, which is
inspired by Bénabou [5, Section 1.3] and [18, Section “Details”]. It is more verbose than the
definition via weak enrichment. However, it is better suited for our purposes, in particular,
it is suitable for defining displayed bicategories, cf. Section 4.

FSCD 2019

https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath/tree/ab97d96f51a3f911f7027c1f4a2b36b558487443
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Bicat.html#bicat

5:4 Bicategories in Univalent Foundations

I Definition 2.1 (bicat). A bicategory B consists of
1. of a type B0 of objects;
2. a type B1(a, b) of 1-cells for all a, b : B0;
3. a set B2(f, g) of 2-cells for all a, b : B0 and f, g : B1(a, b);
4. an identity 1-cell id1(a) : B1(a, a);
5. a composition B1(a, b)× B1(b, c)→ B1(a, c), written f · g;
6. an identity 2-cell id2(f) : B2(f, f);
7. a vertical composition θ • γ : B2(f, h) for all 1-cells f, g, h : B1(a, b) and 2-cells

θ : B2(f, g) and γ : B2(g, h);
8. a left whiskering f C θ : B2(f · g, f · h) for all 1-cells f : B1(a, b) and g, h : B1(b, c) and

2-cells θ : B2(g, h);
9. a right whiskering θ B h : B2(f · h, g · h) for all 1-cells f, g : B1(a, b) and h : B1(b, c)

and 2-cells θ : B2(f, g);
10. a left unitor λ(f) : B2(id1(a) · f, f) and its inverse λ(f)−1 : B2(f, id1(a) · f);
11. a right unitor ρ(f) : B2(f · id1(b), f) and its inverse ρ(f)−1 : B2(f, f · id1(b));
12. a left associator α(f, g, h) : B2(f · (g · h), (f · g) · h) and a right associator α(f, g, h)−1 :

B2((f · g) · h, f · (g · h)) for f : B1(a, b), g : B1(b, c), and h : B1(c, d)
such that, for all suitable objects, 1-cells, and 2-cells,
13. id2(f) • θ = θ, θ • id2(g) = θ, θ • (γ • τ) = (θ • γ) • τ ;
14. f C (id2 g) = id2(f · g), f C (θ • γ) = (f C θ) • (f C γ);
15. (id2 f) B g = id2(f · g), (θ • γ) B g = (θ B g) • (γ B g);
16. (id1(a) C θ) • λ(g) = λ(f) • θ;
17. (θ B id1(b)) • ρ(g) = ρ(f) • θ;
18. (f C (g C θ)) • α(f, g, i) = α(f, g, h) • ((f · g) C θ);
19. (f C (θ B i)) • α(f, h, i) = α(f, g, i) • ((f C θ) B i);
20. (θ B (h · i)) • α(g, h, i) = α(f, h, i) • ((θ B h) B i);
21. λ(f) • λ(f)−1 = id2(id1(a) · f), λ(f)−1 • λ(f) = id2(f);
22. ρ(f) • ρ(f)−1 = id2(f · id1(b)), ρ(f)−1 • ρ(f) = id2(f);
23. α(f, g, h) • α(f, g, h)−1 = id2(f · (g · h)), α(f, g, h)−1 • α(f, g, h) = id2((f · g) · h);
24. α(f, id1(b), g) • (ρ(f) B g) = f C λ(f);
25. α(f, g, h · i) • α(f · g, h, i) = (f C α(g, h, i)) • α(f, g · h, i) • (α(f, g, h) B i).

We write a → b for B1(a, b) and f ⇒ g for B2(f, g). Riley formalized a definition of
bicategories via weak enrichment in UniMath, based on work by Lumsdaine. These two
definitions are equivalent.

I Proposition 2.2. The definition of bicategories given in Definition 2.1 is equivalent to the
formalized definition in terms of weak enrichment.

This result is not formalized in our computer-checked library. However, as a sanity check for
our definition of bicategory, we constructed maps between the two variations of bicategories,
see BicategoryOfBicat.v and BicatOfBicategory.v.

Recall that our goal is to study univalence of bicategories, which is a property that relates
equivalence and equality. For this reason, we study the two analogs of the 1-categorical
notion of isomorphism. The first one is the notion of invertible 2-cells.

I Definition 2.3 (is_invertible_2cell). A 2-cell θ : f ⇒ g is called invertible if we
have γ : g ⇒ f such that θ • γ = id2(f) and γ • θ = id2(g). An invertible 2-cell consists
of a 2-cell and a proof that it is invertible, and inv2cell(f, g) is the type of invertible 2-cells
from f to g.

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Bicat.html#bicat
https://github.com/UniMath/UniMath
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.BicategoryOfBicat.html
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.BicatOfBicategory.html
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Bicat.html#is_invertible_2cell

B. Ahrens, D. Frumin, M. Maggesi, and N. van der Weide 5:5

Since inverses are unique, being an invertible 2-cell is a proposition. In addition, id2(f)
is invertible, and we write id2(f) : inv2cell(f, f) for this invertible 2-cell. The second analog
of isomorphisms is the notion of adjoint equivalences.

I Definition 2.4 (adjoint_equivalence). An adjoint equivalence structure on a 1-cell
f : a → b consists of a 1-cell g : b → a and invertible 2-cells η : id2(f) ⇒ f · g and
ε : g · f ⇒ id2(g) together with paths

ρ(g)−1 • (g C η) • α(g, f, g)−1 • (ε B g) • λ(g) = id2(g),
λ(g)−1 • (η B f) • α(f, g, f) • (f C ε) • ρ(f) = id2(f).

An adjoint equivalence consists of a map f together with an adjoint equivalence structure
on f . The type AdjEquiv(a, b) consists of all adjoint equivalences from a to b.

We call η and ε the unit and counit of the adjunction, and we call g the right adjoint.
The prime example of an adjoint equivalence is the identity 1-cell id1(a) and we denote it by
id1(a) : AdjEquiv(a, a). Sometimes, we write a ' b for AdjEquiv(a, b).

Before we continue our study of univalence, we present some examples of bicategories.

I Example 2.5 (fundamental_bigroupoid). Let X be a 2-type. Then we define a bicategory
whose 0-cells are inhabitants of X, 1-cells from x to y are paths x = y, and 2-cells from p to
q are higher paths p = q. The operations are defined with path induction. Every 1-cell is an
adjoint equivalence and every 2-cell is invertible.

I Example 2.6 (one_types). Let U be a universe. The objects of the bicategory 1-TypeU of
1-types from U are 1-truncated types of the universe U, the 1-cells are functions between
the underlying types, and the 2-cells are homotopies between functions. The 1-cells id1(X)
and f · g are defined as the identity and composition of functions. The 2-cell id2(f) is refl,
the 2-cell p • q is the concatenation of paths. The unitors and associators are defined as the
identity path. Every 2-cell is invertible and adjoint equivalences between X and Y are the
same as equivalences from X to Y .

I Example 2.7 (bicat_of_cats). We define the bicategory Cat of univalent categories as
the bicategory whose 0-cells are univalent categories, 1-cells are functors, and 2-cells are
natural transformations. For the operations, we use the identity and composition of functors,
and whiskering of functors and transformations. The internal invertible 2-cells are the natural
isomorphisms of functors, and the internal adjoint equivalences correspond to external adjoint
equivalences of categories.

3 Univalent Bicategories

Recall that a (1-)category C (called “precategory” in [1]) is called univalent if, for every two
objects a, b : C0, the canonical map idtoisoa,b : (a = b)→ Iso(a, b) from identities between a
and b to ismorphisms between them is an equivalence. For bicategories, where we have one
more layer of structure, univalence can be imposed both locally and globally.

I Definition 3.1 (Univalence.v). Univalence for bicategories is defined as follows:
1. Let a, b : B0 and f, g : B1(a, b) be objects and morphisms of B; by path induction we

define a map idtoiso2,1
f,g : f = g → inv2cell(f, g) which sends refl(f) to id2(f). A bicategory

B is locally univalent if, for every two objects a, b : B0 and two 1-cells f, g : B1(a, b),
the map idtoiso2,1

f,g is an equivalence.

FSCD 2019

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Adjunctions.html#adjoint_equivalence
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Examples.TwoType.html#fundamental_bigroupoid
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Examples.OneTypes.html#one_types
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Examples.BicatOfCats.html#bicat_of_cats
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Univalence.html

5:6 Bicategories in Univalent Foundations

2. Let a, b : B0 be objects of B; using path induction we define idtoiso2,0
a,b : a = b →

AdjEquiv(a, b) sending refl(a) to id1(a). A bicategory B is globally univalent if, for
every two objects a, b : B0, the canonical map idtoiso2,0

a,b is an equivalence.
3. (is_univalent_2) We say that B is univalent if B is both locally and globally univalent.

While right adjoints are only unique up to equivalence in general, they are unique up to
identity when the bicategory is locally univalent:

I Proposition 3.2 (isaprop_left_adjoint_equivalence). Let B be locally univalent. Then
having an adjoint equivalence structure on a 1-cell in B is a proposition.

As a corollary of this proposition we get the following:

I Theorem 3.3. In a univalent bicategory B, the type B0 of 0-cells is a 2-type, and for any
two objects a, b : B0, the type a→ b of 1-cells from a to b is a 1-type.

To prove global univalence of a bicategory, we need to show that idtoiso2,0
a,b is an equivalence.

Often we do that by constructing a map in the other direction and showing these two
are inverses. This requires comparing adjoint equivalences, which is done with the help of
Proposition 3.2.

Now let us prove the examples from Section 2 are univalent.

I Example 3.4. The following bicategories are univalent:
1. (TwoType.v, Example 2.5 cont’d) The fundamental bigroupoid of each 2-type is univalent.
2. (OneTypes.v, Example 2.6 cont’d) The bicategory of 1-types of a universe U is locally

univalent; this is a consequence of function extensionality. If we assume the univalence
axiom for U, then 1-types form a univalent bicategory.

It is more difficult to prove the bicategory of univalent categories is univalent, and we only
give a brief sketch of this proof.

I Proposition 3.5 (BicatOfCats.v, Example 2.7 cont’d). The bicategory Cat is univalent.

Local univalence follows from the fact that the functor category [C,D] is univalent if D is.
For global univalence, we use that the type of identities on categories is equivalent to the type
of adjoint equivalences between categories [1, Theorem 6.17]. The proof proceeds by factoring
idtoiso2,0 as a chain of equivalences (C = D) ∼−→ CatIso(C,D) ∼−→ AdjEquiv(C,D). To our
knowledge, a proof of global univalence was first computer-formalized by Rafaël Bocquet1.

In the previous examples, we proved univalence directly. However, in many complicated
bicategories such proofs are not feasible. An example of such a bicategory is the bicategory
Pseudo(B,C) of pseudofunctors from B to C, pseudotransformations, and modifications [16]
(for a univalent bicategory C). Even in the 1-categorical case, proving the univalence of
the category [C,D] of functors from C to D, and natural transformations between them, is
tedious. In Section 5, we develop some machinery to prove the following theorem.

I Theorem 3.6 (psfunctor_bicat_is_univalent_2). If B is a (not necessarily univalent)
bicategory and C is a univalent bicategory, then the bicategory Pseudo(B,C) of pseudofunctors
from B to C is univalent.

1 https://github.com/mortberg/cubicaltt/blob/master/examples/category.ctt

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Univalence.html#is_univalent_2
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.AdjointUnique.html#isaprop_left_adjoint_equivalence
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Examples.TwoType.html
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Examples.OneTypes.html
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Examples.BicatOfCats.html
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.html#psfunctor_bicat_is_univalent_2
https://github.com/mortberg/cubicaltt/blob/master/examples/category.ctt

B. Ahrens, D. Frumin, M. Maggesi, and N. van der Weide 5:7

4 Displayed Bicategories

In this section, we introduce displayed bicategories, the bicategorical analog to the notion of
displayed category developed in [2]. A displayed (1-)category D over a given (base) category
C consists of a family of objects over objects in C and a family of morphisms over morphisms
in C together with suitable displayed operations of composition and identity. A category

∫
D

is then constructed, the objects and morphisms of which are pairs of objects and morphisms
from C and D, respectively. Properties of

∫
D, in particular univalence, can be shown from

analogous, but simpler, conditions on C and D.
A prototypical example is the following displayed category over C := Set: an object over

a set X is a group structure on X, and a morphism over a function f : X → X ′ from group
structure G (on X) to group structure G′ (on X ′) is a proof of the fact that f is compatible
with G and G′. The total category is the category of groups, and its univalence follows from
univalence of Set and a univalence property of the displayed data.

Just like in 1-category theory, many examples of bicategories are obtained by endowing
previously considered bicategories with additional structure. An example is the bicategory of
pointed 1-types in U. The objects in this bicategory are pairs of a 1-type A and an inhabitant
a : A. The morphisms are pairs of a morphism f of 1-types and a path witnessing that f
preserves the selected points. Similarly, the 2-cells are pairs of a homotopy p and a proof
that this p commutes with the point preservation proofs. Thus, this bicategory is obtained
from 1-TypeU by endowing the cells on each level with additional structure.

Of course, the structure should be added in such a way that we are guaranteed to obtain
a bicategory at the end. Now let us give the formal definition of displayed bicategories.

I Definition 4.1 (disp_bicat). Given a bicategory B, a displayed bicategory D over B
is given by data analogous to that of a bicategory, to which the numbering refers:
1. for each a : B0 a type Da of displayed 0-cells over a;
2. for each f : a→ b in B and ā : Da, b̄ : Db a type ā f−→ b̄ of displayed 1-cells over f ;
3. for each θ : f ⇒ g in B, f̄ : ā f−→ b̄ and ḡ : ā g−→ b̄ a set f̄ θ=⇒ ḡ of displayed 2-cells over θ
and dependent versions of operations and laws from Definition 2.1, which are
4. for each a : B0 and ā : D0(a), we have id1(ā) : ā id1(a)−−−−→ ā;
5. for all 1-cells f : a→ b, g : b→ c, and displayed 1-cells f̄ : ā f−→ b̄ and ḡ : b̄ g−→ c̄, we have

a displayed 1-cell f̄ · ḡ : ā f ·g−−→ c̄;
6. for all f : B1(a, b), ā : D0(a), b̄ : D0(b), and f̄ : ā f−→ b̄, we have id2(f̄) : f̄ id2(f)===⇒ f̄ ;
7. for 2-cells θ : f ⇒ g and γ : g ⇒ h, and displayed 2-cells θ̄ : f̄ θ=⇒ ḡ and γ̄ : ḡ γ−→ h̄, we

have a displayed 2-cell θ̄ • γ̄ : f̄ θ•γ==⇒ h̄.
8. for each displayed 1-cell f̄ : ā f−→ b̄ and each displayed 2-cell ḡ θ=⇒ h̄, we have a displayed

2-cell f̄ C θ̄ : f̄ · ḡ fCθ==⇒ f̄ · h̄ ;
9. for each displayed 1-cell h̄ : b̄ h−→ c̄ and each displayed 2-cell θ̄ : f̄ θ=⇒ ḡ, we have a displayed

2-cell θ̄ B h̄ : f̄ · h̄ θBh==⇒ ḡ · h̄;

10. for each f̄ : ā f−→ b̄, we have displayed 2-cells λ(f̄) : id1(ā) · f̄ λf=⇒ f̄ and λ(f̄)−1 : f̄ λf−1

===⇒
id1(ā) · f̄ ;

11. for each f̄ : ā f−→ b̄, displayed 2-cells ρ(f̄) : f̄ · id1(b̄) ρf=⇒ f̄ and ρ(f̄)−1 : f̄ ρf−1

===⇒ f̄ · id1(b̄);
12. for each f̄ : ā f=⇒ b̄, ḡ : b̄ g=⇒ c̄, and h̄ : c̄ h=⇒ d̄, we have displayed 2-cells α(f̄ , ḡ, h̄) :

f̄ · (ḡ · h̄) α(f,g,h)=====⇒ (f̄ · ḡ) · h̄ and α(f̄ , ḡ, h̄)−1 : (f̄ · ḡ) · h̄ α(f,g,h)=====⇒ f̄ · (ḡ · h̄).

FSCD 2019

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispBicat.html#disp_bicat

5:8 Bicategories in Univalent Foundations

Note that we use the same notation for the displayed and the non-displayed operations.
These operations are subject to laws, which are derived systematically from the non-

displayed version. Just as for displayed 1-categories, the laws of displayed bicategories are
heterogeneous, because they are transported along the analogous law in the base bicategory.
For instance, the displayed left-unitary law for identity reads as id2(f̄) • θ̄ =e θ̄, where e is
the corresponding identity of Item 13 in Definition 2.1.
13. id2(f) • θ =∗ θ, θ • id2(g) =∗ θ, θ • (γ • τ) =∗ (θ • γ) • τ ;
14. f C (id2 g) =∗ id2(f · g), f C (θ • γ) =∗ (f C θ) • (f C γ);
15. (id2 f) B g =∗ id2(f · g), (θ • γ) B g =∗ (θ B g) • (γ B g);
16. (id1(a) C θ) • λ(g) =∗ λ(f) • θ;
17. (θ B id1(b)) • ρ(g) =∗ ρ(f) • θ;
18. (f C (g C θ)) • α(f, g, i) =∗ α(f, g, h) • ((f · g) C θ);
19. (f C (θ B i)) • α(f, h, i) =∗ α(f, g, i) • ((f C θ) B i);
20. (θ B (h · i)) • α(g, h, i) =∗ α(f, h, i) • ((θ B h) B i);
21. λ(f) • λ(f)−1 =∗ id2(id1(a) · f), λ(f)−1 • λ(f) =∗ id2(f);
22. ρ(f) • ρ(f)−1 =∗ id2(f · id1(b)), ρ(f)−1 • ρ(f) =∗ id2(f);
23. α(f, g, h) • α(f, g, h)−1 =∗ id2(f · (g · h)), α(f, g, h)−1 • α(f, g, h) =∗ id2((f · g) · h);
24. α(f, id1(b), g) • (ρ(f) B g) =∗ f C λ(f);
25. α(f, g, h · i) • α(f · g, h, i) =∗ (f C α(g, h, i)) • α(f, g · h, i) • (α(f, g, h) B i).

The purpose of displayed bicategories is to give rise to a total bicategory together with a
projection pseudofunctor. They are defined as follows:

I Definition 4.2 (total_bicat). Given a displayed bicategory D over a bicategory B, we
can form a total bicategory

∫
D (or

∫
B D) which has:

1. as 0-cells tuples (a, ā), where a : B and ā : Da;
2. as 1-cells tuples (f, f̄) : (a, ā)→ (b, b̄), where f : a→ b and f̄ : ā f−→ b̄;
3. as 2-cells tuples (θ, θ̄) : (f, f̄)⇒ (g, ḡ), where θ : f ⇒ g and θ̄ : f̄ θ=⇒ ḡ.
We also have a projection pseudofunctor πD : Pseudo(

∫
D,B).

As mentioned before, the bicategory of pointed 1-types is the total bicategory of the
following displayed bicategory.

I Example 4.3 (p1types_disp, Example 3.4, Item 2 cont’d). Given a universe U, we build a
displayed bicategory of pointed 1-types over the base bicategory of 1-types in U (Example 2.6).

For 1-type A in U, the objects over A are inhabitants of A.
For f : A→ B with A,B 1-types in U, the maps over f from a to b are paths f(a) = b.
Given two maps f, g : A → B, a path p : f = g, two points a : A and b : B, and paths
qf : f(a) = b and qg : g(a) = b, the 2-cells over p are paths transportx 7→x=b(p, qf) = qg.

The bicategory of pointed 1-types is the total bicategory of this displayed bicategory.

I Example 4.4 (disp_fullsubbicat). We can select the 0-cells of a bicategory B by
attaching a property P : B → hProp. Define a displayed bicategory D over B such that
Dx :≡ P (x), and the types of displayed 1-cells and 2-cells are the unit type. Now we define
the full subbicategory of B with cells satisfying P to be the total bicategory of D.

We end this section with several general constructions of displayed bicategories.

I Definition 4.5 (Various constructions of displayed bicategories).
1. (disp_dirprod_bicat) Given displayed bicategories D1 and D2 over a bicategory B, we

construct the product D1 × D2 over B. The 0-cells, 1-cells, and 2-cells are pairs of 0-cells,
1-cells, and 2-cells respectively.

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispBicat.html#total_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.PointedOneTypes.html#p1types_disp
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.FullSub.html#disp_fullsubbicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Prod.html#disp_dirprod_bicat

B. Ahrens, D. Frumin, M. Maggesi, and N. van der Weide 5:9

2. (sigma_bicat) Given a displayed bicategory D over a base B and a displayed bicategory
E over

∫
D, we construct a displayed bicategory

∑
D E over B as follows. The objects over

a : B are pairs (ā, e), where ā : Da and e : E(a,ā), the morphisms over f : a→ b from (ā, e)

to (b̄, e′) are pairs (f̄ , ϕ), where f̄ : ā f−→ b̄ and ϕ : e (f,f̄)−−−→ e′, and similarly for 2-cells.
3. (trivial_displayed_bicat) Every bicategory D is, in a trivial way, a displayed bicate-

gory over any other bicategory B. Its total bicategory is the direct product B× D.
4. (disp_cell_unit_bicat) We say a displayed bicategory D over B is chaotic if, for each

α : f ⇒ g and f̄ : ā f−→ b̄ and ḡ : ā g−→ b̄, the type f̄ α=⇒ ḡ is contractible. Let B be a
bicategory and suppose we have

a type D0 and a type family D1 on B as in Definition 4.1;
displayed 1-identities id1 and compositions (·) of displayed 1-cells as Definition 4.1.

Then we have an associated chaotic displayed bicategory D̂(D0,D1, id1, (·)) over B
by stipulating that the types of 2-cells are the unit type.

5 Displayed univalence

Given a bicategory B and a displayed bicategory D on B, our goal is to prove the univalence
of
∫

D from conditions on B and D. For that, we develop the notion of univalent displayed
bicategories. We start by defining displayed versions of invertible 2-cells.

I Definition 5.1 (is_disp_invertible_2cell). Given are a bicategory B and a displayed
bicategory D over B. Suppose we have objects a, b : B0, two 1-cells f, g : B1(a, b), and an
invertible 2-cell θ : B2(f, g). Suppose that we also have ā : D0(a), b̄ : D0(b), f̄ : ā f−→ b̄,
ḡ : ā g−→ b̄, and θ̄ : f̄ θ=⇒ ḡ. Then we say θ̄ is invertible if we have γ̄ : ḡ θ−1

==⇒ f̄ such that θ̄ • γ̄
and γ̄ • θ̄ are identities modulo transport over the corresponding identity laws of θ.

A displayed invertible 2-cell over θ, where θ is an invertible 2-cell, is a pair of a
displayed 2-cell θ̄ over θ and a proof that θ̄ is invertible. The type of displayed invertible
2-cells from f̄ to ḡ over θ is denoted by f̄ ∼=θ ḡ.

Being a displayed invertible 2-cell is a proposition and the displayed 2-cell id2(f̄) over id2(f)
is invertible. Next we define displayed adjoint equivalences.

I Definition 5.2 (disp_left_adjoint_equivalence). Given are a bicategory B and a
displayed bicategory D over B. Suppose we have objects a, b : B0 and a 1-cell f : B1(a, b)
together with an adjoint equivalence structure A on f . We write r, η, ε for the right adjoint,
unit, and counit of f respectively. Furthermore, suppose that we have ā : D0(a),b̄ : D0(b),
and f̄ : ā f−→ b̄. A displayed adjoint equivalence structure on f̄ consists of

A displayed 1-cell r̄ : b̄ r−→ ā;
An invertible displayed 2-cell id1(ā) η=⇒ f̄ · r̄;
An invertible displayed 2-cell r̄ · f̄ ε=⇒ id1(b̄).

In addition, two laws reminiscent of those in Definition 2.4 need to be satisfied.
A displayed adjoint equivalence over the adjoint equivalence A is a pair of a displayed

1-cell f̄ over f together with a displayed adjoint equivalence structure on f̄ . The type of
displayed adjoint equivalences from ā to b̄ over f is denoted by ā 'f b̄.

The displayed 1-cell id1(ā) is a displayed adjoint equivalence over id1(a).
Using these definitions, we define univalence of displayed bicategories similarly to univa-

lence for ordinary bicategories. Again we separate it in a local and global condition.

FSCD 2019

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Sigma.html#sigma_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Trivial.html#trivial_displayed_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.html#disp_cell_unit_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispBicat.html#is_disp_invertible_2cell
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispAdjunctions.html#disp_left_adjoint_equivalence

5:10 Bicategories in Univalent Foundations

I Definition 5.3 (DispUnivalence.v). Let D be a displayed bicategory over B.
1. Let a, b : B, and ā : Da, b̄ : Db. Let f, g : a→ b, let p : f = g, and let f̄ and ḡ be displayed

morphisms over f and g respectively. Then we define a function

disp_idtoiso2,1
p,f̄ ,ḡ

: f̄ =p ḡ → f̄ ∼=idtoiso2,1
f,g

(p) ḡ

sending refl to the identity displayed isomorphism. We say that D is locally univalent
if the map disp_idtoiso2,1

p,f̄ ,ḡ
is an equivalence for each p, f̄ , and ḡ.

2. Let a, b : B, and ā : Da, b̄ : Db. Given p : a = b, we define a function

disp_idtoiso2,0
p,ā,b̄

: ā =p b̄→ ā 'idtoiso2,0
a,b

(p) b̄

sending refl to the identity displayed adjoint equivalence. We say that D is globally
univalent if the map disp_idtoiso2,0

p,ā,b̄
is an equivalence for each p, ā, and b̄.

3. (disp_univalent_2) We call D univalent if it is both locally and globally univalent.

Now we give the main theorem of this paper. It says that the total bicategory
∫

B D is
univalent if B and D are.

I Theorem 5.4 (total_is_univalent_2). Let B be a bicategory and let D be a displayed
bicategory over B. Then
1.
∫

D is locally univalent if B is locally univalent and D is locally univalent;
2.
∫

D is globally univalent if B is globally univalent and D is globally univalent.

Proof. The main idea behind the proof is to characterize invertible 2-cells in the total
bicategory as pairs of an invertible 2-cell p in the base bicategory, and a displayed invertible
2-cell over p. Concretely, for the local univalence, we factor idtoiso2,1 as a composition of the
following equivalences:

(f, f̄) = (g, ḡ)

w1 ∼
��

idtoiso2,1
// inv2cell

(
(f, f̄), (g, ḡ)

)
∑

(p:f=g) f̄ =p ḡ w2

∼ //
∑

(p:inv2cell(f,g)) f̄
∼=p ḡ

w3∼

OO

The map w1 is just a characterization of paths in a sigma type. The map w2 turns equalities
into (displayed) invertible 2-cells, and it is an equivalence by local univalence of B and
displayed local univalence of D. Finally, the map w3 characterizes invertible 2-cells in the
total bicategory.

The proof is similar in the case of global univalence. The most important step is the
characterization of adjoint equivalences in the total bicategory.

(a, ā) ' (b, b̄) ∼−→
∑

(p:a'b)

ā 'p b̄. J

To check displayed univalence, it suffices to prove the condition in the case where p is
reflexivity. This step, done by path induction, simplifies some proofs of displayed univalence.

I Proposition 5.5. Given a displayed bicategory D over B, then D is univalent if the following
maps are equivalences:

(fiberwise_ local_ univalent_ is_ univalent_ 2_ 1)

disp_idtoiso2,1
refl(f),f̄ ,f ′

: f̄ = f ′ → f̄ ∼=id2(f) f ′

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispUnivalence.html
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispUnivalence.html#disp_univalent_2
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispUnivalence.html#total_is_univalent_2
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispUnivalence.html#fiberwise_local_univalent_is_univalent_2_1

B. Ahrens, D. Frumin, M. Maggesi, and N. van der Weide 5:11

(fiberwise_ univalent_ 2_ 0_ to_ disp_ univalent_ 2_ 0)

disp_idtoiso2,0
refl(a),ā,a′

: ā = a′ → ā 'id1(a) a′

Now we establish the univalence of several examples.

I Example 5.6. The following bicategories and displayed bicategories are univalent:
1. The category of pointed 1-types (see Example 4.3) is univalent (p1types_univalent_2).
2. The full subbicategory (see Example 4.4) of a univalent bicategory is univalent (is_

univalent_2_fullsubbicat).
3. The product of univalent displayed bicategories (Definition 4.5, Item 1) is univalent

(is_univalent_2_dirprod_bicat).
4. Given univalent displayed bicategories D1 and D2 on B and

∫
D1 respectively, the displayed

bicategory
∑

D1
D2 (Definition 4.5, Item 2) is univalent (sigma_is_univalent_2).

Lastly, we give a condition for when the chaotic displayed bicategory is univalent.

I Proposition 5.7 (disp_cell_unit_bicat_univalent_2). Let B be a univalent bicategory.
Given D = (D0,D1, id1, (·)) as in Definition 4.5, Item 4, such that D0 is a set and D1 is a
family of propositions. Then the chaotic displayed bicategory on D is univalent if we have a
map in the opposite direction of disp_idtoiso2,0.

6 Univalence of Complicated Bicategories

In this section, we demonstrate the power of displayed bicategories on a number of complicated
examples. We show the univalence of the bicategory of pseudofunctors between univalent
bicategories and of univalent categories with families. In addition, we give two constructions
to define univalent bicategories of algebras.

6.1 Pseudofunctors
As promised, we use displayed bicategories to prove Theorem 3.6. For the remainder, fix
bicategories B and C such that C is univalent. Recall that a pseudofunctor consists of an
action on 0-cells, 1-cells, 2-cells, a family of 2-cells witnessing the preservation of composition
and identity 1-cells, such that a number of laws are satisfied. We call the 2-cells witnessing
the preservation of composition and identity the compositor and identitor respectively.

To construct Pseudo(B,C), we add structure to a base bicategory in several layers. This
base bicategory consists of functions from B0 to C0. Each layer is given by a displayed
bicategory on the total bicategory of the preceding layer. We start by defining a displayed
bicategory of actions on 1-cells. On its total bicategory, we define three displayed bicategories:
one for the preservation of composition, one for the preservation of identities, and one for
the action on 2-cells. We take the product of these three and we finish by taking a full
subbicategory with the required laws. To show the resulting bicategory is univalent, we show
the base and each layer is univalent.

Now let us look at the formal definitions.

I Definition 6.1 (ps_base). The bicategory Base(B,C) is defined as follows.
The objects are maps B0 → C0;
The 1-cells from F0 to G0 are maps η0, β0 :

∏
(x:B0) F0(x)→ G0(x);

The 2-cells from η0 to β0 are maps Γ :
∏

(x:B0) η0(x)⇒ β0(x).
The operations are defined pointwise.

FSCD 2019

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispUnivalence.html#fiberwise_univalent_2_0_to_disp_univalent_2_0
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.PointedOneTypes.html#p1types_univalent_2
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.FullSub.html#is_univalent_2_fullsubbicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.FullSub.html#is_univalent_2_fullsubbicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Prod.html#is_univalent_2_dirprod_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Sigma.html#sigma_is_univalent_2
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.DisplayedCatToBicat.html#disp_cell_unit_bicat_univalent_2
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.PseudoFunctors.Display.Base.html#ps_base

5:12 Bicategories in Univalent Foundations

Next we define a displayed bicategory on Base(B,C). The displayed 0-cells are actions of
pseudofunctors on 1-cells. The displayed 1-cells over η0 are 2-cells witnessing the naturality
of η0. The displayed 2-cells over Γ are equalities which show that Γ is a modification.

I Definition 6.2 (map1cells_disp_bicat). We define a displayed bicategory Map1D(B,C)
on Base(B,C) such that

the objects over F0 : B0 → C0 are maps

F1 :
∏

(X,Y :B0)

B1(X,Y)→ C1(F0(X), F0(Y));

the 1-cells over η0 : F0(x)→ G0(x) from F1 to G1 are invertible 2-cells

η1 :
∏

(X,Y :B0)(f :X→Y)

η0(X) ·G1(f)⇒ F1(f) · η0(Y);

the 2-cells over Γ : η0(x)⇒ β0(x) from η1 to β1 are equalities∏
(X,Y :B0)(f :X→Y)

η1(f) • (F1(f) C Γ(Y)) = (Γ(X) B G1(f)) • β1(f).

We denote the total bicategory of Map1D(B,C) by Map1(B,C). Now we define three
displayed bicategories over Map1(B,C). Each of them is defined as a chaotic displayed
bicategory (Item 4 in Definition 4.5).

I Definition 6.3 (identitor_disp_cat). We define a displayed bicategory MapId(B,C) over
Map1(B,C) as follows:

The objects over (F0, F1) are identitors

Fi :
∏

(X:B0)

id1(F0(X))⇒ F1(id1(X));

The morphisms over (η0, η1) from Fi to Gi are equalities

ρ(η0(X)) • λ(η0(X))−1 • (Fi(X) B η0(X)) = (η0(X) C Gi(X)) • η1(id1(X)).

I Definition 6.4 (compositor_disp_cat). We define a displayed bicategory MapC(B,C)
over Map1(B,C) as follows:

The objects over (F0, F1) are compositors

Fc :
∏

(X,Y,Z:B0)(f :B1(X,Y))(g:B1(Y,Z))

F1(f) · F1(g)⇒ F1(f · g);

The morphisms over (η0, η1) from Fc to Gc consists of equalities

α• (η1(f) B G1(g))•α−1 • (F1(f) C η1(g))•α• (Fc B η0(Z)) = (η0(X) C Gc)•η1(f ·g)

for all X,Y, Z : B0, f : B1(X,Y) and g : B1(Y, Z).

I Definition 6.5 (map2cells_disp_cat). We define a displayed bicategory Map2D(B,C)
over Map1(B,C) as follows:

The objects over (F0, F1) are

F2 :
∏

(a,b:B0)(f,g:a→b)

B2(f, g)→ F1(f)⇒ F1(g);

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.PseudoFunctors.Display.Map1Cells.html#map1cells_disp_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.PseudoFunctors.Display.Identitor.html#identitor_disp_cat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.PseudoFunctors.Display.Compositor.html#compositor_disp_cat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.PseudoFunctors.Display.Map2Cells.html#map2cells_disp_cat

B. Ahrens, D. Frumin, M. Maggesi, and N. van der Weide 5:13

The morphisms over (η0, η1) from F2 to G2 consist of equalities∏
(θ:f⇒g)

(η0(X) C G2(θ)) • η1(g) = η1(f) • (F2(θ) B η0(Y)).

We denote the total category of the product of Map2D(B,C), MapId(B,C), and MapC(B,C)
by RawPseudo(B,C). Note that its objects are of the form ((F0, F1), (F2, Fi, Fc)), its 1-cells
are pseudotransformations, and its 2-cells are modifications. However, its objects are not yet
pseudofunctors, because they also need to satisfy several laws.

I Definition 6.6 (psfunctor_bicat). We define the bicategory Pseudo(B,C) as the full
subbicategory of RawPseudo(B,C) where the objects satisfy the following laws

F2(id2(f)) = id2(F1(f)) and F2(f • g) = F2(f) • F2(g);
λ(F1(f)) = (Fi(a) B F1(f)) • Fc(id1(a), f) • F2(λ(f));
ρ(F1(f)) = (F1(f) C Fi(b)) • Fc(f, id1(b)) • F2(ρ(f));
(F1(f) • Fc(g, h)) • Fc(f, g · h) • F2(α) = α • (Fc(f, g) B F1(h)) • Fc(f · g, h);
Fc(f, g1) • F2(f C θ) = (F1(f) C F2(θ)) • Fc(f, g2);
Fc(f1, g) • F2(θ B g) = (F2(θ) B F1(g)) • Fc(f2, g);
Fi(X) and Fc(f, g) are invertible 2-cells.

Each displayed layer in this construction is univalent. In addition, if C is univalent, then
so is Base(B,C). Hence, Theorem 3.6 follows from repeated application of Theorem 5.4.

6.2 Algebraic Examples
Next, we consider two constructions to build bicategories of algebras. To illustrate their
usage, we show how to define the bicategory of monads internal to a bicategory. Note that
each monad has a 0-cell X and a 1-cell X → X. This structure is encapsulated by algebras
of a pseudofunctor [6].

I Definition 6.7 (disp_alg_bicat). Let B be a bicategory and let F : Pseudo(B,B) be a
pseudofunctor. We define a displayed bicategory AlgD(F).

The objects over a : B are 1-cells F (a)→ a.
The 1-cells over f : B1(a, b) from ha : F (a) → a to hb : F (b) → b are invertible 2-cells
ha · f ⇒ F1(f) · hb.
Given f, g : B1(a, b), algebras ha : F (a) → a and hb : F (b) → b, and hf and hg over f
and g respectively, a 2-cell over θ : f ⇒ g is an equality

(ha C θ) • hg = hf • (F2(θ) B hb).

We write Alg(F) for the total category of AlgD(F).

I Theorem 6.8 (bicat_algebra_is_univalent_2). Let B be a bicategory and let F :
Pseudo(B,B) be a pseudofunctor. If B is univalent, then so is Alg(F).

I Example 6.9 (Example 4.3 cont’d). The bicategory of pointed 1-types is the bicategory of
algebras for the constant pseudofunctor F (a) = 1.

Define M1 to be Alg(id0(B)). Objects of M1 consist of an X : B0 and a 1-cell X →
X. These are not monads yet, because those are supposed to also have two 2-cells: the
unit and multiplication. To add this structure, we define two displayed bicategories on
M1. Both are defined via a more general construction, for which we use that there is
an identity pseudofunctor id0(B) : Pseudo(B,B) and that for all F1 : Pseudo(B1,B2) and
F2 : Pseudo(B2,B3), we have a composition F1 · F2 : Pseudo(B1,B3).

FSCD 2019

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.PseudoFunctors.Display.PseudoFunctorBicat.html#psfunctor_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Algebras.html#disp_alg_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Algebras.html#bicat_algebra_is_univalent_2

5:14 Bicategories in Univalent Foundations

Before giving this construction, let us describe the setting. Suppose that we have a
displayed bicategory D over some B. Our goal is to define a displayed bicategory over

∫
D

where the displayed 0-cells are certain 2-cells in B. We define the endpoints of these as
natural 1-cells, so we use pseudotransfomations. The source of these is πD · S for some
S : Pseudo(B,B), and the target is defined to be πD · id0(B) where πD is the projection
from

∫
D to B. Note that instead of πD, we use πD · id0(B), which is symmetric to the

source πD · S. This allows us to construct such transformations by composing them. In
addition, pseudotransformations l, r : πD ·S → πD · id0(B) give, for each (a, ha) :

∫
D, a 1-cell

l(a) : B1(S(a), a). The construction adds 2-cells from l(a) to r(a) and formally, we define the
following displayed bicategory.

I Definition 6.10 (add_cell_disp_cat). Suppose that D is a displayed bicategory over B
and given are S : Pseudo(B,B) and l, r : πD ·S → πD · id0(B). We use Item 4 in Definition 4.5
to define a displayed bicategory Add2Cell(D, l, r) over

∫
D.

Its objects over a are 2-cells l(a)⇒ r(a).
The morphisms over f : B1(a, b) from η1 to η2 are equalities

(η1 B πD(f)) • r(f) = l(f) • (S1(πD(f)) C η2).

I Theorem 6.11. The displayed bicategory Add2Cell(D, l, r) is locally univalent (add_ cell_
disp_ cat_ univalent_ 2_ 1). Moreover, if C is locally univalent and D is locally univalent,
then Add2Cell(D, l, r) is globally univalent (add_ cell_ disp_ cat_ univalent_ 2_ 0).

Let us show how to add the unit and multiplication to the structure. For that, we first
need the following pseudotransformation.

I Definition 6.12 (alg_map). Let B be a bicategory, and let F : Pseudo(B,B) be pseudo-
functors. We define a pseudotransformation h : πAlgDF · F → πAlgDF · id0(B). On objects
(a, ha), we define h(a, ha) = ha and on 1-cells (f, hf), we define h(f, hf) = hf .

To add the unit to the structure, we use Definition 6.10. For S, we take id0, for l we
take the identity transformation on πid0 · id0 and for r we take h. The multiplication is done
similarly, but instead we take h · h for l.

Let M2 be the total bicategory of the product of these two displayed bicategories. To
obtain actual monads, the structure needs to satisfy three laws, namely

λ(f)−1 • (η B f) • µ = id2(f);
ρ(f)−1 • (f C η) • µ = id2(f);
(f C µ) • µ = α(f, f, f) • (µ B f) • µ.

We define M(B) to be the full subbicategory of M2 with respect to these laws. From
Theorems 6.8 and 6.11 and Example 5.6 we conclude:

I Theorem 6.13 (monad_is_univalent_2). If B is univalent, then so is M(B).

6.3 Categories with Families
Finally, we discuss the last example: the bicategory of (univalent) categories with families
(CwFs) [9]. We follow the formulation by Fiore [12] and Awodey [4], which is already
formalized in UniMath [3]: a CwF consists of a category C, two presheaves Ty and Tm on C,
a morphism p : Tm→ Ty, and a representation structure for p.

However, rather than defining CwFs in one step, we use a stratified construction yielding
the sought bicategory as the total bicategory of iterated displayed layers. The base bicategory
is Cat (cf. Example 2.7). The second layer of data consists of two presheaves, each described
by the following construction.

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Add2Cell.html#add_cell_disp_cat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Add2Cell.html#add_cell_disp_cat_univalent_2_1
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Add2Cell.html#add_cell_disp_cat_univalent_2_1
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Add2Cell.html#add_cell_disp_cat_univalent_2_0
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Monads.html#alg_map
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Monads.html#monad_is_univalent_2
https://github.com/UniMath/UniMath

B. Ahrens, D. Frumin, M. Maggesi, and N. van der Weide 5:15

I Definition 6.14 (disp_presheaf_bicat). Define the displayed bicategory PShD on Cat:
The objects over C are functors from Cop to the univalent category Set;
The 1-cells from T : C → Set to T ′ : D → Set over F : C → D are natural transformations
from T to F op · T ′;
The 2-cells from β : T ⇒ F op · T ′ to β′ : T ⇒ Gop · T ′ over γ : F ⇒ G are equalities

β = β′ • (γop B T ′).

Denote by CwF1 the total category of the product of PShD with itself. An object in CwF1
consists of a category C and two presheaves Ty,Tm : Cop → Set. The third piece of data is a
natural transformation between them.

I Definition 6.15 (morphisms_of_presheaves_display). We define a displayed bicategory
dCwF2 on CwF1 as the chaotic displayed bicategory (Item 4 in Definition 4.5) such that

The objects over (C, (Ty,Tm)) are natural transformations from Ty to Tm.
Suppose we have two objects (C, (Ty,Tm)) and (C ′, (Ty′,Tm′)), two natural transforma-
tions p : Tm⇒ Ty and p′ : Tm′ ⇒ Ty′, and suppose we have a 1-cell f from (C, (Ty,Tm))
to (C ′, (Ty′,Tm′)). Note that f consists of a functor F : C → C ′ and two transformations
β : Ty⇒ F op ◦ Ty′ and β′ : Tm⇒ F op ◦ Tm′. Then a 1-cell over f is an equality

p • β = β′ • (F op C p′).

With dCwF2 and the sigma construction from Item 2 in Definition 4.5, we get a displayed
bicategory over Cat and we denote its total bicategory by CwF2. As the last piece of data,
we add the representation structure for the morphism p of presheaves.

I Definition 6.16 (cwf_representation). Given a category C together with functors
Ty,Tm : Cop → Set and a natural transformation p : Tm⇒ Ty, we say isCwF(C,Ty,Tm, p) if
for each Γ : C and A : Ty(Γ), we have a representation of the fiber of p over A.

A detailed definition can be found in [3, Definition 3.1]. Since C is univalent, the type
isCwF(C,Ty,Tm, p) is a proposition, and thus we define CwF as a full subbicategory of CwF2.

I Proposition 6.17 ([3, Lemma 4.3] , isaprop_cwf_representation). isCwF(C,Ty,Tm, p)
is a proposition.

I Definition 6.18 (cwf). We define CwF as the full subbicategory of dCwF2 with isCwF.

I Theorem 6.19 (cwf_is_univalent_2). CwF is univalent.

7 Conclusions and Further Work

In the present work, we studied univalent bicategories. Showing that a bicategory is univalent
can be challenging; to simplify this task, we introduced displayed bicategories, which provide
a way to modularly reason about complicated bicategories. We then demonstrated the
usefulness of displayed bicategories by showing, using the displayed technology, that several
complicated bicategories are univalent.

For the practical mechanization of mathematics in a computer proof assistant, two issues
may arise when building complicated bicategories as the total bicategory of iterated displayed
bicategories. Firstly, the structures may not be parenthesized as desired. This problem can
be avoided or at least alleviated through a suitable use of the sigma construction of displayed
bicategories (Item 2 in Definition 4.5). Secondly, “meaningless” terms of unit type may occur

FSCD 2019

https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.ContravariantFunctor.html#disp_presheaf_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Cofunctormap.html#morphisms_of_presheaves_display
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.CwF.html#cwf_representation
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.CwF.html#isaprop_cwf_representation
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.CwF.html#cwf
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.CwF.html#cwf_is_univalent_2

5:16 Bicategories in Univalent Foundations

in the cells of this bicategory. We are not aware of a way of avoiding these occurrences
while still using displayed bicategories. However, both issues can be addressed through the
definition of a suitable “interface” to the structures, in form of “builder” and projection
functions, which build, or project a component out of, an instance of the structure. The
interface hides the implementation details of the structure, and thus provides a welcome
separation of concerns between mathematical and foundational aspects.

We have only started, in the present work, the development of bicategory theory in
univalent foundations and its formalization. Our main goals for the future are
A bicategorical Rezk completion: to construct the free univalent bicategory associated to

a bicategory. It will fundamentally use Definition 6.6 and Theorem 3.6.
Equivalence Principle: to show that identity is biequivalence for univalent bicategories.
More displayed machinery: to define and study displayed notions of pseudofunctors, biequiv-

alences, etc over the respective notions in the base. In particular, the extra displayed
machinery will allow us to build not just (univalent) bicategories layerwise, but also maps
and equivalences between them.

The envisioned displayed machinery can also be used to study the semantics of higher
inductive types (HITs). Using Definitions 6.7 and 6.10, we can define bicategories of algebras
on a signature; its initial object is the HIT specified by the signature. The Rezk completion
η : GrpdU → 1-TypeU from groupoids to 1-types can then be used to construct a biadjunction
– obtained as the total biadjunction of a suitable displayed biadjunction – between algebras
of 1-types and algebras of groupoids. To construct higher inductive 1-types, we just need to
show that the groupoid model has HITs, which was proved by Dybjer and Moenclaey [10].

Displayed notions naturally appear in Clairambault and Dybjer’s [8] pair of biequiva-
lences FL // CwFIext,Σ

demoo and LCC // CwFIext,Σ,Π
demoo relating categories with families

equipped with structure modelling type and term formers to finite limit categories and locally
cartesian closed categories, respectively. Here, the latter biequivalence is an “extension” of
the former; this can be made formal by a displayed biequivalence relating the Π-structure
with the locally cartesian closed structure.

More generally, we aim to use the displayed machinery when extending to the bicategorical
setting the comparison of different categorical structures for type theories started in [3].

References
1 Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and

the Rezk completion. Mathematical Structures in Computer Science, 25:1010–1039, 2015.
doi:10.1017/S0960129514000486.

2 Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed Categories. Logical Methods in
Computer Science, 15(1), 2019. doi:10.23638/LMCS-15(1:20)2019.

3 Benedikt Ahrens, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. Categorical structures for
type theory in univalent foundations. Logical Methods in Computer Science, 14(3), September
2018. doi:10.23638/LMCS-14(3:18)2018.

4 Steve Awodey. Natural models of homotopy type theory. Mathematical Structures in Computer
Science, 28(2):241–286, 2018. doi:10.1017/S0960129516000268.

5 Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar,
pages 1–77, Berlin, Heidelberg, 1967. Springer Berlin Heidelberg. doi:10.1007/BFb0074299.

6 Robert Blackwell, Gregory M Kelly, and A John Power. Two-dimensional monad theory.
Journal of Pure and Applied Algebra, 59(1):1–41, 1989. doi:10.1016/0022-4049(89)90160-6.

7 Paolo Capriotti and Nicolai Kraus. Univalent higher categories via complete Semi-Segal types.
PACMPL, 2(POPL):44:1–44:29, 2018. doi:10.1145/3158132.

http://dx.doi.org/10.1017/S0960129514000486
http://dx.doi.org/10.23638/LMCS-15(1:20)2019
http://dx.doi.org/10.23638/LMCS-14(3:18)2018
http://dx.doi.org/10.1017/S0960129516000268
http://dx.doi.org/10.1007/BFb0074299
http://dx.doi.org/10.1016/0022-4049(89)90160-6
http://dx.doi.org/10.1145/3158132

B. Ahrens, D. Frumin, M. Maggesi, and N. van der Weide 5:17

8 Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed categories
and Martin-Löf type theories. Mathematical Structures in Computer Science, 24(6), 2014.
doi:10.1017/S0960129513000881.

9 Peter Dybjer. Internal Type Theory. In Stefano Berardi and Mario Coppo, editors, Types
for Proofs and Programs, International Workshop TYPES’95, Torino, Italy, June 5-8, 1995,
Selected Papers, volume 1158 of Lecture Notes in Computer Science, pages 120–134. Springer,
1995. doi:10.1007/3-540-61780-9_66.

10 Peter Dybjer and Hugo Moeneclaey. Finitary Higher Inductive Types in the Groupoid Model.
Electr. Notes Theor. Comput. Sci., 336:119–134, 2018. doi:10.1016/j.entcs.2018.03.019.

11 Eric Finster and Samuel Mimram. A type-theoretical definition of weak ω-categories. In 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland,
June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005124.

12 Marcelo Fiore. Discrete Generalised Polynomial Functors, 2012. Slides from talk given at
ICALP 2012, http://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf.

13 Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides,
pages 83–111. Oxford Univ. Press, New York, 1998.

14 Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent Foundations
(after Voevodsky), 2012. arXiv:1211.2851.

15 Ambroise Lafont, Tom Hirschowitz, and Nicolas Tabareau. Types are weak omega-groupoids,
in Coq. Talk at TYPES 2018, Link to online abstract (pdf).

16 Tom Leinster. Basic Bicategories, 1998. arXiv:math/9810017.
17 The Coq development team. The Coq Proof Assistant, 2018. Version 8.8.
18 nLab authors. Bicategory, December 2018. Revision 43.
19 Andrew M. Pitts. Categorical Logic. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,

editors, Handbook of Logic in Computer Science, Volume 5. Algebraic and Logical Structures,
chapter 2, pages 39–128. Oxford University Press, 2000.

20 Paul Taylor. Practical Foundations of Mathematics, volume 59 of Cambridge studies in
advanced mathematics. Cambridge University Press, 1999.

21 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

22 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. Available at https://github.com/UniMath/UniMath.

FSCD 2019

http://dx.doi.org/10.1017/S0960129513000881
http://dx.doi.org/10.1007/3-540-61780-9_66
http://dx.doi.org/10.1016/j.entcs.2018.03.019
http://dx.doi.org/10.1109/LICS.2017.8005124
http://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf
http://arxiv.org/abs/1211.2851
https://types2018.projj.eu/wp-content/uploads/2018/06/BookOfAbstractsTYPES2018.pdf
http://arxiv.org/abs/math/9810017
http://coq.inria.fr
http://ncatlab.org/nlab/revision/bicategory/43
https://homotopytypetheory.org/book
https://github.com/UniMath/UniMath

Modular Specification of Monads Through
Higher-Order Presentations
Benedikt Ahrens
University of Birmingham, United Kingdom
B.Ahrens@cs.bham.ac.uk

André Hirschowitz
Université Côte d’Azur, CNRS, LJAD, Nice, France
ah@unice.fr

Ambroise Lafont
IMT Atlantique, Inria, LS2N CNRS, Nantes, France
ambroise.lafont@inria.fr

Marco Maggesi
Università degli Studi di Firenze, Italy
marco.maggesi@unifi.it

Abstract
In their work on second-order equational logic, Fiore and Hur have studied presentations of simply
typed languages by generating binding constructions and equations among them. To each pair
consisting of a binding signature and a set of equations, they associate a category of “models”, and
they give a monadicity result which implies that this category has an initial object, which is the
language presented by the pair.

In the present work, we propose, for the untyped setting, a variant of their approach where
monads and modules over them are the central notions. More precisely, we study, for monads over
sets, presentations by generating (“higher-order”) operations and equations among them. We consider
a notion of 2-signature which allows to specify a monad with a family of binding operations subject
to a family of equations, as is the case for the paradigmatic example of the lambda calculus, specified
by its two standard constructions (application and abstraction) subject to β- and η-equalities. Such
a 2-signature is hence a pair (Σ,E) of a binding signature Σ and a family E of equations for Σ. This
notion of 2-signature has been introduced earlier by Ahrens in a slightly different context.

We associate, to each 2-signature (Σ, E), a category of “models of (Σ, E)”; and we say that a
2-signature is “effective” if this category has an initial object; the monad underlying this (essentially
unique) object is the “monad specified by the 2-signature”. Not every 2-signature is effective; we
identify a class of 2-signatures, which we call “algebraic”, that are effective.

Importantly, our 2-signatures together with their models enjoy “modularity”: when we glue
(algebraic) 2-signatures together, their initial models are glued accordingly.

We provide a computer formalization for our main results.

2012 ACM Subject Classification Theory of computation → Algebraic language theory

Keywords and phrases free monads, presentation of monads, initial semantics, signatures, syntax,
monadic substitution, computer-checked proofs

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.6

Supplement Material Computer-checked proofs with compilation instructions on https://github.
com/UniMath/largecatmodules/tree/50fd617.

Funding This work has partly been funded by the CoqHoTT ERC Grant 637339. This material
is based upon work supported by the Air Force Office of Scientific Research under award number
FA9550-17-1-0363.
Benedikt Ahrens: Ahrens acknowledges the support of the Centre for Advanced Study (CAS) in
Oslo, Norway, which funded and hosted the research project Homotopy Type Theory and Univalent
Foundations during the 2018/19 academic year.
Marco Maggesi: Supported by GNSAGA-INdAM and MIUR.

© Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6786-4538
mailto:B.Ahrens@cs.bham.ac.uk
https://orcid.org/0000-0003-2523-1481
mailto:ah@unice.fr
https://orcid.org/0000-0002-9299-641X
mailto:ambroise.lafont@inria.fr
https://orcid.org/0000-0003-4380-7691
mailto:marco.maggesi@unifi.it
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://github.com/UniMath/largecatmodules/tree/50fd617
https://github.com/UniMath/largecatmodules/tree/50fd617
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Modular Specification of Monads Through Higher-Order Presentations

Acknowledgements We thank Paige R. North for a valuable hint regarding preservation of epi-
morphisms. We also thank the referees for their careful reading and thoughtful and constructive
criticism.

1 Introduction

The present work is devoted to the study of presentations of monads on the category of
sets. More precisely, there is a well established theory of presentations of monads through
generating (first-order) operations equipped with relations among the corresponding derived
operations. Here we propose a counterpart of this theory, where we consider generation of
monads by binding operations. Various algebraic structures generated by binding operations
have been considered by many, going back at least to Fiore, Plotkin, and Turi [10], Gabbay
and Pitts [12], and Hofmann [18]. Every such operation has a binding arity, which is a
sequence of non-negative integers. For example, the binding arity of the application operation
of the lambda calculus is (0, 0): it takes two arguments without binding any variable in them,
while the abstraction operation on the monad of the lambda calculus has binding arity (1),
as it binds one variable in its single argument. For each family Σ of binding arities, there is
a generated “free” monad Σ̂ on Set which maps a set of free variables X to the set of terms
Σ̂(X) taking variables in X.

If p : Σ̂→ R is a monad epimorphism, we understand that R is generated by a family
of operations whose binding arities are given by Σ, subject to suitable identifications. In
particular, for Σ := ((0, 0), (1)), Σ̂ may be understood as the monad LC of syntactic terms of
the lambda calculus, and we have an obvious epimorphism p : Σ̂→ LCβη, where LCβη is the
monad of lambda-terms modulo β and η. In order to manage such equalities, the approach
in the first-order case suggests to identify p as the coequalizer of a double arrow from T to Σ̂
where T is again a “free” monad. Let us see what comes out when we attempt to find such
an encoding for the β-equality of the monad LCβη. It should say that for each set X, the
following two maps from Σ̂(X + {∗})× Σ̂(X) to Σ̂(X),

(t, u) 7→ app(abs(t), u)
(t, u) 7→ t[∗ 7→ u]

are equal. Here a problem occurs, namely that the above collections of maps, which can
be understood as a morphism of functors, cannot be understood as a morphism of monads.
Notably, they do not send variables to variables.

On the other hand, we observe that the members of our equations, which are not
morphisms of monads, commute with substitution, and hence are more than morphisms of
functors: indeed they are morphisms of modules over Σ̂. (In Section 2, we recall briefly what
modules over a monad are.) Accordingly, a (second-order) presentation for a monad R could
be a diagram

T //

f
// Σ̂ p

// R (1)

where Σ is a binding signature, Σ̂ is the associated free monad, T is a module over Σ̂, f is
a pair of morphisms of modules over Σ̂, and p is a monad epimorphism. And now we are
faced with the task of finding a condition meaning something like “p is the coequalizer of f”1.
To this end, we introduce the category MonΣ “of models of Σ”, whose objects are monads
“equipped with an action of Σ”. Of course Σ̂ is equipped with such an action which turns it
into the initial object. Next, we define the full subcategory of models satisfying the equation

1 This cannot be the case stricto sensu since f is a pair of module morphisms while p is a monad morphism.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:3

f , and require R to be the initial object therein. Our definition is suited for the case where
the equation f is parametric in the model: this means that now T and f are functions of the
model S, and f(S) = (u(S), v(S)) is a pair of S-module morphisms from T (S) to S. We say
that S satisfies the equation f if u(S) = v(S). Generalizing the case of one equation to the
case of a family of equations yields the notion of 2-signature already introduced by Ahrens
[1] in a slightly different context.

Now we are ready to formulate our main problem: given a 2-signature (Σ, E), where E is
a family of parametric equations as above, does the subcategory of models of Σ satisfying
the family of equations E admit an initial object?

We answer positively for a large subclass of 2-signatures which we call algebraic 2-
signatures (see Theorem 32).

This provides a construction of a monad from an algebraic 2-signature, and we prove
furthermore (see Theorem 27) that this construction is modular, in the sense that merging
two extensions of 2-signatures corresponds to building an amalgamated sum of initial models.
This is analogous to our previous result for 1-signatures shown in [2, Theorem 32].

As expected, our initiality property generates a recursion principle which is a recipe
allowing us to specify a morphism from the presented monad to any given other monad.

We give various examples of monads arising “in nature” that can be specified via an
algebraic 2-signature (see Section 6), and we also show through a simple example how our
recursion principle applies (see Section 7).

Computer-checked formalization. This work is accompanied by a computer-checked form-
alization of the main results, based on the formalization of our previous work [2]. We
work over the UniMath library [27], which is implemented in the proof assistant Coq
[23]. The formalization consists of about 9,500 lines of code, and can be consulted on
https://github.com/UniMath/largecatmodules. A guide is given in the README, and
a summary of our formalization is available at https://initialsemantics.github.io/
doc/50fd617/Modules.SoftEquations.Summary.html.

For the purpose of this article, we refer to a fixed version of our library, with the short
hash 50fd617. This version compiles with version 10839ee of UniMath.

Throughout the article, statements are annotated with their corresponding identifiers in
the formalization. These identifiers are also hyperlinks to the online documentation stored
at https://initialsemantics.github.io/doc/50fd617/index.html.

Related work. The present work follows a previous work of ours [2] where we study a
slightly different kind of presentation of monads. Specifically, in [2], we treat a class of
1-signatures which can be understood as quotients of algebraic 1-signatures. This should
amount to considering a specific kind of equations, as suggested in Section 6.2, where we
recover, in the current setting, all the examples given there.

Ahrens [1] introduces the notion of 2-signature which we consider here, in the slightly
different context of (relative) monads on preordered sets, where the preorder models the
reduction relation. In some sense, our result tackles the technical issue of quotienting the
initial (relative) monad constructed in [1] by the preorder.

In a classical paper, Barr [3] explained the construction of the “free monad” generated by
an endofunctor2. In another classical paper, Kelly and Power [19] explained how any finitary

2 Fiore and Saville [11] give an enlightening generalization of the construction by Barr.

FSCD 2019

https://github.com/UniMath/largecatmodules
https://github.com/UniMath/largecatmodules/blob/50fd617/README.md
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Summary.html
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Summary.html
https://github.com/UniMath/largecatmodules/tree/50fd6170bd37f706900494366c296a572facaa24
https://github.com/UniMath/UniMath/tree/10839eec83e48397b5544f249662d3b5d126b5cd
https://github.com/UniMath/UniMath
https://initialsemantics.github.io/doc/50fd617/index.html

6:4 Modular Specification of Monads Through Higher-Order Presentations

monad can be presented as a coequalizer of free monads3. There, free monads correspond to
our initial models of an algebraic 1-signature without any binding construction.

As mentioned above, the present work is also closely related to that of Fiore and
collaborators:

Our notion of equations and that of model for them seem very close to the notion of
equational systems and that of algebra for them in [7]: in particular, the preservation of
epimorphisms, which occurs in their construction of inductive free algebras for equational
systems, appears here in our definition of elementary equation. It would be interesting to
understand formal connections between the two approaches.
In [8], Fiore and Hur introduce a notion of equation based on syntax with meta-variables:
essentially, a specific syntax, say, T := T (M,X) considered there depends on two contexts:
a meta-context M , and an object-context X. The terms of the actual syntax are then
those terms t ∈ T (∅, X) in an empty meta-context. An equation for T is, simply speaking,
a pair of terms in the same pair of contexts. Transferring an equation to any model of the
underlying algebraic 1-signature is done by induction on the syntax with meta-variables.
The authors show a monadicity theorem which straightforwardly implies an initiality
result very similar to ours. That monadicity result is furthermore an instance of a more
general theorem by Fiore and Mahmoud [9, Theorem 6.2].
Translations between languages similar to the translation we present in Section 7 are also
studied in [9]. Here again, it would be interesting to understand formal connections.
At this stage, our work only concerns untyped syntax, but we anticipate it will generalize
to the sorted setting as in [8] (see also the more general [6]).

Furthermore, Hamana [15] proposes initial algebra semantics for “binding term rewriting
systems”, based on Fiore, Plotkin, and Turi’s presheaf semantics of variable binding and
Lüth and Ghani’s monadic semantics of term rewriting systems [21].

The alternative nominal approach to binding syntax initiated by Gabbay and Pitts [12]
has been actively studied4. We highlight some contributions:

Clouston [4] discusses signatures, structures (a.k.a. models), and equations over signatures
in nominal style.
Fernández and Gabbay [5] study signatures and equational theories as well as rewrite
theories over signatures.
Kurz and Petrisan [20] study closure properties of subcategories of algebras under
quotients, subalgebras, and products. They characterize full subcategories closed under
these operations as those that are definable by equations. They also show that the
signature of the lambda calculus is effective, and study the subcategory of algebras of
that signature specified by the β- and η-equations.

2 Categories of modules over monads

In this section, we recall the notions of monad and module over a monad, as well as some
constructions of modules. We restrict our attention to the category Set of sets, although most
definitions are straightforwardly generalizable. See [17] for a more extensive introduction.

A monad (over Set) is a triple R = (R,µ, η) given by a functor R : Set −→ Set, and
two natural transformations µ : R · R −→ R and η : I −→ R such that the well-known
monadic laws hold. A monad morphism to another such monad (R′, µ′, η′) is a natural

3 Their work has been applied to various more general contexts (e.g. [25]).
4 The approaches by Fiore and collaborators and Gabbay and Pitts [12] are nicely compared by Power

[24], who also comments on some generalization of the former approach.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:5

transformation f : R → R′ that commutes with the monadic structure. The category of
monads is denoted by Mon.

Let R be a monad. A (left) R-module5 is given by a functor M : Set −→ Set equipped
with a natural transformation ρ : M ·R −→M , called module substitution, which is compatible
with the monad composition and identity:

ρ ◦ ρR = ρ ◦Mµ, ρ ◦Mη = 1M .

Let f : R −→ S be a morphism of monads and M an S-module. The module substitution
M ·R Mf−→M · S ρ−→M turns M into an R-module f∗M , called pullback of M along f .

A natural transformation of R-modules ϕ : M −→ N is linear if it is compatible with
module substitution on either side, that is, if ϕ ◦ ρM = ρN ◦ ϕR. Modules over R and their
morphisms form a category denoted Mod(R), which is complete and cocomplete: limits and
colimits are computed pointwise.

We define the total module category
∫
R

Mod(R) as follows: its objects are pairs (R,M)
of a monad R and an R-moduleM . A morphism from (R,M) to (S,N) is a pair (f,m) where
f : R −→ S is a morphism of monads, and m : M −→ f∗N is a morphism of R-modules.
The category

∫
R

Mod(R) comes equipped with a forgetful functor to the category of monads,
given by the projection (R,M) 7→ R. This functor is a Grothendieck fibration with fiber
Mod(R) over R. In particular, any monad morphism f : R −→ S gives rise to a functor
f∗ : Mod(S) −→ Mod(R) which preserves limits and colimits.

I Example 1. We give some important examples of modules:
1. Every monad R is a module over itself, which we call the tautological module.
2. For any functor F : Set −→ Set and any R-module M : Set −→ Set, the composition

F ·M is an R-module (in the evident way).
3. For every set W we denote by W: Set −→ Set the constant functor W := X 7→W . Then

W is trivially an R-module since W = W ·R.
4. Given an R-module M , the R-module M ′ is defined on objects by M ′(X) := M(X+{∗}),

and with the obvious module structure. Derivation yields an endofunctor on Mod(R)
that is right adjoint to the functor M 7→M ×R, “product with the tautological module”.
Details are given, e.g., in [2, Section 2.3].

5. Derivation can be iterated. Given a list of non negative integers (a) = (a1, . . . , an)
and a left module M over a monad R, we denote by M (a) = M (a1,...,an) the module
M (a1) × · · · ×M (an), with M () = 1 the final module.

3 1-signatures and their models

In this section, we review the notion of 1-signature studied in detail in [2] – there only called
“signature”.

A 1-signature is a section of the forgetful functor from the category
∫
R

Mod(R) to the
category Mon. A morphism between two 1-signatures Σ1,Σ2 : Mon −→

∫
R

Mod(R)
is a natural transformation m : Σ1 −→ Σ2 which, post-composed with the projection∫
R

Mod(R) −→ Mon, is the identity. The category of 1-signatures is denoted by 1-Sig.
Limits and colimits of 1-signatures can be easily constructed pointwise: the category of

1-signatures is complete and cocomplete.

5 The analogous notion of right R-module is not used in this work, we hence simply write “R-module”
instead of “left R-module” for brevity.

FSCD 2019

6:6 Modular Specification of Monads Through Higher-Order Presentations

Table 1 Examples of 1-signatures.

Hypotheses On objects Notation of the 1-signature
R 7→ R Θ

Σ 1-signature, F functor R 7→ F · Σ(R) F · Σ
R 7→ 1R 1

Σ, Ψ 1-signatures R 7→ Σ(R)×Ψ(R) Σ×Ψ
Σ, Ψ 1-signatures R 7→ Σ(R) + Ψ(R) Σ + Ψ

R 7→ R′ Θ′

n ∈ N R 7→ R(n) Θ(n)

(a) = (a1, . . . , an) ∈ Nn R 7→ R(a) = R(a1) × . . .×R(an) Θ(a) elementary signatures

Table 1 lists important examples of 1-signatures. An algebraic 1-signature is a (possibly
infinite) coproduct of elementary signatures (defined in Table 1). For instance, the algebraic
1-signature of the lambda calculus is ΣLC = Θ2 + Θ′.

Given a monad R over Set, we define an action of the 1-signature Σ in R to be a
module morphism from Σ(R) to R. For example, the application app : LC2 −→ LC is an
action of the elementary 1-signature Θ2 into the monad LC of syntactic lambda calculus.
The abstraction abs : LC′ −→ LC is an action of the elementary 1-signature Θ′ into the
monad LC. Then [app, abs] : LC2 + LC′ −→ LC is an action of the algebraic 1-signature of
the lambda-calculus Θ2 + Θ′ into the monad LC.

Given a 1-signature Σ, we build the category MonΣ of models of Σ as follows. Its objects
are pairs (R, r) of a monad R equipped with an action r : Σ(R) → R of Σ. A morphism
from (R, r) to (S, s) is a morphism of monads m : R→ S making the following diagram of
R-modules commutes:

Σ(R) r //

Σ(m)
��

R

m

��

m∗(Σ(S))
m∗s

// m∗S

Let f : Σ −→ Ψ be a morphism of 1-signatures and R = (R, r) a model of Ψ. The linear
morphism Σ(R) f(R)−→ Ψ(R) r−→ R defines an action of Σ in R. The induced model of Σ is
called pullback of R along f and noted f∗R.

The total category
∫

Σ MonΣ of models is defined as follows:
An object of

∫
Σ MonΣ is a triple (Σ, R, r) where Σ is a 1-signature, R is a monad, and r

is an action of Σ in R.
A morphism in

∫
Σ MonΣ from (Σ1, R1, r1) to (Σ2, R2, r2) consists of a pair (i,m) of a

1-signature morphism i : Σ1 −→ Σ2 and a morphism m of Σ1-models from (R1, r1) to
(R2, i

∗(r2)).
The forgetful functor

∫
Σ MonΣ → Sig is a Grothendieck fibration.

Given a 1-signature Σ, the initial object in MonΣ, if it exists, is denoted by Σ̂. In this
case, the 1-signature Σ is said effective6.

I Theorem 2 ([16, Theorems 1 and 2]). Algebraic 1-signatures are effective.

6 In our previous work [2], we call representable any 1-signature Σ that has an initial model, called a
representation of Σ, or syntax generated by Σ.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:7

4 2-Signatures and their models

In this section we study 2-signatures and models of 2-signatures. A 2-signature is a pair of a
1-signature and a family of equations over it.

4.1 Equations

Our equations are those of Ahrens [1]: they are parallel module morphisms parametrized by
the models of the underlying 1-signature. The underlying notion of 1-model is essentially the
same as in [1], even if, there, such equations are interpreted instead as inequalities.

Throughout this subsection, we fix a 1-signature Σ, that we instantiate in the examples.

I Definition 3. We define a Σ-module to be a functor T from the category of models of
Σ to the category

∫
R

Mod(R) commuting with the forgetful functors to the category Mon of
monads,

MonΣ

##

T //
∫
R

Mod(R)

yy

Mon

I Example 4. To each 1-signature Ψ is associated, by precomposition with the projection
from MonΣ to Mon, a Σ-module still denoted Ψ. All the Σ-modules occurring in this work
arise in this way from 1-signatures; in other words, they do not depend on the action of the
1-model. In particular, we have the tautological Σ-module Θ, and, more generally, for
any natural number n ∈ N, a Σ-module Θ(n). Also we have another fundamental Σ-module
(arising in this way from) Σ itself.

I Definition 5. Let S and T be Σ-modules. We define a morphism of Σ-modules from S

to T to be a natural transformation from S to T which becomes the identity when postcomposed
with the forgetful functor

∫
R

Mod(R)→ Mon.

I Example 6. Each 1-signature morphism Ψ→ Φ upgrades into a morphism of Σ-modules.
Further in that vein, there is a morphism of Σ-modules τΣ : Σ→ Θ. It is given, on a model
(R,m) of Σ, by m : Σ(R)→ R. (Note that it does not arise from a morphism of 1-signatures.)
When the context is clear, we write simply τ for this morphism, and call it the tautological
morphism of Σ-modules.

I Proposition 7. Our Σ-modules and their morphisms, with the obvious composition and
identity, form a category.

I Definition 8. We define a Σ-equation to be a pair of parallel morphisms of Σ-modules.
We also write e1 = e2 for the Σ-equation e = (e1, e2).

I Example 9 (Commutativity of a binary operation). Here we instantiate our fixed 1-signature
as follows: Σ := Θ×Θ. In this case, we say that τ is the (tautological) binary operation.
Now we can formulate the usual law of commutativity for this binary operation.

We consider the morphism of 1-signatures swap : Θ2 −→ Θ2 that exchanges the two
components of the direct product. Again by Example 6, we have an induced morphism of
Σ-modules, still denoted swap.

FSCD 2019

6:8 Modular Specification of Monads Through Higher-Order Presentations

Then, the Σ-equation for commutativity is given by the two morphisms of Σ-modules

Θ2 swap
// Θ2 τ // Θ

Θ2
τ

// Θ

See also Section 6.1 where we explain in detail the case of monoids.

For the example of the lambda calculus with β- and η-equality (given in Example 11), we
need to introduce currying:

I Definition 10. By abstracting over the base monad R the adjunction in the category of
R-modules of Example 1, item 4, we can perform currying of morphisms of 1-signatures:
given a morphism of signatures Σ1 × Θ → Σ2 it produces a new morphism Σ1 → Σ′2. By
Example 4, currying acts also on morphisms of Σ-modules.

Conversely, given a morphism of 1-signatures (resp. Σ-modules) Σ1 → Σ′2, we can define
the uncurryied map Σ1 ×Θ→ Σ2.

I Example 11 (β- and η-conversions). Here we instantiate our fixed 1-signature as follows:
ΣLC := Θ×Θ + Θ′. This is the 1-signature of the lambda calculus. We break the tautological
Σ-module morphism into its two pieces, namely app := τ ◦ inl : Θ×Θ −→ Θ and abs := τ ◦ inr :
Θ′ −→ Θ. Applying currying to app yields the morphism app1 : Θ −→ Θ′ of ΣLC-modules.
The usual β and η relations are implemented in our formalism by two ΣLC-equations that we
call eβ and eη respectively:

eβ :
Θ′ abs // Θ

app1 // Θ′

Θ′
1

// Θ′
and eη :

Θ
app1 // Θ′ abs // Θ

Θ
1

// Θ

4.2 2-signatures and their models
I Definition 12. A 2-signature is a pair (Σ, E) of a 1-signature Σ and a family E of
Σ-equations.

I Example 13. The 2-signature for a commutative binary operation is (Θ2, τ ◦ swap = τ)
(cf. Example 9).

I Example 14. The 2-signature of the lambda calculus modulo β- and η-equality is ΥLCβη =
(Θ×Θ + Θ′, {eβ , eη}), where eβ , eη are the ΣLC-equations defined in Example 11.

I Definition 15 (satisfies_equation). We say that a model M of Σ satisfies the Σ-
equation e = (e1, e2) if e1(M) = e2(M). If E is a family of Σ-equations, we say that a
model M of Σ satisfies E if M satisfies each Σ-equation in E.

I Definition 16. Given a monad R and a 2-signature Υ = (Σ, E), an action of Υ in R is
an action of Σ in R such that the induced 1-model satisfies all the equations in E.

I Definition 17 (category_model_equations). For a 2-signature (Σ, E), we define the
category Mon(Σ,E) of models of (Σ, E) to be the full subcategory of the category of models
of Σ whose objects are models of Σ satisfying E, or equivalently, monads equipped with an
action of (Σ, E).

I Example 18. A model of the 2-signature ΥLCβη = (Θ×Θ+Θ′, {eβ , eη}) is given by a model
(R, appR : R × R → R, absR : R′ → R) of the 1-signature ΣLC such that appR1 · absR = 1R′
and absR · appR1 = 1R (see Example 11).

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Equation.html#satisfies_equation
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Equation.html#category_model_equations

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:9

I Definition 19. A 2-signature (Σ, E) is said to be effective if its category of models
Mon(Σ,E) has an initial object, denoted (̂Σ, E).

In Section 4.4, we aim to find sufficient conditions for a 2-signature (Σ, E) to be effective.

4.3 Modularity for 2-signatures
In this section, we define the category 2Sig of 2-signatures and the category 2Mod of models
of 2-signatures, together with functors that relate them with the categories of 1-signatures
and 1-models. The situation is summarized in the commutative diagram of functors

2Mod
UMod

((

FMod

hh >

2π

��

Mod

π

��

2Sig
USig

((

FSig

hh > Sig

where
2π is a Grothendieck fibration;
π is the Grothendieck fibration defined in [2, Section 5.2];
USig is a coreflection and preserves colimits; and
UMod is a coreflection.

As a simple consequence of this data, we obtain, in Theorem 27, a modularity result in
the sense of Ghani, Uustalu, and Hamana [13]: it explains how the initial model of an
amalgamated sum of 2-signatures is the amalgamation of the initial model of the summands7.

We start by defining the category 2Sig of 2-signatures:

I Definition 20 (TwoSig_category). Given 2-signatures (Σ1, E1) and (Σ2, E2), a morph-
ism of 2-signatures from (Σ1, E1) to (Σ2, E2) is a morphism of 1-signatures m : Σ1 →
Σ2 such that for any model M of Σ2 satisfying E2, the Σ1-model m∗M satisfies E1.

These morphisms, together with composition and identity inherited from 1-signatures,
form the category 2Sig.

We now study the existence of colimits in 2Sig. We know that Sig is cocomplete, and we
use this knowledge in our study of 2Sig, by relating the two categories:

Let FSig : Sig → 2Sig be the functor which associates to any 1-signature Σ the empty
family of equations, FSig(Σ) := (Σ, ∅). Call USig : 2Sig→ Sig the forgetful functor defined on
objects as USig(Σ, E) := Σ.

I Lemma 21 (TwoSig_OneSig_is_right_adjoint, OneSig_TwoSig_fully_faithful). We
have FSig a USig. Furthermore, USig is a coreflection.

We are interested in specifying new languages by “gluing together” simpler ones. On the
level of 2-signatures, this is done by taking the coproduct, or, more generally, the pushout of
2-signatures:

7 As noticed by an anonymous referee, this definition of “modularity” does not seem related to the specific
meaning it has in the rewriting community (see, for example, [14]).

FSCD 2019

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoSig_category
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoSig_OneSig_is_right_adjoint
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#OneSig_TwoSig_fully_faithful

6:10 Modular Specification of Monads Through Higher-Order Presentations

I Theorem 22 (TwoSig_PushoutsSET). The category 2Sig has pushouts.

Coproducts are computed by taking the union of the equations and the coproducts of
the underlying 1-signatures. Coequalizers are computed by keeping the equations of the
codomain and taking the coequalizer of the underlying 1-signatures. Thus, by decomposing
any colimit into coequalizers and coproducts, we have this more general result:

I Proposition 23. The category 2Sig is cocomplete and USig preserves colimits.

We now turn to our modularity result, which states that the initial model of a coproduct
of two 2-signatures is the coproduct of the initial models of each 2-signature. More generally,
the two languages can be amalgamated along a common “core language”, by considering a
pushout rather than a coproduct.

For a precise statement of that result, we define a “total category of models of 2-signatures”:

I Definition 24. The category
∫

(Σ,E) Mon(Σ,E), or 2Mod for short, has, as objects, pairs
((Σ, E),M) of a 2-signature (Σ, E) and a model M of (Σ, E).

A morphism from ((Σ1, E1),M1) to ((Σ2, E2),M2) is a pair (m, f) consisting of a morph-
ism m : (Σ1, E1)→ (Σ2, E2) of 2-signatures and a morphism f : M1 → m∗M2 of (Σ1, E1)-
models (or, equivalently, of Σ1-models).

This category of models of 2-signatures contains the models of 1-signatures as a coreflective
subcategory. Let FMod : Mod→ 2Mod be the functor which associates to any 1-model (Σ,M)
the empty family of equations, FMod(Σ,M) := (FSig(Σ),M). Conversely, the forgetful functor
UMod : 2Mod→ Mod maps ((Σ, E),M) to (Σ,M).

I Lemma 25 (TwoMod_OneMod_is_right_adjoint, OneMod_TwoMod_fully_faithful). We
have FMod a UMod. Furthermore, UMod is a coreflection.

The modularity result is a consequence of the following technical result:

I Proposition 26 (TwoMod_cleaving). The forgetful functor 2π : 2Mod→ 2Sig is a Grothen-
dieck fibration.

The modularity result below is analogous to the modularity result for 1-signatures [2,
Theorem 32]:

I Theorem 27 (Modularity for 2-signatures, pushout_in_big_rep). Suppose we have a
pushout diagram of effective 2-signatures, as on the left below. This pushout gives rise to
a commutative square of morphisms of models in 2Mod as on the right below, where we
only write the second components, omitting the (morphisms of) signatures. This square is a
pushout square.

Υ0 //

��

Υ1

��

Υ2 // Υ
p

Υ̂0 //

��

Υ̂1

��

Υ̂2 // Υ̂
p

Intuitively, the 2-signatures Υ1 and Υ2 specify two extensions of the 2-signature Υ0, and Υ
is the smallest extension containing both these extensions. By Theorem 27 the initial model
of Υ is the “smallest model containing both the languages generated by Υ1 and Υ2”.

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoSig_PushoutsSET
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoMod_OneMod_is_right_adjoint
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#OneMod_TwoMod_fully_faithful
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.CatOfTwoSignatures.html#TwoMod_cleaving
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Modularity.html#pushout_in_big_rep

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:11

4.4 Initial Semantics for 2-Signatures
We now turn to the problem of constructing the initial model of a 2-signature (Σ, E). More
specifically, we identify sufficient conditions for (Σ, E) to admit an initial object (̂Σ, E) in
the category of models. Our approach is very straightforward: we seek to construct (̂Σ, E)
by applying a suitable quotient construction to the initial object Σ̂ of MonΣ.

This leads immediately to our first requirement on (Σ, E), which is that Σ must be an
effective 1-signature. (For instance, we can assume that Σ is an algebraic 1-signature, see
Theorem 2.) This is a very natural hypothesis, since in the case where E is the empty family
of Σ-equations, it is obviously a necessary and sufficient condition.

Some Σ-equations are never satisfied. In that case, the category Mon(Σ,E) is empty. For
example, given any 1-signature Σ, consider the Σ-equation inl, inr : Θ ⇒ Θ + Θ given by
the left and right inclusion. This is obviously an unsatisfiable Σ-equation. We have to find
suitable hypotheses to rule out such unsatisfiable Σ-equations. This motivates the notion of
elementary equations.

IDefinition 28. Given a 1-signature Σ, a Σ-module S is nice if S sends pointwise epimorphic
Σ-model morphisms to pointwise epimorphic module morphisms.

I Definition 29 (elementary_equation). Given a 1-signature Σ, an elementary Σ-
equation is a Σ-equation such that

the target is a finite derivative of the tautological 2-signature Θ, i.e., of the form Θ(n) for
some n ∈ N, and
the source is a nice Σ-module.

I Example 30 (BindingSigAreEpiSig). Any algebraic 1-signature is nice [2, Example 45].
Thus, any Σ-equation between an algebraic 1-signature and Θ(n), for some natural number
n, is elementary.

I Definition 31. A 2-signature (Σ, E) is said algebraic if Σ is algebraic and E is a family
of elementary equations.

I Theorem 32 (elementary_equations_on_alg_preserve_initiality). Any algebraic
2-signature has an initial model.

The proof of Theorem 32 is given in Section 5.

I Example 33. The 2-signature of lambda calculus modulo β and η equations given in
Example 14 is algebraic. Its initial model is precisely the monad LCβη of lambda calculus
modulo βη equations.

The instantiation of the formalized Theorem 32 to this 2-signature is done in LCBetaEta8.

Let us mention finally that, using the axiom of choice, we can take a similar quotient on
all the 1-models of Σ:

I Proposition 34 (ModEq_Mod_is_right_adjoint, ModEq_Mod_fully_faithful). Here we
assume the axiom of choice. The forgetful functor from the category Mon(Σ,E) of 2-models
of (Σ, E) to the category MonΣ of Σ-models has a left adjoint. Moreover, the left adjoint
is a reflector.

8 An initiality result for this particular case was also previously discussed and proved formally in the Coq
proof assistant in [17].

FSCD 2019

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.quotientequation.html#elementary_equation
https://initialsemantics.github.io/doc/50fd617/Modules.Signatures.BindingSig.html#BindingSigAreEpiSig
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.AdjunctionEquationRep.html#elementary_equations_on_alg_preserve_initiality
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Examples.LCBetaEta.html#LCBetaEta
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.AdjunctionEquationRep.html#ModEq_Mod_is_right_adjoint
https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.Equation.html#ModEq_Mod_fully_faithful

6:12 Modular Specification of Monads Through Higher-Order Presentations

5 Proof of Theorem 32

Our main technical result on effectiveness is the following Lemma 35. In Theorem 32, we
give a much simpler criterion that encompasses all the examples we give.

The main technical result is encapsulated in the following lemma.

I Lemma 35 (elementary_equations_preserve_initiality). Let (Σ, E) be a 2-signature
such that:
1. Σ sends epimorphic natural transformations to epimorphic natural transformations,
2. E is a family of elementary equations,
3. the initial 1-model of Σ exists,
4. the initial 1-model of Σ preserves epimorphisms,
5. the image by Σ of the initial 1-model of Σ preserves epimorphisms.
Then, the category of 2-models of (Σ, E) has an initial object.

Before tackling the proof of Lemma 35, we discuss how to derive Theorem 32 from it,
and we prove some auxiliary results.

We start with a lemma about preservation of epimorphisms:

I Lemma 36 (algebraic_model_Epi and BindingSig_on_model_isEpi). Let Σ be an al-
gebraic 1-signature. Then Σ̂ and Σ(Σ̂) preserve epimorphisms.

Now we have everything we need to prove Theorem 32:

Proof of Theorem 32. The “epimorphism” hypotheses of Lemma 35 are used to transfer
structure from the initial model Σ̂ of the 1-signature Σ onto a suitable quotient. There are
different ways to prove these hypotheses:

The axiom of choice implies conditions 4 and 5 since, in this case, any epimorphism in
Set is split and thus preserved by any functor.
Condition 5 is a consequence of condition 4 if Σ sends monads preserving epimorphisms
to modules preserving epimorphisms.
If Σ is algebraic, then conditions 1, 3, 4 and 5 are satisfied, cf. Example 30 and Lemma 36.

From the remarks above, we derive the simpler and weaker statement of Theorem 32 that
covers all our examples, which are algebraic. J

The rest of this section is dedicated to the proof of the main technical result, Lemma 35.
The reader inclined to do so may safely skip this part, and rely on the correctness of the
machine-checked proof instead.

The proof of Lemma 35 uses some quotient constructions that we present now:

I Proposition 37 (u_monad_def). Given a monad R preserving epimorphisms and a collec-
tion of monad morphisms (fi : R→ Si)i∈I , there exists a quotient monad R/(fi) together
with a projection pR : R −→ R/(fi), which is a morphism of monads such that each fi factors
through p.

Proof. The set R/(fi)(X) is computed as the quotient of R(X) with respect to the relation
x ∼ y if and only if fi(x) = fi(y) for each i ∈ I. This is a straightforward adaptation of
Lemma 47 of [2]. J

Note that the epimorphism preservation is implied by the axiom of choice, but can be
proven for the monad underlying the initial model Σ̂ of an algebraic 1-signature Σ even
without resorting to the axiom of choice.

The above construction can be transported on Σ-models:

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.AdjunctionEquationRep.html#elementary_equations_preserve_initiality
https://initialsemantics.github.io/doc/50fd617/Modules.Signatures.BindingSig.html#algebraic_model_Epi
https://initialsemantics.github.io/doc/50fd617/Modules.Signatures.BindingSig.html#BindingSig_on_model_isEpi
https://initialsemantics.github.io/doc/50fd617/Modules.Prelims.quotientmonadslice.html#u_monad_def

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:13

I Proposition 38 (u_rep_def). Let Σ be a 1-signature sending epimorphic natural transform-
ations to epimorphic natural transformations, and let R be a Σ-model such that R and Σ(R)
preserve epimorphisms. Let (fi : R→ Si)i∈I be a collection of Σ-model morphisms. Then the
monad R/(fi) has a natural structure of Σ-model and the quotient map pR : R −→ R/(fi) is
a morphism of Σ-models. Any morphism fi factors through pR in the category of Σ-models.

The fact that R and Σ(R) preserve epimorphisms is implied by the axiom of choice. The
proof follows the same line of reasoning as the proof of Proposition 37.

Now we are ready to prove the main technical lemma:

Proof of Lemma 35. Let Σ be an effective 1-signature, and let E be a set of elementary
Σ-equations. The plan of the proof is as follows:
1. Start with the initial model (Σ̂, σ), with σ : Σ(Σ̂)→ Σ̂.
2. Construct the quotient model Σ̂/(fi) according to Proposition 38 where (fi : Σ̂→ Si)i is

the collection of all initial Σ-morphisms from Σ̂ to any Σ-model satisfying the equations.
We denote by σ/(fi) : Σ(Σ̂/(fi))→ Σ̂/(fi) the action of the quotient model.

3. Given a model M of the 2-signature (Σ, E), we obtain a morphism iM : Σ̂/(fi) → M

from Proposition 38. Uniqueness of iM is shown using epimorphicity of the projection
p : Σ̂→ Σ̂/(fi). For this, it suffices to show uniqueness of the composition iM ◦p : Σ̂→M

in the category of 1-models of Σ, which follows from initiality of Σ̂.
4. The verification that

(
Σ̂/(fi), σ/(fi)

)
satisfies the equations is given below. Actually, it

follows the same line of reasoning as in the proof of Proposition 37 that Σ̂/(fi) satisfies
the monad equations.

Let e = (e1, e2) : U → Θ(n) be an elementary equation of E. We want to prove that the two
arrows

e1,Σ̂/(fi), e2,Σ̂/(fi) : U(Σ̂/(fi)) −→ (Σ̂/(fi))(n)

are equal. As p is an epimorphic natural transformation, U(p) also is by definition of an
elementary equation. It is thus sufficient to prove that

e1,Σ̂/(fi) ◦ U(p) = e2,Σ̂/(fi) ◦ U(p) ,

which, by naturality of e1 and e2, is equivalent to p(n) ◦ e1,Σ̂ = p(n) ◦ e2,Σ̂.
Let x be an element of U(Σ̂) and let us show that p(n)(e1,Σ̂(x)) = p(n)(e2,Σ̂(x)). By

definition of Σ̂/(fi) as a pointwise quotient (see Proposition 37), it is enough to show that
for any j, the equality f (n)

j (e1,Σ̂(x)) = f
(n)
j (e2,Σ̂(x)) is satisfied. Now, by naturality of e1

and e2, this equation is equivalent to e1,Sj (U(fj)(x))) = e2,Sj (U(fj)(x))) which is true since
Sj satisfies the equation e1 = e2. J

6 Examples of algebraic 2-signatures

We already illustrated our theory by looking at the paradigmatic case of lambda calculus
modulo β- and η-equations (Examples 11 and 33). This section collects further examples of
application of our results.

In our framework, complex signatures can be built out of simpler ones by taking their
coproducts. Note that the class of algebraic 2-signatures encompasses the algebraic 1-
signatures and is closed under arbitrary coproducts: the prototypical examples of algebraic
2-signatures given in this section can be combined with any other algebraic 2-signature,
yielding an effective 2-signature thanks to Theorem 32.

FSCD 2019

https://initialsemantics.github.io/doc/50fd617/Modules.SoftEquations.quotientrepslice.html#u_rep_def

6:14 Modular Specification of Monads Through Higher-Order Presentations

6.1 Monoids
We begin with an example of monad for a first-order syntax with equations. Given a set
X, we denote by M(X) the free monoid built over X. This is a classical example of monad
over the category of (small) sets. The monoid structure gives us, for each set X, two maps
mX : M(X)×M(X) −→M(X) and eX : 1 −→M(X) given by the product and the identity
respectively. It can be easily verified that m : M2 −→ M and e : 1 −→ M are M -module
morphisms. In other words, (M,ρ) = (M, [m, e]) is a model of the 1-signature Σ = Θ×Θ + 1.

We break the tautological morphism of Σ-modules (cf. Example 6) into constituent pieces,
defining m := τ ◦ inl : Θ×Θ→ Θ and e := τ ◦ inr : 1→ Θ.

Over the 1-signature Σ we specify equations postulating associativity and left and right
unitality as follows:

Θ3 Θ×m
// Θ2 m // Θ

Θ3
m×Θ

// Θ2
m
// Θ

Θ e×Θ
// Θ2 m // Θ

Θ
1

// Θ
Θ Θ×e

// Θ2 m // Θ
Θ

1
// Θ

and we denote by E the family consisting of these three Σ-equations. All are elementary
since their codomain is Θ, and their domain a product of Θs.

One checks easily that (M, [m, e]) is the initial model of (Σ, E).
Several other classical (equational) algebraic theories, such as groups and rings, can be

treated similarly, see Section 6.3 below. However, at the present state we cannot model
theories with partial construction (e.g., fields).

6.2 Colimits of algebraic 2-signatures
In this section, we argue that our framework encompasses any colimit of algebraic 2-signatures.

Actually, the class of algebraic 2-signatures is not stable under colimits, as this is not
even the case for algebraic 1-signatures. However, we can weaken this statement as follows:

I Proposition 39. Given any colimit of algebraic 2-signatures, there is an algebraic 2-
signature yielding an isomorphic category of models.

Proof. As the class of algebraic 2-signatures is closed under arbitrary coproducts, using
the decomposition of colimits into coproducts and coequalizers, any colimit Ξ of algebraic
2-signatures can be expressed as a coequalizer of two morphisms f, g between some algebraic
2-signatures (Σ1, E1) and (Σ2, E2),

(Σ1, E1)
f
//

g
// (Σ2, E2) p

// Ξ = (Σ3, E2) .

where Σ3 is the coequalizer of the 1-signatures morphisms f and g. Note that the set of
equations of Ξ is E2, by definition of the coequalizer in the category of 2-signatures. Now,
consider the algebraic 2-signature Ξ′ = (Σ2, E2 + (2)) consisting of the 1-signature Σ2 and
the equations of E2 plus the following elementary equation (see Example 30):

Σ1
f
// Σ2

τΣ2
// Θ

Σ1 g
// Σ2

τΣ2
// Θ

(2)

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:15

We show that MonΞ and MonΞ′ are isomorphic. A model of Ξ′ is a monad R together with
an R-module morphism r : Σ2(R)→ R such that r ◦ fR = r ◦ gR and that the equations of
E2 are satisfied. By universal property of the coequalizer, this is exactly the same as giving
an R-module morphism Σ3(R)→ R satisfying the equations of E2, i.e., giving R an action
of Ξ = (Σ3, E2).

It is straightforward to check that this correspondence yields an isomorphism between
the category of models of Ξ and the category of models of Ξ′. J

This proposition, together with the following corollary, allow us to recover all the examples
presented in [2], as colimits of algebraic 1-signatures: syntactic commutative binary operator,
maximum operator, application à la differential lambda calculus, syntactic closure operator,
integrated substitution operator, coherent fixpoint operator.

I Corollary 40. If F is a finitary endofunctor on Set, then there is an algebraic 2-signature
whose category of models is isomorphic to the category of 1-models of the 1-signature F ·Θ.

Proof. It is enough to prove that F ·Θ is a colimit of algebraic 1-signatures.
As F is finitary, it is isomorphic to the coend

∫ n∈N
F (n) × _n where N is the full

subcategory of Set of finite ordinals (see, e.g., [26, Example 3.19]). As colimits are computed
pointwise, the 1-signature F ·Θ is the coend

∫ n∈N
F (n)×Θn, and as such, it is a colimit of

algebraic 2-signatures. J

However, we do not know whether we can recover our theorem [2, Theorem 35] stating
that any presentable 1-signature is effective.

6.3 Algebraic theories
From the categorical point of view, several fundamental algebraic structures in mathematics
can be conveniently and elegantly described using finitary monads. For instance, the category
of monoids can be seen as the category of Eilenberg–Moore algebras of the monad of lists.
Other important examples, like groups and rings, can be treated analogously. A classical
reference on the subject is the work of Manes, where such monads are significantly called
finitary algebraic theories [22, Definition 3.17].

We want to show that such “algebraic theories” fit in our framework, in the sense that they
can be incorporated into an algebraic 2-signature, with the effect of enriching the initial model
with the operations of the algebraic theory, subject to the axioms of the algebraic theory.

For a finitary monad T , Corollary 40 says how to encode the 1-signature T · Θ as an
algebraic 2-signature (ΣT , ET). Models are monads R together with an R-linear morphism
r : T ·R→ R.

Now, for any model (R,m) of T · Θ, we would like to enforce the usual T -algebra
equations on the action m. This is done thanks to the following equations, where τ denotes
the tautological morphism of T ·Θ-modules:

Θ ηT ·Θ // T ·Θ τ // Θ
Θ

1
// Θ

T · T ·Θ µT ·Θ // T ·Θ τ // Θ
T · T ·Θ

Tτ
// T ·Θ

τ
// Θ

(3)

The first equation is clearly elementary. The second one is elementary thanks to the
following lemma:

I Lemma 41. Let F be a finitary endofunctor on Set. Then F preserves epimorphisms.

FSCD 2019

6:16 Modular Specification of Monads Through Higher-Order Presentations

Proof. An anonymous referee remarked that this is a consequence of the axiom of choice,
because then any epimorphism in the category of Set is split, and thus preserved by any functor.
Here we provide an alternative proof which does not rely on the axiom of choice. (However,
it may require the excluded middle, depending on the chosen definition of finitary functor.)

As F is finitary, it is isomorphic to the coend
∫ n∈N

F (n)× _n [26, Example 3.19]. By
decomposing it as a coequalizer of coproducts, we get an epimorphism α :

∐
n∈N F (n)×_n →

F . Now, let f : X → Y be a surjective function between two sets. We show that F (f) is
epimorphic. By naturality, the following diagram commutes:∐

n∈N F (n)×Xn
F (n)×fn

//

αX

��

∐
n∈N F (n)× Y n

αY

��

F (X)
F (f)

// F (Y)

The composition along the top-right is epimorphic by composition of epimorphisms. Thus, the
bottom left is also epimorphic, and so is F (f) as the last morphism of this composition. J

In conclusion, we have exhibited the algebraic 2-signature (ΣT , E′T), where E′T extends
the family ET with the two elementary equations of Diagram 3. This signature allows to
enrich any other algebraic 2-signature with the operations of the algebraic theory T , subject
to the relevant equations.

6.4 Fixpoint operator
Here, we show the algebraic 2-signature corresponding to a fixpoint operator. In [2, Sec-
tion 8.4] we studied fixpoint operators in the context of 1-signatures. In that setting, we
treated a syntactic fixpoint operator called coherent fixpoint operator, somehow reminiscent
of mutual letrec. We were able to impose many natural equations to this operator but we
were not able to enforce the fixpoint equation. In this section, we show how a fixpoint
operator can be fully specified by an algebraic 2-signature. We restrict our discussion to the
unary case; the coherent family of multi-ary fixpoint operators presented in [2, Section 8.4],
now including the fixpoint equations, can also be specified, in an analogous way, via an
algebraic 2-signature.

Let us start by recalling the following

I Definition 42. A unary fixpoint operator for a monad R [2, Definition 40] is a
module morphism f from R′ to R that makes the following diagram commute, where σ is the
substitution morphism defined as the uncurrying (see Definition 10) of the identity morphism
on Θ′:

R′ R′ ×R

R

(idR′ ,f)

f σR

In order to rephrase this definition, we introduce the obviously algebraic 2-signature Υfix
consisting of the 1-signature Σfix = Θ′ and the family Efix consisting of the single following
Σfix-equation:

efix : Θ′
〈1,τ〉

// Θ′ ×Θ σ // Θ
Θ′

τ
// Θ

(4)

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:17

This allows us to rephrase the previous definition as follows: a unary fixpoint operator
for a monad R is just an action of the 2-signature Υfix in R.

The name “fixpoint operator” is motivated by the following proposition:

I Proposition 43 ([2, Proposition 41]). Fixpoint combinators are in one-to-one correspondence
with actions of Υfix in the monad LCβη of the lambda calculus modulo β- and η-equality.

Recall that fixpoint combinators are lambda terms Y satisfying, for any (possibly open) term
t, the equation

app(t, app(Y, t)) = app(Y, t) .

Explicitly, such a combinator Y induces a fixpoint operator Ŷ : LC′βη → LCβη which associates,
to any term t depending on an additional variable ∗, the term Ŷ (t) := app(Y, abs t).

7 Recursion

In this section, we explain how a recursion principle can be derived from our initiality
result, and give an example of a morphism – a translation – between monads defined via the
recursion principle.

7.1 Principle of recursion
In our context, the recursion principle is a recipe for constructing a morphism from the
monad underlying the initial model of a 2-signature to an arbitrary monad.

I Proposition 44 (Recursion principle). Let S be the monad underlying the initial model of
the 2-signature Υ. To any action a of Υ in T is associated a monad morphism â : S → T .

Proof. The action a defines a 2-model M of Υ, and â is the monad morphism underlying
the initial morphism to M . J

Hence the recipe consists in the following two steps:
1. give T an action of the 1-signature Σ;
2. check that all the equations in E are satisfied for the induced model.

In the next section, we illustrate this principle.

7.2 Translation of lambda calculus with fixpoint to lambda calculus
In this section, we consider the 2-signature ΥLCβη,fix := ΥLCβη +Υfix where the two components
have been introduced above (see Example 18 and Section 6.4).

As a coproduct of algebraic 2-signatures, ΥLCβη,fix is itself algebraic, and thus the initial
model exists. The underlying monad LCβη,fix of the initial model can be understood as
the monad of lambda calculus modulo β and η enriched with an explicit fixpoint operator
fix : LC′βη,fix −→ LCβη,fix. Now we build by recursion a monad morphism from this monad to
the “bare” monad LCβη of lambda calculus modulo β and η.

As explained in Section 7.1, we need to define an action of ΥLCβη,fix in LCβη, that is to say
an action of ΥLCβη plus an action of Υfix. For the action of ΥLCβη , we take the one yielding
the initial model.

Now, in order to find an action of Υfix in LCβη, we choose a fixpoint combinator Y (say
the one of Curry) and take the action Ŷ as defined at the end of Section 6.4.

In more concrete terms, our translation is a kind of compilation which replaces each
occurrence of the explicit fixpoint operator fix(t) with app(Y, abs t).

FSCD 2019

6:18 Modular Specification of Monads Through Higher-Order Presentations

References

1 Benedikt Ahrens. Modules over relative monads for syntax and semantics. Mathematical
Structures in Computer Science, 26:3–37, 2016. doi:10.1017/S0960129514000103.

2 Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. High-Level
Signatures and Initial Semantics. In Dan Ghica and Achim Jung, editors, 27th EACSL
Annual Conference on Computer Science Logic (CSL 2018), volume 119 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 4:1–4:22, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2018.4.

3 Michael Barr. Coequalizers and free triples. Mathematische Zeitschrift, 116(4):307–322,
December 1970. doi:10.1007/BF01111838.

4 Ranald Clouston. Binding in Nominal Equational Logic. Electr. Notes Theor. Comput. Sci.,
265:259–276, 2010. doi:10.1016/j.entcs.2010.08.016.

5 Maribel Fernández and Murdoch J. Gabbay. Closed nominal rewriting and efficiently com-
putable nominal algebra equality. In Karl Crary and Marino Miculan, editors, Proceedings
5th International Workshop on Logical Frameworks and Meta-languages: Theory and Practice,
LFMTP 2010, Edinburgh, UK, 14th July 2010., volume 34 of EPTCS, pages 37–51, 2010.
doi:10.4204/EPTCS.34.5.

6 Marcelo P. Fiore and Makoto Hamana. Multiversal Polymorphic Algebraic Theories: Syntax,
Semantics, Translations, and Equational Logic. In 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages
520–529. IEEE Computer Society, 2013. doi:10.1109/LICS.2013.59.

7 Marcelo P. Fiore and Chung-Kil Hur. On the construction of free algebras for equational
systems. Theor. Comput. Sci., 410(18):1704–1729, 2009. doi:10.1016/j.tcs.2008.12.052.

8 Marcelo P. Fiore and Chung-Kil Hur. Second-Order Equational Logic (Extended Abstract).
In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of Lecture Notes in Computer
Science, pages 320–335. Springer, 2010. doi:10.1007/978-3-642-15205-4_26.

9 Marcelo P. Fiore and Ola Mahmoud. Second-Order Algebraic Theories (Extended Abstract). In
Petr Hlinený and Antonín Kucera, editors, MFCS, volume 6281 of Lecture Notes in Computer
Science, pages 368–380. Springer, 2010. doi:10.1007/978-3-642-15155-2_33.

10 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract Syntax and Variable Binding.
In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 193–202, 1999. doi:10.1109/LICS.1999.782615.

11 Marcelo P. Fiore and Philip Saville. List Objects with Algebraic Structure. In Dale Miller,
editor, 2nd International Conference on Formal Structures for Computation and Deduction
(FSCD 2017), volume 84 of Leibniz International Proceedings in Informatics (LIPIcs), pages
16:1–16:18, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.FSCD.2017.16.

12 Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax Involving
Binders. In 14th Annual Symposium on Logic in Computer Science, pages 214–224, Washington,
DC, USA, 1999. IEEE Computer Society Press. doi:10.1109/LICS.1999.782617.

13 Neil Ghani, Tarmo Uustalu, and Makoto Hamana. Explicit substitutions and higher-order
syntax. Higher-Order and Symbolic Computation, 19(2-3):263–282, 2006. doi:10.1007/
s10990-006-8748-4.

14 Bernhard Gramlich. Modularity in term rewriting revisited. Theoretical Computer Science,
464:3–19, 2012. New Directions in Rewriting (Honoring the 60th Birthday of Yoshihito
Toyama). doi:10.1016/j.tcs.2012.09.008.

15 Makoto Hamana. Term Rewriting with Variable Binding: An Initial Algebra Approach. In
Proceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice
of Declaritive Programming, PPDP ’03, pages 148–159, New York, NY, USA, 2003. ACM.
doi:10.1145/888251.888266.

http://dx.doi.org/10.1017/S0960129514000103
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.4
http://dx.doi.org/10.1007/BF01111838
http://dx.doi.org/10.1016/j.entcs.2010.08.016
http://dx.doi.org/10.4204/EPTCS.34.5
http://dx.doi.org/10.1109/LICS.2013.59
http://dx.doi.org/10.1016/j.tcs.2008.12.052
http://dx.doi.org/10.1007/978-3-642-15205-4_26
http://dx.doi.org/10.1007/978-3-642-15155-2_33
http://dx.doi.org/10.1109/LICS.1999.782615
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.16
http://dx.doi.org/10.1109/LICS.1999.782617
http://dx.doi.org/10.1007/s10990-006-8748-4
http://dx.doi.org/10.1007/s10990-006-8748-4
http://dx.doi.org/10.1016/j.tcs.2012.09.008
http://dx.doi.org/10.1145/888251.888266

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 6:19

16 André Hirschowitz and Marco Maggesi. Modules over Monads and Linearity. In D. Leivant
and R. J. G. B. de Queiroz, editors, WoLLIC, volume 4576 of Lecture Notes in Computer
Science, pages 218–237. Springer, 2007. doi:10.1007/978-3-540-73445-1_16.

17 André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Information
and Computation, 208(5):545–564, May 2010. Special Issue: 14th Workshop on Logic, Language,
Information and Computation (WoLLIC 2007). doi:10.1016/j.ic.2009.07.003.

18 Martin Hofmann. Semantical Analysis of Higher-Order Abstract Syntax. In 14th Annual
IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 204–213.
IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782616.

19 G. Maxwell Kelly and A. John Power. Adjunctions whose counits are coequalizers, and
presentations of finitary enriched monads. Journal of Pure and Applied Algebra, 89(1):163–179,
1993. doi:10.1016/0022-4049(93)90092-8.

20 Alexander Kurz and Daniela Petrisan. On universal algebra over nominal sets. Mathematical
Structures in Computer Science, 20(2):285–318, 2010. doi:10.1017/S0960129509990399.

21 Christoph Lüth and Neil Ghani. Monads and Modular Term Rewriting. In Eugenio Moggi
and Giuseppe Rosolini, editors, Category Theory and Computer Science, 7th International
Conference, CTCS ’97, volume 1290 of Lecture Notes in Computer Science, pages 69–86.
Springer, 1997. doi:10.1007/BFb0026982.

22 Ernest Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics. Springer,
1976.

23 The Coq development team. The Coq Proof Assistant, version 8.9, 2019. Version 8.9. URL:
http://coq.inria.fr.

24 A. John Power. Abstract Syntax: Substitution and Binders: Invited Address. Electr. Notes
Theor. Comput. Sci., 173:3–16, 2007. doi:10.1016/j.entcs.2007.02.024.

25 Sam Staton. An Algebraic Presentation of Predicate Logic (Extended Abstract). In Frank
Pfenning, editor, Foundations of Software Science and Computation Structures - 16th Interna-
tional Conference, FOSSACS 2013, volume 7794 of Lecture Notes in Computer Science, pages
401–417. Springer, 2013. doi:10.1007/978-3-642-37075-5_26.

26 Jiří Velebil and Alexander Kurz. Equational presentations of functors and monads. Mathemat-
ical Structures in Computer Science, 21(2):363–381, 2011. doi:10.1017/S0960129510000575.

27 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. Available at https://github.com/UniMath/UniMath.

FSCD 2019

http://dx.doi.org/10.1007/978-3-540-73445-1_16
http://dx.doi.org/10.1016/j.ic.2009.07.003
http://dx.doi.org/10.1109/LICS.1999.782616
http://dx.doi.org/10.1016/0022-4049(93)90092-8
http://dx.doi.org/10.1017/S0960129509990399
http://dx.doi.org/10.1007/BFb0026982
http://coq.inria.fr
http://dx.doi.org/10.1016/j.entcs.2007.02.024
http://dx.doi.org/10.1007/978-3-642-37075-5_26
http://dx.doi.org/10.1017/S0960129510000575
https://github.com/UniMath/UniMath

Towards the Average-Case Analysis of
Substitution Resolution in λ-Calculus
Maciej Bendkowski
Jagiellonian University, Faculty of Mathematics and Computer Science,
Theoretical Computer Science Department, ul. Prof. Łojasiewicza 6, 30–348 Kraków, Poland
maciej.bendkowski@tcs.uj.edu.pl

Abstract
Substitution resolution supports the computational character of β-reduction, complementing its
execution with a capture-avoiding exchange of terms for bound variables. Alas, the meta-level
definition of substitution, masking a non-trivial computation, turns β-reduction into an atomic
rewriting rule, despite its varying operational complexity. In the current paper we propose a
somewhat indirect average-case analysis of substitution resolution in the classic λ-calculus, based
on the quantitative analysis of substitution in λυ, an extension of λ-calculus internalising the
υ-calculus of explicit substitutions. Within this framework, we show that for any fixed n ≥ 0, the
probability that a uniformly random, conditioned on size, λυ-term υ-normalises in n normal-order
(i.e. leftmost-outermost) reduction steps tends to a computable limit as the term size tends to infinity.
For that purpose, we establish an effective hierarchy (Gn)n of regular tree grammars partitioning
υ-normalisable terms into classes of terms normalising in n normal-order rewriting steps. The main
technical ingredient in our construction is an inductive approach to the construction of Gn+1 out
of Gn based, in turn, on the algorithmic construction of finite intersection partitions, inspired by
Robinson’s unification algorithm. Finally, we briefly discuss applications of our approach to other
term rewriting systems, focusing on two closely related formalisms, i.e. the full λυ-calculus and
combinatory logic.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Mathematics of
computing → Generating functions

Keywords and phrases lambda calculus, explicit substitutions, complexity, combinatorics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.7

Funding Maciej Bendkowski: Maciej Bendkowski was partially supported within the Polish National
Science Center grant 2016/21/N/ST6/01032.

1 Introduction

Traditional, machine-based computational models, such as Turing machines or RAMs, admit
a natural notion of an atomic computation step, closely reflecting the actual operational
cost of executing the represented computations. Unfortunately, this is not quite the case
for computational models based on term rewriting systems with substitution, such as the
classic λ-calculus. Given the (traditionally) epitheoretic nature of substitution, the single
rewriting rule of β-reduction (λx.a)b →β a[x := b] masks a non-trivial computation of
resolving (i.e. executing) the pending substitution of b for occurrences of x in a. Moreover,
unlike machine-based models, λ-calculus (as other term rewriting systems) does not impose
a strict, deterministic evaluation mechanism. Consequently, various strategies for resolving
substitutions can be used, even more obfuscating the operational semantics of β-reduction
and hence also its operational cost. Those subtle nuances hidden behind the implementation
details of substitution resolution are in fact one of the core issues in establishing reasonable
cost models for the classic λ-calculus, relating it with other, machine-based computational
models, see [14].

© Maciej Bendkowski;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maciej.bendkowski@tcs.uj.edu.pl
https://doi.org/10.4230/LIPIcs.FSCD.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

In order to resolve this apparent inadequacy, Abadi et al. proposed to refine substitution
in the classic λ-calculus and decompose it into a series of atomic rewriting steps, internalising
in effect the calculus of executing substitutions [1]. Substitutions become first-class citizens
and so can be manipulated together with regular terms. Consequently, the general framework
of explicit substitutions provides a machine-independent setup for the operational semantics
of substitution, based on a finite set of unit rewriting primitives. Remarkably, with the help of
linear substitution calculus (a resource aware calculus of explicit substitutions) Accattoli and
Dal Lago showed recently that the leftmost-outermost β-reduction strategy is a reasonable
invariant cost model for λ-calculus, and hence it is able to simulate RAMs (or equivalent,
machine-based models) within a polynomial time overhead [2].

Various subtleties of substitution resolution, reflected in the variety of available calculi
of explicit substitutions, induce different operational semantics for executing substitutions
in λ-calculus. This abundance of approaches is perhaps the main barrier in establishing a
systematic, quantitative analysis of the operational complexity of substitution resolution and,
among other things, a term rewriting analogue of classic average-case complexity analysis.
In the current paper we propose a step towards filling this gap by offering a quantitative
approach to substitution resolution in Lescanne’s λυ-calculus of explicit substitutions [15].
In particular, we focus on the following, average-case analysis type of question. Having fixed
arbitrary non-negative n, what is the probability that a (uniformly) random λυ-term of given
size is υ-normalisable (i.e. can be reduced to a normal form without explicit substitutions)
in exactly n leftmost-outermost reduction steps? Furthermore, how does this probability
distribution change when the term size tends to infinity?

We address the above questions using a two-step approach. First, we exhibit an effective
(i.e. computable) hierarchy (Gn)n of unambiguous regular tree grammars with the property
that Gn describes the language of terms υ-normalising in precisely n leftmost-outermost
υ-rewriting steps. Next, borrowing techniques from analytic combinatorics, we analyse
the limit proportion of terms υ-normalising in n normal-order steps. To that end, we
construct appropriate generating functions and provide asymptotic estimates for the number
of λυ-terms υ-normalising in n normal-order reduction steps. As a result, we base our
approach on a direct quantitative analysis of the υ term rewriting system, measuring the
operational cost of evaluating substitution in terms of the number of leftmost-outermost
rewriting steps required to reach a (υ-)normal form.

The paper is structured as follows. In Section 2 we outline λυ-calculus and the framework
of regular tree grammars, establishing the necessary terminology for the remainder of the
paper. Next, in Section 3, we prepare the background for the construction of (Gn)n. In
particular, we sketch its general, intuitive scheme. In Section 4 we introduce the main tool
of finite intersection partitions and show that it is indeed constructible in the context of
generated reduction grammars. Afterwards, in Section 5, we show how finite intersection
partitions can be used in the construction of new productions in Gn+1 based on productions in
the grammar Gn. Having constructed (Gn)n we then proceed to the main quantitative analysis
of υ-calculus using methods of analytic combinatorics, see Section 6. Finally, in Section 7 we
discuss broader applications of our technique to other term rewriting systems, based on the
examples of λυ-calculus and combinatory logic, and conclude the paper in the final Section 8.

2 Preliminaries

2.1 Lambda upsilon calculus
λυ (lambda upsilon) is a simple, first-order term rewriting system extending the classic
λ-calculus based on de Bruijn indices [11] with the calculus of resolving pending substitu-
tions [15, 16]. Its formal terms, so-called λυ-terms, are comprised of de Bruijn indices n,

M. Bendkowski 7:3

application, abstraction, together with an additional, explicit closure operator [·] standing
for unresolved substitutions. De Bruijn indices are represented in unary base expansion.
In other words, n is encoded as an n-fold application of the successor operator S to zero 0.
Substitutions, in turn, consist of three primitives, i.e. a constant shift ↑, a unary lift operator
⇑, mapping substitutions onto substitutions, and a unary slash operator /, mapping terms
onto substitutions. Terms containing closures are called impure whereas terms without
them are said to be pure. Figure 1 summarises the formal specification of λυ-terms and the
corresponding rewriting system λυ.

t ::= n | λt | tt | t[s]
s ::= t/ | ⇑ (s) | ↑
n ::= 0 | S n.

(a) Terms of λυ-calculus.

(λa)b→ a[b/] (Beta)
(ab)[s]→ a[s](b[s]) (App)
(λa)[s]→ λ(a[⇑ (s)]) (Lambda)
0[a/]→ a (FVar)

(S n)[a/]→ n (RVar)
0[⇑ (s)]→ 0 (FVarLift)

(S n)[⇑ (s)]→ n[s][↑] (RVarLift)
n[↑]→ S n. (VarShift)

(b) Rewriting rules.

Figure 1 The λυ-calculus rewriting system.

I Example 2.1. Note that the well-known combinator K = λxy.x is represented in the
de Bruijn notation as λλ1. The reverse application term λxy.yx, on the other hand, is
represented as λλ01. Consequently, in a single β-reduction step, it holds (λλ01)K →β λ (0K).
In λυ-calculus, however, this single β-reduction is decomposed into a series of small rewriting
steps governing both the β-reduction as well as the subsequent substitution resolution. For
instance, we have

(λλ01)K → (λ01) [K/]→ (λ (01) [⇑ (K/)])→ λ (0[⇑ (K/)]) (1[⇑ (K/)])
→ λ (0 (1[⇑ (K/)]))→ λ (0 (0[K/][↑]))→ λ (0 (K[↑])) . (1)

Furthermore,

K[↑] = (λλ1) [↑]→ λ ((λ1)[⇑ (↑)])→ λλ (1[⇑ (⇑ (↑))])
→ λλ (0[⇑ (↑)][↑])→ λλ (0[↑])
→ λλ1 = K (2)

hence indeed (λλ01)K rewrites to λ (0K).
Let us notice that in the presence of the erasing (RVar) and duplicating (App) rewriting

rules, not all reduction sequences starting with the same term have to be of equal length.
Like in the classic λ-calculus, depending on the considered term, some rewriting strategies
might be more efficient then others.

λυ enjoys a series of pleasing properties. Most notably, λυ is confluent, correctly
implements β-reduction of the classic λ-calculus, and preserves strong normalisation of
closed terms [3]. Moreover, the υ fragment, i.e. λυ without the (Beta) rule, is terminating. In

FSCD 2019

7:4 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

other words, each λυ-term is υ-normalising as can be shown using, for instance, polynomial
interpretations [9]. In the current paper we focus on the normal-order (i.e. leftmost-outermost)
evaluation strategy of υ-reduction. For convenience, we assume the following notational
conventions. We use lowercase letters a, b, c, . . . to denote arbitrary terms and s (with or
without subscripts) to denote substitutions. Moreover, we write a ↓n to denote the fact
that a normalises to its υ-normal form in n normal-order υ-reduction steps. Sometimes, for
further convenience, we also simply state that t normalises in n steps, without specifying the
assumed evaluation strategy nor the specific rewriting steps and normal form.

2.2 Regular tree languages
We base our main construction in the framework of regular tree languages. In what follows,
we outline their basic characteristics and that of corresponding regular tree grammars,
introducing necessary terminology. We refer the curious reader to [10, Chapter II] for a more
detailed exposition.

I Definition 2.2 (Ranked alphabet). A ranked alphabet F is a finite set of function symbols
endowed with a corresponding arity function arity : F → N. We use Fn to denote the set of
function symbols of arity n, i.e. function symbols f ∈ F such that arity(f) = n. Function
symbols of arity zero are called constants. As a notational convention, we use lowercase
letters f, g, h, . . . to denote arbitrary function symbols.

I Definition 2.3 (Terms). Let X be a finite set of variables. Then, the set TF(X) of terms
over F is defined inductively as follows:

X,F0 ⊂ TF(X);
If f ∈ Fn and α1, . . . , αn ∈ TF(X), then f(α1, . . . , αn) ∈ TF(X).

Terms not containing variables, in other words elements of TF(∅), are called ground terms.
As a notational convention, we use lowercase Greek letters α, β, γ, . . . to denote arbitrary

terms. Whenever it is clear from the context, we use the word term both to refer to the above
structures as well as to denote λυ-terms.

I Definition 2.4 (Regular tree grammars). A regular tree grammar G = (S,N,F,P) is a tuple
consisting of:

an axiom S ∈ N;
a finite set N of non-terminal symbols;
a ranked alphabet F of terminal symbols such that F ∩N = ∅; and
a finite set P of productions in form of N → α such that N ∈ N and α ∈ TF(N).

A production N → α is self-referencing if N occurs in α. Otherwise, if N does not
occur in α, we say that n→ α is regular. As a notational convention, we use capital letters
X,Y, Z . . . to denote arbitrary non-terminal symbols.

I Definition 2.5 (Derivation relation). The derivation relation →G associated with the
grammar G = (S,N,F,P) is a relation on pairs of terms in TF(N) satisfying α →G β if
and only if there exists a production N → γ in P such that after substituting γ for some
occurrence of N in α we obtain β. Following standard notational conventions, we use ∗−→G to
denote the transitive closure of →G. Moreover, if G is clear from the context, we omit it in
the subscript of the derivation relations and simply write → and ∗−→.

A regular tree grammar G with axiom S is said to be unambiguous if and only if for
each ground term α ∈ TF(∅) there exists at most one derivation sequence in form of
S → γ1 → · · · → γn = α. Likewise, N is said to be unambiguous in G if and only if
for each ground term α ∈ TF(∅) there exists at most one derivation sequence in form of
N → γ1 → · · · → γn = α.

M. Bendkowski 7:5

I Definition 2.6 (Regular tree languages). The language L(G) generated by G is the set of
all ground terms α such that S ∗−→ α where S is the axiom of G. Similarly, the language
generated by term α ∈ TF(N) in G, denoted as LG(α), is the set of all ground terms β such
that α ∗−→ β. Finally, a set L of ground terms is said to be a regular tree language if there
exists a regular tree grammar G such that L(G) = L.

I Example 2.7. The set of λυ-terms is an example of a regular tree language. The corres-
ponding regular tree grammar Λ = (T,N,F,P) consists of

a set N of three non-terminal symbols T , S, N intended to stand for λυ-terms, substitu-
tions, and de Bruijn indices, respectively, with T being the axiom of Λ;
a set F of terminal symbols, comprised of all the symbols of the λυ-calculus language,
i.e. term application and abstraction, closure ·[·], slash ·/, lift ⇑ (·) and shift ↑ operators,
and the successor S(·) with the constant 0; and
a set P of productions

T → N | λT | TT | T [S]
S → T/ | ⇑ (S) | ↑
N → 0 | SN. (3)

Let us notice that (3) consists of five self-referencing productions, three for T and one for
each S and N . Moreover, L(N) ⊂ L(T) as P includes a production T → N .

I Example 2.8. Each λυ-term admits a natural tree-like structure. The following example
depicts the tree representation of the term λ1[0[↑][⇑ (0/)]]. Note that the (conventionally)
implicit term application is represented as an explicit binary node (·).

λ

·

S

0

[·]

[·] ⇑

/

0

0 ↑

Figure 2 Tree representation of λ1[0[↑][⇑ (0/)]].

3 Reduction grammars

We conduct our construction of (Gn)n in an inductive, incremental fashion. Starting with G0
corresponding to the set of pure terms (i.e. λυ-terms without closures) we build the (n+ 1)st
grammar Gn+1 based on the structure of the nth grammar Gn. First-order rewriting rules
of λυ-calculus guarantee a close structural resemblance of both their left- and right-hand
sides, see Figure 1b. Consequently, with Gn at hand, we can analyse the right-hand sides of
υ rewriting rules and match them with productions of Gn. Based on their structure, we then
determine the structure of productions of Gn+1 which correspond to respective left-hand
sides. Although such a general idea of constructing Gn+1 out of Gn is quite straightforward,
its implementation requires some careful amount of detail.

FSCD 2019

7:6 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

For that reason, we make the following initial preparations. Each grammar Gn uses
the same, global, ranked alphabet F corresponding to λυ-calculus, see Example 2.7. The
standard non-terminal symbols T, S, and N , together with their respective productions (3),
are pre-defined in each grammar Gn. In addition, Gn includes n+ 1 non-terminal symbols
G0, . . . , Gn (the final one being the axiom of Gn) with the intended meaning that for all
0 ≤ k ≤ n, the language LGn(Gk) is equal to the set of terms υ-normalising in k normal-order
steps. In this manner, building (Gn)n amounts to a careful, incremental extension process,
starting with the initial grammar G0 comprised of the following extra, i.e. not included
in (3), productions:

G0 → N | λG0 | G0G0. (4)

In order to formalise the above preparations and the overall presentation of our construc-
tion, we introduce the following, abstract notions of υ-reduction grammar and later also
their simple variants.

I Definition 3.1 (υ-reduction grammars). Let Λ = (T,N,F,P) be the regular tree grammar
corresponding to λυ-terms, see Example 2.7. Then, the regular tree grammar

Gn = (Gn,Nn,F,Pn) (5)

with
Nn = N ∪ {G0, G1, . . . , Gn}; and
Pn being a set of productions such that P ⊂ Pn

is said to be a υ-reduction grammar, υ-RG in short, if all non-terminal symbols Nn are
unambiguous in Gn, for all 0 ≤ k ≤ n the language L(Gk) is equal to the set of λυ-terms
υ-normalising in k normal-order υ-steps, and finally L(T), L(S) and L(N) are equal to the
sets of λυ-terms, substitutions and de Bruijn indices, respectively.

I Definition 3.2 (Partial order of sorts). The partial order of sorts (Nn,�) is a partial order
(i.e. reflexive, transitive, and anti-symmetric relation) on non-terminal symbols Nn satisfying
X � Y if and only if LGn

(X) ⊆ LGn
(Y). For convenience, we write X 	 Y to denote the

greatest lower bound of {X,Y }. Figure 3 depicts the partial order (Nn,�).

T

G0

N

G1 G2 · · · Gn

Figure 3 Hasse diagram of the partial order (Nn,�).

I Remark 3.3. Let us notice that given the interpretation of L(G0), . . . , L(Gn), the partial
order of sorts (Nn,�) captures all the inclusions among the non-terminal languages within
Gn. However, in addition, if X and Y are not comparable through �, then L(X)∩L(Y) = ∅
as each term υ-normalises in a unique, determined number of steps.

M. Bendkowski 7:7

I Definition 3.4 (Simple υ-reduction grammars). A υ-RG Gn is said to be simple if all its
self-referencing productions are either productions of the regular tree grammar corresponding
to λυ-terms, see Example 2.7, or are of the form

Gk → λGk | G0Gk | GkG0 (6)

and moreover, for all regular productions in form of Gk → α in Gn, it holds α ∈ TF(N ∪
{G0, . . . , Gk−1}), i.e. α does not reference non-terminals other than G0, . . . , Gk−1.

I Remark 3.5. Let us note that, in general, υ-reduction grammars do not have to be simple.
Due to the erasing (RVar) rewriting rule, it is possible to construct, inter alia, more involved
self-referencing productions. Nonetheless, for technical convenience, we will maintain the
simplicity of constructed grammars (Gn)n.

Also, let us remark that the above definition of simple υ-reduction grammars asserts that
if Gn+1 is a simple υ-RG, then, by a suitable truncation, it is possible to obtain all of the
υ-reduction grammars G0 up to Gn. Consequently, Gn+1 contains, in a proper sense, all the
proceeding grammars G0, . . . ,Gn.

4 Finite intersection partitions

The main technical ingredient in our construction of (Gn)n are finite intersection partitions.

I Definition 4.1 (Finite intersection partition). Assume that α, β are two terms in TF(X).
Then, a finite intersection partition, FIP in short, of α and β is a finite set Π(α, β) =
{π1, . . . , πn} ⊂ TF(X) such that L(πi)∩L(πj) = ∅ whenever i 6= j, and moreover

⋃
i L(πi) =

L(α) ∩ L(β).

Let us note that, a priori, it is not immediately clear if Π(α, β) exists for α and β in the
term algebra T(Nn) associated with a simple υ-RG Gn nor whether there exists an algorithmic
method of its construction. The following result states that both questions can be settled in
the affirmative.

I Lemma 4.2 (Constructible finite intersection partitions). Let Gn be a simple υ-reduction
grammar. Assume that α, β are two (not necessarily ground) terms in T(Nn) where Nn is
the set of non-terminal symbols of Gn. Then, α and β have a computable finite intersection
partition Π(α, β).

Figure 4 provides a functional pseudocode description of fipk constructing Π(α, β) for
arbitrary terms α, β within the scope of a simple υ-RG Gk. A corresponding proof of
correctness is given in Appendix A.

Our finite intersection partition algorithm resembles a variant of Robinson’s unification
algorithm [17] applied to many-sorted term algebras with a tree hierarchy of sorts, as
investigated by Walther, cf. [19]. It becomes even more apparent once the correspondence
between sorts, as stated in the language of many-sorted term algebra, and the tree-like
hierarchy of non-terminal symbols in υ-reduction grammars is established, see Figure 3.

5 The construction of simple υ-reduction grammars

Equipped with constructible, finite intersection partitions, we are now ready to describe the
generation procedure for (Gn)n. We begin with establishing a convenient verbosity invariant
maintained during the construction of (Gn)n.

FSCD 2019

7:8 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

1 fun fipk α β :=
2 match α, β with
3 | f(α1, . . . , αn), g(β1, . . . , βm) ⇒
4 if f 6= g ∨ n 6= m then ∅ (* symbol clash *)
5 else if n = m = 0 then {f}
6 else let Πi := fipk αi βi, ∀ 1 ≤ i ≤ n
7 in {f(π1, . . . , πn) | (π1, . . . , πn) ∈ Π1 × · · · ×Πn}
8

9 | X, Y ⇒
10 {X 	 Y |X � Y ∨ Y � X}
11

12 | f(α1, . . . , αn), X ⇒
13 fipk X f(α1, . . . , αn) (* flip arguments *)
14

15 | X, f(α1, . . . , αn) ⇒
16 let Πγ := fipk γ f(α1, . . . , αn), ∀ (X → γ) ∈ Gk
17 in

⋃
(X→γ)∈Gk

Πγ

18 end.

Figure 4 Pseudocode of the fipk procedure computing Π(α, β).

I Definition 5.1 (Closure width). Let α be a term in TF(X) for some finite set X. Then,
α has closure width w, if w is the largest non-negative integer such that α is of form
χ[σ1] · · · [σw] for some term χ and substitutions σ1, . . . , σw. For convenience, we refer to χ
as the head of α and to σ1, . . . , σw as its tail.

I Definition 5.2 (Verbose υ-reduction grammars). A υ-RG Gn is said to be verbose if none
of its productions is of form X → Gk[σ1] · · · [σw] for some arbitrary non-negative w and k.

Simple, verbose υ-reduction grammars admit a neat structural feature. Specifically, their
productions preserve closure width of generated terms.

I Lemma 5.3. Assume that Gn is a simple, verbose υ-RG. Then, for each production
Gn → χ[σ1] · · · [σw] in Gn such that its right-hand side is of closure width w, either χ = N

or χ is in form χ = f(α1, . . . , αm) for some non-closure function symbol f of arity m.

Proof. See Appendix B. J

I Lemma 5.4. Assume that Gn is a simple, verbose υ-RG. Then, for each production
Gn → χ[σ1] · · · [σw] in Gn such that its right-hand side is of closure width w, and ground
term δ ∈ L(χ[σ1] · · · [σw]) it holds that δ is of closure width w.

Proof. Direct consequence of Lemma 5.3. J

The following ϕ-matchings are the central tool used in the construction of new reduction
grammars. Based on finite intersection partitions, ϕ-matchings provide a simple template
recognition mechanism which allows us to match productions in Gn with right-hand sides of
υ rewriting rules.

M. Bendkowski 7:9

I Definition 5.5 (ϕ-matchings). Let Gn be a simple, verbose υ-RG and ϕ = χ[τ1] · · · [τd] ∈
T(Nn) be a template (term) of closure width d. Assume that X → γ[σ1] · · · [σw] is a production
of Gn which right-hand side has closure width w ≥ d. Furthermore, let

∆ϕ(γ[σ1] · · · [σw]) = Π(γ[σ1] · · · [σw], χ[τ1] · · · [τd] [S] · · · [S]︸ ︷︷ ︸
w−d times

) (7)

be the set of ϕ-matchings of γ[σ1] · · · [σw].
Then, the set ∆n

ϕ of ϕ-matchings of Gn is defined as

∆n
ϕ =

⋃
{∆ϕ(γ) | Gn → γ ∈ Gn}. (8)

For further convenience, we write ϕ〈i〉 to denote the template ϕ = χ[τ1] · · · [τd] with i copies
of [S] appended to its original tail, i.e. ϕ〈i〉 = χ[τ1] · · · [τd] [S] · · · [S]︸ ︷︷ ︸

i times

.

Table 1 υ-rewriting rules with respective templates and production schemes.

Rewriting rule Template ϕ Production scheme ∆n
ϕ 7→ γ

(App) (ab)[s]→ a[s](b[s]) T [S](T [S]) α[τ1](β[τ2])[σ1] · · · [σw] 7→ (αβ)[τ][σ1] · · · [σw]†

(Lambda) (λa)[s]→ λ(a[⇑ (s)]) λ(T [⇑ (S)]) λ(α[⇑ (σ)])[σ1] · · · [σw] 7→ (λα)[σ][σ1] · · · [σw]
(FVar) 0[a/]→ a T see Remark 5.8
(RVar) (S n)[a/]→ n N α[σ1] · · · [σw] 7→ (Sα)[T/][σ1] · · · [σw]

(FVarLift) 0[⇑ (s)]→ 0 0 0[σ1] · · · [σw] 7→ 0[⇑ (S)][σ1] · · · [σw]
(RVarLift) (S n)[⇑ (s)]→ n[s][↑] N [S][↑] α[σ][↑][σ1] · · · [σw] 7→ (Sα)[⇑ (σ)][σ1] · · · [σw]
(VarShift) n[↑]→ S n SN (Sα)[σ1] · · · [σw] 7→ α[↑][σ1] · · · [σw]

†For each τ ∈ Π(τ1, τ2), see Remark 5.7.

In what follows we use computable intersection partitions in our iterative construction of
(Gn)n. Recall that if Gn is simple then, inter alia, self-referencing productions starting with
the non-terminal Gn take the form

Gn → λGn | G0Gn | GnG0. (9)

If t ↓n (for n ≥ 1) but it does not start with a head υ-redex, then it must be of form t = λa

or t = ab. In the former case, it must hold a ↓n; hence the pre-defined production Gn → λGn
in Gn. In the latter case, it must hold a ↓k whereas b ↓n−k for some 0 ≤ k ≤ n. And so, it
means that we have to include productions in form of Gn → GkGn−k for all 0 ≤ k ≤ n in
Gn; in particular, the already mentioned two self-referencing productions, see (9).

Remaining terms have to start with head redexes. Each of these head υ-redexes is covered
by a dedicated set of productions. The following Lemma 5.6 demonstrates how ϕ-matchings
and, in particular, finite intersection partitions can be used for that purpose.

I Lemma 5.6. Let ϕ = λ(T [⇑ (S)]) be the template corresponding to the (Lambda) rewriting
rule, see Table 1, and t = (λa)[s][s1] · · · [sw]. Then, t ↓n+1 if and only if there exists a unique
term π = (λ(α[⇑ (σ)])) [σ1] · · · [σw] ∈ ∆n

ϕ such that t ∈ L((λα)[σ][σ1] · · · [σw]).

Proof. See Appendix B. J

FSCD 2019

7:10 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

Let us remark that almost all of the rewriting rules of λυ exhibit a similar construction
scheme; the exceptional (App) and (FVar) rewriting rules are discussed in Remark 5.7
and Remark 5.8, respectively. Given a rewriting rule, we start with the respective template
ϕ (see Table 1) and generate all possible ϕ-matchings in Gn. Intuitively, such an operation
extracts unambiguous sublanguages out of each production in Gn which match the right-hand
side of the considered rewriting rule. Next, we consider each term π ∈ ∆n

ϕ and establish
new productions Gn+1 → γ in Gn+1 out of π. Assuming that Gn is a simple and verbose
υ-RG, the novel productions generated by means of ∆n

ϕ cover all the λυ-terms reducing
in n + 1 normal-order steps, starting with the prescribed head rewriting rule. Since the
head of each so constructed production either starts with a function symbol or is equal to
N , cf. Table 1, the outcome grammar is necessarily verbose. Moreover, if we complete the
production generation for all rewriting rules, by construction, the grammar Gn+1 must be, at
the same time, simple. Consequently, the construction of the hierarchy (Gn)n amounts to an
inductive application of the above construction scheme.
I Remark 5.7. While following the same pattern for the (App) rule, we notice that the
corresponding construction requires a slight modification. Specifically, while matching
ϕ = T [S](T [S]) with a right-hand side γ of a production Gn → γ in Gn we cannot conclude
that π ∈ ∆n

ϕ takes the form π = α[σ](β[σ])[σ1] · · · [σw]. Note that, in fact, we know that π =
α[τ1](β[τ2])[σ1] · · · [σw] however perhaps τ1 6= τ2. Nonetheless, we can still compute Π(τ1, τ2)
and use τ ∈ Π(τ1, τ2) to generate a finite set of terms in form of π = α[τ](β[τ])[σ1] · · · [σw].
Using those terms, we can continue with our construction and establish a set of new
productions in form of Gn → (αβ)[τ][σ1] · · · [σw] meant to be included in Gn+1.
I Remark 5.8. Let us also remark that the single rewriting rule which has a template ϕ
not retaining closure width is (FVar). In consequence, the utility of ∆T (γ) is substantially
limited. If t = 0[a/][s1] · · · [sw] ↓n+1, then t→ t′ = a[s1] · · · [sw] which, in turn, satisfies t′ ↓n.
Note that if γ is the right-hand side of a unique production Gn → γ in Gn generating t′, then
we can match T with any non-empty prefix of γ. The length of the chosen prefix influences
what initial part α of γ is going to be placed under the closure in Gn+1 → 0[α/][σ1] · · · [σw].

This motivates the following approach. Let Gn → γ′ = χ[σ1] · · · [σw] be an arbitrary
production in Gn of closure width w. If t′ ∈ L(γ′) and t→ t′ in a single head (FVar)-reduction,
then t ∈ L(0[χ[σ1] · · · [σd]/][σd+1] · · · [σw] for some 0 ≤ d ≤ w. Therefore, in order to generate
all productions in Gn+1 corresponding to λυ-terms υ-normalising in n + 1 steps, starting
with a head (FVar)-reduction, we have to include all productions in form of Gn+1 →
0[χ[σ1] · · · [σd]/][σd+1] · · · [σw] for each production Gn → γ′ in Gn.

Finally, note that it is, again, possible to optimise the (FVar) construction scheme with
respect to the number of generated productions. For each Gn → γ in Gn the above scheme
produces, inter alia, a production Gn+1 → 0[γ/]. Note that we can easily merge them into a
single production Gn+1 → 0[Gn/] instead.

Such a construction leads us to the following conclusion.

I Theorem 5.9. For all n ≥ 0 there exists a constructible, simple υ-RG Gn.

I Example 5.10. The following example demonstrates the construction of G1 out of G0.
Note that G1 includes the following productions associated with the axiom G1:

G1 → λG1 | G0G1 | G1G0

| 0[(G0G0)/] | 0[λG0/] | 0[N/]
| (SN)[T/] | 0[⇑ (S)] | N [↑]. (10)

M. Bendkowski 7:11

The first three productions are included by default. The next three productions are derived
from the (FVar) rule applied to all the productions of G0 → γ in G0. The final three
productions are obtained by (RVar), (FVarLift), and (VarShift), respectively.

6 Analytic combinatorics and simple υ-reduction grammars

Having established an effective hierarchy (Gk)k of simple υ-reduction grammars, we can now
proceed with their quantitative analysis. Given the fact that regular tree grammars represent
well-known algebraic tree-like structures, our analysis is in fact a standard application of
algebraic singularity analysis of respective generating functions [12, 13]. The following result
provides the main tool of the current section.

I Proposition 6.1 (Algebraic singularity analysis, see [13], Theorem VII.8). Assume that
f(z) =

(√
1− z/ζ

)
g(z) + h(z) is an algebraic function, analytic at 0, and has a unique

dominant singularity z = ζ. Moreover, assume that g(z) and h(z) are analytic in the disk
|z| < ζ + ε for some ε > 0. Then, the coefficients [zn]f(z) in the series expansion of f(z)
around the origin, satisfy the following asymptotic estimate

[zn]f(z) ∼ ζ−nn
−3/2g(ζ)
Γ(− 1

2)
. (11)

In order to analyse the number of λυ-terms normalising in k steps, we execute the
following plan. First, we use the structure (and unambiguity) of Gk to convert it by means
of symbolic methods into a corresponding generating function Gk(z) =

∑
g

(k)
n zn in which

the integer coefficient g(k)
n standing by zn in the series expansion of Gk(z), also denoted as

[zn]Gk(z), is equal to the number of λυ-terms of size n normalising in k steps. Next, we
show that so obtained generating functions fit the premises of Proposition 6.1. We start with
establishing an appropriate size notion for λυ-terms. For technical convenience, we assume
the following natural size notion, equivalent to the number of constructors in the associated
term algebra TF(∅), see Figure 5.

|n| = n+ 1
λa	= 1 +	a		
ab	= 1 +	a	+	b
a[s]	= 1 +	a	+	s

|a/| = 1 + |a|
| ⇑ (s)| = 1 + |s|
| ↑ | = 1.

Figure 5 Natural size notion for λυ-terms, cf. Figure 2.

The following results exhibit the closed-form of generating functions corresponding to
pure terms as well as the general class of λυ-terms and explicit substitutions.

I Proposition 6.2 (see [5]). Let L∞(z) denote the generating function corresponding to the
set of λ-terms in υ-normal form (i.e. without υ-redexes). Then,

L∞(z) =
1− z −

√
1−3z−z2−z3

1−z

2z . (12)

I Proposition 6.3 (see [7]). Let T (z), S(z) and N(z) denote the generating functions
corresponding to λυ-terms, substitutions, and de Bruijn indices, respectively. Then,

T (z) = 1−
√

1− 4z
2z − 1, S(z) = 1−

√
1− 4z

2z

(
z

1− z

)
and N(z) = z

1− z . (13)

FSCD 2019

7:12 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

With the above basic generating functions, we can now proceed with the construction of
generating functions corresponding to simple υ-reduction grammars. See Appendix C for
respective proofs.

I Proposition 6.4 (Constructible generating functions). Let Φk denote the set of regular
productions in Gk. Then, for all k ≥ 1 there exists a generating function Gk(z) such that
[zn]Gk(z) (i.e. the coefficient standing by zn in the power series expansion of Gk(z)) is equal
to the number of terms of size n which υ-normalise in k normal-order reduction steps, and
moreover Gk(z) admits a closed-form of the following shape:

Gk(z) = 1
1− z − 2zL∞(z)

∑
Gk→γ∈Φk

Gγ(z) (14)

where

Gγ(z) = zζ(γ)T (z)τ(γ)
S(z)σ(γ)

N(z)ν(γ) ∏
0≤i<k

Gi(z)ρi(γ) (15)

and all ζ(γ), τ(γ), σ(γ), ν(γ), and ρi(γ) are non-negative integers depending on γ.

I Theorem 6.5. For all k ≥ 1, the coefficients [zn]Gk(z) satisfy the asymptotic estimate

[zn]Gk(z) ∼ ck · 4nn−3/2. (16)

Consider the following asymptotic density of λυ-terms υ-normalisable in k normal-order
reduction steps in the set of all λυ-terms:

µk = lim
n→∞

[zn]Gk(z)
[zn]T (z) . (17)

In other words, the limit µk of the probability that a uniformly random λυ-term of size
n normalises in k steps as n tends to infinity. Note that for each k ≥ 1, the asymptotic
density µk is positive as both [zn]Gk(z) and [zn]T (z) admit the same (up to a multiplicative
constant) asymptotic estimate. Moreover, it holds µk −−−−→

k→∞
0 as the sum

∑
k µk is increasing

and necessarily bounded above by one.
Figure 6 provides the specific asymptotic densities µ0, . . . , µ10 obtained by means of a

direct construction and symbolic computations1 (numerical values are rounded up to the
fifth decimal point).
I Remark 6.6. Theorem 5.9 and Theorem 6.5 are effective in the sense that both the
symbolic representation and the symbolic asymptotic estimate of respective coefficients are
computable. Since Γ(−1/2) = −2

√
π is the sole transcendental number occurring in the

asymptotic estimates, and cancels out when asymptotic densities are considered, cf. (17), we
immediately note that for each k ≥ 0, the asymptotic density of terms υ-normalising in k
steps is necessarily an algebraic number.
I Remark 6.7. Each λυ-term is υ-normalising in some (determined) number of normal-order
reduction steps. However, it is not clear whether

∑
k µk = 1 as asymptotic density is, in

general, not countably additive. Let us remark that if this sum converges to one, then
the random variable Xn denoting the number of normal-order υ-reduction steps required
to normalise a random λυ-term of size n (i.e. the average-case cost of resolving pending
substitutions in a random term of size n) converges pointwise to a discrete random variable
X defined as P(X = k) = µk. Alas, our current analysis does not determine an answer to
this problem.

1 Corresponding software is available at https://github.com/maciej-bendkowski/towards-acasrlc.

https://github.com/maciej-bendkowski/towards-acasrlc

M. Bendkowski 7:13

0 2 4 6 8 100

0.5

1

1.5

2

2.5 ·10−2

Number of υ-reduction steps

A
sy
m
pt
ot
ic

de
ns
ity

µk
k µk
0 0.
1 0.02176
2 0.02054
3 0.01200
4 0.01306
5 0.00920
6 0.00915
7 0.00700
8 0.00710
9 0.00600
10 0.00585

Figure 6 Asymptotic densities of terms υ-normalising in k normal-order reduction steps. In
particular, we have µ0 + · · ·+ µ10 ≈ 0.11162.

7 Applications to other term rewriting systems

Let us note that the presented construction of reduction grammars does not depend on
specific traits immanent to λυ, but rather on certain more general features of its rewriting
rules. The key ingredient in our approach is the ability to compute finite intersection
partitions for arbitrary terms within the scope of established reduction grammars, which
themselves admit certain neat structural properties. Using finite intersection partitions, it
becomes possible to generate new productions based on the structural resemblance of both
the left-hand and right-hand sides of associated rewriting rules. In what follows we sketch
the application of the presented approach to other term rewriting systems, focusing on two
examples, i.e. λυ-calculus and combinatory logic. Although the technique is similar, some
careful amount of details is required.

7.1 λυ-calculus
In order to characterise the full λυ-calculus, we need a few adjustments to the already
established construction of (Gk)k corresponding to the υ fragment. Clearly, we have to
establish a new production construction scheme associated with the (Beta) rewriting rule.
Consider the corresponding template ϕ = T [T/]. Like the respective template for (FVar),
cf. Remark 5.8, the current template ϕ does not retain closure width of generated ground
terms. However, at the same time it is also amenable to similar treatment as (FVar).

Let t = (λa)b[s1] · · · [sw] ↓n+1. Note that t → a[b/][s1] · · · [sw] ↓n. Consequently, one
should attempt to match ϕ with all possible prefixes of γ in all productions Gn → γ instead
of merely their heads, as in the case of ∆n

ϕ. Let γ = χ[σ1] · · · [σd] be of closure width d and
δ = χ[σ1] · · · [σi] be its prefix (1 ≤ i ≤ d). Note that, effectively, Π(δ, T [T/]) checks if [σi] takes
form β/ for some term β. Hence, for each π ∈ Π(δ, T [T/]) we have π = α[τ1] · · · [τi−1][β/]
for some terms α, τ1, . . . , τi−1, and β. Out of such a partition π we can then construct the
production Gn+1 → (λα[τ1] · · · [τi−1])β[τi+1] · · · [τd] in Gn+1.

However, with the new scheme for (Beta) we are not yet done with our construction. Note
that due to the new head redex type, we are, inter alia, forced to change the pre-defined set
of productions corresponding to λυ-terms without a head redex. Indeed, note that if t does
not start with a head redex, then it must be of form (λa) or (ab) where in the latter case

FSCD 2019

7:14 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

a cannot start with a leading abstraction. This constraint suggests the following approach.
We split the set of productions in form of Gn → γ into two categories, i.e. productions
whose right-hand sides are of form λγ′ and the remainder ones. Since both sets are disjoint,
we can group them separately and introduce two auxiliary non-terminal symbols G(λ)

n and
G

(¬λ)
n for terms starting with a head abstraction and for those without a head abstraction,

respectively, with the additional productions Gn → G
(λ)
n | G(¬λ)

n . In doing so, it is possible
to pre-define the all the productions corresponding to terms without head redexes using
productions in form of

Gn → λGn | G(¬λ)
k Gn−k where 0 ≤ k ≤ n. (18)

This operation, however, requires a minor adjustment in the formal argument concerning the
termination and correctness of constructed finite intersection partitions, see Appendix A and,
in particular, Definition A.1). Afterwards, it becomes possible to reuse already established
techniques in the construction of new productions in Gn+1 out of Gn.

7.2 SK-combinators
Using a similar approach, it becomes possible to construct appropriate reduction grammars
for SK-combinators. In particular, our current technique (partially) subsumes, and also
simplifies, the results of [6, 4]. With merely two rewriting rules in form of Kxy → x and
Sxyz → xz(yz) we can use the developed finite intersection partitions and ϕ-matchings to
construct a hierarchy (Gn)n of normal-order reduction grammars for SK-combinators. The
rewriting rule corresponding to K is similar to (FVar) whereas the respective rule for S
resembles the (App) rule; as in this case, we have to deal with variable duplication on the
right-hand side of the rewriting rule. Instead of closure width, we use a different normal form
of terms, and so also productions, based on the sole binary constructor of term application.
Consequently, a combinator is of application width w if it takes the form Xα1 . . . αw for
some primitive combinator X ∈ {S,K}. Consider the more involved case of productions
corresponding to head S-redexes. Let t = Sxyzα1 . . . αw be a term of application width
w + 3 where w ≥ 0. Note that

Sxyzδ1 . . . δw → xz(yz)δ1 . . . δw. (19)

Let us rewrite the right-hand side of (19) as t′ = Xx1 . . . xkz(yz)δ1 . . . δw where x =
Xx1 . . . xk and X is a primitive combinator. Assume that γ is the right-hand side of the
unique production Gn → γ in Gn such that t′ ∈ L(γ). Note that the shape of t′ suggests a
construction scheme similar to the already discussed (App), see Remark 5.7, where we first
have to match the pattern ϕ = T (TT) with some arguments of γ and subsequently attempt
to extract a finite intersection partition Π(α, β) of respective subterms α and β so that for
each π ∈ Π(α, β) we have z ∈ L(π). With appropriate terms at hand, we can then construct
corresponding productions in the next grammar Gn+1.

8 Conclusions

Quantitative aspects of term rewriting systems are not well studied. A general complexity
analysis was undertaken by Choppy, Kaplan, and Soria who considered a class of confluent,
terminating term rewriting systems in which the evaluation cost, measured in the number of
rewriting steps required to reach the normal form, is independent of the assumed evaluation
strategy [8]. More recently, typical evaluation cost of normal-order reduction in combinatory

M. Bendkowski 7:15

logic was studied by Bendkowski, Grygiel and Zaionc [6, 4]. Using quite different, non-analytic
methods, Sin’Ya, Asada, Kobayashi and Tsukada considered certain asymptotic aspects of
β-reduction in the simply-typed variant of λ-calculus showing that, typically, λ-terms of
order k have (k − 1)-fold exponentially long β-reduction sequences [18].

Arguably, the main novelty in the presented approach lies in the algorithmic construction
of reduction grammars (Gk)k based on finite intersection partitions, assembled using a
general technique reminiscent of Robinson’s unification algorithm applied to many-sorted
term algebras, cf. [17, 19]. Equipped with finite intersection partitions, the construction
of Gk+1 out of Gk follows a stepwise approach, in which new productions are established
on a per rewriting rule basis. Consequently, the general technique of generating reduction
grammars does not depend on specific features of λυ, but rather on more general traits
of certain first-order rewriting systems. Nonetheless, the full scope of our technique is yet
to be determined.

Although the presented construction is based on the leftmost-outermost reduction scheme,
it does not depend on the specific size notion associated with λυ-terms; in principle, more
involved size models can be assumed and analysed. The assumed evaluation strategy, size
notion, as well as the specific choice of λυ are clearly arbitrary and other, equally perfect
choices for modelling substitution resolution could have been made. However, due to merely
eight rewriting rules forming λυ, it is one of the conceptually simplest calculus of explicit
substitutions. Together with the normal-order evaluation tactic, it is therefore one of the
simplest to investigate in quantitative terms and to demonstrate the finite intersection
partitions technique.

Due to the unambiguity of constructed grammars (Gk)k it is possible to automatically es-
tablish their corresponding combinatorial specifications and, in consequence, obtain respective
generating functions encoding sequences

(
g

(k)
n

)
n
comprised of numbers g(k)

n associated with
λυ-terms of size n which reduce in k normal-order rewriting steps to their υ-normal forms.
Singularity analysis provides then the means for systematic, quantitative investigations into
the properties of substitution resolution in λυ, as well as its machine-independent operational
complexity. Finally, with generating functions at hand, it is possible to undertake a more
sophisticated statistical analysis of substitution (in particular υ-normalisation) using available
techniques of analytic combinatorics, effectively analysing the average-case cost of λ-calculus
and related term rewriting systems.

It should be noted that such an analysis might provide some novel insight into the combin-
atorial structure of substitution and, in the long-term perspective, provide a theoretical model
for the operational, average-case analysis of substitution in modern functional programming
languages. In view of these objectives, we conclude the paper with the following conjecture,
postulating the existence of a limit distribution associated with the average-case cost of
substitution resolution, and its close relation with the constructible hierarchy of reduction
grammars and established series of asymptotic densities.

I Conjecture. Let µk denote the asymptotic density of λυ-terms υ-normalising in k leftmost-
outermost υ-reduction steps, cf. Remark 6.7. Then, it holds∑

k≥0
µk = 1. (20)

Consequently, the sequence (Xn)n of random variables corresponding to the number of
υ-reductions required to normalise a uniformly random λυ-term of size n (i.e. the average-
case cost of resolving all pending substitutions in a random λυ-term of size n) converges
pointwise to a random variable X satisfying P(X = k) := µk.

FSCD 2019

7:16 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

References

1 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of
Functional Programming, 1(4):375–416, 1991. doi:10.1017/S0956796800000186.

2 B. Accattoli and U. Dal Lago. (Leftmost-Outermost) Beta Reduction is Invariant, Indeed.
Logical Methods in Computer Science, 12(1), 2016. doi:10.2168/LMCS-12(1:4)2016.

3 Z.-E.-A. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ, a calculus of explicit
substitutions which preserves strong normalisation. Journal of Functional Programming,
6(5):699–722, 1996. doi:10.1017/S0956796800001945.

4 M. Bendkowski. Normal-order reduction grammars. Journal of Functional Programming, 27,
2017. doi:10.1017/S0956796816000332.

5 M. Bendkowski, K. Grygiel, P. Lescanne, and M. Zaionc. Combinatorics of λ-terms: a natural
approach. Journal of Logic and Computation, 27(8):2611–2630, 2017. doi:10.1093/logcom/
exx018.

6 M. Bendkowski, K. Grygiel, and M. Zaionc. On the likelihood of normalization in combinatory
logic. Journal of Logic and Computation, 2017. doi:10.1093/logcom/exx005.

7 M. Bendkowski and P. Lescanne. Combinatorics of Explicit Substitutions. In Proceedings of
the 20th International Symposium on Principles and Practice of Declarative Programming,
PPDP ’18, pages 7:1–7:12. ACM, 2018. doi:10.1145/3236950.3236951.

8 C. Choppy, S. Kaplan, and M. Soria. Complexity Analysis of Term-Rewriting Systems.
Theoretical Computer Science, 67(2&3):261–282, 1989. doi:10.1016/0304-3975(89)90005-4.

9 A. Cichon and P. Lescanne. Polynomial interpretations and the complexity of algorithms. In
Automated Deduction—CADE-11, pages 139–147. Springer Berlin Heidelberg, 1992.

10 H. Comon, M. Dauchet, R. Gilleron, Ch. Löding, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications, 2007. Release October, 12th 2007.
URL: http://www.grappa.univ-lille3.fr/tata.

11 N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, 1972.

12 Ph. Flajolet and A. M. Odlyzko. Singularity Analysis of Generating Functions. SIAM Journal
on Discrete Mathematics, 3(2):216–240, 1990.

13 Ph. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 1 edition,
2009.

14 J. L. Lawall and H. G. Mairson. Optimality and Inefficiency: What Isn’t a Cost Model of the
Lambda Calculus? In Proceedings of the 1st ACM SIGPLAN International Conference on
Functional Programming, ICFP ’96, pages 92–101. ACM, 1996. doi:10.1145/232627.232639.

15 P. Lescanne. From λσ to λυ: A Journey Through Calculi of Explicit Substitutions. In
Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 60–69. ACM, 1994.

16 P. Lescanne. The lambda calculus as an abstract data type. In M. Haveraaen, O. Owe, and
O.-J. Dahl, editors, Recent Trends in Data Type Specification, pages 74–80. Springer Berlin
Heidelberg, 1996.

17 J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM,
12(1):23–41, January 1965. doi:10.1145/321250.321253.

18 R. Sin’Ya, K. Asada, N. Kobayashi, and T. Tsukada. Almost Every Simply Typed λ-Term
Has a Long β-Reduction Sequence. In Proceedings of the 20th International Conference on
Foundations of Software Science and Computation Structures, volume 10203, pages 53–68.
Springer-Verlag New York, Inc., 2017. doi:10.1007/978-3-662-54458-7_4.

19 Ch. Walther. Many-sorted Unification. J. ACM, 35(1):1–17, January 1988. doi:10.1145/
42267.45071.

http://dx.doi.org/10.1017/S0956796800000186
http://dx.doi.org/10.2168/LMCS-12(1:4)2016
http://dx.doi.org/10.1017/S0956796800001945
http://dx.doi.org/10.1017/S0956796816000332
http://dx.doi.org/10.1093/logcom/exx018
http://dx.doi.org/10.1093/logcom/exx018
http://dx.doi.org/10.1093/logcom/exx005
http://dx.doi.org/10.1145/3236950.3236951
http://dx.doi.org/10.1016/0304-3975(89)90005-4
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1145/232627.232639
http://dx.doi.org/10.1145/321250.321253
http://dx.doi.org/10.1007/978-3-662-54458-7_4
http://dx.doi.org/10.1145/42267.45071
http://dx.doi.org/10.1145/42267.45071

M. Bendkowski 7:17

A Correctness of the finite intersection partition algorithm

In order to prove the correctness of fipk constructing Π(α, β) for arbitrary terms α, β within
the scope of a simple υ-RG Gk, see Lemma 4.2, we resort to the following technical notion of
term potential used to embed terms into the well-founded set of natural numbers.

I Definition A.1 (Term potential). Let α ∈ T(Nn) be a term and Gn be a simple υ-RG. Let
ProdGn

(X) denote the set consisting of right-hand sides of regular productions in form of
X → β in Gn. Then, the potential π(α) of α in Gn is defined inductively as follows:

If α = f(α1, . . . , αm), then π(α) = 1 +
m∑
i=1

π(αi);

If α = X ∈ {T, S,N}, then π(α) = 1 + max{π(γ) | γ ∈ ProdGn
(X)};

If α = Gk for some 0 ≤ k ≤ n, then π(α) = 1 + max{π(γ) | γ ∈
k⋃
i=0

ProdGn
(Gi)}.

Let us note that π is well-defined as, by assumption, ProdGn
(X) 6= ∅ for all simple

υ-reduction grammars Gn; otherwise L(Gk) could not span the whole set of λυ-terms
υ-normalising in k normal-order steps. Moreover, π has the following crucial properties:

For each term α we have π(α) ≥ 1;
If α is a proper subterm of β, then π(α) < π(β);
If X → α is a regular production, then π(α) < π(X); and
For each Gi and Gj, it holds π(Gi) ≤ π(Gj) whenever i ≤ j.

I Example A.2. Note that the term potential of N associated with de Bruijn indices is
equal to π(N) = 2 as π(0) = 1. Since T → N is the single regular production starting with
T on its left-hand side, the potential π(T) is therefore equal to 3. Consequently, we also have
π(S) = 5 as witnessed by the regular production S → T/. Finally, since π(N) = 2 it holds
π(G0) = 3 and so, for instance, we also have π(G0G0) = 7.

Productions of a simple Gn cannot reference non-terminals other than G0, . . . , Gn. Since
the potential of Gk+1 is defined in terms of the potential of its regular productions, this
means that π(Gk+1) depends, in an implicit manner, on the potentials π(G0), . . . , π(Gk).
Note that this constitutes a traditional inductive definition. In order to compute the potential
of a given term α, we start with computing the potential of associated non-terminals. In
particular, we find the values π(G0), . . . , π(Gn) in ascending order. Afterwards, we can
recursively decompose α and calculate its potential based on the potential of non-terminal
symbols occurring in α. Note that the same scheme holds, in particular, for the right-hand
sides of self-referencing productions.

IDefinition A.3 (Conservative productions). A self-referencing production X → f(α1, . . . , αn)
is said to be conservative if π(αi) ≤ π(X) for all 1 ≤ i ≤ n.

I Remark A.4. Conservative productions play a central role in the algorithmic construction
of finite intersection partitions Π(α, β). In particular, let us remark that all self-referencing
productions of a simple υ-RG Gn, as listed in Figure 7, are at the same time conservative.

With the technical notions of term potential and conservative productions, we are now
ready to prove the correctness of fipk, see Figure 4.

Proof of Lemma 4.2. Induction over the total potential of α and β.
Let us start with the base case π(α) + π(β) = 2. Note that both α and β have to be

constant ground terms (the potential of non-terminals in Nk is at least 2). If α 6= β, then
certainly L(α) ∩ L(β) = ∅ and so Π(α, β) = ∅, see Line 4. Otherwise if α = β, then both

FSCD 2019

7:18 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

Gk → λGk | G0Gk | GkG0

T → λT | TT | T [S]
S → ⇑ (S)
N → SN

Figure 7 Self-referencing productions of simple υ-reduction grammars.

L(α) ∩ L(β) = Π(α, β) = {α} = {β}; hence, fipk returns a correct intersection partition
Π(α, β), see Line 5. And so, assume that π(α) + π(β) > 2. Depending on the joint structure
of both α and β we have to consider three cases.

Case 1. Suppose that α = f(α1, . . . , αn) and β = g(β1, . . . , βm) for some function symbols
f and g with n,m ≥ 0. Certainly, if either f 6= g or n 6= m, then L(α) ∩ L(β) = ∅. In
consequence, ∅ is the sole valid FIP of both α and β, see Line 4.
So, let us assume that both f = g and n = m. Moreover, we can also assume that
n,m ≥ 1 as the trivial case n = m = 0 cannot occur under the working assumption
π(α) + π(β) > 2. Take an arbitrary δ ∈ L(α) ∩ L(β). Note that δ takes the form of
δ = f(δ1, . . . , δn) for some ground terms δ1, . . . , δn. By induction, for all 1 ≤ i ≤ n, the
recursive call fipk αi βi yields a finite intersection partition Π(αi, βi) of αi and βi. Since
δi ∈ L(αi) ∩ L(βi) there exists a unique πi ∈ Π(αi, βi) such that δi ∈ L(πi). Accordingly,
for δ = f(δ1, . . . , δn) there exists a unique term π = f(π1, . . . , πn) in fipk αβ such that
δ ∈ L(π).
Conversely, take an arbitrary ground term δ = f(δ1, . . . , δn) ∈ L(π) for some π ∈ fipk αβ.
Note that π takes the form π = f(π1, . . . , πn), see Line 7. Since δ ∈ L(π), we know
that δi ∈ L(πi), for each 1 ≤ i ≤ n. Moreover, πi ∈ Πi by the construction of fipk αβ,
see Line 6. Following the inductive hypothesis that Πi is a FIP of αi and βi, we notice
that L(πi) ⊆ L(αi) ∩ L(βi). Consequently, δi ∈ L(αi) ∩ L(βi) and so δ ∈ L(α) ∩ L(β).

Case 2. Suppose that α = X and β = Y are two non-terminal symbols in Nk, see Line 9.
Let us consider the sort poset (Nk,�) associated with Gk. Assume that X and Y

are comparable through � (w.l.o.g. let X � Y). Consequently, L(X) ⊆ L(Y) and so
X 	 Y = X. Clearly, {X} is a valid FIP, see Line 10. On the other hand, if X and Y are
incomparable in the sort poset associated with Gk, it means that L(X) ∩ L(Y) = ∅ and
so Π(α, β) = ∅, see Remark 3.3.

Case 3. Suppose w.l.o.g that α = X and β takes the form β = f(β1, . . . , βn) with n ≥ 0. Note
that fipk flips its arguments if necessary, see Line 13. Take an arbitrary δ ∈ L(α)∩L(β).
Note that from the form of β we know that δ = f(δ1, . . . , δn) for some ground terms
δ1, . . . , δn (n ≥ 0). Since α = X is a non-terminal symbol which, by assumption, is
unambiguous in Gk, there exists a unique production X → γ such that δ ∈ L(γ).
If X → γ is regular (i.e. X does not occur in γ), then π(γ) < π(X) and so π(γ) + π(β) <
π(X) + π(β). Hence, by induction, fipk γ β constructs a finite intersection partition
Π(γ, β) with a unique π ∈ Π(γ, β) ⊂ Π(X,β) such that δ ∈ L(π), see Line 17.
Let us therefore assume that X → γ is not regular, but instead self-referencing (i.e. X
occurs in γ). In such a case π(X) ≤ π(γ) and so we cannot directly apply the induction
hypothesis to fipk γ β. Note however, that since δ ∈ L(γ) ∩ L(β) and γ 6= X, the term
γ must be of form γ = f(γ1, . . . , γn) as otherwise δ 6∈ L(γ). Furthermore if n = 0, then
trivially γ = β = f , see Line 5. Hence, let us assume that n ≥ 1. It follows that fipk
proceeds to construct finite intersection partitions for respective pairs of arguments γi
and βi. However, since X → f(γ1, . . . , γn) is conservative (see Remark A.4), it holds
π(γi) ≤ π(X). At the same time, π(βi) < π(β); hence, by induction we can argue

M. Bendkowski 7:19

that fipk γi βi constructs a proper intersection partition Π(γi, βi) for each 1 ≤ i ≤ n,
see Line 7. There exists therefore a unique term π = f(π1, . . . , πn) ∈ fipkX β such that
δ ∈ L(π), see Line 7 and Line 17.
Conversely, take an arbitrary ground term δ = f(δ1, . . . , δn) ∈ L(π) for some π ∈ fipkX β

(n ≥ 0). By definition, fipk proceeds to invoke itself on pairs of arguments γ and β

where γ is the right-hand side of a production X → γ in Gk, see Line 16, and returns
the set-theoretic union of recursively obtained outcomes. There exists therefore some γ
such that π ∈ fipk γ β. If X → γ is regular, then by induction, fipk γ β constructs a
FIP for both γ and β. Consequently, it holds δ ∈ L(π) ⊂ L(γ) ∩ L(β) ⊂ L(X) ∩ L(β).
Assume therefore that X → γ is not regular, but instead self-referencing. As before,
we cannot directly argue about fipk γ β since the total potential of γ and β exceeds
the potential of X and β. However, since π ∈ fipk γ β and γ 6= X, we note that γ
takes form γ = f(γ1, . . . , γn), see Line 4. If f is a constant symbol, then certainly
fipk γ β outputs a proper FIP. Otherwise, fipk proceeds to invoke itself recursively on
respective pairs of arguments γi and βi. Since X → f(γ1, . . . , γn) is conservative, we
know that, by induction, fipk γi βi constructs finite intersection partitions Π(γi, βi) for
all pairs γi and βi. Certainly, δi ∈ L(πi) for some πi ∈ Π(γi, βi); hence δ ∈ L(π) where
π = f(π1, . . . , πn) ∈ fipk γ β. It follows that δ ∈ L(π) ∩ L(β) ⊂ L(X) ∩ L(β), which
finishes the proof. J

I Remark A.5. Note that the termination of fipk is based on the fact that all self-referencing
productions of simple υ-reduction grammars are at the same time conservative. Indeed,
fipk does not terminate in the presence of non-conservative productions. Consider the
non-conservative production X → f(f(X)). Note that

fipk(f(f(X)), f(X))→ fipk(f(X), X)
→ fipk(X, f(X))
→ fipk(f(f(X)), f(X))
→ · · · (21)

B The construction of (Gn)n
Simple, verbose υ-reduction grammars satisfy the neat structural property of retaining closure
width of generated terms. For that reason, we maintain both simplicity and verbosity as an
invariant during the construction of (Gn)n.

Proof of Lemma 5.3. Suppose that neither χ = N nor χ = f(α1, . . . , αm). Since Gn is
simple, it follows that either χ = T or χ = Gk for some 0 ≤ k ≤ n. However, due to the
verbosity of Gn we know that χ 6= Gk and so it must hold χ = T . Consider the following
inductive family of terms:

δ1 = 0[⇑ (↑)] whereas δn+1 = 0[δn/]. (22)

By construction, we note that δn ↓n. Let s1, . . . , sw be substitutions satisfying si ∈ L(σi).
Note that δ := δn+1[s1] · · · [sw] ∈ L(T [σ1] · · · [σw]); hence, simultaneously δ reduces in n

steps, as δ ∈ L(Gn), and in at least n+ 1 steps, contradiction. J

The following result demonstrates a simple scheme of how ϕ-matchings can be exploited
during the construction of new productions generating terms with specific head redexes.

Proof of Lemma 5.6. Let t = (λa)[s][s1] · · · [sw] ↓n+1 where w ≥ 0. Since t admits a head
υ-redex, we note that t → t′ = (λ(a[⇑ (s)])) [s1] · · · [sw] ↓n. By assumption, Gn is simple,

FSCD 2019

7:20 Towards the Average-Case Analysis of Substitution Resolution in λ-Calculus

hence there exists a unique production Gn → γ in Gn such that t′ ∈ L(γ). Consider the set
∆n
ϕ. Since Gn → γ is the unique production satisfying t′ ∈ L(γ), it follows that for each

production Gn → γ′ in Gn such that γ′ 6= γ and all π ∈ ∆ϕ(γ′) it holds t′ 6∈ L(π). Let us
therefore focus on the set ∆ϕ(γ) of ϕ-matchings limited to γ.

By assumption, Gn is not only simple but also verbose. Consequently, we know that
γ retains the closure width of generated terms, see Lemma 5.4. It follows that γ has
closure width w and takes the form γ = χ[τ1] · · · [τw]. Certainly, t′ ∈ L(ϕ〈w〉). Moreover,
∆ϕ(γ) = Π(γ, ϕ〈w〉). There exists therefore a unique π ∈ Π(γ, ϕ〈w〉) such that t′ ∈ L(π).
Given the fact that the head of ϕ〈w〉 is equal to ϕ = λ(T [⇑ (S)]) we note that π must
be of form π = λ(α[⇑ (σ)])[σ1] · · · [σw]. However, since t′ = (λa[⇑ (s)][s1] · · · [sw]) ∈ L(π)
it also means that a ∈ L(α), s ∈ L(σ), and si ∈ L(σi) for all 1 ≤ i ≤ w. Consequently,
t ∈ L((λα)[σ][σ1] · · · [σw]) as required.

Conversely, let π = λ(α[⇑ (σ)])[σ1] · · · [σw] be the unique term in the ϕ-matching family
∆n
ϕ such that t ∈ L((λα)[σ][σ1] · · · [σw]). Note that a ∈ L(α), s ∈ L(σ), and si ∈ L(σi)

for all 1 ≤ i ≤ w. Since t has a head υ-redex, after a single reduction step t reduces to
t′ = λ(a[⇑ (s)])[s1] · · · [sw] ∈ L(π). By construction of ∆n

ϕ, it means that there exists a
production Gn → γ in Gn such that L(π) ⊂ L(γ) and hence t′ ↓n. Certainly, it follows that
t ↓n+1. J

C Quantitative analysis of (Gn)n

Techniques of analytic combinatorics provide systematic means of investigating various
discrete structures through a direct analysis of their corresponding generating functions [12,
13]. Although the presented analysis is quite straightforward, it requires a fair amount of
background knowledge. We refer the unfamiliar reader to Flajolet and Sedgewick’s excellent
textbook [13] for a thorough introduction to the subject.

Proof of Proposition 6.4. Let Gk → γ be a regular production in Gk. Since by construction
Gk is simple, we know that γ ∈ TF(N∪{G0, . . . , Gk−1}). Following symbolic methods [13, Part
A, Symbolic Methods] we can therefore convert each non-terminal X ∈ N ∪ {G0, . . . , Gk−1}
occurring in γ into an appropriate generating function X(z). Likewise, we can convert each
function symbol occurrence f into an appropriate monomial z, see Figure 5. Finally, we group
respective monomials together, and note that the generating function Gγ(z) corresponding
to γ takes the form (15). Respective exponents denote the number of occurrences of their
associated symbols.

Consider the remaining self-referencing productions Gk → δ. Again, since Gk is simple, we
know that δ takes the form λGk, G0Gk or (symmetrically) GkG0. And so, as each X ∈ Nn
is unambiguous in Gk, by symbolic methods, it follows that Gk(z) satisfies the following
functional equation:

Gk(z) = zGk(z) + 2zG0(z)Gk(z) +
∑

Gk→γ∈Φk

Gγ(z). (23)

Note that as no Gγ(z) references the left-hand side Gk(z), equation (23) is in fact linear
in Gk(z). Furthermore, as G0(z) = L∞(z) we finally obtain the requested form of Gk(z),
see (14). J

Equipped with Proposition 6.4 we are now ready to prove the main quantitative result of
the current paper.

M. Bendkowski 7:21

Proof of Theorem 6.5. We claim that for each k ≥ 1 the generating function Gk(z) can
be represented as Gk(z) =

√
1− 4zP (z) + Q(z) where both P (z) and Q(z) are functions

analytic in the disk |z| < 1
4 + ε for some positive ε. The asserted asymptotic estimate follows

then as a straightforward application of algebraic singularity analysis, see Proposition 6.1.
We start with showing that each Gk(z) includes a summand in form of

√
1− 4z P (z)+Q(z)

such that both P (z) and Q(z) are analytic in a large enough disk containing (properly)
|z| < 1

4 . Afterwards, we argue that no summand has singularities in |z| < 1
4 . Standard

closure properties of analytic functions with single dominant, square-root type singularities
guarantee the required representation of Gk(z).

Let ϕ = N be the template corresponding to the (RVar) rule, see Table 1. Note that since
G0 includes the production G0 → N , the set of ϕ-matchings ∆0

ϕ consists of the single term
N . Hence, due to the respective production construction, it means that G1 → (SN)[T/] is a
production of G1, cf. Example 5.10. Moreover, as a consequence of the construction associated
with the (FVar) rule, for each Gk → γ in Gk there exists a production Gk+1 → 0[γ/] in the
subsequent grammar Gk+1. And so, each Gk includes among its productions one production
in form of

Gk → 0[0[. . . 0︸ ︷︷ ︸
k−1 times

[(SN)[T/]/] . . . /]/] (24)

Denote the right-hand side of the above production as γ. Note that the associated generating
function Gγ(z), cf. (23), must therefore take form

Gγ(z) = zζ(γ)T (z)N(z) and so Gγ(z) =
√

1− 4z P (z) +Q(z) (25)

where both P (z) and Q(z) are analytic in |z| < 1
4 + ε for some (determined) ε > 0.

In order to show that no production admits a corresponding generating function with
singularities in the disk |z| < 1

4 we note that the single dominant singularity of G0(z), and so
at the same time L∞(z), is equal to the smallest positive real root ρ of 1− 3z− z2− z3 which
satisfies 1

4 < ρ ≈ 0.295598, see Proposition 6.2. Due to the form of basic generating functions
corresponding to T , S and N , see Proposition 6.3, we further note that other singularities
must lie on the unit circle |z| = 1. And so, each Gk(z) admits the asserted form

Gk(z) =
√

1− 4zP (z) +Q(z) (26)

for some functions analytic in a disk |z| < 1
4 + ε. J

FSCD 2019

Deriving an Abstract Machine for
Strong Call by Need
Małgorzata Biernacka
Institute of Computer Science, University of Wrocław, Poland
mabi@cs.uni.wroc.pl

Witold Charatonik
Institute of Computer Science, University of Wrocław, Poland
wch@cs.uni.wroc.pl

Abstract
Strong call by need is a reduction strategy for computing strong normal forms in the lambda calculus,
where terms are fully normalized inside the bodies of lambda abstractions and open terms are
allowed. As typical for a call-by-need strategy, the arguments of a function call are evaluated at
most once, only when they are needed. This strategy has been introduced recently by Balabonski et
al., who proved it complete with respect to full β-reduction and conservative over weak call by need.

We show a novel reduction semantics and the first abstract machine for the strong call-by-need
strategy. The reduction semantics incorporates syntactic distinction between strict and non-strict
let constructs and is geared towards an efficient implementation. It has been defined within the
framework of generalized refocusing, i.e., a generic method that allows to go from a reduction
semantics instrumented with context kinds to the corresponding abstract machine; the machine is
thus correct by construction. The format of the semantics that we use makes it explicit that strong
call by need is an example of a hybrid strategy with an infinite number of substrategies.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computa-
tion → Operational semantics

Keywords and phrases abstract machines, reduction semantics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.8

Funding This research is supported by the National Science Centre of Poland, under grant number
2014/15/B/ST6/00619.

1 Introduction

Call by need, or lazy evaluation, is a strategy to evaluate λ-terms based on two principles:
first, evaluation of an expression should be delayed until its value is needed; second, the
arguments of a function call should be evaluated at most once [32]. Lazy evaluation can be
considered as an optimization of call-by-name evaluation where the computation of arguments
is delayed but its results are not reused. A model implementation of lazy evaluation is
often given in the form of an abstract machine which typically includes a store to facilitate
memoization of intermediate results, as in the well-known STG machine of Peyton Jones
used in the Haskell compiler [26]. On the other hand, theoretical studies of lazy evaluation
stem from two canonical approaches: a store-based natural semantics of Launchbury [24, 28],
and a storeless, purely syntactic account of Ariola et al. [8, 25, 17, 21]. Lazy evaluation is an
example of a strategy realizing weak reduction, which is standard in functional programming
languages, where all λ-abstractions are considered to be values; consequently, evaluation
of a term always stops after reducing it to a λ-abstraction. In contrast, strong reduction
continues to reduce inside the bodies of λ-abstractions until a full β-normal form is reached;
consequently, it must reduce inside substitutions and it must be able to evaluate open
terms. Strong reduction and the corresponding reduction strategies have been gaining more

© Małgorzata Biernacka and Witold Charatonik;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mabi@cs.uni.wroc.pl
mailto:wch@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.FSCD.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 An Abstract Machine for Strong Call by Need

attention due to the development of proof assistants based on dependent types, such as Agda
or Coq, whose implementation requires full term normalization for type-checking [23, 14]. In
particular, the current version of the Coq proof assistant [30] employs an abstract machine
that uses a lazy strategy to fully normalize terms, but the strategy has not been studied
formally. Recently, Balabonski et al. proposed a strong call-by-need reduction strategy as
a theoretical foundation for implementations of strong call by need [10]. Their strategy is
proved to be complete with respect to β-reduction in the λ-calculus and conservative over
the weak call-by-need strategy. Even though it has good theoretical properties, it is not clear
how the strategy can be efficiently implemented, because it lacks operational account.

The goal of this paper is twofold: to contribute to the study of strong call by need by
presenting a novel reduction semantics and an abstract machine for the strategy described
in [10], and to showcase the existing framework of generalized refocusing used to inter-derive
the two, quite complex, semantic artefacts. To this end, we first give a proper formulation of
reduction semantics for the strategy, one that fits the framework and thus directly enables
its implementation, and which can be seen as an operationalized variant of Balabonski et
al.’s semantics. Second, we derive an abstract machine from the strategy, by means of the
refocusing procedure [12] which takes as input a reduction semantics satisfying mild syntactic
conditions and produces a lower-level specification that is provably correct with respect to
the reduction semantics. The procedure is implemented in Coq and is fully automatic, once
the syntactic conditions are proved.

The reduction semantics we present is inspired by previous work on weak [9, 19] and
strong [10] call-by-need strategies. In particular, it builds on the concepts from [10] and
incorporates syntactic distinction between strict and non-strict let constructs from [19], and it
does not introduce an explicit store. However, in contrast to [10], we avoid collecting non-local
information in the process of decomposition of terms (such as traversing a term to identify all
its needed variables), but rather we thread the required information throughout. We prove
that our version of the reduction semantics is adequate with respect to that from [10]; the
formal correspondence between the two can be found in Section 6. The reduction semantics
is presented in a format recently developed in [12], based on contexts instrumented with
kinds that carry extra information. This format makes it explicit that strong call by need is
an example of a hybrid strategy with an infinite number of substrategies (which equals the
number of nonterminal symbols in the grammar).

Since the strong call-by-need semantics is quite sophisticated, as a warm-up we show a
reduction semantics and an abstract machine for weak call by need, which is much simpler
and presented in the same framework of generalized refocusing.

The rest of the paper is organized as follows. In Section 2 we recall the semantic
formats that we use throughout the paper. In Section 3 we show the reduction semantics for
the weak call-by-need strategy due to Danvy and Zerny, and we derive the corresponding
abstract machine in the framework of generalized refocusing. In Section 4 we present a
novel formulation of a reduction semantics for the strong call-by-need strategy, in Section 5
we discuss the derived abstract machine for this strategy. In Section 6 we show that our
semantics is equivalent to that of Balabonski et al. In Section 7 we discuss the closest related
work, and we conclude in Section 8.

2 Preliminaries

A reduction semantics is a kind of small-step operational semantics, where the positions
in a term that can be rewritten are explicitly defined by reduction contexts, rather than
implicit in inference rules [20]. By a context we mean a term with exactly one occurrence of

M. Biernacka and W. Charatonik 8:3

a variable called a hole and denoted �. For a given term t and a context C, by C[t] we denote
the result of plugging t into C, i.e., the term obtained by substituting the hole in C with
t. We say that a pair 〈C, t〉 is a decomposition of the term C[t] into the context C and the
term t. The set of reduction contexts in a reduction semantics is often defined in form of a
grammar of contexts [18]. A contraction relation ⇀ of a reduction semantics specifies atomic
computation steps, typically given by a set of rewriting rules. Terms that can be rewritten
by ⇀ are called redices and those produced by it – contracta. In a reduction semantics, the
reduction relation → is defined as the compatible closure of the contraction: a term t reduces
in one step to t′ if it can be decomposed into a redex r in an evaluation context E, that is
t = E[r], the redex r can be rewritten in one step to t′′ by one of the contraction rules, and
t′ is obtained by the recomposition of E and t′′, that is t′ = E[t′′]. In Section 4 we use a
more general definition of reduction that accounts for more complex strategies.

When considering programs as closed terms (i.e., terms without free variables), evaluation
is defined as the reflexive-transitive closure of the reduction relation (written→∗), and values
are expected results of computation, chosen from the set of all normal forms (other normal
forms are often called stuck terms). All λ-abstractions are typically considered values and
evaluation does not enter λ-bodies. More generally, and when we consider reduction of open
terms, we often use the term normalization instead of evaluation, and normal form rather
than value. In this paper, we consider open terms and we use these terms interchangeably
(effectively, we treat all normal forms as values).

A grammar of contexts consists of a set N of nonterminal symbols, a starting nonterminal,
a set S of variables denoting syntactic categories and a set of productions. Productions have
the form C → τ where C ∈ N and τ is a term with free variables in N ∪ {�} ∪ S, with
exactly one occurrence of a variable from N ∪ {�}. If the grammar of reduction contexts
encoding a strategy contains just one nonterminal symbol, we call this strategy uniform;
intuitively, one always proceeds in the same way when decomposing a term into a reduction
context and a redex. On the other hand, strategies that require multiple nonterminals in
grammars are hybrid: it is necessary to use different substrategies for finding redices, one
substrategy for each nonterminal symbol.

Figure 1 contains an example of a grammar with two nonterminals C,E (where C is the
starting nonterminal) and syntactic categories t, n and v of terms, neutral terms and values.
Figure 2 contains an example of a grammar with one nonterminal E and syntactic categories
t, v of terms and values, and E[x] is a succinct notation for the category of needy terms, i.e.,
terms decomposable into a variable in context (an explicit definition of needy terms will be
given later in Figure 4).

C ::= �C | λx.C | E t | n C where t ::= λx. t | x | t t,
E ::= �E | E t | n C n ::= x | n v,

v ::= n | λx. v

(β−contraction) (λx.t1) t2 ⇀ t1[x 7→ t2]

Figure 1 Normal-order reduction semantics from [12].

Figure 1 shows the normal-order strategy, which is a hybrid strategy. This strategy
normalizes a term to its full β-normal form (if it exists) by first evaluating it to its weak-head
normal form with the call-by-name strategy, and only then reducing subterms of the resulting
weak-head normal form with the same normal-order strategy. There are two substrategies,

FSCD 2019

8:4 An Abstract Machine for Strong Call by Need

one for each nonterminal symbol in the grammar. The E substrategy corresponds to call
by name and reduces to weak-head normal form; the C substrategy allows reduction in
bodies of λ-abstractions and in arguments to neutral terms. Each substrategy comes with
its own kind of hole – the subscript indicates the kind of context that can be built inside
the hole. In other words, if we want to extend a reduction context with a hole of kind k by
plugging another context in it, this new context has to be derivable from the nonterminal k.
The contraction rule (standard β-reduction) is here common to both substrategies, but in
Section 4 we show that the contraction relation may be parameterized by kinds.

Abstract machines abound in the literature. They may serve as theoretical artefacts that
facilitate reasoning about the strategy and the execution of programs, or provide the basis
for further transformations and optimizations in a principled way, possibly using known,
off-the-shelf techniques. Intuitively, abstract machines are just another form of operational
semantics, only defined at a lower level of abstraction. They typically provide reasonably
precise and efficient models of implementation. Ideally, each step of an abstract machine
should be done in constant time, which usually can be achieved by rewriting only topmost
symbols of machine configurations. Therefore complex operations such as finding a redex
in a term or substituting a term for a variable in another term should be divided into
smaller steps, making explicit the process of decomposition of terms. It is nontrivial how to
achieve this atomicity when the strategy requires non-local information to proceed – one
typically needs to thread some extra information in machine configurations. The strong
call-by-need strategy is an example where this happens and in this paper we show how we
solve this problem for finding redices. However, we do not deal with the decomposition of
the contraction rules into atomic steps, which is an orthogonal issue. In fact, decomposition
of contraction can also be handled by the refocusing methodology, as witnessed by previous
work deriving environment-based abstract machines from calculi of closures by refocusing [13].
We leave it for future work.

3 Weak call by need

As a gentle introduction we first review the simpler weak call-by-need strategy and discuss
some of the concepts we later extend to the strong case. We also summarize the main
idea behind the refocusing procedure that allows to derive an abstract machine from a
reduction semantics.

3.1 Reduction strategy
There is a wide range of theoretical studies of lazy evaluation in the λ-calculus, presenting
different semantic formats of the weak call-by-need strategy. Here we recall one: Danvy and
Zerny’s “revised storeless reduction semantics”, which is most relevant to our work and can
be seen as the basis for our strong variant of the call-by-need reduction semantics. This
strategy was derived in [19] from the standard call-by-need reduction for the λlet calculus
common to Ariola, Felleisen, Maraist, Odersky and Wadler [8, 9, 25] as part of a bigger
picture connecting the various approaches to the weak call-by-need strategy.

The strategy is presented in Figure 2. The grammar of terms extends lambda terms with
two forms of let-constructors declaring denotables. A strict let expression let x := t0 in t1
makes it syntactically explicit that the variable x is needed in the let-body t1 and its value
is still not known. Informally, we say that the variable x is needed in t1 whenever the
first thing to do when evaluating t1 is to establish the value of x, i.e., when t1 can be
uniquely decomposed as t1 = E[x], where E is a reduction context. In a non-strict version

M. Biernacka and W. Charatonik 8:5

Syntax:

(terms) t ::= x | λx.t | t t | let x= t in t | let x := t in E[x]
(λ-values) v ::= λx. t

(answer contexts) A ::= � | let x= t in A
(evaluation contexts) E ::= � | E t | let x= t in E | let x :=E in E[x]

(redices) r ::= A[v] t | let x :=A[v] in E[x] | let x= t in E[x]

Contraction rules:

(1) A[λx.t] t1 ⇀ A[let x= t1 in t]
(2) let x= t in E[x] ⇀ let x := t in E[x]
(3) let x :=A[v] in E[x] ⇀ A[let x= v in E[v]]

Figure 2 The revised call-by-need λlet calculus from [19].

let x= t0 in t1 the variable x is possibly not needed or its value is already known. In other
words, evaluation of a strict expression let x := t0 in t1 starts with evaluation of t0 while
evaluation of a non-strict expression let x= t0 in t1 starts with evaluation of t1.

In Danvy and Zerny’s setting only closed terms are considered, values are arbitrary
λ-abstractions and the answers produced by evaluation are values possibly wrapped in a
number of let bindings – the answers are represented here as values plugged in answer contexts
A. Throughout this paper we assume the variable convention, i.e., that all the bound and
free variable names are pairwise distinct. The evaluation contexts E encode the strategy; in
an application we look for a redex in the operator position, and the strategy for the two let
constructs described informally above is encoded in the last two context constructors.

Let us briefly discuss the contraction rules. Rule (1) implements delayed computation:
we delay the evaluation of the actual parameter t1 and instead start the computation of the
body t. This is because the contractum here is a non-strict let expression, where, by the
third production in the grammar of evaluation contexts, a reduction context is sought in
the subterm t. Rule (2) states that the computation of x can no longer be delayed. Rule
(3) implements memoization: when the value of the term bound to x is known, it not only
replaces x in the current context, but also it is stored in the answer substitution. The let
construct is no longer strict because we do not know if x will be needed again.1

I Example 3.1. To observe the benefits of the call-by-need strategy we should look at an
evaluation of a term of the form f t s where the terms t and s require some computation
and f contains two formal parameters: one that occurs at least twice and the other that
does not occur in the body. The simplest case is f = λx.λy.x x and t = id id where id = λz.z;
a definition of s is not relevant. Figure 3 shows this evaluation. In each step the redex is
underlined and the relevant contexts are marked with square brackets. In steps (i)− (ii) the
computations of x and y are delayed; in step (iii) x is needed. In steps (iv)− (vi) the value
of the term bound to x is computed and in step (vii) it is memoized. In step (x) x is needed
again and in step (xi) the computed value is reused thus avoiding the second computation
of t. Step (xii) finishes the computation in the body of f . The variable y is never needed, so
the value of s is not computed.

1 Danvy and Zerny also include a fourth rule which is a short-cut of rules (2) and (3) in the case when t
is a value. We do not consider it here since it does not constitute a different contraction step but can
be seen as an optimization of the reduction sequence.

FSCD 2019

8:6 An Abstract Machine for Strong Call by Need

[(λx.λy.x x)] (id id) s
(i) (1)

 [let x= (id id) in λy.x x] s
(ii) (1)

 let x= (id id) in let y= s in [x]x
(iii) (2)

 let x := ([id] id) in let y= s in xx

(iv) (1)
 let x := (let z= id in [z]) in let y= s in xx

(v) (2)
 let x := (let z := [id] in [z]) in let y= s in xx

(vi) (3)
 let x := (let z= id in [id]) in let y= s in [x]x

(vii) (3)
 let z= id in let x= id in let y= s in [id]x

(viii) (1)
 let z= id in let x= id in let y= s in let z=x in [z]

(ix) (2)
 let z= id in let x= id in let y= s in let z := [x] in z

(x) (2)
 let z= id in let x := [id] in let y= s in let z := [x] in z

(xi) (3)
 let z= id in let x= id in let y= s in let z := [id] in [z]

(xii) (3)
 let z= id in let x= id in let y= s in let z= id in id

Figure 3 Evaluation of (λx.λy.x x) (id id) s in weak call-by-need.

3.2 Refocusing

Refocusing is a mechanical procedure for deriving abstract machines from reduction semantics.
It was introduced in [18], formalized [29] in the Coq proof assistant, and recently generalized
in [12]. The method was applied (both by hand and in Coq) to a number of reduction
semantics, to derive new machines as well as to establish the connection between existing
machines and their underlying reduction semantics [13, 21, 12].

A naive implementation of evaluation in a reduction semantics consists in repeating
the following steps until the processed term is a normal form: (a) decompose the given
term into a context and a redex, (b) contract the redex, and (c) recompose a new term
by plugging the contractum in the context. Consider, for example, step (iv) in Figure 3.
After contracting the redex id id, the contractum let z= id in z is wrapped in the context
let x :=� in let y= s in xx in the recomposition phase of step (iv) and immediately
unwrapped by removing the very same context in the decomposition phase of step (v).

Refocusing optimizes this naive implementation by avoiding the reconstruction of inter-
mediate terms in a reduction sequence. To make this optimization work as an automatic
procedure, the user must provide additional input – below we describe what is required by the
current implementation. Figure 4 shows the essential part of this input in our implementation
of weak call by need.

First, the user must define the set of values. The implementation requires all useful
normal forms to be considered values, where by “useful” we mean that such a normal form
put into some reduction context can potentially lead to further reduction. Under weak call
by need, values are answers and needy terms, which are used in contraction (3) in Figure 2,
and can be thought of as intermediate values. Their grammar is shown explicitly in Figure 4,
parameterized by the needed variable (we use dash symbol - in place of variable when it is
not relevant).

Second, the user must provide two functions, effectively defining the elementary contexts
of the strategy. The first of them, denoted ⇓, takes a term t and tells what to do when
this term is processed for the first time. The possible options are: decompose it (if t is

M. Biernacka and W. Charatonik 8:7

(needy terms) nx ::= x | nx t | let y= t in nx | let y :=nx in ny

(answers) a ::= λx. t | let x= t in a

x ⇓ V

λx.t ⇓ V

t1 t2 ⇓ [t1] t2
let x= t1 in t2 ⇓ let x= t1 in [t2]
let x := t1 in t2 ⇓ let x := [t1] in t2

[n-] t ⇑ V

[a] t ⇑ R

let x= t in [nx] ⇑ R

let x= t in [ny] ⇑ V if x 6= y

let x= t in [a] ⇑ V

let x := [n-] in nx ⇑ V

let x := [a] in nx ⇑ R

Figure 4 Input to the refocusing procedure for weak call-by-need.

decomposable); reduce it (if t is not decomposable and a redex, denoted R) or report a value
(if t is not decomposable and a value, denoted V). In the decomposable case the function
returns a decomposition into an elementary context and a subterm. (The R option is not
used in the definition of ⇓ in the weak call-by-need strategy.)

The second function, denoted ⇑, tells how to process a term when we already know that
it is a value. In such a case we have to take into account the context surrounding the term.
Thus ⇑ takes an elementary context ec and a value v and informs how to process ec[v]; the
options are as in the case of ⇓.

Third, in the case when the grammar of contexts contains overlapping productions, the
user must also provide an order on these productions that prescribes which of the possible
decompositions of a given term should be tried first (there are overlapping production in
strong call by need, but not in weak call by need).

Finally, the user must prove that the defined semantics satisfies mild syntactic conditions
described in detail in [12]. An example of such a condition is that the order on productions
in the grammar is well-founded, which implies that all possible decompositions of a term
are checked in a finite number of steps. The complete formalization of the weak call by
need strategy can be found in the repository http://bitbucket.org/pl-uwr/generalized_
refocusing in the file examples/weak_cbnd.v.

The resulting abstract machine is presented in Figure 5. We show it in a simplified form
where some parts of configurations are omitted, e.g., the information about the kind of
contexts, since there is only one kind and it does not affect the strategy.

The machine uses two kinds of configurations: an E-configuration represents a term
in a context, and the transition for these configurations correspond to the ⇓ function. A
C-configuration represents a value plugged in a context, and the transitions correspond to the
⇑ function. The evaluation of a term t starts in a configuration 〈t,�〉E . In particular, the last
two E-transitions show the difference in the treatment of strict and non-strict let constructors.
The third C-transition makes it explicit when a let constructor should be treated as strict –
exactly when the let-body is a term that needs the value of x. Since we admit open terms, it
is possible that a let-body needs a different variable to proceed – in that case we treat such
a term as an intermediate value (cf. the fourth C-transition). The notation nx 7→v in the last
transition stands for the result of substitution of the value v for the needed occurrence of the
variable x in the needy term nx.

FSCD 2019

http://bitbucket.org/pl-uwr/generalized_refocusing
http://bitbucket.org/pl-uwr/generalized_refocusing

8:8 An Abstract Machine for Strong Call by Need

〈x,C〉E −→ 〈C, x〉C
〈λx.t, C〉E −→ 〈C, λx.t〉C
〈t1 t2, C〉E −→ 〈t1,� t2 ◦ C〉E
〈let x= t1 in t2, C〉E −→ 〈t2, let x= t1 in � ◦ C〉E
〈let x := t1 in t2, C〉E −→ 〈t1, let x :=� in t2 ◦ C〉E

〈� t ◦ C, n-〉C −→ 〈C, n- t〉C
〈� t1 ◦ C,A[λx.t]〉C −→ 〈A[let x= t1 in t], C〉E
〈let x= t in � ◦ C, nx〉C −→ 〈let x := t in nx, C〉E
〈let x= t in � ◦ C, ny〉C −→ 〈C, let x= t in ny〉C for x 6= y

〈let x= t in � ◦ C, a〉C −→ 〈C, let x= t in a〉C
〈let x :=� in nx ◦ C, n-〉C −→ 〈C, let x :=n- in nx〉C
〈let x :=� in nx ◦ C,A[v]〉C −→ 〈A[let x= v in nx 7→v], C〉E

Figure 5 Abstract machine for weak call by need.

This machine differs from Danvy and Zerny’s machine corresponding to the reduction
semantics from Figure 2 in that it handles open terms and that it is not optimized, and not all
steps can be executed in constant time. In particular, since terms of the form A[t] are coerced
to terms, each time we encounter a term of this form it will be decomposed from scratch,
even though we know we could directly consider t in a context where all the surrounding let
bindings are on the context stack. However, the structure of the resulting machine is amenable
to off-the-shelf transformations leading to more efficient variants, e.g., following Danvy and
Zerny’s approach that allows to transform it into a store-based abstract machine [19].

Generalized refocusing. The distinction between uniform and hybrid strategies was first
introduced in [22]. The refocusing procedure developed in [18] and formalized in [29] was
limited to uniform strategies. Recently it has been generalized to hybrid strategies in [12] –
the authors show several examples of strategies based on grammars with a few (usually two
or three) nonterminal symbols, including the normal-order strategy shown in Figure 1.

Strong call by need is probably the first natural example of a reduction strategy with
an unbounded number of nonterminals in the underlying grammar. In the remainder of the
paper we present this strategy and the abstract machine derived by generalized refocusing.

4 Reduction semantics for strong call by need

We now present the reduction semantics for the strong call-by-need strategy. It is strongly
inspired by the semantics from [10] in that it realizes exactly the same strategy, but is
designed so that it fits in the refocusing framework, which facilitates the derivation of an
abstract machine. The formal correspondence between our semantics and that of [10] is
outlined in Section 6.

Terms. As in the case of weak call by need, the grammar of terms extends lambda terms
with strict and non-strict let-constructors:

(terms) t ::= x | λx. t | t t | let x= t in t | let x := t in t

M. Biernacka and W. Charatonik 8:9

The reduction semantics depends crucially on the notion of frozen variables introduced in
[10]. A free variable is classified as frozen if it can never be substituted, either because it is
not a let-bound variable (like x in x t), or if it is bound to a term that cannot become an
answer (like x in let x= z z in x t). If a variable is not frozen, then we call it active. The
status of variables depends on the context of evaluation: for example, when we consider the
term x t in the empty context, then x is frozen; but when the same term is plugged in the
context let x=λz.z in � then x is no longer frozen. Intuitively, the latter context defrosts
the variable and makes it active and substitutable.

In the process of evaluation we consider terms of particular shapes: structures S, normal
forms N , and needy terms N -

- . Structures and normal forms are defined by mutual recursion.
Needy terms are parameterized by the variable they need and additionally by a context kind,
which will be defined later. Whether a term falls into one of these categories depends on
the status of its free variables, therefore each category is further parameterized by a set of
variables containing exactly the frozen variables of a term.

The grammar of structures is shown in Figure 6. Informally, a structure is a normal
form formed around a frozen variable, e.g., let x= y in z (λy.y) belongs to S{z} and is a
structure formed around the frozen variable z. Structures here are almost equivalent to
structures in [10], with the difference that here we parameterize them precisely with sets of
frozen variables, while in [10] any superset of frozen variables is a good parameter.

x ∈ S{x}

s ∈ Sφ n ∈ Nψ
s n ∈ Sφ ∪ ψ

s ∈ Sφ x /∈ φ
let x= t in s ∈ Sφ

s1 ∈ Sφ s2 ∈ Sψ x ∈ ψ
let x := s1 in s2 ∈ S(φ ∪ ψ) \ {x}

Figure 6 Grammar of structures.

Normal forms in N (with respect to strong call-by-need reduction) are either structures
or irreducible terms built around a normal λ-abstraction in Nλ (see Figure 7). They can be
seen as natural generalizations of weak call-by-need normal forms that arise when structures
are introduced. The last two rules impose restrictions on the sets φ and ψ: first, x cannot
be a member of φ because otherwise contexts let x= t in � and let x := s in � defrost it;
second, n in the last rule occurs in a position of a needy term with needed variable x, so x
must be a member of ψ.

s ∈ Sφ
s ∈ Nφ

n ∈ Nφ

λx.n ∈ Nλ
φ \ {x}

n ∈ Nλ
φ

n ∈ Nφ

n ∈ Nλ
φ x /∈ φ

let x= t in n ∈ Nλ
φ

s ∈ Sφ n ∈ Nλ
ψ x ∈ ψ \ φ

let x := s in n ∈ Nλ
(φ ∪ ψ) \ {x}

Figure 7 Grammar of normal forms.

Finally, needy terms are terms uniquely decomposable into a reduction context and an
active variable. Such terms can be seen as intermediate normal forms that arise in the
normalization process when we try to establish if a given let-bound variable is needed. The
grammar of needy terms is shown in Figure 8. It is important to note that the same term
can be either a structure, or a needy term depending on the status of its free variables, e.g.,

FSCD 2019

8:10 An Abstract Machine for Strong Call by Need

x ∈ Nx
k·∅

nx ∈ Nx
E·φ x /∈ φ

nx t ∈ Nx
k·φ

s ∈ Sφ nx ∈ Nx
C·ψ x /∈ (φ ∪ ψ)

s nx ∈ Nx
k·φ ∪ ψ

nx ∈ Nx
k·φ x 6= y y /∈ φ

let y= t in nx ∈ Nx
k·φ

s ∈ Sψ nx ∈ Nx
k·φ x 6= y x /∈ ψ

let y := s in nx ∈ Nx
k·((φ ∪ ψ) \ {y})

nx ∈ Nx
E·φ

let y :=nx in ny ∈ Nx
k·φ

nx ∈ Nx
C·φ x 6= y

λy.nx ∈ Nx
C·φ

Figure 8 Grammar of needy terms.

x ∈ S{x} (here x is frozen) and x ∈ Nx
k·∅ (here x is active). The latter term denotes the

variable x, which is needed in the empty context (k denotes the kind of context) and active
in terms of the form let x := t in x.

Reduction contexts. The strong call-by-need reduction strategy generalizes the weak call-
by-need strategy – informally, it first tries to evaluate terms with the weak strategy and after
reaching a weak value it attempts to normalize it further (i.e., inside a lambda abstraction or a
neutral term). This pattern is analogous to the normal-order strategy, which can be adequately
described using hybrid reduction contexts whose grammar defines the interconnection between
the weak and the strong strategy (see Figure 1). To define strong contexts for normal order
we need to use two kinds: E - for weak contexts (realizing call by name), and C - for strong
contexts. When we consider call by need, we need to further instrument these kinds – they
are parameterized by a set of frozen variables. Given a raw kind k ∈ {E, C} and a set of
frozen variables φ we write k · φ for the kind k parameterized by φ. The union {x} ∪ φ is
abbreviated x, φ.

Reduction contexts are built from elementary contexts parameterized by two kinds; ECk1
k2

denotes an elementary context of kind k1 whose hole is of kind k2. Figure 9 describes all the
elementary contexts. In particular, λx.� is an elementary context of raw kind C (it is only
available under the strong strategy), and when reducing under the lambda the same strong
strategy is used with the λ-bound variable treated as frozen inside the body. In both the
weak and the strong variant the context � t can be used, but its hole always forces the weak
strategy to be used inside (i.e., when we decompose the left-hand-side of an application we
always use the weak strategy). The context s� enforces strong reduction of the argument
of an application – in case when the operand is a structure (therefore, irreducible and not
creating a β-redex). The condition ψ ⊆ φ ensures that s is indeed a structure (and not a
needy term) in the given context, see Example 4.1 at the end of this section.

The context let x= t in � is used when first processing a let term, it considers the
let-bound variable active inside the let-body – next we need to establish if it is needed there.
The context let x :=� in nx is available when we already know that x is needed in the
let-body and it is necessary to compute the value of the term bound to the variable (using
the weak strategy). Finally, the context let x := s in � handles situations when the term
bound to x does not evaluate to a weak λ-value but normalizes to a structure. In this case
we go back to evaluating the let-body, this time with the let-bound variable treated as frozen
because it will never be substituted (note that this is the second time the let-body will
be decomposed but the decomposition will be different this time because the set of frozen
variables has changed). Example 4.1 illustrates the last three rules.

M. Biernacka and W. Charatonik 8:11

x /∈ φ
λx.� ∈ ECC·φ

C·x,φ � t ∈ ECk·φE·φ

s ∈ Sψ ψ ⊆ φ
s� ∈ ECk·φC·φ

x /∈ φ
let x= t in � ∈ ECk·φk·φ let x :=� in nx ∈ ECk·φE·φ

s ∈ Sψ ψ ⊆ φ x /∈ φ
let x := s in � ∈ ECk·φE·x,φ

Figure 9 Elementary contexts for strong call by need.

General reduction contexts are composed from elementary ones with matching kinds:

� ∈ Ckk

ec ∈ ECk2
k3

c ∈ Ck1
k2

ec ◦ c ∈ Ck1
k3

This is a representation of contexts inside-out (the hole of the context c matches the kind of
the elementary context ec placed inside it).

Grammar. The grammar of reduction contexts contains nonterminals of the form k · φ,
where k ∈ {C, E} and φ is an arbitrary (finite) set of variables, with starting nonterminal
C · ∅. The productions in this grammar have either the form k · φ→ C[k′ · ψ] where C is an
elementary context in ECk·φk′·ψ, or the form k ·φ→ �. Note that since there are no restrictions
on the number of variables in terms, the grammar contains an infinite number of productions.

Values. Because the strong call-by-need strategy mixes weak and strong normalization, the
notion of value depends on the kind of the context.

n ∈ Nφ φ ⊆ ψ
n ∈ VC·ψ a ∈ VE·ψ

s ∈ Sφ φ ⊆ ψ
s ∈ VE·ψ

nx ∈ Nx
k·φ x /∈ ψ φ ⊆ ψ
nx ∈ Vk·ψ

Strong values VC·- are all strong normal forms that match the kind. Weak values VE·- are
answers, defined as in weak call by need (i.e., as lambda values in answer contexts, a ::= A[v]),
and structures. The set of frozen variables dictated by the kind must be a superset of the set
of frozen variables of the value (here again it ensures that s is indeed a structure in a given
context). The strategy that we are describing works both for closed and for open terms – in
the latter case we treat free variables as frozen. During normalization it happens that we
produce intermediate values containing active variables – these are exactly the needy terms.
The condition x /∈ ψ ensures that nx is indeed a needy term, and not a structure under the
given kind.

Contraction. Just like values, certain terms become redices (i.e., atomic reducible terms)
only in a specific context. Therefore, the type of redices is parameterized by the kind.

(A[λx.t]) t′ ⇀k·φA[let x= t′ in t] (β)
nx ∈ Nx

k·φ

let x :=A[v] in nx ⇀k·φA[let x= v in nx7→v] (lsv)

nx ∈ Nx
k·φ φ ⊆ ψ

let x= t in nx ⇀k·ψ let x := t in nx
(ls)

s ∈ Sk·φ φ ⊆ ψ
let x := s in A[v] ⇀E·ψ let x= s in A[v] (lns)

The first three rules are generalizations of weak call-by-need contractions from Section 2,
whereas the fourth one is added to handle open terms (structures). The first two rules

FSCD 2019

8:12 An Abstract Machine for Strong Call by Need

encode the usual call-by-need computation steps and they coincide with the contractions
in [10], and the last two can be seen as “administrative” reductions that are responsible for
marking/unmarking strict lets. The first rule creates a new let-binding whenever a lambda
abstraction is applied to an argument (this binding will be processed lazily). The second rule
is triggered in a situation when a needed let-bound variable has a value ready to be used
in the let-body; the value is then substituted for the variable and the variable ceases to be
needed. The third rule consists in marking the let-bound variable as needed when we know
that the let-body is needy of this variable. The last rule is used to convert a strict let to an
answer – when the variable is not really needed (it cannot happen if we start reducing with
a term not containing strict lets).

Reduction. The reduction relation is defined as usual, with the restriction that the kind
of contraction must match the kind of the hole in the reduction context: a term t reduces
in one step to t′ if it can be decomposed as t = E[r] for some redex r and an evaluation
context E ∈ C-

k·φ, the redex r can be rewritten in one step to t′′ by contraction ⇀k·φ, and t′
is obtained by the recomposition of E and t′′, that is t′ = E[t′′].

I Example 4.1. Consider an evaluation of a term of the form let x= y y in x t, where y
is the only free (and frozen) variable, with the strong strategy C · {y}. We first decompose
the term to the context let x= y y in � ∈ ECC·{y}

C·{y} and the let-body x t. Here x t ∈ Nx
C·∅ is

a needy term, so the input term is rewritten to let x := y y in x t, using the (ls) rule and
contraction ⇀C·{y}. Since y y is a structure in S{y} and {y} ⊆ {x, y}, the obtained term can
be decomposed using the last rule in Fig. 9 to the context let x := y y in � ∈ ECC·{y}

E·{x,y} and
the term x t, which we now visit for the second time. Note that the inclusion ψ ⊆ φ from
Fig. 9 forces us to change the evaluation strategy here by adding x to the parameter set, so
x becomes frozen. Since x ∈ S{x} and {x} ⊆ {x, y}, the third rule in Fig. 9 prescribes now
to evaluate t using the strong strategy C · {x, y}.

5 An abstract machine for strong call by need

In this section we present an abstract machine for strong call by need derived in the framework
of generalized refocusing. The Coq development can be found in the repository http:
//bitbucket.org/pl-uwr/generalized_refocusing in the file examples/strong_cbnd.v.
The machine (with some technical clutter removed) is presented in Figure 10. We assume
implicit α-renaming of bound variables in order to avoid name clashes (cf. side conditions in
transitions (3),(8),(21)).

The machine has two kinds of configurations. An E-configuration of the form 〈t, C, k, φ〉E
consists of a term, a surrounding context, and the kind of the context hole represented by the
last two components of the configuration. In turn, a C-configuration of the form 〈C, v, k, φ〉C
consists of a context, a value plugged in this context, and the kind of the context hole.
Because both contexts and values are parameterized by kinds, a configuration is considered
correct if the last two components match the kind of the context component (in both E
and C-configurations) and of the value component (in C-configurations). If we start the
machine with a correct configuration, then all the configurations in the machine run are
correct by construction.

The values computed by the machine (and used in C-configurations) coincide with those
in the reduction semantics. In Figure 10 we use notation n for arbitrary normal forms, s for
structures, nλ for lambda values, nx and ny for needy terms. Sometimes it is not obvious to

http://bitbucket.org/pl-uwr/generalized_refocusing
http://bitbucket.org/pl-uwr/generalized_refocusing

M. Biernacka and W. Charatonik 8:13

1 : t −→ 〈t,�, C, ∅〉E

2 : 〈t1 t2, C, k, φ〉E −→ 〈t1,� t2 ◦ Ck·φ, E, φ〉E

3 : 〈let x= t1 in t2, C, k, φ〉E −→ 〈t2, let x= t in � ◦ Ck·φ, k, φ〉E if x /∈ φ

4 : 〈let x := t in nx, C, k, φ〉E −→ 〈t, let x :=� in nx ◦ Ck·φ, E, φ〉E

5 : 〈x,C, k, φ〉E −→ 〈C, str(x), k, φ〉C if x ∈ φ

6 : 〈x,C, k, φ〉E −→ 〈C,nd(x), k, φ〉C if x /∈ φ

7 : 〈λx.t, C, E, φ〉E −→ 〈C,ans(λx.t), E, φ〉C
8 : 〈λx.t, C, C, φ〉E −→ 〈t, λx.� ◦ CC·φ, C, x · φ〉E if x /∈ φ

9 : 〈λx.� ◦ C, n, C, φ〉C −→ 〈C, λx.n, C, φ \ {x}〉C

10 : 〈� t ◦ Ck·ψ,ans(A[λx.r]), E, φ〉C −→ 〈A[let x= t in r], C, k, ψ〉E
11 : 〈� t ◦ Ck·ψ,nd(ny), E, φ〉C −→

〈C,nd(ny t), k, ψ〉C if y /∈ φ

12 : 〈� t ◦ Ck·ψ, str(s), E, φ〉C −→ 〈t, s� ◦ Ck·ψ, C, φ〉E

13 : 〈s� ◦ Ck·ψ, n, C, φ〉C −→ 〈C, str(s n), k, ψ〉C
14 : 〈let x= t in � ◦ Ck·ψ,ans(A[v]), E, φ〉C −→ 〈C,ans(let x= t in A[v]), k, ψ〉C
15 : 〈let x= t in � ◦ Ck·ψ,nd(nx), k′, φ〉C −→

〈let x := t in nx, C, k, ψ〉E if x /∈ φ

16 : 〈let x= t in � ◦ Ck·ψ,nd(ny), k′, φ〉C −→
〈C,nd(let x= t in ny), k, ψ〉C if y 6= x, y /∈ φ

17 : 〈let x= t in � ◦ Ck·ψ, str(s), k′, φ〉C −→ 〈C, str(let x= t in s), k, ψ〉C
18 : 〈let x= t in � ◦ Ck·ψ, lnf(nλ), C, φ〉C −→ 〈C, lnf(let x= t in nλ), k, ψ〉C
19 : 〈let x :=� in nx◦ Ck·ψ,ans(A[v]), E, φ〉C −→ 〈A[let x= v in nx7→v], C, k, ψ〉E
20 : 〈let x :=� in nx◦ Ck·ψ,nd(ny), E, φ〉C −→

〈C,nd(let x :=ny in nx), k, ψ〉C if y /∈ φ

21 : 〈let x :=� in nx ◦ Ck·ψ, str(s), E, φ〉C −→
〈nx, let x := s in � ◦ Ck·ψ, E, x · φ〉E if x /∈ φ

22 : 〈let x := s in � ◦ Ck·ψ,nd(ny), k′, φ〉C −→
〈C,nd(let x := s in ny), k, ψ〉C if y /∈ φ

23 : 〈let x := s in � ◦ Ck·ψ,ans(A[v]), E, φ〉C −→ 〈C,ans(let x= s inA[v]), k, ψ〉C
24 : 〈let x := s in � ◦ Ck·ψ, str(s′), k′, φ〉C −→ 〈C, str(let x := s in s′), k, ψ〉C
25 : 〈let x := s in � ◦ Ck·ψ, lnf(nλ), C, φ〉C −→ 〈C, lnf(let x := s in nλ), k, ψ〉C
26 : 〈�, n, C, φ〉C −→ n

Figure 10 An abstract machine for strong call by need.

FSCD 2019

8:14 An Abstract Machine for Strong Call by Need

which category a given value falls; for example x in the configuration 〈C, x, k, φ〉C is either
a structure or a needy term, depending on whether x ∈ φ. To ease reading the transition
rules, we attach tags to the different value constructors in the machine:

n ::= ans(A[λx.t]) | str(s) | nd(nx) | lnf(nλ)

writing respectively 〈C, str(x), k, φ〉C and 〈C,nd(x), k, φ〉C instead of 〈C, x, k, φ〉C .
An E-configuration either decomposes a term by pushing a new elementary context on

the existing context (in such a way that their kinds match) and proceeds with evaluation of
a subterm, or it calls a C-configuration if the term is a value. In particular, transition (4)
prescribes that if a term is a strict let, then we need to evaluate (to weak value) the term
t1 bound to the variable. If the term happens to be a variable, it is a value but its status
depends on the kind, more specifically on the set of frozen variables φ in the configuration:
if the variable is not in this set, then it will be treated as active (cf. transitions (5) and (6)).
A lambda abstraction is a value in a E-hole but it is further decomposed in a C-hole.

A C-configuration dispatches on the context when a (matching) value is plugged in
its hole. For example, transition (10) encodes β-contraction, transition (15) encodes the
ls-contraction, transition (19) encodes the lsv-contraction, and transition (23) encodes the
lns-contraction.

The machine correctly realizes the strong call-by-need strategy, it decomposes terms
based on local information given in a configuration, but it still could be optimized in various
directions, in particular, using insights from existing work on abstract machines for weak
lazy evaluation [3, 19]. It is future work to check which of the transformations discussed
there generalize to the strong case, in particular how to systematically obtain an efficient
store-based machine.

6 Correctness

In this section we show how our reduction semantics relates to the Balabonski et al.’s. To this
end, we need to introduce some of the notions they use in their work. In the following, we refer
to the their language as Λ, to our language as Λs, and to standard lambda calculus as Λβ .

Balabonski et al. do not distinguish between strict and non-strict let syntactically, they
only have one form of let-construct. In order to discover the difference, they have to traverse
the term to check if the let-bound variable is really needed, i.e., if it is in the set of non-garbage
variables of the body. Non-garbage variables are defined as follows:

ngv(x) = {x}
ngv(λx.t) = ngv(t) \ {x}
ngv(t1 t2) = ngv(t1) ∪ ngv(t2)

ngv(t2[x\t1]) = ngv(t2) \ {x} ∪
{

ngv(t1), if x ∈ ngv(t2)
∅, otherwise

where the notation t2[x\t1] denotes an explicit substitution of t1 for x in t2.
In contrast, our intermediate language makes this distinction effective just as soon as

decomposition of the term reveals it.

M. Biernacka and W. Charatonik 8:15

We define an erasure operation |·| : Λs → Λ:

|x| = x

|λx.t| = λx.|t|
|t1 t2| = |t1| |t2|

|let x= t1 in t2| = |t2|[x\|t1|]
|let x := t1 in t2| = |t2|[x\|t1|]

This operation gives us a translation from Λs to Λ. A translation from Λ to Λs is trivial: every
term in Λ is a term in Λs (modulo the notation; t2[x\t1] is represented as let x= t1 in t2
in Λ).

We can show that the set of frozen variables of Λs-normal forms coincides with the
non-garbage variables. All lemmas below have routine inductive proofs, which we omit here.

I Lemma 6.1. For all Λs-normal forms n ∈ Nφ and for all variables x ∈ φ, x ∈ ngv(|n|).

The following two lemmas give a correspondence between normal forms in Λ and Λs.
Here Nφ denotes the set of normal terms (in Λ) under the set of frozen variables φ.

I Lemma 6.2. For all Λs-normal forms n ∈ Nφ, |n| ∈ Nφ (it is a Λ-normal term).

I Lemma 6.3. For all Λ-normal forms n ∈ Nψ, there exist n0 and φ ⊆ ψ such that |n0| = n

and n0 ∈ Nφ.

The next lemma states that needy terms correspond to Λ-contexts with holes filled with
a designated variable. The notation C[[x]] comes from [10] and denotes the variable x plugged
in the context C that does not capture the variable (there are no abstractions or explicit
substitutions that bind x in C). Similarly, notation Eφ (respectively, E@

φ) is introduced in [10]
and denotes evaluation contexts (respectively, inert evaluation contexts) under the set of
frozen variables φ, both defined in [10].

I Lemma 6.4. For every needy term nx ∈ Nx
E·φ (nx ∈ Nx

C·φ, resp.) there exists a Λ-context
C ∈ E@

φ (C ∈ Eφ, resp.) such that |nx| = C[[x]].

In order to relate contexts, we need to introduce the conversion operator that transforms
Λs-elementary contexts into Λ-contexts.

|λx.�|c = λx.�

|� t|c = � |t|

|s�|c = |s|�

|let x= t in �|c = �[x\|t|]

|let x :=� in nx|c = C[[x]][x\�] where C[[x]] = |nx|

|let x := s in �|c = �[x\|s|]

Based on this definition and the composition of contexts in Λ, we can translate between
Λs-contexts and Λ-contexts. Here ECk·φ- is the union

⋃
k′,ψ EC

k·φ
k′·ψ.

I Lemma 6.5. For every elementary context ec ∈ ECC·φ
_ there is a Λ-context |ec|c ∈ Eφ, and

for every elementary context ec ∈ ECE·φ
_ there is a Λ-context |ec|c ∈ E@

φ and such that

∀t, |ec[t]| = |ec|c[t].

FSCD 2019

8:16 An Abstract Machine for Strong Call by Need

I Lemma 6.6. For every Λ-context C ∈ Eφ (C ∈ E@
φ , resp.) there is a Λs-context c ∈ CC·ψ

_
(c ∈ CE·ψ

_ , resp.) such that ψ ⊆ φ and |c|c = C.

Having the ability to translate between both terms and contexts in the two languages,
we can prove that Λs correctly simulates reductions in Λ. The reduction in Λs possibly
uses more steps then the reduction in Λ because of switching between strict and non-strict
versions of let constructs.

I Definition 6.7. We say that a term t ∈ Λs is proper if all its subterms of the form
let x := t1 in t2 are such that t2 = nx for some needy term nx, i.e., that strict let’s are
correctly marked.

I Proposition 6.8. For all Λ-terms t1 and t2, if t1 →Λ t2 then there exists a proper ts ∈ Λs
such that t1 →∗Λs ts and |ts| = t2. Moreover, for all proper ts ∈ Λs, t ∈ Λ, if |ts| = t then
t→∗Λs ts.

I Proposition 6.9. For all t1, t2 ∈ Λs, if t1 →Λs t2 then |t1| = |t2| or |t1| →Λ |t2|. There is
no infinite sequence t1 →Λs t2 →Λs . . .→Λs tn →Λs . . . such that |t1| = |tn| for all n.

As a consequence of the correct simulation result we obtain that Λs achieves the same
normal forms as Λ.

I Lemma 6.10. For all φ and for all t, r ∈ Λ such that t→∗Λ r and r ∈ Nφ,

t→∗Λs rs

for some rs ∈ Nψ with ψ ⊆ φ, and such that |rs| = r.

I Lemma 6.11. For all φ, and for all t ∈ Λ, rs ∈ Λs such that t→∗Λs rs and rs ∈ Nφ,

t→∗Λ |rs| holds and |rs| ∈ Nφ.

Now the completeness and conservativity results propagate from [10] to our setting. Here
(·)� denotes the unfolding function defined in [10], which is a translation from Λ to Λβ .
The completeness result expresses that whenever a pure lambda term reduces to a normal
form, the same normal form can be reached by the strong call-by-need strategy followed by
unfolding the substitutions wrapping the obtained value.

I Corollary 6.12 (Completeness). For all lambda terms t ∈ Λβ, if t reduces to a normal form
r in Λβ (in symbols, t→∗Λβ r), then there exists a normal form rs in Λs such that

t→∗Λs rs

and |rs|� = r.

The conservativity result expresses that any strong call-by-need reduction has a weak call-
by-need reduction as a prefix.

I Corollary 6.13 (Conservativity). For all lambda terms t ∈ Λs, if

t = t0 →Λs t1 →Λs t2 →Λs . . .→Λs tn

is a sequence of reductions ending with a normal form tn, then there exists an i ≤ n such
that t0 → . . .→ ti is a reduction with weak call-by-need strategy.

M. Biernacka and W. Charatonik 8:17

7 Related work

Operational accounts for lazy evaluation are numerous, coming both from the practical and
the theoretical considerations. The common implementation models include a canonical
store-based abstract machine, where the store component is used to memoize the computed
values and facilitate their reuse [26], as well as graph reduction machines devised on a principle
of sharing of subgraphs representing argument terms [31]. On the other hand, theoretical
investigations of call by need focus on establishing equational reasoning principles for lazy
evaluation and various calculi have been developed for this purpose, with the canonical
store-based natural semantics [24], and a storeless calculus based on let-constructs [8, 25].
These two worlds cross-fertilize, and there exist machines derived in an ad hoc manner from
calculi, e.g., Sestoft’s machine obtained from Launchbury’s semantics [28].

A more principled approach to interderiving semantic artefacts has been advocated by
Danvy and his collaborators; it consists in mechanizing derivations by identifying common
transformation patterns that can be applied generically and provide guidance in the derivation
process. In particular, they have used the functional correspondence to connect evaluators
with abstract machines – including weak call by need [6, 7, 27], and the syntactic correspond-
ence (based on refocusing) to connect reduction semantics and abstract machines [13].

Specific to call by need is an operational account of Danvy and Zerny who unify the
various operational artefacts for lazy evaluation and provide a systematic approach to go
from the canonical let-calculus of Ariola et al. through a series of refined reduction semantics
and the corresponding abstract machines to a canonical store-based abstract machine (lazy
Krivine machine) [19].

Strong reduction has been less studied operationally. The prominent examples of abstract
machines for strong normalization include Crégut’s abstract machine extending the Krivine
machine [15, 16], which has later been derived more systematically by Nogueira and Garcia-
Perez from the normal-order reduction strategy [22]; another variant has been devised using
Linear Substitution Calculus [2] and useful sharing [1]. A different approach has been taken by
Gregoire and Leroy whose normalization strategy uses call by value rather than call by name
as a substrategy and was motivated by Coq implementation [23], and has later been refined
as an instance of normalization by evaluation [14]. Efficient abstract machines for strong
call by value have been recently devised by Accattoli et al. using Fireball Calculus [4, 5].
The only work on strong call by need seems to be Balabonski et al.’s strategy which we
build on [10], recently extended to the Calculus of Inductive Constructions [11], focused on
ensuring completeness of the strong call-by-need strategy.

The framework we work with is based on generalized refocusing that generalizes the
syntactic correspondence used for weak strategies in that it allows for more complex strategies
to be expressed (ones that can be seen as compositions of several substrategies), and the
corresponding abstract machines to be derived [12].

8 Conclusion

We presented a systematic approach to defining reduction semantics for the call-by-need
strategies, both weak and strong, in the framework of generalized refocusing. Within this
framework we derived the corresponding abstract machines that are correct by construction.
We observed that this approach is very effective – the requirements posed by the framework
provide just enough structure and constraints to guide us in the process; in contrast, devising
a machine from scratch would be much more a trial-and-error process, and quite tedious.

FSCD 2019

8:18 An Abstract Machine for Strong Call by Need

The derived machine is not optimized and thus not as effective as it might be. Our
approach opens the possibility to systematically transform and optimize it. We leave it to the
future work to further connect it to other semantic formats and models of implementation
(in particular, a store-based abstract machine), in the spirit of the derivational approach of
Danvy and Zerny [19], and to analyse its complexity as in the line of work of Accattoli [3].

References
1 Beniamino Accattoli. The Useful MAM, a Reasonable Implementation of the Strong λ-Calculus.

In Logic, Language, Information, and Computation - 23rd International Workshop, WoLLIC
2016, Puebla, Mexico, August 16-19th, 2016. Proceedings, volume 9803 of Lecture Notes in
Computer Science, pages 1–21. Springer, 2016. doi:10.1007/978-3-662-52921-8_1.

2 Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. A Strong Distillery. In
Proceedings of APLAS, volume 9458 of Lecture Notes in Computer Science, pages 231–250.
Springer, 2015.

3 Beniamino Accattoli and Bruno Barras. Environments and the complexity of abstract machines.
In Wim Vanhoof and Brigitte Pientka, editors, Proceedings of the 19th International Symposium
on Principles and Practice of Declarative Programming (PPDP’17), Namur, Belgium, October
09 - 11, 2017, pages 4–16. ACM, 2017. doi:10.1145/3131851.3131855.

4 Beniamino Accattoli and Claudio Sacerdoti Coen. On the Relative Usefulness of Fireballs. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 141–155. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.23.

5 Beniamino Accattoli and Giulio Guerrieri. Implementing Open Call-by-Value. In Mehdi
Dastani and Marjan Sirjani, editors, Fundamentals of Software Engineering - 7th International
Conference, FSEN 2017, Tehran, Iran, April 26-28, 2017, Revised Selected Papers, volume
10522 of Lecture Notes in Computer Science, pages 1–19. Springer, 2017. doi:10.1007/
978-3-319-68972-2_1.

6 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A Functional Corres-
pondence between Evaluators and Abstract Machines. In Dale Miller, editor, Proceedings of
the Fifth ACM-SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’03), pages 8–19, Uppsala, Sweden, August 2003. ACM Press.

7 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Functional Correspondence between
Call-by-Need Evaluators and Lazy Abstract Machines. Inf. Process. Lett., 90(5):223–232, 2004.
Extended version available as the research report BRICS RS-04-3.

8 Zena M. Ariola and Matthias Felleisen. The Call-By-Need lambda Calculus. Journal of
Functional Programming, 7(3):265–301, 1997.

9 Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler. The
Call-by-Need Lambda Calculus. In Peter Lee, editor, Proceedings of the Twenty-Second Annual
ACM Symposium on Principles of Programming Languages, pages 233–246, San Francisco,
California, January 1995. ACM Press.

10 Thibaut Balabonski, Pablo Barenbaum, Eduardo Bonelli, and Delia Kesner. Foundations of
strong call by need. PACMPL, 1(ICFP):20:1–20:29, 2017. doi:10.1145/3110264.

11 Pablo Barenbaum, Eduardo Bonelli, and Kareem Mohamed. Pattern Matching and Fixed
Points: Resource Types and Strong Call-By-Need: Extended Abstract. In PPDP, pages
6:1–6:12. ACM, 2018.

12 Malgorzata Biernacka, Witold Charatonik, and Klara Zielinska. Generalized Refocusing: From
Hybrid Strategies to Abstract Machines. In Dale Miller, editor, 2nd International Conference
on Formal Structures for Computation and Deduction, FSCD 2017, September 3-9, 2017,
Oxford, UK, volume 84 of LIPIcs, pages 10:1–10:17. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017. doi:10.4230/LIPIcs.FSCD.2017.10.

13 Małgorzata Biernacka and Olivier Danvy. A Syntactic Correspondence between Context-
Sensitive Calculi and Abstract Machines. Theor. Comput. Sci., 375(1-3):76–108, 2007.

http://dx.doi.org/10.1007/978-3-662-52921-8_1
http://dx.doi.org/10.1145/3131851.3131855
http://dx.doi.org/10.1109/LICS.2015.23
http://dx.doi.org/10.1007/978-3-319-68972-2_1
http://dx.doi.org/10.1007/978-3-319-68972-2_1
http://dx.doi.org/10.1145/3110264
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.10

M. Biernacka and W. Charatonik 8:19

14 Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full Reduction at Full Throttle.
In Proceedings of the First International Conference on Certified Programs and Proofs, CPP’11,
pages 362–377, Berlin, Heidelberg, 2011. Springer-Verlag. doi:10.1007/978-3-642-25379-9_
26.

15 Pierre Crégut. An abstract machine for lambda-terms normalization. In Mitchell Wand, editor,
Proceedings of the 1990 ACM Conference on Lisp and Functional Programming, pages 333–340,
Nice, France, June 1990. ACM Press.

16 Pierre Crégut. Strongly Reducing Variants of the Krivine Abstract Machine. Higher-Order
and Symbolic Computation, 20(3):209–230, 2007. A preliminary version was presented at the
1990 ACM Conference on Lisp and Functional Programming.

17 Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. Defunctionalized Interpreters
for Call-by-Need Evaluation. In Matthias Blume and German Vidal, editors, Functional and
Logic Programming, 10th International Symposium, FLOPS 2010, number 6009 in Lecture
Notes in Computer Science, pages 240–256, Sendai, Japan, April 2010. Springer.

18 Olivier Danvy and Lasse R. Nielsen. Refocusing in Reduction Semantics. Research Report
BRICS RS-04-26, DAIMI, Department of Computer Science, Aarhus University, Aarhus,
Denmark, November 2004. A preliminary version appeared in the informal proceedings of the
Second International Workshop on Rule-Based Programming (RULE 2001), Electronic Notes
in Theoretical Computer Science, Vol. 59.4.

19 Olivier Danvy and Ian Zerny. A Synthetic Operational Account of Call-by-need Evaluation.
In Proceedings of the 15th Symposium on Principles and Practice of Declarative Programming,
PPDP ’13, pages 97–108, New York, NY, USA, 2013. ACM. doi:10.1145/2505879.2505898.

20 Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with
PLT Redex. The MIT Press, 1st edition, 2009.

21 Ronald Garcia, Andrew Lumsdaine, and Amr Sabry. Lazy evaluation and delimited control.
In Benjamin C. Pierce, editor, Proceedings of the Thirty-Fifth Annual ACM Symposium on
Principles of Programming Languages, pages 153–164. ACM Press, January 2009.

22 A García-Pérez and Pablo Nogueira. On the syntactic and functional correspondence between
hybrid (or layered) normalisers and abstract machines. Science of Computer Programming,
95:176–199, 2014.

23 Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction. In
Simon Peyton Jones, editor, Proceedings of the 2002 ACM SIGPLAN International Conference
on Functional Programming (ICFP’02), SIGPLAN Notices, Vol. 37, No. 9, pages 235–246,
Pittsburgh, Pennsylvania, September 2002. ACM Press.

24 John Launchbury. A Natural Semantics for Lazy Evaluation. In Susan L. Graham, editor,
Proceedings of the Twentieth Annual ACM Symposium on Principles of Programming Languages,
pages 144–154, Charleston, South Carolina, January 1993. ACM Press.

25 John Maraist, Martin Odersky, and Philip Wadler. The Call-by-Need Lambda Calculus.
Journal of Functional Programming, 8(3):275–317, 1998.

26 Simon L. Peyton Jones. Implementing Lazy Functional Languages on Stock Hardware: The
Spineless Tagless G-Machine. Journal of Functional Programming, 2(2):127–202, 1992.

27 Maciej Piróg and Dariusz Biernacki. A systematic derivation of the STG machine verified in
Coq. In Jeremy Gibbons, editor, Proceedings of the 2010 ACM SIGPLAN Haskell Symposium
(Haskell’10), pages 25–36, Baltimore, MD, September 2010. ACM Press.

28 Peter Sestoft. Deriving a Lazy Abstract Machine. Journal of Functional Programming,
7(3):231–264, May 1997.

29 Filip Sieczkowski, Małgorzata Biernacka, and Dariusz Biernacki. Automating derivations of
abstract machines from reduction semantics: a generic formalization of refocusing in Coq.
In Juriaan Hage and Marco T. Morazán, editors, The 22nd International Conference on
Implementation and Application of Functional Languages (IFL 2010), number 6647 in Lecture
Notes in Computer Science, pages 72–88, Alphen aan den Rijn, The Netherlands, September
2010. Springer-Verlag.

FSCD 2019

http://dx.doi.org/10.1007/978-3-642-25379-9_26
http://dx.doi.org/10.1007/978-3-642-25379-9_26
http://dx.doi.org/10.1145/2505879.2505898

8:20 An Abstract Machine for Strong Call by Need

30 The Coq Development Team. The Coq Proof Assistant, V. 8.7, 2018. URL: https://github.
com/coq/coq.

31 David A. Turner. A New Implementation Technique for Applicative Languages. Software—
Practice and Experience, 9(1):31–49, 1979.

32 C.P. Wadsworth. Semantics and Pragmatics of the Lambda-calculus. University of Oxford,
1971. URL: https://books.google.pl/books?id=kl1QIQAACAAJ.

https://github.com/coq/coq
https://github.com/coq/coq
https://books.google.pl/books?id=kl1QIQAACAAJ

Dependency Pairs Termination in Dependent
Type Theory Modulo Rewriting
Frédéric Blanqui
INRIA, France
LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France

Guillaume Genestier
LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France
MINES ParisTech, PSL University, Paris, France

Olivier Hermant
MINES ParisTech, PSL University, Paris, France

Abstract
Dependency pairs are a key concept at the core of modern automated termination provers for
first-order term rewriting systems. In this paper, we introduce an extension of this technique for
a large class of dependently-typed higher-order rewriting systems. This extends previous results
by Wahlstedt on the one hand and the first author on the other hand to strong normalization and
non-orthogonal rewriting systems. This new criterion is implemented in the type-checker Dedukti.

2012 ACM Subject Classification Theory of computation→ Equational logic and rewriting; Theory
of computation → Type theory

Keywords and phrases termination, higher-order rewriting, dependent types, dependency pairs

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.9

Acknowledgements The authors thank the anonymous referees for their comments, which have
improved the quality of this article.

1 Introduction

Termination, that is, the absence of infinite computations, is an important problem in
software verification, as well as in logic. In logic, it is often used to prove cut elimination and
consistency. In automated theorem provers and proof assistants, it is often used (together
with confluence) to check decidability of equational theories and type-checking algorithms.

This paper introduces a new termination criterion for a large class of programs whose
operational semantics can be described by higher-order rewriting rules [33] typable in the
λΠ-calculus modulo rewriting (λΠ/R for short). λΠ/R is a system of dependent types where
types are identified modulo the β-reduction of λ-calculus and a set R of rewriting rules given
by the user to define not only functions but also types. It extends Barendregt’s Pure Type
System (PTS) λP [3], the logical framework LF [16] and Martin-Löf’s type theory. It can
encode any functional PTS like System F or the Calculus of Constructions [10].

Dependent types, introduced by de Bruijn in Automath, subsume generalized algebraic
data types (GADT) used in some functional programming languages. They are at the core of
many proof assistants and programming languages: Coq, Twelf, Agda, Lean, Idris, . . .

Our criterion has been implemented in Dedukti, a type-checker for λΠ/R that we will
use in our examples. The code is available in [12] and could be easily adapted to a subset of
other languages like Agda. As far as we know, this tool is the first one to automatically
check termination in λΠ/R, which includes both higher-order rewriting and dependent types.

This criterion is based on dependency pairs, an important concept in the termination
of first-order term rewriting systems. It generalizes the notion of recursive call in first-

© Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSCD.2019.9
https://deducteam.github.io/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

order functional programs to rewriting. Namely, the dependency pairs of a rewriting rule
f(l1, . . . , lp) → r are the pairs (f(l1, . . . , lp), g(m1, . . . ,mq)) such that g(m1, . . . ,mq) is a
subterm of r and g is a function symbol defined by some rewriting rules. Dependency pairs
have been introduced by Arts and Giesl [2] and have evolved into a general framework for
termination [13]. It is now at the heart of many state-of-the-art automated termination
provers for first-order rewriting systems and Haskell, Java or C programs.

Dependency pairs have been extended to different simply-typed settings for higher-order
rewriting: Combinatory Reduction Systems [23] and Higher-order Rewriting Systems [29],
with two different approaches: dynamic dependency pairs include variable applications [24],
while static dependency pairs exclude them by slightly restricting the class of systems that
can be considered [25]. Here, we use the static approach.

In [37], Wahlstedt considered a system slightly less general than λΠ/R for which he
provided conditions that imply the weak normalization, that is, the existence of a finite
reduction to normal form. In his system, R uses matching on constructors only, like in
the languages OCaml or Haskell. In this case, R is orthogonal: rules are left-linear (no
variable occurs twice in a left-hand side) and have no critical pairs (no two rule left-hand side
instances overlap). Wahlstedt’s proof proceeds in two modular steps. First, he proves that
typable terms have a normal form if there is no infinite sequence of function calls. Second,
he proves that there is no infinite sequence of function calls if R satisfies Lee, Jones and
Ben-Amram’s size-change termination criterion (SCT) [26].

In this paper, we extend Wahlstedt’s results in two directions. First, we prove a stronger
normalization property: the absence of infinite reductions. Second, we assume that R is
locally confluent, a much weaker condition than orthogonality: rules can be non-left-linear
and have joinable critical pairs.

In [5], the first author developed a termination criterion for a calculus slightly more
general than λΠ/R, based on the notion of computability closure, assuming that type-level
rules are orthogonal. The computability closure of a term f(l1, . . . , lp) is a set of terms that
terminate whenever l1, . . . , lp terminate. It is defined inductively thanks to deduction rules
preserving this property, using a precedence and a fixed well-founded ordering for dealing
with function calls. Termination can then be enforced by requiring each rule right-hand side
to belong to the computability closure of its corresponding left-hand side.

We extend this work as well by replacing that fixed ordering by the dependency pair
relation. In [5], there must be a decrease in every function call. Using dependency pairs
allows one to have non-strict decreases. Then, following Wahlstedt, SCT can be used to
enforce the absence of infinite sequence of dependency pairs. But other criteria have been
developed for this purpose that could be adapted to λΠ/R.

Outline
The main result is Theorem 11 stating that, for a large class of rewriting systems R, the
combination of β and R is strongly normalizing on terms typable in λΠ/R if, roughly
speaking, there is no infinite sequence of dependency pairs.

The proof involves two steps. First, after recalling the terms and types of λΠ/R in
Section 2, we introduce in Section 3 a model of this calculus based on Girard’s reducibility
candidates [15], and prove that every typable term is strongly normalizing if every symbol of
the signature is in the interpretation of its type (Adequacy lemma). Second, in Section 4, we
introduce our notion of dependency pair and prove that every symbol of the signature is in
the interpretation of its type if there is no infinite sequence of dependency pairs.

F. Blanqui, G. Genestier, and O. Hermant 9:3

In order to show the usefulness of this result, we give simple criteria for checking the
conditions of the theorem. In Section 5, we show that plain function passing systems belong
to the class of systems that we consider. And in Section 6, we show how to use size-change
termination to obtain the termination of the dependency pair relation.

Finally, in Section 7 we compare our criterion with other criteria and tools and, in Section
8, we summarize our results and give some hints on possible extensions.

For lack of space, some proofs are given in an appendix at the end of the paper.

2 Terms and types

The set T of terms of λΠ/R is the same as those of Barendregt’s λP [3]:

t ∈ T = s ∈ S | x ∈ V | f ∈ F | ∀x : t, t | tt | λx : t, t

where S = {TYPE,KIND} is the set of sorts1, V is an infinite set of variables and F is a set of
function symbols, so that S, V and F are pairwise disjoint.

Furthermore, we assume given a set R of rules l→ r such that FV(r) ⊆ FV(l) and l is of
the form f~l. A symbol f is said to be defined if there is a rule of the form f~l→ r. In this
paper, we are interested in the termination of

→ =→β ∪ →R

where →β is the β-reduction of λ-calculus and →R is the smallest relation containing R
and closed by substitution and context: we consider rewriting with syntactic matching only.
Following [6], it should however be possible to extend the present results to rewriting with
matching modulo βη or some equational theory. Let SN be the set of terminating terms and,
given a term t, let →(t) = {u ∈ T | t→ u} be the set of immediate reducts of t.

A typing environment Γ is a (possibly empty) sequence x1 : T1, . . . , xn : Tn of pairs of
variables and terms, where the variables are distinct, written ~x : ~T for short. Given an
environment Γ = ~x : ~T and a term U , let ∀Γ, U be ∀~x : ~T , U . The product arity ar(T) of a
term T is the integer n ∈ N such that T = ∀x1 : T1, . . .∀xn : Tn, U and U is not a product.
Let ~t denote a possibly empty sequence of terms t1, . . . , tn of length |~t| = n, and FV(t) be
the set of free variables of t.

For each f ∈ F, we assume given a term Θf and a sort sf , and let Γf be the environment
such that Θf = ∀Γf , U and |Γf | = ar(Θf).

The application of a substitution σ to a term t is written tσ. Given a substitution σ,
let dom(σ) = {x|xσ 6= x}, FV(σ) =

⋃
x∈dom(σ) FV(xσ) and [x 7→ a, σ] ([x 7→ a] if σ is the

identity) be the substitution {(x, a)} ∪ {(y, b) ∈ σ | y 6= x}. Given another substitution σ′,
let σ → σ′ if there is x such that xσ → xσ′ and, for all y 6= x, yσ = yσ′.

The typing rules of λΠ/R, in Figure 1, add to those of λP the rule (fun) similar to
(var). Moreover, (conv) uses ↓ instead of ↓β , where ↓ = →∗ ∗← is the joinability relation
and →∗ the reflexive and transitive closure of →. We say that t has type T in Γ if Γ ` t : T
is derivable. A substitution σ is well-typed from ∆ to Γ, written Γ ` σ : ∆, if, for all
(x : T) ∈ ∆, Γ ` xσ : Tσ holds.

The word “type” is used to denote a term occurring at the right-hand side of a colon in
a typing judgment (and we usually use capital letters for types). Hence, KIND is the type
of TYPE, Θf is the type of f , and sf is the type of Θf . Common data types like natural
numbers N are usually declared in λΠ as function symbols of type TYPE: ΘN = TYPE and
sN = KIND.

1 Sorts refer here to the notion of sort in Pure Type Systems, not the one used in some first-order settings.

FSCD 2019

9:4 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

(ax) ` TYPE : KIND

(var)
Γ ` A : s x /∈ dom(Γ)

Γ, x : A ` x : A

(weak)
Γ ` A : s Γ ` b : B x /∈ dom(Γ)

Γ, x : A ` b : B

(prod)
Γ ` A : TYPE Γ, x : A ` B : s

Γ ` (x : A)B : s

(abs)
Γ, x : A ` b : B Γ ` (x : A)B : s

Γ ` λx : A.b : (x : A)B

(app)
Γ ` t : (x : A)B Γ ` a : A

Γ ` ta : B[x 7→ a]

(conv)
Γ ` a : A A ↓ B Γ ` B : s

Γ ` a : B

(fun)
` Θf : sf

` f : Θf

Figure 1 Typing rules of λΠ/R.

The dependent product ∀x : A,B generalizes the arrow type A ⇒ B of simply-typed
λ-calculus: it is the type of functions taking an argument x of type A and returning a
term whose type B may depend on x. If B does not depend on x, we sometimes simply
write A⇒ B.

Typing induces a hierarchy on terms [4, Lemma 47]. At the top, there is the sort KIND that
is not typable. Then, comes the class K of kinds, whose type is KIND: K = TYPE | ∀x : t,K
where t ∈ T. Then, comes the class of predicates, whose types are kinds. Finally, at the
bottom lie (proof) objects whose types are predicates.

I Example 1 (Filter function on dependent lists). To illustrate the kind of systems we consider,
we give an extensive example in the new Dedukti syntax combining type-level rewriting rules
(El converts datatype codes into Dedukti types), dependent types (L is the polymorphic
type of lists parameterized with their length), higher-order variables (fil is a function
filtering elements out of a list along a boolean function f), and matching on defined function
symbols (fil can match a list defined by concatenation). Note that this example cannot be
represented in Coq or Agda because of the rules using matching on app. And its termination
can be handled neither by [37] nor by [5] because the system is not orthogonal and has no
strict decrease in every recursive call. It can however be handled by our new termination
criterion and its implementation [12]. For readability, we removed the & which are used to
identify pattern variables in the rewriting rules.
symbol Set: TYPE symbol arrow: Set ⇒ Set ⇒ Set

symbol El: Set ⇒ TYPE rule El (arrow a b) → El a ⇒ El b

symbol Bool: TYPE symbol true: Bool symbol false: Bool
symbol Nat: TYPE symbol zero: Nat symbol s: Nat ⇒ Nat

symbol plus: Nat ⇒ Nat ⇒Nat set infix 1 "+" := plus
rule zero + q → q rule (s p) + q → s (p + q)

symbol List: Set ⇒ Nat ⇒ TYPE
symbol nil: ∀a, List a zero
symbol cons:∀a, El a ⇒ ∀p, List a p ⇒ List a (s p)

symbol app: ∀a p, List a p ⇒ ∀q, List a q ⇒ List a (p+q)
rule app a _ (nil _) q m → m
rule app a _ (cons _ x p l) q m → cons a x (p+q) (app a p l q m)

symbol len_fil: ∀a, (El a ⇒ Bool) ⇒ ∀p, List a p ⇒ Nat
symbol len_fil_aux: Bool ⇒ ∀a, (El a ⇒ Bool) ⇒ ∀p, List a p ⇒ Nat

F. Blanqui, G. Genestier, and O. Hermant 9:5

rule len_fil a f _ (nil _) → zero
rule len_fil a f _ (cons _ x p l) → len_fil_aux (f x) a f p l
rule len_fil a f _ (app _ p l q m)

→ (len_fil a f p l) + (len_fil a f q m)
rule len_fil_aux true a f p l → s (len_fil a f p l)
rule len_fil_aux false a f p l → len_fil a f p l

symbol fil: ∀a f p l, List a (len_fil a f p l)
symbol fil_aux: ∀b a f, El a ⇒ ∀p l, List a (len_fil_aux b a f p l)

rule fil a f _ (nil _) → nil a
rule fil a f _ (cons _ x p l) → fil_aux (f x) a f x p l
rule fil a f _ (app _ p l q m)

→ app a (len_fil a f p l) (fil a f p l)
(len_fil a f q m) (fil a f q m)

rule fil_aux false a f x p l → fil a f p l
rule fil_aux true a f x p l

→ cons a x (len_fil a f p l) (fil a f p l)

Assumptions. Throughout the paper, we assume that → is locally confluent (←→ ⊆ ↓)
and preserves typing (for all Γ, A, t and u, if Γ ` t : A and t→ u, then Γ ` u : A).

Note that local confluence implies that every t ∈ SN has a unique normal form t↓.
These assumptions are used in the interpretation of types (Definition 2) and the adequacy

lemma (Lemma 5). Both properties are undecidable in general. For confluence, Dedukti
can call confluence checkers that understand the HRS format of the confluence competition.
For preservation of typing by reduction, it implements an heuristic [31].

3 Interpretation of types as reducibility candidates

We aim to prove the termination of the union of two relations, →β and →R, on the set of
well-typed terms (which depends on R since ↓ includes →R). As is well known, termination
is not modular in general. As a β step can generate an R step, and vice versa, we cannot
expect to prove the termination of →β ∪→R from the termination of →β and →R. The
termination of λΠ/R cannot be reduced to the termination of the simply-typed λ-calculus
either (as done for λΠ alone in [16]) because of type-level rewriting rules like the ones defining
El in Example 1. Indeed, type-level rules enable the encoding of functional PTS like Girard’s
System F, whose termination cannot be reduced to the termination of the simply-typed
λ-calculus [10].

So, following Girard [15], to prove the termination of →β ∪ →R, we build a model of our
calculus by interpreting types into sets of terminating terms. To this end, we need to find an
interpretation J K having the following properties:

Because types are identified modulo conversion, we need J K to be invariant by reduction:
if T is typable and T → T ′, then we must have JT K = JT ′K.
As usual, to handle β-reduction, we need a product type ∀x : A,B to be interpreted by
the set of terms t such that, for all a in the interpretation of A, ta is in the interpretation
of B[x 7→ a], that is, we must have J∀x : A,BK = Πa ∈ JAK. JB[x 7→ a]K where Πa ∈
P.Q(a) = {t | ∀a ∈ P, ta ∈ Q(a)}.

First, we define the interpretation of predicates (and TYPE) as the least fixpoint of a
monotone function in a directed-complete (= chain-complete) partial order [28]. Second, we
define the interpretation of kinds by induction on their size.

FSCD 2019

http://project-coco.uibk.ac.at/

9:6 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

I Definition 2 (Interpretation of types). Let I = Fp(T,P(T)) be the set of partial functions
from T to the powerset of T. It is directed-complete wrt inclusion, allowing us to define I as
the least fixpoint of the monotone function F : I→ I such that, if I ∈ I, then:

The domain of F (I) is the set D(I) of all the terminating terms T such that, if T reduces
to some product term ∀x : A,B (not necessarily in normal form), then A ∈ dom(I) and,
for all a ∈ I(A), B[x 7→ a] ∈ dom(I).
If T ∈ D(I) and the normal form2 of T is not a product, then F (I)(T) = SN.
If T ∈ D(I) and T↓ = ∀x : A,B, then F (I)(T) = Πa∈I(A). I(B[x 7→ a]).

We now introduce D = D(I) and define the interpretation of a term T wrt to a substitution
σ, JT Kσ (and simply JT K if σ is the identity), as follows:

JsKσ = D if s ∈ S,
J∀x : A,KKσ = Πa∈ JAKσ. JKK[x 7→a,σ] if K ∈ K and x /∈ dom(σ),
JT Kσ = I(Tσ) if T /∈ K ∪ {KIND} and Tσ ∈ D,
JT Kσ = SN otherwise.

A substitution σ is adequate wrt an environment Γ, σ |= Γ, if, for all x : A ∈ Γ, xσ ∈ JAKσ.
A typing map Θ is adequate if, for all f , f ∈ JΘf K whenever ` Θf : sf and Θf ∈ Jsf K.

Let C be the set of terms of the form f~t such that |~t| = ar(Θf), ` Θf : sf , Θf ∈ Jsf K and,
if Γf = ~x : ~A and σ = [~x 7→ ~t], then σ |= Γf . (Informally, C is the set of terms obtained by
fully applying some function symbol to computable arguments.)

We can then prove that, for all terms T , JT K satisfies Girard’s conditions of reducibility
candidates, called computability predicates here, adapted to rewriting by including in neutral
terms every term of the form f~t when f is applied to enough arguments wrt R [5]:

I Definition 3 (Computability predicates). A term is neutral if it is of the form (λx : A, t)u~v,
x~v or f~v with, for every rule f~l→ r ∈ R, |~l| ≤ |~v|.

Let P be the set of all the sets of terms S (computability predicates) such that (a) S ⊆ SN,
(b) →(S) ⊆ S, and (c) t ∈ S if t is neutral and →(t) ⊆ S.

Note that neutral terms satisfy the following key property: if t is neutral then, for all u,
tu is neutral and every reduct of tu is either of the form t′u with t′ a reduct of t, or of the
form tu′ with u′ a reduct of u.

One can easily check that SN is a computability predicate.
Note also that a computability predicate is never empty: it contains every neutral term

in normal form. In particular, it contains every variable.
We then get the following results (the proofs are given in Appendix A):

I Lemma 4.
(a) For all terms T and substitutions σ, JT Kσ ∈ P.
(b) If T is typable, Tσ ∈ D and T → T ′, then JT Kσ = JT ′Kσ.
(c) If T is typable, Tσ ∈ D and σ → σ′, then JT Kσ = JT Kσ′ .
(d) If ∀x : A,B is typable and ∀x : Aσ,Bσ ∈ D,

then J∀x : A,BKσ = Πa∈ JAKσ. JBK[x 7→a,σ].
(e) If ∆ ` U : s, Γ ` γ : ∆ and Uγσ ∈ D, then JUγKσ = JUKγσ.
(f) Given P ∈ P and, for all a ∈ P , Q(a) ∈ P such that Q(a′) ⊆ Q(a) if a → a′. Then,

λx : A, b ∈ Πa∈P.Q(a) if A ∈ SN and, for all a ∈ P , b[x 7→ a] ∈ Q(a).

We can finally prove that our model is adequate, that is, every term of type T belongs to
JT K, if the typing map Θ itself is adequate. This reduces the termination of well-typed terms
to the computability of function symbols.

2 Because we assume local confluence, every terminating term T has a unique normal form T↓.

F. Blanqui, G. Genestier, and O. Hermant 9:7

I Lemma 5 (Adequacy). If Θ is adequate, Γ ` t : T and σ |= Γ, then tσ ∈ JT Kσ.

Proof. First note that, if Γ ` t : T , then either T = KIND or Γ ` T : s [4, Lemma 28].
Moreover, if Γ ` a : A, A ↓ B and Γ ` B : s (the premises of the (conv) rule), then Γ ` A : s
[4, Lemma 42] (because → preserves typing). Hence, the relation ` is unchanged if one
adds the premise Γ ` A : s in (conv), giving the rule (conv’). Similarly, we add the premise
Γ ` ∀x : A,B : s in (app), giving the rule (app’). We now prove the lemma by induction on
Γ ` t : T using (app’) and (conv’):
(ax) It is immediate that TYPE ∈ JKINDKσ = D.
(var) By assumption on σ.
(weak) If σ |= Γ, x : A, then σ |= Γ. So, the result follows by induction hypothesis.
(prod) Is (∀x : A,B)σ in JsKσ = D? Wlog we can assume x /∈ dom(σ) ∪ FV(σ). So,

(∀x : A,B)σ = ∀x : Aσ,Bσ. By induction hypothesis, Aσ ∈ JTYPEKσ = D. Let now a ∈
I(Aσ) and σ′ = [x 7→ a, σ]. Note that I(Aσ) = JAKσ. So, σ′ |= Γ, x : A and, by induction
hypothesis, Bσ′ ∈ JsKσ = D. Since x /∈ dom(σ) ∪ FV(σ), we have Bσ′ = (Bσ)[x 7→ a].
Therefore, (∀x : A,B)σ ∈ JsKσ.

(abs) Is (λx : A, b)σ in J∀x : A,BKσ? Wlog we can assume that x /∈ dom(σ) ∪ FV(σ).
So, (λx : A, b)σ = λx : Aσ, bσ. By Lemma 4d, J∀x : A,BKσ = Πa ∈ JAKσ. JBK[x7→a,σ].
By Lemma 4c, JBK[x7→a,σ] is an JAKσ-indexed family of computability predicates such
that JBK[x 7→a′,σ] = JBK[x7→a,σ] whenever a → a′. Hence, by Lemma 4f, λx : Aσ, bσ ∈
J∀x : A,BKσ if Aσ ∈ SN and, for all a ∈ JAKσ, (bσ)[x 7→ a] ∈ JBKσ′ where σ′ = [x 7→
a, σ]. By induction hypothesis, (∀x : A,B)σ ∈ JsKσ = D. Since x /∈ dom(σ) ∪ FV(σ),
(∀x : A,B)σ = ∀x : Aσ,Bσ and (bσ)[x 7→ a] = bσ′. Since D ⊆ SN, we have Aσ ∈ SN.
Moreover, since σ′ |= Γ, x : A, we have bσ′ ∈ JBKσ′ by induction hypothesis.

(app’) Is (ta)σ = (tσ)(aσ) in JB[x 7→ a]Kσ? By induction hypothesis, tσ ∈ J∀x : A,BKσ, aσ ∈
JAKσ and (∀x : A,B)σ ∈ JsK = D. By Lemma 4d, J∀x : A,BKσ = Πα∈ JAKσ. JBK[x 7→α,σ].
Hence, (tσ)(aσ) ∈ JBKσ′ where σ′ = [x 7→ aσ, σ]. Wlog we can assume x /∈ dom(σ) ∪
FV(σ). So, σ′ = [x 7→ a]σ. Hence, by Lemma 4e, JBKσ′ = JB[x 7→ a]Kσ.

(conv’) By induction hypothesis, aσ ∈ JAKσ, Aσ ∈ JsKσ = D and Bσ ∈ JsKσ = D. By
Lemma 4b, JAKσ = JBKσ. So, aσ ∈ JBKσ.

(fun) By induction hypothesis, Θf ∈ Jsf Kσ = D. Therefore, f ∈ JΘf Kσ = JΘf K since Θ is
adequate. J

4 Dependency pairs theorem

Now, we prove that the adequacy of Θ can be reduced to the absence of infinite sequences of
dependency pairs, as shown by Arts and Giesl for first-order rewriting [2].

I Definition 6 (Dependency pairs). Let f~l > g ~m iff there is a rule f~l→ r ∈ R, g is defined
and g ~m is a subterm of r such that ~m are all the arguments to which g is applied. The
relation > is the set of dependency pairs.

Let >̃ = →∗arg>s be the relation on the set C (Def. 2), where f~t →arg f~u iff ~t →prod ~u

(reduction in one argument), and >s is the closure by substitution and left-application of >:
ft1 . . . tp >̃ gu1 . . . uq iff there are a dependency pair fl1 . . . li > gm1 . . .mj with i ≤ p and
j ≤ q and a substitution σ such that, for all k ≤ i, tk →∗ lkσ and, for all k ≤ j, mkσ = uk.

In our setting, we have to close >s by left-application because function symbols are
curried. When a function symbol f is not fully applied wrt ar(Θf), the missing arguments
must be considered as potentially being anything. Indeed, the following rewriting system:

FSCD 2019

9:8 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

app x y → x y f x y → app (f x) y

whose dependency pairs are f x y > app (f x) y and f x y > f x, does not terminate,
but there is no way to construct an infinite sequence of dependency pairs without adding an
argument to the right-hand side of the second dependency pair.

I Example 7. The rules of Example 1 have the following dependency pairs (the pairs whose
left-hand side is headed by fil or fil_aux can be found in Appendix B):
A: El (arrow a b) > El a
B: El (arrow a b) > El b
C: (s p) + q > p + q
D: app a _ (cons _ x p l) q m > p + q
E: app a _ (cons _ x p l) q m > app a p l q m
F:len_fil a f _ (cons _ x p l) > len_fil_aux (f x) a f p l
G:len_fil a f _ (app _ p l q m) >

(len_fil a f p l) + (len_fil a f q m)
H:len_fil a f _ (app _ p l q m) > len_fil a f p l
I:len_fil a f _ (app _ p l q m) > len_fil a f q m
J: len_fil_aux true a f p l > len_fil a f p l
K: len_fil_aux false a f p l > len_fil a f p l

In [2], a sequence of dependency pairs interleaved with →arg steps is called a chain. Arts
and Giesl proved that, in a first-order term algebra, →R terminates if and only if there are
no infinite chains, that is, if and only if >̃ terminates. Moreover, in a first-order term algebra,
>̃ terminates if and only if, for all f and ~t, f~t terminates wrt >̃ whenever ~t terminates wrt
→. In our framework, this last condition is similar to saying that Θ is adequate.

We now introduce the class of systems to which we will extend Arts and Giesl’s theorem.

I Definition 8 (Well-structured system). Let � be the smallest quasi-order on F such that
f � g if g occurs in Θf or if there is a rule f~l → r ∈ R with g (defined or undefined)
occurring in r. Then, let � = � \ � be the strict part of �. A rewriting system R is
well-structured if:
(a) � is well-founded;
(b) for every rule f~l→ r, |~l| ≤ ar(Θf);
(c) for every dependency pair f~l > g~m, |~m| ≤ ar(Θg);
(d) every rule f~l→ r is equipped with an environment ∆f~l→r such that, if Θf = ∀~x : ~T , U

and π = [~x 7→ ~l], then ∆f~l→r f̀~l r : Uπ, where f̀~l is the restriction of ` defined in Fig. 2.

Condition (a) is always satisfied when F is finite. Condition (b) ensures that a term of
the form f~t is neutral whenever |~t| = ar(Θf). Condition (c) ensures that > is included in >̃.

The relation f̀~l corresponds to the notion of computability closure in [5], with the ordering
on function calls replaced by the dependency pair relation. It is similar to ` except that it
uses the variant of (conv) and (app) used in the proof of the adequacy lemma; (fun) is split
in the rules (const) for undefined symbols and (dp) for dependency pairs whose left-hand side
is f~l; every type occurring in an object term or every type of a function symbol occurring in
a term is required to be typable by using symbols smaller than f only.

The environment ∆f~l→r can be inferred by Dedukti when one restricts rule left hand-sides
to some well-behaved class of terms like algebraic terms or Miller patterns (in λProlog).

One can check that Example 1 is well-structured (the proof is given in Appendix B).
Finally, we need matching to be compatible with computability, that is, if f~l → r ∈ R

and ~lσ are computable, then σ is computable, a condition called accessibility in [5]:

F. Blanqui, G. Genestier, and O. Hermant 9:9

(ax)
f̀~l TYPE : KIND

(var)
Γ ≺̀f A : s x /∈ dom(Γ)

Γ, x : A f̀~l x : A

(weak)
Γ ≺̀f A : s Γ f̀~l b : B x /∈ dom(Γ)

Γ, x : A f̀~l b : B

(prod)
Γ f̀~l A : TYPE Γ, x : A f̀~l B : s

Γ f̀~l ∀x : A,B : s

(abs)
Γ, x : A f̀~l b : B Γ ≺̀f ∀x : A,B : s

Γ f̀~l λx : A, b : ∀x : A,B

(app’)
Γ f̀~l t : ∀x : A,B Γ f̀~l a : A Γ ≺̀f ∀x : A,B : s

Γ f̀~l ta : B[x 7→ a]

(conv’)
Γ f̀~l a : A A ↓ B Γ ≺̀f B : s Γ ≺̀f A : s

Γ f̀~l a : B

(dp)
≺̀f Θg : sg Γ f̀~l γ : Σ

Γ f̀~l g~yγ : V γ (Θg = (∀~y : ~U, V),Σ = ~y : ~U, g~yγ < f~l)

(const) ≺̀f Θg : sg

f̀~l g : Θg
(g undefined)

and ≺̀f is defined

by the same rules as `, except (fun) replaced by:

(fun≺f)
≺̀f Θg : sg g ≺ f

≺̀f g : Θg

Figure 2 Restricted type systems f̀~l and ≺̀f .

I Definition 9 (Accessible system). A well-structured system R is accessible if, for all
substitutions σ and rules f~l → r with Θf = ∀~x : ~T , U and |~x| = |~l|, we have σ |= ∆f~l→r

whenever ` Θf : sf , Θf ∈ Jsf K and [~x 7→ ~l]σ |= ~x : ~T .

This property is not always satisfied because the subterm relation does not preserve
computability in general. Indeed, if C is an undefined type constant, then JCK = SN.
However, JC ⇒ CK 6= SN since ω = λx : C, xx ∈ SN and ωω /∈ SN. Hence, if c is an
undefined function symbol of type Θc = (C ⇒ C)⇒ C, then c ω ∈ JCK but ω /∈ JC ⇒ CK.

We can now state the main lemma:

I Lemma 10. Θ is adequate if >̃ terminates and R is well-structured and accessible.

Proof. Since R is well-structured, � is well-founded by condition (a). We prove that,
for all f ∈ F, f ∈ JΘf K, by induction on �. So, let f ∈ F with Θf = ∀Γf , U and
Γf = x1 : T1, . . . , xn : Tn. By induction hypothesis, we have that, for all g ≺ f , g ∈ JΘgK.

Since →arg and >̃ terminate on C and →arg >̃ ⊆ >̃, we have that →arg ∪ >̃ terminates.
We now prove that, for all f~t ∈ C, we have f~t ∈ JUKθ where θ = [~x 7→ ~t], by a second
induction on→arg ∪ >̃. By condition (b), f~t is neutral. Hence, by definition of computability,
it suffices to prove that, for all u ∈ →(f~t), u ∈ JUKθ. There are 2 cases:

u = f~v with ~t→prod ~v. Then, we can conclude by the first induction hypothesis.
There are fl1 . . . lk → r ∈ R and σ such that u = (rσ)tk+1 . . . tn and, for all i ∈ {1, . . . , k},
ti = liσ. Since f~t ∈ C, we have πσ |= Γf . Since R is accessible, we get that σ |= ∆f~l→r.
By condition (d), we have ∆f~l→r f̀~l r : V π where V = ∀xk+1 : Tk+1, . . .∀xn : Tn, U .
Now, we prove that, for all Γ, t and T , if Γ f̀~l t : T (Γ ≺̀f t : T resp.) and σ |= Γ,
then tσ ∈ JT Kσ, by a third induction on the structure of the derivation of Γ f̀~l t : T
(Γ ≺̀f t : T resp.), as in the proof of Lemma 5 except for (fun) replaced by (fun≺f) in
one case, and (const) and (dp) in the other case.
(fun≺f) We have g ∈ JΘgK by the first induction hypothesis on g.

FSCD 2019

9:10 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

(const) Since g is undefined, it is neutral and normal. Therefore, it belongs to every
computability predicate and in particular to JΘgKσ.

(dp) By the third induction hypothesis, yiγσ ∈ JUiγKσ. By Lemma 4e, JUiγKσ = JUiKγσ.
So, γσ |= Σ and g~yγσ ∈ C. Now, by condition (c), g~yγσ<̃f~lσ since g~yγ < f~l.
Therefore, by the second induction hypothesis, g~yγσ ∈ JV γKσ.

So, rσ ∈ JV πKσ and, by Lemma 4d, u ∈ JUK[xn 7→tn,..,xk+1 7→tk+1,πσ] = JUKθ. J

Note that the proof still works if one replaces the relation � of Definition 8 by any
well-founded quasi-order such that f � g whenever f~l > g~m. The quasi-order of Definition
8, defined syntactically, relieves the user of the burden of providing one and is sufficient in
every practical case met by the authors. However it is possible to construct ad-hoc systems
which require a quasi-order richer than the one presented here.

By combining the previous lemma and the Adequacy lemma (the identity substitution is
computable), we get the main result of the paper:

I Theorem 11. The relation → =→β ∪→R terminates on terms typable in λΠ/R if → is
locally confluent and preserves typing, R is well-structured and accessible, and >̃ terminates.

For the sake of completeness, we are now going to give sufficient conditions for accessibility
and termination of >̃ to hold, but one could imagine many other criteria.

5 Checking accessibility

In this section, we give a simple condition to ensure accessibility and some hints on how to
modify the interpretation when this condition is not satisfied.

As seen with the definition of accessibility, the main problem is to deal with subterms
of higher-order type. A simple condition is to require higher-order variables to be direct
subterms of the left-hand side, a condition called plain function-passing (PFP) in [25], and
satisfied by Example 1.

I Definition 12 (PFP systems). A well-structured R is PFP if, for all f~l → r ∈ R with
Θf = ∀~x : ~T , U and |~x| = |~l|, ~l /∈ K ∪ {KIND} and, for all y : T ∈ ∆f~l→r, there is i such that
y = li and T = Ti[~x 7→ ~l], or else y ∈ FV(li) and T = D~t with D undefined and |~t| = ar(D).

I Lemma 13. PFP systems are accessible.

Proof. Let f~l → r be a PFP rule with Θf = ∀Γ, U , Γ = ~x : ~T , π = [~x 7→ ~l]. Following
Definition 9, assume that ` Θf : sf , Θf ∈ D and πσ |= Γ. We have to prove that, for all
(y : T) ∈ ∆f~l→r, yσ ∈ JT Kσ.

Suppose y = li and T = Tiπ. Then, yσ = liσ ∈ JTiKπσ. Since ` Θf : sf , Ti /∈ K∪{KIND}.
Since Θf ∈ D and πσ |= Γ, we have Tiπσ ∈ D. So, JTiKπσ = I(Tiπσ). Since Ti /∈
K∪ {KIND} and ~l /∈ K∪ {KIND}, Tiπ /∈ K∪ {KIND}. Since Tiπσ ∈ D, JTiπKσ = I(Tiπσ).
Thus, yσ ∈ JT Kσ.
Suppose y ∈ FV(li) and T is of the form C~t with |~t| = ar(C). Then, JT Kσ = SN and
yσ ∈ SN since liσ ∈ JTiKσ ⊆ SN. J

But many accessible systems are not PFP. They can be proved accessible by changing
the interpretation of type constants (a complete development is left for future work).

F. Blanqui, G. Genestier, and O. Hermant 9:11

I Example 14 (Recursor on Brouwer ordinals).

symbol Ord: TYPE
symbol zero: Ord symbol suc: Ord⇒Ord symbol lim: (Nat⇒Ord)⇒Ord

symbol ordrec: A⇒(Ord⇒A⇒A)⇒((Nat⇒Ord)⇒(Nat⇒A)⇒A)⇒Ord⇒A
rule ordrec u v w zero → u
rule ordrec u v w (suc x) → v x (ordrec u v w x)
rule ordrec u v w (lim f) → w f (λn, ordrec u v w (f n))

The above example is not PFP because f:Nat⇒Ord is not argument of ordrec. Yet,
it is accessible if one takes for JOrdK the least fixpoint of the monotone function F (S) =
{t ∈ SN |if t→∗ lim f then f ∈ JNatK⇒ S, and if t→∗ sucu then u ∈ S} [5].

Similarly, the following encoding of the simply-typed λ-calculus is not PFP but can be
proved accessible by taking

JT cK = if c↓ = arrow a b then {t ∈ SN | if t→∗ lamf then f ∈ JT aK⇒ JT bK} else SN

I Example 15 (Simply-typed λ-calculus).

symbol Sort : TYPE symbol arrow : Sort ⇒ Sort ⇒ Sort

symbol T : Sort ⇒ TYPE
symbol lam : ∀ a b, (T a ⇒ T b) ⇒ T (arrow a b)
symbol app : ∀ a b, T (arrow a b) ⇒ T a ⇒ T b
rule app a b (lam _ _ f) x → f x

6 Size-change termination

In this section, we give a sufficient condition for >̃ to terminate. For first-order rewriting,
many techniques have been developed for that purpose. To cite just a few, see for instance
[17, 14]. Many of them can probably be extended to λΠ/R, either because the structure of
terms in which they are expressed can be abstracted away, or because they can be extended
to deal also with variable applications, λ-abstractions and β-reductions.

As an example, following Wahlstedt [37], we are going to use Lee, Jones and Ben-Amram’s
size-change termination criterion (SCT) [26]. It consists in following arguments along function
calls and checking that, in every potential loop, one of them decreases. First introduced for
first-order functional languages, it has then been extended to many other settings: untyped
λ-calculus [21], a subset of OCaml [32], Martin-Löf’s type theory [37], System F [27].

We first recall Hyvernat and Raffalli’s matrix-based presentation of SCT [20]:

I Definition 16 (Size-change termination). Let B be the smallest transitive relation such that
ft1 . . . tn B ti when f ∈ F. The call graph G(R) associated to R is the directed labeled graph
on the defined symbols of F such that there is an edge between f and g iff there is a dependency
pair fl1 . . . lp > gm1 . . .mq. This edge is labeled with the matrix (ai,j)i≤ar(Θf),j≤ar(Θg) where:

if li Bmj, then ai,j = −1;
if li = mj, then ai,j = 0;
otherwise ai,j =∞ (in particular if i > p or j > q).

R is size-change terminating (SCT) if, in the transitive closure of G(R) (using the min-plus
semi-ring to multiply the matrices labeling the edges), all idempotent matrices labeling a loop
have some −1 on the diagonal.

FSCD 2019

9:12 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

C +
p q

+

s p −1 ∞
q ∞ 0

len_fillen_fil_aux

El app

+

A,B

C

D

E

F
G

H,I

J,K

TC1 TC2

Figure 3 Matrix of dependency pair C and call graph of the dependency pairs of Example 7.

We add lines and columns of ∞’s in matrices associated to dependency pairs containing
partially applied symbols (cases i > p or j > q) because missing arguments cannot be
compared with any other argument since they are arbitrary.

The matrix associated to the dependency pair C: (s p) + q > p + q and the call graph
associated to the dependency pairs of Example 7 are depicted in Figure 3. The full list of
matrices and the extensive call graph of Example 1 can be found in Appendix B.

I Lemma 17. >̃ terminates if F is finite and R is SCT.

Proof. Suppose that there is an infinite sequence χ = f1~t1>̃f2~t2>̃ . . . Then, there is an
infinite path in the call graph going through nodes labeled by f1, f2, . . . Since F is finite,
there is a symbol g occurring infinitely often in this path. So, there is an infinite sequence
g~u1, g~u2, . . . extracted from χ. Hence, for every i, j ∈ N∗, there is a matrix in the transitive
closure of the graph which labels the loops of g corresponding to the relation between ~ui and
~ui+j . By Ramsey’s theorem, there is an infinite sequence (φi) and a matrix M such that M
corresponds to all the transitions g~uφi

, g~uφj
with i 6= j. M is idempotent, indeed g~uφi

, g~uφi+2

is labeled by M2 by definition of the transitive closure and by M due to Ramsey’s theorem,
so M = M2. Since, by hypothesis, R satisfies SCT, there is j such that Mj,j is −1. So, for
all i, u(j)

φi
(→∗ B)+u

(j)
φi+1

. Since B→ ⊆→B and →arg is well-founded on C, the existence of
an infinite sequence contradicts the fact that B is well-founded. J

By combining all the previous results, we get:

I Theorem 18. The relation → =→β ∪→R terminates on terms typable in λΠ/R if → is
locally confluent and preserves typing, F is finite and R is well-structured, plain-function
passing and size-change terminating.

The rewriting system of Example 1 verifies all these conditions (proof in the appendix).

7 Implementation and comparison with other criteria and tools

We implemented our criterion in a tool called SizeChangeTool [12]. As far as we know,
there are no other termination checker for λΠ/R.

If we restrict ourselves to simply-typed rewriting systems, then we can compare it with
the termination checkers participating in the category “higher-order rewriting union beta” of
the termination competition: Wanda uses dependency pairs, polynomial interpretations,

http://termination-portal.org/wiki/Termination_Competition
http://wandahot.sourceforge.net/

F. Blanqui, G. Genestier, and O. Hermant 9:13

HORPO and many transformation techniques [24]; SOL uses the General Schema [6] and other
techniques. As these tools implement various techniques and SizeChangeTool only one, it is
difficult to compete with them. Still, there are examples that are solved by SizeChangeTool
and not by one of the other tools, demonstrating that these tools would benefit from
implementing our new technique. For instance, the problem Hamana_Kikuchi_18/h17 is
proved terminating by SizeChangeTool but not by Wanda because of the rule:

rule map f (map g l) → map (comp f g) l

And the problem Kop13/kop12thesis_ex7.23 is proved terminating by SizeChangeTool
but not by Sol because of the rules:3

rule f h x (s y) → g (c x (h y)) y rule g x y → f (λ_,s 0) x y

One could also imagine to translate a termination problem in λΠ/R into a simply-typed
termination problem. Indeed, the termination of λΠ alone (without rewriting) can be reduced
to the termination of the simply-typed λ-calculus [16]. This has been extended to λΠ/R when
there are no type-level rewrite rules like the ones defining El in Example 1 [22]. However,
this translation does not preserve termination as shown by the Example 15 which is not
terminating if all the types Tx are mapped to the same type constant.

In [30], Roux also uses dependency pairs for the termination of simply-typed higher-order
rewriting systems, as well as a restricted form of dependent types where a type constant C is
annotated by a pattern l representing the set of terms matching l. This extends to patterns
the notion of indexed or sized types [18]. Then, for proving the absence of infinite chains, he
uses simple projections [17], which can be seen as a particular case of SCT where strictly
decreasing arguments are fixed (SCT can also handle permutations in arguments).

Finally, if we restrict ourselves to orthogonal systems, it is also possible to compare our
technique to the ones implemented in the proof assistants Coq and Agda. Coq essentially
implements a higher-order version of primitive recursion. Agda on the other hand uses SCT.

Because Example 1 uses matching on defined symbols, it is not orthogonal and can be
written neither in Coq nor in Agda. Agda recently added the possibility of adding rewrite
rules but this feature is highly experimental and comes with no guaranty. In particular,
Agda termination checker does not handle rewriting rules.

Coq cannot handle inductive-recursive definitions [11] nor function definitions with
permuted arguments in function calls while it is no problem for Agda and us.

8 Conclusion and future work

We proved a general modularity result extending Arts and Giesl’s theorem that a rewriting
relation terminates if there are no infinite sequences of dependency pairs [2] from first-order
rewriting to dependently-typed higher-order rewriting. Then, following [37], we showed how
to use Lee, Jones and Ben-Amram’s size-change termination criterion to prove the absence
of such infinite sequences [26].

This extends Wahlstedt’s work [37] from weak to strong normalization, and from ortho-
gonal to locally confluent rewriting systems. This extends the first author’s work [5] from
orthogonal to locally confluent systems, and from systems having a decreasing argument in
each recursive call to systems with non-increasing arguments in recursive calls. Finally, this
also extends previous works on static dependency pairs [25] from simply-typed λ-calculus to
dependent types modulo rewriting.

3 We renamed the function symbols for the sake of readability.

FSCD 2019

9:14 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

To get this result, we assumed local confluence. However, one often uses termination to
check (local) confluence. Fortunately, there are confluence criteria not based on termination.
The most famous one is (weak) orthogonality, that is, when the system is left-linear and
has no critical pairs (or only trivial ones) [35], as it is the case in functional programming
languages. A more general one is when critical pairs are “development-closed” [36].

This work can be extended in various directions.
First, our tool is currently limited to PFP rules, that is, to rules where higher-order

variables are direct subterms of the left-hand side. To have higher-order variables in
deeper subterms like in Example 14, we need to define a more complex interpretation of
types, following [5].

Second, to handle recursive calls in such systems, we also need to use an ordering more
complex than the subterm ordering when computing the matrices labeling the SCT call
graph. The ordering needed for handling Example 14 is the “structural ordering” of Coq
and Agda [9, 6]. Relations other than subterm have already been considered in SCT but in
a first-order setting only [34].

But we may want to go further because the structural ordering is not enough to handle
the following system which is not accepted by Agda:

I Example 19 (Division). m/n computes dmn e.

symbol minus: Nat⇒Nat⇒Nat set infix 1 "-" := minus
rule 0 - n → 0 rule m - 0 → m rule (s m) - (s n) → m - n

symbol div: Nat⇒Nat⇒Nat set infix 1 "/" := div
rule 0 / (s n) → 0 rule (s m) / (s n) → s ((m - n) / (s n))

A solution to handle this system is to use arguments filterings (remove the second
argument of -) or simple projections [17]. Another one is to extend the type system with
size annotations as in Agda and compute the SCT matrices by comparing the size of
terms instead of their structure [1, 7]. In our example, the size of m - n is smaller than or
equal to the size of m. One can deduce this by using user annotations like in Agda, or by
using heuristics [8].

Another interesting extension would be to handle function calls with locally size-increasing
arguments like in the following example:

rule f x → g (s x) rule g (s (s x)) → f x

where the number of s’s strictly decreases between two calls to f although the first rule
makes the number of s’s increase. Hyvernat enriched SCT to handle such systems [19].

References
1 A. Abel. MiniAgda: integrating sized and dependent types. In Proceedings of the Workshop on

Partiality and Recursion in Interactive Theorem Provers, Electronic Proceedings in Theoretical
Computer Science 43, 2010. doi:10.4204/EPTCS.43.2.

2 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236:133–178, 2000. doi:10.1016/S0304-3975(99)00207-8.

3 H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of logic in computer science. Volume 2. Background: computa-
tional structures, pages 117–309. Oxford University Press, 1992.

4 F. Blanqui. Théorie des types et récriture. PhD thesis, Université Paris-Sud, France, 2001.
144 pages. URL: http://tel.archives-ouvertes.fr/tel-00105522.

http://dx.doi.org/10.4204/EPTCS.43.2
http://dx.doi.org/10.1016/S0304-3975(99)00207-8
http://tel.archives-ouvertes.fr/tel-00105522

F. Blanqui, G. Genestier, and O. Hermant 9:15

5 F. Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical Structures
in Computer Science, 15(1):37–92, 2005. doi:10.1017/S0960129504004426.

6 F. Blanqui. Termination of rewrite relations on λ-terms based on Girard’s notion of reducibility.
Theoretical Computer Science, 611:50–86, 2016. doi:10.1016/j.tcs.2015.07.045.

7 F. Blanqui. Size-based termination of higher-order rewriting. Journal of Functional Program-
ming, 28(e11), 2018. 75 pages. doi:10.1017/S0956796818000072.

8 W. N. Chin and S. C. Khoo. Calculating sized types. Journal of Higher-Order and Symbolic
Computation, 14(2-3):261–300, 2001. doi:10.1023/A:1012996816178.

9 T. Coquand. Pattern matching with dependent types. In Proceedings of the International
Workshop on Types for Proofs and Programs, 1992. URL: http://www.lfcs.inf.ed.ac.uk/
research/types-bra/proc/proc92.ps.gz.

10 D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-Pi-calculus modulo.
In Proceedings of the 8th International Conference on Typed Lambda Calculi and Applications,
Lecture Notes in Computer Science 4583, 2007. URL: 10.1007/978-3-540-73228-0_9.

11 P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in type
theory. Journal of Symbolic Logic, 65(2):525–549, 2000. URL: http://www.jstor.org/
stable/2586554.

12 G. Genestier. SizeChangeTool, 2018. URL: https://github.com/Deducteam/
SizeChangeTool.

13 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: combin-
ing techniques for automated termination proofs. In Proceedings of the 11th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Lecture Notes in
Computer Science 3452, 2004. doi:10.1007/978-3-540-32275-7_21.

14 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006. doi:10.1007/
s10817-006-9057-7.

15 J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and types. Cambridge University Press, 1988.
URL: http://www.paultaylor.eu/stable/prot.pdf.

16 R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the ACM,
40(1):143–184, 1993. doi:10.1145/138027.138060.

17 N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: techniques and features.
Information and Computation, 205(4):474–511, 2007. doi:10.1016/j.ic.2006.08.010.

18 J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized
types. In Proceedings of the 23th ACM Symposium on Principles of Programming Languages,
1996. doi:10.1145/237721.240882.

19 P. Hyvernat. The size-change termination principle for constructor based languages. Logical
Methods in Computer Science, 10(1):1–30, 2014. doi:10.2168/LMCS-10(1:11)2014.

20 P. Hyvernat and C. Raffalli. Improvements on the “size change termination principle” in a
functional language. In 11th International Workshop on Termination, 2010. URL: https:
//lama.univ-savoie.fr/~raffalli/pdfs/wst.pdf.

21 N. D. Jones and N. Bohr. Termination analysis of the untyped lambda-calculus. In Proceedings
of the 15th International Conference on Rewriting Techniques and Applications, Lecture Notes
in Computer Science 3091, 2004. doi:10.1007/978-3-540-25979-4_1.

22 J.-P. Jouannaud and J. Li. Termination of Dependently Typed Rewrite Rules. In Proceedings
of the 13th International Conference on Typed Lambda Calculi and Applications, Leibniz
International Proceedings in Informatics 38, 2015. doi:10.4230/LIPIcs.TLCA.2015.257.

23 J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems:
introduction and survey. Theoretical Computer Science, 121:279–308, 1993. doi:10.1016/
0304-3975(93)90091-7.

24 C. Kop. Higher order termination. PhD thesis, VU University Amsterdam, 2012. URL:
http://hdl.handle.net/1871/39346.

FSCD 2019

http://dx.doi.org/10.1017/S0960129504004426
http://dx.doi.org/10.1016/j.tcs.2015.07.045
http://dx.doi.org/10.1017/S0956796818000072
http://dx.doi.org/10.1023/A:1012996816178
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc92.ps.gz
http://www.lfcs.inf.ed.ac.uk/research/types-bra/proc/proc92.ps.gz
10.1007/978-3-540-73228-0_9
http://www.jstor.org/stable/2586554
http://www.jstor.org/stable/2586554
https://github.com/Deducteam/SizeChangeTool
https://github.com/Deducteam/SizeChangeTool
http://dx.doi.org/10.1007/978-3-540-32275-7_21
http://dx.doi.org/10.1007/s10817-006-9057-7
http://dx.doi.org/10.1007/s10817-006-9057-7
http://www.paultaylor.eu/stable/prot.pdf
http://dx.doi.org/10.1145/138027.138060
http://dx.doi.org/10.1016/j.ic.2006.08.010
http://dx.doi.org/10.1145/237721.240882
http://dx.doi.org/10.2168/LMCS-10(1:11)2014
https://lama.univ-savoie.fr/~raffalli/pdfs/wst.pdf
https://lama.univ-savoie.fr/~raffalli/pdfs/wst.pdf
http://dx.doi.org/10.1007/978-3-540-25979-4_1
http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.257
http://dx.doi.org/10.1016/0304-3975(93)90091-7
http://dx.doi.org/10.1016/0304-3975(93)90091-7
http://hdl.handle.net/1871/39346

9:16 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

25 K. Kusakari and M. Sakai. Enhancing dependency pair method using strong computability in
simply-typed term rewriting systems. Applicable Algebra in Engineering Communication and
Computing, 18(5):407–431, 2007. doi:10.1007/s00200-007-0046-9.

26 C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In Proceedings of the 28th ACM Symposium on Principles of Programming
Languages, 2001. doi:10.1145/360204.360210.

27 R. Lepigre and C. Raffalli. Practical subtyping for System F with sized (co-)induction, 2017.
arXiv:1604.01990.

28 G. Markowsky. Chain-complete posets and directed sets with applications. Algebra Universalis,
6:53–68, 1976.

29 R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical
Computer Science, 192(2):3–29, 1998. doi:10.1016/S0304-3975(97)00143-6.

30 C. Roux. Refinement Types as Higher-Order Dependency Pairs. In Proceedings of the 22nd
International Conference on Rewriting Techniques and Applications, Leibniz International
Proceedings in Informatics 10, 2011. doi:10.4230/LIPIcs.RTA.2011.299.

31 R. Saillard. Type checking in the Lambda-Pi-calculus modulo: theory and practice. PhD
thesis, Mines ParisTech, France, 2015. URL: https://pastel.archives-ouvertes.fr/
tel-01299180.

32 D. Sereni and N. D. Jones. Termination analysis of higher-order functional programs. In
Proceedings of the 3rd Asian Symposium on Programming Languages and Systems, Lecture
Notes in Computer Science 3780, 2005. doi:10.1007/11575467_19.

33 TeReSe. Term rewriting systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

34 R. Thiemann and J. Giesl. The size-change principle and dependency pairs for termination of
term rewriting. Applicable Algebra in Engineering Communication and Computing, 16(4):229–
270, 2005. doi:10.1007/s00200-005-0179-7.

35 V. van Oostrom. Confluence for abstract and higher-order rewriting. PhD thesis, Vrije
Universiteit Amsterdam, NL, 1994. URL: http://www.phil.uu.nl/~oostrom/publication/
ps/phdthesis.ps.

36 V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181,
1997. doi:10.1016/S0304-3975(96)00173-9.

37 D. Wahlstedt. Dependent type theory with first-order parameterized data types and well-
founded recursion. PhD thesis, Chalmers University of Technology, Sweden, 2007. URL:
http://www.cse.chalmers.se/alumni/davidw/wdt_phd_printed_version.pdf.

A Proofs of lemmas on the interpretation

A.1 Definition of the interpretation
I Lemma 20. F is monotone wrt inclusion.

Proof. We first prove that D is monotone. Let I ⊆ J and T ∈ D(I). We have to show
that T ∈ D(J). To this end, we have to prove (1) T ∈ SN and (2) if T →∗ (x : A)B then
A ∈ dom(J) and, for all a ∈ J(A), B[x 7→ a] ∈ dom(J):
1. Since T ∈ D(I), we have T ∈ SN.
2. Since T ∈ D(I) and T →∗ (x : A)B, we have A ∈ dom(I) and, for all a ∈ I(A),

B[x 7→ a] ∈ dom(I). Since I ⊆ J , we have dom(I) ⊆ dom(J) and J(A) = I(A)
since I and J are functional relations. Therefore, A ∈ dom(J) and, for all a ∈ I(A),
B[x 7→ a] ∈ dom(J).

We now prove that F is monotone. Let I ⊆ J and T ∈ D(I). We have to show that
F (I)(T) = F (J)(T). First, T ∈ D(J) since D is monotone.

http://dx.doi.org/10.1007/s00200-007-0046-9
http://dx.doi.org/10.1145/360204.360210
http://arxiv.org/abs/1604.01990
http://dx.doi.org/10.1016/S0304-3975(97)00143-6
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.299
https://pastel.archives-ouvertes.fr/tel-01299180
https://pastel.archives-ouvertes.fr/tel-01299180
http://dx.doi.org/10.1007/11575467_19
http://dx.doi.org/10.1007/s00200-005-0179-7
http://www.phil.uu.nl/~oostrom/publication/ps/phdthesis.ps
http://www.phil.uu.nl/~oostrom/publication/ps/phdthesis.ps
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://www.cse.chalmers.se/alumni/davidw/wdt_phd_printed_version.pdf

F. Blanqui, G. Genestier, and O. Hermant 9:17

If T↓ = (x : A)B, then F (I)(T) = Πa ∈ I(A). I(B[x 7→ a]) and F (J)(T) = Πa ∈
J(A). J(B[x 7→ a]). Since T ∈ D(I), we have A ∈ dom(I) and, for all a ∈ I(A), B[x 7→
a] ∈ dom(I). Since dom(I) ⊆ dom(J), we have J(A) = I(A) and, for all a ∈ I(A),
J(B[x 7→ a]) = I(B[x 7→ a]). Therefore, F (I)(T) = F (J)(T).

Now, if T↓ is not a product, then F (I)(T) = F (J)(T) = SN. J

A.2 Computability predicates

I Lemma 21. D is a computability predicate.

Proof. Note that D = D(I).
1. D ⊆ SN by definition of D.
2. Let T ∈ D and T ′ such that T → T ′. We have T ′ ∈ SN since T ∈ SN. Assume now that

T ′ →∗ (x : A)B. Then, T →∗ (x : A)B, A ∈ D and, for all a ∈ I(A), B[x 7→ a] ∈ D.
Therefore, T ′ ∈ D.

3. Let T be a neutral term such that →(T) ⊆ D. Since D ⊆ SN, T ∈ SN. Assume now
that T →∗ (x : A)B. Since T is neutral, there is U ∈ →(T) such that U →∗ (x : A)B.
Therefore, A ∈ D and, for all a ∈ I(A), B[x 7→ a] ∈ D. J

I Lemma 22. If P ∈ P and, for all a ∈ P , Q(a) ∈ P, then Πa∈P.Q(a) ∈ P.

Proof. Let R = Πa∈P.Q(a).
1. Let t ∈ R. We have to prove that t ∈ SN. Let x ∈ V. Since P ∈ P, x ∈ P . So, tx ∈ Q(x).

Since Q(x) ∈ P, Q(x) ⊆ SN. Therefore, tx ∈ SN, and t ∈ SN.
2. Let t ∈ R and t′ such that t→ t′. We have to prove that t′ ∈ R. Let a ∈ P . We have to

prove that t′a ∈ Q(a). By definition, ta ∈ Q(a) and ta→ t′a. Since Q(a) ∈ P, t′a ∈ Q(a).
3. Let t be a neutral term such that→(t) ⊆ R. We have to prove that t ∈ R. Hence, we take

a ∈ P and prove that ta ∈ Q(a). Since P ∈ P, we have a ∈ SN and →∗(a) ⊆ P . We now
prove that, for all b ∈ →∗(a), tb ∈ Q(a), by induction on→. Since t is neutral, tb is neutral
too and it suffices to prove that→(tb) ⊆ Q(a). Since t is neutral,→(tb) =→(t)b ∪ t→(b).
By induction hypothesis, t→(b) ⊆ Q(a). By assumption, →(t) ⊆ R. So, →(t)a ⊆ Q(a).
Since Q(a) ∈ P, →(t)b ⊆ Q(a) too. Therefore, ta ∈ Q(a) and t ∈ R. J

I Lemma 23. For all T ∈ D, I(T) is a computability predicate.

Proof. Since Fp(T,P) is a chain-complete poset, it suffices to prove that Fp(T,P) is closed
by F . Assume that I ∈ Fp(T,P). We have to prove that F (I) ∈ Fp(T,P), that is, for all
T ∈ D(I), F (I)(T) ∈ P. There are two cases:

If T↓ = (x : A)B, then F (I)(T) = Πa∈I(A). I(B[x 7→ a]). By assumption, I(A) ∈ P and,
for a ∈ I(A), I(B[x 7→ a]) ∈ P. Hence, by Lemma 22, F (I)(T) ∈ P.
Otherwise, F (I)(T) = SN ∈ P. J

I Lemma 4a. For all terms T and substitutions σ, JT Kσ ∈ P.

Proof. By induction on T . If T = s, then JT Kσ = D ∈ P by Lemma 21. If T = (x : A)K ∈ K,
then JT Kσ = Πa∈ JAKσ. JKK[x 7→a,σ]. By induction hypothesis, JAKσ ∈ P and, for all a ∈ JAKσ,
JKK[x7→a,σ] ∈ P. Hence, by Lemma 22, JT Kσ ∈ P. If T /∈ K ∪ {KIND} and Tσ ∈ D, then
JT Kσ = I(Tσ) ∈ P by Lemma 23. Otherwise, JT Kσ = SN ∈ P. J

FSCD 2019

9:18 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

A.3 Invariance by reduction
We now prove that the interpretation is invariant by reduction.

I Lemma 24. If T ∈ D and T → T ′, then I(T) = I(T ′).

Proof. First note that T ′ ∈ D since D ∈ P. Hence, I(T ′) is well defined. Now, we have
T ∈ SN since D ⊆ SN. So, T ′ ∈ SN and, by local confluence and Newman’s lemma,
T↓ = T ′↓. If T↓ = (x : A)B then I(T) = Πa ∈ I(A). I(B[x 7→ a]) = I(T ′). Otherwise,
I(T) = SN = I(T ′). J

I Lemma 4b. If T is typable, Tσ ∈ D and T → T ′, then JT Kσ = JT ′Kσ.

Proof. By assumption, there are Γ and U such that Γ ` T : U . Since → preserves typing,
we also have Γ ` T ′ : U . So, T 6= KIND, and T ′ 6= KIND. Moreover, T ∈ K iff T ′ ∈ K since
Γ ` T : KIND iff T ∈ K and T is typable. In addition, we have T ′σ ∈ D since Tσ ∈ D and
D ∈ P.

We now prove the result, with T →= T ′ instead of T → T ′, by induction on T . If
T /∈ K, then T ′ /∈ K and, since Tσ, T ′σ ∈ D, JT Kσ = I(Tσ) = I(T ′σ) = JT ′Kσ by Lemma
24. If T = TYPE, then JT Kσ = D = JT ′Kσ. Otherwise, T = (x : A)K and T ′ = (x : A′)K ′
with A →= A′ and K →= K ′. By inversion, we have Γ ` A : TYPE, Γ ` A′ : TYPE,
Γ, x : A ` K : KIND and Γ, x : A′ ` K ′ : KIND. So, by induction hypothesis, JAKσ = JA′Kσ
and, for all a ∈ JAKσ, JKKσ′ = JK ′Kσ′ , where σ′ = [x 7→ a, σ]. Therefore, JT Kσ = JT ′Kσ. J

I Lemma 4c. If T is typable, Tσ ∈ D and σ → σ′, then JT Kσ = JT Kσ′ .

Proof. By induction on T .
If T ∈ S, then JT Kσ = D = JT Kσ′ .
If T = (x : A)K and K ∈ K, then JT Kσ = Πa ∈ JAKσ. JKK[x 7→a,σ] and JT Kσ′ = Πa ∈
JAKσ′ . JKK[x7→a,σ′]. By induction hypothesis, JAKσ = JAKσ′ and, for all a ∈ JAKσ,
JKK[x 7→a,σ] = JKK[x 7→a,σ′]. Therefore, JT Kσ = JT Kσ′ .
If Tσ ∈ D, then JT Kσ = I(Tσ) and JT Kσ′ = I(Tσ′). Since Tσ →∗ Tσ′, by Lemma 4b,
I(Tσ) = I(Tσ′).
Otherwise, JT Kσ = SN = JT Kσ′ . J

A.4 Adequacy of the interpretation
I Lemma 4d. If (x : A)B is typable, ((x : A)B)σ ∈ D and x /∈ dom(σ) ∪ FV(σ), then
J(x : A)BKσ = Πa∈ JAKσ. JBK[x 7→a,σ].

Proof. If B is a kind, this is immediate. Otherwise, since ((x : A)B)σ ∈ D, J(x : A)BKσ =
I(((x : A)B)σ). Since x /∈ dom(σ) ∪ FV(σ), we have ((x : A)B)σ = (x : Aσ)Bσ. Since
(x : Aσ)Bσ ∈ D and D ⊆ SN, we have J(x : A)BKσ = Πa∈I(Aσ↓). I((Bσ↓)[x 7→ a]).

Since (x : A)B is typable, A is of type TYPE and A /∈ K∪ {KIND}. Hence, JAKσ = I(Aσ)
and, by Lemma 24, I(Aσ) = I(Aσ↓).

Since (x : A)B is typable and not a kind, B is of type TYPE and B /∈ K∪{KIND}. Hence,
JBK[x 7→a,σ] = I(B[x 7→ a, σ]). Since x /∈ dom(σ)∪FV(σ), B[x 7→ a, σ] = (Bσ)[x 7→ a]. Hence,
JBK[x 7→a,σ] = I((Bσ)[x 7→ a]) and, by Lemma 24, I((Bσ)[x 7→ a]) = I((Bσ↓)[x 7→ a]).

Therefore, J(x : A)BKσ = Πa∈ JAKσ. JBK[x 7→a,σ]. J

F. Blanqui, G. Genestier, and O. Hermant 9:19

Note that, by iterating this lemma, we get that v ∈ J∀~x : ~T , UK iff, for all ~t such that
[~x 7→ ~t] |= ~x : ~T , v~t ∈ JUK[~x7→~t].

I Lemma 4e. If ∆ ` U : s, Γ ` γ : ∆ and Uγσ ∈ D, then JUγKσ = JUKγσ.

Proof. We proceed by induction on U . Since ∆ ` U : s and Γ ` γ : ∆, we have Γ ` Uγ : s.
If s = TYPE, then U,Uγ /∈ K ∪ {KIND} and JUγKσ = I(Uγσ) = JUKγσ since Uγσ ∈ D.
Otherwise, s = KIND and U ∈ K.

If U = TYPE, then JUγKσ = D = JUKγσ.
Otherwise, U = (x : A)K and, by Lemma 4d, JUγKσ = Πa∈ JAγKσ. JKγK[x 7→a,σ] and
JUKγσ = Πa∈ JAKγσ. JKK[x 7→a,γσ]. By induction hypothesis, JAγKσ = JAKγσ and, for
all a ∈ JAγKσ, JKγK[x 7→a,σ] = JKKγ[x 7→a,σ]. Wlog we can assume x /∈ dom(γ) ∪ FV(γ).
So, JKKγ[x 7→a,σ] = JKK[x 7→a,γσ]. J

I Lemma 4f. Let P be a computability predicate and Q a P -indexed family of computability
predicates such that Q(a′) ⊆ Q(a) whenever a→ a′. Then, λx : A.b ∈ Πa∈P.Q(a) whenever
A ∈ SN and, for all a ∈ P , b[x 7→ a] ∈ Q(a).

Proof. Let a0 ∈ P . Since P ∈ P, we have a0 ∈ SN and x ∈ P . Since Q(x) ∈ P and b = b[x 7→
x] ∈ Q(x), we have b ∈ SN. Let a ∈ →∗ (a0). We can prove that (λx : A, b)a ∈ Q(a0) by
induction on (A, b, a) ordered by (→,→,→)∀:.,Since Q(a0) ∈ P and (λx : A, b)a is neutral, it
suffices to prove that→((λx : A, b)a) ⊆ Q(a0). If the reduction takes place in A, b or a, we can
conclude by induction hypothesis. Otherwise, (λx : A, b)a→ b[x 7→ a] ∈ Q(a) by assumption.
Since a0 →∗ a and Q(a′) ⊆ Q(a) whenever a→ a′, we have b[x 7→ a] ∈ Q(a0). J

B Termination proof of Example 1

Here is the comprehensive list of dependency pairs in the example:

A: El (arrow a b) > El a
B: El (arrow a b) > El b
C: (s p) + q > p + q
D: app a _ (cons _ x p l) q m > p + q
E: app a _ (cons _ x p l) q m > app a p l q m
F:len_fil a f _ (cons _ x p l) > len_fil_aux (f x) a f p l
G:len_fil a f _ (app _ p l q m) >

(len_fil a f p l) + (len_fil a f q m)
H:len_fil a f _ (app _ p l q m) > len_fil a f p l
I:len_fil a f _ (app _ p l q m) > len_fil a f q m
J: len_fil_aux true a f p l > len_fil a f p l
K: len_fil_aux false a f p l > len_fil a f p l
L: fil a f _ (cons _ x p l) > fil_aux (f x) a f x p l
M: fil a f _ (app _ p l q m) >

app a (len_fil a f p l) (fil a f p l)
(len_fil a f q m) (fil a f q m)

N: fil a f _ (app _ p l q m) > len_fil a f p l
O: fil a f _ (app _ p l q m) > fil a f p l
P: fil a f _ (app _ p l q m) > len_fil a f q m
Q: fil a f _ (app _ p l q m) > fil a f q m
R: fil_aux true a f x p l > len_fil a f p l
S: fil_aux true a f x p l > fil a f p l
T: fil_aux false a f x p l > fil a f p l

FSCD 2019

9:20 Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

The whole callgraph is depicted below. The letter associated to each matrix corresponds
to the dependency pair presented above and in example 7, except for TC ’s which comes
from the computation of the transitive closure and labels dotted edges.

filfil_aux

len_fillen_fil_aux

El app

+

A,B

C

D

E

F
G

H,I

J,K

L

R

S,T M

N,P

O,QTC4 TC3

TC1 TC2

The argument a is omitted everywhere on the matrices presented below:

A,B=(−1), C=(−1 ∞
∞ 0), D=

(∞ ∞
−1 ∞
∞ 0
∞ ∞

)
, E=

(∞ ∞ ∞ ∞
−1 −1 ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0

)
, F=

(
∞ 0 ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ −1 −1

)
, J=K=

(∞ ∞ ∞
0 ∞ ∞
∞ 0 ∞
∞ ∞ 0

)
,

G=
(
∞ ∞
∞ ∞
∞ ∞

)
, H=I=N=O=P=Q=

(
0 ∞ ∞
∞ ∞ ∞
∞ −1 −1

)
, L=

(
∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ −1 −1 −1

)
, M=

(
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞

)
,

R=S=T=
(∞ ∞ ∞

0 ∞ ∞
∞ ∞ ∞
∞ 0 ∞
∞ ∞ 0

)
.

Which leads to the matrices labeling a loop in the transitive closure:

TC1=J×F=
(∞ ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ −1 −1

)
, TC4=S×L=

(∞ ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ −1 −1 −1

)
,

TC3=L×S=TC2=F×J=
(0 ∞ ∞
∞ ∞ ∞
∞ −1 −1

)
=O=H.

It would be useless to compute matrices labeling edges which are not in a strongly connected
component of the call-graph (like S×R), but it is necessary to compute all the products which
could label a loop, especially to verify that all loop-labeling matrices are idempotent, which
is indeed the case here.

We now check that this system is well-structured. For each rule f~l → r, we take the
environment ∆f~l→r made of all the variables of r with the following types: a:Set, b:Set,
p:N, q:N, x:El a, l:L a p, m:L a q, f:El a⇒ B.

The precedence infered for this example is the smallest containing:
comparisons linked to the typing of symbols:

Set � arrow Set,L,0 � nil
Set � El Set,El,N,L,s � cons
B � true Set,N,L,+ � app
B � false Set,El,B,N,L � len_fil
N � 0 B,Set,El,N,L � len_fil_aux
N � s Set,El,B,N,L,len_fil � fil
N � + B,Set,El,N,L,len_fil_aux � fil_aux

Set,N � L
and comparisons related to calls:

s � + s,len_fil � len_fil_aux
cons,+ � app nil,fil_aux,app,len_fil � fil

0,len_fil_aux,+ � len_fil fil,cons,len_fil � fil_aux

F. Blanqui, G. Genestier, and O. Hermant 9:21

This precedence can be sum up in the following diagram, where symbols in the same box
are equivalent:

fil,fil_aux

len_fil,len_fil_auxapp

true false

B

cons nil +

Larrow El 0 s

Set N

FSCD 2019

A Generic Framework for Higher-Order
Generalizations
David M. Cerna
FMV and RISC, Johannes Kepler University Linz, Austria
david.cerna@risc.jku.at

Temur Kutsia
RISC, Johannes Kepler University Linz, Austria
kutsia@risc.jku.at

Abstract
We consider a generic framework for anti-unification of simply typed lambda terms. It helps to
compute generalizations which contain maximally common top part of the input expressions, without
nesting generalization variables. The rules of the corresponding anti-unification algorithm are
formulated, and their soundness and termination are proved. The algorithm depends on a parameter
which decides how to choose terms under generalization variables. Changing the particular values
of the parameter, we obtained four new unitary variants of higher-order anti-unification and also
showed how the already known pattern generalization fits into the schema.

2012 ACM Subject Classification Theory of computation → Rewrite systems; Theory of computa-
tion → Higher order logic; Theory of computation → Type theory

Keywords and phrases anti-unification, typed lambda calculus, least general generalization

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.10

Funding Supported by the Austrian Science Fund (FWF) under the project P 28789-N32.

Acknowledgements We thank Tomer Libal for useful discussions on the early version of the paper.

1 Introduction

A term r is generalization of a term t, if t can be obtained from r by a variable substitution.
The problem of finding common generalizations of two or more terms has been investigated
quite intensively. The main idea is to compute least general generalizations (lggs) which max-
imally keep the similarities between the input terms and uniformly abstract over differences
in them by new variables. For instance, if the input terms are t = f(a, a) and s = f(b, b), we
are interested in their lgg f(x, x). It gives more precise information about the nature of t
and s than their other generalizations such as, e.g., f(x, y) or just x. Namely, it shows that t
and s not only have the same head f , but also each of them has its both arguments equal.

The technique of computing generalizations is called anti-unification. It was introduced
in 1970s [17, 18] and saw a renewed interest in recent years (see, e.g., [3, 2, 11, 6, 1]), mostly
motivated by various applications (see, e.g., [5, 13, 19, 20]).

Concerning anti-unification for higher-order terms, lggs are not unique and special
fragments or variants of the problem have to be considered to guarantee uniqueness of lggs.
Such special cases include generalizations with higher-order patterns [8, 7, 15, 16], object
terms [9], restricted terms [21], etc. For instance, a pattern lgg of λx.f(g(x)) and λx.h(g(x))
is λx.Y (x), ignoring the fact that those terms have a common subterm g(x). It happens
because the pattern restriction requires free variables to apply to sequences of distinct bound
variables. That’s why we get a generalization in which the free variable Y applies to the
bound variable x, and not to the more complex common subterm g(x) of the given terms.

© David M. Cerna and Temur Kutsia;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.cerna@risc.jku.at
mailto:kutsia@risc.jku.at
https://doi.org/10.4230/LIPIcs.FSCD.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 A Generic Framework for Higher-Order Generalizations

Pattern generalizations have been successfully used, e.g., in term indexing [16] and in
software code analysis for quick bug fixing [19]. Another advantage is that they can be
computed efficiently, in linear time [8]. However, some problems require more expressive
variants than patterns, as, for instance, the application of higher-order anti-unification in
automatic detection of recursion schemes in functional programming [5]. Combination of
increased expressive power and good computational properties was the motivation behind
the introduction of functions-as-constructors terms (fc-terms) in higher-order unification [12].
We address a similar problem for anti-unification in this paper.

One difficulty comes from the fact that not all lggs are good characterizations of general-
ized terms. For instance, for λx.f(g(x)) and λx.f(h(x)) both λx.X(f(g(x)), f(h(x))) and
λx.f(Y (g(x), h(x))) are lggs (where X and Y are fresh generalization variables), but the
latter one is better, since it shows that the input terms have the common head f . This
observation leads to the notion of top-maximal generalization, which keeps the maximally
large common top part of the input terms. This is a very natural property, which, by default,
was guaranteed for pattern lggs, but not necessarily for lggs in richer variants.

Another problem is related with nested generalization variables, which may affect least
generality. In practice, such a nesting causes nondeterminism, an undesirable property. Once
a difference between terms is detected, it should be abstracted by a generalization variable
and no attempt to further generalize should be made under it. This leads to a variant of
generalization, which we call shallow with respect to generalization variables, since these
variables are not nested. We concentrate on computing top-maximal shallow lggs.

In this setting the interesting question is, what terms are permitted under generalization
variables? For the pattern case they are distinct bound variables, but we want more expressive
variants. Instead of coming up with different particular cases and designing special anti-
unification algorithms for them, we formulate a generic algorithm which always computes
top-maximal shallow generalizations, and prove its soundness and termination (Sect. 4). The
particular cases can be obtained by instantiating a parameter in one of the rules of the
algorithm, which is responsible for choosing terms under generalization variables. Changing
the specific values of the parameter, we obtained several new unitary (i.e., with single lgg)
variants of higher-order anti-unification: projection-based (Sect. 5.1), generalizations with
common subterms (Sect. 5.2.1), relaxed fc (Sect. 5.2.2), and fc (Sect. 5.2.3). We also show
how pattern generalization fits into the schema (Sect. 5.2.4). Completeness results for these
variants are given. Additional variants of higher-order anti-unification can be developed
using our schema by specifying how terms under generalization variables are chosen. For
reader’s convenience, some illustrative examples are put in the appendix.

2 Preliminaries

We consider simply-typed signature, where types are constructed from a set of basic types
(denoted by δ) by the grammar τ ::= δ | τ→ τ, where→ is associative to the right. Variables
(denoted by X,Y, Z, x, y, z, . . .) and constants (denoted by a, b, c, f, g, h, . . .) have an assigned
type. The set of variables is denoted by V and the set of constants by C. λ-terms (denoted
by t, s, r, . . .) are built using the grammar t ::= x | c | λx.t | t1 t2 where x is a variable and
c is a constant, and are typed as usual. Terms of the form (. . . (h t1) . . . tm), where h is a
constant or a variable, will be written as h(t1, . . . , tm), and terms of the form λx1. · · · .λxn.t
as λx1, . . . , xn.t. We use #»x as a short-hand for x1, . . . , xn.

Other standard notions of the simply typed λ-calculus, like bound and free occurrences
of variables, subterms, α-conversion, β-reduction, η-long β-normal form, etc. are defined
as usual (see, e.g., [4]). t↓η denotes the η-normal form of t. We denote the fact that t is a
(strict) subterm of s using the infix binary symbol v (@). Bound variables will be denoted

D.M. Cerna and T. Kutsia 10:3

by lowercase letters and free variables by capital letters. The symbols fv(t) and bv(t) are
used to denote the sets of free and bound variables, respectively, of a term t. This notation
extends to a set of terms as well. A term t is closed if fv(t) = ∅.

By default, terms are assumed to be written in η-long β-normal form. Therefore, all
terms have the form λx1, . . . , xn.h(t1, . . . , tm), where n,m ≥ 0, h is either a constant or a
variable, t1, . . . , tm also have this form, and the term h(t1, . . . , tm) has a basic type. For a
term t = λx1, . . . , xn.h(t1, . . . , tm) with n,m ≥ 0, its head is defined as head(t) = h.

When we write an equality between two λ-terms, we mean α, β and η equivalence.
Positions in λ-terms are defined with respect to their tree representation in the usual

way, as string of integers. For instance, in the term f(λx.λy.g(λz.h(z, y), x), λu.g(u)), the
symbol f stands in the position ε (the empty sequence), the occurrence of λx. stands in the
position 1, the bound occurrence of y in 1.1.1.1.1.2, the bound occurrence of u in 2.1.1, etc.
Hence, abstractions in this context are treated as symbols. We denote the symbol occurring
in position p in a term t by symb(t, p) and the subterm of t at position p by t|p. We write
p1 ≤ p2 if the position p1 is a prefix of p2. The strict part of this ordering is denoted by <.
The set of all positions of a term t is denoted by Pos(t).

Substitutions and their composition (◦) are defined as usual. Namely, (σ◦ϑ)X = ϑ(σ(X)).
We extend the application of substitutions to terms in the usual way and denote it by postfix
notation. Variable capture is avoided by implicitly renaming variables to fresh names upon
binding. A substitution σ is more general than a substitution ϑ, denoted σ � ϑ, if there
exists a substitution ϕ such that σ ◦ ϕ = ϑ. The strict part of this relation is denoted by ≺.
The relation � is a partial order and generates the equivalence relation which we denote by
'. We overload � by defining s � t if there exists a substitution σ such that sσ = t.

3 Special forms of terms, generalization problems

In this section we first introduce certain special forms of terms and then discuss the general-
ization problem where the generalization terms may be of a special restricted form.

I Definition 1 (Restricted terms). Let B be a set of variables and s be a term such that
B ∩ bv(s) = ∅. Assume that distinct bound variables have distinct names in s. We say that
a term t is B-restricted in s if t is a subterm of s such that (i) t is η-equivalent to some
t′ ∈ B ∪ bv(s), or (ii) t = (f t1 · · · tn), where n > 0, f ∈ C ∪ B ∪ bv(s) and each ti, 1 ≤ i ≤ n,
is a B-restricted term in s.

I Definition 2 (Relaxed functions-as-constructors triples). Let F and B be two disjoint sets
of variables and s be a term such that F ∩ bv(s) = B ∩ bv(s) = ∅. It is also assumed that
distinct bound variables have distinct names in s. We say that the triple (F,B, s) is a relaxed
functions-as-constructors triple or, shortly, rfc-triple, if the following conditions are satisfied:

Argument restriction: For all occurrences of (X t1 · · · tn) in s, where X ∈ F, ti is a B-
restricted term in s for each 0 < i ≤ n.

Local restriction: For all occurrences of (X t1 · · · tn) in s, where X ∈ F, for each 0 < i, j ≤ n,
if i 6= j, then ti↓η 6v tj↓η.

Functions-as-constructors triples are rfc-triples obeying a global restriction:

I Definition 3 (Functions-as-constructors triples). Let F, B, and s be as in Definition 2 and
(F,B, s) be an rfc-triple. We say that it is a functions-as-constructors triple or, shortly,
fc-triple, if the following extra condition is satisfied:

Global restriction: For each two different occurrences of terms (X t1 · · · tn) and (Y s1 · · · sm)
in s with X,Y ∈ F, for each 0 < i ≤ n, 0 < j ≤ m, we have ti↓η 6@ sj↓η.

FSCD 2019

10:4 A Generic Framework for Higher-Order Generalizations

I Definition 4 (Pattern triples). Let F, B, and s be as in Definition 2 and (F,B, s) be an
rfc-triple. A triple is pattern if the following stronger form of the argument restriction holds:

Argument restriction for patterns: For all occurrences of (X t1 · · · tn) in s, where X ∈ F,
we have ti↓η ∈ B ∪ bv(s) for each 0 < i ≤ n.

Note that for patterns the local restriction reduces to checking whether ti↓η’s are distinct
bound variables, and the global restriction is automatically fulfilled. Hence, pattern triples
are also a special case of fc-triples.

I Definition 5 (Rfc-terms, fc-terms, patterns, shallow terms). Let F be a set of variables and
t be a term such that F ∩ bv(t) = ∅. Then t is an F-rfc-term (resp., F-fc-term, F-pattern), if
(F, ∅, t) is an rfc-triple (resp., fc-triple, pattern-triple). We say that t is an F-shallow term if
for every subterm (X t1 · · · tn) of t with X ∈ F, we have F ∩ (∪ni=1fv(ti)) = ∅.

A term t is shallow, if it is an fv(t)-shallow term. Rfc-terms, fc-terms and patterns are
defined analogously.

Note that pattern coincides with the well-known higher-order patterns [14] fragment.
Every pattern is an fc-term. Every fc-term is an rfc-term. Every rfc-term is a shallow term.

I Example 6. Consider the following terms:

t1 = λx, y. f(X(x, λz1.y(z1)), Y (λz2.y(z2), x), λu.Z(x, u))
t2 = λx, y. f(X(g(x), p(λz1.y(z1), λz2.y(z2))), h(Y (g(x), g(h(x))))),
t3 = λx. f(X(g(x), h(x)), h(Y (g(x), g(h(x))))),
t4 = λx. f(X(x, g(a)), x), t5 = λx. f(X(x, g(x)), x), t6 = λx, y. f(X(Y (x), y)).

t1 is a pattern; t2 is an fc-term but not a pattern; t3 is an rfc-term but not an fc-term; t4 is
a shallow term but not an rfc-term, the argument restriction is violated; t5 is a shallow term
but not an rfc-term, the local restriction is violated; t6 is not a shallow term.

A term t is called a generalization or an anti-instance of two terms t1 and t2 if t � t1 and
t � t2. It is the least general generalization (lgg), also known as a most specific anti-instance,
of t1 and t2, if there is no generalization s of t1 and t2 which satisfies t ≺ s.

An anti-unification triple (shortly AUT) has the form X(#»x) : t , s where λ #»x .X(#»x),
λ #»x .t, and λ #»x .s are terms of the same type, t and s are in η-long β-normal form, and X does
not occur in t and s. An anti-unifier of an AUT X(#»x) : t , s is a substitution σ such that
dom(σ) = {X} and λ #»x .X(#»x)σ is a term which generalizes both λ #»x .t and λ #»x .s.

An anti-unifier σ of X(#»x) : t , s is least general (or most specific) if there is no anti-unifier
ϑ of the same problem that satisfies σ ≺ ϑ. Obviously, if σ is a least general anti-unifier of
an AUT X(#»x) : t , s, then λ #»x .X(#»x)σ is a lgg of λ #»x .t and λ #»x .s.

If r is a generalization of t and s, the set of generalization variables (genvars) of t and s
in r is the set genvar(r, t, s) := fv(r) \ (fv(s) ∪ fv(t)).

Our main interest is in generalizations, which retain the common parts of the given
terms as much as possible, at least until the first differences in each branch during top-down
traversal of the given terms. This intuition is formalized in the following definition:

I Definition 7 (Top-maximal generalization). Let s and t be terms of the same type in η-long
β-normal form such that the bound variables are renamed uniformly: the ith bound variable in
depth-first pre-order traversal in s and in t have the same name xi. A common generalization
r of s and t is their top-maximal common generalization, if the following conditions hold:

D.M. Cerna and T. Kutsia 10:5

If symb(s, ε) = symb(t, ε), then symb(r, ε) = symb(s, ε).
If p ∈ Pos(s) ∩ Pos(t) such that symb(s, q) = symb(t, q) for all positions q < p and
symb(s, p) = symb(t, p), then p ∈ Pos(r) and symb(r, p) = symb(s, p).
If p ∈ Pos(s) ∩ Pos(t) such that symb(s, q) = symb(t, q) for all positions q < p and
symb(s, p) 6= symb(t, p), then p ∈ Pos(r) and symb(r, p) is a genvar.

I Example 8. Let s = λx.f(g(x)) and t = λx.f(h(x)). Then r1 = λx.X(f(g(x)), f(h(x)))
is their shallow but not top-maximal generalization, while r2 = λx.f(Y (g(x), h(x))) is both
top-maximal and shallow. Also, r3 = λx.f(Z(x)) is a top-maximal shallow generalization.

3.1 Variants of higher-order anti-unification
In the literature, a variant of a unification or anti-unification problem is obtained by imposing
restrictions on the form of solutions to the problem (in contrast to fragments, where the
form of input is restricted). Here we define variants of higher-order anti-unification problem,
which we will be solving in the coming sections.

The main variant we consider is what we call the top-maximal genvar-shallow variant:

Given: Two terms t and s of the same type in η-long β-normal form.
Find: A top-maximal generalization r of t and s such that r is a genvar(r, t, s)-shallow term.

The problem statement implies that we are looking for r which is least general among all
top-maximal genvar-shallow generalizations of t and s. There can still exist a term which is
less general than r, is a top-maximal generalization of both s and t, but is not a genvar-shallow
term. Also, there can exist a genvar-shallow generalization of s and t which is less general
than r, but it is not a top-maximal generalization of s and t.

By imposing various conditions on r, we get other special problems such as, cs (common
subterms), rfc, fc, and pattern variants of higher-order anti-unification.

First, we define the cs-variant. We need an auxiliary definition of extension of a set of
terms by variables (bound in the context):

I Definition 9. Let B be a set of variables and S be a set of terms such that bv(S) ∩ B = ∅.
By B-extension of S we understand the set S ∪ (B \ fv(S)).

Now, the definition of generalization with common subterms can be formulated as follows:

I Definition 10 (CS-generalization). A generalization r of two terms s and t is called their
common-subterms generalization, shortly cs-generalization, if it is a genvar(r, s, t)-shallow
top-maximal generalization of t and s satisfying the following condition:
Common subterms condition: Let p be a position in r, r|p = X(r1, . . . , rn) for a genvar

X and some terms r1, . . . , rn, and B be the set of all variables bound by λ at positions
above p, i.e., B := {x | symb(r, q) = λx for some position q < p}. Then {r1, . . . , rn} is
the B′-extension of some set of common subterms of s|p and t|p, where B′ ⊆ B.

A cs-generalization r of s and t is their least general cs-generalization (cs-lgg) if no
cs-generalization r′ of s and t satisfies r ≺ r′.

In this definition, top-maximality guarantees that all positions q < p in r are also
positions in t and s and symb(r, q) = symb(t, q) = symb(s, q) (modulo α-renaming of t and s).
Therefore it may well happen that variables from B appear in t|p or in s|p. Since r is a
generalization, r1, . . . , rn must contain all variables from B that appear in t|p or in s|p, for
otherwise one can not get t|p and s|p from r|p by a substitution for X. Hence, actually, we
have B ∩ (fv(t|p) ∪ fv(s|p)) ⊆ B′ ⊆ B in Definition 10.

FSCD 2019

10:6 A Generic Framework for Higher-Order Generalizations

The cs-variant is the problem of computing cs-generalizations. The rfc, fc, and pat-
tern variants are defined similarly, based on the following definition of the corresponding
generalizations:

I Definition 11 (RFC-, FC-, pattern-generalizations). A generalization r of s and t is their
rfc-generalization if r is an rfc- term. It is a least general rfc-generalization (rfc-lgg) of s and
t if no rfc-generalization r′ of s and t satisfies r ≺ r′. The rfc-variant of higher-order anti-
unification s the problem of computing rfc-generalizations. Fc- and pattern generalizations,
lggs, and variants are defined in the same way.

I Example 12. We bring examples of various lggs and show how they related to each other.
Let t = λx.f(h(g(g(x))), h(g(x)), a) and s = λx.f(g(g(x)), g(x), h(a)). Then

r0 = λx.f(X(h(g(g(x))), g(g(x))), X(h(g(x)), g(x)), X(a, h(a))) is a shallow top-maximal
lgg of t and s.
r1 = λx.f(X(g(g(x))), X(g(x)), Z(a)) is a cs-lgg of t and s. We have r1 ≺ r0.
r2 = λx.f(X(g(g(x))), X(g(x)), Z) is a top-maximal rfc-lgg of t and s. We have r2 ≺ r1.
r3 = λx.f(X(g(x)), Y (g(x)), Z) is a top-maximal fc-lgg of t and s and r3 ≺ r2.
r4 = λx.f(X(x), Y (x), Z) is a top-maximal pattern-lgg of t and s. Also here r4 ≺ r3.

More precise relationships between cs, rfc, fc, and pattern variants will be investigated in
Section 5.2 below.

Top-maximality is an important requirement for an lgg to exist. If we do not require it,
we might have �-incomparable generalizations. For instance, in Example 8, r1 and r2 are
not comparable by � and r1 and r3 are not either. On the other hand, two top-maximal
shallow generalizations r2 and r3 are: r3 ≺ r2.

For patterns, top-maximality means also least generality. This is not the case for shallow
terms, as Example 8 shows. In fact, from that example we can see that top-maximality does
not imply least generality for fc- and rfc-generalizations either, because r1 and r2 are both
fc- and rfc-generalizations of s and t.

4 Generic anti-unification transformation rules

Transformation rules for anti-unification work on triples A;S; r, which we call states. Here A
is a set of AUTs of the form {X1(# »x1) : t1 , s1, . . . , Xn(# »xn) : tn , sn} that are pending to
anti-unify, S is a set of already solved AUTs (the store), and r is a generalization (computed
so far). The goal is, given two terms t and s, compute a generalization r which is a
genvar(r, t, s)-shallow term. We aim at computing lggs.

The transformation rules given below are generic. At first, they help us to obtain a top-
maximal genvar-shallow generalization. From it, we can obtain more special generalizations
(e.g., rfc, fc, patterns) by deciding which kind of arguments are allowed under genvars.

I Remark 13. We assume that in the set A ∪ S each occurrence of λ binds a distinct name
variable and that each generalization variable occurs in A ∪ S only once.

The set of transformations G is defined by the following rules:

Dec: Decomposition
{X(#»x) : h(t1, . . . , tm) , h(s1, . . . , sm)}]A; S; r =⇒

{Y1(#»x) : t1 , s1, . . . , Ym(#»x) : tm , sm} ∪A; S; r{X 7→ λ #»x .h(Y1(#»x), . . . , Ym(#»x))},
where Y1, . . . , Yn are fresh variables of the appropriate types.

D.M. Cerna and T. Kutsia 10:7

Abs: Abstraction
{X(#»x) : λy.t , λz.s}]A; S; r =⇒

{X ′(#»x , y) : t , s{z 7→ y}} ∪A; S; r{X 7→ λ #»x , y.X ′(#»x , y)}.
where X ′ is a fresh variable of the appropriate type.

Sol: Solve
{X(#»x) : t , s}]A; S; r =⇒

A; {Y (y1, . . . , yn) : (Ct y1 · · · yn) , (Cs y1 · · · yn)} ∪ S; r{X 7→ λ #»x .Y (q1, . . . , qn)},
where t and s are of a basic type, head(t) 6= head(s), q1, . . . , qn are distinct subterms of t or
s, Ct and Cs are terms such that (Ct q1 · · · qn) = t and (Cs q1 · · · qn) = s, Ct and Cs do not
contain any x ∈ #»x , and Y , y1, . . . , yn are distinct fresh variables of the appropriate type.

Mer: Merge
∅; {X(#»x) : t1 , s1, Y (#»y) : t2 , s2}]S; r =⇒ ∅; {X(#»x) : t1 , s1}∪S; r{Y 7→ λ #»y .X(#»xπ)},
where π : { #»x} → { #»y } is a bijection, extended as a substitution, with t1π = t2 and s1π = s2.

To compute generalizations for t and s, we start with the initial state {X : t , s}; ∅;X,
where X is a fresh variable, and apply the transformations as long as possible. These final
states have the form ∅;S; r, Then, the result computed by G is r.

We use the letters Ct and Cs in the Solve rule because these terms resemble multi-
contexts. Each of them have a form λz1, . . . , zn.C

′
t and λz1, . . . , zn.C

′
s, where the bound

variables z1, . . . , zn play the role of holes. In the store we keep the η-long β-normal form of
(Ct y1 · · · yn) and (Cs y1 · · · yn). When applied to q1, . . . , qn, Ct and Cs give, respectively, t
and s. However, it should be emphasized that it is not the choice of Ct and Cs that might
cause branching applications of Sol, but the choice of the subterms q1, . . . , qn. Moreover,
choosing different special forms of q1, . . . , qn, we obtain different special versions of the
anti-unification algorithm.

One can easily show that rules map a state to a state: For each expression X(#»x) : t ,
s ∈ A∪S, the terms X(#»x), t and s have the same type, s and t are in η-long β-normal form,
and X does not occur in t and s. Moreover, all genvars are distinct.

The property that each occurrence of λ in A∪S binds a unique variable is also maintained.
It guarantees that in the Abs rule, the variable y is fresh for s. After the application of the
rule, y will appear nowhere else in A ∪ S except X ′(#»x , y) and, maybe, t and s.

I Theorem 14. Let t and s be terms. Any sequence of transformations in G starting from the
initial state {X : t , s}; ∅;X terminates and each computed result r is a genvar(r, t, s)-shallow
top-maximal generalization of t and s.

Proof. Let the size of an AUT Z(#»z) : p , q be the number of symbols occurring in p or q,
and the size of a set of AUTs be the multiset of sizes of AUTs it contains. Then the first three
rules in G strictly reduce the size of A. Mer applies when A is empty and strictly reduces the
size of S. Hence, the algorithm terminates. The computed result is an genvar(r, t, s)-shallow
term, since no rule puts one generalization variable on top of another.

Proving that a computed result is a generalization is more involved. First, we prove
that if A1;S1; r =⇒ A2;S2; rϑ is one step, then for any X(#»x) : t , s ∈ A1 ∪ S1, we have
X(#»x)ϑ � t and X(#»x)ϑ � s. Note that if X(#»x) : t , s was not transformed at this step,
then this property trivially holds for it. Therefore, we assume that X(#»x) : t , s is selected
and prove the property for each rule. We only illustrate it for Sol here, for the other rules
the proof proceeds as in [8].

FSCD 2019

10:8 A Generic Framework for Higher-Order Generalizations

Sol: We have ϑ = {X 7→ λ #»x .Y (q1, . . . , qn)}, where q1, . . . , qn are distinct subterms in t or
s. Let ψ1 = {Y 7→ λy1, . . . , yn.(Ct y1 · · · yn)} and ψ2 = {Y 7→ λy1, . . . , yn.(Cs y1 · · · yn)}.
Since (Ct q1 · · · qn) = t, (Cs q1 · · · qn) = s, and Ct and Cs do not contain any variable
x ∈ #»x , we get X(#»x)ϑψ1 = X(#»x){X 7→ λ #»x .t, . . .} = t, X(#»x)ϑψ2 = X(#»x){X 7→
λ #»x .s, . . .} = s, and, hence, X(#»x)ϑ � t and X(#»x)ϑ � s.

We proceed by induction on the length l of the transformation sequence. We will prove a
more general statement: If A0;S0; rϑ0 =⇒∗ ∅;Sn; rϑ0ϑ1 · · ·ϑn is a transformation sequence
in G, then for any X(#»x) : t , s ∈ A0∪S0 we have X(#»x)ϑ1 · · ·ϑn � t and X(#»x)ϑ1 · · ·ϑn � s.

When l = 1, it is exactly the one-step case we just proved. Assume that the statement
is true for any transformation sequence of the length n and prove it for a transformation
sequence A0;S0;ϑ0 =⇒ A1;S1;ϑ0ϑ1 =⇒∗ ∅;Sn;ϑ0ϑ1 · · ·ϑn of the length n+ 1.

Below the composition ϑiϑi+1 · · ·ϑk is abbreviated as ϑki with k ≥ i. Let X(#»x) : t , s

be an AUT selected for transformation at the current step. (Again, the property trivially
holds for the AUTs which are not selected). We have to consider each rule, but, like above,
only Sol is illustrated. For the other rules the proof is similar to the one in [8].

Sol: We have X(#»x)ϑ1
1 = Y (q1, . . . , qn) where Y is in the store. By the induction hypothesis,

Y (q1, . . . , qn)ϑn2 � t and Y (q1, . . . , qn)ϑn2 � s. Therefore, X(#»x)ϑn1 � t and X(#»x)ϑn1 � s.

Finally, note that the obtained generalization is top-maximal, because the algorithm
proceeds inserting common top-parts of the input terms in the generalization term as much as
possible, and introduces a generalization variable only when a difference is encountered. J

I Corollary 15. The result computed by G for closed terms s and t is a shallow top-maximal
generalization of s and t.

As one can notice, the store keeps track of the differences between the original terms
and suggests how to obtain them from the generalization. If the computed generaliz-
ation for t and s is λ #»x .Y (q1, . . . , qn) and the store contains the AUT Y (y1, . . . , yn) :
(Ct y1 · · · yn) , (Cs y1 · · · yn), the substitution {Y 7→ λy1, . . . , yn.(Ct y1 · · · yn)} gives t and
{Y 7→ λy1, . . . , yn.(Cs y1 · · · yn)} gives s.

I Theorem 16 (Uniqueness modulo '). Assume that the set {q1, . . . , qn}, Ct, and Cs in the
Solve rule are uniquely determined (modulo renaming of bound variables). Assume that for a
given t′ and s′, G can compute their generalizations r1 and r2 with different sequence of rule
applications. Then r1 ' r2.

Proof. In [8] it was proved that different order of the Mer rule application gives equivalent
solutions, provided that the other rules are applied in a unique way to the selected AUT. The
same for Abs and Dec rules. Sol can be applied also only in one way, since {q1, . . . , qn}, Ct,
and Cs are uniquely determined. Therefore, the theorem follows from Theorem 4 in [8]. J

4.1 The Solve rule
The Solve rule is generic and leaves room for special versions of the algorithm depending
on how the subterms q1, . . . , qn are chosen. The choice of Ct and Cs is also important
since they might affect applicability of the Merge rule. To illustrate the latter, consider the
generalization derivation for the terms λx.f(g(x, a), g(a, x)) and λx.f(h(x, a), h(a, x)):

{λx.f(g(x, a), g(a, x)) , λx.f(h(x, a), h(a, x))}; ∅; X =⇒Abs, Dec

{X1(x) : g(x, a) , h(x, a), X2(x) : g(a, x) , h(a, x)}; ∅; λx.f(X1(x), X2(x)) =⇒Sol

D.M. Cerna and T. Kutsia 10:9

{X2(x) : g(a, x) , h(a, x)}; {Y (y1, y2) : g(y1, y2) , h(y1, y2)};
λx.f(Y (x, a), X2(x)) =⇒Sol

∅; {Y (y1, y2) : g(y1, y2) , h(y1, y2), Z(z1, z2) : g(a, z1) , h(z2, z1)};
λx.f(Y (x, a), Z(x, a)).

Here we chose Ct, Cs terms differently in two applications of Sol: First time, we had
q1 = x, q2 = a and we replaced in t = g(x, a) and s = h(x, a) all occurrences of the q’s by
fresh variables. Second time, in t = g(a, x) and s = h(a, x), we again took q1 = x, q2 = a, but
the occurrence of q2 in t is not replaced by a new variable. It resulted into the terminal store.
However, the obtained generalization is not an lgg. An lgg would be λx.f(Y (x, a), Y (a, x)).

If in the second application of Sol we again replaced all occurrences of the q’s by fresh
variables, we would make the step, leading to the mentioned lgg:

∅; {Y (y1, y2) : g(y1, y2) , h(y1, y2), Z(z1, z2) : g(z2, z1) , h(z2, z1)};
λx.f(Y (x, a), Z(x, a)) =⇒Mer

∅; {Y (y1, y2) : g(y1, y2) , h(y1, y2)}; λx.f(Y (x, a), Y (a, x)).

Now we will formulate general rules for choosing the subterms q1, . . . , qn and terms Ct
and Cs in Sol. The rules will depend on a generic selection function. The function chooses
subterms that satisfy a condition allowing them to appear under genvars. Our goal is to show
that if q1, . . . , qn, Ct, and Cs in Sol are chosen according to the rules, then the computed
generalization is least general among all similar generalizations.

Note that the condition of Sol implies that q1, . . . , qn contain all variables from #»x that
appear in t or in s, and contain none from #»x that appear neither in t nor in s.

We call (p1, p2) an extended position pair if p1 and p2 are either positions (positive integer
sequences), or p1 is a position and p2 = • (a special symbol), or p1 = • and p2 is a position.
The symbol • is not comparable with any position with respect to prefix ordering ≤. The
latter is extended to pairs componentwise: (p1, p2) ≤ (l1, l2) iff pi ≤ li, i ∈ {1, 2}. Then for
its strict part, (p1, p2) < (l1, l2) iff either p1 < l1 and p2 ≤ l2, or p1 ≤ l1 and p2 < l2.

Given two terms t1 and t2, a triple of subterm occurrence in t1 or t2 is a triple (p1, p2, s)
where (p1, p2) is an extended position pair such that

if pi ∈ Pos(ti), i ∈ {1, 2}, then s = t1|p1 = t2|p2 ,
if p1 ∈ Pos(t1) and p2 = •, then s = t1|p1 and s does not occur in t2,
if p1 = • and p2 ∈ Pos(t2), then s = t2|p2 and s does not occur in t1.

Now we define a selection function which will be used to define the ways we could select
the terms q1, . . . , qn in the Sol rule. It will depend on a special condition, a parameter, whose
specific values will give specific variants of higher order generalizations in the next sections.

I Definition 17. Given a set of variables { #»x} and terms t1 and t2, the Select function with
the parametric condition cond, Selectcond({ #»x}, t1, t2), is the set of all subterm occurrence
triples Q = {(p1

1, p
2
1, s1), . . . , (p1

k, p
2
k, sk)} in t1 or in t2 such that

1. cond({ #»x}, t1, t2, Q) holds.
2. If a variable from { #»x} appears in position p in t1 (resp. in t2), then there exist p′ ≤ p

and l such that (p′, l, t1|p′) ∈ Q (resp. (l, p′, t2|p′) ∈ Q).
3. For all (p1, p2, s) ∈ Q, there is no (p′1, p′2, s′) ∈ Q such that (p′1, p′2) < (p1, p2) holds.

Now we define general rules for choosing q1, . . . , qn, Ct, and Cs in Sol. Let {X(#»x) : t , s}
] A be the set of AUTs on which Sol operates. Let Selectcond({ #»x}, t, s) = Q. The rule of
choosing q1, . . . , qn in Sol is the following:

FSCD 2019

10:10 A Generic Framework for Higher-Order Generalizations

QR: {q1, . . . , qn} = {q | (p1, p2, q) ∈ Q for some p1 and p2}.

For the rule for Ct and Cs, we will need a special notation. By t[p 7→ x] we denote a term
obtained from t by replacing its subterm at position p by the variable x. If the position p
does not exist in t, or if p = •, then t[p 7→ x] = t.

CR: Let Q = {(pi1, li1, qi), . . . , (pik, lik, qi) | 1 ≤ i ≤ n}. Then:

Ct = λy1, . . . , yn. t[p11 7→ y1] · · · [p1k1 7→ y1] · · · [pn1 7→ yn] · · · [pnkn
7→ yn]

Cs = λy1, . . . , yn. s[l11 7→ y1] · · · [l1k1 7→ y1] · · · [ln1 7→ yn] · · · [lnkn
7→ yn].

CR says that no eligible occurrence of each qi is kept in Ct and Cs. In those positions, if
they still exist in Ct and Cs, we have the variable yi.

The next step is to define special cases of the generic algorithm by specifying cond.

5 Special cases

The special cases of the generic algorithm are obtained by deciding what kind of subterms
from the input terms we would like to preserve in the generalization under genvars.

We distinguish between two classes of (top-maximal, genvar-shallow) generalizations:

(a) Those which do not care about common subterms under different-head terms to be
generalized but, rather, take both different-head terms entirely in the generalization, and

(b) Those which try to find similarities under different-head terms to be generalized and
select their certain common subterms to the generalization.

We call the first class projection-based variant, since the generalizations there give original
terms by projection substitutions. The second class corresponds to the common-subterm
variant, introduced earlier. There are several subcategories in this class, as we will see.

5.1 Projection-based variant
This is the simplest case. If t and s appear in the Sol rule, we should keep both of them in
the generalization. Therefore, we specify Select and, consequently, QR and CR as follows:

Specifying Selectcond({ #»x}, t, s): cond is always true.
The instance of QR: q1 = t, q2 = s.
The instance of CR: Ct = λz1, z2. z1, Cs = λz1, z2. z2.

After applying Sol with Selectcond specified above, the new AUT in the store will have
the form Y (y1, y2) : y1 , y2. By the exhaustive application of the Mer rule we get that if
the computed result contains genvars, then it contains only one such variable (maybe with
multiple occurrences). Therefore, we can ignore Mer and use the same variable. The store is
not needed at all, since merging is superfluous and the anti-unifiers are fixed to projections.
The instance of Sol rule is denoted by Sol-PrB, and the obtained algorithm by Gprb.

Generalizations that retain both terms whose heads are different are called imitation-free
generalizations in [10] (where only second-order generalizations are considered), motivated
from [9]. The name originates from the fact that one does not need imitation anti-unifiers.
We prefer the name projection-based, since it directly indicates how the anti-unifiers look.

I Theorem 18. Gprb computes a projection-based genvar(r, t, s)-shallow top-maximal gene-
ralization r of the input terms t and s in linear time.

D.M. Cerna and T. Kutsia 10:11

Proof. Top-maximality and shallowness of r follow from Theorem 14, the projection-based
property from the instances on QR and CR, and the linear time complexity from the fact that
each symbol in the input is processed only once, when it is put into the generalization. J

I Theorem 19 (Completeness of Gprb). If r0 is a projection-based genvar(r0, t, s)-shallow
top-maximal generalization of t and s, then Gprb computes r, starting from t and s, such
that r0 � r.

Proof sketch. Top maximal projection-based genvar-shallow generalizations of t and s can
differ from each other only by the number of duplicates among genvars. Gprb maximizes their
sharing. Hence, r is less general than any projection-based genvar-shallow generalization. J

I Corollary 20. Projection-based variant of higher-order anti-unification is unitary.

Proof. Follows from Theorem 19 and Theorem 16, since the specification of instances of QR
and CR makes the q’s and C’s in the Solve rule uniquely determined. J

Interestingly, projection-based generalizations are least general among all top-maximal
generalizations that do not nest genvars:

I Theorem 21. Let r1 and r2 be respectively genvar(r1, t, s)- and genvar(r2, t, s)-shallow
top-maximal generalizations of t and s. Assume that r1 is projection-based. Then r2 � r1.

Proof. By the definition of projection-based generalization, the symbols occurring above the
positions of genvars are common for t and s. Top-maximality requires that common symbols
are retained in the generalization. Let r1 and r2 contain a genvar in position p. Since they are
top-maximal, all symbols above p are common in s and t. Since r1 is genvar(r1, t, s)-shallow
and projection-based, r1|p should have a form Y (t|p, s|p), where Y is a genvar.

Also, r2 is genvar(r1, t, s)-shallow. Therefore, r2|p has a form X(q1, . . . , qn), where each qi
is a subterm of t|p or s|p. Since r2 is a generalization of t and s, there exist substitutions σ1
and σ2 such that X(q1, . . . , qn)σ1 = t|p and X(q1, . . . , qn)σ2 = s|p. Then r1|p can be obtained
from r2|p by the substitution {X 7→ λy1, . . . , yn. Y (X(y1, . . . , yn)σ1, X(y1, . . . , yn)σ2)}.

Because of top-maximality and shallowness, r1 and r2 have genvars in the same positions.
The projection-based property implies that r1 contains only one genvar, which we denoted
by Y above. Repeating the above reasoning for each genvar position finishes the proof. J

A disadvantage of projection-based generalizations is that if two subterms do not have the
same head, projection-based generalization does not focus on their common parts. However,
often it is interesting to report the commonalities between such subterms. This is what
common-subterm generalization is about.

5.2 Generalization with common subterms

5.2.1 CS-variant
In the definition of cs-generalizations (Definition 10) we just required the set {r1, . . . , rn}
to originate from some set of common subterms of s|p and t|p. Such a relaxed definition
will allow us in the next sections to relate the cs-variant to more specific categories such as
rfc-, fc-, and pattern variants. However, for the Select function we need a stronger way to
choose {r1, . . . , rn}, since we aim at computing lggs. Therefore, we introduce the notion of
position-maximal common subterm of two terms:

FSCD 2019

10:12 A Generic Framework for Higher-Order Generalizations

I Definition 22. Let t1, t2, and s be terms such that for some positions p1 of t1 and p2 of
t2, we have t1|p1 = t2|p2 = s. We say that s is a (p1, p2)-maximal common subterm of t1
and t2 if

p1 = ε or p2 = ε, or
p1 = p′1.i1 and p2 = p′2.i2 for some p′1, i1, p′2, and i2, and t1|p′

1
6= t2|p′

2
.

A common subterm of two terms is position-maximal if it is their (p1, p2)-maximal
common subterm for some positions p1 of t1 and p2 of t2.

The set of position-maximal common subterm occurrence triples of t1 and t2 is defined as
pmcso(t1, t2) := {(p1, p2, s) | s is a (p1, p2)-maximal common subterm of t1 and t2}.

Given an pmcso(t1, t2) and a set of variables χ such that no bound variable occurring as
the term of a triple of pmcso(t1, t2) is in χ, an χ-extension of pmcso(t1, t2) is the set

pmcsoχ(t1, t2) := pmcso(t1, t2)
∪ {(p, •, x) | x ∈ χ \ fv(t2), p is the first position with t1|p = x}
∪ {(•, p, x) | x ∈ χ \ fv(t1), p is the first position with t2|p = x}.

Remark. Since it is enough to have one occurrence of (p, •, x) and (•, p, x), it does not matter
how p is computed. We can, e.g., assume that it is the first leftmost-outermost position.

I Example 23. The set of all position-maximal common subterms of f(g(x), g(x), g(g(x)))
and h(g(g(x)), a, b) is {g(x), g(g(x))}, where g(x) is the (1, 1.1)- and (2, 1.1)-maximal common
subterm, and g(g(x)) is the (3, 1)-maximal common subterm.

Now, we obtain the special case of the Sol rule for position-maximal common subterms
by choosing cond and, as a consequence, QR, as follows:

Specifying Selectcond({ #»x}, t, s): cond({ #»x}, t, s,Q) is true iff Q = pmcso{ #»x }(t, s).
The instance of QR: {q1, . . . , qn} is the { #»x} ∩ (fv(t) ∪ fv(s))-extension of the set of all

position-maximal common subterms of t and s.

cond and the item 2 of the definition of Select (Definition 17) imply that we have
{ #»x} ∩ (fv(t) ∪ fv(s))-extension in the instance of QR. Without item 2, it would be just
{ #»x}-extension. Note that for computing cs-generalizations, if would be sufficient to take { #»x}-
extensions, but we aim at computing cs-lggs, that’s why we would keep only the necessary
variables from { #»x} in generalizations. The necessary ones are those that appear in t or in s.

Yet another remark, which concerns the difference between cs-generalizations and Select
is that the q′s we get from QR form the set of all position-maximal common subterms of
the terms to be generalized, while in cs-generalization the free variables apply to some set
of common subterms of those terms. This difference is motivated by our wish to have, on
the one hand, rfc-, fc-, and pattern-lggs later as special cs-generalizations and, on the other
hand, to compute cs-lggs by the specific version of Sol. The specified instance of cond does
not imply any special form of Ct and Cs. They are like it was defined in CR.

The obtained instance of Sol is denoted by Sol-CS, and the obtained algorithm by Gcs.
We get the theorem, in which (and in the analogous theorems for rfc, fc, and patterns below)
n is the size of the input:

I Theorem 24. Gcs computes a cs-generalization of two terms in time O(n3).

Proof. Top-maximality and genvar-shallowness follow from Theorem 14. The cs-generali-
zation property follows from the instance ofQR. Selecting position-maximal common subterms
from two terms can take quadratic time, and Gcs can perform this operation linearly many
times. Hence the cubic time complexity. Merging at the end can not make it worse. J

D.M. Cerna and T. Kutsia 10:13

I Theorem 25 (Completeness of Gcs). Let r0 be a cs-generalization of t and s. Then Gcs
computes a generalization r of t and s such that r0 � r.

Proof sketch. Cs-generalizations differ from each other by the amount of position-maximal
common subterms they take in the generalization, and by the number of duplicate general-
ization variables. The Select function makes sure that Gcs puts in generalizations as many
position-maximal common subterms as possible, and the exhaustive application of Mer makes
all possible sharings of genvars. These arguments imply that r0 � r. J

I Corollary 26. Cs-variant of higher-order anti-unification is unitary.

Proof. Follows from Theorem 25 and Theorem 16, since the specification of instances of QR
and CR makes the q’s and C’s in the Solve rule uniquely determined. J

I Example 27. Let t = λx1.f(g1(x1, a), g2(λx2.h(x2))), s = λy1.f(h1(a, a), h2(λy2.h(y2))).
Gcs gives λx1.f(Z1(x1, a), Z2(λx2.h(x2))). (See Example 44 in Appendix.) If we had { #»x}-
extension in the instance of QR, we would get λx1.f(Z1(x1, a), Z3(x1, λx2.h(x2))), which is
more general than λx1.f(Z1(x1, a), Z2(λx2.h(x2))).

I Example 28. let t = λx.f(g(x), h(x, a)) and s = λy.h(g(y), a). Then Gcs gives the final
state ∅; {Y (y1, y2, y3) : f(y2, h(y1, y3)) , h(y2, y3)}; λx.Y (x, g(x), a).

In some applications, it is desirable that the arguments of free variables are not subterms
of each other. This requirement leads to generalization for (relaxed) fc- and patterns. These
special cases also rely on position-maximal common subterm computation, but the obtained
set is filtered. For those variants, in the sections below, we assume that the input terms are
closed. Otherwise we will need to add some extra tests to make sure that free variables from
the input appear in the generalization only if they do not violate the rfc-, fc-, or patterns
restrictions. It will just make things more cumbersome without giving any special insights
about the problem. Therefore, for simplicity, we prefer to work with closed input.

For closed input terms, genvar-shallow generalizations are just shallow generalizations.
Therefore, below we will mention only the latter.

5.2.2 RFC-variant
From Definition 11 it follows that rfc-generalizations are shallow, but not necessarily top-
maximal. Moreover, even top-maximal rfc-generalizations do not have to be cs-generalizations.
For instance, if s = λx.f(h1(g1(x)), h1(g2(x))) and t = λx.f(h2(g1(x)), h2(g2(x))), then
r = λx.f(X(g1(x), g2(x)), X(g1(x), g2(x))) is an rfc-generalization of s and t, but it is not a
cs-generalization. However, top-maximal rfc-lggs are cs-generalizations:

I Theorem 29. Let r be a top-maximal rfc-lgg of s and t. Then r is their cs-generalization.

Proof. Let X(r1, . . . , rn) = r|p, where X is a genvar. Since r is an rfc-term, ({X},B, X(r1,

. . . , rn)) is an rfc-triple, where B is the set of variables bound by λ above the position p. The
terms r1, . . . , rn should contain all variables from B∩(fv(s|p)∪fv(t|p)), otherwise X(r1, . . . , rn)
can not generalize s|p and t|p. Moreover, r1, . . . , rn should be common subterms of s|p and
t|p. Otherwise it will violate the assumption that r is an lgg: if, say, rn is not a common
subterm of s|p and t|p (in the sense mentioned in the previous section), then Y (r1, . . . , rn−1)
will be again a generalization of s|p and t|p, but less general than X(r1, . . . , rn). By the
assumption, r is top-maximal. As an rfc-generalization, r is shallow. Since p was an arbitrary
position with a genvar, all these conditions imply that r is a cs-generalization of s and t. J

FSCD 2019

10:14 A Generic Framework for Higher-Order Generalizations

Since we aim at computing rfc-lggs, we can take an instance of the Sol rule so that
it generates only those rfc-generalizations that are cs-generalizations. We call them {cs,
rfc}-generalizations. In them, in addition to the common-subterms condition in Definition 10,
the subterms of genvars should satisfy argument and local restrictions. It leads to the instance
of Select, in which cond starts from the set Q as in cs-generalizations, and removes from it
those terms that violate argument and local restrictions:

Specifying Selectcond({ #»x}, t, s): cond({ #»x}, t, s,Q) is true iff Q is obtained from the set
pmcso{ #»x }(t, s) by removing from it

(a) all triples (p1, p2, q) where q↓η is not { #»x}-restricted in t , s1 and
(b) all triples (pi1, pi2, qi) for which there exists (pj1, p

j
2, qj) ∈ pmcso{ #»x }(t, s) such that

qj↓η @ qi↓η.
The instance of QR: {q1, . . . , qn} is the largest set of position-maximal common subterms

of t and s whose η-normal forms are { #»x} ∩ (fv(t) ∩ fv(s))-restricted in t or in s, and none
of those η-normal forms are subterms of each other.

Similar to the previous section, the terms Ct and Cs do not have any special form. Defining
the q’s in this way, it is easy to see that Y (q1, . . . , qn), in the generalization computed by Sol
satisfies both the argument restriction and the local restriction. The obtained rule is called
Sol-RFC, and the algorithm Grfc. We get the theorem:

I Theorem 30. Grfc computes a top-maximal {cs, rfc}-generalization in time O(n3).

Proof. From Theorem 14 we get top-maximality and shallowness (since the input is assumed
to be closed). The {cs, rfc}-property follows from the instance of QR. The O(n3) time of
computing cs-generalizations dominates the time needed to filter out subterms that violate
the rfc-property (since argument and local restrictions are checked in quadratic time). J

I Theorem 31 (Completeness of Grfc). Let r0 be a top-maximal rfc-generalization of t and
s. Then Grfc computes a generalization r of t and s such that r0 � r.

Proof sketch. Among two top-maximal rfc-generalizations, the one with all position-maximal
common subterms and all possible sharings of genvars is less general. J

I Corollary 32. Rfc-variant of higher-order anti-unification is unitary.

Proof. Follows from Theorem 31 and Theorem 16, since the specification of instances of QR
and CR makes the q’s and C’s in the Solve rule uniquely determined. J

I Example 33. Let t = λx.f(h1(g(g(x)), a, b), h2(g(g(x)))), s = λy.f(h3(g(g(y)), g(y), a),
h4(g(g(y)))). ThenGrfc stops with the final state ∅; {Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a),
Y2(y2) : h2(y2) , h4(y2)}; λx.f(Y1(g(x)), Y2(g(g(x)))).

5.2.3 FC-variant
Fc-generalizations are also rfc-generalizations and, hence, the properties of rfc-generalizations
are valid for fc-generalizations as well. The counterpart of Theorem 29 holds. Analogously
to the rfc case, here we aim at computing {cs, fc}-generalizations.

The peculiarity here is that we have to take into account the global condition of fc-terms.
Therefore, we need to impose a strategy on the application of the (yet to be defined) instance
of the Sol rule: It should be applied only if no other rule applies. Let at this moment A

1 We look here at t , s as a term, also in the selection functions for fc- and pattern generalizations later.

D.M. Cerna and T. Kutsia 10:15

be the set {X1(# »x1) : t1 , s1, . . . , Xk(# »xk) : tk , sk}. Let Mi, 1 ≤ i ≤ m, be the set of all
position-maximal common subterms of ti and si, and let M = ∪ki=1Mi. Then we formulate
the instance of Select, in which cond takes into account M , and filters out terms violating
argument, local, and global restrictions:

Specifying Selectcond({ #»x}, t, s): cond({ #»x}, t, s,Q) is true iff Q is obtained from the set
pmcso{ #»x }(t, s) by

(a) removing all (p1, p2, q) ∈ pmcso{ #»x }(t, s) where q↓η is not { #»x}-restricted in t , s and
(b) replacing all (pi1, pi2, qi) ∈ pmcso{ #»x }(t, s) by (pj1, p

j
2, qj), where qj↓η @ qi↓η and qj ∈M .

Note that the condition (b) here includes as a special case the condition (b) from the
Select instance for rfc-generalizations. This selection function, by Definition 17, leads to the
following instance of QR:

The instance of QR: Let Q be the largest set of position-maximal common subterms of
t and s whose η-normal forms are { #»x} ∩ (fv(t) ∩ fv(s))-restricted in t or in s. Then
{q1, . . . , qn} is obtained from Q by replacing all qi ∈ Q by qj ∈M , if qj↓η @ qi↓η.

Since we take into account the whole of M when deciding which subterms to keep under
the genvars, the global restriction of fc-terms is satisfied. Similar to the cs- and rfc-variants,
the terms Ct and Cs here do not have any special form. The obtained instance of Sol is
denoted by Sol-FC, and the algorithm by Gfc. The theorems below can be proved similarly
to their rfc-counterparts:

I Theorem 34. Gfc computes a top-maximal {cs, fc}-generalization in time O(n3).

I Theorem 35 (Completeness of Gfc). Let r0 be a top-maximal fc-generalization of t and s.
Then Gfc computes a generalization r of t and s such that r0 � r.

I Corollary 36. Fc-variant of higher-order anti-unification is unitary.

I Example 37. For terms in Example 33, Gfc stops with the final state ∅; {Y1(y1) :
h1(g(y1), a, b) , h3(g(y1), y1, a), Y2(y2) : h2(g(y2)) , h4(g(y2))}; λx.f(Y1(g(x)), Y2(g(x))).

5.2.4 Pattern variant
Similarly to rfc- and fc-generalizations, pattern generalizations are shallow but not necessarily
top-maximal (and, consequently, not cs-generalizations). For instance, λx, y.f(X(x, y)) is
a pattern generalization of s = t = λx, y.f(g(x)), which is neither top-maximal nor cs-
generalization. However, pattern lggs are top-maximal and retain common subterms (note
the difference from rfc- and fc-generalization, where lggs are not necessarily top-maximal):

I Theorem 38. A least general pattern generalization of two terms is their cs-generalization.

Proof. Top-maximality of pattern lgg follows from completeness of pattern generalization
algorithm described in [7, 8]. The rest of the proof is similar to the proof of Theorem 29. J

Specifying Selectcond({ #»x}, t, s): cond({ #»x}, t, s,Q) is true iff Q is obtained from the set
pmcso{ #»x }(t, s) by

(a) removing all (p1, p2, q) ∈ pmcso{ #»x }(t, s) where q↓η is not { #»x}-restricted in t , s and
(b) replacing all (pi1, pi2, qi) ∈ pmcso{ #»x }(t, s) by (pj1, p

j
2, x), where x↓η @ qi↓η and x ∈ { #»x}.

We wrote Select in this form to relate it to the selection functions of the other common
subterms based generalizations (cs, rfc, fc). It leads to the instances of QR and CR:

FSCD 2019

10:16 A Generic Framework for Higher-Order Generalizations

The instance of QR: {q1, . . . , qn} = { #»x} ∩ (fv(t) ∪ fv(s)).
The instance of CR: Ct = t, Cs = s, yi = qi.

The obtained instance of Sol is denoted by Sol-P, and the obtained algorithm by Gpat. It
is, in fact, the algorithm from [8], for the closed input. It is complete. The theorem below is
also from [8]:

I Theorem 39. Gpat computes a least general pattern generalization in time O(n).

It is known from [8] that pattern variant of higher-order anti-unification is unitary. It can be
also seen from Theorem 16 and the definitions of the instances of QR and CR above, which
makes the choice of the q’s and C’s in Sol unique.

6 Conclusion

We described a general framework for computing top-maximal genvar-shallow generalizations
of two terms and proved its properties. Appropriate instantiation of the framework gives
concrete instances of variants of higher-order anti-unification. By instantiations, we obtained
four new unitary variants of higher-order generalization.

References
1 Hassan Aït-Kaci and Gabriella Pasi. Fuzzy Unification and Generalization of First-Order Terms

over Similar Signatures. In Fabio Fioravanti and John P. Gallagher, editors, LOPSTR 2017,
volume 10855 of LNCS, pages 218–234. Springer, 2017. doi:10.1007/978-3-319-94460-9_13.

2 María Alpuente, Demis Ballis, Angel Cuenca-Ortega, Santiago Escobar, and José Meseguer.
ACUOS2: A high-performance system for modular ACU generalization with subtyping and
inheritance. In 16th European Conference on Logics in Artificial Intelligence, JELIA 2019,
LNCS. Springer, 2019. To appear.

3 María Alpuente, Santiago Escobar, Javier Espert, and José Meseguer. A modular order-sorted
equational generalization algorithm. Inf. Comput., 235:98–136, 2014. doi:10.1016/j.ic.2014.
01.006.

4 Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types.
Perspectives in logic. Cambridge University Press, 2013.

5 Adam D. Barwell, Christopher Brown, and Kevin Hammond. Finding parallel functional
pearls: Automatic parallel recursion scheme detection in Haskell functions via anti-unification.
Future Generation Comp. Syst., 79:669–686, 2018. doi:10.1016/j.future.2017.07.024.

6 Alexander Baumgartner and Temur Kutsia. Unranked second-order anti-unification. Inf.
Comput., 255:262–286, 2017. doi:10.1016/j.ic.2017.01.005.

7 Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. A Variant of Higher-
Order Anti-Unification. In Femke van Raamsdonk, editor, 24th International Conference
on Rewriting Techniques and Applications, RTA 2013, June 24-26, 2013, Eindhoven, The
Netherlands, volume 21 of LIPIcs, pages 113–127. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2013. doi:10.4230/LIPIcs.RTA.2013.113.

8 Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Higher-Order
Pattern Anti-Unification in Linear Time. J. Autom. Reasoning, 58(2):293–310, 2017. doi:
10.1007/s10817-016-9383-3.

9 Cao Feng and Stephen Muggleton. Towards Inductive Generalization in Higher Order Logic.
In Derek H. Sleeman and Peter Edwards, editors, Proceedings of the Ninth International
Workshop on Machine Learning (ML 1992), Aberdeen, Scotland, UK, July 1-3, 1992, pages
154–162. Morgan Kaufmann, 1992.

http://dx.doi.org/10.1007/978-3-319-94460-9_13
http://dx.doi.org/10.1016/j.ic.2014.01.006
http://dx.doi.org/10.1016/j.ic.2014.01.006
http://dx.doi.org/10.1016/j.future.2017.07.024
http://dx.doi.org/10.1016/j.ic.2017.01.005
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.113
http://dx.doi.org/10.1007/s10817-016-9383-3
http://dx.doi.org/10.1007/s10817-016-9383-3

D.M. Cerna and T. Kutsia 10:17

10 Kouichi Hirata, Takeshi Ogawa, and Masateru Harao. Generalization Algorithms for Second-
Order Terms. In Rui Camacho, Ross D. King, and Ashwin Srinivasan, editors, Inductive Logic
Programming, 14th International Conference, ILP 2004, Porto, Portugal, September 6-8, 2004,
Proceedings, volume 3194 of Lecture Notes in Computer Science, pages 147–163. Springer,
2004. doi:10.1007/978-3-540-30109-7_14.

11 Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification for Unranked Terms and
Hedges. J. Autom. Reasoning, 52(2):155–190, 2014. doi:10.1007/s10817-013-9285-6.

12 Tomer Libal and Dale Miller. Functions-as-Constructors Higher-Order Unification. In Delia
Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures for
Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, volume 52 of
LIPIcs, pages 26:1–26:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:
10.4230/LIPIcs.FSCD.2016.26.

13 José Meseguer. Symbolic Reasoning Methods in Rewriting Logic and Maude. In Lawrence S.
Moss, Ruy J. G. B. de Queiroz, and Maricarmen Martínez, editors, WoLLIC 2018, volume
10944 of LNCS, pages 25–60. Springer, 2018. doi:10.1007/978-3-662-57669-4_2.

14 Dale Miller. A Logic Programming Language with Lambda-Abstraction, Function Variables,
and Simple Unification. J. Log. Comput., 1(4):497–536, 1991. doi:10.1093/logcom/1.4.497.

15 Frank Pfenning. Unification and Anti-Unification in the Calculus of Constructions. In
Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Am-
sterdam, The Netherlands, July 15-18, 1991, pages 74–85. IEEE Computer Society, 1991.
doi:10.1109/LICS.1991.151632.

16 Brigitte Pientka. Higher-order term indexing using substitution trees. ACM Trans. Comput.
Log., 11(1), 2009. doi:10.1145/1614431.1614437.

17 Gordon D. Plotkin. A note on inductive generalization. Machine Intell., 5(1):153–163, 1970.
18 John C. Reynolds. Transformational systems and the algebraic structure of atomic formulas.

Machine Intell., 5(1):135–151, 1970.
19 Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and Loris D’Antoni. Learning Quick Fixes

from Code Repositories. CoRR, abs/1803.03806, 2018. arXiv:1803.03806.
20 Reudismam Rolim de Sousa. Learning syntactic program transformations from examples. PhD

thesis, Universidade Federal de Campina Grande, Brazil, 2018.
21 Martin Schmidt, Ulf Krumnack, Helmar Gust, and Kai-Uwe Kühnberger. Heuristic-Driven

Theory Projection: An Overview. In Henri Prade and Gilles Richard, editors, Computational
Approaches to Analogical Reasoning: Current Trends, volume 548 of Studies in Computational
Intelligence, pages 163–194. Springer, 2014. doi:10.1007/978-3-642-54516-0_7.

A Examples

I Example 40. Let t = λx.f(g(x), g(g(x))) and s = λx.h(g(g(x)), g(x)). Then
r0 = λx.X(f(g(x), g(g(x))), h(g(g(x)), g(x))) is a shallow top-maximal lgg of t and s.
r1 = λx.Y (g(x), g(g(x))) is a top-maximal rfc-lgg of t and s. We have r1 ≺ r0. Note that
r2 = λx.Y (g(g(x)), g(x)) is also a top-maximal rfc-generalization with r1 ' r2.
r3 = λx.Z(g(x)) is a top-maximal fc-lgg of t and s. In this case we have r3 ' r1, because
r3{Z 7→ λx.Y (x, g(x))} = r1 and r1{Y 7→ λx, y.Z(x)} = r3.
r4 = λx.X(x) is a top-maximal pattern-lgg of t and s and r4 ≺ r3.

I Example 41. Let t = λx.f(x, x) and s = λx.f(g(g(x)), g(x)). Then the non-shallow term
r = λx.f(Y (Y (x)), Y (x)) is a top-maximal generalization of t and s, and it is less general
than their shallow top-maximal generalization λx.f(Z(x, g(g(x))), Z(x, g(x))).

I Example 42. Let t = λx, y.X(f(x), f(y)) and s = λx, y.X(g(y), g(x)). Then the term
r = λx, y.X(Y (f(x), g(y)), Y (f(y), g(x))) is a genvar(r, t, s)-shallow top-maximal lgg of t and
s, but not a shallow top-maximal lgg.

FSCD 2019

http://dx.doi.org/10.1007/978-3-540-30109-7_14
http://dx.doi.org/10.1007/s10817-013-9285-6
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.26
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.26
http://dx.doi.org/10.1007/978-3-662-57669-4_2
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1109/LICS.1991.151632
http://dx.doi.org/10.1145/1614431.1614437
http://arxiv.org/abs/1803.03806
http://dx.doi.org/10.1007/978-3-642-54516-0_7

10:18 A Generic Framework for Higher-Order Generalizations

I Example 43. Let t = λx.f(g(x), g(x), g(g(x))) and s = λy.h(g(g(y)), a, b). Then the
sequence of inferences in Gcs is

{X : λx.f(g(x), g(x), g(g(x))) , λy.h(g(g(y)), a, b)}; ∅; X =⇒Abs

{X ′(x) : f(g(x), g(x), g(g(x))) , h(g(g(x)), a, b)}; ∅; λx.X ′(x) =⇒Sol-CS

∅; {Y (y1, y2) : f(y1, y1, y2) , h(y2, a, b)}; λx.Y (g(x), g(g(x))).

In the Sol-CS step, we compute all position-maximal common subterms and their positions
as in Example 23. Therefore, f(y1, y1, y2) and h(y2, a, b) are obtained from

f(g(x), g(x), g(g(x)))[1 7→ y1][2 7→ y1][3 7→ y2] and
h(g(g(x)), a, b)[1.1 7→ y1][1.1 7→ y1][1 7→ y2],

respectively. To obtain t (resp., s) from the computed generalization λx.Y (g(x), g(g(x))), we
need to apply the substitution {Y 7→ λy1, y2.f(y1, y1, y2)} (resp., {Y 7→ λy1, y2.h(y2, a, b)})
to it. These substitutions can be directly read off the store.

I Example 44. Let t = λx1.f(g1(x1, a), g2(λx2.h(x2))), s = λy1.f(h1(a, a), h2(λy2.h(y2))).
Then we get the following derivation in Gcs:

{X : λx1.f(g1(x1, a), g2(λx2.h(x2))) , λy1.f(h1(a, a), h2(λy2.h(y2)))}; ∅; X =⇒Abs

{Y (x1) : f(g1(x1, a), g2(λx3.h(x2))) , f(h1(a, a), h2(λy2.h(y2)))}; ∅; λx1.Y (x1) =⇒Dec

{Y1(x1) : g1(x1, a) , h1(a, a), Y2(x1) : g2(λx2.h(x2)) , h2(λy2.h(y2))}; ∅;
λx1.f(Y1(x1), Y2(x1))

Here Sol-CS rule applies. The set of position-maximal common subterms of g1(x1, a) and
h1(a, a) is {a}. We need to extend it by x1, because x1 has been bound before (as Y1(x1)
tells) and it appears in g1(x1, a). Hence, after this extension we get the set {x1, a}, which
will be introduced in the generalization. The store also changes correspondingly:

{Y2(x1) : g2(λx2.h(x2)) , h2(λy2.h(y2))}; {Z1(z1, z2) : g1(z1, z2) , h1(z2, z2)};
λx1.f(Z1(x1, a), Y2(x1))

Also here, we use Sol-CS. The set of position-maximal common subterms of g2(λx2.h(x2))
and h2(λy2.h(y2)) is {λx2.h(x2)} (modulo α-equivalence). This set will not be extended by
any bound variable, because the only candidate, x1, appears neither in g2(λx2.h(x2)) nor in
h2(λy2.h(y2)). Therefore, we get

∅; {Z1(z1, z2) : g1(z1, z2) , h1(z2, z2), Z2(z3) : g2(z3) , h2(z3)};
λx1.f(Z1(x1, a), Z2(λx2.h(x2))).

Note that if we had { #»x}-extension instead of { #»x}∩(fv(t)∪ fv(s))-extension in the instance
of QR above, then in the last step we would get the generalization λx1.f(Z1(x1, a), Z2(x1,

λx2.h(x2))), which is more general than λx1.f(Z1(x1, a), Z2(λx2.h(x2))), computed by Gcs.

I Example 45. Let t and s be the terms, t = λx.f(h1(g(g(x)), a, b), h2(g(g(x)))), s =
λy.f(h3(g(g(y)), g(y), a), h4(g(g(y)))). Then Grfc performs the following steps:

{X : λx.f(h1(g(g(x)), a, b), h2(g(g(x)))) ,
λy.f(h3(g(g(y)), g(y), a), h4(g(g(y))))}; ∅; X =⇒Abs

D.M. Cerna and T. Kutsia 10:19

{X ′(x) : f(h1(g(g(x)), a, b), h2(g(g(x)))) ,
f(h3(g(g(x)), g(x), a), h4(g(g(x))))}; ∅; λx.X ′(x) =⇒Dec

{Z1(x) : h1(g(g(x)), a, b) , h3(g(g(x)), g(x), a),
Z2(x) : h2(g(g(x))) , h4(g(g(x))}; ∅; λx.f(Z1(x), Z2(x)) =⇒Sol-RFC

{Z2(x) : h2(g(g(x))) , h4(g(g(x))};
{Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a)}; λx.f(Y1(g(x)), Z2(x)) =⇒Sol-RFC

∅; {Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a), Y2(y2) : h2(y2) , h4(y2)};
λx.f(Y1(g(x)), Y2(g(g(x)))).

I Example 46. Let us see how fc-generalization can be computed for terms in Example 45.
We can show the part of the computation that starts with Sol-FC:

{Z1(x) : h1(g(g(x)), a, b) , h3(g(g(x)), g(x), a),
Z2(x) : h2(g(g(x))) , h4(g(g(x))}; ∅; λx.f(Z1(x), Z2(x)) =⇒Sol-FC

{Z2(x) : h2(g(g(x))) , h4(g(g(x))};
{Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a)};λx.f(Y1(g(x)), Z2(x)) =⇒Sol-FC

∅; {Y1(y1) : h1(g(y1), a, b) , h3(g(y1), y1, a), Y2(y2) : h2(g(y2)) , h4(g(y2))};
λx.f(Y1(g(x)), Y2(g(x))).

FSCD 2019

Homotopy Canonicity for Cubical Type Theory
Thierry Coquand
Department of Computer Science and Engineering, University of Gothenburg, Sweden
coquand@chalmers.se

Simon Huber
Department of Computer Science and Engineering, University of Gothenburg, Sweden
simon.huber@cse.gu.se

Christian Sattler
Department of Computer Science and Engineering, University of Gothenburg, Sweden
sattler@chalmers.se

Abstract
Cubical type theory provides a constructive justification of homotopy type theory and satisfies
canonicity: every natural number is convertible to a numeral. A crucial ingredient of cubical type
theory is a path lifting operation which is explained computationally by induction on the type
involving several non-canonical choices. In this paper we show by a sconing argument that if we
remove these equations for the path lifting operation from the system, we still retain homotopy
canonicity: every natural number is path equal to a numeral.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Proof theory; Theory of computation → Computability

Keywords and phrases cubical type theory, univalence, canonicity, sconing, Artin glueing

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.11

Funding Simon Huber : I acknowledge the support of the Centre for Advanced Study (CAS) in
Oslo, Norway, which funded and hosted the research project Homotopy Type Theory and Univalent
Foundations during the academic year 2018/19.

Introduction

This paper is a contribution to the analysis of the computational content of the univalence
axiom [34] (and higher inductive types). In previous work [2, 4, 6, 7, 23], various presheaf
models of this axiom have been described in a constructive meta theory. In this formalism,
the notion of fibrant type is stated as a refinement of the path lifting operation where one not
only provides one of the endpoints but also a partial lift (for a suitable notion of partiality).
This generalized form of path lifting operation is a way to state a homotopy extension
property, which was recognized very early (see, e.g. [10]) as a key for an abstract development
of algebraic topology. The axiom of univalence is then captured by a suitable equivalence
extension operation (the “glueing” operation), which expresses that we can extend a partially
defined equivalence of a given total codomain to a total equivalence. These presheaf models
suggest possible extensions of type theory where we manipulate higher dimensional objects
[2, 6]. One can define a notion of reduction and prove canonicity for this extension [16]: any
closed term of type N (natural number) is convertible to a numeral. There are however several
non-canonical choices when defining the path lifting operation by induction on the type,
which produce different notion of convertibility.1 A natural question is how essential these
non-canonical choices are: can it be that a closed term of type N, defined without use of such
non-canonical reduction rules, becomes convertible to 0 for one choice and 1 for another?

1 For instance, the definition of this operation for “glue” types is different in [6] and [23].

© Thierry Coquand, Simon Huber, and Christian Sattler;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:coquand@chalmers.se
mailto:simon.huber@cse.gu.se
mailto:sattler@chalmers.se
https://doi.org/10.4230/LIPIcs.FSCD.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Homotopy Canonicity for Cubical Type Theory

Π(A,B)′(w) = Π(u : |A|)Π(u′ : A′u).B′uu′(app(w, u))
Σ(A,B)′(w) = Σ(u′ : A′(fst(w))).B′(fst(w))u′ (snd(w))
fillψ,b(u)′ = fillψ,b(u′)
Path(A, a0, a1)′(w) = Pathλi.A′ i (ap(w,i)) a

′
0 a

′
1

Glue(A,ψ 7→ (B,w))′v = Glue (A′(app(unglue, v))) [ψ 7→ (B′v, (w′.1 v, . . .))]

Figure 1 The main rules for the sconing model.

The main result of this paper, the homotopy canonicity theorem, implies that this cannot
be the case. the value of a term is independent of these non-canonical choices. Homotopy
canoncity states that, even without providing reduction rules for path lifting operations at
type formers, we still have that any closed term of type N is path equal to a numeral. (We
cannot hope to have convertibility anymore with these path lifting constant.) We can then
see this numeral as the “value” of the given term.

Our proof of the homotopy canonicity can be seen as a proof-relevant extension of the
reducibility or computability method, going back to the work of Gödel [14] and Tait [32]. It
is however best expressed in an algebraic setting. We first define a general notion of model,
called cubical category with families, defined as a category with families [9] with certain
special operations internal to presheaves over a category C (such as a cube category) with
respect to the parameters of an interval I and an object of cofibrant propositions F.

We describe the term model and how to re-interpret the cubical presheaf models as
cubical categories with families. The computability method can then be expressed as a
general operation (called “sconing”) which applied to an arbitrary model M produces a
new model M∗ with a strict morphism M∗ → M. Homotopy canonicity is obtained by
applying this general operation to the initial model, which we conjecture to be the term
model. This construction associates to a (for simplicity, closed) type A a predicate A′ on the
closed terms |A|, and each closed term u a proof u′ of A′u. The main rules in the closed case
are summarized in Figure 1.

Some extensions and variations are then described:

Our development extends uniformly to identity types and higher inductive types (using
the methods of [7]) (Sections 5.1 and 5.2).

Our development applies equally to the case where one treats univalence instead of glue
types as primitive (Appendix C.1). We expect that a similar sconing argument (glueing
along a global sections functor to simplicial sets) works to establish homotopy canonicity
for the initial split univalent simplicial tribe in the setting of Joyal [17].

A similar sconing argument adapts to canonicity of cubical type theory with computation
of filling at type formers, originally proved by [16] (Appendix C.2).

Assuming excluded middle, a version of the simplicial set model [18] forms an instance of
our development, and distributive lattice cubical type theory interprets in it (Appendix D).

Using our technique, one may also reprove canonicity for ordinary Martin-Löf type theory
with inductive families in a reduction-free way.

Shulman [27] proves homotopy canonicity for homotopy type theory with a truncatedness
assumption using the sconing technique. This proof was one starting point for the present
work. Some of his constructions may be simplified using our techniques, for example the
construction of the natural number type in the sconing.

T. Coquand, S. Huber, and C. Sattler 11:3

Parametricity interpretation

As pointed out in [8], there is a strong analogy between proving canonicity via (Artin)
glueing and parametricity. For readers more familiar with parametricity than the general
(Artin) glueing technique, we motivate our proof by briefly presenting a parametricity
interpretation [3] of cubical type theory [6]. The parametricity interpretation is a purely
syntactical interpretation which associates by structural induction a family A′ x where x : A
to any type A and a term t′ : A′ t to any term t : A. In general, if A is defined over the
context x1 : A1, . . . , xn : An, then A′(x1, x1, . . . , xn, x

′
n) will be defined over the context

x1 : A1, x
′
1 : A′1 x1, x2 : A2(x1), x′2 : A′2(x1, x

′
1)x′2, The interpretation of Π, Σ, and

universes is the same as for ordinary type theory. For instance,

(Π(x : A)B)′ w = Π(x : A)(x′ : A′x).B′(x, x′) (w x)

with (λ(x : A).t)′ = λ(x : A)(x′ : A′x).t′ and (t u)′ = t′ uu′.
For inductive types, we use the “inductive-style” interpretation [3], so that for instance

N ′ x is the inductive family with constructors 0′ of type N ′ 0 and S′ of type Π(x : N).N ′x→
N ′ (S x). (The other “deductive-style” presentation will not work for the canonicity proof.)

This interpretation works as well for cubical type theory. There is a natural interpretation
of path types: (PathAa0 a1)′ ω is Pathi (A′ (ω i)) a′0 a′1 given a′0 in A′ a0 and a′1 in A′ a1. We
also take (〈i〉 t)′ = 〈i〉 t′ and (t r)′ = t′ r for r : I.

Consider T = GlueA [ψ 7→ (B,w)] where A is a “total” type and w a “partial” equivalence
between B and A of extent ψ, so a pair of w.1 : B → A and w.2 proving that w.1 is an
equivalence. We define T ′ u = GlueA′ (unglueu) [ψ 7→ (B′ u, (w.1′ u, c u)]. We have unglue :
T → A and we can then define unglue′ : Π(u : T).T ′ u → A′ (unglue u) by unglue′ uu′ =
unglue u′. For this, we need to build a proof c u that w.1′ u is an equivalence. This is possible
by showing that the map Σ(y : B)B′y → Σ(x : A)A′ x sending (u, u′) to (w.1u,w.1′ uu′) is
an equivalence. We can then use Theorem 4.7.7 of [33] about equivalences on total spaces.

There is a problem however at this point: this interpretation does not need to validate
the computation rules for the filling operation of the “Glue” type. We can notice however
that this problem is solved (in a somewhat trivial way) if we consider a system where the
filling operation is given as a primitive constant, without any computation rule.

One way to understand the parametricity interpretation is that it is (Artin) glueing of
the syntactic model along the identity map. For proving canonicity, we instead glue the
initial model with the cubical set model along the global section functor. As in [8], we think
that this interpretation is best described in an algebraic way, using what is essentially a
generalized algebraic presentation of type theory.

Setting

We work in a constructive set theory (as presented e.g. in [1]) with a sufficiently long
cumulative hierarchy of Grothendieck universes. However, our constructions are not specific
to this setting and can be replayed in other constructive metatheories such as extensional
type theory. In Appendix D, we assume classical logic for the discussion of models in
simplicial sets.

1 Cubical categories with families

We first recall the notion of categories with families (cwf) [9] equipped with Π- and Σ-types,
universes and natural number types. This notion can be interpreted in any presheaf model.
In a presheaf model however, we can consider new operations. A cubical cwf will be such a
cwf in a presheaf model with extra operations which make use of an interval presheaf I and
a type of cofibrant propositions F as introduced in [7, 23].

FSCD 2019

11:4 Homotopy Canonicity for Cubical Type Theory

1.1 Category with families
Categories with families form an algebraic notion of model of type theory. In order to later
model universes à la Russell, we define them in a stratified manner where instead of a single
presheaf of types, we specify a filtration of presheaves of “small” types.2 The length of the
filtration is not essential: we have chosen 1 + ω so that we may specify constructions just at
the top level.

A category with families (cwf) consists of the following data.
We have a category of contexts Con and substitutions Hom(∆,Γ) from ∆ to Γ in Con. The
identity substitution on Γ in Con is written id, and the composition of δ in Hom(Θ,∆)
and σ in Hom(∆,Γ) is written σδ.
We have a presheaf Type of types over the category of contexts. The action of σ in
Hom(∆,Γ) on a type A over Γ is written Aσ. We have a cumulative sequence of
subpresheaves Typen of types of level n of Type where n is a natural number.
We have a presheaf Elem of elements over the category of elements of Type, i.e. a
type Elem(Γ, A) for A in Type(Γ) with aσ in Elem(∆, Aσ) for a in Elem(Γ, A) and σ in
Hom(∆,Γ) satisfying evident laws.
We have a terminal context 1, with the unique element of Hom(Γ, 1) written ().
Given A in Type(Γ), we have a context extension Γ.A. There is a projection p in
Hom(Γ.A,Γ) and a generic term q in Elem(Γ.A,Ap). Given σ in Hom(∆,Γ), A in
Type(Γ), and a in Elem(∆, Aσ) we have a substitution extension (σ, a) in Hom(∆,Γ.A).
These operations satisfy p(σ, a) = σ, q(σ, a) = a, and (pσ, qσ) = σ. Thus, every element
of Hom(∆,Γ.A) is uniquely of the form (σ, a) with σ and a as above.

We introduce some shorthand notation related to substitution. Given σ in Hom(∆,Γ)
and A in Type(Γ), we write σ+ = (σp, q) in Hom(∆.Aσ,Γ.A). Given a in Elem(Γ, A), we
write [a] = (id, a) in Hom(Γ,Γ.A). Thus, given B in Typen(Γ.A) and a in Elem(Γ, A), we
have B[a] in Type(Γ). Given furthermore b in Elem(Γ.A,B), we have b[a] in Elem(Γ, B[a]).
We extend this notation to several arguments: given ai in Elem(Γ, Ai) for 1 ≤ i ≤ k, we write
[a1, . . . , ak] for [ak][ak−1p] · · · [a1p . . . p] in Hom(Γ,Γ.A1.Ak).

Given a cwf as above, we define what it means to have the following type formers. In
addition to the specified laws, all specified operations are furthermore required to be stable
under substitution in the evident manner.

Dependent products. For A in Type(Γ) and B in Type(Γ.A), we have Π(A,B) in
Type(Γ), of level n if A and B are. Given b in Elem(Γ.A,B), we have the abstraction
λ(b) in Elem(Γ, Π(A,B)). Given c in Elem(Γ, Π(A,B)) and a in Elem(Γ, A), we have the
application app(c, a) in Elem(Γ, B[a]). These operations satisfy app(λ(b), a) = b[a] and
λ(app(cp, q)) = c.
Given A and B in Type(Γ) we write A→ B for Π(A,Bp).
Dependent sums. For A in Type(Γ) and B in Type(Γ.A), we have Σ(A,B) in Type(Γ),
of level n if A and B are. Given a in Elem(Γ, A) and b in Elem(Γ, B[a]), we have the
pairing pair(a, b) in Elem(Γ, Σ(A,B)). Given c in Elem(Γ, Σ(A,B)), we have the first
projection fst(c) in Elem(Γ, A) and second projection snd(c) in Elem(Γ, B[fst(c)]). These
operations satisfy fst(pair(a, b)) = a, snd(pair(a, b)) = b, and pair(fst(c), snd(c)) = c.
Thus, every element of Elem(Γ, Σ(A,B)) is uniquely of the form pair(a, b) with a and b
as above.

2 We note that this non-algebraic aspect of the definition does not interfere with the otherwise algebraic
character. Subset inclusions and equalities of sets Elem(Γ, Un) = Typen could in principle be replaced
by injections and natural isomorphisms, respectively. Then our cwfs become models of a generalized
algebraic theory without sort equations [5].

T. Coquand, S. Huber, and C. Sattler 11:5

Given A and B in Type(Γ) we write A×B for Σ(A,Bp).
Universes. We have Un in Typen+1(Γ) such that Typen(Γ) = Elem(Γ, Un), and the action
of substitutions on Elem(Γ, Un) is compatible with that on Typen(Γ).
Natural numbers. We have N in Type0(Γ) with zero 0 in Elem(Γ, N) and successor
S(n) in Elem(Γ, N) for n in Elem(Γ, N). Given P in Type(Γ.N), z in Elem(Γ, P [0]), s in
Elem(Γ.N.P, P (p, S(q))p), and n : Elem(Γ, N), we have the elimination natrec(P, z, s, n) in
Elem(Γ, P [n]) with natrec(P, z, s, 0) = z, natrec(P, z, s, S(n)) = s[n, natrec(P, z, s, n)].

A structured cwf is a cwf with type formers as above.
A (strict) morphism M → N of cwfs is defined in the evident manner and consists

of a functor F : ConM → ConN and natural transformations u : TypeM → TypeNF and
v : ElemM → ElemN (F, u) such that v restricts to types of level n and the terminal context
and context extension is preserved strictly. A morphism M → N of structured cwfs
additionally preserves the operations of the above type formers. We obtain a category of
structured cwfs.

1.2 Internal language of presheaves
For the rest of the paper, we fix a category C in the lowest Grothendieck universe. As in
[2, 23, 21], we will use the language of extensional type theory (with subtypes) to describe
constructions in the presheaf topos over C.

In the interpretation of this language, a context is a presheaf A over C, a type B over A
is a presheaf over the category of elements of A, and an element of B is a section. A global
type is a type in the global context, i.e. a presheaf over C. Similarly, a global element of a
global type is a section of that presheaf.

Given a dependent type B over a type A, we think of B as a family of types B a indexed
by elements a of A. We have the usual dependent sum Σ(a : A).B(a) and dependent product
Π(a : A).B a, with projections of s : Σ(a : A).B a written s.1 and s.2 and application of
f : Π(a : A).B a to a : A written f a. We also the categorical pairing 〈f, g〉 : X → Σ(a : A).B
given f : X → A and g : Π(x : X).B (f a) and other commonly used notations. The hierarchy
of Grothendieck universes in the ambient set theory gives rise to a cumulative hierarchy
U0,U1, . . . ,Uω of universes à la Russell. We model propositions as subtypes of a fixed type 1
with unique element tt. We have subuniverses Ωi ⊆ Ui of propositions for i ∈ {0, 1 . . . , ω}.

When working in this internal language, we refer to the types as “sets” to avoid ambiguity
with the types of (internal) cwfs we will be considering.

1.3 Cubical categories with families
We now work internally to presheaves over C. We assume the following:

an interval I : U0 with endpoints 0, 1 : I,
an object F : U0 of cofibrant propositions with a monomorphism [−] : F→ Ω0.

As in [7, 23], a partial element of a set T is given by an element ϕ in F and a function
[ϕ]→ T . We say that a total element v of T extends such a partial element ϕ, u if we have
[ϕ]→ u tt = v.

Given A : I→ Uω, we write hasFill(A) for the set of operations taking as inputs ϕ in F,
b ∈ {0, 1}, and a partial section u in Π(i : I).[ϕ]∨ (i = b)→ A i and producing an extension of
u to a total section in Π(i : I)A i. Given a set X and Y : X → Uω, we write Fill(X,Y) for the
set of filling structures on Y , producing an element of hasFill(Y ◦ x) for x in I→ X. Given
s in Fill(X,Y) and x, ϕ, b, u as above, we write s(x, ϕ, b u) for the resulting total section in
Π(i : I).Y (x i).

FSCD 2019

11:6 Homotopy Canonicity for Cubical Type Theory

We now interpret the definitions of Section 1.1 in the internal language of the presheaf
topos. A cubical cwf is a structured cwf denoted as before that additionally has the following
cubical operations and type formers. Again, all specified operations are required to be stable
under substitution.

Filling operation. We have fill in Fill(Type(Γ), λA.Elem(Γ, A)) for Γ in Con. Let
us spell out stability under substitution: given A : I → Type(Γ), ϕ in F, b ∈ {0, 1},
u in Π(i : I). [ϕ] ∨ (i = b) → Elem(Γ, A i), and σ in Hom(∆,Γ) and r : I, we have
(fill(A,ϕ, b, u) r)σ = fill(λi. (A i)σ, ϕ, b, λi x. (u i x)σ) r.

Note that we do not include computation rules for fill at type formers. This corresponds
to our decision to treat fill as a non-canonical operation.

Dependent path types. Given A in I → Type(Γ) with ab in Elem(Γ, Ab) for b ∈
{0, 1}, we have a type Path(A, a0, a1) in Type(Γ), of level n if A is. Given u in Π(i :
I).Elem(Γ, Ai), we have the path abstraction 〈〉(u) in Elem(Γ, Path(A, u 0, u 1)). Given p
in Elem(Γ, Path(A, a0, a1)) and i in I, we have the path application ap(p, r) in Elem(Γ, Ai).
These operations satisfy the laws ap(p, b) = ab for b ∈ {0, 1}, ap(〈〉(u), i) = u i, and
〈〉(λi. ap(p, i)) = p. Thus, every element of Elem(Γ, Path(A, a0, a1)) is uniquely of the
form 〈〉(u) with u in Π(i : I).Elem(Γ, Ai) such that u 0 = a0 and u 1 = a1.

Using path types, we define isContr(A) in Type(Γ) for A in Type(Γ) as well as isEquiv in
Type(Γ.A→ B) and Equiv in Type(Γ) for A,B in Type(Γ) as in [6]. These notions are used
in the following type former, which extends any partially defined equivalence (given total
codomain) to a totally defined function.

Glue types. Given A in Type(Γ), ϕ in F, T in [ϕ] → Type(Γ) and e : [ϕ] →
Elem(Γ,Equiv(T tt, A)), we have the glueing Glue(A,ϕ, T, e) in Type(Γ), equal to T on [ϕ]
and of level n if A and T are. We have unglue in Elem(Γ,Glue(A,ϕ, T, e)→ A) such that
unglue = fst(e) tt on [ϕ]. Given a in Elem(Γ, A) and t in [ϕ] → Elem(Γ, T) such that
app(fst(e) tt, t tt) = a on [ϕ], we have glue(a, t) in Elem(Γ,Glue(A,ϕ, T, e)) equal to t on
[ϕ]. These operations satisfy app(unglue, glue(a, t)) = a and glue(app(unglue, u), λx.u)
= u. Thus, every element of Elem(Γ, Glue(A,ϕ, T, e)) is uniquely of the form glue(a, t)
with a and t as above.

The notion of morphism of structured cwfs lifts to an evident notion of morphism of
cubical cwfs. We obtain, internally to presheaves over C, a category of cubical cwfs. We
now lift this category of cubical cwfs from the internal language to the ambient theory by
interpreting it in the global context: externally, a cubical cwf (relative to the chosen base
category C, interval I, and cofibrant propositions F) consists of a presheaf Con over C, a
presheaf Type over the category of elements of Con, etc.

I Remark 1. Fix a cubical cwf as above. Assume that I has a connection algebra structure
and that F forms a sublattice of Ω0 that contains the interval endpoint inclusions. As in [6],
it is then possible in the above context of the glue type former to construct an element
of Elem(Γ, isEquiv[unglue]). From this, one derives an element of Elem(Γ, iUnivalencen)
where iUnivalencen = Π(Un, isContr(Σ(Un, Equiv(q, qp)))) for n ≥ 0, i.e. univalence is
provable. One may also show that the path type applied to constant families I→ Type(Γ)
interprets the rules of identity types of Martin-Löf with the computation rule for the eliminator
J replaced by a propositional equality. Thus, we obtain an interpretation of univalent type
theory with identity types with propositional computation in any cubical cwf.

T. Coquand, S. Huber, and C. Sattler 11:7

2 Two examples of cubical cwfs

In this section we give two examples of cubical cwfs: a term model and a particular cubical
cwfs formulated in a constructive metatheory, the latter with extra assumptions on I and F.

2.1 Term model
We sketch how to give a cubical cwf T built from syntax, and refer the reader to Appendix A
for more details. All our judgments will be indexed by an object X of C and given a judgment
Γ `X J and f : Y → X in C we get Γf `Y J f . Here, f acts on expressions as an implicit
substitution, while for substitutions on object variables we will use explicit substitutions.

The forms of judgment are:

Γ `X Γ `X A Γ `X A = B Γ `X t : A Γ `X t = u : A σ : ∆→X Γ

The main rules are given in the appendix. This then induces a cubical cwf T by taking,
say, the presheaf of contexts at stage X to be equivalence classes of Γ for Γ `X where the
equivalence relation is judgmental equality.

Some rules are a priori infinitary, but in some cases (such as the one considered in [6]) it
is possible to present the rules in a finitary way.

This formal system expresses the laws of cubical cwfs in rule form. It defines the term
model. Following [29, 24] developed in an intuitionistic framework, we conjecture that this
can be interpreted in an arbitrary cubical cwf in the usual way:

I Conjecture 2. With chosen parameters C, I,F, the cubical cwf T is initial in the category
of cubical cwfs.

However, our canonicity result is orthogonal to this conjecture: It is a result about the
initial model, without need for an explicit description of this model as a term model.

2.2 Developments in presheaves over C

We now assume that I and F satisfy the axioms ax1, . . . , ax9 of [23], internally to presheaves
over C. We also make an external assumption, namely that the endofunctor on presheaves
over C of exponentiation with I has a right adjoint R that preserves global types of level n.
This is e.g. the case if I is representable and C is closed under finite products.

Most of the arguments will be done in the internal language of the presheaf topos. At
certain points however, we need to consider the set of global sections of a global type F ; we
denote this by �F . We stress that statements involving � are external, not to be interpreted
in the internal language. Crucially, the adjunction (−)I a R cannot be made internal [21].

Recall the global type hasFill : UI
ω → Uω from Section 1.3. Taking the slice over Uω, the

adjunction (−)I a R descends to an adjunction between categories of types over Uω and
UI
ω. Applying the right adjoint of this adjunction to hasFill, we obtain global C : Uω → Uω

such that naturally in a global type X with global Y : X → Uω, global elements of
Π(x : XI).hasFill(Y ◦ x) are in bijection with global elements of Π(x : X).C(Y x). Given a
global type X and global Y : X → Uω, we thus have a logical equivalence (maps back and
forth)

�Fill(X,Y)←→ �Π(x : X) C(Y x) (1)

FSCD 2019

11:8 Homotopy Canonicity for Cubical Type Theory

natural inX.3 Note that C descends to C : Un → Un for n ≥ 0. We write Ufib
i = Σ(A : Ui) C(A)

for i ∈ {0, 1, . . . , ω}; we call Ufib
i a universe of fibrant sets. Now set X = Ufib

ω and Y (A, c) = A

in (1). We trivially have �Π(x : X) C(Y x), thus get

fill : Fill(Ufib
ω , λ(A, c).A). (2)

This is essentially the counit of the adjunction defining C. Note that [21] use modal extensions
of type theory to perform this reasoning internal to presheaves over C.
I Remark 3. Internally, a map Fill(X,Y) → Π(x : X) C(Y x) does not generally exist
for a set X and Y : X → Uω as for X = 1 one would derive a filling structure for any
“homogeneously fibrant” set, which is impossible (see [23, Remark 5.9]). However, from (2)
we get a map Π(x : X) C(Y x)→ Fill(X,Y) natural in X using closure of filling structures
under substitution (see below).

We recall some constructions of [6, 23] in the internal language.
Given A : I → Uω and ab : Ab for b ∈ {0, 1}, dependent paths PathA a0 a1 are the set
of maps p : Π(i : I).A i such that p 0 = a0 and p 1 = a1. We use the same notation for
non-dependent paths.
For A : Uω, we have a set isContr(A) of witnesses of contractibility, defined using paths.
Given A,B : Uω with f : A → B, we have the set isEquiv(f) with elements witnessing
that f is an equivalence, defined using contractibility of homotopy fibers. We write
Equiv(A,B) = Σ(f : A→ B).isEquiv(f).
Given A : Uω, ϕ : F, B : [ϕ]→ Uω, and e : [ϕ]→ Equiv(B tt, A), the glueing GlueA [ϕ 7→
(B, e)] consists of elements glue a [ϕ 7→ b] with a : A and b : [ϕ]→ B such that e.1 (b tt) = a

on [ϕ] and is defined in such a way that GlueA [ϕ 7→ (B, e)] = T tt and glue a [ϕ 7→ b] = b tt
on [ϕ]. The canonical map unglue : GlueA [ϕ 7→ (B, e)]→ A is an equivalence.

These operations are valued in Un if their inputs are. We further recall basic facts from [23]
about filling structures in the internal language.

Filling structures are closed under substitution: given f : X ′ → X and Y : X → Uω, any
element of Fill(X,Y) induces an element of Fill(X ′, Y ◦ f), naturally in X ′.
Filling structures are closed under exponentiation: given sets S,X and Y : X → Uω, any
element of Fill(X,Y) induces an element of Fill(XS , λx.Π(s : S).Y (x s)), naturally in S.
Filling structures are closed under Π,Σ,Path,Glue. E.g. for dependent products, given
A : Γ→ Uω with Fill(Γ, A) and B : Π(ρ : Γ).A ρ→ Uω with Fill(Σ(ρ : Γ).A ρ, λ(ρ, a).B ρ a),
we have Fill(Γ, λ(ρ : Γ).Π(a : Aρ).B ρ a).

From the last point, we deduce using that C is closed under Π,Σ,Path,Glue, and that C(A)
implies C(AS) for A,S : Uω.4 Let us explain this in the case of dependent products. We ap-
ply (1) with a suitable “generic context” X = Σ((A, c) : Ufib

ω).A→ Ufib
ω and Y ((A, c), 〈B, d〉) =

Π(a : A).B a. Using the map of Remark 3 and closure of filling structures under depend-
ent product, we have �Fill(X,Y) and can conclude C(Π(a : A).B a) for (A, c) : Ufib

ω and
〈B, d〉 : A → Ufib

ω . Note that in the case of Glue with (A, c) : Ufib
ω , ϕ : F, 〈B, d〉 : [ϕ] → Ufib

ω ,
and e : [ϕ]→ Equiv(B tt, A), naturality of the forward map of (1) is needed to see that the
element c : C(GlueA [ϕ 7→ (B, e)]) constructed in the same fashion as above for dependent
products equals d tt : C(B tt) on [ϕ].

3 We record only the logical equivalence instead of an isomorphism so that it will be easier to apply our
constructions in situations where the right adjoint R fails to exist, see Appendix D. Naturality is only
used at a one point below, for the forward map, to construct suitable elements of C applied to glueings.

4 Note that naturality in S of the latter operation is used in substitutional stability of universes in the
sconing in Section 3.

T. Coquand, S. Huber, and C. Sattler 11:9

As in [6, 23, 21], glueing shows Fill(1,Ufib
n) for n ≥ 0. Using (1), we conclude C(Ufib

n).
Let N denote the natural number object in presheaves over C, the constant presheaf with

value the natural numbers. From [6, 23], we have Fill(1,N). Using (1), we conclude C(N).
We justify fibrant indexed inductive sets in Appendix B.

2.3 Standard model

Making the same assumptions on C, I,F as in Section 2.2, we can now specify the standard
model S of cubical type theory in the sense of the current paper as a cubical cwf (with
respect to parameters C, I,F) purely using the internal language of the presheaf topos. The
cwf is induced by the family over Ufib

ω given by the first projection as follows.
The category of contexts is Uω, with Hom(∆,Γ) the functions from ∆ to Γ.
The types over Γ are maps from Γ to Ufib

ω ; a type 〈A, p〉 is of level n if A is in Γ→ Un.
This is clearly functorial in Γ.
The elements of 〈A, p〉 : Γ→ Ufib

ω are Π(ρ : Γ).A ρ. This is clearly functorial in Γ.
The terminal context is given by 1.
The context extension of Γ by 〈A, p〉 is given by Σ(ρ : Γ).A ρ, with p, q given by projections
and substitution extension given by pairing.

We briefly go through the necessary type formers and operations, omitting evident details.
The dependent product of 〈A, c〉 : Γ→ Ufib

ω and 〈B, d〉 : Σ(ρ : Γ).A ρ→ Ufib
ω is 〈λρ.Π(a :

Aρ).B(ρ, a), e〉 where e ρ : C(Π(a : Aρ).B(ρ, a)) is induced by c ρ : C(Aρ) and d ρ a :
C(B(ρ, a)) for a : A as discussed above.
The dependent sum of 〈A, c〉 : Γ → Ufib

ω and 〈B, d〉 : Σ(ρ : Γ).A ρ → Ufib
ω is 〈λρ.Σ(a :

Aρ).B(ρ, a), e〉 where e is induced by c and d.
The universe Un : Γ→ Ufib

n+1 is constantly (Ufib
n , c) with c : C(Ufib

n) as above.
The natural number type N : Γ→ Ufib

0 is constantly (N, c) with c : C(N) as above. The
zero and successor constructors and eliminator are given by the corresponding features of
the natural number object N.

We now turn to the cubical aspects.
The filling operation fill : Fill(Γ → Ufib

ω , λ〈A, p〉.Π(ρ : Γ).A ρ) is derived from (2) by
closure of filling structures under exponentiation.
Given 〈A, c〉 : I → Γ → Σ(A : Uω) C(A) and ab : Π(ρ : Γ).A b ρ for b ∈ {0, 1}, we
define Path(A, a0, a1) : Γ → Σ(A : Uω) C(A) as 〈Π(ρ : Γ).Pathλi.A i ρ c0 c1), d〉 where
d ρ : C(Pathλi.A i ρ c0 c1)) induced by λi.c i ρ.

Before defining glue types, we note that the notions isContr and isEquiv in the cubical
cwf we are defining correspond to the notions isContr and isEquiv. For example, given a type
A : Γ → Ufib

ω , then the elements of isContr(A), given by Π(ρ : Γ). isContr(A).1 ρ, are in
bijection with Π(ρ : Γ).isContr(A.1 ρ) naturally in Γ.

Given 〈A, c〉 : Γ → Ufib
ω , ϕ : F, 〈T, d〉 : [ϕ] → Γ → Ufib

ω and e : [ϕ] → Equiv(T tt, A), we
define Glue(〈A, c〉, ϕ, 〈T, d〉, e) : Γ→ Ufib

ω as λρ.(Glue (Aρ)[ϕ 7→ (T tt ρ, e′ tt ρ)], q ρ) where
e′ tt ρ : Equiv(T tt ρ,A ρ) is induced by e tt ρ and q ρ is induced by c ρ and λx.d x ρ.

We have thus verified the following statement.

I Theorem 4. Assuming the parameters C, I,F satisfy the assumptions of Section 2.2, the
standard model S forms a cubical cwf.

FSCD 2019

11:10 Homotopy Canonicity for Cubical Type Theory

3 Sconing

We make the same assumptions on our parameters C, I,F as in Section 2.2. LetM be a cubical
cwf (with respect to these parameters) denoted Con,Hom, . . . as in Section 1.3. We assume
thatM is size-compatible with the standard model, by which we mean Hom(∆,Γ) : Uω for
all Γ,∆ and Elem(Γ, A) : Ui for i ∈ {0, 1, . . . , ω} and all Γ and A : Typei(Γ). We will then
define a new cubical cwfM∗ denoted Con∗,Hom∗, . . ., the (Artin) glueing ofM with the
standard model S along an (internal) global sections functor, i.e. the sconing ofM.

Recall from Section 1.3 the operation fill ofM. Instantiating it to the terminal context,
we get �Fill(Type(1), λA.Elem(1, A)). Using the forward direction of Equation (1), we thus
have an internal operation k : Π(A : Type(1)).C(Elem(1, A)).

From now on, we will work in the internal language of presheaves over C. We start by
defining a global sections operation |−| mapping contexts, types, and elements of M to
those of S.

Given Γ : Con, we define |Γ| : Uω as the set of substitutions Hom(1,Γ). Given a
substitution σ : Hom(∆,Γ), we define |σ| : |∆| → |Γ| as |σ|ρ = σρ. This evidently defines
a functor.
Given A : Type(Γ), we define |A| : |Γ| → Ufib

ω as |A| ρ = (Elem(1, Aρ), k (Aρ)). This
evidently natural in Γ. If A is of level n, then |A| : |Γ| → Ufib

n .
Given a : Elem(Γ, A) we define |a| : Π(ρ : Γ). (|A| ρ).1 as |a| ρ = aρ. This is evidently
natural in Γ.

Note that |−| preserves the terminal context and context extension up to canonical isomorph-
ism in the category of contexts. One could thus call |−| an (internal) pseudomorphism cwfs
fromM to S. The sconingM∗ will be defined as essentially the (Artin) glueing along this
pseudomorphism, but we will be as explicit as possible and not define (Artin) glueing at the
level of generality of an abstract pseudomorphism.

For convenience, we also just write |A| : |Γ| → Uω instead of λρ. (|A| ρ).1, implicitly
applying the first projection. We also write just |A| for |A| |()| if Γ is the terminal context.

3.1 Contexts, substitutions, types and elements
We start by defining the cwfM∗.

A context (Γ,Γ′) : Con∗ consists of a context Γ : Con inM and a family Γ′ over |Γ| (which
in the context of Artin glueing should be thought of as a substitution in S from some
context to |Γ|). We think of Γ′ as a proof-relevant computability predicate. A substitution
(σ, σ′) : Hom∗((∆,∆′), (Γ,Γ′)) consists of a substitution σ : ∆ → Γ in M and a map
σ′ : Π(ν : |∆|).∆′(ν)→ Γ′(σν). This evidently has the structure of a category.
A type (A,A′) : Type∗(Γ,Γ′) consists of a type A : Type(Γ) inM and

A′ : Π(ρ : |Γ|)(ρ′ : Γ′ ρ).|A| ρ→ Ufib
ω .

We think of A′ as a fibrant proof-relevant computability family on A. In the abstract
context of Artin glueing for cwfs, we should think of it as an element of Type(Σ(ρ : |Γ|)(ρ′ :
Γ′ ρ).|A| ρ) in S, but this point of view is not compatible with the universes à la Russell
we are going to model. Recalling Ufib

ω = Σ(X : Uω).C(X), we also write 〈A′, fibA′〉 instead
of A′ if we want to directly access the family and split off its proof of fibrancy.
The type (A,A′) is of level n if A and A′ are.
The action of a substitution (σ, σ′) : Hom∗((∆,∆′), (Γ,Γ′)) on (A,A′) is given by

(Aσ, λν ν′ a.A′ (σν) (σ′ ν ν′) a).

T. Coquand, S. Huber, and C. Sattler 11:11

An element (a, a′) : Elem∗((Γ,Γ′), (A, 〈A′, fibA′〉)) consists of a : Elem(Γ, A) inM and

a′ : Π(ρ : |Γ|)(ρ′ : Γ′ ρ). A′(ρ, ρ′, aρ).

In the context of Artin glueing (with types inM∗ presented correspondingly), this should
be thought of as an element a′ : Elem(Σ(ρ : |Γ|).Γ′ ρ, λ(ρ, ρ′).A′(ρ, ρ′, |a| ρ)) of S.
The action of a substitution (σ, σ′) : Hom∗((∆,∆′), (Γ,Γ′)) on the element (a, a′) is given
by (aσ, λν ν′.a′ σν (σ′ ν ν′)).
The terminal context is given by (1, 1′) defined by 1′ () = 1.
The extension inM∗ of a context (Γ,Γ′) by a type (A,A′) is given by (Γ.A, (Γ.A)′) where
(Γ.A′)(ρ, a) = Σ(ρ′ : Γ′ ρ). (A′ ρ ρ′ a).1. The projection p∗ : Hom∗((Γ,Γ′).(A,A′), (Γ,Γ′))
is (p, p′) where p′ (ρ, a) (ρ′, a′) = ρ′ and the generic term q∗ : Elem((Γ,Γ′).(A,A′)p∗) is
(q, q′) where q′ (ρ, a) (ρ′, a′) = a′. The extension of (σ, σ′) : Hom∗((∆,∆′), (Γ,Γ′)) with
(a, a′) : Elem∗((∆,∆′), (A,A′)(σ, σ′)) is ((σ, a), λν ν′.(σ′ ν ν′, a′ ν ν′)).

3.2 Type formers and operations

3.2.1 Dependent products

Let (A, 〈A′, fibA′〉) : Type∗(Γ,Γ′) and (B, 〈B′, fibB′〉) : Type∗((Γ,Γ′).(A, 〈A′, fibA′〉)). We
define the dependent product Π∗((A, 〈A′, fibA′〉), (B, 〈B′, fibB′〉)) = (Π(A,B), 〈Π(A,B)′,
fibΠ(A,B)′〉) where

Π(A,B)′(ρ, ρ′, f) = Π(a : |A| ρ)(a′ : A′ ρ ρ′ a).B′ (ρ, a) (ρ′, a′) (app(f, a))

and fibΠ(A,B)′(ρ, ρ′, f) is given by closure of C under dependent product applied to (|A| ρ).2,
fibA′ ρ ρ′ a for a : |A| ρ, and fibB′ (ρ, a) (ρ′, a′) (app(f, a)) for additionally a′ : A′ ρ ρ′ a.

Given an element (b, b′) of (B, 〈B′, d〉)) inM∗, we define the abstraction lam∗(b, b′) =
(lam(b), lam(b)′) where lam(b)′ ρ ρ′ a a′ = b′ (ρ, a) (ρ′, a′).

Given elements (f, f ′) of Π∗((A, 〈A′, c〉), (B, 〈B′, d〉)) and (a, a′) of (A, 〈A′, fibA′〉)) inM∗,
we define the application app∗((f, f ′), (a, a′)) = (app(f, a), app(f, a)′) where app(f, a)′ ρ ρ′ =
f ′ ρ ρ′ aρ (a′ ρ ρ′).

3.2.2 Dependent sums

Let (A, 〈A′, fibA′〉) : Type∗(Γ,Γ′) and (B, 〈B′, fibB′〉) : Type∗((Γ,Γ′).(A, 〈A′, fibA′〉)). We
define the dependent sum Σ∗((A, 〈A′, fibA′〉), (B, 〈B′, fibB′〉)) = (Σ(A,B), 〈Σ(A,B)′,
fibΣ(A,B)′〉) where

Σ(A,B)′ ρ ρ′ (pair(a, b)) = Σ(a′ : A′ ρ ρ′ a).B′ (ρ, a) (ρ′, a′) b

and fibΣ(A,B)′ ρ ρ′ (pair(a, b)) is given by closure of C under dependent sum applied to
fibA′ ρ ρ′ a and fibB′ (ρ, a) (ρ′, a′) b.

Given elements (a, a′) of (A, 〈A′, fibA′〉) and (b, b′) of (B, 〈B′, fibB′〉)[(a, a′)] inM∗, we
define the pairing pair∗((a, a′), (b, b′)) = (pair(a, b), 〈a′, b′〉).

Given an element (pair(a, b), 〈a′, b′〉) of Σ∗((A, 〈A′, fibA′〉), (B, 〈B′, fibB′〉)) in M∗, we
define the projections fst∗(pair(a, b), 〈a′, b′〉) = (a, a′) and snd∗(pair(a, b), 〈a′, b′〉) = (b, b′).

FSCD 2019

11:12 Homotopy Canonicity for Cubical Type Theory

3.2.3 Universes
We define the universe U∗n : Type∗(Γ,Γ′) as U∗n = (Un, 〈U′n, fibU′

n
〉) where U′n ρ ρ

′A = |A| ρ→
Ufib
n and fibU′

n
ρ ρ′A is given by C(Ufib

n) and closure of C under exponentiation (note that
fibrancy of |A| ρ is not used). We have carefully chosen our definitions so that we get
Elem∗((Γ,Γ′), U∗n) = Type∗n(Γ,Γ′) and see that this identity is compatible with the action in
M∗ of substitution on both sides.

3.2.4 Natural numbers
As per Appendix B, we have a fibrant indexed inductive set N′ : |N| → Ufib

0 (where N : Type0(1),
hence |N| : U0) with constructors 0′ : N′ 0 and S′ : Π(n : |N| ρ).N′ n → N′ (Sn). In context
(Γ,Γ′) : Con∗, we then define N∗ = (N, λρ ρ′.N′). We have 0∗ = (0, λρ ρ′.0′) and S∗(n, n′) =
(S(n), λρ ρ′.S′ nρ n′) for (n, n′) : Elem∗((Γ,Γ′), N∗).

Given (P, P ′) : Type((Γ,Γ′).N∗) with

(z, z′) : Elem∗((Γ,Γ′)(P, P ′)[0∗]), (s, s′) : Elem∗((Γ,Γ′).N∗.(P, P ′), (P, P ′)(p, S∗(q))p)

and (n, n′) : Elem∗((Γ,Γ′), N∗), we define the elimination

natrec∗((P, P ′), (z, z′), (s, s′), (n, n′)) = (natrec(P, z, s, n), λρ ρ′.h′ nρ (n′ ρ ρ′))

where h′ : Π(m : |N|)(m′ : N′m).P ′ (ρ,m) (ρ′,m′) (natrec(Pρ+, zρ, sρ+++,m)) is given by
induction on N′ with defining equations

h′ 0 0′ = z′ ρ ρ′, h′ (S(n)) (S′ nn′) = s′ (ρ, n, natrec(P, z, s, n)) (ρ′, n′, h′ nn′).

3.2.5 Dependent paths
Let 〈A,A′〉 : I→ Type∗(Γ,Γ′) and (ab, a′b) : Elem∗((Γ,Γ′), (Ab,A′ b)) for b ∈ {0, 1}. We then
define the dependent path type Path∗(〈A,A′〉, (a0, a

′
0), (a1, a

′
1)) : Type∗(Γ,Γ′) as the tuple

(Path(A, a0, a1), 〈Path(A, a0, a1)′, fibPath(A,a0,a1)′〉) where

Path(A, a0, a1)′ ρ ρ′ (〈〉(u)) = Pathλ(i:I). (A′ i ρ ρ′ (u i)).1(a′0 ρ ρ′)(a′1 ρ ρ′)

and fibPath(A,a0,a1)′ ρ ρ′ (〈〉(u)) is closure of C under Path applied to (A′ i ρ ρ′ (u i)).2 for i : I.
Given 〈u, u′〉 : Π(i : I).Elem∗((Γ,Γ′), (A i,A′ i)), we define the path abstraction as

〈〉∗(〈u, u′〉) = (〈〉(u), λρ ρ′ i.u′ i ρ ρ′).
Given (p, p′) : Elem∗((Γ,Γ′), Path∗(〈A,A′〉, (a0, a

′
0), (a1, a

′
1))) and i : I, we define the path

application ap∗(p, i) = (ap(p, i), λρ ρ′.u′ ρ ρ′ i).

3.2.6 Filling operation
Given 〈A,A′〉 : I → Type∗(Γ,Γ′), ϕ : F, b ∈ {0, 1}, and 〈u, u′〉 : Π(i : I).[ϕ] ∨ (i = b) →
Elem∗((Γ,Γ′), (A i,A′ i)), we have to extend u to

fill∗(〈A,A′〉, ϕ, b, 〈u, u′〉) : Π(i : I).Elem∗((Γ,Γ′), (A i,A′ i)).

We define fill∗(〈A,A′〉, ϕ, b, 〈u, u′〉) = 〈fill(A,ϕ, b, u), fill(A,ϕ, b, u)′〉 where

fill(A,ϕ, b, u)′ i ρ ρ′ : A′ i ρ ρ′ (fill(A,ϕ, b, u) i)ρ

is defined using fill from (2) as

fill(A,ϕ, b, u)′ i ρ ρ′ = fill(λi.A′ i ρ ρ′ (fill(A,ϕ, b, u) i)ρ, ϕ, b, λi x.u′ i x ρ ρ′).

T. Coquand, S. Huber, and C. Sattler 11:13

3.2.7 Glue types
Before defining the glueing operation inM∗, we will develop several lemmas relating notions
such as contractibility and equivalences inM with the corresponding notions of Section 2.2.
Given f : Elem(Γ, A→ B) inM, we write |f | : Π(ρ : |Γ|).|A| ρ→ |B| ρ for |f | ρ a = app(fρ, a).
This notation overlaps with the action of |−| on elements, but we will not use that one here.

Just in this subsection, we will use the alternative definition via given left and right
homotopy inverses instead of contractible homotopy fibers of both equivalences Equiv in the
cubical cwfM and equivalences Equiv in the (current) internal language. In both settings,
there are maps back and forth to the usual definition, which are furthermore natural in the
context in the case of the cubical cwfM. The statements we will prove are then also valid
for the usual definition.

I Lemma 5. Given f : Elem(Γ, A → B) in M with Elem(Γ, isEquiv(f)), we have Π(ρ :
|Γ|).isEquiv(|f | ρ). This is natural in Γ.

Proof. A (left or right) homotopy inverse g : Elem(Γ, B → A) to f inM becomes a (left or
right, respectively) homotopy inverse |g| ρ to |f | ρ for ρ : |Γ|. J

I Lemma 6. Given (f, f ′) : Elem((Γ,Γ′), (A,A′)→ (B,B′)) inM∗, the following statements
are logically equivalent, naturally in (Γ,Γ′):

Elem((Γ,Γ′), isEquiv∗(f, f ′)), (3)
Elem(Γ, isEquiv(f))×Π(ρ : |Γ|)(ρ′ : Γ′ ρ).isEquiv(Σ|f | ρf ′ ρ ρ′), (4)
Elem(Γ, isEquiv(f))×Π(ρ : |Γ|)(ρ′ : Γ′ ρ)(a : |A| ρ).isEquiv(f ′ ρ ρ′ a) (5)

where Σ|f | ρf ′ ρ ρ′ : Σ(a : |A| ρ)A′ ρ ρ′ a→ Σ(b : |B| ρ)B′ ρ ρ′ b.

Proof. Let us only look at homotopy left inverses.
For (3) → (4), a homotopy left inverse (g, g′) to (f, f ′) in M∗ gives a homotopy left

inverse Σ|g| ρg′ ρ ρ′ to Σ|f | ρf ′ ρ ρ′ for all ρ, ρ′.
For (4) → (5), we use Lemma 5 and note that a fiberwise map over an equivalence is

a fiberwise equivalence exactly if it is an equivalence on total spaces (the corresponding
statement for identity types instead of paths is [33, Theorem 4.7.7]).

For (5)→ (3), given a homotopy left inverse g to the equivalence f inM and a homotopy
left inverse g′ ρ ρ′ a : B′ ρ ρ′ (|f | a)→ A′ ρ ρ′ a to f ′ ρ ρ′ a for all ρ, ρ′, a, we use Lemma 5 to
transpose g′ to the second component g′ ρ ρ′ b : B′ ρ ρ′ b → A′ ρ ρ′ (|g| b) for all ρ, ρ′, b of a
homotopy left inverse (g, g′) to (f, f ′) inM∗. J

We can now define glue types in M∗. Let (A,A′) : Type(Γ,Γ′), ϕ : F, b ∈ {0, 1},
〈T, T ′〉 : [ϕ]→ Type(Γ,Γ′), and 〈e, e′〉 : [ϕ]→ Elem((Γ,Γ′), Equiv∗((T tt, T ′tt), (A,A′))).

We define Glue∗((A,A′), ϕ, b, 〈T, T ′〉, 〈e, e′〉) = (Glue(A,ϕ, b, T, e), 〈G′, fibG′〉) where

G′ ρ ρ′ (glue(a, t)) = Glue (A′ ρ ρ′ a).1 [ϕ 7→ (T ′ tt ρ ρ′ (t tt), ((e′ tt ρ ρ′).1 (t tt), w tt ρ ρ′))]

using the witness w tt ρ ρ′ that (e′ tt ρ ρ′).1 (t tt) is an equivalence provided by the direction
from (3) to (5) of Lemma 6 and fibG′ ρ ρ′ (glue(a, t)) is given by closure of C under Glue
applied to (A′ ρ ρ′ a).2 and T ′ tt ρ ρ′ (t tt) on [ϕ].

We define unglue∗ = (unglue, unglue′) where unglue′ ρ ρ′ (glue(a, t)) = unglue.
Given (a, a′) : Elem((Γ.Γ′), (A,A′)) and (t, t′) : [ϕ] → Elem((Γ,Γ′), (T tt, T ′ tt)) such

that app∗(fst∗(e, e′) tt, (t, t′) tt) = (a, a′) on [ϕ], we define glue∗((a, a′), (t, t′)) as the pair
(glue(a, t), glue(a, t)′) where glue(a, t′) ρ ρ′ = glue (a′ ρ ρ′) [ϕ 7→ t′ tt ρ ρ′].

FSCD 2019

11:14 Homotopy Canonicity for Cubical Type Theory

3.3 Main result
One checks in a mechanical fashion that the operations we have defined above satisfy the
required laws, including stability under substitution in the context (Γ,Γ′). We thus obtain
the following statement.

I Theorem 7 (Sconing). Assume the parameters C, I,F satisfy the assumptions of Section 2.2.
Then given any cubical cwfM that is size-compatible in the sense of the beginning of Section 3,
the sconingM∗ is a cubical cwf with operations defined as above. We further have a morphism
M∗ →M of cubical cwfs given by the first projection.

4 Homotopy canonicity

We fix parameters C, I,F as before. To make our homotopy canonicity result independent
of Conjecture 2 concerning initiality of the term model, we phrase it directly using the
initial model I, initial in the category of cubical cwfs with respect to the parameters C, I,F.
Its existence can be justified generically following [28, 25]. It is size-compatible in the
sense of Section 3: internally, HomI(∆,Γ) and ElemI(Γ, A) live in the lowest universe U0
for all Γ,∆, A.

I Theorem 8 (Homotopy canonicity). Assume the parameters C, I,F satisfy the assumptions of
Section 2.2. In the internal language of presheaves over C, given a closed natural n : Elem(1, N)
in the initial model I, we have a numeral k : N with p : Elem(1, Path(N, n, Sk(0))).

Proof. We start the arguing reasoning externally. Using Theorem 7, we build the sconing
I∗ of I. Using initiality, we obtain a section F of the cubical cwf morphism I∗ → I.

Let us now proceed in the internal language. Recall the construction of Section 3.2.4 of
natural numbers in I∗. We observe that Σ(n : |N|).N′ n forms a fibrant natural number set
(in the sense of Appendix B). It is thus homotopy equivalent to N. Under this equivalence,
the first projection Σ(n : |N|).N′ n→ |N| implements the map sending k : N to Sk(0).

Inspecting the action of F on n : Elem(1, N), we obtain n′ : N′ n. By the preceding
paragraph, this corresponds to k : N with a path p′ : I→ |N| from n to Sk(0). Now p = 〈〉(p′)
is the desired witness of homotopy canonicity. J

5 Extensions

5.1 Identity types
Our treatment extends to the variation of cubical cwfs that includes identity types.

Identity types in a cubical cwf denoted as in Section 1.3 consist of the following operations
and laws (omitting stability under substitution), internal to presheaves over C. Fix A in
Type(Γ). Given x, y in Elem(Γ, A), we have Id(A, x, y) in Type(Γ), of level n if A is. Given a in
Elem(Γ, A), we have refl(a) in Elem(Γ, Id(A, a, a)). Given P in Type(Γ.A.Ap.Id(App, qp, q))
and d in Elem(Γ.A, P [q, q, refl(q)]) and x, y in Elem(Γ, A) and p in Elem(Γ, Id(A, x, y)), we
have J(P, d, x, y, p) in Elem(Γ, P [x, y, p]). We have J(P, d, a, a, refl(a)) = d[a].

We can interpret univalent type theory in such any such cubical cwf as per Remark 1.
The standard model of Section 2.3 has identity type Id(〈A, fibA〉, x, y) : Type(Γ) given by

Π(ρ : Γ).IdAρ (x ρ) (y ρ) using Andrew Swan’s construction of Id referenced in Appendix B.
We omit the evident description of the remaining operations.

To obtain homotopy canonicity in this setting, it suffices to extend the sconing construction
M∗ of Section 3 to identity types. Given A : Type(1) and A′ : |A| → Ufib

ω , we define Id′A,A′

as the fibrant indexed inductive set (as per Appendix B) over x, y : |A|, p : |Id(A, x, y)|,
x′ : A′ x, y′ : A′ y with constructor refl′ : Π(a : |A|)(a′ : A′ a).Id′A,A′ a a (refl(a)) a′ a′.

T. Coquand, S. Huber, and C. Sattler 11:15

Now fix (A,A′) : Type∗(Γ,Γ′). Given ρ : |Γ|, ρ′ : Γ′ ρ, and elements (x, x′), (y, y′) of
(A,A′) inM∗, we define

Id∗((A,A′), (x, x′), (y, y′)) = (Id(A, x, y), λρ ρ′ p.Id′Aρ,A′ ρ ρ′ xρ yρ p (x′ ρ ρ′) (y′ ρ ρ′)).

Given an element (a, a′) of (A,A′) in M∗, we define refl∗(a, a′) = (refl(a), refl(a)′)
where refl(a)′ ρ ρ′ = refl′ aρ (a′ ρ ρ′). The eliminator J((C,C ′), (d, d′), (x, x′), (y, y′), (p, p′))
is defined as (J(C, d, x, y, p), λρ ρ′.h′ xρ yρ pρ (x′ ρ ρ′) (y′ ρ ρ′) (p′ ρ ρ′)) where

h′ : Π(x y : |A| ρ)(p : |Id(A, x, y)| ρ)(x′ : A′ ρ′)(y′ : A′ ρ′)(p′ : Id′Aρ,A′ ρ ρ′ x y p x′ y′).
P ′ (ρ, x, y, p) (ρ′, x′, y, p′) (J(Pρ+++, dρ+, x, y, p))

is given by induction on Id′Aρ,A′ ρ ρ′ via h′ a a (refl(a)) a′ a′ (refl′ a a′) = d′ (ρ, a) (ρ′, a′).

5.2 Higher inductive types
Our treatment extends to higher inductive types [33], following the semantics presented in [7].
Crucially, we have fibrant indexed higher inductive sets in presheaves over C as we have what
we would call fibrant uniformly indexed higher inductive sets in the same fashion as in [7] and
fibrant identity sets [6, 23], mirroring the derivation of fibrant indexed inductive sets from
fibrant uniformly indexed inductive sets and fibrant identity sets recollected in Appendix B.5

Let us look at the case of the suspension operation in a cubical cwf, where Susp(A) :
Type(Γ) has constructors north, south and merid(a, i) for a : A and i : I with merid(a, 0) =
north and merid(a, 1) = south.

For the sconing model of Section 3, we define for A : Type(1) and A′ : |A| → Ufib
ω the

indexed higher inductive set Susp′A,A′ over |Susp(A)| with constructors

north′ : Susp′A,A′ north south′ : Susp′A,A′ south

merid′ a a′ i : (SuspA)′(merid(a, i))[i = 0 7→ north′, i = 1 7→ south′]

for a : |a| and a′ : A′ a and i : I (using the notation of [7]). In the above translation to a
uniformly indexed higher inductive set, the constructor north′ will for example be replaced
by north′′ : Id|Susp(A)| u north→ Susp′A,A′ u.

Given (A,A′) : Type∗(Γ,Γ′), we then define Susp∗(A,A′) = (Susp(A), λρρ′.Susp′Aρ,A′ ρ ρ′),
with constructors and eliminator treated as in Section 5.1.

References
1 P. Aczel. On Relating Type Theories and Set Theories. In T. Altenkirch, B. Reus, and

W. Naraschewski, editors, Types for Proofs and Programs, volume 1657 of Lecture Notes in
Computer Science, pages 1–18. Springer Verlag, Berlin, Heidelberg, New York, 1999.

2 C. Angiuli, G. Brunerie, T. Coquand, K.-B. Hou (Favonia), B. Harper, and D. Licata. Cartesian
cubical type theory. preprint available from the home page of D. Licata, 2017.

3 Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametricity and Dependent
Types. In ICFP ’10, pages 345–356, 2010.

4 M. Bezem, T. Coquand, and S. Huber. A Model of Type Theory in Cubical Sets. In R. Matthes
and A. Schubert, editors, 19th International Conference on Types for Proofs and Programs
(TYPES 2013), volume 26 of Leibniz International Proceedings in Informatics (LIPIcs), pages
107–128. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014.

5 We stress that the use of “set” in this context refers to the types of the language of presheaves over C,
not homotopy sets.

FSCD 2019

11:16 Homotopy Canonicity for Cubical Type Theory

5 John Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl.
Logic, 32:209–243, 1986. doi:10.1016/0168-0072(86)90053-9.

6 C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. Cubical Type Theory: A Constructive
Interpretation of the Univalence Axiom. In T. Uustalu, editor, 21st International Conference on
Types for Proofs and Programs (TYPES 2015), volume 69 of Leibniz International Proceedings
in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

7 T. Coquand, S. Huber, and A. Mörtberg. On Higher Inductive Types in Cubical Type Theory.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’18, pages 255–264, New York, NY, USA, 2018. ACM.

8 Thierry Coquand. Canonicity and normalization for dependent type theory. Theoretical
Computer Science, 2019.

9 P. Dybjer. Internal Type Theory. In Lecture Notes in Computer Science, pages 120–134.
Springer Verlag, Berlin, Heidelberg, New York, 1996.

10 S. Eilenberg. On the relation between the fundamental group of a space and the higher
homotopy groups. Fundamenta Mathematicae, 32(1):169–175, 1939.

11 P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory, volume 35 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. Springer, 1967.

12 N. Gambino and J. Kock. Polynomial functors and polynomial monads. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 154, pages 153–192. Cambridge
University Press, 2013.

13 N. Gambino and C. Sattler. The Frobenius condition, right properness, and uniform fibrations.
Journal of Pure and Applied Algebra, 221(12):3027–3068, 2017.

14 K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten Standpunkts. Dialectica,
12:280–287, 1958.

15 M. Hofmann. Syntax and semantics of dependent types. In A.M. Pitts and P. Dybjer,
editors, Semantics and logics of computation, volume 14 of Publ. Newton Inst., pages 79–130.
Cambridge University Press, Cambridge, 1997.

16 S. Huber. Canonicity for Cubical Type Theory. Journal of Automated Reasoning, 2018.
17 A. Joyal. Notes on clans and tribes, 2017. arXiv:1710.10238.
18 C. Kapulkin and P. LeFanu Lumsdaine. The simplicial model of univalent foundations (after

Voevodsky). arXiv preprint, 2012. arXiv:1211.2851.
19 K. Kapulkin and V. Voevodsky. Cubical approach to straightening. preprint available from

the home page of K. Kapulkin, 2018.
20 G.M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids,

colimits, associated sheaves, and so on. Bulletin of the Australian Mathematical Society,
22(1):1–83, 1980.

21 D. R. Licata, I. Orton, A. M. Pitts, and B. Spitters. Internal Universes in Models of Homotopy
Type Theory. In Hélène Kirchner, editor, 3rd International Conference on Formal Structures
for Computation and Deduction (FSCD 2018), volume 108 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 22:1–22:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018.

22 P. LeFanu Lumsdaine and M. Shulman. Semantics of higher inductive types. arXiv preprint,
2017. arXiv:1705.07088.

23 I. Orton and A. M. Pitts. Axioms for Modelling Cubical Type Theory in a Topos. In 25th
EACSL Annual Conference on Computer Science Logic (CSL 2016), volume 62 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1–24:19, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

24 E. Palmgren and S.J. Vickers. Partial Horn logic and cartesian categories. Annals of Pure
and Applied Logic, 145(3):314–353, 2007.

25 Erik Palmgren and Steven J Vickers. Partial Horn logic and cartesian categories. Annals of
Pure and Applied Logic, 145(3):314–353, 2007.

http://dx.doi.org/10.1016/0168-0072(86)90053-9
http://arxiv.org/abs/1710.10238
http://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1705.07088

T. Coquand, S. Huber, and C. Sattler 11:17

26 E. Riehl and M. Shulman. A type theory for synthetic ∞-categories. Higher Structures, 1(1),
2018.

27 M. Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical
Structures in Computer Science, 25(5):1203–1277, 2015.

28 Jonathan Sterling. Algebraic type theory and universe hierarchies. arXiv preprint, 2019.
arXiv:1902.08848.

29 T. Streicher. Semantics of Type Theory. Progress in Theoretical Computer Science. Birkhäuser
Basel, 1991.

30 A. Swan. An Algebraic Weak Factorisation System on 01-Substitution Sets: A Constructive
Proof. Journal of Logic & Analysis, 8(1):1–35, 2016.

31 A. Swan. Semantics of higher inductive types, 2017. On the HoTT mailing list.
32 W. W. Tait. Intensional Interpretations of Functionals of Finite Type I. Journal of Symbolic

Logic, 32(2):198–212, 1967.
33 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
34 V. Voevodsky. The equivalence axiom and univalent models of type theory. (Talk at CMU on

February 4, 2010). Preprint arXiv:1402.5556 [math.LO], 2014. arXiv:1402.5556.

A Rules of the term model

We denote the objects of our base category C by X,Y, Z and its morphisms by f, g, h. In
the term model T morphisms f : Y → X act on judgments at stage X via an implicit
substitution, while for substitutions on object variables we will use explicit substitutions.
For this to make sense we first define the raw expressions as a presheaf: at stage X this is
given by

Γ,∆ ::= ε | Γ.A
A,B, t, u, v ::= q | tσ | Un | Π(A,B) | lam(u) | app(u, v)

| Σ(A,B) | pair(u, v) | fst(u) | snd(u)
| Path(Ā, u, v) | 〈〉ū | ap(u, r)
| Glue(A,ϕ, B̄, ū) | glue(v, ū) | unglue(u)
| fill(Ā, ϕ, b, ū, r) | . . .

Ā, B̄, ū, v̄ ::= (Af,r)f,r | (Af)f∈[ϕ]
σ, τ, δ ::= p | id | στ | (σ, u) | ()

where b ∈ {0, 1}, ϕ ∈ F(X), and we skipped the constants for natural numbers. Above,
we have families of expressions, say Ā = (Af,r)f,r, whose index set ranges over certain Y ,
f : Y → X, and r ∈ I(Y), and Af,r is a raw expression at stage Y ; likewise (Af)f∈[ϕ](X)
consists of raw expressions Af at stage Y for f : Y → X in the sieve [ϕ] on X. (The exact
index sets will be clear from the typing rules below.) All other occurrences of r above
have r ∈ I(X). The restrictions along f : Y → X on the raw syntax then leave all the
usual cwf structure untouched, so we have qf = q and (Π(A,B))f = Π(Af,Bf), and uses
the restrictions in I and F accordingly, e.g., (ap(u, r))f = ap(uf, rf), and we will re-index
families according to Āf = (Agf,rf) for Ā = (Ag,r)g,r.

To get the initial cubical cwf we in fact need more annotations to the syntax in order to
be able to define a partial interpretation (cf. [29, 15]) on the raw syntax. But to enhance
readability we suppress these annotations.

We will now describe a type system indexed by stages X. The forms of judgment are:

Γ `X Γ `X A Γ `X A = B Γ `X t : A Γ `X t = u : A σ : ∆→X Γ

where the involved expressions are at stage X.

FSCD 2019

http://arxiv.org/abs/1902.08848
http://homotopytypetheory.org/book
http://arxiv.org/abs/1402.5556

11:18 Homotopy Canonicity for Cubical Type Theory

I Remark 9. In cubical type theory as described in [6] we did not index judgments by objects
X but allowed extending context by interval variables instead. Loosely speaking, a judgment
Γ `{i1,...,in} J corresponds to i1 : I, . . . , in : I,Γ ` J given the setting of [6].
As mentioned above we have the rule:

Γ `X J f : Y → X

Γf `Y J f

At each stage we have all the usual rules valid in a cwf with Π-types, Σ-types, universes,
and natural numbers. We will present some of the rules, but skip all congruence rules.

ε `X

Γ `X Γ `X A

Γ.A `X

Γ `X A σ : ∆→X Γ
∆ `X Aσ

Γ `X t : A σ : ∆→X Γ
∆ `X tσ : Aσ

Γ `X A

Γ.A `X q : Ap
Γ `X t : A Γ `X A = B

Γ `X t : B
Γ `X

id : Γ→X Γ
Γ `X

() : Γ→ ε

Γ `X A

p : Γ.A→X Γ
σ : ∆→X Γ τ : Θ→X ∆

στ : Θ→X Γ

σ : ∆→X Γ Γ `X A ∆ `X u : Aσ
(σ, u) : ∆→X Γ.A

Γ.A `X B

Γ `X Π(A,B)
Γ.A `X B Γ.A `X b : B

Γ `X lam(b) : Π(A,B)
Γ `X w : Π(A,B) Γ `X u : A

Γ `X app(w, u) : B[u]

where we write [u] for (id, u) and σ+ for (σp, q). The judgmental equalities (skipping suitable
premises, types, and contexts) are:

idσ = σ id = σ (στ)δ = σ(τδ) ()σ = () (σ, u)δ = (σδ, uδ) p(σ, u) = σ

q(σ, u) = u (p, q) = id A id = A (Aσ)δ = A(σδ) u id = u (uσ)δ = u(σδ)

(Π(A,B))σ = Π(Aσ,Bσ+) (lam(b))σ = lam(bσ+) app(w, u)δ = app(wδ, uδ)

app(lam(b), u) = b[u] w = lam(app(wp, q))

We skip the rules for Σ-types and natural numbers as they are standard, but simply indexed
with an object X as we did for Π-types. The rules for universes are:

Γ `X
Γ `X Un

Γ `X
Γ `X Un : Un+1

Γ `X A : Un
Γ `X A : Un+1

Γ `X A : Un
Γ `X A

and we skip the rules for equality and closure under the type formers Π,Σ, natural numbers,
Path, and Glue.

To state the rules for dependent path-types we introduce the following abbreviations. We
write Γ.I `X Ā if Ā = (Af,r) is a family indexed by Y , f : Y → X, and r ∈ I(Y) such that

Γf `Y Af,r and Γfg `Z (Af,r)g = Afg,r.

Given Γ.I `X Ā we write Γ.I `X ū : Ā whenever ū = (uf,r) is a family indexed by Y ,
f : Y → X, and r ∈ I(Y) such that

Γf `Y uf,r : Af,r and Γfg `Z (uf,r)g = ufg,rg : Afg,rg.

T. Coquand, S. Huber, and C. Sattler 11:19

The rules for the dependent path type are:

Γ.I `X Ā Γ `X u : AidX ,0 Γ `X u : AidX ,1

Γ `X Path(Ā, u, v)
Γ.I `X Ā Γ.I `X ū : Ā

Γ `X lam(ū) : Path(Ā, uidX ,0, uidX ,1)

Γ `X t : Path(Ā, u, v) r ∈ I(X)
Γ `X ap(t, r) : AidX ,r

ap(lam(ū), r) = uid,r t = lam(ap(tf, r)f,r) Path(Ā, u, v)σ = Path((Af,rσf)f,r, uσ, vσ)

(lam(ū))σ = lam((uf,rσf)f,r) (ap(t, r))σ = ap(tσ, r)

Note that in general these rules might have infinitely many premises. We get the non-
dependent path type for Γ `X A by using the family Af,r := Af .

Given Γ.I `X Ā and b ∈ {0, 1} we write Γ.I `ϕ,bX ū : Ā for ū = (uf,r) a family indexed
over all Y , f : Y → X, and r ∈ I(Y) such that either f is in the sieve [ϕ] or r = b and we
have

Γf `Y uf,r : Af,r and Γfg `Z (uf,r)g = ufg,rg : Afg,rg

for all g : Z → Y . The rule for the filling operation is given by:

Γ.I `X Ā ϕ ∈ F(X) b ∈ {0, 1} Γ.I `ϕ,bX ū : Ā r ∈ I(X)
Γ `Y fill(Ā, ϕ, b, ū, r) : Aid,r

with judgmental equality

fill(Ā, ϕ, b, ū, r) = uid,r whenever [ϕ] is the maximal sieve or r = b.

For the glueing operation we only present the formation rule; the other rules are similar
as in [6] but adapted to our setting. We write Γ `ϕX B̄ if B̄ is a family of Bf for f : Y → X

in [ϕ] with Γf `Y Bf which is compatible, i.e. Γfg `Z Bfg = Bfg. In this case, we write
likewise Γ `X ū : B̄ if ū is a compatible family of terms Γf `Y uf : Bf .

Γ `X A ϕ ∈ F(X) Γ `ϕX B̄ Γ `ϕX ū : isEquiv(B̄, A)
Γ `X Glue(A,ϕ, B̄, ū)

and the judgmental equality Glue(A,ϕ, B̄, ū) = Bid in case [ϕ] is the maximal sieve, and an
equation for substitution.

This formal system gives rise to a cubical cwf T as follows. First, define judgmental equality
for contexts and substitutions as usual (we could also have those as primitive judgments).
Next, we define presheaves Con and Hom on C by taking, say, Con(X) equivalence classes
[Γ]∼ of Γ with Γ `X modulo judgmental equality; restrictions are induced by the (implicit)
substitution: [Γ]∼f = [Γf]∼. Types Type(X, [Γ]∼) are equivalence classes of A with Γ `X A

modulo judgmental equality, and elements are defined similarly as equivalence classes.
For type formers in T let us look at path types: we have to give an element of Type(Γ)

in a context (w.r.t. the internal language) Γ : Con, A : I → Type(Γ), u : Elem(Γ, A 0), v :
Elem(Γ, A 1). Unfolding the use of internal language, given [Γ]∼ ∈ Con(X), a compat-
ible family [Af,r]∼ ∈ Type(Y, [Γ]∼f) (for f : Y → X and r ∈ I(Y)) and elements [u]∼ ∈
Elem([Γ]∼, [Aid,0]∼) and [v]∼ ∈ ([Γ]∼, [Aid,1]∼), we have to give an element of Type(X, [Γ]∼),
which we do by the formation rule for Path.

FSCD 2019

11:20 Homotopy Canonicity for Cubical Type Theory

The remainder of the cubical cwf structure for T is defined in a similar manner, in fact
the rules are designed to reflect the laws of cubical cwfs. We conjecture that we can follow a
similar argument as in [29] to show that T is the initial cubical cwf. Given a cubical cwfM
over C, I,F we first have to define partial interpretations of the raw syntax and then show that
each derivable judgment has a defined interpretation inM, and for equality judgments both
sides of the equation have a defined interpretation inM and are equal. In an intuitionistic
framework, this partial interpretation should be described as an inductively defined relation,
which is shown to be functional. The partial interpretation J−K assigns meanings to raw
judgments with the following signature:

JΓ `XK ∈ ConM(X)
Jσ : ∆→ ΓK ∈ HomM(X, J∆ `XK, JΓ `XK)
JΓ `X AK ∈ TypeM(X, JΓ `XK)
JΓ `X u : AK ∈ ElemM(X, JΓ `XK, JΓ `X AK)

where among the conditions for the interpretation on the left-hand side to be defined is that
all references to the interpretation on the right-hand side are defined. This proceeds by
structural induction on the raw syntax and for JΓ `X J K to be defined we assume all the
ingredients needed are already defined. E.g. for the path type JΓ `X Path(Ā, u, v)K we in
particular have to assume that the assignment f, r 7→ JΓf `Y Af,rK is defined and gives rise
to a suitable input of PathM.

B Indexed inductive sets in presheaves over C

We work in the setting of Section 2.2 given by presheaves over C.
Given a set I, a family A over I, a family B over i : I and a : A i, and a map

s : Π(i : I)(a : A i).B i a→ I,

the indexed inductive set WI,A,B,s is the initial algebra of the polynomial endofunctor [12]
on the (internal) category of families over I sending a family X to the family

JI, A,B, sK i = Σ(a : A i).Π(b : B i a).X(s i a b).

Its constructive justification as an operation in the internal language of the presheaf topos
using inductive constructions of the metatheory is folklore (in a classical setting, one would
use transfinite colimits [20]). If I, A,B are small with respect to a universe Ui with i ∈
{0, 1, . . . , ω}, then WI,A,B,s : I → Ui.

Let I, A,B now be small with respect to Uω. Given elements of Fill(I, A) and Fill(Σ(i :
I).A i, λ(i, a).B i a), we may use induction (i.e. the universal property of WI,A,B,s) to derive
an element of Fill(I,WI,A,B,s). As in Section 2.2 for dependent products, this implies (using
external reasoning) the internal statement C(WI,A,B,s i) for i : I given C(A i) for all i and
C(B i a) for all i, a. We then call WI,A,B,s a fibrant uniformly indexed inductive set. The
qualifier uniformly indexed indicates that A is a fibrant family over I rather than a fibrant
set with a “target” map to I that indicates the target sort of the constructor sup.

Given A : Uω with Fill(1, A), we may use the technique of Andew Swan [30, 23] to
construct a (level preserving) identity set IdA a0 a1 for a0, a1 : A (different from the equality
set a0 = a1) with Fill(A×A, λ(a0, a1).IdA a0 a1)) and constructor refla : IdA a a for a : A that
has the usual elimination with respect to families P : Π(a0 a1 : A).IdA a0 a1 → Uω that satisfy
Fill(Σ(a0 a1 : A).IdA a0 a1, P). Using external reasoning as before, one has C(IdA a0 a1) given

T. Coquand, S. Huber, and C. Sattler 11:21

C(A), justifying calling IdA a0 a1 a fibrant identity set; using (2) one has elimination with
respect to families P of the previous signature with C(C a0 a1 p) for all a0, a1, p.

Using a folklore technique, we may use fibrant identity sets to derive fibrant indexed
inductive sets from fibrant uniformly indexed inductive sets, by which we mean the following.
Given (I, fibI) : Ufib

ω , (A, fibA) : Ufib
ω , 〈B, fibB〉 : A → Ufib

ω with maps t : A → I and
s : Π(a : A).B a→ I, we have 〈WI,A,B,s,t, fibW 〉 : I → Ufib

ω (we omit the subscripts to W for
readability), W living in Ui if I, A,B do, with

sup : Π(a : A)(f : Π(b : B a).W (s a b)).W (t a).

Given 〈P, fibP 〉 : Π(i : I).W → Ufib
ω with

h : Π(a : A)(f : Π(b : B a).W (s a b)).(Π(b : B a).P (s a b) (f b))→ P (t a) (sup a f),

we have v : Π(i : I)(w : W i).P iw such that

v (t a) (sup a f) = h a f (λb.v (s a b) (f b).

Fibrant indexed inductive sets are used for the interpretation in the sconing model of
natural numbers in Section 3, higher inductive types in Section 5.2, and identity types in
Section 5.1. In practise, we will usually not bother to bring the fibrant indexed inductive set
needed in into the above form and instead work explicitly with the more usual specification
in terms of a list of constructors, each taking a certain number non-recursive and recursive
arguments.6 For convenience, we explain concretely the example needed in Section 3 of the
fibrant indexed inductive set N′ over

As an example, we construct the fibrant indexed inductive set N′ needed in Section 3.
There, we have a fibrant set |N| : U0 (satisfying C(|N|)) with an element 0 : |N| and an
endofunction S : |N| → |N|. We wish to define the fibrant indexed inductive set N′ : |N| → U0
with constructors 0′ : N′ 0 and S′ : Π(n : |N| ρ).N′ n→ N′ (Sn). We let N′ be the uniformly
indexed inductive set over m : |N| with constructors

0′′ : Id|N|m 0→ N′m,
S′′ : Πn:|N|.Id|N|m (Sn)→ N′ n→ N′m.

and define 0′ = 0′′ refl0 and S′ nn′ = S′′ n reflS(n) n
′. Fibrancy of Id ensures fibrancy of N′

(i.e. C(N′ n) for n : |N|). For elimination, we are given a fibrant family P nn′ for n : |N| and
n′ : N′ n with z′ : P 0 0′ and s′ nn′ x : P (Sn) (S′ nn′) for all n, n′ and x : P nn′. We have to
define h′ nn′ : P nn′ for all n, n′ such that h′ 0 0′ = z′ and h′ (Sn) (S′ nn′) = s′ nn′ (h′ nn′).
We define h′ by induction on the uniformly indexed inductive set N′ and fibrant identity sets
(using fibrancy of P) via defining equations

h′ 0′′ refl0 = z,

h′ (Sn) (S′′ n reflSn n
′) = s′ nn′ (h′ nn′).

6 Note that the latter is really an instance of the former since our dependent sums, dependent products,
and finite coproducts are extensional (satisfy universal properties). Conversely, the former is an instance
of the latter with a single constructor taking a non-recursive and a recursive argument.

FSCD 2019

11:22 Homotopy Canonicity for Cubical Type Theory

C Variations

C.1 Univalence as an axiom
Our treatment extends to the case where the glue types in a cubical cwf as in Section 1.3 are
replaced by an operation Elem(Γ, iUnivalencen) for Γ : Con and n ≥ 0, with iUnivalencen
defined in Remark 1.

To define this operation in the sconing model of Section 3, one first shows analogously
to Lemmas 5 and 6 that |−| preserves contractible types and that (A,A′) : Type∗(Γ,Γ′) is
contractible exactly if A is contractible and A′ ρ ρ′ a for ρ : |Γ| and ρ′ : Γ′ ρ where a : |A| is
the induced center of contraction. We have analogous statements for types of homotopy level
n ≥ 0i inM, in which case we instead have to quantify over all a : |A|.

Given (A,A′) : Type∗n(Γ,Γ′), we have show that the type (S, S′) = Σ∗(Un,Equiv∗(q, A))
over (Γ,Γ′) is contractible inM∗. Without loss of generality, we may assume the center of
contraction of univalence inM is given by the identity equivalence. Using the observations
of the preceding paragraph, it suffices to show that V ′ = S′ ρ ρ′ (pair(Aρ, (lam(q), w))) is
contractible for ρ : |Γ| and ρ′ : Γ′ ρ where w denotes the canonical witness that the identity
map lam(q) on Aρ is an equivalence in M. Inhabitation is evident, and so it remains to
show propositionality. By the case of the preceding paragraph for propositions, the second
component of V ′ is a proposition, and thus we can ignore it for the current goal, which then
becomes

isProp
(
Σ(T ′ : |A| → Un).Π(a : |A|).Equiv(T ′ a,A′ ρ ρ′ a)

)
and follows from univalence in the standard model, justified by glueing.

C.2 Canonicity
A similar sconing argument may be used to provide a reduction-free canonicity argument for
cubical type theory with computation rules for filling at type formers alternative to the one
of [16]. The key difference is that we now want the filling operation itself to be computable.
In the sconing, we then define a type (A, 〈A′, fibA′〉) : Type(Γ,Γ′) to consist of A : Type(Γ)
and A′ ρ ρ′ a : Uω as before, but with fibA′ ρ ρ′ : C(Σ(a : |A| ρ).A′ ρ ρ′ a) such that the first
projection relates fibA′ ρ ρ′ with the proof of fibrancy of |A| ρ. This is easiest formulated by
defining an appropriate dependent version C′ : Π(A : Uω)(A′ : A → Uω).C(A) → Uω of C
using the methods of Section 2.2.

D Simplicial set model

Choosing for C the simplex category ∆, for I the usual interval ∆1 in simplicial sets, and
for F a small copy Ω0,dec of the sublattice of Ω0 of decidable sieves, we obtain a notion of
cubical cwf with a simplicial notion of shape.

Assume now the law of excluded middle. The above choice of C, I,F satisfies all of the
assumptions of Section 2.2 but one: the existence of a right adjoint to exponentiation with I.
However, the only place our development makes use of this assumption is in establishing (1).
We will instead give a different definition of C that still satisfies (1). Then the rest of our
development applies to simplicial sets.

A Kan fibration structure on a family Y : X → Uω in simplicial sets consists of a choice
of diagonal fillers in all commuting squares of the form

T. Coquand, S. Huber, and C. Sattler 11:23

Λmk //

��

Σ(x : X).Y x

��
∆m //

88

X

with left map a horn inclusion. Note that the codomains of horn inclusions are rep-
resentable. It follows that the presheaf of Kan fibration structures indexed over the slice
of simplicial sets over Uω is representable. Given [n] ∈ ∆ and A ∈ (Uω)n (i.e. an ω-small
presheaf on ∆/[n]), we define C([n], A) as the set of Kan fibration structures on A : ∆n → Uω.
This defines a level preserving map C : Uω → Uω. Then the representing object of the above
presheaf is given by the first projection Ufib

ω → Uω where Ufib
ω = Σ(X : Uω).C(X) is defined

as before.
Let us now verify (1). Given a simplicial set X with Y : X → Uω, a global element of

Fill(X,Y) corresponds to a uniform Kan fibration structure on Σ(x : X) (Y x)→ X in the
sense of [13]. A uniform Kan fibration structure induces a Kan fibration structure naturally
in X, giving the forward direction of (1). For the reverse direction, it suffices to give a
uniform Kan fibration structure in the generic case, i.e. a global element of Fill(Ufib

ω , λ(A, c).A).
This is [13, Theorem 8.9, part (ii)] together with the fact proved in [11, Chapter IV] that
Kan fibrations lift against pushout products of interval endpoint inclusions with (levelwise
decidable) monomorphisms.7

Having verified (1), the rest of our development applies just as well to the case of
simplicial sets. In particular, we obtain in the standard model S of Section 2.3 a version of
the simplicial set model [18] of univalent type theory (using Section 5.1 for identity types).8
As per Section 5.2, we furthermore obtain higher inductive types in the simplicial set model
in a way that avoids (as suggested by Andrew Swan [31]) the pitfall of fibrant replacement
failing to preserve size encountered in [22].

Seeing simplicial sets as a full subtopos of distributive lattice cubical sets as observed
in [19], there is a functor from cubical cwfs with (C, I,F) = (∆,∆1,Ω0,dec) to cubical cwfs
where C is the Lawvere theory of distributive lattices, I is represented by the generic object,
and F is the (small) sublattice of Ω0 generated by distributive lattice equations. The
cubical cwfs in the image of this functor satisfy a sheaf condition, which can be represented
syntactically as an operation allowing one to e.g. uniquely glue together to a type Γ `{i,j} A
coherent families of types Γf `X Af for f a map to X from the free distributive lattice on
symbols {i, j} such that f i ≤ f j or f j ≤ f i (compare also the tope logic of [26]).

Applying this functor to the simplicial set model S discussed above, we obtain an
interpretation of distributive lattice cubical type theory (with I and F as above) in the
sense of the current paper (crucially, without computation rules for filling at type formers)
in simplicial sets. Thus, this cubical type theory is homotopically sound: can only derive
statements which hold for standard homotopy types.

7 This is the only place where excluded middle is used, to produce a cellular decomposition in terms of
simplex boundary inclusions of such a monomorphism.

8 Instead of Kan fibration structures, we can also work with the property of being a Kan fibration. Then
C is valued in propositions and we would obtain in S a version of the simplicial set model in which
being a type is truly just a property. However, choice would be needed to obtain (1).

FSCD 2019

Polymorphic Higher-Order Termination
Łukasz Czajka
Faculty of Informatics, TU Dortmund, Germany
http://www.mimuw.edu.pl/~lukaszcz/
lukaszcz@mimuw.edu.pl

Cynthia Kop
Institute of Computer Science, Radboud University Nijmegen, The Netherlands
https://www.cs.ru.nl/~cynthiakop/
c.kop@cs.ru.nl

Abstract
We generalise the termination method of higher-order polynomial interpretations to a setting with
impredicative polymorphism. Instead of using weakly monotonic functionals, we interpret terms in
a suitable extension of System Fω. This enables a direct interpretation of rewrite rules which make
essential use of impredicative polymorphism. In addition, our generalisation eases the applicability
of the method in the non-polymorphic setting by allowing for the encoding of inductive data types.
As an illustration of the potential of our method, we prove termination of a substantial fragment of
full intuitionistic second-order propositional logic with permutative conversions.

2012 ACM Subject Classification Theory of computation → Rewrite systems; Theory of computa-
tion → Equational logic and rewriting; Theory of computation → Type theory

Keywords and phrases termination, polymorphism, higher-order rewriting, permutative conversions

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.12

Related Version Complete proofs for the results in this paper are available in an online appendix at
https://arxiv.org/pdf/1904.09859.pdf.

1 Introduction

Termination of higher-order term rewriting systems [21, Chapter 11] has been an active area of
research for several decades. One powerful method, introduced by v.d. Pol [23, 15], interprets
terms into weakly monotonic algebras. In later work [6, 12], these algebra interpretations are
specialised into higher-order polynomial interpretations, a generalisation of the popular – and
highly automatable – technique of polynomial interpretations for first-order term rewriting.

The methods of weakly monotonic algebras and polynomial interpretation are both limited
to monomorphic systems. In this paper, we will further generalise polynomial interpretations
to a higher-order formalism with full impredicative polymorphism. This goes beyond shallow
(rank-1, weak) polymorphism, where type quantifiers are effectively allowed only at the
top of a type: it would be relatively easy to extend the methods to a system with shallow
polymorphism since shallowly polymorphic rules can be seen as defining an infinite set of
monomorphic rules. While shallow polymorphism often suffices in functional programming
practice, there do exist interesting examples of rewrite systems which require higher-rank
impredicative polymorphism.

For instance, in recent extensions of Haskell one may define a type of heterogeneous lists.

List : ∗ foldlσ(f, a, nil) −→ a

nil : List foldlσ(f, a, consτ (x, l)) −→ foldlσ(f, fτax, l)
cons : ∀α.α→ List→ List
foldl : ∀β.(∀α.β → α→ β)→ β → List→ β

© Łukasz Czajka and Cynthia Kop;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8083-4280
http://www.mimuw.edu.pl/~lukaszcz/
mailto:lukaszcz@mimuw.edu.pl
https://orcid.org/0000-0002-6337-2544
https://www.cs.ru.nl/~cynthiakop/
mailto:c.kop@cs.ru.nl
https://doi.org/10.4230/LIPIcs.FSCD.2019.12
https://arxiv.org/pdf/1904.09859.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Polymorphic Higher-Order Termination

The above states that List is a type (∗), gives the types of its two constructors nil and cons,
and defines the corresponding fold-left function foldl. Each element of a heterogeneous list
may have a different type. In practice, one would constrain the type variable α with a type
class to guarantee the existence of some operations on list elements. The function argument
of foldl receives the element together with its type. The ∀-quantifier binds type variables:
a term of type ∀α.τ takes a type ρ as an argument and the result is a term of type τ [α := ρ].

Impredicativity of polymorphism means that the type itself may be substituted for its
own type variable, e.g., if f : ∀α.τ then f(∀α.τ) : τ [α := ∀α.τ]. Negative occurrences of
impredicative type quantifiers prevent a translation into an infinite set of simply typed rules
by instantiating the type variables. The above example is not directly reducible to shallow
polymorphism as used in the ML programming language.

Related work. The term rewriting literature has various examples of higher-order term
rewriting systems with some forms of polymorphism. To start, there are several studies that
consider shallow polymorphic rewriting (e.g., [9, 11, 25]), where (as in ML-like languages)
systems like foldl above cannot be handled. Other works consider extensions of the λΠ-
calculus [2, 4] or the calculus of constructions [1, 26] with rewriting rules; only the latter
includes full impredicative polymorphism. The termination techniques presented for these
systems are mostly syntactic (e.g., a recursive path ordering [11, 26], or general schema [1]),
as opposed to our more semantic method based on interpretations. An exception is [4], which
defines interpretations into Π-algebras; this technique bears some similarity to ours, although
the methodologies are quite different. A categorical definition for a general polymorphic
rewriting framework is presented in [5], but no termination methods are considered for it.

Our approach. The technique we develop in this paper operates on Polymorphic Functional
Systems (PFSs), a form of higher-order term rewriting systems with full impredicative
polymorphism (Section 3), that various systems of interest can be encoded into (including the
example of heterogeneous fold above). Then, our methodology follows a standard procedure:

we define a well-ordered set (I,�,�) (Section 4);
we provide a general methodology to map each PFS term s to a natural number JsK,
parameterised by a core interpretation for each function symbol (Section 5);
we present a number of lemmas to make it easy to prove that s � t or s � t whenever s
reduces to t (Section 6).

Due to the additional complications of full polymorphism, we have elected to only generalise
higher-order polynomial interpretations, and not v.d. Pol’s weakly monotonic algebras.
That is, terms of base type are always interpreted to natural numbers and all functions are
interpreted to combinations of addition and multiplication.

We will use the system of heterogeneous fold above as a running example to demonstrate
our method. However, termination of this system can be shown in other ways (e.g., an enco-
ding in System F). Hence, we will also study a more complex example in Section 7: termination
of a substantial fragment of IPC2, i.e., full intuitionistic second-order propositional logic
with permutative conversions. Permutative conversions [22, Chapter 6] are used in proof
theory to obtain “good” normal forms of natural deduction proofs, which satisfy e.g. the
subformula property. Termination proofs for systems with permutative conversions are
notoriously tedious and difficult, with some incorrect claims in the literature and no uniform
methodology. It is our goal to make such termination proofs substantially easier in the future.

Ł. Czajka and C. Kop 12:3

2 Preliminaries

In this section we recall the definition of System Fω (see e.g. [17, Section 11.7]), which
will form a basis both of our interpretations and of a general syntactic framework for the
investigated systems. In comparison to System F, System Fω includes type constructors
which results in a more uniform treatment. We assume familiarity with core notions of
lambda calculi such as substitution and α-conversion.

I Definition 2.1. Kinds are defined inductively: ∗ is a kind, and if κ1, κ2 are kinds then
so is κ1 ⇒ κ2. We assume an infinite set Vκ of type constructor variables of each kind κ.
Variables of kind ∗ are type variables. We assume a fixed set ΣTκ of type constructor symbols
paired with a kind κ, denoted c : κ. We define the set Tκ of type constructors of kind κ by
the following grammar. Type constructors of kind ∗ are types.

T∗ ::= V∗ | ΣT∗ | Tκ⇒∗Tκ | ∀VκT∗ | T∗ → T∗
Tκ1⇒κ2 ::= Vκ1⇒κ2 | ΣTκ1⇒κ2

| Tκ⇒(κ1⇒κ2)Tκ | λVκ1Tκ2

We use the standard notations ∀α.τ and λα.τ . When α is of kind κ then we use the
notation ∀α : κ.τ . If not indicated otherwise, we assume α to be a type variable. We treat
type constructors up to α-conversion.

I Example 2.2. If ΣT
∗ = {List} and ΣT

∗⇒∗⇒∗ = {Pair}, types are for instance List
and ∀α.Pairα List. The expression Pair List is a type constructor, but not a type. If
ΣT(∗⇒∗)⇒∗ = {∃} and σ ∈ T∗⇒∗, then both ∃(σ) and ∃(λα.σα) are types.

The compatible closure of the rule (λα.ϕ)ψ → ϕ[α := ψ] defines β-reduction on type
constructors. As type constructors are (essentially) simply-typed lambda-terms, their β-
reduction terminates and is confluent; hence every type constructor τ has a unique β-normal
form nfβ(τ). A type atom is a type in β-normal form which is neither an arrow τ1 → τ2
nor a quantification ∀α.τ .

We define FTV(ϕ) – the set of free type constructor variables of the type constructor ϕ –
in an obvious way by induction on ϕ. A type constructor ϕ is closed if FTV(ϕ) = ∅.

We assume a fixed type symbol χ∗ ∈ ΣT∗ . For κ = κ1 ⇒ κ2 we define χκ = λα : κ1.χκ2 .

I Definition 2.3. We assume given an infinite set V of variables, each paired with a type,
denoted x : τ . We assume given a fixed set Σ of function symbols, each paired with a closed
type, denoted f : τ . Every variable x and every function symbol f occurs only with one type
declaration.

The set of preterms consists of all expressions s such that s : σ can be inferred for some
type σ by the following clauses:

x : σ for (x : σ) ∈ V.
f : σ for all (f : σ) ∈ Σ.
λx : σ.s : σ → τ if (x : σ) ∈ V and s : τ .
(Λα : κ.s) : (∀α : κ.σ) if s : σ and α does not occur free in the type of a free variable of s.
s · t : τ if s : σ → τ and t : σ
s ∗ τ : σ[α := τ] if s : ∀α : κ.σ and τ is a type constructor of kind κ,
s : τ if s : τ ′ and τ =β τ

′.
The set of free variables of a preterm t, denoted FV(t), is defined in the expected way.
Analogously, we define the set FTV(t) of type constructor variables occurring free in t. If α
is a type then we use the notation Λα.t. We denote an occurrence of a variable x of type τ
by xτ , e.g. λx : τ → σ.xτ→σyτ . When clear or irrelevant, we omit the type annotations,

FSCD 2019

12:4 Polymorphic Higher-Order Termination

denoting the above term by λx.xy. Type substitution is defined in the expected way except
that it needs to change the types of variables. Formally, a type substitution changes the types
associated to variables in V. We define the equivalence relation ≡ by: s ≡ t iff s and t are
identical modulo β-conversion in types.

Note that we present terms in orthodox Church-style, i.e., instead of using contexts each
variable has a globally fixed type associated to it.

I Lemma 2.4. If s : τ and s ≡ t then t : τ .

Proof. Induction on s. J

I Definition 2.5. The set of terms is the set of the equivalence classes of ≡.

Because β-reduction on types is confluent and terminating, every term has a canonical
preterm representative – the one with all types occurring in it β-normalised. We define
FTV(t) as the value of FTV on the canonical representative of t. We say that t is closed
if both FTV(t) = ∅ and FV(t) = ∅. Because typing and term formation operations (ab-
straction, application, . . .) are invariant under ≡, we may denote terms by their (canonical)
representatives and informally treat them interchangeably.

We will often abuse notation to omit · and ∗. Thus, st can refer to both s · t and s ∗ t.
This is not ambiguous due to typing. When writing σ[α := τ] we implicitly assume that α
and τ have the same kind. Analogously with t[x := s].

I Lemma 2.6 (Substitution lemma).
1. If s : τ and x : σ and t : σ then s[x := t] : τ .
2. If t : σ then t[α := τ] : σ[α := τ].

Proof. Induction on the typing derivation. J

I Lemma 2.7 (Generation lemma). If t : σ then there is a type σ′ such that σ′ =β σ and
FTV(σ′) ⊆ FTV(t) and one of the following holds.

t ≡ x is a variable with (x : σ′) ∈ V.
t ≡ f is a function symbol with f : σ′ in Σ.
t ≡ λx : τ1.s and σ′ = τ1 → τ2 and s : τ2.
t ≡ Λα : κ.s and σ′ = ∀α : κ.τ and s : τ and α does not occur free in the type of a free
variable of s.
t ≡ t1 · t2 and t1 : τ → σ′ and t2 : τ and FTV(τ) ⊆ FTV(t).
t ≡ s ∗ τ and σ′ = ρ[α := τ] and s : ∀(α : κ).ρ and τ is a type constructor of kind κ.

Proof. By analysing the derivation t : σ. To ensure FTV(σ′) ⊆ FTV(t), note that if
α /∈ FTV(t) is of kind κ and t : σ′, then t : σ′[α := χκ] by the substitution lemma (thus we
can eliminate α). J

3 Polymorphic Functional Systems

In this section, we present a form of higher-order term rewriting systems based on Fω:
Polymorphic Functional Systems (PFSs). Systems of interest, such as logic systems like ICP2
and higher-order TRSs with shallow or full polymorphism can be encoded into PFSs, and
then proved terminating with the technique we will develop in Sections 4 – 6.

Ł. Czajka and C. Kop 12:5

I Definition 3.1. Kinds, type constructors and types are defined like in Definition 2.1,
parameterised by a fixed set ΣT =

⋃
κ ΣTκ of type constructor symbols.

Let Σ be a set of function symbols such that for f : σ ∈ Σ:

σ = ∀(α1 : κ1) . . . ∀(αn : κn).σ1 → . . .→ σk → τ (with τ a type atom)

We define PFS terms as in Definition 2.5 (based on Definition 2.3), parameterised by Σ, with
the restriction that for any subterm s · u of a term t, we have s = fρ1 . . . ρnu1 . . . um where:

f : ∀(α1 : κ1) . . . ∀(αn : κn).σ1 → . . .→ σk → τ (with τ a type atom and k > m)

This definition does not allow for a variable or abstraction to occur at the head of an
application, nor can we have terms of the form s · t ∗ τ · q (although terms of the form s · t ∗ τ ,
or x ∗ τ with x a variable, are allowed to occur). To stress this restriction, we will use
the notation fρ1,...,ρn(s1, . . . , sm) as an alternative way to denote fρ1 . . . ρns1 . . . sm when
f : ∀(α1 : κ1) . . . ∀(αn : κn).σ1 → . . .→ σk → τ is a function symbol in Σ with τ a type atom
and m ≤ k. This allows us to represent terms in a “functional” way, where application does
not explicitly occur (only implicitly in the construction of fρ1,...,ρn(s1, . . . , sm)).

The following result follows easily by induction on term structure:

I Lemma 3.2. If t, s are PFS terms then so is t[x := s].

PFS terms will be rewritten through a reduction relation −→R based on a (usually
infinite) set of rewrite rules. To define this relation, we need two additional notions.

I Definition 3.3. A replacement is a function δ = γ ◦ ω satisfying:
1. ω is a type constructor substitution,
2. γ is a term substitution such that γ(ω(x)) : ω(τ) for every (x : τ) ∈ V.

For τ a type constructor, we use δ(τ) to denote ω(τ). We use the notation δ[x := t] =
γ[x := t] ◦ ω. Note that if t : τ then δ(t) : δ(τ).

I Definition 3.4. A σ-context Cσ is a PFS term with a fresh function symbol �σ /∈ Σ
of type σ occurring exactly once. By Cσ[t] we denote a PFS term obtained from Cσ by
substituting t for �σ. We drop the σ subscripts when clear or irrelevant.

Now, the rewrite rules are simply a set of term pairs, whose monotonic closure generates
the rewrite relation.

I Definition 3.5. A set R of term pairs (`, r) is a set of rewrite rules if: (a) FV(r) ⊆ FV(`);
(b) ` and r have the same type; and (c) if (`, r) ∈ R then (δ(`), δ(r)) ∈ R for any replacement δ.
The reduction relation −→R on PFS terms is defined by:

t −→R s iff t = C[`] and s = C[r] for some (`, r) ∈ R and context C.

I Definition 3.6. A Polymorphic Functional System (PFS) is a triple (ΣT ,Σ,R) where ΣT
is a set of type constructor symbols, Σ a set of function symbols (restricted as in Def. 3.1),
and R is a set of rules as in Definition 3.5. A term of a PFS A is referred to as an A-term.

While PFS-terms are a restriction from the general terms of system Fω, the reduction
relation allows us to actually encode, e.g., system F as a PFS: we can do so by including the
symbol @ : ∀α∀β.(α→ β)→ α→ β in Σ and adding all rules of the form @σ,τ (λx.s, t) −→
s[x := t]. Similarly, β-reduction of type abstraction can be modelled by including a symbol

FSCD 2019

12:6 Polymorphic Higher-Order Termination

A : ∀α : ∗ ⇒ ∗.∀β.(∀γ.αγ) → αβ and rules Aλγ.σ,τ (Λγ.s) −→ s[γ := τ].1 We can also use
rules (Λα.s) ∗ τ −→ s[α := τ] without the extra symbol, but to apply our method it may be
convenient to use the extra symbol, as it creates more liberty in choosing an interpretation.

I Example 3.7 (Fold on heterogenous lists). The example from the introduction may be
represented as a PFS with one type symbol List : ∗, the following function symbols:

@ : ∀α∀β.(α→ β)→ α→ β

A : ∀α : ∗ ⇒ ∗.∀β.(∀γ.αγ)→ αβ

nil : List
cons : ∀α.α→ List→ List

foldl : ∀β.(∀α.β → α→ β)→ β → List→ β

and the following rules (which formally represents an infinite set of rules: one rule for each
choice of types σ, τ and PFS terms s, t, etc.):

@σ,τ (λx : σ.s, t) −→ s[x := t]
Aλα.σ,τ (Λα.s) −→ s[α := τ]

foldlσ(f, s, nil) −→ s

foldlσ(f, s, consτ (h, t)) −→ foldlσ(f,@τ,σ(@σ,τ→σ(Aλα.σ→α→σ,τ (f), s), h), t)

4 A well-ordered set of interpretation terms

In polynomial interpretations of first-order term rewriting [21, Chapter 6.2], each term s is
mapped to a natural number JsK, such that JsK > JtK whenever s −→R t. In higher-order
rewriting, this is not practical; instead, following [15], terms are mapped to weakly monotonic
functionals according to their type (i.e., terms with a 0-order type are mapped to natural
numbers, terms with a 1-order type to weakly monotonic functions over natural numbers,
terms with a 2-order type to weakly monotonic functionals taking weakly monotonic functions
as arguments, and so on). In this paper, to account for full polymorphism, we will interpret
PFS terms to a set I of interpretation terms in a specific extension of System Fω. This set is
defined in Section 4.1; we provide a well-founded partial ordering � on I in Section 4.2.

Although our world of interpretation terms is quite different from the weakly monotonic
functionals of [15], there are many similarities. Most pertinently, every interpretation term
λx.s essentially defines a weakly monotonic function from I to I. This, and the use of
both addition and multiplication in the definition of I, makes it possible to lift higher-order
polynomial interpretations [6] to our setting. We prove weak monotonicity in Section 4.3.

4.1 Interpretation terms
I Definition 4.1. The set Y of interpretation types is the set of types as in Definition 2.1
with ΣT = {nat : ∗}, i.e., there is a single type constant nat. Then χ∗ = nat.

The set I of interpretation terms is the set of terms from Definition 2.5 (see also
Definition 2.3) where as types we take the interpretation types and for the set Σ of function
symbols we take Σ = {n : nat | n ∈ N} ∪ Σf , where Σf = {⊕ : ∀α.α→ α→ α,⊗ : ∀α.α→
α→ α, flatten : ∀α.α→ nat, lift : ∀α.nat→ α}.

1 The use of a type constructor variable α of kind ∗ ⇒ ∗ makes it possible to do type substitution as
part of a rule. An application s ∗ τ with s : ∀γ.σ is encoded as Aλγ.σ,τ (s), so α is substituted with λγ.τ .
This is well-typed because (λγ.σ)γ =β σ and (λγ.σ)τ =β σ[γ := τ].

Ł. Czajka and C. Kop 12:7

For easier presentation, we write ⊕τ , ⊗τ , etc., instead of ⊕ ∗ τ , ⊗ ∗ τ , etc. We will
also use ⊕ and ⊗ in infix, left-associative notation, and omit the type denotation where
it is clear from context. Thus, s ⊕ t ⊕ u should be read as ⊕σ (⊕σ s t)u if s has type σ.
Thus, our interpretation terms include natural numbers with the operations of addition
and multiplication. It would not cause any fundamental problems to add more monotonic
operations, e.g., exponentiation, but we refrain from doing so for the sake of simplicity.

Normalising interpretation terms

The set I of interpretation terms can be reduced through a relation , that we will define
below. This relation will be a powerful aid in defining the partial ordering � in Section 4.2.

I Definition 4.2. We define the relation on interpretation terms as the smallest relation
on I for which the following properties are satisfied:
1. if s t then both λx.s λx.t and Λα.s Λα.t
2. if s t then u · s u · t
3. if s t then both s · u t · u and s ∗ σ t ∗ σ
4. (λx : σ.s) · t s[x := t] and (Λα.s) ∗ σ s[α := σ] (β-reduction)
5. ⊕nat · n ·m n+m and ⊗nat · n ·m n×m
6. ◦σ→τ · s · t λx : σ. ◦τ ·(s · x) · (t · x) for ◦ ∈ {⊕,⊗}
7. ◦∀α.σ · s · t Λα. ◦σ ·(s ∗ α) · (t ∗ α) for ◦ ∈ {⊕,⊗}
8. flattennat · s s

9. flattenσ→τ · s flattenτ · (s · (liftσ · 0))
10. flatten∀α:κ.σ · s flattenσ[α:=χκ] · (s ∗ χκ)
11. liftnat · s s

12. liftσ→τ · s λx : σ.liftτ · s
13. lift∀α.σ · s Λα.liftσ · s
Recall Definition 2.5 and Definition 4.1 of the set of interpretation terms I as the set of the
equivalence classes of ≡. So, for instance, liftnat above denotes the equivalence class of all
preterms liftσ with σ =β nat. Hence, the above rules are invariant under ≡ (by confluence
of β-reduction on types), and they correctly define a relation on interpretation terms. We
say that s is a redex if s reduces by one of the rules 4–13. A final interpretation term is an
interpretation term s ∈ I such that (a) s is closed, and (b) s is in normal form with respect
to . We let If be the set of all final interpretation terms. By Iτ (Ifτ) we denote the set of
all (final) interpretation terms of interpretation type τ .

An important difference with System Fω and related ones is that the rules for ⊕τ , ⊗τ ,
flattenτ and liftτ depend on the type τ . In particular, type substitution in terms may
create redexes. For instance, if α is a type variable then ⊕αt1t2 is not a redex, but ⊕σ→τ t1t2
is. This makes the question of termination subtle. Indeed, System Fω is extremely sensitive to
modifications which are not of a logical nature. For instance, adding a constant J : ∀αβ.α→ β

with a reduction rule Jττ λx : τ.x makes the system non-terminating [8]. This rule breaks
parametricity by making it possible to compare two arbitrary types. Our rules do not allow
such a definition. Moreover, the natural number constants cannot be distinguished “inside”
the system. In other words, we could replace all natural number constants with 0 and this
would not change the reduction behaviour of terms. So for the purposes of termination, the
type nat is essentially a singleton. This implies that, while we have polymorphic functions
between an arbitrary type α and nat which are not constant when seen “from outside” the
system, they are constant for the purposes of reduction “inside” the system (as they would
have to be in a parametric Fω-like system). Intuitively, these properties of our system ensure
that it stays “close enough” to Fω so that the standard termination proof still generalises.

FSCD 2019

12:8 Polymorphic Higher-Order Termination

Now we state some properties of , including strong normalisation. Because of space
limitations, most (complete) proofs are delegated to [3, Appendix A.1].

I Lemma 4.3 (Subject reduction). If t : τ and t t′ then t′ : τ .

Proof. By induction on the definition of t t′, using Lemmas 2.6 and 2.7. J

I Theorem 4.4. If t : σ then t is terminating with respect to .

Proof. By an adaptation of the Tait-Girard computability method. The proof is an adapt-
ation of chapters 6 and 14 from the book [7], and chapters 10 and 11 from the book [17].
Details are available in [3, Appendix A.1]. J

I Lemma 4.5. Every term s ∈ I has a unique normal form s↓. If s is closed then so is s↓.

Proof. One easily checks that is locally confluent. Since the relation is terminating by
Theorem 4.4, it is confluent by Newman’s lemma. J

I Lemma 4.6. The only final interpretation terms of type nat are the natural numbers.

I Example 4.7. Let s ∈ Inat→nat and t ∈ Inat. Then we can reduce (s⊕ liftnat→nat(1)) ·
t (λx.sx ⊕ liftnat→nat(1)x) · t st ⊕ liftnat→nat(1)t st ⊕ (λy.liftnat(1))t st ⊕
liftnat(1) st⊕ 1. If s and t are variables, this term is in normal form.

4.2 The ordering pair (�, �)
With these ingredients, we are ready to define the well-founded partial ordering � on I. In
fact, we will do more: rather than a single partial ordering, we will define an ordering pair :
a pair of a quasi-ordering � and a compatible well-founded ordering �. The quasi-ordering
� often makes it easier to prove s � t, since it suffices to show that s � s′ � t′ � t for some
interpretation terms s′, t′. Having � will also allow us to use rule removal (Theorem 6.1).

I Definition 4.8. Let R ∈ {�0,�0}. For closed s, t ∈ Iσ and closed σ in β-normal form,
the relation s Rσ t is defined coinductively by the following rules.

s↓ R t↓ in N
s Rnat t

s · q Rτ t · q for all q ∈ Ifσ
s Rσ→τ t

s ∗ τ Rnfβ(σ[α:=τ]) t ∗ τ for all closed τ ∈ Tκ
s R∀(α:κ).σ t

We define s ≈0
σ t if both s �0

σ t and t �0
σ s. We drop the type subscripts when clear or

irrelevant.

Note that in the case for nat the terms s↓, t↓ are natural numbers by Lemma 4.6 (s↓, t↓
are closed and in normal form, so they are final interpretation terms).

Intuitively, the above definition means that e.g. s �0 t iff there exists a possibly infinite
derivation tree using the above rules. In such a derivation tree all leaves must witness
s↓ > t↓ in natural numbers. However, this also allows for infinite branches, which solves
the problem of repeating types due to impredicative polymorphism. If e.g. s �0

∀α.α t then
s ∗ ∀α.α �0

∀α.α t ∗ ∀α.α, which forces an infinite branch in the derivation tree. According to
our definition, any infinite branch may essentially be ignored.

Formally, the above coinductive definition of e.g. �0
σ may be interpreted as defining the

largest relation such that if s �0
σ t then:

σ = nat and s↓ > t↓ in N, or
σ = τ1 → τ2 and s · q �0

τ2
t · q for all q ∈ Ifτ1

, or
σ = ∀(α : κ).ρ and s ∗ τ �0

nfβ(ρ[α:=τ]) t ∗ τ for all closed τ ∈ Tκ.

Ł. Czajka and C. Kop 12:9

For more background on coinduction see e.g. [14, 16, 10]. In this paper we use a few simple
coinductive proofs to establish the basic properties of � and �. Later, we just use these
properties and the details of the definition do not matter.

I Definition 4.9. A closure C = γ ◦ ω is a replacement such that ω(α) is closed for each
type constructor variable α, and γ(x) is closed for each term variable x. For arbitrary
types σ and arbitrary terms s, t ∈ I we define s �σ t if for every closure C we can obtain
C(s) �cnfβ(C(σ)) C(t) coinductively with the above rules. The relations �σ and ≈σ are defined
analogously.

Note that for closed s, t and closed σ in β-normal form, s �σ t iff s �0
σ t (and analogously

for �,≈). In this case we shall often omit the superscript 0.
The definition of � and � may be reformulated as follows.

I Lemma 4.10. t � s if and only if for every closure C and every sequence u1, . . . , un of closed
terms and closed type constructors such that C(t)u1 . . . un : nat we have (C(t)u1 . . . un)↓ ≥
(C(s)u1 . . . un)↓ in natural numbers. An analogous result holds with � or ≈ instead of �.

Proof. The direction from left to right follows by induction on n; the other by coinduction. J

In what follows, all proofs by coinduction could be reformulated to instead use the
lemma above. However, this would arguably make the proofs less perspicuous. Moreover, a
coinductive definition is better suited for a formalisation – the coinductive proofs here could
be written in Coq almost verbatim.

Our next task is to show that � and � have the desired properties of an ordering pair;
e.g., transitivity and compatibility. We first state a simple lemma that will be used implicitly.

I Lemma 4.11. If τ ∈ Y is closed and β-normal, then τ = nat or τ = τ1 → τ2 or τ = ∀ασ.

I Lemma 4.12. � is well-founded.

Proof. It suffices to show this for closed terms and closed types in β-normal form, because
any infinite sequence t1 �τ t2 �τ t3 �τ . . . induces an infinite sequence C(t1) �nfβ(C(τ))
C(t2) �nfβ(C(τ)) C(t3) �nfβ(C(τ)) . . . for any closure C. By induction on the size of a β-
normal type τ (with size measured as the number of occurrences of ∀ and →) one proves
that there does not exist an infinite sequence t1 �τ t2 �τ t3 �τ . . . For instance, if α
has kind κ and t1 �∀ατ t2 �∀ατ t3 �∀ατ . . . then t1 ∗ χκ �τ ′ t2 ∗ χκ �τ ′ t3 ∗ χκ �τ ′ . . .,
where τ ′ = nfβ(τ [α := χκ]). Because τ is in β-normal form, all redexes in τ [α := χκ] are
created by the substitution and must have the form χκu. Hence, by the definition of χκ (see
Definition 2.1) the type τ ′ is smaller than τ . This contradicts the inductive hypothesis. J

I Lemma 4.13. Both � and � are transitive.

Proof. We show this for �, the proof for � being analogous. Again, it suffices to prove this
for closed terms and closed types in β-normal form. We proceed by coinduction.

If t1 �nat t2 �nat t3 then t1↓ > t2↓ > t3↓, so t1↓ > t3↓. Thus t1 �nat t3.
If t1 �σ→τ t2 �σ→τ t3 then t1 · q �τ t2 · q �τ t3 · q for q ∈ Ifσ . Hence t1 · q �τ t3 · q for

q ∈ Ifσ by the coinductive hypothesis. Thus t1 �σ→τ t3.
If t1 �∀(α:κ)σ t2 �∀(α:κ)σ t3 then t1∗τ �σ′ t2∗τ �σ′ t3∗τ for any closed τ of kind κ, where

σ′ = nfβ(σ[α := τ]). By the coinductive hypothesis t1 ∗ τ �σ′ t3 ∗ τ ; thus t1 �∀ασ t3. J

I Lemma 4.14. � is reflexive.

FSCD 2019

12:10 Polymorphic Higher-Order Termination

Proof. By coinduction one shows that �σ is reflexive on closed terms for closed β-normal σ.
The case of � is then immediate from definitions. J

I Lemma 4.15. The relations � and � are compatible, i.e., � · � ⊆ � and � · � ⊆ �.

Proof. By coinduction, analogous to the transitivity proof. J

I Lemma 4.16. If t � s then t � s.

Proof. By coinduction. J

I Lemma 4.17. If t s then t ≈ s.

Proof. Follows from Lemma 4.10, noting that t s implies C(t) C(s) for all closures C. J

I Lemma 4.18. Assume t � s (resp. t � s). If t t′ or t′ t then t′ � s (resp. t′ � s).
If s s′ or s′ s then t � s′ (resp. t � s′).

Proof. Follows from Lemma 4.17, transitivity and compatibility. J

I Corollary 4.19. For R ∈ {�,�,≈}: s R t if and only if s ↓ R t ↓.

I Example 4.20. We can prove that x ⊕ liftnat→nat(1) � x: by definition, this holds if
s ⊕ liftnat→nat(1) � s for all closed s, so if (s ⊕ liftnat→nat(1))u � su for all closed s, u.
Following Example 4.7 and Lemma 4.18, this holds if su⊕ 1 � su. By definition, this is the
case if (su⊕ 1) ↓> (su) ↓ in the natural numbers, which clearly holds for any s, u.

4.3 Weak monotonicity
We will now show that s � s′ implies t[x := s] � t[x := s′] (weak monotonicity). For this
purpose, we prove a few lemmas, many of which also apply to �, stating the preservation
of � under term formation operations. We will need these results in the next section.

I Lemma 4.21. For R ∈ {�,�}: if t R s then tu R su with u a term or type constructor.

Proof. Follows from definitions. J

I Lemma 4.22. For R ∈ {�,�}: if n Rm then liftσn R liftσm for all types σ.

Proof. Without loss of generality we may assume σ closed and in β-normal form. By coin-
duction we show lift(n)u1 . . . uk � lift(m)u1 . . . uk for closed u1, . . . , uk. First note that
(lift t)u1 . . . uk ∗ lift(t) (with a different type subscript in lift on the right side, omitted
for conciseness). If σ = nat then (lift(n)u1 . . . uk)↓ = n ≥ m = (lift(m)u1 . . . uk)↓. If
σ = τ1 → τ2 then by the coinductive hypothesis lift(n)u1 . . . ukq �τ2 lift(m)u1 . . . ukq for
any q ∈ Ifτ1

, so lift(n)u1 . . . uk �σ lift(m)u1 . . . uk by definition. If σ = ∀(α : κ)τ then by
the coinductive hypothesis lift(n)u1 . . . ukξ �σ′ lift(m)u1 . . . ukξ for any closed ξ ∈ Tκ,
where σ′ = τ [α := ξ]. Hence lift(n)u1 . . . uk �σ lift(m)u1 . . . uk by definition. J

I Lemma 4.23. For R ∈ {�,�}: if t Rσ s then flattenσt Rnat flattenσs for all types σ.

Proof. Without loss of generality we may assume σ is closed and in β-normal form. Using
Lemma 4.18, the lemma follows by induction on σ. J

I Lemma 4.24. For R ∈ {�,�}: if t R s then λx.t R λx.s and Λα.t R Λα.s.

Ł. Czajka and C. Kop 12:11

Proof. Assume t �τ s and x : σ. Let C be a closure. We need to show C(λx.t) �C(σ→τ)

C(λx.s). Let u ∈ IfC(σ). Then C′ = C[x := u] is a closure and C′(t) �C(τ) C′(s). Hence
C(t)[x := u] �C(τ) C(s)[x := u]. By Lemma 4.18 this implies C(λx.t)u �C(τ) C(λx.s)u.
Therefore C(λx.t) �C(σ→τ) C(λx.s). The proof for � is analogous. J

I Lemma 4.25. Let s, t, u be terms of type σ.
1. If s � t then s⊕σ u � t⊕σ u, u⊕σ s � u⊕σ t, s⊗σ u � t⊗σ u, and u⊗σ s � u⊗σ t.
2. If s � t then s⊕σ u � t⊕σ u and u⊕σ s � u⊕σ t. Moreover, if additionally u � liftσ(1)

then also s⊗σ u � t⊗σ u and u⊗σ s � u⊗σ t.

Proof. It suffices to prove this for closed s, t, u and closed σ in β-normal form. The proof is
similar to the proof of Lemma 4.22. For instance, we show by coinduction that for closed
w1, . . . , wn (denoted ~w): if s~w � t~w and u~w � lift(1)~w then (s⊗ u)~w � (t⊗ u)~w. J

The following lemma depends on the lemmas above. The full proof may be found in [3,
Appendix A.2]. The proof is actually quite complex, and uses a method similar to Girard’s
method of candidates for the termination proof.

I Lemma 4.26 (Weak monotonicity). If s � s′ then t[x := s] � t[x := s′].

I Corollary 4.27. If s � s′ then ts � ts′.

5 A reduction pair for PFS terms

Recall that our goal is to prove termination of reduction in a PFS. To do so, in this section
we will define a systematic way to generate reduction pairs. We fix a PFS A, and define:

I Definition 5.1. A binary relation R on A-terms is monotonic if R(s, t) implies R(C[s], C[t])
for every context C (we assume s, t have the same type σ).

A reduction pair is a pair (�A,�A) of a quasi-order �A on A-terms and a well-founded
ordering �A on A-terms such that: (a) �A and �A are compatible, i.e., �A · �A ⊆ �A and
�A · �A ⊆ �A, and (b) �A and �A are both monotonic.

If we can generate such a pair with ` �A r for each rule (`, r) ∈ R, then we easily see that
the PFS A is terminating. (If we merely have ` �A r for some rules and ` �A r for the rest,
we can still progress with the termination proof, as we will discuss in Section 6.) To generate
this pair, we will define the notion of an interpretation from the set of A-terms to the set I
of interpretation terms, and thus lift the ordering pair (�,�) to A. In the next section, we
will show how this reduction pair can be used in practice to prove termination of PFSs.

One of the core ingredients of our interpretation function is a mapping to translate types:

I Definition 5.2. A type constructor mapping is a function TM which maps each type
constructor symbol to a closed interpretation type constructor of the same kind. A fixed type
constructor mapping TM is extended inductively to a function from type constructors to closed
interpretation type constructors in the expected way. We denote the extended interpretation
(type) mapping by JσK. Thus, e.g. J∀α.σK = ∀α.JσK and Jσ → τK = JσK→ JτK.

I Lemma 5.3. JσK[α := JτK] = Jσ[α := τ]K

Proof. Induction on σ. J

Similarly, we employ a symbol mapping as the key ingredient to interpret PFS terms.

FSCD 2019

12:12 Polymorphic Higher-Order Termination

I Definition 5.4. Given a fixed type constructor mapping TM, a symbol mapping is a
function J which assigns to each function symbol f : ρ a closed interpretation term J (f) of
type JρK. For a fixed symbol mapping J , we define the interpretation mapping JsK inductively:

JxK = x JΛα.sK = Λα.JsK Jt1 · t2K = Jt1K · Jt2K
JfK = J (f) Jλx : σ.sK = λx : JσK.JsK Jt ∗ τK = JtK ∗ JτK

Note that JσK, JτK above depend on TM. Essentially, J·K substitutes TM(c) for type con-
structor symbols c, and J (f) for function symbols f, thus mapping A-terms to interpretation
terms. This translation preserves typing:

I Lemma 5.5. If s : σ then JsK : JσK.

Proof. By induction on the form of s, using Lemma 5.3. J

I Lemma 5.6. For all s, t, x, α, τ : JsK[α := JτK] = Js[α := τ]K and JsK[x := JtK] = Js[x := t]K.

Proof. Induction on s. J

I Definition 5.7. For a fixed type constructor mapping TM and symbol mapping J , the
interpretation pair (�J ,�J) is defined as follows: s �J t if JsK � JtK, and s �J t if
JsK � JtK.

I Remark 5.8. The polymorphic lambda-calculus has a much greater expressive power
than the simply-typed lambda-calculus. Inductive data types may be encoded, along with
their constructors and recursors with appropriate derived reduction rules. This makes our
interpretation method easier to apply, even in the non-polymorphic setting, thanks to more
sophisticated “programming” in the interpretations. The reader is advised to consult e.g. [7,
Chapter 11] for more background and explanations. We demonstrate the idea by presenting
an encoding for the recursive type List and its fold-left function (see also Ex. 5.14).

I Example 5.9. Towards a termination proof of Example 3.7, we set TM(List) =
∀β.(∀α.β → α → β) → β → β and J (nil) = Λβ.λf : ∀α.β → α → β.λx : β.x. If we
additionally choose J (foldl) = Λβ.λf.λx.λl.lβfx⊕liftβ(1), we have Jfoldlσ(f, s, nil)K =
(Λβ.λf.λx.λl.lβfx⊕ liftβ(1))JσKfs(Λβ.λf.λx.x) ∗ s⊕ liftJσK(1) by β-reduction steps.
An extension of the proof from Example 4.20 shows that this term � JsK.

It is easy to see that �J and �J have desirable properties such as transitivity, reflexivity
(for �J) and well-foundedness (for �J). However, �J is not necessarily monotonic. Using the
interpretation from Example 5.9, Jfoldlσ(λx.s, t, nil)K = Jfoldσ(λx.w, t, nil)K regardless
of s and w, so a reduction in s would not cause a decrease in �J . To obtain a reduction
pair, we must impose certain conditions on J ; in particular, we will require that J is safe.

I Definition 5.10. If s1 � s2 implies t[x := s1] � t[x := s2], then the interpretation term t

is safe for x. A symbol mapping J is safe if for all f : ∀(α1 : κ1) . . . ∀(αn : κn).σ1 → . . .→
σk → τ with τ a type atom we have: J (f) = Λα1 . . . αn.λx1 . . . xk.t with t safe for each xi.

I Lemma 5.11.
1. xu1 . . . um is safe for x.
2. If t is safe for x then so are lift(t) and flatten(t).
3. If s1 is safe for x or s2 is safe for x then s1 ⊕ s2 is safe for x.
4. If either (a) s1 is safe for x and s2 � lift(1), or (b) s2 is safe for x and s1 � lift(1),

then s1 ⊗ s2 is safe for x.
5. If t is safe for x then so is Λα.t and λy.t (y 6= x).

Ł. Czajka and C. Kop 12:13

Proof. Each point follows from one of the lemmas proven before, Lemma 4.16, Lemma 4.26,
Lemma 4.15 and the transitivity of �. For instance, for the first, assume s1 � s2 and
let uji = ui[x := sj]. Then (xu1 . . . um)[x := s1] = s1u

1
1 . . . u

1
m. By Lemma 4.21 we

have s1u
1
1 . . . u

1
m � s2u

1
1 . . . u

1
m. By Lemma 4.16 and Lemma 4.26 we have u1

i � u2
i . By

Corollary 4.27 and the transitivity of � we obtain s2u
1
1 . . . u

1
m � s2u

2
1 . . . u

2
m. By Lemma 4.15

finally (xu1 . . . um)[x := s1] = s1u
1
1 . . . u

1
m � s2u

2
1 . . . u

2
m = (xu1 . . . um)[x := s2]. J

I Lemma 5.12. If J is safe then �J is monotonic.

Proof. Assume s1 �J s2. By induction on a context C we show C[s1] �J C[s2]. If C = �
then this is obvious. If C = λx.C ′ or C = Λα.C ′ then C ′[s1] �J C ′[s2] by the inductive
hypothesis, and thus C[s1] �J C[s2] follows from Lemma 4.24 and definitions. If C = C ′t

then C ′[s1] �J C ′[s2] by the inductive hypothesis, so C[s1] �J C[s2] follows from definitions.
Finally, assume C = t · C ′. Then t = fρ1 . . . ρnt1 . . . tm where f : ∀(α1 : κ1) . . . ∀(αn :

κn).σ1 → . . . → σk → τ with τ a type atom, m < k, and J (f) = Λα1 . . . αn.λx1 . . . xk.u

with u safe for each xi. Without loss of generality assume m = k − 1. Then JC[si]K
u′[xk := JC ′[si]K] where u′ = u[α1 := Jρ1K] . . . [αn := JρnK][x1 := Jt1K] . . . [xk−1 := Jtk−1K]. By
the inductive hypothesis JC ′[s1]K � JC ′[s2]K. Hence u′[xk := JC ′[s1]K] � u′[xk := JC ′[s2]K],
because u is safe for xk. Thus JC[s1]K � JC[s2]K by Lemma 4.18. J

I Theorem 5.13. If J is safe then (�J ,�J) is a reduction pair.

Proof. By Lemmas 4.13 and 4.14, �J is a quasi-order. Lemmas 4.12 and 4.13 imply that �J
is a well-founded ordering. Compatibility follows from Lemma 4.15. Monotonicity of �J
follows from Lemma 4.26. Monotonicity of �J follows from Lemma 5.12. J

I Example 5.14. The following is a safe interpretation for the PFS from Example 3.7:

TM(List) = ∀β.(∀α.β → α→ β)→ β → β

J (@) = Λα.Λβ.λf.λx. f · x⊕ liftβ(flattenα(x))
J (A) = Λα.Λβ.λx. x ∗ β

J (nil) = Λβ.λf.λx.x
J (cons) = Λα.λh.λt. Λβ.λf.λx.tβf(fαxh⊕ liftβ(flattenβ(x) ⊕

flattenα(h))) ⊕
liftβ(flattenβ(fαxh)⊕ flattenα(h)⊕ 1)

J (foldl) = Λβ.λf.λx.λl. lβfx⊕ liftβ(flatten∀α.β→α→β(f) ⊕
flattenβ(x)⊕ 1)

Note that J (cons) is not required to be safe for x, since x is not an argument of cons:
following its declaration, cons takes one type and two terms as arguments. The variable
x is only part of the interpretation. Note also that the current interpretation is a mostly
straightforward extension of Example 5.9: we retain the same core interpretations (which,
intuitively, encode @ and A as forms of application and encode a list as the function that
executes a fold over the list’s contents), but we add a clause ⊕lift(flatten(x)) for each
argument x that the initial interpretation is not safe for. The only further change is that,
in J (cons), the part between brackets has to be extended. This was necessitated by the
change to J (foldl), in order for the rules to still be oriented (as we will do in Example 6.6).

FSCD 2019

12:14 Polymorphic Higher-Order Termination

6 Proving termination with rule removal

A PFS A is certainly terminating if its reduction relation −→R is contained in a well-founded
relation, which holds if ` �J r for all its rules (`, r). However, sometimes it is cumbersome
to find an interpretation that orients all rules strictly. To illustrate, the interpretation of
Example 5.14 gives ` �J r for two of the rules and ` �J r for the others (as we will see in
Example 6.6). In such cases, proof progress is still achieved through rule removal.

I Theorem 6.1. Let R = R1∪R2, and suppose that R1 ⊆ �R and R2 ⊆ �R for a reduction
pair (�R,�R). Then −→R is terminating if and only if −→R2 is (so certainly if R2 = ∅).

Proof. Monotonicity of �R and �R implies that −→R1 ⊆ �R and −→R2 ⊆ �R.
By well-foundedness of �R, compatibility of �R and �R, and transitivity of �R, every

infinite −→R sequence can contain only finitely many −→R1 steps. J

The above theorem gives rise to the following rule removal algorithm:
1. While R is non-empty:

a. Construct a reduction pair (�R,�R) such that all rules in R are oriented by �R or
�R, and at least one of them is oriented using �R.

b. Remove all rules ordered by �R from R.
If this algorithm succeeds, we have proven termination.

To use this algorithm with the pair (�J ,�J) from Section 5, we should identify an
interpretation (TM,J) such that (a) J is safe, (b) all rules can be oriented with �J or
�J , and (c) at least one rule is oriented with �J . The first requirement guarantees that
(�J ,�J) is a reduction pair (by Theorem 5.13). Lemma 5.11 provides some sufficient safety
criteria. The second and third requirements have to be verified for each individual rule.

I Example 6.2. We continue with our example of fold on heterogeneous lists. We prove
termination by rule removal, using the symbol mapping from Example 5.14. We will show:

@σ,τ (λx : σ.s, t) �J s[x := t]
Aλα.σ,τ (Λα.s) �J s[α := τ]

foldlσ(f, s, nil) �J s

foldlσ(f, s, consτ (h, t)) �J foldlσ(f,@τ,σ(@σ,τ→σ(Aλα.σ→α→σ,τ (f), s), h), t)

Consider the first inequality; by definition it holds if J@σ,τ (λx : σ.s, t)K � Js[x := t]K. Since
J@σ,τ (λx : σ.s, t)K ∗ JsK[x := JtK]⊕liftJτK(flattenJσK(JtK)), and JsK[x := JtK] = Js[x := t]K
(by Lemma 5.6), it suffices by Lemma 4.17 if Js[x := t]K⊕liftJτK(flattenJσK(JtK)) � Js[x :=
t]K. This is an instance of the general rule u⊕ w � u that we will obtain below.

To prove inequalities s � t and s � t, we will often use that � and � are transitive
and compatible with each other (Lem. 4.13 and 4.15), that ⊆≈ (Lem. 4.17), that � is
monotonic (Lem. 4.26), that both � and � are monotonic over lift and flatten (Lem. 4.22
and 4.23) and that interpretations respect substitution (Lem. 5.6). We will also use Lemma
4.25 which states (among other things) that s � t implies s⊕ u � t⊕ u. In addition, we can
use the calculation rules below. The proofs may be found in [3, Appendix A.3].

I Lemma 6.3. For all types σ and all terms s, t, u of type σ, we have:
1. s⊕σ t ≈ t⊕σ s and s⊗σ t ≈ t⊗σ s;
2. s⊕σ (t⊕σ u) ≈ (s⊕σ t)⊕σ u and s⊗σ (t⊗σ u) ≈ (s⊗σ t)⊗σ u;
3. s⊗σ (t⊕σ u) ≈ (s⊗σ t)⊕σ (s⊗σ u);
4. (liftσ0)⊕σ s ≈ s and (liftσ1)⊗σ s ≈ s.

Ł. Czajka and C. Kop 12:15

I Lemma 6.4.
1. liftσ(n+m) ≈σ (liftσn)⊕σ (liftσm);
2. liftσ(nm) ≈σ (liftσn)⊗σ (liftσm);
3. flattenσ(liftσ(n)) ≈ n.

I Lemma 6.5. For all types σ, terms s, t of type σ and natural numbers n > 0:
1. s⊕σ t � s and s⊕σ t � t;
2. s⊕σ (liftσn) � s and (liftσn)⊕σ t � t.

Note that these calculation rules immediately give the inequality x⊕ liftnat→nat(1) � x
from Example 4.20, and also that liftσ(n) � liftσ(m) whenever n > m. By Lemmas 4.25
and 6.5 we can use absolute positiveness: the property that (a) s � t if we can write
s ≈ s1⊕· · ·⊕sn and t ≈ t1⊕· · ·⊕ tk with k ≤ n and si � ti for all i ≤ k, and (b) if moreover
s1 � t1 then s � t. This property is typically very useful to dispense the obligations obtained
in a termination proof with polynomial interpretations.

I Example 6.6. We now have the tools to finish the example of heterogeneous lists (still
using the interpretation from Example 5.14). The proof obligation from Example 6.2, that
J@σ,τ (λx : σ.s, t)K � Js[x := t]K, is completed by Lemma 6.5(1). We have JAλα.σ,τ (Λα.s)K ≈
JΛα.sK ∗ JτK ≈ Js[α := τ]K by Lemma 5.6, and Jfoldlσ(f, s, nil)K = JnilK ∗ JσK · JfK · JsK⊕
liftJσK(〈something〉 ⊕ 1) ≈ JsK ⊕ liftJσK(〈something〉 ⊕ 1) � JsK by Lemmas 6.4(1) and
6.5(1). For the last rule note that (using only Lemmas 4.17 and 6.4(1)):

Jfoldlσ(f, s, consτ (h, t))K ≈
Jconsτ (h, t))K ∗ JσK · JfK · JsK⊕ liftJσK(flatten(JfK)⊕ flatten(JsK)⊕ 1) ≈
(JtK ∗ JσK · JfK · (JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK))) ⊕

liftJσK(flatten(JfK ∗ JτK · JsK · JhK)⊕ flatten(JhK)⊕ 1)) ⊕
liftJσK(flatten(JfK)⊕ flatten(JsK)⊕ 1) ≈

JtK ∗ JσK · JfK · (JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK))) ⊕
liftJσK(flatten(JfK ∗ JτK·JsK·JhK)⊕ flatten(JhK)⊕ flatten(JfK)⊕ flatten(JsK)⊕ 2)

On the right-hand side of the inequality, noting that liftσ→τ (u) · w ∗ liftτ (u), we
have:

Jfoldlσ(f,@τ,σ(@σ,τ→σ(Aλα.σ→α→σ,τ (f), s), h), t)K ≈
J (foldl)σ(JfK, JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK)), JtK) ≈
JtK ∗ JσK · JfK · (JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK))) ⊕

liftJσK(flatten(JfK)⊕ flatten(JfK ∗ JτK · JsK · JhK ⊕
liftJσK(flatten(JsK)⊕ flatten(JhK)))⊕ 1) ≈

JtK ∗ JσK · JfK · (JfK ∗ JτK · JsK · JhK⊕ liftJσK(flatten(JsK)⊕ flatten(JhK))) ⊕
liftJσK(flatten(JfK)⊕ flatten(JfK ∗ JτK·JsK·JhK)⊕ flatten(JsK)⊕ flatten(JhK)⊕ 1)

Now the right-hand side is the left-hand side ⊕ lift(1). Clearly, the rule is oriented with
�. Thus, we may remove the last two rules, and continue the rule removal algorithm
with only the first two, which together define β-reduction. This is trivial, for instance
with an interpretation J (@) = Λα.Λβ.λf.λx.(f · x)⊕ liftβ(flattenα(x)⊕ 1) and J (A) =
Λα.Λβ.λx.x ∗ β ⊕ liftαβ(1).

7 A larger example

System F is System Fω where no higher kinds are allowed, i.e., there are no type constructors
except types. By the Curry-Howard isomorphism F corresponds to the universal-implicational
fragment of intuitionistic second-order propositional logic, with the types corresponding to
formulas and terms to natural deduction proofs. The remaining connectives may be encoded
in F, but the permutative conversion rules do not hold [7].

FSCD 2019

12:16 Polymorphic Higher-Order Termination

In this section we show termination of the system IPC2 (see [18]) of intuitionistic second-
order propositional logic with all connectives and permutative conversions, minus a few
of the permutative conversion rules for the existential quantifier. The paper [18] depends
on termination of IPC2, citing a proof from [27], which, however, later turned out to be
incorrect. Termination of Curry-style IPC2 without ⊥ as primitive was shown in [20]. To our
knowledge, termination of the full system IPC2 remains an open problem, strictly speaking.
I Remark 7.1. Our method builds on the work of van de Pol and Schwichtenberg, who used
higher-order polynomial interpretations to prove termination of a fragment of intuitionistic
first-order logic with permutative conversions [24], in the hope of providing a more perspicuous
proof of this well-known result. Notably, they did not treat disjunction, as we will do. More
fundamentally, their method cannot handle impredicative polymorphism necessary for second-
order logic.

The system IPC2 can be seen as a PFS with type constructors:

ΣTκ = { ⊥ : ∗, or : ∗ ⇒ ∗ ⇒ ∗, and : ∗ ⇒ ∗ ⇒ ∗, ∃ : (∗ ⇒ ∗)⇒ ∗}

We have the following function symbols:

@ : ∀α∀β.(α→ β)→ α→ β ε : ∀α.⊥ → α

tapp : ∀α : ∗ ⇒ ∗.∀β.(∀β[αβ])→ αβ pr1 : ∀α∀β.andαβ → α

pair : ∀α∀β.α→ β → andαβ pr2 : ∀α∀β.andαβ → β

case : ∀α∀β∀γ.orαβ → (α→ γ)→ (β → γ)→ γ in1 : ∀α∀β.α→ orαβ
let : ∀α : ∗ ⇒ ∗.∀β.(∃(α))→ (∀γ.αγ → β)→ β in2 : ∀α∀β.β → orαβ
ext : ∀α : ∗ ⇒ ∗.∀β.αβ → ∃(α)

The types represent formulas in intuitionistic second-order propositional logic, and the
terms represent proofs. For example, a term caseσ,τ,ρ s u v is a proof term of the formula
ρ, built from a proof s of or σ τ , a proof u that σ implies ρ and a proof v that τ implies ρ.
Proof terms can be simplified using 28 reduction rules, including the following (the full set of
rules is available in [3, Appendix B]):

@σ,τ (λx.s, t) −→ s[x := t]
tappλα.σ,τ (Λα.s) −→ s[α := τ] letϕ,ρ(extϕ,τ (s),Λα.λx.t) −→ t[α := τ][x := s]

pr1
σ,τ (pairσ,τ (s, t)) −→ s caseσ,τ,ρ(in1

σ,τ (u), λx.s, λy.t) −→ s[x := u]
pr2
σ,τ (pairσ,τ (s, t)) −→ t caseσ,τ,ρ(in2

σ,τ (u), λx.s, λy.t) −→ t[x := u]

@σ,τ (εσ→τ (s), t) −→ ετ (s)
caseσ,τ,ρ(εorσ τ (u), λx.s, λy.t) −→ ερ(u)
ερ(caseσ,τ,⊥(u, λx.s, λy.t)) −→ caseσ,τ,ρ(u, λx.ερ(s), λy.ερ(t))
pr2
ρ,π(caseσ,τ,and ρ,π(u, λx.s, λy.t)) −→ caseσ,τ,π(u, λx.pr2

ρ,π(s), λy.pr2
ρ,π(t))

caseρ,π,ξ(caseσ,τ,or ρ π(u, λx.s, λy.t), λz.v, λa.w) −→
caseσ,τ,ξ(u, λx.caseρ,π,ξ(s, λz.v, λa.w), λy.caseρ,π,ξ(t, λz.v, λa.w))

letϕ,ρ(caseσ,τ,∃ϕ(u, λx.s, λy.t), v) −→ caseσ,τ,ρ(u, λx.letϕ,ρ(s, v), λy.letϕ,ρ(t, v))
(∗) letψ,ρ(letϕ,∃ψ(s,Λα.λx : ϕα.t), u) −→ letϕ,ρ(s,Λα.λx : ϕα.letψ,ρ(t, u))
To define an interpretation for IPC2, we will use the standard encoding of product and

existential types (see [7, Chapter 11] for more details).

σ × τ = ∀p.(σ → τ → p)→ p π1
σ,τ (t) = tσ(λx : σ.λy : τ.x)

〈t1, t2〉σ,τ = Λp.λx : σ → τ → p.xt1t2 π2
σ,τ (t) = tτ(λx : σ.λy : τ.y)

Σα.σ = ∀p.(∀α.σ → p)→ p [τ, t]Σα.σ = Λp.λx : ∀α.σ → p.xτt

letρ t be [α, x : σ] in s = tρ(Λα.λx : σ.s)

Ł. Czajka and C. Kop 12:17

We do not currently have an algorithmic method to find a suitable interpretation. Instead,
we used the following manual process. We start by noting the minimal requirements given by
the first set of rules (e.g., that pr1

σ,τ (pairσ,τ (s, t)) � s); to orient these inequalities, it would be
good to for instance have Jpairσ,τ (s, t)K � 〈JsK, JtK〉JσK,JτK and Jpriσ,τ (s)K = πiJσK,JτK(JsK). To
make the interpretation safe, we additionally include clauses lift(flatten(x)) for any unsafe
arguments x; to make the rules strictly oriented, we include clauses lift(1). Unfortunately,
this approach does not suffice to orient the rules where some terms are duplicated, such
as the second- and third-last rules. To handle these rules, we multiply the first argument
of several symbols with the second (and possibly third). Some further tweaking gives the
following safe interpretation, which orients most of the rules:

TM(⊥) = nat TM(and) = λα1λα2.α1 × α2
TM(∃) = λ(α : ∗ ⇒ ∗).Σγ.αγ TM(or) = λα1λα2.α1 × α2

J (ε) = Λα : ∗.λx : nat. liftα(2⊗ x⊕ 1)
J (@) = ΛαΛβλx : α→ β.λy : α. liftβ(2)⊗ (x · y)⊕ liftβ(flattenα(y) ⊕

flattenα→β(x)⊗ flattenβ(y)⊕ 1)
J (tapp) = Λα : ∗ ⇒ ∗.Λβ.λx : ∀γ.αγ. liftαβ(2)⊗ (x ∗ β)⊕ liftαβ(1)
J (ext) = Λα : ∗ ⇒ ∗.Λβ : ∗.λx : αβ. [β, x]⊕ liftΣγ.βγ(flattenαγ(x))
J (pair) = ΛαΛβλx : α, y : β. 〈x, y〉 ⊕ liftα×β(flattenα(x)⊕ flattenβ(y))
J (pr1) = ΛαΛβλx : α× β. liftα(2)⊗ π1(x)⊕ liftα(1)
J (pr2) = ΛαΛβλx : α× β. liftβ(2)⊗ π2(x)⊕ liftβ(1)
J (in1) = ΛαΛβλx : α. 〈x, liftβ(1)〉 ⊕ liftα×β(flattenα(x))
J (in2) = ΛαΛβλx : β. 〈liftα(1), x〉 ⊕ liftα×β(flattenβ(x))

J (let) = Λα : ∗ ⇒ ∗.Λβ : ∗.λx : Σξ.αξ, y : ∀ξ.αξ → β.

liftβ(1)⊕ liftβ(2)⊗ (letβ x be [ξ, z] in yξz) ⊕
liftβ(flattenΣγ.αγ(x)⊕ 1)⊗ (y ∗ nat · liftαnat(0))

J (case) = Λα, β, ξ.λx : α× β, y : (α→ ξ), z : (β → ξ).
liftξ(2)⊕ liftξ(3⊗ flattenα×β(x))⊕

liftξ(flattenα×β(x)⊕ 1)⊗ (y · π1(x)⊕ z · π2(x))
Above, ⊗ binds stronger than ⊕. The derivations to orient rules with these interpretations

are also given in [3, Appendix B].
The only rules that are not oriented with this interpretation – not with � either – are

the ones of the form f(let(s, t), . . .) −→ let(s, f(t, . . .)), like the rule marked (*) above.
Nonetheless, this is already a significant step towards a systematic, extensible methodology
of termination proofs for IPC2 and similar systems of higher-order logic. Verifying the
orientations is still tedious, but our method raises hope for at least partial automation, as
was done with polynomial interpretations for non-polymorphic higher-order rewriting [6].

8 Conclusions and future work

We introduced a powerful and systematic methodology to prove termination of higher-order
rewriting with full impredicative polymorphism. To use the method one just needs to invent
safe interpretations and verify the orientation of the rules with the calculation rules.

As the method is tedious to apply manually for larger systems, a natural direction
for future work is to look into automation: both for automatic verification that a given
interpretation suffices and – building on existing termination provers for first- and higher-order
term rewriting – for automatically finding a suitable interpretation.

In addition, it would be worth exploring improvements of the method that would allow
us to handle the remaining rules of IPC2, or extending other techniques for higher-order
termination such as orderings (see, e.g., [11]) or dependency pairs (e.g., [13, 19]).

FSCD 2019

12:18 Polymorphic Higher-Order Termination

References
1 F. Blanqui. Definitions by rewriting in the Calculus of Constructions. MSCS, 15(1):37–92,

2005.
2 D. Cousineau and G. Dowek. Embedding Pure Type Systemsin the lambda-Pi-calculus modulo.

In TLCA, pages 102–117, 2017.
3 Ł. Czajka and C. Kop. Polymorphic Higher-Order Termination (extended version), 2019.

arXiv:1904.09859.
4 G. Dowek. Models and termination of proof reduction in the λΠ-calculus modulo theory. In

ICALP, pages 109:1–109:14, 2017.
5 M. Fiore and M. Hamana. Multiversal Polymorphic Algebraic Theories: syntacs, semantics,

translations and equational logic. In LICS, pages 520–520, 2013.
6 C. Fuhs and C. Kop. Polynomial Interpretations for Higher-Order Rewriting. In RTA, pages

176–192, 2012.
7 J.-V. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University Press, 1989.
8 J.-Y. Girard. Une Extension De l’Interpretation De Gödel a l’Analyse, Et Son Application a

l’Elimination Des Coupures Dans l’Analyse Et La Theorie Des Types. In SLS, pages 63–92.
Elsevier, 1971.

9 M. Hamana. Polymorphic Rewrite Rules: Confluence, Type Inference, and Instance Validation.
In FLOPS, pages 99–115, 2018.

10 B. Jacobs and J. Rutten. An introduction to (co)algebras and (co)induction. In Advanced
Topics in Bisimulation and Coinduction, pages 38–99. Cambridge University Press, 2011.

11 J. Jouannaud and A. Rubio. Polymorphic higher-order recursive path orderings. JACM,
54(1):1–48, 2007.

12 C. Kop. Higher Order Termination. PhD thesis, VU University Amsterdam, 2012.
13 C. Kop and F. van Raamsdonk. Dynamic Dependency Pairs for Algebraic Functional Systems.

LMCS, 8(2):10:1–10:51, 2012.
14 D. Kozen and A. Silva. Practical coinduction. Mathematical Structures in Computer Science,

27(7):1132–1152, 2017.
15 J.C. van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis, University of

Utrecht, 1996.
16 D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,

2012.
17 M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.
18 M.H. Sørensen and P. Urzyczyn. A Syntactic Embedding of Predicate Logic into Second-Order

Propositional Logic. Notre Dame Journal of Formal Logic, 51(4):457–473, 2010.
19 S. Suzuki, K. Kusakari, and F. Blanqui. Argument Filterings and Usable Rules in Higher-Order

Rewrite Systems. IPSJ Transactions on Programming, 4(2):1–12, 2011.
20 M. Tatsuta. Simple Saturated Sets for Disjunction and Second-Order Existential Quantification.

In TLCA 2007, pages 366–380, 2007.
21 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
22 A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press, 1996.
23 J.C. van de Pol. Termination Proofs for Higher-order Rewrite Systems. In HOA, pages 305–325,

1993.
24 J.C. van de Pol and H. Schwichtenberg. Strict Functionals for Termination Proofs. In TLCA

95, pages 350–364, 1995.
25 D. Wahlstedt. Type Theory with First-Order Data Types and Size-Change Termination. PhD

thesis, Göteborg University, 2004.
26 D. Walukiewicz-Chrząszcz. Termination of rewriting in the Calculus of Constructions. JFP,

13(2):339–414, 2003.
27 A. Wojdyga. Short Proofs of Strong Normalization. In MFCS, pages 613–623, 2008.

http://arxiv.org/abs/1904.09859

On the Taylor Expansion of Probabilistic λ-terms
Ugo Dal Lago
University of Bologna, Italy
INRIA Sophia Antipolis, France
ugo.dallago@unibo.it

Thomas Leventis
INRIA Sophia Antipolis, France
thomas.leventis@ens-lyon.org

Abstract
We generalise Ehrhard and Regnier’s Taylor expansion from pure to probabilistic λ-terms. We prove
that the Taylor expansion is adequate when seen as a way to give semantics to probabilistic λ-terms,
and that there is a precise correspondence with probabilistic Böhm trees, as introduced by the
second author. We prove this adequacy through notions of probabilistic resource terms and explicit
Taylor expansion.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of computa-
tion → Equational logic and rewriting

Keywords and phrases Probabilistic Lambda-Calculi, Taylor Expansion, Linear Logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.13

Related Version A full version of the paper is available at http://arxiv.org/abs/1904.09650.

Funding The authors are partially supported by the ERC Consolidator Grant DLV-818616
DIAPASoN, as well as by the ANR projects 14CE250005 ELICA and 16CE250011 REPAS.

1 Introduction

Linear logic is a proof-theoretical framework which, since its inception [10], has been built
around an analogy between on the one hand linearity in the sense of linear algebra, and on the
other hand the absence of copying and erasing in cut elimination and higher-order rewriting.
This analogy has been pushed forward by Ehrhard and Regnier, who introduced a series of
logical and computational frameworks accounting, along the same analogy, for concepts like
that of a differential, or the very related one of an approximation. We are implicitly referring
to differential λ-calculus [6], to differential linear logic [8], and to the Taylor expansion of
ordinary λ-terms [9]. The latter has given rise to an extremely interesting research line, with
many deep contributions in the last ten years. Not only the Taylor expansion of pure λ-terms
has been shown to be endowed with a well-behaved notion of reduction, but the Böhm tree
and Taylor expansion operators are now known to commute [7]. This easily implies that the
equational theory (on pure λ-terms) induced by the Taylor expansion coincides with the one
induced by Böhm trees.

The Taylor expansion operator is essentially quantitative, in that its codomain is not
merely the set of resource terms [3, 6], a term syntax for promotion-free differential proofs,
but the set of linear combinations of those terms, with positive real number coefficients.
When enlarging the domain of the operator to account for a more quantitative language,
one is naturally lead to consider algebraic λ-calculi, to which giving a clean computational
meaning has been proved hard so far [18].

But what about probabilistic λ-calculi [11], which have received quite some attention
recently (see, e.g. [5, 2, 16]) due to their applicability to randomised computation and bayesian
programming? Can the Taylor expansion naturally be generalised to those calculi? This

© Ugo Dal Lago and Thomas Leventis;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ugo.dallago@unibo.it
mailto:thomas.leventis@ens-lyon.org
https://doi.org/10.4230/LIPIcs.FSCD.2019.13
http://arxiv.org/abs/1904.09650
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 On the Taylor Expansion of Probabilistic λ-terms

is an interesting question, to which we give the first definite positive answer in this paper.
In particular, we show that the Taylor expansion of probabilistic λ-terms is a conservative
extension of the well-known one on ordinary λ-terms. In particular, the target can be taken,
as usual, as a linear combination of ordinary resource terms, i.e., the same kind of structure
which Ehrhard and Regnier considered in their work on the Taylor expansion of pure λ-terms.
We moreover show that the Taylor expansion, as extended to probabilistic λ-terms, continues
to enjoy the nice properties it has in the deterministic realm. In particular, it is adequate as
a way to give semantics to probabilistic λ-terms, and the equational theory on probabilistic
λ-terms induced by Taylor expansion coincides with the one induced by a probabilistic
variation on Böhm trees [1]. The latter, noticeably, has been proved to capture observational
equivalence, one quotiented modulo η-equivalence [1].

Are we the first ones to embark on the challenge of generalising Taylor’s expansion to
probabilistic λ-calculi, and in general to effectful calculi? Actually, some steps in this direction
have recently been taken. First of all, we need to mention the line of works originated by
Tsukada and Ong’s paper on rigid resource terms [14]. This has been claimed from the very
beginning to be a way to model effects in the resource calculus, but it has also been applied
to, among others, probabilistic effects, giving rise to quantitative denotational models [15].
The obtained models are based on species, and are proved to be adequate. The construction
being generic, there is no aim at providing a precise comparison between the discriminating
power of the obtained theory and, say, observational equivalence: the choice of the underlying
effect can in principle have a huge impact on it.

One should also mention Vaux’s work on the algebraic λ-calculus [18], where one can
build arbitrary linear combinations of terms. He showed a correspondence between Taylor
expansion and Böhm trees, but only for terms whose Böhm trees approximants at finite
depths are computable in a finite number of steps. This includes all ordinary λ-terms
but not all probabilistic ones. More recently Olimpieri and Vaux have studied a Taylor
expansion for a non-deterministic λ-calculus [19] corresponding to our notion of explicit
Taylor expansion (Section 3).

The Probabilistic Taylor Expansion, Informally
The main idea behind building the Taylor expansion of any λ-term M is to describe the
dynamics of M by way of linear approximations of M . In the realm of the λ-calculus, a
linear approximation has traditionally been taken as a resource term:

s, t ∈ ∆ := x | λx.s | 〈s〉 t s, t ∈ ∆! := [s1, . . . , sn].

A resource term can be seen as a pure λ-term in which applications have the form 〈s〉 t,
where s is a term and t is a multiset of terms, and in which the result of firing the redex
〈λx.s〉 t is the linear combination of all the terms obtained by allocating the resources in t
to the occurrences of x in s. For instance, one such element in the Taylor expansion of δ is
λx.(〈x〉 [x]), where the occurrence of x in head position is provided with only one copy of
its argument. If applied to the multiset [y, z], this term would reduce into 〈y〉 [z] + 〈z〉 [y].
Similarly, an element in the Taylor expansion of δ I would be 〈λx.〈x〉 [x]〉 [I2], which reduces
into 2.〈I〉 [I]. Another element of the same Taylor expansion is 〈λx.〈x〉 [x]〉 [I3], but this one
reduces into 0: there is no way to use its resources linearly, i.e., using them without copying
and erasing.

The actual Taylor expansion of a term is built by translating any application M N into
an infinite sum

(M N)∗ =
∑
n∈N

1
n! .〈M

∗〉 [(N∗)n]

U. Dal Lago and T. Leventis 13:3

δ (I ⊕ Ω) (I ⊕ Ω) (I ⊕ Ω)

Ω (I ⊕ Ω)

I (I ⊕ Ω) I ⊕ Ω

Ω

I

1
2

1
2

1
2

1
2

Figure 1 M ’s Reduction Tree.

and x∗ = x, (λx.M)∗ = λx.M∗. Remark that M∗ and N∗ are linear combinations, but
constructors of the resource calculus are multilinear. For instance (λx.M)∗ =

∑
s∈∆M∗s .λx.s.

As an example the Taylor expansion of δ I is
∑
m,n∈N

1
m!n! .〈λx.〈x〉 [xm]〉 [In]. Remark that

any summand properly reduces only when n = m+ 1, in which case it reduces to n!.〈I〉 [Im].
In turn 〈I〉 [Im] reduces properly only when m = 1, and the result is I. All the other terms
reduce to 0. In the end the Taylor expansion of δ I normalises to 2!

1!2! .I = I, which is exactly
the Taylor expansion of the normal form of δ I. More generally every Taylor expansion is
normalisable, and the normal form of the Taylor expansion of a term corresponds to the
Taylor expansion of its Böhm tree, hence (normal forms of) Taylor expansions yields an
interesting model of deterministic λ-calculus.

Now let us consider the probabilistic λ-term M = δ(I ⊕ Ω), where ⊕ is an operator for
binary, fair, probabilistic choice, δ = λx.xx, I = λ.x.x and Ω = δδ is a purely diverging,
term. As such, M is a term of a minimal, untyped, probabilistic λ-calculus. Evaluation
of M is performed leftmost-outermost is as in Figure 1. In particular, the probability of
convergence for M is 1

4 . Please observe that two copies of the argument I ⊕ Ω are produced,
and that the “rightmost” one is evaluated only when the “leftmost” one converges, i.e. when
the probabilistic choice I ⊕ Ω produces I as a result.

Extending the Taylor expansion to probabilistic terms seems straightforward, a natural
candidate for the Taylor expansion of M ⊕N being just 1

2 .M
∗ + 1

2 .N
∗. When computing

the Taylor expansion of M we will find expressions such as 〈λx.〈x〉 [x]〉 [(1
2 .I + 1

2 .Ω
∗)2], i.e.

1
4 .〈λx.〈x〉 [x]〉 [I2] + 1

4 .〈λx.〈x〉 [x]〉 [Ω2] + 1
2 .〈λx.〈x〉 [x]〉 [I,Ω]. For non-trivial reasons, the

Taylor expansion of any diverging term normalises to 0, so just like in our previous example,
the only element in M∗ which does not reduce to 0 is 〈λx.〈x〉 [x]〉 [I2]. The difference is that
this time it appears with a coefficient 1

1!2!
1
4 , so M

∗ normalises to 1
4 .I. Please notice how this

is once again the “normal form” of the original term M .

The goal of this paper is to show that the correspondence between Taylor expansions and
Böhm trees is preserved when we add probabilistic choices to the calculus. Unfortunately
although the final result is the same as in the deterministic setting, the known proof techniques
fail. To begin with not all (infinite) linear combinations of resource term are normalisable.
Normal forms of deterministic Taylor expansions always exist because such expansions are
uniform: all terms in their support have the same shape (the support of (λx.M)∗ only
contains abstractions, etc.) and this property is known to ensure normalisability. This
property does not hold for probabilistic expansions: (x⊕ λy.y)∗ contains both the variable x
and the abstraction λy.y. Thus we need to find a different way to prove that probabilistic
Taylor expansions normalise. We proceed by using an intermediate notion of Taylor expansion
with explicit choices, which enjoys uniformity and share other properties with deterministic
Taylor expansion, and we then transpose directly the results on this intermediate construction
to the “natural” probabilistic Taylor expansion.

FSCD 2019

13:4 On the Taylor Expansion of Probabilistic λ-terms

Layout of the Paper
In Section 2 we introduce the resource calculus with explicit choices and show it enjoys the
same properties as the usual deterministic resource calculus. In Section 3, we define the
explicit Taylor expansion from probabilistic λ-terms. These constructions have an interest
in themselves and they have been independently studied by Olimpieri and Vaux [19] for
a non-deterministic calculus but in this paper they are just an intermediate step towards
proving our main results. Definitionally, the crux of the paper is Section 4, in which the
Taylor expansion of a probabilistic λ-term is made to produce ordinary resource terms. The
relation between Böhm trees and Taylor expansions is investigated in Section 5 and Section 6.

Notations
We write N for the set of natural numbers and R+ for the set of nonnegative real numbers.
Given a set A, we write R+〈A〉 for the set of families of positive real numbers indexed by
elements in A. We write such families as linear combinations: an element S ∈ R+〈A〉 is
a sum S =

∑
a∈A Sa.a, with Sa ∈ R+. The support of a family S ∈ R+〈A〉 is supp(S) =

{a ∈ A | Sa > 0}. We write R+[A] for those families S ∈ R+〈A〉 such that supp(S) is finite.
Given a ∈ A we often write a for 1.a ∈ R+〈A〉 unless we want to emphasise the difference
between the two expressions. We also define finite multisets over A as functions m : A→ N
such that m(a) 6= 0 for finitely many a ∈ A. We use the notation [a1, . . . , an] to describe the
multiset m such that m(a) is the number of indices i ≤ n such that ai = a.

2 Probabilistic Resource Calculus

In this section, we describe the theory of resource terms with explicit choices, for the purpose
of extending many of the properties of resource terms to the probabilistic case. All this has
an interest in itself, but here this is mainly useful as a way to render certain proofs about
the Taylor Expansion easier (see Section 3 for more details). For this reason we try to give
the reader a clear understanding of this calculus and of why these definitions and properties
are useful, without focusing on the actual proofs. These are straightforward generalisations
of those for deterministic resource terms [9] and can be found in an extended version of this
paper [4]. The same results have recently been given for a non-deterministic calculus [19] by
Olimpieri and Vaux.

2.1 The Basics
IDefinition 1. The sets of probabilistic simple resource terms ∆⊕ and of probabilistic
simple resource poly-terms ∆!

⊕ over a set of variables V are defined by mutual induction
as follows:

s, t ∈ ∆⊕ := x | λx.s | 〈s〉 t | s⊕p • | • ⊕p s s, t ∈ ∆!
⊕ := [s1, . . . , sn]

where p ranges over [0, 1]. We call finite probabilistic resource terms the finite linear
combinations of resource terms in R+[∆⊕], and finite probabilistic resource poly-terms
the finite linear combinations of resource poly-terms in R+[∆!

⊕]. We extend the constructors
of simple (poly-)terms to (poly-)terms by linearity, e.g., if S ∈ R+[∆⊕] then λx.S is defined
as the poly-term such that (λx.S)λx.s = Ss and (λx.S)t = 0 if t is not an abstraction.

Some consecutive abstractions λx1. . . . λxn.s will be indicated as λx1 . . . xn.s, or even as
λ~x.s. Similarly, to describe many successive applications 〈〈〈M〉 N1〉 . . . 〉 Nk, we use a single
pair of brackets and we write 〈M〉 N1 . . . Nk.

U. Dal Lago and T. Leventis 13:5

We write ∆(!)
⊕ for ∆⊕ ∪∆!

⊕, which is ranged over by metavariables like σ, τ . Note that
intuitively ∆(!)

⊕ should stand for either ∆⊕ or ∆!
⊕, not their union. For instance we will

prove some properties for finite linear combinations in R+[∆(!)
⊕], but the only relevant linear

combinations are the actual (poly-)terms in R+[∆⊕] or R+[∆!
⊕]. Yet this distinction is

technically irrelevant, and all our results hold if we define ∆(!)
⊕ as a union.

The reason why linear combinations over such elements are dubbed terms will be clear
once we describe the operational semantics of the resource calculus. The main point of the
resource calculus is to allow functions to use their argument arbitrarily many times and yet
remain entirely linear, which is achieved by taking multisets as arguments: if a function
uses its argument n times then it needs to receive n resources as argument and use each of
them linearly. This idea has two consequences. First, an application can fail if a function is
not given exactly as many arguments as it needs, as it would need either to duplicate or to
discard some of them. Second, the result of a valid application is often not unique: a function
can choose how to allocate the different resources to the different calls to its argument, and
different choices may lead to different results. Both these features are treated using linear
combinations: a failed application results in 0 (i.e. the trivial linear combination) and a
successful one yields the sum of all its possible outcomes.

I Definition 2. We define the substitution of t ∈ ∆!
⊕ for x ∈ V in s ∈ ∆⊕ by:

δxs · [t1, . . . , tn] =
{

0 if s does not have exactly n free occurences of x∑
ρ∈Sn

s[tρ(1)/x1, . . . , tρ(n)/xn] ∈ R+[∆(!)
⊕] otherwise

where x1, . . . , xn are the free occurrences of x in s and Sn is the set of permutations over
{1, . . . , n}.

I Example 3. A basic example is δx(〈x〉 [x]) · [y, z] = 〈y〉 [z] + 〈z〉 [y]: there are two
occurrences of x in 〈x〉 [x], so there are two ways to substitute [y, z] for them. Remark that
we also have δx[x, x] · [y, z] = [y, z] + [z, y] = 2.[y, z]: the two occurrences of x are not as
clearly distinguished as in the first example but they still count as different occurrences.
Similarly δx(〈x〉 [x]) · [y, y] = 2.〈y〉 [y] and δx[x, x] · [y, y] = 2.[y, y]: there are two distinct
occurrences of y, so there are two ways to allocate them. As another example, please consider
δx(λx.x) · [y] = δx(〈x〉 [x]) · [y] = 0: the substitution fails if the number of resources does not
match the number of free occurrences of the substituted variable.

The operational semantics of the deterministic resource calculus [9] is usually given as a
single rule of β-reduction. In the probabilistic setting, we also need rules to make choices
commute with head contexts.

I Definition 4. The reductions →β and →⊕ are defined from ∆(!)
⊕ to R+[∆(!)

⊕] by:

〈λx.s〉 t→β δxs · t
λx.(s⊕p •)→⊕ λx.s⊕p • λx.(• ⊕p s)→⊕ • ⊕p λx.s
〈s⊕p •〉 t→⊕ 〈s〉 t⊕p • 〈• ⊕p s〉 t→⊕ • ⊕p 〈s〉 t

extended under arbitrary contexts. We simply write → for →β ∪ →⊕. Reduction can be
extended to finite terms in the following way: if S ∈ R+[∆(!)

⊕], Sσ > 0 and σ → T then
S → S − Sσ.σ + SσT .

As the resource calculus does not allow any duplication, and β-reduction erases some
constructors, it naturally decreases the size of the involved simple terms. Consequently,
β-reduction is strongly normalising. This result can be extended to the whole reduction →,
which is also confluent.

FSCD 2019

13:6 On the Taylor Expansion of Probabilistic λ-terms

I Proposition 5. The reduction → is confluent and strongly normalising on R+[∆(!)
⊕]. Given

S ∈ R+[∆(!)
⊕] we write nf(S) for its unique normal form for →, and given σ ∈ ∆(!)

⊕ we write
nf(σ) for nf(1.σ).

2.2 Infinite Terms
So far we only worked with finite terms but to fully express the operational behaviour of a
λ-term in the resource λ-calculus, which is the purpose of the Taylor expansion, we need
infinite ones. We can extend the constructors of the calculus to R+〈∆(!)

⊕ 〉 by linearity and
generalise the reduction relation →, but Proposition 5 fails. Indeed let I0 = I = λx.x and
In+1 = 〈In〉 [I]. For n ∈ N, let S =

∑
n∈N In. Then, for all n ∈ N the term In normalises in

n steps and S does not normalise in a finite number of reduction steps. A simple solution to
this problem is to define the “normal form” of an infinite term by normalising each of its
components: we can set nf(S) =

∑
σ∈∆(!)

⊕
Sσnf(σ). But then another problem arises. In our

previous example, we have nf(In) = I for all n ∈ N, thus we would have nf(S) =
∑
n∈N I,

which is not an element of R+〈∆(!)
⊕ 〉 as the coefficient of I is infinite. Still we can use this

pointwise normalisation if we consider terms with a particular property, called uniformity.

I Definition 6. The coherence relation ¨ on ∆(!)
⊕ is defined by:

x ¨ x
s ¨ s′

λx.s ¨ λx.s′
s ¨ s′ t ¨ t′

〈s〉 t ¨ 〈s′〉 t′
s ¨ s′

s⊕p • ¨ s′ ⊕p •
s ¨ s′

• ⊕p s ¨ • ⊕p s′

s ¨ s t ¨ t
s⊕p • ¨ • ⊕p t

s ¨ s t ¨ t
• ⊕p t ¨ s⊕p •

∀i, j ≤ m+ n, si ¨ sj

[s1, . . . , sm] ¨ [sm+1, . . . , sm+n]

For S, S′ ∈ ∆(!)
⊕ we write S ¨ S′ when for all σ, σ′ ∈ supp(S) ∪ supp(S′), σ ¨ σ′. A simple

(poly-)term σ ∈ ∆(!)
⊕ is called uniform if σ ¨ σ, and a term S ∈ R+〈∆(!)

⊕ 〉 is called uniform
if S ¨ S.

Observe that the term S defined above is not uniform: I0 is an abstraction whereas for
any n ∈ N, In+1 is an application, hence I0 and In+1 are not coherent. More generally Im
and In are not coherent whenever m 6= n. We can change the definition of I0 to get a uniform
term: let I ′0 = 〈I〉 [], I ′n+1 = 〈I ′n〉 [I] for n ∈ N, and S′ =

∑
n∈N I

′
n. Then I ′n+1 reduces into

I ′n, just like In+1 reduces into In, but I ′0 is not a normal form as it reduces into 0. Thus the
uniform term S′ has a normal form nf(S′) =

∑
n∈N nf(I ′n) = 0.

I Remark 7. In the rules for s⊕p • ¨ • ⊕p t and • ⊕p t ¨ s⊕p • we require s ¨ s and t ¨ t

to ensure that whenever σ ¨ τ , the simple (poly-)terms σ and τ are necessarily uniform.
This is not crucial as we usually consider uniform (poly-)terms (whose support only contains
uniform simple (poly-)terms), and indeed in [19] the non-deterministic terms s ⊕ • and
• ⊕ t are always considered coherent. We only add this requirements to simplify inductive
reasoning on ¨.

What makes coherence and uniformity interesting is that if two coherent terms S and S′
have disjoint supports, then all of their reducts, and in particular their normal forms, have
disjoint supports. Then any element in the support of nf(S + S′) comes either from nf(S) or
from nf(S′), but it cannot come from both.

I Proposition 8. Given S, S′ ∈ R+[∆(!)
⊕], if S ¨ S′ then nf(S) ¨ nf(S′). If moreover

supp(S) ∩ supp(S′) = ∅ then supp(nf(S)) ∩ supp(nf(S′)) = ∅.

U. Dal Lago and T. Leventis 13:7

This immediately implies that pointwise reduction of infinite uniform terms is well defined,
as both complete left reducts and normal forms of distinct but coherent simple (poly-)terms
have disjoint supports.

I Corollary 9. If S ∈ R+〈∆(!)
⊕ 〉 is uniform then

∑
σ∈∆(!)

⊕
Sσnf(σ) is in R+〈∆(!)

⊕ 〉. We write
nf(S) for this sum.

2.3 Regular Terms
The deterministic Taylor expansion associates to any λ-term a uniform term, and explicit
choices are adopted precisely for the sake of preserving this property in the probabilistic
case. Taylor expansions have another important property: they are entirely defined by their
support. If a simple term s is in the support of the Taylor expansion of a λ-term M , then
its coefficient is the inverse of its multinomial coefficient, which does not depend on M .
Moreover this property is preserved by normalisation. Using explicit choices enforces this
result in the probabilistic case, as well.

I Definition 10. For any σ ∈ ∆(!)
⊕ we define the multinomial coefficient m(σ) ∈ N by:

m(x) = 1 m(〈s〉 t) = m(s)m(t)

m(λx.s) = m(s⊕p •) = m(• ⊕p s) = m(s) m(s) =
∏
u∈∆⊕

s(u)! ·m(u)s(u)

where s(u) is the multiplicity of u in s.

I Definition 11. A uniform term S ∈ R+〈∆(!)
⊕ 〉 is called regular if for all σ ∈ supp(S),

Sσ = 1
m(σ) .

Multinomial coefficients correspond to the number of permutations of multisets which
preserve the description of simple (poly-)terms. For instance, given variables x1, . . . , xn ∈ V,
the coefficient m([x1, . . . , xn]) is exactly the number of permutations ρ ∈ Sn such that
(xρ(1), . . . , xρ(n)) = (x1, . . . , xn). For a more precise interpretation of multinomial coefficients
see [9] or [14]. Due to their relation with permutations in multisets, these coefficients appear
naturally when we perform substitutions.

I Theorem 12. For any σ ∈ ∆(!)
⊕ uniform, for x ∈ V, t ∈ ∆!

⊕ and u ∈ supp(δxσ · t), we
have: (δxσ · t)u = m(t)m(σ)

m(u) .

This theorem ensures that a regular β-redex 1
m(〈λx.s〉 t) .〈λx.s〉 t reduces into a regular

term. More generally, the theorem is the key step towards proving that regular (poly-)terms
always normalise to regular (poly-)terms.

I Theorem 13. If S ∈ R+〈∆(!)
⊕ 〉 is regular then nf(S) is regular.

2.4 Regularity and the Exponential
The regularity of terms is preserved by the constructors of simple resource terms.

I Proposition 14. For all x ∈ V, S ∈ R+〈∆⊕〉 regular and T ∈ R+〈∆!
⊕〉 regular, the terms

1.x, λx.S, S ⊕p •, • ⊕p S and 〈S〉 T are regular.

FSCD 2019

13:8 On the Taylor Expansion of Probabilistic λ-terms

One may expect a similar result for poly-terms: if S1,. . . ,Sn in R+〈∆⊕〉 are regular then
[S1, . . . , Sn] is regular. However, this is not the case: 1.x is regular and yet 1.[x, x] is not.
Indeed nontrivial coefficients appear in m(σ) precisely when σ contains simple poly-terms
with multiplicities greater than 1, so the regular sum with the same support as [S1, . . . , Sn]
has no simple description. A natural way to build regular poly-terms from regular terms is
to use the following construction.

I Definition 15. The exponential of S ∈ R+〈∆⊕〉 is !S =
∑
n∈N

1
n! [S

n] ∈ R+〈∆!
⊕〉, where

[Sn] stands for the poly-term [S, . . . , S] with n copies of S.

I Proposition 16. If S ∈ R+〈∆⊕〉 is regular then !S is regular.

Proof. The key point is that the number of sequences (s1, . . . , sn) which describe a given
simple poly-term s = [s1, . . . , sn] is exactly n!∏

u∈∆⊕
s(u)!

. J

With these results, we have all the ingredients we need to translate (probabilistic) λ-terms
into regular terms: variables and abstractions of regular terms are regular, and we can
define an application between regular terms following Girard’s call-by-name translation of
intuitionistic logic into linear logic [10]: S applied to T is 〈S〉 !T .

3 Explicit Probabilistic Taylor Expansion

This section is devoted to defining and studying the Taylor expansion with explicit choices,
or explicit Taylor expansion, of probabilistic λ-terms. It is named as such because its target
is the set of probabilistic resource terms, as defined in the previous section, rather than the
usual ones. This is not the main contribution of this paper, but an intermediate step in the
study of Taylor expansion as defined in Section 4.

3.1 The Definition
Probabilistic λ-terms are λ-terms enriched with a probabilistic choice operator.

I Definition 17. The set of probabilistic λ-terms Λ+ is:

M,N ∈ Λ+ := x | λx.M |M N |M ⊕p N

I Definition 18. The explicit Taylor expansion M⊕ is defined inductively as follows:

x⊕ = x (M N)⊕ = 〈M⊕〉 !N⊕ =
∑
n∈N

1
n! 〈M

⊕〉 [(N⊕)n]

(λx.M)⊕ = λx.M⊕ (M ⊕p N)⊕ = (M⊕ ⊕p •) + (• ⊕p N⊕)

The results from the previous section immediately imply that Taylor expansions are
regular resource terms and that they are normalisable.

I Proposition 19. For all M ∈ Λ+, the explicit Taylor expansion M⊕ is uniform and
regular.

Proof. This is a direct consequence of Proposition 14 and Proposition 16. J

I Corollary 20. Every explicit Taylor expansion M⊕ has a normal form nf(M⊕), which we
call the explicit Taylor normal form of M , and which is regular.

Proof. This is given by Theorem 13. J

U. Dal Lago and T. Leventis 13:9

3.2 Probabilistic Reduction

In the literature, the probabilistic λ-calculus is usually endowed with a labelled transition
relation p−→ describing a probabilistic reduction process, where a choice M ⊕p N reduces to
M with probability p and to N with probability 1− p. Here to emphasise the correspondence
between such a reduction and the constructors s ⊕p • and • ⊕p t of the resource calculus
we rather use labels l, p and r, p to explicit whether we reduce to the left-hand side or the
right-hand side of a choice ⊕p. Since we were mostly interested in normalisation in the
resource calculus, we will only consider a big-step operational semantics for the probabilistic
λ-calculus.

I Definition 21. Head contexts are contexts of the form λ~x.[] ~P , and are indicated with
the metavariable H. Head normal forms are terms of the form H[y]. We write hnf for
the set of all head normal forms. We now define a formal system deriving judgements in
the form ρ ` M →→ h where M ∈ Λ+, h ∈ hnf and ρ is a finite sequence of elements in
{l, r} × [0, 1]:

ε ` h→→ h

ρ ` H[M
[
N/x

]
]→→ h

ρ ` H[(λx.M)N]→→ h

ρ ` H[M]→→ h

(l, p) · ρ ` H[M ⊕p N]→→ h

ρ ` H[N]→→ h

(r, p) · ρ ` H[M ⊕p N]→→ h

where ε is the empty sequence and (`, p) · (ρ1, . . . , ρn) = ((`, p), ρ1, . . . , ρn) for ` ∈ {l, r}.

I Lemma 22. For all M ∈ Λ+ and ρ there is at most one h ∈ hnf such that ρ `M →→ h.

An interesting property of explicit Taylor expansion is that the explicit Taylor normal
form of a term M is precisely given by the explicit Taylor normal forms of the head normal
forms h of M , as well as the sequences of choices ρ such that ρ `M →→ h.

I Definition 23. Given a sequence of choices ρ and s ∈ ∆⊕ we define ρ ·s ∈ ∆⊕ by induction
on the length of ρ by:

ε · s = s ((l, p) · ρ) · s = (ρ · s)⊕p • ((r, p) · ρ) · s = • ⊕p (ρ · s)

We extend this definition to R+〈∆⊕〉 by linearity.

I Theorem 24. Given any M ∈ Λ+,

nf(M⊕) =
∑
h∈hnf

∑
ρ`M→→h

ρ · nf(h⊕).

Proof. First observe that these resource terms are regular: Corollary 20 states that nf(M⊕)
and the nf(h⊕) are regular (so the ρ · nf(h⊕) are regular too), and if ρ ` M →→ h and
ρ′ ` M →→ h′ then either ρ = ρ′ and by Lemma 22 h = h′, or ρ 6= ρ′ and then ρ · nf(h⊕)
and ρ′ · nf(h′⊕) have disjoint supports and we can show they are coherent. Thus we only
need to prove that these terms have the same supports. On one hand we can prove that
for any s ∈ supp(M⊕) and any t ∈ supp(nf(s)) there exist ρ and h such that ρ ` M →→ h

and t ∈ supp(ρ · nf(h⊕)), by reasoning by induction on the size of s. When s has a
head β-redex we need to check that in general if u ∈ supp(U⊕) and v ∈ supp(!V ⊕) then
supp(δxu · v) ⊂ supp((U

[
V /x

]
)⊕), which is immediate by induction on U . On the other

hand if ρ `M →→ h we prove that for any t ∈ supp(nf(h⊕)) we have ρ · t ∈ supp(nf(M⊕)),
by induction on the proof of ρ `M →→ h. J

FSCD 2019

13:10 On the Taylor Expansion of Probabilistic λ-terms

4 Generic Taylor Expansion of Probabilistic λ-terms

4.1 Barycentric Semantics of Choices
The explicit probabilistic Taylor expansion is satisfactory in that it is an extension of
deterministic Taylor expansion which preserves its most important properties: it is regular
and so are its normal forms. But while deterministic Taylor normal forms are well known to
correspond to Böhm trees [7], explicit Taylor normal forms are not such a good denotational
semantics for probabilistic λ-calculus, as they take the exact choices made during the reduction
into account. For instance the terms x⊕ 1

2
y and y ⊕ 1

2
x have distinct explicit Taylor normal

forms while one could expect them to have the same semantics. More precisely we expect
any model of the probabilistic λ-calculus to interpret probabilistic choices as a barycentric
sum respecting the following equivalence.

I Definition 25. The barycentric equivalence ≡bar is the least congruence on Λ+ such
that for all M,N,P ∈ Λ+ and p, q ∈ [0, 1]:

M ⊕p N ≡bar N ⊕1−pM M ⊕pM ≡bar M

(M ⊕p N)⊕q P ≡bar M ⊕pq (N ⊕ q(1−p)
1−pq

P) if pq 6= 1 M ⊕1 N ≡bar M

We want a notion of Taylor expansion M∗ such that if M ≡bar N then M∗ = N∗. This
is easy to achieve, as the resource calculus stemmed precisely from quantitative models of
the λ-calculus, and resource terms are linear combinations.

I Definition 26. The sets of simple resource terms ∆ and of simple resource poly-
terms ∆! are:

s, t ∈ ∆ := x | λx.s | 〈s〉 t s, t ∈ ∆! := [s1, . . . , sn]

The set of resource terms is R+〈∆〉 and the set of resource poly-terms is R+〈∆!
⊕〉.

I Definition 27. The Taylor expansion M∗ ∈ R+〈∆〉 of a term M ∈ Λ+ is defined
inductively as follows:

x∗ = x (M N)∗ =
∑
n∈N

1
n! 〈M

∗〉 [(N∗)n]

(λx.M)∗ = λx.M∗ (M ⊕p N)∗ = pM∗ + (1− p)N∗

The definition of the Taylor expansion of a probabilistic choice immediately gives the expected
property.

I Proposition 28. If M ≡bar N then M∗ = N∗.

4.2 Normalisation
Unfortunately, these Taylor expansions lack all the good properties of explicit expansions:
they are not entirely defined by their support, and those supports are not uniform, so we
do not even know if such Taylor expansions admit normal forms. But there is actually a
close relationship between explicit and non explicit Taylor expansions which can be used to
recover our most important results. Indeed, switching from the explicit Taylor expansion to
the Taylor expansion simply amounts to using coefficients instead of explicit choices.

U. Dal Lago and T. Leventis 13:11

I Definition 29. Given any σ ∈ ∆(!)
⊕ we define |σ| ∈ ∆(!) and a probability P(σ) as follows:

|x| = x P(x) = 1
|λx.s| = λx.|s| P(λx.s) = P(s)
|〈s〉 t| = 〈|s|〉 |t| P(〈s〉 t) = P(s)P(t)
|s⊕p •| = |s| P(s⊕p •) = pP(s)
| • ⊕ps| = |s| P(• ⊕p s) = (1− p)P(s)

|[s1, . . . , sn]| = [|s1|, . . . , |sn|] P([s1, . . . , sn]) =
n∏
i=1
P(si)

To any probabilistic resource (poly-)term S ∈ R+〈∆(!)
⊕ 〉 one could associate the resource

term
∑
σ∈∆(!)

⊕
SσP(σ).|σ|. But just like with normalisation, infinite coefficients may appear.

For instance, removing the choices from S =
∑

((x⊕1 •) . . .)⊕1 • (the sum of all simple terms
with x under any number of left choices) could give x an infinite coefficient. Fortunately, we
do not get any infinite coefficient if we work with regular terms.

I Proposition 30. For any S ⊂ ∆(!)
⊕ such that for all σ, σ′ ∈ S, σ ¨ σ′ and |σ| = |σ′| we

have
∑
σ∈S P(σ) ≤ 1.

I Corollary 31. For all S ∈ R+〈∆(!)
⊕ 〉 regular,

∑
σ∈∆(!)

⊕
SσP(σ).|σ| is in R+〈∆(!)〉.

In particular, we can apply this process to explicit Taylor expansions and to their normal
forms. It is easy to see that we associate to every explicit Taylor expansion the corresponding
Taylor expansion, but more interestingly erasing choices commutes with normalisation.

I Proposition 32. For any M ∈ Λ+:∑
s∈∆⊕

M⊕s P(s).|s| = M∗
∑
t∈∆⊕

nf(M⊕)tP(t).|t| =
∑
s∈∆

M∗s .nf(s)

hence
∑
s∈∆M∗s .nf(s) is well defined. We denote it by nf(M∗) and we call it the Taylor

normal form of M .

Proof. The key point is that nf(|σ|) = |nf(σ)| and for any τ ∈ supp(nf(σ)), P(τ) = P(σ). J

4.3 Adequacy
The behaviour of a probabilistic λ-term is usually described as a (sub-)probability distribution
over the possible results of its evaluation. In particular, the observable behaviour of a term
is its convergence probability, i.e. the probability for its computation to terminate [11, 5]. To
show that the Taylor expansion gives a meaningful semantics we will prove it is adequate, i.e.
it does not equate terms which are not observationally equivalent. We can actually show a
more refined result, given as a Corollary of Theorem 24: the Taylor normal form of a term is
given by the Taylor normal forms of its head normal forms.

I Definition 33. The any sequence of choices ρ we associate a probability P(ρ) by:

P(ε) = 1 P((l, p) :: ρ) = pP(ρ) P((r, p) :: ρ) = (1− p)P(ρ)

The probability P (M →→ h) for M ∈ Λ+ to reduce into a head normal form h and its
convergence probability P⇓(M) are defined as follows:

P (M →→ h) :=
∑

ρ`M→→h

P(ρ) P⇓(M) =
∑
h∈hnf

P (M →→ h) .

FSCD 2019

13:12 On the Taylor Expansion of Probabilistic λ-terms

I Proposition 34. For M ∈ Λ+ we have:

nf(M∗) =
∑
h∈hnf

P (M →→ h) nf(h∗).

Proof. This is given by Proposition 32 and Theorem 24. Observe that for any ρ and
s ∈ nf(h⊕) we have P(ρ · s) = P(ρ)P(s) and |ρ · s| = |s|. J

The adequacy follows immediately.

I Proposition 35. If nf(M∗) = nf(N∗) then for all context C, P⇓(C[M]) = P⇓(C[N]), i.e.
M and N are contextually equivalent.

Proof. First the convergence probability of a term M is exactly the sum of the coefficients
nf(M∗)λ~x.y [] ... []. Second if nf(M∗) = nf(N∗) then nf(C[M]∗) = nf(C[N]∗) for all C. J

5 On the Taylor Expansion and Böhm Trees

5.1 A Commutation Theorem
Deterministic Taylor normal forms are an adequate semantics for the probabilistic λ-calculus,
but more precisely they are known to correspond to Böhm trees [7]. We are now able to
show that this result extends to the probabilistic case.

I Definition 36. The sets of probabilistic Böhm trees PT d and of probabilistic value
trees VT d for d ∈ N are defined inductively by induction on the depth d:

PT 0 = {⊥ : ∅ → [0, 1]} VT 0 = ∅
PT d+1 = D(VT d+1) VT d+1 = {λ~x.y T1 · · · Tm | T1, . . . ,Tm ∈ PT d}

where D(X) is the set of countable-support subprobability distributions on any set X, ⊥ is
the only subprobability distribution over the empty set, i.e. over VT 0.

I Definition 37. We define PTd(M) for M ∈ Λ+ and d ≥ 0, and VTd(h) for h ∈ hnf and
d ≥ 1 by induction on the depth d as follows: PT0(M) is the unique function ∅ → [0, 1] and

PTd+1(M) = t 7→
∑

h∈VT−1
d+1(t)

P (M →→ h)

VTd+1(λ~x.y M1 . . . Mm) = λ~x.y PTd(M1) . . . PTd(Mm)

Intuitively the Böhm tree of a term M would be some limit of its finite Böhm approximants
PTd(M). To avoid making the structure of Böhm trees of infinite depth explicit, we simply
write PT (M) for the sequence (PTd(M))d∈N. In particular we say that M and N have the
same Böhm tree iff PTd(M) = PTd(N) for every d ∈ N.

The definition of the Taylor expansion can easily be generalised to finite-depth Böhm
trees. We simply define T∗ for T ∈ PT d and t∗ for t ∈ VT d+1 by:

T∗ =
∑

t∈VT d

T(t)t∗ (λ~x.y T1 . . . Tm)∗ = λ~x.〈y〉 !T∗1 . . . !T∗m

We extend this definition to infinite Böhm trees as follows: if s ∈ ∆ contains at most ds
layers of nested multisets then for any M ∈ Λ+, PTd(M)∗s = PTds

(M)∗s for all d ≥ ds, so
PT (M)∗s can be taken as PTds(M)∗s. Then the Taylor normal form of a term is exactly the
Taylor expansion of its Böhm tree.

U. Dal Lago and T. Leventis 13:13

I Theorem 38. For all M ∈ Λ+, nf(M∗) = (PT (M))∗.

Proof. We prove nf(M∗)s = (PT (M))∗s by induction on ds, using to Proposition 34. J

This theorem is important but it does not actually prove the correspondence between
Böhm trees and Taylor expansions: we still do not know if Taylor expansion is injective
on Böhm trees. In the deterministic case this is simple to prove: to every deterministic
Böhm tree T of depth d we can associate a simple resource term sT such that for all
M ∈ Λ, BTd(M) = T iff sT ∈ supp(nf(M∗)) (by associating λ~x.〈y〉 [sT1] . . . [sTm

] to
λ~x.yT1 . . . Tm). This works because ordinary Böhm trees are not quantitative, thus the
quantitative part of their Taylor expansions (the coefficients) is irrelevant. The situation
is more complicated in the probabilistic case, as Taylor expansions are no longer defined
solely by their supports. The rest of this article is devoted to proving injectivity for the
probabilistic Taylor expansion.

5.2 Böhm Tests
In order to better understand coefficients in probabilistic Taylor expansions and to get our
injectivity property, we use a notion of testing coming from the literature on labelled Markov
decision processes [17].

I Definition 39 (Böhm Tests). The classes of Böhm term tests (BTTs) and Böhm hnf tests
(BHTs) are given as follows, by mutual induction:

T,U ::= ω | T ∧ U | ev(t) t, u ::= ω | t ∧ u | (λx1. · · · .λxn.y)(T 1, . . . , Tm)

The probability of success of a BTT T on a term M and the probability of success of a BHT
t on an head-normal-form h, indicated as Pr(T,M) and Pr(t, h) respectively, are defined as
follows:

Pr(T ∧ U,M) = Pr(T,M) · Pr(U,M); Pr(ω,M) = Pr(ω, h) = 1;

Pr(t ∧ u, h) = Pr(t, h) · Pr(u, h); Pr(ev(t),M) =
∑

h∈hnf

P (M →→ h) · Pr(t, h);

Pr((λx1. · · · .λxn.y)(T 1, . . . , Tm), λx1 · · · .λxn.yM1 · · ·Mm) = Πm
i=1Pr(T i,Mi);

Pr((λx1. · · · .λxn.y)(T 1, . . . , Tm), h) = 0, otherwise

The following is the first step towards proving the main result of this paper, as it characterises
Böhm tree equality as equality of families of real numbers.

I Theorem 40. Two terms M and N have the same Böhm trees iff for every BTT T it
holds that Pr(M,T) = Pr(N,T).

A detailed proof of Theorem 40 can be found in the Extended Version of this paper [4]. Let us
briefly discuss how the proof goes. The starting point is a result due to van Breugel et al. [17],
which establishes a precise correspondence between bisimilarity and testing in a probabilistic
scenario: two states s and s′ of any labelled Markov decision processes (satisfying certain
natural conditions) are bisimilar iff the probabilities of any test T to succeed in s and in s′
are the same, and tests are defined inductively as follows:

T,U ::= ω | T ∧ U | a(T)

where a is an action of the underlying labelled Markov decision process. Given that Böhm
trees can be naturally presented coinductively, most of the involved work has already been
done. What remains to be proved, then, is that the result above also holds for transition

FSCD 2019

13:14 On the Taylor Expansion of Probabilistic λ-terms

systems in which firing an action a brings the system into k distinct states, thus capturing
the kind of tree-like evolution typical of Böhm trees. This can be done by translating
any such tree-like transition system into a linear one in such a way that bisimilarity and
testing-equivalence remain unaltered.

To achieve our main result we now need to relate the probability of success of tests to
the coefficients of Taylor normal forms. This is the purpose of Section 6.

6 Implementing Tests as Resource Terms

There is a very tight correspondence between simple resource terms and Böhm tests, but
this correspondence does not hold for all Böhm tests. Simple resource terms can be seen as
a particular class of Böhm tests.

I Definition 41. The classes of resource Böhm term tests (rBTTs) and resource Böhm hnf
tests (rBHTs) are given as follows, by mutual induction:

T,U ::= ω | T ∧ U | ev(t) t ::= (λx1. · · · .λxn.y)(T 1, . . . , Tm)

I Definition 42. For every rBTT T we define a simple poly-term sT and for every rBHT t

we define a simple term st in the following way:

sω = [] sT∧U = sT · sU sev(t) = [st] s(λ~x.y)(T 1,...,Tm) = λ~x.〈y〉 sT 1 . . . sTm

The similarity between simple resource terms and resource Böhm tests is more than
structural: the probability of success of a resource Böhm test is actually given by a coefficient
in the Taylor normal form.

I Proposition 43.
1. For every rBTT T and M ∈ Λ+, !nf(M∗)sT

= Pr(T,M)
m(sTt) .

2. For every rBHT t and h ∈ hnf, nf(h∗)st = Pr(t,h)
m(sTh

) .

Proof. We reason by induction on tests. Observe that these can be considered modulo com-
mutativity and associativity of the conjunction and modulo ω∧T ' T : these equivalences pre-
serve both the results of testing and the associated simple resource (poly-)terms. Then every
rBTT is equivalent either to ω or to a conjunction T = ev(t1)∧· · ·∧ev(tk). In the first case we
always have !nf(M∗)[] = 1. In the second case just like in the proof of regularity of the expo-
nential (Proposition 16) for any M ∈ Λ+ we have !nf(M∗)sT

= 1∏
u∈∆

sT (u)!

∏k
i=1 nf(M∗)sti

.

To conclude we want to show that nf(M∗)sti
= Pr(ev(ti),M)

m(sti
) for all i ≤ k. We have by defin-

ition Pr(ev(ti),M) =
∑
h∈hnf P (M →→ h) · Pr(ti, h), and Proposition 34 gives nf(M∗)sti

=∑
h∈hnf P (M →→ h) · nf(h∗)sti

, so we conclude by induction hypothesis on ti. Now given a
rBHT t = (λ~x.y)(T 1, . . . , Tm) and h ∈ hnf we have either nf(h∗)st

=
∏m
i=1!nf(M∗i)sT i and

Pr(t, h) =
∏m
i=1 Pr(T i,Mi) if h is of the form λ~x.y M1 . . . Mm, in which case we conclude

by induction hypothesis, or nf(h∗)st
= Pr(t, h) = 0 otherwise. J

With this result, we completely characterise Taylor normal forms by resource Böhm tests.

I Corollary 44. Two terms M and N have the same Taylor normal form iff for every rBTT
T it holds that Pr(M,T) = Pr(N,T).

Proof. Simply observe that every simple resource term in normal form is equal to sT for
some resource Böhm test T . J

U. Dal Lago and T. Leventis 13:15

Thanks to Theorem 40 and Corollary 44 both Böhm tree equality and Taylor normal
form equality are characterised by tests. They still leave a gap in our reasoning, as not all
Böhm tests are resource Böhm tests. This difference is not just cosmetic: ev(ω) is a valid
Böhm test which computes the convergence probability of any λ-term, which cannot be done
using only resource Böhm tests. More precisely this cannot be done using a single Böhm
test. To fill the gap between Böhm tests and resource Böhm tests we observe that any of the
former can be simulated by a family of resource Böhm tests.

I Proposition 45. For every BTT T there is a family (Ti)i∈I of rBTTs of arbitrary size (pos-
sibly empty, possibly infinite) such that for all λ-term M we have Pr(T,M) =

∑
i∈I Pr(Ti,M).

Proof. We prove this, as well as the corresponding result for BHTs, by induction on the size
of tests. In the case of BTTs, the result is simply given by induction hypothesis. To the
BTT ω we associate the single-element family (w), to T ∧ U we associate (Ti ∧ Uj)i∈I,j∈J
where (Ti)i∈I and (Uj)j∈J are given by induction hypothesis on T and U , and to ev(t)
we associate (ev(ti))i∈I . The interesting part of the proof is on BHTs, where we want to
remove two constructors. Modulo commutativity and associativity of the conjunction and the
equivalence ω ∧ T ' T , every BHT is either ω or of the form (λx1...xn1 .y1)(T 1

1 , . . . , T
m1
1) ∧

· · · ∧ (λx1...xnk
.yk)(T 1

k , . . . , T
mk

k) with k ≥ 1. In the first case to ω we associate the family
((λx1 . . . xn.y)(ωm))m,n∈N,y∈V where ωm denotes the sequence ω, . . . , ω of length m. In the
second case if mi 6= mj , ni 6= nj or yi 6= yj for some i, j ≤ k then the result of the test is
always 0, which is simulated by the empty family of rBHTs. Otherwise let m = m1, n = n1
and y = y1, the test is equivalent to (λx1 . . . xn.y)(T 1

1 ∧ · · · ∧ T 1
k , . . . , T

m
1 ∧ · · · ∧ Tmk). We

apply the induction hypothesis to the BTTs T i1 ∧ · · · ∧ T ik to get families (U ij)j∈Ji and we
associate the family ((λx1 . . . xn.y)(U1

j1
, . . . , Umjm

))j1∈J1,...,jm∈Jm
to the original BHT. J

I Corollary 46. Given two terms M and N , for every BTT T it holds that Pr(M,T) =
Pr(N,T) iff for every rBTT T it holds that Pr(M,T) = Pr(N,T).

We can now state the main result of this paper.

I Theorem 47. Two terms have the same Böhm trees iff their Taylor expansions have the
same normal forms.

Proof. The result follows from Theorem 40, Corollary 46 and Corollary 44. J

7 Conclusion

In this paper, we attack the problem of extending the Taylor Expansion construction to
the probabilistic λ-calculus, at the same time preserving its nice properties. What we find
remarkable about the defined notion of Taylor expansion is that its codomain is the set
of ordinary resource terms, and that the equivalence induced by the Taylor expansion is
precisely the one induced by Böhm trees [13]. The latter, not admitting η, is strictly included
in contextual equivalence.

Among the many questions this work leaves open, we could cite the extension of the
proposed definition to call-by-value reduction, along the lines of [12], and a formal comparison
between the notion of equivalence introduced here and the the one from [15] in which, however,
the target language is not the one of ordinary resource terms, but one specifically designed
around probabilistic effects.

FSCD 2019

13:16 On the Taylor Expansion of Probabilistic λ-terms

References
1 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the

Foundations of Mathematics. Elsevier Science, 1984.
2 Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A lambda-

calculus foundation for universal probabilistic programming. In Proc. of ICFP 2016, pages
33–46, 2016.

3 Gérard Boudol. The Lambda-Calculus with Multiplicities. Technical Report 2025, INRIA
Sophia-Antipolis, 1993.

4 Ugo Dal Lago and Thomas Leventis. On the Taylor Expansion of Probabilistic Lambda Terms
(Long Version), 2019. arXiv:1904.09650.

5 Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full Abstraction for Probabilistic
PCF. J. ACM, 65(4):23:1–23:44, 2018.

6 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theor. Comput. Sci.,
309(1-3):1–41, 2003.

7 Thomas Ehrhard and Laurent Regnier. Böhm Trees, Krivine’s Machine and the Taylor
Expansion of Lambda-Terms. In Proc. of CIE 2006, pages 186–197, 2006.

8 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theor. Comput. Sci.,
364(2):166–195, 2006.

9 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theor. Comput. Sci., 403(2-3):347–372, 2008.

10 Jean-Yves Girard. Linear Logic. Theor. Comput. Sci., 50:1–102, 1987.
11 Claire Jones and Gordon D. Plotkin. A Probabilistic Powerdomain of Evaluations. In Proc. of

LICS 1989, pages 186–195, 1989.
12 Emma Kerinec, Giulio Manzonetto, and Michele Pagani. Revisiting Call-by-value Bohm trees

in light of their Taylor expansion, 2018. arXiv:1809.02659.
13 Thomas Leventis. Probabilistic Böhm Trees and Probabilistic Separation. In Proc. of LICS

2018, pages 649–658, 2018.
14 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised species of rigid resource

terms. In Proc. of LICS 2017, pages 1–12, 2017.
15 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Species, Profunctors and Taylor

Expansion Weighted by SMCC: A Unified Framework for Modelling Nondeterministic, Prob-
abilistic and Quantum Programs. In Proc. of LICS 2018, pages 889–898, 2018.

16 Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statistical probabilistic
programming. PACMPL, 3(POPL):36:1–36:29, 2019.

17 Franck van Breugel, Michael W. Mislove, Joël Ouaknine, and James Worrell. Domain theory,
testing and simulation for labelled Markov processes. Theor. Comput. Sci., 333(1-2):171–197,
2005.

18 Lionel Vaux. The algebraic lambda calculus. Mathematical Structures in Computer Science,
19(5):1029–1059, 2009.

19 Lionel Vaux Auclair and Federico Olimpieri. On the Taylor expansion of λ-terms and the
groupoid structure of their rigid approximants. Informal proc. of TLLA 2018, 2018.

http://arxiv.org/abs/1904.09650
http://arxiv.org/abs/1809.02659

Proof Normalisation in a Logic Identifying
Isomorphic Propositions
Alejandro Díaz-Caro
Instituto de Ciencias de la Computación (CONICET-Universidad de Buenos Aires), Ciudad
Autónoma de Buenos Aires, Argentina
Universidad Nacional de Quilmes, Bernal (Buenos Aires), Argentina
https://www-2.dc.uba.ar/staff/adiazcaro/
adiazcaro@icc.fcen.uba.ar

Gilles Dowek
Inria, LSV, ENS Paris-Saclay, France
http://www.lsv.fr/~dowek/
gilles.dowek@ens-paris-saclay.fr

Abstract
We define a fragment of propositional logic where isomorphic propositions, such as A∧B and B ∧A,
or A ⇒ (B ∧ C) and (A ⇒ B) ∧ (A ⇒ C) are identified. We define System I, a proof language for
this logic, and prove its normalisation and consistency.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Type theory; Mathematics of computing → Lambda calculus

Keywords and phrases Simply typed lambda calculus, Isomorphisms, Logic, Cut-elimination, Proof-
reduction

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.14

Related Version A variant of the system presented in this paper, has been published in https:
//arxiv.org/abs/1303.7334v1 (LSFA 2012 [13]), with a sketch of a subject reduction proof but no
normalisation or consistency proofs.

Funding Partially supported by ECOS-Sud A17C03, PICT 2015-1208, and the French-Argentinian
laboratory SINFIN.

1 Introduction

1.1 Identifying isomorphic propositions
In mathematics, addition is associative and commutative, multiplication distributes over
addition, etc. In contrast, in logic conjunction is neither associative nor commutative,
implication does not distribute over conjunction, etc. For instance, the propositions A ∧B
and B ∧A are different: if A∧B has a proof, then so does B ∧A, but if r is a proof of A∧B,
then it is not a proof of B ∧A.

A first step towards considering A∧B and B ∧A as the same proposition has been made
in [6,11,12,26], where a notion of isomorphic propositions has been defined: two propositions
A and B are isomorphic if there exist two proofs of A⇒ B and B ⇒ A whose composition,
in both ways, is the identity.

For the fragment of propositional logic restricted to the operations ⇒ and ∧, all the
isomorphisms are consequences of the following four:

A ∧B ≡ B ∧A (1)
A ∧ (B ∧ C) ≡ (A ∧B) ∧ C (2)
A⇒ (B ∧ C) ≡ (A⇒ B) ∧ (A⇒ C) (3)
(A ∧B)⇒ C ≡ A⇒ B ⇒ C (4)

For example, (A⇒ B ⇒ C) ≡ (B ⇒ A⇒ C) is a consequence of (4) and (1) [6].
© Alejandro Díaz-Caro and Gilles Dowek;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 14; pp. 14:1–14:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5175-6882
https://www-2.dc.uba.ar/staff/adiazcaro/
mailto:adiazcaro@icc.fcen.uba.ar
https://orcid.org/0000-0001-6253-935X
http://www.lsv.fr/~dowek/
mailto:gilles.dowek@ens-paris-saclay.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.14
https://arxiv.org/abs/1303.7334v1
https://arxiv.org/abs/1303.7334v1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Proof Normalisation in a Logic Identifying Isomorphic Propositions

In this paper, we go one step further and define a proof language, System I, for the
fragment ⇒, ∧, such that when A ≡ B, then any proof of A is also a proof of B, so the
propositions A∧B and B ∧A, for instance, are really identical, as they have the same proofs.

The idea of identifying some propositions has already been investigated, for example,
in Martin-Löf’s type theory [23], in the Calculus of Constructions [8], and in Deduction
modulo theory [17, 19], where definitionally equivalent propositions, for instance A ⊆ B,
A ∈ P(B), and ∀x (x ∈ A ⇒ x ∈ B) can be identified. But definitional equality does not
handle isomorphisms. For example, A ∧ B and B ∧ A are not identified in these logics.
Beside definitional equality, identifying isomorphic types in type theory, is also a goal of the
univalence axiom [27].

Isomorphisms make proofs more natural. For instance, to prove (A ∧ (A⇒ B))⇒ B in
natural deduction we need to introduce conjunctive hypothesis A ∧ (A⇒ B) which has to
be decomposed into A and A⇒ B, while using the isomorphism (4) allows to transform the
goal to A⇒ (A⇒ B)⇒ B and introduce directly the hypotheses A and A⇒ B, eliminating
completely the need for conjunctive hypotheses.

1.2 Lambda-calculus

The proof-language of the fragment of propositional logic restricted to the operations ⇒
and ∧ is simply typed lambda-calculus extended with Cartesian product. So, System
I is an extension of this calculus where, for example, a pair of functions 〈r, s〉 of type
(A⇒ B) ∧ (A⇒ C) ≡ A⇒ (B ∧ C) can be applied to an argument t of type A, yielding a
term 〈r, s〉t of type B ∧ C. For example, the term 〈λxτ .x, λxτ .x〉y has type τ ∧ τ . With the
usual reduction rules of lambda calculus with pairs, such a term would be normal, but we
can also extend the reduction relation, with an equation 〈r, s〉t� 〈rt, st〉, such that this term
is equivalent to 〈(λxτ .x)y, (λxτ .x)y〉 and thus reduces to 〈y, y〉. Taking too many of such
equations may lead to non termination (Section 8.1), and taking too few multiplies undesired
normal forms. The choice of the rules in this paper is motivated by the goal to have both
termination of reduction (Section 5) and consistency (Section 6), that is, no normal closed
term of atomic types.

To stress the associativity and commutativity of the notion of pair, we write r× s instead
of 〈r, s〉 and thus write this equivalence as

(r × s)t� rt× st

Several similar equivalence rules on terms are introduced: one related to the isomorphism
(1), the commutativity of the conjunction, r× s� s× r; one related to the isomorphism (2),
the associativity of the conjunction, (r × s)× t� r × (s× t); two to the isomorphism (3),
the distributivity of implication with respect to conjunction, λx.(r × s)� λx.r × λx.s and
(r × s)t� rt× st; and one related to the isomorphism (4), the currification, rst� r(s× t).

One of the difficulties in the design of System I is the design of the elimination rule for
the conjunction. A rule like “if r : A ∧B then π1(r) : A”, would not be consistent. Indeed, if
A and B are two arbitrary types, s a term of type A and t a term of type B, then s× t has
both type A ∧ B and type B ∧ A, thus π1(s × t) would have both type A and type B. A
solution is to consider explicitly typed (Church style) terms, and parametrise the projection
by the type: if r : A∧B then πA(r) : A and the reduction rule is then that πA(s× t) reduces
to s if s has type A.

A. Díaz-Caro and G. Dowek 14:3

This rule makes reduction non-deterministic. Indeed, in the particular case where A
happens to be equal to B, then both s and t have type A and πA(s× t) reduces both to s
and to t. Notice that, although this reduction rule is non-deterministic, it preserves typing,
like the calculus developed in [18], where the reduction is non-deterministic, but verifies
subject reduction.

1.3 Non-determinism
Therefore, System I is one of the many non-deterministic calculi in the sense, for instance,
of [5,7,9,10,24] and our pair-construction operator × is also the parallel composition operator
of a non-deterministic calculus.

In non-deterministic calculi, the non-deterministic choice is such that if r and s are two λ-
terms, the term r⊕s represents the computation that runs either r or s non-deterministically,
that is such that (r⊕s)t reduces either to rt or st. On the other hand, the parallel composition
operator | is such that the term (r | s)t reduces to rt | st and continue running both rt and st
in parallel. In our case, given r and s of type A⇒ B and t of type A, the term πB((r × s)t)
is equivalent to πB(rt× st), which reduces to rt or st, while the term rt× st itself would run
both computations in parallel. Hence, our × is equivalent to the parallel composition while
the non-deterministic choice ⊕ is decomposed into × followed by π.

In System I, the non-determinism comes from the interaction of two operators, × and π.
This is similar to quantum computing where the non-determinism comes from the interaction
of two operators, the fist allowing to build a superposition, that is a linear combination,
of two terms α.r + β.t, and the measurement operator π. In addition, in such calculi, the
distributivity rule (r + s)t � rt + st is seen as the point-wise definition of the sum of
two functions.

More generally, the calculus developed in this paper is also related to the algebraic
calculi [1–4,14,16,28], some of which have been designed to express quantum algorithms. There
is a clear link between the pair constructor × and the projection π, with the superposition
constructor + and the measurement π on these calculi. In these cases, the pair s+ t is not
interpreted as a non-deterministic choice, but as a superposition of two processes running s
and t, and the operator π is the projection related to the measurement, which is the only
non-deterministic operator.

Outline
In Section 2, we define the notion of type isomorphism and prove elementary properties of
this relation. In Section 3, we introduce System I. In Section 4, we prove its subject reduction.
In Section 5, we prove its strong normalisation. In Section 6, we prove its consistency. Finally,
in Section 7, we discuss how System I could be used as a programming language.

2 Type isomorphisms

2.1 Types and isomorphisms
Types are defined by the following grammar

A,B,C, . . . ::= τ | A⇒ B | A ∧B

where τ is the only atomic type.

FSCD 2019

14:4 Proof Normalisation in a Logic Identifying Isomorphic Propositions

I Definition 2.1 (Size of a type). The size of a type is defined as usual by

s(τ) = 1
s(A⇒ B) = s(A) + s(B) + 1
s(A ∧B) = s(A) + s(B) + 1

I Definition 2.2 (Congruence). The isomorphisms (1), (2), (3), and (4) define a congruence
on types.

A ∧B ≡ B ∧A (1)
A ∧ (B ∧ C) ≡ (A ∧B) ∧ C (2)
A⇒ (B ∧ C) ≡ (A⇒ B) ∧ (A⇒ C) (3)
(A ∧B)⇒ C ≡ A⇒ B ⇒ C (4)

2.2 Prime factors
I Definition 2.3 (Prime types). A prime type is a type of the form C1 ⇒ · · · ⇒ Cn ⇒ τ ,
with n ≥ 0.

A prime type is equivalent to (
∧n
i=1 Ci)⇒ τ , which is either equivalent to τ or to C ⇒ τ ,

for some C. For uniformity, we may write ∅ ⇒ τ for τ .
We now show that each type can be decomposed into a conjunction of prime types. We

use the notation [Ai]ni=1 for the multiset whose elements are A1, . . . , An. We may write [Ai]i
when the number of elements is not important. If R = [Ai]i is a multiset of types, then
conj(R) =

∧
iAi.

I Definition 2.4. We write [A1, . . . , An] ∼ [B1, . . . , Bm] if n = m and Bi ≡ Ai.
I Definition 2.5 (Prime factors). The multiset of prime factors of a type A is inductively
defined as follows

PF(τ) = [τ]
PF(A⇒ B) = [(A ∧ Ci)⇒ τ]ni=1 where [Ci ⇒ τ]ni=1 = PF(B)
PF(A ∧B) = PF(A)] PF(B)

with the convention that A ∧ ∅ = A.
Note that if B ⇒ τ ∈ PF(A), then s(B) < s(A).
I Lemma 2.6. For all A, A ≡ conj(PF(A)).
Proof. By induction on s(A).

If A = τ , then PF(τ) = [τ], and so conj(PF(τ)) = τ .
If A = B ⇒ C, then PF(A) = [(B ∧ Ci) ⇒ τ]i, where [Ci ⇒ τ]i = PF(C). By the
induction hypothesis, C ≡

∧
i(Ci ⇒ τ), hence, A = B ⇒ C ≡ B ⇒

∧
i(Ci ⇒ τ) ≡∧

i(B ⇒ Ci ⇒ τ) ≡
∧
i((B ∧ Ci)⇒ τ).

If A = B ∧ C, then PF(A) = PF(B)] PF(C). By the induction hypothesis, B ≡
conj(PF(B)), and C ≡ conj(PF(C)). Therefore, A = B∧C ≡ conj(PF(B))∧conj(PF(C)) ≡
conj(PF(B ∧ C)) ≡ conj(PF(B)] PF(C)) = conj(PF(A)). J

I Lemma 2.7. If A ≡ B, then PF(A) ∼ PF(B).
Proof. First we check that PF(A∧B) ∼ PF(B ∧A) and similar for the other three isomorph-
isms. Then we prove by structural induction that if A and B are equivalent in one step,
then PF(A) ∼ PF(B). We conclude by an induction on the length of the derivation of the
equivalence A ≡ B. J

A. Díaz-Caro and G. Dowek 14:5

2.3 Measure of types
The size of a type is not preserved by equivalence. For instance, τ ⇒ (τ ∧τ) ≡ (τ ⇒ τ)∧(τ ⇒
τ), but s(τ ⇒ (τ ∧ τ)) = 5 and s((τ ⇒ τ) ∧ (τ ⇒ τ)) = 7. Thus, we define another notion of
measure of a type.

I Definition 2.8 (Measure of a type). The measure of a type is defined as follows

m(A) =
∑
i

(m(Ci) + 1) where [Ci ⇒ τ]i = PF(A)

with the convention that m(∅) = 0.

I Lemma 2.9. If A ≡ B, then m(A) = m(B).

Proof. By induction on s(A). Let PF(A) = [Ci ⇒ τ]i and PF(B) = [Dj ⇒ τ]j . By
Lemma 2.7, [Ci ⇒ τ]i ∼ [Di ⇒ τ]i. Without lost of generality, take Ci ≡ Di. By the
induction hypothesis, m(Ci) = m(Di). Then, m(A) =

∑
i(m(Ci) + 1) =

∑
i(m(Di) + 1) =

m(B). J

The following lemma shows that the measure m(A) verifies the usual properties.

I Lemma 2.10.
1. m(A ∧B) > m(A)
2. m(A⇒ B) > m(A)
3. m(A⇒ B) > m(B)

Proof.
1. PF(A) is a strict submultiset of PF(A ∧B).
2. Let PF(B) = [Ci ⇒ τ]ni=1. Then, PF(A⇒ B) = [(A ∧ Ci)⇒ τ]ni=1. Hence, m(A⇒ B) ≥

m(A ∧ C1) + 1 > m(A ∧ C1) ≥ m(A).
3. m(A⇒ B) =

∑
im(A ∧ Ci) + 1 >

∑
im(Ci) + 1 = m(B). J

2.4 Decomposition properties on types
In simply typed lambda calculus, the implication and the conjunction are constructors,
that is A ⇒ B is never equal to C ∧ D, if A ⇒ B = A′ ⇒ B′, then A = A′ and
B = B′, and the same holds for the conjunction. This is not the case in System I, where
τ ⇒ (τ ∧ τ) ≡ (τ ⇒ τ) ∧ (τ ⇒ τ), but the connectors still have some coherence properties:

If A ⇒ B ≡
∧n
i=1 Ci, then each Ci is equivalent to an implication A ⇒ Bi, where the

conjunction of the Bi is equivalent to B.
If A ∧ B ≡

∧
i Ci, then each Ci is a conjunction of elements, possibly empty, that

contribute to A and to B.
We state these properties in Corollary 2.12 and Lemma 2.15.

I Lemma 2.11. If A ⇒ B ≡ C1 ∧ C2, then C1 ≡ A ⇒ B1 and C2 ≡ A ⇒ B2 where
B ≡ B1 ∧B2.

Proof. By Lemma 2.7, PF(A ⇒ B) ∼ PF(C1 ∧ C2) = PF(C1)] PF(C2). Let PF(B) =
[Di ⇒ τ]ni=1, so PF(A ⇒ B) = [(A ∧ Di) ⇒ τ]ni=1. Without lost of generality, take
PF(C1) ∼ [(A ∧Di)⇒ τ]ki=1 and PF(C2) ∼ [(A ∧Di)⇒ τ]ni=k+1. Therefore, by Lemma 2.6,
we have A ⇒ B ≡

∧k
i=1((A ∧ Di) ⇒ τ) ∧

∧n
i=k+1((A ∧ Di) ⇒ τ) ≡ (A ⇒

∧k
i=1(Di ⇒

τ)) ∧ (A⇒
∧n
i=k+1(Di ⇒ τ)). Take B1 =

∧k
i=1 Di ⇒ τ and B2 =

∧n
i=k+1 Di ⇒ τ . Remark

that C1 ≡ A⇒ B1, C2 ≡ A⇒ B2 and B ≡ B1 ∧B2. J

FSCD 2019

14:6 Proof Normalisation in a Logic Identifying Isomorphic Propositions

W Y

V XR

S

T U

W1 W2

V1 V2

Wn

VnR

S

T1 T2 Tn

Figure 1 Lemma 2.13.

I Corollary 2.12. If A ⇒ B ≡
∧n
i=1 Ci, then for i ∈ {1, . . . , n}, we have Ci ≡ A ⇒ Bi

where B ≡
∧n
i=1 Bi.

Proof. By induction on n. By Lemma 2.11,
∧n−1
i=1 Ci ≡ A ⇒ B′ and Cn ≡ A ⇒ Bn, with

B ≡ B′ ∧Bn. By the induction hypothesis, for i ≤ n− 1, Ci ≡ A⇒ Bi where B′ ≡
∧n−1
i=1 Bi.

Hence, B ≡
∧n
i=1 Bi. J

I Lemma 2.13. Let R,S, T and U be four multisets such that R] S = T] U , then there
exist four multisets V , W , X, and Y such that R = V]X, S = W] Y , T = V]W , and
U = X] Y , cf. Figure 1.

Proof. Consider an element a ∈ R] S = T] U . Let r be the multiplicity of a in R, s its
multiplicity in S, t its multiplicity in T , and u its multiplicity in U . We have r + s = t+ u.
If r ≤ t we put r copies of a in V , t− r in W , 0 in X, and u in Y . Otherwise, we put t in V ,
0 in W , r − t in X, and s in Y . J

I Corollary 2.14. Let R and S be two multisets and (Ti)ni=1 be a family of multisets, such
that R]S =

⊎n
i=1 Ti. Then, there exist multisets V1, . . . , Vn,W1, . . . ,Wn such that R =

⊎
i Vi

and S =
⊎
iWi and for each i, Ti = Vi]Wi, cf. Figure 1.

Proof. By induction on n. We have R]S =
⊎n−1
i=1 Ti]Tn. Then, by Lemma 2.13, there exist

R′, S′, Vn,Wn such that R = R′] Vn, S = S′]Wn,
⊎n−1
i=1 Ti = R′] S′, and Tn = Vn]Wn.

By induction hypothesis, there exist V1, . . . , Vn−1 and W1, . . . ,Wn−1 such that R′ =
⊎n−1
i=1 Vi,

S′ =
⊎n−1
i=1 Wi and each Ti = Vi]Wi. Hence, R =

⊎n
i=1 Vi and S =

⊎n
i=1 Wi. J

I Lemma 2.15. If A ∧ B ≡
∧n
i=1 Ci then there exists a partition E] F]G of {1, . . . , n}

such that
Ci = Ai ∧Bi, when i ∈ E;
Ci = Ai, when i ∈ F ;
Ci = Bi, when i ∈ G;
A =

∧
i∈E]F Ai; and

B =
∧
i∈E]GBi. J

Proof. Let R = PF(A), S = PF(B), and Ti = PF(Ci). By Lemma 2.7, we have PF(A∧B) ∼
PF(

∧
i Ci), that is R] S ∼

⊎
i Ti. By Corollary 2.14, there exist Vi and Wi such that

R =
⊎n
i=1 Vi, S =

⊎n
i=1 Wi, and Ti ∼ Vi]Wi. As Ti is non-empty, Vi and Wi cannot be

both empty.
If Vi and Wi are both non-empty, we let i ∈ E and Ai = conj(Vi) and Bi = conj(Wi). By
Lemma 2.6, Ci ≡ conj(Ti) ≡ conj(Vi]Wi) ≡ Ai ∧Bi.
If Vi is non-empty and Wi is empty, we let i ∈ F , and Ai = conj(Vi) ≡ conj(Ti) ≡ Ci.
If Wi is non-empty and Vi is empty, we let i ∈ G, and Bi = conj(Wi) ≡ conj(Ti) ≡ Ci.

As Vi = ∅ when i ∈ G, we have A ≡ conj(R) ≡ conj(
⊎
i∈E]F Vi) ≡

∧
i∈E]F Ai.

As Wi = ∅ when i ∈ F , we have B ≡ conj(S) ≡ conj(
⊎
i∈E]GWi) ≡

∧
i∈E]GBi. J

A. Díaz-Caro and G. Dowek 14:7

Table 1 The type system.

[x∈VA]
x : A

(ax) [A≡B] r : A
r : B

(≡)

r : B
λxA.r : A⇒ B

(⇒i) r : A⇒ B s : A
rs : B

(⇒e) r : A s : B
r × s : A ∧B

(∧i)
r : A ∧B
πA(r) : A

(∧e)

Table 2 Symmetric relation.

r × s� s× r (comm)

(r × s)× t� r × (s× t) (asso)

λxA.(r × s)� λxA.r × λxA.s (distλ)

(r × s)t� rt× st (distapp)

rst� r(s× t) (curry)

3 System I

3.1 Syntax
We associate to each (up to equivalence) prime type A an infinite set of variables VA such
that if A ≡ B then VA = VB and if A 6≡ B then VA ∩ VB = ∅. The set of terms is defined
inductively by the grammar

r, s, t, . . . ::= x | λx.r | rs | r × s | πA(r)

We recall the type on binding occurrences of variables and write λxA.t for λx.t when x ∈ VA.
α-equivalence and substitution are defined as usual. The type system is given in Table 1. We
use a presentation of typing rules without explicit context following [21,25], hence the typing
judgments have the form r : A. The preconditions of a typing rule is written on its left.

3.2 Operational semantics
The operational semantics of the calculus is defined by two relations: an equivalence relation,
and a reduction relation.

I Definition 3.1. The symmetric relation � is the smallest contextually closed relation
defined by the rules given in Table 2.

Each isomorphism induces an equivalence between terms. Two rules however correspond to
the isomorphism (3), depending on which distribution is taken into account: elimination or
introduction of implication. We write �∗ for the transitive and reflexive closure of �. Note
that �∗ is an equivalence relation.

Because of the associativity property of ×, the term r × (s× t) is equivalent to the term
(r × s)× t, so we can just write it r × s× t.

As explained in the introduction, variables of conjunctive types are useless, hence all
variables have prime types. This way, there is no term λxτ∧τ .x, but a term λyτ .λzτ .y × z
which is equivalent to (λyτ .λzτ .y)× (λyτ .λzτ .z).

The size of a term is not invariant through the equivalence �. Hence, we introduce a
measure M(·), which is given in Table 3.

FSCD 2019

14:8 Proof Normalisation in a Logic Identifying Isomorphic Propositions

Table 3 Measure on terms.

P (x) = 0 M(x) = 1
P (λxA.r) = P (r) M(λxA.r) = 1 +M(r) + P (r)

P (rs) = P (r) M(rs) = M(r) +M(s) + P (r)M(s)
P (r × s) = 1 + P (r) + P (s) M(r × s) = M(r) +M(s)
P (πA(r)) = P (r) M(πA(r)) = 1 +M(r) + P (r)

I Lemma 3.2. If r � s then P (r) = P (s).

Proof. We check the case of each rule of Table 2, and then conclude by structural induction
to handle the contextual closure.

(comm): P (r × s) = 1 + P (r) + P (s) = P (s× r).
(asso): P ((r × s)× t) = 2 + P (r) + P (s) + P (t) = P (r × (s× t)).
(distλ): P (λxA.(r × s)) = 1 + P (r) + P (s) = P (λxA.r × λxA.s).
(distapp): P ((r × s)t) = 1 + P (r) + P (s) = P (rt× st).
(curry): P ((rs)t) = P (r) = P (r(s× t)). J

I Lemma 3.3. If r � s then M(r) = M(s).

Proof. We check the case of each rule of Table 2, and then conclude by structural induction
to handle the contextual closure.

(comm): M(r × s) = M(r) +M(s) = M(s× r).
(asso): M((r × s)× t) = M(r) +M(s) +M(t) = M(r × (s× t)).
(distλ): M(λxA.(r × s)) = 2 +M(r) +M(s) + P (r) + P (s) = M(λxA.r × λxA.s)
(distapp): M((r × s)t) = M(r) +M(s) + 2M(t) + P (r)M(t) + P (s)M(t) = M(rt× st)
(curry): M((rs)t) = M(r) +M(s) + P (r)M(s) +M(t) + P (r)M(t) = M(r(s× t)) J

I Lemma 3.4. M(λxA.r) > M(r), M(rs) > M(r), M(rs) > M(s), M(r × s) > M(r),
M(r × s) > M(s), and M(πA(r)) > M(r).

Proof. By induction on r, M(r) ≥ 1. We conclude with a case inspection. J

We use the measure to prove that the equivalence class of a term is a finite set.

I Lemma 3.5. For any term r, the set {s | s�∗ r} is finite (modulo α-equivalence).

Proof. Since {s | s �∗ r} ⊆ {s | FV (s) = FV (r) and M(s) = M(r)} ⊆ {s | FV (s) ⊆
FV (r) and M(s) ≤ M(r)}, where FV (t) is the set of free variables of t, all we need to
prove is that for all natural numbers n, for all finite sets of variables F , the set H(n, F) =
{s | FV (s) ⊆ F and M(s) ≤ n} is finite.

By induction on n. For n = 1 the set {s | FV (s) ⊆ F and M(s) ≤ 1} contains only the
variables of F . Assume the property holds for n, then, by the Lemma 3.4 the set H(n+ 1, F)
is a subset of the finite set containing the variables of F , the abstractions (λxA.r) for r in
H(n, F ∪ {x}), the applications (rs) for r and s in H(n, F), the products r × s for r and s
in H(n, F), the projections πA(r) for r in H(n, F). J

I Definition 3.6. The reduction relation ↪→ is the smallest contextually closed relation defined
by the rules given in Table 4. We write ↪→∗ for the transitive and reflexive closure of ↪→.

A. Díaz-Caro and G. Dowek 14:9

Table 4 Reduction relation.

If s : A, (λxA.r)s ↪→ r[s/x] (β) If r : A, πA(r × s) ↪→ r (π)

I Definition 3.7. We write for the relation ↪→ modulo �∗ (i.e. r s iff r �∗ r′ ↪→
s′ �∗ s), and ∗ for its transitive and reflexive closure.

Remark that, by Lemma 3.5, a term has a finite number of reducts in one step and these
reducts can be computed.

3.3 Examples
I Example 3.8. Let r : A and s : B. Then (λxA.λyB .x)(r × s) : A and

(λxA.λyB .x)(r × s)� (λxA.λyB .x)rs ↪→∗ r

However, if A ≡ B, it is also possible to reduce in the following way

(λxA.λyA.x)(r × s)� (λxA.λyA.x)(s× r)� (λxA.λyA.x)sr ↪→∗ s

Hence, the usual encoding of the projector also behaves non-deterministically.

I Example 3.9. Let s : A and t : B, and let TF = λxA.λyB .(x× y).
Then TF : A ⇒ B ⇒ (A ∧ B) ≡ ((A ∧ B) ⇒ A) ∧ ((A ∧ B) ⇒ B). Therefore,

π(A∧B)⇒A(TF) : (A ∧B)⇒ A. Hence, π(A∧B)⇒A(TF)(s× t) : A.
This term reduces as follows:

π(A∧B)⇒A(TF)(s× t)� π(A∧B)⇒A(TF)st
� π(A∧B)⇒A(λxA.(λyB .x)× (λyB .y))st
� π(A∧B)⇒A((λxA.λyB .x)× (λxA.λyB .y))st
↪→ (λxA.λyB .x)st
↪→ (λyB .s)t ↪→ s

I Example 3.10. Let T = λxA.λyB .x and F = λxA.λyB .y. The term T×F×TF has type
((A ∧B)⇒ (A ∧B)) ∧ ((A ∧B)⇒ (A ∧B)).

Hence, π(A∧B)⇒(A∧B)(T×F×TF) is well typed and reduces non-deterministically either
to T× F or to TF. Moreover, as T× F and TF are equivalent, the non-deterministic choice
does not play any role in this particular case. We will come back to the encoding of booleans
in System I on Section 7.

4 Subject Reduction

The set of types assigned to a term is preserved under � and ↪→. Before proving this
property, we prove the unicity of types (Lemma 4.1), the generation lemma (Lemma 4.2),
and the substitution lemma (Lemma 4.3). We only state the lemmas in this section. The
detailed proofs can be found in Appendix A.

The following lemma states that a term can be typed only by equivalent types.

I Lemma 4.1 (Unicity). If r : A and r : B, then A ≡ B.

FSCD 2019

14:10 Proof Normalisation in a Logic Identifying Isomorphic Propositions

Proof.
If the last rule of the derivation of r : A is (≡), then we have a shorter derivation of r : C
with C ≡ A, and, by the induction hypothesis, C ≡ B, hence A ≡ B.
If the last rule of the derivation of r : B is (≡) we proceed in the same way.
All the remaining cases are syntax directed. J

I Lemma 4.2 (Generation).
1. If x ∈ VA and x : B, then A ≡ B.
2. If λxA.r : B, then B ≡ A⇒ C and r : C.
3. If rs : B, then r : A⇒ B and s : A.
4. If r × s : A, then A ≡ B ∧ C with r : B and s : C.
5. If πA(r) : B, then A ≡ B and r : B ∧ C.

Proof. Each statement is proved by induction on the typing derivation. For the statement 1,
we have x ∈ VA and x : B. The only way to type this term is either by the rule (ax) or (≡).

In the first case, A = B, hence A ≡ B.
In the second case, there exists B′ such that x : B′ has a shorter derivation, and B ≡ B′.
By the induction hypothesis A ≡ B′ ≡ B.

For the statement 2, we have λxA.r : B. The only way to type this term is either by rule
(⇒i), (≡).

In the first case, we have B = A⇒ C for some, C and r : C.
In the second, there exists B′ such that λxA.r : B′ has a shorter derivation, and B ≡ B′.
By the induction hypothesis, B′ ≡ A⇒ C and r : C. Thus, B ≡ B′ ≡ A⇒ C.

The three other statements are similar. J

I Lemma 4.3 (Substitution). If r : A, s : B, and x ∈ VB, then r[s/x] : A.

Proof. By structural induction on r (cf. Appendix A). J

I Theorem 4.4 (Subject reduction). If r : A and r ↪→ s or r � s then s : A.

Proof. By induction on the rewrite relation (cf. Appendix A). J

5 Strong Normalisation

In this section we prove the strong normalisation of reduction : every reduction sequence
fired from a typed term eventually terminates. The set of strongly normalising terms with
respect to reduction is written SN. The size of the longest reduction issued from t is
written |t| (recall that each term has a finite number of reducts).

To prove that every term is in SN, we associate, as usual, a set JAK of strongly normalising
terms to each type A. A term r : A is said to be reducible when r ∈ JAK. We then prove an
adequacy theorem stating that every well typed term is reducible.

In simply typed lambda calculus we can either define JA1 ⇒ A2 ⇒ · · · ⇒ An ⇒ τK as the
set of terms r such that for all s ∈ JA1K, rs ∈ JA2 ⇒ · · · ⇒ An ⇒ τK or, equivalently, as the
set of terms r such that for all si ∈ JAiK, rs1 . . . sn ∈ JτK = SN. To prove that a term of the
form λxA.t is reducible, we need to use the so-called CR3 property [22], in the first case,
and the property that a term whose all one-step reducts are in SN is in SN, in the second.
In System I, an introduction can be equivalent to an elimination e.g. rt × st � (r × s)t,
hence, we cannot define a notion of neutral term and have an equivalent to the CR3 property.
Therefore, we use the second definition.

Before we prove the normalisation of System I, we first reformulate the proof of strong
normalisation of simply typed lambda-calculus along these lines.

A. Díaz-Caro and G. Dowek 14:11

5.1 Normalisation of simply typed lambda calculus
I Definition 5.1 (Elimination context). Consider an extension of simply typed lambda calculus
where we introduce an extra symbol []A, called hole of type A.

An elimination context with a hole []B1⇒···⇒Bn⇒τ is a term Kτ
B1⇒···⇒Bn⇒τ of type τ of

the form []B1⇒···⇒Bn⇒τr1 . . . rn. We write Kτ
A[t], for the term Kτ

A[t/[]A] = tr1 . . . rn.

I Definition 5.2 (Terms occurring in an elimination context). T ([]Ar1 . . . rn) = {r1, . . . , rn}.
Note that the types of the elements of T ([]Ar1 . . . rn) are smaller than A, and that if
r1, . . . , rn ∈ SN, then []Ar1 . . . rn ∈ SN.

I Definition 5.3 (Reducibility). The set JAK of reducible terms of type A is defined by
structural induction on A as the set of terms t : A such that for any elimination context Kτ

A

such that the terms in T (Kτ
A) are all reducible, we have Kτ

A[t] ∈ SN.

I Definition 5.4 (Reducible elimination context). An elimination context KB
A is reducible, if

all the terms in T (KB
A) are reducible.

I Lemma 5.5. For all A, JAK ⊆ SN and all the variables of type A are in JAK.

Proof. By induction on A. J

I Lemma 5.6 (Adequacy of application). If r ∈ JA⇒ BK and s ∈ JAK, then rs ∈ JBK.

Proof. Let Kτ
B be a reducible elimination context. We need to prove that Kτ

B [rs] ∈ SN. As
s ∈ JAK, the elimination context K ′τA⇒B = Kτ

B [[]A⇒Bs] is reducible, and since r ∈ JA⇒ BK,
we have Kτ

B [rs] = K ′τA⇒B [r] ∈ SN. J

I Lemma 5.7 (Adequacy of abstraction). If for all t ∈ JAK, r[t/x] ∈ JBK, then λxA.r ∈
JA⇒ BK.

Proof. We need to prove that for every reducible elimination contextKτ
A⇒B , Kτ

A⇒B [λxA.r] ∈
SN, that is that all its one step reducts are in SN. By Lemma 5.5, x ∈ JAK, so r ∈ JBK ⊆ SN.
Then, we proceed by induction on |r|+ |Kτ

A⇒B |. J

I Definition 5.8 (Adequate substitution). A substitution σ is adequate if for all x : A, we
have σ(x) ∈ JAK.

I Theorem 5.9 (Adequacy). If r : A, the for all σ adequate, we have σr ∈ JAK.

Proof. By induction on r. J

I Theorem 5.10 (Strong normalisation). If r : A, then r ∈ SN.

Proof. By Lemma 5.5, the idendity substitution is adequate. Thus, by Theorem 5.9 and
Lemma 5.5, r ∈ JAK ⊆ SN. J

5.2 Reduction of a product
When simply-typed lambda-calculus is extended with pairs, proving that if r1 ∈ SN and
r2 ∈ SN then r1 × r2 ∈ SN is easy. However, in System I this property (Lemma 5.13) is
harder to prove, as it requires a characterisation of the terms equivalent to the product
r1 × r2 (Lemma 5.11) and of all the reducts of this term (Lemma 5.12).

In Lemma 5.11, we characterise the terms equivalent to a product.

FSCD 2019

14:12 Proof Normalisation in a Logic Identifying Isomorphic Propositions

I Lemma 5.11. If r × s�∗ t then either
1. t = u× v where either

a. u�∗ t11 × t21 and v �∗ t12 × t22 with r �∗ t11 × t12 and s�∗ t21 × t22, or
b. v �∗ w × s with r �∗ u× w, or any of the three symmetric cases, or
c. r �∗ u and s�∗ v, or the symmetric case.

2. t = λxA.a and a�∗ a1 × a2 with r �∗ λxA.a1 and s�∗ λxA.a2.
3. t = av and a�∗ a1 × a2, with r �∗ a1v and s�∗ a2v.

Proof. By a double induction, first on M(t) and then on the length of the relation �∗
(cf. Appendix B.1). J

In Lemma 5.12, we characterise the reducts of a product.

I Lemma 5.12. If r1 × r2 �∗ s ↪→ t, there exists u1, u2 such that t�∗ u1 × u2 and either
(r1 u1 and r2 u2), or (r1 u1 and r2 �∗ u2), or (r1 �∗ u1 and r2 u2).

Proof. By induction on M(r1 × r2). J

I Lemma 5.13. If r1 ∈ SN and r2 ∈ SN, then r1 × r2 ∈ SN.

Proof. By Lemma 5.12, from a reduction sequence starting from r1 × r2 we can extract one
starting from r1, or r2 or both. Hence, this reduction sequence is finite. J

5.3 Reduction of a term of a conjunctive type
The next lemma takes advantage of the fact that all the variables have prime types to prove
that all terms of conjunctive type, even open ones, reduce to a product. For instance, instead
of the term λxτ∧τ .x, of type ((τ ∧ τ) ⇒ τ) ∧ ((τ ∧ τ) ⇒ τ), we must write λyτ .λzτ .y × z,
which is equivalent to (λyτ .λzτ .y)× (λyτ .λzτ .z).

I Lemma 5.14. If r :
∧n
i=1 Ai, then r ∗

∏n
i=1 ri where ri : Ai.

Proof. By induction on r.
r = x, then it has a prime type, so take r1 = r.
Let r = λxC .s. Then, by Lemma 4.2, s : D with C ⇒ D ≡

∧
iAi. So, by Corollary 2.12,

D ≡
∧
iDi, and so, by the induction hypothesis, s ∗

∏
i si. Therefore, λxC .s ∗∏

i λx
C .si.

Let r = st. Then, by Lemma 4.2, s : C ⇒
∧
iAi, so s :

∧
i(C ⇒ Ai). Therefore, by the

induction hypothesis, s ∗
∏
i si, and so st ∗

∏
i sit.

Let r = s× t. Then, by Lemma 4.2, s : B and t : C, with B∧C ≡
∧
iAi. By Lemma 2.15,

there exists a partition E] F] G of {1, . . . , n} such that Ai ≡ Bi ∧ Ci, when i ∈ E;
Ai ≡ Bi, when i ∈ F ; Ai ≡ Ci, when i ∈ G; B ≡

∧
i∈E]F Bi; and C ≡

∧
i∈E]G Ci.

By the induction hypothesis, s ∗
∏
i∈E]F si and t ∗

∏
i∈E]G ti. If i ∈ E, we let

ri = si× ti, if i ∈ F , we let ri = si, if i ∈ G, we let ri = ti. We have r = s× t ∗
∏n
i=1 ri.

Let r = π∧
i
Ai

(s). Then, by Lemma 4.2, s :
∧
iAi ∧ B, and hence, by the induction

hypothesis, s ∗
∏
i si × t where si : Ai and t : B, hence r

∏
i si. J

I Corollary 5.15. If r : A ∧B, then r ∗ r1 × r2 where r1 : A and r2 : B.

Proof. Let PF(A) = [Ai]i, PF(B) = [Bj]j , by Lemma 2.6, A ∧B ≡
∧
iAi ∧

∧
j Bj . Then, by

Lemma 5.14, r ∗
∏
i r1i ×

∏
j r2j . Take r1 =

∏
i r1i and r2 =

∏
j r2j . J

A. Díaz-Caro and G. Dowek 14:13

5.4 Reducibility
I Definition 5.16 (Elimination context). Consider an extension of the language where we
introduce an extra symbol []A, called hole of type A. We define the set of elimination contexts
with a hole []A as the smallest set such that:

[]A is an elimination context of type A,
if KB⇒C

A is an elimination context of type B ⇒ C with a hole of type A, and r : B then
KB⇒C
A r is an elimination context of type C with a hole of type A,

and if KB∧C
A is an elimination context of type B∧C with a hole of type A, then πB(KB∧C

A)
is an elimination context of type B with a hole of type A.

We write KB
A [t] for KB

A [t/[]A], where []A is the hole of KB
A . In particular, t may be an

elimination context.

I Example 5.17. Let Kτ
τ = []τ and K ′ττ⇒(τ∧τ) = Kτ

τ [πτ ([]τ⇒(τ∧τ)x)]. Then K ′ττ⇒(τ∧τ) =
πτ ([]τ⇒(τ∧τ)x), and K ′ττ⇒(τ∧τ)[λyτ .y × y] = πτ ((λyτ .y × y)x).

I Definition 5.18 (Terms occurring in an elimination context). Let KB
A be an elimination

context. The multiset of terms occurring in KB
A is defined as

T ([]A) = ∅; T (KB⇒C
A r) = T (KB⇒C

A)] {r}; T (πB(KB∧C
A)) = T (KB∧C

A)

We write |KB
A | for

∑n
i=1 |ri| where [r1, . . . , rn] = T (KB

A).

I Example 5.19. T ([]Ars) = [r, s] and T ([]A(r×s)) = [r×s]. Remark that KB
A [t]�∗ K ′BA [t]

does not imply T (KB
A) ∼ T (K ′BA).

Remark that if KB
A is a context, m(B) ≤ m(A) and hence if a term in T (KB

A) has type
C, then m(C) < m(A).

I Lemma 5.20. Let Kτ
A be an elimination context such that T (Kτ

A) ⊆ SN, let PF(A) =
[B1, . . . , Bn], and let xi ∈ VBi . Then Kτ

A[x1 × · · · × xn] ∈ SN.

Proof. By induction on the number of projections in Kτ
A.

If Kτ
A does not contain any projection, then it has the form []A r1 ... rm. Let Ci be the

type of ri, we have A ≡ C1 ⇒ ... ⇒ Cn ⇒ τ , thus A is prime, n = 1, and we need to
prove that x1 r1 ... rm is in SN which is a consequence of the fact that r1, ..., rn are in
SN.
Otherwise, Kτ

A = K ′τB [πB([]Ar1 . . . rm)], and Kτ
A[x1 × · · · × xn] = K ′τB [πB((x1 × · · · ×

xn)r1 . . . rm)]�∗ K ′τB [πB(x1r1 . . . rm × · · · × xnr1 . . . rm)]. We prove that this term is in
SN by showing, more generally, that if si are reducts of xir1 . . . rm, then K ′τB [πB(s1 ×
· · · × sn)] ∈ SN. To do so, we show, by induction on |K ′τB |+ |s1 × · · · × sn|, that all the
one step reducts of this term are in SN.

If the reduction takes place in one of the terms in T (K ′τB) or in one of the si, we apply
the induction hypothesis.
Otherwise, the reduction is a (π) reduction of πB(s1 × · · · × sn) yielding, without
lost of generality, a term of the form K ′τB [s1 × · · · × sq]. This term is a reduct of
K ′τB [(x1×· · ·×xq)r1 . . . rm]. As the context K ′τB [([]C r1 . . . rm)] contains one projection
less than Kτ

A this term is in SN. Hence so does its reduct K ′τB [s1 × · · · × sq]. J

I Definition 5.21 (Reducibility). The set JAK of reducible terms of type A is defined by
induction on m(A) as the set of terms t : A such that for any elimination context Kτ

A such
that the terms of T (Kτ

A) are all reducible, we have Kτ
A[t] ∈ SN.

FSCD 2019

14:14 Proof Normalisation in a Logic Identifying Isomorphic Propositions

I Definition 5.22 (Reducible elimination context). An elimination context KB
A is reducible,

if all the terms in T (KB
A) are reducible.

From now on we consider all the elimination contexts to be reducible.

The following lemma is a trivial consequence of the definition of reducibility.

I Lemma 5.23. If A ≡ B, then JAK = JBK.

I Lemma 5.24. For all A, JAK ⊆ SN and JAK 6= ∅.

Proof. By induction on m(A). By the induction hypothesis, for all the B such that m(B) <
m(A), JBK 6= ∅. Thus, there exists an elimination context Kτ

A. Hence, if r ∈ JAK, Kτ
A[r] ∈ SN,

hence r ∈ SN.
We then prove that if PF(A) = [B1, . . . , Bn] and xi ∈ VBi then

∏
i xi ∈ JAK. By the

induction hypothesis, T (Kτ
A) ⊆ SN, hence, by Lemma 5.20, Kτ

A[x1 × · · · × xn] ∈ SN. J

5.5 Adequacy
We finally prove the adequacy theorem (Theorem 5.30) showing that every typed term is
reducible, and the strong normalisation theorem (Theorem 5.31) as a consequence of it.

I Lemma 5.25 (Adequacy of projection). If r ∈ JA ∧BK, then πA(r) ∈ JAK.

Proof. We need to prove that Kτ
A[πA(r)] ∈ SN. Take K ′τA∧B = Kτ

A[πA[]A∧B] and since
r ∈ JA ∧BK, we have Kτ

A[πA(r)] = K ′τA∧B [r] ∈ SN. J

I Lemma 5.26 (Adequacy of application). If r ∈ JA⇒ BK, and s ∈ JAK, then rs ∈ JBK.

Proof. We need to prove that Kτ
B[rs] ∈ SN. Take K ′τA⇒B = Kτ

B[[]A⇒Bs] and since r ∈
JA⇒ BK, we have Kτ

B [rs] = K ′τA⇒B [r] ∈ SN. J

I Lemma 5.27 (Adequacy of product). If r ∈ JAK and s ∈ JBK, then r × s ∈ JA ∧BK.

Proof. We need to prove that Kτ
A∧B [r × s] ∈ SN. We proceed by induction on the number

of projections in Kτ
A⇒B. Since the hole of Kτ

A∧B has type A ∧ B, and Kτ
A∧B[t] has type

τ for any t : A, we can assume, without lost of generality, that the context Kτ
A∧B has

the form K ′τC [πC([]A∧Bt1 . . . tn)]. We prove that all K ′τC [πC(rt1 . . . tn × st1 . . . tn)] ∈ SN by
showing, more generally, that if r′ and s′ are two reducts of rt1 . . . tn and st1 . . . tn, then
K ′τC [πC(r′× s′)] ∈ SN. For this, we show that all its one step reducts are in SN, by induction
on |K ′τC |+ |r′|+ |s′|. Full details are given in Appendix B.2. J

I Lemma 5.28 (Adequacy of abstraction). If for all t ∈ JAK, r[t/x] ∈ JBK, then λxA.r ∈
JA⇒ BK.

Proof. By induction on M(r). In the case r 6�∗ r1 × r2, we need to prove that for any
elimination context Kτ

A⇒B , we have Kτ
A⇒B [λxA.r] ∈ SN, and we do so by a second induction

on |Kτ
A⇒B |+ |r| to show that all the one step reducts of Kτ

A⇒B [λxA.r] are in SN. Full details
are given in Appendix B.2. J

I Definition 5.29 (Adequate substitution). A substitution σ is adequate if for all x ∈ VA, we
have σ(x) ∈ JAK.

I Theorem 5.30 (Adequacy). If r : A, then for all σ adequate, we have σr ∈ JAK.

Proof. By induction on r. Full details are given in Appendix B.2. J

A. Díaz-Caro and G. Dowek 14:15

I Theorem 5.31 (Strong normalisation). If r : A, then r ∈ SN.

Proof. By Lemma 5.24, the identity substitution is adequate. Thus, by Theorem 5.30 and
Lemma 5.24, r ∈ JAK ⊆ SN. J

6 Consistency

I Lemma 6.1. For any term r : A there exists an elimination context KA
B and a term s : B,

which is not an elimination, such that r = KA
B [s].

Proof. We proceed by structural induction on r.
If r is a variable, an abstraction, or a product, we take s = r and KA

A = []A.
If r is an application r1r2, by the induction hypothesis, r1 = KC⇒B

A [s], we take K ′BA =
KC⇒B
A r2.

If r is a projection πA(r′), by the induction hypothesis, r′ = KA∧C
B [s], we take K ′AB =

πA(KA∧C
B). J

I Corollary 6.2. There is no closed normal term of type τ .

Proof. Let r : τ be a closed normal term. By Lemma 6.1, any r = Kτ
A[s], where s is not an

elimination. Since the term is closed, s is not a variable. Thus it is either and abstraction or
a product.

If A is prime, then, Kτ
A cannot contain a projection, so by rule (curry) we have Kτ

A �
∗ []At,

with t : B, and s has the form λxC .s′ with s′ : D ⇒ τ . We have B ≡ C ∧ D.
By Corollary 5.15, and since t is normal, t �∗ t1 × t2 where t1 : C and t2 : D, so
Kτ
A �

∗ []At1t2, hence, r = Kτ
A[λxC .s′]�∗ (λxC .s′)t1t2 is not normal.

Otherwise, Kτ
A = K ′τB [πB([]At1 . . . tn)], with []At1 . . . tn : B ∧ C. Then, by Corollary 5.15,

and since st1 . . . tn is normal, st1 . . . tn �∗ s1 × s2, thus r = Kτ
A[s]�∗ K ′τB [πB(s1 × s2)],

which is not normal. J

7 Computing with System I

Because the symbol × is associative and commutative, System I does not contain the usual
notion of pairs. However, it is possible to encode a deterministic projection, even if we have
more than one term of the same type. An example, although there are various possibilities, is
to encode the pairs 〈r, s〉 : A×A as λx1.r×λx2.s : 1⇒ A∧2⇒ A and the projection π1〈r, s〉
as π1⇒A(λx1.r×λx2.s)y1 (similarly for π2), where types 1 and 2 are any two different types.
This example uses free variables, but it is easy to close it, e.g. use λy.y instead of y1 in the
second line. Moreover, this technique is not limited to pairs. Due to the associativity of ×,
the encoding can be easily extended to lists.

Example 3.10 on booleans overlooks an interesting fact: If A ≡ B, then both T and
F behave as a non-deterministic projector. Indeed, Trs ↪→∗ r, but also (λxA.λyA.x)rs �
(λxA.λyA.x)(r× s)� (λxA.λyA.x)(s× r)� (λxA.λyA.x)sr ↪→∗ s. Similarly, Frs ↪→∗ s and
also Frs ∗ r. Hence, A ⇒ A ⇒ A is not suitable to encode the type Bool. The type
A⇒ A⇒ A has only one term in the underlying equational theory.

Fortunately, there are ways to construct types with more than one term. First, let
us define the following notation. For any t, we write [t]τ⇒τ , the canon of t, that is, the
term λzτ⇒τ .t, where zτ⇒τ is a fresh variable not appearing in t. Also, for any term t of
type (τ ⇒ τ) ⇒ A, we write {t}τ⇒τ , the cocanon, which is the inverse operation, that is,
{[t]τ⇒τ}τ⇒τ ↪→ t for any t of type A. For the cocanon it suffices to take {t}τ⇒τ = t(λxτ .x).

FSCD 2019

14:16 Proof Normalisation in a Logic Identifying Isomorphic Propositions

Therefore, the type ((τ ⇒ τ) ⇒ A) ⇒ A ⇒ A has the following two different terms:
tt := λxA.λy(τ⇒τ)⇒A.x and ff := λx(τ⇒τ)⇒A.λyA.{x}τ⇒τ . Hence, it is possible to encode
an if-then-else conditional expression as If c then r else s := cr[s]τ⇒τ . Thus, ttr[s]τ⇒τ ↪→∗ r,
while ffr[s]τ⇒τ �∗ ff [s]τ⇒τr ↪→∗ {[s]τ⇒τ}τ⇒τ ↪→ s.

8 Conclusion, Discussion and Future Work

In this paper we have defined System I, a proof system for propositional logic, where
isomorphic propositions have the same proofs.

8.1 Non-terminating extension
As mentioned in the introduction, the choice of rules is subtle. Indeed, as well known,
the strong normalisation of simply typed lambda calculus is not a very robust property:
minor modifications of typing or reduction rules can lead to non-terminating calculi, see for
instance [18]. In System I, we have the rule (distapp) to deal with the equivalence A⇒ (B∧C) ≡
(A⇒ B)∧(A⇒ C), and we could have also considered a rule such as πA(rs)� πB⇒A(r)s [13].
However, adding such a rule leads to a non-terminating calculus, as shown by the following
example. Let δ = λx(τ⇒τ)∧τ .πτ⇒τ (x)πτ (x) : ((τ ⇒ τ)∧τ)⇒ τ , δ′ = δ((zτ⇒τ⇒τyτ)×yτ) : τ ,
and Ω = δ((zτ⇒τ⇒τyτ)× δ′) : τ . Then, we have

Ω
↪→ πτ⇒τ ((zy)× δ′)πτ ((zy)× δ′) ↪→ πτ⇒τ ((zy)× δ′)δ′ = πτ⇒τ ((zy)× (δ((zy)× y)))δ′

� πτ⇒τ ((zy)× (δ(zy)y))δ′ � πτ⇒τ ((z × (δ(zy)))y)δ′
(wrong-rule)
�∗ πτ⇒τ ((z × (δ(zy)))δ′)y

� πτ⇒τ ((zδ′)× (δ(zy)δ′))y � πτ⇒τ ((zδ′)× (δ((zy)× δ′)))y = πτ⇒τ ((zδ′)× Ω)y

8.2 Other Related Work
Apart from the related work already discussed in the introduction, in a work by Garrigue
and Aït-Kaci [20], the selective λ-calculus has been presented, where only the isomorphism

(A⇒ B ⇒ C) ≡ (B ⇒ A⇒ C). (5)

has been treated, which is complete with respect to the function type. In System I we also
consider the conjunction, and hence four isomorphisms. Isomorphism (5) is a consequence of
currification and commutation, that is A ∧B ≡ B ∧A and (A ∧B)⇒ C ≡ (A⇒ B ⇒ C).

The selective λ-calculus includes labellings to identify which argument is being used at
each time. Moreover, by considering the Church encoding of pairs, isomorphism (5) implies
isomorphism (1) (commutativity of ∧). However, their proposal is different to ours. In
particular, we track the term by its type, which is a kind of labelling, but when two terms
have the same type, then we leave the system to non-deterministically choose any proof. One
of our main novelties is, indeed, the non-deterministic projector. However, we can also get
back determinism, by encoding a labelling, as discussed in Section 7, or by dropping some
isomorphisms (namely, associativity and commutativity of conjunction).

8.3 Towards more connectives
A subtle question is how to add a neutral element of the conjunction, which will imply
more isomorphisms, e.g. A ∧ > ≡ A, A ⇒ > ≡ > and > ⇒ A ≡ A. Adding the equation
> ⇒ > ≡ > would make it possible to derive (λx>.xx)(λx>.xx) : >, however this term is

A. Díaz-Caro and G. Dowek 14:17

not the classical Ω, it is typed by >, and imposing some restrictions on the beta reduction, it
could be forced not to reduce to itself but to discard its argument. For example: “If A ≡ >,
then (λxA.r)s ↪→ r[?/x]”, where ? : > is the introduction rule of >.

8.4 Eta-expansion rule
In [15] we have given an implementation embedded in Haskell of an extended fragment of the
system as presented in [13], which is an early version of System I. In such an implementation,
we have added some rules in order to have only introductions as normal forms. For example,
“If s : B then (λxA.λyB .r)s ↪→ λxA.((λyB .r)s). Such a rule, among others introduced in this
implementation, is a particular case of a more general η-expansion rule. Indeed, with the rule”
“If t : A ⇒ B then t ↪→ λxA.tx” we can derive (λxA.λyB .r)s ↪→ λzA.(λxA.λyB .r)sz �∗
λzA.(λxA.λyB .r)zs ↪→ λzA.((λyB .r[z/x])s).

Indeed, we conjecture that System I extended with an η-expansion rule would lead to a
system where there is no closed elimination term in normal form. Such an extension is left
for future work.

References
1 Pablo Arrighi and Alejandro Díaz-Caro. A System F Accounting for Scalars. Logical Methods

in Computer Science, 8(1:11), 2012.
2 Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. The Vectorial Lambda-Calculus.

Information and Computation, 254(1):105–139, 2017.
3 Pablo Arrighi and Gilles Dowek. Linear-algebraic lambda-calculus: higher-order, encodings,

and confluence. In Andrei Voronkov, editor, Proceedings of RTA 2008, volume 5117 of LNCS,
pages 17–31, 2008.

4 Pablo Arrighi and Gilles Dowek. Lineal: A linear-algebraic lambda-calculus. Logical Methods
in Computer Science, 13(1:8), 2017.

5 Gérard Boudol. Lambda-Calculi for (Strict) Parallel Functions. Information and Computation,
108(1):51–127, 1994.

6 Kim B. Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types.
Mathematical Structures in Computer Science, 2(2):231–247, 1992.

7 Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. A Relational Semantics for
Parallelism and Non-Determinism in a Functional Setting. Annals of Pure and Applied Logic,
163(7):918–934, 2012.

8 Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information and Compu-
tation, 76(2–3):95–120, 1988.

9 Ugo de’Liguoro and Adolfo Piperno. Non Deterministic Extensions of Untyped λ-calculus.
Information and Computation, 122(2):149–177, 1995.

10 Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Adolfo Piperno. A filter model for
concurrent λ-calculus. SIAM Journal on Computing, 27(5):1376–1419, 1998.

11 Roberto Di Cosmo. Isomorphisms of types: from λ-calculus to information retrieval and
language design. Progress in Theoretical Computer Science. Birkhauser, 1995.

12 Roberto Di Cosmo. A short survey of isomorphisms of types. Mathematical Structures in
Computer Science, 15(5):825–838, 2005.

13 Alejandro Díaz-Caro and Gilles Dowek. Non determinism through type isomorphism. In Delia
Kesner and Petrucio Viana, editors, Proceedings of LSFA 2012, volume 113 of EPTCS, pages
137–144, 2013.

14 Alejandro Díaz-Caro and Gilles Dowek. Typing quantum superpositions and measurement. In
Carlos Martín-Vide, Roman Neruda, and Miguel A. Vega-Rodríguez, editors, Proceedings of
TPNC 2017, volume 10687 of LNCS, pages 281–293, 2017.

FSCD 2019

14:18 Proof Normalisation in a Logic Identifying Isomorphic Propositions

15 Alejandro Díaz-Caro and Pablo E. Martínez López. Isomorphisms considered as equalities:
Projecting functions and enhancing partial application through an implementation of λ+.
In Proceedings of the 27th Symposium on the Implementation and Application of Functional
Programming Languages, IFL ’15, pages 9:1–9:11. ACM, 2015.

16 Alejandro Díaz-Caro and Barbara Petit. Linearity in the non-deterministic call-by-value
setting. In Luke Ong and Ruy de Queiroz, editors, Proceedings of WoLLIC 2012, volume 7456
of LNCS, pages 216–231, 2012.

17 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. Journal of
Automated Reasoning, 31(1):33–72, 2003.

18 Gilles Dowek and Ying Jiang. On the expressive power of schemes. Information and Compu-
tation, 209:1231–1245, 2011.

19 Gilles Dowek and Benjamin Werner. Proof normalization modulo. The Journal of Symbolic
Logic, 68(4):1289–1316, 2003.

20 Jacques Garrigue and Hassan Aït-Kaci. The typed polymorphic label-selective λ-calculus. In
Proceedings of POPL 1994, ACM SIGPLAN, pages 35–47, 1994.

21 Herman Geuvers, Robbert Krebbers, James McKinna, and Freek Wiedijk. Pure Type Systems
without Explicit Contexts. In Karl Crary and Marino Miculan, editors, Proceedings of LFMTP
2010, volume 34 of EPTCS, pages 53–67, 2010.

22 Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge University
Press, 1989.

23 Per Martin-Löf. Intuitionistic type theory. Studies in proof theory. Bibliopolis, 1984.
24 Michele Pagani and Simona Ronchi Della Rocca. Linearity, non-determinism and solvability.

Fundamental Informaticae, 103(1–4):173–202, 2010.
25 Jonghyun Park, Jeongbong Seo, Sungwoo Park, and Gyesik Lee. Mechanizing Metatheory

without Typing Contexts. Journal of Automated Reasoning, 52(2):215–239, 2014.
26 Mikael Rittri. Retrieving library identifiers via equational matching of types. In Proceedings

of CADE 1990, volume 449 of LNCS, pages 603–617, 1990.
27 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
28 Lionel Vaux. The algebraic lambda calculus. Mathematical Structures in Computer Science,

19(5):1029–1059, 2009.

A Detailed proofs of Section 4

I Lemma 4.3 (Substitution). If r : A, s : B, and x ∈ VB, then r[s/x] : A.

Proof. By structural induction on r.
Let r = x. By Lemma 4.2, A ≡ B, thus s : A. We have x[s/x] = s, so x[s/x] : A.
Let r = y, with y 6= x. We have y[s/x] = y, so y[s/x] : A.
Let r = λyC .r′. By Lemma 4.2, A ≡ C ⇒ D, with r′ : D. By the induction hypothesis
r′[s/x] : D, and so, by rule (⇒i), λyC .r′[s/x] : C ⇒ D. Since λyC .r′[s/x] = (λyC .r′)[s/x],
using rule (≡), (λyC .r′)[s/x] : A.
Let r = r1r2. By Lemma 4.2, r1 : C ⇒ A and r2 : C. By the induction hypothesis
r1[s/x] : C ⇒ A and r2[s/x] : C, and so, by rule (⇒e), (r1[s/x])(r2[s/x]) : A. Since
(r1[s/x])(r2[s/x]) = (r1r2)[s/x], we have (r1r2)[s/x] : A.
Let r = r1× r2. By Lemma 4.2, r1 : A1 and r2 : A2, with A ≡ A1 ∧A2. By the induction
hypothesis r1[s/x] : A1 and r2[s/x] : A2, and so, by rule (∧i), (r1[s/x])×(r2[s/x]) : A1∧A2.
Since (r1[s/x])× (r2[s/x]) = (r1 × r2)[s/x], using rule (≡), we have (r1 × r2)[s/x] : A.
Let r = πA(r′). By Lemma 4.2, r′ : A ∧ C. Hence, by the induction hypothesis,
r′[s/x] : A ∧ C. Hence, by rule ∧e, πA(r′[s/x]) : A. Since πA(r′[s/x]) = πA(r′)[s/x], we
have πA(r′)[s/x] : A. J

A. Díaz-Caro and G. Dowek 14:19

I Theorem 4.4 (Subject reduction). If r : A and r ↪→ s or r � s then s : A.

Proof. By induction on the rewrite relation.
(comm): If r × s : A, then by Lemma 4.2, A ≡ A1 ∧A2 ≡ A2 ∧A1, with r : A1 and s : A2.
Then, s× r : A2 ∧A1 ≡ A.
(asso):
(→) If (r × s)× t : A, then by Lemma 4.2, A ≡ (A1 ∧A2) ∧A3 ≡ A1 ∧ (A2 ∧A3), with
r : A1, s : A2 and t : A3. Then, r × (s× t) : A1 ∧ (A2 ∧A3) ≡ A.

(←) Analogous to (→).
(distλ):
(→) If λxB .(r× s) : A, then by Lemma 4.2, A ≡ (B ⇒ (C1 ∧C2)) ≡ ((B ⇒ C1)∧ (B ⇒
C2)), with r : C1 and s : C2. Then, λxB .r × λxB .s : (B ⇒ C1) ∧ (B ⇒ C2) ≡ A.

(←) If λxB .r × λxB .s : A, then by Lemma 4.2, A ≡ ((B ⇒ C1) ∧ (B ⇒ C2)) ≡ (B ⇒
(C1 ∧ C2)), with r : C1 and s : C2. Then, λxB .(r × s) : B ⇒ (C1 ∧ C2) ≡ A.

(distapp):
(→) If (r× s)t : A, then by Lemma 4.2, r× s : B ⇒ A, and t : B. Hence, by Lemma 4.2

again, B ⇒ A ≡ C1 ∧ C2, and so by Lemma 2.11, A ≡ A1 ∧A2, with r : B ⇒ A1 and
s : B ⇒ A2. Then, rt× st : A1 ∧A2 ≡ A.

(←) If rt × st : A, then by Lemma 4.2, A ≡ A1 ∧ A2 with r : B ⇒ A1, s : B′ ⇒ A2,
t : B and t : B′. By Lemma 4.1, B ≡ B′. Then (r × s)t : A1 ∧A2 ≡ A.

(curry):
(→) If rst : A, then by Lemma 4.2, r : B ⇒ C ⇒ A ≡ (B ∧ C) ⇒ A, s : B and t : C.

Then, r(s× t) : A.
(←) If r(s× t) : A, then by Lemma 4.2, r : (B ∧ C)⇒ A ≡ (B ⇒ C ⇒ A), s : B and
t : C. Then rst : A.

(β): If (λxB .r)s : A, then by Lemma 4.2, λxB .r : B ⇒ A, and by Lemma 4.2 again, r : A.
Then by Lemma 4.3, r[s/xB] : A.
(π): If πB(r × s) : A, then by Lemma 4.2, A ≡ B, and so, by rule (≡), r : A.
Contextual closure: Let t→ r, where → is either � or ↪→.

Let λxB .t→ λxB .r: If λxB .t : A, then by Lemma 4.2, A ≡ (B ⇒ C) and t : C, hence
by the induction hypothesis, r : C and so λxB .r : B ⇒ C ≡ A.
Let ts→ rs: If ts : A then by Lemma 4.2, t : B ⇒ A and s : B, hence by the induction
hypothesis, r : B ⇒ A and so rs : A.
Let st→ st: If st : A then by Lemma 4.2, s : B ⇒ A and t : B, hence by the induction
hypothesis r : B and so sr : A.
Let t × s → r × s: If t × s : A then by Lemma 4.2, A ≡ A1 ∧ A2, t : A1, and s : A2,
hence by the induction hypothesis, r : A1 and so r × s : A1 ∧A2 ≡ A.
Let s× t→ s× r: Analogous to previous case.
Let πB(t)→ πB(r): If πB(t) : A then by Lemma 4.2, A ≡ B and t : B ∧ C, hence by
the induction hypothesis r : B ∧ C. Therefore, πB(r) : B ≡ A. J

B Detailed proofs of Section 5

B.1 Detailed proofs of Section 5.2
I Lemma 5.11. If r × s�∗ t then either
1. t = u× v where either

a. u�∗ t11 × t21 and v �∗ t12 × t22 with r �∗ t11 × t12 and s�∗ t21 × t22, or
b. v �∗ w × s with r �∗ u× w, or any of the three symmetric cases, or
c. r �∗ u and s�∗ v, or the symmetric case.

FSCD 2019

14:20 Proof Normalisation in a Logic Identifying Isomorphic Propositions

2. t = λxA.a and a�∗ a1 × a2 with r �∗ λxA.a1 and s�∗ λxA.a2.
3. t = av and a�∗ a1 × a2, with r �∗ a1v and s�∗ a2v.

Proof. By a double induction, first on M(t) and then on the length of the relation �∗.
Consider an equivalence proof r × s �∗ t′ � t with a shorter proof r × s �∗ t′. By the
second induction hypothesis, the term t′ has the form prescribed by the lemma. We consider
the three cases and in each case, the possible rules transforming t′ in t.
1. Let r × s�∗ u× v � t. The possible equivalences from u× v are

t = u′ × v or u× v′ with u� u′ and v � v′, and so the term t is in case 1.
Rules (comm) and (asso) preserve the conditions of case 1.
t = λxA.(u′ × v′), with u = λxA.u′ and v = λxA.v′. By the first induction hypothesis
(since M(u) < M(t) and M(v) < M(t)), either
a. u �∗ w11 × w21 and v �∗ w12 × w22, by the first induction hypothesis, wij �∗

λxA.tij for i = 1, 2 and j = 1, 2, with u′ �∗ t11 × t21 and v′ �∗ t12 × t22, so
u′×v′ �∗ t11×t12×t21×t22. Hence, r �∗ λxA.(t11×t12) and s�∗ λxA.(t21×t22),
and hence the term t is in case 2.

b. v �∗ w × s and r �∗ u× w. Since v �∗ λxA.v′, by the first induction hypothesis,
w �∗ λxA.t1 and s�∗ λxA.t2, with v′ �∗ t1 × t2. Hence, r �∗ λx.(u′ × t1), and
hence the term t is in case 2.

c. r �∗ λxA.u′ and s�∗ λxA.v, and hence the term t is in case 2.
(the symmetric cases are analogous).
t = (u′ × v′)t′, with u = u′t′ and v = v′t′. By the first induction hypothesis (since
M(u) < M(t) and M(v) < M(t)), either
a. u �∗ w11 × w21, v �∗ w12 × w22, r �∗ w11 × w12, and s �∗ w21 × w22. By the

first induction hypothesis (since M(wij) < M(t)), wij �∗ tijt′, for i = 1, 2 and
j = 1, 2, where u′ �∗ t11× t21, v′ �∗ t12× t22, r �∗ w11×w12 and s�∗ w21×w22.
Therefore, u �∗ t11t

′ × t21t
′ and v �∗ t12t

′ × t22t
′ with r �∗ (t11 × t12)t′ and

s�∗ (t21 × t22)t′, and hence the term t is in case 3.
b. v′t′ �∗ w× s and r �∗ u′t′×w. By the first induction hypothesis on v′t′ �∗ w× s

(since M(w) < M(t) and M(s) < M(t)), we have w �∗ t1t′ and s �∗ t2t′ with
t1 × t2 �∗ v′. Therefore, v �∗ t1t′ × t2t′ with r �∗ (u× t1)t′ and s�∗ t2t′, and
u′ × v′ �∗ u′ × t1 × t2, hence the term t is in case 3.

c. r �∗ u′t′ and s�∗ v′t′, and hence we are in case 3.
(the symmetric cases are analogous).

2. Let r × s �∗ λxA.a � t, with a �∗ a1 × a2, r �∗ λxA.a1, and s �∗ λxA.a2. Hence,
possible equivalences from λx.a to t are
t = λxA.a′ with a�∗ a′, hence a′ �∗ a1 × a2, and so the term t is in case 2.
t = λxA.u×λxA.v, with a1×a2 �∗ a = u×v. Hence, by the first induction hypothesis
(since M(a) < M(t)), either
a. a1 �∗ u and a2 �∗ v, and so r �∗ λxA.u and s�∗ λxA.v, or
b. v �∗ t1 × t2 with a1 �∗ u × t1 and a2 �∗ t2, and so λxA.v �∗ λx.t1 × λxA.t2,

r �∗ λxA.u× λxA.t1 and s�∗ λxA.t2, or
c. u�∗ t11 × t21 and v �∗ t12 × t22 with a1 �∗ t11 × t12 and a2 �∗ t21 × t22, and so

λxA.u�∗ λxA.t11 × λxA.t21, λx.v �∗ λxA.t12 × λxA.t22, r �∗ λxA.t11 × λxA.t12
and s�∗ λxA.t21 × λxA.t22.

(the symmetric cases are analogous), and so the term t is in case 1.
3. Let r × s �∗ aw � t, with a �∗ a1 × a2, r �∗ a1w, and s �∗ a2w. The possible

equivalences from aw to t are

A. Díaz-Caro and G. Dowek 14:21

t = a′w with a�∗ a′, hence a′ �∗ a1 × a2, and so the term t is in case 3.
t = aw′ with w �∗ w′ and so the term t is in case 3.
t = uw × vw, with a1 × a2 �∗ a = u × v. Hence, by the first induction hypothesis
(since M(a) < M(t)), either
a. a1 �∗ u and a2 �∗ v, and so r �∗ uw and s�∗ vw, or
b. v �∗ t1×t2 with a1 �∗ u×t1 and a2 �∗ t2, and so vw �∗ t1w×t2w, r �∗ uw×t1w

and s�∗ t2w, or
c. u�∗ t11 × t21 and v �∗ t12 × t22 with a1 �∗ t11 × t12 and a2 �∗ t21 × t22, and so

uw �∗ t11w × t21w, vw �∗ t12w × t22w, r �∗ t11w × t12w and s�∗ t21w × t22w.
(the symmetric cases are analogous), and so the term t is in case 1.
t = a′(v × w) with a = a′v, thus a′v = a �∗ a1 × a2. Hence, by the first induction
hypothesis, a′ �∗ a′1 × a′2, with a1 �∗ a′1v and a2 �∗ a′2v. Therefore, r �∗ a′1(v ×w)
and s�∗ a′2(v × w), and so the term t is in case 3. J

I Lemma 5.12. If r1 × r2 �∗ s ↪→ t, there exists u1, u2 such that t�∗ u1 × u2 and either
(r1 u1 and r2 u2), or (r1 u1 and r2 �∗ u2), or (r1 �∗ u1 and r2 u2).

Proof. By induction on M(r1 × r2). By Lemma 5.11, s is either a product, an abstraction
or an application with the conditions given in the lemma. The different terms s reducible by
↪→ are

(λxA.a)s′ that reduces by the (β) rule to a[s′/x].
s1 × s2, λxA.a, as′, with a reduction in the subterm s1, s2, a, or s′.

Notice that rule (π) cannot apply since s 6�∗ πC(s′).
We consider each case:
s = (λxA.a)s′ and t = a[s′/x]. Using twice Lemma 5.11, we have a�∗ a1 × a2, r1 �∗

(λxA.a1)s′ and r2 �∗ (λxA.a2)s′. Since t�∗ a1[s′/x]× a2[s′/x], we take u1 = a1[s′/x]
and u2 = a2[s′/x].
s = s1 × s2, t = t1 × s2 or t = s1 × t2, with s1 ↪→ t1 and s2 ↪→ t2. We only consider the
first case since the other is analogous. One of the following cases happen

(a) r1 �∗ w11 × w21, r2 �∗ w12 × w22, s1 = w11 × w12 and s2 = w21 × w22. Hence, by
the induction hypothesis, either t1 = w′11 × w12, or t1 = w11 × w′12, or t1 = w′11 × w′12,
with w11 ↪→ w′11 and w12 ↪→ w′12. We take, in the first case u1 = w′11 × w21 and
u2 = w12 × w22, in the second case u1 = w11 × w21 and u2 = w′12 × w22, and in the
third u1 = w′11 × w21 and u2 = w′12 × w22.

(b) We consider two cases, since the other two are symmetric.
r1 �∗ s1 × w and s2 �∗ w × r2, in which case we take u1 = t1 × w and u2 = r2.
r2 �∗ w×s2 and s1 = r1×w. Hence, by the induction hypothesis, either t1 = r′1×w,
or t1 = r1 × w′ or t1 = r′1 × w′, with r1 ↪→ r′1 and w ↪→ w′. We take, in the first
case u1 = r′1 and u2 = w × s2, in the second case u1 = r1 and u2 = w′ × s2, and in
the third case u1 = r′1 and u2 = w′ × s2.

(c) r1 �∗ s1 and r2 �∗ s2, in which case we take u1 = t1 and u2 = s2.
s = λxA.a, t = λxA.t′, and a ↪→ t′, with a �∗ a1 × a2 and s �∗ λxA.a1 × λxA.a2.
Therefore, by the induction hypothesis, there exists u′1, u′2 such that either (a1 u′1 and
a2 u′2), or (a1 �∗ u′1 and a2 u′2), or (a1 u′1 and a2 �∗ u′2). Therefore, we take
u1 = λxA.u′1 and u2 = λxA.u′2.
s = as′, t = t′s′, and a ↪→ t′, with a �∗ a1 × a2 and s �∗ a1s

′ × a2s
′. Therefore, by

the induction hypothesis, there exists u′1, u′2 such that either (a1 u′1 and a2 u′2), or
(a1 �∗ u′1 and a2 u′2), or (a1 u′1 and a2 �∗ u′2). Therefore, we take u1 = u′1s

′ and
u2 = u′2s

′.

FSCD 2019

14:22 Proof Normalisation in a Logic Identifying Isomorphic Propositions

s = as′, t = at′, and s′ ↪→ t′, with a�∗ a1 × a2 and s�∗ a1s
′ × a2s

′. By Lemma 5.11
several times, one the following cases happen

(a) a1s
′ �∗ w11s

′ × w12s
′, a2s

′ �∗ w21s
′ × w22s

′, r1 �∗ w11s
′ × w21s

′ and r2 �∗

w12s
′ × w22s

′. We take u1 �∗ (w11 × w21)t′ and r2 �∗ (w12 × w22)t′.
(b) a2s

′ �∗ w1s
′ × w2s

′, r1 �∗ a1s
′ × w2s

′ and r2 �∗ w2s
′. So we take u1 = (a1 × w1)t′

and u2 = w2t
′, the symmetric cases are analogous.

(c) r1 �∗ a1s
′ and r2 �∗ a2s

′, in which case we take u1 = a1t
′ and u2 = a2t

′ the
symmetric case is analogous. J

B.2 Detailed proofs of Section 5.5
I Lemma 5.27 (Adequacy of product). If r ∈ JAK and s ∈ JBK, then r × s ∈ JA ∧BK.

Proof. We need to prove that Kτ
A∧B [r × s] ∈ SN. We proceed by induction on the number

of projections in Kτ
A∧B. Since the hole of Kτ

A∧B has type A ∧ B, and Kτ
A∧B[t] has type τ

for any t : A there is at least one projection.
As r ∈ JAK, for any elimination context K ′τA , we have K ′τA [r] ∈ SN, but then if A ≡ B1 ⇒

· · · ⇒ Bn ⇒ C, we also have K ′′τC [rt1 . . . tn] ∈ SN, thus rt1 . . . tn ∈ JCK. Similarly, since
s ∈ JBK, st1 . . . tn is reducible.

We prove that K ′τC [πC(rt1 . . . tn × st1 . . . tn)] ∈ SN by showing, more generally, that if r′
and s′ are two reducts of rt1 . . . tn and st1 . . . tn, then K ′τC [πC(r′ × s′)] ∈ SN. For this, we
show that all its one step reducts are in SN, by induction on |K ′τC |+ |r′|+ |s′|.

If the reduction takes place in one of the terms in T (K ′τC), in r′, or in s′, we apply the
induction hypothesis.
Otherwise, the reduction is a (π) reduction of πC(r′ × s′), that is, r′ × s′ �∗ v × w, the
reduct is v, and we need to prove K ′τC [v] ∈ SN. By Lemma 5.11, we have either:
v �∗ r1 × s1, with r′ �∗ r1 × r2 and s′ �∗ s1 × s2. In such a case, by Lemma 5.25,
v is the product of two reducible terms, so since there is one projection less than in
Kτ
A∧B , the first induction hypothesis applies.

v �∗ r′ × s1, with s′ �∗ s1 × s2. In such a case, by Lemma 5.25, v is the product
of two reducible terms, so since there is one projection less than in Kτ

A∧B, the first
induction hypothesis applies.
v �∗ r1 × s′, with r′ �∗ r1 × r2. In such a case, by Lemma 5.25, v is the product
of two reducible terms, so since there is one projection less than in Kτ

A∧B, the first
induction hypothesis applies.
v �∗ r′, in which case, C ≡ A, and since r ∈ JAK, we have K ′τA [r′]�∗ K ′τA [v] ∈ SN.
v �∗ r1 with r′ �∗ r1 × r2, in which case, since r ∈ JAK, we have K ′τC [πC(r′)] ∈ SN
and K ′τC [πC(r′)] K ′τC [v] hence K ′τC [v] ∈ SN.
v �∗ s′, in which case, C ≡ B, and since s ∈ JBK, we have K ′τB [s′]�∗ K ′τB [v] ∈ SN.
v �∗ s1 with s′ �∗ s1 × s2, in which case, since s ∈ JBK, we have K ′τC [πC(s′)] ∈ SN
and K ′τC [πC(s′)] K ′τC [v] hence K ′τC [v] ∈ SN. J

I Lemma 5.28 (Adequacy of abstraction). If for all t ∈ JAK, r[t/x] ∈ JBK, then λxA.r ∈
JA⇒ BK.

Proof. We proceed by induction on M(r).
If r �∗ r1 × r2, by Lemma 4.2, B ≡ B1 ∧ B2 with r1 : B1 and r2 : B2. and so by

Lemma 4.3, r1[t/x] : B1 and r2[t/x] : B2. Since r[t/x] ∈ JBK, we have r1[t/x]× r2[t/x] ∈ JBK.
By Lemma 5.25, r1[t/x] ∈ JB1K and r2[t/x] ∈ JB2K. By the induction hypothesis, λxA.r1 ∈

A. Díaz-Caro and G. Dowek 14:23

JA⇒ B1K and λxA.r2 ∈ JA⇒ B2K, then by Lemma 5.27, λxA.r �∗ λxA.r1 × λxA.r2 ∈
J(A⇒ B1) ∧ (A⇒ B2)K, and by Lemma 5.23, J(A⇒ B1) ∧ (A⇒ B2)K = JA⇒ BK.

If r 6�∗ r1 × r2, we need to prove that for any elimination context Kτ
A⇒B, we have

Kτ
A⇒B [λxA.r] ∈ SN.
Since r and all the terms in T (Kτ

A⇒B) are reducible, then they are in SN, by Lemma 5.24.
We proceed by induction on |Kτ

A⇒B |+|r| to show that all the one step reducts ofKτ
A⇒B [λxA.r]

are in SN. Since r is not a product, the only one step reducts are the following.
If the reduction takes place in one of the terms in T (Kτ

A⇒B) or r, we apply the induction
hypothesis.
If Kτ

A⇒B [λxA.r] = K ′τB [(λxA.r)s] and it reduces to K ′τB [r[s/x]], as r[s/x] ∈ JBK, we have
K ′τB [r[s/x]] ∈ SN. J

I Theorem 5.30 (Adequacy). If r : A, then for all σ adequate, we have σr ∈ JAK.

Proof. By induction on r.
If r is a variable x ∈ VA, then, since σ is adequate, we have σr ∈ JAK.
If r is a product s × t, then by Lemma 4.2, s : B, t : C, and A ≡ B ∧ C, then by the
induction hypothesis, σs ∈ JBK and σt ∈ JCK. By Lemma 5.27, (σs× σt) ∈ JB ∧ CK,
hence by Lemma 5.23, σr ∈ JAK.
If r is a projection πA(s), then by Lemma 4.2, s : A∧B, and by the induction hypothesis,
σs ∈ JA ∧BK. By Lemma 5.25, πA(σs) ∈ JAK, hence σr ∈ JAK.
If r is an abstraction λxB .s, with s : C, then by Lemma 4.2, A ≡ B ⇒ C, hence by
the induction hypothesis, for all σ, and for all t ∈ JBK, (σs)[t/x] ∈ JCK. Hence, by
Lemma 5.28, λxB .σs ∈ JB ⇒ CK, hence, by Lemma 5.23, σr ∈ JAK.
If r is an application st, then by Lemma 4.2, s : B ⇒ A and t : B, then by the
induction hypothesis, σs ∈ JB ⇒ AK and σt ∈ JBK. Hence, by Lemma 5.26, we have
σr = σsσt ∈ JAK. J

FSCD 2019

λ!-calculus, Intersection Types, and Involutions
Alberto Ciaffaglione
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
alberto.ciaffaglione@uniud.it

Pietro Di Gianantonio
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
pietro.digianantonio@uniud.it

Furio Honsell
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
furio.honsell@uniud.it

Marina Lenisa
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
marina.lenisa@uniud.it

Ivan Scagnetto
Department of Mathematics, Computer Science and Physics, University of Udine, Italy
ivan.scagnetto@uniud.it

Abstract
Abramsky’s affine combinatory algebras are models of affine combinatory logic, which refines

standard combinatory logic in the direction of Linear Logic. Abramsky introduced various universal
models of computation based on affine combinatory algebras, consisting of partial involutions over
a suitable formal language of moves, in order to discuss reversible computation in a Geometry of
Interaction setting. We investigate partial involutions from the point of view of the model theory of
λ!-calculus. The latter is a refinement of the standard λ-calculus, corresponding to affine combinatory
logic. We introduce intersection type systems for the λ!-calculus, by extending standard intersection
types with a !u-operator. These induce affine combinatory algebras, and, via suitable quotients,
models of the λ!-calculus. In particular, we introduce an intersection type system for assigning
principal types to λ!-terms, and we state a correspondence between the partial involution interpreting
a combinator and the principal type of the corresponding λ!-term. This analogy allows for explaining
as unification between principal types the somewhat awkward linear application of involutions arising
from Geometry of Interaction.

2012 ACM Subject Classification Theory of computation → Program semantics; Theory of compu-
tation → Linear logic

Keywords and phrases Affine Combinatory Algebra, Affine Lambda-calculus, Intersection Types,
Geometry of Interaction

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.15

Funding Work supported by the Italian departmental research project “LambdaBridge” (D.R.N.
427/2018 of 03/08/2018, University of Udine).

1 Introduction

In [1], S. Abramsky discusses reversible computation in a game-theoretic setting. In particu-
lar, he introduces various kinds of reversible pattern-matching automata whose behaviour
can be described in a finitary way as partial injective functions, actually involutions, over
a suitable language of moves. These automata are universal in that they yield affine
combinatory algebras.

© Alberto Ciaffaglione, Pietro Di Gianantonio, Furio Honsell, Marina Lenisa, and Ivan Scagnetto;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alberto.ciaffaglione@uniud.it
mailto:pietro.digianantonio@uniud.it
mailto:furio.honsell@uniud.it
mailto:marina.lenisa@uniud.it
mailto:ivan.scagnetto@uniud.it
https://doi.org/10.4230/LIPIcs.FSCD.2019.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 λ!-calculus, Intersection Types, and Involutions

The crucial notion is that of application between automata, or between partial involutions.
This is essentially the application between history-free strategies used in Game Semantics,
which itself stems from Girard’s Execution Formula, or Abramsky’s symmetric feedback [3].
The former was introduced by J. Y. Girard [15, 16] in the context of “Geometry of Inter-
action” (GoI) to model, in a language-independent way, the fine semantics of Linear Logic.
Constructions similar to the Combinatory Algebra of partial involutions, introduced in [1],
appear in various papers by S. Abramsky, e.g. [2, 4], and are special cases of a general
categorical paradigm explored by E. Haghverdi [17] (Sections 5.3, 6), called “Abramsky’s
Programme”. This Programme amounts to defining a linear λ-algebra starting from a GoI
Situation in a “traced symmetric monoidal category”.

In the present paper we carry out an analysis of Abramsky’s algebras from the point
of view of the model theory of λ-calculus. It is a follow up to [8, 9], where only the purely
linear and affine fragments of Affine Combinatory Algebras are considered. Here we extend
the involutions-as-principal types/GoI application-as-resolution analogy introduced in [8, 9]
to the full calculus, offering a new perspective on Girard’s Geometry of Interaction and how
its reversible dynamics arises.

More specifically, we focus on the notion of affine combinatory logic, its λ-calculus
counterpart, the λ!-calculus, and their models, i.e. affine-combinatory algebras and affine-
combinatory λ-algebras1.

Our approach stems from realizing the existence of a structural analogy, introduced in [9],
which to our knowledge had not been hitherto pointed out in the literature, between the
Geometry of Interaction interpretation of a λ-term in Abramsky’s model of partial involutions
and the principal type of that term, with respect to an intersection type discipline for the
λ!-calculus. This we termed involutions-as-types analogy. Intersection types originated in
[6] and have been utilised in discussing games in a different approach also in [13, 14]. In
particular, we define an algorithm which, given a principal type of a λ-term, reads off the
partial involution corresponding to the interpretation of that term. Thus we show that
the principal type of an affine λ-term provides a characterisation of the partial involution
interpreting the term in Abramsky’s model. Conversely, we show how to extract a “principal
type” from any partial involution, possibly not corresponding to any λ-term.

The involutions-as-types analogy is very fruitful. It allows for simply explaining as
a unification between principal types the somewhat awkward linear application between
involutions used in [1], deriving from the notion of application used throughout the literature
on GoI and Game Semantics. We call this the “GoI application-as-resolution of principal
types” analogy, or more simply the application-as-resolution analogy. The overall effect of
linear application amounts, indeed, to unifying the left-hand side of the principal type of
the operator with the principal type of the operand, and applying the resulting substitution
to the right hand side of the operator. Hence, the notion of application between partial
involutions, corresponding to λ-termsM and N , can be explained as computing the involution
corresponding to the principal type of MN , given the principal types of M and N . Actually
this unification mechanism works even if the types are not the types of any concrete λ-term.

Our analysis, therefore, unveils three conceptually independent, but ultimately equivalent,
accounts of application in the λ-calculus: β-reduction, the GoI application of involutions
based on symmetric feedback/Girard’s Execution Formula, and resolution of principal types.
In order to check our theoretical results, we have implemented in Erlang [12, 5] application
of involutions, as well as compilation of λ-terms as combinators and their interpretation
as involutions.

1 This notion was originally introduced by D. Scott for the standard λ-calculus as the appropriate notion
of categorical model for the calculus, see Section 5.2 of [7].

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:3

Synopsis. In Section 2, we collect the definitions of affine combinatory logic, λ!-calculus,
affine combinatory algebra, and λ-algebra. In Section 3, we recall Abramsky’s combinatory
algebra of partial involutions. In Section 4, we provide an intersection type system for the
λ!-calculus, and we study its properties. In Section 5, we define a correspondent principal
type assignment system for assigning only the most general types to λ!-terms. In Section 6,
we explore the relationships between principal types and partial involutions, giving evidence
to the involutions-as-types analogy. Concluding remarks appear in Section 7. The Web
Appendix [19] includes the detailed Erlang programs implementing compilations and effective
operations on partial involutions.

2 Affine Combinatory Logic and the λ!-calculus

In this section, we collect the notions of affine combinatory logic, λ!-calculus, affine combin-
atory algebra, and λ-algebra. These notions amount to the Linear Logic refinements of the
corresponding standard notions.

I Definition 1 (Affine Combinatory Logic). The language of affine combinatory logic CL!

includes variables x, y, . . ., distinguished constants (combinators) B,C, I,K,W,D, δ, F, and it
is closed under application and promotion, i.e.:
M ∈ CL! N ∈ CL!

MN ∈ CL!
M ∈ CL!

!M ∈ CL!

Combinators satisfy the following equations for all terms of CL!, M,N,P (we associate · to
the left and we assume ! to have order of precedence greater than ·):
BMNP = M(NP) IM = M CMNP = (MP)N KMN = M

WM !N = M !N !N δ!M = !!M D!M = M F !M !N = !(MN)

The λ!-calculus is the λ-calculus counterpart of affine combinatory logic:

I Definition 2 (Affine λ!-calculus). The language Λ! of the affine λ!-calculus is inductively
defined from variables x, y, z, . . ., and it is closed under the following formation rules:

M ∈ Λ! N ∈ Λ!

MN ∈ Λ!
M ∈ Λ!

!M ∈ Λ!
M ∈ Λ! O!(x,M)

λx.M ∈ Λ!
M ∈ Λ! M!(x,M)

λ!x.M ∈ Λ! ,

where O!(x,M) means that the variable x appears free in M at most once, and it is not in
the scope of a !, whileM!(x,M) means that the variable x appears free in M at least once.

The reduction rules of the λ!-calculus are the restrictions of the standard β-rule and
ξ-rule to linear abstractions, the pattern-β-reduction rule, which defines the behaviour of the
!-pattern abstraction operator, the str !-structural rule, and the ξ!-rule, namely:

(β) (λx.M)N →M [N/x] (β!) (λ!x.M)!N →M [N/x]

(ξ) M → N λx.M, λx.N ∈ Λ!

λx.M → λx.N
(str !) M → N

!M →!N (ξ!) M → N
λ!x.M → λ!x.N

All the remaining rules are as in the standard case. We denote by =λ! the induced
congruence relation.

The λ!-calculus introduced above is quite similar to the calculus introduced in [18], the
only differences being that our calculus is affine, while the one in [18] is linear, moreover
reduction under the scope of a !-operator is forbidden in [18], while we allow for it.

I Proposition 3. Well-formedness in Λ! is preserved under λ!-conversion. The corresponding
reduction λ!-calculus is Church-Rosser.

FSCD 2019

15:4 λ!-calculus, Intersection Types, and Involutions

The correspondence between affine combinatory logic and λ!-calculus is formalized below.

I Definition 4. We define two homomorphisms w.r.t. ! and application:
(i) ()λ! : CL! → Λ!, given a term M of CL!, yields the term of Λ! obtained from M by
replacing, in place of each combinator, the corresponding Λ!-term as follows

(B)λ! = λxyz.x(yz) (W)λ! = λx!y.x!y!y
(C)λ! = λxyz.(xz)y (D)λ! = λ!x.x
(I)λ! = λx.x (δ)λ! = λ!x.!!x
(K)λ! = λxy.x (F)λ! = λ!x!y.!(xy)

(ii) ()CL! : Λ! → CL!, given a term M of the λ!-calculus, replaces each λ-abstraction by
a λ∗-abstraction. Terms with λ∗-abstractions amount to CL!-terms via the Abstraction
Operation defined below.

I Definition 5 (Abstraction Operation). The following algorithm is defined by induction on
ML ∈ CL!:

λ∗x.x = I λ∗!x.x = D λ∗!x.!x = F (!I)

λ∗x.MN =
{
C(λ∗x.M)N if x ∈ FV (M),
BM(λ∗x.N) if x ∈ FV (N).

λ∗!x.MN = W (C(BB(λ∗!x.M))(λ∗!x.N)) λ∗!x.!M = B(F (!λ∗!x.M))δ, for M 6≡ x.

Notice that, alternatively, λ∗!x.MN can be defined permuting C and B, i.e. λ∗!x.MN =
W (B(Cλ∗!x.M)(λ∗!x.N)). This ambivalence is a source of problems which ultimately makes
affine combinatory algebras fail to be λ-algebras (see Definition 9 below).

I Theorem 6 (Affine Abstraction Theorem). For all terms λx.M,N ∈ CL!,
(λ∗x.M)N = M [N/x] and (λ∗!x.M)!N = M [N/x].

The semantical counterpart of CL! is the notion of affine combinatory algebra:

I Definition 7 (Affine Combinatory Algebra, [1]). An affine combinatory algebra (ACA),
A = (A, ·, !) is an applicative structure (A, ·) with a unary (injective) operation !, and
combinators B,C, I,K,W,D, δ, F satisfying the following equations: for all x, y, z ∈ A,

Bxyz = x(yz) Ix = x Cxyz = (xz)y Kxy = x

Wx!y = x!y!y δ!x = !!x D!x = x F !x!y = !(xy).

I Definition 8. Given an affine combinatory algebra A = (A, ·, !), we define the set of affine
combinatory terms T (A) as the extension of CL! with constants ca for any point a ∈ A.

I Definition 9 (Affine λ-algebra). An ACA A is an affine λ-algebra if, for all M,N ∈ T (A),

` (M)λ! =λ! (N)λ! =⇒ [[M]]A = [[N]]A ,

where [[]]A denotes the natural interpretation of terms in T (A) over the ACA A.

One can prove that there exists an equivalent characterisation of the notion of affine
λ-algebra via equations involving combinators. For lack of space, we omit this characterisation.

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:5

3 The Model of Partial Involutions

In [1], Abramsky exploits the connection between automata and strategies, and he introduces
various reversible universal models of computation. Building on earlier work, e.g. [4, 17],
Abramsky defines models arising from Geometry of Interaction Situations, consisting of
history-free strategies. He discusses a model of partial injections and P, its substructure
consisting of partial involutions. Partial involutions are defined over a suitable language of
moves, and they can be endowed with a structure of an affine combinatory algebra:

I Definition 10 (The Model of Partial Involutions P).
(i) TΣ, the language of moves, is defined by the signature Σ0= {ε}, Σ1 = {l,r}, Σ2 =
{< , >} (where Σi is the set of constructors of arity i); terms r(x) are output words,
while terms l(x) are input words (often denoted simply by rx and lx);

(ii) P is the set of partial involutions over TΣ, i.e. the set of all partial injective functions
f : TΣ ⇀ TΣ such that f(u) = v ⇔ f(v) = u;

(iii) the operation of replication is defined by !f = {(< t, u >,< t, v >) | t ∈ TΣ ∧ (u, v) ∈
f};

(iv) the notion of linear application is defined by f · g = frr ∪ (frl; g; (fll; g)∗; flr), where
fij = {(u, v)|(i(u), j(v)) ∈ f}, for i, j ∈ {r, l} (see Fig. 1), where “;” denotes postfix
composition.

in // •
frr //

frl

��

• // out

•
g // •
fll

oo

flr

OO

Figure 1 Flow of control in executing f · g.

Following [1], we make a slight abuse of notation and assume that TΣ contains pattern
variables for terms. The intended meaning will be clear from the context. In the sequel, we
will use the notation u1 ↔ v1, . . . , un ↔ vn, for u1, . . . , un, v1, . . . , vn ∈ TΣ, to denote the
graph of the (finite) partial involution f defined by ∀i.(f(ui) = vi ∧ f(vi) = ui). Again,
following [1], we will use the above notation in place of a more automata-like presentation of
the partial involution.

I Proposition 11 ([1], Th.5.1). P can be endowed with the structure of an affine combin-
atory algebra, (P, ·, !), where combinators are defined by the following partial involutions:
B : r3x↔ lrx , l2x↔ rlrx , rl2x↔ r2lx I : lx↔ rx

C : l2x↔ r2lx , lrlx↔ rlx , lr2x↔ r3x K : lx↔ r2x

F : l〈x, ry〉 ↔ r2〈x, y〉 , l〈x, ly〉 ↔ rl〈x, y〉 δ : l〈〈x, y〉, z〉 ↔ r〈x, 〈y, z〉〉
W : r2x↔ lr2x , l2〈x, y〉 ↔ rl〈lx, y〉 , lrl〈x, y〉 ↔ rl〈rx, y〉 D : l〈ε, x〉 ↔ rx .

4 The !Intersection Type Discipline for the λ!-calculus

In this section, we introduce an intersection type system for the λ!-calculus, and we study its
properties. In particular, we prove that subject reduction holds up-to an appropriate relation
on types, while subject conversion holds when we consider some restrictions of β-reduction,
e.g. lazy reduction or closed reduction. Reduction is lazy when it is not applied under a
λ-abstraction, it is closed when only β-redexes with closed arguments can be reduced.

FSCD 2019

15:6 λ!-calculus, Intersection Types, and Involutions

Types in this system include a(-constructor, a !u-constructor, for u ranging over indexes,
and a ∧-constructor. We introduce the !u-constructor in order to establish a connection
between types and partial involutions, this correspondence will be formally stated in Section 6.
From a more intuitive point of view, the !u-constructors are associated to the parts of terms
that can be potentially replicated: free or bound variables that can be used several times
inside a term; terms that are used as function arguments and that can be replicated inside
the function. The indexes u are mainly used to distinguish one (potential) replica from
the other. Moreover one can observe that there are dependencies among replications, for
example, the replication of a term leads also to the replication of the several instances of
the same variable that the term may contain; indexes are also used to keep track of these
dependencies among replications.

For technical reasons, we include also a !-constructor without index. It essentially behaves
as !ε, however they are dealt with differently in the !-introduction rule. This choice allows us
to maintain the correspondence between types and the interpretations of combinators in the
algebra of partial involutions, as we will see in Sections 5 and 6 below.

I Definition 12 (!Intersection Types). We introduce the following set of types:

(Type 3) τ, σ ::= α | τ (σ | !τ | !uτ | τ ∧ σ

where α denotes a type variable in TVar, and u, v ∈ TΣ[IV ar], where IV ar is a set of index
variables ranged over by i, j,

I Definition 13 (!Intersection Type System). The !intersection type system for the λ!-calculus
derives judgements Γ; ∆
M : τ , where τ ∈ Type and

the linear environment Γ is a set x1 : σ1, . . . , xm : σm;
the non-linear environment ∆ is a set !x′1 : τ1, . . . , !x′n : τn, with τ1, . . . , τn having a bang
(!, !u) as main connective;
dom(Γ) ∩ dom(∆) = ∅;
each variable in Γ occurs at most once, while multiple occurrences of the same variable
are possible in ∆.

The rules for assigning !intersection types are the following:

x : τ ; 〈〉 ` x : τ (ax1) 〈〉; !x :!τ ` x : τ (ax2)

〈〉; ∆1 `M : τ1 . . . 〈〉; ∆n `M : τn u1, ..., un distinct
〈〉; !̂u1∆1, . . . , !̂un

∆n `!M :!u1τ1 ∧ . . .∧!un
τn

(!)

Γ; ∆ `M : σ(τ Γ′; ∆′ ` N : σ dom(Γ) ∩ dom(Γ′) = ∅ dom(Γ,Γ′) ∩ dom(∆,∆′) = ∅
Γ,Γ′; ∆ ∧∆′ `MN : τ

(app)

Γ, x : σ; ∆ `M : τ O!(x,M)
Γ; ∆ ` λx.M : σ(τ

(λL) Γ; ∆ `M : τ x, σ fresh
Γ; ∆ ` λx.M : σ(τ

(λA)

Γ; ∆, !x : σ1, . . . , !x : σn `M : τ x 6∈ dom(∆)
Γ; ∆ ` λ!x.M : (σ1 ∧ · · · ∧ σn)(τ

(λ!)

where

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:7

!̂u(!x1 : τ1, . . . , !xn : τn) ≡ !x1 : !̂uτ1, . . . , !xn : !̂uτn,

where !̂uτ is defined by:
{̂

!u(!τ) =!uτ
!̂u(!vτ) =!〈u,v〉τ

∆ ∧∆′ is the environment ∆′′ defined by: !x : τ ∈ ∆′′ if and only if
!x : τ ∈ ∆ and x 6∈ dom(∆′),
or !x : τ ∈ ∆′ and x 6∈ dom(∆),
or τ ≡ !luτ ′ and !x : !uτ ∈ ∆ and x ∈ dom(∆′),
or τ ≡ !ruτ ′ and !x : !uτ ′ ∈ ∆′ and x ∈ dom(∆).
In rule (app), by abuse of notation, the subtype σ in the type σ(τ assigned to M and
the type σ assigned to N coincide only up-to equating occurrences of ! and !ε.

A few remarks on the definition above are in order.
The !-constructor on types with no index can be eliminated by replacing the axiom (ax2)
with an alternative axiom (ax′2) having form: 〈〉; !x :!ετ ` x : τ (ax′2)
With this last axiom one obtains a type system quite similar to the original one (and in
some sense simpler): the derivable types will differ just by the presence of some extra ε
symbols; all the properties for the type system stated in the paper still hold. However, the
interpretation of the combinatory constants induced by the alternative type system will
be different from the one given on the algebra of partial involutions P. To preserve the
interpretation of combinatory constants, we preferred to use a more ad-hoc type system.
In derivations of type judgements, the order in which hypotheses are derived is relevant, i.e.
the nature of the ∧-operator is non-commutative and non-associative. In the present type
assignment system, we take into account the order of hypotheses by prefixing {l, r}-tags
in !-indexes, when we merge non-linear environments in the (app)-rule. As a consequence,
tags describe the structure of a ∧-type, and ∧ is considered to be commutative and
associative in the present system. Of course, we could have equivalently omitted {l, r}-
tags in merging non-linear environments and explicitly used a non-commutative and
non-associative ∧-operator, both in the environments and in the assigned types. Our
choice is justified by the fact that this presentation of the type assignment system makes
the correspondence between types and partial involutions more direct (see Section 6).

Some immediate consequences on the shape of judgments derivable in the type system
are the following:

I Lemma 14. If Γ; ∆ `M : τ , then
(i) for all !x : σ ∈ ∆, σ is in the form !τ or !uτ
(ii) FV (M) = dom(Γ) ∪ dom(∆) and x ∈ dom(Γ)⇔ O!(x,M).

Intuitively, the λ!-terms which are typable in the system are essentially the terms
which strongly normalize to terms not containing forever stuck applications, in the sense of
Lemma 15(iv) below.

I Lemma 15.
(i) If Γ; ∆ ` λ!x.M : τ , then there exist σ, σ′ ∈ Type such that τ = σ (σ′, and σ is a

!-type or a ∧-type.
(ii) If Γ; ∆ ` N : τ , where τ is a !-type or a ∧-type, then N is not a λ-abstraction.
(iii) If Γ; ∆ `!N : τ , then Γ = ∅ and τ is a !-type or a ∧-type.
(iv) Terms which contain subterms of the shape (λ!x.M)(λy.N), or (λ!x.M)(λ!y.N), !MN

are not typable.

FSCD 2019

15:8 λ!-calculus, Intersection Types, and Involutions

Proof. The proof of items (i), (ii), (iii), is straightforward, by induction on derivations. Item
(iv) follows from the previous ones. J

Now we study subject reduction and conversion properties of the system. We will show
that subject reduction holds up-to an equivalence relation on types, while subject conversion
fails in general. However, there are two interesting cases in which subject conversion holds,
either up-to an equivalence relation on types or in its full form, respectively: when β-reduction
is lazy, i.e. it is not applied under a λ-abstraction, or when we allow for reducing only
β-redexes whose argument is a closed λ-term.

Intuitively, the reasons why an equivalence relation is necessary for ensuring subject
reduction in the general case and subject conversion in the lazy case are the following.

Intuitively, in β-reducing, the order in which hypotheses are used to type the resulting
term is different from the order in which these are used to type the starting term.
Therefore subject reduction holds only up a suitably renaming of tags in ∧-types and
environments. This is related to the behaviour of the !-operator in history-free game
models, where also appropriate equivalences renaming !-indexes are required.
The behaviour of the !-index ε is peculiar in the present type system: namely, it may
happen that a redex is typable with a type τ where 〈ε, u〉 or 〈u, ε〉 appear as !-indexes, but
the reduced term is typable only with a type τ ′ differing from τ because the indexes 〈ε, u〉
or 〈u, ε〉 are replaced by u. For example, z :!〈ε,i〉α ` (λ!x.x)!!z :!iα, but !z :!iα `!z :!iα
and !z :!〈ε,i〉α 6`!z :!iα.

Moreover, notice that subject conversion fails already on the purely affine fragment when
we allow for β-reducing under λ-abstractions, e.g. we cannot derive ` λxyz.(λw.x)(yz) :
α1 (α2 (α3 (α1, but only ` λxyz.(λw.x)(yz) : α1 ((α2 (α3)(α2 (α1, but we
have ` λxyz.x : α1 (α2 (α3 (α1 (see [9] for more details).

To formalize the above facts, we start by introducing the following relation on types:

I Definition 16.
Let ≈I be the least congruence relation on TΣ[IV ar] such that, for any u ∈ TΣ[IV ar],
u ≈I 〈ε, u〉 ≈I 〈u, ε〉, u ≈I lu ≈I ru, and 〈u1, 〈u2, u3〉〉 ≈I 〈〈u1, u2〉, u3〉.
Let ≈ be the least congruence relation on types such that, for any permutation p on
TΣ[IV ar] satifying the condition ∀u ∈ TΣ[IV ar] . u ≈I p(u), we have:

(!u1σ1 ∧ . . .∧!un
σn)(τ ≈ (!p(u1)σ1 ∧ . . .∧!p(un)σn)(τ

For ∆,∆′ non-linear environments, we define ∆ ≈ ∆′ if, for each variable x with bindings
!x :!u1σ1, . . . , !x :!un

σn in ∆, there exist a permutation p on TΣ[IV ar] and a list of types
σ′1, . . . , σ

′
n such that

the binding for x in ∆′ are !x :!p(u1)σ
′
1, . . . , !x :!p(un)σ

′
n,

∀u ∈ TΣ[IV ar] . u ≈ p(u),
∀i.σi ≈ σ′i.

I Lemma 17 (Substitution).
(i) If x ∈ FV (M) and O!(x,M), then

Γ; ∆ ` (λx.M)N : τ ⇐⇒ Γ; ∆′ `M [N/x] : τ , with ∆′ ≈ ∆.
If N is closed, then ∆′ = ∆.

(ii) Γ; ∆ ` (λ!x.M)!N : τ ⇐⇒ Γ; ∆′ `M [N/x] : τ , with ∆′ ≈ ∆.
If N is closed, then ∆′ = ∆.

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:9

(iii) If N is a typable term and x 6∈ FV (M), then
Γ; ∆ ` (λx.M)N : τ ⇐⇒ Γ′; ∆′ `M : τ , with Γ′ = Γ|FV (M) and ∆′ ⊆ ∆.
If N is closed, then Γ′ = Γ and ∆′ = ∆.

Proof.
(i) The thesis follows from (a) and (b) below:

(a) Γ, x : σ; ∆ `M : τ & Γ′; ∆′ ` N : σ & dom(Γ)∩dom(Γ′) = ∅ =⇒ ∃∆′′.(Γ∪Γ′; ∆′′ `
M [N/x] : τ & (∆′′ ≈ ∆ ∧∆′)|dom(∆)∩dom(∆′)),
where (∆′′ ≈ ∆ ∧∆′)|dom(∆)∩dom(∆′) means that, for any variable in dom(∆) ∩
dom(∆′), the corresponding types in ∆′′ and ∆ ∧∆′ are ≈-equivalent, while for
other variables, the corresponding types are equal.

(b) (b) Γ′′; ∆′′ ` M [N/x] : τ & Γ′; ∆′ ` N : σ =⇒ ∃∆.(Γ, x : σ; ∆ ` M : τ & Γ′′ =
Γ ∪ Γ′ & (∆′′ ≈ ∆ ∧∆′)|dom(∆)∩dom(∆′)).

Facts (a) and (b) above can be proved by induction on the structure of M .
(ii) The thesis follows from (a) and (b) below:

(a) Γ; ∆, !x :!u1σ1, . . . , !x :!unσn `M : τ & 〈〉; ∆1 ` N : σ1 & . . . & 〈〉; ∆n ` N : σn
=⇒ ∃∆′′ . (Γ; ∆′′ `M [N/x] : τ & ∆′′ ≈ ∆, !̂u1∆1, . . . , !̂un

∆n).
(b) Γ; ∆′′ `M [N/x] : τ =⇒ ∃∆,∆1, . . . ,∆n . ∆′′ ≈ ∆, !̂u1∆1, . . . , !̂un

∆n

& Γ; ∆, !x :!u1σ1, . . . , !x :!un
σn `M : τ & 〈〉; ∆1 ` N : σ1 & . . . & 〈〉; ∆n ` N : σn.

Facts (a) and (b) above can be proved by induction on the structure of M .
(iii) The thesis follows from a direct analysis of the derivations. J

Using the above lemma, one can prove that subject reduction holds up-to-�, where � is
the relation on types combining ≈ with type inclusion:

I Definition 18.
Let � be the least preorder relation on types, compatible with the type constructors and
such that:

(!u1σ1 ∧ . . .∧!um
σm)(τ � (!u1σ1 ∧ . . .∧!un

σn)(τ when m ≤ n
σ ≈ τ implies σ � τ

For ∆,∆′ non-linear environments, we define ∆ � ∆′ if there exists a non-linear
environment ∆′′ such that ∆′′ ⊆ ∆′ and for all variables x there exists a one to one
correspondence between the types associated to x in ∆ and ∆′′, and the corresponding
types are �-related.

I Theorem 19 (Subject Reduction). If Γ; ∆ `M : τ & M →β M
′, then ∃Γ′,∆′, τ ′. (Γ′; ∆′ `

M ′ : τ ′ & Γ′ = Γ|FV (M ′) & ∆′ � ∆ & τ ′ � τ).

Proof. The thesis can be proved for one reduction step, C[(λx.M)N] →β C[M [N/x]], by
induction on the context C[], using the fact that: for σ′ � σ
Γ; ∆ `M : σ ⇐⇒ Γ′; ∆′ `M : σ′, for ∆′ � ∆. J

However, as noticed above, subject conversion fails already on the purely affine fragment,
when β-reduction is allowed under λ-abstraction. Nevertheless, if we restrict ourselves to
lazy reduction, subject conversion holds up-to-∼, where ∼ is the least equivalence including
�. In what follows, we will denote lazy conversion by =L

β .

I Theorem 20 (Lazy Subject Conversion). If Γ; ∆ ` M : τ , M =L
β M

′ and M ′ is typable,
then ∃Γ′,∆′. (Γ′; ∆′ ` M ′ : τ & Γ′|FV (M)∩FV (M ′) = Γ|FV (M)∩FV (M ′) & ∆′ ∼ ∆), where ∼
denotes the least equivalence relation including �.

FSCD 2019

15:10 λ!-calculus, Intersection Types, and Involutions

Moreover, subject conversion holds exactly (not up-to-∼), in the case in which β-reduction
is applied only if the argument is a closed term. In what follows, we will denote closed
conversion by =C

β .

I Theorem 21 (Closed Subject Conversion). If Γ; ∆ `M : τ , M =C
β M ′ and M ′ is typable,

then Γ; ∆ `M ′ : τ .

Moreover, we have:

I Proposition 22. The !Intersection Type System induces an affine combinatory algebra
(G, ·G , !G), where:
G is the set of sets of types in Type;
combinatory constants are represented by the sets of types assigned to the Λ!-terms
corresponding to combinators;
for Σ,Σ′ ∈ G, the application is defined by Σ ·G Σ′ = {τ | σ → τ ∈ Σ & σ ∈ Σ′};
!GΣ = {!uσ | σ ∈ Σ & u ∈ TΣ[IV ar]}.

5 The !Intersection Principal Type Discipline for the λ!-calculus

In this section, we introduce a type system, where only the most general type schemes are
assigned to λ!-terms. As we will show, all type judgements derivable in the intersection
type system of Definition 13 can be recovered as instances of judgements derivable in this
system, and vice versa all instances of judgements derivable in the principal type system
are derivable in the previous one. Moreover, one can prove that for any typable term M

there exists a judgement/type of minimal complexity which can be derived/assigned to M ,
which we call principal judgement/type. The crucial rule of the principal type system below
is the application rule, where a unification mechanism between the types of the function
and the argument is involved. The remaining rules reflect the rules of the type system of
Definition 13. As we will see in Section 6, principal types assigned to λ!-terms correspond to
partial involutions interpreting the terms in the combinatory algebra of partial involutions.

I Definition 23 (!Intersection Principal Type System). The !intersection principal type system
for the λ!-calculus derives judgements Γ; ∆
M : τ , where τ ∈ Type and

the linear environment Γ is a set x1 : σ1, . . . , xm : σm;
the non-linear environment ∆ is a set !x′1 : τ1, . . . , !x′n : τn, with τ1, . . . , τn having a bang
(!, !u) as main connective;
dom(Γ) ∩ dom(∆) = ∅;
each variable in Γ occurs at most once, while multiple occurrences of the same variable
are possible in ∆.

The rules for assigning principal !intersection types are the following:

x : α; 〈〉
 x : α (ax1) 〈〉; !x :!α
 x : α (ax2)

〈〉; ∆1
M : τn . . . 〈〉; ∆n
M : τn i1, . . . in fresh
〈〉; !̂i1∆1, . . . , !̂in∆n
!M :!i1τ1 ∧ . . .∧!inτn

(!)

Γ; ∆
M : σ Γ′; ∆′
 N : τ dom(Γ) ∩ dom(Γ′) = ∅ Var(Γ; ∆, σ) ∩Var(Γ′; ∆′, τ) = ∅
U = MGU(σ, α(β) α, β fresh U ′ = MGU(U(α), τ)

(U ′ ◦ U)(Γ ∪ Γ′; ∆ ∧∆′)
MN : (U ′ ◦ U)(β)
(app)

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:11

Γ, x : σ; ∆
M : τ O!(x,M)
Γ; ∆
 λx.M : σ(τ

(λL) Γ; ∆
M : τ x, α fresh
Γ; ∆
 λx.M : α(τ

(λA)

Γ; ∆, !x : σ1, . . . , !x : σn `M : τ x 6∈ dom(∆)
Γ; ∆ ` λ!x.M : (σ1 ∧ · · · ∧ σn)(τ

(λ!)

where !̂i and ∆ ∧∆′ are defined as in Definition 13, Var(Γ; ∆, σ) denotes the set of type
and index variables in Γ, ∆, σ, and (U ′ ◦ U)(Γ ∪ Γ′; ∆ ∧∆′) stands for the component wise
application of the substitution (U ′ ◦ U) to types in the contexts Γ ∪ Γ′; ∆ ∧∆′.

The MGU algorithm is defined as follows:

I Definition 24 (MGU(σ, τ)). Given two types σ and τ , the partial algorithm MGU yields
a substitution U on types and index variables such that U(σ) = U(τ).

α ∈ TVar α 6∈ τ
MGU(τ, α) = id[τ/α]

α ∈ TVar α 6∈ τ
MGU(α, τ) = id[τ/α]

MGU(u, v) = U ′

MGU(!uσ, !vτ) = U MGU(U ′(σ), U ′(τ)) = U

MGU(σ1, τ1) = U1 MGU(U1(σ2), U1(τ2)) = U2
MGU(σ1 (σ2, τ1 (τ2) = U2 ◦ U1

MGU(σ1, τ1) = U1 MGU(U1(σ2), U1(τ2)) = U2
MGU(σ1 ∧ σ2, τ1 ∧ τ2) = U2 ◦ U1

i ∈ IVar i 6∈ u
MGU(u, i) = id[u/i]

i ∈ IVar i 6∈ u
MGU(i, u) = id[u/i]

MGU(u, v) = U
MGU(lu, lv) = U

MGU(u, v) = U
MGU(ru, rv) = U

MGU(u1, v1) = U1 MGU(u2, v2) = U2
MGU(〈u1, u2〉, 〈v1, v2〉) = U2 ◦ U1

where we assume that !ε unifies with !.

As it is well known, the above algorithm yields a substitution which factors any other
unifier.

One can easily prove the analogue of Lemmata 14 and 15 for the principal type system.
Moreover, an important property of the present system is that types and type judgements

have a special shape: each type variable occurs at most twice. As we will see, this is a key
observation in relating principal types to partial involutions.

I Definition 25 (Binary Type/Judgement).
A binary type is a type τ ∈ Type in which each variable occurs at most twice.
A binary judgement is a judgement Γ; ∆
M : τ in which each variable occurs at most
twice.

I Lemma 26. If Γ; ∆
M : τ , then Γ; ∆
M : τ is a binary judgement.

Proof. By induction on derivations. J

In general, a λ-term M can be assigned different types in a given environment. However,
there exists a minimal judgment w.r.t. the complexity of types, assigning a type to M , which
we call principal judgement. For example
 λ!x.!!x :!<i,j>α(!i!jα is the principal judgement
(type) for λ!x.!!x, but we can also derive
 λ!x.!!x :!<i,j1>α1∧!<i,j2>α2 (!i(!j1α1∧!j2α2);
namely, using the ∧-rule, we can replicate a !-type more times. In the following definition,
we introduce a relation on types formalizing this.

FSCD 2019

15:12 λ!-calculus, Intersection Types, and Involutions

I Definition 27. Let ≤ be the least reflexive and transitive relation on types defined by:

σ ≤ σ ∧ τ σ ≤ τ ∧ σ
σ ≤ σ′ τ ≤ τ ′
σ(τ ≤ σ′(τ ′

σ ≤ σ′
!uσ ≤!uσ′

σ ≤ σ′ τ ≤ τ ′
σ ∧ τ ≤ σ′ ∧ τ ′

For ∆,∆′ non-linear environments such that dom(∆) = dom(∆′), we define ∆ ≤ ∆′ if for
all variables in the domain of the environments the corresponding types in ∆ and ∆′ are
≤-related.
For any termM , two judgements assigning types toM are ≤-related if the linear environments
are equal, while the non-linear environments and the assigned types are ≤-related.

I Lemma 28. If the term M is typable, then there exists a principal judgement Γ; ∆
M : τ ,
i.e. a minimal judgement w.r.t. ≤, which is unique up-to α-renaming.

Proof. By induction on derivations. In order to deal with the (app)-rule, we need to
prove that, if Γ; ∆
 M : σ (σ′, Γ′; ∆′
 N : τ , and U = MGU(σ, τ), then either the
principal type of M is a variable or there exist minimal judgements Γ1; ∆1
M : σ1 (σ′1,
Γ′1; ∆′1
 N : τ1 such that U ′ = MGU(σ1, τ1). J

Here are the principal types of the combinators:
I λx.x α(α

K λxy.x α(β (α

B λxyz.x(yz) (α(γ)((β (α)(β (γ

C λxyz.xzy (α(β (γ)(β (α(γ

D λ!x.x !εα(α

δ λ!x.!!x !<i,j>α(!i!jα
F λ!x!y.!(xy) !i(α(β)(!iα(!iβ
W λx!y.x!y!y (!iα(!jβ (γ)((!liα∧!rjβ)(γ

As we will see in Secion 6, the principal types of the combinators induce, via the
transformation I of Definition 32, the corresponding partial involutions (see Proposition 11).

Another intriguing example of the involutions-as-types analogy is the following.
Let us consider the CL!-terms F (!I), B(F !D)δ, and BDδ. Despite having the same

applicative behaviour on !-arguments, as can be easily seen by reducing them, these terms
are interpreted by three different partial involutions in the combinatory algebra P:

F (!I) : l〈x, y〉 ↔ r〈x, y〉,
B(F !D)δ : l〈〈x, ε〉, y〉 ↔ r〈x, y〉,
BDδ : l〈〈ε, x〉, y〉 ↔ r〈x, y〉.

Quite correctly, the three terms above turn out to have also different principal types (in
what follows we denote, by abuse of notation, the λ!-terms corresponding to the CL!-terms
directly by the CL!-terms themselves):

 F (!I) :!iα(!iα,

 B(F !D)δ :!〈i,ε〉α(!iα,

 BDδ :!〈ε,i〉α(!iα.

As we will see in Section 6, the above principal types exactly correspond to the expected
partial involutions.

5.1 Relating the Principal Type System to the Type System
In the following, we study the relationships between the two typing systems. As expected,
they are related via substitutions U . In order to state precisely the correspondence between
the two intersection type systems, we need the following lemma, which can be proved by
induction on derivations:

I Lemma 29. If Γ; ∆ `M : σ, then, for all substitutions U , U(Γ);U(∆) `M : U(σ).

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:13

I Theorem 30. For all M ∈ Λ!:
(i) if Γ; ∆
M : σ, then, for all substitutions U , U(Γ);U(∆) `M : U(σ);
(ii) if Γ; ∆ `M : σ, then there exist a derivation Γ′,∆′
M : σ′ and a type substitution U

such that U(Γ′) = Γ, U(∆′) = ∆, U(σ′) = σ.

Proof. Both items can be proved by induction on derivations. Lemma 29 above is used to
prove item (i) in the case of (app)-rule. J

As a consequence of the above theorem, subject reduction/conversion results analogous
to those in Theorems 19, 20, 21 hold for principal types:

I Theorem 31 (Subject Reduction/Conversion).
(i) If Γ; ∆
M : τ is a principal judgement and M →β M

′, then ∃Γ′,∆′, τ ′.(Γ′; ∆′
M ′ :
τ ′ & Γ′ = Γ|FV (M ′) & ∆′ � ∆ & τ ′ � τ).

(ii) If Γ; ∆
 M : τ is a principal judgement and M =L
β M

′, then ∃Γ′,∆′.(Γ′; ∆′
 M ′ :
τ & Γ′|FV (M)∩FV (M ′) = Γ|FV (M)∩FV (M ′) & ∆′ ∼ ∆).

(iii) If Γ; ∆
M : τ is a principal judgement, M =C
β M ′, M ′ is typable, then Γ; ∆
M ′ : τ .

Proof. We proof item(i), the proof of the remaining items being similar. If Γ; ∆
M : τ , then
by Theorem 30(i) Γ; ∆ ` M : τ , and by Theorem 19, Γ′; ∆′ ` M ′ : τ ′, with Γ′ = Γ|FV (M ′),
∆′ � ∆, τ ′ � τ . Then, by Theorem 30(ii), Γ′′; ∆′′
M ′ : τ ′′, with U(Γ′′) = Γ′, U(∆′′) = ∆′,
U(τ ′′) = τ ′, for some substitution U . Hence, by Theorem 30(i), Γ′′; ∆′′ ` M ′ : τ ′′. Then,
since M is typable in `, the converse implication in Theorem 19 holds, and we have
Γ′′′; ∆′′′ ` M : τ ′′′, with Γ′′ = Γ′′′|FV (M ′), ∆′′ � ∆′′′, τ ′′ � τ ′′′. Then, by Theorem 30(ii),
Γ; ∆
M : τ , with U ′(Γ) = Γ′′′, U ′(∆) = ∆′′′, U ′(τ) = τ ′′′, for some substitution U ′. Hence,
by unicity of the principal judgement, Γ = Γ, ∆ = ∆, τ = τ . Finally, we are left to prove
that Γ′′ = Γ|FV (M ′), ∆′′ � ∆, τ ′′ � τ . From U(Γ′′) = Γ′ = Γ|FV (M ′) = Γ|FV (M ′) and
U ′(Γ|FV (M ′)) = Γ′′′|FV (M ′) = Γ′′ it follows Γ′′ = Γ|FV (M ′). From U(∆′′) = ∆′ � ∆ = ∆ and
U ′(∆) = ∆′′′ � ∆′′ it follows ∆′′ � ∆. Similarly, we get τ ′′ � τ . J

6 Relating Principal Types and Partial Involutions

In this section, we state precisely the correspondence between principal type schemes and
partial involutions, giving evidence to the involutions-as-types analogy. In particular, we
provide procedures for building the partial involution corresponding to a type, and back.

The following algorithm, given a principal type scheme, produces the corresponding
involution:

I Definition 32. For α type variable and τ type, we define the judgement I(α, τ), which, if
it terminates, gives a pair in the graph of the partial involution, if α occurs twice in τ , or an
element of TΣ, if α occurs once in τ :

I(α, α) = α

I(α, σ(α)(τ(α)) = lI(α, σ(α)) ↔ rI(α, τ(α))
I(α, σ(α)(τ) = lI(α, σ(α))
I(α, σ(τ(α)) = rI(α, τ(α))
I(α, σ(α) ∧ τ(α)) = I(σ(α))↔ I(τ(α))
I(α, σ(α) ∧ τ) = I(α, σ(α))
I(α, τ ∧ σ(α)) = I(α, σ(α))
I(α, !uτ(α)) = 〈u, I(α, τ(α))〉

FSCD 2019

15:14 λ!-calculus, Intersection Types, and Involutions

where, by abuse of notation, when r, l apply to a pair, we mean that they apply to the single
components.

We define the partial involution induced by the type τ :

fτ = {I(α, τ) | α appears twice in τ}.

I Definition 33. Having selected a special type variable ω, we define a partial function T
which, given a partial involution term t ∈ TΣ, returns a type:

T (α) = α

T (lt) = T (t)(ω

T (rt) = ω(T (t)
T (〈t1, t2〉) = !t1T (t2)

On types we define a partial operation ∪ as follows:

ω ∪ τ = τ ∪ ω = τ

(σ1 (τ1) ∪ (σ2 (τ2) = (σ1 ∪ σ2)((τ1 ∪ τ2)
!uτ ∪ !vσ = U(!u(τ ∪ σ)) if ∃U = MGU(u, v)
!uτ ∪ (!vσ1 ∧ σ2) = U(!u(τ ∪ σ1) ∧ σ2) if ∃U = MGU(u, v)
!uτ ∪ (!v1σ1 ∧ · · · ∧!vn

σn) =!uτ∧!v1σ1 ∧ · · · ∧!vn
σn if ∀i . 6 ∃U = MGU(vi, u)

For each partial involution π = {t1 ↔ t′1, . . . , tn ↔ t′n}, we define its associated type as:
T (π) = T (t1) ∪ (T (t′1) ∪ (T (t2) ∪ . . . ∪ (T (tn) ∪ T (t′n) . . .).

Finally, we can show that type unification corresponds to application of involutions:

I Theorem 34. Let σ(τ , σ′ be binary types such that U = MGU(σ, σ′).
Then I(σ(τ) · I(σ′) = I(U(τ)).

Proof. (Sketch) One can prove that, under the hypothesis that MGU(σ, σ′) exists, in
evaluating I(σ(τ) · I(σ′) one constructs, in a series of steps, the unifier between the types
σ and σ′, and the final step of a linear application interaction corresponds to the application
of the unifier to τ . J

As a consequence of the above theorem, principal types of λ!-terms correspond to partial
involutions interpreting the terms in the combinatory algebra of partial involutions:

I Theorem 35. Given a closed term of CL!, say M , such that (M)λ! is typable, the partial
involution interpreting M , namely [[M]]P , can be read off from the principal type scheme of
(M)λ! , i.e.
 (M)λ! : τ if and only if [[M]]P = fτ .

Proof. The thesis follows from Theorem 34 and from the fact that λ!-terms corresponding to
combinatory constants receive the principal types inducing the partial involutions interpreting
the combinatory constants. J

7 Final Remarks and Directions for Future Work

In this paper, we have analysed from the point of view of the model theory of λ-calculus
the affine combinatory algebra of partial involutions, P, introduced in [1]. The key insight
which has allowed us to analyze the fine structure of the partial involutions interpreting

A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto 15:15

combinators has been what we termed the involutions-as-principal types/application-as-
resolution analogy, introduced in [8, 9], which highlights a form of structural duality between
involutions and principal types, w.r.t. a suitable intersection type discipline. We feel that
it offers a new perspective on Girards’s Geometry of Interaction and especially on how its
reversible dynamics arises. Our next step is to explore how to apply this paradigm to other
instances of Game Semantics and GoI situations.

There are also many interesting lines of future work that remain to be addressed as far as
partial involutions are concerned. In particular, the type assignment systems can be refined
or extended in several directions.

First of all, both type systems introduced in this paper could be further fine-tuned in order
to capture even more smoothly the partial involutions corresponding to the constants of
affine combinatory algebras. E.g. the functorial nature of F could be taken as a rule.
Our type system is able to type only normalizable λ-terms. By introducing an extra
type constant ω representing an undefined type, it is possible to assign types to general
λ-terms. In this case, λ-terms generating infinitary Böhm trees will be characterized by a
set of principal types, each type defining a finite approximation of the term.
The present principal type system is not completely “deterministic”, i.e. in general a set
of types can be assigned to a λ-term, but only one is principal. We aim at developing an
alternative type assignment system where only principal types are derivable.
The type assignment systems defined in this paper induce combinatory algebras but
fail to be λ-algebras. It would be interesting to explore suitable quotients inducing full
λ-algebras.
Similarly, the combinatory algebra of partial involutions also fails to be a λ-algebra, and
therefore it would be worth to investigate how to quotient it to get a λ-algebra.
A further interesting problem to address is to characterize the fine theory of P. This
should be done by proving a suitable Approximation Theorem, relying on a complexity
measure on involutions, induced by a complexity measure on words in TΣ.
Building on the results of this paper, we should be able to provide an answer to the open
problem raised in [1] of characterising the partial involutions which arise as denotations
of combinators, extending the solution given in [9] for the purely affine fragment.
Comparison with alternate λ-calculi for describing reversible computations, e.g. [11], or
other typing systems inspired to Linear Logic, e.g. [10], should be carried out.

References
1 Samson Abramsky. A structural approach to reversible computation. Theoretical Computer

Science, 347(3):441–464, 2005. doi:10.1016/j.tcs.2005.07.002.
2 Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of Interaction and linear

combinatory algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.
doi:10.1017/S0960129502003730.

3 Samson Abramsky and Radha Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59(2):543–574, 1994. doi:10.2307/2275407.

4 Samson Abramsky and Marina Lenisa. Linear realizability and full completeness for typed
lambda-calculi. Annals of Pure and Applied Logic, 134(2):122–168, 2005. doi:10.1016/j.
apal.2004.08.003.

5 Joe Armstrong. Making reliable distributed systems in the presence of software errors. PhD
thesis, KTH, Microelectronics and Information Technology, IMIT, 2003. NR 20140805.

6 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940, 1983.
doi:10.2307/2273659.

FSCD 2019

http://dx.doi.org/10.1016/j.tcs.2005.07.002
http://dx.doi.org/10.1017/S0960129502003730
http://dx.doi.org/10.2307/2275407
http://dx.doi.org/10.1016/j.apal.2004.08.003
http://dx.doi.org/10.1016/j.apal.2004.08.003
http://dx.doi.org/10.2307/2273659

15:16 λ!-calculus, Intersection Types, and Involutions

7 HP Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-Holland, Amsterdam,
1984. (revised edition).

8 Alberto Ciaffaglione, Pietro Di Gianantonio, Furio Honsell, Marina Lenisa, and Ivan Scagnetto.
Reversible Computation and Principal Types in λ!-calculus. The Bulletin of Symbolic Logic,
2018.

9 Alberto Ciaffaglione, Furio Honsell, Marina Lenisa, and Ivan Scagnetto. The involutions-
as-principal types/application-as-unification Analogy. In Gilles Barthe, Geoff Sutcliffe,
and Margus Veanes, editors, LPAR, volume 57 of EPiC Series in Computing, pages 254–
270. EasyChair, 2018. URL: http://dblp.uni-trier.de/db/conf/lpar/lpar2018.html#
CiaffaglioneHLS18.

10 Ugo Dal Lago and Barbara Petit. The geometry of types. In The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL’13, Proceedings, pages
167–178. ACM, 2013.

11 Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Reversible combinatory lo-
gic. Mathematical Structures in Computer Science, 16(4):621–637, 2006. doi:10.1017/
S0960129506005391.

12 Erlang official website. Last access: 19/01/2018. URL: http://www.erlang.org.
13 Pietro Di Gianantonio, Furio Honsell, and Marina Lenisa. A type assignment system for

game semantics. Theoretical Computer Science, 398(1):150–169, 2008. Calculi, Types and
Applications: Essays in honour of M. Coppo, M. Dezani-Ciancaglini and S. Ronchi Della
Rocca. doi:10.1016/j.tcs.2008.01.023.

14 Pietro Di Gianantonio and Marina Lenisa. Innocent Game Semantics via Intersection Type
Assignment Systems. In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013
(CSL 2013), volume 23 of Leibniz International Proceedings in Informatics (LIPIcs), pages
231–247, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.CSL.2013.231.

15 Jean-Yves Girard. Geometry of interaction 2: Deadlock-free algorithms. In Per Martin-Löf
and Grigori Mints, editors, COLOG-88, pages 76–93, Berlin, Heidelberg, 1990. Springer Berlin
Heidelberg.

16 Jean-Yves Girard. Geometry of interaction III: accommodating the additives. London
Mathematical Society Lecture Note Series, pages 329–389, 1995.

17 Esfandiar Haghverdi. A categorical approach to linear logic, geometry of proofs and full
completeness. University of Ottawa (Canada), 2000.

18 Alex Simpson. Reduction in a Linear Lambda-Calculus with Applications to Operational
Semantics. In Jürgen Giesl, editor, Term Rewriting and Applications, pages 219–234, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

19 Web Appendix with Erlang code. URL: http://www.dimi.uniud.it/scagnett/pubs/
automata-erlang.pdf.

http://dblp.uni-trier.de/db/conf/lpar/lpar2018.html#CiaffaglioneHLS18
http://dblp.uni-trier.de/db/conf/lpar/lpar2018.html#CiaffaglioneHLS18
http://dx.doi.org/10.1017/S0960129506005391
http://dx.doi.org/10.1017/S0960129506005391
http://www.erlang.org
http://dx.doi.org/10.1016/j.tcs.2008.01.023
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.231
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.231
http://www.dimi.uniud.it/scagnett/pubs/automata-erlang.pdf
http://www.dimi.uniud.it/scagnett/pubs/automata-erlang.pdf

Template Games, Simple Games, and Day
Convolution
Clovis Eberhart
National Institute of Informatics, Tokyo, Japan
http://group-mmm.org/~eberhart/

Tom Hirschowitz
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry, France
https://www.lama.univ-savoie.fr/pagesmembres/hirschowitz

Alexis Laouar
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000, Chambéry, France

Abstract

Template games [14] unify various approaches to game semantics, by exhibiting them as instances
of a double-categorical variant of the slice construction. However, in the particular case of simple
games [9, 12], template games do not quite yield the standard (bi)category. We refine the construction
using factorisation systems, obtaining as an instance a slight generalisation of simple games and
strategies. This proves that template games have the descriptive power to capture combinatorial
constraints defining well-known classes of games. Another instance is Day’s convolution monoidal
structure on the category of presheaves over a strict monoidal category [2], which answers a question
raised in [3].

2012 ACM Subject Classification Theory of computation → Denotational semantics

Keywords and phrases Game semantics, Day convolution, Categorical semantics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.16

Funding Clovis Eberhart: ERATO HASUO Metamathematics for Systems Design Project (No. JP-
MJER1603, http://dx.doi.org/10.13039/501100009024), JST.

1 Introduction

Game semantics has provided adequate models for a variety of programming languages [11],
in which types are interpreted as two-player games and programs as strategies. Most game
models follow a common pattern. Typically, a function A→ B is interpreted as a strategy
on a compound game made of A and B, where the program plays as Proponent (P) on B
and as Opponent (O) on A. Another common feature is composition of strategies, which
takes strategies σ : A→ B and τ : B → C, and returns a strategy τ ◦ σ : A→ C by letting σ
and τ interact on B until one of them produces a move in A or C.

Although widely acknowledged, this strong commonality is also recognised as poorly
understood, particularly in the presence of innocence, a constraint on strategies that restricts
them to purely functional behaviour. This has prompted a number of attempts at clarifying
the situation [10, 9, 4]. Recently, Melliès [14] proposed a novel explanation, of unprecedented
simplicity, named template games. It is based upon a purely categorical construction,
essentially taking the slice of a weak double category over an internal monad, the template.
This produces a new weak double category, in which composition of strategies occurs as
so-called horizontal composition. In order to illustrate the construction, Melliès applies it to

© Clovis Eberhart, Tom Hirschowitz, and Alexis Laouar;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 16; pp. 16:1–16:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://group-mmm.org/~eberhart/
https://www.lama.univ-savoie.fr/pagesmembres/hirschowitz
https://doi.org/10.4230/LIPIcs.FSCD.2019.16
http://dx.doi.org/10.13039/501100009024
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Template Games, Simple Games, and Day Convolution

three different templates to obtain three models, respectively related to simple games [12],
concurrent games [15], and the relational model. However, the first two differ significantly
from their more standard counterparts.

This raises the question of whether template games only produce new game models,
or whether they also cover standard models. In this paper, we show that, up to a slight
refinement, they do cover simple games. More precisely, we (1) modify the original template
for simple games (Lemma 64), and (2) enrich the general construction with a factorisation
system [1] (Theorem 61), obtaining a slight generalisation of standard simple games as an
instance (Corollary 68). More precisely, we obtain a variant in which games may have several
‘initial positions’, before the game even starts, and similarly strategies may have several
‘initial states’ over each of these initial positions. We thus easily characterise standard simple
games and strategies as so-called definite template games and strategies.

One motivation for simple and abstract constructions like template games is to find new
connections with other settings. Our refined construction yields one such connection: we show
that the Day convolution product [2] arises as an instance of our refined framework, though
only in the restricted case of strict monoidal categories (Theorem 73). The convolution
product, which arose in algebraic topology, extends the monoidal structure of a given category
C to the category C

∧

of presheaves on C, i.e., contravariant functors Cop → Set. This makes
formal the similarity, noted in [3, §6.5], between convolution and composition of strategies,
by showing that both are instances of the same construction.

Related work

Beyond [14] and the related [10], Garner and Shulman [7] prove results related to our The-
orems 52 and 61. The common ground for comparison is the restriction of Theorem 52 to
weak double categories with a trivial vertical category, i.e., monoidal categories. Their The-
orem 14.2 is a generalisation in another direction, namely that of monoidal bicategories, and
their Theorem 14.5 could in particular accomodate various sorts of bicategorical factorisation
systems.

Terminology

Although template games and strategies are an abstract construction, we often abuse the
term to denote the particular instance on the template for simple games.

Plan

We follow the standard construction layers of game models: games, strategies, and composition
of strategies. In Section 2, we analyse the differences between template and simple games,
and describe our refinement of the former, which allows us to bridge the gap. In Section 3,
we do the same at the level of strategies A→ B, for fixed games A and B. In Section 4, we
recall the abstract construction of template games. In Section 5, we introduce our refined
construction, and illustrate it on the promised instances.

2 Template games vs. simple games

In this section, we first recall template games, and then analyse the discrepancies with simple
games. Finally, we introduce our solution to bridge the gap between them.

C. Eberhart, T. Hirschowitz, and A. Laouar 16:3

Template games are based on the following simple category.

I Definition 1. Let �v denote the category freely generated by the graph O P.

Thus, objects are just O and P , which stand for Opponent and Proponent, as in most game
models, and morphisms just count the number of (alternating) moves between them.

I Definition 2. A template game is a category A, equipped with a functor p : A→ �v.

Intuitively, objects of A are positions, or plays, in the game, and p gives their polarity: by
convention, O is to play in positions mapped to O, while P is to play in others.

Simple games clearly fit into this framework.

I Definition 3. A simple game A is a rooted tree.

The intuition is the same as for template games, and indeed:

I Proposition 4. Any simple game A, viewed as a poset, hence as a category, forms a
template game pA : A→ �v, where pA maps the root to O, its children to P , and so on.

I Example 5. The simple game B for booleans is the tree

ε

q

qt qf,

q

t f

where we have labelled edges with moves, and each node with the corresponding play, i.e.,
the sequence of moves needed to reach it from the root. The first move, q, represents O
asking the value of the boolean, and the other moves represent the possible answers: true
and false. The functor pB : B→ �v maps q to P and all other objects to O.

Discrepancies between template and simple games

Template games are significantly more general than simple games. To start with, simple
games have an empty, initial play, which template games need not. Furthermore, this initial
play is mapped to O by the functor to �v.

I Lemma 6. For any simple game A, the category A has an initial object, mapped to O by
the functor A→ �v.

Let us exhibit some counterexamples among general template games.

I Example 7. The template game 1 → �v picking up P is not equivalent to any simple
game in the slice 2-category Cat/�v.

I Example 8. Consider the template game consisting of Z, the poset of integers, and the
functor Z→ �v that maps 2n to O and 2n+ 1 to P . The category Z has no initial object,
hence this template game is not equivalent to any simple game in Cat/�v.

Another discrepancy has to do with decomposing plays into moves.

FSCD 2019

16:4 Template Games, Simple Games, and Day Convolution

I Definition 9. A functor F : E→ B is a discrete Conduché fibration iff for any I u−→ J
v−→ K

in B and P
f−→ R in E mapped to v ◦ u, f uniquely factors as k ◦ h with F (h) = u and

F (k) = v:

P R

Q

I K.

J

f

h k

v◦u

u v

I Lemma 10. For any simple game A, the functor pA : A → �v is a discrete Conduché
fibration.

Proof. By construction, a morphism in A over a path of length n has the form p→ pm1 . . .mn

for some play p and moves m1, . . . ,mn, hence decomposes as needed. J

Unlike simple games, not all template games are Conduché fibrations. Indeed, they may
feature atomic sequences of moves, i.e., morphisms that are mapped to non-basic morphisms
in �v and yet are ‘indecomposable’.

I Example 11. Consider the ordinal 2 = {0 ≤ 1} viewed as a category, and the functor
2→ �v mapping 0 ≤ 1 to the path O → P → O. This is clearly not a Conduché fibration,
hence is not equivalent to any simple game.

Refining template games

As announced in §1, our solution to bridge the gap between template and simple games is
twofold: (1) we use a different template, T, and (2) we introduce a factorisation system into
the picture – concretely, we restrict attention to functors A→ T which are discrete fibrations.
Let us start with the new template.

I Definition 12. Let Tv = ω denote the poset of natural numbers, seen as a category.

I Remark 13. Tv is isomorphic to the coslice category O/�v.

Defining games to be functors to Tv intuitively goes in the right direction, but does not
quite solve any of our two problems.

I Example 14. Consider the functor D : ω → ω = Tv defined by D(n) = 2n+ 1. It exhibits
both problems at once: it does not preserve the initial object, and, e.g., 0 ≤ 1 does not admit
any decomposition along the decomposition 1 ≤ 2 ≤ 3, a.k.a. P → O → P , of its image.

However, if we restrict attention to a certain kind of functors A→ Tv, we solve both problems
at once – almost. The relevant constraint on functors is generally stronger than being a
Conduché fibration, but becomes equivalent when both categories have an initial object
which is preserved by the functor.

I Definition 15. A functor F : E → B is a discrete fibration when for any E ∈ E and
u : B → F (E), there is a unique f : E′ → E such that F (f) = u, as in

C. Eberhart, T. Hirschowitz, and A. Laouar 16:5

E′ E

B F (E).

f

u

Let DFib(C) denote the full subcategory of Cat/C spanning discrete fibrations.

I Definition 16. A refined template game is a discrete fibration to Tv.

Of course, any simple game A yields a discrete fibration pA : A→ Tv, and we have:

I Proposition 17. Any refined template game in DFib(Tv) is isomorphic to pA, for some
simple game A, iff it is definite, i.e., its fibre over 0 is a singleton.

3 Template strategies vs. simple strategies

Let us now consider strategies. As for games, we start with Melliès’s notion, to emphasise its
simplicity. Template strategies are based on the following simple category:

I Definition 18. Let �V denote the category freely generated by the graph

OO OP PP.

This is essentially the well-known state diagram for strategies in a simple arrow game A→ B,
extended to a category. We need a little lemma before defining strategies.

I Lemma 19. The left and right projections give rise to functors s, t : �V → �v, with
s(XY) = X and t(XY) = Y .

I Definition 20. A template strategy from p : A→ �v to q : B → �v is a tuple (S, s′, t′, r)
making the following diagram commute.

A S B

�v �V �v

s′

p

s

r

t′

t

q (1)

Let us now show that simple strategies give rise to template strategies. Simple strategies are
rather subtle – which was one of the main motivations for template games in the first place!
– so this is a bit technical. We first consider boolean simple strategies, which are easier, and
then move on to general ones.

Boolean simple strategies

First, we need to define the arrow game A→ B, for any two simple games A and B. The
following definition is slightly vague: we refer to [12] for a fully rigorous one.

I Definition 21. Given two simple games A and B, A→ B interleaves moves from A and
B according to the following rules: (1) the polarity of moves in A is inverted, (2) O starts in
B, and (3) only P gets to switch sides.

FSCD 2019

16:6 Template Games, Simple Games, and Day Convolution

I Example 22. The game B→ B is depicted below left, with an example play on the right.

qr

ql tr
fr

tl fl

tr fr tr fr

B B

qr
ql

tl
fr

I Definition 23. A boolean simple strategy A → B is a prefix-closed set of non-empty,
even-length plays, called accepted, in A→ B.

I Example 24. The set of non-empty, even-length prefixes of the play in Example 22 (i.e.,
the set {qrql, qrqltlfr}) forms a boolean simple strategy.

There are in fact several ways in which boolean simple strategies give rise to template
strategies. We here present the relevant one in terms of semantics.

I Definition 25. The template strategy associated to a boolean simple strategy σ : A→ B is
(E(σ), s′, t′, r), where E(σ) is the poset of all prefixes of accepted plays, plus all extensions
sm of prefixes s of even length, and r, s′, and t′ are the obvious projections.

I Example 26. Consider the strategy of Example 24. The functor E(σ) → �V can be
represented as

OP OO
OO OP PP

OP,

qr ql
tl

fl

fl

(2)

with s′, t′ : E(σ)→ B displayed on the left and right in Figure 1 (with polarity indications).

B (B B) B

O OO O

O OP P

P PP P

O O OP OP P P

O OO O

qr

ql

tl
fl

fr

q

t
f

q

f

Figure 1 Template strategy associated to the simple strategy of Example 24.

General simple strategies

Let us now consider the more general, non-deterministic (i.e., non-boolean), but still standard,
notion of simple strategy [12]. Let us start from an alternative presentation of boolean
strategies.

C. Eberhart, T. Hirschowitz, and A. Laouar 16:7

I Definition 27. Let (A→ B)P∗ denote the full subcategory of (A→ B) spanning non-empty,
even-length plays, and iP∗ : (A→ B)P∗ ↪→ (A→ B) the inclusion functor.

I Proposition 28. Boolean simple strategies A → B are equivalent to functors ((A →
B)P∗)op → 2.

The idea is that a strategy σ accepts a given play p iff the corresponding functor maps it to
1 ∈ 2, observing that functoriality ensures prefix-closedness.

General simple strategies are obtained by generalising from 2 to Set:

I Definition 29. Let the category of simple strategies A→ B be S(A,B) := (A→ B)P∗
∧

.

I Remark 30. As noted in [12], this is equivalent to the standard definition as a slice
category. Indeed, letting ωP∗ denote the full subcategory of ω on positive, even ordinals,
pA→B restricts to a discrete fibration (A → B)P∗ → ωP∗. By the well-known equivalence
∂? : DFib(C) → C

∧

: el between presheaves and discrete fibrations (recalled as Lemma 32
below), and, for any U ∈ C

∧

, the further equivalence C
∧

/U ' el(U)
∧

, we obtain

S(A,B) = (A→ B)P∗
∧

' ωP∗
∧

/∂?((A→ B)P∗).

The latter slice category is precisely the standard definition.

Of course, boolean simple strategies embed into general ones by postcomposition with the
embedding 2 ↪→ Set determined by 0 7→ ∅ and 1 7→ 1.

From simple strategies to template strategies

Let us now informally describe how simple strategies σ ∈ (A→ B)P∗
∧

give rise to template
strategies, for which the following well-known result is the basis.

I Definition 31. For any small category C, let X ∈ C
∧

. The category of elements el(X) of
X has as objects pairs (c, x) with x ∈ X(c), and as morphisms (c, x)→ (c′, x′) all morphisms
f : c→ c′ such that X(f)(x′) = x.

I Lemma 32. For any small category C and X ∈ C
∧

, the projection functor pX : el(X)→ C is
a dicrete fibration, and the category of elements construction extends to an adjoint equivalence
of categories el : C

∧

→ DFib(C). Let ∂? denote the weak inverse to el.

I Example 33. One possible definition of forests is as presheaves over ω. Indeed, any T ∈ ω
∧

models the forest whose nodes of depth n are T (n), and whose parent relation is given by
T (n ≤ n + 1): T (n + 1) → T (n). The category el(T) is just the same forest viewed as a
poset, or rather a category, and the projection functor pT : el(T)→ ω maps vertices to their
depths. Trees are those T ∈ ω

∧
such that T (0) is a singleton.

Returning to simple and template strategies, we have a commuting diagram of functors

A (A→ B) B

�v �V �v,
pA

s t

pB (3)

so a first candidate follows by composition with the functor

el(σ)→ (A→ B)P∗ iP∗ (A→ B).

FSCD 2019

16:8 Template Games, Simple Games, and Day Convolution

However, the fibres of this functor over plays of odd length are all empty. We thus need to
insert additional objects over odd-length plays whose immediate prefix is accepted, which
will at last induce the desired template strategy by composition with (3). We do this using
right Kan extension:

I Definition 34. Let σ ∈ A→ B
∧

:=
∏

iP∗ σ, i.e., the right Kan extension of σ along iop
P∗.

This does yield the desired behaviour, by a direct application of the well-known end formula
for right Kan extension:

I Lemma 35. We have:

σ(ε) = 1;
for all odd-length plays sm, σ(sm) = σ(s);
for all non-empty, even-length plays s, σ(s) = σ(s).

The discrete fibration corresponding to σ, el(σ), thus yields the desired template strategy.

However, we obtain the following result, which shows that even the more general simple
strategies do not cover all template strategies.

I Lemma 36. Both functors el(σ) → (A → B) → �V are discrete Conduché fibrations.
Furthermore, the former functor el(σ) → (A → B) is receptive, in the sense that for all
even-length plays s with immediate extensions sm, and all (s, x) ∈ el(σ), there exists a unique
(sm, y) ∈ el(σ) and morphism (s, x)→ (sm, y) mapped to s→ sm by the projection.

Proof. An easy computation using the characterisation of right Kan extensions as ends. J

Refining template strategies

As we did for games, let us now analyse and resolve the discrepancies. For compatibility with
what we did for games, we take the coslice �V under OO and restrict to discrete fibrations
S → OO/�V . Analogously to Lemma 19, we have functors O/�v

s←− OO/�V
t−→ O/�v.

I Definition 37. Recalling Remark 13, naively refined template strategies are just as
template strategies in Definition 20, but over O/�v

s←− OO/�V
t−→ O/�v, and with r a

discrete fibration.

We obtain a first improvement:

I Lemma 38. The game A→ B is a limit

A (A→ B) B

O/�v OO/�V O/�v,

pA

s t

pB (4)

and naively refined template strategies are equivalent to presheaves over A→ B.

Proof. The first statement essentially says that plays in A → B are uniquely determined
by their projections and the interleaving schedule, which is clear. For the second statement,
(A → B) → OO/�V is a discrete fibration, so naively refined template strategies are in
one-to-one correspondence with discrete fibrations over A→ B, hence with presheaves. J

C. Eberhart, T. Hirschowitz, and A. Laouar 16:9

In order to precisely capture simple strategies, it remains to account for receptiveness. For
this, our solution is to further restrict the template:

I Definition 39. Let TV denote the full subcategory of OO/�V spanning even-length sched-
ules.

I Remark 40. It is tempting to further restrict to non-empty, even-length schedules. However,
the obtained span does not form a monad, hence the general template games construction
does not apply.

I Definition 41. Refined template strategies are defined just as template strategies in
Definition 20, but over Tv

s←− TV
t−→ Tv, and with r a discrete fibration.

We obtain a restriction of Lemma 38 to the relevant plays:

I Lemma 42. The full subcategory (A→ B)P ↪→ (A→ B) spanning even-length plays is a
limit

A (A→ B)P B

Tv TV Tv,
pA

s t

pB (5)

and refined template strategies A→ B are equivalent to presheaves over (A→ B)P .

Proof. By repeated application of stability of discrete fibrations under pullback, (A →
B)P → TV is a discrete fibration. Hence, in a diagram like (1) (with T instead of �),
assuming p, q ∈ DFib, r is a discrete fibration iff the induced morphism to (A→ B)P is. The
result then follows from Lemma 32. J

I Corollary 43. There is a full, reflective embedding from simple strategies S(A → B)
to refined template strategies, whose essential image consists of definite refined template
strategies, i.e., those whose associated presheaf X ∈ (A→ B)P

∧

is such that X(ε) = 1.

Proof. The embedding (A→ B)P∗ ↪→ (A→ B)P being full, right Kan extension along its
opposite defines a full, reflective embedding (A→ B)P∗

∧

↪→ (A→ B)P
∧

, which returns definite
refined template strategies by the standard end formula. J

Summary

Until now, we have refined template games and strategies, first by replacing the original
template � by our T, and second by restricting template games and strategies to be discrete
fibrations. We have then identified simple games as definite template games, and constructed
a full, reflective embedding from simple strategies A → B to refined template strategies
pA → pB , with essential image the definite ones. What remains to be seen is whether we can
refine Melliès’s double-categorical construction accordingly.

4 Template games

In this section, we review Melliès’s double-categorical variant of the slice construction. We
then apply it to deduce that the new template T yields a weak double category as desired.
In the next section, we refine the construction using a factorisation system, which allows us
to account for restriction to discrete fibrations.

FSCD 2019

16:10 Template Games, Simple Games, and Day Convolution

4.1 Double categories

The key point is that the template � forms a double category [5], in a way that describes the
scheduling of composition of strategies. So let us first briefly review double categories.

A double category C essentially consists of a horizontal category Ch and a vertical one Cv
sharing the same object set, together with a set of cells as in

A B

C D,

f

u

g

vα

where A,B,C, and D are objects, f and g are morphisms in Ch, and u and v are morphisms
in Cv. In order to distinghish notationally between horizontal and vertical morphisms, we
mark horizontal ones with a bullet. Cells are furthermore equipped with composition and
identities in both directions. E.g., to any given cells α and β with compatible vertical border
is assigned a composite cell β • α, as below left. Similarly, we have horizontal identities id•p
as below right.

A B E

C D F

S

p

T

qα

S′

T ′

rβ 7→
A E

C F

S′•S

p

T ′•T

rβ•α

A A

B B

id•A

p

id•B

pid•p (6)

Both notions of composition are required to be associative and the corresponding identities
unital. Thus, e.g., (6) defines a horizontal cell category CH . Similarly, there is a vertical
cell category CV . Finally, the interchange law requires the two different ways of parsing any
compatible pasting as below to agree, i.e., (δ ◦ γ) • (β ◦ α) = (δ • β) ◦ (γ • α):

A B C

D E F

G H I.

α

β

γ

δ

4.2 The template � as a double category

Let us now show that the template � forms a double category. As suggested by the notation,
its vertical category and vertical cell category are �v and �V . Its horizontal category �h is
generated by the graph O → P . It is thus isomorphic to the ordinal 2: there are exactly
three horizontal morphisms: OO, PP, and OP. To complete the definition, it remains to
define composition and identities in �H . One way is to depict basic cells as triangles

O O

P

O P

P

P P

O

O P

O,
(7)

respectively denoting OO → OP, OP → PP, PP → OP, and OP → OO. General cells are
obtained by stacking up such basic triangles. Depicting cells as stacks of triangles yields the
following inductive definition of composition of cells α and β as in (6):

C. Eberhart, T. Hirschowitz, and A. Laouar 16:11

If there is an ‘outwards’ bottom triangle, i.e., the bottom of α and β look like either of
O O X

X⊥

X P P

X⊥

with X ∈ {O,P} and X⊥ denoting the other player, then the composite is obtained by
composing the rest of α and β, and appending the obvious triangle ((OX,OX⊥), resp.
(XP,X⊥P)).
Otherwise, there is a pair of interacting bottom triangles, as below left, in which case the
composite is simply the composite of the rest of α and β – which is precisely where game
semantical hiding is encoded in �.

O X P

X⊥

L M R

L⊥ R⊥

I Remark 44. Ambiguous configurations as above right, where we would not know which
triangle to put last in the composite, cannot occur. Indeed, existence of the left-hand triangle
forces M = P , while existence of the right-hand one forces M = O.

Horizontal identities are the so-called copycat schedules. The copycat on the vertical morphism
O → P is obtained by composing OO → OP and OP → PP, and dually for P → O. The
copycat schedule of a general morphism is the obvious composite of these basic copycats.

We obtain as promised:

I Proposition 45 (Melliès [14]). The template � forms a double category.

4.3 Template games as a double slice

There is an alternative point of view on double categories which will be crucial to us: they
may be axiomatised based on a span of functors Cv

s←− CV
t−→ Cv. For this, let us consider the

following structure, which is almost a (large) double category.

I Definition 46. Let Span(Cat) have as objects all small categories, as vertical morphisms
all functors, as horizontal morphisms A B all spans A← C → B of functors, and as cells
below left all commuting diagrams as below right in Cat.

A B

U V

A C B

U W V

Vertical composition is given by (componentwise) composition of functors, while horizontal
composition is given by pullbacks and their universal property.

The structure formed by Span(Cat) is a weak double category [6], a weak form of double cat-
egory where horizontal composition is only associative and unital up to coherent isomorphism,
in a suitable sense.
I Remark 47. The horizontal arrows and special cells of a weak double category C form a
bicategory H(C), where special means that the left and right borders are identities.

FSCD 2019

16:12 Template Games, Simple Games, and Day Convolution

I Remark 48. The reason Span(Cat) is weak is that one cannot hope to make a strictly
associative choice of pullbacks.

Just like one usually does in bicategories, we may define monads internally to weak double
categories.

I Definition 49. A monad in a weak double category C is a horizontal morphism M : X X,
equipped with special cells

X

X X

M

M

M

µ and X X

M

η

satisfying the obvious generalisation of the usual monad laws.

I Proposition 50. A double category is the same as a monad in Span(Cat).

Proof. Composing an endo-span Cv
s←− CV

t−→ Cv with itself in Span(Cat) amounts to con-
structing the category of pairs of compatible horizontal morphisms and cells (6), so requiring
a monad multiplication is requiring horizontal composition. Similarly, requiring a monad
unit amounts to requiring horizontal identities. J

Explicitly, if C is a double category, then it can be seen as a monad CV : Cv Cv in Span(Cat)
with µ and η given by horizontal composition and identities.

It should now be clear that a template game is a vertical morphism to �v in Span(Cat),
while a template strategy A→ B is merely a cell

A B

�v �v.

S

p

�V

q

This allows us to define composition of template strategies, using the monad structure of �
given by Propositions 50 and 45.

I Proposition 51. The composite of S : A→ B and T : B → C in the sense of [14] is the
pasting below left, while the identity on any p : A→ �v is the one below right.

A B C

�v �v �v

S

p

�V

�V

q

T

�V

r

µ

A A

�v �v

p

�V

pid•p

η

(8)

From this, it easily follows that strategies in fact form a weak double category, and clearly
this construction works for any monad in any weak double category. Namely, Melliès’s
construction may be obtained by applying the following theorem.

I Theorem 52. Given any monad MV : Mv Mv in a weak double category C, there is a
slice weak double category C/M whose

C. Eberhart, T. Hirschowitz, and A. Laouar 16:13

vertical category is (C/M)v = Cv/Mv;
vertical cell category is (C/M)V = CV /MV ;
horizontal composition is given by pasting with µ, as on the left in (8);
horizontal identity on p : A→Mv is by pasting with η as on the right in (8).
and all operations on cells are given by their counterparts in C.

I Proposition 53. The weak double category Games(�) of template games [14] is equal to
Span(Cat)/�.

A weak double category with trivial category Cv is nothing but a monoidal category. In
that case, the theorem reduces to the following well-known result used, e.g., in Weber [17]:

I Corollary 54. The slice of a monoidal category over a monoid is again monoidal.

5 Refined template games, simple games, and Day convolution

5.1 Refined template games

We now want to recover simple games by replacing � with T, and restricting the slice
construction in Span(Cat) to discrete fibrations (for vertical morphisms and cells). For this,
we appeal to factorisation systems.

I Definition 55. For all morphisms f and g in a category C, let f ⊥ g iff for all commuting
squares as in the solid part of

A C

B D

f
k g

there exists a unique k as shown making both triangles commute. For any class M of
morphisms, letM⊥ = {g | ∀f ∈M, f ⊥ g}. We define ⊥M symmetrically.

A (strong) factorisation system [1] on a category C consists in classes L and R of arrows
such that L⊥ = R, L = ⊥R, and every arrow factors as r ◦ l with l ∈ L and r ∈ R.

I Example 56. Discrete fibrations form the right class of the comprehensive factorisation
system (Fin,DFib) on Cat, whose left class is that of final functors [16].

Our refined construction is based on the following generalisation of factorisation systems.

I Definition 57. A double factorisation system on a weak double category C consists of
factorisation systems (Lv,Rv) and (LV ,RV) on Cv and CV , respectively, such that the source
and target functors CV → Cv both map LV to Lv and RV to Rv, and all cells α as below left
with l, l′ ∈ Lv and r, r′ ∈ Rv factor as below right, with λ ∈ LV and ρ ∈ RV .

A A′

B B′

C C ′

S

l l′

r

U

r′

α =

A A′

B B′

C C ′

S

l

T

l′

r

U

r′

λ

ρ

FSCD 2019

16:14 Template Games, Simple Games, and Day Convolution

I Lemma 58. Discrete fibrations and componentwise discrete fibrations are the right classes
of a double factorisation system ((Fin,DFib), (FinV ,DFibV)) on Span(Cat). Furthermore,
DFibV is stable under horizontal composition and identities.

Proof. As is well-known, discrete fibrations may be defined by unique lifting w.r.t. the
injection 1 ↪→ 2 mapping 0 to 1. Componentwise discrete fibrations may be defined similarly,
in Span(Cat)V . The result then follows from componentwise discrete fibrations being stable
under horizontal composition, which holds because they are stable under pullback in the
arrow category. J

In order to state the promised generalisation of Theorem 52 in full generality, we need the
following, somewhat awkward notion of stability of left residuals. Indeed, our two applications
work for rather different reasons, as emphasised by Corollaries 62 and 63 below.

I Definition 59. A monad MV : Mv Mv in a weak double category C has stable left
residuals w.r.t. a double factorisation system ((Lv,Rv), (LV ,RV)), iff

(a) for all α, β ∈ RV such that the composite below left factors as on the right,

A C B

Mv Mv Mv

P Q

MV

MV

MV

α β

µ

=

A B

Mv Mv

Q•P

MV

λ

ρ

(9)

for any S : A′ A and T : B B′ in Ch, the composite idT • λ • idS below is in LV ;

A′ A B B′,S
λ

T

(b) for all p ∈ Rv such that the composite below left factors as on the right, for any S : A′ A

and T : B B′ in Ch, idT • λ • idS is in LV .

A A

Mv Mv

p

MV

pid•p

η

=

A B

Mv Mv

N

MV

λ

ρ

(10)

I Remark 60. In both cases, existence of a special λ follows by Definition 57.

I Theorem 61. Consider any monad MV : Mv Mv in a weak double category C with
stable left residuals w.r.t. a double factorisation system ((Lv,Rv), (LV ,RV)). Then there is
a slice weak double category C/RVM whose

vertical category (C/RVM)v is Cv/RvMv, the full subcategory of Cv/Mv on maps in Rv;
vertical category of cells is (C/RVM)V = CV /RVMV ;
horizontal composition is given by ρ in (9);
horizontal identity on any p : A→Mv is given by ρ in (10);
and all operations on cells are given by their counterparts in C.

C. Eberhart, T. Hirschowitz, and A. Laouar 16:15

Proof. By coherence for weak double categories [8, Theorem 7.5], and assuming a higher
universe in which C is small, we may assume that C is in fact a (strict) double category.

Composition of cells in C/RVM is just as in C, so the only non-trivial point to check
is weak associativity and unitality of horizontal composition (of morphisms). For weak
associativity, we observe that both cells

A B C D

Mv Mv Mv Mv

S

p

MV

MV

MV

q

T

MV

rα β

U

MV

s

µ
µ

γ

A B C D

Mv Mv Mv Mv

S

p

MV

MV

MV

q

T

MV

rα β

U

MV

s

µ
µ

γ

are equal. Now, denoting composition in (C/RVM)h by •̃, γ•̃(β•̃α) and (γ•̃β)•̃α are obtained
by factoring them as follows. For the former, we factor

T • S β•α−−→MV •MV
µ−→MV as T • S λβ,α−−−→ Kβ,α

ρβ,α−−−→MV ,

in which λβ,α special by definition. We then factor

U •Kβ,α
γ•ρβ,α−−−−→MV •MV

µ−→MV as U •Kβ,α

λγ,(β,α)−−−−−→ Kγ,(β,α)
ργ,(β,α)−−−−−→MV .

The other composite may be computed symmetrically, so that we obtain factorisations:

A B C D

Mv Mv

S

p Kβ,α

Kγ,(β,α)

MV

T U

s
λβ,α

λγ,(β,α)

ργ,(β,α)

A B C D

Mv Mv.

S

p Kγ,β

K(γ,β),α

MV

T U

s
λγ,β

λ(γ,β),α

ρ(γ,β),α

By stability of left residuals, both are in fact factorisations for (LV ,RV), so that by lifting, we
obtain a special cell aα,β,γ : Kγ,(β,α) −

∼ K(γ,β),α such that ρ(γ,β),α ◦ aα,β,γ = ργ,(β,α), which
is our candidate associator for C/RVM . It satisfies the MacLane pentagon by uniqueness of
lifting.

Weak unitality follows similarly. J

I Corollary 62. Consider any monad MV : Mv Mv in a weak double category C with
double factorisation system ((Lv,Rv), (LV ,RV)). If η, µ ∈ RV and RV is stable under
horizontal composition and identities, then C/RVM exists and is a sub weak double category
of C/M .

Proof. Both pastings on the left of (9) and (10) are already in RV . J

I Corollary 63. Consider any monadMV : Mv Mv in a weak double category C with double
factorisation system ((Lv,Rv), (LV ,RV)). If LV is stable under horizontal composition, then
C/RVM is a weak double category.

Proof. Stability under horizontal composition entails stability under whiskering. J

FSCD 2019

16:16 Template Games, Simple Games, and Day Convolution

5.2 Simple games

Let us at last return to simple games. We have:

I Lemma 64. T is a monad whose multiplication and unit are in DFibV .

Proof. In T, multiplication is composition of schedules (through parallel composition and
hiding) and the unit is given by copycat schedules. The crucial point to prove that multiplic-
ation is in DFibV is that, for any pair (p, q) of schedules in TV • TV , the last move in s(q)
(= t(p)) cannot be last in both p and q for polarity reasons. For the unit, the crucial point is
that copycat schedules are closed under restrictions. J

By Corollary 62, we have:

I Corollary 65. Span(Cat)/DFibV T is a sub weak double category of Span(Cat).

Finally, let us relate to simple strategies.

I Definition 66 ([12, Definition 9]). Simple games, strategies, and natural transformations
form a bicategory S.

I Theorem 67. The full, reflective embeddings FA,B : S(A,B) ∼ DFib((A → B)P) of
Corollary 43 determine a locally reflective and fully-faithful weak 2-functor

S → H(Span(Cat)/DFibV T)

(where H is the bicategory of special cells, as in Remark 47), whose essential image consists
of definite refined template games and strategies.

Proof. The essential image part of the result is clear. By [13, §2.2], we need to organise the
full, reflective embeddings FA,B into a weak 2-functor, which here means that F commutes
with composition of strategies up to coherent isomorphism. J

I Corollary 68. The bicategory S of simple games and strategies is biequivalent to the locally
full sub-bicategory of H(Span(Cat)/DFibV T) spanning definite refined template games and
strategies.

5.3 Day convolution

We finally reach the application mentioned in the introduction: Day convolution. The
purpose of this operation is to show that C

∧

is monoidal when C is. Let us now recover this
structure from Theorem 61, in the particular case where C is strictly monoidal. The starting
point is the following weak double category:

I Definition 69. Let W be the sub weak double category of Span(Cat) obtained by restricting
objects to the terminal object 1 and vertical morphisms to the identity thereon.

Thus,WV consists of categories and functors, and horizontal composition is given by cartesian
product and its universal property.

I Lemma 70. A monad in W is a strict monoidal category C.

C. Eberhart, T. Hirschowitz, and A. Laouar 16:17

Proof. The monad multiplication µ : C × C → C gives the tensor product while the unit
η : 1 → C gives the tensor unit, and coherence equations for the monad those of the
monoidal category. J

Clearly, final functors and discrete fibrations form a double factorisation system (LV ,RV) =
(Fin,DFib) on W. Final functors being closed under binary products, LV is closed under
horizontal composition and identities, so Corollary 63 applies and we obtain a weak double
categoryW/DFibC. This weak double category is vertically trivial, hence underlies a monoidal
category, say C′.

Let us now show that C′ is equivalent to C
∧

equipped with the convolution tensor product.
We first recall that the latter is given as follows:

I Definition 71. For any small monoidal category C and X,Y ∈ C
∧

, let

(X ⊗ Y)(c) =
∫ (c1,c2)∈C2

X(c1)× Y (c2)× C(c, c1 ⊗ c2).

I Lemma 72. Let f : A→ B be a functor. The discrete fibration ρf associated to f by the
comprehensive factorisation system is determined up to isomorphism by

∂?(ρf)(b) ∼=
∫ a∈A

B(b, f(a)),

where ∂? : DFib(B)→ B
∧

is the standard equivalence between discrete fibrations and presheaves.

Proof. This is actually obvious by construction. In [16], the dual case is actually treated,
initial functors and discrete opfibrations. But up to this discrepancy, ∂?(ρf) is precisely k in
the proof of [16, Theorem 3], which would in our case be defined as the left Kan extension
of Aop !−→ 1 1−→ Set along fop. By the well-known characterisation of left Kan extensions by
coends, we readily obtain the desired formula. J

I Theorem 73. For any strictly monoidal category C, the monoidal category C′ is equivalent
to C

∧

equipped with the convolution tensor product.

Proof. By construction, given two presheaves X,Y ∈ C
∧

and transporting them to their
corresponding discrete fibrations, say S : el(X)→ C and T : el(Y)→ C, their tensor product
S•̃T in C′ is the right factor of the composite

el(X)× el(Y) S×T−−−→ C× C ⊗−→ C.

By Lemma 72, the result has its corresponding presheaf defined up to isomorphism by

∂?(S•̃T)(c) ∼=
∫ (a,b)∈el(X)×el(Y) C(c,⊗((S × T)(a, b)))

=
∫ (a,b)∈el(X)×el(Y) C(c, S(a)⊗ T (b))

∼=
∫ ((c1,x),(c2,y))∈el(X)×el(Y) C(c, c1 ⊗ c2)

∼=
∫ c1,c2 X(c1)× Y (c2)× C(c, c1 ⊗ c2),

as desired. J

FSCD 2019

16:18 Template Games, Simple Games, and Day Convolution

6 Conclusion and perspectives

We have designed an abstract slice construction over monads in weak double categories, which
has as instances (1) a weak double category of simple games and non-deterministic strategies,
whose underlying bicategory of definite games and strategies is biequivalent to the standard
one, and (2) the monoidal category of presheaves over any small strict monoidal category.

For future work, we first could try to accomodate not only the weak double category
structure of template games, but also symmetric monoidal closedness. Furthermore, Melliès
is also currently working on a template game model of full linear logic. This will of course be
a useful feature to incorporate to our framework. Another direction for future work is to
generalise our construction to encompass Day convolution for non-strict monoidal categories.
What is needed here is a common generalisation of [7, Theorem 14.5] and Theorem 61. Finally,
it is slightly unsatisfactory to only get standard simple games up to a locally fully-faithful
embedding. In order to obtain a biequivalence, preliminary investigation suggests that
instead of restricting the slice construction w.r.t. some factorisation system, it would be
more expressive to construct the factorisation system directly in the relevant slice, for which
fibrant objects would be the desired strategies. Indeed, e.g., polarities, which cannot be used
before slicing, become available in the slice. This technique also seems to apply for refining
the correspondence to, e.g., deterministic strategies, and possibly even innocence.

References
1 A. K. Bousfield. Constructions of Factorization Systems in Categories. Journal of Pure and

Applied Algebra, 9(2-3):287–329, 1977.
2 B. Day. On closed categories of functors. In Reports of the Midwest Category Seminar IV,

volume 137 of Lecture Notes in Mathematics, pages 1–38. Springer, 1970.
3 C. Eberhart. Catégories et diagrammes de cordes pour les jeux concurrents. PhD thesis,

Université Savoie Mont Blanc, 2018.
4 C. Eberhart and T. Hirschowitz. What’s in a game?: A theory of game models. In Proc. 33rd

Symposium on Logic in Computer Science, pages 374–383. ACM, 2018. doi:10.1145/3209108.
3209114.

5 C. Ehresmann. Catégories structurées. Annales scientifiques de l’Ecole Normale Supérieure,
80(4):349–426, 1963.

6 R. Garner. Polycategories. PhD thesis, University of Cambridge, 2006.
7 R. Garner and M. Shulman. Enriched categories as a free cocompletion. Advances in

Mathematics, 289:1–94, 2016.
8 M. Grandis and R. Paré. Limits in double categories. Cahiers de Topologie et Géométrie

Différentielle Catégoriques, 40(3):162–220, 1999.
9 R. Harmer, J. M. E. Hyland, and P.-A. Melliès. Categorical Combinatorics for Innocent

Strategies. In Proc. 22nd Symposium on Logic in Computer Science, pages 379–388. IEEE,
2007.

10 M. Hirschowitz, A. Hirschowitz, and T. Hirschowitz. A theory for game theories. In Proc.
27th Foundations of Software Technology and Theoretical Computer Science, volume 4855 of
Lecture Notes in Computer Science, pages 192–203. Springer, 2007.

11 J. M. E. Hyland. Game Semantics. In Andrew M. Pitts and Peter Dybjer, editors, Semantics
and Logics of Computation, pages 131–184. Cambridge University Press, 1997.

12 C. Jacq and P.-A. Melliès. Categorical Combinatorics for Non Deterministic Strategies on
Simple Games. In Proc. 21st Foundations of Software Science and Computational Structures,
volume 10803 of Lecture Notes in Computer Science, pages 39–70. Springer, 2018. doi:
10.1007/978-3-319-89366-2_3.

http://dx.doi.org/10.1145/3209108.3209114
http://dx.doi.org/10.1145/3209108.3209114
http://dx.doi.org/10.1007/978-3-319-89366-2_3
http://dx.doi.org/10.1007/978-3-319-89366-2_3

C. Eberhart, T. Hirschowitz, and A. Laouar 16:19

13 T. Leinster. Basic Bicategories. arXiv Mathematics e-prints, page math/9810017, October
1998. arXiv:math/9810017.

14 P.-A. Melliès. Categorical combinatorics of scheduling and synchronization in game semantics.
Proc. ACM Program. Lang., 3(POPL):23:1–23:30, January 2019. doi:10.1145/3290336.

15 S. Rideau and G. Winskel. Concurrent Strategies. In Proc. 26th Symposium on Logic in
Computer Science, pages 409–418. IEEE, 2011.

16 R. Street and R. F. C. Walters. The Comprehensive Factorization of a Functor. Bulletin of
the American Mathematical Society, 79(5), 1973.

17 M. Weber. Generic morphisms, parametric representations and weakly cartesian monads.
Theory and Applications of Categories, 13:191–234, 2004.

FSCD 2019

http://arxiv.org/abs/math/9810017
http://dx.doi.org/10.1145/3290336

Differentials and Distances in Probabilistic
Coherence Spaces
Thomas Ehrhard
CNRS, IRIF, Université de Paris, France
https://www.irif.fr/~ehrhard/
ehrhard@irif.fr

Abstract
In probabilistic coherence spaces, a denotational model of probabilistic functional languages, morph-
isms are analytic and therefore smooth. We explore two related applications of the corresponding
derivatives. First we show how derivatives allow to compute the expectation of execution time in
the weak head reduction of probabilistic PCF (pPCF). Next we apply a general notion of “local”
differential of morphisms to the proof of a Lipschitz property of these morphisms allowing in turn to
relate the observational distance on pPCF terms to a distance the model is naturally equipped with.
This suggests that extending probabilistic programming languages with derivatives, in the spirit of
the differential lambda-calculus, could be quite meaningful.

2012 ACM Subject Classification Theory of computation → Lambda calculus; Theory of com-
putation → Probabilistic computation; Theory of computation → Abstract machines; Theory of
computation → Linear logic

Keywords and phrases Denotational semantics, probabilistic coherence spaces, differentials of pro-
grams

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.17

Acknowledgements We thank Raphaëlle Crubillé, Paul-André Melliès, Michele Pagani and Christine
Tasson for many enlightening discussions on this work. We also thank the referees for their precious
comments and suggestions.

Introduction

Currently available denotational models of probabilistic functional programming (with full
recursion, and thus partial computations) can be divided in three classes.

Game based models, first proposed in [6] and further developed by various authors (see [2]
for an example of this approach). From their deterministic ancestors they typically inherit
good definability features.
Models based on Scott continuous functions on domains endowed with additional probab-
ility related structures. Among these models we can mention Kegelspitzen [13] (domains
equipped with an algebraic convex structure) and ω-quasi Borel spaces [15] (domains
equipped with a generalized notion of measurability), this latter semantics, as far as we
understand the situation, requiring the use of an adapted probabilistic powerdomain
construction.
Models based on (a generalization of) Berry stable functions. The first category of
this kind was that of probabilistic coherence spaces (PCSs) and power series with non-
negative coefficients (the Kleisli category of the model of Linear Logic developed in [5])
for which we could prove adequacy and full abstraction with respect to a probabilistic
version of PCF [10]. We extended this idea to “continuous data types” (such as R)
by substituting PCSs with positive cones and power series with functions featuring

© Thomas Ehrhard;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5231-5504
https://www.irif.fr/~ehrhard/
mailto:ehrhard@irif.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Differentials in Pcoh

an hereditary monotonicity property that we called stability1 and [3] showed that this
extension is actually conservative (stable functions on PCSs, which are special positive
cones, are exactly power series).

The main feature of this latter semantics is the extreme regularity of its morphisms.
Being power series, they must be smooth. Nevertheless, the category Pcoh is not a model of
differential linear logic in the sense of [9]. This is due to the fact that general addition of
morphisms is not possible (only sub-convex linear combinations are available) thus preventing,
e.g., the Leibniz rule to hold in the way it is presented in differential LL. Also a morphism
X → Y in the Kleisli category Pcoh! can be considered as a function from the closed unit
ball of the cone P associated with X to the closed unit ball of the cone Q associated with Y .
From a differential point of view such a morphism is well behaved only in the interior of the
unit ball. On the border derivatives can typically take infinite values.

Contents

We already used the analyticity of the morphisms of Pcoh! to prove full abstraction results [10].
We provide here two more corollaries of this properties, involving now also derivatives.
For both results, we consider a paradigmatic probabilistic purely functional programming
language2 which is a probabilistic extension of Scott and Plotkin’s PCF. This language pPCF
features a single data type ι of integers, a simple probabilistic choice operator coin(r) : ι
which flips a coin with probability r to get 0 and 1 − r to get 1. To make probabilistic
programming possible, this language has a let(x,M,N) construct restricted to M of type ι
which allows to sample an integer according to the sub-probability distribution represented
by M . The operational semantics is presented by a deterministic “stack machine” which
is an environment-free version of Krivine machine parameterized by a choice sequence
∈ C0 = {0, 1}<ω, presented as a partial evaluation function. We adopt a standard discrete
probability approach, considering C0 as our basic sample space and the evaluation function as
defining a (total) probability density function on C0. We also introduce an extension pPCFlab
of pPCF where terms can be labeled by elements of a set L of labels, making it possible to
count the use of labeled subterms during a reduction. Evaluation for this extended calculus
gives rise to a random variable (r.v.) on C0 ranging in the setMfin(L) of finite multisets of
elements of L. The number of uses of terms labeled by a given l ∈ L (which is a measure of
the computation time) is then an N-valued r.v. the expectation of which we want to evaluate.
We prove that, for a given labeled closed term M of type ι, this expectation can be computed
by taking a derivative of the interpretation of this term in the model Pcoh! and provide a
concrete example of computation of such expectations. This result can be considered as a
probabilistic version of [7, 8]. The fact that derivatives can become infinite on the border of
the unit ball corresponds then to the fact that this expectation of “computation time” can
be infinite.

In the second application, we consider the contextual distance on pPCF terms generalizing
Morris equivalence as studied in [4] for instance. The probabilistic features of the language
make this distance too discriminating, putting e.g. terms coin(0) and coin(ε) at distance 1
for all ε > 0 (probability amplification). Any cone (and hence any PCS) is equipped with a
norm and hence a canonically defined metric. Using a locally defined notion of differential

1 Because, when reformulated in the domain-theoretic framework of Girard’s coherence spaces, this
condition exactly characterizes Berry’s stable functions.

2 One distinctive feature of our approach is to not consider probabilities as an effect.

T. Ehrhard 17:3

of morphisms in Pcoh!, we prove that these morphisms enjoy a Lipschitz property on all
balls of radius p < 1, with a Lipschitz constant 1/(1− p) (thus tending towards ∞ when p
tends towards 1). Modifying the definition of the operational distance by not considering
all possible contexts, but only those which “perturb” the tested terms by allowing them to
diverge with probability 1− p, we upper bound this p-tamed distance by the distance of the
model with a ratio p/(1− p). Being in some sense defined wrt. linear semantic contexts, the
denotational distance does not suffer from the probability amplification phenomenon. This
suggests that p-tamed distances might be more suitable than ordinary contextual distances
to reason on probabilistic programs.

Notations

We use R≥0 for the set of real numbers x such that x ≥ 0, and we set R≥0 = R≥0 ∪ {+∞}.
Given two sets S and I we use SI for the set of functions I → S, often considered as I-indexed
families ~s of elements of S (the purpose of the arrow is to stress the fact that this object
is such a family), the indexing set I being usually easily derivable from the context. The
elements of such a family ~s are denoted si or s(i) depending on the context. Given i ∈ I we
use i for the function I → R≥0 such that i(i) = 1 and i(j) = 0 if j 6= i. We useMfin(I) for
the set of finite multisets of elements of I. Such a multiset is a function µ : I → N such that
supp(µ) = {i ∈ I | µ(i) 6= 0} is finite. We use additive notations for operations on multisets
(0 for the empty multiset, µ+ ν for their pointwise sum). We use [i1, . . . , ik] for the multiset
µ such that µ(i) = #{j ∈ N | ij = i}. If µ, ν ∈Mfin(I) with µ ≤ ν (pointwise order), we set(
ν
µ

)
=
∏
i∈I
(
ν(i)
µ(i)
)
where

(
n
m

)
= n!

m!(n−m)! is the usual binomial coefficient. We use I<ω for
the set of finite sequences 〈i1, . . . , ik〉 of elements of I and αβ for the concatenation of such
sequences. We use 〈〉 for the empty sequence.

1 Probabilistic coherence spaces (PCS)

For the general theory of PCSs we refer to [5, 10]. We recall briefly the basic definitions and
provide a characterization of these objects. PCSs are particular cones (a notion borrowed
from [14]) as we used them in [10], so we start with a few words about these more general
structures to which we plan to extend the constructions of this paper.

1.1 A few words about cones
A (positive) pre-cone is a cancellative3 commutative R≥0-semi-module P equipped with a
norm ‖_‖P , that is a map P → R≥0, such that ‖r x‖P = r ‖x‖P for r ∈ R≥0, ‖x+ y‖P ≤
‖x‖P + ‖y‖P and ‖x‖P = 0 ⇒ x = 0. It is moreover assumed that ‖x‖P ≤ ‖x+ y‖P , this
condition expressing that the elements of P are positive. Given x, y ∈ P , one says that x is
less than y (notation x ≤ y) if there exists z ∈ P such that x+ z = y. By the cancellation
property, if such a z exists, it is unique and we denote it as y − x. This subtraction obeys
usual algebraic laws (when it is defined). Notice that if x, y ∈ P satisfy x+ y = 0 then since
‖x‖P ≤ ‖x+ y‖P , we have x = 0 (and of course also y = 0). Therefore, if x ≤ y and y ≤ x
then x = y and so ≤ is an order relation.

A (positive) cone is a positive pre-cone P whose unit ball BP = {x ∈ P | ‖x‖P ≤ 1} is
ω-order-complete in the sense that any increasing sequence of elements of BP has a least
upper bound in BP . In [10] we show how a notion of stable function on cones can be defined,
which gives rise to a cartesian closed category.

3 Meaning that x+ y = x′ + y ⇒ x = x′.

FSCD 2019

17:4 Differentials in Pcoh

The following construction will be crucial in Section 3.2. Given a cone P and x ∈ BP ,
we define the local cone at x as the set Px = {u ∈ P | ∃ε > 0 x+ εu ∈ BP}. Equipped with
the algebraic operations inherited from P , this set is clearly a R≥0-semi-ring. We equip it
with the following norm: ‖u‖Px = inf{ε−1 | ε > 0 and x+ εu ∈ BP} and then it is easy to
check that Px is indeed a cone. It is reduced to 0 exactly when x is maximal in BP . In that
case one has ‖x‖P = 1 but notice that the converse is not true in general.

1.2 Basic definitions on PCSs
Given an at most countable set I and u, u′ ∈ R≥0

I , we set 〈u, u′〉 =
∑
i∈I uiu

′
i ∈ R≥0. Given

P ⊆ R≥0
I , we define P⊥ ⊆ R≥0

I as P⊥ = {u′ ∈ R≥0
I | ∀u ∈ P 〈u, u′〉 ≤ 1}. Observe that

if P satisfies ∀a ∈ I ∃x ∈ P xa > 0 and ∀a ∈ I ∃m ∈ R≥0∀x ∈ P xa ≤ m then P⊥ ∈ (R≥0)I
and P⊥ satisfies the same two properties.

A probabilistic pre-coherence space (pre-PCS) is a pair X = (|X|,PX) where |X| is an
at most countable set4 and PX ⊆ R≥0

|X| satisfies PX⊥⊥ = PX. A probabilistic coherence
space (PCS) is a pre-PCS X such that ∀a ∈ |X| ∃x ∈ PX xa > 0 and ∀a ∈ |X| ∃m ∈
R≥0∀x ∈ PX xa ≤ m so that PX ⊆ (R≥0)|X|.

Given any PCS X we can define a cone PX as follows:

PX = {x ∈ (R≥0)|X| | ∃ε > 0 εx ∈ PX}

that we equip with the following norm: ‖x‖PX = inf{r > 0 | x ∈ rPX} and then it is easy
to check that B(PX) = PX. We simply denote this norm as ‖_‖X .

Given t ∈ R≥0
I×J considered as a matrix (where I and J are at most countable sets) and

u ∈ R≥0
I , we define t u ∈ R≥0

J by (t u)j =
∑
i∈I ti,jui (usual formula for applying a matrix

to a vector), and if s ∈ R≥0
J×K we define the product s t ∈ R≥0

I×K of the matrix s and t
as usual by (s t)i,k =

∑
j∈J ti,jsj,k. This is an associative operation.

Let X and Y be PCSs, a morphism from X to Y is a matrix t ∈ (R≥0)|X|×|Y | such that
∀x ∈ PX tx ∈ PY . It is clear that the identity matrix is a morphism from X to X and that
the matrix product of two morphisms is a morphism and therefore, PCS equipped with this
notion of morphism form a category Pcoh.

The condition t ∈ Pcoh(X,Y) is equivalent to ∀x ∈ PX ∀y′ ∈ PY ⊥ 〈t x, y′〉 ≤ 1
but 〈t x, y′〉 = 〈t, x ⊗ y′〉 where (x ⊗ y′)(a,b) = xay

′
b. This strongly suggests to introduce

a construction X ⊗ Z, given two PCSs X and Z, by setting |X ⊗ Z| = |X| × |Z| and
P(X ⊗ Z) = {x⊗ z | x ∈ PX and z ∈ PZ}⊥⊥ where (x⊗ z)(a,c) = xazc. Then it is easy to
see that X ⊗Z is not only a pre-PCS, but actually a PCS and that we have equipped in that
way the category Pcoh with a symmetric monoidal structure for which it is ∗-autonomous
wrt. a dualizing object ⊥ = 1 = ({∗}, [0, 1]) (it is at the same time the unit of ⊗ and
X⊥ ' (X (⊥) up to a trivial iso).

The category Pcoh is cartesian: if (Xi)i∈I is an at most countable family of PCSs,
then (&i∈I Xi, (πi)i∈I) is the cartesian product of the Xis, with |&i∈I Xi| = ∪i∈I{i} × |Xi|,
(πi)(j,a),a′ = 1 if i = j and a = a′ and (πi)(j,a),a′ = 0 otherwise, and x ∈ P(&i∈I Xi) if πi x ∈
PXi for each i ∈ I (for x ∈ (R≥0)|&i∈I Xi|). Given ti ∈ Pcoh(Y,Xi), the unique morphism
t = 〈ti〉i∈I ∈ Pcoh(Y,&i∈I Xi) such that πi t = ti is simply defined by tb,(i,a) = (ti)a,b. The

4 This restriction is not technically necessary, but very meaningful from a philosophic point of view; the
non countable case should be handled via measurable spaces and then one has to consider more general
objects as in [10] for instance.

T. Ehrhard 17:5

dual operation ⊕i∈I Xi, which is a coproduct, is characterized by |⊕i∈I Xi| = ∪i∈I{i} × |Xi|
and x ∈ P(⊕i∈I Xi) and

∑
i∈I ‖πi x‖Xi ≤ 1. A particular case is N = ⊕n∈NXn where Xn = 1

for each n. So that |N| = N and x ∈ (R≥0)N belongs to PN if
∑
n∈N xn ≤ 1 (that is, x

is a sub-probability distribution on N). There are successor and predecessor morphisms
suc, pred ∈ Pcoh(N,N) given by sucn,n′ = δn+1,n′ and predn,n′ = 1 if n = n′ = 0 or n = n′+1
(and predn,n′ = 0 in all other cases). An element of Pcoh(N,N) is a (sub)stochastic matrix
and our model should be understood as this kind of representation of programs.

As to the exponentials, one sets |!X| =Mfin(|X|) and P(!X) = {x! | x ∈ PX}⊥⊥ where,
given µ ∈ Mfin(|X|), x!

µ = xµ =
∏
a∈|X| x

µ(a)
a . Then given t ∈ Pcoh(X,Y), one defines

!t ∈ Pcoh(!X, !Y) in such a way that !t x! = (t x)! (the precise definition is not relevant here;
it is completely determined by this equation). We do not need here to specify the monoidal
comonad structure of this exponential. The resulting cartesian closed category5 Pcoh! can
be seen as a category of functions (actually, of stable functions as proved in [3]). Indeed,
a morphism t ∈ Pcoh!(X,Y) = Pcoh(!X,Y) = P(!X (Y) is completely characterized
by the associated function t̂ : PX → PY such that t̂(x) = t x! =

(∑
µ∈|!X| tµ,bx

µ
)
b∈|Y |

so

that we consider morphisms as power series (they are in particular monotonic and Scott
continuous functions PX → PY). In this cartesian closed category, the product of a family
(Xi)i∈I is &i∈I Xi (written XI if Xi = X for all i), which is compatible with our viewpoint
on morphisms as functions since P(&i∈I Xi) =

∏
i∈I PXi up to trivial iso. The object of

morphisms from X to Y is !X (Y with evaluation mapping (t, x) ∈ P(!X (Y)× PX to
t̂(x) that we simply denote as t(x) from now on. The well defined function P(!X (X)→ PX
which maps t to supn∈N tn(0) is a morphism of Pcoh! (and thus can be described as a power
series in the vector t = (tm,a)m∈Mfin(|X|),a∈|X|) by standard categorical considerations using
cartesian closeness: it provides us with fixed point operators at all types.

2 Probabilistic PCF, time expectation and derivatives

We introduce now the probabilistic functional programming language considered in this
paper. The operational semantics is presented using elementary probability theoretic tools.

2.1 The core language
The types and terms are given by

σ, τ, . . . := ι | σ ⇒ τ

M,N, P . . . := n | succ(M) | pred(M) | x | coin(r) | let(x,M,N) | if(M,N,P)
| (M)N | λxσM | fix(M)

See Fig. 1 for the typing rules, with typing contexts Γ = (x1 : σ1, . . . , xn : σn).

2.1.1 Denotational semantics
We survey briefly the interpretation of pPCF in PCSs thoroughly described in [10]. Types
are interpreted by JιK = N and Jσ ⇒ τK = !JσK (JτK. Given M ∈ pPCF such that
Γ ` M : σ (with Γ = (x1 : σ1, . . . , xk : σk)) one defines JMKΓ ∈ Pcoh!(&k

i=1JσiK, JσK) (a

5 This is the Kleisli category of “!” which has actually a comonad structure that we do not make explicit
here, again we refer to [5, 10].

FSCD 2019

17:6 Differentials in Pcoh

Γ ` n : ι Γ, x : σ ` x : σ
Γ `M : ι

Γ ` succ(M) : ι
Γ `M : ι

Γ ` pred(M) : ι

Γ `M : ι Γ ` N : σ Γ ` P : σ
Γ ` if(M,N,P) : σ

Γ `M : ι Γ, z : ι ` N : σ
Γ ` let(z,M,N) : σ

Γ, x : σ `M : τ
Γ ` λxσM : σ ⇒ τ

Γ `M : σ ⇒ τ Γ ` N : σ
Γ ` (M)N : τ

Γ `M : σ ⇒ σ

Γ ` fix(M) : σ
r ∈ [0, 1] ∩Q
Γ ` coin(r) : ι

ι ` ε
`M : σ τ ` π
σ ⇒ τ ` arg(M) · π

ι ` π
ι ` succ · π

ι ` π
ι ` pred · π

` N : σ ` P : σ σ ` π
ι ` if(N,P) · π

x : ι ` N : σ σ ` π
ι ` let(x,N) · π

Figure 1 Typing rules for pPCF terms and stacks.

“Kleisli morphism”) that we see as a function
∏k
i=1 PJσiK→ PJσK as explained in Section 1.2.

For instance JxiKΓ(~u) = ui, JnKΓ(~u) = n (remember that n ∈ PN is defined by ni = δn,i),
Jsucc(M)KΓ(~u) = suc JMKΓ(~u) and similarly for pred(M), more importantly

Jcoin(r)KΓ(~u) = r 0 + (1− r) 1 Jlet(x,M,N)KΓ =
∑
n∈N

JMKΓ(~u)n JN [n/x]KΓ(~u)

Jif(M,N,P)KΓ(~u) = JMKΓ(~u)0 JNKΓ(~u) +
(∑
n∈N

JMKΓ(~u)n+1

)
JP KΓ(~u) .

Application and λ-abstraction are interpreted as usual in a cartesian closed category (in
particular J(M)NKΓ(~u) = (JMKΓ(~u))(JNKΓ(~u))). Last Jfix(M)KΓ(~u) = supn∈N(JMKΓ(~u))n(0).

2.1.2 Operational semantics
In former papers we have presented the operational semantics of pPCF as a discrete Markov
chain on states which are the closed terms of pPCF. This Markov chain implements the
standard weak head reduction strategy of PCF which is deterministic for ordinary PCF
but features branchings in pPCF because of the coin(r) construct (see [10]). Here we prefer
another, though strictly equivalent, presentation of this operational semantics, based on an
environment-free Krivine Machine (thus handling states which are pairs made of a closed
term and a closed stack) further parameterized by an element of {0, 1}<ω to be understood
as a “random tape” prescribing the values taken by the coin(r) terms during the execution
of states. We present this machine as a partial function taking a state s, a random tape α
and returning an element of [0, 1] to be understood as the probability that the sequence α
of 0/1 choices occurs during the execution of s. We allow only execution of ground type
states and accept 0 as the only terminating value: a completely arbitrary choice, sufficient
for our purpose in this paper. Also, we insist that a terminating computation from (s, α)
completely consumes the random tape α. These choices allow to fit within a completely
standard discrete probability setting.

Given an extension Λ of pPCF (with the same format for typing rules), we define the
associated language of stacks (called Λ-stacks).

π := ε | arg(M) · π | succ · π | pred · π | if(N,P) · π | let(x,N) · π

where M and N range over Λ. A stack typing judgment is of shape σ ` π (meaning that it
takes a term of type σ and returns an integer) and the typing rules are given in Fig. 1.

T. Ehrhard 17:7

Ev(〈let(x,M,N), π〉, α) = Ev(〈M, let(x,N) · π〉, α) Ev(〈λxσM, arg(N) · π〉, α) = Ev(〈M [N/x] , π〉, α)
Ev(〈n, let(x,N) · π〉, α) = Ev(〈N [n/x] , π〉, α) Ev(〈fix(M), π〉, α) = Ev(〈M, arg(fix(M)) · π〉, α)
Ev(〈if(M,N,P), π〉) = Ev(〈M, if(N,P) · π〉, α) Ev(〈coin(r), π〉, 〈0〉α) = Ev(〈0, π〉, α) · r
Ev(〈0, if(N,P) · π〉, α) = Ev(〈N,π〉, α) Ev(〈coin(r), π〉, 〈1〉α) = Ev(〈1, π〉, α) · (1− r)
Ev(〈n+ 1, if(N,P) · π〉, α) = Ev(〈P, π〉, α) Ev(〈0, ε〉, 〈〉) = 1

Figure 2 The pPCF Krivine Machine.

A state is a pair 〈M,π〉 (where we say that M is in head position) such that `M : σ and
σ ` π for some (uniquely determined) type σ, let S be the set of states. Let C0 = {0, 1}<ω be
the set of finite lists of booleans (random tapes), we define a partial function Ev : S×C0 → R≥0
in Fig. 2. Let D(s) be the set of all α ∈ C0 such that Ev(s, α) is defined. When α ∈ D(s),
the number Ev(s, α) ∈ [0, 1] is the probability that the random tape α occurs during the
execution. When all coins are fair (all the values of the parameters r are 1/2), this probability
is 2−len(α). The sum of these (possibly infinitely many) probabilities is ≤ 1. For fitting within
a standard probabilistic setting, we define a total probability distribution Ev(s) : C0 → [0, 1]
as follows

Ev(s)(α) =


Ev(s, β) if α = 〈0〉β and β ∈ D(s)
1−

∑
β∈D(s) Ev(s, β) if α = 〈1〉

0 in all other cases

Let Ps be the associated probability measure6 (we are in a discrete setting so simply
Ps(A) =

∑
α∈A Ev(s)(α) for all A ⊆ C0).

The event (s ↓ 0) = 〈0〉D(s) is the set of all random tapes (up to 0-prefixing) making
s reduce to 0. Its probability is Ps(s ↓ 0) =

∑
β∈D(s) Ev(s, β). In the case s = 〈M, ε〉 (with

`M : ι) this probability is exactly the same as the probability of M to reduce to 0 in the
Markov chain setting of [10] (see e.g. [1] for more details on the connection between these
two kinds of operational semantics). So the Adequacy Theorem of [10] can be expressed as
follows.

I Theorem 1. Let M ∈ pPCF with `M : ι. Then JMK0 = P〈M,ε〉(〈M, ε〉 ↓ 0).

We use sometimes P(M ↓ 0) as an abbreviation for P〈M,ε〉(〈M, ε〉 ↓ 0).

2.2 Probabilistic PCF with labels and the associated random variables
In order to count the number of times a given subterm N of a closed term M of type ι
is used (that is, arrives in head position) during the execution of 〈M, ε〉 in the Krivine
machine of Section 2.1.2, we extend pPCF into pPCFlab by adding a term labeling construct
N l. The typing rule for this new construct is simply Γ ` N : σ

Γ ` N l : σ
. Of course pPCFlab-stacks

involve now such labeled terms but their syntax is not extended otherwise; let Slab be the
corresponding set of states. Then we define a partial function Evlab : Slab × C0 →Mfin(L)
exactly as Ev apart for the following cases,

Evlab(〈M l, π〉, α) = Evlab(〈M,π〉, α) + [l]
Evlab(〈coin(r), π〉, 〈i〉α) = Evlab(〈i, π〉, α) Evlab(〈0, ε〉, 〈〉) = 0 the empty multiset.

6 The choice of accumulating on 〈1〉 all the complementary probability is completely arbitrary and has no
impact on the result we prove because all the events of interest for us will be subsets of 〈0〉C0 ⊂ C0.

FSCD 2019

17:8 Differentials in Pcoh

When applied to 〈M, ε〉, this function counts how often labeled subterms of M arrive in head
position during the reduction; this number depends of course on the random tape provided
as argument together with the state. The result is a finite multiset of labels.

Let Dlab(s) be the set of αs such that Evlab(s, α) is defined. Defining s ∈ S as s stripped
from its labels, we clearly have Dlab(s) = D(s). We define a r.v.7 Evlab(s) : C0 →Mfin(L) by

Evlab(s)(α) =
{

Evlab(s, β) if α = 〈0〉β and β ∈ D(s)
0 in all other cases.

Let l ∈ L and let Evlab(s)l : C0 → N be the integer r.v. defined by Evlab(s)l(α) = Evlab(s)(α)(l).
Its expectation is

E(Evlab(s)l) =
∑
n∈N

nPs(Evlab(s)l = n) =
∑
n∈N

n
∑

µ∈Mfin(L)
µ(l)=n

Ps(Evlab(s) = µ)

=
∑

µ∈Mfin(L)

µ(l)Ps(Evlab(s) = µ) . (1)

This is the expected number of occurrences of l-labeled subterms of s arriving in head position
during successful executions of s. It is more meaningful to condition this expectation under
convergence of the execution of s (that is, under the event s ↓ 0). We have E(Evlab(s)l |
s ↓ 0) = E(Evlab(s)l)/Ps(s ↓ 0) as the r.v. Evlab(s)l vanishes outside the event s ↓ 0 since
Dlab(s) = D(s).

Our goal now is to extract this expectation from the denotational semantics of a term M

such that `M : ι, which contains labeled subterms, or rather of a term suitably definable
from M . The general idea is to replace in M each N l (where N has type σ) with if(xl, N,Ωσ)
where ~x = (xl)l∈L (for some finite subset L of L containing all the labels occurring in M) is
a family of pairwise distinct variables of type ι and Ωσ = fix(λxσ x). We obtain in that way
a term sp~xM whose semantics Jsp~xMK~x is an element of Pcoh!(NL,N) that we can consider
as an analytic function (PN)L → PN and which therefore induces an analytic function
f : [0, 1]L → [0, 1] by f(~r) = JM ′K((rl0)l∈L)0 (where ~r 0 = (rl 0)l∈L ∈ PNL for ~r ∈ [0, 1]L).
Our main claim is that the expectation of the number of uses of subterms labeled by l is
∂f(~r)
∂rl

(1, . . . , 1).
In order to reduce this problem to Theorem 1, we need a further “Krivine machine”

with has as many random tapes as elements of L (plus one for the plain coin(_) constructs
occurring in M).

2.3 Probabilistic PCF with labeled coins
Let pPCFlc be pPCF extended with a construct lcoin(l, r) typed as r ∈ [0, 1] ∩Q and l ∈ L

Γ ` lcoin(l, r) : ι
This language features the usual coin(r) construct for probabilistic choice as well as a supply
of identical constructs labeled by L that we will use to simulate the counting of Section 2.2.
Of course pPCFlc-stacks involve now terms with labeled coins but their syntax is not extended
otherwise; let Slc be the corresponding set of states. We use lab(M) for the set of labels
occurring in M (and similarly lab(s) for s ∈ Slc). Given a finite subset L of L, we use
pPCFlc(L) for the set of terms M such that lab(M) ⊆ L and we define similarly Slc(L). We
also use the similar notations pPCFlab(L) and Slab(L).

7 That is, simply, a function since we are in a discrete probability setting.

T. Ehrhard 17:9

The partial function Evlc : Slc(L) × C0 × CL0 → R≥0 is defined exactly as Ev (for the
unlabeled coin(r), we use only the first parameter in C0), extended by the following rules:

Evlc(〈lcoin(l, r), π〉, α, ~β) =
{

Evlc(〈0, π〉, α, ~β [γ/l]) · r if β(l) = 〈0〉γ
Evlc(〈1, π〉, α, ~β [γ/l]) · (1− r) if β(l) = 〈1〉γ

where ~β = (β(l))l∈L stands for an L-indexed family of elements of C0 and ~β [γ/l] is the family
~δ such that δ(l′) = β(l′) if l′ 6= l and δ(l) = γ. We define Dlc(s) ⊆ C0 × CL0 as the domain of
the partial function Evlc(s,_,_). Let s ∈ S be obtained by stripping s from its labels (so
that lcoin(l, r) = coin(r)). And M ∈ pPCF is defined similarly.

I Lemma 2. For all s ∈ Slc(L)

Ps(s ↓ 0) =
∑

(α,~β)∈Dlc(s)

Evlc(s, α, ~β) .

Proof. (Sketch) With each (α, ~β) ∈ Dlc(s) we can associate a uniquely defined ηs(α, ~β) ∈ D(s)
which is a shuffle of α and of the β(l)’s (for l ∈ L) such that Evlc(s, α, ~β) = Ev(s, ηs(α, ~β)),
uniquely determined by the run of (s, α, ~β) in the “machine” Evlab. This mapping ηs (which
is defined much like Evlc(s,_,_)) is easily seen to be bijective. J

2.3.1 Spying labeled terms in pPCF
We arrive to the last step, which consists in turning a closed labeled term M (with labels
in the finite set L) into the already mentioned term sp~x(M), defined in such a way that
Jlc~r(M)K has a simple expression in terms of sp~x(M) (Lemma 5), allowing to relate the
coefficients of the power series interpreting sp~x(M) in terms of probability of reduction of
the machine Evlab with given resulting multisets of labels (Equation (2)). This in turn is the
key to the proof of Theorem 6.

Given ~r = (rl)l∈L ∈ (Q ∩ [0, 1])L, we define a (type preserving) translation lc~r :
pPCFlab(L)→ pPCFlc by induction on terms. For all term constructs but labeled terms, the
transformation does nothing (for instance lc~r(x) = x, lc~r(λxσM) = λxσ lc~r(M) etc), the
only non trivial case being lc~r(M l) = if(lcoin(l, rl), lc~r(M),Ωσ) where σ is the type8 of M .

I Lemma 3. Let s ∈ Slab(L). Then Dlab(s) = D(s), Dlc(lc~r(s)) = {(α, (〈0〉Evlab(s,α)(l))l∈L) |
α ∈ D(s)} and Evlc(lc~r(s), α, 〈0〉Evlab(s,α)(l)) = Ps({〈0〉α})(~r)Evlab(s,α).

Of course 〈0〉n stands for the sequence 〈0, . . . , 0〉 (with n occurrences of 0). The proof is by
induction on the length of α and boils down to the observation that D(〈Ωσ, π〉) = ∅ for any
(well typed) stack π. Remember that Ps({〈0〉α}) = Ev(s, α) and that (~r)µ =

∏
l∈l r

µ(l)
l for

all µ ∈Mfin(L).
We consider a last type preserving translation from pPCFlab(L) to pPCF: let ~x be a

L-indexed family of pairwise distinct variables (that we identify with the typing context
(xl : ι)l∈L). If M ∈ pPCFlab(L) with Γ `M : σ (assuming that no free variable of M occurs
in ~x) we define sp~x(M) with Γ, ~x ` sp~x(M) : σ by induction on M . The unique non trivial
case is sp~x(M l) = if(xl, sp~x(M),Ωσ) where σ is the type of M .

8 A priori this type is known only if we know the type of the free variables of M , so to be more precise
this translation should be specified in a given typing context; this can easily be fixed by adding a further
parameter to lc at the price of heavier notations.

FSCD 2019

17:10 Differentials in Pcoh

I Lemma 4. Let M ∈ pPCFlab(L) with ` M : σ. If ~ρ ∈ Mfin(N)L = Mfin(L× N) and
a ∈ |JσK| satisfy (Jsp~x(M)K~x)(~ρ,a) 6= 0 then ρl(n) 6= 0⇒ n = 0.

The proof is a simple induction on M (of course we also have to consider open terms) and
uses the fact that JΩσK = 0.

Given µ ∈Mfin(L), we use µ [0] for the element ρ ofMfin(N)L such that ρl(n) = µ(l) if
n = 0 and ρl(n) = 0 otherwise.

I Lemma 5. Let ~r ∈ (Q∩[0, 1])L andM ∈ pPCFlab(L) with `M : σ. Then Jsp~x(M)K~x(~r 0) =
Jlc~r(M)K.

Easy induction on M based on the fact that Jcoin(r)K = r0 + (1− r)1 (again, one needs a
more general statement involving open terms).

By Lemma 5, Jlc~r(M)K
0

=
∑
µ∈Mfin(L)(Jsp~x(M)K~x)(µ [0],0)(~r)µ. By Theorem 1, we have

Jlc~r(M)K
0

= Plc~r(〈M,ε〉)(lc~r(〈M, ε〉) ↓ 0)

=
∑

(α,~β)∈Dlc(lc~r(〈M,ε〉))

Evlc(lc~r(〈M, ε〉), α, ~β) by Lemma 2

=
∑

α∈D(〈M,ε〉)

Ev(〈M, ε〉, α)
∏
l∈L

r
Evlab(〈M,ε〉,α)(l)
l by Lemma 3

=
∑

µ∈Mfin(L)

 ∑
α∈〈0〉C0

Evlab(〈M,ε〉)(α)=µ

Ev(〈M, ε〉)(α)

 (~r)µ

and since this holds for all ~r ∈ (Q ∩ [0, 1])L, we must have, for all µ ∈Mfin(L),

(Jsp~x(M)K~x)(µ [0],0) =
∑

α∈〈0〉C0
Evlab(〈M,ε〉)(α)=µ

Ev(〈M, ε〉)(α) = P〈M,ε〉(Evlab(〈M, ε〉) = µ) (2)

Let l ∈ L, we have

E(Evlab(〈M, ε〉)l) =
∑

µ∈Mfin(L)

µ(l)P〈M,ε〉(Evlab(〈M, ε〉) = µ) by Equation (1)

=
∑

µ∈Mfin(L)

µ(l)Jsp~x(M)K~x)(µ [0],0) by Equation (2)

= ∂Jsp~xMK~x(~r0)0

∂rl
(1, . . . , 1) .

Indeed, given ~r ∈ [0, 1]L one has Jsp~xMK~x(~r0)0 =
∑
µ∈Mfin(L)Jsp~x(M)K~x)(µ [0],0)~r

µ and
∂~rµ

∂rl
(1, ..., 1) = µ(l), whence the last equation.

I Theorem 6. Let M ∈ pPCFlab(L) with `M : ι. Then

E(Evlab(〈M, ε〉)l | 〈M, ε〉 ↓ 0) = ∂Jsp~xMK(~r0)
∂rl

(1, . . . , 1)/JMK0 .

I Example 7. The point of this formula is that we can apply it to algebraic expressions of
the semantics of the program. Consider the following termMq (for q ∈ Q∩ [0, 1]) such that `
Mq : ι⇒ ι: Mq = fix(λf ι⇒ι λxι if(coin(q), if((f)x, if((f)x, 0,Ωι),Ωι), if(x, if(x, 0,Ωι),Ωι))) ,
we study (Mq)0l (for a fixed label l ∈ L). So in this example, “time” means “number of uses

T. Ehrhard 17:11

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

0

5

10

2

Figure 3 Plot of ϕ0.5(u) with u on the x-axis (vertical slope at u = 1). Plots of ϕq(1) and
E(Evlab(〈(Mq)0l, ε〉)l | 〈(Mq)0, ε〉 ↓ 0) with q on the x-axis. See Example 7.

of the parameter 0”. For all v ∈ PN, we have JMqK(v) = ϕq(v0) 0 where ϕq : [0, 1] → [0, 1]
is such that ϕq(u) is the least element of [0, 1] which satisfies ϕq(u) = (1− q)u2 + q ϕq(u)2.
So ϕq(u) = (1−

√
1− 4q(1− q)u2)/2q if q > 0 and ϕ0(u) = u2, the choice between the two

solutions of the quadratic equation being determined by the fact that the resulting function
ϕq must be monotonic in u. So by Theorem 1 (for q ∈ (0, 1])

P((Mq)0 ↓ 0) = ϕq(1) = 1− |2q − 1|
2q =

{
1 if q ≤ 1/2
1−q
q if q > 1/2 .

(3)

Observe that we have also P(M0 ↓ 0) = ϕ0(1) = 1 so that Equation (3) holds for all
q ∈ [0, 1] (the corresponding curve is the second one in Fig. 3). Then by Theorem 6 we have
E(Evlab(〈(Mq)0l, ε〉)l | 〈(Mq)0, ε〉 ↓ 0) = ϕ′q(1)/ϕq(1). Since ϕq(u) = (1 − q)u2 + q ϕq(u)2

we have ϕ′q(u) = 2(1 − q)u + 2qϕ′q(u)ϕq(u) and hence ϕ′q(1) = 2(1 − q)/(1 − 2qϕq(1)), so
that ϕ′q(1)/ϕq(1) = 2(1 − q)/(1 − 2q) if q < 1/2, ϕ′1/2(1)/ϕq(1) = ∞ and ϕ′q(1)/ϕq(1) =
2(1− q)/(2q − 1) if q > 1/2 (using the expression of ϕq(1) given by Equation (3)), see the
third curve in Fig. 3. For q > 1/2 notice that the conditional time expectation and the
probability of convergence decrease when q tends to 1. When q is very close to 1, (Mq)0 has
a very low probability to terminate, but when it does, it uses its argument only twice. For
q = 1/2 we have almost sure termination with an infinite expected computation time.

3 Differentials and distances

3.1 Order theoretic characterization of PCSs
The following simple lemma will prove quite useful in the sequel. It is proven in [12] in a
rather sketchy way, we provide here a detailed proof for further references. We say that a
partially ordered set S is ω-complete if any increasing sequence of elements of S has a least
upper bound.

I Lemma 8. Let I be a countable set and let P ⊆ (R≥0)I . Then (I, P) is a probabilistic
coherence space iff the following properties hold (equipping P with the product order).
1. P is downwards closed and closed under barycentric combinations
2. P is ω-complete
3. and for all a ∈ I there is ε > 0 such that εea ∈ P and Pa ⊆ [0, 1/ε].

Proof. The ⇒ implication is easy (see [5]), we prove the converse, which uses the Hahn-
Banach theorem in finite dimension. Let y ∈ (R≥0)I such that y /∈ P . We must prove
that there exists x′ ∈ P⊥ such that 〈y, x′〉 > 1 and ∀x ∈ P 〈x, x′〉 ≤ 1. Given J ⊆ I and
z ∈ (R≥0)I , let z|J be the element of (R≥0)I which takes value zj for j ∈ J and 0 for j /∈ J .

FSCD 2019

17:12 Differentials in Pcoh

Then y is the lub of the increasing sequence {y|{i1,...,in} | n ∈ N} (where i1, i2, . . . is any
enumeration of I) and hence there must be some n ∈ N such that y|{i1,...,in} /∈ P . Therefore it
suffices to prove the result for I finite, what we assume now. Let Q = {x ∈ RI | (|xi|)i∈I ∈ P}
which is a convex subset of RI . Let t0 = sup{t ∈ R≥0 | ty ∈ P}. By our closeness assumption
on P , we have t0y ∈ P and therefore t0 < 1. Let h : Ry → R be defined by h(ty) = t/t0
(t0 6= 0 by our assumption (3) about P and because I is finite). Let q : RI → R≥0 be the
gauge of Q, which is the semi-norm given by q(z) = inf{ε > 0 | z ∈ εQ}. It is actually a
norm by our assumptions on P . Observe that h(z) ≤ q(z) for all z ∈ Ry: this boils down to
showing that t ≤ t0q(ty) = |t| t0q(y) for all t ∈ R which is clear since t0q(y) = 1 by definition
of these numbers. Hence, by the Hahn-Banach Theorem, there exists a linear l : RI → R
which is ≤ q and coincides with h on Ry. Let y′ ∈ RI be such that 〈z, y′〉 = l(z) for all
z ∈ RI (using again the finiteness of I). Let x′ ∈ (R≥0)I be defined by x′i = |y′i|. It is clear
that 〈y, x′〉 > 1: since y ∈ (R≥0)I we have 〈y, x′〉 ≥ 〈y, y′〉 = l(y) = h(y) = 1/t0 > 1. Let
N = {i ∈ I | y′i < 0}. Given z ∈ P , let z̄ ∈ RI be given by z̄i = −zi if i ∈ N and z̄i = zi
otherwise. Then 〈z, x′〉 = 〈z̄, y′〉 = l(z̄) ≤ 1 since z̄ ∈ Q (by definition of Q and because
z ∈ P). It follows that x′ ∈ P⊥ . J

3.2 Local PCS and derivatives
Let X be a PCS and let x ∈ PX. We define a new PCS Xx as follows. First we set
|Xx| = {a ∈ |X| | ∃ε > 0 x+ εea ∈ PX} and then P(Xx) = {u ∈ (R≥0)|Xx| | x+ u ∈ PX}.
There is a slight abuse of notation here: u is not an element of (R≥0)|X|, but we consider it
as such by simply extending it with 0 values to the elements of |X| \ |Xx|. Observe also that,
given u ∈ PX, if x+ u ∈ PX, then we must have u ∈ P(Xx), in the sense that u necessarily
vanishes outside |Xx|. It is clear that (|Xx|,P(Xx)) satisfies the conditions of Lemma 8 and
therefore Xx is actually a PCS, called the local PCS of X at x.

Let t ∈ Pcoh!(X,Y) and let x ∈ PX. Given u ∈ P(Xx), we know that x + u ∈
PX and hence we can compute t(x + u) ∈ PY : t(x + u)b =

∑
µ∈|!X| tµ,b(x + u)µ =∑

µ∈|!X| tµ,b
∑
ν≤µ

(
µ
ν

)
xµ−νuν . Upon considering only the u-constant and the u-linear

parts of this summation (and remembering that actually u ∈ P(Xx)), we get t(x) +∑
a∈|X| ua

∑
µ∈|!X|(µ(a)+1)tµ+[a],bx

µ ≤ t(x+u) ∈ PY . Given a ∈ |Xx| and b ∈ |Yt(x)|, we set
t′(x)a,b =

∑
µ∈|!X|(µ(a) + 1)tµ+[a],bx

µ and we have proven that actually t′(x) ∈ P(Xx, Yt(x)).
By definition, this linear morphism t′(x) is the derivative (or differential, or Jacobian) of t
at x9. It is uniquely characterized by the fact that, for all x ∈ PX and u ∈ PXx, we have

t(x+ u) = t(x) + t′(x)u+ t̃(x, u) (4)

where t̃ is a power series in x and u whose all terms have global degree ≥ 2 in u.
As a typical example, consider the case where Y = !X and t = δ = Id!X ∈ Pcoh!(X, !X),

so that δ(x) = x!. Given a ∈ |Xx| and ν ∈ [!Xx!], we have

δ′(x)a,ν =
∑
µ∈|!X|

(µ(a) + 1)δµ+[a],νx
µ =

{
0 if ν(a) = 0
ν(a)xν−[a] if ν(a) > 0 .

We know that δ′(x) ∈ P(Xx (!Xx!) so that δ′(x) is a “local version” of DiLL’s coderel-
iction [9]. Observe for instance that δ′(0) satisfies δ′(0)a,ν = δν,[a] and therefore coincides
with the ordinary definition of codereliction.

9 But unlike our models of Differential LL, this derivative is only defined locally; this is slightly reminiscent
of what happens in differential geometry.

T. Ehrhard 17:13

I Proposition 9 (Chain Rule). Let s ∈ Pcoh!(X,Y) and t ∈ Pcoh!(Y, Z). Let x ∈ PX and
u ∈ PXx. Then we have (t ◦ s)′(x)u = t′(s(x)) s′(x)u.

Proof. It suffices to write

(t ◦ s)(x+ u) = t(s(x+ u)) = t(s(x) + s′(x)u+ s̃(x, u))
= t(s(x)) + t′(s(x)) (s′(x)u+ s̃(x, u))) + t̃(s(x), s′(x)u+ s̃(x, u))
= t(s(x)) + t′(s(x)) (s′(x)u) + t′(s(x)) (s̃(x, u)) + t̃(s(x), s′(x)u+ s̃(x, u))

by linearity of t′(s(x)) which proves our contention by the observation that, in the power
series t′(s(x)) (s̃(x, u)) + t̃(s(x), s′(x)u+ s̃(x, u)), u appears with global degree ≥ 2 by what
we know on s̃ and t̃. J

3.3 Glb’s, lub’s and distance
Since we are working with probabilistic coherence spaces, we could deal directly with families
of real numbers and define these operations more concretely. We prefer not to do so to have a
more canonical presentation which can be generalized to cones such as those considered in [10].

Given x, y ∈ PX, observe that x∧y ∈ PX, where (x∧y)a = min(xa, ya), and that x∧y is
the glb of x and y in PX (with its standard ordering). It follows that x and y have also a lub
x ∨ y ∈ PX which is given by x ∨ y = x+ y − (x ∧ y) (and of course (x ∨ y)a = max(xa, ya)).

Let us prove that x+ y− (x∧ y) is actually the lub of x and y. First, x ≤ x+ y− (x∧ y)
simply because x ∧ y ≤ y. Next, let z ∈ PX be such that x ≤ z and y ≤ z. We must prove
that x+ y − (x ∧ y) ≤ z, that is x+ y ≤ z + (x ∧ y) = (z + x) ∧ (z + y), which is clear since
x+ y ≤ z + x, z + y. We have used the fact that + distributes over ∧ so let us prove this
last fairly standard property: z + (x ∧ y) = (z + x) ∧ (z + y). The “≤” inequation is obvious
(monotonicity of +) so let us prove the converse, which amounts to x∧y ≥ (z+x)∧(z+y)−z
(observe that indeed that z ≤ (z + x) ∧ (z + y)). This in turn boils down to proving that
x ≥ (z + x) ∧ (z + y)− z (and similarly for y) which results from x+ z ≥ (z + x) ∧ (z + y)
and we are done.

We define the distance between x and y by dX(x, y) = ‖x− (x ∧ y)‖X + ‖y − (x ∧ y)‖X .
The only non obvious fact to check for proving that this is actually a distance is the triangular
inequality, so let x, y, z ∈ PX. We have x− (x∧ z) ≤ x− (x∧ y ∧ z) = x− (x∧ y) + (x∧ y)−
(x ∧ y ∧ z) and hence ‖x− (x ∧ z)‖X ≤ ‖x− (x ∧ y)‖X + ‖(x ∧ y)− (x ∧ y ∧ z)‖X . Now we
have (x ∧ y) ∨ (y ∧ z) ≤ y, that is (x ∧ y) + (y ∧ z)− (x ∧ y ∧ z) ≤ y, that is (x ∧ y)− (x ∧
y ∧ z) ≤ y − (y ∧ z). It follows that ‖x− (x ∧ z)‖X ≤ ‖x− (x ∧ y)‖X + ‖y − (y ∧ z)‖X and
symmetrically ‖z − (x ∧ z)‖X ≤ ‖z − (z ∧ y)‖X + ‖y − (y ∧ x)‖X and summing up we get,
as expected dX(x, z) ≤ dX(x, y) + dX(y, z).

3.4 A Lipschitz property
First of all, observe that, if w ∈ P(X (Y) and x ∈ PX, we have ‖w x‖Y ≤ ‖w‖X(Y ‖x‖X .
Indeed w

‖w‖X(Y
∈ P(X (Y) and x

‖x‖X ∈ PX, therefore w
‖w‖X(Y

x
‖x‖X ∈ PY and our

contention follows.
Let p ∈ [0, 1). If x ∈ PX and ‖x‖X ≤ p, observe that, for any u ∈ PX, one has

‖x+ (1− p)u‖X ≤ ‖x‖X + (1− p)‖u‖X ≤ 1 and hence (1− p)u ∈ P(Xx). Therefore, given
w ∈ P(Xx (Y), we have ‖w (1− p)u‖Y ≤ 1 for all u ∈ PX and hence (1−p)w ∈ P(X (Y).

Let t ∈ P(!X (1). We have seen that, for all x ∈ PX we have t′(x) ∈ P(Xx (1t(x)) ⊆
P(Xx (1). Therefore, if we assume that ‖x‖X ≤ p, we have

(1− p)t′(x) ∈ P(X (1) = PX⊥ . (5)

FSCD 2019

17:14 Differentials in Pcoh

Let x ≤ y ∈ PX be such that ‖y‖X ≤ p. Observe that 2−p > 1 and that x+(2−p)(y−x) =
y + (1 − p)(y − x) ∈ PX (because ‖y‖X ≤ p and y − x ∈ PX). We consider the function
h : [0, 2− p]→ [0, 1] defined by h(θ) = t(x+ θ(y − x)), which is clearly analytic on [0, 2− p).
More precisely, one has h(θ) =

∑∞
n=0 cnθ

n for some sequence of non-negative real numbers
cn such that

∑∞
n=0 cn(2− p)n ≤ 1.

Therefore the derivative of h is well defined on [0, 1] ⊂ [0, 2 − p) and one has h′(θ) =
t′(x+ θ(y − x)) (y − x) ≤ ‖y−x‖X1−p by (5), using Proposition 9. We have

0 ≤ t(y)− t(x) = h(1)− h(0) =
∫ 1

0
h′(θ) dθ ≤ ‖y − x‖X1− p . (6)

Let now x, y ∈ PX be such that ‖x‖X , ‖y‖X ≤ p (we don’t assume any more that they are
comparable). We have |t(x)− t(y)| = |t(x)− t(x ∧ y) + t(x ∧ y)− t(y)| ≤ |t(x)− t(x ∧ y)|+
|t(y)− t(x ∧ y)| ≤ 1

1−p (‖x− (x ∧ y)‖X + ‖y − (x ∧ y)‖X) = dX(x,y)
1−p by (6) since x∧ y ≤ x, y.

I Theorem 10. Let t ∈ P(!X (1). Given p ∈ [0, 1), the function t is Lipschitz with
Lipschitz constant 1

1−p on {x ∈ PX | ‖x‖X ≤ p} when PX is equipped with the distance dX ,
that is

∀x, y ∈ PX ‖x‖X , ‖y‖X ≤ p⇒ |t(x)− t(y)| ≤ dX(x, y)
1− p .

4 Application to the observational distance in pPCF

Given a termM such that `M : ι, remember that we use P(M ↓ 0) for the probability ofM to
reduce to 0 in the probabilistic reduction system of [10], so that P(M ↓ 0) = P〈M,ε〉(〈M, ε〉 ↓ 0)
with the (admittedly heavy) notations of Section 2. Remember that P(M ↓ 0) = JMK0 by
the Adequacy Theorem of [10].

Given a type σ and two pPCF terms M,M ′ such that ` M : σ and ` M ′ : σ, we
define the observational distance dobs(M,M ′) between M and M ′ as the sup of all the
|P((C)M ↓ 0)− P((C)M ′ ↓ 0)| taken over terms C such that ` C : ι (testing contexts).

If ε ∈ [0, 1] ∩Q we have dobs(coin(0), coin(ε)) = 1 as soon as ε > 0. It suffices indeed to
consider the context C = fix f ι⇒ι λxι if(x, (f)x, z · 0). The semantics JCK ∈ P(!N (N) is a
function c : PN→ PN such that ∀u ∈ PN c(u) = u0c(u) + (

∑∞
i=1 ui)0 and which is minimal

(for the order relation of P(!N (N)). If follows that

c(u) =
{

0 if u0 = 1
1

1−u0

∑∞
i=1 ui otherwise .

Then c((1− ε)0 + ε1) = 0 if ε = 0 and c((1− ε)0 + ε1) = 1 is ε > 0. This is a well known
phenomenon called “probability amplification” in stochastic programming.

Nevertheless, we can control a tamed version of the observational distance. Given a closed
pPCF term C such that ` C : σ ⇒ ι we define C〈p〉 = λzσ (C)if(coin(p), z,Ωσ) and a tamed
version of the observational distance is defined by

d〈p〉obs(M,M ′) = sup
{∣∣∣P((C〈p〉)M ↓ 0)− P((C〈p〉)M ′ ↓ 0)

∣∣∣ | ` C : σ ⇒ ι
}
.

I Theorem 11. Let p ∈ [0, 1)∩Q. Let M and M ′ be terms such that `M : σ and `M ′ : σ.
Then we have

d〈p〉obs(M,M ′) ≤ p

1− p dJσK(JMK, JM ′K) .

T. Ehrhard 17:15

Proof.

d〈p〉obs(M,M ′) = sup{|JCK(pJMK)0 − JCK(pJM ′K)0| | ` C : σ ⇒ ι}
≤ sup{|t(pJMK)− t(pJM ′K|) | t ∈ P(!JσK (1)}

≤
dJσK(pJMK, pJM ′K)

1− p = p

1− p dJσK(JMK, JM ′K) .

by the Adequacy Theorem and by Theorem 10. J

Since p/(1−p) = p+p2 + · · · and dJσK(_,_) is an over-approximation of the observational
distance restricted to linear contexts, this inequation carries a rather clear operational intuition
in terms of execution in a Krivine machine as in Section 2.1.2 (thanks to Paul-André Melliès
for this observation). Indeed, using the stacks of Section 2.1.2, a linear observational distance
on pPCF terms can easily be defined as follows, given terms M and M ′ such that `M : σ
and `M ′ : σ:

dlin(M,M ′) = sup
σ`π

∣∣P〈M,π〉(〈M,π〉 ↓ 0)− P〈M ′,π〉(〈M ′, π〉 ↓ 0)
∣∣ .

In view of Theorem 11 and of the fact that dlin(M,M ′) ≤ dJσK(JMK, JM ′K) (easy to prove,
since each stack can be interpreted as a linear morphism in Pcoh), a natural and purely
syntactic conjecture seems to be

d〈p〉obs(M,M ′) ≤ p

1− p dlin(M,M ′) . (7)

This seems easy to prove in the case P〈M ′,π〉(〈M ′, π〉 ↓ 0) = 0: it suffices to observe that a
path which is a successful reduction of 〈(C〈p〉)M, ε〉 in the “Krivine Machine” of Section 2.1.2
(considered here as a Markov chain) can be decomposed as

〈(C〈p〉)M, ε〉 →∗ 〈if(coin(p),M,Ωσ), π1(C,M)〉 →∗ 〈if(coin(p),M,Ωσ), π2(C,M)〉
→∗ · · · →∗ 〈if(coin(p),M,Ωσ), πk(C,M)〉 →∗ 〈0, ε〉

where (πi(C,M))ki=1 is a finite sequence of stacks such that σ ` πi(M) for each i. Notice
that this sequence of stacks depends not only on C and M but also on the considered path
of the Markov chain.

In the general case, Inequation (7) seems less easy to prove because, for a given common
initial context C, the sequences of reductions (and of associated stacks) starting with
〈(C〈p〉)M, ε〉 and 〈(C〈p〉)M ′, ε〉 differ. This divergence has low probability when dlin(M,M ′)
is small, but it is not completely clear how to evaluate it. Coinductive methods like
probabilistic bisimulation as in the work of Crubillé and Dal Lago are certainly relevant here.

Our Theorem 10 shows that another and more geometric approach, based on a simple de-
notational model, is also possible to get Theorem 11 which, though weaker than Inequation (7),
allows nevertheless to control the p-tamed distance.

We finish the paper by observing that the equivalence relations induced on terms by these
observational distances coincide with the ordinary observational distance if p 6= 0.

I Theorem 12. Assume that 0 < p ≤ 1. If d〈p〉obs(M,M ′) = 0 then M ∼M ′ (that is, M and
M ′ are observationally equivalent).

Proof. If ` M : σ we set Mp = if(coin(p),M,Ωσ). If d〈p〉obs(M,M ′) = 0 then Mp ∼ M ′p
by definition of observational equivalence, hence JMpK = JM ′pK by our Full Abstraction
Theorem [10], but JMpK = pJMK and similarly for M ′. Since p 6= 0 we get JMK = JM ′K and
hence M ∼M ′ by adequacy [10]. J

FSCD 2019

17:16 Differentials in Pcoh

So for each p ∈ (0, 1) and for each type σ we can consider d〈p〉 as a distance on the
observational classes of closed terms of type σ. We call it the p-tamed observational distance.
Our Theorem 11 shows that we can control this distance using the denotational distance. For
instance we have d〈p〉obs(coin(0), coin(ε)) ≤ 2pε

1−p so that d〈p〉obs(coin(0), coin(ε)) tends to 0 when ε
tends to 0.

Conclusion

The two results of this paper are related: both use derivatives wrt. probabilities to evaluate
the number of times arguments are used. We think that they provide motivations for
investigating further differential extensions of pPCF and related languages in the spirit of [11].

References
1 Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A lambda-

calculus foundation for universal probabilistic programming. In Jacques Garrigue, Gabriele
Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016,
pages 33–46. ACM, 2016.

2 Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn Winskel. The concurrent
game semantics of Probabilistic PCF. In Anuj Dawar and Erich Grädel, editors, Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018, pages 215–224. ACM, 2018. doi:10.1145/3209108.

3 Raphaëlle Crubillé. Probabilistic Stable Functions on Discrete Cones are Power Series. In Anuj
Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 275–284. ACM,
2018. doi:10.1145/3209108.3209198.

4 Raphaëlle Crubillé and Ugo Dal Lago. Metric Reasoning About Lambda-Terms: The General
Case. In Hongseok Yang, editor, Programming Languages and Systems - 26th European
Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 341–367. Springer,
2017. doi:10.1007/978-3-662-54434-1_13.

5 Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Information and Computation, 152(1):111–137, 2011.

6 Vincent Danos and Russell Harmer. Probabilistic game semantics. In Proceedings of the 15th
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, 2000.

7 Daniel de Carvalho. Execution Time of lambda-Terms via Denotational Semantics and
Intersection Types. CoRR, abs/0905.4251, 2009. arXiv:0905.4251.

8 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. MSCS, 28(7):1169–1203, 2018.

9 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and an-
tiderivatives. Mathematical Structures in Computer Science, 28(7):995–1060, 2018. doi:
10.1017/S0960129516000372.

10 Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full Abstraction for Probabilistic
PCF. Journal of the ACM, 65(4):23:1–23:44, 2018. doi:10.1145/3164540.

11 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309(1-3):1–41, 2003.

12 Jean-Yves Girard. Between logic and quantic: a tract. In Thomas Ehrhard, Jean-Yves Girard,
Paul Ruet, and Philip Scott, editors, Linear Logic in Computer Science, volume 316 of London
Mathematical Society Lecture Notes Series, pages 346–381. Cambridge University Press, 2004.

http://dx.doi.org/10.1145/3209108
http://dx.doi.org/10.1145/3209108.3209198
http://dx.doi.org/10.1007/978-3-662-54434-1_13
http://arxiv.org/abs/0905.4251
http://dx.doi.org/10.1017/S0960129516000372
http://dx.doi.org/10.1017/S0960129516000372
http://dx.doi.org/10.1145/3164540

T. Ehrhard 17:17

13 Klaus Keimel and Gordon D. Plotkin. Mixed powerdomains for probability and nondeterminism.
Logical Methods in Computer Science, 13(1), 2017. doi:10.23638/LMCS-13(1:2)2017.

14 Peter Selinger. Towards a semantics for higher-order quantum computation. In Proceedings
of the 2nd International Workshop on Quantum Programming Languages, Turku, Finland,
number 33 in TUCS General Publication. Turku Centre for Computer Science, 2004.

15 Matthijs Vákár, Ohad Kammar, and Sam Staton. A domain theory for statistical probabilistic
programming. PACMPL, 3(POPL):36:1–36:29, 2019.

FSCD 2019

http://dx.doi.org/10.23638/LMCS-13(1:2)2017

Modal Embeddings and Calling Paradigms
José Espírito Santo
Centre of Mathematics, University of Minho, Portugal
jes@math.uminho.pt

Luís Pinto
Centre of Mathematics, University of Minho, Portugal
luis@math.uminho.pt

Tarmo Uustalu
School of Computer Science, Reykjavik University, Iceland
Dept. of Software Science, Tallinn University of Technology, Estonia
tarmo@ru.is

Abstract
We study the computational interpretation of the two standard modal embeddings, usually named
after Girard and Gödel, of intuitionistic logic into IS4. As source system we take either the call-by-
name (cbn) or the call-by-value (cbv) lambda-calculus with simple types. The target system can be
taken to be the, arguably, simplest fragment of IS4, here recast as a very simple lambda-calculus
equipped with an indeterminate lax monoidal comonad. A slight refinement of the target and of
the embeddings shows that: the target is a calculus indifferent to the calling paradigms cbn/cbv,
obeying a new paradigm that we baptize call-by-box (cbb), and enjoying standardization; and that
Girard’s (resp. Gödel’s) embbedding is a translation of cbn (resp. cbv) lambda-calculus into this
calculus, using a compilation technique we call protecting-by-a-box, enjoying the preservation and
reflection properties known for cps translations - but in a stronger form that allows the extraction of
standardization for cbn or cbv as consequence of standardization for cbb. The modal target and
embeddings achieve thus an unification of call-by-name and call-by-value as call-by-box.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Program semantics

Keywords and phrases intuitionistic S4, call-by-name, call-by-value, comonadic lambda-calculus,
standardization, indifference property

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.18

Funding J.E.S. and L.P. were supported by Fundação para a Ciência e a Tecnologia (FCT) through
project UID/MAT/00013/2013. T.U. was supported by the Estonian Ministry of Education and
Research through institutional research grant IUT33-13. All three authors received support from
the COST action CA15123 EUTYPES.

1 Introduction

It is a fact reported in textbooks [16] that there are two main embeddings of intuitionistic
logic into (intuitionistic) modal logic S4, the original one due to Gödel and a more recent
one named after Girard. What is the computational meaning of this fact? In particular, why
two? Similar questions concerning the embedding of intuitionistic logic into linear logic have
been answered long ago: the (!A(B)- and !(A(B)-translations already introduced in
the seminal paper [4] correspond to the two calling mechanisms of functional programming,
call-by-name (cbn) and call-by-value (cbv), which are thus “explained in terms of logical
translations, bringing them into the scope of the Curry-Howard isomorphism” [11]. Through
these results in terms of linear logic we can glimpse what the computational explanation of
the embeddings into modal logic is.

© José Espírito Santo, Luís Pinto, and Tarmo Uustalu;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 18; pp. 18:1–18:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6348-5653
mailto:jes@math.uminho.pt
https://orcid.org/0000-0003-1338-2688
mailto:luis@math.uminho.pt
https://orcid.org/0000-0002-1297-0579
mailto:tarmo@ru.is
https://doi.org/10.4230/LIPIcs.FSCD.2019.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Modal Embeddings and Calling Paradigms

The claim of the present paper is that it is desirable to give a direct analysis of the
embeddings into modal logic S4. First, such analysis is more abstract, because it is done
in terms of an indeterminate 2-modality, and so the analysis applies to all the possible
instantiations of the modality, including the ! modality of linear logic. Second, such analysis
will be carried farther than what was done before with linear logic. Here is what we obtained:

First, the target of the modal embeddings can be defined, in a first moment, as the simplest
fragment of intuitionistic S4 where the problem of closure under substitution is solved. This
target can be presented as a very simple λ-calculus equipped with an indeterminate lax
monoidal comonad. In a second moment, the target should be slightly refined into a λ-calculus
with several noteworthy properties: (i) it follows a new calling mechanism, call-by-box ; (ii) it
is equipped with a notion of evaluation, weak-and-external reduction, which is indifferent to
cbn and cbv; (iii) it enjoys a standardization theorem that makes explicit the contribution of
evaluation to a notion of standard reduction. In the description of Plotkin [12], the target
system is a calculus and a programming language, and the standardization theorem links
both. We say all these ingredients turn call-by-box (cbb) into a new calling paradigm.

Second, the embeddings can be defined, as expected, on the cbn λ-calculus (in the case
of Girard) and on Plotkin’s cbv λ-calculus (in the case of Gödel). But, after a refinement of
Gödel’s embedding, both can be seen as having as target the above refined target. When
this is done, the embeddings can be described as a compilation of cbn or cbv into cbb,
following a new technique that we call protecting-by-a-box. This technique improves the old
protecting-by-a-lambda, already discussed in [12], which only achieves the compilation of cbn
into cbv. Au contraire, protecting-by-a-box is capable of compiling both cbn and cbv into the
indifferent paradigm cbb. In addition, the refined embeddings enjoy properties of preservation
and reflection at the levels of reduction and evaluation, and also standard reduction. So all
the translation, simulation, and indifference properties of cps-translations [12] hold of the
refined embeddings, and so they can be offered as an improvement of protecting-by-a-lambda
alternative to cps-translations.

Third, the indifference property of the cbb target, which at first only means that reduction
or evaluation in the full target captures cbn (resp. cbv) reduction or evaluation when restricted
to the image of Girard’s (resp. Gödel’s) embedding, actually goes much further: all the
translation, simulation, and indifference properties cooperate to show that the standardization
theorems for the cbn and cbv λ-calculi can be extracted from the standardization theorem of
the cbb target. Because of all this, we feel entitled to say that the cbb target, together with
the refined modal embeddings, achieve a modal unification of call-by-name and call-by-value

Plan of the paper. Section 2 recalls the cbn (i.e. ordinary) λ-calculus λn and Plotkin’s
cbv λ-calculus λv. Section 3 recasts the modal embeddings as maps from λn or λv into a
simple, modal target language λ2. Section 4 motivates and introduces the refined target
λb and proves that it enjoys standardization. Section 5 introduces the refined embeddings
and proves their properties. Section 6 briefly shows how to instantiate our results with two
2-modalities. Section 7 concludes.

2 Background

The source calculi of the modal translations we will study in this paper are the call-by-name
and call-by value λ-calculi. In this section we fix notation, terminology and several definitions
regarding these calculi, including what we mean by a “calling paradigm”, and by “indifference
property”, and how we define standard reduction.

J. Espírito Santo, L. Pinto, and T. Uustalu 18:3

Γ, x : A ` x : A
Γ, x : A1 `M : A2

Γ ` λx.M : A1 ⊃ A2

Γ `M : A1 ⊃ A2 Γ ` N : A1
Γ `MN : A2

Figure 1 (Shared) typing rules of source calculi λn and λv.

The modal translations will be defined on untyped source calculi, but at the same time
we will develop simply-typed versions of the source calculi and translations. The source
calculi are based on the set of λ-terms, given by

M,N,P,Q ::= x | λx.M |MN

A value is a term of the form x or λx.M . Values are ranged over by V , W .
We consider two reduction rules

(λx.M)N → [N/x]M (βn) (λx.M)V → [V/x]M (βv)

As usual, →βn (resp. →βv) denotes the compatible closure of βn (resp. βv). Compatible
closure is the closure under the term formers for λ-abstraction and application, i.e. closure
under the rules:

M →M ′

MN →M ′N
(µ) N → N ′

MN →MN ′
(ν) M →M ′

λx.M → λx.M ′
(ξ)

When we equip the λ-terms with →βn we obtain the ordinary λ-calculus, or call-by-name
λ-calculus here denoted λn; when we equip the λ-terms with →βv we obtain Plotkin’s cbv
λ-calculus [12], here denoted λv.

We will develop in parallel the typed version of these calculi. Here, types are given by:

A,A′ ::= X | A ⊃ A′

Let Γ range over sets of type assignments x : A with all x distinct. The typing system derives
sequents of the form Γ ` M : A. The typing rules are given in Fig. 1. Logically, this is a
presentation of intuitionistic implicational logic.

We define sub-relations of →βn and →βv . To this end, we need the closure rule ν<, the
restriction of ν above where M is V . Then we define: →w as βn closed under µ and ν; →n as
βn closed under µ; →v as βv closed under µ and ν<.

In →w, reduction under λ’s is forbidden, it is in this sense that →∗w is called weak
reduction. In→w, reduction in applications can occur both in function position or argument
position, in any order. Relations →n and →v are two ways of restricting →w to get a
deterministic relation (a partial function). The effect of ν< is to force reduction in function
position first (as reduction in arguments can only occur when the function position term is
already a value). This option we call left-first and convey the idea with the symbol <. Notice
ν< has to be combined with βv: closing βn under µ and ν< does not give a deterministic
relation (since a βn redex with a non-value argument can reduce in two ways in this relation).
We call→∗n and→∗v respectively call-by-name evaluation and call-by-value evaluation.
Weak reduction and cbn evaluation make sense in λn while cbv evaluation makes sense in λv.

The standardization theorem for λn says that M →∗βn
N iff M reduces in a standard

way to N ; it states the completeness of that standard way of reducing. The specification
of the standard way of reducing can be made by characterizing what reduction sequences
are accepted as standard [1], or by axiomatizing the relation that M reduces in a standard

FSCD 2019

18:4 Modal Embeddings and Calling Paradigms

x⇒n x V AR
M ⇒n N

λx.M ⇒n λx.N
ABS

M ⇒n M
′ N ⇒n N

′

MN ⇒n M
′N ′

APL

M →∗n λx.M ′ [N/x]M ′ ⇒n P

MN ⇒n P
RDX

Figure 2 Standard reduction in λn.

x⇒v x V AR
M ⇒v N

λx.M ⇒v λx.N
ABS

M ⇒v M
′ N ⇒v N

′

MN ⇒v M
′N ′

APL

M →∗v λx.M ′ N →∗v V [V/x]M ′ ⇒v P

MN ⇒v P
RDX

Figure 3 Standard reduction in λv.

way to N [8]. In Fig. 2 we give one such axiomatization (it thus is in the spirit of [8], but
notice no use is made of the vector notation), with the relation denoted M ⇒n N . It is
straightforward to see that ⇒n is contained in →∗βn

, and from such a proof one extracts a
notion of standard reduction sequence: it starts with cbn evaluation (corresponding to
applications of rule RDX) of the given application MN , until one decides to freeze the outer
construct and do reduction inside the subexpressions (corresponding to application of the
other rules). The inclusion of →∗βn

in ⇒n is the real content of the standardization theorem,
and will be obtained later as a particular case of a more general, unifying result.

We also give a definition of the relation M ⇒v N (M reduces in a standard way to N in
λv), again not by characterizing standard reduction sequences [12], rather by the inductive
definition in Fig. 3. These rules determine a similar notion of standard reduction sequence:
cbv evaluation of the given application MN , until one decides to freeze the outer construct
and do reduction inside the subexpressions. The standardization theorem for λv will also be
obtained later as a particular case of the same more general, unifying result.

Call-by-name and call-by-value are calling paradigms, in the sense that each comprises:
a variant of the β-rule, specifying how functions are called, and generating a notion of
deterministic evaluation and a notion of full reduction. According to [12], the evaluation
relation can be understood as a programming language, and the full reduction (more
precisely, the related notion of equality) can be understood as the corresponding calculus.
The standardization theorem shows how evaluation can be used in a specific, but complete,
way of reducing, and thereby links the programming language and the calculus.

Call-by-name and call-by-value are related by cps-translations, one from cbn to cbv,
another the other way around [12]. The maps link full reduction or evaluation in the
source system to full reduction or evaluation in the target system, respectively, and these
are the translation and simulation properties of the maps [12]. But the target of the
cps-translations is the subset of λ-terms given by the grammar

M,N ::= V |MV V ::= x | λx.M

This is such a restricted set of terms that we cannot observe any difference between βn- and
βv-reduction, and that all three relations →w, →n, and →v collapse to the same relation, viz.
βv closed under µ – a kind of intersection between →n and →v. So, in this subset of terms

J. Espírito Santo, L. Pinto, and T. Uustalu 18:5

Γ, x : B ` x : B
Γ, x : B `M : A

Γ ` λx.M : B ⊃ A
Γ `M : B ⊃ A Γ ` N : B

Γ `MN : A

Γ `M : A
Γ ` box(M) : 2A

Γ `M : 2A
Γ ` ε(M) : A

Figure 4 Typing rules of the modal target calculus λ2.

we cannot observe any difference between cbn and cbv evaluation; and weak reduction is also
deterministic and coincides with those. This is the indifference property of the image of
cps-translations.

Modal embeddings, we will see, also provide translations and simulations of cbn and cbv
into a shared target enjoying an indifference property and following a new calling paradigm.

3 Modal embeddings

In this section, we recast the two modal embeddings of intuitionistic logic into intuitionistic
modal logic S4 due to Girard and Gödel [16] as translations from λn and λv into a very
simple λ-calculus, named λ2. This system corresponds to a fragment of intuitionistic S4, but
will prove to be strong enough to interpret call-by-name and call-by-value. We will recall the
well-known properties of preservation of reduction by the embeddings in considerable detail,
since this will be useful to motivate the refinements in the following sections.

3.1 Modal target calculus λ2

We will develop in parallel the untyped and typed versions of the comonadic language λ2.
The terms are given by:

M,N,P,Q ::= x | λx.M |MN | box(M) | ε(M)

On this set we define two reduction rules:

(λx.M)N → [N/x]M (β⊃) ε(box(M))→M (β2)

Here [N/x]M denotes ordinary substitution.
As usual, for R ∈ {β⊃, β2} or R = β⊃ ∪ β2, →R denotes the closure of R under all term

formers. In other words, →R denotes the closure of R under five rules: rules µ, ν and ξ,
allowing reduction under application or abstraction, plus two rules allowing reduction under
box and ε. Instead of →β⊃∪β2

normally we only write →; so, in this case, →∗ (resp. →+)
stands for the reflexive-transitive (resp. transitive) closure of →β⊃∪β2

.
Typing helps grasping this term language. Types are given by:

A ::= X | B ⊃ A | B B ::= 2A

Contexts Γ are sets of declarations x : B where each x is declared at most once. The typing
system derives sequents Γ `M : A, and the typing rules are in Fig. 4.

The simple-minded 2 introduction rule is appropriate because of the restriction of contexts
to boxed types (for arbitrary contexts this rule is unsound for intuitionistic S4). This
restriction, in turn, dictates the restriction of left-hand-sides of implications to boxed types.

FSCD 2019

18:6 Modal Embeddings and Calling Paradigms

x]U = x (box(M))]U = cobind(x1, . . . , xn, x1 . . . xn.M
]
U)

(λx.M)]U = λx.M]
U,x (x1, . . . , xn = U , all xi distinct)

(MN)]U = M]
UN

]
U (ε(M))]U = ε(M]

U)

Figure 5 Scoped term translation from λ2 to term calculus of IS4.

The β2 reduction rule corresponds to the rule for contracting 2 introduction/elimination
detours.

Substitution enjoys the usual admissible typing rule, but with a restriction to boxed types
imposed by the definition of contexts:

Γ ` N : B Γ, x : B `M : A
Γ ` [N/x]M : A (1)

The proof uses admissibility of weakening in the case M = λy.M ′. The latter follows by an
immediate induction, but crucially depends on the restriction of contexts to boxed types.

I Proposition 1 (Subject reduction of λ2). In λ2, if M → N and Γ ` M : A , then
Γ ` N : A.

Proof. By induction on →. The base case relative to β⊃ uses the typing rule for substitu-
tion (1). The base case relative to β2 is immediate by inversion of the typing rules for ε
and box. J

3.2 Comparison of λ2 with IS4
The difficulty of formulating a satisfactory natural deduction system for the modal logic
S4 is well known since Prawitz [13]. The issue is not at the level of provability, but rather
at the level of normalization: to guarantee that the system is closed under substitution [2].
Bierman and de Paiva [2], in their natural deduction system IS4 for full intuitionistic S4
(recalled in Appendix A), need to work with the general introduction rule for the modality,
which brings certain complications. In contrast, in λ2, we adopt the naive introduction rule
for the modality, but have to operate with the restricted implications and sequents that
ensure closure under substitution.

Therefore, on the level of logic alone, λ2 is a fragment of Bierman and de Paiva’s IS4.
As a term calculus, λ2 is a fragment of Bierman and de Paiva’s term calculus, which is a
calculus for a cartesian closed category equipped with a lax monoidal comonad. Fig. 5 gives
a translation of scoped λ2 terms to scoped IS4 terms. U ranges over sets of variables; M]

U

is well-defined if FV(M) ⊆ U . We write |Γ| for the set {x | x : A ∈ Γ}. This translation not
only preserves typing and reduction steps of λ2 terms, but also reflects typing and reduction
steps of the IS4 terms in its image, thus isolating a fragment of IS4 isomorphic to λ2:

I Proposition 2 (Preservation and reflection of typing and reduction from λ2 to IS4).
1. For all Γ, A in λ2, Γ `M : A in λ2 iff Γ `M]

|Γ| : A in the term calculus for IS4.
2. For all U s. t. FV(M) ⊆ U , M → N in λ2 iff M]

U → N]
U in the term calculus for IS4.

I Proposition 3 (Conservativity of IS4 over λ2). For all Γ, A in λ2, if Γ `M : A in the term
calculus for IS4, then there exists N such that Γ ` N : A in λ2.

See the appendix for proofs.1

1 In the case box(M) of the translation in Fig. 5, it is important to “rebind” all variables of M to

J. Espírito Santo, L. Pinto, and T. Uustalu 18:7

X◦ = X x◦ = ε(x)
(A1 ⊃ A2)◦ = 2A◦1 ⊃ A◦2 (λx.M)◦ = λx.M◦

(MN)◦ = M◦box(N◦)

Figure 6 Translation from λn to λ2 (“Girard’s translation”).

3.3 Modal embeddings (·)◦ and (·)∗

The two modal translations are presented as maps from λ-terms to λ2-terms. The original,
and easier to grasp, motivation is logical, so the mapping of types and type preservation by
the translations is presented right away. We also detail the preservation of reduction steps,
which has been observed many times in many contexts [5, 11, 3]. Later, we will strengthen
these results.

The translation from λn to λ2 is in Fig. 6. On the level of types (i.e. the underlying logic) it
is inspired by translation of intuitionistic logic into linear logic [4], based on the characteristic
decomposition of intuitionistic implication into linear implication and the ! modality.2

In the following, 2Γ◦ = x1 : 2A◦1, . . . , xn : 2A◦n when Γ = x1 : A1, . . . , xn : An.

I Proposition 4 (Preservation and reflection of typing by Girard’s translation). Γ `M : A in
λn iff 2Γ◦ `M◦ : A◦ in λ2.

Proof. In each direction, routine induction on the given typing derivation. For example,
in the “if” direction: the case M = x follows by the axiom of λn, because the hypothesis
implies x : A is in Γ; the case M = λx.N follows because the hypothesis implies, for some
A1, A2, A = A1 ⊃ A2 and 2Γ◦, x : 2A◦1 ` N◦ : A◦2 (through the immediate subderivation of
the given typing derivation), so the IH applies and the ⊃ introduction typing rule of λn can
be used to conclude. J

I Lemma 5. [box(N◦)/x]M◦ →∗β2
([N/x]M)◦.

Proof. By induction on M . The critical case M = x reads: LHS = ε(box(N◦))→β2
N◦ =

RHS . J

I Proposition 6 (Preservation of reduction by Girard’s translation). If M →βn N in λn, then
M◦ →+ N◦ in λ2.

Proof. By induction on M →βn N . The base case uses the previous lemma:

((λx.M)N)◦ = (λx.M◦)box(N◦)→β⊃ [box(N◦)/x]M◦ →∗β2
([N/x]M)◦ . (2)

J

The translation from λv to λ2 is in Fig. 7. A∗ is denoted A2 in [16], where it is defined
directly by recursion on A: X2 = 2X and (A1 ⊃ A2)2 = 2(A2

1 ⊃ A2
2). These are two styles

for defining the same translation of types. The style we adopted is the same of Gödel’s 1933
paper, while the alternative style was proposed by McKinsey-Tarski [15].

match the typing rule of cobind in IS4 (introduction rule of 2). Contrary to λ2, contexts of IS4 may
contain unboxed formulas. The cobind typing rule is essentially a combination of the box typing rule
(introduction rule of 2 in λ2), relying on a fully boxed context x1 : B1, ..., xn : Bn, with a multicut.

2 We could call Girard’s translation the (2A ⊃ B)-translation.

FSCD 2019

18:8 Modal Embeddings and Calling Paradigms

A∗ = 2A• V ∗ = box(V •)
(MN)∗ = ε(M∗)N∗

X• = X x• = ε(x)
(A1 ⊃ A2)• = 2A•1 ⊃ 2A•2 (λx.M)• = λx.M∗

Figure 7 Translation from λv to λ2 (“Gödel’s translation”).

At the term level, the translation is organized in two levels: there is a translation of terms
M∗ and a translation of values V •. A simpler translation with x∗ = x was possible, but
the adopted version (with an η-expansion in the translation of variables) allows a uniform
translation of values as terms: V ∗ = box(V •). It is sound to η2-expand a variable of type
A∗ because A∗ is a boxed type.3

In the following, Γ∗ = x1 : A∗1, . . . , xn : A∗n when Γ = x1 : A1, . . . , xn : An.

I Proposition 7 (Preservation and reflection of typing by Gödel’s translation).
1. Γ `M : A in λv iff Γ∗ `M∗ : A∗ in λ2.
2. Γ ` V : A in λv iff Γ∗ ` V • : A• in λ2.

Proof. In each direction, the two statements are proved by mutual induction on the given
typing derivation. J

I Lemma 8.
1. [box(V •)/x]M∗ →∗β2

([V/x]M)∗.
2. [box(V •)/x]W • →∗β2

([V/x]W)•.

Proof. By simultaneous induction on M and W . The critical case W = x reads:
LHS = ε(box(V •))→β2

V • = RHS . J

I Proposition 9 (Preservation of reduction by Gödel’s translation). If M →βv N in λv, then
M∗ →+ N∗ in λ2.

Proof. By induction on M →βv N . The base case reads:

((λx.M)V)∗ = ε(box(λx.M∗))box(V •)
→β2

(λx.M∗)box(V •)→β⊃ [box(V •)/x]M∗ →∗β2
([V/x]M)∗ (3)

where the last reduction is justified by the previous lemma. J

I Example 10. Reflection of reduction along the translation from λv to λ2 fails. Let
P := (λx.xM)N (with x /∈ FV (M)) and Q := NM . Then P →βv Q does not hold in general.
But P ∗ →+ Q∗ does hold, since:

P ∗ = ε(box(λx.ε(box(ε(x)))M∗))N∗ →2
β2

(λx.ε(x)M∗)N∗ →β⊃ ε(N∗)M∗ = Q∗ .

3 We could call Gödel’s translation the (2A ⊃ 2B)-translation, and call McKinsey-Tarski translation the
(2(A ⊃ B))-translation. There is again a connection with translations of intuitionistic logic into linear
logic. The “call-by-value” translation of intuitionistic logic into linear logic is sometimes called the
!(A(B)-translation or the (!A(!B)-translation. The former is found in the original paper by Girard
[4]; the second is briefly mentioned by Lafont [7] in the discussion of the translation of λ-calculus, and
used in [11]. In the translation of λ-terms into linear logic proofs and proof nets, Mackie [9] does the
η-expansion of variables in the (!A(!B)-translation and does not do it in the !(A(B)-translation.

J. Espírito Santo, L. Pinto, and T. Uustalu 18:9

This example is adapted from one given in [14], where the same remark is made about the
translation of λv into a linear λ-calculus (yet another, similar example is given in [11]). The
path followed in [14] is to grow the source calculus from Plotkin’s λv to Moggi’s computational
λ-calculus in order to derive more reductions. In the next section we follow a different path
and shrink the target calculus.

4 Refined modal target calculus λb

In order to give a deeper analysis of the modal embeddings, and refine the results of the
previous section, we will identify in this section a sublanguage λb of λ2. In the next section,
we give refined versions of the embeddings whose images lie in λb. In this section, we start
with a motivation for the refinements. Next we define λb and prove some properties, notably
a standardization theorem.

4.1 Motivation
We start by analyzing whether Proposition 6 and 9 could be stated as equivalences, so that
we would also have reflection of reduction. By inspection of calculations (2) and (3), one
recognizes an obstacle in the uncontrolled proliferation of β2-reduction steps in the reduction
between images. We regard β2-reduction steps as administrative [12], and seek to hide
them somehow. In the cps-literature, administrative steps are hidden by performing them at
compile time by an optimized version of the translation [12]. Here, we will also use such an
idea, but combined with another one: a refined definition of the target system will also avoid
many administrative steps.

Inspecting (2) again one sees that administrative steps in the image of Girard’s map
come from Lemma 5. But notice that a substitution is always triggered with a box (a term
of the form box(N)) as the actual parameter; since in the target of Girard’s map variables
are always wrapped with ε, every actual replacement generates an administrative redex. A
solution is to pass, not the box, but the contents of the box (the box is open), which will
replace, not x, but ε(x). The adoption of this special β-rule is a simple trick that eliminates
all the administrative steps in the image of Girard’s map.

How about Gödel’s map? Inspecting calculation (3) one sees again that the β⊃-redex
has a box as argument, and that the subsequent administrative steps are justified by the
lemma that shows how substitution commutes with the translation, namely Lemma 8. Again,
a special β-reduction step could open the box before executing the substitution. But the
β⊃-reduction step has a preliminary administrative step, and not all occurrences of ε(M) in
the image of the map have the form ε(x). The latter two problems have a common solution.
In the translation of application in Fig. 7, one should put (λz.ε(z)N∗)M∗. The preliminary
administrative step in (3) will become a special β-reduction step, and ε(x) will suffice in the
images of the translation as a monolithic term form instead of x and ε(M).

4.2 Definition of λb and relationship with λ2

We call our refined modal calculus λb. Its terms are given by the grammar:

M,N,P,Q, T ::= ε(x) | λx.M |MN | box(N)

Note that variables x and ε are amalgamated, and constrained to the construction ε(x).
Values V are terms of the form ε(x) or λx.M . Boxes are terms of the form box(N), ranged
over by B.

FSCD 2019

18:10 Modal Embeddings and Calling Paradigms

Types and sequents of λb are as for λ2. Recall that in implications the antecedent must
be a boxed type, and accordingly types in contexts must be boxed. The typing rules of λb

are as for λ2, except that the typing rule for ε(x) corresponds to the obvious combination of
the typing rules of λ2 for variables and for ε, that reads as follows:

Γ, x : 2A ` ε(x) : A

Immediately: for any M ∈ λb, Γ `M : A in λb iff Γ `M : A in λ2.
The unique reduction rule of λb is:

(λx.M)box(N)→ [N/ε(x)]M (βb)

where [N/ε(x)]M is defined by recursion on M , and all clauses are homomorphic, except for
the critical clauses:

[N/ε(x)]ε(x) = N [N/ε(x)]ε(y) = ε(y) (x 6= y) .

As usual, →βb denotes the compatible closure of βb, i.e. the closure of βb under all term
formers of λb.

The βb-rule is a package of reduction steps of λ2. In fact, for M,N ∈ λb:

(λx.M)box(N)→β⊃ [box(N)/x]M →∗β2
[N/ε(x)]M

where [box(N)/x]M →∗β2
[N/ε(x)]M is easily established by induction on M .

Rule βb only fires when the argument is a box. For this reason we speak of call-by-box.
In the typed setting, and since function types are always of the form B ⊃ A, arguments are
always of boxed types – nevertheless, arguments are not necessarily boxes. We will prove
call-by-box (abbreviated cbb) to be a calling paradigm, in the sense of Section 2, by defining
evaluation and standard reduction and proving standardization.

We define sub-relations of →βb . To this end consider the closure rules:

M →M ′

MN →M ′N
(µ) M →M ′

MB→M ′B
(µ>) N → N ′

MN →MN ′
(ν) N → N ′

V N → V N ′
(ν<)

Then: →we is inductively defined by βb and µ and ν; →we> is inductively defined by βb and
µ> and ν; →we< is inductively defined by βb, µ and ν<.

Notice: we always close the same β-rule (hence a single calling paradigm is at stake).
Relation →we is called weak (because values do not reduce) and external - because boxes
do not reduce. Relation →∗we is called call-by-box evaluation. Here, evaluation is taken
in a relaxed sense, since the relation →we is non-deterministic: the cbb “evaluation” of a
given application MN consists of the interleaved cbb “evaluation” of M and N in any order
until a βb-redex emerges at root position. We may turn →we into a deterministic relation, by
imposing either the left-first (<) or right-first (>) order of reduction in applications.4 Cbn
(resp. cbv) evaluation on λb will be defined later, as a restriction of →∗we> (resp. →∗we<).

4.3 Properties of λb

The main property of λb is how it unifies call-by-name and call-by-value, and will be seen in
Section 5. Here we chose to show subject reduction, because it is a sanity check for a modal
calculus, and standardization, because we want to promote call-by-box to a calling paradigm.

4 Recall how the combination of rules βn, µ and ν< on λ-terms failed to produce a deterministic relation.

J. Espírito Santo, L. Pinto, and T. Uustalu 18:11

ε(x)⇒b ε(x) V AR
M ⇒b N

λx.M ⇒b λx.N
ABS

M ⇒b M
′ N ⇒b N

′

MN ⇒b M
′N ′

APL
M ⇒b N

box(M)⇒b box(N) BOX

M →∗we λx.M
′ N →∗we box(N ′) [N ′/ε(x)]M ′ ⇒b P

MN ⇒b P
RDX

Figure 8 Standard reduction of λb.

M ⇒b M
(1) (λx.M)box(N)⇒b [N/ε(x)]M

(2) M ⇒b M
′ N ⇒b N

′

[N/ε(x)]M ⇒b [N ′/ε(x)]M ′
(3)

M →we N ⇒b P

M ⇒b P
(4)

M →∗we N ⇒b P

M ⇒b P
(5)

M ⇒b λx.M
′ N ⇒b box(N ′)

MN ⇒b [N ′/ε(x)]M ′
(6)

M ⇒b (λx.M ′)box(N ′)
M ⇒b [N ′/ε(x)]M ′

(7) M ⇒b N →βb P

M ⇒b P
(8)

Figure 9 Admissible rules of λb.

I Proposition 11 (Subject reduction of λb). In λb, if M →βb N and Γ ` M : A, then
Γ ` N : A .

Proof. This is an immediate consequence of subject reduction for λ2 (Prop. 1), and the
facts (i) Γ `M : A in λb iff Γ `M : A in λ2, and (ii) M →βb N implies M →∗β N in λ2. J

Fig. 8 gives an inductive definition of the relation “M reduces in a standard way to N in
λb”, denoted M ⇒b N .

I Theorem 12 (Standardization of λb). In λb, M →∗βb
N iff M ⇒b N .

Proof. Our proof is inspired in Loader’s proof for λ-calculus [8], but notice no use of vector
notation is made, and the definition of ⇒b makes explicit the contribution of evaluation.

The “if” direction is a very simple induction on M ⇒b N and just uses the facts that
→∗βb

is reflexive, transitive and compatible, and that →∗we⊆→∗βb
.

The “only if” direction is proved by establishing the admissibility of the rules (1) to (8) in
Fig. 9. Once this is done, the proof of the “only if” implication is by induction on M →∗βb

N ,
and follows immediately from rules (1) and (8).

The proof of (1) is an easy induction on M . Then (2) follows from RDX and (1). The
proof of (3) is by induction on M ⇒b M

′. The case RDX requires the substitution lemma
for λb’s substitution, plus the following property of →we: if M →we M

′ then [N/ε(x)]M →we

[N/ε(x)]M ′. Rule (5) follows easily from (4), and the latter is proved by induction on
M →we N . Rule (6) is proved by induction on M ⇒b λx.M

′ with subinduction on N ⇒b

box(N ′). Use is made of (3) and (5). Then, (7) follows easily from (6) by induction on
M ⇒b (λx.M ′)box(N ′). Finally, (8) is proved by induction on M ⇒b N , and uses (7). J

From the proof of the “if” implication of this theorem, one extracts a notion of standard
reduction sequence: it starts with cbb evaluation (corresponding to applications of rule
RDX) of the given application MN , until one decides to freeze the outer construct and do
reduction inside the subexpressions (corresponding using the other rules in Fig. 8).

FSCD 2019

18:12 Modal Embeddings and Calling Paradigms

5 Refined embeddings into λb

Continuing to implement the refinements motivated at the beginning of Section 4, we now
introduce variants of Girard’s and Gödel’s translations from, respectively, λn and λv into
the refined target calculus λb. The hope was to improve Propositions 6 and 9, achieving
reflection, in addition to preservation, of reduction by the maps.

In fact, we will obtain much more, as preservation and reflection will work at the levels
of reduction, evaluation, and standard reduction – see Theorems 14 and 18 below. The
results at the level of reduction and evaluation correspond to the translation property
and simulation property of the maps, in the terminology of cps-translations [12]. The
image of each map enjoys its own indifference property, and these two properties together
are the indifference property of λb. What is new compared to cps-translations is that the
simulation and indifference properties cooperate to accomplish the results at the level of
standard reduction; and the latter, together with the standardization for λb, and the results
at the level of reduction allow the extraction of the standardization for λn or λv as corollaries.

Translation of types stays unchanged both for the refined Girard’s and Gödel’s translations.
At the level of terms, Girard’s translation stays the same, but Gödel’s translation will suffer
a slight refinement, as promised at the beginning of Section 4. We reuse the symbols (·)◦,
(·)∗ and (·)•.

5.1 Refined Girard’s embedding
We start with Girard’s translation. Fig. 6 can be read ipsis verbis as defining a translation
from λn to λb. The refinement comes, not from the translation, but from the refined
functioning of the target system. Preservation and reflection of typing, as stated in Prop. 4
for λ2 for the original Girard’s translation, holds in the same way for λb for the refined
translation.

The image of the term translation is the subset of λb terms given by the grammar

M,N ::= ε(x) | λx.M |Mbox(N) (4)

Let us call this subset Girard’s image.
Due to the restricted form of arguments in applications, relations →we and →we> collapse

on Girard’s image to the same relation, one which can alternatively be defined as βb closed
under µ. This property of Girard’s image we call its indifference property, by analogy
with our account of the indifference property on λ-terms given at the end of Section 2. This
single deterministic relation on Girard’s image is denoted→n. By call-by-name evaluation
on λb we mean →∗n . The terminology is justified by Theorem 14 below.

I Lemma 13. [N◦/ε(x)]M◦ = ([N/x]M)◦.

I Theorem 14 (Properties of refined Girard’s translation).
1. (Preservation and reflection of reduction) M →βn N in λn iff M◦ →βb N

◦ in λb.
2. (Preservation and reflection of evaluation) M →n N in λn iff M◦ →n N

◦ in λb.
3. (Preservation and reflection of standard reduction) M ⇒n N in λn iff M◦ ⇒b N

◦ in λb.

Proof.
Proof of 1. The “only if” half is proved by induction on M →βn N . The base case uses

Lemma 13: ((λx.M)N)◦ = (λx.M◦)box(N◦)→βb [N◦/ε(x)]M◦ = ([N/x]M)◦. The “if”
half follows from this fact: the image of (·)◦ is closed under reduction and any reduction

J. Espírito Santo, L. Pinto, and T. Uustalu 18:13

between images is an image of a source reduction. Symbolically: if M◦ →βb N
′, then

there is a λ-term N such that N◦ = N ′ and M →βn N . The proof is by induction on the
λ-term M .

Proof of 2. By inspection of the proof of 1.
Proof of 3. The “only if” implication is proved by induction on M ⇒n N . The case RDX

uses item 2 of this theorem. To prove the “if” direction, one proves something stronger:
if M◦ ⇒b Q in λb then there is N ∈ λn such that N◦ = Q and M ⇒n N in λn. The proof
is by induction on M◦ ⇒b Q. The case RDX, besides Lemma 13, uses a strong form of
the indifference property of Girard’s image: M◦ →we Q iff M◦ →n Q; and a strong form
of item 2 of the present theorem: if M◦ →n Q then there is N ∈ λn such that N◦ = Q

and M →n N in λn. J

I Corollary 15 (Standardization of λn). In λn, M →∗βn
N iff M ⇒n N .

Proof. Follows from Thm. 12 (standardization for λb), and parts 1 and 3 of Thm. 14. J

5.2 Refined Gödel’s embedding
Now we turn to Gödel’s translation. We will make use of the abbreviation

raise(M) := λz.ε(z)M

We immediately remark the following derived rules:

Γ `M : B
Γ ` raise(M) : (2(B ⊃ B′)) ⊃ B′

N →∗we box(N ′) M →∗we box(λx.M ′)
raise(N)M →∗we [N ′/ε(x)]M ′ (5)

The latter is proved by the following reduction sequence:

raise(N)M →∗we raise(N)box(λx.M ′)→we (λx.M ′)N →∗we (λx.M ′)box(N ′)→we [N ′/ε(x)]M ′

(6)

Gödel’s term translation introduced before in Fig. 7 is refined thus:

V ∗ = box(V •) (MN)∗ = raise(N∗)M∗ x• = ε(x) (λx.M)• = λx.M∗

As said, the translation of types remains unchanged, and Proposition 7 about preservation
and reflection of typing holds again, now for λb.

The image of the translation is contained in the subset of λb terms given by the grammar

M ::= box(V) | VM V ::= ε(x) | λx.M (7)

For the exact image, the V in VM should be constrained to raise(M ′). But the subset (7)
has the advantage of being closed under →βb . Let us allow ourselves the abuse of calling (7)
Gödel’s image.5

Due to the restricted form of the term in function position in applications, relations
→we and →we< collapse on Gödel’s image to the same relation, one which can alternatively

5 Gödel’s image can be obtained in another way. Notice Girard’s image is the set of λb-terms where the
following is valid: a term is a box iff it is the argument term of an application. Likewise, we might want
to characterize Gödel’s image as the set of λb-terms where the following is valid: a term is a value iff it
is the function term of an application. But the latter has to be complemented with the imposition that
the contents of boxes are values (otherwise, closure under reduction would not be guaranteed).

FSCD 2019

18:14 Modal Embeddings and Calling Paradigms

be defined as βb closed under ν. This property of Gödel’s image we call its indifference
property, again by analogy with our account of the indifference property on λ-terms given
at the end of Section 2, but also in analogy with what happens in Girard’s image. This single
deterministic relation on Gödel’s image is denoted →v. By call-by-value evaluation on
λb we mean →∗v . The terminology is justified by Theorem 18 below.

I Lemma 16. [V •/ε(x)]M∗ = ([V/x]M)∗ and [V •/ε(x)]W • = ([V/x]W)•.

The refined Gödel embedding improves Proposition 9: as we will see below in items 1
and 3 of Theorem 18, we get rid of the proliferation of administrative steps, and even obtain
reflection for full evaluation (evaluation until a value is output). However, the following
example shows that reflection of (standard) reduction still does not hold in general.

I Example 17. Let us return to Example 10. Recall P = (λx.xM)N (with x /∈ FV (M)),
Q = NM , and P →βv Q does not hold in general. With refined Gödel’s translation, it is still
the case that P ∗ →+

βb
Q∗ does hold in λb, since:

P ∗ = raise(N∗)box(λx.raise(M∗)x∗)→βb (λx.raise(M∗)x∗)N∗ →βb (λx.ε(x)M∗)N∗ = Q∗ .

Some other refinements are needed, namely the identification of sub-relations in λb which
allow reflection of (standard) reduction. Again, this is in the spirit of shrinking the target.

First, we introduce a new β rule

raise(box(N))box(λx.P)→ [N/ε(x)]P (βb2) ,

corresponding to a sequence of two βb-reduction steps:

raise(box(N))box(λx.P)→βb (λx.P)box(N)→βb [N/ε(x)]P . (8)

Second, we define ⇒b2, a sub-relation of ⇒b in λb: in Fig. 8, replace RDX by:

N →∗we box(N ′) M →∗we box(λx.M ′) [N ′/ε(x)]M ′ ⇒b2 Q

raise(N)M ⇒b2 Q
RDX2

This is a derivable rule of ⇒b: it is illuminating to see how this rule corresponds to two
applications of RDX where, in each of these, the first premiss follows by reflexivity and all
the action happens in the second premiss.6

In addition, ⇒b2 determines a notion of “standard” reduction sequence that, we now
argue, is standard in the official sense derived from Theorem 12 and defined right after its
proof in Section 4. Rule RDX2 determines that the initial segment of a “standard” reduction
sequence does the parallel cbb evaluation of the components of the given raise(N)M until a
βb2-redex raise(box(N ′))box(λx.M ′) emerges and is immediately reduced. Now this initial
segment, which is not strictly standard (because the evaluation of N happens inside raise(·)
which is a λ), has a corresponding standard reduction sequence, namely the sequence (6).

6 For the purpose of studying Girard’s map, the following particular case of RDX, where the action
happens in the first premiss, would have sufficed:

M →∗we box(λx.M ′) [N/ε(x)]M ′ ⇒b Q

Mbox(N)⇒b Q

J. Espírito Santo, L. Pinto, and T. Uustalu 18:15

I Theorem 18 (Properties of refined Gödel’s translation).
1. (Preservation of reduction) If M →βv N in λv then M∗ →2

βb
N∗ in λb.

2. (Preservation and reflection of reduction) M →βv N in λv iff M∗ →βb2 N
∗ in λb.

3. (Preservation and reflection of evaluation) M →∗v V in λv iff M∗ →∗v V ∗ in λb.
4. (Preservation of standard reduction) If M ⇒v N in λv then M∗ ⇒b N

∗ in λb.
5. (Preservation and reflection of standard red.) M ⇒v N in λv iff M∗ ⇒b2 N

∗ in λb.

Proof.
Proof of 1. Follows from the “only if” half of item 2.
Proof of 2. The “only if” half is proved by induction on M →βv N . The “if” half is a

consequence of two facts: (i) injectivity of (·)∗; (ii) the image of (·)∗ (resp. (·)•) is closed
for βb2-reduction and any βb2-reduction between images is an image of a source reduction.
More precisely, the second fact is the conjunction of: (a) If M∗ →βb2 P , then there is a
λ-term Q such that Q∗ = P and M →βv Q; (b) If V • →βb2 N , then there is a λ-calculus
value W such that W • = N and V →βv W . This is proved by simultaneous induction on
M and V .

Proof of 3. The result follows with the help of the following two facts:
Fact 1. If M →v N in λv, then there exists P such that M∗→v

+P and N∗→βa
∗P in λb,

where →βa is administrative 1-step-reduction defined by closure under µ and ν of the rule

raise(N)box(M) → MN (βa) ,

which is the βb-step (λz.ε(z)N)box(M) →βb MN (for z 6∈ FV(N)).7 Notice N∗→βa
∗P

implies N∗→v
∗P .

Fact 2. If M∗ →∗v Q in λb, then: (i) if Q is a box, then Q = V ∗, for some value V , and
M →∗v V in λv; and (ii) if Q = N∗, for some N , then M →∗v N in λv.
The “if” part of item 3 actually holds when V is replaced by an arbitrary term N , as
stated in part (ii) of Fact 2. The “only if” part of item 3 follows by induction on the length
of the reduction sequence. Suppose M →v M0 →∗v V . By Fact 1 above, there exists P s.t.
M∗ →∗v P and M∗0 →∗v P . By IH, M∗0 →∗v V ∗. Hence, since reduction sequences starting
at M∗0 are deterministic, P →∗v V ∗ or V ∗ →∗v P . As the latter is equivalent to V ∗ = P

(because V ∗ cannot reduce), it follows M∗ →∗v P →∗v V ∗, as wanted.
The proof of Fact 1 above is by induction on M →v N . In the base case, one actually
proves M∗ →v N

∗, using Lemma 16. In the step case where M = VM0 →v V N0 = N ,
because M0 →v N0, we find the need for the administrative reductions from N∗.
The proof of Fact 2 above is by induction on the length of M∗ →∗v Q.

Proof of 4. By induction on M ⇒v N . We spell out the case RDX. Suppose

M1 →∗v λx.M ′1 M2 →∗v V [V/x]M ′1 ⇒v N

M1M2 ⇒v N
RDX

We want raise(M∗2)M∗1 ⇒b N
∗. By IH and Lemma 16, ([V/x]M ′1)∗ = [V •/ε(x)]M ′∗1 ⇒b

N∗. From M1 →∗v λx.M ′1 we get, by item 3 of the current theorem, M∗1 →∗v (λx.M ′1)∗ =
box(λx.M ′∗1). By the indifference property, M∗1 →∗we box(λx.M ′∗1). Similarly, from
M2 →∗v V we get, by item 3 of the current theorem, M∗2 →∗v V ∗ = box(V •). By the
indifference property, M∗2 →∗we box(V •). We conclude with two applications of RDX:

λz.ε(z)M∗2 →∗we λz.ε(z)M∗2 M∗1 →∗we box(λx.M ′∗1) (∗)
(λz.ε(z)M∗2)M∗1 ⇒b N

∗ RDX

7 The first step in the sequence (8) is administrative in this sense.

FSCD 2019

18:16 Modal Embeddings and Calling Paradigms

where (∗) is

λx.M ′∗1 →∗we λx.M
′∗
1 M∗2 →∗we box(V •) [V •/ε(x)]M ′∗1 ⇒b N

∗

(λx.M ′∗1)M∗2 ⇒b N
∗ RDX

Proof of 5. The “only if” direction is proved by changing a case in the proof of item 4 of the
current theorem, namely the case RDX spelled out above. Indeed, the two applications
of RDX that conclude the proof may be replaced by a single application of RDX2.
For the “if” direction, we prove: if M∗ ⇒b2 Q then there is N ∈ λv such that N∗ = Q

and M ⇒v N . The proof is by induction on M∗ ⇒b2 Q, and it heavily relies again on
item 3 (simulation property) and the indifference property. J

Before extracting standardization of λv as corollary, we need the following addendum to
the standardization theorem for λb (Theorem 12), concerning λb-terms of the form M∗:

I Theorem 19 (Addendum to standardization for λb). In λb, ifM∗ →∗βb2
N∗ thenM∗ ⇒b2 N

∗.

Proof. The proof has the same structure as that of Theorem 12. There is a single catch,
because⇒b2 is not closed under prefixing a single→we-step. So the rule for⇒b2 corresponding
to rule (5) in Fig. 9 cannot be stated with →∗we, it is stated with another special binary
relation P �we2 P

′, inductively defined over arbitrary λb-terms by closing under µ and ν the
following base rule:

Q→∗we box(V) P →∗we box(λy.P ′)
raise(Q)P �we2 [V/ε(y)]P ′

Notice �we2⊆→∗we. The second derived rule in (5) shows this for the base rule. J

I Corollary 20 (Standardization for λv). In λv, M →∗βv
N iff M ⇒v N .

Proof. The easy “if” implication follows by induction on M ⇒v N . The hard “only if”
implication goes via standardization for λb. Suppose M →∗βv

N . By item 2 of Theorem
18, we have M∗ →βb2 N

∗. By Theorem 19, we obtain M∗ ⇒b2 N
∗ in λb. Fortunately the

addendum provided a statement with ⇒b2 rather than ⇒b, because reflection of standard
reduction only works for ⇒b2: item 5 of Theorem 18 concludes M ⇒v N . J

6 Instantiations

Here we briefly illustrate two instantiations of the indeterminate comonad of λb with concrete
comonads, namely the trivial comonad > ⊃ (·) and the comonad ! of linear logic.

To provide a target for the trivial comonad instantiation, we add to the λv-calculus a
type > and a term ?, which we consider as a value of type >. We name βtriv this particular
case of βv: (λd.M)?→M , with d /∈ FV(M).

The trivial instantiation is defined in Fig. 10. Under this instantiation, a βb-reduction
step in λb is simulated in this target by a βv-reduction step followed by a βtriv-reduction
sequence.

Composing the modal embeddings with the trivial instantiation we obtain embeddings
into the considered extension of λv. The resulting composition in the case of Girard’s
embedding is the following map T : λn → λv (in the third clause, d is a dummy variable):

T (x) = x ? T (λx.M) = λx.T (M) T (MN) = T (M)(λd.T (N))

J. Espírito Santo, L. Pinto, and T. Uustalu 18:17

t(X) = X t(ε(x)) = x?

t(B ⊃ A) = t(B) ⊃ t(A) t(λx.M) = λx.t(M)
t(2A) = > ⊃ t(A) t(MN) = t(M)t(N)

t(box(M)) = λd.t(M) (d 6∈ FV(M))

Figure 10 Trivial instantiation of λb.

`(X) = X `(ε(x)) = x

`(B ⊃ A) = `(B)(`(A) `(λx.M) = λy.let !x = y in `(M)
`(2A) = !`(A) `(MN) = `(M)`(N)

`(box(M)) = !`(M)

Figure 11 Linear instantiation of λb.

This map preserves and reflects reduction, and is found in [5], where is described as “thunk
introduction implemented in Λ”, using the “protecting by a λ” technique [12].

Now we turn to the second instantiation of the comonad. The linear instantiation of
types and terms of λb into the linear λ-calculus Lin of [11] is given in Figure 11. (Recall
implications of λb have a boxed type in the antecedent.)

The image of the linear instantiation may be equipped with

(λy.let !x = y inM)(!N)→ [N/x]M (β`)

which amalgamates these two reduction steps:

(λy.let !x = y inM)(!N)→β(let !x =!N inM →β! [N/x]

A fragment of Lin is thus identified, and the linear instantiation becomes an isomorphism
between λb and the fragment, with βb corresponding to β`. We refrain from giving more
details here.

Composing the modal embeddings with the linear instantiation we obtain the embeddings
shown in Fig. 12. The two compositions are translations of λn and λv into the linear λ-calculus
Lin which preserve reduction. These embeddings should be compared with those in [11]. The
composition with Girard’s embedding (the left column in Fig. 12) gives the cbn translation
in op. cit., whereas the composition with Gödel’s embedding (the right column in Fig. 12)
gives the cbv translation in op. cit. except for a refinement in the clause for application: in
op. cit. the translation is (MN)∗ = (let !z = M∗ in z)N∗.

7 Final remarks

Our conclusion is that the refined modal embeddings achieve an unification of call-by-name
and call-by-value by means of the calling paradigm call-by-box. With hindsight, it is obvious
that call-by-box should be enough to interpret both cbn and cbv. Call-by-box comprises
these high-level ideas: boxes are distinct from values and they are not values; in function
applications, expressions in function position reduce to values, expressions in argument
position reduce to boxes; functions are only called with boxes; evaluation is weak (values
do not reduce) and external (boxes do not reduce). Call-by-box can thus be the target of
a compilation technique which we call protecting-by-a-box and that works both for cbn

FSCD 2019

18:18 Modal Embeddings and Calling Paradigms

x◦` = x V ∗` = !V •`
(λx.M)◦` = λy.let !x = y inM◦` (MN)∗` = (λy.let !z = y in zN∗`)M∗`
(MN)◦` = M◦`(!N◦`) x•` = x

(λx.M)•` = λy.let !x = y inM∗`

Figure 12 Compositions of the modal embeddings and the linear instantiation.

and cbv: cbn is obtained by protecting arguments with boxes (the old idea of freezing the
argument to delay its evaluation); cbv is obtained by restricting boxes to boxed values (hence
functions are called with values only) and always having values wrapped as boxes (enabling
the calling of functions with values).

Notice this is a story with a cbn side and a cbv side. The cbn side is an abstraction of
the protecting-by-a-λ technique, as shown through the trivial instantiation. The cbn side
is also what the literature offers. Hatcliff and Danvy [5, 6] formalized an abstract version
of protecting-by-a-λ as the thunk-introduction map from cbn λ-calculus into the λ-calculus
with thunks (Λτ), and a separate variant of the thunk-introduction map directly into the
λ-calculus. The former corresponds to our Girard’s embedding, while the latter corresponds
to the composition T of Section 6. But even here our results offer some improvements. First,
we observed that T is connected to Girard’s embedding through the trivial instantiation.
Second, the precise formulation of the target system of Girard’s embedding is important. Our
care in formulating λ2 so that it is closed under substitution and enjoys subject reduction is
not matched in the treatment of typed Λτ [6]. And then we went further from λ2 to λb, and
this alone improved the properties of Girard’s embedding as witnessed in Theorem 14.

The connection between calling paradigms and embeddings of intuitionistic logic into
linear logic [4, 7, 9, 10] has its full treatment in [11]. Regarding cbn and cbv, our results
match the results of [11], but in a more abstract and simpler setting - in fact we go further,
since we treat proper standardization, and that is a key ingredient in our claim that cbn and
cbv are unified by cbb. In obtaining results through embeddings into modal logic similar to
those through embedding into linear logic, one sees that already modality, without the need
for linearity, brings the calling mechanisms into the scope of the Curry-Howard isomorphism.

Inspired by linear logic, the bang-calculus [3] was recently proposed as a “generalization”
of cbn and cbv. The part of op. cit. not concerned with denotational semantics compares
with the initial part of the present paper, up to Section 3, where we dealt with unrefined
target and embeddings (but notice the conceptual difference: for us, boxes are not values);
all the work that comes after Section 3, about the refined target and embeddings, and which
is the core of our contribution, is beyond the scope of [3].

As to future work, we would like to deepen the study of instantiations, both by considering
other instantiations, and by investigating whether one obtains, through the composition of
instantiations with embeddings, not only known maps, but also their properties.

References
1 H.P. Barendregt. The Lambda Calculus. North-Holland, 1984.
2 G. M. Bierman and V. C. V. de Paiva. On an intuitionistic modal logic. Studia Logica,

65:383–416, 2000.
3 T. Ehrhard and G. Guerrieri. The bang calculus: an untyped lambda-calculus generalizing

call-by-name and call-by-value. In Proc. of PPDP ’16, pages 174–187. ACM, 2016.

J. Espírito Santo, L. Pinto, and T. Uustalu 18:19

4 J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987.
5 J. Hatcliff and O. Danvy. Thunks and the λ-calculus. J. Funct. Program., 7(3):303–319, 1997.
6 J. Hatcliff and O. Danvy. Thunks and the λ-Calculus (Extended Version). Technical Report

BRICS RS-97-7, DIKU, 1997.
7 Y. Lafont. From proof-nets to interaction nets. In J. Y. Girard, Y. Lafont, and L. Regnier,

editors, Advances in Linear Logic, pages 225–247. Cambridge Univ. Press, 1995.
8 Ralph Loader. Notes on simply typed lambda calculus. Technical Report ECS-LFCS-98-381,

LFCS, Univ. of Edinburgh, 1998.
9 I. Mackie. The Geometry of Implementation. PhD thesis, Imperial College, 1994.
10 I. Mackie. Encoding strategies in the lambda calculus with interaction nets. In Revised Selected

Papers from IFL 2005, volume 4015 of Lect. Notes in Comput. Sci., pages 19–36. Springer,
2006.

11 J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name, call-by-value, call-by-need
and the linear lambda calculus. Theor. Comput. Sci., 228(1-2):175–210, 1999.

12 G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci., 1:125–159,
1975.

13 D. Prawitz. Natural Deduction. Almquist and Wiksell, Stockholm, 1965.
14 A. Sabry and P. Wadler. A reflection on call-by-value. ACM Trans. Program. Lang. Syst.,

19(6):916–941, 1997.
15 A. Troelstra. Introductory note to 1933f. In Kurt Gödel Collected Works, pages 296–299.

Oxford Univ. Press, 1986.
16 A. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Univ. Press, 2000.

A Natural deduction system for the logic IS4

The formulae of the logic IS4 are given by the grammar

A ::= X | A ⊃ A | B
B ::= 2A

Formulae of the form B are called boxed formulae. Note that the antecedent of an implication
need not be boxed.

Sequents of the natural deduction system are Γ ` A where the antecedent Γ is a multiset
of formulae, again not necessarily boxed. The proof rules are

Γ, A ` A
Γ, A1 ` A2

Γ ` A1 ⊃ A2

Γ ` A1 ⊃ A2 Γ ` A1
Γ ` A2

Γ ` B1 Γ ` Bn B1, . . . , Bn ` A
Γ ` 2A

Γ ` 2A
Γ ` A

Note that the B1, . . . , Bn in the 2 introduction rule are boxed formulae.
In the corresponding term calculus, terms are given by the grammar

M,N ::= x | λx.M |MN | cobind(M1, . . . ,Mn, x1 . . . xn.N) | ε(M)

where for the term form cobind(M1, . . . ,Mn, x1 . . . xn.N) it is required that FV(N) ⊆
{x1, . . . , xn}.

Typing judgments are Γ ` M : A where the antecedent Γ is a set of type assignments
x : A with all x distinct. The typing rules are

Γ, x : A ` x : A
Γ, x : A1 `M : A2

Γ ` λx.M : A1 ⊃ A2

Γ `M : A1 ⊃ A2 Γ ` N : A1
Γ `MN : A2

Γ `M1 : B1 Γ `Mn : Bn x1 : B1, . . . , xn : Bn ` N : A
Γ ` cobind(M1, . . . ,Mn, x1 . . . xn.N) : 2A

Γ `M : 2A
Γ ` ε(M) : A

FSCD 2019

18:20 Modal Embeddings and Calling Paradigms

The reduction relation between terms is given by the axioms

(λx.M)N → [N/x]M
β⊃

ε(cobind(M1, . . . ,Mn, x1 . . . xn.N))→ [M1/x1, . . . ,Mn/xn]N
β2

together with the rules of compatible closure.
In the categorical semantics of the natural deduction system of IS4 in terms of a cartesian

closed category with a lax monoidal comonad, ε corresponds to the counit of the comonad
and cobind to a combination of the comultiplication and the lax monoidality laws.

I Proposition 2.
1. For all Γ, A in λ2, Γ `M : A in λ2 iff Γ `M]

|Γ| : A in the term calculus for IS4.
2. For all U s. t. FV(M) ⊆ U , M → N in λ2 iff M]

U → N]
U in the term calculus for IS4.

Proof.
1. The “only if” direction is proved by induction on the given λ2 typing derivation. The

case for the typing rule of box goes through in IS4 using the 2 introduction rule, where
the first n premises are axioms (one for each of the n formulas in the context). The “if”
direction is by induction on M . In the case M = box(N), assuming Γ = x1 : B1, . . . , xn :
Bn, M]

|Γ| = cobind(x1, . . . , xn, x1 . . . xn.N
]
|Γ|) and the hypothesis implies A = 2A0 and

Γ ` N]
|Γ| : A0 in λ2 (for some A0), so the IH and the 2 introduction rule of λ2 can be

used to conclude.
2. Routine induction on the given reduction derivation in both directions. J

I Proposition 3. For all Γ, A in λ2, if Γ `M : A in the term calculus for IS4, then there
exists N such that Γ ` N : A in λ2.

Proof. By induction on the given IS4 typing derivation. The case for the 2 introduction
rule needs admissibility of both weakening and the typing rule for substitution. J

Probabilistic Rewriting: Normalization,
Termination, and Unique Normal Forms
Claudia Faggian
Université de Paris, IRIF, CNRS, F-75013 Paris, France
faggian@irif.fr

Abstract
While a mature body of work supports the study of rewriting systems, abstract tools for Probabilistic
Rewriting are still limited. We study in this setting questions such as uniqueness of the result (unique
limit distribution) and normalizing strategies (is there a strategy to find a result with greatest
probability?). The goal is to have tools to analyse the operational properties of probabilistic calculi
(such as probabilistic lambda-calculi) whose evaluation is also non-deterministic, in the sense that
different reductions are possible.

2012 ACM Subject Classification Theory of computation → Probabilistic computation; Theory of
computation → Rewrite systems; Theory of computation → Logic

Keywords and phrases probabilistic rewriting, PARS, abstract rewriting systems, confluence, prob-
abilistic lambda calculus

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.19

Related Version http://arxiv.org/abs/1804.05578

Acknowledgements This work benefitted of fruitful discussions with U. Dal Lago, B. Valiron, and
T. Leventis. I also wish to thank the anonymous referees for valuable comments and suggestions.

1 Introduction

Rewriting Theory [39] is a foundational theory of computing. Its impact extends to both
the theoretical side of computer science, and the development of programming languages. A
clear example of both aspects is the paradigmatic term rewriting system, λ-calculus, which
is also the foundation of functional programming. Abstract Rewriting Systems (ARS) are the
general theory which captures the common substratum of rewriting theory, independently of
the particular structure of the objects. It studies properties of terms transformations, such
as normalization, termination, unique normal form, and the relations among them. Such
results are a powerful set of tools which can be used when we study the computational and
operational properties of any calculus or programming language. Furthermore, the theory
provides tools to study and compare strategies, which become extremely important when a
system may have reductions leading to a normal form, but not necessarily. Here we need
to know: is there a strategy which is guaranteed to lead to a normal form, if any exists
(normalizing strategies)? Which strategies diverge if at all possible (perpetual strategies)?

Probabilistic Computation models uncertainty. Probabilistic models such as automata
[34], Turing machines [37], and the λ-calculus [36] exist since long. The pervasive role it
is assuming in areas as diverse as robotics, machine learning, natural language processing,
has stimulated the research on probabilistic programming languages, including functional
languages [27, 35, 32] whose development is increasingly active. A typical programming
language supports at least discrete distributions by providing a probabilistic construct which
models sampling from a distribution. This is also the most concrete way to endow the
λ-calculus with probabilistic choice [13, 10, 16]. Within the vast research on models of
probabilistic systems, we wish to mention that probabilistic rewriting is the explicit base of
PMaude [1], a language for specifying probabilistic concurrent systems.

© Claudia Faggian;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 19; pp. 19:1–19:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:faggian@irif.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.19
http://arxiv.org/abs/1804.05578
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Probabilistic Rewriting

Probabilistic Rewriting. Somehow surprisingly, while a large and mature body of work
supports the study of rewriting systems – even infinitary ones [12, 24] – work on the abstract
theory of probabilistic rewriting systems is still sparse. The notion of Probabilistic Abstract
Reduction Systems (PARS) has been introduced by Bournez and Kirchner in [5], and then
extended in [4] to account for non-determinism. Recent work [7, 15, 25, 3] shows an increased
research interest. The key element in probabilistic rewriting is that even when the probability
that a term leads to a normal form is 1 (almost sure termination), that degree of certitude is
typically not reached in any finite number of steps, but it appears as a limit. Think of a
rewrite rule (as in Fig. 1) which rewrites c to either the value T or c, with equal probability 1/2.
We write this c→ {c1/2, T1/2}. After n steps, c reduces to T with probability 1

2 + 1
22 + · · ·+ 1

2n .
Only at the limit this computation terminates with probability 1 .

The most well-developed literature on PARS is concerned with methods to prove almost
sure termination, see e.g. [4, 19, 3] (this interest matches the fact that there is a growing
body of methods to establish AST [2, 20, 22, 30]). However, considering rewrite rules subject
to probabilities opens numerous other questions on PARS, which motivate our investigation.

We study a rewrite relation on distributions, which describes the evolution of a probabilistic
system, for example a probabilistic program P . The result of the computation is a distribution
β over all the possible values of P . The intuition (see [27]) is that the program P is executed,
and random choices are made by sampling. This process eventually defines a distribution β
over the various outputs that the program can produce. We write this P ∞=⇒ β.

What happens if the evaluation of a term P is also non-deterministic? Remember that
non-determinism arises naturally in the λ-calculus, because a term may have several redexes.
This aspect has practical relevance to programming. Together with the fact that the result
of a terminating computation is unique, it is key to the inherent parallelism of functional
programs (see e.g. [29]). When assuming non-deterministic evaluation, several questions on
PARS arise naturally. For example: (1.) when is the result unique? (naively, if P ∞=⇒ α

and P ∞=⇒ β, is α = β?) (2.) Do all rewrite sequences from the same term have the same
probability to reach a result? (3.) If not, does there exist a strategy to find a result with
greatest probability?

Such questions are relevant not only to the theory, but also to the practice of computing.
We believe that to study them, we can advantageously adapt techniques from Rewrite
Theory. However, we cannot assume that standard properties of ARS hold for PARS. The
game-changer is that termination appears as a limit. In Sec. 4.4 we show that a well-known
ARS property, Newman’s Lemma, does not hold for PARS. This is not surprising; indeed,
Newman’s Lemma is known not to hold in general for infinitary rewriting [23, 26]. Still, our
counter-example points out that moving from ARS to PARS is non-trivial. There are two
main issues: we need to find the right formulation and the right proof technique. It seems
especially important to have a collection of proof methods which apply well to PARS.

Content and contributions. Probability is concerned with asymptotic behaviour: what
happens not after a finite number n of steps, but when n tends to infinity. In this paper we
focus on the asymptotic behaviour of rewrite sequences with respect to normal forms. We
study computational properties such as (1.),(2.),(3.) above. We do so with the point of view
of ARS, aiming for properties which hold independently of the specific nature of the rewritten
objects; the purpose is to have tools which apply to any probabilistic rewriting system.

After introducing and motivating our formalism (Sec. 2 and 3), in Sec. 4, we extend to
the probabilistic setting the notions of Normalization (WN), Termination (SN) and Unique
Normal Form (UN). In the rest of the paper, we provide methods and criteria to establish

C. Faggian 19:3

these properties, and we uncover relations between them. In particular, we study normalizing
strategies. To do so, we extend to the probabilistic setting a proposal by Van Oostrom [40],
which is based on Newman’s property of Random Descent [31, 40, 41] (see Sec. 1.1). The
Random Descent method turns out to provide proof techniques which are well suited to
PARS. Specific contributions are the following.

We propose an analogue of UN for PARS. This is not obvious; the question was already
studied in [15] for PARS which are AST, but their solution does not extend to general
PARS.
We investigate the classical ARS method to prove UN via confluence. It turns out that
the notion of confluence does not need to be as strong as the classical case would suggest,
broadening its scope of application. Subtle aspects appear when dealing with limits, and
the proof demand specific techniques.
We develop a probabilistic extension of the ARS notions of Random Descent (E-RD,
Sec. 5) and of being better (R-better, Sec. 7) as tools to analyze and compare strategies,
in analogy to their counterpart in [40]. Both properties are here parametric with respect
to a chosen event of interest. E-RD entails that all rewrite sequences from a term lead to
the same result, in the same expected number of steps (the average of number of steps,
weighted w.r.t. probability). R-better offers a method to compare strategies (“strategy
S is always better than strategy T ”) w.r.t. the probability of reaching a result and the
expected time to reach a result. It provides a sufficient criterion to establish that a strategy
is normalizing (resp. perpetual) i.e. the strategy is guaranteed to lead to a result with
maximal (resp. minimal) probability. A significant technical feature (inherited from
[40]) is that both notions of E-RD and R-better come with a characterization via a local
condition (in ARS, a typical example of a local vs global condition is local confluence vs
confluence).

We apply these methods to study a probabilistic λ-calculus, which we discuss below
together with the notion of Random Descent. A deeper example of application to probabilistic
λ-calculus is in [18]; we discuss it in Sec.8 “Further work and applications”.
I Remark (On the term Random Descent). Please note that in [31], the term Random refers
to non-determinism (in the choice of the redex), not to randomized choice.

Related work. We discuss related work in the context of PARS [4, 5]. We are not aware of
any work which investigates normalizing strategies (or normalization in general, rather than
termination). Instead, confluence in probabilistic rewriting has already drawn interesting
work. A notion of confluence for a probabilistic rewrite system defined over a λ-calculus is
studied in [14, 9]; in both case, the probabilistic behavior corresponds to measurement in a
quantum system. The work more closely related to our goals is [15]. It studies confluence of
non-deterministic PARS in the case of finitary termination (being finitary is the reason why
a Newman’s Lemma holds), and in the case of AST. As we observe in Sec. 4.3, their notion of
unique limit distribution (if α, β are limits, then α = β), while simple, it is not an analogue
of UN for general PARS; we extend the analysis beyond AST, to the general case, which arises
naturally when considering probabilistic λ-calculus. On confluence, we also mention [25],
whose results however do not cover non-deterministic PARS ; the probability of the limit
distribution is concentrated in a single element, in the spirit of Las Vegas Algorithms. [25]
revisits results from [5], while we are in the non-deterministic framework of [4].

The way we define the evolution of PARS, via the one-step relation ⇒, follows the
approach in [7], which also contains an embryo of the current work (a form of diamond
property); the other results and developments are novel. A technical difference with [7] is

FSCD 2019

19:4 Probabilistic Rewriting

that for the formalism to be general, a refinement is necessary (see Sec. 2.2); the issue was
first pointed out in [15]. Our refinement is a variation of the one introduced (for the same
reasons) in [3]; we however do not strictly adopt it, because we prefer to use a standard
definition of distribution. [3] demonstrates the equivalence with the approach in [4].

1.1 Key notions

Random Descent. Newman’s Random Descent (RD) [31] is an ARS property which guar-
antees that normalization suffices to establish both termination and uniqueness of normal
forms. Precisely, if an ARS has random descent, paths to a normal form do not need to
be unique, but they have unique length. In its essence: if a normal form exists, all rewrite
sequences lead to it, and all have the same length1. While only few systems directly verify it,
RD is a powerful ARS tool; a typical use in the literature is to prove that a strategy has RD,
to conclude that it is normalizing. A well-known property which implies RD is a form of
diamond: “← · → ⊆ (→ · ←) ∪ =”.

In [40] Von Oostrom defines a characterization of RD by means of a local property and
proposes RD as a uniform method to (locally) compare strategies for normalization and
minimality (resp. perpetuality and maximality). [41] extends the method and abstracts the
notion of length into a notion of measure. In Sec. 5 and 7 we develop similar methods in a
probabilistic setting. The analogous of length, is the expected number of steps (Sec. 5.1).

Probabilistic Weak λ-calculus. A notable example of system which satisfies RD is the
pure untyped λ-calculus endowed with call-by-value (CbV) weak evaluation. Weak [21, 6]
means that reduction does not evaluate function bodies (i.e. the scope of λ-abstractions). We
recall that weak CbV is the basis of the ML/CAML family of functional languages (and of
most probabilistic functional languages). Because of RD, weak CbV λ-calculus has striking
properties (see e.g. [8] for an account). First, if a term M has a normal form N , any rewrite
sequence will find it; second, the number n of steps such that M →n N is always the same.

In Sec. 6, we study a probabilistic extension of weak CbV, Λweak
⊕ . We show that it has

analogous properties to its classical counterpart: all rewrite sequences converge to the same
result, in the same expected number of steps.

Local vs global conditions. To work locally means to reduce a test problem which is global,
i.e., quantified over all rewrite sequences from a term, to local properties (quantified only
over one-step reductions from the term), thus reducing the space of search when testing.

A paradigmatic example of a global property is confluence (CR: b ∗← a→∗ c ⇒ ∃d s.t.
b→∗ d ∗← c). Its global nature makes it difficult to establish. A standard way to factorize
the problem is: (1.) prove termination and (2.) prove local confluence (WCR: b← a→ c ⇒
∃d s.t. b→∗ d ∗← c). This is exactly Newman’s lemma: Termination + WCR ⇒ CR. The
beauty of Newman’s lemma is that a global property (CR) is guaranteed by a local property
(WCR). Locality is also the strength and beauty of the RD method. While Newman’s lemma
fails in a probabilistic setting (see Sec. 4.4), RD methods can be adapted (Sec. 5 and 7).

1 or, in Newman’s original terminology: the end-form is reached by random descent (whenever x→k y
and x→n u with u in normal form, all maximal reductions from y have length n− k and end in u).

C. Faggian 19:5

1.2 Probabilistic λ-calculus and (Non-)Unique Result
Rewrite theory provides numerous tools to study uniqueness of normal forms, as well as
techniques to study and compare strategies. This is not the case in the probabilistic setting.
Perhaps a reason is that when extending the λ-calculus with a choice operator, confluence is
lost, as was observed early [11]; we illustrate it in Example 1.1 and 1.2, which is adapted from
[11, 10]. The way to deal with this issue in probabilistic λ-calculi (e.g. [13, 10, 16]) has been
to fix a deterministic reduction strategy, typically “leftmost-outermost”. To fix a strategy is
not satisfactory, neither for the theory nor the practice of computing. To understand why
this matters, recall for example that confluence of the λ-calculus is what makes functional
programs inherently parallel: every sub-expression can be evaluated in parallel, still, we
can reason on a program using a deterministic sequential model, because the result of the
computation is independent of the evaluation order (we refer to [29], and to Harper’s text
“Parallelism is not Concurrency” for discussion on deterministic parallelism, and how it differs
from concurrency). Let us see what happens in the probabilistic case.

I Example 1.1 (Confluence failure). Let us consider the untyped λ-calculus extended with a
binary operator ⊕ which models probabilistic choice. Here ⊕ is just flipping a fair coin: M⊕N
reduces to either M or N with equal probability 1/2; we write this as M ⊕N → {M 1

2 , N
1
2 }.

Consider the term PQ, where P = (λx.x)(λx.x XOR x) and Q = (T⊕ F); here XOR is the
standard constructs for the exclusive OR, T and F are terms which code the booleans.

If we evaluate P and Q independently, from P we obtain λx.(x XOR x), while from Q

we have either T or F, with equal probability 1/2. By composing the partial results, we
obtain {(T XOR T) 1

2 , (F XOR F) 1
2 }, and therefore {F1}.

If we evaluate PQ sequentially, in a standard left-most outer-most fashion, PQ reduces
to (λx.x XOR x)Q which reduces to (T⊕ F) XOR (T⊕ F) and eventually to {T 1

2 , F
1
2 }.

I Example 1.2. The situation becomes even more complex if we examine also the possibility
of diverging; try the same experiment as above on the term PR, with R = (T ⊕ F) ⊕∆∆
(where ∆ = λx.xx). Proceeding as before, we now obtain either {F 1

2 } or {T 1
8 , F

1
8 }.

We do not need to loose the features of λ-calculus in the probabilistic setting. In fact,
while some care is needed, determinism of the evaluation can be relaxed without giving
up uniqueness of the result: the calculus we introduce in Sec. 6 is an example (we relax
determinism to RD); we fully develop this direction in further work [18]. To be able to do
so, we need abstract tools and proof techniques to analyze probabilistic rewriting. The same
need for theoretical tools holds, more in general, whenever we desire to have a probabilistic
language which allows for deterministic parallel reduction.

In this paper we focus on uniqueness of the result, rather than confluence, which is an
important and sufficient, but not necessary property.

2 Probabilistic Abstract Rewriting System

We assume the reader familiar with the basic notions of rewrite theory (such as Ch. 1 of
[39]), and of discrete probability theory. We review the basic language of both. We then
recall the definition of PARS from [5, 4], and explain on examples how a system described
by a PARS evolves. This will motivate the formalism which we introduce in Sec. 3.

Basics on ARS. An abstract rewrite system (ARS) is a pair C = (C,→) consisting of a set C
and a binary relation → on C; →∗ denotes the transitive reflexive closure of →. An element
u ∈ C is in normal form if there is no c with u→ c; NFC denotes the set of the normal forms

FSCD 2019

19:6 Probabilistic Rewriting

of C. If c→∗ u and u ∈ NFC, we say c has a normal form u. C has the property of unique
normal form (with respect to reduction)(UN) if ∀u, v ∈ NFC ,

(
c→∗ u & c→∗ v ⇒ u = v

)
.

C has the normal form property (NFP) if ∀b, c ∈ C, ∀u ∈ NFC ,
(
b→∗ c & b→∗ u⇒ c→∗ u

)
.

NFP implies UN. The fact that an ARS has unique normal forms implies neither that all terms
have a normal form, nor that if a term has a normal form, each rewrite sequence converges to
it. A term c is terminating2 (aka strongly normalizing, SN), if it has no infinite sequence
c→ c1 → c2...; it is normalizing (aka weakly normalizing, WN), if it has a normal form.
These are all important properties to establish about an ARS, as it is important to have a
rewrite strategy which finds a normal form, if it exists.

Basics on Probabilities. The intuition is that random phenomena are observed by means of
experiments (running a probabilistic program is such an experiment); each experiment results
in an outcome. The collection of all possible outcomes is represented by a set, called the
sample space Ω. When the sample space Ω is countable, the theory is simple. A discrete
probability space is given by a pair (Ω, µ), where Ω is a countable set, and µ is a discrete
probability distribution on Ω, i.e. a function µ : Ω→ [0, 1] such that

∑
ω∈Ω µ(ω) = 1. A

probability measure is assigned to any subset A ⊆ Ω as µ(A) =
∑
ω∈A µ(ω). In the language

of probabilists, a subset of Ω is called an event.

I Example 2.1 (Die). Consider tossing a die once. The space of possible outcomes is the set
Ω = {1, 2, 3, 4, 5, 6}. The probability µ of each outcome is 1/6. The event “result is odd" is
the subset A = {1, 3, 5}, whose probability is µ(A) = 1/2.

Each function F : Ω → ∆, where ∆ is another countable set, induces a probability
distribution µF on ∆ by composition: µF (d) := µ(F−1(d)) i.e. µ{ω ∈ Ω : F (ω) = d}.
Thus (∆, µF) is also a probability space. In the language of probability theory, F is called
a discrete random variable on (Ω, µ). The expected value (also called the expectation or
mean) of a random variable F is the weighted (in proportion to probability) average of the
possible values of F . Assume F : Ω→ ∆ discrete and g : ∆→ R a non-negative function,
then E(g(F)) =

∑
d∈∆ g(d)µF (d).

(Sub)distributions: operations and notation. We need the notion of subdistribution to
account for unsuccessful computations and partial results. Given a countable set Ω, a function
µ : Ω→ [0, 1] is a probability subdistribution if ‖µ‖ :=

∑
ω∈Ω µ(ω) ≤ 1. We write DST(Ω)

for the set of subdistributions on Ω. With a slight abuse of language, we often use the term
distribution also for subdistribution. The support of µ is the set Supp(µ) = {a ∈ Ω | µ(a) > 0}.
DSTF(Ω) denotes the set of µ ∈ DST(Ω) with finite support.

DST(Ω) is equipped with the order relation of functions : µ ≤ ρ if µ(a) ≤ ρ(a) for
each a ∈ Ω. Multiplication for a scalar (p · µ) and sum (σ + ρ) are defined as usual,
(p · µ)(a) = p · µ(a), (σ + ρ)(a) = σ(a) + ρ(a), provided p ∈ [0, 1], and ‖σ‖+ ‖ρ‖ ≤ 1.

We adopt the following convention: if Ω′ ⊆ Ω, and µ ∈ DST(Ω′), we also write µ ∈
DST(Ω), with the implicit assumption that the extension behaves as µ on Ω′, and is 0 otherwise.
In particular, we identify a subdistribution and its support.

2 Please observe that the terminology is community-dependent. In logic: Strong Normalization, Weak
Normalization, Church-Rosser (hence the standard abbreviations SN, WN, CR). In computer science:
Termination, Normalization, Confluence.

C. Faggian 19:7

r0 : c→ {c1/2, T1/2}

c
c

c
. . .

T
T

T

1/2
1/4

1/4
1/2

Figure 1 Almost Sure Ter-
mination.

2

1
0

2 · · ·

3
2 · · ·

4 · · ·

1/2
1/4

1/4

1/2
1/4

1/4

Figure 2 Determinis-
tic PARS.

2

1
0

2
1 · · ·

3 · · ·

3
2 stop

4 · · ·

1/2
1/4

1/4
1/8

1/8

1/2
1/4 1/4

1/4

Figure 3 Non-deterministic
PARS.

I Notation 2.2 (Representation). We represent a (sub)distribution by explicitly indicating
the support, and (as superscript) the probability assigned to each element by µ. We write
µ = {ap0

0 , . . . , a
pn
n } if µ(a0) = p0, . . . , µ(an) = pn and µ(aj) = 0 otherwise.

2.1 Probabilistic Abstract Rewrite Systems (PARS)
A probabilistic abstract rewrite system (PARS) is a pair A = (A,→) of a countable set A and
a relation → ⊆ A× DSTF(A) such that for each (a, β) ∈ →, ‖β‖ = 1. We write a → β for
(a, β) ∈ → and we call it a rewrite step, or a reduction. An element a ∈ A is in normal form
if there is no β with a→ β. We denote by NFA the set of the normal forms of A (or simply
NF when A is clear). A PARS is deterministic if, for all a, there is at most one β with a→ β.
I Remark. The intuition behind a→ β is that the rewrite step a→ b (b ∈ A) has probability
β(b). The total probability given by the sum of all steps a→ b is 1.

Probabilistic vs Non-deterministic. It is important to have clear the distinction between
probabilistic choice (which globally happens with certitude) and non-deterministic choice
(which leads to different distributions of outcomes.) Let us discuss some examples.

I Example 2.3 (A deterministic PARS). Fig. 2 shows a simple random walk over N, which
describes a gambler starting with 2 points and playing a game where every time he either gains
1 point with probablity 1/2 or looses 1 point with probability 1/2. This system is encoded
by the following PARS on N: n + 1 → {n1/2, (n + 2)1/2}. Such a PARS is deterministic,
because for every element, at most one choice applies. Note that 0 is a normal form.

I Example 2.4 (A non-deterministic PARS). Assume now (Fig. 3) that the gambler of
Example 2.3 is also given the possibility to stop at any time. The two choices are here
encoded as follows: n+ 1→ {n1/2, (n+ 2)1/2}, n+ 1→ {stop1}.

2.2 Evolution of a system described by a PARS
We now need to explain how a system which is described by a PARS evolves. An option is
to follow the stochastic evolution of a single run, a sampling at a time, as we have done in
Fig. 1, 2, and 3. This is the approach in [4], where non-determinism is solved by the use of
policies. Here we follow a different (though equivalent) way (see the Related Work Section).
We describe the possible states of the system, at a certain time t, globally, as a distribution on
the space of all terms. The evolution of the system is then a sequence of distributions. Since
all the probabilistic choices are taken together, the only source of choice in the evolution is
non-determinism. This global approach allows us to deal with non-determinism by using
techniques which have been developed in Rewrite Theory. Before introducing the formal
definitions, we informally examine some examples, and point out why some care is needed.

FSCD 2019

19:8 Probabilistic Rewriting

r0 : a → {a1/2, T1/2}, r1 : a → {a1/2, F1/2}

{a1}

{a1/2, T1/2}{a1/2, T1/2}{a1/2, T1/2}

{a1/4, T3/4}{a1/4, T3/4}{a1/4, T3/4} · · ·

{a1/4, T1/2, F1/4}, · · ·

{a1/2, F1/2}

{a1/4, T1/4, F1/2} · · ·

{a1/4, F3/4}· · ·

r0

r0
r1

r1
r0
r1

Figure 4 Ex.2.6
(non-deterministic PARS).

r0 : a → {a1/2, T1/2}, r2 : a → {a1}

{a1}

{a1/2, T1/2}{a1/2, T1/2}{a1/2, T1/2}

{a1/4, T3/4}{a1/4, T3/4}{a1/4, T3/4} · · ·

{a1/2, T1/2}· · ·

{a1}

{a1/2, T1/2} · · ·

{a1} · · ·

r0

r0
r2

r2
r0
r2

Figure 5 Ex.2.7
(non-deterministic PARS).

I Example 2.5 (Fig.1 continued). The PARS described by the rule r0 : c→ {c1/2, T1/2} (in
Fig. 1) evolves as follows: {c}, {c1/2, T1/2}, {c1/4, T3/4},

I Example 2.6 (Fig.4). Fig. 4 illustrates the possible evolutions of a non-deterministic
system which has two rules: r0 : a→ {a1/2, T1/2} and r1 : a→ {a1/2, F1/2}. The arrows are
annotated with the chosen rule.

I Example 2.7 (Fig.5). Fig. 5 illustrates the possible evolutions of a system with rules
r0 : a→ {a1/2, T1/2} and r2 : a→ {a1}.

If we look at Fig. 3, we observe that after two steps, there are two distinct occurrences of
the element 2, which live in two different runs of the program: the run 2.1.2, and the run
2.3.2. There are two possible transitions from each 2. The next transition only depends on
the fact of having 2, not on the run in which 2 occurs: its history is only a way to distinguish
the occurrence. For this reason, given a PARS (A,→), we keep track of different occurrences
of an element a ∈ A, but not necessarily of the history. Next section formalizes these ideas.

Markov Decision Processes. To understand our distinction between occurrences of a ∈ A
in different paths, it is helpful to think how a system is described in the framework of Markov
Decision Processes (MDP) [33]. Indeed, in the same way as ARS correspond to transition
systems, PARS correspond to probabilistic transitions. Let us regard a PARS step r : a→ β

as a probabilistic transition (r is here a name for the rule). Let assume a0 ∈ A is an initial
state. In the setting of MDP, a typical element (called sample path) of the sample space Ω
is a sequence ω = (a0, r0, a1, r1...) where r0 : a0 → β1 is a rule, a1 ∈ Supp(β1) an element,
r1 : a1 → β1, and so on. The index t = 0, 1, 2, . . . , n, . . . is interpreted as time. On Ω various
random variables are defined; for example, Xt = at, which represents the state at time t.
The sequence 〈Xt〉 is called a stochastic process.

3 A Formalism for Probabilistic Rewriting

We introduce a formalism to describe the evolution of a system described by a PARS. From
now on, we assume A to be a countable set on which a PARS (A,→) is defined.

The sample space. Let m be a list over A, and mA the collection of all such lists. More
formally, we fix a countable index set S, and let m = {(j, mj) | j ∈ S, mj ∈ A} be the graph
of a function from J ⊆ S to A (j 7→ mj). We denote by mA the collection of all such m.
DSTF(mA) :=

⋃
m∈mA DSTF(m) is the collection of finitely supported distributions µ on m ∈ mA

(i.e. µ : m→ [0, 1], with (j, a) 7→ p). For concreteness, here we assume S = N. Hence, if J is
finite, m is simply a list over A.

C. Faggian 19:9

flat : (j, a) 7→ a

(−)flat : DSTF(mA) → DSTF(A)
µ 7→ µflat

where µflat(a) = µ{flat−1(a)} =
∑

(j,a)∈m

µ(j, a)

Figure 6 Flattening.

I : a 7→ (j, a)

(−)I : DSTF(A) → DSTF(mA)
β 7→ βI

where βI(j, a) = β{I−1(j, a)} = β(a)

Figure 7 Embedding.

I Notation 3.1. If µ ∈ DSTF(mA), we write its support as a list. We write [a, a, b, b] for
{(1, a), (2, a), (3, b), (4, b)} and [a1/4, a1/4, b1/6, b1/3] for {(1, a)1/4, (2, a)1/4, (3, b)1/6, (4, b)1/3}

I Remark 3.2 (Index Set). The role of indexing is only to distinguish different occurrences;
the specific order is irrelevant. We use N as index set for simplicity. Another natural instance
of S is A∗ i.e. the set of finite sequences on A. This way, occurrences are labelled by their
path, which allows a direct connection with the sample space of Markov Decision Processes
[33] we mention in 2.2 (see Appendix).
Given the PARS A = (A,→), we work with two families of probability spaces: (A, β), where
β ∈ DST(A) (used e.g. to describe a rewrite step) and (m, µ), where m ∈ mA and µ ∈ DSTF(m).

Letters Convention. we reserve the letters α, β, γ for distributions in DST(A), and the
letters µ, ν, σ, τ, ρ, ξ for distributions in DSTF(mA).

Embedding and Flattening. we move between A and subsets of N × A via the maps
flat(−) : m → A and I : A → n (Fig. 6 and 7), where to define an injection I, we fix an
enumeration n : N → A, and identify n with its graph. Given a distribution µ ∈ DSTF(m),
the function flat induces the distribution µflat ∈ DSTF(A) (Fig. 6); conversely, given
β ∈ DSTF(A), the function I : A → n ∈ mA induces the distributions βI ∈ DSTF(mA)
(Fig. 7). Recall that in Sec. 2 we already reviewed how functions induce distributions; indeed,
with that language, flat(−) : m→ A and I : A→ n are random variables.

I Example 3.3. Assume β = {a0.3, b0.2, c0.5}, and an enumeration of {a, b, c}. Then βI =
{(a, 1)0.3, (b, 2)0.2, (c, 3)0.5} which we also write [a0.3, b0.2, c0.5].

Disjoint sum
⊎
. The disjoint sum of lists is simply their concatenation. The disjoint sum of

sets in mA and of the corresponding distributions is easily defined.

The rewriting relation ⇒⇒⇒. Let A = (A,→) be a PARS. We now define a binary relation
⇒ on DSTF(mA), which is obtained by lifting the relation →. Several natural choices are
possible. Here, we choose a lifting which forces all non-terminal elements to be reduced.
This plays an important role for the development of the paper, as it corresponds to the the
key notion of one step reduction in classical ARS (see discussion in Sec. 8).

I Definition 3.4 (Lifting). Given a relation →⊆ A × DST(A), its lifting to a relation
⇒⊆ DSTF(mA) × DSTF(mA) is defined by the following rules, where for readibility we use
Notation 3.1.

a ∈ NFA
[a1]⇒ [a1] L1

a→ β ∈ A
[a1]⇒ βI

L2

(
[m1
j]⇒ µj

)
j∈J

[mpjj | j ∈ J]⇒
⊎
j∈J

pj · µj
L3

FSCD 2019

19:10 Probabilistic Rewriting

In rule (L2), βI is the result of embedding β ∈ DSTF(A) in DSTF(mA) (see Fig. 7 and
Example 3.3). To apply rule (L3), we choose a reduction step from mj for each j ∈ J . The
disjoint sum of all µj (j ∈ J) is weighted with the probability of each mj .

I Example 3.5. Let us derive the reduction in Fig. 3.
2→ {11/2, 31/2}

[21] ⇒ [11/2, 31/2]

1→ {01/2, 21/2} 3→ {21/2, 41/2}

[11/2, 31/2] ⇒ [01/4, 21/4, 21/4, 41/4]

. . . 2→ {stop1} 2→ {11/2, 31/2} . . .

[01/4, 21/4, 21/4, 41/4] ⇒ [..., stop1/4, 11/8, 31/8, ...]

Rewrite sequences. We write µ0 ⇒
∗ µn to indicate that there is a finite sequence µ0, . . . , µn

such that µi ⇒ µi+1 for all 0 ≤ i < n (and µ0 ⇒
k µk to specify its length k). We write

〈µn〉n∈N to indicate an infinite rewrite sequence.

Figures conventions. We depict any rewrite relation simply as →; as it is standard, we use
� for →∗; solid arrows are universally quantified, dashed arrows are existentially quantified.

Normal Forms. The intuition is that a rewrite sequence describes a computation; a distri-
bution µi such that µ⇒i µi represents a state (precisely, the state at time i) in the evolution
of the system with initial state µ. Let µ ∈ DSTF(mA) represents a state of the system.
The probability that the system is in normal form is described by µflat(NFA) (recall
Example 2.1); the probability that the system is in a specific normal form t is described
by µflat(t). It is convenient to denote by µNF the restriction of µflat to NFA. Observe that
‖µNF‖ = µflat(NFA) = µNF(NFA). The probability of reaching a normal form t can only increase
in a rewrite sequence (becaluse of (L1) in Def. 3.4). Therefore the following key lemma holds.

I Lemma 3.6. If σ ⇒ τ then σNF ≤ τ NF.

Equivalences and Order. In this paper we do not need, and do not define, any equality
on lists. If we wanted, the natural one would be equality up to reordering, making lists
into multisets; however, here we are rather interested in observing specific events. Given
µ, ρ ∈ DSTF(mA), we only conside equivalence and order relations w.r.t. the associated (flat)
distribution in DST(A) and in DST(NFA). The order on DST(A) is the pointwise order (Sec. 2).

I Definition 3.7 (Equivalence and Order). Let µ, ρ ∈ DSTF(mA).
1. Flat Equivalence: Eflat(µ, ρ), if µflat = ρflat. Similarly, ≤flat (µ, ρ) if µflat ≤ ρflat.
2. Equivalence in Normal Form: ENF(µ, ρ), if µNF = ρNF. Similarly, ≤NF (µ, ρ), if µNF ≤ ρNF

3. Equivalence in the NF-norm: E‖‖N(µ, ρ), if ‖µNF‖ = ‖ρNF‖, and ≤‖‖N (µ, ρ), if ‖µNF‖ ≤ ‖ρNF‖

Observe that (2.) and (3.) compare µ and ρ abstracting from any term which is not in
normal form; these two will be the relations which matter to us.

I Example 3.8. Assume T is a normal form and a 6= c are not. (1.) Let µ = [T1/2, T1/2], ρ =
[T1]. E(µ, ρ) holds for E ∈ {Eflat, ENF, E‖‖N} because µflat = ρflat = {T1}. (2.) Let
µ = [a1/2, T1/2], ρ = [c1/2, T1/6, T2/6]. ENF(µ, ρ), E‖‖N(µ, ρ) both hold, Eflat(µ, ρ) does not.

The above example illustrates also the following.

I Fact 3.9. Eflat(µ, ρ) ⇒ ENF(µ, ρ) ⇒ E‖‖N(µ, ρ). Similarly for the order relations.

C. Faggian 19:11

4 Asymptotic Behaviour and Normal Forms

We examine the asymptotic behaviour of rewrite sequences with respect to normal forms. If
a rewrite sequence describes a computation, the result of the computation is a distribution
on the possible outputs of the probabilistic program. We are interested in the result at the
limit, which is formalized by the (standard) notion of limit distribution (Def. 4.2). What is
less standard here, and demands care, is that each termhas a set of limits. In the section we
investigate the notions of normalization, termination and unique normal form for PARS.

4.1 Limit Distributions

Before introducing limit distributions, we revisit some facts on sequences of bounded functions.

Monotone Convergence. Let 〈αn〉n∈N be a non-decreasing sequence of (sub)distributions
over a countable set X (the order on subdistributions is defined pointwise, Sec. 2). For each
t ∈ X, the sequence 〈αn(t)〉n∈N of real numbers is nondecreasing and bounded, therefore the
sequence has a limit, which is the supremum: limn→∞ αn(t) = supn{αn(t)}. Observe that if
α < α′ then ‖α‖ < ‖α′‖, where we recall that ‖α‖ :=

∑
x∈X α(x).

I Fact 4.1. Given 〈αn〉n∈N as above, the following properties hold. Define

β(t) = lim
n→∞

αn(t), ∀t ∈ X

1. limn→∞ ‖αn‖ = ‖β‖
2. limn→∞ ‖αn‖ = supn{‖αn‖} ≤ 1
3. β is a subdistribution over X.

Proof.
1. follows from the fact that 〈αn〉n∈N is a nondecreasing sequence of functions, hence (by

Monotone Convergence, see Thm. A.1 in Appendix) we have :

lim
n→∞

∑
t∈X

αn(t) =
∑
t∈X

lim
n→∞

αn(t)

2. is immediate, because the sequence 〈‖αn‖〉n∈N is nondecreasing and bounded.
3. follows from (1.) and (2.). Since ‖β‖ = supn ‖αn‖ ≤ 1, then β is a subdistribution. J

Limit distributions. Let 〈µn〉n∈N be a rewrite sequence. If t ∈ NFA, then 〈µNF
n (t)〉n∈N is

nondecreasing (by Lemma 3.6); so we can apply Fact 4.1, with 〈αn〉n∈N now being 〈µNF
n 〉n∈N.

I Definition 4.2 (Limits). Let 〈µn〉n∈N be a rewrite sequence from µ ∈ DSTF(mA). We say
1. 〈µn〉n∈N converges with probability p = supn ‖µNF

n ‖.
2. 〈µn〉n∈N converges to β ∈ DSTF(NFA)

(
written 〈µn〉n∈N

∞=⇒ β
)
, where for t ∈ NFA

β(t) = supn{µNF
n (t)}

We call β a limit distribution of µ. We write µ ∞=⇒ β if µ has a sequence converging to β,
and define Lim(µ) := {β | µ ∞=⇒ β}.

FSCD 2019

19:12 Probabilistic Rewriting

4.2 Normalization and Termination
Non-determinism implies that several rewrite sequences are possible from the same µ ∈
DSTF(mA). In the setting of ARS, the notion of reaching a result from a term c comes in two
flavours (see Sec. 2): (1.) there exists a rewrite sequence from c which leads to a normal form
(normalization, WN); (2.) each rewrite sequence from c leads to a normal form (termination,
SN). Below, we do a similar ∃/∀ distinction . Instead of reaching a normal form or not, a
sequence does so with a probability q.

I Definition 4.3 (Normalization and Termination). Let µ ∈ DSTF(mA), q ∈ [0, 1]. We write
µ
∞=⇒p if there exists a sequence from µ which converges with probability p.
µ is p-WN∞ (µ normalizes with probability p) if p is the greatest probability to which a
sequence from µ can converge.
µ is p-SN∞(µ terminates with probability p) if each sequence from µ converges with
probability p. µ is Almost Sure Terminating (AST) if it terminates with probability 1.

A PARS is p-WN∞, p-SN∞, AST, if each µ satisfies that property.

I Example 4.4. The system in Fig. 5 is 1-WN∞, but not 1-SN∞. The top rewrite sequence
(in blue) converges to 1 = limn→∞

∑n
1

1
2n . The bottom rewrite sequence (in red) converges

to 0. In between, we have all dyadic possibilities. In contrast, the system in Fig. 4 is AST.

I Remark (Not only AST). Many natural examples are not limited to termination and AST,
such as those in Fig. 5, in Example 1.2 and 6.3. For this reason, we go beyond AST, and
moreover make a distinction between weak and strong normalization.

4.3 On Unique Normal Forms
How do different rewrite sequences from the same initial µ compare w.r.t. the result they
compute? Assume [M1] ∞=⇒ α and [M1] ∞=⇒ β, it is natural to wonder how β and α relate.
Normalization and termination are quantitative yes/no properties - we are only interested in
the measure ‖β‖, for β limit distribution; for example, if µ ∞=⇒ {F1} and µ ∞=⇒ {T1/2, F1/2},
then µ converges with probability 1, but we make no distinction between the two -very
different- results. Similarly, consider again Fig. 4. The system is AST, however the limit
distributions are not unique: they span the continuum {Tp, F1−p}, for p ∈ [0, 1]. These
observations motivate attention to finer-grained properties.

In Sec. 2 we reviewed the ARS notion of unique normal form (UN). Let us now examine
an analogue of UN in a probabilistic setting. An intuitive candidate is the following :

ULD : if α, β ∈ Lim(µ), then α = β

which was first proposed in [15], where is shown that, in the case of AST, confluence implies
ULD. However, ULD is not a good analogue in general, because a PARS does not need to be
AST (or SN∞); it may well be that µ ∞=⇒ α and µ ∞=⇒ β, with ‖α‖ 6= ‖β‖, as in Ex. 1.2 and in
Fig. 5; similar examples are natural in an untyped probabilistic λ-calculus (recall that the
λ-calculus is not SN!). In the general case, ULD is not implied by confluence: the system in
Fig. 5 is indeed confluent. We then would like to say that it satisfies UN.

We propose as probabilistic analogue of UN the following property

UN∞: Lim(µ) has a unique maximal element.

I Remark. In the case of SN∞ (and AST), all limits are maximal, hence UN∞ becomes ULD.

C. Faggian 19:13

4.3.1 Confluence and UN∞

We justify that UN∞ is an appropriate generalization of the UN property, by showing that it
satisfies an analogue of standard ARS results: “Confluence implies UN” (see Thm. 4.7) and
“the Normal Form Property implies UN” (Lemma 4.6). While the statements are similar to
the classical ones, the content is not. To understand why is different, and non-trivial, observe
that Lim(µ) is in general uncountable, hence there is not even reason to believe that Lim(µ)
has maximal elements, for the same reason as [0, 1) has no max, even if it has a sup.
I Remark 4.5 (Which notion of Confluence?). To guarantee UN∞, it suffices a weaker form
of confluence than one would expect. Assume σ ∗⇔ µ ⇒∗ ρ; with the standard notion of
confluence in mind, we may require that ∃ξ such that σ ⇒∗ ξ, ρ ⇒∗ ξ or that ∃ξ, ξ′ such
that σ ⇒∗ ξ, ρ ⇒∗ ξ′ and Eflat(ξ, ξ′). Both are fine, but a weaker notion of equivalence
suffices: NF-Confluence (defined below), which only regards normal forms. Obviously, the two
stronger notions of confluence which we just discussed, imply it.
A PARS satisfies the following properties if they hold for each µ ∈ DSTF(mA):

NF-Confluence(Confluence in Normal Form):
∀σ, ρ with σ ∗⇔ µ⇒∗ ρ, ∃ξ, τ such that σ ⇒∗ ξ, ρ⇒∗ τ , and ξNF = τ NF.
NFP∞ (Normal Form Property): if α is maximal in Lim(µ), and µ⇒∗ σ then σ ∞=⇒ α.
LimP (Limit Distributions Property): if α ∈ Lim(µ) and µ ⇒∗ σ, there exists
β ∈ Lim(µ) such that σ ∞=⇒ β and α ≤ β.

The following result (which is standard for ARS) is easy, and independent from confluence.

I Lemma 4.6. For each PARS such that Lim(µ) has maximal elements, NFP∞⇒ UN∞.

Proof. Let α ∈ Lim(µ) be maximal. If β ∈ Lim(µ), there is a sequence 〈τn〉n∈N from µ such
that β = supn{τ NF

n }. NFP∞ implies that ∀n, τn
∞=⇒ α, and therefore τ NF

n ≤ α. We conclude
that β ≤ α; hence if β is maximal, β = α. J

To prove that NF-Confluence implies UN∞ is more delicate; the proof is in Appendix. We need
to prove that confluence implies existence and uniqueness of maximal elements of Lim(µ).

I Theorem 4.7. For each PARS, NF-Confluence implies UN∞.

Note that the proofs refines those for the analogous ARS properties in a way similar to
the generalization to infinitary rewriting, by approximation; the quantitative character of
probability add specific elements which are reminiscent of calculus.

4.4 Newman’s Lemma Failure, and Proof Technique for PARS
In Prop. 4.6 and 4.7, the statement has the same flavour as similar ones for ARS, but the
notions are not the same. The notion of limit (and therefore that of UN∞, SN∞, and WN∞)
does not belong to ARS. For this reason, the rewrite system (mA,⇒) which we are studying
is not simply an ARS, and one should not assume that standard ARS properties hold. An
illustration of this is Newman’s Lemma. Given a PARS, let us assume AST and observe
that in this case, confluence at the limit can be identified with UN∞. A wrong attempt: AST
+ WCR∞⇒ UN∞, where WCR∞: if µ⇒ σ1 and µ⇒ σ2, then ∃ρ, with σ1

∞=⇒ ρ, σ2
∞=⇒ ρ. This

does not hold. A counterexample is the PARS in Fig. 4, which does satisfy WCR∞. (More in
the Appendix.)

What is at play here is that the notion of termination is not the same in ARS and
in PARS. A fundamental fact of ARS (on which all proofs of Newman’s Lemma rely) is:
termination implies that the rewriting relation is well-founded. All terminating ARS allow

FSCD 2019

19:14 Probabilistic Rewriting

µ

E(τi, σi)

E-RD
µ

τ σ

local E-RD

E(τi, σi)

Figure 8 Random Descent.

στ

E-diamond

ρ ≡ ρ′

µ

E(τ, σ)

Figure 9 Diamond.

µ

ξkσk−1τk−1ρk

τ σ

Figure 10 Proof of 5.4.

well-founded induction as proof technique; this is not the case for probabilistic termination.
To transfer properties from ARS to PARS there are two issues: we need to find the right
formulation and the right proof technique.

Our counter-example still leaves open the question “Are there local properties which
guarantee UN∞?” In the rest of the paper, we develop proof techniques to study UN∞, WN∞,
SN∞ and their relations. We will always aim at local conditions.

5 Random Descent (RD)

In this section we introduce E Random Descent (E-RD), a tool which is able to guarantee
some remarkable properties : UN∞, p-termination as soon as there exists a sequence which
converges to p, and also the fact that all rewrite sequences from a term have the same expected
number of steps. E-RD generalizes to PARS the notion of Random Descent: after any k
steps, non-determinism is irrelevant up to a chosen equivalence E . Indeed E-RD is defined
parametrically over an equivalence relation E on DSTF(mA). For concreteness, assume E to
be either ENF or E‖‖N (see Def. 3.7). Then E-RD implies that all rewrite sequences from µ:

have the same probability of reaching a normal form after k steps (for each k ∈ N);
converge to the same limit;
have the same expected number of steps.

Main technical result is a local characterization of the property (Thm 5.4), similarly to [40].

I Definition 5.1 (E Random Descent). Let E be an equivalence relation on DSTF(mA). The
PARS A satisfies the following properties (in Fig. 8) if they hold for each µ ∈ DSTF(mA).
E-RD: for each pair of sequences 〈σn〉n∈N, 〈τn〉n∈N from µ, E(τk, σk) holds, ∀k.
local E-RD (E-LRD): if τ ⇔ µ ⇒ σ, then for each k there exist σk, τk with σ ⇒k σk,
τ ⇒k τk, and E(σk, τk).

I Example 5.2. In Fig. 4 E-RD holds for E = E‖‖N , but not for E = ENF.

When E ∈ {E‖‖N , ENF}, it is easy to check that E-RD guarantees the following.

I Proposition 5.3.
1. E‖‖N-RD implies Uniformity: p-WN∞⇒ p-SN∞.
2. ENF-RD implies Uniformity and UN∞.

Proof. Uniformity is immediate; UN∞ follows from Prop. 4.7. J

While expressive, E-RD is of little practical use, as it is a property which is universally quan-
tified on the sequences from µ. The property E-LRD is instead local. Somehow surprisingly,
the local property characterizes E-RD.

C. Faggian 19:15

I Theorem 5.4 (Characterization). The following properties are equivalent:
1. E-LRD;
2. ∀k, µ, ξ, ρ if µ⇒k ξ and µ⇒k ρ, then E(ξ, ρ);
3. E-RD.

Proof. (1 ⇒ 2). See Fig. 10. We prove that (2) holds by induction on k. If k = 0, the
claim is trivial. If k > 0, let σ be the first step from µ to ξ and τ the first step from µ to ρ.
By E-LRD, there exists σk such that σ⇒k−1σk and τk such that τ ⇒k−1 τk, with E(σk, τk).
Since σ ⇒k−1 ξ, we can apply the inductive hypothesis, and conclude that E(σk, ξ). By using
the induction hypothesis on τ , we have that E(τk, ρ) and conclude that E(ρ, ξ). (2 ⇒ 3).
Immediate. (3⇒ 1). Assume τ ⇔ µ⇒ σ. Take a sequence 〈τn〉n∈N from τ and a sequence
〈σn〉n∈N from σ. By (3), E(τk, σk) ∀k. J

A diamond. Let E ∈ {ENF, E‖‖N}. A useful case of E-LRD is the E-diamond property
(Fig. 9): ∀µ, σ, τ , if τ ⇔ µ⇒ σ, then E(σ, τ), and ∃ρ, ρ′ s.t.

(
τ ⇒ ρ, σ ⇒ ρ′ and Eflat(ρ, ρ′)

)
.

I Proposition 5.5. E-diamond ⇒ E-LRD.

Observe that while E-LRD characterizes E-RD, E-diamond is only a sufficient condition.

5.1 Expected Termination Time
Random Descent captures the property (Length) “all maximal rewrite sequences from a
term have the same length.” By looking at ARS as a special case of PARS (with a → [b1]
for a→ b), E‖‖N-RD does trivialize to RD. More interesting is that E‖‖N-RD also implies a
property similar to (Length) for PARS, where we consider not the number of steps of the
rewrite sequences, but its probabilistic analogue, the expected number of steps.

In an ARS, if a maximal rewrite sequence terminates, the number of steps is finite; we
interpret this number as time to termination. In the case of PARS, a system may have
infinite runs even if it is AST; the number of rewrite steps → from an initial state is (in
general) infinite. However, what interests us is its expected value, i.e. the weighted average
w.r.t. probability (see Sec. 2) which we write MeanTime(〈µn〉n∈N). This expected value can
be finite; in this case, not only the PARS is AST, but is said PAST(Positively AST) (see [4]).

I Example 5.6. In Example 2.5, the sequence from [a1] has MeanTime 2 (see Appendix).

[3] makes a nice observation: the mean number of steps of a rewrite sequence 〈µn〉n∈N admits
a very simple formulation, as follows: MeanTime(〈µn〉n∈N)= 1 +

∑
i≥1(1−‖µNF

i ‖). Intuitively,
each tick in time (i.e. each ⇒ step) is weighted with its probability to take place, which is
µflat
i {c | c 6∈ NFA} = 1− ‖µNF

i ‖. Using this formulation, the following result is immediate.

I Corollary 5.7. Let µ ∈ DSTF(mA). E‖‖N-RD implies that all maximal rewrite sequences
from µ have the same MeanTime.

Observe that
∑
i≥1(1−‖µNF

i ‖) <∞ implies limn→∞(1−‖µNF
n ‖) = 0, hence limn→∞ ‖µNF

n ‖ = 1.
Therefore, Cor. 5.7 means that if a sequence from µ with finite MeanTime exists, µ is PAST.

6 Analysis of a probabilistic calculus: weak CbV λ-calculus

We introduce Λweak
⊕ , a probabilistic analogue of call-by-value λ-calculus (see Sec. 1.1). Evalu-

ation is non-deterministic, because in the case of an application there is no fixed order in the
evaluation of the left and right subterms (see Example 6.1). We show that Λweak

⊕ satisfies

FSCD 2019

19:16 Probabilistic Rewriting

ENF-RD. Therefore it has remarkable properties (Cor. 6.5), analogous to those of its classical
counter-part: the choice of the redex is irrelevant with respect to the final result, to its
approximants, and to the expected number of steps.

Syntax. Terms (M,N,P,Q) and values (V,W) are defined as follows:

M ::= x | λx.M |MM |M ⊕M V ::= x | λx.M

Free variables are defined as usual. A term M is closed if it has no free variable. The
substitution of N for the free occurrences of x in M is denoted M [x := N].

Reductions. Weak call-by-value reduction → is given as a PARS, and inductively defined
by the rules below; its lifting ⇒ is as in Def. 3.4.

(λx.M)V → {M [x := V]1}
P ⊕Q→ {P 1/2, Q1/2}

N → {Npi
i | i ∈ I}

MN → {MNpi
i | i ∈ I}

M → {Mpi
i | i ∈ I}

MN → {MiN
pi | i ∈ I}

I Example 6.1 (Non-deterministic evaluation). A term may have several redexes. The
two reductions here join in one step:

[
P [x := Q](A ⊕ B)1] ⇔ [((λx.P)Q)(A ⊕ B)1] ⇒

[(λx.P)QA1/2, (λx.P)QB1/2].

I Example 6.2 (Infinitary reduction). Let R = (λx.xx⊕T)(λx.xx⊕T). We have [R1] ∞=⇒ {T1}.
This term models the behaviour we discussed in Fig.1.

I Example 6.3. The term PR in Example 1.2 has the following reduction. [PR1] ⇒ [P (T⊕
F)1/2, P (∆∆)1/2] ⇒ [P (T)1/4, P (F)1/4, P (∆∆)1/2] ⇒∗ [(T XOR T)1/4, (F XOR F)1/4,∆∆1/2] ⇒
[F1/4, F1/4,∆∆1/2] . . . We conclude that PR ∞=⇒ {F1/2}.

I Theorem 6.4. Λweak
⊕ satisfies E-RD, with E = ENF

Proof. We prove the ENF-Diamond property, using the definition of lifting and induction on
the structure of the terms (see Appendix). J

Therefore, by Sec. 5 (and the fact that ENF ⇒ E‖‖N), each µ satisfies the following properties:

I Corollary 6.5.
All rewrite sequences from µ converge to the same limit distribution.
All rewrite sequences from µ have the same expected termination time MeanTime.
If µ⇒k σ and µ⇒k τ , then σNF = τ NF, ∀σ, τ, k.

More diamonds. Other instances of ARS which satisfy Random Descent are surface reduc-
tion in Simpson’s linear λ-calculus [38], and Lafont’s interaction nets [28]. We do expect that
their extension with a probabilistic choice satisfy the same properties as Λweak

⊕ .

7 Comparing Strategies

In this section we provide a method to compare strategies, and a criterion to establish that
a strategy is normalizing or perpetual (Cor. 7.4). When strategy S is better than strategy
T ? To study this question we introduce a notion (parametric w.r.t. a relation R) which
generalizes the ARS notion of “better” introduced in [40]. Like in the case of E-RD, we

C. Faggian 19:17

µ

ξkσk−1τk−1 ≥≥

µ

≥

R-LB

ρk ≥

τ σ
µ

ρk ≥ ξk

R-better ♥ ♣♥♣ ♥ ♣

♥♣

♥♣

♣ ♥

Figure 11 R-better.

will provide a local characterization (Th. 7.3). We obtain criteria which concern both
normalization/perpetuity of strategies, and the expected number of steps of rewrite sequences.

Given A = (A,→), a rewrite strategy for→ is a relation→S⊆→ such that NF(A,→S) =
NFA. Let ⇒ (resp. ⇒S) be the lifting of → (resp. →S); we call ⇒S a rewrite strategy for ⇒.
We indicate by colored arrows ⇒♣ and ⇒♥ strategies for ⇒.

I Definition 7.1. Given µ, let pmax(µ) and pmin(µ) be respectively the greatest and least
value in {p | µ ∞=⇒p}. A strategy ⇒♣ is normalizing if for each µ, each ⇒♣-sequence
starting from µ converges with probability pmax(µ). A strategy ⇒♥ is perpetual if for each
µ, each ⇒♥ sequence from µ converges with probability pmin(µ).

Let R be a reflexive and transitive relation on DSTF(mA). For concreteness, assume R to
be either ≥‖‖N or ≥NF (see Def. 3.7).

I Definition 7.2 (R-better). Let R be a relation as stipulated above. We define the following
properties, which are illustrated in Fig. 11.
⇒♣ is R-better than ⇒♥ (R-better(⇒♣,⇒♥)): for each µ and for each pair of a
⇒♣-sequence 〈ρn〉n∈N and a ⇒♥-sequence 〈ξn〉n∈N from µ, R(ρk, ξk) holds (∀k).
⇒♣ is locally R-better than ⇒♥ (written R-LB(⇒♣,⇒♥)): if τ ♣⇔µ⇒♥σ, then for
each k ≥ 0, ∃σk, τk, such that σ ⇒k

♣ σk, τ⇒♥k τk, and R(τk, σk)

By taking R to be ≥‖‖N , it is immediate that R-better(⇒♣,⇒) implies that ⇒♣ is
normalizing. We prove that R-LB is sufficient (and under conditions even necessary) to
establish R-better.

I Theorem 7.3. Let R be transitive and reflexive. R-LB(⇒♣,⇒♥) implies that
R-better(⇒♣,⇒♥). The reverse holds if either ⇒♣ or ⇒♥ is ⇒.

Proof. The proof is illustrated in Fig. 11. The details are in Appendix. J

As a consequence, we obtain a method to prove that a strategy is normalizing or perpetual
by means of a local condition.

I Corollary 7.4 (Normalizing criterion). Let R(τ, σ) be ≥‖‖N (τ, σ) it holds that:
1. R-LB(⇒♣,⇒) implies that ⇒♣ is normalizing.
2. R-LB(⇒,⇒♥) implies that ⇒♥ is perpetual.

It is easy to check that if R-better(⇒♣,⇒), with R as above, and s is a ⇒♣-sequence,
then MeanTime(s) ≤MeanTime(t), for each t ⇒-sequence. Therefore, with a similar argument
as in Sec.5.1, R-better provides a criterion to establish not only that a strategy is normalizing
(resp. perpetual), but also minimality (resp. maximality) of the expected termination time.

FSCD 2019

19:18 Probabilistic Rewriting

8 Conclusion and Further Work

We have investigated two properties which are computationally important when studying a
calculus whose evaluation is both probabilistic and non-deterministic: uniqueness of the result
and existence of a normalizing strategy. We have defined a probabilistic analogue UN∞ of the
notion of unique normal form, we have studied conditions which guarantee UN∞, and relations
with normalization (WN∞) and termination (SN∞), and between these notions. We have
introduced E-RD and R-better as tools to analyze and compare PARS strategies. E-RD is an
alternative to strict determinism, analogous to Random Descent for ARS (non-determinism
is irrelevant w.r.t. a chosen event of interest). The notion of R-better provides a sufficient
criterion to establish that a strategy is normalizing (resp. perpetual) i.e. the strategy is
guaranteed to lead to a result with maximal (resp. minimal) probability. We have illustrated
the method by studying a probabilistic extension of weak call-by-value λ-calculus; it has
analogous properties to its classical counterpart: all rewrite sequences converge to the same
result, in the same expected number of steps.

One-Step Reduction and Expectations. In this paper, we focus on normal forms and
properties related to the event NFA. However, we believe that the methods would allow
us to compare strategies w.r.t. other properties and random variables of the system. The
formalism seems especially well-suited to express the expected value of random variables.
A key feature of the binary relation ⇒ is to exactly capture the ARS notion of one-step
reduction (in contrast to one or no step), with a gain which is two-folded.
1. Probability Theory. Because all terms in the distribution are forced to reduce at the same

pace, a rewrite sequence faithfully represents the evolution in time of the system (i.e. if
µ⇒i µi, then µi captures the state at time i of all possible paths a0 → . . .→ ai). This
makes the formalism well suited to express the expected value of stochastic processes.

2. Rewrite Theory. The results in Sections 5,6,7, crucially rely on exactly one-step reduction.

Further work and applications. The motivation behind this work is the need for theoretical
tools to support the study of operational properties in probabilistic computation. As an
example of application, we mention further work [18] where for each, the Call-by-Value,
Call-by-Name, and a linear λ-calculus, a fully fledged probabilistic extension is developed.
In each calculus, once establish that given a term, there exists a unique maximal result (the
greatest limit distribution), [18] studies the question “is there a strategy which is guaranteed
to reach the unique result (asymptotic standardization)?”. Key elements in [18] rely on the
abstract tools developed here; in particular, Sec. 5 and 6 allow us to demonstrate, for both
the CbV and CbN probabilistic λ-calculi, that the leftmost-outermost strategy reaches the
best possible limit distribution. This is remarkable for two reasons. First -as we already
observed- the leftmost strategy is the deterministic strategy which is typically adopted in the
literature of probabilistic λ-calculus, in either its CbV ([27, 9]) or its CbN version ([13, 16]),
but without any completeness result with respect to probabilistic computation. [18] offers
an “a posteriori” justification for its use. Second, the result is non-trivial, because in the
probabilistic case, a standardization result for finite sequences using the leftmost strategy
fails for both CbV and CbN. The tools in Sec. 5 allow for an elegant solution.

[40] makes a convincing case of the power of the RD methods for ARS, by using a large
range of examples from the literature, to elegantly and uniformly revisit normalization results
of various λ-calculi. We cannot here, because the rich development of strategies for λ-calculus
has not yet an analogue in the probabilistic case. Nevertheless, we hope that the availability
of tools to analyze PARS strategies will contribute to their development.

C. Faggian 19:19

References
1 Gul A. Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based specification language

for probabilistic object systems. Electr. Notes Theor. Comput. Sci., 153(2):213–239, 2006.
2 Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. Lexicographic ranking su-

permartingales: an efficient approach to termination of probabilistic programs. PACMPL,
2(POPL):34:1–34:32, 2018.

3 Martin Avanzini, U. Dal Lago, and Akihisa Yamada. On Probabilistic Term Rewriting. In
Symposium on Functional and Logic Programming, FLOP, pages 132–148, 2018.

4 Olivier Bournez and Florent Garnier. Proving Positive Almost Sure Termination Under
Strategies. In Rewriting Techniques and Applications, RTA, pages 357–371, 2006.

5 Olivier Bournez and Claude Kirchner. Probabilistic Rewrite Strategies. Applications to ELAN.
In Rewriting Techniques and Applications, RTA, pages 252–266, 2002.

6 N. Cagman and J.R. Hindley. Combinatory weak reduction in lambda calculus. Theor. Comput.
Sci., 1998.

7 Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. The geometry of
parallelism: classical, probabilistic, and quantum effects. In POPL, pages 833–845, 2017.

8 Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable machine. Theor.
Comput. Sci., 398(1-3):32–50, 2008.

9 Ugo Dal Lago, Andrea Masini, and Margherita Zorzi. Confluence Results for a Quantum
Lambda Calculus with Measurements. Electr. Notes Theor. Comput. Sci., 270(2):251–261,
2011.

10 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theor. Inf. and Applic., 46(3):413–450, 2012.

11 Ugo de’Liguoro and Adolfo Piperno. Non Deterministic Extensions of Untyped Lambda-
Calculus. Inf. Comput., 122(2):149–177, 1995.

12 Nachum Dershowitz, Stéphane Kaplan, and David A. Plaisted. Rewrite, Rewrite, Rewrite,
Rewrite, Rewrite, . . Theor. Comput. Sci., 83(1):71–96, 1991.

13 Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic lambda-calculus and
Quantitative Program Analysis. J. Log. Comput., 15(2):159–179, 2005.

14 Alejandro Díaz-Caro, Pablo Arrighi, Manuel Gadella, and Jonathan Grattage. Measurements
and Confluence in Quantum Lambda Calculi With Explicit Qubits. Electr. Notes Theor.
Comput. Sci., 270(1):59–74, 2011.

15 Alejandro Díaz-Caro and Guido Martinez. Confluence in Probabilistic Rewriting. Electr.
Notes Theor. Comput. Sci., 338:115–131, 2018.

16 Thomas Ehrhard, Michele Pagani, and Christine Tasson. The Computational Meaning of
Probabilistic Coherence Spaces. In LICS, pages 87–96, 2011.

17 Claudia Faggian. Probabilistic Rewriting: On Normalization, Termination, and Unique Normal
Forms (Extended Version). Available at http://arxiv.org/abs/1804.05578.

18 Claudia Faggian and Simona Ronchi Della Rocca. Lambda Calculus and Probabilistic Compu-
tation. In LICS, 2019.

19 Luis María Ferrer Fioriti and Holger Hermanns. Probabilistic Termination: Soundness,
Completeness, and Compositionality. In POPL, pages 489–501, 2015.

20 Hongfei Fu and Krishnendu Chatterjee. Termination of Nondeterministic Probabilistic Pro-
grams. In Verification, Model Checking, and Abstract Interpretation VMCAI, pages 468–490,
2019.

21 W.A. Howard. Assignment of ordinals to terms for primitive recursive functionals of finite
type. In Intuitionism and Proof Theory, 1970.

22 Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo.
Weakest Precondition Reasoning for Expected Runtimes of Randomized Algorithms. J. ACM,
65(5):30:1–30:68, 2018.

23 Richard Kennaway. On transfinite abstract reduction systems. Tech. rep., CWI, Amsterdam,
1992.

FSCD 2019

http://arxiv.org/abs/1804.05578

19:20 Probabilistic Rewriting

24 Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. Transfinite
Reductions in Orthogonal Term Rewriting Systems. Inf. Comput., 119(1):18–38, 1995.

25 Maja H. Kirkeby and Henning Christiansen. Confluence and Convergence in Probabilistically
Terminating Reduction Systems. In Logic-Based Program Synthesis and Transformation - 27th
International Symposium, LOPSTR 2017, pages 164–179, 2017.

26 Jan Willem Klop and Roel C. de Vrijer. Infinitary Normalization. In We Will Show Them!
Essays in Honour of Dov Gabbay, Volume Two, pages 169–192, 2005.

27 Daphne Koller, David A. McAllester, and Avi Pfeffer. Effective Bayesian Inference for Stochastic
Programs. In National Conference on Artificial Intelligence and Innovative Applications of
Artificial Intelligence Conference, AAAI 97, IAAI 97, pages 740–747, 1997.

28 Yves Lafont. Interaction Nets. In POPL, pages 95–108, 1990.
29 Simon Marlow. Parallel and Concurrent Programming in Haskell. O’Reilly Media, 2013.
30 Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. A

new proof rule for almost-sure termination. PACMPL, 2(POPL):33:1–33:28, 2018.
31 Mark Newman. On Theories with a Combinatorial Definition of “Equivalence”. Annals of

Mathematics, 43(2):223–243, 1942.
32 Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language based upon

sampling functions. In POPL, pages 171–182, 2005.
33 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.
34 Michael O. Rabin. Probabilistic Automata. Information and Control, 6(3):230–245, 1963.
35 Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability

distributions. In POPL, pages 154–165, 2002.
36 N. Saheb-Djahromi. Probabilistic LCF. In Mathematical Foundations of Computer Science,

pages 442–451, 1978.
37 Eugene S. Santos. Computability by Probabilistic turing Machines. In Transactions of the

American Mathematical Society, pages 159:165–184, 1971.
38 Alex K. Simpson. Reduction in a Linear Lambda-Calculus with Applications to Operational

Semantics. In Rewriting Techniques and Applications, RTA, pages 219–234, 2005.
39 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.
40 Vincent van Oostrom. Random Descent. In Term Rewriting and Applications, RTA, page

314–328, 2007.
41 Vincent van Oostrom and Yoshihito Toyama. Normalisation by Random Descent. In Formal

Structures for Computation and Deduction, FSCD, pages 32:1–32:18, 2016.

A Omitted Proofs and Technical Details

A.1 Appendix to Section 3. A Formalism for Probabilistic Rewriting

The Index Set. A natural choice for the index set S is N. Another natural choice for the
index set S is A∗ i.e. the set of finite sequences on A. This way, occurrences of a ∈ A are
labelled by their derivation path. This establishes a direct connection with the sample space
of Markov Decision Processes we did mention in Sec. 2.2.

This choice implies that the embedding of A in A∗ × A is naturally built-in in the
definition of ⇒. Let us rewrite explicitly the definition of lifting. The key point is that the
index j in (j, a) records the rewriting path of that occurrence of a. In rule (L2), since we
use the rule a→ β, each b ∈ Supp(β) is given as index the path j.a; β(b) is the probability

C. Faggian 19:21

assigned to b by β. Observe also that all occurrences are automatically distinct.

a ∈ NFA
{(j, a)1}⇒ {(j, a)1}

L1
a→ β

{(j, a)1}⇒ {(j.a, b)β(b) | b ∈ Supp(β)}
L2

(
{(j, a)1}⇒ αj

)
j∈J

{(j, a)pj | j ∈ J}⇒
⊎
j∈J

pj · αj
L3

A.2 Appendix to Section 4. Asymptotic Behaviour and Normal Forms
Monotone Convergence. We recall the following standard result.

I Theorem A.1 (Monotone Convergence for Sums). Let X be a countable set, fn : X → [0,∞]
a non-decreasing sequence of functions, such that f(x) := limn→∞ fn(x) = supn fn(x) exists
for each x ∈ X. Then

lim
n→∞

∑
x∈X

fn(x) =
∑
x∈X

f(x)

A.2.1 Confluence and UN∞: Greatest Limit Distribution
We prove that NF-Confluence implies UN∞(Thm. 4.7) i.e. confluence implies both existence
and uniqueness of maximal elements of Lim(µ). Both are consequences of LimP and of the
main lemma, Lemma A.2. We recall the definitions.

UN∞: Lim(µ) has a unique maximal element.
NF-Confluence: ∀σ, ρ with σ ∗⇔ µ⇒∗ ρ, ∃ξ, τ such that σ ⇒∗ ξ, ρ⇒∗ τ , and ξNF = τ NF.
LimP: if α ∈ Lim(µ) and µ⇒∗ σ, there exists β ∈ Lim(µ) such that σ ∞=⇒ β and α ≤ β.
NFP∞: if α is maximal in Lim(µ), and µ⇒∗ σ then σ ∞=⇒ α.

I Lemma A.2 (Main Lemma). NF-Confluence implies property LimP.

Proof. Fig. 12 illustrates the proof. Let µ = ρ0 ∈ DSTF(mA), and 〈ρn〉n∈N be a sequence
which converges to α. Assume ρ0 ⇒

∗ σ. As illustrated in Fig. 12, starting from σ, we build
a sequence σ = σρ0 ⇒

∗ σρ1 ⇒
∗ σρ2 . . . , where σρi , i ≥ 1 is given by NF-confluence : from

ρ0 ⇒
∗ σρi−1 and ρ0 ⇒

∗ ρi we obtain σρi−1 ⇒
∗ σρi and ρi ⇒∗ τi with (σρi)NF = (τi)NF. Let

β be the limit of the sequence so obtained; observe that β ∈ Lim(ρ0). By construction,
ρNF
i ≤ τ NF

i = σNF
ρi ; hence ∀i, it holds ρ

NF
i ≤ σNF

ρi ≤ β. From α = sup 〈ρNF
n 〉n∈N it follows α ≤ β. J

We already established (Lemma 4.6) that NFP∞ implies uniqueness of maximal elements
(if they exist).

I Corollary A.3 (Uniqueness). LimP implies NFP∞.

Proof. Immediate. If α is maximal, then β = α. J

I Lemma A.4 (Existence). LimP implies that:
1. Norms(µ) = {‖β‖ | β ∈ Lim(µ)} has a greatest element;
2. Lim(µ) has maximal elements.

Proof. (1.) Let p = sup Norms(µ). We show that p ∈ Norms(µ), by building a rewrite
sequence 〈µn〉n∈N from µ such that 〈µn〉n∈N

∞=⇒ β and ‖β‖ = p.
The following facts are all easy to check:

a. If α < β then ‖α‖ < ‖β‖.
b. If p 6∈ Norms(µ), then for each ε, there exists α ∈ Lim(µ) such that ‖α‖ ≥ p− ε.

FSCD 2019

19:22 Probabilistic Rewriting

ρ0

σ σρ1

ρ1

σρ2

ρ2 . . .

. . .

τ1 τ2

Figure 12 NF-Confluence implies LimP.

‖α(1)‖ ≥ p− ε1
2

σ(0) = µ

σ(1) s.t.‖σ(1)‖ ≥ p− ε1

‖α(2)‖ ≥ p− ε2
2σ(2) s.t.‖σ(2)‖ ≥ p− ε2

‖α(k)‖ ≥ p− εk
2σ(k) s.t.‖σ(k)‖ ≥ p− εk

p = sup Lim(µ). . .

∞

∞

∞

µ⇒∞ α(k)

Figure 13 A sequence whose limit distri-
bution is a maximal element of Lim(µ).

c. LimP implies that, fixed ε, if µ ∞=⇒ α with ‖α‖ ≥ (p− ε), and µ⇒∗ σ, then there exists
σmε , such that σ ⇒∗ σmε and ‖σmε‖ ≥ (p− 2ε).(
Proof : LimP implies that there is a rewrite sequence 〈σn〉n∈N from σ which converges
to γ ≥ α. Therefore 〈σn〉n∈N

∞=⇒ γ where ‖γ‖ ≥ (p − ε) and limn→∞〈‖σn‖〉 = ‖γ‖ (by
Fact 4.1, point 1.). By definition of limit of a sequence, fixed ε, there is an index mε such
that if m ≥ mε then ‖σm‖ ≥ (‖γ‖ − ε), hence ‖σmε‖ ≥ p− 2ε. Observe that σ ⇒∗ σmε ,
as a finite rewrite sequence is given by the the first mε elements of 〈σn〉n∈N.

)
d. ∀δ ∈ R+ there exists k such that p

2k ≤ δ.

For each k ∈ N, let εk = p
2k . Let σ

(0) = µ. From here, we build a sequence of reductions
µ⇒∗ σ(1) ⇒∗ σ(2) ⇒∗ . . . whose limit has norm p, as illustrated in Fig. 13.

For each k > 0, we observe that:
By (b.) there exists α(k) ∈ Lim(µ) such that ‖α(k)‖ ≥ (p− 1

2
p
2k).

From µ⇒∗ σ(k−1), we use (c.) to establish that there exists σ(k) such that σ(k−1) ⇒∗ σ(k)

and ‖σ(k)‖ ≥ (p − p
2k). Observe that α(k), σ(k−1), σ(k) resp. instantiate α, σ, σmε of

(c.).

Let 〈µn〉n∈N be the concatenation of all the finite sequences σ(k−1) ⇒∗ σ(k), and let β be
its limit distribution. By construction, limn→∞〈‖µn‖〉 = ‖β‖ = p, hence p ∈ Norms(µ).

(1. ⇒ 2.) We observe that if 〈µn〉n∈N
∞=⇒ α and ‖α‖ is maximal in Norms(µ), then α

is maximal in Lim(µ) (because if γ ∈ Lim(µ) and γ > α, then ‖γ‖ > ‖α‖). J

I Theorem 4.7 (restated). For each PARS, NF-Confluence implies UN∞.

Proof. The claim follows from the Main Lemma, A.3 and A.4 (point 2.), using Lemma 4.6. J

Semi-Confluence. The proof of Thm. 4.7 shows we can weaken confluence even further.

I Proposition A.5. For each PARS, the property below implies LimP.
Semi-Confluence: ∀µ, σ, ρ with σ ∗⇔ µ⇒∗ ρ, ∃σ′ such that σ ⇒∗ σ′ and ρNF ≤ σ′NF.

Proof. Proof A.2 really only uses Semi-Confluence. Let us revisit the proof, which is now
illustrated in Fig. 14. Let ρ0 ∈ DSTF(mA), and α maximal in Lim(ρ0). Assume ρ0 ⇒

∗ σ. Let
〈ρn〉n∈N be a sequence which converges to α. As illustrated in Fig. 14, starting from σ, we
build a sequence σ = σρ0 ⇒

∗ σρ1 ⇒
∗ σρ2 . . . , where σρi , i ≥ 1 is given by Semi-Confluence:

C. Faggian 19:23

ρ0

σ σρ1

ρ1

σρ2

ρ2 . . .

. . .

≤NF ≤NF

Figure 14 Semi-Confluence implies LimP.

from ρ0 ⇒
∗ ρi and ρ0 ⇒

∗ σρi−1 we obtain σρi−1 ⇒
∗ σρi with ρNF

i ≤ σNF
ρi . Let β be the

limit of the sequence so obtained; observe that β ∈ Lim(ρ0). By construction, ∀i, it holds
ρNF
i ≤ (σρi)NF ≤ β. From α = sup 〈ρNF

n 〉n∈N it follows that α ≤ β. J

A.2.2 More on Newman’s Lemma and Proof Techniques
We pointed out that to transfer properties from ARS to PARS there are two issues: find the
right formulation and the right proof technique. Newman’s Lemma illustrates both. Can a
different formulation uncover properties similar to Newman Lamma? Another ”candidate”
statement we can attempt is : AST + WCR ⇒ UN∞. I have no answer here. This property is
indeed an interesting case study. It is not hard to show that this property holds when Lim(µ)
is finite, or uniformly discrete, which also means that a counterexample (if any) cannot be
trivial. On the other side, if the property holds, the difficulty is which proof technique to
use, since well-founded induction is not available to us.

A.3 Appendix to Section 5. Random Descent
E-diamond implies E-LRD. In this section, we assume E ∈ {ENF, E‖‖N}.

I Lemma A.6. If Eflat(µ, ρ,), there exists a rewrite sequence 〈µn〉n∈N and a rewrite sequence
〈ρn〉n∈N, with Eflat(µi, ρi,)

Proof. By easy induction on n. It is enough, at each ⇒ step as defined in Def. 3.4, to choose
the same reduction c→ β for all (j, mj) such that mj = c. J

I Proposition A.7. E-diamond ⇒ E-LRD.

Proof. By using Lemma A.6. J

Point-wise formulation. In Section 6, we exploit the fact that not only E-RD admits a
local characterization, but also that the properties E-LRD and E-diamond can be expressed
point-wise, making the condition easier to verify.
1. pointed E-LRD: ∀a ∈ A, if τ ⇔ [a1]⇒ σ, then ∀k, ∃σk, τk with σ ⇒k σk, τ ⇒k τk, and
E(σk, τk).

2. pointed E-diamond: ∀a ∈ A, if τ ⇔ [a1]⇒ σ, then it holds that E(σ, τ), and ∃ρ, ρ′ such
that τ ⇒ ρ, σ ⇒ ρ′ and Eflat(ρ, ρ′,).

I Proposition A.8 (point-wise E-LRD). The following hold
E-LRD ⇐⇒ pointed E-LRD;
E-diamond ⇐⇒ pointed E-diamond.

Proof. Immediate, by the definition of ⇒. Given µ = [apii | i ∈ I], we establish the result
for each ai, and put all the resulting distributions together. J

FSCD 2019

19:24 Probabilistic Rewriting

A.3.1 Section 5.1. Finite expected time to termination
An example of PARS with finite expected time to termination is the one in Fig. 1. We can
see this informally, recalling Sec. 2. Let the sample space Ω be the set of paths ending in a
normal form, and let µ be the probability distribution on Ω. What is the expected value
of the random variable length : Ω → N? We have E(length) =

∑
ω length(ω) · µ(ω) =∑

n∈N n · µ{ω | length(ω) = n} =
∑
n · 1

2n = 2.
It is immediate to check that in Example 2.5, the (only) rewrite sequence from [a1] has

MeanTime 2 by using the definition of mean number of steps of a rewrite sequence 〈µn〉n∈N as

MeanTime(〈µn〉n∈N) = 1 +
∑
i≥1

(1− ‖µNF
i ‖)

as formulated in [3] (to which we refer for the details).

A.4 Appendix to Section 6. Weak CbV λ-calculus
We prove Thm. 6.4.

I Theorem 6.4 (restated). Λweak
⊕ satisfies the E-diamond property, with E = ENF.

Proof. We show by induction on the structure of the term M that for all pairs of one-step
reductions τ ⇔ [M1]⇒ σ, the following hold: (1.) σNF = τ NF is 0 everywhere (2.) exists ρ, ρ′
such that τ ⇒ ρ, σ ⇒ ρ′ and Eflat(ρ, ρ′,).

It is convenient to introduce the following notation. If µ = [Mmi
i | i ∈ I] we define

µ@Q := [(MiQ)mi | i ∈ I] Q@µ := [(QMi)mi | i ∈ I]

We write the Dirac distribution [m1
i] simply as [mi]. We write ρ ≡ ρ′ for Eflat(ρ, ρ′,).

If M = x or M = λx.P , no reduction is possible.
If M = P ⊕p Q, only one reduction is possible.
If M = PQ is a redex, then P = (λx.N), Q is a value, and no other reduction is possible
inside either P or Q.
If M = PQ has two different reductions, two cases are possible.

Assume that both P and Q reduce; PQ has the following reductions.

P → {P pii | i ∈ I}
PQ→ σ = {PiQpi | i ∈ I} and

Q→ {Qqjj | j ∈ J}
PQ→ τ = {PQqjj | j ∈ J}

Observe that none of the PiQ or PQj is a normal form, hence (1.) holds. By the
definition of reduction, the following holds

Q→ {Qqjj | j ∈ J}
PiQ→ {PiQ

qj
j | j ∈ J}

and therefore by Lifting we have
⊎
i pi ·[PiQ]⇒

⊎
i pi ·(

⊎
j qj ·[PiQj]) =

⊎
i,j piqj ·[PiQj].

Similarly we obtain
⊎
j qj · [PQj]⇒

⊎
i,j piqj · [PiQj].

Assume that one subterm has two different redexes; let assume it is the subterm P

(the case of Q is similar):

P → σ = {Ssii | i ∈ I}andP → τ = {T tjj | j ∈ J}

C. Faggian 19:25

By inductive hypothesis, two facts hold: (1.) σNF = τ NF is 0 everywhere, therefore no
Si and no Tj in the support is a normal form; (2.) exists ρ, ρ′ with ρ ≡ ρ′ and such
that [Si]⇒ ρi with

∑
i si · ρi = ρ, and [Tj]⇒ ρj with

∑
j tj · ρj = ρ′. For PQ we have

P → {Ssii | i ∈ I}
PQ→ {(SiQ)si | i ∈ I} and

P → {T tjj | j ∈ J}
PQ→ {(TjQ)tj | j ∈ J}

First of all, we observe that no SiQ and no TjQ is a normal form, hence property
(1.) is verified. Moreover, it holds that SiQ → ρi@Q and TjQ → ρj@Q. We
conclude by Lifting that [(SiQ)si | i ∈ I] ⇒

⊎
i si · ρi@Q. It is easy to check that,⊎

i si · ρi@Q = ρ@Q, and [(TjQ)tj | j ∈ J] ⇒
⊎
tj · ρj@Q = ρ@Q. It is immediate

also that ρ@Q ≡ ρ′@Q; hence property (2.) is also verified. J

A.5 Appendix to Section 7. Comparing Strategies
I Theorem 7.3 (restated). Let R be transitive and reflexive. R-LB(⇒♣,⇒♥) implies that
R-better(⇒♣,⇒♥). The reverse holds if either ⇒♣ or ⇒♥ is ⇒.

Proof. ⇒⇒⇒ . See Fig. 11. We prove by induction on k the following: “R-LB(⇒♣,⇒♥) implies
(∀µ, ρ, ξ, if µ⇒♣kρ and µ⇒♥kξ, then R(ρ, ξ))”. If k = 0, the claim is trivial. If k ≥ 1, let σ
be the first step from µ to ξ, and τ the first step from µ to ρ, as in Fig. 11. R-LB implies
that exist σk−1 and τk−1 such that σ⇒♣k−1σk−1, τ⇒♥k−1 τk−1, with R(τk−1, σk−1). Since
σ⇒♥

k−1 ξ we can apply the inductive hypothesis, and obtain that R(σk−1, ξ). Again by
inductive hypothesis, from τ⇒♣

k−1ρ we obtain R(ρ, τk−1). By transitivity, it holds that
R(ρ, ξ). ⇐⇐⇐ . Assume ⇒♥ =⇒, and τ ♣⇔µ⇒ σ. Let 〈τn〉n∈N and 〈σn〉n∈N be obtained by
extending τ and σ with a maximal ⇒♣ sequence. The claim follows from the hypothesis
that ⇒♣ dominates ⇒, by viewing the ⇒♣ steps in 〈σn〉n∈N as ⇒ steps. J

I Remark. Observe that E-RD (resp. E-LRD) is a special case of R-better (resp. R-LB).
We have preferred to treat it independently, for the sake of presentation.

A.6 Comments
Finite Approximants. E-RD characterizes the case when (not only at the limit, but also at
the level of the approximants) the non-deterministic choices are irrelevant. The notion of
approximant which we have studied here is “stop after a number k of steps” (k ∈ N). We
can consider different notion of approximants. For example, we could also wish to stop the
evolution of the system when it reaches a normal form with probability p. Our method can
easily be adapted to analyze this case (see [17]). We believe it is also possible to extend to
the probabilistic setting the results in [41], which would allow to further push this direction.

The beauty of local. In Sec. 5 and 7, by local conditions we mean the following: to show
that a property P holds globally (i.e. for each two rewrite sequences, P holds), we can
show that P holds locally (i.e. for each pair of one-step reductions, there exist two rewrite
sequences such that P holds). This reduces the space of search for testing the property, a
fact that we exploit in the proofs of Sec. 6.

FSCD 2019

A Linear-Logical Reconstruction of Intuitionistic
Modal Logic S4
Yosuke Fukuda
Graduate School of Informatics, Kyoto University, Japan
http://www.fos.kuis.kyoto-u.ac.jp/~yfukuda
yfukuda@fos.kuis.kyoto-u.ac.jp

Akira Yoshimizu
French Institute for Research in Computer Science and Automation (INRIA), France
http://www.cs.unibo.it/~akira.yoshimizu
akira.yoshimizu@inria.fr

Abstract
We propose a modal linear logic to reformulate intuitionistic modal logic S4 (IS4) in terms of
linear logic, establishing an S4-version of Girard translation from IS4 to it. While the Girard
translation from intuitionistic logic to linear logic is well-known, its extension to modal logic is
non-trivial since a naive combination of the S4 modality and the exponential modality causes an
undesirable interaction between the two modalities. To solve the problem, we introduce an extension
of intuitionistic multiplicative exponential linear logic with a modality combining the S4 modality
and the exponential modality, and show that it admits a sound translation from IS4. Through the
Curry–Howard correspondence we further obtain a Geometry of Interaction Machine semantics of
the modal λ-calculus by Pfenning and Davies for staged computation.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Modal and temporal logics; Theory of computation → Proof theory; Theory of computation →
Type theory

Keywords and phrases linear logic, modal logic, Girard translation, Curry–Howard correspondence,
geometry of interaction, staged computation

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.20

Acknowledgements The authors thank Kazushige Terui for his helpful comments on our work and
pointing out related work on multicolored linear logic, and Atsushi Igarashi for his helpful comments
on earlier drafts. Special thanks are also due to anonymous reviewers for their fruitful comments.
This work was supported by the Research Institute for Mathematical Sciences, an International
Joint Usage/Research Center located in Kyoto University.

1 Introduction

Linear logic discovered by Girard [7] is, as he wrote, not an alternative logic but should be
regarded as an “extension” of usual logics. Whereas usual logics such as classical logic and
intuitionistic logic admit the structural rules of weakening and contraction, linear logic does
not allow to use the rules freely, but it reintroduces them in a controlled manner by using
the exponential modality ‘!’ (and its dual ‘?’). Usual logics are then reconstructed in terms
of linear logic with the power of the exponential modalities, via the Girard translation.

In this paper, we aim to extend the framework of linear-logical reconstruction to the
(�,⊃)-fragment of intuitionistic modal logic S4 (IS4) by establishing what we call “modal
linear logic” and an S4-version of Girard translation from IS4 into it. However, the crux to
give a faithful translation is that a naive combination of the �-modality and the !-modality
causes an undesirable interaction between the inference rules of the two modalities. To solve

© Yosuke Fukuda and Akira Yoshimizu;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 20; pp. 20:1–20:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.fos.kuis.kyoto-u.ac.jp/~yfukuda
mailto:yfukuda@fos.kuis.kyoto-u.ac.jp
http://www.cs.unibo.it/~akira.yoshimizu
mailto:akira.yoshimizu@inria.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

Syntactic category
Formulae A,B,C ::= p | A(B | !A

Inference rule
AxA ` A

Γ ` A Γ′,A ` B
Cut

Γ,Γ′ ` B
!Γ ` A !R!Γ ` !A

Γ,A ` B
(RΓ ` A(B

Γ ` A Γ′,B ` C
(L

Γ,Γ′,A(B ` C
Γ,A ` B

!LΓ, !A ` B
Γ ` B !WΓ, !A ` B

Γ, !A, !A ` B
!CΓ, !A ` B

Figure 1 Definition of IMELL.

dAe
dpe def= p, dA ⊃ Be def= (!dAe)(dBe

dΓe
dΓe def= {dAe | A ∈ Γ}

Figure 2 Definition of the Girard translation from intuitionistic logic.

the problem, we define the modal linear logic as an extension of intuitionistic multiplicative
exponential linear logic with a modality ‘�! ’ (pronounced by “bangbox”) that integrates ‘�’
and ‘!’, and show that it admits a faithful translation from IS4.

As an application, we consider a computational interpretation of the modal linear logic. A
typed λ-calculus that we will define corresponds to a natural deduction for the modal linear
logic through the Curry–Howard correspondence, and it can be seen as a reconstruction of
the modal λ-calculus by Pfenning and Davies [18, 5] for the so-called staged computation.
Thanks to our linear-logical reconstruction, we can further obtain a Geometry of Interaction
Machine (GoIM) for the modal λ-calculus.

The remainder of this paper is organized as follows. In Section 2 we review some
formalizations of linear logic and IS4. In Section 3 we explain a linear-logical reconstruction
of IS4. First, we discuss how a naive combination of linear logic and modal logic fails to
obtain a faithful translation. Then, we propose a modal linear logic with the �! -modality that
admits a faithful translation from IS4. In Section 4 we give a computational interpretation
of modal linear logic through a typed λ-calculus. In Section 5 we provide an axiomatization
of modal linear logic by a Hilbert-style deductive system. In Section 6 we obtain a GoIM of
our typed λ-calculus as an application of our linear-logical reconstruction. In Sections 7 and
8 we discuss related work and conclude our work, respectively.

2 Preliminaries

We recall several systems of linear logic and modal logic. In this paper, we consider the minimal
setting to give an S4-version of Girard translation and its computational interpretation.
Thus, every system we will use only contain an implication and a modality as operators.

2.1 Intuitionistic MELL and its Girard translation

Figure 1 shows the standard definition of the (!,()-fragment of intuitionistic multiplicative
exponential linear logic, which we refer to as IMELL. A formula is either a propositional
variable, a linear implication, or an exponential modality. We let p range over the set of
propositional variables, and A, B, C range over formulae. A context Γ is defined to be a
multiset of formulae, and hence the exchange rule is assumed as a meta-level operation. A
judgment consists of a context and a formula, written as Γ ` A. As a convention, we often
write Γ ` A to mean that the judgment is derivable (and we assume similar conventions
throughout this paper). The notation !Γ in the rule !R denotes the multiset {!A | A ∈ Γ}.

Y. Fukuda and A. Yoshimizu 20:3

Syntactic category
Formulae A,B,C ::= p | A ⊃ B | �A

Inference rule
AxA ` A

Γ ` A Γ′,A ` B
Cut

Γ,Γ′ ` B
�Γ ` A

�R
�Γ ` �A

Γ,A ` B
⊃RΓ ` A ⊃ B

Γ ` A Γ′,B ` C
⊃L

Γ,Γ′,A ⊃ B ` C
Γ,A ` B

�LΓ,�A ` B
Γ ` B WΓ,A ` B

Γ,A,A ` B
CΓ,A ` B

Figure 3 Definition of LJ�.

Figure 2 defines the Girard translation1 from the ⊃-fragment of intuitionistic propositional
logic IL. For an IL-formula A, dAe will be an IMELL-formula; and dΓe a multiset of IMELL-
formulae. Then, we can show that the Girard translation from IL to IMELL is sound.

I Theorem 1 (Soudness of the translation). If Γ ` A in IL, then !dΓe ` dAe in IMELL.

2.2 Intuitionistic S4
We review a formalization of the (�,⊃)-fragment of intuitionistic propositional modal logic
S4 (IS4). In what follows, we use a sequent calculus for the logic, called LJ�. The calculus
LJ� used here is defined in a standard manner in the literature (e.g. it can be seen as the
IS4-fragment of G1s for classical modal logic S4 by Troelstra and Schwichtenberg [23]).

Figure 3 shows the definition of LJ�. A formula is either a propositional variable, an
intuitionistic implication, or a box modality. A context and a judgment are defined similarly
in IMELL. The notation �Γ in the rule �R denotes the multiset {�A | A ∈ Γ}.

I Remark 2. It is worth noting that the !-exponential in IMELL and the �-modality in LJ�

have similar structures. To see this, let us imagine the rules �R and �L replacing the symbol
‘�’ with ‘!’. The results will be exactly the same as !R and !L. In fact, the !-exponential
satisfies the S4 axiomata in IMELL, which is the reason we also call it as a modality.

2.3 Typed λ-calculus of the intuitionistic S4
We review the modal λ-calculus developed by Pfenning and Davies [18, 5], which we call
λ�. The system λ� is essentially the same calculus as λ→�e in [5], although some syntax are
changed to fit our notation in this paper. λ� is known to correspond to a natural deduction
system for IS4, as is shown in [18].

Figure 4 shows the definition of λ�. The set of types corresponds to that of formulae of IS4.
We let x range over the set of term variables, and M,N,L range over the set of terms. The
first three terms are as in the simply-typed λ-calculus. The terms �M and let�x = M in N
is used to represent a constructor and a destructor for types �A, respectively. The variable
x in λx : A.M and let�x = M in N is supposed to be bound in the usual sense and the scope
of the biding is M and N , respectively. The set of free (i.e., unbound) variables in M is
denoted by FV(M). We write the capture-avoiding substitution M [x := N] to denote the
result of replacing N for every free occurrence of x in M .

A (type) context is defined to be the set of pairs of a term variable xi and a type Ai such
that all the variables are distinct, which is written as x1 : A1, · · · , xn : An and is denoted
by Γ, ∆, Σ, etc. Then, a (type) judgment is defined, in the so-called dual-context style, to
consists of two contexts, a term, and a type, written as ∆; Γ ` M : A.

1 This is known to be the call-by-name Girard translation (cf. [12]) and we only follow this version in
later discussions. However, we conjecture that our work can apply to other versions.

FSCD 2019

20:4 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

Syntactic category
Types A,B,C ::= p | A ⊃ B | �A
Terms M,N,L ::= x | λx : A.M | M N

| �M | let�x = M in N

Reduction rule
(β ⊃) (λx : A.M) N M [x := N]
(β�) let�x = �N in M M [x := N]

Typing rule
Ax∆; Γ, x : A ` x : A �Ax∆, x : A; Γ ` x : A

∆; Γ, x : A ` M : B
⊃ I∆; Γ ` (λx : A.M) : A ⊃ B

∆; Γ ` M : A ⊃ B ∆; Γ ` N : A
⊃E∆; Γ ` M N : B

∆; ∅ ` M : A
�I∆; Γ ` �M : �A

∆; Γ ` M : �A ∆, x : A; Γ ` N : B
�E∆; Γ ` let�x = M in N : B

Figure 4 Definition of λ�.

The intuition behind the judgment ∆; Γ ` M : A is that the context ∆ is intended
to implicitly represent assumptions for types of form �A, while the context Γ is used to
represent ordinary assumptions as in the simply-typed λ-calculus.

The typing rules are summarized as follows. Ax, ⊃ I, and ⊃E are all standard, although
they are defined in the dual-context style. �Ax is another variable rule, which can be seen as
what to formalize the modal axiom T (i.e., ` �A ⊃ A) from the logical viewpoint. �I is a
rule for the constructor of �A, which corresponds to the necessitation rule for the �-modality.
Similarly, �E is for the destructor of �A, which corresponds to the elimination rule.

The reduction is defined to be the least compatible relation on terms generated by
(β ⊃) and (β�). The multistep reduction + is defined to be the transitive closure of .

3 Linear-logical reconstruction

3.1 Naive attempt at the linear-logical reconstruction
It is natural for a “linear-logical reconstruction” of IS4 to define a system that has both
properties of linear logic and modal logic, so as to be a target system for an S4-version of
Girard translation. However, a naive combination of linear logic and modal logic is not
suitable to establish a faithful translation.

Let us consider what happens if we adopt a naive system. The simplest way to define
a target system for the S4-version of Girard translation is to make an extension of IMELL
with the �-modality. Suppose that a deductive system IMELL� is such a calculus, that is,
the formulae of IMELL� are defined by the following grammar:

A,B ::= p | A(B | !A | �A

with the inference rules being those of IMELL, along with the rules �R and �L of LJ�.
As in the case of Girard translation from IL to IMELL, we have to establish the following

theorem for some translation d−e:

If Γ ` A is derivable in LJ�, then so is !dΓe ` dAe in IMELL�.

but, if we extend our previous translation d−e from IL to IMELL with d�Ae def= �dAe, we
get stuck in the case of �R. This is because we need to establish the inference �′ in Figure 5,
which means that we have to be able to obtain a derivation of form !d�Γe ` �dAe from
that of !d�Γe ` dAe in IMELL�.

Y. Fukuda and A. Yoshimizu 20:5

...
�Γ ` A

�R
�Γ ` �A
in LJ�

� d−e //

...
!d�Γe ` dAe

�′
!d�Γe ` d�Ae

in IMELL�

Figure 5 Translation for the case of �R.

�(p ⊃ q),�p ` q
�R

�(p ⊃ q),�p ` �q

Figure 6 Valid inference in LJ�.

!�(!p(q), !�p ` q
�R!�(!p(q), !�p ` �q

Figure 7 Invalid inference in IMELL�.

Syntactic category
Formulae A,B,C ::= p | A(B | !A | �! A

Inference rule
AxA ` A

Γ ` A A,Γ′ ` B
Cut

Γ,Γ′ ` B
Γ,A ` B

(RΓ ` A(B
Γ ` A Γ′,B ` C

(L
Γ,Γ′,A(B ` C

�! ∆, !Γ ` A
!R

�! ∆, !Γ ` !A
Γ,A ` B

!LΓ, !A ` B
�! ∆ ` A

�! R
�! ∆ `�! A

Γ,A ` B
�! LΓ,�! A ` B

Γ ` B !WΓ, !A ` B
Γ, !A, !A ` B

!CΓ, !A ` B
Γ ` B

�! WΓ,�! A ` B
Γ,�! A,�! A ` B

�! CΓ,�! A ` B

Figure 8 Definition of IMELL�! .

However, the inference �′ is invalid in IMELL� in general, because there exists a
counterexample. First, the inference shown in Figure 6 is valid, and the judgment �(p ⊃
q),�p ` �q is indeed derivable in LJ�. However, the corresponding inference via d−e is
invalid as Figure 7 shows. In the figure, the judgments correspond to those in Figure 6 via
d−e, but the inference �R in Figure 7 is invalid in IMELL� due to the side-condition of
�R. Even worse, we can see that the judgment !�(!p(q), !�p ` �q is itself underivable
in IMELL�2.

Moreover, one may think the other cases that we extend the original translation d−e
from IL to IMELL with d�Ae def= !�dAe or d�Ae def= �!dAe will work to obtain a faithful
translation. However, the judgment �p ` ��p will be a counter-example in either case.

All in all, the problem of the naive combination formulated as IMELL� intuitively came
from an undesirable interaction between the right rules of the two modalities:

!Γ ` A !R!Γ ` !A
�Γ ` A

�R
�Γ ` �A

Each of these rules has a side-condition: the conclusion !A in !R must be derived from the
modalized context !Γ, and similarly for �A in �R. This makes it hard to obtain a faithful
S4-version of Girard translation for this naive extension.

3.2 Modal linear logic
We propose a modal linear logic to give a faithful S4-version of Girard translation from IS4.

First of all, the problem we have identified essentially came from the fact that there is no
relationship between ‘!’ and ‘�’, and hence the side-conditions of !R and �R do not hold
when we intuitively expect them to hold. Thus, we introduce a modality, ‘�! ’ combining ‘!’
and ‘�’, to solve this problem.

2 Precisely speaking, this can be shown as a consequence of the cut-elimination theorem of IMELL�, and
the theorem was shown in the authors’ previous work [6].

FSCD 2019

20:6 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

dAe
dpe def= p, dA ⊃ Be def= (!dAe)(dBe, d�Ae def=�! dAe

dΓe
dΓe def= {(x : dAe) | (x : A) ∈ Γ}

Figure 9 Definition of the S4-version of Girard translation.

Our modal linear logic, which is called IMELL�! , is defined by a sequent calculus which
is given in Figure 8. As we mentioned, the formulae are defined as an extension of those of
IMELL with the �! -modality. A point is that the !-modality is still there with the �! -modality.

The �! -modality is defined so as to have properties of both ‘!’ and ‘�’, but ‘!’ still behaves
similarly to IMELL. Therefore, all the intuitions of the inference rules except !R and �! R
should be clear. The rules !R and �! R reflect the “strength” between the modalities ‘!’ and
‘�! ’. Indeed, ‘!’ and ‘�! ’ satisfy the S4 axiomata and ‘�! ’ is stronger than ‘!’.

I Example 3. The following hold:
1. ` !A(A and `�! A(A
2. ` !(A(B)(!A(!B and `�! (A(B)(�! A(�! B
3. ` !A(!!A and `�! A(�! �! A
4. `�! A(!A but 0 !A(�! A

I Remark 4. In Example 3, the first three represent the so-called S4 axiomata: T, K, and 4.
The last one represents the strength of the two modalities. Actually, assuming the !-modality
and the �! -modality to satisfy the S4 axiomata and the “strength” axiom `�! A (!A is
enough to characterize our modal linear logic (see Section 5 for more details).

The cut-elimination theorem for IMELL�! is shown similarly to the case of IMELL, and
hence IMELL�! is consistent. The addition of ‘�! ’ causes no problems in the proof.

I Definition 5 (Cut-degree and degree). For an application of Cut in a proof, its cut-degree
is defined to be the number of logical connectives in the cut-formula. The degree of a proof is
defined to be the maximal cut-degree of the proof (and 0 if there is no application of Cut).

I Theorem 6 (Cut-elimination). The rule Cut in IMELL�! is admissible, i.e., if Γ ` A is
derivable, then there is a derivation of the same judgment without any applications of Cut.

Proof. We follow the proof for propositional linear logic by Lincoln et al. [9]. To show the
admissibility of Cut, we consider the admissibility of the following cut rules:

Γ ` !A Γ′, (!A)n ` B
!CutΓ,Γ′ ` B

Γ `�! A Γ′, (�! A)n ` B
�! CutΓ,Γ′ ` B

where (C)n denotes the multiset that has n occurrences of C and n is assumed to be positive
as a side-condition; and Γ′ in !Cut (resp. in �! Cut) is supposed to contain no formulae of
form !A (resp. �! A). The cut-degrees of !Cut and �! Cut are defined similarly to that of Cut.

Then, all the three rules (Cut, !Cut, �! Cut) are shown to be admissible by simultaneous
induction on the lexicographic complexity 〈δ, h〉, where δ is the degree of the assumed
derivation and h is its height. See the appendix for details of the proof. J

I Corollary 7 (Consistency). IMELL�! is consistent, i.e., there exists an underivable judgment.

Then, we can define an S4-version of Girard translation as in Figure 9, and it can be
justified by the following theorem, which is readily shown by induction on the derivation.

I Theorem 8 (Soundness). If �∆,Γ ` A in LJ�, then �! d∆e, !dΓe ` dAe in IMELL�! .

Y. Fukuda and A. Yoshimizu 20:7

Syntactic category
Types A,B,C ::= p | A(B | !A | �! A
Terms M,N,L ::= x | λx : A.M | M N | !M | �! M

| let !x = M in N | let �! x = M in N

Reduction rule
(β () (λx : A.M) N M [x := N]
(β!) let !x =!N in M M [x := N]
(β �!) let �! x =�! N in M M [x := N]

Typing rule
LinAx∆; Γ; x : A ` x : A !Ax∆; Γ, x : A; ∅ ` x : A

�! Ax∆, x : A; Γ; ∅ ` x : A
∆; Γ; Σ, x : A ` M : B

(I∆; Γ; Σ ` λx : A.M : A(B
∆; Γ; Σ ` M : A(B ∆; Γ; Σ′ ` N : A

(E
∆; Γ; Σ,Σ′ ` M N : B

∆; Γ; ∅ ` M : A
!I∆; Γ; ∅ ` !M :!A

∆; Γ; Σ ` M :!A ∆; Γ, x : A; Σ′ ` N : B
!E

∆; Γ; Σ,Σ′ ` let !x = M in N : B
∆; ∅; ∅ ` M : A

�! I∆; Γ; ∅ `�! M :�! A
∆; Γ; Σ ` M :�! A ∆, x : A; Γ; Σ′ ` N : B

�! E
∆; Γ; Σ,Σ′ ` let �! x = M in N : B

Figure 10 Definition of λ�! .

4 Curry–Howard correspondence

In this section, we give a computational interpretation for our modal linear logic through
the Curry–Howard correspondence and establish the corresponding S4-version of Girard
translation for the modal linear logic in terms of typed λ-calculus.

4.1 Typed λ-calculus for the intuitionistic modal linear logic
We introduce λ�! (pronounced by “lambda bangbox”) that is a typed λ-calculus corresponding
to the modal linear logic under the Curry–Howard correspondence. The calculus λ�! can
be seen as an integration of λ� of Pfenning and Davies and the linear λ-calculus for dual
intuitionistic linear logic of Barber [2]. The rules of λ�! are designed considering the “necessity”
of modal logic and the “linearity” of linear logic, and formally defined as in Figure 10.

The structure of types are exactly the same as that of formulae in IMELL�! . Terms are
defined as an extension of the simply-typed λ-calculus with the following: the terms !M and
let !x = M in N , which are a constructor and a destructor for types !A, respectively; and the
terms �! M and let �! x = M in N , which are those for types �! A similarly. Note that the
variable x in let !x = M in N and let �! x = M in N is supposed to be bound.

A (type) context is defined by the same way as λ� and a (type) judgment consists of three
contexts, a term and a type, written as ∆; Γ; Σ ` M : A. These three contexts of a judgment
∆; Γ; Σ ` M : A have the following intuitive meaning: (1) ∆ implicitly represents a context
for modalized types of form �! A; (2) Γ implicitly represents a context for modalized types of
form �A; (3) Σ represents an ordinary context but its elements must be used linearly.

The intuitive meanings of the typing rules are as follows. Each of the first three rules is a
variable rule depending on the context’s kind. It is allowed for the ∆-part and the Γ-part
to weaken the antecedent in these rules, but is not for the Σ-part since it must satisfy the
linearity condition. The rules (I and (E are for the type (, and again, the (E is
designed to satisfy the linearity. The remaining rules are for types !A and �! A.

The reduction is defined to be the least compatible relation on terms generated by
(β(), (β!), and (β �!). The multistep reduction + is defined as in the case of λ�.

Then, we can show the subject reduction and the strong normalization of λ�! as follows.

FSCD 2019

20:8 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

I Lemma 9 (Substitution).
1. If ∆; Γ; Σ, x : A ` M : B and ∆; Γ; Σ′ ` N : A, then ∆; Γ; Σ,Σ′ ` M [x := N] : B;
2. If ∆; Γ, x : A; Σ ` M : B and ∆; Γ; ∅ ` N : A, then ∆; Γ; Σ ` M [x := N] : B;
3. If ∆, x : A; Γ; Σ ` M : B and ∆; ∅; ∅ ` N : A, then ∆; Γ; Σ ` M [x := N] : B.

I Theorem 10 (Subject reduction). If ∆; Γ; Σ ` M : A and M N, then ∆; Γ; Σ ` N : A.

Proof. By induction on the derivation of ∆; Γ; Σ ` M : A together with Lemma 9. J

I Theorem 11 (Strong normalization). For well-typed term M , there are no infinite reduction
sequences starting from M .

Proof. By embedding to a typed λ-calculus of the (!,()-fragment of dual intuitionistic linear
logic, named λ!,(, which is shown to be strongly normalizing by Ohta and Hasegawa [16].

The details are in the appendix, but the intuition is described as follows. First, for
every well-typed term M , we define the term (M)‡ by replacing the occurrences of �! N and
let �! x = N in L in M with !(N)‡ and let !x = (N)‡ in (L)‡, respectively. Then, we can show
that (M)‡ is typable in λ!,(, because the structure of ‘�! ’ collapses to that of ‘!’, and that
the embedding (−)‡ preserves reductions. Therefore, λ�! is strongly normalizing. J

As we mentioned, we can view that λ�! is indeed a typed λ-calculus for the intuitionistic
modal linear logic. A natural deduction that corresponds to λ�! is obtained as the “logical-part”
of the calculus, and we can show that the natural deduction is equivalent to IMELL�! .

I Definition 12 (Natural deduction). A natural deduction for modal linear logic, called NJ�! ,
is defined to be one that is extracted from λ�! by erasing term annotations.

I Fact 13 (Curry–Howard correspondence). There is a one-to-one correspondence between
NJ�! and λ�! , which preserves provability/typability and proof-normalizability/reducibility.

I Lemma 14 (Judgmental reflection). The following hold in NJ�! .
1. ∆; Γ; Σ, !A ` B if and only if ∆; Γ,A; Σ ` B;
2. ∆; Γ; Σ,�! A ` B if and only if ∆,A; Γ; Σ ` B.

I Theorem 15 (Equivalence). ∆; Γ; Σ ` A in NJ�! if and only if �! ∆, !Γ,Σ ` A in IMELL�! .

Proof. By straightforward induction. Lemma 14 is used to show the if-part. J

4.2 Embedding from the modal λ-calculus by Pfenning and Davies
We give a translation from Pfenning and Davies’ λ� to our λ�! . We also show that the
translation preserves the reductions of λ�, and thus it can be seen as the S4-version of Girard
translation on the level of proofs through the Curry–Howard correspondence.

To give the translation, we introduce two meta λ-terms in λ�! to encode the function
space ⊃ of λ�. The simulation of reduction of (λx : A.M) N in λ� can be shown readily.

IDefinition 16. LetM and N be terms such that ∆; Γ, x : A; Σ ` M : B and ∆; Γ; ∅ ` N : A.
Then, λx : A.M and M@N are defined as the terms λy :!A.let !x = y in M and M (!N),
respectively, where y is chosen to be fresh, i.e., it is a variable satisfying y 6∈ (FV(M) ∪ {x}).

I Lemma 17 (Derivable full-function space). The following rules are derivable in λ�! :
∆; Γ, x : A; Σ ` M : B

∆; Γ; Σ ` (λx : A.M) :!A(B

∆; Γ; Σ ` M :!A(B ∆; Γ; ∅ ` N : A

∆; Γ; Σ ` M@N : B
Moreover, it holds that (λx : A.M)@N + M [x := N] in λ�! .

Y. Fukuda and A. Yoshimizu 20:9

dAe dpe def= p

dA ⊃ Be def= !dAe(dBe

d�Ae def=�! dAe

dΓe
dΓe def= {(x : dAe) | (x : A) ∈ Γ}

T dMe T dxe def= x

T dλx : A.Me def= λx : dAe.T dMe

T dM Ne def= T dMe@T dNe

T d�Me def=�! T dMe

T dlet�x = M in Ne def= let �! x = T dMe in T dNe

Figure 11 Definitions of the S4-version of Girard translation in term of typed λ-calculus.

Together with the above meta λ-terms λx : A.M and M@N , we can define the translation
from λ� into λ�! and show that it preserves typability and reducibility.

I Definition 18 (Translation). The translation from λ� to λ�! is defined to be the triple of
the type/context/term translations dAe, dΓe, and T dMe defined in Figure 11.

I Theorem 19 (Embedding). λ� can be embedded into λ�! , i.e., the following hold:
1. If ∆; Γ ` M : A in λ�, then d∆e; dΓe; ∅ ` T dMe : dAe in λ�! .
2. If M M ′ in λ�, then T dMe + T dM ′e in λ�! .

Proof. By induction on the derivation of ∆; Γ ` M : A and M M ′ in λ�, respectively. J

From the logical point of view, Theorem 19.1 can be seen as another S4-version of
Girard translation (in the style of natural deduction) that corresponds to Theorem 8; and
Theorem 19.2 gives a justification that the S4-version of Girard translation is correct with
respect to the level of proofs, i.e., it preserves proof-normalizations as well as provability.

5 Axiomatization of modal linear logic

We give an axiomatic characterization of the intuitionistic modal linear logic. To do so, we
define a typed combinatory logic, called CL�! , which can be seen as a Hilbert-style deductive
system of modal linear logic through the Curry–Howard correspondence. In this section, we
only aim to provide the equivalence between NJ�! and the Hilbert-style, while CL�! satisfies
several desirable properties, e.g., the subject reduction and the strong normalizability.

The definition of CL�! is given in Figure 12. The set of types has the same structure
as that in λ�! . A term is either a variable, a combinator, a necessitated term by ‘!’, or a
necessitated term by ‘�! ’. The notions of (type) context and (type) judgment are defined
similarly to those of λ�! .

Every combinator c has its type as defined in the list in the figure, and is denoted by
typeof(c). Then, the typing rules are described as follows: Ax and MP are the standard
rules, which logically correspond to an axiom rule of the set of axiomata, and modus ponens,
respectively. The others are defined by the same way as in λ�! .

The reduction of combinators is defined to be the least compatible relation on terms
generated by the reduction rules listed in the figure.
I Remark 20. CL�! can be seen as an extension of linear combinatory algebra of Abramsky
et al. [1] with the �! -modality, or equivalently, a linear-logical reconstruction of Pfenning’s
modally-typed combinatory logic [17]. The combinators T!, D!, 4! represent the S4 axiomata
for the !-modality, and similarly, T�! , D�! , 4�! represent those for the �! -modality. E is the
only one combinator to characterize the strength between the two modalities.

As we defined NJ�! from λ�! , we can define the Hilbert-style deductive system (with open
assumptions) for the intuitionistic modal linear logic via CL�! .

FSCD 2019

20:10 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

Syntactic category
Types A,B,C ::= p | A(B | !A | �! A
Terms M,N,L ::= x | c | !M | �! M

Typing rule
(c is a combinator)

Ax∆; Γ; ∅ ` c : typeof(c)
∆; Γ; Σ ` M : A(B ∆; Γ; Σ′ ` N : A

MP
∆; Γ; Σ,Σ′ ` M N : B

LinAx∆; Γ; x : A ` x : A !Ax∆; Γ, x : A; ∅ ` x : A
�! Ax∆, x : A; Γ; ∅ ` x : A

∆; Γ; ∅ ` M : A
!∆; Γ; ∅ ` !M :!A

∆; ∅; ∅ ` M : A
�!∆; Γ; ∅ `�! M :�! A

Combinator
` I : A(A
` B : (B (C)((A(B)(A(C
` C : (A(B (C)(B (A(C
` Sδ : (δA(B (C)((δA(B)(δA(C
` Kδ : A(δB (A
` Wδ : (δA(δA(B)(δA(B
` Tδ : δA(A
` Dδ : δ(A(B)(δA(δB
` 4δ : δA(δδA
` E :�! A(!A

where δ ∈ {!,�! }

Reduction
I M M
B M N L M (N L)
C M N L M L N

Sδ M N (δL) M (δL) (N (δL))

Kδ M (δN) M

Wδ M (δN) M (δN) (δN)

Tδ (δM) M

Dδ (δM) (δN) δ(M N)

4δ (δM) δδM
E �! M !M

where δ ∈ {!,�! }

Figure 12 Definition of CL�! .

I Definition 21 (Hilbert-style). A Hilbert-style deductive system for modal linear logic, called
HJ�! , is defined to be one that is extracted from CL�! by erasing term annotations.

I Fact 22 (Curry–Howard correspondnece). There is a one-to-one correspondence between
HJ�! and CL�! , which preserves provability/typability and proof-normalizability/reducibility.

The deduction theorem of HJ�! can be obtained as a consequence of the so-called bracket
abstraction of CL�! through Fact 22, which allows us to show the equivalence between HJ�!

and NJ�! . Therefore, the modal linear logic is indeed axiomatized by HJ�! .

I Theorem 23 (Deduction theorem).
1. If ∆; Γ; Σ, x : A ` M : B, then ∆; Γ; Σ ` (λ∗x.M) : (A(B);
2. If ∆; Γ, x : A; Σ ` M : B, then ∆; Γ; Σ ` (λ!

∗x.M) : (!A(B);
3. If ∆, x : A; Γ; Σ ` M : B, then ∆; Γ; Σ ` (λ�!∗x.M) : (�! A(B).
where (λ∗x.M), (λ!

∗x.M), (λ�!∗x.M) are bracket abstraction operations that take a variable x
and a CL�! -term M and returns a CL�! -term, and the definitions are given in the appendix.

Proof. By induction on the derivation. The proof is just a type-checking of the result of the
bracket abstraction operations. J

I Theorem 24 (Equivalence). ∆; Γ; Σ ` A in HJ�! if and only if ∆; Γ; Σ ` A in NJ�! .

Proof. By straightforward induction. We use Theorem 23 and Fact 22 to show the if-part. J

I Corollary 25. IMELL�! , NJ�! , and HJ�! are equivalent with respect to provability.

Y. Fukuda and A. Yoshimizu 20:11

Syntactic category
Formulae A,B,C ::= p | p⊥ | A⊗ B | A ` B | !A | ?A | �! A | ♦? A

Inference rule
Ax

` A⊥,A
` Γ,A ` A⊥,Γ′

Cut
` Γ,Γ′

` Γ,A ` Γ′,B
⊗

` Γ,Γ′,A⊗ B
` Γ,A,B `` Γ,A ` B

`♦? ∆, ?Γ,A
!`♦? ∆, ?Γ, !A
` Γ,A

?` Γ, ?A
`♦? ∆,A

�!`♦? ∆,�! A
` Γ,A

♦?` Γ,♦? A
` Γ ?W` Γ, ?A

` Γ, ?A, ?A
?C` Γ, ?A

` Γ ♦? W` Γ,♦? A
` Γ,♦? A,♦? A

♦? C` Γ,♦? A

Figure 13 Definition of CMELL�! .

6 Geometry of Interaction Machine

In this section, we show a dynamic semantics, called context semantics, for the modal linear
logic in the style of geometry of interaction machine [10, 11]. As in the usual linear logic,
we first define a notion of proof net and then define the machine as a token-passing system
over those proof nets. Thanks to the simplicity of our logic, the definitions are mostly
straightforward extension of those for classical MELL (CMELL).

6.1 Sequent calculus for classical modal linear logic

We define a sequent calculus of classical modal linear logic, called CMELL�! . The reason why
we define it in the classical setting is for ease of defining the proof nets in the latter part.

Figure 13 shows the definition of CMELL�! . The set of formulae are defined as an
extension of CMELL-formulae with the two modalities ‘�! ’ and ‘♦?’. A dual formula of A,
written A⊥, is defined by the standard dual formulae in CMELL along with (�! A)⊥ def=♦? (A⊥)
and (♦? A)⊥ def=�! (A⊥). Here, the ♦? -modality is the dual of the �! -modality by definition, and
it can be seen as an integration of the ?-modality and the ♦-modality. The linear implication
A(B is defined as A⊥ ` B as usual. The inference rules are defined as a simple extension
of IMELL�! to the classical setting in the style of “one-sided” sequent.

Then, the cut-elimination theorem for CMELL�! can be shown similarly to the case of
IMELL�! , and we can see that there exists a trivial embedding from IMELL�! to CMELL�! .

I Theorem 26 (Cut-elimination). The rule Cut in CMELL�! is admissible.

I Theorem 27 (Embedding). If Γ ` A in IMELL�! , then ` Γ⊥,A in CMELL�! .

6.2 Proof-nets formalization

First, we define proof structures for CMELL�! . The proof nets are then defined to be those
proof structures satisfying a condition called correctness criterion. Intuitively, a proof net
corresponds to an (equivalence class of) proof in CMELL�! .

I Definition 28. A node is one of the graph-theoretic node shown in Figure 14 equipped
with CMELL�! types on the edges. They are all directed from top to bottom: for example,
the ` node has two incoming edges and one outgoing edge. A !-node (resp. �! -node) has one
outgoing edge typed by !A (resp. �! A) and arbitrarily many (possibly zero) outgoing edges
typed by ?Ai and ♦?Bi (resp. ♦?Ai).

FSCD 2019

20:12 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

(!, ?)-modalities

?c ?w
?A

?A?A

ax
A⊥ A cut ⊗ `A A⊥ A B

A⊗B

A B

A`B

Multiplicatives

?A
!

?A
?d
A

?A1 ?An!A . . .

(�! ,♦?)-modalities

♦? c ♦? w
♦? A

♦? A♦? A

♦? A
�!

♦? A
♦? d
A

♦? A1 ♦? An�! A . . .

♦? B1 ♦? Bm. . .

!A

S

! ? ♦?
?Γ ♦? ∆

Box notation for ! node

Figure 14 Nodes of proof net and box notation.

A proof structure is a finite directed graph that satisfies the following conditions:
each edge is with a type that matches the types specified by the nodes (in Figure 14) it is
connected to;
some edges may not be connected to any node (called dangling edges). Those dangling
edges and also the types on those edges are called the conclusions of the structure;
the graph is associated with a total map from all the !-nodes and �! -nodes in it to proof
structures called the contents of the !/�! -nodes. The map satisfies that the types of the
conclusions of a !-node (resp. �! -node) coincide with the conclusions of its content.

I Remark 29. Formally, a !-node (resp. a �! -node) and its content are distinctive objects and
they are not connected as a directed graph. Though, it is convenient to depict them as if the
!-node (resp. �! -node) represents a “box” filled with its content, as shown at the bottom-right
of Figure 14. We also depict multiple edges by an edge with a diagonal line. In what follows,
we adopt this “box” notation and multiple edges notation without explicit note.

I Definition 30. Given a proof structure S, a switching path is an undirected path on S

(meaning that the path is allowed to traverse an edge forward or backward) satisfying that on
each ` node, ?c node, and ♦? c node, the path uses at most one of the premises, and that the
path uses any edge at most once.

I Definition 31. The correctness criterion is the following condition: given a proof structure
S, switching paths of S and all contents of !-nodes, �! -nodes in S are all acyclic and connected.
A proof structure satisfying the correctness criterion is called a proof net.

As a counterpart of cut-elimination process in CMELL�! , the notion of reduction is defined
for proof structures (and hence for proof nets): this intuition is made precise by Lemma 34
where (−)• is the translation from CMELL�! to proof nets, whose definition is omitted here
since it is defined analogously to that of CMELL and CMELL proof net. The lemmata below
are naturally obtained by extending the case for CMELL since the �! -modality has mostly
the same logical structure as the !-modality.

I Definition 32. Reductions of proof structures are local graph reductions defined by the set
of rules depicted in Figure 15.

I Lemma 33. Let S → S′ be a reduction between proof structures. If S is a proof net (i.e.,
satisfies the correctness criterion), so is S′.

I Lemma 34. Let Π be a proof of `♦? ∆⊥, ?Γ⊥,Σ⊥,A and suppose that Π reduces to another
proof Π′. Then there is a sequence of reductions (Π)• →∗ (Π′)• between the proof nets.

Y. Fukuda and A. Yoshimizu 20:13

cut

?c

ax
cut ⊗ `

cut
 cut cutA

AA⊥
A

A B A⊥ B⊥ A B A⊥ B⊥

?A⊥?A⊥

?A⊥ !A

S

! ?
?Γ ♦? ∆

cut

?w
?A⊥ ?Γ

?w ♦?w
♦? ∆

cut

?d
cut

?A⊥

A⊥

A⊥

!A

S

! ?
?Γ ♦? ∆ !A

S

! ?
?Γ ♦? ∆

cut

?A⊥

cut

?A⊥

?c?c
?Γ ♦? ∆

♦? c

!A

S

! ?
?Γ ♦? ∆ !A

S

! ?
?Γ ♦? ∆

!A

S

?Γ ♦? ∆

!A

S1

! ?
?Γ1 ♦? ∆1 !B

S2

?
?Γ2 ♦? ∆2

cut

!?
?B⊥

!A

S1

! ?

?Γ1

♦? ∆1

!B

S2

?
?Γ2 ♦? ∆2cut

!?B⊥

?Γ1

?
?Γ2 ♦? ∆2

S

cut

♦? c
�!

♦? A⊥♦? A⊥

♦? A⊥
�! A

♦? Γ

S

cut
♦? A⊥

�! A ♦? Γ

S

cut
♦? A⊥

�! A ♦? Γ

♦? c♦? c
♦? Γ

S

cut
♦? A⊥

�! A
♦? Γ

♦?w

♦? Γ

♦?w
S

cut
♦? A⊥

�! A
♦? Γ

♦? d
A⊥

S

cut ♦? Γ

A⊥

A

S

�! A
♦? Γ1

S

�! B
♦? Γ2

♦? B⊥

cut

S

�! A ♦? Γ1

S

�! B
♦? Γ2cut

♦? Γ2

♦? ♦?

♦? ♦?

♦?

♦? ♦?

♦? ♦?

♦?

♦?
♦? ♦?

♦?
♦?

♦? ♦?

♦?

♦?

♦?

♦?

�! �!

�!
�!

�! �!

�!

�!

Figure 15 Reduction rules.

FSCD 2019

20:14 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

6.3 Computational interpretation

I Definition 35. A context is a triple (M,B,N) where M,B,N are generated by the
following grammar:

M ::= ε | l.M | r.M B ::= ε | L.B | R.B | 〈B,B〉 | ? N ::= ε | L′.N | R′.N | 〈N ,N〉 | ?

The intuition of a context is an intermediate state while “evaluating” the proof net (and,
by translating into a proof net, a term in λ�!). The geometry of interaction machine calculates
the semantic value of a net by traversing the net from a conclusion to another; to traverse
the net in a “right way” (more precisely, in a way invariant under net reduction), the context
accumulates the information about the path that is already passed. Then, how the net is
traversed is defined by the notion of path over a proof net as we define below.

IDefinition 36. The extended dynamic algebra Λ�∗ is a single-sorted Σ algebra that contains
0, 1, p, q, r, r′, s, s′, t, t′, d, d′ : Σ as constants, has an associative operator · : Σ×Σ→ Σ and
operators (−)∗ : Σ→ Σ, ! : Σ→ Σ, �! : Σ→ Σ, equipped with a formal sum +, and satisfies
the equations below. Hereafter, we write xy for x · y where x and y are metavariables over Σ.

0∗ =!0 = 0 1∗ =!1 = 1 0x = x0 = 0 1x = x1 = x

!(x)∗ =!(x∗) (xy)∗ = y∗x∗ (x∗)∗ = x !(x)!(y) =!(xy)
�! (x) �! (y) =�! (xy) p∗p = q∗q = 1 q∗p = p∗q = 0 r∗r = s∗s = 1

s∗r = r∗s = 0 d∗d = 1 t∗t = 1 p′∗p′ = q′∗q′ = 1
q′∗p′ = p′∗q′ = 0 r′∗r′ = s′∗s′ = 1 s′∗r′ = r′∗s′ = 0 d′∗d′ = 1

t′∗t′ = 1 !(x)r = r!(x) !(x)s = s!(x) !(x)t = t!!(x)
!(x)d = dx �! (x)r′ = r′ �! (x) �! (x)s′ = s′ �! (x) �! (x)t′ = t′ �! �! (x)

�! (x)d′ = d′x x+ y = y + x x+ 0 = x (x+ y)z = xz + yz

z(x+ y) = zx+ zy (x+ y)∗ = x∗ + y∗ !(x+ y) =!x+!y �! (x+ y) =�! x+ �! y

I Remark 37. The equations in the definition above are mostly the same as the standard
dynamic algebra Λ∗ [10, 11] except those equations concerning the symbols with ′ and the
operator �! , and their structures are analogous to those for ! operator. This again reflects
the fact that the logical structure of rules for �! is analogous to that of !.

I Definition 38. A label is an element of Λ�∗ that is associated to edges of proof structures
as in Figure 16. Let S be a proof structure and TS be the set of edge traversals in the structure.
S is associated with a function w : TS → Λ�∗ defined by w(e) = l (resp. l∗) if e is a forward
(resp. backward) traversal of an edge e and l is the label of the edge; w(e1e2) = w(e1)w(e2).

S

�! ♦?
. . .

♦?
. . .
. . .

?c ?w
ax

cut ⊗ ` ?d

♦? c ♦?w ♦? d
S

. . .

. . .

. . .

. . .

1 1 1 1 p q p q r s

0

d

r′

0

s′ d′

t′ t′ t t t′ t′
! ? ? ♦?. . .♦?. . .

Figure 16 Labels on edges.

Y. Fukuda and A. Yoshimizu 20:15

I Definition 39. A walk over a proof structure S is an element of Λ�∗ that is obtained by
concatenating labels along a graph-theoretic path over S such that the graph-theoretic path
does not traverse an edge forward (resp. backward) immediately after the same edge backward
(resp. forward); and does not traverse a premise of one of ⊗,`, c node and another premise
of the same node immediately after that. A path is a walk that is not proved to be equal to 0.
A path is called maximal if it starts and finishes at a conclusion.

The intuition of the notion of path is that a path is a “correct way” of traversing a proof
net, in the sense that any path is preserved before and after a reduction. All the other walks
that are not paths will be broken, which is represented by the constant 0 of Λ�∗. Then, we
obtain a context semantics from paths in the following way.

I Definition 40. Given a monomial path a, its action JaK : Σ ⇀ Σ on contexts is defined as
follows. We define J1K as the identity mapping on contexts. There is no definition of J0K.
The Jf∗K is the inverse translation, i.e., JfK−1. The transformer of the composition of a and
b is defined as JabK(m) def= JaK(JbK(m)). For the other labels, the interpretation are defined as
follows where exponential morphisms ! and �! are defined by the meta-level pattern matchings:

JpK(M,B,N) def= (l.M,B,N) JqK(M,B,N) def= (r.M,B,N)

JrK(M,B,N) def= (M, L.B,N) JsK(M,B,N) def= (M, R.B,N)

JtK(M, 〈B1, 〈B2,B3〉〉,N) def= (M, 〈〈B1,B2〉,B3〉,N) JdK(M,B,N) def= (M, ?.B,N)

Jr′K(M,B,N) def= (M,B, L′.N) Js′K(M,B,N) def= (M,B, R′.N)

Jt′K(M,B, 〈N1, 〈N2,N3〉〉)
def= (M,B, 〈〈N1,N2〉,N3〉) Jd′K(M,B,N) def= (M,B, ?.N)

J!(f)K(M, 〈B1,B2〉,N) def= let (M′,B′2,N ′) = JfK(M,B2,N) in (M′, 〈B1,B′2〉,N ′)

J�! (f)K(M,B, 〈N1,N2〉)
def= let (M′,B′,N ′2) = JfK(M,B,N2) in (M′,B′, 〈N1,N ′2〉)

Given a path a, its action JaK : Σ ⇀ M(Σ) is defined by the rules above (regarding the
codomain as a multiset) and Ja+ bK(m) = (JaK(m))] (JbK(m)) where] is the multiset sum.

I Remark 41. In Mackie’s work [10], the multiset in the codomain is not used since the main
interest of his work is on terms of a base type: in that setting any proof net corresponding to
a term has an execution formula that is monomial. In general, this style of context semantics
is slightly degenerated compared to Girard’s original version and its successors because the
information of “current position” is dropped from the definition of contexts.

I Definition 42. Let S be a closed proof net and χ be the set of maximal paths between
conclusions of S. The execution formula is defined by EX (S) = Σφ∈χφ where the RHS is the
sum of all paths in χ. The context semantics of S is defined to be JEX (S)K : Σ ⇀M(Σ).

I Definition 43. Let M be a closed well-typed term in λ�! . The context semantics of M
is defined to be J(M)†K, where (−)† is a straightforward translation from λ�! -terms to proof
nets, defined by constructing proof nets from λ�! -derivations as in Figure 17.

I Lemma 44. Let S be a closed proof net and S′ be its normal form. Then JSK = JS′K.

The lemma is proved through two auxiliary lemmata below.

I Lemma 45. Let φ be a path from a conclusion of a closed net S ending at a node a.
Let (M′,B′,N ′) = JφK(M, ε, ε). The height of B′ (resp. N ′) matches with the number of
exponential (resp. necessitation) boxes containing the node a.

FSCD 2019

20:16 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

LinAx
∆; Γ;x : A ` x : A

!Ax
∆; Γ, x : A; ∅ ` x : A

�! Ax
∆, x : A; Γ; ∅ ` x : A

Π
∆; Γ; Σ, x : A ` M : B

(I
∆; Γ; Σ ` λx : A.M : A(B

Π1

∆; Γ; Σ ` M : A(B

Π2

∆; Γ; Σ′ ` N : A
(E

∆; Γ; Σ,Σ′ ` M N : B

Π

∆; Γ; ∅ ` M : A
!I

∆; Γ; ∅ ` !M :!A

Π1

∆; Γ; Σ ` M : !A

Π2

∆; Γ, x : A; Σ′ ` N : B
!E

∆; Γ; Σ,Σ′ ` let !x = M inN : B

Π

∆; ∅; ∅ ` M : A
�! I

∆; Γ; ∅ `�! M :�! A

Π1

∆; Γ; Σ ` M :�! A

Π2

∆, x : A; Γ; Σ′ ` N : B
�! E

∆; Γ; Σ,Σ′ ` let �! x = M inN : B

?Γ⊥

?w♦? w
♦? ∆⊥

ax
A⊥ A

?Γ⊥

?w♦? w
♦? ∆⊥

ax

A

A⊥

?d
?A⊥

?Γ⊥

?w♦? w
♦? ∆⊥

ax

A

A⊥

♦? d
♦? A⊥

(Π)†

?Γ⊥♦? ∆⊥ Σ⊥
A⊥ B

À(B

(Π1)†

?Γ⊥♦? ∆⊥ Σ⊥

(Π2)†

?Γ⊥♦? ∆⊥ Σ′⊥ ax
B⊥ B

A⊥

⊗
cut

A(B

?c?c
?Γ⊥

♦? c
♦? ∆⊥

!A

(Π)†

!?
?Γ⊥♦? ∆⊥ A

?Γ⊥♦? ∆⊥

�! A

(Π)†

♦?
♦? ∆⊥ A

?Γ⊥♦? ∆⊥

♦? w

(Π1)†

?Γ⊥♦? ∆⊥ Σ⊥
!A

(Π2)†

?Γ⊥♦? ∆⊥ Σ′⊥ B?A⊥

cut♦? c
♦? ∆⊥

?c
?Γ⊥

(Π1)†

?Γ⊥♦? ∆⊥ Σ⊥
�! A

(Π2)†

?Γ⊥♦? ∆⊥ Σ′⊥ B♦? A⊥

cut♦? c
♦? ∆⊥

?c
?Γ⊥

♦?

�!

Figure 17 Translation from λ�
! to CMELL�! proof nets.

Proof. By spectating the rules of actions above: the height of stacks only changes at doors
of a box. J

I Lemma 46. Let φ be a path inside a box of a closed net S. JφK(M, σ.B, τ.N) is in the
form (M′, σ′.B, τ.N).

Proof. Again, by spectating the rules of actions. J

I Theorem 47. If a closed term M in λ�! is typable and M M ′, then J(M)†K = J(M ′)†K.

I Remark 48. This notion of context semantics inherently captures the “dynamics” of
computation, and indeed Mackie exploited [10, 11] the character to implement a compiler, in
the level of machine code, for PCF. In this paper we do not cover such a concrete compiler,
but the definition of J−K can be seen as “context transformers” of virtual machine that is
mathematically rigorous enough to model the computation of λ�! (and hence of λ�).

Y. Fukuda and A. Yoshimizu 20:17

7 Related work

7.1 Linear-logical reconstruction of modal logic
The work on translations from modal logic to linear logic goes back to Martini and Masini [13].
They proposed a translation from classical S4 (CS4) to full propositional linear logic by
means of the Grisin–Ono translation. However, their work only discusses provability.

The most similar work to ours is a “linear analysis” of CS4 by Schellinx [20], in which
Girard translation from CS4 with respect to proofs is proposed. He uses a bi-colored
linear logic, a subsystem of multicolored linear logic by Danos et al. [4], called 2-LL, for a
target calculus of the translation. It has two pairs of exponentials 〈!

0
, ?

0
〉 and 〈!

1
, ?

1
〉, called

subexponentials following the terminology by Nigam and Miller [14], with the following rules:

!
1
Γ, !

0
Γ′ ` A, ?

1
∆, ?

0
∆′

!
0
R

!
1
Γ, !

0
Γ′ ` !

0
A, ?

1
∆, ?

0
∆′

!
1
Γ ` A, ?

1
∆

!
1
R

!
1
Γ ` !

1
A, ?

1
∆

These rules have, while they are defined in the classical setting, essentially the same structure
to what we defined as !R and �! R for IMELL�! , respectively.

To mention the difference between the results of Schellinx and ours, his work has
investigated only in terms of proof theory. Neither a typed λ-calculus nor a Geometry of
Interaction interpretation was given. However, even so, he already gave a reduction-preserving
Girard translation for the sequent calculi of CS4 and 2-LL, and his linear decoration (cf.
[20, 4]) allows us to obtain the cut-elimination theorem for CS4 as a corollary of that of
2-LL. Thus, it should be interesting to investigate a relationship between his work and ours.

Furthermore, there also exist two uniform logical frameworks that can encode various
logics including IS4 and CS4. One is the work by Nigam et al. [15] which based on Nigam
and Miller’s linear-logical framework with subexponentials and on the notion of focusing
by Andreoli. The other work is adjoint logic by Pruiksma et al. [19] which based on, again,
subexponentials, and the so-called LNL model for intuitionistic linear logic by Benton. While
our present work is still far from the two works, it seems fruitful to take our discussion into
their frameworks to give linear-logical computational interpretations for various logics.

7.2 Computation of modal logic and its relation to metaprogramming
Computational interpretations of modal logic have been considered not only for intuitionistic
S4 but also for various logics, including the modal logics K, T, K4, and GL, and a few
constructive temporal logics (cf. the survey by Kavvos in [8]). This field of modal logics is
known to be connected to “metaprogramming” in the theory of programming languages and
has been substantially studied. One of the studies is (multi-)staged computation (cf. [22]),
which is a programming paradigm that supports Lisp-like quasi-quote, unquote, and eval.
The work of λ� by Davies and Pfenning [5] is actually one of logical investigations of it.

Furthermore, the multi-stage programming is not a mere theory but has “real” implemen-
tations such as MetaML [22] and MetaOCaml (cf. a survey in [3]) in the style of functional
programming languages. Some core calculi of these implementations are formalized as type
systems (e.g. [21, 3]) and investigated from the logical point of view (e.g. [24]).

8 Conclusion

We have presented a linear-logical reconstruction of the intuitionistic modal logic S4, by
establishing the modal linear logic with the �! -modality and the S4-version of Girard

FSCD 2019

20:18 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

translation from IS4. The translation from IS4 to the modal linear logic is shown to be
correct with respect to the level of proofs, through the Curry–Howard correspondence.

While the proof-level Girard translation for modal logic is already proposed by Schellinx,
our typed λ-calculus λ�! and its Geometry of Interaction Machine (GoIM) are novel. Also,
the significance of our formalization is its simplicity. All we need to establish the linear-logical
reconstruction of modal logic is the �! -modality, an integration of !-modality and �-modality,
that gives the structure of modal logic into linear logic. Thanks to the simplicity, our
λ-calculus and the GoIM can be obtained as simple extensions of existing works.

As a further direction, we plan to enrich our framework to cover other modal logics such
as K, T, and K4, following the work of contextual modal calculi by Kavvos [8]. Moreover,
reinvestigating of the modal-logical foundation for multi-stage programming by Tsukada and
Igarashi [24] via our methods and extending Mackie’s GoIM for PCF [11] to the modal-logical
setting seem to be interesting from the viewpoint of programming languages.

Lastly, we have also left a semantical study for modal linear logic with respect to
the validity. At the present stage, we think that we could give a sound-and-complete
characterization of modal linear logic by an integration of Kripke semantics of modal logic
and phase semantics of linear logic, but details will be studied in a future paper.

References
1 Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of Interaction and Linear

Combinatory Algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.
doi:10.1017/S0960129502003730.

2 Andrew Barber. Dual intuitionistic linear logic, 1996. Technical report LFCS-96-347. URL:
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347.

3 Cristiano Calcagno, Eugenio Moggi, and Walid Taha. ML-like inference for classifiers. In
Proceedings of ESOP 2004, pages 79–93, 2004. doi:10.1007/978-3-540-24725-8_7.

4 Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The Structure of Exponentials:
Uncovering the Dynamics of Linear Logic Proofs. In G. Gottlob, A. Leitsch, and D. Mundici,
editors, Computational Logic and Proof Theory, pages 159–171. Springer-Verlag, 1993. doi:
10.1007/BFb0022564.

5 Rowan Davies and Frank Pfenning. A Modal Analysis of Staged Computation. Journal of the
ACM, 48(3):555–604, 2001. doi:10.1145/382780.382785.

6 Yosuke Fukuda and Akira Yoshimizu. A Higher-arity Sequent Calculus for Modal Linear Logic.
In RIMS Kôkyûroku 2083: Symposium on Proof Theory and Proving, pages 76–87, 2018. URL:
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2083-07.pdf.

7 Jean-Yves Girard. Linear Logic. Theoretical Compututer Science, 50(1):1–102, 1987. doi:
10.1016/0304-3975(87)90045-4.

8 G. A. Kavvos. Dual-Context Calculi for Modal Logic. In Proceedings of LICS 2017, pages
1–12, 2017. doi:10.1109/LICS.2017.8005089.

9 Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan Shankar. Decision problems
for propositional linear logic. Annals of Pure and Applied Logic, 56(1):239–311, 1992. doi:
10.1016/0168-0072(92)90075-B.

10 Ian Mackie. The Geometry of Implementation. PhD thesis, University of London, 1994.
11 Ian Mackie. The Geometry of Interaction Machine. In Proceedings of POPL 1995, pages

198–208, 1995. doi:10.1145/199448.199483.
12 John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-by-

value, call-by-need and the linear lambda lalculus. Theoretical Computer Science, 228(1-2):175–
210, 1999. doi:10.1016/S0304-3975(98)00358-2.

13 Simone Martini and Andrea Masini. A Modal View of Linear Logic. Journal of Symbolic
Logic, 59(3):888–899, 1994. doi:10.2307/2275915.

http://dx.doi.org/10.1017/S0960129502003730
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
http://dx.doi.org/10.1007/978-3-540-24725-8_7
http://dx.doi.org/10.1007/BFb0022564
http://dx.doi.org/10.1007/BFb0022564
http://dx.doi.org/10.1145/382780.382785
http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2083-07.pdf
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1109/LICS.2017.8005089
http://dx.doi.org/10.1016/0168-0072(92)90075-B
http://dx.doi.org/10.1016/0168-0072(92)90075-B
http://dx.doi.org/10.1145/199448.199483
http://dx.doi.org/10.1016/S0304-3975(98)00358-2
http://dx.doi.org/10.2307/2275915

Y. Fukuda and A. Yoshimizu 20:19

14 Vivek Nigam and Dale Miller. Algorithmic Specifications in Linear Logic with Subexponentials.
In Proceedings of PPDP 2009, pages 129–140, 2009. doi:10.1145/1599410.1599427.

15 Vivek Nigam, Elaine Pimentel, and Giselle Reis. An extended framework for specifying and
reasoning about proof systems. Journal of Logic and Computation, 26(2):539–576, 2016.
doi:10.1093/logcom/exu029.

16 Yo Ohta and Masahito Hasegawa. A Terminating and Confluent Linear Lambda Calculus. In
Proceedings of RTA 2006, pages 166–180, 2006. doi:10.1007/11805618_13.

17 Frank Pfenning. Lecture Notes on Combinatory Modal Logic, 2010. Lecture note. URL:
http://www.cs.cmu.edu/~fp/courses/15816-s10/lectures/09-combinators.pdf.

18 Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11(4):511–540, 2001. doi:10.1017/S0960129501003322.

19 Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. Adjoint Logic, 2018.
Manuscript. URL: http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf.

20 Harold Schellinx. A Linear Approach to Modal Proof Theory. In Proof Theory of Modal Logic,
pages 33–43. Springer, 1996. doi:10.1007/978-94-017-2798-3_3.

21 Walid Taha and Michael Florentin Nielsen. Environment Classifiers. In Proceedings of POPL
2003, pages 26–37, 2003. doi:10.1145/640128.604134.

22 Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit annotations.
Theoretical Computer Science, 248(1-2):211–242, 2000. doi:10.1016/S0304-3975(00)00053-0.

23 A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press,
1996.

24 Takeshi Tsukada and Atsushi Igarashi. A Logical Foundation for Environment Classifiers.
Logical Methods in Computer Science, 6(4:8):1–43, 2010. doi:10.2168/LMCS-6(4:8)2010.

A Appendix

A.1 Cut-elimination theorem for the intuitionistic modal linear logic
In this section, we give a complete proof of the cut-elimination theorem of IMELL�! .

I Theorem 49 (Cut-elimination). The rule Cut in IMELL�! is admissible, i.e., if Γ ` A is
derivable, then there is a derivation of the same judgment without any applications of Cut.

Proof. As we mentioned in the body, we will show the following rules are admissible.

Γ ` !A Γ′, (!A)n ` B
!CutΓ,Γ′ ` B

Γ `�! A Γ′, (�! A)n ` B
�! CutΓ,Γ′ ` B

The admissibility of Cut, !Cut, �! Cut are shown by simultaneous induction on the derivation
of Γ ` A with the lexicographic complexity 〈δ, h〉, where δ is the degree of the assumed
derivation and h is its height. Therefore, it is enough to show that for every application of
cuts, one of the following hold: (1) it can be reduced to a cut with a smaller cut-degree; (2)
it can be reduced to a cut with a smaller height; (3) it can be eliminated immediately.

In what follows, we will explain the admissibility of each cut rule separately although the
actual proofs are done simultaneously.

The admissibility of Cut. We show that every application of the rule Cut whose cut-degree
is maximal is eliminable. Thus, consider an application of Cut in the derivation:

Π0
Γ ` A

Π1

Γ′,A ` B
CutΓ,Γ′ ` B

such that its cut-degree is maximal and its height is minimal (comparing to the other
applications whose cut-degree is maximal). The proof proceeds by case analysis on Π0.

FSCD 2019

http://dx.doi.org/10.1145/1599410.1599427
http://dx.doi.org/10.1093/logcom/exu029
http://dx.doi.org/10.1007/11805618_13
http://www.cs.cmu.edu/~fp/courses/15816-s10/lectures/09-combinators.pdf
http://dx.doi.org/10.1017/S0960129501003322
http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://dx.doi.org/10.1007/978-94-017-2798-3_3
http://dx.doi.org/10.1145/640128.604134
http://dx.doi.org/10.1016/S0304-3975(00)00053-0
http://dx.doi.org/10.2168/LMCS-6(4:8)2010

20:20 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

Π0 ends with Cut. In this case the derivation is as follows:
...

Γ0 ` C

...
Γ1,C ` A

CutΓ0,Γ1 ` A
Π1

Γ′,A ` B
CutΓ0,Γ1,Γ′ ` B

Since the bottom application of Cut was chosen to have the maximal cut-degree and
the minimum height, the cut-degree of the above is less than that of the bottom.
Therefore, the derivation can be translated to the following:

...
Γ0 ` C

...
Γ1,C ` A

Π1

Γ′,A ` B
I.H.

Γ1,C ,Γ′ ` B
I.H.

Γ0,Γ1,Γ′ ` B
Π0 ends with (R. In this case, the derivation is as follows:

...
Γ,A0 ` A1

(RΓ ` A0 (A1

Π1

Γ′,A0 (A1 ` B
CutΓ,Γ′ ` B

for some A0 and A1 such that A ≡ A0 (A1. If the last step in Π1 is Ax, then the
result is obtained as Π0. If the last step in Π1 is(L, the derivation is as follows:

...
Γ,A0 ` A1

(RΓ ` A0 (A1

...
Γ′ ` A0

...
Γ′′,A1 ` B

(LΓ′,Γ′′,A0 (A1 ` B
CutΓ,Γ′,Γ′′ ` B

which is translated to the following:
...

Γ′ ` A0

...
Γ,A0 ` A1

I.H.
Γ,Γ′ ` A1

...
Γ′′,A1 ` B

I.H.
Γ,Γ′,Γ′′ ` B

since the cut-degrees of A0 and A1 are less than that of A. The other cases can be
shown by simple commutative conversions.
Π0 ends with !R. This case is dealt as a special case of the case !R in !Cut.
Π0 ends with �! R. This case is dealt as a special case of the case �! R in �! Cut.
Π0 ends with the other rules. Easy.

The admissibility of !Cut. As in the case of Cut, consider an application of !Cut:
Π0

Γ ` !A
Π1

Γ′, (!A)n ` B
!CutΓ,Γ′ ` B

such that its cut-degree is maximal and its height is minimal. By case analysis on Π0.
Π0 ends with Ax. In this case the cut-elimination is done as follows:

!A ` !A
Π1

Γ′, (!A)n ` B
!Cut!A,Γ′ ` B

Cut elim.=⇒
Π1

Γ′, (!A)n ` B
!C

Γ′, !A ` B

Y. Fukuda and A. Yoshimizu 20:21

Π0 ends with !R. In this case the derivation is as follows:
...

�! Γ0, !Γ1 ` A
!R

�! Γ0, !Γ1 ` !A
Π1

Γ′, (!A)n ` B
!Cut

�! Γ0, !Γ1,Γ′ ` B
Due to the side-condition of !R, we have to do case analysis on Π1 further as follows.
∗ Π1 ends with Cut. In this case the derivation is as follows:

Π0
�! Γ0, !Γ1 ` !A

...
Γ′, (!A)k ` C

...
Γ′′, (!A)l,C ` B

CutΓ′,Γ′′, (!A)n ` B
!Cut

�! Γ0, !Γ1,Γ′,Γ′′ ` B
where n = k+ l. We only deal with the case of k > 0 and l > 0, and the other cases
are easy. Then, the derivation can be translated to the following:

Π0
�! Γ0, !Γ1 ` !A

...
Γ′, (!A)k ` C

I.H.
�! Γ0, !Γ1,Γ′ ` C

Π0
�! Γ0, !Γ1 ` !A

...
Γ′′, (!A)l,C ` B

I.H.
�! Γ0, !Γ1,Γ′′,C ` B

I.H.
(�! Γ0)2, (!Γ1)2,Γ′,Γ′′ ` B

!C,�! C
�! Γ0, !Γ1,Γ′,Γ′′ ` B

since the cut-degree of !Cut is less than that of Cut from the assumption.
∗ Π1 ends with !L. If the formula introduced by !L is not the cut-formula, then it is

easy. For the other case, the derivation is as follows:
...

�! Γ0, !Γ1 ` A
!R

�! Γ0, !Γ1 ` !A

...
Γ′, (!A)n−1,A ` B

!LΓ′, (!A)n ` B
!Cut

�! Γ0, !Γ1,Γ′ ` B
which is translated to the following:

...
�! Γ0, !Γ1 ` A

Π0
�! Γ0, !Γ1 ` !A

...
Γ′, (!A)n−1,A ` B

I.H.
�! Γ0, !Γ1,Γ′,A ` B

I.H.
(�! Γ0)2, (!Γ1)2,Γ′ ` B

!C,�! C
�! Γ0, !Γ1,Γ′ ` B

∗ Π1 ends with !C. If the formula introduced by !C is not the cut-formula, then it is
easy. For the other case, the cut-elimination is done as follows:

Π0
�! Γ0, !Γ1 ` !A

...
Γ′, (!A)n+1 ` B

!CΓ′, (!A)n ` B
!Cut

�! Γ0, !Γ1,Γ′ ` B

Cut elim.=⇒
Π0

�! Γ0, !Γ1 ` !A

...
Γ′, (!A)n+1 ` B

I.H.
�! Γ0, !Γ1,Γ′ ` B

Note that the whole proof has not been proceeding by induction on n, and hence
the number of occurrences of !A does not matter in this case.

∗ Π1 ends with the other rules. Easy.
Π0 ends with the other rules. Easy.

The admissibility of �! Cut. Similar to the case of !Cut. J

FSCD 2019

20:22 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

Syntactic category
Types A,B,C ::= p | A(B | !A
Terms M,N,L ::= x | λx : A.M | M N | !M | let !x = M in N

Typing rule
LinAxΓ; x : A ` x : A !AxΓ, x : A; ∅ ` x : A

Γ; Σ, x : A ` M : B
(IΓ; Σ ` λx : A.M : A(B

Γ; Σ ` M : A(B Γ; Σ′ ` N : A
(E

Γ; Σ,Σ′ ` M N : B
Γ; ∅ ` M : A

!IΓ; ∅ ` !M :!A
Γ; Σ ` M :!A Γ, x : A; Σ′ ` N : B

!E
Γ; Σ,Σ′ ` let !x = M in N : B

Reduction rule
(λx : A.M) N M [x := N]
λx : A.M x M

let !x =!M in N N [x := M]
let !x = M inC[!x] C[M]

(let !x = M in N) L let !x = M in N L
let !y = (let !x = M in N) in L let !x = M in let !y = N in L

λy : A.(let !x = M in N) let !x = M inλy : A.N (if y 6∈ FV(M))
L (let !x = M in N) let !x = M in L N

λz : A.(let !y = M in let !x = L in N) let !x = L inλz : A.(let !y = M in N) (if y 6∈ FV(L))

where C[−] is a linear context defined by the following grammar:

C ::= [−] | λx : A.C | C M | M C | let !x = C in M | let !x = M inC

Figure 18 Definition of λ!,((some syntax are changed to fit the present paper’s notation).

A.2 Strong normalizability of the typed λ-calculus for modal linear
logic

We complete the proof of the strong normalization theorem for λ�! . As we mentioned, this is
done by an embedding to a typed λ-calculus for the (!,()-fragment of dual intuitionistic
linear logic, studied by Ohta and Hasegawa [16], and shown to be strongly normalizing.

The calculus of Ohta and Hasegawa, named λ!,(here, is given in Figure 18. The syntax
and the typing rules can be read in the same way as (the (!, ()-fragment of) λ�! . There are
somewhat many reduction rules in contrast to those of λ�! , but these are due to the purpose
of Ohta and Hasegawa to consider η-rules and commutative conversions. The different sets
of reduction rules do not cause any problems to prove the strong normalizability of λ�! .

I Definition 50 (Embedding). An embedding from λ�! to λ!,(is defined to be the triple of
the translations (A)‡, (Γ)‡, and (M)‡ given in Figure 19.

I Lemma 51 (Preservation of typing and reduction).
1. If ∆; Γ; Σ ` M : A in λ�! , then (∆,Γ)‡; (Σ)‡ ` (M)‡ : (A)‡ in λ!,(.
2. If M N in λ�! , then (M)‡ (N)‡ in λ!,(.

Proof. By induction on ∆; Γ; Σ ` M : A and M N , respectively. J

Y. Fukuda and A. Yoshimizu 20:23

(A)‡
(p)‡ def= p

(A(B)‡ def= (A)‡ ((B)‡

(!A)‡ def= !(A)‡

(�! A)‡ def= !(A)‡

(Γ)‡

(Γ)‡ def= {(x : (A)‡) | (x : A) ∈ Γ}

(M)‡ (x)‡ def= x

(λx : A.M)‡ def= λx : (A)‡.(M)‡

(M N)‡ def= (M)‡ (N)‡

(!M)‡ def= !(M)‡

(let !x = M in N)‡ def= let !x = (M)‡ in (N)‡

(�! M)‡ def= !(M)‡

(let �! x = M in N)‡ def= let !x = (M)‡ in (N)‡

Figure 19 Definition of the embeddings (A)‡, (Γ)‡, and (M)‡.

λ∗x.M
λ∗x.x

def= I

λ∗x.(M N) def= C (λ∗x.M) N if x ∈ FV(M)

λ∗x.(M N) def= B M (λ∗x.N) if x ∈ FV(N)

λ!
∗x.M

λ!
∗x.x

def= T!

λ!
∗x.M

def= K! M if (a)

λ!
∗x.(M N) def= C (λ!

∗x.M) N if (b)

λ!
∗x.(M N) def= B M (λ!

∗x.N) if (c)

λ!
∗x.(M N) def= S! (λ!

∗x.M) (λ!
∗x.N) if (d)

λ!
∗x.(!M) def= B (D! !(λ!

∗x.M)) 4!

λ�
!
∗x.M

λ�
!
∗x.x

def= T�!

λ�
!
∗x.M

def= K�! M if (a)

λ�
!
∗x.(M N) def= C (λ�!∗x.M) N if (b)

λ�
!
∗x.(M N) def= B M (λ�!∗x.N) if (c)

λ�
!
∗x.(M N) def= S�! (λ�!∗x.M) (λ�!∗x.N) if (d)

λ�
!
∗x.(!M) def= B (D! (!(λ�!∗x.M))) (B E 4�!)

λ�
!
∗x.(�! M) def= B (D�! (�! (λ�!∗x.M))) 4�!

where (a), (b), (c), (d) means the conditions (x 6∈ FV(M)), (x ∈ FV(M) and x 6∈ FV(N)),
(x 6∈ FV(M) and x ∈ FV(N)), (x ∈ FV(M) and x ∈ FV(N)), respectively.

Figure 20 Definitions of (λ∗x.M), (λ!
∗x.M), and (λ�!∗x.M) for bracket abstraction.

I Theorem 52 (Strong normalization). In λ�! , there are no infinite reduction sequences
starting from M for all well-typed term M .

Proof. Suppose that there exists an infinite reduction sequence starting fromM in λ�! . Then,
the term (M)‡ is well-typed in λ!,(and yields an infinite reduction sequence in λ!,(by
Lemma 51. However, this contradicts the strong normalizability of λ!,(. J

A.3 Bracket abstraction algorithm

We show the definition of bracket abstraction operators in this section.

I Definition 53 (Bracket abstraction). Let M be a term M of CL�! such that ∆; Γ; Σ ` M : A
and x ∈ FV(M) for some ∆,Γ,Σ, A and x. Then, the bracket abstraction of M with respect

FSCD 2019

20:24 A Linear-Logical Reconstruction of Intuitionistic Modal Logic S4

to x is defined to be either one of the following, depending the variable kind of x:

(λ∗x.M) if x ∈ dom(Σ)3;
(λ!
∗x.M) if x ∈ dom(Γ);

(λ�!∗x.M) if x ∈ dom(∆),

where each one of (λ∗x.M), (λ!
∗x.M), and (λ�!∗x.M) is the meta-level bracket abstraction

operation given in Figure 20, which takes the pair of x and M , and yields a CL�! -term.

I Remark 54. As in the case of standard bracket abstraction algorithm, the intuition behind
the operations (λ∗x.M), (λ!

∗x.M), and (λ!
∗x.M) is that they are defined so as to mimic the

λ-abstraction operation in the framework of combinatory logic. For instance, the denotation
of (λ∗x.M) is a CL�! -term that represents a function with the parameter x, that is, it is a
term that satisfies that (λ∗x.M) N + M [x := N] in CL�! , for all CL�! -terms N .

I Remark 55. There are no definitions for some cases in (λ∗x.M) and (λ!
∗x.M), e.g, the case

that (λ∗x.(M N)) such that x ∈ FV(M) and x ∈ FV(N), and the case that (λ!
∗x.(�! M)).

This is because that these are actually unnecessary due to the linearity condition and the side
condition of the rule �! . Moreover, the well-definedness of the bracket abstraction operations
can be shown by induction on M , and in reality, the proof of the deduction theorem can be
seen as what justifies it. The intentions that (λ∗x.M) N + M [x := N], etc. can also be
shown by easy calculation.

3 dom(Γ) is defined to be the set {x | (x : A) ∈ Γ} for all type contexts Γ.

Sparse Tiling Through Overlap Closures for
Termination of String Rewriting
Alfons Geser
HTWK Leipzig, Germany

Dieter Hofbauer
ASW – Berufsakademie Saarland, Germany

Johannes Waldmann
HTWK Leipzig, Germany

Abstract
A strictly locally testable language is characterized by its set of admissible factors, prefixes and
suffixes, called tiles. We over-approximate reachability sets in string rewriting by languages defined
by sparse sets of tiles, containing only those that are reachable in derivations. Using the partial
algebra defined by a tiling for semantic labeling, we obtain a transformational method for proving
local termination. These algebras can be represented efficiently as finite automata of a certain shape.
Using a known result on forward closures, and a new characterisation of overlap closures, we can
automatically prove termination and relative termination, respectively. We report on experiments
showing the strength of the method.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases relative termination, semantic labeling, locally testable language, overlap
closure

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.21

1 Introduction

Methods for proving termination of rewriting (automatically) can be classified [25] into
syntactical (using a precedence on letters), semantical (map each letter to a function on some
domain), or transformational. Applying a transformation, one hopes to obtain an equivalent
termination problem that is easier to handle.

One such transformation is semantic labeling [24]. This will typically increase the number
of rules, sometimes drastically so. We consider here a specific semantic domain, called the
k-shift algebra, consisting of words of length k − 1, with the “shift left” operation.

When we use this algebra (in Section 3) for semantically labeling a string w, each labeled
letter is a k-factor of w, called a tile.

Our implementation uses values of k from 2 to 8. Self labeling [17] can be seen as
unrestricted shifting. The 2-shift algebra is used in root labeling [19] which first appeared in
Termination Competitions in 2006. MultumNonMulta [12] took first place in both categories
Standard and Relative SRS of the 2018 competition [13] mainly due to the use of 2-tiling.

A sparse tiling contains just those tiles that can occur during derivations starting in a
given language. The shift algebra given by those tiles then is a partial model [3]. In Section 4,
we present an algorithm to complete a given set of tiles with respect to a given rewriting
system (i. e., to construct a minimal partial model) and provide an efficient implementation
that can handle large sets of tiles.

We apply this method to derivations starting from right-hand sides of forwards closures
(Section 5) and overlap closures (Section 7) since local termination on these languages implies

© Alfons Geser, Dieter Hofbauer, and Johannes Waldmann;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSCD.2019.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Sparse Tiling

global termination (a known result), and relative termination (Section 6), respectively. In
all, we obtain a transformational method for proving termination and relative termination:
construct a closed set of tiles, and then use it for semantic labeling. This can be combined
with other methods for proving termination, e. g., weights (linear interpretations of slope 1).

We obtain yet another automated termination proof for Zantema’s Problem {a2b2 → b3a3},
which is a classical benchmark, see Example 5.6. Our implementation is part of the Matchbox
termination prover, and it easily solves several termination problems from the Termination
Problems Database1 that appear hard for other approaches, e. g., Examples 8.3 and 8.4.
Sparse tiling contributed to Matchbox winning the categories SRS Standard and SRS Relative
of the Termination Competition 2019, see Section 9.

Our application area is string rewriting, and our implementation is tailored to that.
Still, for proving correctness, we use the language of term rewriting, as this allows to re-use
concepts and results.

2 Notation

Given a set of letters Σ, i. e., an alphabet, a string is a finite sequence of letters over Σ. The
number of its components is the length of the string, and the string of length zero, the empty
string, is denoted by ε. If there is no ambiguity, we denote the string with letters a1, . . . , an

by a1 . . . an. We deal, however, also with strings of strings, and then use the list notation
[a1, . . . , an]. Let alphabet(w) denote the set of letters that occur in the string w. By Prefix(S)
and Suffix(S) we denote the set of prefixes and suffixes resp. of strings from the set S, and
Prefixk(S) and Suffixk(S) denotes their restriction to strings of length k.

2.1 Rewriting and Reachability
A string rewriting system over alphabet Σ is a set of rewrite rules. We use standard concepts
and notation (see, e. g., Book and Otto [1]) with this extension: A constrained rule is a pair
of strings l, r, together with a constraint c ∈ {factor, prefix, suffix} that indicates where the
rule may be applied. The corresponding rewrite relations are

→l,r,factor = {(xly, xry) | x, y ∈ Σ∗},
→l,r,prefix = {(ly, ry) | y ∈ Σ∗},
→l,r,suffix = {(xl, xr) | x ∈ Σ∗}.

A constrained rule (l, r, c) is denoted by l→c r. Standard rewriting corresponds to the
factor constraint, therefore → abbreviates →factor. For a rewrite system R, we define →R as
the union of the rewrite relations of its rules. For a relation ρ on Σ∗ and a set L ⊆ Σ∗, let
ρ(L) = {y | ∃x ∈ L, (x, y) ∈ ρ}. Hence the set of R-reachable strings from L is →∗R(L), or
R∗(L) for short. A language L ⊆ Σ∗ is closed w.r.t. R if →R(L) ⊆ L.

I Example 2.1. For R = {cc →factor bc, ba →factor ac, c →suffix bc, b →suffix ac}, we have
bbb→suffix bbac→factor bacc. The reachability set R∗({bc, ac}) is (a+ b)b∗c. This set is closed
with respect to R.

A rewriting system R over Σ is called terminating on L ⊆ Σ∗, if for each w ∈ L, each
R-derivation starting at w is finite, and R is called terminating, written SN(R), if it is

1 The Termination Problems Database, Version 10.6, see http://termination-portal.org/wiki/TPDB.

http://termination-portal.org/wiki/TPDB

A. Geser, D. Hofbauer, and J. Waldmann 21:3

terminating on Σ∗. A rewriting system R is called terminating relative to a rewriting system
S on L, if each (R ∪ S)-derivation starting in L has a only a finite number of R rule
applications. If L is not given, we mean Σ∗ and write SN(R/S).

2.2 Forward Closures

Given a rewrite system R over alphabet Σ, a closure C = (l, r) of R is a pair of strings with
l→+

R r such that each position of r is involved in some step of the derivation. In particular,
we use forward closures [15].

The set FC(R) of forward closures of R is defined as the least set of pairs (l, r) of strings
that contains R and satisfies

if (s, xuy) ∈ FC(R) and (u, v) ∈ FC(R) then (s, xvy) ∈ FC(R),
if (s, xu) ∈ FC(R) and (uy, v) ∈ FC(R) for u 6= ε 6= y then (sy, xv) ∈ FC(R).

The set FC(R) can also be characterized without recursion in the second partner, as observed
by Herrmann [11] in the term rewriting case. This can be used to recursively characterize
the set RFC(R) = rhs(FC(R)) of right hand sides of forward closures directly [6].

RFC(R) can also be characterized by factor and suffix rewriting.

I Proposition 2.2. RFC(R) = (R ∪ forw(R))∗(rhs(R)), where

forw(R) = {l1 →suffix r | (l1l2 → r) ∈ R, l1 6= ε 6= l2}.

They are related to termination by

I Theorem 2.3 ([2]). R is terminating on Σ∗ if and only if R is terminating on RFC(R).

For a self-contained proof see Section 6 in [26].

I Example 2.4. For R = {cc → bc, ba → ac} we have forw(R) = {c →suffix bc, b →suffix ac}
and RFC(R) = (a+ b)b∗c, cf. Example 2.1. As RFC(R) contains no R-redex, R is trivially
terminating on RFC(R), therefore R is terminating by Theorem 2.3.

Later in the paper, we use tiled rewriting to approximate RFC(R), and we obtain the
termination proof of Example 2.4 automatically, see Examples 3.10 and 4.3.

2.3 Partial Algebras and Partial Models

We will recall concepts and notation from [3]. A partial Σ-algebra A = (A, J·K) consists of
a non-empty set A and for each n-ary f ∈ Σ a partial function JfK : An ⇀ A. Given A
and a partial assignment of variables α : V ⇀ A, the interpretation Jt, αK of t ∈ Term(Σ, V)
is defined as usual, noting that it will not always be defined. If t is ground, we simply
write JtK. A partial algebra is a partial model of a rewrite system R if for each rewrite rule
(l→ r) ∈ R, and each assignment α : Var(l)→ A, definedness of Jl, αK implies Jl, αK = Jr, αK.
For a partial Σ-algebra A = (A, J·K), a term t ∈ Term(Σ, X), and a partial assignment
α : Var(t) ⇀ A, let Jt, αK∗ denote the set of defined values of subterms of t under α, i. e.,
{Js, αK | s E t ∧ Js, αK is defined}. For T ⊆ A, let LangA(T) denote the set ot ground terms
that can be evaluated inside T , i. e., {t ∈ Term(Σ) | JtK∗ ⊆ T}, and let LangA = LangA(A).
Note that a partial algebra is a deterministic (tree) automaton with set of states A, and
partiality means that the automaton may be incomplete.

FSCD 2019

21:4 Sparse Tiling

2.4 Languages defined by Tilings
A strictly locally testable language is specified by considering prefixes, factors, and suffixes
of bounded length, called tiles. We give an equivalent definition that allows a uniform
description, using end markers C,B /∈ Σ. A similar formalization is employed for two-
dimensional tiling in [8].

I Definition 2.5. For an alphabet Γ, k ≥ 1 and ai ∈ Γ, the k-tiled version of a string
a1 . . . an is the string over Γk of all k-tiles, i. e., factors of length k:

tiledk(a1 . . . an) = [a1 . . . ak, a2 . . . ak+1, . . . , an−k+1 . . . an]

This string is empty in case n < k. Let tilesk(w) denote alphabet(tiledk(w)).

I Definition 2.6. For k ≥ 0 and w ∈ Σ∗, the k-bordered version of w is bordk(w) = CkwBk

over Σ ∪ {C,B}. By btiledk(w) we abbreviate tiledk(bordk−1(w)), and btilesk(w) stands for
alphabet(btiledk(w)).

I Example 2.7. btiled2(abbb) = tiled2(bord1(abbb)) = tiled2(CabbbB) = [Ca, ab, bb, bb, bB],
thus btiles2(abbb) = {Ca, ab, bb, bB}. Further, btiles2(ε) = {CB}, btiles2(a) = {Ca, aB}, and
btiled3(a) = [CCa,CaB, aBB].

I Definition 2.8. For k ≥ 1, the language defined by a set of tiles T ⊆ btilesk(Σ∗) is

Lang(T) = {w ∈ Σ∗ | btilesk(w) ⊆ T}.

This is a characterization of the class of strictly locally k-testable languages [16, 23], a
subclass of regular languages.

I Example 2.9. For k = 2 and T = {Ca, ab, ba, aB} we obtain Lang(T) = a(ba)∗.

3 Tiled Rewrite Systems and Shift Algebras

We apply the method of semantic labelling w.r.t. a partial model to transform a local
termination problem to a global one. Our contribution is to use the k-shift algebra. We
obtain Algorithm 4.1 that over-approximates reachability sets w.r.t. rewriting, and is guaran-
teed to halt.

One application is to approximate right-hand sides of forward closures, to prove global
termination (Algorithm 5.1). Later, we approximate right-hand sides of overlap closures to
prove relative termination (Algorithm 8.1).

Our intended application area is string rewriting. For proving correctness we want to use
concepts and results from local termination [3], so we need a translation to term rewriting.
We view strings as terms with unary symbols, and a nullary symbol (representing ε), where
the rightmost (!) position in the string is the topmost position in the term. As in [3],
we choose this order (left to right in the string means bottom to top in the term) since
we later use deterministic automata, working from left to right on the string, realising
evaluation in the algebra, which goes bottom to top. This choice also has the notational
consequence that a string rewriting rule, e. g., ab→ baa, is translated to a term rewriting
rule ((z)a)b→ ((z)b)a)a, where z is a variable, which we abbreviate to (z)ab→ (z)baa. This
is just postfix notation for function application, recommended also by Sakarovitch [18], p. 12.

I Definition 3.1 (The k-shift algebra). For T ⊆ btilesk(Σ∗), the partial algebra Shiftk(T)
over signature Σ∪ {ε,B} has domain tilesk−1(C∗Σ∗B∗), the interpretation of ε is Ck−1, and
each letter (unary symbol) c ∈ Σ ∪ {B} is interpreted by the unary function that maps p to
Suffixk−1(pc) if pc ∈ T , and is undefined otherwise.

A. Geser, D. Hofbauer, and J. Waldmann 21:5

We have the following obvious connection (modulo the translation between words and
terms) between the language of the algebra (i. e., all terms that have a defined value) and
the language of the set of tiles (i. e., all words that can be covered):

I Proposition 3.2. For any set of k-tiles T , LangShiftk(T) = Prefix(Lang(T) ·Bk−1).

We need the prefix closure since a language of a partial algebra always is subterm-closed,
according to the definition from [3], a feature that had already been criticised in [4].

To apply semantic labelling, we need a partial algebra that is a partial model. A k-shift
algebra is a model for a rewrite system R only if R does not change the k−1 topmost symbols.
This property can be guaranteed by the following closure operation that also translates our
notion of constrained string rewriting to the standard notion of term rewriting:

I Definition 3.3. For a constrained string rewriting system R over Σ define its context
closure, the term rewriting system CCk(R) over Σ ∪ {ε,B}, where ε is a constant, all other
symbols are unary, and z is a variable symbol, as follows. Note that the second subset consists
of ground rules.

CCk(R) = {(z)ly → (z)ry | (l→factor r) ∈ R, y ∈ tilesk−1(Σ∗B∗)} ∪
{(ε)ly → (ε)ry | (l→prefix r) ∈ R, y ∈ tilesk−1(Σ∗B∗)} ∪
{(z)ly → (z)ry | (l→suffix r) ∈ R, y = Bk−1}

Constrained rewrite steps of R on Σ∗ are directly related to term rewrite steps of the
context closure of R on (the set of terms corresponding to) Σ∗Bk−1:

I Proposition 3.4. s→R t iff (ε)sBk−1 →CCk(R) (ε)tBk−1.

Since CCk(R) does keep the k − 1 topmost (rightmost) symbols intact, the shift algebra
of T is a partial model provided it contains a sufficiently large set of tiles:

I Proposition 3.5. For a set of k-tiles T and a rewriting system R, if LangShiftk(T) is closed
with respect to R, then Shiftk(T) is a partial model for CCk(R).

In Section 4 we provide an algorithm for constructing such a closed set T .
Given a partial model, we use it for semantic labeling. The labeling of CCk(R) with respect

to Shiftk(T) (see [3], Def. 6.3) produces a term rewriting system that can be re-transformed
to a string rewriting system by replacing each function symbol c, that is labelled with an
element p from the algebra, to the string (the tile) pc. The following definition avoids the
round-trip, and shows how to label the string rewriting system directly.

I Definition 3.6. For a rule l →c r over signature Σ with c ∈ {factor, prefix, suffix}, we
define a set of rules over signature btilesk(Σ∗) by

btiledk(l→factor r) = {tiledk(xly)→factor tiledk(xry) | x ∈ TC, y ∈ TB}
btiledk(l→prefix r) = {tiledk(xly)→prefix tiledk(xry) | x = Ck−1, y ∈ TB}
btiledk(l→suffix r) = {tiledk(xly)→suffix tiledk(xry) | x ∈ TC, y = Bk−1}

where TC = tilesk−1(C∗Σ∗), TB = tilesk−1(Σ∗B∗), and for a set of tiles T ⊆ btilesk(Σ∗) let

btiledT (l→c r) = btiledk(l→c r) ∩ T ∗ × T ∗ × {c},

the set of tiled rules that use tiles from T only. Both btiledk and btiledT are extended to sets
of rules. Note that {Ck−1} = tilesk−1(C∗) and {Bk−1} = tilesk−1(B∗).

FSCD 2019

21:6 Sparse Tiling

I Example 3.7. The set btiled2(ba→factor ac) contains 16 rules, among them [Cb, ba, aB]→
[Ca, ac, cB], [Cb, ba, aa] → [Ca, ac, ca], . . . , [ab, ba, aB] → [aa, ac, cB], . . . , [cb, ba, ac] →
[ca, ac, cc], and btiled2(b →suffix ac) = {[Cb, bB] → [Ca, ac, cB], [ab, bB] → [aa, ac, cB],
[bb, bB]→ [ba, ac, cB], [cb, bB]→ [ca, ac, cB]}. ForS = {ac, ba, bb, cc} we get btiledS(ba→factor
ac) = {[bb, ba, ac]→ [ba, ac, cc]} and for any strict subset T of S, btiledT (ba→factor ac) = ∅.

This translation is faithful, in the following sense:

I Proposition 3.8. btiledT (R) is exactly the (string rewriting translation of the) labeling of
CCk(R) with respect to Shiftk(T).

To actually enumerate btiledT (R) in an implementation, we will fuse both parts of
Definition 3.6 by restricting contexts x and y to be elements of T ∗ right from the beginning.

I Theorem 3.9. For k ≥ 1 and T ⊆ btilesk(Σ∗), if Lang(T) is closed with respect to R, then
R is terminating on Lang(T) if and only if btiledT (R) is terminating.

Proof. By Proposition 3.8 and Theorem 6.4 from [3], applicable due to Proposition 3.5. J

I Example 3.10 (Example 2.4 continued). Let R = {cc → bc, ba → ac}. Then RFC(R) =
Lang(T) for the set of tiles T = {Ca,Cb, ab, ac, bb, bc, cB}. The set RFC(R) is closed w.r.t. R
by definition and tiledT (R) is empty, therefore terminating. By Theorem 3.9, R is terminating
on RFC(R), thus by Theorem 2.3, R is terminating. See Example 4.3 for a computation that
produces T from R.

4 Completion in Shift Algebras

To apply Theorem 3.9, we need an R-closed set T of tiles. The following algorithm computes
such a set by starting from an initial set S, and successively adding tiles that become reachable
via R-steps. This is similar to other algorithms that produce rewrite-closed automata [5].
Due to the algebra we use, we have the stronger property of guaranteed termination.

I Algorithm 4.1.
Specification:

Input: A term rewriting system R over Σ, a finite partial Σ-algebra A = (A, J·K), a set
S ⊆ A.
Output: A minimal set T ⊆ A such that S ⊆ T and LangA(T) is closed w.r.t. R.

Implementation: Let T =
⋃

i Ti for the sequence S = T0 ⊆ T1 ⊆ · · · where

Ti+1 = Ti ∪
⋃
{Jr, αK∗ | (l→ r) ∈ R,α : Var(l)→ Ti, Jl, αK∗ ⊆ Ti}

where it is sufficient to compute a finite prefix.

Proof. This algorithm terminates, since the sequence Ti is increasing, and bounded from
above by A, so it is eventually constant. The result is R-closed by construction. J

This algorithm will be applied to CCk(R), and we construct the context closure on the
fly: in each step, we use only those contexts that are accessible in Shiftk(Ti).

Let us first specify the representation of Shiftk(T). This algebra is a deterministic
automaton, possibly incomplete.

A. Geser, D. Hofbauer, and J. Waldmann 21:7

I Definition 4.2. For k ≥ 1, a finite automaton over alphabet Σ ∪ {C,B} is a k-shift
automaton if its states are in tilesk−1(C∗Σ∗B∗), its initial state is Ck−1, its final state is
Bk−1, and for each transition p

c→ q, state q is the suffix of length k − 1 of pc. Such an
automaton A represents the set of tiles (of length k) tiles(A) = {pc | p c→A q}.

Condition Jl, αK∗ ⊆ Ti of Algorithm 4.1 is equivalent to the existence of a path in the
automaton Ti that starts at state p = α(z) and is labelled l. We call this a redex path p l→ q.
Adding tiles then corresponds to adding edges and states. Whenever we add edges for some
reduct path p

r→ q′, corresponding to Jr, αK∗ ⊆ Ti, the target state of each transition is
determined by the shift property of the automaton. This is in contrast to other completion
methods where there is a choice of adding fresh states, or re-using existing states.

The set of states could be defined to be btilesk−1(Σ∗) in advance, but for efficiency, we
only store accessible states, and add states as soon as they become accessible.

With the automata representation, we implement btiledT (R) as follows: To determine
xly in Definition 3.6, we compute all pairs p, q of states with p l→ q. This can be done by
starting at each p, but our implementation uses the product-of-relations method of [22]. Note
that p, the state where the redex path starts, is actually x, the left context.

From state q, we follow all paths of length k− 1 to determine the set of y (right contexts).
For each such pair (x, y), we add the path starting at x labeled ry. Note that this path (for
the context-closed reduct) meets the path for ly (the context-closed redex) in the end, since
the automaton is a shift automaton. The tree search for possible y can be cut short if we
detect that these paths meet earlier.

The following example demonstrates completion only. For examples that use the completed
automaton for semantic labeling, see Section 5.

I Example 4.3 (Example 3.10 continued). In order to illustrate the use of shift automata for
implementing Algorithm 4.1, consider again R = {cc→ bc, ba→ ac} with forw(R) = {c→suffix
bc, b→suffix ac}. We choose k = 2 and represent btiled2(rhs(R)) = {[Cb, bc, cB], [Ca, ac, cB]}
by the left automaton in Figure 1. Here, completion refers to the set of rules C = CC2(R ∪
forw(R)) = {ccy → bcy, bay → acy, cB → bcB, bB → acB | y ∈ {a, b, c,B}}. In the initial
automaton we look for paths of the form p

l→ q for some rule l → r ∈ C. Two such paths
exist, a cB→ B and b

cB→ B. Completion therefore adds the paths a bcB→ B and b
bcB→ B for

the corresponding right-hand sides, resulting in the new edges a b→ b and b
b→ b (and no

new nodes), depicted by the right automaton A. No further completion steps are possible,
thus RFC(R) ⊆ Lang(tiles(A)) with tiles(A) = {Ca,Cb, ab, ac, bb, bc, cB}. Note that for this
simple example, ⊆ could be replaced by equality, but in general the algorithm yields an
over-approximation.

C b

a c B

a

b

c

c

B

C b

a c B

a

b

b

c

c

b

B

Figure 1 Constructing the shift automaton for RFC({cc → bc, ba → ac}) for k = 2.

FSCD 2019

21:8 Sparse Tiling

5 Examples of Termination Proofs via Forward Closures

We transform a termination problem as follows:

I Algorithm 5.1.
Specification:

Input: A rewriting system R over Σ, a number k
Output: A rewriting system R′ over btiledk(Σ) such that SN(R) ⇐⇒ SN(R′)

Implementation (and correctness): By Theorem 2.3, SN(R) iff SN(R) on RFC(R). By
Proposition 2.2, RFC(R) = (R∪forw(R))∗(rhs(R)). By Algorithm 4.1, we construct T such
that Lang(T) contains rhs(R) and is closed w.r.t. R∪ forw(R), that is, RFC(R) ⊆ Lang(T).
We then use the algebra Shift(T) as a partial model for CCk(R). By Theorem 3.9 and the
previous, SN(R) iff SN(btiledT (R)).

This approach had already been described in [3], Section 8, but there it was left open how
to find a suitable partial algebra. An implementation used a finite-domain constraint solver,
but then only small domains could be handled. In the present paper, we instead construct a
suitable k-shift algebra by completion. Even if it is large, it might help solve the termination
problem, cf. Example 5.6 below. We give a few smaller examples first.

I Example 5.2. We apply Algorithm 5.1 with k = 3 to R = {ab3 → bbaab}. We obtain 11
reachable tiles and 12 labeled rules. All of them can be removed by weights. We start with
the automaton for btiled3(bbaab) (solid edges in Figure 2).

C2 Cb b2

ba a2

ab bB B2b b

a

a

b

B B

b

b

b

a

Figure 2 The 3-shift automaton for RFC(ab3 → bbaab).

It contains no R-redex. There is a forw(R)-redex for ab→suffix bbaab starting at ba. We
add a reduct path, starting with two fresh (dashed) edges. This creates a forw(R)-redex for
ab→suffix bbaab from b2. To cover this, we add the loop at b2 (dotted). Now we have a R-redex
ba→ a2 → ab→ b2 → b2. The corresponding reduct path is ba→ ab→ b2 → ba→ a2 → ab.
The redex needs to be right-context-closed with a, and with b, as these are the possible
continuations from b2. So we context-close the reduct path as well, adding one more edge
ab

a→ ba (dash-dotted), as ab b→ b2 is already present. This introduces an R-redex from ab

to b2, with right extensions a and b. The extended reduct paths are already present. The
automaton is now closed with respect to R ∪ forw(R). It represents the set of tiles

T = {CCb,Cbb, bba, bbb, baa, bab, aab, aba, abb, abB, bBB}.

Absent from T are
CCB,CBB,CΣB (meaning that RFC(R) does not contain strings of length 0 or 1),
as well as CaΣ,Cba,ΣaB (meaning that RFC(R) starts with b2 and ends with b),
and a3 (meaning that RFC(R) does not have a3 as a factor).

A. Geser, D. Hofbauer, and J. Waldmann 21:9

Finally, we compute btiledT (R). There are three R-redex paths in the automaton,
starting at b2, ba, ab, respectively, and all ending in b2. They will be right-context-closed by
Σ2, resulting in the following 3× 22 = 12 tiled rules, where x, y ∈ Σ:

[bba, bab, abb, b3, bbx, bxy]→ [b3, b3, bba, baa, aab, abx, bxy]
[baa, aab, abb, b3, bbx, bxy]→ [bab, abb, bba, baa, aab, abx, bxy]
[aba, bab, abb, b3, bbx, bxy]→ [abb, b3, bba, baa, aab, abx, bxy]

With the following weights, all rules are strictly decreasing:

bbb 7→ 8, bab 7→ 4, abb 7→ 3, bba 7→ 3, others 7→ 0.

This shows termination of btiledT (R), thus, of R.

The following observation, similar to semantic unlabeling [20], allows to use the partial
algebra for removing rules without labeling:

I Proposition 5.3. If the set of tiles T is R-closed, and R0 ⊆ R such that tiledT (R0) = ∅,
then SN(R) on Lang(T) if and only if SN(R \R0) on Lang(T).

Proof. Let R1 = R \R0. By Theorem 3.9, each R-derivation corresponds to a btiledT (R)-
derivation. By assumption, this is a btiledT (R1)-derivation. This can be mapped back to a
R1-derivation, using the same theorem. J

If R0 is nonempty, this produces a strictly smaller termination problem on the original
alphabet. This results in a modification of Algorithm 5.1:

I Algorithm 5.4.
Specification:

Input: A rewriting system R over Σ, a number k
Output: A rewriting system R′ over Σ such that SN(R) ⇐⇒ SN(R′), or failure.

Implementation: By Algorithm 4.1, construct T such that Lang(T) contains rhs(R) and
is closed w.r.t. R ∪ forw(R), that is, RFC(R) ⊆ Lang(T). Let R0 ⊆ R consist of all rules
(l→ r) ∈ R with btiledT (l→ r) = ∅. If ∅ 6= R0, then output R \R0, else fail.

I Example 5.5. We apply Algorithm 5.4, for k = 2, to R = {ab→ bca, bc→ cbb, ba→ acb}.
This is SRS/Zantema/z018 from TPDB. We construct the 2-shift automaton, see Figure 3, and
we find that btiledT (ab→ bca) = ∅. The algorithm outputs {bc→ cbb, ba→ acb}. Note that

C c

a

b

B

a

c

b

B

b

c

Baac

bc

Figure 3 The 2-shift automaton for RFC(z018).

FSCD 2019

21:10 Sparse Tiling

the automaton contains redexes for (a→suffix bca) ∈ forw(ab→ bca) (from states C, c, and b)
but the criterion is the occurrence of ab → bca only. To handle the resulting termination
problem, we reverse all strings in all (remaining) rules, obtaining {cb → bbc, ab → bca}.
Again we apply Algorithm 5.4 and this time we find that ab does not occur in the automaton.
This leaves {cb→ bbc}. Applying the algorithm one more time, we find that there is no cb
in the 2-shift automaton for RFC(cb→ bbc). The algorithm outputs ∅, and we have proved
termination of z018.

I Example 5.6. We prove termination of Zantema’s problem {a2b2 → b3a3}, a classical
benchmark. We give an outline of the proof that consists of a chain of transformations.
Each node (r, s) denotes a rewrite system with r rules on s letters. The arrows −→RFCk

All and
−→RFCk

Rem denote application of Algorithm 5.1 and Algorithm 5.4 respectively, and W→ denotes
removal of rules by weights.

(1, 2) RFC2−→
All

(4, 4) RFC5−→
Rem

(3, 4) RFC2−→
All

(12, 8) RFC3−→
All

(105, 26) W→ (60, 26)

RFC5−→
Rem

(37, 26) RFC2−→
All

(97, 44) W→ (65, 43) RFC5−→
Rem

(36, 43) W→ (28, 43) RFC2−→
All

(86, 68)

W→ (50, 62) RFC3−→
All

(246, 128) W→ (42, 84) RFC5−→
Rem

(2, 44) W→ (0, 0)

It is even possible to give a termination proof without using weights at all:

(1, 2) RFC2−→
All

(4, 4) RFC5−→
Rem

(3, 4) RFC3−→
All

(40, 15) RFC2−→
All

(105, 26) RFC5−→
Rem

(65, 26) RFC5−→
Rem

(52, 26)

RFC5−→
Rem

(37, 26) RFC2−→
All

(97, 44) RFC5−→
Rem

(37, 43) RFC5−→
Rem

(36, 43) RFC2−→
All

(110, 68) RFC5−→
Rem

(80, 64)

RFC2−→
All

(192, 93) RFC5−→
Rem

(96, 89) RFC3−→
Rem

(58, 79) RFC5−→
Rem

(32, 66) RFC3−→
Rem

(0, 0).

I Example 5.7. We show that our method can be applied as a preprocessor for other termin-
ation provers. We consider R = {0000 → 1001, 0101 → 0010}, which is SRS/Gebhardt/16
from the TPDB. After the chain of transformations

(2, 2) RFC3−→
All

(98, 20) W→ (24, 11) RFC2−→
Rem

(17, 10) W→ (15, 8),

the resulting problem can be solved by TTT2 [14] quickly, via KBO. TTT2 did not solve this
problem in the Termination Competition 2018.

6 Overlap Closures and Relative Termination

We now apply our approach to prove relative termination. With relative termination, the
RFC method does not work.

I Example 6.1. R/S may nonterminate although R/S terminates on RFC(R ∪ S). For
example, let R = {ab→ a} and S = {c→ bc}. We have RFC(R ∪ S) = a ∪ b+c. This does
not have a factor ab, therefore SN(R/S) on RFC(R ∪ S). On the other hand, ¬SN(R/S)
because of the loop abc→R ac→S abc.

Therefore, we use overlap closures instead. To prove correctness of this approach, we use
a characterization of overlap closures as derivations in which every position between letters
is touched. A new left-recursive characterization of overlap closures (Corollary 7.1) allows us
to enumerate ROC(R) by completion.

A. Geser, D. Hofbauer, and J. Waldmann 21:11

Let OC(R) denote the set of overlap closures [10], and let ROC(R) = rhs(OC(R)). A
position between letters in the starting string of a derivation is called touched by the derivation
if it has no residual in the final string.

I Example 6.2. For the rewrite system R = {ab→ baa} over alphabet {a, b}, all positions
labelled by | in the starting string a|a|ba|b are touched by the derivation aabab→R abaaab→R

baaaaab→R baaaabaa. The position between b and a in the starting string has the residual
position between a and b in the final string.

I Lemma 6.3. [7, Lemma 3] The set OC(R) of overlap closures of R is the set of all
R-derivations where all initial positions between letters are touched.

Termination has been characterized by forward closures ([2]). In the following we obtain
a characterization of relative termination by overlap closures.

I Definition 6.4. For a finite or infinite R-derivation A, let Inf(A) denote the set of rules
that are applied infinitely often in A. (For a finite derivation, Inf(A) = ∅.)

I Proposition 6.5. For each R-derivation A, there are finitely many R-derivations B1, . . . , Bk

that start in ROC(R), and Inf(A) =
⋃

i Inf(Bi).

Proof. If A is empty, then k = 0. If A has a finite prefix that is an OC, then k = 1 and
B1 is the (infinite) suffix. Else, the start of A has a position that is never touched during
A. We can then split the derivation, and use induction by the length of the start of the
derivation. J

I Proposition 6.6. SN(R/S) if and only if for each (R ∪ S)-derivation A, Inf(A) ∩R = ∅.

The following theorem says that for analysis of relative termination, we can restrict to
derivations starting from right-hand sides of overlap closures.

I Theorem 6.7. SN(R/S) if and only if SN(R/S) on ROC(R ∪ S)).

Proof. The implication from left to right is trivial, as we consider a subset of derivations.
For the other direction, let A be an (R ∪ S)-derivation. Using Proposition 6.5 we obtain
B1, . . . , Bk for A such that

Inf(A) ∩R = (
⋃

i

Inf(Bi)) ∩R =
⋃

i

(Inf(Bi) ∩R) =
⋃

i

∅ = ∅,

thus SN(R/S) by Proposition 6.6. J

7 Computation of Overlap Closures by Completion

We employ the following left-recursive characterisation of ROC(R) (proved in the Appendix)
that is suitable for a completion algorithm.

I Corollary 7.1. ROC(R) is the least set S such that
1. rhs(R) ⊆ S,
2. if tx ∈ S and (xu, v) ∈ R for some t, x, u 6= ε then tv ∈ S;
3. if xt ∈ S and (ux, v) ∈ R for some t, x, u 6= ε then vt ∈ S;
4. if tut′ ∈ S and (u, v) ∈ R then tvt′ ∈ S;
5. if tx ∈ S and yv ∈ S and (xwy, z) ∈ R for some t, x, y, v 6= ε then tzv ∈ S.

FSCD 2019

21:12 Sparse Tiling

Note that Item 4 is the standard (factor) rewriting relation of R, Item 2 is suffix rewriting
with respect to forw(R), and Item 3 is prefix rewriting with respect to

backw(R) = {l2 →prefix r | (l1l2 → r) ∈ R, l1 6= ε 6= l2}.

Item 5 is an inference rule with two premises, and cannot be written as a rewrite relation.
As we still want to apply the partial algebra approach, we have two options: modify that
approach to allow more premises, or modify our translation, as follows.

Starting from the automaton constructed in Section 3, we add a path from final state
Bk−1 to initial state Ck−1, consisting of k − 1 transitions labelled C. The language of this
automaton is Lang(T)Bk−1(Ck−1 Lang(T)Bk−1)∗. Note that this is still a shift automaton.
Then an application of Item 5 of Corollary 7.1 with (xwy, t) ∈ R is realized by a standard
rewrite step xBk−1Ck−1y →factor t.

Similar to Definition 3.1, Proposition 3.2, Definition 3.3, we have

I Definition 7.2. For T ⊆ btilesk(Σ∗) the looped partial algebra Shiftok(T) has signature
Σ ∪ {C,B}, domain tilesk−1((Ck−1Σ∗Bk−1)∗), the interpretation of ε is Ck−1, and each
letter c ∈ Σ∪{C,B} maps p to Suffixk−1(pc), if pc ∈ T ∪ tilesk(Bk−1Ck−1), and is undefined
otherwise.

I Proposition 7.3. For a set of tiles T , we have

LangShifto
k

(T) = Prefix(Lang(T)Bk−1(Ck−1 Lang(T)Bk−1)∗).

I Definition 7.4. Let CCo
k(R) = {(z)xBk−1Ck−1ye→ (z)re | (xwy →factor r) ∈ R, x 6= ε 6=

y, e ∈ tilesk−1(Σ∗B∗)}.

The purpose of this construction is:

I Proposition 7.5. For a set of k-tiles T and a rewriting system R, if LangShifto
k

(T) is closed
with respect to CCk(R ∪ forw(R) ∪ backw(R)) ∪ CCo

k(R), then ROC(R)Bk−1 ⊆ LangShifto
k

(T).

I Example 7.6. We illustrate the completion algorithm to obtain an approximation for
ROC(R), for R = {a3 → a2b2a2}. We take k = 4 and start with the automaton for rhs(R),
and include the backwards path from B3 to C3 (the solid arrows in Figure 4).

C3 C2a Ca2 a2b ab2 b2a ba2 B3

a3

a a b b a a B3

C3

a
b

b

Figure 4 The 4-shift automaton for ROC(a3 → a2b2a2).

We now consider rules (aB3C3ae → a2b2a2e) ∈ CCo(R). These can only start at state
b2a, and the only choice for the right 3-context e in those rules is abb. The reduct path
needs two fresh edges (dashed). For rules (a2B3C3ae→ a2b2a2e) ∈ CCo(R), a redex must
start in ab2, and the only right 3-context e is still abb. The reduct path needs one extra
edge (dotted). The automaton is now closed also with respect to the other operations. We

A. Geser, D. Hofbauer, and J. Waldmann 21:13

compute btiledT (R). There is just one R-redex, starting at ab2, with just one right extension
bba. This creates just one labeled rule

[abba, bbaa, baaa, aaab, aabb, abba]→ [abba, bbaa, baab, aabb, abba, bbaa, baab, aabb, abba].

Of course, the actual implementation will not explicitly represent the path labeled C3.
Similar to Theorem 3.9 we have

I Theorem 7.7. If Lang(T) is closed w.r.t. R ∪ S, then SN(R/S) on Lang(T) if and only if
SN(btiledT (R)/ btiledT (S)).

For the proof, we need an obvious extension of [3] Thm 6.4 for relative termination, by
keeping track of the origin (R or S) of labeled rules.

8 Examples of Relative Termination Proofs via Overlap Closures

We transform global relative termination SN(R/S) as follows:

I Algorithm 8.1.
Specification:

Input: rewriting systems R,S over Σ, number k
Output: rewriting systems R′, S′ over btiledk(Σ) such that SN(R/S) ⇐⇒ SN(R′/S′).

Implementation (and correctness): By Theorem 6.7, SN(R/S) iff SN(R/S) on ROC(R∪S).
By Corollary 7.1, ROC(R) is obtained by completion. By Algorithm 4.1, we construct
T such that Lang(T) contains rhs(R) and is closed w.r.t. CC(R ∪ S) ∪ (forw(R ∪ S) ∪
backw(R ∪ S)) ∪ CCo(R ∪ S), that is, ROC(R) ⊆ Lang(T). By Theorem 3.9 and the
previous, SN(R/S) iff SN(btiledT (R)/ btiledT (S)).

It is often the case that SN(btiledT (R)/ btiledT (S)) can be obtained with some easy
method, e. g., weights.

Similar to Algorithm 5.4, there is a variant that removes rules in case btiledT (R0∪S0) = ∅.

I Example 8.2. SN(ababa → ε/ab → bbaa) (SRS_Relative/Waldmann_06_relative/r4
from TPDB) can be solved quickly by Algorithm 8.1 with k = 4. The tiled system has 270
rules on 33 tiles, and can be solved with weights. Alternatively, tiling of width 5 produces 51
reachable tiles, where the left-hand side of the strict rule is not covered, so can be removed.

In the Termination Competition 2018, AProVE [9] solved this benchmark with double
root labeling, which is very similar to tiling of width 3, but this took more than 4 minutes.

I Example 8.3. The bowls and beans problem had been suggested by Vincent van
Oostrom [21]. It asks to prove termination of this relation:

If a bowl contains two or more beans, pick any two beans in it and move one of them
to the bowl on its left and the other to the bowl on its right.

In a direct model, a configuration is a function Z→ N with finite support. In a rewriting
model, this is encoded as a string. Several such models have been submitted to TPDB by Hans
Zantema (SRS_Standard/Zantema_06/beans[1..7]). We consider here a formalisation as
a relative termination problem (SRS_Relative/Waldmann_06_relative/rbeans).

{baa→ abc, ca→ ac, cb→ ba}/{ε→ b}

FSCD 2019

21:14 Sparse Tiling

Here, a is a bean, b separates adjacent bowls, and c transports a bean to the next bowl. The
relative rule is used to add extra bowls at either end – although it can be applied anywhere,
meaning that any bowl can be split in two, anytime, which does not hurt termination. To
the best of our knowledge, this benchmark problem had never been solved in a termination
competition. We can now give a termination proof via tiling of width 3, and using overlap
closures. This results in a relative termination problem with 560 rules on 47 letters where
305 rules can be removed by weights, and the remaining strict rules by KBO.

The following example applies Algorithm 8.1 to a relative termination problem that comes
from the dependency pairs transformation.

I Example 8.4. The system {ababaababa → abaababababaab} is part of the enumeration
SRS_Standard/Wenzel_16, and it was not solved in Termination Competitions up to 2018.
In the competition of 2019, Matchbox obtained a termination proof with outline

(1, 2) DP→ (9, 3) ROC3−→
All

(56, 17) W→ (34, 14) EDG→ (24, 14) ROC3−→
Rem

(18, 10) ROC3−→
All

(276, 46)

W→ (212, 39) EDG→ (206, 39) ROC3−→
Rem

(151, 29) ROC3−→
All

(2558, 138) W→ (1962, 115)

EDG→ (1960, 115) ROC3−→
Rem

(1082, 86) W→ (156, 44),

where −→ROCk

All and −→ROCk

Rem denote an application of Algorithm 8.1, or its variant for rule
removal, respectively. DP→ stands for the dependency pairs transformation, and EDG→ denotes
the restriction to a strongly connected component of the (estimated) dependency graph. The
proof ends successfully with an empty graph.

There are two more systems {ababaababa → abaabababaab} and
{abaababaab→ aababaabaabab} with the same status. Intermediate systems have up to 3940
rules.

9 Experimental Evaluation

Sparse tiling is implemented in the termination prover Matchbox2 that won the categories
SRS Standard and SRS Relative in the Termination Competition 2019. Matchbox employs a
parallel proof search with a portfolio of algorithms, including Algorithm 8.1.

For relative termination, we use weights, matrix interpretations over the naturals, and
tiling of widths 2, 3, 5, 8 (in parallel), cf. Example 8.3. For standard termination, we use
RFC matchbounds, and (in parallel) the dependency pairs (DP) transformation, creating a
relative termination problem, to which we apply weights, matrix interpretations over natural
and arctic numbers, and tiling of width 3 (only), cf. Example 8.4.

Table 1 shows performance of variants of these strategies on SRS benchmarks of TPDB,
as measured on Starexec, under the Termination profile (5 minutes wall clock, 20 minutes
CPU clock, 128 GByte memory). In all experiments, we keep using weights and (for standard
termination) the DP transform. The bottom right entry of each sub-table contains the result
for the full strategy, used in competition.

We note a strong increase in the last column (matrices:yes) of the left sub-table. We
conclude that sparse tiling is important for relative termination proofs. The right sub-table
shows a very weak increase in the corresponding column. We conclude that with Matchbox’
current search strategy for standard termination, other methods overshadow tiling, e. g.,
RFC matchbounds are used in 578 proofs, and arctic matrices in 389 proofs.

2 https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox

https://gitlab.imn.htwk-leipzig.de/waldmann/pure-matchbox

A. Geser, D. Hofbauer, and J. Waldmann 21:15

Table 1 Number of termination proofs obtained by variants of Matchbox.

SRS Relative matrices
Starexec Job 33975 no yes

tilling no 1 72
yes 176 225

SRS Standard RFC matchbounds, matrices
Starexec Job 33976 none both

tilling no 100 1122
yes 512 1133

For relative termination, the method of tiling, with weights, but without matrices, is
already quite powerful with 176 proofs, a number between those for AProVE (163) and
MultumNonMulta (192).

Table 2 shows the widths used in tiling proofs for relative SRS. The sum of the bottom
row is larger than the total number of proofs (225) since one proof may use several widths.

Table 2 Number of termination proofs for relative SRS, using given width of tiling.

width 2 3 5 8
proofs 150 57 38 11

We observe that short tiles appear more often. We think the reason is that larger tiles
tend to create larger systems that are more costly to handle, while resources (time and
space on Starexec) are fixed. This is also the reason for using width 3 only, for standard
termination.

10 Conclusion

We have presented sparse tiling, a method to compute a regular over-approximation of
reachability sets, using sets of tiles, represented as automata, and we applied this to the
analysis of termination and relative termination. The method is an instance of semantic
labeling via a partial algebra. Our contribution is the choice of the k-shift algebra.

We also provide a powerful implementation in Matchbox that contributed to winning
the SRS categories in the Termination Competition 2019. An exact measurement of that
contribution is difficult since termination proof search (in Matchbox) depends on too many
parameters.

Interesting open questions (that are independent of any implementation) are about the
relation between sparse tilings of different widths, and between sparse tilings and other
methods, e.g., matchbounds.

Since our focus for the present paper is string rewriting, we also leave open the question
of whether sparse tiling would be useful for termination of term rewriting.

References
1 Ronald V. Book and Friedrich Otto. String-rewriting systems. Texts and Monographs in

Computer Science. Springer, New York, 1993.
2 Nachum Dershowitz. Termination of Linear Rewriting Systems. In Shimon Even and Oded

Kariv, editors, Automata, Languages and Programming, 8th Colloquium, Acre (Akko), Israel,
July 13-17, 1981, Proceedings, volume 115 of LNCS, pages 448–458. Springer, 1981. doi:
10.1007/3-540-10843-2_36.

3 Jörg Endrullis, Roel C. de Vrijer, and Johannes Waldmann. Local Termination: theory and
practice. Logical Methods in Computer Science, 6(3), 2010. arXiv:1006.4955.

FSCD 2019

http://dx.doi.org/10.1007/3-540-10843-2_36
http://dx.doi.org/10.1007/3-540-10843-2_36
http://arxiv.org/abs/1006.4955

21:16 Sparse Tiling

4 Bertram Felgenhauer and René Thiemann. Reachability, confluence, and termination analysis
with state-compatible automata. Inf. Comput., 253:467–483, 2017. doi:10.1016/j.ic.2016.
06.011.

5 Thomas Genet. Decidable Approximations of Sets of Descendants and Sets of Normal Forms.
In Tobias Nipkow, editor, Rewriting Techniques and Applications, 9th International Conference,
RTA-98, Tsukuba, Japan, March 30 - April 1, 1998, Proceedings, volume 1379 of LNCS, pages
151–165. Springer, 1998. doi:10.1007/BFb0052368.

6 Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-Bounded String Rewriting
Systems. Appl. Algebra Eng. Commun. Comput., 15(3-4):149–171, 2004. doi:10.1007/
s00200-004-0162-8.

7 Alfons Geser and Hans Zantema. Non-looping string rewriting. ITA, 33(3):279–302, 1999.
doi:10.1051/ita:1999118.

8 Dora Giammaresi and Antonio Restivo. Two-Dimensional Languages. In Arto Salomaa
and Grzegorz Rozenberg, editors, Handbook of Formal Languages, volume 3, pages 215–267.
Springer, 1997.

9 Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas
Ströder, Stephanie Swiderski, and René Thiemann. Analyzing Program Termination and
Complexity Automatically with AProVE. J. Autom. Reasoning, 58(1):3–31, 2017. doi:
10.1007/s10817-016-9388-y.

10 John V. Guttag, Deepak Kapur, and David R. Musser. On Proving Uniform Termination
and Restricted Termination of Rewriting Systems. SIAM J. Comput., 12(1):189–214, 1983.
doi:10.1137/0212012.

11 Miki Hermann. Divergence des systèmes de réécriture et schématisation des ensembles infinis
de termes. Habilitation, Université de Nancy, France, March 1994.

12 Dieter Hofbauer. System description: MultumNonMulta. In A. Middeldorp and R. Thiemann,
editors, 15th Intl. Workshop on Termination, WST 2016, Obergurgl, Austria, 2016, Proceedings,
page 90, 2016.

13 Dieter Hofbauer. MultumNonMulta at TermComp 2018. In S. Lucas, editor, 16th Intl.
Workshop on Termination, WST 2016, Oxford, U. K., 2018, Proceedings, page 80, 2018.

14 Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Tyrolean Termination
Tool 2. In Ralf Treinen, editor, Rewriting Techniques and Applications, 20th International
Conference, RTA 2009, Brasília, Brazil, June 29 - July 1, 2009, Proceedings, volume 5595 of
LNCS, pages 295–304. Springer, 2009. doi:10.1007/978-3-642-02348-4_21.

15 Dallas S. Lankford and D. R. Musser. A finite termination criterion. Technical report,
Information Sciences Institute, Univ. of Southern California, Marina-del-Rey, CA, 1978.

16 Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press, 1971.
17 Aart Middeldorp, Hitoshi Ohsaki, and Hans Zantema. Transforming Termination by Self-

Labelling. In Michael A. McRobbie and John K. Slaney, editors, Automated Deduction -
CADE-13, 13th International Conference on Automated Deduction, New Brunswick, NJ, USA,
July 30 - August 3, 1996, Proceedings, volume 1104 of LNCS, pages 373–387. Springer, 1996.
doi:10.1007/3-540-61511-3_101.

18 Jacques Sakarovitch. Éléments the théorie des automates. Vuibert Informatique, 2003.
19 Christian Sternagel and Aart Middeldorp. Root-Labeling. In Andrei Voronkov, editor,

Rewriting Techniques and Applications, 19th International Conference, RTA 2008, Hagenberg,
Austria, July 15-17, 2008, Proceedings, volume 5117 of LNCS, pages 336–350. Springer, 2008.
doi:10.1007/978-3-540-70590-1_23.

20 Christian Sternagel and René Thiemann. Modular and Certified Semantic Labeling and Unla-
beling. In Manfred Schmidt-Schauß, editor, Proceedings of the 22nd International Conference
on Rewriting Techniques and Applications, RTA 2011, May 30 - June 1, 2011, Novi Sad,
Serbia, volume 10 of LIPIcs, pages 329–344. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2011. doi:10.4230/LIPIcs.RTA.2011.329.

http://dx.doi.org/10.1016/j.ic.2016.06.011
http://dx.doi.org/10.1016/j.ic.2016.06.011
http://dx.doi.org/10.1007/BFb0052368
http://dx.doi.org/10.1007/s00200-004-0162-8
http://dx.doi.org/10.1007/s00200-004-0162-8
http://dx.doi.org/10.1051/ita:1999118
http://dx.doi.org/10.1007/s10817-016-9388-y
http://dx.doi.org/10.1007/s10817-016-9388-y
http://dx.doi.org/10.1137/0212012
http://dx.doi.org/10.1007/978-3-642-02348-4_21
http://dx.doi.org/10.1007/3-540-61511-3_101
http://dx.doi.org/10.1007/978-3-540-70590-1_23
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.329

A. Geser, D. Hofbauer, and J. Waldmann 21:17

21 Vincent van Oostrom. Bowls and Beans. CWI puzzle, http://www.phil.uu.nl/~oostrom/
publication/misc.html, accessible via https://web.archive.org/, 2004.

22 Johannes Waldmann. Efficient Completion of Weighted Automata. In Andrea Corradini and
Hans Zantema, editors, Proceedings 9th International Workshop on Computing with Terms
and Graphs, TERMGRAPH 2016, Eindhoven, The Netherlands, April 8, 2016., volume 225 of
EPTCS, pages 55–62, 2016. doi:10.4204/EPTCS.225.8.

23 Yechezkel Zalcstein. Locally testable languages. Journal of Computer and System Sciences,
6(2):151–167, 1972. doi:10.1016/S0022-0000(72)80020-5.

24 Hans Zantema. Termination of Term Rewriting by Semantic Labelling. Fundam. Inform.,
24(1/2):89–105, 1995. doi:10.3233/FI-1995-24124.

25 Hans Zantema. Termination. In Terese, editor, Term Rewriting Systems, pages 181–259.
Cambrigde Univ. Press, 2003.

26 Hans Zantema. Termination of String Rewriting Proved Automatically. J. Autom. Reasoning,
34(2):105–139, 2005. doi:10.1007/s10817-005-6545-0.

A Composition Trees of Overlap Closures

In this section we derive a left-recursive characterization of overlap closures in string rewriting.
By left-recursive, we mean that the recursive descent takes place only in the left partners.
The definition of overlap closures recurses in both arguments (we always overlap a closure
with a closure):

I Definition A.1 ([10]). For a rewrite system R, the set OC is defined as the least set
such that
1. R ⊆ OC,
2. if (s, tx) ∈ OC and (xu, v) ∈ OC for some t, x, u 6= ε then (su, tv) ∈ OC;
2’. if (s, xt) ∈ OC and (ux, v) ∈ OC for some t, x, u 6= ε then (us, vt) ∈ OC;
3 if (s, tut′) ∈ OC and (u, v) ∈ OC then (s, tvt′) ∈ OC;
3’. if (u, v) ∈ OC and (svs′, t) ∈ OC then (sus′, t) ∈ OC.

The following recursive definition is left-recursive (we overlap a closure with a rule). We
need an extra rule (Item 4) and drop a rule (Item 3’), the others correspond to Definition A.1.

I Definition A.2. For a rewrite system R, the set OC′ is defined as the least set such that
1. R ⊆ OC′,
2. if (s, tx) ∈ OC′ and (xu, v) ∈ R for some t, x, u 6= ε then (su, tv) ∈ OC′;
2’. if (s, xt) ∈ OC′ and (ux, v) ∈ R for some t, x, u 6= ε then (us, vt) ∈ OC′;
3. if (s, tut′) ∈ OC′ and (u, v) ∈ R then (s, tvt′) ∈ OC′;
4. if (s, tx) ∈ OC′ and (u, yv) ∈ OC′ and (xwy, z) ∈ R for some t, x, y, v 6= ε then

(swu, tzv) ∈ OC′.

The main result of this Appendix is that the set OC′ covers the overlap closures up to
inverse rewriting of left hand sides:

I Theorem A.3. OC = {(s, t) | s→∗R s′ ∧ (s′, t) ∈ OC′}.

Since we are interested in right-hand sides of closures, these extra rewrite steps do not hurt.
In order to prove Theorem A.3, it is useful to represent a closure by a tree that describes

the way the closure is formed: the composition tree of the closure. Each node of a composition
tree denotes an application of one of the inference rules of Definitions A.1 and A.2. An extra
node type 3’ denotes an →R-step as seen in Theorem A.3.

FSCD 2019

http://www.phil.uu.nl/~oostrom/publication/misc.html
http://www.phil.uu.nl/~oostrom/publication/misc.html
https://web.archive.org/
http://dx.doi.org/10.4204/EPTCS.225.8
http://dx.doi.org/10.1016/S0022-0000(72)80020-5
http://dx.doi.org/10.3233/FI-1995-24124
http://dx.doi.org/10.1007/s10817-005-6545-0

21:18 Sparse Tiling

I Definition A.4 ([7]). Define the signature Ω = {1, 2, 2′, 3, 3′, 4}, where 1 is unary, 4 is
ternary, and the other symbols are binary. The set CT of composition trees is defined as the
set of ground terms over Ω.

I Definition A.5. A composition tree represents a set of string pairs, as follows:

〈1〉 = {(`, r) | (`→ r) ∈ R},
〈2(c1, c2)〉 = {(su, tv) | (s, tx) ∈ 〈c1〉, (xu, v) ∈ 〈c2〉, t, x, u 6= ε},
〈2′(c1, c2)〉 = {(us, vt) | (s, xt) ∈ 〈c1〉, (ux, v) ∈ 〈c2〉, t, x, u 6= ε},
〈3(c1, c2)〉 = {(s, tvt′) | (s, tut′) ∈ 〈c1〉, (u, v) ∈ 〈c2〉},
〈3′(c1, c2)〉 = {(sus′, t) | (svs′, t) ∈ 〈c1〉, (u, v) ∈ 〈c2〉},

〈4(c1, c2, c3)〉 = {(swu, tzv) | (s, tx) ∈ 〈c1〉, (u, yv) ∈ 〈c2〉,
(xwy, z) ∈ 〈c3〉, t, x, y, v 6= ε} .

I Example A.6. The composition tree 4(1, 2(1, 1), 3′(1, 1)) denotes all pairs obtained by the
following overlaps of rewrite steps. Times flows from top to bottom. Each of the rectangles
of height 1 is a step, corresponding to a 1 node in the tree. The grey rectangle in the top
right is 2(1, 1), the grey rectangle in the bottom is 3′(1, 1).

Let CT′ denote the composition trees that do not contain the function symbol 4. By
construction we have:

I Lemma A.7. OC =
⋃

c∈CT′〈c〉.

Adding symbols 4 does not increase expressiveness, since 〈4(c1, c2, c3)〉 ⊆ 〈2(c1, 2′(c2, c3))〉.

I Lemma A.8. OC =
⋃

c∈CT〈c〉.

In the remainder of this section, we give a semantics-preserving transformation from CT
(arbitrary composition trees) to a subset that describes the right-hand side of Theorem A.3.
Let us first characterize the goal precisely.

I Definition A.9. The set CTN is given by the regular tree grammar with variables T,D
(top, deep), start variable T , and rules

T → 3′(1, T) | D, D → 1 | 2(D, 1) | 2′(D, 1) | 3(D, 1) | 4(D,D, 1).

Rules for D correspond to the rules of Definition A.2, creating (s′, t) ∈ OC′. Rules for T
correspond to the initial derivation s→∗R s′. Therefore,

I Lemma A.10. 〈CTN 〉 = {(s, t) | s→∗R s′ ∧ (s′, t) ∈ OC′}.

We are going to construct a term rewriting system Q on Ω that has CTN as normal forms.
It must remove all non-1 symbols from the left argument of 3′, and remove all non-1 symbols
from the rightmost argument of 2, 2′, 3, and 4. Also, it must remove all 3′ that are below
some non-3′. These conditions already determine the set of left-hand sides of Q.

For each left-hand side l, the set of right-hand sides must cover l semantically:

∀l ∈ lhs(Q) : 〈l〉 ⊆
⋃

(l,r)∈Q

〈r〉.

A. Geser, D. Hofbauer, and J. Waldmann 21:19

A term rewriting system Q over signature Ω with the desired properties is defined in
Table 3. We bubble-up 3’ symbols, e. g., 2(3′(c1, c2), c3) → 3′(c1, 2(c2, c3)) (Rule 9), and
we rotate to move non-1 symbols, e. g., 2(c1, 2(c2, c3))→ 2(2(c1, c2), c3) (Rule 1). Rotation
below 3′ goes to the left. Rules 3 and 13 show that symbol 4 cannot be avoided.

Table 3 The term rewriting system Q for composition trees.

2(c1, 2(c2, c3))→ 2(2(c1, c2), c3) (1)
2(c1, 2(c2, c3))→ 2(3(c1, c2), c3) (2)

2(c1, 2′(c2, c3))→ 4(c1, c2, c3) (3)

2(c1, 2′(c2, c3))→ 3(2(c1, c2), c3) (4)
2(c1, 3(c2, c3))→ 3(2(c1, c2), c3) (5)

2(c1, 3′(c2, c3))→ 3′(c2, 2(c1, c3)) (6)

2(c1, 3′(c2, c3))→ 2(2(c1, c2), c3)) (7)

2(c1, 3′(c2, c3))→ 2(3(c1, c2), c3)) (8)

2(3′(c1, c2), c3)→ 3′(c1, 2(c2, c3)) (9)

2(c1, 4(c2, c
′
2, c3))→ 4(2(c1, c2), c

′
2, c3) (10)

2(c1, 4(c2, c
′
2, c3))→ 4(3(c1, c2), c

′
2, c3) (11)

2(c1, 4(c2, c
′
2, c3))→ 3(3(2(c1, c

′
2), c2), c3) (12)

2′(c1, 2(c2, c3))→ 4(c1, c2, c3) (13)

2′(c1, 2(c2, c3))→ 3(2′(c1, c2), c3) (14)

2′(c1, 2′(c2, c3))→ 2′(2′(c1, c2), c3) (15)

2′(c1, 2′(c2, c3))→ 2′(3(c1, c2), c3) (16)

2′(c1, 3(c2, c3))→ 3(2′(c1, c2), c3) (17)

2′(c1, 3′(c2, c3))→ 3′(c2, 2′(c1, c3)) (18)

2′(c1, 3′(c2, c3))→ 2′(2′(c1, c2), c3) (19)

2′(c1, 4(c2, c
′
2, c3))→ 4(c2, 2′(c1, c

′
2), c3) (20)

2′(c1, 4(c2, c
′
2, c3))→ 4(c2, 3(c1, c

′
2), c3) (21)

2′(c1, 4(c2, c
′
2, c3))→ 3(3(2′(c1, c2), c

′
2), c3) (22)

2′(3′(c1, c2), c3)→ 3′(c1, 2′(c2, c3)), (23)
3(c1, 2(c2, c3))→ 3(3(c1, c2), c3) (24)

3(c1, 2′(c2, c3))→ 3(3(c1, c2), c3) (25)
3(c1, 3(c2, c3))→ 3(3(c1, c2), c3) (26)

3(c1, 3′(c2, c3))→ 3(3(c1, c2), c3) (27)

3(3′(c1, c2), c3)→ 3′(c1, 3(c2, c3)) (28)

3(c1, 4(c2, c
′
2, c3))→ 3(3(3(c1, c2), c

′
2), c3) (29)

3′(2(c1, c2), c3)→ 3′(c1, 3′(c2, c3)) (30)

3′(2′(c1, c2), c3)→ 3′(c1, 3′(c2, c3)) (31)

3′(3(c1, c2), c3)→ 3′(c1, 3′(c2, c3)) (32)

3′(3′(c1, c2), c3)→ 3′(c1, 3′(c2, c3)) (33)

3′(4(c1, c
′
1, c2), c3)→ 3′(c1, 3′(c

′
1, 3′(c2, c3))) (34)

4(c1, c
′
1, 2(c2, c3))→ 4(2(c1, c2), c

′
1, c3) (35)

4(c1, c
′
1, 2(c2, c3))→ 3(4(c1, c

′
1, c2), c3) (36)

4(c1, c
′
1, 2(c2, c3))→ 4(3(c1, c2), c

′
1, c3) (37)

4(c1, c
′
1, 2′(c2, c3))→ 3(4(c1, c

′
1, c2), c3) (38)

4(c1, c
′
1, 2′(c2, c3))→ 4(c1, 2(c

′
1, c2), c3) (39)

4(c1, c
′
1, 2′(c2, c3))→ 4(c1, 3(c

′
1, c2), c3) (40)

4(c1, c
′
1, 3(c2, c3))→ 3(4(c1, c

′
1, c2), c3) (41)

4(c1, c
′
1, 3′(c2, c3))→ 3′(c2, 4(c1, c

′
1, c3)) (42)

4(c1, c
′
1, 3′(c2, c3))→ 4(2(c1, c2), c

′
1, c3) (43)

4(c1, c
′
1, 3′(c2, c3))→ 4(c1, 2′(c

′
1, c2), c3) (44)

4(c1, c
′
1, 3′(c2, c3))→ 3(4(c1, c

′
1, c2), c3) (45)

4(c1, c
′
1, 3′(c2, c3))→ 4(3(c1, c2), c

′
1, c3) (46)

4(c1, c
′
1, 3′(c2, c3))→ 4(c1, 3(c

′
1, c2), c3) (47)

4(3′(c1, c2), c
′
1, c3)→ 3′(c1, 4(c2, c

′
1, c3)) (48)

4(c1, 3′(c
′
1, c2), c3)→ 3′(c

′
1, 4(c1, c2, c3)) (49)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 4(2(c1, c2), 2′(c

′
1, c

′
2), c3) (50)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 4(3(c1, c2), 2′(c

′
1, c

′
2), c3) (51)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 4(2(c1, c2), 3(c

′
1, c

′
2), c3) (52)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 4(3(c1, c2), 3(c

′
1, c

′
2), c3) (53)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 3(3(4(c1, c

′
1, c

′
2), c2), c3) (54)

4(c1, c
′
1, 4(c2, c

′
2, c3))→ 3(3(4(c1, c

′
1, c2), c

′
2), c3) (55)

Termination of Q follows from a lexicographic combination of an interpretation ρ that
decreases under rotation, and an interpretation σ that decreases under bubbling.

I Lemma A.11. Q terminates.

Proof. Let the two interpretations ρ and σ on natural numbers be defined by

ρ(1) = 2,
ρ(2(c1, c2)) = ρ(2′(c1, c2)) = ρ(3(c1, c2)) = ρ(c1) + 2ρ(c2),
ρ(3′(c1, c2)) = 2ρ(c1) + ρ(c2),

ρ(4(c1, c2, c3)) = ρ(c1) + ρ(c2) + 2ρ(c3),

FSCD 2019

21:20 Sparse Tiling

σ(1) = 2,
σ(2(c1, c2)) = σ(2′(c1, c2)) = σ(3(c1, c2)) = σ(c1) · σ(c2),
σ(3′(c1, c2)) = σ(c1) · σ(c2) + 1,

σ(4(c1, c2, c3)) = σ(c1) · σ(c2) · σ(c3) .

The order > on terms defined by s > t if ρ(s) > ρ(t) or ρ(s) = ρ(t) and σ(s) > σ(t) is a
reduction order. With this, the rules ` → r in 9, 28, 48, and 49 satisfy ρ(`) = ρ(r) and
σ(`) > σ(r). For instance, Rule 49 satisfies ρ(`) = ρ(r) = ρ(c1) + ρ(c′1) + ρ(c2) + 2ρ(c3)
and σ(`) = (σ(c1)σ(c2) + 1)σ(c′1)σ(c3) > σ(c1)σ(c2)σ(c′1)σ(c3) + 1 = σ(r). All other rules
`→ r in Q satisfy ρ(`) > ρ(r). For instance, Rule 54 satisfies ρ(`) = ρ(c1) + ρ(c′1) + 2ρ(c2) +
2ρ(c′2) + 4ρ(c3) > ρ(c1) + ρ(c′1) + 2ρ(c2) + 2ρ(c′2) + 2ρ(c3) = ρ(r). So Q is ordered by the
reduction order >, and so Q terminates. J

I Lemma A.12. For every composition tree c that admits a Q rewrite step, and for every
(s, t) ∈ 〈c〉 there is a composition tree c′ such that both c→Q c′ and (s, t) ∈ 〈c′〉.

Proof. The proof is done by a case analysis over all left hand sides of Q. We show only one
particularly complex case; the other cases work similarly.

Let c = 4(c1, c
′
1, 4(c2, c

′
2, c3)). By definition of 〈·〉, we get s = ŝwu, t = t̂zv, (ŝ, t̂x) ∈ 〈c1〉,

(u, yv) ∈ 〈c′1〉, (xwy, z) ∈ 〈4(c2, c
′
2, c3)〉 for some t̂, x, y, v 6= ε. Again, we get xwy = s′w′u′,

z = t′z′v′, (s′, t′x′) ∈ 〈c2〉, (u′, y′v′) ∈ 〈c′2〉, (x′w′y′, z′) ∈ 〈c3〉 for some t′, x′, y′, v′ 6= ε. We
distinguish cases according to the overlaps:
1. x ∈ Prefix(s′), y ∈ Suffix(u′). Then (ŝs′′, t̂t′x′) ∈ 〈2(c1, c2)〉 where s′′ 6= ε is defined

by s′ = xs′′. Next, (u′′u, y′v′v) ∈ 〈2′(c′1, c′2)〉 where u′′ 6= ε is defined by u′ = u′′y.
Finally, (s, t) = (ŝs′′w′u′′u, t̂t′z′v′v) ∈ 〈4(2(c1, c2), 2′(c′1, c′2), c3)〉, and we choose c→ c′ =
4(2(c1, c2), 2′(c′1, c′2), c3) by Rule 50.

2. s′ is a prefix of x, x ∈ Prefix(s′w′), y ∈ Suffix(u′). Then (ŝ, t̂t′x′′) ∈ 〈3(c1, c2)〉 where x′′ is
defined by x = s′x′′. Next, (u′′u, y′v′v) ∈ 〈2′(c′1, c′2)〉 where u′′ 6= ε is defined by u′ = u′′y.
Finally, (s, t) = (ŝw′′u′′u, t̂t′z′v′v) ∈ 〈4(3(c1, c2), 2′(c′1, c′2), c3)〉, where w′′ is defined by
w′ = x′′w′′, and we choose c→ c′ = 4(3(c1, c2), 2′(c′1, c′2), c3) by Rule 51.

3. x ∈ Prefix(s′), u′ is a suffix of y, y ∈ Suffix(w′u′). This case is symmetric to Case 2. We
use Rule 52.

4. s′ is a prefix of x, u′ is a suffix of y. Then (ŝ, t̂t′x′′) ∈ 〈3(c1, c2)〉 where x′′ is defined
by x = s′x′′. Next, (u, y′′v′v) ∈ 〈3(c′1, c′2)〉 where y′′ is defined by y = y′′u′. Finally,
(s, t) = (ŝw′′u, t̂t′z′v′v) ∈ 〈4(3(c1, c2), 3(c′1, c′2), c3)〉, where w′′ is defined by w′ = x′′w′′y′′,
and we choose c→ c′ = 4(3(c1, c2), 3(c′1, c′2), c3) by Rule 53.

5. s′w′ is a prefix of x, y ∈ Suffix(u′). Then (ŝu′′u, t̂y′v′) ∈ 〈4(c1, c2, c
′
2)〉 where x′′ is

defined by x = s′w′x′′, and u′′ is defined by u′ = x′′u′′. Next, (ŝu′′u, t̂t′x′w′y′v′v) ∈
〈3(4(c1, c2, c

′
2), c′1)〉. Finally, (s, t) = (ŝu′′u, t̂t′z′v′v) ∈ 〈3(3(4(c1, c2, c

′
2), c′1), c3)〉, by

Rule 54.
6. x ∈ Prefix(s′), w′u′ is a suffix of y. This case is symmetric to Case 5. We use Rule 55. J

I Lemma A.13. For every composition tree c that is in Q-normal form and does not contain
any 3′ symbols, we have 〈c〉 ⊆ OC′.

Proof. The claim is proven by induction on |c| as follows. If c = 1 then 〈c〉 = R ⊆ OC′.
If c = 2(c1, c2) then c2 = 1 because c is in Q-normal form. From the inductive hypothesis
for c1 we get 〈c1〉 ⊆ OC′; so 〈c〉 ⊆ OC′. The same argument applies when c = 2′(c1, c2)
or c = 3(c1, c2). If c = 4(c1, c2, c3) then c3 = 1 because c is in Q-normal form. From the
inductive hypothesis for c1 we get 〈c1〉 ⊆ OC′. From the inductive hypothesis for c2 we get
〈c2〉 ⊆ OC′. So 〈c〉 ⊆ OC′. J

A. Geser, D. Hofbauer, and J. Waldmann 21:21

Now we are ready to prove Theorem A.3.

Proof of Theorem A.3. We prove that c ∈ OC and (s, t) ∈ 〈c〉 implies s→∗R s′ and (s′, t) ∈
OC′ for some s′. We do so by induction on c, ordered by >. If c admits a Q rewrite step
then by Lemma A.12 there is a composition tree c′ such that both c→Q c′ and (s, t) ∈ 〈c′〉.
Because c > c′, the claim follows by inductive hypothesis for c′. Now suppose that c is
in Q-normal form. If c does not contain any 3′ symbol then (s, t) ∈ OC′ by Lemma A.13,
and we choose s′ = s. Else, because c is in Q-normal form, c = 3′(1, c2) for some c2. Let
(s′′, t) ∈ 〈c2〉 and s →R s′′. From the inductive hypothesis for c2 we get s′′ →∗R s′ and
(s′, t) ∈ OC′ for some s′. So s→R s′′ →∗R s′ and the claim holds. J

From Theorem A.3, we immediately get:

I Corollary A.14. rhs(OC) = rhs(OC′).

Because OC′ is left-recursive, we can derive a recursive characterization of the set of right
hand sides of overlap closures:

I Corollary A.15 (This is Corollary 7.1). rhs(OC) is the least set S such that
1. rhs(R) ⊆ S,
2. if tx ∈ S and (xu, v) ∈ R for some t, x, u 6= ε then tv ∈ S;
3. if xt ∈ S and (ux, v) ∈ R for some t, x, u 6= ε then vt ∈ S;
4. if tut′ ∈ S and (u, v) ∈ R then tvt′ ∈ S;
5. if tx ∈ S and yv ∈ S and (xwy, z) ∈ R for some t, x, y, v 6= ε then tzv ∈ S.

FSCD 2019

Proof Nets for First-Order Additive Linear Logic
Willem B. Heijltjes
University of Bath, United Kingdom
http://willem.heijltj.es

Dominic J. D. Hughes
Logic Group, UC Berkeley, USA
http://boole.stanford.edu/~dominic

Lutz Straßburger
Inria Saclay, Palaiseau, France
LIX, École Polytechnique, Palaiseau, France
http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger

Abstract
We present canonical proof nets for first-order additive linear logic, the fragment of linear logic with
sum, product, and first-order universal and existential quantification. We present two versions of our
proof nets. One, witness nets, retains explicit witnessing information to existential quantification. For
the other, unification nets, this information is absent but can be reconstructed through unification.
Unification nets embody a central contribution of the paper: first-order witness information can be
left implicit, and reconstructed as needed. Witness nets are canonical for first-order additive sequent
calculus. Unification nets in addition factor out any inessential choice for existential witnesses.
Both notions of proof net are defined through coalescence, an additive counterpart to multiplicative
contractibility, and for witness nets an additional geometric correctness criterion is provided. Both
capture sequent calculus cut-elimination as a one-step global composition operation.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Linear logic

Keywords and phrases linear logic, first-order logic, proof nets, Herbrand’s theorem

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.22

Related Version A full version [13] is available at http://hal.inria.fr/hal-01867625/.

Funding Willem B. Heijltjes: was supported by EPSRC Project EP/R029121/1 Typed Lambda-
Calculi with Sharing and Unsharing.
Lutz Straßburger : was supported by the ANR-FWF international grant ANR-5-CE25-0014 The Fine
Structure of Formal Proof Systems and their Computational Interpretations (FISP).

Acknowledgements We would like to thank the anonymous referees for their constructive feedback.
Dominic Hughes thanks his hosts, Wes Holliday and Dana Scott, at the UC Berkeley Logic Group.

1 Introduction

Additive linear logic (all) is the logic of sum, product, and their canonical morphisms: pro-
jections, injections, and diagonals. Semantically, the logic represents parallel communication
between two parties, with sum and product as respectively the sending and receiving of a
binary choice [22, 3]. As such it is a core part of session types for process calculi [16, 2, 28].

A microcosm of parallellism, all already demonstrates the Blass problem of game
semantics [1], that sequential strategies do not in general have associative composition. This
is resolved by proof nets [7, 21], which are a canonical, true-concurrency presentation of all.

Here, we extend proof nets to first-order additive linear logic (all1). Beyond the solution
to the proof-net problem, a main contribution is the (further) development of the two
techniques we consider: explicit substitutions for witness assignment, and reconstruction of

© Willem B. Heijltjes, Dominic J. D. Hughes, and Lutz Straßburger;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 22; pp. 22:1–22:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://willem.heijltj.es
http://boole.stanford.edu/~dominic
http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger
https://doi.org/10.4230/LIPIcs.FSCD.2019.22
http://hal.inria.fr/hal-01867625/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Proof Nets for First-Order Additive Linear Logic

witness information through unification, as pioneered for MLL by the second author [18].
We expect to apply these to first-order logics more generally.

Proofs have been relegated to the appendix – for a full version see the report [13].

Additive proof nets

all proof nets [21, Section 4.10] represent a morphism A → B by a sequent ⊢A,B plus a
linking, a relation between the propositional atoms of A (the dual of A) and those of B.
They are canonical: they factor out the permutations of sequent calculus, and correspond
1–1 to morphisms of the free category with binary sums and products. Composition, of
proof nets over ⊢A,B and ⊢B,C to one over ⊢A,C, is by the relational composition of their
linkings along the dual formulas B and B and captures sequent-calculus cut-elimination.
Below are examples of proof nets and their composition.

diagonal:
a

a × a
injection:

a

a + b

symmetry:
a + b

b × a
associativity:

a +(b + c)

(a × b)× c

composition:

b + a

a × (b + b)
a + (b × b)

b × b

⇒

b + a

b × b

We extend additive proof nets with first-order quantification. Our central challenge is to
incorporate the essential content of first-order proof, the witness assignment to existential
quantifiers. Commonly, as in the sequent calculus rule below left, a witness to ∃x.B is given
by an immediate substitution B[t/x]. To assign different witnesses in different branches of a
proof, the subformula is duplicated first, giving B[s/x] and B[t/x], as below right.

⊢A,B[t/x]
⊢A,∃x.B ∃R,t

⊢P (s), P (s)
⊢∃x.P (x), P (s)

∃R,s
⊢P (t), P (t)
⊢∃x.P (x), P (t)

∃R,t

⊢∃x.P (x), P (s) × P (t)
×R

This is incompatible with a sequent+ links proof net design, where the conclusion sequent
remains intact, and a subformula B cannot be the subject of substitution or duplication.
Instead, we propose two alternative treatments of witnessing terms, embodied in two notions
of proof net: witness nets and unification nets. Our solutions are based on the second
author’s recent unification nets for first-order multiplicative linear logic [18]. Their main
feature is to omit existential witnesses altogether, and reconstruct them by unification.

Witness nets record witness assignment in substitution maps attached to each link.
The example below left shows the proof net for the sequent proof earlier. (We will assume a
different variable for each quantifier, and we attach links to predicate letters, as the root
connective of an atomic proposition.) Witness nets are canonical for all1 sequent calculus
permutations. Composition is direct, where the witness assignments of links are composed
through a simple process of interaction+hiding similar to that of game semantics [26].

Unification nets omit any witness information, as illustrated below right. In addition
to canonicity, they embody a notion of generality: where more than one witness could be
assigned, unification nets do not require a definite choice, while witness nets do. Composition
is direct, by relational composition. We compare further properties in Figure 11 in the
conclusion, where we also discuss related work and Lambek’s notion of generality [23].

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:3

a witness net:

∃x.P (x)

P (s) × P (t)

[s/x] [t/x] a unification net:

∃x.P (x)

P (s) × P (t)

Background

Additive linear logic is combinatorially rich, yet well-behaved and tractable: proof search [6]
and proof net correctness [12] for a net over ⊢A,B are linear in ∣A∣ × ∣B∣ (with ∣A∣ the size
of the syntax tree of A). Proof nets remain canonical and equally tractable when extended
with the two units [11, 12], and the first-order case is merely NP-complete [12].

all is of course part of mall (multiplicative-additive linear logic), and its lessons are
clearly visible in the second author’s canonical mall proof nets [21], as well as the first and
second author’s locally canonical conflict nets [20]. Its proof nets also appear in the third
author’s study of the medial rule for classical logic [27], and as the skew fibrations in the
second author’s combinatorial proofs for classical logic [17]. To prepare the ground for cut
elimination in first-order combinatorial proofs [19] is further motivation for the present work.

Proof identity

At the heart of a theory of proof nets is the question of proof identity: when are two proofs
equivalent? The answer determines which proofs should map onto the same proof net. The
introduction of quantifiers creates an interesting issue: if two proofs differ by an immaterial
choice of existential witness, should they be equivalent? For example, to prove the sequent
⊢∃x.P (x),∃y.P (y) both quantifiers must receive the same witness, as in the following two
proofs, but any witness will do.

⊢P (s), P (s)
⊢∃x.P (x),∃y.P (y)

?≡ ⊢P (t), P (t)
⊢∃x.P (x),∃y.P (y)

The issue is more pronounced where quantifiers are vacuous, ∃x.A with x not free in A. The
proofs below left can only be distinguished even syntactically because the ∃R rule makes the
instantiating witness explicit. Below right is an interesting intermediate variant: the witness
s or t can be observed without explicit annotation in the ∃R rule, but the choice is equally
immaterial to the content of the proof as when the quantifier were vacuous.

⊢P,P
⊢∃x.P,P

∃R,s
?≡ ⊢P,P

⊢∃x.P,P
∃R,t

⊢P,P
⊢P +Q(s), P

+R,1

⊢∃x.P +Q(x), P
∃R,s

?≡
⊢P,P

⊢P +Q(t), P
+R,1

⊢∃x.P +Q(x), P
∃R,t

In this paper we will not attempt to settle the question of proof identity. Rather, our two
notions of proof net each represent a natural and coherent perspective, at either end of the
spectrum. Witness nets make all existential witnesses explicit, including those to vacuous
quantifiers, rejecting all three equivalences above. Unification nets leave all witnesses implicit,
thus identifying all proofs modulo witness assignment, and validating all three equivalences.

FSCD 2019

22:4 Proof Nets for First-Order Additive Linear Logic

Correctness: coalescence and slicing

Additive proof nets have two natural correctness criteria. Coalescence [12, 20], a counterpart
to multiplicative contractibility [4, 9], provides efficient correctness and sequentialization
via local rewriting: it asks that the steps below left result in a single link, connecting both
formulas. Slicing [21] is a global, geometric criterion: it asks that each slice, a choice to
remove one subformula of each product along with all connected links, retains a single link.

A

B ×C
→

A

B ×C

A

B +C
→

A

B +C

A

B ×CB

A

B ×CC
coalescence slicing

We extend coalescence to both witness nets and unification nets, and slicing to witness nets.
Here, we illustrate the former, and leave a discussion of slicing to the conclusion of the paper.

We will distinguish strict coalescence (→) for witness nets and unifying coalescence
() for unification nets. We first give an example of the former (abbreviating P (x, y) to
Pxy). In the initial witness net, below left, each link corresponds to a sequent calculus axiom
between both linked subformulas, with the substitutions applied.

∀x.∃y.Pxy

∃z.Pzs × Pzt
[x/z,s/y] [x/z,t/y] →

∀x.∃y.Pxy

∃z.Pzs × Pzt
[x/z] [x/z,t/y] →

∀x.∃y.Pxy

∃z.Pzs × Pzt
[x/z] [x/z] → ⋯

⊢Pxs,Pxs ⊢Pxt,Pxt ⊢Pxs,Pxs

⊢∃y.Pxy,Pxs
∃R,s

⊢Pxt,Pxt ⊢Pxs,Pxs

⊢∃y.Pxy,Pxs
∃R,s

⊢Pxt,Pxt

⊢∃y.Pxy,Pxt
∃R,t

The first two steps (above middle and right) move both links from the subformula Pxy to
∃y.Pxy, removing the substitutions [s/y] and [t/y] on y, and corresponding to sequent rules
∃R, s and ∃R, t. Observe that we maintain the domain of the substitutions on a link as the
variables of those existential quantifiers that either linked subformula is (strictly) in scope of.

The next step, from above right to below left, combines both links, and corresponds to
an additive conjunction rule. We require that both substitutions agree (their domains are
the same by the above observation); hence this step could not have been performed before
the previous two, corresponding to the non-permutability of the generated inference rules.

⋯ →
∀x.∃y.Pxy

∃z.Pzs × Pzt
[x/z] →

∀x.∃y.Pxy

∃z.Pzs × Pzt
→

∀x.∃y.Pxy

∃z.Pzs × Pzt

⊢Pxs,Pxs

⊢∃y.Pxy,Pxs

⊢Pxt,Pxt

⊢∃y.Pxy,Pxt

⊢∃y.Pxy,Pxs × Pxt
×R

P

P

⊢Pxs,Pxs

⊢∃y.Pxy,Pxs

⊢Pxt,Pxt

⊢∃y.Pxy,Pxt

⊢∃y.Pxy,Pxs × Pxt

⊢∃y.Pxy,∃z.Pzs × Pzt
∃R,x

P

⊢Pxs,Pxs

⊢∃y.Pxy,Pxs

⊢Pxt,Pxt

⊢∃y.Pxy,Pxt

⊢∃y.Pxy,Pxs × Pxt

⊢∃y.Pxy,∃z.Pzs × Pzt

⊢∀x.∃y.Pxy,∃z.Pzs × Pzt
∀R

The final steps introduce an inference ∃R,x and one ∀R. For the latter, we require that the
eigenvariable x of the universal quantification does not occur in the range of the substitution
of the link, as in [x/z] in the net above left – hence the two steps could not be interchanged.
It corresponds to the eigenvariable condition on the ∀R rule that x is not free in the context.

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:5

Unifying coalescence, for unification nets, is similar to strict coalescence; two differences
allow it to reconstruct witnesses by unification, which we illustrate. To initialize coalescence,
the links in the net below left are given, as a substitution map, the most general unifier
of the two propositions connected by the link. Both links now correspond to sequent axioms.

Pxx

Pys × Ptz

Pxx

Pys × Ptz
[s/y,s/x] [t/z,t/x]

Pxx

Pys × Ptz
[u/z,u/y,u/x]

⊢Pss,Pss ⊢Ptt,P tt ⊢Puu,Puu ⊢Puu,Puu

⊢Puu,Puu × Puu
×R

The second difference is the coalescence step for additive conjunction, above right. Where
strict coalescence requires both links to carry identical substitution maps, here we require
both maps to be unifyable, in the sense that both must have a common, more special (less
general) substitution map. This is then applied to the new link. In the example, the terms s
and t are unified to u, i.e. u is a most general term that specializes both s and t. Note that
in the sequentialization, both subproofs also need to be specialized, from s and t to u.

2 Proof nets for first-order additive linear logic

First-order terms and the formulas of first-order all are generated by the following grammars.

t ⋅⋅⋅⋅= x ∣ f(t1, . . . , tn)

a ⋅⋅⋅⋅= P (t1, . . . , tn) ∣ P (t1, . . . , tn)

A⋅⋅⋅⋅= a ∣ A +A ∣ A ×A ∣ ∃x.A ∣ ∀x.A

Negation (⋅) is applied to predicate symbols, P as a matter of convenience. The dual A of
an arbitrary formula A is given by De Morgan. We use the following notational conventions:

x, y, z ∈ var first-order variables
f, g, h ∈ Σf n-ary (n ≥ 0) function symbols from a fixed alphabet Σf
P,Q,R ∈ Σp n-ary (n ≥ 0) predicate symbols from a fixed alphabet Σp
s, t, u ∈ term first-order terms over var and Σf
a, b, c ∈ atom atomic propositions
A,B,C ∈ form all1 formulas

A sequent ⊢A,B is a pair of formulas A and B. A sequent calculus for all1 is given in
Figure 1, where each rule has a symmetric counterpart for the first formula in the sequent.
We write π ⊢A,B for a proof π with conclusion sequent ⊢A,B. Two proofs are equivalent
π ∼ π′ if one is obtained from the other by rule permutations, given in Figure 2.

By a subformula we will mean a subformula occurrence. For instance, a formula A×A
has two subformulas A, one on the left and one on the right. The subformulas sub(A) of a
formula are defined as follows; we write B ≤ A if B is a subformula of A, i.e. if B ∈ sub(A).

sub(A) = {A} ∪
⎧⎪⎪⎨⎪⎪⎩

sub(B) ⊎ sub(C) if A = B +C or A = B ×C
sub(B) if A = ∃x.B or A = ∀x.B

FSCD 2019

22:6 Proof Nets for First-Order Additive Linear Logic

⊢a, a
ax

⊢A,Bi
⊢A,B1 +B2

+R,i
⊢A,B ⊢A,C
⊢A,B ×C ×R

⊢A,B[t/x]
⊢A,∃x.B ∃R,t

⊢A,B
⊢A,∀x.B ∀R (x ∉ fv(A))

Figure 1 A sequent calculus for all1.

⊢A,B
⊢A,∀y.B ∀R

⊢∀x.A,∀y.B ∀R

⊢A,B[t/y]
⊢A,∃y.B

∃R,t

⊢∀x.A,∃y.B ∀R

⊢A,Bi
⊢A,B1+B2

+R,i

⊢∀x.A,B1+B2
∀R

⊢A,B ⊢A,C
⊢A,B×C ×R

⊢∀x.A,B×C ∀R

∼ ∼ ∼ ∼
⊢A,B
⊢∀x.A,B ∀R

⊢∀x.A,∀y.B ∀R

⊢A,B[t/y]
⊢∀x.A,B[t/y] ∀R

⊢∀x.A,∃y.B
∃R,t

⊢A,Bi
⊢∀x.A,Bi

∀R

⊢∀x.A,B1+B2
+R,i

⊢A,B
⊢∀x.A,B ∀R

⊢A,C
⊢∀x.A,C ∀R

⊢∀x.A,B×C ×R

⊢A[s/x],B[t/y]
⊢A[s/x],∃y.B

∃R,t

⊢∃x.A,∃y.B
∃R,s

⊢A[t/x],Bi
⊢A[t/x],B1+B2

+R,i

⊢∃x.A,B1+B2
∃R,t

⊢A[t/x],B ⊢A[t/x],C
⊢A[t/x],B×C ×R

⊢∃x.A,B×C
∃R,t

∼ ∼ ∼
⊢A[s/x],B[t/y]
⊢∃x.A,B[t/y]

∃R,s

⊢∃x.A,∃y.B
∃R,t

⊢A[t/x],Bi
⊢∃x.A,Bi

∃R,t

⊢∃x.A,B1+B2
+R,i

⊢A[t/x],B
⊢∃x.A,B

∃R,t
⊢A[t/x],C
⊢∃x.A,C

∃R,t

⊢∃x.A,B×C ×R

⊢Ai,Bj
⊢Ai,B1+B2

+R,j

⊢A1+A2,B1+B2
+R,i

⊢Ai,B ⊢Ai,C
⊢Ai,B×C

×R

⊢A1+A2,B×C
+R,i

∼ ∼
⊢Ai,Bj

⊢A1+A2,Bj
+R,i

⊢A1+A2,B1+B2
+R,j

⊢Ai,B
⊢A1+A2,B

+R,i
⊢Ai,C

⊢A1+A2,C
+R,i

⊢A1+A2,B×C
×R

⊢A,C ⊢A,D
⊢A,C×D ×R

⊢B,C ⊢B,D
⊢B,C×D ×R

⊢A×B,C×D ×R

∼
⊢A,C ⊢B,C
⊢A×B,C ×R

⊢A,D ⊢B,D
⊢A×B,D ×R

⊢A×B,C×D ×R

Figure 2 Cut-free rule permutations.

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:7

Since we will be working with a graphical representation, we will adopt Barendregt’s
convention, that bound variable names are globally unique identifiers, in the following
form. In a sequent ⊢A,B we assume all quantifiers have a unique binding variable, distinct
from any free variable. In a proof π over ⊢A,B, a variable x that is universally quantified
as ∀x.C in ⊢A,B is an eigenvariable. A ∀R rule on ∀x.C is considered to bind all free
occurrences of the eigenvariable x in its direct subproof. Accordingly, we assume that x does
not occur free outside these subproofs (which can be guaranteed by globally renaming x).
We take variable names to be persistent throughout a proof, in the sense that we don’t admit
alpha-conversion (renaming of bound variables) between proof rules. We thus have unique
bound variable names in ⊢A,B, but in π all ∀R rules on the subformula ∀x.C share the
same eigenvariable x.

A link (C,D) on a sequent ⊢A,B is a pair of subformulas C ≤ A and D ≤ B. A linking
λ on the sequent ⊢A,B is a set of links on ⊢A,B.

I Definition 1. A pre-net λ▷A,B is a sequent ⊢A,B with a linking λ on it.

Witness maps

We will record the witnessing terms to existential quantifiers as (explicit) substitutions at
each link. A witness map σ∶var ⇀ term is a substitution map which assigns terms to
variables, given as a (finite) partial function σ = [t1/x1, . . . , tn/xn]. Its domain dom(σ)
is {x1, . . . , xn}. We abbreviate by y ∈ σ that a variable y occurs free in the range of σ
(y ∈ fv(ti) for some i ≤ n). The map σ − x is undefined on x and as σ otherwise; σ∣V is the
restriction of σ to a set of variables V , and ∅ is the empty witness map. We write Aσ for
the application of the substitutions in σ to the formula A, and στ is the composition of
two maps, where A(στ) = (Aσ)τ . We apply σ to a proof π, written πσ, by applying it to
each formula in the proof and to each existential witness t recorded with a rule ∃R, t.

A witness linking λΣ is a linking λ with a witness labelling Σ∶λ→ var⇀ term that
assigns each link (C,D) a witness map. We may use and define λΣ as a set of witness links
(C,D)σ where (C,D) ∈ λ and Σ(C,D) = σ. A witness link (a, b)σ on atomic formulas is an
axiom link if aσ = bσ. An axiom witness linking is one comprising axiom links.

I Definition 2. A witness pre-net λΣ ▷A,B is a sequent ⊢A,B with a witness linking
λΣ.

I Definition 3. The de-sequentialization [π] of a sequent proof π ⊢A,B is the witness
pre-net [π]A,B∅ ▷A,B where the function [−]A,Bσ is defined inductively in Figure 3 (symmetric
cases are omitted).

A function call [π ⊢ A,B]A′,B′

σ expects that A = A′σ and B = B′σ: the translation
separates a sequent ⊢A,B into subformulas A′, B′ of the ultimate conclusion of the proof,
and the accumulated existential witnesses σ. For an example, we refer to the introduction.

Correctness and sequentialization by coalescence

For sequentialization, the links in a pre-net will be labelled with a sequent proof. An axiom
link will carry an axiom, and each coalescence step will introduce one proof rule. Formalizing
this, a proof linking λΠ

Σ is a witness linking λΣ with a proof labelling Π∶λ → proof
assigning a sequent proof to each link. We will use and define λΠ

Σ as a set of proof links
(C,D)πσ, where we require that π ⊢Cσ,Dσ, i.e. that π proves the conclusion ⊢Cσ,Dσ. A
labelled pre-net λΠ

Σ ▷A,B is a witness pre-net λΣ ▷A,B with a proof labelling Π on λΣ.

FSCD 2019

22:8 Proof Nets for First-Order Additive Linear Logic

[⊢a, a ax]
b , c

σ
= {(b, c)σ}

⎡⎢⎢⎢⎢⎢⎣

π
⊢A,Bi

⊢A,B1 +B2
+R,i

⎤⎥⎥⎥⎥⎥⎦

A′ ,B′

1+B
′

2

σ

= [π
⊢A,Bi

]
A′ ,B′

i

σ

⎡⎢⎢⎢⎢⎢⎣

π
⊢A,B

π′

⊢A,C
⊢A,B ×C ×R

⎤⎥⎥⎥⎥⎥⎦

A′ ,B′
×C′

σ

= [π
⊢A,B]

A′ ,B′

σ

∪ [π′

⊢A,C]
A′ ,C′

σ

⎡⎢⎢⎢⎢⎢⎣

π
⊢A,B[t/x]
⊢A,∃x.B ∃R,t

⎤⎥⎥⎥⎥⎥⎦

A′ ,∃x.B′

σ

= [π
⊢A,B[t/x]]

A′ ,B′

σ[t/x]

⎡⎢⎢⎢⎢⎢⎣

π
⊢A,B
⊢A,∀x.B ∀R

⎤⎥⎥⎥⎥⎥⎦

A′ ,∀x.B′

σ

= [π
⊢A,B]

A′ ,B′

σ

Figure 3 De-sequentialization.

If λΣ is an axiom linking, we assign an initial proof labelling λ⋆Σ as follows.

λ⋆Σ = { (a, b)πσ ∣ (a, b)σ ∈ λΣ , π = ⊢aσ, bσ }

For correctness we may coalesce a pre-net directly, without constructing a proof. So far we
have accumulated the following notational conventions:

π,φ,ψ ∈ proof all1 sequent proofs
κ,λ ⊂ form × form linkings (sets of pairs of formulas)
ρ, σ, τ ∶ var⇀ term witness maps
Σ,Θ ∶ λ→ var⇀ term witness labellings on a linking λ
Π,Φ,Ψ ∶ λ→ proof proof labellings on a linking λ

I Definition 4. Strict sequentialization (→) is the rewrite relation on labelled pre-nets
generated by the rules in Figure 4, which replace one or two links by another in a pre-
net λΠ

Σ ▷ A,B where B has a subformula D1+D2, D1×D2, ∃x.D, and ∀x.D respectively.
Symmetric cases are omitted. Strict coalescence is the same relation on witness pre-nets,
ignoring proof labels, illustrated in Figure 5. A witness pre-net λΣ▷A,B strict-coalesces if
it reduces to {(A,B)∅}▷A,B. It strongly strict-coalesces if any coalescence path terminates
at {(A,B)∅}▷A,B.

For an example of coalescence, see the introduction.

I Definition 5. An all1 witness proof net or witness net is a witness pre-net λΣ▷A,B
with λΣ an axiom linking, that strict-coalesces. It sequentializes to a proof π if its initial
labelling λ⋆Σ ▷A,B reduces in (→) to {(A,B)π∅}▷A,B.

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:9

(C,Di)πσ → (C,D1+D2)ψσ ψ =
π

⊢Cσ,Diσ

⊢Cσ,D1σ +D2σ
+R,i

(+S, i)

(C,D1)πσ
(C,D2)φσ

} → (C,D1×D2)ψσ ψ =
π

⊢Cσ,D1σ
φ

⊢Cσ,D2σ

⊢Cσ,D1σ ×D2σ
×R

(×S)

(C,D)πσ → (C,∃x.D)ψσ−x (x ∈dom(σ)) ψ =
π

⊢Cσ,Dσ
⊢C(σ − x),∃x.D(σ − x)

∃R,σ(x)
(∃S)

(C,D)πσ → (C,∀x.D)ψσ (x ∉σ) ψ =
π

⊢Cσ,Dσ
⊢Cσ,∀x.Dσ ∀R

(∀S)

Figure 4 Strict coalescence.

C

D1+D2

σ →
C

D1+D2

σ

C

∃x.D
σ

x ∈dom(σ)→
C

∃x.D
σ−x

C

D1×D2

σ σ →
C

D1×D2

σ

C

∀x.D
σ

x ∉σ→
C

∀x.D
σ

Figure 5 Coalescence rules.

We conclude this section by establishing that sequentialization and de-sequentialization
for witness nets are inverses, and that witness nets are canonical.

I Theorem 6. For any all1 proof π, the witness net [π] sequentializes to π.

I Theorem 7. If λΣ ▷A,B sequentializes to π, then [π] is λΣ ▷A,B.

I Theorem 8. Witness nets are canonical: [π] = [φ] if and only if π ∼ φ.

3 Geometric correctness

We will first identify two aspects of sequent proofs, arising from the local nature of the rules,
which need to be enforced explicitly in a geometric correctness condition.

Local eigenvariables. The side-condition on the ∀R-rule, that the eigenvariable is not free
in the context, means that eigenvariables are local to the subproof of the ∀R-rule.
Correspondingly, a link (C,D)σ on ⊢A,B has local eigenvariables if for any variable
x ∈ σ, if x is an eigenvariable quantified as ∀x.X in ⊢A,B, then C ≤ X or D ≤ X. A
witness linking or pre-net has local eigenvariables if all its links do.

FSCD 2019

22:10 Proof Nets for First-Order Additive Linear Logic

Exact coverage. The local witness substitution [t/x] in a rule instance ∃R, t will have been
applied exactly to the axioms ⊢a, a in the subproof of that rule. Correspondingly, for a
link (C,D)σ on ⊢A,B we expect the domain of σ to be exactly the existential variables
in A and B that (could) occur free in C and D. For a subformula C of A, let the free
existential variables of C in A be the set evA(C) = {x ∣ C < ∃x.X ≤ A}. A link
(C,D)σ on ⊢A,B then has exact coverage if dom(σ) = evA(C) ∪ evB(D). If it does,
σ consists of two components, σ∣evA(C) and σ∣evB(D), which we abbreviate as σC and σD
respectively. A witness linking or pre-net has exact coverage if all its links do.

Both conditions are captured naturally by coalescence, as can be observed from the rules.

Slices

A slice is the fraction of a proof that depends on a given choice of one branch (or projection)
on each product formula A ×B. Important to additive proof theory is that many operations
can be performed on a per-slice basis, such as normalization, or proof net correctness. We
will here use slices for the latter purpose. As in the propositional case [21], we define a slice
of a sequent ⊢A,B as a set of potential links, of which exactly one must be realized in a
proof net λΣ ▷A,B. We extend the propositional criterion in two ways:

Expansion. When defining slices, we interpret an existential quantification ∃x.A as a sum over
all witnesses ti to x that occur in the pre-net, A[t1/x] + . . . +A[tn/x]. This captures the
non-permutability of a product rule over distinct instantiations, as below left. (Technically,
a slice of ∃x.A will correspond to an infinite sum over A[t/x] for every term t, but only
the actually occurring terms ti will ever be relevant.)

Dependency. We define a dependency relation between a universal quantification ∀x.A
and an instantiation B[t/y] of ∃y.B where the eigenvariable x occurs free in t (a standard
approach to first-order quantification [25, 8, 10, 26]). For each link, we will require this
dependency relation to be acyclic, which amounts to slice-wise first-order correctness.
It captures the non-permutability of universal and existential sequent rules due to the
eigenvariable condition of the former, as below right.

⊢A[s/x],B
⊢∃x.A,B

∃R,s
⊢A[t/x],C
⊢∃x.A,C

∃R,t

⊢∃x.A,B ×C ×R

⊢A,B[t/y]
⊢A,∃y.B

∃R,t

⊢∀x.A,∃y.B ∀R
where x ∈ fv(t)

Expansion covers the interaction between existential quantifiers and products, and dependency
that between existential and universal quantifiers. Note that in proof nets that include the
multiplicatives (e.g. [8, 18]), instead of a dependency as a partial order it is common to
consider the underlying graph, created by adding a jump or leap edge when an existential
instantiation B[t/y] of ∃y.B contains the eigenvariable x of ∀x.A. These edges participate
in the switching condition [5], to capture the interaction between quantifiers and tensors.
Without the tensor, here, the dependency as a partial order suffices.

I Definition 9 (Slice). A slice S of a formula A and a witness map σ is a set of pairs
(A′, σ′), where A′ ≤ A and σ′ ⊇ σ, given by S = {(A,σ)} ∪ S′ where:

If A = a then S′ = ∅.
If A = B +C then S′ = SB ⊎ SC with SB a slice of B and σ, and SC one of C and σ.
If A = B ×C then S′ is a slice of B and σ or a slice of C and σ.
If A = ∃x.B then S′ = ⊎t ∈termSt where each St is a slice of B and σ[t/x].
If A = ∀x.B then S′ is a slice of B and σ.

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:11

A slice of a sequent ⊢A,B is a set of links

{ (C,D)σ∪τ ∣ (C,σ) ∈ SA , (D,τ) ∈ SB }

where SA is a slice of A and ∅, and SB a slice of B and ∅. A slice of a witness pre-net
λΣ ▷A,B is the intersection λΣ ∩ S of λΣ with a slice S of ⊢A,B.

As in the propositional case, for correctness we will require that each slice is a singleton.
We will further define a dependency condition to ensure that the order in which quantifiers
are instantiated is sound, corresponding to the eigenvariable condition on the ∀R-rule of
sequent calculus. For simplicity, we define the condition on individual links rather than slices.

I Definition 10. In a pre-net λΣ▷A,B, let the column of a link (C,D)σ be the set of pairs

{ (X,σ∣evA(X)) ∣ C ≤X ≤ A } ∪ { (Y,σ∣evB(Y)) ∣ D ≤ Y ≤ B } ,

with a dependency relation (4): (X,ρ) 4 (Y, τ) if X ≤ Y or Y occurs as ∀x.Y and x ∈ ρ.

I Definition 11. A witness pre-net is correct if:
it has local eigenvariables and exact coverage,
it is slice-correct: every slice is a singleton, and
it is dependency-correct: every column is a partial order (i.e. is acyclic/antisymmetric).

To conclude this section we will establish that both correctness conditions, by coalescence
and by slicing, are equivalent. Moreover, both are equivalent to strong coalescence.

I Theorem 12. A witness pre-net that strict-coalesces is correct, and a correct witness
pre-net strongly strict-coalesces.

I Corollary 13. A correct witness pre-net with axiom linking is a witness proof net.

4 Composition

We will describe the composition of two witness nets by a global operation. It consists of the
relational composition of both linkings, as in the propositional case, where for each pair of
links that are being connected, their witness maps are composed. As links correspond to
slices, the operation is effectively first-order composition [26] applied slice-wise.

Cut-elimination rules for all1 are given in Figure 6; the requisite permutations are in
Figure 7.

∃v.P

∀x.∃y.∀z.P

[f(x)/y,z/v]

∃x.∀y.∃z.P

P

[t/x,g(y)/z]

∃v.P

P

⇒ [g(f(t))/v]

We use the example above to illustrate the composition of links. To eliminate the central
cut, on ∀x.∃y.∀z.P and ∃x.∀y.∃z.P , the explicit substitutions for both formulas must be
effectuated. An inductive procedure, as in sequent calculus, could apply them from outside
in: first [t/x], then [f(t)/y] (previously [f(x)/y]), then [g(f(t))/z] (previously [g(y)/z]).

For a direct definition, to compose two links (a, b)σ and (b, c)τ , the substitutions into
the cut-formula σb and τb must be applied as often as needed, up to the depth of quantifiers

FSCD 2019

22:12 Proof Nets for First-Order Additive Linear Logic

π1
⊢A,B1

π2
⊢A,B2

⊢A,B1 ×B2
×R

φ

⊢Bi,C
⊢B1 +B2,C

+R,i

⊢A,C
cut

⇒
πi

⊢A,Bi
φ

⊢Bi,C
⊢A,C

cut

π
⊢A,B[t/x]
⊢A,∃x.B

∃R,t

φ

⊢B,C
⊢∀x.B,C

∀R

⊢A,C
cut

⇒
π

⊢A,B[t/x]
φ[t/x]

⊢B[t/x],C
⊢A,C

cut

Figure 6 all1 cut-elimination steps.

⊢A,B
⊢∀x.A,B ∀R ⊢B,C

⊢∀x.A,C
cut

⊢A[t/x],B
⊢∃x.A,B

∃R,t
⊢B,C

⊢∃x.A,C
cut

∼ ∼
⊢A,B ⊢B,C

⊢A,C
cut

⊢∀x.A,C ∀R

⊢A[t/x],B ⊢B,C
⊢A[t/x],C

cut

⊢∃x.A,C
∃R,t

⊢Ai,B
⊢A1+A2,B

+R,i
⊢B,C

⊢A1+A2,C
cut

⊢A1,B ⊢A2,B

⊢A1×A2,B
×R ⊢B,C

⊢A1×A2,C
cut

∼ ∼
⊢Ai,B ⊢B,C

⊢Ai,C
cut

⊢A1+A2,C
+R,i

⊢A1,B ⊢B,C
⊢A1,C

cut
⊢A2,B ⊢B,C

⊢A2,C
cut

⊢A1×A2,C
×R

⊢A,B ⊢B,C
⊢A,C

cut
⊢C,D

⊢A,D
cut

∼

⊢A,B
⊢B,C ⊢C,D

⊢B,D
cut

⊢A,D
cut

Figure 7 Cut-permutations.

above b, to the terms in the range of the remaining substitutions, σa and τc. To formalize
this, we will use the following notions:

The domain-preserving composition of two witness maps σ ⋅τ is the map (στ)∣dom(σ).

The least fixed point σ of a witness map σ is the least map ρ satisfying ρ = ρσ.
The latter is the shortest sequence σ = σσ . . . σ such that no variable is both in the domain
and range of σ. This is not necessarily finite; in our composition operations, finiteness is
ensured by the correctness conditions on proof nets (see Theorem 15).

I Definition 14. The composition (A,B)πσ ; (B,C)φτ of two proof links is (A,C)ψρ where

ρ = σAτC ⋅ σBτB and ψ = (π

⊢Aσ,Bσ)σBτB (φ

⊢Bτ,Cτ)σBτB
⊢Aρ,Cρ cut

.

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:13

The composition λΠ
Σ ; κΦ

Θ of two linkings is the linking

{ (X,Y)πσ ; (Y ,Z)φτ ∣ (X,Y)πσ ∈ λΠ
Σ , (Y ,Z)φτ ∈ κΦ

Θ }

The composition (λΠ
Σ ▷A,B) ; (κΦ

Θ ▷B,C) of two pre-nets is the pre-net (λΠ
Σ ; κΦ

Θ)▷A,C.
These compositions may omit proof annotations and witness annotations.

The composition of two links is strongly related to composition of strategies in game
semantics. There, two strategies on ⊢A,B and ⊢B,C are composed by interaction on the
interface of B and B, and subsequently hiding that interaction.

In the following we will demonstrate that composition gives the desired result: if a net L
sequentializes to π and R to φ, then L ;R sequentializes to a normal form of the composition
of π and φ with a cut. To this end we will explore how composition and sequentialization
interact. We will consider the critical pairs of sequentialization (→) with composition (⇒)
given in Figures 8–10, and demonstrate how they are resolved.

⊢A,B1×B2 ; ⊢B1+B2,C (Figure 8)
Since the free existential variables of B and B1 are the same, σBτB = σB1τB1 and ρ = ρ′.
It then follows that ψ′ cut-eliminates in one step to ψ.
⊢A,∃x.B ; ⊢∀x.B,C (Figure 9)
Since x is not free in the range of τ , nor in the range of σ (by Barendregt’s convention),
we have that σBτB is (σB − x)τB plus the substitution [σ(x)/x]. Then ρ = ρ′ (as x does
not occur in the range of σAτC) and ψ′ reduces to ψ in a single cut-elimination step.
⊢A,B ; ⊢B,∃x.C (Figure 10)
Observe that since x occurs in C but not B, it is not in the domain of τB , so that τB − x
is just τB. Then ρ′ = ρ − x, and the diagram is closed by a sequentialization step (from
left to right) which extends ψ with an existential introduction rule, to a proof equivalent
to ψ′:

ψ
⊢Aρ,Cρ

⊢Aρ′,∃x.Cρ′
∃R,ρ(x)

There are three further critical pairs, for a proof net on ⊢A,B composed with one on
⊢B,C1+C2, one on ⊢B,C1×C2, and one on ⊢B,∀x.C. These converge like the one above.
Resolving these critical pairs gives the soundness of the composition operation, per the
following theorem. We abbreviate a cut on proofs π ⊢A,B and φ ⊢B,C by π ; φ.

I Theorem 15. If proof nets λΣ ▷A,B and κΘ ▷B,C sequentialize to π and φ respectively,
then their composition (λΣ ▷ A,B) ; (κΘ ▷ B,C) is well-defined (i.e. all fixed points are
finite) and sequentializes to a normal form ψ of π ; φ.

5 Unification nets

In this final section we explore a second notion of all1 proof net: unification nets omit
any witness information, which is then reconstructed by coalescence. This yields a natural
notion of most general proof net, where every other proof net is obtained by introducing
more witness information. Conversely, every witness net has an underlying unification net,
that sequentializes to a most general proof.

We consider a proof π ⊢A,B more general than π′ ⊢A,B, written π ≤ π′, if there is a
substitution map ρ such that πρ = π′. Unlike for proof nets, this notion is not so natural for

FSCD 2019

22:14 Proof Nets for First-Order Additive Linear Logic

A

B1 ×B2

π,σ π′,σ

B1 +B2

C

φ,τ

→

→

A

B1 ×B2

π′′,σ

B1 +B2

C

φ′,τ

⇓ ⇓

A

C

ψ,ρ

A

C

ψ′,ρ′

ρ = σAτC ⋅ σBτB

ρ′ = σAτC ⋅ σB1τB1

ψ = (π

⊢Aσ,B1σ
)σB1τB1 (φ

⊢B1τ,Cτ
)σB1τB1

⊢Aρ,Cρ cut

ψ′ =
⎛
⎜
⎝

π

⊢Aσ,B1σ

π′

⊢Aσ,B2σ

⊢Aσ,B1σ ×B2σ

⎞
⎟
⎠
σBτB

⎛
⎜
⎝

φ

⊢B1τ,Cτ

⊢B1τ +B2τ,Cτ

⎞
⎟
⎠
σBτB

⊢Aρ′,Cρ′
cut

Figure 8 The critical pair ⊢A,B1×B2 ; ⊢B1+B2,C.

A

∃x.B
π,σ

∀x.B

C

φ,τ

→

x ∉ τ→

A

∃x.B
π′,σ−x

∀x.B

C

φ′,τ

⇓ ⇓

A

C

ψ,ρ

A

C

ψ′,ρ′

ρ = σAτC ⋅ σBτB

ρ′ = σAτC ⋅ (σB − x)τB

ψ = (π

⊢Aσ,Bσ)σBτB (φ

⊢Bτ,Cτ)σBτB

⊢Aρ,Cρ cut

ψ′ =
⎛
⎜
⎝

π

⊢Aσ,Bσ
⊢Aσ,∃x.Bσ − x

⎞
⎟
⎠
(σB − x)τB

⎛
⎜
⎝

φ

⊢Bτ,Cτ
⊢∀x.Bτ,Cτ

⎞
⎟
⎠
(σB − x)τB

⊢Aρ′,Cρ′
cut

Figure 9 The critical pair ⊢A,∃x.B ; ⊢∀x.B,C.

A

B

π,σ

B

∃x.C

φ,τ →

A

B

π,σ

B

∃x.C

φ′,τ−x

⇓ ⇓

A

∃x.C

ψ,ρ

A

∃x.C

ψ′,ρ′

ρ = σAτC ⋅ σBτB

ρ′ = σA(τC − x) ⋅ σBτB

ψ =

(
π

⊢Aσ,Bσ
)σBτB (

φ

⊢Bτ,Cτ
)σBτB

⊢Aρ,Cρ
cut

ψ′ =
(

π
⊢Aσ,Bσ

)σBτB

⎛

⎜
⎜

⎝

φ

⊢Bτ,Cτ

⊢Bτ,∃x.C(τ − x)

⎞

⎟
⎟

⎠

σBτB

⊢Aρ′,∃x.Cρ′
cut

Figure 10 The critical pair ⊢A,B ; ⊢B,∃x.C.

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:15

sequent proofs: in the permutation of existential and product rules below, from left to right
u must be generated as the least term more general than s and t; from right to left, s and t
cannot be reconstructed from u, and must be retrieved from their respective subproofs.

⊢A,C
⊢A,∃x.C ∃R,s

⊢B,C
⊢B,∃x.C ∃R,t

⊢A ×B,∃x.C ×R
∼

⊢A,C ⊢B,C
⊢A ×B,C ×R

⊢A ×B,∃x.C ∃R,u

To reconstruct witnesses by unification, we define the following operations.
σ ≤ τ : A witness map σ is more general than τ if there is a map ρ such that σρ = τ .
σ a τ : Two witness maps σ and τ are coherent if there is a map ρ such that σρ = τρ.
σ ∨ τ : The join of coherent witness maps is the least map ρ such that σ ≤ ρ and τ ≤ ρ.

A link (a, b) on two atomic formulas is an axiom link if there exists a witness map σ such
that aσ = bσ. To an axiom link (a, b) over ⊢A,B we assign an initial witness map, which
is the least witness map σ over the domain evA(a) ∪ evB(b) such that aσ = bσ. In other
words, σ is the most general unifier of a and b, over the given domain, written mgu(a, b).
For an axiom linking λ over ⊢A,B the initial witness pre-net λ⋆▷A,B is given by

λ⋆ = { (a, b)σ ∣ (a, b) ∈ λ , σ = mgu(a, b) } .

An initial witness pre-net has exact coverage, while coalescence will give local eigenvariables.
Note that eigenvariables are constants for the purpose of unification (they are not substituted
into). For Barendregt’s convention, that free variables have distinct names from bound ones,
we should assume that variables in the range of a witness map are fresh; for example, the
most general unifier of existential variables x and y should be [z/x, z/y] for a fresh variable z,
and not [y/x] or [x/y].

I Definition 16. Unifying sequentialization () is the rewrite relation on labelled pre-
nets generated by the rules (+U, i), (∃U), (∀U), which are respectively as (+S, i), (∃S), and
(∀S), and the rule

(C,D1)πσ
(C,D2)φτ

} (C,D1×D2)ψσ∨τ =σρ= τρ (σaτ) ψ = (π
⊢Aσ,Bσ)ρ (φ

⊢Aτ,Cτ)ρ

⊢A(σ∨τ),Bσρ×Cτρ
(×U)

Unifying coalescence is the relation () on witness pre-nets, ignoring proof labels. A
witness pre-net λΣ▷A,B unifying-coalesces if it reduces to {(A,B)∅}▷A,B and strongly
unifying-coalesces if any coalescence path terminates at {(A,B)∅}▷A,B.

I Definition 17. An all1 unification proof net or unification net is a pre-net λ▷A,B
with axiom linking λ such that the initial witness pre-net λ⋆ ▷A,B unifying-coalesces. It
sequentializes to π if λ⋆

⋆
▷A,B reduces in () to {(A,B)π∅}▷A,B.

In the above definition, note that λ⋆
⋆
= (λ⋆)⋆ is the initial proof labelling of λ⋆, which

assigns an axiom rule to each axiom link. For a minimal example, see the Introduction.
Observe also that unifying coalescence includes strict coalescence, (→) ⊆ (). The following
two lemmata relate sequentialization for witness nets and unification nets.

I Lemma 18. In (), if λΣ ▷ A,B sequentializes to π then λ⋆ ▷ A,B sequentializes to
π′ ≤ π.

I Lemma 19. If λ⋆▷A,B unifying-sequentializes to π then there exists a witness assignment
Σ and substitution ρ such that λΣ ▷A,B strict-sequentializes to π and λΣ = λ⋆ρ.

FSCD 2019

22:16 Proof Nets for First-Order Additive Linear Logic

Monomial nets Witness nets Unification nets
Canonicity ? 3 3

Generality 7 7 3

Direct composition 7 3 3

Coalescence ? 3 3

Slicing 3 3 ?

Figure 11 Comparison of different notions of proof nets for quantifiers and additive connectives.

We can then show that sequentialization and de-sequentialization for unification nets are
inverses up to generality, and that composition is sound.

I Theorem 20. If [π ⊢A,B] is λΣ ▷A,B then λ▷A,B unifying-sequentializes to π′ ≤ π.

I Theorem 21. If λ▷A,B sequentializes to π, then [π] = λΣ ▷A,B for some Σ.

I Theorem 22. If λ▷A,B sequentializes to π and κ▷B,C to φ then their composition
λ ; κ▷A,C sequentializes to a proof ψ′ ≤ ψ where ψ is a normal form of π ; φ.

6 Conclusion and related work

We have presented two notions of first-order additive proof net, witness nets and unification
nets, to capture canonically two natural notions of proof identity for first-order additive
linear logic. Figure 11 summarizes our results, along with some observations we make below.

Proof nets with additives and quantifiers existed before as monomial nets [8]. These are
not generally canonical: they admit the permutation (and duplication) of proof rules past
implicit contractions (that is, the shared context of the additive conjunction rule). However,
it might be possible to restrict additive monomial nets to some notion of canonical form.
Likewise, coalescence (or contractibility) has not been studied for first-order monomial nets,
though it has been extended to a related form of MALL proof nets [24].

Our slicing condition is loosely related to a number of approaches to first-order classical
logic. A formula ∃x.A is interpreted as the sum (or classically, the disjunction) over a fixed
number of instantiations A[t1/x] + . . . +A[tn/x]. This can be traced to Herbrand’s Theorem
[14]: ∃x.A is equivalent to the infinite sum over A[t/x] for all terms t in the language, but
for any given proof a finite set of terms suffices. Expansion tree proofs [25, 10] are a graphical
proof formalism based on this idea. In our slicing condition, the interpretation of ∃x.A is an
infinite sum of which only a finite part A[t1/x] + . . . +A[tn/x] is relevant, over the witnesses
t1, . . . , tn actually assigned to x in the proof net. An interesting alternative approach to
additive proof nets, which we may explore in future work, is to take the expansion of ∃x.A
to A[t1/x] + . . .+A[tn/x] as primary, and record it explicitly in the syntax, as expansion tree
proofs do for classical logic. It is expected, however, that this would sacrifice generality and
direct composition.

Hetzl [15] explores explicit substitution for first-order classical sequent calculus.
Lambek observed that the two canonical proofs of ⊢A+A,A can be distinguished by

casting each as a specialization (by substituting into propositional variables) of the more
general proofs of ⊢a+b, a and ⊢a+b, b (corresponding to the two injections of a sum). He
proposed to use this idea of generality as the basis for a notion of proof identity: two proofs
are equivalent if their most general forms are isomorphic [23]. How this extends to first order
is not obvious. The natural first-order analogue of ⊢A+A,A would be ⊢∃x.A,A where the
quantifier is vacuous, as ∃x.A represents the infinite sum over A (for all terms t). Where

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:17

Lambek’s generality distinguishes the two proofs of ⊢A+A,A, ours identifies the proofs of
⊢∃x.A,A: the sequent has one unification net, but infinitely many witness nets (one for
each term t). If existential quantification is indeed analogous to a sum, Lambek’s notion of
generality is more faithfully captured by witness nets than unification nets.

For future work, there are a few natural questions. First is that of a geometric criterion
for unification nets. For this, it seems essential to reconstruct dependencies between products
and existential quantifiers globally, as the expansion condition provides for witness nets.
These interact in highly intricate ways, which the unifying coalescence algorithm resolves
incrementally and locally. To do so globally, as would be necessary for a geometric criterion,
is a major combinatorial challenge.

A second is whether coalescence (or contractibility [4]) applies to MLL1 unification nets
[18]. We believe it would, straightforwardly (without requiring a dependency or leap edges).

A final question is whether the current approach can be extended to obtain proof nets for
MALL1. We see two ways forward that could succeed: (i) combine witness nets with MALL
slice nets [21] using a slicing criterion; (ii) combine witness nets or unification nets with
MALL conflict nets [20] using a coalescence criterion. For both, there are still significant
combinatorial challenges, for example because coalescence for MALL is not a straightforward
extension of that for ALL. Other approaches are much less certain: MALL conflict nets do
not yet have a slicing criterion (though this looks feasible), and MALL slice nets do not
support coalescence (which seems fundamentally problematic).

References
1 Samson Abramsky. Sequentiality vs. Concurrency in Games and Logic. Mathematical Structures

in Computer Science, 13(4):531–565, 2003.
2 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR,

volume 6269 of LNCS, pages 222–236, 2010.
3 Robin Cockett and Luigi Santocanale. On the Word Problem for ΣΠ-Categories, and the

Properties of Two-Way Communication. In Computer Science Logic (CSL), 18th Annual
Conference of the EACSL, pages 194–208, 2009.

4 Vincent Danos. La Logique Linéaire appliquée à l’étude de divers processus de normalisation
(principalement du Lambda-calcul). PhD thesis, Université Paris 7, 1990.

5 Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathematical
Logic, 28:181–203, 1989.

6 Didier Galmiche and Jean-Yves Marion. Semantic Proof Search Methods for ALL – a first
approach –. Short paper in Theorem Proving with Analytic Tableaux, 4th International
Workshop (TABLEAUX’95). Available from the first author’s webpage, 1995.

7 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987.
8 Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. Logic and Algebra, pages

97–124, 1996.
9 Stefano Guerrini and Andrea Masini. Parsing MELL proof nets. Theoretical Computer Science,

254(1-2):317–335, 2001.
10 Willem Heijltjes. Classical proof forestry. Ann. Pure Appl. Logic, 161(11):1346–1366, 2010.
11 Willem Heijltjes. Proof nets for additive linear logic with units. In 26th Annual IEEE

Symposium on Logic in Computer Science (LICS), pages 207–216, 2011.
12 Willem Heijltjes and Dominic J. D. Hughes. Complexity bounds for sum–product logic via

additive proof nets and Petri nets. In 30th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 80–91, 2015.

13 Willem Heijltjes, Dominic J. D. Hughes, and Lutz Straßburger. Proof nets for first-order addit-
ive linear logic. Technical Report RR-9201, INRIA, 2018. URL: hal.inria.fr/hal-01867625/.

FSCD 2019

hal.inria.fr/hal-01867625/

22:18 Proof Nets for First-Order Additive Linear Logic

14 Jacques Herbrand. Investigations in proof theory: The properties of true propositions. In Jean
van Heijenoort, editor, From Frege to Gödel: A source book in mathematical logic, 1879–1931,
pages 525–581. Harvard University Press, 1967.

15 Stefan Hetzl. A sequent calculus with implicit term representation. In Computer Science Logic
(CSL), volume 6247 of LNCS, pages 351–365, 2010.

16 Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type disciplines
for structured communication-based programming. In European Symposium on Programming,
pages 122–138, 1998.

17 Dominic J. D. Hughes. Proofs Without Syntax. Annals of Mathematics, 164(3):1065–1076,
2006.

18 Dominic J. D. Hughes. Unification nets: canonical proof net quantifiers. In 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), 2018.

19 Dominic J. D. Hughes. First-order proofs without syntax. Available at arXiv.org, 2019.
20 Dominic J. D. Hughes and Willem Heijltjes. Conflict nets: efficient locally canonical MALL

proof nets. In 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
2016.

21 Dominic J. D. Hughes and Rob van Glabbeek. Proof nets for unit-free multiplicative-additive
linear logic. Transactions on Computational Logic, 6(4):784–842, 2005.

22 Andre Joyal. Free Lattices, Communication and Money Games. Proc. 10th Int. Cong. of
Logic, Methodology and Philosophy of Science, 1995.

23 Joachim Lambek. Deductive Systems and Categories I, II, III. Theory of Computing Systems
(I), Lecture Notes in Mathematics (II, III), 1968–1972.

24 Roberto Maieli. Retractile Proof Nets of the Purely Multiplicative and Additive Fragment of
Linear Logic. In 14th Int. Conf. Logic for Programming Artificial Intelligence and Reasoning
(LPAR), pages 363–377, 2007.

25 Dale Miller. A Compact Representation of Proofs. Studia Logica, 46(4):347–370, 1987.
26 Samuel Mimram. The Structure of First-Order Causality. Mathematical Structures in Computer

Science, 21(1):65–110, 2011.
27 Lutz Straßburger. A Characterisation of Medial as Rewriting Rule. In Franz Baader, editor,

Term Rewriting and Applications, RTA’07, volume 4533 of LNCS, pages 344–358, 2007.
28 Philip Wadler. Propositions as Sessions. Journal of Functional Programming, 24(2-3):384–418,

2014.

A Proofs

In this appendix we restate and prove all theorems, and add two supporting lemmata.

I Theorem 6. For any all1 proof π, the witness net [π] sequentializes to π.

Proof. It follows by induction on π that if λΣ = [π ⊢A,B]A′,B′

σ where A′σ = A and B′σ = B,
then λ⋆Σ ▷A,B reduces in (→) to {(A′,B′)πσ}▷A,B. The statement is the case σ = ∅. J

I Theorem 7. If λΣ ▷A,B sequentializes to π, then [π] is λΣ ▷A,B.

Proof. By induction on the sequentialization path λ⋆Σ ▷A,B →∗ {(A,B)π∅} ▷A,B it fol-
lows that in every pre-net κΦ

Θ ▷ A,B on this path, λΣ is equal to the union over the
de-sequentialization of all proof labels φ in Φ:

λΣ = ⋃ {[φ]C,Dσ ∣ (C,D)φσ ∈ κΦ
Θ } .

The statement is then the case κΦ
Θ = {(A,B)π∅}. J

I Theorem 8. Witness nets are canonical: [π] = [φ] if and only if π ∼ φ.

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:19

Proof. From left to right is by inspection of the critical pairs of sequentialization (→). From
right to left is by inspection of the rule permutations in Figure 2. J

I Lemma 23. Strict coalescence preserves and reflects correctness.

Proof. For a strict coalescence step L→ R, we will show that the witness pre-net L is correct
if and only if R is. Let L = λΣ ▷A,B and R = κΘ ▷A,B. In each case, exact coverage and
local eigenvariables are immediately preserved and reflected. For slice-correctness, we will
demonstrate that the left-hand side and right-hand side of each rule belong to the same slice
of ⊢A,B, or in the case of ∃S, naturally corresponding slices. For dependency-correctness,
we will briefly show how acyclicity of the columns of the involved links is preserved.

(C,Di)σ → (C,D1+D2)σ
A slice SB of B and ∅ containing one of (D1, τ), (D2, τ), and (D1 +D2, τ) must also
contain the other two. A slice S of ⊢A,B then contains all three of (C,D1)σ, (C,D2)σ,
and (C,D1+D2)σ, or none. It follows that S ∩ λΣ is a singleton if and only if S ∩ κΘ is.
Since other slices are unaffected, L is slice-correct if and only if R is.
For dependency-correctness, the column of (C,Di)σ is that of (C,D1+D2)σ plus the pair
(Di, σ∣evB(Di)

) itself, which is minimal in the order 4.
(C,D1)σ, (C,D2)σ → (C,D1×D2)σ
A slice S of ⊢A,B contains (C,D1×D2)σ if and only if it contains either of (C,D1)σ or
(C,D2)σ, and cannot contain both. Then S ∩ λΣ is a singleton if and only if S ∩ κΘ is.
Dependency-correctness is immediate, as above.
(C,D)σ → (C,∃x.D)σ−x
A slice S of ⊢A,B contains (C,∃x.D)τ if and only if it contains all links (C,D)τ[t/x]
for any term t. Letting τ[t/x] = σ, then S ∩ λΣ is the singleton {(C,D)σ} if and only if
S ∩ κΘ is {(C,∃x.D)σ−x}.
For dependency-correctness, the column of (C,D)σ is that of (C,∃x.D)σ−x plus a pair
(D,τ), which is minimal in (4).
(C,D)σ → (C,∀x.D)σ
A slice S of ⊢A,B contains (C,D)σ if and only if it contains also (C,∀x.D)σ, and hence
S ∩ λΣ is a singleton if and only if S ∩ κΘ is.
For dependency-correctness, the column of (C,D)σ is that of (C,∀x.D)σ plus a pair
(D,τ). The side-condition of the coalescence step is that x ∉ σ; then x does not occur
free in any (X,ρ), and (D,τ) is minimal in (4). J

I Lemma 24. To a correct witness pre-net λΣ ▷A,B a coalescence step applies, unless it is
fully coalesced already, λΣ = {(A,B)∅}.

Proof. Let the depth of a link (C,D)σ be a pair of integers (n,m), where n is the distance
from C to the root of A, and m that from D to B. We order link depth in the product order:
(i, j) ≤ (n,m) if and only if i ≤ n and j ≤ m. We will demonstrate that a link at maximal
depth may always be coalesced, unless it is the unique link (A,B)∅ at (0,0).

To see that a maximally deep link coalesces, first note that a link (C,Di)σ where Di

occurs in D0+D1 may always coalesce, as may a link (C,D)σ where D occurs in ∃x.D. This
leaves the following cases:

(A,Di)σ with Di occurring in D =D1 ×D2.
Without loss of generality, let i = 1. A slice S1 of ⊢A,B containing (A,D1)σ has a
counterpart S2 containing (A,D2)σ. The depth of (A,D2)σ is the same as that of
(A,D1)σ. By correctness S2 ∩ λΣ is a singleton; by the assumption of maximality it

FSCD 2019

22:20 Proof Nets for First-Order Additive Linear Logic

may not contain a deeper link than (A,D2)σ; and it may not contain a shallower one
since that would be shared with S1 ∩ λΣ. Then λΣ ▷A,B contains both (A,D1)σ and
(A,D2)σ, and these contract to (A,D)σ.
(A,D)σ with D in ∀x.D.
The step (A,D)σ → (A,∀x.D)σ applies if x ∉ σ. By way of contradiction, assume x ∈ σ.
The column of (A,D)σ contains (D,σD) and (∀x.D, τ) where τ = σ∣evB(∀x.D). By the
exact coverage condition, σ = σA ∪ σD, and since the free existential variables in D and
∀x.D are the same, evB(D) = evB(∀x.D), so that τ = σD. (Note that since σA = ∅, we
get σ = σD = τ , but this is not essential to the argument.) Since x ∈ σ we have x ∈ τ , and
in the column of (A,D)σ we have (∀x.D, τ) 4 (D,τ) since D occurs as ∀x.D. But we
already have (D,τ) 4 (∀x.D, τ) because D ≤ ∀x.D, contradicting antisymmetry of (4).
Then x ∉ σ, and the step (A,D)σ → (A,∀x.D)σ applies.
(Ci,Dj)σ in C = C1 ×C2 and D =D1 ×D2.
Without loss of generality, let i = j = 1. By minimal depth and using similar reasoning to
the first case above, the pre-net must contain one of the following three configurations.
1. (C1,D1)σ, (C1,D2)σ, (C2,D1)σ, (C2,D2)σ

2. (C1,D1)σ, (C1,D2)σ, (C2,D)σ

3. (C1,D1)σ, (C2,D1)σ, (C,D2)σ

1∶

C1×C2

D1×D2

2∶

C1×C2

D1×D2

3∶

C1×C2

D1×D2
In the second case, the step (C1,D1)σ, (C1,D2)σ → (C1,D)σ applies; in the third case,
(C1,D1)σ, (C2,D1)σ → (C,D1)σ; and in the first case, both.
(Ci,D)σ in C = C1 ×C2 and ∀x.D.
Without loss of generality let i = 1. If x ∉ σ the rewrite step (C1,D)σ → (C1,∀x.D)σ
applies. Otherwise, let x ∈ σ. The slice S1 of ⊢A,B containing (C1,D)σ has a counterpart
S2 containing (C2,D)σ, which must include exactly one link of λΣ. By the assumption
of minimal depth, it cannot have greater depth than (C2,D)σ. It cannot be (C,D)σ or
any shallower link, since that would be shared with the slice S1 which already contains
(C1,D)σ. It cannot be (C2,∀x.D)σ or any shallower link (C2,X)τ (i.e. with ∀x.D ≤X)
because x ∈ σ. This would mean either x ∈ τ which contradicts the eigenvariables not free
convention, or x ∈ fv(σ(y)) where ∀x.D < ∃y.Y ≤ X which creates a cyclic column, as
in the second case above. It follows that S2 ∩ λΣ = {(C2,D)σ}, so that the rewrite step
(C1,D)σ, (C2,D)σ → (C,D)σ applies.
(C,D)σ in ∀x.C and ∀y.D.
A rewrite step (C,D)σ → (∀x.C,D)σ or (C,D)σ → (C,∀y.D)σ applies unless x, y ∈ σ.
But that would generate a cycle in the column of (C,D)σ, in one of three ways. If x ∈ σC
or y ∈ σD then, since σC = σ∀x.C and σD = σ∀y.D, respectively:

(C,σC) 4 (∀x.C,σC) 4 (C,σC) (D,σD) 4 (∀y.D,σD) 4 (D,σD) .

Otherwise, if x ∈ σD and y ∈ σC then

(C,σC) 4 (∀x.C,σC) 4 (D,σD) 4 (∀x.D,σD) 4 (C,σC) . J

I Theorem 12. A witness pre-net that strict-coalesces is correct, and a correct witness
pre-net strongly strict-coalesces.

Proof. For the first statement, we proceed by induction on the coalescence path from
λΣ ▷ A,B to {(A,B)∅} ▷ A,B, with the end result as the base case. It is slice-correct:
every slice of ⊢A,B contains (A,B)∅, so every slice of {(A,B)∅} ▷A,B is the singleton
{(A,B)∅}. It is also dependency-correct: the column of (A,B)∅ is the set {(A,∅), (B,∅)},
where A and B are unrelated in (4). For the inductive step, by Lemma 23 coalescence

W.B. Heijltjes, D. J. D. Hughes, and L. Straßburger 22:21

reflects correctness, so that any pre-net along the coalescence path is correct, in particular
λΣ ▷A,B.

For the second statement, let λΣ ▷A,B be correct. By Lemma 24 either the net has
coalesced, or a coalescence step applies. By Lemma 23 the result of any coalescence step is
again correct. Since links strictly move towards the roots of both formula trees, it follows
that this process terminates, and the pre-net λΣ ▷A,B strongly strict-coalesces. J

I Theorem 15. If proof nets λΣ ▷A,B and κΘ ▷B,C sequentialize to π and φ respectively,
then their composition (λΣ ▷ A,B) ; (κΘ ▷ B,C) is well-defined (i.e. all fixed points are
finite) and sequentializes to a normal form ψ of π ; φ.

Proof. By Theorem 12 the proof nets L = λΣ ▷A,B and R = κΘ ▷B,C strongly coalesce.
We may then interleave their coalescence sequences as follows: if a synchronized step in L
and R on the interface B and B is available, apply it; otherwise perform steps in L on A
and in R on C until it is. This gives the following combined sequence.

L = L1 →? L2 →? . . . →? Ln
R = R1 →? R2 →? . . . →? Rn

⇓ ⇓ ⇓ ⇓
L ;R = L1 ;R1 → L2 ;R2 → . . . → Ln ;Rn

(Here, (→?) is the relation (→) ∪ (=), but we assume that at least Li → Li+1 or Ri → Ri+1.)
The path along the top and right of this diagram sequentializes L to π′ and R to φ′ (equivalent
to π and φ respectively), and then composes to Ln ;Rn = {(A,C)π

′;φ′
∅ }▷A,C.

Each square of the diagram converges as one of the critical pairs of sequentialization
and composition discussed above. Then each path along the diagram from top left (L and
R) to bottom right (Ln ;Rn) gives a sequentialization, with cuts, of Ln ;Rn. Let the path
taking the vertical step from Li and Ri to Li ;Ri sequentialize to ψi, so that ψn = ψ′. By
the way each square converges, we have that ψi is reached from ψi+1 by a cut-elimination or
permutation step.

Finally, in L and R every link is an axiom link. Any link in L ; R is composed from
two links (a, b)σ in L and (b, c)τ in R, which yields (a, c)ρ where ρ = σaτc ⋅ σbτb. This
sequentializes to the axiom ⊢aρ, cρ, which is in normal form. Then L ;R is a proof net (it
has an axiom linking and it coalesces), and it sequentializes to a normal form of ψ. J

I Lemma 18. In (), if λΣ ▷ A,B sequentializes to π then λ⋆ ▷ A,B sequentializes to
π′ ≤ π.

Proof. The sequentialization path λ⋆Σ ▷A,B = L1 L2 . . . Ln = (A,B)π∅ ▷A,B has
a corresponding path λ⋆

⋆
▷A,B = R1 R2 . . . Rn = (A,B)π′∅ ▷A,B where the same

links (but with potentially different witness maps) are coalesced. It follows by induction
on this path (where the base case is L1 and R1) that for every corresponding pair of links
(C,D)φσ in Li and (C,D)ψτ in Ri we have τ ≤ σ and ψ ≤ φ. J

I Lemma 19. If λ⋆▷A,B unifying-sequentializes to π then there exists a witness assignment
Σ and substitution ρ such that λΣ ▷A,B strict-sequentializes to π and λΣ = λ⋆ρ.

Proof. By induction on the sequentialization path λ⋆ ▷A,B ∗ (A,B)π∅ ▷A,B. For the
end result, the statement holds with ρ = ∅. For the inductive step, consider a step L R.
We show the case (×U); the other cases are immediate.

FSCD 2019

22:22 Proof Nets for First-Order Additive Linear Logic

(C,D1)σ, (C,D2)τ (C,D1×D2)σ∨τ
By the inductive hypothesis, Rρ′ strict-sequentializes to π. Let σ ∨ τ = σρ′′ = τρ′′ and let
ρ = ρ′′ρ′. Then Lρ strict-sequentializes to π by

(C,D1)σρ, (C,D2)τρ → (C,D1×D2)(σ∨τ)ρ′ . J

I Theorem 20. If [π ⊢A,B] is λΣ ▷A,B then λ▷A,B unifying-sequentializes to π′ ≤ π.

Proof. By Theorem 6, λΣ ▷A,B sequentializes to π in (→), and hence also in (). Then
by Lemma 18 λ⋆▷A,B sequentializes to π′ ≤ π. J

I Theorem 21. If λ▷A,B sequentializes to π, then [π] = λΣ ▷A,B for some Σ.

Proof. By Lemma 19, since λ ▷ A,B sequentializes to π there is a net λΣ ▷ A,B that
sequentializes to π. By Theorem 7, [π] = λΣ ▷A,B. J

I Theorem 22. If λ▷A,B sequentializes to π and κ▷B,C to φ then their composition
λ ; κ▷A,C sequentializes to a proof ψ′ ≤ ψ where ψ is a normal form of π ; φ.

Proof. By Lemma 19 there are witness labellings Σ and Θ such that λΣ ▷ A,B strict-
sequentializes to π and κΘ ▷B,C to φ. By Theorem 15 their composition (λΣ ; κΘ) ▷A,C

strict-sequentializes to a normal form ψ of π ; φ. By Lemma 18 the net (λ ; κ)⋆ ▷ A,C

unifying-sequentializes to ψ′ ≤ ψ. J

The Sub-Additives: A Proof Theory for
Probabilistic Choice extending Linear Logic
Ross Horne
Computer Science and Communications, University of Luxembourg, Esch-sur-Alzette, Luxembourg
ross.horne@uni.lu

Abstract
Probabilistic choice, where each branch of a choice is weighted according to a probability distribution,
is an established approach for modelling processes, quantifying uncertainty in the environment
and other sources of randomness. This paper uncovers new insight showing probabilistic choice
has a purely logical interpretation as an operator in an extension of linear logic. By forbidding
projection and injection, we reveal additive operators between the standard with and plus operators
of linear logic. We call these operators the sub-additives. The attention of the reader is drawn to
two sub-additive operators: the first being sound with respect to probabilistic choice; while the
second arises due to the fact that probabilistic choice cannot be self-dual, hence has a de Morgan
dual counterpart. The proof theoretic justification for the sub-additives is a cut elimination result,
employing a technique called decomposition. The justification from the perspective of modelling
probabilistic concurrent processes is that implication is sound with respect to established notions of
probabilistic refinement, and is fully compositional.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Process calculi; Theory of computation → Linear logic

Keywords and phrases calculus of structures, probabilistic choice, probabilistic refinement

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.23

Acknowledgements I thank Bogdan Aman and Gabriel Ciobanu for their enjoyable discussions.

1 Introduction

This paper lays down a novel foundation for a proof theory of formulae modelling concurrent
processes with mixed probabilistic and non-deterministic choice. Probabilistic choices refine
non-deterministic choices by indicating the probability with which one action or another
occurs, and have been introduced in game theory and process calculi to model measurable
uncertainly in the environment, such as a decision made by tossing a coin.

It is already well known that, in various processes-as-formulae approaches to modelling
processes using extensions of linear logic [15], the additive operators can be used to model
non-deterministic choices. The key novelty of this work is the observation that probabilistic
choices can also be handled using additive operators, of a more restrictive kind, which we
call the sub-additives.

In what follows we clarify the processes-as-formulae approach to modelling processes
directly as formulae in extensions of linear logic. We highlight key observations leading
to probabilistic sub-additive operators, and explain why their proof theory is non-trivial.
Furthermore, for readers for whom the discovery of a novel proof theory is insufficient
motivation, we highlight that, unlike most semantics previously proposed for probabilistic
concurrent processes, our model is exceptionally compositional, admitting action refinement.

© Ross Horne;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0162-1901
mailto:ross.horne@uni.lu
https://doi.org/10.4230/LIPIcs.FSCD.2019.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

1.1 The processes-as-formulae paradigm
Various approaches to modelling processes by directly embedding them as formulae in an
extension of linear logic have been floated since the discovery of linear logic (see [22] for a
comparison). Progress in this processes-as-formulae approach has been accelerated by an
advance in proof theory – the calculus of structures [17] – a generalisation of the sequent
calculus. Process models not limited to CCS [3], session types [5], attack trees [21] and the
π-calculus [23, 24] have been tackled using the processes-as-formulae approach.

An advantage of the processes-as-formulae paradigm is that formulae modelling processes
can be directly compared using implication in the logical system. Furthermore, there are no
design decisions, since the semantics are determined by the principles of cut elimination. In
every process model this approach always leads us to a preorder over processes with appealing
properties. The preorder obtained enjoys the following properties: it is a congruence; is
sound with respect to most commonly-used process preorders, including weak simulation [22],
and pomset ideals [21]; and respects action refinement – the ability to refine atomic actions
with larger sub-processes. This makes implication highly compositional.

In this work, by introducing an operator modelling probabilistic choice, the above
properties can also be achieved in the probabilistic setting, where preorders are defined
with respect to probability distributions. To emphasise this point we prove that implication
in this work is sound with respect to a notion of refinement called weak probabilistic
simulation [37, 2]. A famous result in the theory of probabilistic processes [10], means that,
equivalently, implication is sound with respect to probabilistic may testing [27, 30]. An
advantage implication has over simulation/testing semantics is that, as mentioned above,
implication guarantees a greater degree of compositionality.

1.2 Motivation: uncovering the probabilistic sub-additive operators
We explain key observations that uncover the probabilistic sub-additive operators. Sub-
additive operators are restricted forms of additive conjunction or disjunction, found in linear
logic. Sub-additives forbid projection and injection, while permitting other properties of the
additives, notably idempotency.

Firstly, consider how the standard additives can be used to model non-deterministic
choice. To be specific, in linear logic, we have with &, which enjoys the following projection
laws, where (is linear implication: P &Q(P and P &Q(Q. For example, heads & tails
can be used to model a process that does not toss a coin but instead chooses on which side
to lay the coin. This can be refined by process heads that always chooses to lay down heads.
This does not model tossing a coin, instead modelling a decision the process can make.

The key observation is, by restricting additives such that projection and injection
are forbidden, we are able to model probabilistic choice. For example, heads ⊕1/2 tails
models a fair coin, where heads or tails occurs with probability 1/2. Notice the process
cannot influence the outcome of the coin toss, therefore such a fair coin cannot be refined to
heads. The absence of this refinement corresponds to forbidding projection. Furthermore,
it is standard for probabilistic processes, that a fair coin cannot be refined to an unfair
coin where the balance of probabilities are different from 1/2 each. Notions of probabilistic
refinement preserve the balance of probabilities.

Although projection/injection are forbidden, non-deterministic choice and probabilistic
choice are related. For example, non-deterministic choice heads & tails can be refined to
probabilistic choice heads ⊕1/2 tails. This refinement can be established by proving the
following using the logical system in the body of this work.

heads & tails(heads ⊕1/2 tails

R. Horne 23:3

Such a refinement, introducing probabilities, is standard for probabilistic simulation or,
equivalently, probabilistic may testing [27, 30, 9].

Note, there are many other modelling capabilities of the logic in this work. For example,
we can capture probabilistic choice with margins of error, and probabilistic model checking,
within a bound of probability. Application wise, such models have been used for a wide
range of problems, e.g., quantifying the degree of anonymity offered by privacy protocols,
or quantifying risk in attacker models. This work focusses on introducing our new logical
system ∆MAV and providing clear and simple examples.

The interplay between the sub-additives and both sequential and parallel composition
can be non-trivial. For example, we discover, for subtle reasons explained later, in the
presence of parallel composition, operator ⊕p cannot be self-dual. Thereby we obtain also a
de Morgan dual operator &p, essential for completing the symmetry demanded by a logic
satisfying cut elimination. The central result of this paper, cut elimination (Theorem 2),
ensures these new sub-additive operators co-exist happily with other operators of linear logic
– a prerequisite for using implication with confidence. Furthermore, the soundness of linear
implication as a notion of probabilistic refinement (Theorem 4) is verified and the merits
of this notion of refinement discussed. In particular, we claim that this logical approach to
modelling processes helps us discover the coarsest notion of refinement, in the literature, that
can: firstly, handle probabilistic processes; secondly, accommodate parallel composition; and,
thirdly, permit action refinement [41].

Outline of the paper. Section 2, provides established background material on probabilistic
processes. Section 3, recalls MALL in the calculus of structures, and introduces the extended
system ∆MAV featuring a pair of sub-additive operators. Section 4 provides a series of
examples illustrating how we can construct, more traditional, probabilistic simulations from
proofs in ∆MAV. Section 5, outlines the proof of cut elimination, necessary to justify the
logical system proposed. Section 6 highlights the existence of further sub-additive operators
between the standard operators of linear logic.

2 Background: an established notion of probabilistic simulation

We begin with background on probabilistic simulation. We select a minimal probabilistic
process calculus and standard notion of probabilistic simulation.

Note there are numerous probabilistic calculi in the literature mixing non-deterministic
and probabilistic choice, not limited to probabilistic extensions of CCS [28], CSP [11], and
the π-calculus [33]. Due to the rich proof calculi developed [23], expressive process models
can be handled by techniques in this work. For scientific clarity, we select here a minimal
calculus in order to make a clear comparison with the new logical approach to probabilistic
refinement introduced in subsequent sections.

The syntax of our minimal process calculus is drawn from terms in the following grammar,
where ‘a’ represents actions.

t ∶∶= ok (successful completion) ∣ a.t (action prefix) ∣ t ∥ t (parallel composition)
∣ t ⊓ t (non-deterministic choice) ∣ t +p t (probabilistic choice)

Discrete probability distributions are uniquely determined by a probability mass function
∆ ∶ S → [0, 1] over a set S of process terms such that ∑t∈S ∆(t) = 1. A Dirac distribution for
process term s, written 1s, is defined by the probability mass function such that ∆(s) = 1.
For probability p and distributions, ∆1 and ∆2 linear combination p∆1 + (1 − p)∆2, defined
as (p∆1 + (1 − p)∆2)(t) = p∆1(t) + (1 − p)∆2(t), is a distribution and dot product ∆1 ⋅∆2 is
defined such that (∆1 ⋅∆2)(t ∥ u) = ∆1(t)∆2(u) and 0 elsewhere.

FSCD 2019

23:4 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

Process terms are mapped to distributions using the following function δ.

δ(ok) = 1ok δ(a.t) = 1a.t δ(t ⊓ t) = 1t⊓t
δ(t +p t) = pδ(t) + (1 − p)δ(t) δ(t ∥ t) = δ(t) ⋅ δ(t)

Labelled transitions from process terms to distributions are defined by the following rules,
where label α ranges over any action a or τ .

a.t a I δ(t)
i ∈ {1,2}

t1 ⊓ t2 τ I δ(ti)
t1

α I ∆
t1 ∥ t2 α I ∆ ⋅ δ(t2)

t2
α I ∆

t1 ∥ t2 α I δ(t1) ⋅∆

Labelled transitions lift to weak transitions over distributions, as according to the following
four clauses, which allow zero or more τ -transitions. Firstly, ∆ τ I ∆; secondly, if for
all i, si α I ∆i and ∑i∈I pi = 1 then ∑i∈I pi1ti

α I ∑i pi∆i; thirdly, if ∆1
τ I ∆2 then

p∆1 + (1− p)E τ I p∆2 + (1− p)E , fourthly, if ∆1
τ I ∆2 and ∆2

α I ∆3, then ∆1
α I ∆3.

For tighter results, we also employ the predicate ✓ indicating successful termination,
defined such that ok✓ and if t1✓ and t2✓ then (t1 ∥ t2)✓. Termination extends to distribu-
tions in the obvious way such that if t✓ then 1t✓ and if ∆✓ and E✓ then (p∆ + (1 − p)E)✓.

The above labelled transitions and termination predicate are employed in the following
definition of a weak complete probabilistic simulation. The definition also employs a standard
lifting of relations from processes to distributions.

I Definition 1. For a relation R between processes and distributions, its lifting R̂ is such
that: if, for all i, ti R ∆i and ∑i∈I pi = 1, then ∑i∈I pi1ti R̂ ∑i∈I pi∆i. A relation between
processes and distributions R is a weak complete probabilistic simulation whenever:

If sR∆ and s α I E, there exists E ′ such that ∆ α I E ′ and E R̂ E ′.
If tR∆ and t✓ then there exists E such that ∆ τ I E and E✓.

If there exists weak complete probabilistic simulation R such that δ(t1) R̂ δ(t2), then we say
t2 simulates t1.

We refer to the above notion simply as probabilistic simulation throughout this work.
Recall this definition is used only as a reference to show the logic we develop is sound with
respect to such a standard notion of probabilistic refinement, and contains no new concepts.
We provide examples later in subsequent sections when making such a comparison.

3 Extending linear logic with probabilistic sub-additive operators

In this section, we introduce a proof system featuring the probabilistic sub-additives. The
system is a conservative extension of multiplicative-additive linear logic (MALL). Therefore,
first we recall a presentation of MALL in the calculus of structures, a generalisation of the
sequent calculus. We employ the calculus of structures, since it provides additional expressive
power demanded by our target logic ∆MAV.

3.1 An established presentation of MALL in the calculus of structures
The fragment of linear logic MALL was one of the first proof systems studied in the calculus
of structures [38]. Fig 1 recalls a proof system for multiplicative-additive linear logic MALL
in the calculus of structures. Inference rules apply in any context. We assume formulae
are always in negation-normal-form, where negation is always pushed to atoms, a, by the
following function, inducing De Morgan dualities.

P ⊕Q = P &Q P &Q = P ⊕Q a = a P ⊗Q = P `Q P `Q = P ⊗Q ○ = ○

R. Horne 23:5

The formulation of MALL in Fig. 1 was employed to prove cut elimination for a non-
commutative extension of MALL called MAV [20]. The rules are also similar to a version
used to study focussing in the calculus of structures [4].

structural congruence:

P `Q ≡ Q ` P (P `Q) `R ≡ P ` (Q `R) ○ ` P ≡ P

P �Q ≡ Q � P (P �Q) �R ≡ P � (Q �R) ○ � P ≡ P

inference rules:

C{ ○ }
interact

C{ a ` a }

C{ (P `Q) �R }
switch

C{ P ` (Q �R) }

C{ ○ }
tidy

C{ ○ & ○ }

C{ P1 }
choose left

C{ P1 ⊕ P2 }

C{ P2 }
choose right

C{ P1 ⊕ P2 }

C{ (P `R) & (Q `R) }
external

C{ (P &Q) `R }

Figure 1 Structural congruence and inference rules for MALL in the calculus of structures.

The structural congruence ensures the multiplicatives par ` and times � are commutative
monoids with a common unit. The switch rule and interact rule form multiplicative linear
logic. Regarding the inference rules, there is one rule, choose, for additive plus ⊕, which
chooses either the left or right branch during proof search. The rule external distributes the
additive with & over par, forcing both branches to be explored. The tidy rule ensures proof
search is successful only if both branches are successful.

A derivation is a sequence of zero or more rule instances, where the structural congruence
can be applied at any step. The bottommost formula is the conclusion and the topmost is
the premiss. A proposition P is provable, written ⊢ P , whenever there exists a derivation
with conclusion P and premise ○. Linear implication P (Q is defined as P `Q; hence a
provable linear implication is written ⊢ P (Q.

This presentation of MALL has a common unit for the multiplicatives, consequently
implication ⊢ P �Q(P `Q holds. The reader familiar with linear logic will observe this
means the mix rule is admissible. Note the results in this paper also hold for a formulation
of MALL that does not admit mix, but mix is included so as the logic extends immediately
to non-commutative logic.

3.2 Extending with the probabilistic sub-additives (and sequentiality)
The calculus of structures provides a setting in which the sub-additives can be expressed and
evaluated. We explain briefly the new rules of the structural congruence and the inference
rules in Fig. 2. Note we assume a probability p is always such that 0 < p < 1, thus any
sub-formula that appears in a probabilistic choice occurs with non-zero probability.

The rule of the structural congruence for the probabilistic sub-additives, Fig. 2, ensures
the balance of probabilities is maintained when applying idempotency, associativity and
commutativity. By maintaining the balance of probabilities, structural congruence preserves
underlying probability distributions. For example p∆ + (1 − p)∆ = ∆, hence we have a
weighted form of idempotency P ⊕p P = P .

For associativity, observe if ∆0, ∆1 and ∆2 are distributions corresponding to P , Q and
R respectively, then q (p∆0 + (1 − p)∆1) + (1 − q)∆2 = r∆0 + (1 − r) (s∆1 + (1 − s)∆2) only
if r = pq and (1 − r)s = q(1 − p). Furthermore, commuting formulae inverts probabilities
(p∆1 + (1 − p)∆2 = (1 − p)∆2 + p∆1).

FSCD 2019

23:6 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

structural congruence:

P &r Q ≡ Q &1−r P P &r P ≡ P (P &p Q) &q R ≡ P &pq (Q & q(1−p)
1−pq

R)

P ⊕r Q ≡ Q ⊕1−r P P ⊕r P ≡ P (P ⊕p Q) ⊕q R ≡ P ⊕pq (Q ⊕ q(1−p)
1−pq

R)

○ ◁ P ≡ P P ≡ P ◁ ○ (P ◁Q) ◁R ≡ P ◁ (Q ◁R)

inference rules:

C{ (P `R) &p (Q ` S) }
confine

C{ (P ⊕p Q) ` (R &p S) }

C{ (P `R) ⊕q (Q ` S) }
medial

C{ (P ⊕q Q) ` (R ⊕q S) }

C{ (P &p R) ⊕q (Q &p S) }
medial

C{ (P ⊕q Q) &p (R ⊕q S) }

C{ (P &R) ⊕q (Q & S) }
medial

C{ (P ⊕q Q) & (R ⊕q S) }

C{ (P &R) &p (Q & S) }
medial

C{ (P &p Q) & (R &p S) }

C{ (P `R) ◁ (Q ` S) }
medial

C{ (P ◁Q) ` (R ◁ S) }

C{ (P &R) ◁ (Q & S) }
medial

C{ (P ◁Q) & (R ◁ S) }

C{ (P &p R) ◁ (Q &p S) }
medial

C{ (P ◁Q) &p (R ◁ S) }

C{ (P ◁R) ⊕p (Q ◁ S) }
medial

C{ (P ⊕p Q) ◁ (R ⊕p S) }

linear negation:

P ◁Q = P ◁Q P ⊕p Q = P &p Q P &p Q = P ⊕p Q

Figure 2 Rules for the probabilistic sub-additive operators and seq in ∆MAV, extending Fig. 1.

A self-dual non-commutative operator seq, notated ◁, is introduced in order to model
processes with action prefixes or sequential composition. Seq was first introduced in system
BV [17], which was subsequently extended with the additives to obtain system MAV [20]. The
operator seq lies between multiplicative operators times � and par ` from linear logic [15].

Inference rule confine and the medial rules are best explained in the context of examples
throughout the remainder of this paper. Notice all medials have a standard form.

(P ER) D (Q E S)
medial

(P DQ) E (R D S)
where (E,D) ∈ { (`,⊕q), (&p,⊕q), (&,⊕q), (&,&p),

(`,◁), (&,◁), (&p,◁), (◁,⊕q) }

Cut elimination in the calculus of structures is equivalent to the following statement.

I Theorem 2 (cut elimination). In ∆MAV, if ⊢ C{ P � P }, then ⊢ C{ ○ }.

The above theorem is the main technical justification for the correctness of ∆MAV. A proof
sketch is delayed until Section 5. As with MALL, linear implication P (Q is defined in
terms of negation and par such that P `Q. A useful but straightforward property is linear
implication is reflexive. Amongst the immediate consequences of cut elimination is linear

R. Horne 23:7

implication in ∆MAV is transitive. Furthermore, also as a corollary of cut elimination, linear
implication holds in every context (note negation and implication are derived operators,
hence are not part of the syntax of contexts).

I Corollary 3. Linear implication is a preorder that holds in every context (a precongruence).

This corollary establishes a key criteria for using linear implication as a notion of refinement.
Note, in this paper, operator &p is treated as a synthetic dual to ⊕p necessary for

completing the proof system, and used when proving linear implications. This operator
likely has applications, for modelling probabilistic communicating systems; but we avoid
controversy by sticking to the indisputable established probabilistic choice modelled by ⊕p.

3.3 Embedding of Probabilistic Processes in ∆MAV
While cut elimination proves we have made the correct choices of rules for the logic to work,
it says little about its relationship to probabilistic refinement. Here we state the main result
showing that implication is sound with respect to the key established notions of refinement
for probabilistic processes.

We employ the following embedding, mapping processes to formulae.1

Name of operator Process term Logical operator
success JokK ○

prefix Jα.tK α ◁ JtK
parallel composition Jt1 ∥ t2K Jt1K � Jt2K
external choice Jt1 ⊓ t2K Jt1K & Jt2K
probabilistic choice Jt1 +p t2K Jt1K ⊕p Jt2K

The mapping extends to discrete probability distributions over process terms such that
J1tK = JtK and if ∆ = p∆1 + (1 − p)∆2, where 0 < p < 1 then J∆K = J∆1K ⊕p J∆2K.

Using the above embedding of processes as formulae we can compare processes using linear
implication. All linear implications between processes can also be established using weak
complete probabilistic simulation. Each approach is quite different, since the former involves
unfolding logical rules while the latter involves defining a simulation relation witnessing the
refinement. Here these two approaches to probabilistic refinement are formally connected as
follows.

I Theorem 4. If ⊢ Jt1K (Jt2K, in ∆MAV, then t1 simulates t2 (Def. 1).

The proof provides a proceedure that constructs a weak complete probabilistic simulation
from any linear implications between embeddings of processes. It adapts proof techniques
devised for establishing a similar results for the π-calculus [22] (without probabilities).

The converse of Theorem 4 does not hold. As reinforced by related work [21], linear
implication has non-interleaving properties. For example a ` a(a ◁ a does not hold, but
these processes are equivalent in any interleaving semantics, including probabilistic simulation
in Def. 1. This can be regarded as a strength of linear implication, since such non-interleaving
semantics are preserved under action refinement [41] – the substitution of an atomic action
with any process. For the minimal process language in this this work, we consider only
refinement of an action with a sequence of actions.

1 Note the system is completely symmetric so the dual operators could be used, inverting implication.

FSCD 2019

23:8 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

I Corollary 5. For process terms t1 and t2, and substitution σ mapping actions, say a, to a
sequence of actions, say b1.⋯bn, if ⊢ Jt1K (Jt2K then ⊢ Jt1σK (Jt2σK.

For example, since ⊢ Ja ∥ aK (Ja.aK holds, by applying the action refinement σ ={b.c/a}, the
following holds: ⊢ Jb.c ∥ b.cK (Jb.c.b.cK.

Action refinement is not respected by any interleaving semantics, including weak complete
probabilistic simulation (previous work on action refinement in the probabilistic setting [8]
avoids parallel composition). Furthermore, although there is work on probabilistic event
structures [1, 42], linear implication in ∆MAV appears to be the first non-interleaving notion
of refinement accommodating probabilistic choice.

4 Examples of properties established using linear implication

Having introduced definitions and stated the main results, we illustrate the theory with
examples. This section covers examples of refinements that are permitted or forbidden
between processes. There are also some examples justifying the medial rules.

4.1 Refinements also provable using probabilistic simulation
As noted in the introduction, projection and injection are forbidden for probabilistic simula-
tion, hence should be forbidden for the sub-additives. Indeed, the following processes are
unrelated by linear implication.

heads +1/2 tails is unrelated to heads and also is unrelated to tails

Hence, as a consequence of Theorem 4, none of the following hold in general: P (P ⊕p P ,
P ⊕p Q(P , Q(P ⊕p P and P ⊕p Q(Q.

Now, using the rules of ∆MAV, we can verify the following chain of implications, proving
that the probabilistic sub-additives lie between the standard additives.

P &Q(P &p Q P &p Q(P ⊕p Q P ⊕p Q(P ⊕Q

The first implication has a proof of the following form.
○

idempotency
○ &p ○

Proposition 3
(P ` P) &p (Q `Q)

choose
((P ⊕Q) ` P) &p ((P ⊕Q) `Q)

confine
((P ⊕Q) ⊕p (P ⊕Q)) ` (P &p Q)

idempotency
(P ⊕Q) ` (P &p Q)

Also, due to de Morgan dualities, the third implication in the chain above has a proof of
the same form (by setting P as P and Q as Q). The second implication in the chain of
implications above has the following proof.

○

idempotency
○ &p ○

Proposition 3
(P ` P) &p (Q `Q)

confine
(P &p Q) ` (P ⊕p Q)

confine
(P ⊕p Q) ` (○ &p ○) ` (P ⊕p Q)

idempotency
(P ⊕p Q) ` (P ⊕p Q)

R. Horne 23:9

Notice, by instantiating the above with process embeddings, ⊢ Jt1 ⊓ t2K (Jt1K &p Jt2K and
⊢ Jt1K &p Jt2K (Jt1 +p t2K hold. Hence, by Theorem 2, there is also a proof of the following.

⊢ Jt1 ⊓ t2K (Jt1 +p t2K

As guaranteed by Theorem 4, the above linear implication can also be established by
probabilistic simulation. For example, process a ⊓ b simulates a +p b. This holds since R
such that a R 1a⊓b, b R 1a⊓b, and ok R 1ok defines a weak probabilistic simulation such
that Ja &p bK R̂ Ja ⊓ bK. The converse does not hold since a ⊓ b a I 1ok, which is a transition
that cannot be matched by distribution p1a + (1 − p)1b. Hence, by Theorem 4, the converse
implication P ⊕p Q(P &Q also does not hold in general.

4.2 Distributivity properties, some forbidden others permitted
We highlight, quite subtly, that we must also forbid certain distributivity properties over
parallel composition. Operator ⊕p forbids refinements that undesirably leak information.
For example, processes (a ∥ c) +p (b ∥ d) and (a +p b) ∥ (c +p d) are unrelated by probabilistic
simulation. Therefore, by Theorem 4, the following are unrelated by linear implication.

(a � c) ⊕p (b � d) is unrelated to (a ⊕p b) � (c ⊕p d)

However we should allow other refinements. For example, the semantics of ∆MAV, does
admit the following partial distributivity property, preserving all four possible combinations
of parallel actions.

⊢ (a ⊕p b) � (c ⊕q d) (((a � c) ⊕q (a � d)) ⊕p ((b � c) ⊕q (b � d))

The above distributivity property is also respected by probabilistic simulation introduced
in Sec. 2. Observe, both δ(((a ∥ c) +q (a ∥ d)) +p ((b ∥ c) +q (b ∥ d))) and δ((a +p b) ∥ (c +q d))
map to the same underlying probability distribution, hence have the same behaviours.

pq1a∥c + p(1 − q)1a∥d + (1 − p)q1b∥c + (1 − p)(1 − q)1b∥d

Indeed, in general, the following implication holds in ∆MAV, establishing how probabilistic
choice distributes over parallel composition.

⊢ P � (Q ⊕p R) ((P �Q) ⊕p (P �R)

There are also distributivity properties relating non-deterministic and probabilistic
choice [43]. For example we have that ⊢ (P &Q) ⊕p (P &R) (P & (Q ⊕p R) holds, as
established by the following proof.

○

tidy
○ & ○

idempotency
(○ &p ○) & (○ &p ○)

by Proposition 3
((P ` P) &p (P ` P)) & ((Q `Q) &p (R `R))

by confine
((P &p P) ` (P ⊕p P)) & ((Q &p R) ` (Q ⊕p R))

idempotency
((P &p P) ` P) & ((Q &p R) ` (Q ⊕p R))

by choose
(((P ⊕Q) &p (P ⊕R)) ` P) & (((P ⊕Q) &p (P ⊕R)) ` (Q ⊕p R))

by external
((P ⊕Q) &p (P ⊕R)) ` (P & (Q ⊕p R))

FSCD 2019

23:10 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

By Theorem 4, we have that (t1 ⊓ t2) +p (t1 ⊓ t3) simulates t1 ⊓ (t2 +p t3), for any process.
For example, a ⊓ (b +p c) is simulated by (a ⊓ b) +p (a ⊓ c). To see why, observe relation S
defined such that a ⊓ (b +p c) S p1a⊓b + (1 − p)1a⊓c and s S 1s, for any s, is a simulation; for
which Ja ⊓ (b +p c)K Ŝ J(a ⊓ b) +p (a ⊓ c)K.

The converse of the above simulation does not hold. Hence, as a consequence of Theorem 4,
the converse of the above implication does not hold in ∆MAV. I.e., in general, the following
is not provable: P & (Q ⊕p R) ((P &Q) ⊕p (P &R).

4.3 But are the medial rules necessary in ∆MAV?
The most mysterious rules of ∆MAV are the medial rules. The justification we provide here is
purely logical, although these rules are likely to play a more significant role when considering
more expressive process calculi with full sequential composition and mixing suitable notions
of internal and external choice (sometimes known as angelic/daemonic choices [31]).

Here we show the medial rules are necessary in order for cut-elimination to hold. Medial
rules capture a pattern where a weaker additive distributes over a stronger additive, where
& < &p < ⊕p < ⊕. This is a derived property of the standard additives in linear logic; namely
the implication (P &Q)⊕(R & S) ((P ⊕R)&(Q ⊕ S) is provable, while its converse does not
hold. The corresponding property for the sub-additive is not derivable without the medials.
Only by including an explicit medial rule in Fig. 2 can we prove the following property.

(P &p Q) ⊕q (R &p S) ((P ⊕q R) &p (Q ⊕q S)

We are forced to include several further medial rules, induced by associativity and
commutativity. This is more surprising since all other medial rules correspond to implications
provable without including any medial rules. For example, we have the following proof of
implication (P &Q) &q (R & S) ((P &q R) & (Q &q S).

○

tidy and itempotency
(○ &q ○) & (○ &q ○)

interact
((P ` P) &q (R `R)) & ((Q `Q) &q (S ` S))

choose
(((P ⊕Q) ` P) &q ((R ⊕ S) `R)) & (((P ⊕Q) `Q) &q ((R ⊕ S) ` S))

confine
(((P ⊕Q) ⊕q (R ⊕ S)) ` (P &q R)) & (((P ⊕Q) ⊕q (R ⊕ S)) ` (Q &q S))

external
((P ⊕Q) ⊕q (R ⊕ S)) ` ((P &q R) & (Q &q S))

The above implication does not mean rule
(P &Q) &q (R & S)

(P &q R) & (Q &q S)
is admissible (redundant in

∆MAV). To see why, consider the following observations. Firstly, observe the following is
provable without using any medial rules.

(a1 ` a2) &p ((b1 &q (c & d)) ` (b2 ⊕q (c & d))) ((a1 &p (b1 &q (c & d))) ` (a2 ⊕p (b2 ⊕q (c & d)))

Now, assuming r = (1 − p)q and p = s(1 − r), observe the following are equivalent by
associativity and commutativity of the sub-additives.

(a1 &p (b1 &q (c & d))) ` (a2 ⊕p (b2 ⊕q (c & d))) ≡ (b1 &r (a1 &s (c & d))) ` (b2 ⊕r (a2 ⊕s (c & d)))

Thirdly, observe the following implication is provable, without any medial rules.

(b1 &r (a1 &s (c & d))) ` (b2 ⊕r (a2 ⊕s (c & d)))
((b1 &r ((a1 &s c) & (a1 &s d))) ` (b2 ⊕r ((a2 ⊕s c) & (a2 ⊕s d)))

R. Horne 23:11

Now, assuming cut elimination holds, combining the above three observations, necessarily,
we can construct a cut-free proof of the following implication.

(a1 ` a2) &p ((b1 &q (c & d)) ` (b2 ⊕q (c & d)))
((b1 &r ((a1 &s c) & (a1 &s d))) ` (b2 ⊕r ((a2 ⊕s c) & (a2 ⊕s d)))

Unfortunately, the above implication is not provable without medial rules. Specifically, we
require medial rules commuting the sub-additives over with in order to establish the proof of
the above implication. This example is extracted from exactly where the cut elimination
would fail if the medial rules are omitted. Thus the medial rules are not a design decision,
but necessary in order for cut-elimination to hold.

5 On the proof of cut-elimination (Theorem 2)

Proving proof normalisation results involves extensive case analysis; hence we provide only a
sketch proof of cut elimination proof for ∆MAV. The interesting point is that the idempotency
of sub-additives is problematic, giving rise to infinite derivations. For example, formula a ⊕ b
has infinitely many premises, including those of the form a &1/2−1/2n (a ⊕ b).

To handle such problems caused by idempotency in the cut elimination proof we move to
a semantically equivalent but more controlled version of ∆MAV, turning idempotency, from
an equivalence into the following inference rules.

C{ R ⊕p R }
contract

C{ R }

C{ ○ }
tidy distribution

C{ ○ &p ○ }
C{ P &r Q }

special case of confine
C{ P ⊕r Q }

The proof of cut-elimination (Theorem 2) proceeds by, firstly, observing rule P ⊗ P
cut

○

can be broken down to its atomic form co-interact using the following co-rules.

C{ (P ⊕R) ⊗ (Q & S) }
co-additives

C{ (P ⊗Q) ⊕ (R⊗ S) }

C{ (P ⊕p Q) ⊗ (R &p S) }
co-confine

C{ (P ⊗R) ⊕p (Q⊗ S) }

C{ ○ ⊕ ○ }
co-tidy

C{ ○ }

C{ a⊗ a }
co-interact

C{ P }
co-contract

C{ P &p P }
C{ ○ }

C{ (P ER) D (Q E S) }
medial where (E,D) ∈ {(&q,⊗), (&q,⊕), (⊕p,⊕), (◁,⊗)}

C{ (P DQ) E (R D S) }

We then proceed by the following strategy to show all such co-rules can be eliminated.
We firstly apply a technique called decomposition [18, 39, 40], showing instances of the
problematic contract rule can be pushed to the bottom of a proof. This involves introducing
further co-rules, notably the rule co-contract, which is pushed to the top of the proof. The
technical challenge with decomposition is devising a measure controlling explosions in the
size of the proof, based on the topology of the proof, caused by permuting contractions with
co-contractions.

I Lemma 6 (decomposition). For any derivation
S

P
, including co-rules, there exists Q and

R such that there is a derivation:

S
using co-contract only

R
including co-rules but without contract or co-contract

Q
using contract only

P

FSCD 2019

23:12 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

Notice, when decomposition is applied to a proof, which must have premise ○, the co-contract
rules disappear, becoming instances of tidy distribution. This way, we transform a proof of
P into a proof of some formula Q which does not use contract or co-contract rules, such
that Q is reachable from P using only the contract rule. For the proof of Q, that does not
use contract or co-contract rules, we can apply a technique called splitting [19]. Splitting
generalises the effect of applying rules in sequent-like contexts.

I Lemma 7 (splitting). In the following, killing contexts are multi-hole contexts defined by
grammar T { } ∶∶= { ⋅ } ∣ T { } & T { }. The following hold in ∆MAV without contract, but
with tidy distribution and the special case of confine:

If ⊢ (P &Q) `R then ⊢ P `R and ⊢ Q `R.
If ⊢ (P &p Q)`R, there exist U , V such that

U ⊕p V

R
and both ⊢ P `U and ⊢ Q`V hold.

If ⊢ (P ⊕p Q)`R, there exist U , V such that
U &p V

R
and both ⊢ P `U and ⊢ Q`V hold.

If ⊢ (P ◁Q) `R, there exist T { }, Ui and Vi such that
T { Ui ◁ V }

R
and, for all i, both

⊢ P `Ui and ⊢ Q ` Vi hold.
If ⊢ (P �Q) ` R, there exist T { }, Ui and Vi such that

T { Ui ` Vi }

R
and, for all i,

⊢ P `Ui and ⊢ Q ` Vi.
If ⊢ (P ⊕Q) `R then, there exist Wi such that

T { Wi }

R
and, for all i, either ⊢ P `Wi

or ⊢ Q `Wi hold.

If ⊢ a `R then
T { a }

R
.

If ⊢ a `R then
T { a }

R
.

Splitting is then used to extended sequent-like contexts to any context.

I Lemma 8 (context reduction). If, for all R, ⊢ P `R yields ⊢ Q `R then, for all contexts
C{ }, ⊢ C{ P } yields ⊢ C{ Q }.

By using splitting and context reduction, the co-rules previously introduced in this
section are shown to be admissible, which together show cut is admissible in the fragment
without contraction. The first three co-rule elimination lemmas concern only connectives of
MALL [20].

I Lemma 9. If ⊢ C{ ○ ⊕ ○ } then ⊢ C{ ○ }.

I Lemma 10. If ⊢ C{ (P ⊕Q) � (R & S) } holds, then it holds that ⊢ C{ (P �R) ⊕ (Q � S) }.

I Lemma 11. If ⊢ C{ a⊗ a } then ⊢ C{ ○ }, for any atom a.

The following co-rule elimination lemma involves the probabilistic sub-additives.

I Lemma 12. If ⊢ C{ (P ⊕p Q) � (R &p S) } holds, ⊢ C{ (P �R) ⊕p (Q � S) } holds.

The four extra medial rules can also be eliminated.

I Lemma 13. For any (E,D) ∈ {(&q,⊗), (&q,⊕), (⊕p,⊕), (◁,�)}, if ⊢ C{ (P ER) D (Q E S) }
then ⊢ C{ (P DQ) E (R D S) }.

R. Horne 23:13

We can now establish cut elimination for the proof system described at the beginning of
this section, without idempotency, but with three inference rules: contract, tidy distribution
and the special case of confine. Having applied decomposition (Lemma 6) to push contract
to the bottom of the proof, the proof combines the above lemmas to remove each co-rule.
This leaves a system without co-rules.

Finally, we obtain our main result (Theorem 2): cut elimination in the more controlled
system implies cut elimination in ∆MAV, simply be substituting contract, tidy distribution
and the special case of confine with instances of idempotency and confine.

6 Related work on Sub-Additive Operators and Nominal Quantifiers

Between the standard additives of multiplicative linear logic, with and plus, there are further
sub-additive operators. Roversi [35] proposed a sub-additive operator, say �, also forbidding
projection and injection, that is self-dual. Note a self-dual operator is such that the linear
negation of P �Q is P �Q, i.e., the operator is de Morgan dual to itself.

Such a self-dual sub-additive operator cannot be used to model probabilistic choice in
the processes-as-formulae paradigm. The problem is the following implication is provable
(a � b) � (c � d) ((a � c) � (b � d). Consequently, self-dual sub-additives are unsound with
respect to probabilistic simulation (notice the possibility of a � d or b � c occurring has
been excluded in the formula on the right). The pair of probabilistic sub-additives &p and
⊕p, were discovered by seeking more controlled variants of � such that the above unsound
distributivity property is forbidden.

(a) P ⊕Q

P ⊕p Q

○

P �Q

○

P &p Q

○

P &Q
○

○

(b) ∃x.P

Эx.P
○

∇x.P

○

Иx.P

○

∀x.P
○

○

(c) P `Q

P ◁Q

○

P ⊗Q

○

Figure 3 Relationships between various operators in extensions of linear logic: (a) the additives
and sub-additives, (b) the first-order quantifiers and nominal quantifiers, (c) the multiplicatives.

Figure 3(a) compares additives &, &p, ⊕p, ⊕ and �. Notice similarities with Fig 3(b)
depicting de Morgan dual pair of nominal quantifiers, Иx.P and Эx.P , located between for
all and exists [23]. Similarly, to the sub-additives, the justification for the pair of nominal
quantifiers, rather than a self-dual nominal quantifier [14, 34, 35], say ∇x.P , was to soundly
model private names in direct logical embeddings of π-calculus processes [32].

Related work at the intersection of linear logic and probabilistic programs is typically
denotational (of a model theoretic flavour). For example, probabilistic coherence spaces [16, 12]
provide a probabilistic denotational semantics [26, 7] for linear logic but with standard
additives with and plus only. Probabilistic coherence spaces and related models are typically
used directly to provide a semantics for functional probabilistic programming languages, such
as PCF with random number generators [13, 6] or a probabilistic λ-calculus [29]. However,
probabilistic extensions of linear logic itself, giving rise to probabilistic sub-additives sound
with respect the probabilistic choice in process calculi, have not previously been investigated.

FSCD 2019

23:14 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

7 Conclusion

This paper exposes an extended syntax and proof system for linear logic with explicit
probabilistic choice operators. The rules for these sub-additives are determined by studying
a generalisation of cut elimination (Theorem 2), leaving no room for design decisions. When
designing process preorders, we are confronted by a vast design space. Thus ∆MAV (Fig. 2)
can assist objectively with resolving language design decisions. I argue linear implication is a
compelling notion of probabilistic refinement, being sound with respect to weak (complete)
probabilistic simulation (Theorem 4), hence also probabilistic may testing. Furthermore, linear
implication has the advantage that it is the coarsest notion of refinement for probabilistic
concurrent processes in the literature respecting action refinement (Corollary 5).

Interestingly, the proof of cut elimination demands a technique called decomposition,
Lemma 6, to handle idempotency of choice, which, previously, has only been necessary for
handling modalities in non-commutative logic NEL [39, 19]. Details of the proof theory are
reserved for an extended version.

Future work includes explaining the connections between the quantitative modal logics,
such as the quantitative modal µ-calculus [25], and ∆MAV. Future work may also consider
richer process models in ∆MAV and its extensions [24]. For example, by using positive and
negative atoms to model inputs and outputs [3, 22], we can model probabilistic calculi with
communication. A related question is whether the operator &p is useful when modelling
processes. Recall &p was discovered, synthetically, as the operator de Morgan dual to
probabilistic choice ⊕p. To help understand the nature of &p, observe that it is related to ⊕p

in a similar fashion that, in the internal π-calculus [36], fresh name binding ν is related to
internal input (which receives a name, but only if it is fresh). By using this analogy, &p can
model branches of an input that preserves a probability distribution by using knowledge of the
probability distribution over branches with which it interacts (perhaps by measuring previous
interactions with a controller, for example), and only interacts if the distribution matches the
criteria specified by the internal choice (as suggested by rule confine). Such constraints could
be useful for preventing systems from being composed whenever the random behaviour of one
component falls out of expected bounds of another component (possibly causing a component
that receives messages on a random channel to fail to meet its specification). Considering
possible connections between &p/⊕p and angelic/daemonic probabilistic choices [31] is also
future work. To help the reader digest this novel theory, initially, only simple and indisputable
core process models are discussed in the current paper.

References

1 Samy Abbes and Albert Benveniste. True-concurrency probabilistic models: Branching cells
and distributed probabilities for event structures. Information and Computation, 204(2):231–
274, 2006. doi:10.1016/j.ic.2005.10.001.

2 Christel Baier and Holger Hermanns. Weak bisimulation for fully probabilistic processes. In
Computer Aided Verification, pages 119–130. Springer, 1997. doi:10.1007/3-540-63166-6_14.

3 Paola Bruscoli. A Purely Logical Account of Sequentiality in Proof Search. In ICLP, pages
302–316, 2002. doi:10.1007/3-540-45619-8_21.

4 Kaustuv Chaudhuri, Nicolas Guenot, and Lutz Straßburger. The focused calculus of structures.
In CSL, volume 12, pages 159–173, 2011. doi:10.4230/LIPIcs.CSL.2011.159.

5 Gabriel Ciobanu and Ross Horne. Behavioural Analysis of Sessions using the Calculus of
Structures. In PSI 2015, 25-27 August, Kazan, Russia, volume 9609 of LNCS, pages 91–106,
2015. doi:10.1007/978-3-319-41579-6_8.

http://dx.doi.org/10.1016/j.ic.2005.10.001
http://dx.doi.org/10.1007/3-540-63166-6_14
http://dx.doi.org/10.1007/3-540-45619-8_21
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.159
http://dx.doi.org/10.1007/978-3-319-41579-6_8

R. Horne 23:15

6 Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. The Geometry of
Parallelism: Classical, Probabilistic, and Quantum Effects. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, pages 833–845.
ACM, 2017. doi:10.1145/3009837.3009859.

7 Vincent Danos and Russell S. Harmer. Probabilistic Game Semantics. ACM Trans. Comp.
Logic, 3(3):359–382, July 2002. doi:10.1145/507382.507385.

8 Jerry den Hartog, Erik P. de Vink, and Jacobus W. De Bakker. Metric semantics and full
abstractness for action refinement and probabilistic choice. Electronic Notes in Theoretical
Computer Science, 40:72–99, 2001. doi:10.1016/S1571-0661(05)80038-6.

9 Yuxin Deng. Semantics of Probabilistic Processes: An Operational Approach. Springer, 2015.
doi:10.1007/978-3-662-45198-4.

10 Yuxin Deng, Matthew Hennessy, Rob van Glabbeek, and Carroll Morgan. Characterising
Testing Preorders for Finite Probabilistic Processes. In 22nd Annual IEEE Symposium on Logic
in Computer Science (LICS 2007), pages 313–325, July 2007. doi:10.1109/LICS.2007.15.

11 Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, and Carroll Morgan. Characterising
Testing Preorders for Finite Probabilistic Processes. Logical Methods in Computer Science,
4(4), 2008. doi:10.2168/LMCS-4(4:4)2008.

12 Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of
probabilistic coherence spaces. In LICS, pages 87–96. IEEE, 2011. doi:10.1109/LICS.2011.29.

13 Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic coherence spaces are
fully abstract for probabilistic PCF. In Proc. POPL, 49(1):309–320, 2014. doi:10.1145/
2535838.2535865.

14 Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Information and
Computation, 209(1):48–73, 2011. doi:10.1016/j.ic.2010.09.004.

15 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50(1):1–112, 1987. doi:
10.1016/0304-3975(87)90045-4.

16 Jean-Yves Girard. Between logic and quantic: a tract. Linear logic in computer science,
316:346–381, 2004. doi:10.1017/CBO9780511550850.011.

17 Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Computational
Logic, 8(1), 2007. doi:10.1145/1182613.1182614.

18 Alessio Guglielmi and Tom Gundersen. Normalisation Control in Deep Inference via Atomic
Flows. Logical Methods in Computer Science, 4(1), 2008. doi:10.2168/LMCS-4(1:9)2008.

19 Alessio Guglielmi and Lutz Straßburger. A system of interaction and structure V: the
exponentials and splitting. Mathematical Structures in Computer Science, 21(3):563–584, 2011.
doi:10.1017/S096012951100003X.

20 Ross Horne. The Consistency and Complexity of Multiplicative Additive System Virtual. Sci.
Ann. Comp. Sci., 25(2):245–316, 2015. doi:10.7561/SACS.2015.2.245.

21 Ross Horne, Sjouke Mauw, and Alwen Tiu. Semantics for Specialising Attack Trees based on
Linear Logic. Fundamenta Informaticae, 153(1-2):57–86, 2017. doi:10.3233/FI-2017-1531.

22 Ross Horne and Alwen Tiu. Constructing Weak Simulations from Linear Implications for
Processes with Private Names. Mathematical Structure in Computer Science, pages 1–34, 2019.
doi:10.1017/S0960129518000452.

23 Ross Horne, Alwen Tiu, Bogdan Aman, and Gabriel Ciobanu. Private Names in Non-
Commutative Logic. In CONCUR 2016, pages 31:1–31:16. LIPIcs, 2016. doi:10.4230/LIPIcs.
CONCUR.2016.31.

24 Ross Horne, Alwen Tiu, Bogdan Aman, and Gabriel Ciobanu. De Morgan Dual Nominal
Quantifiers Modelling Private Names in Non-Commutative Logic. ACM Transactions on
Computational Logic (TOCL), 20(4), 2019.

25 Michael Huth and Marta Z. Kwiatkowska. Quantitative analysis and model checking. In
Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pages 111–122,
1997. doi:10.1109/LICS.1997.614940.

FSCD 2019

http://dx.doi.org/10.1145/3009837.3009859
http://dx.doi.org/10.1145/507382.507385
http://dx.doi.org/10.1016/S1571-0661(05)80038-6
http://dx.doi.org/10.1007/978-3-662-45198-4
http://dx.doi.org/10.1109/LICS.2007.15
http://dx.doi.org/10.2168/LMCS-4(4:4)2008
http://dx.doi.org/10.1109/LICS.2011.29
http://dx.doi.org/10.1145/2535838.2535865
http://dx.doi.org/10.1145/2535838.2535865
http://dx.doi.org/10.1016/j.ic.2010.09.004
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1017/CBO9780511550850.011
http://dx.doi.org/10.1145/1182613.1182614
http://dx.doi.org/10.2168/LMCS-4(1:9)2008
http://dx.doi.org/10.1017/S096012951100003X
http://dx.doi.org/10.7561/SACS.2015.2.245
http://dx.doi.org/10.3233/FI-2017-1531
http://dx.doi.org/10.1017/S0960129518000452
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.31
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.31
http://dx.doi.org/10.1109/LICS.1997.614940

23:16 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

26 Cliff Jones and Gordon Plotkin. A probabilistic powerdomain of evaluations. In Proceedings
of the Fourth Annual Symposium on Logic in Computer Science, pages 186–195, June 1989.
doi:10.1109/LICS.1989.39173.

27 Bengt Jonsson and Wang Yi. Compositional testing preorders for probabilistic processes. In
LICS, pages 431–441. IEEE, 1995. doi:10.1109/LICS.1995.523277.

28 Bengt Jonsson, Wang Yi, and Kim G Larsen. Probabilistic extensions of process algebras.
Handbook of process algebra, pages 685–710, 2001. doi:10.1016/B978-044482830-9/50029-1.

29 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theoretical Informatics and Applications, 46(3):413–450, 2012. doi:
10.1051/ita/2012012.

30 Kim G Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
computation, 94(1):1–28, 1991. doi:10.1016/0890-5401(91)90030-6.

31 Annabelle McIver and Carroll Morgan. Abstraction, Refinement And Proof For Probabilistic
Systems (Monographs in Computer Science). SpringerVerlag, 2004. doi:10.1007/b138392.

32 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–77, 1992. doi:10.1016/0890-5401(92)90008-4.

33 Catuscia Palamidessi and Oltea Mihaela Herescu. A randomized encoding of the π-calculus
with mixed choice. Theoretical Computer Science, 335(2-3):373–404, 2005. doi:10.1016/j.
tcs.2004.11.020.

34 Andrew Pitts. Nominal Logic, a First Order Theory of Names and Binding. Information and
Computation, 186(2), 2003. doi:10.1016/S0890-5401(03)00138-X.

35 Luca Roversi. A deep inference system with a self-dual binder which is complete for linear
lambda calculus. J. of Logic and Computaion, 26(2):677–698, 2016. doi:10.1093/logcom/
exu033.

36 Davide Sangiorgi. pi-Calculus, Internal Mobility, and Agent-Passing Calculi. Theor. Comput.
Sci., 167(1&2):235–274, 1996. doi:10.1016/0304-3975(96)00075-8.

37 Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing, 2(2):250–273, 1995. doi:10.1007/3-540-56454-3_13.

38 Lutz Straßburger. A local system for linear logic. In LPAR, volume 2514, pages 388–402.
Springer, 2002. doi:10.1007/3-540-36078-6_26.

39 Lutz Straßburger and Alessio Guglielmi. A system of interaction and structure IV: The
exponentials and decomposition. ACM T. Comp. Log., 12(4):23:1–39, 2011. doi:10.1145/
1970398.1970399.

40 Andrea Aler Tubella, Alessio Guglielmi, and Benjamin Ralph. Removing Cycles from Proofs.
In CSL, pages 9:1–9:17, 2017. doi:10.4230/LIPIcs.CSL.2017.9.

41 Rob van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica, 37(4-5):229–327, 2001. doi:10.1007/s002360000041.

42 Daniele Varacca, Hagen Völzer, and Glynn Winskel. Probabilistic event structures and domains.
In CONCUR, pages 481–496, 2004. doi:10.1007/978-3-540-28644-8_31.

43 Daniele Varacca and Glynn Winskel. Distributing probability over non-determinism. Mathem-
atical Structures in Computer Science, 16(1):87–113, 2006. doi:10.1017/S0960129505005074.

http://dx.doi.org/10.1109/LICS.1989.39173
http://dx.doi.org/10.1109/LICS.1995.523277
http://dx.doi.org/10.1016/B978-044482830-9/50029-1
http://dx.doi.org/10.1051/ita/2012012
http://dx.doi.org/10.1051/ita/2012012
http://dx.doi.org/10.1016/0890-5401(91)90030-6
http://dx.doi.org/10.1007/b138392
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/j.tcs.2004.11.020
http://dx.doi.org/10.1016/j.tcs.2004.11.020
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://dx.doi.org/10.1093/logcom/exu033
http://dx.doi.org/10.1093/logcom/exu033
http://dx.doi.org/10.1016/0304-3975(96)00075-8
http://dx.doi.org/10.1007/3-540-56454-3_13
http://dx.doi.org/10.1007/3-540-36078-6_26
http://dx.doi.org/10.1145/1970398.1970399
http://dx.doi.org/10.1145/1970398.1970399
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.9
http://dx.doi.org/10.1007/s002360000041
http://dx.doi.org/10.1007/978-3-540-28644-8_31
http://dx.doi.org/10.1017/S0960129505005074

A Lower Bound of the Number of Rewrite Rules
Obtained by Homological Methods
Mirai Ikebuchi
Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory,
Cambridge, USA
ikebuchi@mit.edu

Abstract
It is well-known that some equational theories such as groups or boolean algebras can be defined by
fewer equational axioms than the original axioms. However, it is not easy to determine if a given
set of axioms is the smallest or not. Malbos and Mimram investigated a general method to find a
lower bound of the cardinality of the set of equational axioms (or rewrite rules) that is equivalent to
a given equational theory (or term rewriting systems), using homological algebra. Their method
is an analog of Squier’s homology theory on string rewriting systems. In this paper, we develop
the homology theory for term rewriting systems more and provide a better lower bound under a
stronger notion of equivalence than their equivalence. The author also implemented a program to
compute the lower bounds.

2012 ACM Subject Classification Theory of computation → Rewrite systems

Keywords and phrases Term rewriting systems, Equational logic, Homological algebra

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.24

1 Introduction

The purpose of this paper is to find a lower bound of the number of axioms that are equivalent
to a given equational theory. For example, the theory of groups is given by the following
axioms:

G1. m(m(x1, x2), x3) = m(x1,m(x2, x3)), G2. m(x1, e) = x1, G3 m(e, x1) = x1,

G4. m(i(x1), x1) = e, G5. m(x1, i(x1)) = e.
(1)

It is well-known that G2 and G5 can be derived from only {G1, G3, G4}. Moreover, the
theory of groups can be given by two axioms: the axiom

m(x1, i(m(m(i(m(i(x2),m(i(x1), x3))), x4), i(m(x2, x4))))) = x3

together with G4 is equivalent to the group axioms [4]. If we use the new symbol n which
corresponds to the “multiplication of inverses” m(i(x1), i(x2)), a single axiom,

n(x1, n(n(n(e, x2), n(n(n(e, x3), x3), x4)), n(n(e, x1), x2))) = x4,

is equivalent to the group axioms [5]. However, no single axiom written in symbols m, i, e is
equivalent to the group axioms. This is stated without proof by Tarski [9] and published
proofs are given by Neumann [4] and Kunen [2]. Malbos and Mimram developed a general
method to calculate a lower bound of the number of axioms that are “Tietze-equivalent” to
a given complete term rewriting system (TRS) [3, Proposition 23]. We omit the definition
of Tietze equivalence here, but roughly speaking, it is an equivalence between equational
theories (or TRSs) (Σ1, R1), (Σ2, R2) where signatures Σ1 and Σ2 are not necessarily equal
to each other, while the usual equivalence between TRSs is defined for two TRSs (Σ, R1),
(Σ, R2) over the same signature (specifically, by ∗←→R1 = ∗←→R2).

© Mirai Ikebuchi;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ikebuchi@mit.edu
https://doi.org/10.4230/LIPIcs.FSCD.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

In this paper, we will develop Malbos and Mimram’s theory more, and show an inequality
which gives a better lower bound of the number of axioms with respect to the usual equivalence
between TRSs over the same signature. For the theory of groups, our inequality gives that
the number of axioms equivalent to the group axioms is greater than or equal to 2, so we have
another proof of Tarski’s theorem above as a special case. Our lower bound is algorithmically
computable if a complete TRS is given.

We will first give the statement of our main theorem and some examples in Section 2.
Then, we will see Malbos-Mimram’s work briefly. The idea of their work is to provide an
algebraic structure to TRSs and extract information of the TRSs, called homology groups,
which are invariant under Tietze equivalence. The basics of such algebraic tools are given in
Section 3, and we will see the idea of the construction of the homology groups of TRSs in
Section 4. Finally, in Section 5, we will prove our main theorem.

2 Main Theorem

In this section, we will see our main theorem and some examples. Throughout this paper,
we assume that any terms are over the set of variables {x1, x2, . . . } and all signatures we
consider are unsorted. For a signature Σ, let T (Σ) denote the set of terms over the signature
Σ and the set of variables {x1, x2, . . . }.

I Definition 1. Let (Σ, R) be a TRS. The degree of R, denoted by deg(R), is defined by

deg(R) = gcd{#il −#ir | l→ r ∈ R, i = 1, 2, . . . }

where #it is the number of occurrences of xi in t for t ∈ T (Σ) and we define gcd{0} = 0 for
convenience. For example, deg({f(x1, x2, x2)→ x1, g(x1, x1, x1)→ e}) = gcd{0, 2, 3} = 1.

Let (Σ, R = {l1 → r1, . . . , ln → rn}) be a TRS and CP(R) = {(t1, s1), . . . , (tm, sm)} be
the set of the critical pairs of R. For any i ∈ {1, . . . ,m}, let ai, bi be the numbers in
{1, . . . , n} such that the critical pair (ti, si) is obtained by lai → rai and lbi → rbi , that is,
ti = rai

σ ← lai
σ = C[lbi

σ]→ C[rbi
σ] = si for some substitution σ and single-hole context C.

Suppose R is complete. We fix an arbitrary rewriting strategy and for a term t, let nrj(t) be
the number of times lj → rj is used to reduce t into its R-normal form with respect to the
strategy. To state our main theorem, we introduce a matrix D(R) and a number e(R):

I Definition 2. Suppose d = deg(R) is prime or 0. If d = 0, let R be Z, and if d is prime,
let R be Z/dZ (integers modulo d). For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let D(R)ij be the integer
nrj(si)− nrj(ti) + δ(bi, j)− δ(ai, j) where δ(x, y) is the Kronecker delta. The matrix D(R)
is defined by D(R) = (D(R)ij)i=1,...,m,j=1,...,n.

I Definition 3. Let R be Z or Z/pZ for any prime p. If an m× n matrix M over R is of
the form

e1 0 0
0 e2 0 0
... 0

. . . 0
...

...
... 0 er 0

...
...

...
... 0 0

...
...

...
...

...
...

.
...

0 0 0


and ei divides ei+1 for every 1 ≤ i < r, we say M is in Smith normal form. We call eis the
elementary divisors.

M. Ikebuchi 24:3

It is known that every matrix overR can be transformed into Smith normal form by elementary
row/column operations, that is, (1) switching a row/column with another row/column, (2)
multiplying each entry in a row/column by an invertible element in R, and (3) adding a
multiple of a row/column to another row/column [7, 9.4]. (If d = 0, the invertible elements
in R ∼= Z are 1 and −1, and if d is prime, any nonzero elements in R = Z/dZ are invertible.)
In general, the same fact holds for any principal ideal domain R.

I Definition 4. We define e(R) as the number of invertible elements in the Smith normal
form of the matrix D(R) over R.

Note that if R = Z/dZ for a prime d, e(R) is equal to the rank of D(R) since every nonzero
elements in Z/dZ is invertible.

We state the main theorem.

I Theorem 5. Let (Σ, R) be a complete TRS and suppose d = deg(R) is 0 or prime. For
any set of rules R′ equivalent to R, i.e., ∗←→R′ =

∗←→R, we have

#R′ ≥ #R− e(R). (2)

We shall see some examples.

I Example 6. Consider the signature Σ = {0(0), s(1), ave(2)} and the set R of rules

A1.ave(0, 0) → 0, A2.ave(x1, s(x2)) → ave(s(x1), x2), A3.ave(s(0), 0) → 0,
A4.ave(s(s(0)), 0) → s(0), A5.ave(s(s(s(x1))), x2) → s(ave(s(x1), x2)).

R satisfies deg(R) = 0 and has one critical pair C:

We can see the matrix D(R) is the 5× 1 zero matrix. The zero matrix is already in Smith
normal form and e(R) = 0. Thus, for any R′ equivalent to R, #R′ ≥ #R = 5. This means
there is no smaller TRS equivalent to R. Also, Malbos-Mimram’s lower bound, denoted by
s(H2(Σ, R)), is equal to 3, though we do not explain how to compute it in this paper. (We
will briefly see the meaning of s(H2(Σ, R)) in Section 4.)

I Example 7. We compute the lower bound for the theory of groups, (1). A complete TRS
R for the theory of groups is given by

G1. m(m(x1, x2), x3)→ m(x1,m(x2, x3)) G2. m(e, x1)→ x1
G3. m(x1, e)→ x1 G4. m(x1, i(x1))→ e

G5. m(i(x1), x1)→ e G6. m(i(x1),m(x1, x2))→ x2
G7. i(e)→ e G8. i(i(x1))→ x1
G9. m(x1,m(i(x1), x2))→ x2 G10. i(m(x1, x2))→ m(i(x2), i(x1)).

Since deg(R) = 2, we set R = Z/2Z. R has 48 critical pairs and we get the 10 × 48
matrix D(R) given in the appendix. The author implemented a program which takes a
complete TRS as input and computes its critical pairs, the matrix D(R), and e(R). The
program is available at https://github.com/mir-ikbch/homtrs. The author checked
e(R) = rank(D(R)) = 8 by the program, and also by MATLAB’s gfrank function (https:
//www.mathworks.com/help/comm/ref/gfrank.html). Therefore we have #R− e(R) = 2.
This provides a new proof that there is no single axiom equivalent to the theory of groups.

Malbos-Mimram’s lower bound is given by s(H2(Σ, R)) = 0.

FSCD 2019

https://github.com/mir-ikbch/homtrs
https://www.mathworks.com/help/comm/ref/gfrank.html
https://www.mathworks.com/help/comm/ref/gfrank.html

24:4 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

Figure 1 The critical pairs of R.

I Example 8. Let Σ = {−(1), f (1),+(2), ·(2)} and R be

A1. − (−x1)→ x1, A2. − f(x1)→ f(−x1),
A3. − (x1 + x2)→ (−x1) · (−x2), A4. − (x1 · x2)→ (−x1) + (−x2).

We have deg(R) = 0 and R has four critical pairs (Figure 1). The corresponding matrix
D(R) and its Smith normal form are computed as

D(R) =


0 0 1 1
2 0 0 0
0 0 1 1
0 0 1 1




0 0 1 1
2 0 0 0
0 0 0 0
0 0 0 0




0 0 1 0
2 0 0 0
0 0 0 0
0 0 0 0




1 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

 .

Thus, #R− e(R) = 3. This tells R does not have any equivalent TRS with 2 or fewer rules,
and it is not difficult to see R has an equivalent TRS with 3 rules, {A1, A2, A3}.

Malbos-Mimram’s lower bound for this TRS is given by s(H2(Σ, R)) = 1.

Although the equality of (2) is attained for the above three examples, it is not guaranteed
the equality is attained by some TRS R′ in general.

3 Preliminaries on Algebra

In this section, we give a brief introduction to module theory, homological algebra, and
Squier’s theory of homological algebra for string rewriting systems (SRSs) [8]. Even though
Squier’s theory is not directly needed to prove our theorem, it is helpful to understand the
homology theory for TRSs, which is more complicated than SRSs’ case.

3.1 Modules and Homological Algebra
We give basic definitions and theorems on module theory and homological algebra without
proofs. For more details, readers are referred to [7, 6] for example.

Modules are the generalization of vector spaces in which the set of scalars form a ring,
not necessarily a field.

I Definition 9. Let R be a ring and (M,+) be an abelian group. For a map · : R×M →M ,
(M,+, ·) is a left R-module if for all r, s ∈ R and x, y ∈M , we have

r · (x+ y) = r · x+ r · y, (r + s) · x = r · x+ s · x, (rs) · x = r · (s · x)

M. Ikebuchi 24:5

where rs denotes the multiplication of r and s in R. We call the map · scalar multiplication.
For a map · : M × R → M , (M,+, ·) is a right R-module if for any r, s ∈ R and

x, y ∈M ,

(x+ y) · r = x · r + y · r, x · (r + s) = x · r + x · s, x · (sr) = (x · s) · r.

If ring R is commutative, we do not distinguish between left R-modules and right R-modules
and simply call them R-modules.

Linear maps and isomorphisms of modules are also defined in the same way as for vector
spaces.

I Definition 10. For two left R-modules (M1,+1, ·1), (M2,+2, ·2), a group homomorphism
f : (M1,+1)→ (M2,+2) is an R-linear map if it satisfies f(r ·1 x) = r ·2 f(x) for any r ∈ R

and x ∈M1. An R-linear map f is an isomorphism if it is bijective, and two modules are
called isomorphic if there exists an isomorphism between them.

I Example 11. Any abelian group (M,+) is a Z-module under the scalar multiplication
n · x = x+ · · ·+ x︸ ︷︷ ︸

n

.

I Example 12. For any ring R, the direct product Rn = R× · · · ×R︸ ︷︷ ︸
n

forms a left R-module

under the scalar multiplication r · (r1, . . . , rn) = (rr1, . . . , rrn).

I Example 13. Let R be a ring and X be a set. RX denotes the set of formal linear
combinations∑

x∈X
rxx (rx ∈ R)

where rx = 0 except for finitely many xs. The underline is added to emphasize a distinction
between r ∈ R and x ∈ X. RX forms a left R-module under the addition and the scalar
multiplication defined by(∑

x∈X
rxx

)
+
(∑
x∈X

sxx

)
=
∑
x∈X

(rx + sx)x, s ·

(∑
x∈X

rxx

)
=
∑
x∈X

(srx)x.

If X is the empty set, RX is the left R-module {0} consisting of only the identity element. We
simply write 0 for {0}. RX is called the free left R-module generated by X. If #X = n ∈ N,
RX can be identified with Rn.

A left R-module M is said free if M is isomorphic to RX for some X. Free modules have
some similar properties to vector spaces. If a left R-module F if free, there exists a basis
(i.e., a subset that is linearly independent and generating) of F . If a free left R-module F
has a basis (v1, . . . , vn), any R-linear map f : F →M is uniquely determined if the values
f(v1), . . . , f(vn) are specified. Suppose F1, F2 are free left R-modules and f : F1 → F2 is
an R-linear map. If F1 has a basis (v1, . . . , vn) and F2 has a basis (w1, . . . , wm), the matrix
(aij)i=1,...,n,j=1,...,m where aijs satisfy f(vi) = ai1w1 + · · · + aimwm for any i = 1, . . . , n is
called a matrix representation of f .

We define submodules and quotient modules, as in linear algebra.

I Definition 14. Let (M,+, ·) be a left (resp. right) R-module. A subgroup N of (M,+) is
a submodule if for any x ∈ N and r ∈ R, the scalar multiplication r · x (resp. x · r) is in N .

For any submodule N , the quotient group M/N is also an R-module. M/N is called the
quotient module of M by N .

FSCD 2019

24:6 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

For submodules and quotient modules, the following basic theorems are known:

I Theorem 15 (First isomorphism theorem). [7, Theorem 7.8] Let (M,+, ·), (M ′,+′, ·′) be
left (or right) R-modules, and f : M →M ′ be an R-linear map.
1. The inverse image of 0 by f , ker f = {x ∈M | f(x) = 0}, is a submodule of M .
2. The image of M by f , im f = {f(x) | x ∈M}, is a submodule of M ′.
3. The image im f is isomorphic to M/ ker f .

I Theorem 16 (Third isomorphism theorem). [7, Theorem 7.10] Let M be a left (or right)
R-module, N be a submodule of M , and L be a submodule of N . Then (M/L)/(N/L) is
isomorphic to M/N .

I Theorem 17. [7, Theorem 9.8] Let R be Z or Z/pZ for some prime p. Every submodule
of a free R-module is free. Moreover, if an R-module M is isomorphic to Rn, then every
submodule N of M is isomorphic to Rm for some m ≤ n. (In general, this holds for any
principal ideal domain R.)

Let M be a left R-module. For S ⊂ M , the set RS of all elements in M of the form∑k
i=1 risi (k ∈ Z≥0, ri ∈ R, si ∈ S) is a submodule ofM . If RS = M , S is called a generating

set of S and the elements of S are called generators ofM . Let S = {si}i∈I be a generating set
of M for some indexing set I. For a set X = {xi}i∈I , the linear map ε : RX 3 xi 7→ si ∈M
is a surjection from the free module RX. The elements of ker ε, that is, elements

∑
xi∈X rixi

satisfying ε(
∑
xi∈X rixi) =

∑
xi∈X risi = 0, are called relations of M .

Now, we introduce one of the most important notions to develop the homology theory of
rewriting systems, free resolutions. We first start from the following example.

I Example 18. Let M be the Z-module defined by

Z{a, b, c, d, e}/Z{a+ b+ c− d− e, 2b− c, a+ 2c− b− d− e}.

We consider the Z-linear map between free Z-modules f0 : Z3 → Z{a, b, c, d, e} defined by

f0(1, 0, 0) = a+ b+ c− d− e, f0(0, 1, 0) = 2b− c, f0(0, 0, 1) = a+ 2c− b− d− e.

We can see that the image of f0 is the set of relations of M . In other words, im f0 = ker ε
for the linear map ε : Z{a, b, c, d, e} →M which maps each element to its equivalence class.
Then, we consider the “relations between relations”, that is, triples (n1, n2, n3) which satisfy
f0(n1, n2, n3) = n1(a+ b+ c− d− e) +n2(2b− c) +n3(a+ 2c− b− d− e) = 0, or equivalently,
elements of ker f0. We can check ker f0 = {m(−1, 1, 1) | m ∈ Z}. This fact can be explained
in terms of rewriting systems. If we write relations in the form of rewrite rules

A1. a+ b+ c→ d+ e, A2. 2b→ c, A3. a+ 2c→ b+ d+ e,

we see {A1, A2, A3} is a complete rewriting system with two joinable critical pairs

We associate these critical pairs with an equality between formal sums A2 +A3 = A1, and it
corresponds to

f0(−1, 1, 1) = −(a+ b+ c− d− e)︸ ︷︷ ︸
−A1

+ (2b− c)︸ ︷︷ ︸
A2

+ (a+ 2c− b− d− e)︸ ︷︷ ︸
A3

= 0.

M. Ikebuchi 24:7

In fact, this correspondence between critical pairs and “relations between relations” is a key
to the homology theory of TRSs.

We define a linear map f1 : Z → Z3 by f1(1) = (−1, 1, 1) and then f1 satisfies im f1 =
ker f0. We can go further, that is, we can consider ker f1, but it clearly turns out that
ker f1 = 0.

We encode the above information in the following diagram:

Z f1−→ Z3 f0−→ Z{a, b, c, d, e} ε−→M (3)

where im f1 = ker f0, im f0 = ker ε and ε is surjective. Sequences of modules and linear maps
with these conditions are called free resolutions:

I Definition 19. A sequence of left R-modules and R-linear maps

· · · fi+1−−−→Mi+1
fi−→Mi

fi−1−−−→ · · ·

is called an exact sequence if im fi = ker fi−1 holds for any i.
Let M be a left R-module. For infinite sequence of free modules Fi and linear maps

fi : Fi+1 → Fi, ε : F0 →M , if the sequence

· · · f1−→ F1
f0−→ F0

ε−→M

is exact and ε is surjective, the sequence above is called a free resolution of M . If the sequence
is finite, it is called a partial free resolution.

(Exact sequences and free resolutions are defined for right R-modules in the same way.)

Notice that the exact sequence (3) can be extended to the infinite exact sequence

· · · → 0→ · · · → 0→ Z f1−→ Z3 f0−→ Z{a, b, c, d, e} ε−→M

since ker f1 = 0. Thus, the sequence (3) is a free resolution of M .
As there are generally several rewriting systems equivalent to a given equational theory,

free resolutions of M are not unique. However, we can construct some information of M
from a (partial) free resolution which does not depend on the choice of the free resolution.
The information is called homology groups. To define the homology groups, we introduce the
tensor product of modules.

I Definition 20. Let N be a right R-module and M be a left R-module. Let F (N ×M) be
the free abelian group generated by N ×M . The tensor product of N and M , denoted by
N ⊗R M , is the quotient group of F (N ×M) by the subgroup generated by the elements of
the form

(x, y) + (x, y′)− (x, y + y′), (x, y) + (x′, y)− (x+ x′, y), (x · r, y)− (x, r · y)

where x, x′ ∈ N , y, y′ ∈M , r ∈ R. The equivalence class of (x, y) in N ⊗R M is written as
x⊗ y.

For a right R-module N and a R-linear map f : M →M ′ between left R-modules M,M ′,
we write N ⊗ f : N ⊗R M → N ⊗R M ′ for the map (N ⊗ f)(a⊗ x) = a⊗ f(x). N ⊗ f is
known to be well-defined and be a group homomorphism.

Let · · · f1−→ F1
f0−→ F0

ε−→M be a free resolution of a left R-module M . For a right R-module
N , we consider the sequence

· · · N⊗f1−−−−→ N ⊗R F1
N⊗f0−−−−→ N ⊗R F0. (4)

FSCD 2019

24:8 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

Then, it can be shown that im(N ⊗ fi) ⊂ ker(N ⊗ fi−1) for any i = 1, 2, In general, a
sequence · · · fi+1−−−→Mi+1

fi−→Mi
fi−1−−−→ · · · of left/right R-modules satisfying im fi ⊂ ker fi−1

for any i is called a chain complex. The homology groups of a chain complex are defined to
be the quotient group of ker fi−1 by im fi:

I Definition 21. Let (C•, f•) denote the pair ({Ci}i=0,1,..., {fi : Ci+1 → Ci}i=0,1,...). For a
chain complex · · · fi+1−−−→ Ci+1

fi−→ Ci
fi−1−−−→ · · · , the abelian group Hj(C•, f•) defined by

Hj(C•, f•) = ker fj−1/ im fj

is called the j-th homology groups of the chain complex (C•, f•).

The homology groups of the chain complex (4) depend only on M , N , and R:

I Theorem 22. [6, Corollary 6.21] Let M be a left R-module and N be a right R-module.
For any two resolutions · · · f1−→ F1

f0−→ F0
ε−→ M , · · · f

′
1−→ F ′1

f ′0−→ F ′0
ε−→ M , we have a group

isomorphism

Hj(N ⊗R F•, N ⊗ f•) ∼= Hj(N ⊗R F ′•, N ⊗ f ′•).

We end this subsection by giving some basic facts on exact sequences.

I Proposition 23. [7, Proposition 7.20 and 7.21]
1. M1

f−→M2 → 0 is exact if and only if ker f = 0.
2. 0→M1

f−→M2 is exact if and only if im f = M2.
3. If M1 is a submodule of M2, the sequence 0→M2

ι−→M1
π−→M1/M2 → 0 is exact where

ι is the inclusion map ι(x) = x and π is the projection π(x) = [x].

I Proposition 24. Suppose we have an exact sequence of R-modules 0 → M1 → M2 →
M3 → 0. If M3 is free, then M2 is isomorphic to M1 ×M3.
The proof is given by using [7, Proposition 7.22].

3.2 String Rewriting Systems and Homology Groups of Monoids
For an alphabet Σ, Σ∗ denotes the set of all strings of symbols over Σ. Σ∗ forms a monoid
under the operation of concatenation with the empty string serving as the identity, and we
call Σ∗ the free monoid generated by Σ. For a string rewriting system (SRS) (Σ, R), we write
M(Σ,R) for the set defined byM(Σ,R) = Σ∗/ ∗←→R. We can seeM(Σ,R) is a monoid under the
operations [u] · [v] = [uv] where [w] denotes the equivalence class of w ∈ Σ∗ with respect to
∗←→R.

We say that two SRSs (Σ1, R1), (Σ2, R2) are isomorphic if the monoidsM(Σ1,R1),M(Σ2,R2)
are isomorphic. It is not difficult to show that for any two SRSs (Σ, R1), (Σ, R2) with the
same signature, if R1 and R2 are equivalent (i.e., ∗←→R1 = ∗←→R2), then (Σ, R1) and (Σ, R2)
are isomorphic. Roughly speaking, the notion that two SRSs are isomorphic means that the
SRSs are equivalent but their alphabets can be different. For example, let Σ1 be {a, b, c}
and R1 be {abb→ ab, ba→ c}. Then, (Σ1, R1) is isomorphic to (Σ2, R2) where Σ2 = {a, b}
and R2 = {abb→ ab}. Intuitively, since c is equivalent to ba with respect to the congruence
∗←→R1 , c is redundant as long as we consider strings modulo ∗←→R1 and (Σ2, R2) is the SRS
made by removing c from (Σ1, R1).

If a monoid S is isomorphic toM(Σ,R) for an SRS (Σ, R), we call (Σ, R) a presentation
of the monoid S.

M. Ikebuchi 24:9

Let S be a monoid and consider the free Z-module ZS. ZS can be equipped with a ring
structure under the multiplication

(∑
w∈S nww

) (∑
w∈Smww

)
=
∑
w,v∈S nwmvwv where

nwmv is the usual multiplication of integers and wv is the multiplication of the monoid S.
ZS as a ring is called the integral monoid ring of S. When we think of ZS as a ring, we
write Z〈S〉 instead of ZS.

We consider Z〈S〉-modules. The group of integers Z forms a left (resp. right) Z〈S〉-module
under the scalar multiplication (

∑
w∈S nww) ·m =

∑
w∈S nwmw (resp. m · (

∑
w∈S nww) =∑

w∈S nwmw). Let · · ·
∂1−→ F1

∂0−→ F0
ε−→ Z be a free resolution of Z over the ring Z〈S〉. The

i-th monoid homology Hi(S) is defined as the i-th homology group of the chain complex
(Z⊗Z〈S〉 F•,Z⊗ ∂•), i.e.,

Hi(S) = Hi(Z⊗Z〈S〉 F•,Z⊗ ∂•) = kerZ⊗ ∂i−1/ imZ⊗ ∂i.

If S is isomorphic toM(Σ,R) for some SRS (Σ, R), it is known that there is a free resolution
in the form of

· · · → (Z〈S〉)P ∂2−→ (Z〈S〉)R ∂1−→ (Z〈S〉)Σ ∂0−→ (Z〈S〉){?} ε−→ Z

for some set P . Squier [8] showed that if the SRS (Σ, R) is complete and reduced1, there
is ∂2 : (Z〈S〉)P → (Z〈S〉)R for P = (the critical pairs of R) so that we can compute
H2(S) = ker ∂1/ im ∂2 explicitly. This is an analog of Example 18, but we omit the details
here. For an abelian group G, let s(G) denote the minimum number of generators of G (i.e.,
the minimum cardinality of the subset A ⊂ G such that any element x ∈ G can be written
by x = a1 + · · · + ak − ak+1 − · · · − am for a1, . . . , am ∈ A). Then, we have the following
theorem:

I Theorem 25. Let (Σ, R) be an SRS and S = M(Σ,R). Then #Σ ≥ s(H1(S)), #R ≥
s(H2(S)).

To prove this theorem, we use the following lemma:

I Lemma 26. Let X be a set. The group homomorphism Z⊗Z〈S〉 (Z〈S〉)X → ZX, n〈w〉x 7→
nx is an isomorphism.

This lemma is proved in a straightforward way.

Proof of Theorem 25. Since Z ⊗Z〈S〉 (Z〈S〉)X ∼= ZX by the above lemma, s(Z ⊗Z〈S〉
(Z〈S〉)X) = s(ZX) = #X. For any set Y and group homomorphism f : ZX → ZY ,
since ker f is a subgroup of ZX, we have #X ≥ s(ker f). For any subgroup H of
ker f , ker f/H is generated by [x1], . . . , [xk] if ker f is generated by x1, . . . , xk. Thus
#Σ ≥ s(ker ∂0/ im ∂1) = s(H1(S)), #R ≥ s(ker ∂1/ im ∂2) = s(H2(S)). J

Note that Hi(S) does not depend on the choice of presentation (Σ, R) by Theorem 22.
Therefore, Theorem 25 can be restated as follows: Let (Σ, R) be an SRS. For any SRS (Σ′, R′)
isomorphic to (Σ, R), the number of symbols #Σ′ is bounded below by s(H1(M(Σ,R))) and
the number of rules #R′ is bounded below by s(H2(M(Σ,R))).

1 An SRS (Σ, R) is reduced if for each l → r ∈ R, r is normal w.r.t. →R and there does not exist
l′ → r′ ∈ R such that l′ = ulv 6= l for some u, v ∈ Σ∗

FSCD 2019

24:10 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

4 An Overview of the Homology Theory of TRSs

In this section, we will briefly see the homology theory of TRSs, which is the main tool to
obtain our lower bounds.

We fix a signature Σ. Let t = 〈t1, . . . , tn〉 be a n-uple of terms and suppose that for each ti,
the set of variables in ti is included in {x1, . . . , xm}. For an m-uple of term s = 〈s1, . . . , sm〉,
we define the composition of t and s by

t ◦ s = 〈t1[s1/x1, . . . , sm/xm], . . . , tn[s1/x1, . . . , sm/xm]〉

where ti[s1/x1, . . . , sm/xm] denotes the term obtained by substituting sj for xj in ti for each
j = 1, . . . ,m in parallel. (For example, f(x1, x2)[g(x2)/x1, g(x1)/x2] = f(g(x2), g(x1)).) By
this definition, we can think of any m-uple 〈s1, . . . , sm〉 of terms as a (parallel) substitution
{x1 7→ s1, . . . , xm 7→ sm}. Recall that, for a TRS R, the reduction relation →R between
terms is defined as t1 →R t2 ⇐⇒ t1 = C[l ◦ s], t2 = C[r ◦ s] for some single-hole context C,
m-uple s of terms, and rewrite rule l→ r ∈ R whose variables are included in {x1, . . . , xm}.
This definition suggests that the pair of a context C and an m-uple of terms (or equivalently,
substitution) s is useful to think about rewrite relations. Malbos and Mimram [3] called
the pair of a context and an m-uple of terms a bicontext. For a bicontext (C, t) and a
rewrite rule A, we call the triple (C,A, t) a rewriting step. The pair of two rewriting steps
(�, l1 → r1, s), (C, l2 → r2, t) is called a critical pair if the pair (r1 ◦ s, C[r2 ◦ t]) of terms is a
critical pair in the usual sense given by l1 → r1, l2 → r2.

The composition of two bicontexts (C, t), (D, s) (t = 〈t1, . . . , tn〉, s = 〈s1, . . . , sm〉) is
defined by

(C, t) ◦ (D, s) = (C[D ◦ t], s ◦ t)

where D ◦ t = D[t1/x1, . . . , tn/xn] and note that the order of composition is reversed in the
second component. With this composition, we can define the small category of bicontexts K
as

Objects : natural numbers,
Morphisms K(n,m) (n,m ∈ N) : bicontexts (C, t) where t = 〈t1, . . . , tn〉 and each ti and
C have variables in {x1, . . . , xm} (except � in C),
Identity idn = (�, 〈x1, . . . , xn〉),
Composition ◦ : K(n,m)×K(k, n)→ K(k,m) : defined above.

To apply homological algebra to TRSs, we construct an algebraic structure from K. We
write Z〈K〉 for the (small) category whose objects are natural numbers, set of morphisms
(Z〈K〉)(n,m) is the free abelian group generated by K(n,m) (i.e., any element in (Z〈K〉)(n,m)
is written in the form of formal sum

∑
(C,t)∈K(n,m) λ(C,t)(C, t) where each λ(C,t) is in Z and

is equal to 0 except for finitely many (C, t)s). The composition on Z〈K〉 is defined by∑
(C,t)

λ(C,t)(C, t)

 ◦
∑

(D,s)

µ(D,s)(D, s)

 =
∑
(C,t)

∑
(D,s)

λ(C,t)µ(D,s)((C, t) ◦ (D, s)).

By this definition, we can see that this composition ◦ is bilinear, that is,

a ◦ (b1 + b2) = a ◦ b1 + a ◦ b2, (5)
(a1 + a1) ◦ b = a1 ◦ b+ a2 ◦ b (6)

M. Ikebuchi 24:11

for any a, a1, a2 ∈ (Z〈K〉)(n,m), b, b1, b2 ∈ (Z〈K〉)(k, n). Also, we have

a ◦ 0 = 0 ◦ b = 0. (7)

One may notice that this looks something similar to the ring structure. Indeed, Z〈K〉 forms
the structure called ringoid, which is defined as follows:

I Definition 27. A ringoid R is a small category in which each hom-set R(X,Y) is equipped
with a structure of abelian group (R(X,Y),+) and satisfies (5, 6, 7).

Intuitively, a ringoid R is a “multi-sorted” ring where sorts are the hom-sets R(X,Y) for
any objects X,Y of R and it has an addition + : R(X,Y)×R(X,Y)→ R(X,Y) for each
pair (X,Y) of objects, and a multiplication ◦ : R(Y, Z)×R(X,Y)→ R(X,Z) for each triple
(X,Y, Z) of objects. If R has exactly one object ?, the ringoid R can be identified with the
ring (R(?, ?),+, ◦). (Note that the morphisms correspond to the elements of the ring, not
objects.) We can also define modules over a ringoid. For a ringoid R, a left R-module M
associates each object X of R with an abelian group M(X) and has a “multi-sorted” scalar
multiplication · : R(X,Y)×M(X)→M(Y) for each pair of objects X,Y of R. This notion
is interpreted as a functor from the category R to the category of abelian groups:

I Definition 28. Let R be a ringoid. A left R-module is a functor M : R → Ab satisfying

M(a+ b) = M(a) +M(b), M(0) = 0 (a, b ∈ R(X,Y), X, Y ∈ Obj(R))

where Ab is the category of abelian groups. We define the scalar multiplication · : R(X,Y)×
M(X)→M(Y) by a ·m = M(a)(m).

A right R-module is defined as a left Rop module.
For two left R-modules M1,M2, an R-linear map f : M1 →M2 is a natural transforma-

tion such that each component fX : M1(X)→M2(X) is a group homomorphism.

If R has exactly one object ?, M can be identified with the left R(?, ?)-module (M(?),+, ·).
A free R-module is defined as follows.

I Definition 29. Let R be a ringoid and P be a family of sets PX (X ∈ Obj(R)). The
free left R-module generated by P , denoted by RP is defined as follows. For each object
X ∈ Obj(R), (RP)(X) is the abelian group of formal finite sums∑

xY ∈PY , Y ∈Obj(R)

axY
xY , (axY

∈ R(Y,X))

and for each morphism r ∈ R(X,Z),

r ·

(∑
xY ∈PY , Y ∈Obj(R)

axY
xY

)
=

∑
xY ∈PY , Y ∈Obj(R)

(r ◦ axY
)xY .

For Z〈K〉, we write Cxt for elements of ((Z〈K〉)P)(X) instead of (C, t)x, and (D + C)xt for
Dxt+ Cxt.

The tensor product of two modules over a ringoid is also defined.

I Definition 30. Let R be a ringoid, M1 be a right R-module, and M2 be a left R-module.
For a family of groups {GX | X ∈ P} for some indexing set P , its direct sum, denoted
by
⊕

X∈P GX , is the subset of the direct product defined by {(gX)X∈P ∈
∏
X∈P GX |

gX = 0 except for finite Xs}. The direct sum of groups also forms a group.
The tensor product M1 ⊗RM2 is the quotient abelian group of

⊕
X∈RM1(X)⊗R(X,X)

M2(X) by relations (aop · x)⊗ y − x⊗ (a · y) for all a ∈ R(Y,X), x ∈M(X), y ∈M(Y).

FSCD 2019

24:12 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

Now, we outline Malbos-Mimram’s construction of the homology groups of TRSs.
1. We begin by defining the quotient ringoid Z〈K〉

(Σ,R)
of Z〈K〉 by some relations so that

Z〈K〉
(Σ,R)

depends only on the Tietze equivalence class of (Σ, R). Z〈K〉
(Σ,R)

corresponds
toM(Σ,R) in the case (Σ, R) is an SRS.

2. From this step, we write R for Z〈K〉
(Σ,R)

. It can be shown that we have a partial free
resolution

RP3
∂2−→ RP2

∂1−→ RP1
∂0−→ RP0

ε−→ Z

where every Pi is a family of sets (Pi)j given by (P0)1 = {1}, (P0)j = ∅ (j 6= 1),
(P1)j = Σ(j) = {f ∈ Σ | f is of arity j}, (P2)j = {l → r ∈ R | l→ r is of arity j},
(P3)j = {((�, A, s), (C,B, t)) : critical pair | A,B ∈ (P2)j}. Z is a left R-module
defined as the quotient of RP by all relations of the form

∑
i(κi(u) ◦ t)?〈ti〉 −�?〈u ◦ t〉

for every term u ◦ t where P1 = {?}, Pj = ∅ (j 6= 1) and κi is defined later.
3. By taking the tensor product Z⊗R, we have the chain complex

Z⊗R RP3
Z⊗∂2−−−→ Z⊗R RP2

Z⊗∂1−−−→ Z⊗R RP1
Z⊗∂0−−−→ Z⊗R RP0 (8)

where Z above is the R-module defined by Z(i) = Z (the abelian group of integers) for
each object i, and the scalar multiplication is given by (C, t) · k = k.

4. The homology groups can be defined by

Hi(Σ, R) = ker(Z⊗ ∂i−1)/ im(Z⊗ ∂i).

It is shown that the homology groups of TRS depend only on the “Tietze equivalence”
class of (Σ, R). Tietze equivalence is an analog of isomorphism between SRSs; it is an
equivalence between two TRSs (Σ1, R1), (Σ2, R2) where the signatures Σ1 and Σ2 can
be different, while the usual equivalence is defined for TRSs with the same signature by
∗←→R1 = ∗←→R2 . Especially, any two TRSs (Σ, R1),(Σ, R2) are Tietze equivalent if they are
equivalent in the usual sense, ∗←→R1 = ∗←→R2 . Thus, we have the following:

∗←→R1 = ∗←→R2 =⇒ Hi(Σ, R1) ∼= Hi(Σ, R2).

For the step 1, we define the relations of Z〈K〉
(Σ,R)

. We identify elements in Z〈K〉 as follows.
(a) For two m-uples t = 〈t1, . . . , tm〉, s = 〈s1, . . . , sm〉 of terms, we identify t and s if t ∗←→R s.
(b) Similarly, for two single-hole contexts C,D, we identify C and D if C ∗←→R D. For the
last identification, we introduce operator κi which takes a term t and returns the formal sum
of single-hole contexts C1 + · · ·+ Cm where Cj (j = 1, . . . ,m) is obtained by replacing the
j-th occurrence of xi with � in t, and m is the number of the occurrences of xi in t. For
example, we have

κ1(f(g(x1, x2), x1)) = f(g(�, x2), x1) + f(g(x1, x2),�),
κ2(f(g(x1, x2), x1)) = f(g(x1,�), x1),

κ2(h(x1)) = 0.

The definition of κi can be stated inductively as follows:

κi(xi) = �, κi(xj) = 0 (j 6= i),

κi(f(t1, . . . , tn)) =
n∑
k=1

f(t1, . . . , tk−1, κi(tk), tk+1, . . . , tn).

M. Ikebuchi 24:13

Then, (c) we identify formal sums of bicontexts (C1, t)+ · · ·+(Ck, t) and (D1, t)+ · · ·+(Dl, t)
if κi(u) = C1 + · · ·+ Ck, κi(v) = D1 + · · ·+ Dl for some positive integer i and terms u, v
such that u ∗←→R v. Z〈K〉

(Σ,R)
is defined as the quotient of Z〈K〉 by the equivalence class

generated by the identifications (a), (b), and (c).
We omit the definitions of the R-linear maps ε, ∂i (i = 0, 1, 2) in the step 2, but we

describe the group homomorphisms Z⊗ ∂i : Z⊗RRPi+1 → Z⊗RRPi. Let ∂̃i denote Z⊗ ∂i
for simplicity. For the step 2, we define the R-linear maps ε, ∂i (i = 0, 1, 2). For f (n) ∈ Σ,
the homomorphism ∂̃0 : Z⊗R RP1 → Z⊗R RP0 is given by

∂̃0(f) = (n− 1)1.

For a term t, we define ϕ(t) as the linear combinaton of symbols
∑
f∈Σ nff where nf

is the number of occurrences of f in t. Using this, for l → r ∈ R, the homomorphism
∂̃1 : Z⊗R RP2 → Z⊗R RP1 is given by

∂̃1(l→ r) = ϕ(r)− ϕ(l).

For a critical pair ((�, l → r, s), (C, u → v, t)), let (Di, li → ri, si), (Cj , uj → vj , tj)
(i = 1, . . . , k, j = 1, . . . , l) be rewriting steps such that r ◦ s = D1[l1 ◦ s1], D1[r1 ◦ s1] =
D2[l2 ◦ s2], . . . , Dk−1[rk−1 ◦ sk−1] = Dk[lk ◦ sk], C[v ◦ t] = C1[u1 ◦ t1], C1[v1 ◦ t1] = C2[u2 ◦
t2], . . . , Cl−1[vl−1 ◦ tl−1] = Cl[ul ◦ tl], Dk[rk ◦ sk] = Cl[vl ◦ tl]. Then the map ∂̃2((�, l →
r, s), (C, u→ v, t)) is defined by

u→ v − l→ v −
k∑
i=1

ui → vi −
l∑

j=1
lj → rj .

Malbos-Mimram’s lower bound for the number of rewrite rules is given by s(H2(Σ, R)).
(Recall that s(G) denotes the minimum number of generators of an abelian group G.) More
precisely, #Σ′ ≥ s(H1(Σ, R)) and #R′ ≥ s(H2(Σ, R)) hold for any TRS (Σ′, R′) that is
Tietze equivalent to (Σ, R). These inequalities are shown in a similar way to the proof of
Theorem 25.

5 Proof of Main Theorem

Let (Σ, R) be a complete TRS. We first simplify the tensor product Z⊗R ZPi in (8).

I Lemma 31. Let d = deg(R) and P be a family of sets P0, P1, Then, we have
Z⊗R RP ∼= (Z/dZ)

⊎
i Pi. Especially, if d = 0, Z⊗R RP ∼= Z

⊎
i Pi.

Proof. We define a group homomorphism f : Z ⊗R RP → (Z/dZ)
⊎
i Pi by f((wn)n≥0) =∑

n≥0 fn(wn) where fn : Z⊗R(n,n) RP (n)→ (Z/dZ)Pn is defined by fn(k ⊗Cat) = [k]a for
a ∈ Pn. It is enough to show each fn is an isomorphism. If #il −#ir = m for l → r ∈ R,
we have a relation of R

0 = 1⊗ (κi(l)at− κi(r)at) = 1⊗ κi(l)at− 1⊗ κi(r)at = #il ⊗ a−#ir ⊗ a = m⊗ a.

Since d divides m, fn(m ⊗ a) = [m]a = 0. Therefore fn is well-defined. To prove fn is
injective, it suffices to show qd⊗a = 0 for any q ∈ Z. Since d = gcd{#il−#ir | l→ r ∈ R, i =
1, 2, . . . }, there exist integers ci,l→r such that d =

∑
l→r∈R, i=1,2,... ci,l→r(#il −#ir). Since

(#il−#ir)⊗ a = 1⊗ (κi(l)− κi(r))a〈x1, . . . , xn〉 = 0 for each i ∈ {0, 1, . . . }, l→ r ∈ R, we
have qd⊗a = q

∑
l→r∈R, i=1,2,... ci,l→r(#il−#ir)⊗a = 0. The surjectivity of fn is trivial. J

FSCD 2019

24:14 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

As special cases of this lemma, we have Z ⊗R RP0 ∼= (Z/dZ)Σ, Z ⊗R RP1 ∼= (Z/dZ)R,
and Z ⊗R RP2 ∼= (Z/dZ)CP(R). Additionally, we can see each group homomorphism ∂̃i
(i = 0, 1, 2) is a Z/dZ-linear map.

To prove Theorem 5, we show the following lemma.

I Lemma 32. Let d = deg(R). If d = 0 or d is prime, #R− e(R) = s(H2(Σ, R)) + s(im ∂̃1).

Proof. By definition, D(R) defined in Section 2 is a matrix representation of ∂̃2. Suppose d
is prime. In this case, s(H2(Σ, R)) is equal to the dimension of H2(Σ, R) as a Z/dZ-vector
space. By the rank-nullity theorem, we have

dim(H2(Σ, R)) = dim(ker ∂̃1)− dim(im ∂̃2)
= dim(Z⊗R RP1)− dim(im ∂̃1)− dim(im ∂̃2)
= dim((Z/dZ)R)− dim(im ∂̃1)− rank(D(R))
= #R− dim(im ∂̃1)− e(R).

Suppose d = 0. We show H2(Σ, R) ∼= Z#R−r−k × Z/e1Z × · · · × Z/erZ where r =
rank(D(R)), k = s(im ∂̃1), and e1, . . . , er are the elementary divisors of D(R). Let

∂1 : Z⊗R RP1/ im ∂̃2 → Z⊗R RP0

be the group homomorphism defined by [x] 7→ ∂̃1(x). ∂1 is well-defined since im ∂̃2 ⊂ ker ∂̃1,
and ker ∂1 is isomorphic to ker ∂̃1/ im ∂̃2 = H2(Σ, R). By taking the basis v1, . . . , v#R of
Z⊗RRP1 ∼= ZR such thatD(R) is the matrix representation of ∂̃2 under the basis v1, . . . , v#R
and some basis of Z⊗RRP2, we can see Z⊗RRP1/ im ∂̃2 ∼= Z#R−r ×Z/e1Z× · · · ×Z/ekZ.
Suppose ∂1(ei[x]) = 0 for some x and i = 1, . . . , r. Since ∂1 is a homomorphism, ∂1(ei[x]) =
ei∂1([x]) ∈ Z⊗R RP0 ∼= ZΣ holds. Since ZΣ is free, we have [x] = 0. Therefore, ker ∂1 is
included in the subset of Z⊗R RP1/ im ∂̃2 isomorphic to Z#R−r × {0} × · · · × {0}. Thus,
ker ∂1 ∼= Z#R−r−k × Z/e1Z× · · · × Z/erZ.

Since Z/eZ ∼= 0 if e is invertible, Z#R−r−k × Z/e1Z × · · · × Z/ekZ ∼= Z#R−r−k ×
Z/ee(R)+1Z × · · ·Z/erZ =: G. G is generated by (1, 0, . . . , 0︸ ︷︷ ︸

#R−r−k

, [0], . . . , [0]︸ ︷︷ ︸
r−e(R)

), (0, . . . , 0, 1, [0],

. . . , [0]), (0, . . . , 0, [1], [0], . . . , [0]), (0, . . . , 0, [0], . . . , [0], [1]), so we have s(G) ≤ #R− r − k +
r − e(R) = #R − k − e(R). Let p be a prime number which divides ee(R)+1. We can see
G/pG ∼= (Z/pZ)#R−k−e(R). It is not hard to see s(G) ≥ s(G/pG), and since G/pG is a
Z/pZ-vector space, s(G/pG) = dim(G/pG) = #R− k − e(R). Thus, s(H2(Σ, R)) = s(G) =
#R− s(im ∂̃1)− e(R). J

By Lemma 32, Theorem 5 is implied by the following theorem:

I Theorem 33. Let (Σ, R) be a complete TRS and d = deg(R). If d = 0 or d is prime,

#R ≥ s(H2(Σ, R)) + s(im ∂̃1). (9)

Proof. By the first isomorphism theorem, we have an isomorphism between Z/dZ-modules

im ∂̃1 ' Z⊗R RP2/ker ∂̃1

and by the third isomorphism theorem, the right hand side is isomorphic to

Z⊗R RP2/ker ∂̃1 '
(
Z⊗R RP2/im ∂̃2

)
/
(
ker ∂̃1/im ∂̃2

)
'
(
Z⊗R RP2/im ∂̃2

)
/H2(Σ, R).

M. Ikebuchi 24:15

Thus, we obtain the following exact sequence by Proposition 23:

0→ H2(Σ, R)→ Z⊗R RP2/im ∂̃2 → im ∂̃1 → 0.

By Theorem 17, since im ∂̃1 ⊂ Z⊗R RP1 ∼= (Z/dZ)R and (Z/dZ)R is a free Z/dZ-module,
im ∂̃1 is also free and by Proposition 24, we have Z ⊗R RP2/im ∂̃2 ∼= H2(Σ, R) × im ∂̃1.
Therefore, s(Z⊗RRP2/im ∂̃2) = s(H2(Σ, R)) + s(im ∂̃1). Since Z⊗RRP2/im ∂̃2 is generated
by [l1 → r1], . . . , [lk → rk] if R = {l1 → r1, . . . , lk → rk}, we obtain

k = #R ≥ s(Z⊗R RP2/im ∂̃2) = s(H2(Σ, R)) + s(im ∂̃1).

Thus, we get (9). J

Proof of Theorem 5. As we stated, H2(Σ, R) depends only on the Tietze equivalence class
of (Σ, R). Let us show s(im ∂̃1) also depends only on the Tietze equivalence class of (Σ, R).
For a left R-module M , rank(M) denotes the cardinality of a minimal linearly independent
generating set ofM , that is, a minimal generating set S ofG such that any element s1, . . . , sk ∈
Γ, and r1s1 + · · ·+ rksk = 0 =⇒ r1 = · · · = rk = 0 for any r1, . . . , rk ∈ R, s1, . . . , sk ∈ S.
It can be shown that rank(M) = s(M) if M is free. Especially, s(im ∂̃1) = rank(im ∂̃1) since
im ∂̃1 ⊂ ZR if deg(R) = 0. Also, rank(im ∂̃1) = rank(ker ∂̃0)− rank(ker ∂̃0/ im ∂̃1) is obtained
by a general theorem [7, Ch 10, Lemma 10.1]. By definition, ∂̃0 does not depend on R. Since
ker ∂̃0/ im ∂̃1 = H1(Σ, R) depends only on the Tietze equivalence class of (Σ, R), so does
rank(im ∂̃1).

In conclusion, for any TRS R′ equivalent to R, we obtain #R′ ≥ s(H2(Σ, R))+s(im ∂̃1) =
#R− e(R). J

We consider the case where every symbol in Σ is of arity 1. Notice that any TRS (Σ, R)
can be seen as an SRS and deg(R) = 0 in this case. We have rank(ker ∂̃0) = #Σ since
∂̃0(f) = 0 for any f ∈ Σ. Therefore, (9) can be rewritten to

#R−#Σ ≥ s(H2(Σ, R))− rank(H1(Σ, R)).

So, for SRSs, we have a lower bound of the number of the rewrite rules minus the number of
the symbols. For groups, in fact, this inequality is proved in terms of group homology [1].

References
1 D. Epstein. Finite presentations of groups and 3-manifolds. The Quarterly Journal of

Mathematics, 12(1):205–212, 1961.
2 K. Kunen. Single axioms for groups. Journal of Automated Reasoning, 9(3):291–308, December

1992. doi:10.1007/BF00245293.
3 P. Malbos and S. Mimram. Homological computations for term rewriting systems. In 1st

International Conference on Formal Structures for Computation and Deduction (FSCD 2016),
volume 52 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–27:17,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

4 B. H. Neumann. Another single law for groups. Bulletin of the Australian Mathematical
Society, 23(1):81–102, 1981. doi:10.1017/S0004972700006912.

5 B. H. Neumann. Yet another single law for groups. Illinois J. Math., 30(2):295–300, June
1986.

6 J. J. Rotman. An Introduction to Homological Algebra. Springer-Verlag New York, 2009.
7 J. J. Rotman. Advanced Modern Algebra, volume 114. American Mathematical Soc., 2010.
8 C. C. Squier. Word problems and a homological finiteness condition for monoids. Journal of

Pure and Applied Algebra, 49(1-2):201–217, 1987.

FSCD 2019

http://dx.doi.org/10.1007/BF00245293
http://dx.doi.org/10.1017/S0004972700006912

24:16 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

9 A. Tarski. Equational Logic and Equational Theories of Algebras. In Contributions to
Mathematical Logic, volume 50 of Studies in Logic and the Foundations of Mathematics, pages
275–288. Elsevier, 1968.

A The matrix D(R) for The Theory of Groups

For the TRS R defined in Example 7, D(R) is given by the transpose of

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 1 0 0 0
0 1 0 1 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 1 0 0 1
0 0 1 1 0 0 0 0 1 0
0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 1
0 0 0 1 1 0 1 0 0 1
0 0 1 1 0 0 0 1 1 0
0 0 0 1 1 0 0 1 0 0
0 1 0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 1
0 0 0 1 1 0 1 0 0 1
0 0 1 0 1 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0
0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1
1 0 1 0 1 1 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1
1 0 1 0 1 0 0 0 1 0


where the i-th column corresponds to the rule Gi, and the j-th row corresponds to the
critical pair Cj shown in the next pages.

M. Ikebuchi 24:17

C1 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(m(x4, x5), x6)→ m(x4,m(x5, x6)), m(�, x3),
{x6 7→ x2, x1 7→ m(x4, x5)}

C2 : i(m(x1, x2))→ m(i(x2), i(x1)), m(m(x3, x4), x5)→ m(x3,m(x4, x5)), i(�),
{x5 7→ x2, x1 7→ m(x3, x4)}

C3 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(x4,m(i(x4), x5))→ x5, m(�, x3),
{x2 7→ m(i(x1), x5), x4 7→ x1}

C4 : m(x1,m(i(x1), x2))→ x2, m(m(x3, x4), x5)→ m(x3,m(x4, x5)), �,

{x5 7→ m(i(m(x3, x4)), x2), x1 7→ m(x3, x4)}
C5 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(i(x4),m(x4, x5))→ x5, m(�, x3),

{x2 7→ m(x4, x5), x1 7→ i(x4)}
C6 : m(i(x1),m(x1, x2))→ x2, m(m(x3, x4), x5)→ m(x3,m(x4, x5)), m(i(x1),�),

{x5 7→ x2, x1 7→ m(x3, x4)}
C7 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(i(x4), x4)→ e, m(�, x3),

{x4 7→ x2, x1 7→ i(x2)}
C8 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(x4, i(x4))→ e, m(�, x3),

{x2 7→ i(x1), x4 7→ x1}
C9 : m(x1, i(x1))→ e, m(m(x2, x3), x4)→ m(x2,m(x3, x4)), �,

{x4 7→ i(m(x2, x3)), x1 7→ m(x2, x3)}
C10 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(x4, e)→ x4, m(�, x3), {x2 7→ e, x4 7→ x1}
C11 : m(x1, e)→ x1, m(m(x2, x3), x4)→ m(x2,m(x3, x4)), �, {x4 7→ e, x1 7→ m(x2, x3)}
C12 : m(m(x1, x2), x3)→ m(x1,m(x2, x3)), m(e, x4)→ x4, m(�, x3), {x4 7→ x2, x1 7→ e}
C13 : i(m(x1, x2))→ m(i(x2), i(x1)), m(e, x3)→ x3, i(�), {x3 7→ x2, x1 7→ e}
C14 : m(x1,m(i(x1), x2))→ x2, m(e, x3)→ x3, �, {x3 7→ m(i(e), x2), x1 7→ e}
C15 : m(i(x1),m(x1, x2))→ x2, m(e, x3)→ x3, m(i(x1),�), {x3 7→ x2, x1 7→ e}
C16 : m(x1, i(x1))→ e, m(e, x2)→ x2, �, {x2 7→ i(e), x1 7→ e}
C17 : m(x1, e)→ x1, m(e, x2)→ x2, �, {x2 7→ e, x1 7→ e}
C18 : i(m(x1, x2))→ m(i(x2), i(x1)), m(x3, e)→ x3, i(�), {x2 7→ e, x3 7→ x1}
C19 : m(x1,m(i(x1), x2))→ x2, m(x3, e)→ x3, m(x1,�), {x2 7→ e, x3 7→ i(x1)}
C20 : m(i(x1),m(x1, x2))→ x2, m(x3, e)→ x3, m(i(x1),�), {x2 7→ e, x3 7→ x1}
C21 : m(i(x1), x1)→ e, m(x2, e)→ x2, �, {x1 7→ e, x2 7→ i(e)}
C22 : m(x1, i(x1))→ e, i(m(x2, x3))→ m(i(x3), i(x2)), m(x1,�), {x1 7→ m(x2, x3)}
C23 : i(m(x1, x2))→ m(i(x2), i(x1)), m(x3, i(x3))→ e, i(�), {x2 7→ i(x1), x3 7→ x1}
C24 : m(x1,m(i(x1), x2))→ x2, m(x3, i(x3))→ e, m(x1,�), {x2 7→ i(i(x1)), x3 7→ i(x1)}

Figure 2 The critical pairs of the complete TRS R
(Cj : l → r, l′ → r′, C, σ means Cj is the critical pair (rσ, C[r′σ]).) – Part 1.

FSCD 2019

24:18 A Lower Bound of the Number of Rewrite Rules Obtained by Homological Methods

C25 : m(x1, i(x1))→ e, i(i(x2))→ x2, m(x1,�), {x1 7→ i(x2)}
C26 : m(x1, i(x1))→ e, i(e)→ e, m(x1,�), {x1 7→ e}
C27 : m(i(x1),m(x1, x2))→ x2, m(x3, i(x3))→ e, m(i(x1),�), {x2 7→ i(x1), x3 7→ x1}
C28 : m(i(x1), x1)→ e, i(m(x2, x3))→ m(i(x3), i(x2)), m(�, x1), {x1 7→ m(x2, x3)}
C29 : i(m(x1, x2))→ m(i(x2), i(x1)), m(i(x3), x3)→ e, i(�), {x3 7→ x2, x1 7→ i(x2)}
C30 : m(x1,m(i(x1), x2))→ x2, m(i(x3), x3)→ e, m(x1,�), {x1 7→ x2, x3 7→ x2}
C31 : m(i(x1), x1)→ e, i(i(x2))→ x2, m(�, x1), {x1 7→ i(x2)}
C32 : m(i(x1), x1)→ e, i(e)→ e, m(�, x1), {x1 7→ e}
C33 : m(i(x1),m(x1, x2))→ x2, m(i(x3), x3)→ e, m(i(x1),�), {x3 7→ x2, x1 7→ i(x2)}
C34 : m(i(x1),m(x1, x2))→ x2, m(i(x3),m(x3, x4))→ x4, m(i(x1),�), {x2 7→ m(x3, x4), x1 7→ i(x3)}
C35 : m(i(x1),m(x1, x2))→ x2, i(m(x3, x4))→ m(i(x4), i(x3)), m(�,m(x1, x2)), {x1 7→ m(x3, x4)}
C36 : i(m(x1, x2))→ m(i(x2), i(x1)), m(i(x3),m(x3, x4))→ x4, i(�), {x2 7→ m(x3, x4), x1 7→ i(x3)}
C37 : m(i(x1),m(x1, x2))→ x2, m(x3,m(i(x3), x4))→ x4, m(i(x1),�), {x2 7→ m(i(x1), x4), x3 7→ x1}
C38 : m(x1,m(i(x1), x2))→ x2, m(i(x3),m(x3, x4))→ x4, m(x1,�), {x2 7→ m(x1, x4), x3 7→ x1}
C39 : m(i(x1),m(x1, x2))→ x2, i(i(x3))→ x3, m(�,m(x1, x2)), {x1 7→ i(x3)}
C40 : m(i(x1),m(x1, x2))→ x2, i(e)→ e, m(�,m(x1, x2)), {x1 7→ e}
C41 : m(x1,m(i(x1), x2))→ x2, i(e)→ e, m(x1,m(�, x2)), {x1 7→ e}
C42 : i(i(x1))→ x1, i(e)→ e, i(�), {x1 7→ e}
C43 : i(i(x1))→ x1, i(i(x2))→ x2, i(�), {x1 7→ i(x2)}
C44 : i(i(x1))→ x1, i(m(x2, x3))→ m(i(x3), i(x2)), i(�), {x1 7→ m(x2, x3)}
C45 : m(x1,m(i(x1), x2))→ x2, i(i(x3))→ x3, m(x1,m(�, x2)), {x1 7→ i(x3)}
C46 : m(x1,m(i(x1), x2))→ x2, m(x3,m(i(x3), x4))→ x4, m(x1,�),

{x2 7→ m(i(i(x1)), x4), x3 7→ i(x1)}
C47 : m(x1,m(i(x1), x2))→ x2, i(m(x3, x4))→ m(i(x4), i(x3)), m(x1,m(�, x2)), {x1 7→ m(x3, x4)}
C48 : i(m(x1, x2))→ m(i(x2), i(x1)), m(x3,m(i(x3), x4))→ x4, i(�), {x2 7→ m(i(x1), x4), x3 7→ x1}

Figure 3 The critical pairs of the complete TRS R
(Cj : l → r, l′ → r′, C, σ means Cj is the critical pair (rσ, C[r′σ]).) – Part 2.

Gluing for Type Theory
Ambrus Kaposi
Eötvös Loránd University, Budapest, Hungary
akaposi@inf.elte.hu

Simon Huber
University of Gothenburg, Sweden
simonhu@chalmers.se

Christian Sattler
University of Gothenburg, Sweden
sattler@chalmers.se

Abstract
The relationship between categorical gluing and proofs using the logical relation technique is folklore.
In this paper we work out this relationship for Martin-Löf type theory and show that parametricity
and canonicity arise as special cases of gluing. The input of gluing is two models of type theory
and a pseudomorphism between them and the output is a displayed model over the first model.
A pseudomorphism preserves the categorical structure strictly, the empty context and context
extension up to isomorphism, and there are no conditions on preservation of type formers. We look
at three examples of pseudomorphisms: the identity on the syntax, the interpretation into the set
model and the global section functor. Gluing along these result in syntactic parametricity, semantic
parametricity and canonicity, respectively.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Martin-Löf type theory, logical relations, parametricity, canonicity, quotient
inductive types

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.25

Funding Ambrus Kaposi: The author was supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and Infocommunications) and COST Action EUTypes CA15123.
Simon Huber : I acknowledge the support of the Centre for Advanced Study (CAS) in Oslo, Norway,
which funded and hosted the research project Homotopy Type Theory and Univalent Foundations
during the academic year 2018/19.

Acknowledgements The authors thank Thorsten Altenkirch, Simon Boulier, Thierry Coquand,
András Kovács and Nicolas Tabareau for discussions related to the topics of this paper.

1 Introduction

Categorical gluing [11, Section 4.10] is a method to form a new category from two categories
and a functor between them. This goes back to the Artin gluing of Grothendieck toposes [5,
Exposé IV, Section 9.5]. Given a functor F from category S toM, an object in the glued
category is a triple Γ : |S|, ∆ : |M| and a morphismM(∆, F Γ). Models of logics and type
theories can be given as categories with extra structure and gluing can be extended to these
models. Gluing was used to prove properties of closed proofs in intuitionistic higher-order
logic [21] and normalisation for simple type theory [14, 26] and System F [2]. In programming
language semantics, similar results are proved more syntactically using the technique of
logical relations [22, 24], see [15] for an introduction and [13, 1] for more recent proofs using
this technique. It is folklore that logical relations correspond to gluing. Logical relations
scale to real-world systems [27, 19] while gluing is a more abstract construction which can
be applied to systems with well-understood categorical semantics.

© Ambrus Kaposi, Simon Huber, and Christian Sattler;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9897-8936
mailto:akaposi@inf.elte.hu
mailto:simonhu@chalmers.se
mailto:sattler@chalmers.se
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Gluing for Type Theory

In this paper we develop the correspondence between proof-relevant logical predicates
and gluing for Martin-Löf type theory. Logical relations were defined for type theory to prove
free theorems in syntactic [7] and semantic (Reynolds-style) [6] ways. Proof-relevant logical
predicates were employed to prove normalisation and canonicity for type theory [4, 10, 20].
We unify these approaches by defining gluing in an abstract way, for any pseudomorphism
between two models of type theory. An important characteristic of our approach is using an
algebraic syntax of type theory. By this we mean the well-typed syntax of type theory given
as a quotient inductive-inductive type (QIIT, [18]). A model of this syntax is just an algebra
of the QIIT which turns out to be the same as a category with families (CwF, [12]) with
extra structure. A pseudomorphism of models is a map from sorts in one model to sorts in
the other model which preserves the categorical structure strictly and the empty context
and context extension up to isomorphism. We show that gluing can be performed along any
pseudomoprhism and gluing preserves Π, Σ, Bool and an infinite hierarchy of universes.

Our motivational guideline for this paper is the following.

1. Gluing over identity is syntactic parametricity.
2. Gluing over the interpretation into the set model is semantic parametricity.
3. Gluing over the global section functor is canonicity.
4. Gluing over Yoneda is normalisation.
5. Gluing over Yoneda composed with the set interpretation is definability/completeness.

In this paper we only generalise steps 1–3. The Yoneda embedding (from the syntax
to the presheaf model over a wide subcategory of contexts and substitutions) is also a
pseudomorphism, so our paper applies to steps 4–5 as well. However, Yoneda has extra
structure that we do not employ in this paper. This extra structure is needed to obtain full
normalisation or completeness.

Structure of the paper

After summarizing related work and the metatheory, we define our object type theory in
Section 2 and as an example we define its set model (Section 3). Then we define the notion
of pseudomorphism (Section 4) and gluing for any pseudomorphism (Section 5). Afterwards,
in Section 6 we define a non-trivial pseudomorphism: the global section functor which goes
from the syntax to the set model and maps types to terms of the type in the empty context.
We put together the pieces in Section 7 by obtaining parametricity and canonicity for our
object theory using gluing. We conclude and summarize further work in Section 8.

Contribution

The contribution of this paper is showing that gluing can be defined for any pseudomorphism
for Martin-Löf type theory. To our knowledge, this is the first general construction from
which both parametricity and canonicity arise.

Related work

Sterling and Spitters [26] developed gluing for simple type theory and show how it relates
to syntactic proofs of normalisation by logical relations and semantic proofs based on
normalisation by evaluation. Altenkirch, Hofmann and Streicher developed gluing for System
F and prove normalisation in their unpublished note [2]. Rabe and Sojakova [23] defined a
syntactic framework for logical relations which applies to theories formulated in the Edinburgh

A. Kaposi, S. Huber, and C. Sattler 25:3

Logical Framework (LF). Shulman [25] developed gluing for type theory in the context of
type-theoretic fibration categories and proves homotopy canonicity for a 1-truncated version
of homotopy type theory. Compared to Shulman, we work with a notion of model closer
to the syntax of type theory: categories with families. In previous work [4] we proved
normalisation for type theory with Π, a base type and a base family. The logical predicate
used in that proof is an instance of the abstract gluing technique presented in this paper.
Coquand [10] proves canonicity and normalisation for a richer type theory with Bool and
a hierarchy of universes. His canonicity proof is an unfolding of the canonicity proof given
in this paper.

Metatheory and notation

Our metatheory is Martin-Löf’s extensional type theory. We have a cumulative hierarchy of
universes Set0, Set1, . . . with Setω on top. Sometimes we omit the universe indices. Function
space is denoted by → with constructor λ and application written as juxtaposition. We
use implicit arguments extensively, e.g. we would write the type of function composition as
(B → C) → (A → B) → (A → C) instead of (A : Set) → (B : Set) → (C : Set) → (B →
C)→ (A→ B)→ (A→ C). When a metavariable is not quantified explicitly (such as A, B,
C), we assume implicit quantification and implicit application as well. Sometimes we omit
explicit arguments for readability, in this case we write underscore _ instead of the argument.
Pairs are denoted by × with constructor – , – and destructors .1 and .2. Both → and × come
with η laws. The one-element type is denoted 1 with constructor ∗, the two-element type is
denoted 2, its constructors being ∗ and ∗∗ and its eliminator case. Equality is denoted =
and we use equational reasoning to write equality proofs. We use equality reflection in the
metatheory (not in our object theory described in Section 2). Following Hofmann [16], our
arguments can be translated to an intensional type theory with function extensionality and
uniqueness of identity proofs.

2 Type theory

By type theory we mean the (generalised) algebraic structure in Figure 1 with four sorts, 26
operators, and 34 equations. The four sorts are those of contexts, types, substitutions, and
terms. Contexts and types are indexed by a universe level which is a metatheoretic natural
number. Furthermore, types are indexed by contexts and terms by a context and a type in
that context so that we can only mention well-typed terms. Substitutions are indexed by
their domain and codomain, both contexts.

We explain the operators and laws for the substitution calculus (first column, operators id
to , ◦) as follows: Con and Sub form a category (id to idr); there is a contravariant, functorial
action of substitutions on types and terms (–[–] to [◦]), thus types (of fixed level) form a
presheaf on the category and terms form a presheaf on its category of elements; there is
an empty context · with a unique (·η) empty substitution ε into it, thus · is the terminal
object of the category; extended contexts can be formed using – . – and there is a natural
isomorphism between substitutions into ∆ BA and a pair of a substitution σ into ∆ and a
term of type A[σ] (– , – to , ◦). The substitution calculus is the same as the structure of a
category with families (CwF, [12]) with contexts and types indexed over natural numbers
representing universe levels. In the CwF language, context extension is called comprehension.
We denote n-fold iteration of the weakening substitution p by pn (where p0 = id), and we
denote De Bruijn indices by natural numbers, i.e. 0 := q, 1 := q[p], . . . , n := q[pn]. We define

FSCD 2019

25:4 Gluing for Type Theory

Con : N→ Set Σ : (A : Ty iΓ)→ Ty j (Γ . A)→
Ty : N→ Con i→ Set Ty (i t j) Γ
Sub : Con i→ Con j → Set – , – : (u : Tm ΓA)→ Tm Γ (B[id, u])→
Tm : (Γ : Con i)→ Ty j Γ→ Set Tm Γ (ΣAB)
id : Sub Γ Γ projl : Tm Γ (ΣAB)→ Tm ΓA
– ◦ – : Sub Θ ∆→ Sub Γ Θ→ Sub Γ ∆ projr : (t : Tm Γ (ΣAB))→
ass : (σ ◦ δ) ◦ ν = σ ◦ (δ ◦ ν) Tm Γ (B[id, projl t])
idl : id ◦ σ = σ Σβ1 : projl (u, v) = u

idr : σ ◦ id = σ Σβ2 : projr (u, v) = v

–[–] : Ty i∆→ Sub Γ ∆→ Ty iΓ Ση : (projl t, projr t) = t

–[–] : Tm ∆A→ (σ : Sub Γ ∆)→ Σ[] : (ΣAB)[σ] = Σ (A[σ]) (B[σ↑])
Tm Γ (A[σ]) , [] : (u, v)[σ] = (u[σ], v[σ])

[id] : A[id] = A > : Ty 0 Γ
[◦] : A[σ ◦ δ] = A[σ][δ] tt : Tm Γ>
[id] : t[id] = t >η : (t : Tm Γ>) = tt
[◦] : t[σ ◦ δ] = t[σ][δ] >[] : >[σ] = >
· : Con 0 tt[] : tt[σ] = tt
ε : Sub Γ · U : (i : N)→ Ty (i+ 1) Γ
·η : (σ : Sub Γ ·) = ε El : Tm Γ (U i)→ Ty iΓ
– . – : (Γ : Con i)→ Ty j Γ→ Con (i t j) c : Ty iΓ→ Tm Γ (U i)
– , – : (σ : Sub Γ ∆)→ Tm Γ (A[σ])→ Uβ : El (cA) = A

Sub Γ (∆ . A) Uη : c (El a) = a

p : Sub (Γ . A) Γ U[] : (U i)[σ] = (U i)
q : Tm (Γ . A) (A[p]) El[] : (El a)[σ] = El (a[σ])
.β1 : p ◦ (σ, t) = σ Bool : Ty 0 Γ
.β2 : q[σ, t] = t true : Tm Γ Bool
.η : (p, q) = id false : Tm Γ Bool
, ◦ : (σ, t) ◦ ν = (σ ◦ ν, t[ν]) if : (C : Ty i (Γ . Bool))→
Π : (A : Ty iΓ)→ Ty j (Γ . A)→ Tm Γ (C[id, true])→

Ty (i t j) Γ Tm Γ (C[id, false])→
lam : Tm (Γ . A)B → Tm Γ (ΠAB) (t : Tm Γ Bool)→ Tm Γ (C[id, t])
app : Tm Γ (ΠAB)→ Tm (Γ . A)B Boolβ1 : if C uv true = u

Πβ : app (lam t) = t Boolβ2 : if C uv false = v

Πη : lam (app t) = t Bool[] : Bool[σ] = Bool

Π[] : (ΠAB)[σ] = Π (A[σ]) (B[σ↑]) true[] : true[σ] = true

lam[] : (lam t)[σ] = lam (t[σ↑]) false[] : false[σ] = false
if[] : (if C uv t)[σ] =

if (C[σ↑]) (u[σ]) (v[σ]) (t[σ])

Figure 1 Type theory as a generalised algebraic structure. σ↑ abbreviates (σ ◦ p, q).

A. Kaposi, S. Huber, and C. Sattler 25:5

lifting of a substitution σ : Sub Γ ∆ by σ↑ : Sub (Γ . A[σ]) (∆ . A) := (σ ◦ p, q). We observe
that it has the property ↑[] : (σ↑)[δ, t] = (σ ◦ δ, t).

Π-types are characterized by a natural isomorphism between Tm Γ (ΠAB) and Tm (Γ .
A)B (lam and app). We define the usual application as t $u := (app t)[id, u]. A ⇒ B

abbreviates ΠA (B[p]). Σ-types are given by the constructor – , – and projections projl and
projr and they support an η-law. There is a unit type > with one constructor tt and an η-law
and there is a hierarchy of Tarski-universes, given by natural isomorphisms between Ty iΓ
and Tm Γ (U i) for every i.1 As terms of Π-, Σ- and U-types are characterized by natural
isomorphisms, we stated the substitution law for only one of the two directions, the other
can be derived. We illustrate how to do this for app and state the other laws.

app[] : (app t)[σ↑] Πβ= app (lam ((app t)[σ↑])) lam[]= app ((lam (app t))[σ]) Πη= app (t[σ])
$[] : (t $u)[σ] = t[σ] $u[σ]
projl[] : (projl t)[σ] = projl (t[σ])
projr[] : (projr t)[σ] = projr (t[σ])
c[] : (cA)[σ] = c (A[σ])

Finally, we have booleans with a dependent eliminator if into any universe. Sometimes for
readability we omit the first argument (C) of if and write _ instead.

Note that the well-typedness of some of the equations depends on previous equations.
For example, the left-hand side of .β2 has type Tm Γ (A[p][σ, t]), while the right-hand side
has Tm Γ (A[σ]), and these types are equal by [◦] and .β1. In an intensional metatheory,
we would need to transport the left-hand side over these equations. We use an extensional
metatheory, so we do not write such dependencies.

As an example we write the polymorphic identity function as lam (lam q). Note that lam
and q have several implicit arguments that we did not write down. However, when we write a
term, these implicit arguments should be clear from the context. In this example, saying that
it has type Tm · (Π (U 0) (El q⇒ El q)) fixes all its implicit arguments. We don’t have raw
terms with a type assignment or type inference system, we only work with fully annotated
well-typed terms where lots of information is implicit (as usual in mathematics). This is
sometimes called intrinsic or well-typed syntax, see [3] for an introduction.

We call algebras of the algebraic structure presented in Figure 1 models of type theory.
When referring to different models, we put the model as a subscript, i.e. ConM refers to
contexts in modelM, idM : SubM ΓM ΓM refers to the identity substitution in this model.
For metavariables, we usually use the same subscript as for the two occurrences of ΓM in
the type of idM.

We introduce some basic notions for working with models. These notions are obtained
mechanically by viewing Figure 1 as a scheme for a quotient inductive-inductive type
(QIIT, [18]).

1 We learned this representation of universes from Thierry Coquand. Note that Russell universes
could be represented by replacing El and c by the sort equation Ty iΓ = Tm Γ (U i) and the equation
A[σ]Ty = A[σ]Tm relating type and term substitutions. The latter equation is well-typed because of
the former.

FSCD 2019

25:6 Gluing for Type Theory

A (strict) morphism H between modelsM and N consists of four functions between the
sorts which preserve all the 26 operators (up to equality). We use subscripts to mark
which component we mean, e.g. some of the components are the following.

HCon : ConM i→ ConN i
HTy : TyM j Γ→ TyN j (H Γ)
HSub : SubM Γ ∆→ SubN (H Γ) (H ∆)
HTm : TmM ΓA→ TmN (H Γ) (H A)
H[] : HTy (A[σ]M) = (HTy A)[HSub σ]N
H. : HCon (Γ .M A) = HCon Γ .N HTy A

HΠ : HTy (ΠMAB) = ΠN (HTy A) (HTy B)
Hlam : HTm (lamM t) = lamN (HTm t)
Happ : HTm (appM t) = appN (HTm t)

Sometimes we omit subscripts for readability, e.g. above we wrote H Γ instead of HCon Γ
and we also did not decorate metavariables with subscripts, all Γ above live in ConM, all
σ in SubM etc. We will follow this convention later.
A displayed model Q over a modelM encodes a model with a strict morphism toM. It
is given by four families, 26 operations, and 34 equalities, all of which are over those of
M, e.g.

ConQ : (i : N)→ ConM i→ Set
TyQ : (j : N)→ ConQ iΓ→ TyM j Γ→ Set
SubQ : ConQ iΓ→ ConQ j∆→ SubM Γ ∆→ Set
TmQ : (ΓQ : ConQ iΓ)→ TyQ j ΓQA→ TmM ΓA→ Set
–[–]Q : TyQ j∆QA→ SubQ ΓQ∆Q σ → TyQ j ΓQ (A[σ]M)
– .Q – : (ΓQ : ConQ iΓ)→ TyQ j ΓQA→ ConQ (i t j) (Γ .M A)
ΠQ : (AQ : TyQ iΓQA)→ TyQ j (ΓQ .Q AQ)B → TyQ (i t j) ΓQ (ΠMAB)
lamQ : TmQ (ΓQ .Q AQ)BQ t→ TmQ ΓQ (ΠQAQBQ) (lamM t)
appQ : TmQ ΓQ (ΠQAQBQ) t→ TmQ (ΓQ .Q AQ)BQ (appM t)
ΠβQ : appQ (lamQ tQ) = tQ

A section I of a displayed model Q over M is like a dependent morphism, encoding
a section to the strict morphism to M encoded by Q. It contains, among others, the
following components.

ICon : (Γ : ConM i)→ ConQ iΓ
ITy : (A : TyM j Γ)→ TyQ j (I Γ)A
ISub : (σ : SubM Γ ∆)→ SubQ (I Γ) (I ∆)σ
IA[σ] : I (A[σ]M) = (I A)[I σ]Q
I. : I (Γ .M A) = I Γ .Q I A
IΠ : I (ΠMAB) = ΠQ (I A) (I B)
Ilam : I (lamM t) = lamQ (I t)
Iapp : I (appM t) = appQ (I t)

A. Kaposi, S. Huber, and C. Sattler 25:7

We assume the existence of the quotient inductive-inductive type (QIIT, [18]) specified
by Figure 1. We thus have an initial model S, called the syntax. For every modelM, the
recursor recM is the unique morphism from S toM. For every displayed model Q over S,
the eliminator elimQ is the unique section of Q.

2.1 The identity type
In our construction of gluing we will assume that the target model has identity types. Identity
types extend type theory as given in Figure 1 with the following operators and equations.

Id : (A : Ty iΓ)→ Tm ΓA→ Tm ΓA→ Ty iΓ
refl : (u : Tm ΓA)→ Tm Γ (IdAuu)
J :

(
C : Ty i (Γ . A . Id (A[p]) (u[p]) 0)

)
→ Tm Γ (C[id, u, reflu])→

(e : Tm Γ (IdAuv))→ Tm Γ (C[id, v, e[p]])
Idβ : JC w (reflu) = w

Id[] : (IdAuv)[σ] = Id (A[σ]) (u[σ]) (v[σ])
refl[] : (reflu)[σ] = refl (u[σ])

J[] : (JC w e)[σ] = J (C[σ↑↑]) (w[σ]) (e[σ])

IdAuv expresses that u is equal to v, there is one constructor refl expressing reflexivity and
there is the eliminator J which says that given a family over identities and a witness of that
family for refl we get that there is an element of that family for every identity proof.

3 The Set model

As an example of a simple model, we define the set model (standard model, metacircular
model). In this model, contexts are sets, types are families over their contexts, substitutions
are functions, and terms are dependent functions. Context extension is metatheoretic
Σ, otherwise everything is modelled by its metatheoretic counterparts, e.g. Π-types are
dependent functions, lam is λ, app is metatheoretic application. We list a few components
for illustration.

Con i := Seti
Ty j Γ := Γ→ Setj
Sub Γ ∆ := Γ→ ∆
Tm ΓA := (γ : Γ)→ Aγ

A[σ] := λγ.A (σ γ)
· := 1

ε := λ_.∗
Γ BA := (γ : Γ)×Aγ
(σ, t) := (σ, t)
p := projl
q := projr
ΠAB := λγ.(α : Aγ)→ B (γ, α)

FSCD 2019

25:8 Gluing for Type Theory

lam t := λγ.λα.t (γ, α)
app t := λγ.t γ.1 γ.2

Πβ : app (lam t) = λγ′.(λγ.λα.t (γ, α)) γ′.1 γ′.2
→β= λγ′.t (γ′.1, γ′.2) ×η= λγ′.t γ′

→η= t

U i := λ_.Seti
El a := a

c a := a

Bool := 2

true := ∗
false := ∗∗
if C t u v := case t u v
IdAuv := (u = v)

The β-law for Π uses the metatheoretic β- and η-laws for the functions and η for pairs.
Using the recursor we can define an interpreter for our syntax which maps syntactic terms

to metatheoretic objects.

J–K : ConS i → Seti := recSet
Con

J–K : TyS j Γ → JΓK→ Setj := recSet
Ty

J–K : SubS Γ ∆→ JΓK→ J∆K := recSet
Sub

J–K : TmS ΓA → (γ : JΓK)→ JAK γ := recSet
Tm

For example, the interpretation of the polymorphic identity function is

Jlam (lam q)K : (γ : 1)→ (A : Set0)→ A→ A = λγ.λA.λa.a.

4 Pseudomorphism

In this section we define morphisms of models of type theory which are strict on the category
structure and weak on · and –.–. We call such a morphism a pseudomorphism, its components
are listed in Figure 2. In terms of using comprehension categories [17] to describe models
of type theory, this corresponds to the notion of morphism that relates the Grothendieck
fibrations strictly, but the comprehension maps only up to natural isomorphism.

Just as a strict morphism (described in Section 2), a pseudomorphism F maps contexts
in S to contexts inM, types in S to types inM, etc. Identity, composition and action on
substitution are preserved strictly (Fid, F◦, F[] and F[]). The empty context and context
extension are preserved up to definitional isomorphism. Definitional isomorphism between
two contexts Γ : Con i, ∆ : Con j is defined as follows.

(f : Γ ∼= ∆) := (f.1 : Sub Γ ∆)× (f.2 : Sub ∆ Γ)× (f.12 : f.1 ◦f.2 = id)× (f.21 : f.2 ◦f.1 = id)

F..1◦ denotes a naturality condition that F. has to satisfy. The empty substitution ε and the
comprehension operators (– , –), p, q are preserved strictly, but this is up to the weakness of
· and ..

Categorically, a pseudomorphism is a functor on categories of contexts with natural
transformations on types and terms with the following properties: it preserves terminal
objects; given A : TyS j∆, if a pair of σ : SubS Γ ∆ and t : TmS Γ (A[σ]S) has the universal
property of the context extension of ∆ with A in S, then the pair of F σ and F t has the
universal property of the context extension of F ∆ with F A inM.

A. Kaposi, S. Huber, and C. Sattler 25:9

FCon : ConS i→ Con i
FTy : TyS j Γ→ Ty j (F Γ)
FSub : SubS Γ ∆→ Sub (F Γ) (F ∆)
FTm : TmS ΓA→ Tm (F Γ) (F A)
Fid : F idS = id
F◦ : F (σ ◦S δ) = F σ ◦ F δ
F[] : F (A[σ]S) = (F A)[F σ]
F[] : F (t[σ]S) = (F t)[F σ]
F· : F ·S ∼= ·
Fε : F εS = F·.2 ◦ ε
F. : F (Γ .S A) ∼= F Γ . F A
F..1◦ : F..1 ◦ F (σ↑S) = (F σ)↑ ◦ F..1
F, : F (σ,S t) = F..2 ◦ (F σ, F t)
Fp : F pS = p ◦ F..1
Fq : F qS = q[F..1]

Figure 2 The components of a pseudomorphism F from S toM. For readability, we omit the
subscripts S from the metavariable names and all the M subscripts. That is, when we write Con or
id we mean ConM and idM. We overload the different parts of F , i.e. write F for FCon, FTy, FSub

and FTm. ∼= denotes definitional isomorphism, see in the text.

We derive the following naturality condition.

F..2◦ : F..2 ◦M (F σ)↑M F..12= F..2 ◦ (F σ)↑M ◦ F..1 ◦ F..2
F..1◦=

F..2 ◦ F..1 ◦ F (σ↑S) ◦ F..2
F..21= F (σ↑S) ◦M F..2

From this it follows that F (σ↑S) = F..2 ◦M (F σ)↑M ◦M F..1.

Note that every strict morphism F is automatically pseudo, with F·.1 = F·.2 = idM and
F..1 = F..2 = idM.

A pseudomorphism automatically preserves type formers: Σ and > are preserved weakly,
Π and U are preserved in a lax way and Bool in an oplax way. For example, we can define a
map from F (ΠAB) to Π (F A) (F B[F..2]) as follows. We start using the eliminator of Π in
S on a variable:

app q : TmS (Γ .ΠAB . A[p]) (B[p↑]).

Then we apply the pseudomorphism F and get a map inM:

F (app q) : TmM
(
F (Γ .ΠAB . A[p])

) (
F (B[p↑])

)
.

Applying the substitution F..2 ◦ (F..2↑) and using the properties of F we obtain

F (app q)[F..2 ◦ (F..2↑)] : TmM
(
F Γ . F (ΠAB) . F A[p])

) (
F B[F..2 ◦ (p↑)])

)
,

and finally we use the constructor of Π inM:

lam
(
F (app q)[F..2 ◦ (F..2↑)]

)
: TmM

(
F Γ . F (ΠAB)

) (
Π (F A) (F B[F..2])

)
.

FSCD 2019

25:10 Gluing for Type Theory

We define a similar map for U, a map from Bool to F Bool and maps in both directions for
Σ and >. To express the latter we introduce the following abbreviation for a definitional
isomorphism between types A,B : Ty Γ.

(g : A ∼=Γ B) := (g.1 : Tm (Γ . A) (B[p]))× (g.2 : Tm (Γ . B) (A[p]))×
(g.12 : g.1[p, g.2] = q)× (g.21 : g.2[p, g.1] = q)

For a pseudomorphism F the following comparison maps can be given.

FΠ.1 : Tm
(
F Γ . F (ΠAB)

) (
Π (F A) (F B[F..2])

[
p
])

FU.1 : Tm (F Γ . F (U i)) (U i)
FBool.2 : Tm (F Γ . Bool) (F Bool[p])
FΣ : F (ΣS AB) ∼=F Γ ΣM (F A) (F B[F..2])
F> : F > ∼=F Γ >

The definition of FU.1 is similar to that of FΠ.1: we first use the eliminator El on a variable,
then apply F , then adjust the context using F..2, finally use the constructor c. For Bool,
we go in the other direction and use the eliminator in M on a variable and return the
corresponding constructors in S with F applied to them. For Σ we combine these methods
to obtain maps in both directions. The maps for > are trivial.

FΠ.1 := lam
(
F (app q)[F..2 ◦ (F..2↑)]

)
FU.1 := c

(
F (El q)[F..2]

)
FBool.2 := if _ q (F true[p]) (F false[p])
FΣ.1 :=

(
F (projl q), F (projr q)

)
[F..2]

FΣ.2 := F (1, 0)
[
F..2 ◦ (F..2 ◦ (p, projl q), projr q)

]
FΣ.12 : FΣ.1[p, FΣ.2] =

(F (projl q), F (projr q))[F (p, (1, 0))][F..2 ◦ (F..2 ◦ (p, projl q), projr q)] =

(projl q, projr q) ΣηM= q
FΣ.21 : FΣ.2[p, FΣ.1] =

F (1, 0)[F (p, projlq, projr q) ◦ F..2] =

F (projl q, projr q)[F..2] ΣηS= F q[F..2]
Fq,F.= q

F>.1 := tt
F>.2 := F tt[p]

F>.12 : F>.1[p, F>.2] = tt[p, F tt[p]] = tt >ηM= q

F>.21 : F>.2[p, F>.1] = F tt[p] = F (tt[p])[F..2] >ηS= F q[F..2] = q

At the end of Section 6 we remark on the (im)possibility of comparison maps in the other
direction such as FΠ.2.

5 Gluing

In this section, given a pseudomorphism F from model S to modelM, we define a displayed
model PF (P for short) over S. We call this model gluing along F and its components are
given in Figure 3. We omit some S and all M subscripts for readability.

A. Kaposi, S. Huber, and C. Sattler 25:11

ConP iΓ := Ty i (F Γ)
TyP j ΓP A := Ty j (F Γ . ΓP . F A[p])
SubP ΓP ∆P σ := Tm (F Γ . ΓP) (∆P[F σ ◦ p])
TmP ΓP AP t := Tm (F Γ . ΓP) (AP[id, F t[p]])
idP := q
σP ◦P δP := σP[F δ ◦ p, δP]
AP[σP]P := AP[F σ ◦ p2, σP[p], q]
tP[σP]P := tP[F σ ◦ p, σP]
·P := >
εP := tt
ΓP .P AP := Σ

(
ΓP[p ◦ F..1]

) (
AP[p ◦ F..1 ◦ p, 0, q[F..1 ◦ p]]

)
σP,P tP := (σP, tP)
pP := projl q
qP := projr q

ΠP AP BP := Π
(
F A[p2]

) (
Π
(
AP[p2, q]

) (
BP
[
F..2 ◦ (p4, 1), (3, 0), FΠ.1[p4, 2] $ 1

]))
lam tP := lam

(
lam

(
tP
[
F..2 ◦ (p3, 1), (2, 0)

]))
app tP :=

(
app (app tP)

)[
p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0

]
ΣP AP BP := Σ

(
AP
[
p, projl (FΣ.1[p2, q])

])(
BP
[
F..2 ◦ (p3, projl (FΣ.1[p2, q])), (2, 0), projr (FΣ.1[p2, q])

])
(uP,P vP) := (uP, vP)
projlP tP := projl tP
projrP tP := projr tP
>P := >
ttP := tt
UP i := El (FU.1[p2, q])⇒ U i
ElP aP := El (app aP)
cP AP := lam (cAP)
BoolP := Σ Bool

(
Id (F BoolS [p3]) (FBool.2[p3, q]) 1

)
trueP := (true, refl (F trueS [p]))
falseP := (false, refl (F falseS [p]))
ifP CP tP uP vP := J_(if _(projl tP)uP vP) (projr tP)

Figure 3 The displayed model PF obtained by gluing along F . We write P instead of PF , we
omit some S and all M subscripts for readability. The full version of ifP (with the _s filled in) is
given in Appendix B.

FSCD 2019

25:12 Gluing for Type Theory

In the introduction we remarked that in categorical gluing an object in the glued model
consists of a triple Γ : |S|, ∆ : |M| and a morphismM(∆, F Γ). We could follow this line and
define the gluing as a model with contexts such triples that comes with a strict “projection”
morphism to S. This could be called the fibrational or display map approach. Instead our
definition is more type theoretic, it uses indexed families, doubly (for the correspondence
between fibrations and families see e.g. [8, p. 221]). Firstly, the glued model is given as
a displayed model, that is, for each Γ : ConS i we have a set ConP iΓ. Secondly, instead
of setting ConP iΓ to (∆ : ConM i)× SubM∆ (F Γ), we use the built-in notion of indexed
families in M, that is: types. Hence a context over Γ is an M-type in context F Γ. We
remark that the glueing construction also works with the former choice of contexts.

Types in type theory can be thought of as proof-relevant predicates over their context
and this is the intuition we adopt for describing the glued model. This is in line with the
logical predicate view of gluing. We start with ConP iΓ: a predicate at Γ is indexed over the
F -image of Γ. A predicate at a type A is indexed over the image of Γ for which the predicate
holds and the image of A. For a substitution σ : Sub Γ ∆, we state the fundamental lemma:
if the predicate holds at Γ, the predicate holds at ∆ for the F -image of the substitution. In
short, images of substitutions respect the predicate. For terms, we similarly state that the
image of a term respects the predicate.

We continue by explaining what the logical predicate says at different contexts and types.
The predicate at the empty context ·P is always true. At extended contexts the predicate
is given pointwise by a Σ-type. ΓP . AP is in context F (Γ . A), but ΓP only needs the
component F Γ, which we obtain using the isomorphism F..1 from F (Γ .S A) to F Γ . F A
followed by first projection. AP is first indexed over F Γ, which is given by p ◦ F..1 ◦ p, then
over ΓP, which is the first component of the Σ-type referenced by q, then over F A, which is
provided by the F..1 part of the isomorphism.

The predicate at a Π-type holds for a function of type F (ΠAB) if whenever it holds for
an input, it holds for the output. Let’s look at how we express that the predicate holds at B
for the output! We are in context

Θ := F Γ . ΓP︸︷︷︸
3

.F (ΠS AB)︸ ︷︷ ︸
2

.F A[p2]︸ ︷︷ ︸
1

.AP[p2, q]︸ ︷︷ ︸
0

where we wrote the de Bruijn indices referring to each component underneath. BP is a
predicate indexed over F (Γ .S A), ΓP .P AP and F B[p]. The first index is given by F..2,
which puts together the F Γ (forgetting the last four elements in Θ by p4) and the F A
components (last but one element in Θ, i.e. 1). The second index is given by de Bruijn indices
3 and 0. The last index is the result of applying the function given by De Bruijn index 2.
We have to use the comparison map FΠ.1 defined in Section 4 which turns an F (ΠAB) into
a Π (F A) (F B[F..2]). We supply its dependencies F Γ by p4 and F (ΠAB) by 2 and we use
old-style application $ with input 1 to get the result.

The predicate at a Σ-type holds if it holds pointwise. Here we use the comparison map
FΣ.1 combined with projl and projr to obtain F A and F B from F (ΣS AB). The predicate
at > is trivial. The predicate at the universe is the space of predicates expressed as functions
into U i. The domain of this function space is again obtained by applying the comparison
map FU.1. The predicate at Bool for b in F Bool says that there is anM-boolean to which
we apply the comparison map FBool.2 (which turns it into F Bool), the result is equal to b.

The substition and term part of the gluing model is fairly straightforward. The most
interesting component is ifP where we use J to eliminate the right projection of tP (which is
the equality in the second component of BoolP), then we case split on the first projection

A. Kaposi, S. Huber, and C. Sattler 25:13

by ifM and return uP and vP in the true and false cases, respectively. We omitted some
arguments of J and if for readability, the full version is given in Appendix B. There we also
verify that all equalities of the displayed model of type theory hold.

6 Global section functor

In this section we define the global section functor and show that it is a pseudomorphism. In
the next section we will use this property to derive canonicity for type theory.

A model S supports a global section functor if it has the following two properties:
SubS ·S Γ : Seti whenever Γ : ConS i
TmS ·S (A[ρ]S) : Setj whenever A : TyS j Γ, ρ : SubS ·S Γ.

For example, the syntax S (defined at the end of Section 2) supports a global section functor
because syntactic substitutions and terms are in the lowest metatheoretic universe and this
universe hierarchy is cumulative. The Set model (defined in Section 3) also supports a global
section functor because Γ : ConSet i means Γ : Seti and SubSet ·Set Γ = 1 → Γ : Seti, and
similarly for the second condition.

The global section functor GS is a pseudomorphism from such an S to the set model
Set of Section 3. It maps a context to the set of closed substitutions into that context.
It maps a type to the function sending a closed substitution to the set of closed terms of
the type substituted by the input substitution. Substitutions and terms are mapped to
postcomposition and substitution by the closed substitution, respectively. We write G instead
of GS for readability.

GCon Γ : ConSet i︸ ︷︷ ︸
=Seti

:= SubS ·S Γ

GTy A : TySet j (G Γ)︸ ︷︷ ︸
=G Γ→Setj

:= λρ .TmS ·S (A[ρ]S)

GSub σ : SubSet (G Γ) (G ∆)︸ ︷︷ ︸
=G Γ→G ∆

:= λρ . σ ◦S ρ

GTm t : TmSet (G Γ) (GA)︸ ︷︷ ︸
=(ρ:G Γ)→GAρ

:= λρ . t[ρ]S

Note that this pseudomorphism is indeed weak on the empty context: SubS · · is isomorphic
to 1 (the empty context in Set) by ·ηS , but not necessarily equal. Similarly, SubS ·S (Γ .S A)
is isomorphic to (ρ : SubS ·S Γ)×TmS ·S (A[ρ]S) by comprehension (.β1S , .β2S , .ηS), but
not necessarily equal. In Appendix A we show that G is indeed a pseudomorphism satisfying
the conditions in Figure 2.

Remark on comparison maps. In Section 4 we showed that pseudomorphisms support
certain comparison maps, for example

FΠ.1 : Tm
(
F Γ . F (ΠAB)

) (
Π (F A) (F B[F..2])

[
p
])

can be defined for any pseudomorphism F . The global section functor gives a good way to
show that this comparison map is not an isomorphism in general (as opposed to FΣ.1). The
other direction would be a

GΠ.2 : TmSet
(
G Γ .Set ΠSet (GA) (GB[G..2])

) (
G (ΠS AB)[p]

)︸ ︷︷ ︸
=(ρ:SubS ·S Γ)×

(
(u:TmS ·S (A[ρ]S))→TmS ·S (B[ρ,u]S)

)
→TmS ·S (ΠS AB[ρ]S)

,

FSCD 2019

25:14 Gluing for Type Theory

providing a way to turn a metatheoretic function between terms into a term of a function
type in S. However if e.g. S = S, A = Nat and B = Bool, then following Cantor there are
more metatheoretic functions from natural numbers to booleans than terms. Similarly, if
GBool.2 was an isomorphism, it would have an inverse

GBool.1 : TmSet (G Γ .Set G BoolS) BoolSet︸ ︷︷ ︸
=(ρ:SubS ·S Γ)×TmS ·S BoolS→2

,

but if S is a model without equality reflection where booleans are defined by a quotient
then there are more than two terms of type Bool (while internally to S there are only
two elements).

7 Reaping the fruits

Let I be the identity morphism from S to S, which is obviously a strict morphism, hence
pseudo.2 Elimination into gluing along I produces a function whose input is a term t in
context Γ and whose output is a term in context Γ extended by elimPI

Con Γ which expresses
that the predicate holds at Γ. The type of the output term says that the predicate holds at
A for t. This is the fundamental lemma or parametricity theorem.

elimPI

Tm : (t : TmS ΓA)→ TmS (Γ . elimPI

Con Γ)
(
(elimPI

Ty A)[id, t[p]]
)

Let us look at the “hello world” example of parametricity, the case where Γ = · and
A = Π (U i) (El q ⇒ El q). Now using the fact that elimPI

is a section, the type of elimPI

Tm t

computes to

TmS (· .>)
(

Π (U i)
(

Π (El q⇒ U i)
(

Π (El 1)
(
El (1 $ 0)⇒ El (1 $(t $ 2 $ 0))

))))
,

where the type is the object theoretic syntax for

(A : Seti)(C : A→ Seti)(a : A)→ C a→ C (t A a).

Given a fixed type A : TyS i · and an element u : TmS · A we have

(elimPI

Tm t)[ε, tt] $ cA $ lam (c (Id (A[ε]) 0u[ε])) $u $ reflu : Tm ·
(
IdA (t $ cA $u)u

)
,

that is, we get that for any A and u, t $ cA $u is equal to u.
Eliminating into gluing along recSet (the interpretation into the set model, see end of

Section 3) produces Reynolds-style parametricity. It says that if there is an interpretation of
the context Γ for which the predicate holds at Γ, the predicate holds at A for the interpretation
of t.

elimPrecSet

Tm : (t : TmS ΓA)→ (γ : JΓK)× (γ̄ : elimPrecSet

Con Γ γ)→ elimPrecSet

Ty A (γ, γ̄, JtK γ)

Eliminating into gluing along the global section functor GS from the syntax to the set
model gives the following.

elimPG

Tm : (t : TmS ΓA)→ (ρ : SubS · Γ)× (ρ̄ : elimPG

Con Γ ρ)→ elimPG

Ty A (ρ, ρ̄, t[ρ])

If t is a boolean in the empty context, the type of elimPG

Tm t (id, ∗) is elimPG

Ty Bool (ρ, ∗, t) which
is equal to (b : 2)× (case b trueS falseS = t), i.e. canonicity.

2 Note that the target of the pseudomorphism needs to have identity types, so technically I is the
embedding of the syntax without identity types into the syntax with identity types. Alternatively, we
can extend gluing for identity types.

A. Kaposi, S. Huber, and C. Sattler 25:15

8 Conclusions and further work

In this paper we defined gluing for pseudomorphisms of models of type theory thus generalising
parametricity and canonicity. We did not try to derive the most general notion of gluing, e.g.
we require that the target model supports >-, Σ-, Id-types in addition to what we have in
the domain model. It would have been possible to give a less indexed variant of gluing where
> and Σ are not needed, but Id types (or (F Bool)-indexed inductive families) would be still
required to support gluing for Bool. A less indexed variant however would be more tedious
to work with because the glued model would involve some metatheoretic equalities.

In the future we would like to generalise our construction to richer type theories having
an identity type, inductive and coinductive types. We believe that this is possible without
any extra conditions.

Normalisation by evaluation (NBE) for type theory is also defined using a proof-relevant
logical predicate [4]. This logical predicate is given by gluing along the Yoneda embedding
from the syntax to the presheaf model over the category of contexts and renamings. This is
a pseudomorphism, so we obtain a glued model using our method. However, the universe in
this model is not what we want. As a second step after gluing, NBE requires the definition
of quote and unquote (sometimes called reify and reflect) functions from terms for which
the predicate holds to normal forms and from neutral terms to witnesses of the predicate,
respectively. We need to include these as part of the universe in the glued model to make
the construction work. The predicate for Bool also needs to be adjusted.

We would also like to investigate examples of non-strict pseudomorphisms apart from
global section and Yoneda for which the construction in this paper could be useful; for
example, to derive canonicity proofs for type theories justified by models other than the
set model.

References
1 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory

in type theory. PACMPL, 2:23:1–23:29, 2017.
2 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normalisation

for system F . Unpublished draft, 1997.
3 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive

types. In Rastislav Bodik and Rupak Majumdar, editors, Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, pages 18–29. ACM, 2016. doi:10.1145/
2837614.2837638.

4 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by Evaluation for Type Theory,
in Type Theory. Logical Methods in Computer Science, Volume 13, Issue 4, October 2017.
doi:10.23638/LMCS-13(4:1)2017.

5 Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. Theorie de Topos et Co-
homologie Etale des Schemas I, volume 269 of Lecture Notes in Mathematics. Springer,
1971.

6 Robert Atkey, Neil Ghani, and Patricia Johann. A relationally parametric model of dependent
type theory. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages 503–516. ACM, 2014. doi:10.1145/2535838.
2535852.

7 Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for Free — Parametricity
for Dependent Types. Journal of Functional Programming, 22(02):107–152, 2012. doi:
10.1017/S0956796812000056.

FSCD 2019

http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.23638/LMCS-13(4:1)2017
http://dx.doi.org/10.1145/2535838.2535852
http://dx.doi.org/10.1145/2535838.2535852
http://dx.doi.org/10.1017/S0956796812000056
http://dx.doi.org/10.1017/S0956796812000056

25:16 Gluing for Type Theory

8 John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and
Applied Logic, 32:209–243, 1986.

9 Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed categories
and Martin-Löf type theories. Mathematical Structures in Computer Science, 24(6), 2014.

10 Thierry Coquand. Canonicity and normalisation for Dependent Type Theory. CoRR,
abs/1810.09367, 2018. arXiv:1810.09367.

11 Roy L. Crole. Categories for types. Cambridge mathematical textbooks. Cambridge University
Press, Cambridge, New York, 1993. URL: http://opac.inria.fr/record=b1088776.

12 Peter Dybjer. Internal Type Theory. In Lecture Notes in Computer Science, pages 120–134.
Springer, 1996.

13 Marcelo Fiore and Alex Simpson. Lambda Definability with Sums via Grothendieck Logical
Relations. In Jean-Yves Girard, editor, Typed Lambda Calculi and Applications, pages 147–161,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

14 Marcelo P. Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus.
In Proceedings of the 4th international ACM SIGPLAN conference on Principles and practice
of declarative programming, October 6-8, 2002, Pittsburgh, PA, USA (Affiliated with PLI
2002), pages 26–37. ACM, 2002. doi:10.1145/571157.571161.

15 Claudio Hermida, Uday S. Reddy, and Edmund P. Robinson. Logical Relations and Parametri-
city –– A Reynolds Programme for Category Theory and Programming Languages. Electronic
Notes in Theoretical Computer Science, 303(0):149–180, 2014. Proceedings of the Workshop
on Algebra, Coalgebra and Topology (WACT 2013). doi:10.1016/j.entcs.2014.02.008.

16 Martin Hofmann. Conservativity of Equality Reflection over Intensional Type Theory. In
TYPES 95, pages 153–164, 1995.

17 B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the
Foundations of Mathematics. North Holland, Amsterdam, 1999.

18 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing Quotient Inductive-
inductive Types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, January 2019. doi:10.1145/
3290315.

19 Chung kil Hur and Derek Dreyer. A Kripke logical relation between ML and assembly.
Conference Record of the Annual ACM Symposium on Principles of Programming Languages,
pages 133–146, January 2010. doi:10.1145/1926385.1926402.

20 András Kovács. Formalisation of canonicity for type theory in Agda, November 2018. URL:
https://github.com/AndrasKovacs/glue.

21 J. Lambek and P. J. Scott. Introduction to higher order categorical logic. Cambridge University
Press, New York, NY, USA, 1986.

22 Gordon D. Plotkin. Lambda-Definability and Logical Relations. Memorandum SAI–RM–4,
University of Edinburgh, Edinburgh, Scotland, October 1973.

23 Florian Rabe and Kristina Sojakova. Logical Relations for a Logical Framework. ACM Trans.
Comput. Logic, 14(4):32:1–32:34, November 2013. doi:10.1145/2536740.2536741.

24 John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In R. E. A. Mason,
editor, Information Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris,
September 19-23, 1983, pages 513–523. Elsevier Science Publishers B. V. (North-Holland),
Amsterdam, 1983.

25 Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical
Structures in Computer Science, 25:1203–1277, June 2015. arXiv:1203.3253. doi:10.1017/
S0960129514000565.

26 Jonathan Sterling and Bas Spitters. Normalization by gluing for free λ-theories. CoRR,
abs/1809.08646, 2018. arXiv:1809.08646.

27 Andrew W. Appel and David Mcallester. An indexed model of recursive types for foundational
proof-carrying code. ACM Trans. Program. Lang. Syst., 23:657–683, September 2001. doi:
10.1145/504709.504712.

http://arxiv.org/abs/1810.09367
http://opac.inria.fr/record=b1088776
http://dx.doi.org/10.1145/571157.571161
http://dx.doi.org/10.1016/j.entcs.2014.02.008
http://dx.doi.org/10.1145/3290315
http://dx.doi.org/10.1145/3290315
http://dx.doi.org/10.1145/1926385.1926402
https://github.com/AndrasKovacs/glue
http://dx.doi.org/10.1145/2536740.2536741
http://dx.doi.org/10.1017/S0960129514000565
http://dx.doi.org/10.1017/S0960129514000565
http://arxiv.org/abs/1809.08646
http://dx.doi.org/10.1145/504709.504712
http://dx.doi.org/10.1145/504709.504712

A. Kaposi, S. Huber, and C. Sattler 25:17

A The global section functor is a pseudomorphism

Here we verify the equalities of a pseudomorphism (see Section 4) for the global section
functor from a model S to Set (see Section 3). The definition of the global section functor is
given in Section 6, here we repeat it to save turning pages.

GCon Γ := SubS ·S Γ
GTy A := λρ .TmS ·S (A[ρ]S)
GSub σ := λρ . σ ◦S ρ
GTm t := λρ . t[ρ]S

Gid : G idS = λρ.id ◦S ρ
idlS= λρ.ρ = idSet

G◦ : G (σ ◦S δ) = λρ.(σ ◦S δ) ◦S ρ
assS= λρ.σ ◦S (δ ◦S ρ) = Gσ ◦Set G δ

G[] : G (A[δ]S) = λρ.TmS · (A[δ][ρ])
[◦]S= λρ.TmS · (A[δ ◦ ρ]) = (GA)[Gσ]Set

G[] : G (t[δ]S) = λρ.t[δ][ρ]
[◦]S= λρ.t[δ ◦ ρ] = (G t)[Gσ]Set

G· : G ·S ∼= ·Set := (λρ.∗, λ_.ε, trivial, trivial)

Gε : G εS = λρ.ε ◦ ρ ·ηS= λρ.ε = G·.2 ◦Set εSet

G..1 : SubSet (G (Γ .S A)) (G Γ .Set GA) := λρ.(p ◦ ρ, q[ρ])
G..2 : SubSet (G Γ .Set GA) (G (Γ .S A)) := λ(ρ, u).(ρ,S u)

G..12 : G..1 ◦Set G..2 = λ(ρ, u).(p ◦ (ρ,S u),S q[ρ,S , u]) .β1,.β2= λ(ρ, u).(ρ, u) = idSet

G..21 : G..2 ◦Set G..1 = λρ.(p ◦ ρ,S q[ρ]) ,◦S= λρ.(p, q) ◦ ρ .η= λρ.id ◦ ρ idlS= λρ.ρ = idSet

G..1◦ : G..1 ◦Set G (σ↑S) = λρ.(σ ◦ p ◦ ρ, q[ρ]) ,◦S= λρ.(σ ◦ p, q) ◦ ρ idlS ,.ηS=
λρ.(σ ◦ p, q) ◦ (p ◦ ρ, q[ρ]) = (Gσ)↑Set ◦Set G..1

G, : G (σ,S t) = λρ.(σ, t) ◦ ρ ,◦S= ρ.(σ ◦ ρ, t[ρ]) = G..2 ◦Set (Gσ,Set G t)
Gp : G pS = λρ.p ◦ ρ = λρ.(p ◦ ρ, q[ρ]).1 = pSet ◦Set G..1
Gq : G qS = λρ.q[ρ] = λρ.(p ◦ ρ, q[ρ]).2 = qSet[G..1]Set

B Full version of ifP and equalities in gluing

ifP is part of the glued displayed model P, see Section 5, Figure 3. Its definition is the
following including the omitted _ arguments.

ifP CP tP uP vP :=
J
(
CP
[
F..2 ◦ (p3, 1), (2, (projl tP[p2], 0)), F

(
ifS (C[p2, q]) q (u[p]) (v[p])

)
[F..2 ◦ (p3, 1)]

])(
if
(
CP
[
F..2 ◦ (p2, w), (1, (0, reflw)), F

(
ifS (C[p2, q]) q (u[p]) (v[p])

)
[F..2 ◦ (p2, w)]

])
(projl tP)uP vP

)
(projr tP)

where w abbreviates if (F BoolS [p2]) 0 (F trueS [p2]) (F falseS [p2]).
Here we check that the P satisfies all the equalities of displayed models. We note that

σP
↑P =

(
σP[p ◦ F..1 ◦ p, projl q], projr q

)
.

FSCD 2019

25:18 Gluing for Type Theory

idlP : idP ◦P σP = 0[F σ ◦ p, σP] = σP

idrP : σP ◦P idP = σP[F id ◦ p, 0] = σP[p, q] = σP[id] = σP

assP : (σP ◦P δP) ◦P νP = σP[F δ ◦ p, δP][F ν ◦ p, νP] =
σP[F (δ ◦S ν) ◦ p, δP[F ν ◦ p, νP]] = σP ◦P (δP ◦P νP)

[id]P : AP[idP]P = AP[F id ◦ p2, q[p], q] = AP[(p, q) ◦ p, q] = AP[id ◦ p, q] = AP[id] = AP

[◦]P : AP[σP ◦P δP]P = AP[F (σ ◦S δ) ◦ p2, σP[F δ ◦ p, δP][p], q] =
AP[F σ ◦ p2, σP[p], q][F δ ◦ p2, δP[p], q] = AP[σP]P[δP]P

[id]P : tP[idP]P = tP[F id ◦ p, q] = tP[p, q] = tP[id] = tP

[◦]P : tP[σP ◦P δP]P = tP[F (σ ◦ δ) ◦ p, σP[F δ ◦ p, δP]] =
tP[F σ ◦ p, σP][F δ ◦ p, δP] = tP[σP]P[δP]P

εηP : (δP : SubP ΓP ·P) = (δP : Tm (F Γ . ΓP)>) ·η= tt = εP

.β1P : pP ◦P (σP,P tP) = (projl q)[F (σ,S t) ◦ p, (σP, tP)] =
projl (q[F (σ,S t) ◦ p, (σP, tP)]) = projl (σP, tP) = σP

.β2P : qP[σP,P tP]P = (projr q)[F (σ,S t) ◦ p, (σP, tP)] =
projr (q[F (σ,S t) ◦ p, (σP, tP)]) = projr (σP, tP) = tP

.ηP : (pP,P qP) = (projl q, projr q) Ση= q = idP

, ◦P : (σP,P tP) ◦P δP = (σP, tP)[F δ ◦ p, δP] ,[]= (σP[F δ ◦ p, δP], tP[F δ ◦ p, δP]) =
(σP ◦P δP,P tP[δP]P)

ΠβP : appP (lamP tP) =(
app (app (lam (lam (tP[F..2 ◦ (p3, 1), (2, 0)]))))

)
[
p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0

] Πβ=
tP[F..2 ◦ (p3, 1), (2, 0)][p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0

]
=

tP[p, (projl 0, projr 0)] = tP[id] = tP

ΠηP : lamP (appP tP) =

lam
(

lam
((

app (app tP)
)[

p ◦ F..1 ◦ p, projl 0, 0[F..1 ◦ p], projr 0
]

[
F..2 ◦ (p3, 1), (2, 0)

]))
=

lam
(
lam

(
(app (app tP))[p3, 2, 1, 0]

))
= lam (lam ((app (app tP))[id])) ΠηS= tP

Π[]P : (ΠP AP BP)[σP]P =
Π
(
F A[F σ ◦ p2]

)(
Π
(
AP
[
F σ ◦ p2, σP[p], q

]
[p2, q]

)
(
BP
[
F..2 ◦ (F σ ◦ p4, 1), (σP[p3], 0),

F (app q)[F..2 ◦ (F..2 ◦ (F σ ◦ p4, 2), 1)]
]))

=

Π
(
F (A[σ])[p2]

)(
Π
(
AP[σP]P[p2, q]

)
(
BP
[
F..2 ◦ (F σ)↑ ◦ F..1 ◦ p2,

(
σP[p ◦ F..1 ◦ p2, projl 1], projr 1

)
, q
]

[
F..2 ◦ (p4, 1), (3, 0), F (app q)[F..2 ◦ (F..2 ◦ (p4, 2), 1)]

]))
=

ΠP (AP[σP]P) (BP[σP
↑P]P)

A. Kaposi, S. Huber, and C. Sattler 25:19

lam[]P :(lamP tP)[σP]P = lam (lam (tP[F..2 ◦ (F σ ◦ p3, 1), (σP[p2], 0)])) =
lamP (tP[σP

↑P]P)
Σβ1P :projlP (uP,P vP) = projl (uP, vP) = uP

Σβ2P :projrP (uP,P vP) = projr (uP, vP) = vP

ΣηP :(projlP tP,P projrP tP) = (projl tP, projr tP) = tP

Σ[]P :(ΣP AP BP)[σP]P =
Σ
(
AP
[
F σ ◦ p2, σP[p], F (projl q)[F..2 ◦ (F σ ◦ p2, q)]

])(
BP
[
F..2 ◦

(
F σ ◦ p3, F (projl q)[F..2 ◦ (F σ ◦ p3, 1)]

)
, (σP[p2], 0),

F (projr q)[F..2 ◦ (F σ ◦ p3, 1)]
])

=
Σ
(
AP
[
F σ ◦ p2, σP[p], F (projl q)[F..2 ◦ (p2, q)]

])(
BP
[
F..2 ◦

(
F σ ◦ p3, F (projl q)[F..2 ◦ (p3, 1)]

)
, (σP[p2], 0),

F (projr q)[F..2 ◦ (p3, 1)]
])

=
ΣP (AP[σP]P) (BP[σP

↑P]P)
, []P :(uP,P vP)[σP]P = (uP[F σ ◦ p, σP], vP[F σ ◦ p, σP]) = (uP[σP]P,P vP[σP]P)

>ηP :(tP : TmP ΓP>P) = (tP : Tm (F Γ . ΓP)>) >η= tt = ttP

>[]P :>P[σP]P = > = >P

tt[]P :ttP[σP]P = tt = ttP

UβP :ElP (cP AP) = El (app (lam (cAP))) Πβ= El (cAP) Uβ= AP

UηP :cP (ElP aP) = lam (c (El (app aP))) Elη= lam (app aP) Πη= aP

U[]P :(UP i)[σP]P = F (ElS q)[F..2 ◦ (F σ ◦ p2, q)]⇒ U i =
F (ElS q)[F..2 ◦ (F σ)↑ ◦ (p2, q)]⇒ U i =
F (ElS q)[F (σ↑) ◦ F..2 ◦ (p2, q)]⇒ U i = F (ElS q)[F..2 ◦ (p2, q)]⇒ U i = UP i

El[]P :(ElP aP)[σP]P = (El (app aP))[F σ ◦ p2, σP[p], q] El[]=

El ((app aP)[F σ ◦ p2, σ[p], q]) app[]= El (app (aP[F σ ◦ p, σP])) = ElP (aP[σP]P)
Bool[]P :BoolP[σP]P =

Σ Bool
(
Id (F Bool[F σ ◦ p3])(

if (F Bool[F σ ◦ p4]) 0 (F true[F σ ◦ p3]) (F false[F σ ◦ p3])
)

1
)

=
Σ Bool

(
Id (F Bool[p3])

(
if (F Bool[p4]) 0 (F true[p3]) (F false[p3])

)
1
)

= BoolP

true[]P :trueP[σP]P =
(
true, refl (F (trueS [σ])[p])

) true[]S= (true, refl (F trueS [p])) = trueP

false[]P :falseP[σP]P =
(
false, refl (F (falseS [σ])[p])

) false[]S= (false, refl (F falseS [p])) = falseP

if[]P :(ifP _ tP uP vP)[σP]P =(
J_(if _(projl tP)uP vP) (projr tP)

)
[F σ ◦ p, σP] J[],if[],projl[],projr[]=(

J_(if _(projl (tP[σP]P)) (uP[σP]P) (vP[σP]P)) (projr (tP[σP]P))
)

=
ifP _(tP[σP]P) (uP[σP]P) (vP[σP]P)

FSCD 2019

The Discriminating Power of the Let-In Operator
in the Lazy Call-by-Name Probabilistic λ-Calculus
Simona Kašterović
Faculty of Technical Sciences, University of Novi Sad
Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
http://imft.ftn.uns.ac.rs/~simona/
simona.k@uns.ac.rs

Michele Pagani
IRIF, University Paris Diderot - Paris 7, France
https://www.irif.fr/~michele/
pagani@irif.fr

Abstract
We consider the notion of probabilistic applicative bisimilarity (PAB), recently introduced as a
behavioural equivalence over a probabilistic extension of the untyped λ-calculus. Alberti, Dal Lago
and Sangiorgi have shown that PAB is not fully abstract with respect to the context equivalence
induced by the lazy call-by-name evaluation strategy. We prove that extending this calculus with
a let-in operator allows for achieving the full abstraction. In particular, we recall Larsen and
Skou’s testing language, which is known to correspond with PAB, and we prove that every test is
representable by a context of our calculus.

2012 ACM Subject Classification Theory of computation → Lambda calculus

Keywords and phrases probabilistic lambda calculus, bisimulation, Howe’s technique, context
equivalence, testing

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.26

Acknowledgements We wish to thank the anonymous reviewers for their valuable suggestions,
helping us to improve the paper.

1 Introduction

We consider the probabilistic extension Λ⊕ of the untyped λ-calculus, obtained by adding a
probabilistic choice primitive M ⊕N representing a term evaluating to M or N with equal
probability. This calculus provides a useful although quite simple framework for importing
tools and results from the standard theory of the λ-calculus to probabilistic programming.

As well-known, the choice of an evaluation strategy for Λ⊕ plays a crucial role, even for
strongly normalising terms. Consider a function λx.F applied to a probabilistic term M ⊕N :
if we adopt a call-by-name policy, cbn by short, the whole term M ⊕N would be passed to
the calling parameter x before actually performing the choice between M and N , while in
a call-by-value strategy, cbv by short, we first chose between M and N and then pass the
value associated with this choice to x. If the evaluation of F calls n times the parameter
x, then the cbn strategy performs n independent choices between M and N , while the cbv
strategy copies n times the result of one single choice. In linear logic semantics [11], this
phenomenon can be described by precising that the application is a bilinear function in cbv
(so (λx.F)(M ⊕N) is equivalent to ((λx.F)M)⊕ ((λx.F)N)), while it is not linear in the
argument position in cbn (see discussion at Example 3).

In probabilistic programming it is worthwhile to have a cbv operator even in a cbn
language, as the most of the randomised algorithms need to sample from a distribution
and passing to a sub-procedure the value of this sample rather than the whole distribution.

© Simona Kašterović and Michele Pagani;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://imft.ftn.uns.ac.rs/~simona/
mailto:simona.k@uns.ac.rs
https://www.irif.fr/~michele/
mailto:pagani@irif.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Λ⊕ with Let-In Operator

Consider for example the randomised quicksort: this algorithm takes a pivot randomly
from an array and it passes it to the partitioning procedure, which uses this pivot several
times. The algorithm would be unsound if we allow to make different choices each time the
partitioning procedure calls for the same pivot. In [10] the authors enrich the cbn probabilistic
PCF with a let-in operator, restricted to the ground values, so that let x = M ⊕ N in F
behaves like a cbv application of λx.F to M ⊕N . In a continuous framework this kind of
operator is usually called sampling (e.g. [15]), but this is just a different terminology for
the same computation mechanism: sampling a value from a distribution before passing it
to a parameter.

Both calling policies (cbn and cbv) can be declined with a further attribute which is
Abramsky’s lazyness [1]: a reduction strategy is lazy (sometimes called also weak) whenever
it does not evaluate the body of a function, i.e. it does not reduce a β-redex under the scope
of a λ-abstraction. This notion has been presented in order to provide a formal model of the
evaluation mechanism of the lazy functional programming languages.

Two probabilistic programs are context equivalent if they have the same probability of
converging to a value in all contexts. Of course, this notion depends on which reduction
strategy has been chosen. The prototypical example of diverging term Ω def= (λx.xx)(λx.xx)
is context equivalent with λx.Ω for a non-lazy strategy, while the two terms can be trivially
distinguished by a lazy strategy as λx.Ω is a value for such a reduction. Similarly, the term
(λxy.y)Ω is equivalent to Ω for cbv, but it is converging for the cbn policy (lazy or not),
because the reduction step (λxy.y)Ω→ λy.y is admitted.

One of the major contribution of the already mentioned [1] has been to use the notion of
bisimilarity in order to study the context equivalence of the lazy cbn λ-calculus. The idea is
to consider a reduction strategy as a labelled transition system where the states and labels
of the system are the λ-terms and a transition labelled by a term P goes from a term M

to a value M ′ whenever M ′ is the result of evaluating the application MP . The benefit of
this setting is to be able to transport into λ-calculus the whole theory of bisimilarity (called
in [1] applicative bisimilarity) and its associated coinduction reasoning, which is one of the
main tools for comparing processes in concurrency theory. Basically, two terms M and N
are applicative bisimilar whenever their applications MP and NP are applicative bisimilar
for any argument P . Abramsky proved that applicative bisimilarity is sound with respect to
lazy cbn context equivalence (i.e. the former implies the latter), but it is not fully abstract
(there are context equivalent terms that are not bisimilar).

Abramsky’s applicative bisimilarity has been recently lifted to Λ⊕ by Dal Lago and his
co-authors [3, 7]. The transition system becomes now a Markov Chain (here Definition 14)
on the top of it one can define a notion of probabilistic applicative bisimilarity (PAB). The
paper [7] considers a lazy cbn reduction strategy, while [3] focuses on the (lazy) cbv strategy.
In both settings, PAB is proven sound with respect to the associated context equivalence,
but, surprisingly, the cbv bisimilarity is also fully abstract, while the lazy cbn is not. Our
paper shows that adding the let-in operator mentioned before is enough for recovering the
full abstraction even for the lazy cbn.

Let us discuss more in detail the problem with the lazy cbn operation semantics. The two
terms λxy.(x⊕y) and (λxy.x)⊕(λxy.y) are context equivalent but not bisimilar (Example 7).
The difference is between a process giving a value allowing two choices and a process giving
two values after a choice (see Figure 4 to have a pictorial representation of the two processes).
The cbn contexts are not able to discriminate such a subtle difference while bisimilarity does
(Examples 16 and 23). In [3] the authors show a cbv context discriminating a variant of
these two terms and they conjecture that a kind of sequencing operator can recover the full
abstraction for the lazy cbn : our paper proves this conjecture.

S. Kašterović and M. Pagani 26:3

Testing Equivalence
∀t test, Pt(M) = Pt(N)

Bisimilarity ∼
∃R bisimulation, M RN

Context Equivalence '
∀C context,

∑
[[C[M]]] =

∑
[[C[N]]]

Theorem 24

Theorem 27 Theorem 20

Figure 1 Sketch of the main results in the paper, giving Corollary 28.

The result is not surprising if compared to [3], however let us stress the contrast with the
non-lazy cbn reduction strategy (i.e. the full head-reduction). We have already mentioned
that [10] considers the cbn probabilistic PCF endowed with the let-in operator. The full
abstraction result of probabilistic coherence spaces proved in [10] shows that the let-in operator
does not change the context equivalence of probabilistic PCF, as this latter corresponds with
the equality in probabilistic coherence spaces, regardless of the presence of the let-in in the
language. Also, [2, 14] achieve a similar probabilistic coherence spaces full abstraction result
for the untyped non-lazy cbn probabilistic λ-calculus without the let-in operator. These
considerations show that the need of let-in operator for getting the full abstraction is due to
the notion of lazy normal form rather than the call-by-name policy.

Structure of the paper. Section 2 defines Λ⊕,let, the lazy call-by-name probabilistic λ-
calculus extended with the let-in operator. The operational semantics is given by a notion of
big-step approximation, following [8]. An equivalent notion based on Markov chains could
be given as in e.g. [9]. The context equivalence is defined by Equation (5) where what we
observe is the probability of getting a value. Notice that the notion of lazyness plays a crucial
role here, since a value is a variable or just an abstraction and not a head-normal form, as it
is the case instead in the non-lazy cbn considered in e.g. [2, 9, 13, 14].

Section 3 defines the probabilistic applicative bisimulation and the corresponding bisimil-
arity by considering Λ⊕,let as a labelled Markov chain. The definitions and results of this
section are an adaptation of the ones in [7]. The main result is the soundness of bisimilarity
with respect to the context equivalence (Theorem 20), whose proof is based on Lemma 19
stating that the bisimilarity is a congruence. The proof of this lemma is quite technical
but follows the same lines of [3, 4, 7], using Howe’s lifting: we postpone the details in the
Appendix. The last Section 4 achieves the converse of Theorem 20 by considering Larsen
and Skou’s testing language (Definition 21) which is well-known to induce an equivalence
corresponding with probabilistic bisimilarity (Theorem 24). Lemma 25 states that any test
can be represented by a context of Λ⊕,let (here we are using in an essential way the presence
of the let-in operator), so giving Theorem 27 and closing the circle (Corollary 28). Figure 1
sketches the main reasoning of the paper.

FSCD 2019

26:4 Λ⊕ with Let-In Operator

2 Preliminaries

In this section we introduce the syntax and operational semantics of Λ⊕,let.

2.1 Probabilistic Lambda Calculus Λ⊕,let

We present the probabilistic lambda calculus Λ⊕,let, that is the pure, untyped lambda calculus
endowed with two new operators: a probabilistic binary sum operator ⊕, representing a
fair choice and a let-in operator, simulating the call-by-value evaluation in a call-by-name
calculus. The operational semantics of Λ⊕,let is defined by a big-step approximation relation
as in [8], we refer to this paper for more details. Given a countable set X = {x, y, z, . . . } of
variables, term expressions (terms) and values are generated by the following grammar:

(values) V,W ::= x | λx.M,

(terms) M,N ::= V |MN |M ⊕N | let x = M in N, (1)

where x ∈ X. The set of all terms (resp. values) is denoted by Λ⊕,let (resp. V⊕,let) and
is ranged over by capital Latin letters M,N, . . . , the letters V,W being reserved for values.
The set of free variables of a term M is indicated as FV(M) and is defined in the usual way.
Given a finite set of variables Γ = {x1, . . . , xn} ⊆ X, ΛΓ

⊕,let (resp. VΓ
⊕,let) denotes the set of

terms (resp. values) whose free variables are within Γ. A term M is closed if FV(M) = ∅, or
equivalently if M ∈ Λ∅⊕,let. The capture-avoiding substitution of N for the free occurrences
of x in M is denoted by M{N/x}.

I Example 1. Let us define some terms useful in the sequel. The identity I def= λx.x, the
boolean projections T def= λxy.x and F def= λxy.y and the duplicator ∆ def= λx.xx, this latter
giving the ever looping term Ω def= ∆∆. The let-in operator allows for a call-by-value
duplicator ∆` def= λx.let x = x in xx that will distribute over the probabilistic choice (see
Example 3).

Because of the probabilistic operator ⊕, a closed term does not evaluate to a single value,
but to a discrete distribution of possible outcomes, i.e. to a function assigning a probability
to any value. More formally, a (value) distribution is a map D : V∅⊕,let → R[0,1] such that∑
V ∈V∅⊕,let

D(V) ≤ 1. The set of all value distributions is denoted by P. Given a value
distribution D, the set of all values to which D attributes a positive probability is denoted
by S(D) and we will call it the support of D. Note that value distributions do not necessarily
sum to 1, this allowing to model the possibility of divergence (Example 5). We will use the
abbreviation

∑
D to stand for

∑
V ∈V∅⊕,let

D(V). The expression p1V1 + · · ·+pnVn denotes the
distribution D with finite support {V1, . . . , Vn} such that D(Vi) = pi, for every i ∈ {1, . . . , n}.
Note that

∑
D =

∑n
i=1 pi. In particular, 0 denotes the empty distribution and V can denote

both a value and the distribution having all of its mass on V .
The operational semantics of Λ⊕,let is given in two steps. First, the derivation rules in

Figure 2 inductively define a notion of big-step approximation relation M ⇓ D between a
closed term M and a finite value distribution D. Then, the semantics [[M]] of M is given as:

[[M]] = sup{D ; M ⇓ D}, (2)

according to the point-wise order over value distributions (D ≤ E if and only if ∀V,D(V) ≤
E(V)). The lub in Equation (2) is well-defined since ≤ is a directed-complete partial order
and the set {D ; M ⇓ D} is countable and directed (for every M ⇓ D and M ⇓ E, there
exists a distribution F ≥ D,E such that M ⇓ F).

S. Kašterović and M. Pagani 26:5

M ⇓ 0 V ⇓ V
M ⇓ D N ⇓ E

M ⊕N ⇓ 1
2 ·D + 1

2 · E

M ⇓ D {P{N/x} ⇓ EP,N}λx.P∈S(D)

MN ⇓
∑
λx.P∈S(D) D(λx.P) · EP,N

N ⇓ G {M{V/x} ⇓ HV }V ∈S(G)

let x = N in M ⇓
∑
V ∈S(G) G(V) ·HV

Figure 2 Rules for the approximation relationM ⇓ D, withM ∈ Λ∅⊕,let and D a value distribution.

V ⇓ V
I ⇓ I

V ⇓ V

I ⇓ I V V ⇓ 0
I⊕ V V ⇓ 1

2I...
V V ⇓

∑n−1
i=1

1
2i I

I⊕ V V ⇓
∑n
i=1

1
2i I

V V ⇓
∑n
i=1

1
2i I

Figure 3 A derivation of the big-step approximation V V ⇓
∑n

i=1
1
2i I for V = λx.(I⊕ xx).

Notice that the rules in Figure 2 implement a lazy call-by-name evaluation: they do
not reduce within the body of an abstraction, and an application (λx.M)N is evaluated
as M{N/x} for any term N . However, the let-in operator follows a call-by-value policy:
let x = N in M has the same semantics as M{N/x} only when N is a value.

I Example 2. Consider the term M
def= ∆(T⊕ F). One can easily check that the rules of

Figure 2 allows to derive M ⇓ D for any D ∈ {0, 1
2λy.(T⊕ F), 1

2I, 1
2λy.(T⊕ F) + 1

2I}. The
latter distribution is the lub of this set and so it defines the semantics of M .

I Example 3. Let us replace in Example 2 the duplicator ∆ with its call-by-value variant
∆` (Example 1). We have ∆`(T ⊕ F) ⇓ D for any D ∈ {0, 1

2λy.T,
1
2I, 1

2λy.T + 1
2I}, so

[[∆`(T ⊕ F)]] = 1
2λy.T + 1

2I. Notice that [[∆`(T ⊕ F)]] = [[∆`T ⊕∆`F]] = [[∆T ⊕∆F]],
while [[∆(T ⊕ F)]] 6= [[∆T ⊕∆F]], as calculated in Example 2. Let us mention that this
phenomenon is well enlightened by the linear logic encoding of the call-by-name application
and the call-by-value one, the latter resulting in an operator linear both in the function and
the argument position, while the former is linear only in the functional position [11].

I Remark 4. In general, notice that the presence of the let-in operator allows for an encoding
()• of the call-by-value λ-calculus into our language, commuting with abstraction and variables
and mapping the call-by-value application to (MN)• = let x = M• in let y = N• in xy.
However, our language contains much more terms than the image of this mapping, so the
computational behaviour of the terms might not be preserved by ()•.

I Example 5. The previous examples are about normalizing terms, in this framework
meaning terms M with semantics of total mass

∑
[[M]] = 1 and such that there exists a

unique finite derivation giving M ⇓ [[M]]. Standard non-converging λ-terms give partiality, as
for example [[Ω]] = 0, so [[Ω⊕ I]] = 1

2I. However, probabilistic λ-calculi allow for almost sure
terminating terms, that is terms M such that

∑
[[M]] = 1 but there exists no finite derivation

giving M ⇓ [[M]]. For example, consider the term M
def= V V , with V def= λx.(I⊕xx): any finite

approximation of M gives a distribution bounded by
∑n
i=1

1
2i I for some n ≥ 0, as Figure 3

shows, but only the limit sum supn
∑n
i=1

1
2i I is equal to [[M]] = I.

FSCD 2019

26:6 Λ⊕ with Let-In Operator

The following lemma states simple properties of the semantics that can be easily proved by
continuity of [[]] and induction over finite approximations (see e.g. [8] for details).
I Lemma 6 ([8]). For any terms M and N ,
1. [[(λx.M)N]] = [[M{N/x}]].
2. [[M ⊕N]] = 1

2 [[M]] + 1
2 [[N]].

2.2 Context Equivalence
One standard way of comparing term expressions is by observing their behaviours within
programming contexts. A context of Λ⊕,let is a term containing a unique hole [·], generated
by the following grammar:

C,D ::= [·] | λx.C | CM |MC | C ⊕M |M ⊕ C | let x = C in M | let x = M in C (3)

If C is a context and M is a Λ⊕,let-term, then C[M] denotes a Λ⊕,let-term obtained by
substituting the unique hole in C with M allowing the possible capture of free variables
of M . We will work with closing contexts, that is contexts C such that C[M] is a closed
term (where M can be an open term). Thus, we want to keep track of the possible variables
captured by filling a context hole. Given two finite sets of variables Γ, ∆, we denote by
CΛ⊕,let

(Γ;∆) the set of contexts capturing the variables in Γ of a term filling the hole but
keeping free the variables in ∆. So for example the context λx.let y = x⊕ z in x[·] belongs
to CΛ⊕,let

({x,y};∆) for any ∆ containing z.
In a probabilistic setting, the typical observation is the probability to converge to a value,

so giving the following standard definition, for every M,N ∈ ΛΓ
⊕,let:

M ≤ N iff ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[M]]] ≤

∑
[[C[N]]], (context preorder) (4)

M ' N iff ∀C ∈ CΛ⊕,let
(Γ;∅),

∑
[[C[M]]] =

∑
[[C[N]]] (context equivalence) (5)

Notice that M ' N is equivalent to M ≤ N and N ≤M .
I Example 7. As mentioned in the Introduction, the terms M def= λxy.(x ⊕ y) and N

def=
(λxy.x)⊕ (λxy.y) are context equivalent in the call-by-name probabilistic λ-calculus without
the let-in operator [7]. However, they can be discriminated in Λ⊕,let by, e.g. the context
C

def= (let y = [·] in (let z1 = yIΩ in (let z2 = yIΩ in I))). In fact, by applying the rules of
Figure 2, one gets:

∑
[[C[M]]] = 1

4 and
∑

[[C[N]]] = 1
2 .

I Example 8. The two duplicators ∆ and ∆` (Example 1) are not context equivalent, for
example C def= [·](I⊕Ω) gives

∑
[[C[∆]]] = 1

4 while
∑

[[C[∆`]]] = 1
2 .

I Proposition 9. Let M,N ∈ Λ∅⊕,let, if [[M]] ≤ [[N]] then M ≤ N . So, [[M]] = [[N]] implies
M ' N .
Proof. First, notice that [[M]] ≤ [[N]] is equivalent to ∀D,M ⇓ D,∃E ≥ D, N ⇓ E . Then one
proves, by structural induction on a context C that [[C(M)]] ≤ [[C(N)]], whenever [[M]] ≤ [[N]].
The delicate points are in the cases C is an application or a let-in operator. J

I Example 10. Thanks to Proposition 9, one can prove that quite different terms are indeed
context equivalent, e.g. the term V V in Example 5 is context equivalent to I. However, not
all context equivalent terms have the same semantics, as for example λx.(x⊕ x) and I.

Proving in general that two terms are context equivalent is rather difficult because of the
universal quantifier in Equation (5). For example, proving that λx.(x⊕ x) and I are context
equivalent is not immediate. Various other tools are then used to prove context equivalence,
as the bisimilarity and testing introduced in the next sections.

S. Kašterović and M. Pagani 26:7

3 Probabilistic Applicative Bisimulation

We briefly recall and adapt to Λ⊕,let the definitions of [7] about probabilistic applicative
(bi)simulation. This notion mixes Larsen and Skou’s definition of (bi)simulation for labelled
Markov chains [12] with Abramsky’s applicative (bi)simulation for the lazy call-by-name
λ-calculus [1]. The core idea is to look at a closed term M as a state of a transition system,
a Markov chain in our setting, having two kinds of transitions. A “solipsistic” transition
consisting in evaluating M to a value λx.P (this transition being weighted by the probability
[[M]](λx.P) of getting λx.P out of M) and an “interactive” transition consisting in feeding
a value λx.P by a new term N representing an input from the environment, so getting the
term P{N/x}. We can then consider the notions of similarity and bisimilarity (resp. (6), (7))
over such probabilistic transition system. The benefit of this approach is to check program
equivalence via an existential quantifier (see Equation (7)) rather than a universal one as in
context equivalence (Equation (5)). The main result of this section is Theorem 20 stating
that similarity implies context preorder. As a consequence we have that bisimilarity implies
context equivalence. The key ingredient for achieving this result is to show that the similarity
is a precongruence relation (Definition 18 and Lemma 19). The proof of Lemma 19 is quite
technical but standard, see the Appendix and [7] for more details.

We start with the definition of a generic labelled Markov chain and following Larsen and
Skou [12] we introduce the notions of a probabilistic simulation and bisimulation.

I Definition 11. A labelled Markov chain is a tripleM = (S,L, P) where S is a countable set
of states, L is a set of labels (actions) and P is a transition probability matrix, i.e. a function
P : S ×L×S → R[0,1] satisfying the following condition: ∀s ∈ S,∀l ∈ L,

∑
t∈S P (s, l, t) ≤ 1.

Given a relation R, R(X) denotes the image of the set X under R, namely the set
{y | ∃x ∈ X such that xRy}. If R is an equivalence relation, then S/R stands for the set of
all equivalence classes of S modulo R. The expression P (s, l,X) stands for

∑
t∈X P (s, l, t).

I Definition 12. Let (S,L, P) be a labelled Markov chain and R be a relation over S:
R is a probabilistic simulation if it is a preorder and ∀(s, t) ∈ R,∀X ⊆ S,∀l ∈ L,
P (s, l,X) ≤ P (t, l,R(X)).
R is a probabilistic bisimulation if it is an equivalence and ∀(s, t) ∈ R,∀E ∈ S/R,∀l ∈ L,
P (s, l, E) = P (t, l, E).

We define the probabilistic (bi)similarity, denoted respectively by . and ', as the union
of all probabilistic (bi)simulations which can be proven to be still a (bi)simulation:

M . N iff ∃R probabilistic simulation s.t. MRN, (probabilistic similarity) (6)
M ∼ N iff ∃R probabilistic bisimulation s.t. MRN (probabilistic bisimilarity) (7)

One can prove that M ∼ N is equivalent to M . N and N .M , i.e. ∼=. ∩ .op.

I Definition 13. For every closed value V = λx.N ∈ Λ∅⊕,let a distinguished value is indicated
as Ṽ = νx.N and belongs to the set VΛ∅⊕,let.

As an example, value λxy.x belongs to the set Λ∅⊕,let, while the distinguished value νx.λy.x
is the element of VΛ∅⊕,let. As previously stated, we want to see the operational semantics of
Λ⊕,let as a labelled Markov chain defined as follows:

FSCD 2019

26:8 Λ⊕ with Let-In Operator

I Definition 14. The Λ⊕,let-Markov chain is defined as the triple (Λ∅⊕,let] VΛ∅⊕,let,Λ∅⊕,let ∪
{τ},P), where the set of states is the disjoint union of the set of closed terms and the set
of closed distinguished values, labels (actions) are either closed terms or τ action and the
transition probability matrix P is defined in the following way:

for every closed term M and distinguished value νx.N ,

P (M, τ, νx.N) = [[M]](λx.N) ,

for every closed term M and distinguished value νx.N ,

P (νx.N,M,N{M/x}) = 1 ,

in all other cases, P returns 0.

For technical reasons the set of states is represented as a disjoint union Λ∅⊕,let] VΛ∅⊕,let.
Since Λ⊕,let can be seen as a labelled Markov chain, the simulation and bisimulation

can be defined as for any labelled Markov chain. A probabilistic applicative simulation is a
probabilistic simulation on Λ⊕,let and a probabilistic applicative bisimulation is a probabilistic
bisimulation on Λ⊕,let. Then, the probabilistic applicative similarity, PAS for short, and the
probabilistic applicative bisimilarity, PAB for short, are defined in the usual way applying
Equation (6) and (7). From now on, the symbol . (resp. ∼) will denote the probabilistic
applicative similarity (resp. bisimilarity).

The notions of PAS and PAB are defined on closed terms, and we extend these definitions
to open terms by requiring the usual closure under substitutions. Let M,N ∈ ΛΓ

⊕,let where
Γ = {x1, . . . , xn}. We say M and N are similar, (denoted M . N), if for all L1 ∈
Λ∅⊕,let, . . . , Ln ∈ Λ∅⊕,let, M{L1/x1, . . . , Ln/xn} . N{L1/x1, . . . , Ln/xn}. The analogous
terminology is introduced for bisimilarity.

I Example 15. Let us recall the terms λx.(x⊕x) and λx.x from Example 10 having different
semantics but context equivalent. As mentioned, the proof of their context equivalence is
not immediate, because of the universal quantifier in Equation (5). However, we can check
easily that they are bisimilar, because we need just to exhibit a bisimulation relation between
the two terms. By Theorem 20 we then infer context equivalence from bisimilarity. Let us
define the relation R = {(λx.(x⊕ x), λx.x)} ∪ {(λx.x, λx.(x⊕ x))} ∪ {(νx.(x⊕ x), νx.x)} ∪
{(νx.x, νx.(x⊕ x))} ∪ {(N ⊕N,N) | N ∈ Λ∅⊕,let} ∪ {(N,N ⊕N) | N ∈ Λ∅⊕,let} ∪ {(M,M) |
M ∈ Λ∅⊕,let} ∪ {(Ṽ , Ṽ) | Ṽ ∈ VΛ∅⊕,let}. We prove that R is a bisimulation containing
(λx.(x⊕x), λx.x). The relation is trivially an equivalence, so we have to show that ∀(M,N) ∈
R,∀E ∈ (Λ∅⊕,let]VΛ∅⊕,let)/R,∀` ∈ Λ∅⊕,let ∪ {τ}, P (M, `,E) = P (N, `,E) (Definition 12). We
prove only for (λx.(x⊕ x), λx.x) ∈ R, (νx.(x⊕ x), νx.x) ∈ R and (N ⊕N,N) ∈ R. First we
have that (λx.(x⊕x), λx.x) ∈ R and for all closed terms F ∈ Λ∅⊕,let and all equivalence classes
E ∈ (Λ∅⊕,let] VΛ∅⊕,let)/R, P (λx.(x ⊕ x), F, E) = 0 = P (λx.x, F,E) holds by Definition 14.
If the equivalence class E contains νx.(x ⊕ x) then P (λx.(x ⊕ x), τ, E) = 1, otherwise
P (λx.(x⊕ x), τ, E) = 0. Since (νx.(x⊕ x), νx.x) ∈ R, we have that νx.(x⊕ x) ∈ E if and
only if νx.x ∈ E. Hence, P (λx.(x⊕x), `, E) = P (λx.x, `, E) for all ` ∈ Λ∅⊕,let∪{τ} and all E ∈
(Λ∅⊕,let]VΛ∅⊕,let)/R. For all equivalence classes E ∈ (Λ∅⊕,let]VΛ∅⊕,let)/R, P (νx.(x⊕x), τ, E) =
0 = P (νx.x, τ, E) holds by Definition 14. Further, P (νx.(x⊕x), F, E) = 1 for some F ∈ Λ∅⊕,let
if F⊕F ∈ E, otherwise P (νx.(x⊕x), F, E) = 0. We have that F⊕F ∈ E if and only if F ∈ E,
because (F ⊕ F, F) ∈ R for all F ∈ Λ∅⊕,let. Hence, P (νx.(x⊕ x), `, E) = P (νx.x, `, E) for all
` ∈ Λ∅⊕,let ∪ {τ} and all E ∈ (Λ∅⊕,let] VΛ∅⊕,let)/R. Finally, let us consider (N ⊕N,N) ∈ R,
for an arbitrary N ∈ Λ∅⊕,let. For all closed terms F ∈ Λ∅⊕,let and all equivalence classes

S. Kašterović and M. Pagani 26:9

E ∈ (Λ∅⊕,let] VΛ∅⊕,let)/R, P (N ⊕ N,F,E) = 0 = P (N,F,E) holds by Definition 14. By
Lemma 6 and Definition 14 we have that the following holds for all equivalence classes
E ∈ (Λ∅⊕,let] VΛ∅⊕,let)/R.

P (N ⊕N, τ,E) =
∑

νx.M∈E
P (N ⊕N, τ, νx.M) =

∑
{λx.M |νx.M∈E}

[[N ⊕N]](λx.M)

=
∑

{λx.M |νx.M∈E}

(1
2 [[N]] + 1

2 [[N]])(λx.M) =
∑

{λx.M |νx.M∈E}

[[N]](λx.M)

=
∑

νx.M∈E
P (N, τ, νx.M) = P (N, τ,E)

The proof for the other elements of R is analogous to the cases we considered.

I Example 16. The terms M = λxy.(x⊕ y) and N = (λxy.x)⊕ (λxy.y) are not bisimilar.
Let us suppose the opposite. Then, there exists a bisimulation R such that (M,N) ∈ R. By
definition R is an equivalence relation. Let E be an equivalence class of Λ∅⊕,let] VΛ∅⊕,let with
respect to R which contains νx.λy.(x ⊕ y). Then, we should have that 1 = P (M, τ,E) =
P (N, τ,E). We know that P (N, τ, νx.λy.x) = 1

2 and P (N, τ, νx.λy.y) = 1
2 . Thus, we can

conclude νx.λy.x ∈ E and νx.λy.y ∈ E. If νx.λy.x ∈ E, then (νx.λy.(x⊕ y), νx.λy.x) ∈ R.
Hence we have that 1 = P (νx.λy.(x ⊕ y),Ω, E1) = P (νx.λy.x,Ω, E1), where E1 is an
equivalence class which contains λy.(Ω⊕ y). Using the fact that P (νx.λy.x,Ω, λy.Ω) = 1
we obtain λy.Ω ∈ E1. Since λy.(Ω⊕ y) and λy.Ω belong to the same equivalence class we
conclude (λy.(Ω⊕ y), λy.Ω) ∈ R. If E2 is an equivalence class such that νy.(Ω⊕ y) ∈ E2,
then we have that 1 = P (λy.(Ω ⊕ y), τ, E2) = P (λy.Ω, τ, E2). By a similar reasoning
as before we obtain that (νy.(Ω ⊕ y), νy.Ω) ∈ R. Let E3 be an equivalence class which
contains Ω ⊕ I. From 1 = P (νy.(Ω ⊕ y), I, E3) = P (νy.Ω, I, E3) it follows that Ω ∈ E3,
i.e. (Ω ⊕ I,Ω) ∈ R. Finally, if E4 is an equivalence class such that νx.x ∈ E4, then
1
2 = P (Ω⊕ I, τ, E4) = P (Ω, τ, E4). This is in contradiction with P (Ω, τ, E4) = 0 which is a
consequence of the definition of a transition probability matrix. Thus, terms M and N are
not bisimilar.

The following proposition is the analogous to Proposition 9, stating the soundness of
(bi)simulation with respect to the operational semantics.

I Proposition 17. Let M,N ∈ Λ∅⊕,let, if [[M]] ≤ [[N]] then M . N . So, [[M]] = [[N]] implies
M ∼ N .

Proof. By checking that the relation R = {(M,N) ∈ Λ∅⊕,let×Λ∅⊕,let | [[M]] ≤ [[N]]}∪{(Ṽ , Ṽ) ∈
VΛ∅⊕,let × VΛ∅⊕,let} is a probabilistic applicative simulation. The second part of the statement
follows from ∼=. ∩(.)op. J

We introduce a new notion of relations called Λ⊕,let-relations, which are sets of triples
in the form (Γ,M,N) where M,N ∈ ΛΓ

⊕,let. Any relation R′ on the set of Λ⊕,let-terms can
be extended to a Λ⊕,let-relation R, such that whenever (M,N) ∈ R′ and M,N ∈ ΛΓ

⊕,let, we
have that (Γ,M,N) ∈ R. We will write Γ `MRN instead of (Γ,M,N) ∈ R.

I Definition 18. A Λ⊕,let-relation R is a congruence (respectively, a precongruence) if it
is an equivalence (respectively, a preorder) and for every Γ ∪∆ `MRN and every context
C ∈ CΛ⊕,let

(Γ;∆), we have that ∆ ` C[M]RC[N].

It is immediate to check that the context preorder ≤ (resp. equivalence ') is a precongruence
(resp. congruence)(Appendix A.1). Also similarity is a precongruence, but its proof is more
involved (Appendix A.2). As a consequence we have that bisimilarity is a congruence.

FSCD 2019

26:10 Λ⊕ with Let-In Operator

I Lemma 19. The similarity . (resp. bisimilarity ∼) is a precongruence (resp. congruence)
relation for Λ⊕,let-terms.

Proof (Sketch). As standard [3, 4, 7], we use Howe’s technique to prove that probabilistic
similarity is a precongruence, this implying that the probabilistic bisimilarity is also a
congruence. The proof is technical and follows the same reasoning as [7], the only difference
being in the cases needed to handle the compatibility associated with the let-in operator.

We start with defining Howe’s lifting for Λ⊕,let, which turns an arbitrary relation R to
another one RH . The relation RH enjoys some properties with respect to the relation R. In
particular, if R is reflexive, transitive and closed under term-substitution, then it is included
in RH and the relation RH is context closed and also closed under term-substitution. These
properties allow to prove that the transitive closure (.H)+ of the Howe’s lifting .H is a
precongruence including .. One can conclude then easily that . is also a precongruence.
Finally, from ∼=. ∪(.)op we conclude that ∼ is a congruence. J

Now we can prove that simulation preorder (similarity) is sound with respect to the
context preorder. As a consequence we have that bisimulation equivalence (bisimilarity) is
included in the context equivalence.

I Theorem 20 (Soundness). For every M,N ∈ ΛΓ
⊕,let, Γ ` M . N implies Γ ` M ≤ N .

Therefore, M ∼ N implies Γ `M'N .

Proof. Suppose that Γ ` M . N . We have that for every context C ∈ CΛ⊕,let
(Γ;∅),

∅ ` C[M] . C[N] holds as a consequence of Lemma 19. Then by definition there exists
a simulation between C[M] and C[N], which implies by Definition 12 that

∑
[[C[M]]] ≤∑

[[C[N]]] holds. We conclude Γ `M ≤ N . The second part of the statement follows from
the definitions ∼=. ∩ .op and '=≤ ∩ ≤op. J

4 Full Abstraction

The goal of this section is to prove the converse of Theorem 20, showing that context
equivalence and bisimilarity coincide. In order to get this result, it is more convenient
to use the notion of testing equivalence, which has been proven to coincide with Markov
processes bisimilarity in [16] (here Theorem 24). In this framework we need to consider only
Markov chains, which are the discrete-time version of Markov processes, so we simplify the
definitions and results of [16] to this discrete setting, following [3]. Notice that Theorem 24 is
independent from the particular Markov chain considered, so we recall the general definitions
and then we applied them to the Λ⊕,let-Markov chain.

I Definition 21 ([3]). Let (S,L,P) be a labelled Markov chain. The testing language T(S,L,P)
for (S,L,P) is given by the grammar

t ::= ω | a.t | (t, t),

where ω is a symbol for termination and a ∈ L is an action (label).

It is easy to see that tests are finite objects. A test is an algorithm for doing an experiment
on a program. During the execution of a test on a particular program, one can observe the
success or the failure of the experiment with a given probability. The symbol ω represents a
test which does not require an experiment at all (it always succeed). The test a.t describes
an experiment consisting of performing the action a and in the case of success performing
the test t, and the test (t, s) makes two copies of the current state and allows both tests t
and s to be performed independently on the same state. The success probability of a test is
defined as follows:

S. Kašterović and M. Pagani 26:11

λxy.(x⊕ y)

νx.λy.(x⊕ y)

λy.(I⊕ y)

νy.(I⊕ y)

I⊕Ω

νx.x

τ1
2 0

Ω1

τ1

I1

τ1

λxy.x⊕ λxy.y

νx.λy.x

λy.I

νy.I

I

νx.x

τ1

Ω1

τ1

I1

τ1
2

νx.λy.y

λy.y

νy.y

Ω

τ
0

Ω1

τ1

I1

τ1
2

Figure 4 The experiment t = τ.(I.τ.Ω.τ.ω, I.τ.Ω.τ.ω) over the terms of Example 23.

I Definition 22 ([3]). Let (S,L,P) be a labelled Markov chain. We define a family
{Pt(·)}t∈T(S,L,P) of maps from the set of states S to R[0,1], by induction on the structure of t:

Pω(s) = 1;
Pa.t(s) =

∑
s′∈S P(s, a, s′)Pt(s′);

P(t1,t2)(s) = Pt1(s) · Pt2(s).

I Example 23. The terms λxy.(x ⊕ y) and (λxy.x) ⊕ (λxy.y) of Example 7 can be dis-
criminated by the test t = τ.(I.τ.Ω.τ.ω, I.τ.Ω.τ.ω). Figure 4 sketches the computation of
Pt(λxy.(x⊕ y)) = 1

4 and Pt((λxy.x)⊕ (λxy.y)) = 1
2 .

The following theorem states the equivalence between the notion of bisimilarity over
(S,L,P) and testing equivalence. The theorem has been proven in [16] for a labelled Markov
processes. For lack of space, we have omitted a detailed proof of the adaptation of the results
from labelled Markov processes to labelled Markov chains.

I Theorem 24 ([3],[16]). Let (S,L,P) be a labelled Markov chain. Then s, s′ ∈ S are
bisimilar if and only if Pt(s) = Pt(s′) for every test t ∈ T(S,L,P).

It is known that this theorem does not hold for inequalities [16]. More precisely, it is not
true that s . s′ just in case Pt(s) ≤ Pt(s′) for every test t ∈ T(S,L,P).

4.1 Every Test has an Equivalent Context
Here is the main contribution of our paper, showing that for every test t associated with
the Λ⊕,let-Markov chain there exists a context Ct expressing t in the syntax of Λ⊕,let,
i.e. Pt(M) =

∑
[[Ct[M]]] for every term M (Lemma 25). So context equivalence implies

testing equivalence (Theorem 27) and hence bisimilarity by Theorem 24. Together with
Theorem 20 this achieves the diagram in Figure 1, so Corollary 28.

I Lemma 25. For every test t ∈ TΛ⊕,let , there are contexts Ct ∈ CΛ⊕,let
(∅;∅) and Dt ∈

CΛ⊕,let
(∅;∅) such that for every term M ∈ Λ∅⊕,let and value V = λx.M ∈ V∅⊕,let it holds that:

Pt(M) =
∑

[[Ct[M]]] and Pt(Ṽ) =
∑

[[Dt[V]]],

where we recall that Ṽ denotes the distinguished value νx.M ∈ VΛ∅⊕,let.

FSCD 2019

26:12 Λ⊕ with Let-In Operator

Proof. We prove it by induction on the structure of a test t.
First we consider the case where t = ω. Then, by the definition of Pt(·), we have that
for every M ∈ Λ∅⊕,let and V ∈ V∅⊕,let , Pω(M) = 1 and Pω(Ṽ) = 1. Thus, we can define
Cω = (λxy.x)[·] and Dω = (λxy.x)[·] and we obtain, for every M ∈ Λ∅⊕,let∑

[[Cω[M]]] =
∑

[[(λxy.x)M]] =
∑

[[λy.M]] = 1 = Pω(M),

and for every value V ∈ V∅⊕,let∑
[[Dω[V]]] =

∑
[[(λxy.x)V]] =

∑
[[λy.V]] = 1 = Pω(Ṽ).

Next, let us consider the case where t = a.t′ for some action (label) a. By induction
hypothesis there are contexts Ct′ ∈ CΛ⊕,let

(∅;∅) and Dt′ ∈ CΛ⊕,let
(∅;∅) such that for every

M ∈ Λ∅⊕,let and V ∈ V∅⊕,let we have that Pt′(M) =
∑

[[Ct′ [M]]] and Pt′(Ṽ) =
∑

[[Dt′ [V]]].
An action a can be either a closed term or a τ action, thus depending on it we differ two
cases.
1. If a = τ , then a test t is of the form τ.t′. From Definition 14 and Definition 22 we have

Pτ.t′(Ṽ) = 0 for any value V ∈ V∅⊕,let . Hence, we define Dτ.t′ = Ω[·] and the statement
holds. Let M be a closed term. From the definition of a transition probability matrix
(P (M, τ, Ṽ) = [[M]](V)) and induction hypothesis Pt′(Ṽ) =

∑
[[Dt′ [V]]] it follows that

Pτ.t′(M) =
∑

Ṽ ∈VΛ∅⊕,let

P (M, τ, Ṽ)Pt′(Ṽ) =
∑

V ∈V∅⊕,let

[[M]](V) ·
∑

[[Dt′ [V]]].

We define Cτ.t′ = (let y = [·] in Dt′ [y]). Then, by the definition of operational semantics
we get∑

[[Cτ.t′ [M]]] =
∑

[[let y = M in Dt′ [y]]] =
∑

V ∈V∅⊕,let

[[M]](V) ·
∑

[[Dt′ [V]]],

for any closed term M ∈ Λ∅⊕,let. Thus, Pτ.t′(M) =
∑

[[Cτ.t′ [M]]].
2. If a = F for some closed term F , then a test t is of the form F.t′. From Definition 14

and Definition 22 we have PF.t′(M) = 0 for any term M ∈ Λ∅⊕,let. Hence, we define
CF.t′ = Ω[·] and the statement holds. Let V be a value λx.N (Ṽ = νx.N). From the
definition of a transition probability matrix (P (νx.N, F,N{F/x}) = 1) and induction
hypothesis, Pt′(M) =

∑
[[Ct′ [M]]] for every M ∈ Λ∅⊕,let, it follows that

PF.t′(Ṽ) =
∑

N ′∈Λ∅⊕,let

P (Ṽ , F,N ′)Pt′(N ′)

= P (νx.N, F,N{F/x}) · Pt′(N{F/x})

= 1 · Pt′(N{F/x}) =
∑

[[Ct′ [N{F/x}]]]

By Lemma 6 terms N{F/x} and (λx.N)F have the same semantics. Hence, they are
bisimilar (Proposition 17). Due to the fact that bisimilarity is included in context
equivalence (Theorem 20) we have that terms N{F/x} and (λx.N)F are context
equivalent. More precisely, for any context C,

∑
[[C[N{F/x}]]] =

∑
[[C[(λx.N)F]]].

Finally, we obtain that

PF.t′(Ṽ) =
∑

[[Ct′ [N{F/x}]]] =
∑

[[Ct′ [(λx.N)F]]] =
∑

[[Ct′ [V F]]].

We define DF.t′ = Ct′ [[·]F]. Then, we have that
∑

[[DF.t′ [V]]] =
∑

[[Ct′ [V F]]], holds for
any value V ∈ V∅⊕,let . Thus, PF.t′(Ṽ) =

∑
[[DF.t′ [V]]].

S. Kašterović and M. Pagani 26:13

Finally, let t = (t1, t2). By induction hypothesis there exist contexts Ct1 , Dt1 , Ct2 , Dt2 ∈
CΛ⊕,let

(∅;∅) such that for any closed term M and a value V the following holds:

Pt1(M) =
∑

[[Ct1 [M]]], Pt1(Ṽ) =
∑

[[Dt1 [V]]],

Pt2(M) =
∑

[[Ct2 [M]]] and Pt2(Ṽ) =
∑

[[Dt2 [V]]].

From Definition 22 we have

P(t1,t2)(M) = Pt1(M) · Pt2(M) =
∑

[[Ct1 [M]]] ·
∑

[[Ct2 [M]]],

for any closed term M ∈ Λ∅⊕,let. We define:

C(t1,t2) = (λy.(let z1 = Ct1 [y] in (let z2 = Ct2 [y] in I)))[·] (8)

and by the definition of operational semantics we have∑
[[C(t1,t2)[M]]] =

∑
[[Ct1 [M]]] ·

∑
[[Ct2 [M]]].

Since, for a value V ∈ V∅⊕,let it holds that

P(t1,t2)(Ṽ) = Pt1(Ṽ) · Pt2(Ṽ) =
∑

[[Dt1 [V]]] ·
∑

[[Dt2 [V]]],

we define D(t1,t2) = (λy.(let z1 = Dt1 [y] in (let z2 = Dt2 [y] in I)))[·] and the statement
holds.

This concludes the proof. J

I Lemma 26. Let M,N ∈ Λ∅⊕,let, M ≤ N implies that Pt(M) ≤ Pt(N), for every test t.

Proof. It is a straightforward consequence of Lemma 25. Let us assume that terms M and
N are in the context preorder, ∅ `M ≤ N . Then, for every context C ∈ CΛ⊕,let

(∅;∅),we have∑
[[C[M]]] ≤

∑
[[C[N]]]. By Lemma 25, we have that for each test t ∈ TΛ⊕,let there exists

context Ct such that for every term M , Pt(M) =
∑

[[Ct[M]]]. Then, for every test t ∈ TΛ⊕,let ,
it holds that Pt(M) =

∑
[[Ct[M]]] ≤

∑
[[Ct[N]]] = Pt(N). Hence, for every test t ∈ TΛ⊕,let it

holds that Pt(M) ≤ Pt(N). J

I Theorem 27. Let M,N ∈ Λ∅⊕,let, M'N implies that Pt(M) = Pt(N), for every test t.

Proof. It is a straightforward consequence of Lemma 26 and the fact thatM'N is equivalent
to M ≤ N and N ≤M . J

Notice that the let-in operator is crucial in defining the context C(t1,t2) associated with the
product (t1, t2) of tests (Equation (8)) in the proof of Lemma 25. For example, if we consider
the call-by-name version of C(t1,t2), i.e. the context C = (λy.(λz1z2.I)Dt1 [y]Dt2 [y])[·], then
the semantics of C[M] is independent from the contexts Dt1 [·], Dt2 [·] and the term M ,
being [[C[M]]] = I. Hence, we cannot have P(t1,t2)(M) =

∑
[[C[M]]] for every M . Another

possibility is to try to use a context not erasing Dt1 [·] and Dt2 [·] during the evaluation, as
for example in C = (λy.Dt1 [y]Dt2 [y])[·]. However this would imply to be able to control
the result of Dt1 [M] for every term M , for example supposing [[Dt1 [M]]] = Pt1(M)I, which
increases considerably the difficulty of the proof. Anyway, the fact that there are examples
of terms distinguished by tests (Example 23) but not by contexts without the let-in operator
(Example 7) shows the necessity of this latter.

FSCD 2019

26:14 Λ⊕ with Let-In Operator

The following resumes all results in the paper, as sketched in Figure 1:

I Corollary 28 (Full Abstraction). For any M,N ∈ Λ∅⊕,let, the following items are equivalent:
(context equivalence) M'N ,
(bisimilarity) M ∼ N ,
(testing equivalence) Pt(M) = Pt(N) for all tests t.

Concerning inequalities, the equivalence of similarity and testing preorder, i.e. a relation
which contains (s, s′) if and only if Pt(s) ≤ Pt(s′) for every test t ∈ T(S,L,P), does not hold
as we stated below Theorem 24. So, we have no clue for proving that similarity is fully
abstract with respect to the context preorder. A possible way to achieve this inequality full
abstraction is to look for the converse of Lemma 25, by representing all contexts by tests.
However, such a representation is far to be obvious, and even it might not exists.

5 Conclusion

In this paper we have considered the Λ⊕,let-calculus, a pure untyped λ-calculus extended
with two operators: a probabilistic choice operator ⊕ and a let-in operator. The calculus
implements a lazy call-by-name evaluation strategy, following [1, 7], however the let-in operator
allows for a call-by-value passing policy. We prove that context equivalence, bisimilarity and
testing equivalence all coincide in Λ⊕,let (Corollary 28).

Concerning the inequalities associated with these equivalences: it is known that that
the probabilistic similarity does not imply the testing approximation [16]. We prove that
similarity implies context preorder (Theorem 20), but it remains open whether also the
converse holds.

This paper confirms a conjecture stated in [3], showing that the calculus introduced in [7]
can be endowed with a fully abstract bisimilarity by adding a let-in operator. As discussed
in the Introduction, our feeling is that the need of this operator is due to the lazyness rather
than to the cbn policy of the calculus. In order to precise this intuition we plan to investigate
the definition of bisimilarity for the non-lazy cbn probabilistic λ-calculus, which has already
fully abstract denotational models [2, 14] as well as infinitary normal forms [13] but not a
theory of bisimulations.

In a more general perspective, one can study the let-in operator in call-by-name languages
with different effects than the probabilistic one, as for example the non-determinism. Let us
also mention [5], which considers a kind of applicative bisimulation for lazy call-by-name
lambda-calculi endowed with various algebraic effects. However, the setting seems different,
as in [5] the notion of (bi)simulation is not defined over terms but over their semantics.

Finally, one should address similar questions in typed languages. We have already
mentioned in the Introduction that [10] shows that adding a let-in operator at ground types
does not alter the observational equality of the cbn probabilistic PCF, but what about
allowing a let-in at higher-order types? and what in presence of recursive types?

References
1 Samson Abramsky. Research Topics in Functional Programming, chapter The Lazy Lambda

Calculus, pages 65–116. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1990. URL: http://dl.acm.org/citation.cfm?id=119830.119834.

2 Pierre Clairambault and Hugo Paquet. Fully Abstract Models of the Probabilistic lambda-
calculus. In Dan R. Ghica and Achim Jung, editors, 27th EACSL Annual Conference on
Computer Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, volume 119 of
LIPIcs, pages 16:1–16:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.CSL.2018.16.

http://dl.acm.org/citation.cfm?id=119830.119834
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.16
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.16

S. Kašterović and M. Pagani 26:15

3 Raphaëlle Crubillé and Ugo Dal Lago. On Probabilistic Applicative Bisimulation and Call-
by-Value λ-Calculi. In Programming Languages and Systems - 23rd European Symposium on
Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, pages
209–228, 2014. doi:10.1007/978-3-642-54833-8_12.

4 Raphaëlle Crubillé, Ugo Dal Lago, Davide Sangiorgi, and Valeria Vignudelli. On Applicative
Similarity, Sequentiality, and Full Abstraction. In Correct System Design - Symposium in
Honor of Ernst-Rüdiger Olderog on the Occasion of His 60th Birthday, Oldenburg, Germany,
September 8-9, 2015. Proceedings, pages 65–82, 2015. doi:10.1007/978-3-319-23506-6_7.

5 Ugo Dal Lago, Francesco Gavazzo, and Ryo Tanaka. Effectful Applicative Similarity for
Call-by-Name Lambda Calculi. In Dario Della Monica, Aniello Murano, Sasha Rubin, and
Luigi Sauro, editors, Joint Proceedings of the 18th Italian Conference on Theoretical Computer
Science and the 32nd Italian Conference on Computational Logic co-located with the 2017
IEEE International Workshop on Measurements and Networking (2017 IEEE M&N), Naples,
Italy, September 26-28, 2017., volume 1949 of CEUR Workshop Proceedings, pages 87–98.
CEUR-WS.org, 2017.

6 Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On Coinductive Equivalences for
Higher-Order Probabilistic Functional Programs (Long Version). CoRR, abs/1311.1722, 2013.
arXiv:1311.1722.

7 Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for
higher-order probabilistic functional programs. In The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, pages 297–308, 2014. doi:10.1145/2535838.2535872.

8 Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et
Applications, 46(3):413–450, 2012. doi:10.1051/ita/2012012.

9 Thomas Ehrhard, Michele Pagani, and Christine Tasson. The Computational Meaning of
Probabilistic Coherence Spaces. In Proceedings of the 26th Annual IEEE Symposium on Logic
in Computer Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 87–96,
2011. doi:10.1109/LICS.2011.29.

10 Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full Abstraction for Probabilistic
PCF. Journal of the ACM, 65(4):23:1–23:44, 2018. doi:10.1145/3164540.

11 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

12 Kim Guldstrand Larsen and Arne Skou. Bisimulation through Probabilistic Testing. Informa-
tion and Computation, 94(1):1–28, 1991. doi:10.1016/0890-5401(91)90030-6.

13 Thomas Leventis. Probabilistic Böhm Trees and Probabilistic Separation. In Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018, pages 649–658, 2018. doi:10.1145/3209108.3209126.

14 Thomas Leventis and Michele Pagani. Strong Adequacy and Untyped Full Abstraction for
Probabilistic Coherence Spaces. accepted to FOSSACS 2019, 2019.

15 Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A Probabilistic Language Based on
Sampling Functions. ACM Transactions on Programming Languages and Systems, 31(1):4:1–
4:46, December 2008. doi:10.1145/1452044.1452048.

16 Franck Van Breugel, Michael W. Mislove, Joël Ouaknine, and James Worrell. Domain
theory, testing and simulation for labelled Markov processes. Theoretical Computer Science,
333(1-2):171–197, 2005. doi:10.1016/j.tcs.2004.10.021.

FSCD 2019

http://dx.doi.org/10.1007/978-3-642-54833-8_12
http://dx.doi.org/10.1007/978-3-319-23506-6_7
http://arxiv.org/abs/1311.1722
http://dx.doi.org/10.1145/2535838.2535872
http://dx.doi.org/10.1051/ita/2012012
http://dx.doi.org/10.1109/LICS.2011.29
http://dx.doi.org/10.1145/3164540
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0890-5401(91)90030-6
http://dx.doi.org/10.1145/3209108.3209126
http://dx.doi.org/10.1145/1452044.1452048
http://dx.doi.org/10.1016/j.tcs.2004.10.021

26:16 Λ⊕ with Let-In Operator

A Appendix - Proofs

A.1 Context Equivalence is a Congruence
We consider Λ⊕,let-relations defined in Section 3. The set PFIN(X) denotes the set of all finite
subsets of X.

I Definition 29. A Λ⊕,let-relation R is compatible if and only if the five conditions below
hold:
(Com1) ∀Γ ∈ PFIN(X), x ∈ Γ : Γ ` x R x;
(Com2) ∀Γ ∈ PFIN(X),∀x ∈ X − Γ, ∀M,N ∈ ΛΓ∪{x}

⊕,let : Γ ∪ {x} ` M R N ⇒ Γ `
λx.M R λx.N ;

(Com3) ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let : Γ `M R N ∧ Γ ` L R P ⇒ Γ `ML R NP ;

(Com4) ∀Γ ∈ PFIN(X),∀M,N,L, P ∈ ΛΓ
⊕,let : Γ ` M R N ∧ Γ ` L R P ⇒ Γ `

M ⊕ L R N ⊕ P ;
(Com5) ∀Γ ∈ PFIN(X),∀x ∈ X,∀M,N ∈ ΛΓ

⊕,let,∀L,P ∈ ΛΓ∪{x}
⊕,let : Γ `M R N ∧ Γ ∪ {x} `

L R P ⇒ Γ ` (let x = M in L) R (let x = N in P).

I Definition 30. A Λ⊕,let-relation is a congruence (respectively, precongruence) if it is an
equivalence relation (respectively, preorder) and compatible.

This definition of a (pre)congruence is equivalent to Definition 18.

I Lemma 31. The context preorder ≤ is a precongruence relation.

Proof. The proof follows the same basic outline as the proof of Lemma 3.33 in [6]. J

I Lemma 32. The context equivalence ' is a congruence relation.

Proof. This statement follows directly from Lemma 31 and the definition of context equival-
ence, i.e. '=≤ ∩(≤)op. J

A.2 Bisimulation Equivalence is a Congruence
We use Howe’s technique to prove that probabilistic similarity is a precongruence and as
a consequence probabilistic bisimilarity is a congruence. Howe’s technique is a commonly
used technique for proving precongruence of similarity. The proof is very technical. It is the
adaptation of the technique used in [3, 4, 6] and it has the same structure as the proof in [6].
Contrary to the proof in [6], our proof introduces a new notion of compatibility with the
let-in operator.

The property ∼=. ∩ .op ensures it is enough to show that probabilistic similarity (.)
is a precongruence in order to prove that probabilistic bisimilarity (∼) is a congruence. The
key part is proving that . is a compatible relation and it is done by Howe’s technique.

We call an Λ⊕,let-relation R (term) substitutive if for all Γ ∈ PFIN(X), x ∈ X − Γ,M,N ∈
ΛΓ∪{x}
⊕,let , L, P ∈ ΛΓ

⊕,let the following holds

Γ ∪ {x} `M R N ∧ Γ ` L R P ⇒ Γ `M{L/x} R N{P/x}.

If a relation R satisfies

Γ ∪ {x} `M R N ∧ L ∈ ΛΓ
⊕,let ⇒ Γ `M{L/x} R N{L/x},

we say it is closed under term-substitution.

S. Kašterović and M. Pagani 26:17

Γ ` x R M (How1)
Γ ` x RH M

Γ ∪ {x} `M RH L Γ ` λx.L R N x 6∈ Γ
(How2)

Γ ` λx.M RH N

Γ `M RH P Γ ` N RH Q Γ ` PQ R L (How3)
Γ `MN RH L

Γ `M RH P Γ ` N RH Q Γ ` P ⊕Q R L (How4)
Γ `M ⊕N RH L

Γ `M RH P Γ ∪ {x} ` N RH Q Γ ` (let x = P in Q) R L
(How5)

Γ ` (let x = M in N) RH L

Figure 5 Howe’s lifting for Λ⊕,let.

Γ `M R N (TC1)
Γ `M R+ N

Γ `M R+ N Γ ` N R+ L (TC2)
Γ `M R+ L

Figure 6 Transitive closure for Λ⊕,let.

Please notice that ifR is substitutive and reflexive then it is closed under term-substitution.
As stated in the paper, open extensions of . and ∼ are closed under term-substitution by
definition.

For an arbitrary Λ⊕,let-relation R, Howe’s lifting RH is defined by the rules in Figure 5.
We start with some auxiliary statements.

I Lemma 33. If R is reflexive, then RH is compatible.

Proof. The proof follows the same basic outline as the proof of Lemma 3.10 in [6]. J

I Lemma 34. If R is transitive, then Γ `M RH N and Γ ` N R L imply Γ `M RH L.

Proof. By induction on the derivation of Γ `M RH N , looking at the last rule used, thus
on the structure of M . J

I Lemma 35. If R is reflexive, then Γ `M R N implies Γ `M RH N .

Proof. By induction on the structure of M . J

I Lemma 36. If R is reflexive, transitive and closed under term-substitution, then RH is
(term) substitutive and hence also closed under term-substitution.

Proof. We need to show that: ∀Γ ∈ PFIN(X),∀x ∈ X − Γ,∀M,N ∈ ΛΓ∪{x}
⊕,let ,∀L,P ∈ ΛΓ

⊕,let,

Γ ∪ {x} `M RH N ∧ Γ ` L RH P ⇒ Γ `M{L/x} RH N{L/x}.

Proof proceeds by induction on the derivation of Γ ∪ {x} `M RH N . J

The goal is to prove that .H is a precongruence, but in order to do that some properties
are missing. Hence, following Howe’s approach we build a transitive closure of a Λ⊕,let-relation
R as a relation R+ defined by the rules in Figure 6.

FSCD 2019

26:18 Λ⊕ with Let-In Operator

I Lemma 37. If R is compatible, then so is R+.

Proof. The proof follows the same basic outline as the proof of Lemma 3.14 in [6]. J

I Lemma 38. If R is closed under term-substitution, then so is R+.

Proof. Proving that R+ is closed under term-substitution means to show: ∀Γ ∈ PFIN(X),
∀x ∈ X − Γ, ∀M,N ∈ ΛΓ∪{x}

⊕,let , ∀L ∈ ΛΓ
⊕,let, Γ ∪ {x} ` M R+ N ⇒ M{L/x} R+ N{L/x}.

Proof proceeds by induction on the derivation of Γ ∪ {x} `M R+ N . J

I Lemma 39. If a Λ⊕,let-relation R is a preorder, then so is (RH)+.

Proof. A relation is a preorder if it is reflexive and transitive. We assume that R is reflexive
and transitive. Then, by Lemma 33 and Lemma 37 we conclude (RH)+ is compatible and
hence reflexive. Relation (RH)+ is transitive by its construction, since it is a transitive
closure of relation RH . Thus, we conclude relation (RH)+ is a preorder. J

The crucial part in proving that probabilistic similarity is a precongruence is Key Lemma
(Lemma 44). First, we need the definition of a probability assignment and an auxiliary
lemma about it.

I Definition 40. P = ({pi}1≤i≤n, {rI}I⊆{1,...,n}) is a probability assignment if for each
I ⊆ {1, . . . , n} it holds that

∑
i∈I pi ≤

∑
J∩I 6=∅ rJ .

I Lemma 41. Let P = ({pi}1≤i≤n, {rI}I⊆{1,...,n}) be a probability assignment. Then for
every nonempty I ⊆ {1, . . . , n} and for every k ∈ I there is sk,I ∈ [0, 1] which satisfies the
following conditions:
1. for every I, it holds that

∑
k∈I sk,I ≤ 1;

2. for every k ∈ {1, . . . , n}, it holds that pk ≤
∑
k∈I sk,I · rI .

The proof of Lemma 41 is omitted, but it can be found in [6]. Besides Lemma 41, in the
proof of Key Lemma we use the following technical Lemmas.

I Lemma 42. For every X ⊆ Λ{x}⊕,let, it holds that . (λx.X) = λx.(. (X)) and . (νx.X) =
νx.(. (X)). λx.(. (X)) stands for the set {λx.M | ∃N ∈ X,N .M}.

Proof. Straightforward consequence of the definition of similarity. J

I Lemma 43. If M . N , then for every X ⊆ Λ{x}⊕,let, [[M]](λx.X) ≤ [[N]](λx. . (X)).

Proof. It is a straightforward consequence of Lemma 42. J

I Lemma 44 (Key Lemma). IfM .HN , then for every X ⊆ Λ{x}⊕,let it holds that [[M]](λx.X) ≤
[[N]](λx.(.H (X))).

Proof. Since [[M]] = sup{D ; M ⇓ D}, it is enough to prove the following statement: if
M .H N and M ⇓ D then for every X ⊆ Λ{x}⊕,let it holds that D(λx.X) ≤ [[N]](λx.(.H (X)).
Proof proceeds by induction on the derivation of M ⇓ D, looking at the last rule used. We
only consider the case where M is of the form let x = L in P , while the proofs of other cases
follow the same basic outline as the proof of Lemma 3.17 in [6].

S. Kašterović and M. Pagani 26:19

Let M = (let x = L in P). Then, we have D =
∑
λx.Q F(λx.Q) · HQ,P where L ⇓ F

and for any λx.Q ∈ S(F), {P{λx.Q/x} ⇓ HQ,P }. The last rule used in the derivation
of ∅ ` M .H N has to be (How5), thus we get ∅ ` L .H R, x ` P .H S and
∅ ` (let x = R in S) . N as additional hypothesis. By applying the induction hypothesis
on L ⇓ F and ∅ ` L .H R, we obtain that

F(λx.Y) ≤ [[R]](λx. .H (Y)), (9)

holds for any Y ⊆ Λ{x}⊕,let. F is a finite distribution, hence the distribution D =∑
λx.Q F(λx.Q) · HQ,P is a sum of finitely many summands. Let the support of F

be the set S(F) = {λx.Q1, . . . , λx.Qn}. Equation (9) implies that for every I ⊆ {1, . . . , n}
the following holds

F(
⋃
i∈I

λx.Qi) ≤ [[R]](
⋃
i∈I

λx. .H (Qi)).

This allows us to apply Lemma 41. Thus, for every U ∈
⋃n
i=1 .H (Qi) there exist

numbers rU,R1 , . . . , rU,Rn such that:

[[R]](λx.U) ≥
n∑
i=1

rU,Ri , ∀U ∈
n⋃
i=1

.H (Qi);

F(λx.Qi) ≤
∑

U∈.H(Qi)

rU,Ri , ∀i ∈ {1, . . . , n}.

Now, we can conclude the following

D ≤
n∑
i=1

 ∑
U∈.H(Qi)

rU,Ri

 ·HQi,P =
n∑
i=1

∑
U∈.H(Qi)

rU,Ri ·HQi,P .

Since Qi .H U holds and .H is compatible by Lemma 33 , λx.Qi .H λx.U holds. By
applying Lemma 36 on P .H S and the latter we get P{λx.Qi/x} .H S{λx.U/x}. If we
apply the induction hypothesis on the derivations P{λx.Qi/x} ⇓ HQi,P , i ∈ {1, . . . , n},
we obtain that for every X ⊆ Λ{x}⊕,let it holds that

D(λx.X) ≤ [[N]](λx. .H (X)).

This concludes the proof. J

Proof of Lemma 19. The proof that similarity is a precongruence consists of two steps:
the first step is to show that the relation (.H)+ is a precongruence and the second one
is to show that it coincide with relation .. Since . is a preorder, then by Lemma 39,
relation (.H)+ is also a preorder. Relation . is reflexive, hence by Lemma 33 we have
.H is compatible. Furthermore, Lemma 37 ensures that (.H)+ is also compatible. So,
we can conclude that (.H)+ is a precongruence. Next, we want to show that .= (.H)+.
From the construction of Howe’s lifting .H and its transitive closure (.H)+ it follows that
.⊆ (.H)+. It remains to show the inclusion (.H)+ ⊆.. We show that (.H)+ is included
in some probabilistic simulation R, thus it is also included in the largest one, .. The relation
we consider is R =

{
(M,N) : M (.H)+ N} ∪ {(νx.M, νx.N) : M (.H)+ N

}
. It is obvious

that (.H)+ ⊆ R, so it only remains to show that R is a probabilistic simulation. Relation
(.H)+ is closed under term-substitution (by Lemma 36 and Lemma 38), hence it is enough
to consider only closed terms and distinguished values. Since (.H)+ is a preorder relation
(reflexive and transitive), it is easy to see R is also a preorder. We show the following
two points:

FSCD 2019

26:20 Λ⊕ with Let-In Operator

1. If M (.H)+ N , then for every X ⊆ Λ{x}⊕,let it holds that
P (M, τ, νx.X) ≤ P (N, τ,R(νx.X)).

2. If M (.H)+ N , then for every L ∈ Λ∅⊕,let and for every X ⊆ Λ{x}⊕,let,
P (νx.M,L,X) ≤ P (νx.N,L,R(X)).

The first point we prove by induction on the derivation of M (.H)+ N . We look at the
last rule used. Let us start with the base case where (TC1) is the last rule used. Then, we
have M .H N holds by hypothesis. By Key Lemma we conclude the following:

P (M, τ, νx.X) = [[M]](λx.X)
≤ [[N]](λx. .H (X))
≤ [[N]](λx.(.H)+(X))
≤ [[N]](R(νx.X))
= P (N, τ,R(νx.X)).

Next, we consider the case where (TC2) is the last rule used and we have that for some
P ∈ Λ∅⊕,let, M (.H)+ P and P (.H)+ N hold. By induction hypothesis on both of them,
we obtain:

P (M, τ,X) ≤ P (P, τ,R(X)),

P (P, τ,R(X)) ≤ P (N, τ,R(R(X))).

It is easy to show that R(R(X)) ⊆ R(X), thus we can conclude

P (M, τ,X) ≤ P (N, τ,R(X)).

This concludes the proof of the first point.
If M (.H)+ N and L ∈ Λ∅⊕,let, then because of the fact that (.H)+ closed under term-

substitution, we have that M{L/x} (.H)+ N{L/x} holds. As a consequence, we have that
whenever M{L/x} ∈ X, then N{L/x} ∈ (.H)+(X) and it holds that

P (νx.M,L,X) = 1
= P (νx.N,L, (.H)+(X))
= P (νx.N,L,R(X)).

On the other hand, if M{L/x} 6∈ X, then P (νx.M,L,X) = 0 ≤ P (νx.N,L,R(X)).
To prove that bisimilarity is a congruence we need to prove that ∼ is an equivalence

relation, which is compatible. Relation ∼ is an equivalence relation by its definition. Since
we know that ∼=. ∩ .op holds, from the fact that similarity is a precongruence it follows
that ∼ is also compatible. This concludes the proof. J

Hilbert’s Tenth Problem in Coq
Dominique Larchey-Wendling
Université de Lorraine, CNRS, LORIA, Vandœuvre-lès-Nancy, France
dominique.larchey-wendling@loria.fr

Yannick Forster
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
forster@ps.uni-saarland.de

Abstract
We formalise the undecidability of solvability of Diophantine equations, i.e. polynomial equations
over natural numbers, in Coq’s constructive type theory. To do so, we give the first full mechanisation
of the Davis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively enumerable
problem – in our case by a Minsky machine – is Diophantine. We obtain an elegant and comprehensible
proof by using a synthetic approach to computability and by introducing Conway’s FRACTRAN
language as intermediate layer.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Type theory

Keywords and phrases Hilbert’s tenth problem, Diophantine equations, undecidability, computability
theory, reduction, Minsky machines, Fractran, Coq, type theory

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.27

Supplement Material Coq formalisation of all results: https://uds-psl.github.io/H10,
Coq library of undecidable problems: https://github.com/uds-psl/coq-library-undecidability

Funding Dominique Larchey-Wendling: partially supported by the TICAMORE project (ANR grant
16-CE91-0002).

Acknowledgements We would like to thank Gert Smolka, Dominik Kirst and Simon Spies for helpful
discussion regarding the presentation.

1 Introduction

Hilbert’s tenth problem (H10) was posed by David Hilbert in 1900 as part of his famous
23 problems [15] and asked for the “determination of the solvability of a Diophantine
equation.” A Diophantine equation1 is a polynomial equation over natural numbers (or,
equivalently, integers) with constant exponents, e.g. x2 + 3z = yz + 2. When Hilbert asked
for “determination,” he meant, in modern terms, a decision procedure, but computability
theory was yet several decades short of being developed.

The first undecidable problems found by Church, Post and Turing were either native to
mathematical logic or dependent on a fixed model of computation. H10, to the contrary,
can be stated to every mathematician and its formulation is independent from a model of
computation. Emil Post stated in 1944 that H10 “begs for an unsolvability proof” [26]. From
a computational perspective, it is clear that H10 is recursively enumerable (or recognisable),
meaning there is an algorithm that halts on a Diophantine equation iff it is solvable.

1 Named after the Greek mathematician Diophantus of Alexandria, who started the study of polynomial
equations in the third century.

© Dominique Larchey-Wendling and Yannick Forster;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 27; pp. 27:1–27:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9860-7203
mailto:dominique.larchey-wendling@loria.fr
mailto:forster@ps.uni-saarland.de
https://doi.org/10.4230/LIPIcs.FSCD.2019.27
https://uds-psl.github.io/H10
https://github.com/uds-psl/coq-library-undecidability
https://ticamore.logic.at/
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE91-0002
http://www.agence-nationale-recherche.fr/?Projet=ANR-16-CE91-0002
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Hilbert’s Tenth Problem in Coq

Post’s student Martin Davis conjectured that even the converse is true, i.e. that every
recognisable set is also Diophantine. More precisely, he conjectured that if A ⊆ Nk is
recognisable then (a1, . . . , ak) ∈ A↔ ∃x1 . . . xn, P (a1, . . . , ak, x1, . . . , xn) = 0 holds for some
polynomial P in k + n variables. He soon improved on a result by Gödel [13] and gave a
proof of his conjecture, however requiring up to one bounded universal quantification [3]:
(a1, . . . , ak) ∈ A ↔ ∃z,∀y < z,∃x1 . . . xn, P (a1, . . . , ak, x1, . . . , xn, y, z) = 0. Davis and
Putnam [5] further improved on this, and showed that, provided a certain number-theoretic
assumption holds, every recognisable set is exponentially Diophantine, meaning variables are
also allowed to appear in exponents. Julia Robinson then in 1961 modified the original proof to
circumvent the need for the assumption, resulting in the DPR theorem [6], namely that every
recognisable set is exponentially Diophantine. Due to another result from Robinson [27], the
gap now only consisted of proving that there is a Diophantine equation exhibiting exponential
growth. In 1970, Yuri Matiyasevich showed that the Fibonacci sequence grows exponentially
while being Diophantine, closing the gap and finishing the proof of the theorem nowadays
called DPRM theorem, ultimately establishing that exponentiation is Diophantine itself [19]
(known as “Matiyasevich’s theorem”).

Even the most modern and simpler proofs of the DPRM theorem still require many
preliminaries and complicated number-theoretic ideas, for an overview see [22]. We formalise
one such proof as part of our ongoing work on a library of undecidable problems [10] in
the proof assistant Coq [29]. Since H10 is widely used as a seed [7, 14] for showing the
undecidability of problems using many-one reductions, this will open further ways of extending
the library. Given that our library already contains a formalisation of Minsky machines [11],
we follow the approach of Jones and Matijasevič [16], who use register machines, being very
well-suited since they already work on numbers. They encode full computations of register
machines as Diophantine equations in one single, monolithic step. To make the proof more
tractable for both mechanisation and explanation, we factor out an intermediate language,
John Conway’s FRACTRAN [2], which can simulate Minsky machines.

We first introduce three characterisations of Diophantine equations over natural numbers,
namely Diophantine logic DIO_FORM (allowing to connect Diophantine equations with
conjunction, disjunction and existential quantification), elementary Diophantine constraints
DIO_ELEM (a finite set of constraints on variables, oftentimes used for reductions [7, 14])
and single Diophantine equations DIO_SINGLE, including parameters, as described above.
H10 then asks about the solvability of single Diophantine equations with no parameters.

Technically, the reduction chain to establish the unsolvability of H10 starts at the halting
problem for single-tape Turing machines Halt, reduced to the Post correspondence problem
PCP in [8]. In previous work [11] we have reduced PCP to a specialised halting problem for
Minsky machines, which we use here in a slightly generalised form as MM. We then reduce
Minsky machine halting to FRACTRAN termination. FRACTRAN is very natural to describe
using polynomials, and the encoding does not rely on any complicated construction. The
technical difficulty then only lies in the Diophantine encoding of the reflexive-transitive closure
of a relation which follows from the direct elimination of bounded universal quantification,
given that the proof in [20] involves no detour via models of computation. In total, we obtain
the following chain of reductions to establish the undecidability of H10:

Halt � PCP � MM � FRACTRAN � DIO_FORM � DIO_ELEM � DIO_SINGLE � H10

In the present paper, we focus on explaining this factorisation of the proof and give some
details for the different stages. While we contribute Coq mechanisations of Matiyasevich’s
theorem and the elimination of bounded universal quantification, we treat them mainly as
black-boxes and only elaborate on their challenging formalisation rather than the proofs
themselves, a good explanation of which would anyways not fit in the given page limit.

https://github.com/uds-psl/coq-library-undecidability

D. Larchey-Wendling and Y. Forster 27:3

To the best of our knowledge, we are the first to give a full verification of the DPRM
theorem and the undecidability of Hilbert’s tenth problem in a proof assistant. We base the
notion of recognisability in the DPRM theorem on Minsky machines.

When giving undecidability proofs via many-one reductions, it is critical to show that all
reduction functions are actually computable. We could in theory verify the computability
of all functions involved using an explicit model of computation. In pen-and-paper proofs,
this approach is however almost never used, because implementing high-level mathematical
transformations as provably correct low-level programs is a daunting task. Instead, we rely
on a synthetic approach [8, 9, 11] based on the computability of all functions definable in
Coq’s constructive type theory, which is closer to the practice of pen-and-paper proofs. In
this approach, a problem P is considered undecidable if there is a reduction from an obviously
undecidable problem, e.g. Halt � P .

The axiom-free Coq formalisation of all the results in this paper is available online and
the main lemmas and theorems in the pdf version of the paper are hyper-linked with the
html version of the source code at https://uds-psl.github.io/H10. Starting from our
already existing library which included most of the Minsky machine code [11], the additional
code for proving the undecidability of H10 and the DPRM theorem consists of about 8k
loc including 3k loc for Matiyasevich’s results alone, together with a 4k loc addition to our
shared libraries; see Appendix A for more details. The paper itself can be read without
in-depth knowledge of Coq or type theory.

Contribution. Apart from the full formalisation, we consider the novel refactoring of the
proof via FRACTRAN a contribution to the explainability of the DPRM theorem.

Preliminaries. Regarding notation, we may write x.y for multiplication of natural numbers
x, y : N and we will leave out the symbol where convenient. We write LX for the type of
lists over X and l ++ l′ for the concatenation of two lists. We write Xn for vectors ~v over
type X with length n, and Fn for the finite type with exactly n elements. For p : Fn, we
write ~v[p] for the p-th component of ~v : Xn. Notations for lists are overloaded for vectors. If
P : X → P is a predicate (on X) and Q : Y → P is a predicate, we write P � Q if there is a
function f : X → Y s.t. ∀x : X, P x↔ Q(f x), i.e. a many-one reduction from P to Q.

2 Diophantine Relations

Diophantine relations are composed of polynomials over natural numbers. There are several
equivalent approaches to characterise these relations and oftentimes, the precise definition
is omitted from papers. Basically, one can form equations between polynomial expressions
and then combine these with conjunctions, disjunctions, and existential quantification.2 For
instance, these operations are assumed as Diophantine producing operators in e.g. [16, 19,
20, 21]. Sometimes, Diophantine relations are restricted to a single polynomial equation.
Sometimes, the exponentiation function x, y 7→ xy is assumed as Diophantine [16]. To
complicate the picture, Diophantine relations might equivalently range over Z (instead of N)
but expressions like xy implicitly assume that y never gets a negative value.

Although seemingly diverging, these approaches are not contradictory because in the end,
they characterise the same class of relations on natural numbers. However, mechanisation
does not allow for such implicit assumptions. To give some mechanisable structure to some

2 Universal quantification or negation are not accepted as is.

FSCD 2019

https://uds-psl.github.io/H10

27:4 Hilbert’s Tenth Problem in Coq

of these approaches, we propose three increasingly restricted characterisations of Diophantine
relations: Diophantine logic, elementary Diophantine constraints and single Diophantine
equations, between which we provide computable transformations in Sections 3 and 4.

2.1 Diophantine Logic
We define the types Dexpr of Diophantine expressions and Dform of Diophantine formulæ
for the abstract syntax of Diophantine logic. Diophantine expressions are polynomials built
from natural number constants and variables. An atomic Diophantine logic formula is just
expressing the identity between two Diophantine expressions and we combine those with
binary disjunction, binary conjunction, and existential quantification.

p, q : Dexpr ::= xi : V | n : N | p +̇ q | p ×̇ q A,B : Dform ::= p =̇ q | A ∧̇B | A ∨̇B | ∃̇A

The letters p, q ranges over expressions and the letters A,B range over formulæ. We use
standard De Bruijn syntax with variables x0, x1, . . . of type V := N for better readability.
If we have xi : V, we write x1+i for the next variable in V. As an example, the meta-level
formula ∃y, (y = 0 ∧ ∃z, y = z + 1) would be represented as ∃̇(x0 =̇ 0 ∧̇ ∃̇(x1 =̇ x0 +̇ 1)), i.e.
the variable xi refers to the i-th binder in the context.

We provide a semantics for Diophantine logic. Given a valuation for variables ν : V→ N,
we define the interpretation JpKν : N of the expression p : Dexpr by recursion:

JxiKν := ν xi JnKν := n Jp +̇ qKν := JpKν + JqKν Jp ×̇ qKν := JpKν × JqKν

The interpretation of formulæ cannot be done with a constant valuation ν : V→ N because
of existential quantifiers. The interpretation JAKν of the formula A : Dform is given by the
following recursive rules:

JA ∧̇BKν := JAKν ∧ JBKν Jp =̇ qKν := JpKν = JqKν
JA ∨̇BKν := JAKν ∨ JBKν J∃̇AKν := ∃n : N, JAKn·ν

with
{
n·ν (x0) := n

n·ν (x1+i) := ν xi

where n·ν : V→ N is the standard De Bruijn extension of a valuation ν by n.
We give a first formal characterisation of Diophantine polynomial expressions DP and

Diophantine relations DR. Diophantine polynomials are represented by some members of
type f : (V → N) → N mapping valuations ν to values fν : N which must moreover arise
as instances of λν.JpKν for some p : Dexpr. And Diophantine relations are members of type
R : (V→ N)→ P arising as instances of λν.JAKν . We give an informative content to these
sub-types of (V → N) → N and (V → N) → P to be able to do some computations with
the witness (either p or A) of Diophantineness, typically when moving to another formal
representation like elementary Diophantine constraints in Section 3.

I Definition 1. We define the class of Diophantine polynomials and Diophantine relations
as informative sub-types of (V→ N)→ N and (V→ N)→ P respectively:

DP f :=
∑
p : Dexpr,

(
∀ν, JpKν = fν

)
DR R :=

∑
A : Dform,

(
∀ν, JAKν ↔ R ν

)
Note that Σ denotes type-theoretic dependent pairs. Hence an inhabitant w of DR R is a

(dependent) pair (A,HA) where A = π1(w) is a Diophantine formula and HA = π2(w) a proof
that JAK(·) and R are extensionally equivalent. With these definitions, we will show that the
sub-types DP and DR have the desired closure properties: DP contains variables, constants and
is closed under the + and × pointwise operators over (V→ N)→ N; DR contains polynomial
equations and is closed under conjunction, disjunction and existential quantification.

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel

D. Larchey-Wendling and Y. Forster 27:5

I Proposition 2. Let xi : V, n : N, and f, g : (V → N) → N be s.t. DP f and DP g hold.
Then DP (λν.ν xi) , DP (λν.n) , DP (λν.fν + gν) and DP (λν.fν × gν) hold.

I Proposition 3. Let f , g be s.t. DP f and DP g hold. Then DR (λν.True) , DR (λν.False) ,
DR (λν.fν = gν) , DR (λν.fν ≤ gν) , DR (λν.fν < gν) and DR (λν.fν 6= gν) hold.

Proof. For e.g. λν. fν < gν , we first get the witnesses for wf : DP f and wg : DP g by the
projections pf := π1(wf) and pg := π1(wg). If we denote by ρ the “lift by one renaming”
ρ := λxi.x1+i and then the witness ∃̇

(
1+̇x0 +̇ρ (pf) =̇ ρ (pg)

)
can be used for λν. fν < gν . J

From a mechanisation point of view, having to provide explicit witnesses is a painful task
and we now describe how it can be almost entirely automated. We use the Coq unification
mechanism to analyse a meta-level expression of Diophantine shape and reflect it into the
corresponding object-level witness of types either Dexpr or Dform together with the proof that
it is an appropriate witness. The following lemma provides a way to process a goal such as
DR R depending on the meta-level syntax of R.

I Lemma 4. Let R,S : (V→ N)→ P and T : N→ (V→ N)→ P. We have the maps:
1. DR R→ DR S → DR(λν.R ν ∧ S ν)
2. DR R→ DR S → DR(λν.R ν ∨ S ν)
3. DR

(
λν.T (ν x0) (λxi.ν x1+i)

)
→ DR

(
λν.∃u, T u ν

)
4. (∀ν, S ν ↔ Rν)→ DR R→ DR S .

With maps 1–3, we cope with conjunction, disjunction, existential quantification. Atomic
or already established Diophantine relations are captured by Propositions 2 and 3 or later
established results which are declared as hints for Coq proof-search tactics. The map number 4
provides a way to replace DR S with DR R once a proof that they are logically equivalent is
established. Hence, if S cannot be analysed because it does not currently have a Diophantine
shape, it can still be replaced by an equivalent relation R, hopefully better behaved.

2.2 Example of a Mechanised Diophantineness Proof
With the example of the “does not divide” relation u - v := ¬(∃k, v = k × u), we describe
how to use those results to automate the production of the object-level DR witness A of
Definition 1 from the meta-level representation of a relation of Diophantine shape.

I Proposition 5 . ∀f g : (V→ N)→ N, DP f → DP g → DR (λν.fν - gν).

Proof. u - v := ¬(∃k, v = k×u) obviously is not in Diophantine shape. We thus first prove the
equivalence u - v ↔ (u = 0∧v 6= 0∨∃a b, v = a×u+b∧0 < b < u) and this new expression now
has a Diophantine shape, relying on the Diophantine shape of Euclidean division. Using this
equivalence in combination with map 4 of Lemma 4, we replace the goal DR (λν.fν - gν) with
DR (λν.fν = 0 ∧ gν 6= 0 ∨ ∃a b, gν = a× fν + b ∧ 0 < b ∧ b < fν) and then apply maps 1–3 of
Lemma 4 until a shape such as those of Proposition 3 appears. J

Once established, we can add the map DP f → DP g → DR (λν.fν - gν) in the Diophantine
hint database so that later encountered proof goals DR (λν.fν - gν) can be immediately solved.
We implemented the Coq tactic dio_rel_auto to automate all this work. Apart from the
equivalence for u - v and its proof, which cannot be guessed, the rest is effortless.

The recovery of witnesses of Definition 1 from meta-level syntax is automatic and hidden
by the use of the dio_rel_auto tactic associated with the ever growing hint database. This

FSCD 2019

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr_var
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr_cst
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr_plus
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_expr_mult
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_True
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_False
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_eq
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_le
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_lt
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_neq
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_conj
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_disj
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_exst
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_equiv
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_logic.html#dio_rel_ndivides

27:6 Hilbert’s Tenth Problem in Coq

way, we can proceed as in e.g. Matiyasevich papers where he just transforms a relation into
an equivalent Diophantine shape, accumulating more and more Diophantine shapes on the
way. This is a very welcome simplification over having to program witnesses by hand.

2.3 Exponentiation and Bounded Universal Quantification
For now, we introduce the elimination of the exponential relation and then of bounded
universal quantification as black boxes expressed in the theory of Diophantine relations.
However we do contribute implementations for both of these hard results. It is not possible
for these two mechanised proofs to be described in detail given the page limit. Nonetheless
we postpone some remarks and discussions about these proofs in Section 5.

I Theorem 6 (Exponential). ∀f g h, DP f → DP g → DP h→ DR
(
λν.fν = ghνν

)
.

To prove it, one needs a meta-level Diophantine shape for the exponential relation, the
proof of which is nothing short of extraordinary. This landmark result is due to Matiya-
sevich [19], but we have implemented the shorter and more up-to-date proof of [21].

I Theorem 7 (Bounded U. Quantification). For f : (V→ N)→ N and T : N→ (V→ N)→
P, we have a map DP f → DR

(
λν.T (ν x0) (λxi.ν x1+i)

)
→ DR

(
λν.∀u, u < fν → T u ν

)
.

This map can be compared with map 3 of Lemma 4 and allows to recognise bounded
universal quantification as a legitimate Diophantine shape. We have implemented the direct
proof of Matiyasevich [20] which does not involve a detour through a model of computation.
Notice that the bound fν in ∀u, u < fν → . . . is not constant otherwise the elimination of
the quantifier would proceed as a simple reduction to a finitary conjunction.

2.4 Reflexive-Transitive Closure is Diophantine
With these tools – elimination of the exponential relation and of bounded universal quantific-
ation – we can show that the reflexive and transitive closure of a Diophantine binary relation
is itself Diophantine. We assume a binary relation R : N → N → P over natural numbers.
The Diophantineness of R can be formalised by assuming that e.g. λν.R (ν x1) (ν x0) is
a Diophantine relation. We show that the i-th iterate of R is Diophantine (where i is
non-constant).

I Lemma 8 . Under hypothesis HR : DR
(
λν.R (ν x1) (ν x0)

)
, for any f, g, i : (V→ N)→ N

we have a map DP f → DP g → DP i→ DR
(
λν.Riν fν gν

)
.

Proof. Using Euclidean division, we define the is_digit c q n d predicate stating that d is
the n-th digit of the base q development of number c, as a Diophantine sentence:

is_digit c q n d := d < q ∧ ∃a b t, t = qn ∧ c = (a.q + d).t+ b ∧ b < t

The Diophantineness of this follows from Theorem 6. Then we define the is_seq R c q i

predicate stating that the first i + 1 digits of c in base q form an R-chain, again with a
Diophantine expression by HR and Theorem 7:

is_seq R c q i := ∀n, n < i→ ∃u v, is_digit c q n u ∧ is_digit c q (1 + n) v ∧R u v

Then we encode Ri u v by stating that there exists a (large enough) q and a number c such
that the first i+ 1 digits of c in base q form an R-chain starting at u and ending at v:

Ri u v ↔ ∃q c, is_seq R c q i ∧ is_digit c q 0 u ∧ is_digit c q i v

and this expression is accepted as Diophantine by Lemma 4. J

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_expo.html#dio_rel_expo
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_bounded.html#dio_rel_fall_lt
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_rt_closure.html#dio_rel_rel_iter

D. Larchey-Wendling and Y. Forster 27:7

We fill in Lemma 8 in the Diophantine hint database and we derive the Diophantineness of
the reflexive-transitive closure as a direct consequence of the equivalence R∗ u v ↔ ∃i, Ri u v.

I Theorem 9 . For any binary relation R : N → N → P and any f, g : (V → N) → N, we
have the map DP f → DP g → DR

(
λν.R (ν x1) (ν x0)

)
→ DR

(
λν.R∗ fν gν

)
.

3 Elementary Diophantine Constraints

Elementary Diophantine constraints are very simple equations where only one instance of
either +̇ or ×̇ is allowed. We give a direct proof that any Diophantine logic formula is
semantically equivalent to the satisfiability of a list of elementary Diophantine constraints.

Starting from two copies of N, one called U with u, v, w ranging over U for existentially
quantified variables, and another one V = {x0, x1, . . .} for parameters, we define the type of
elementary Diophantine constraints by:

c : Dcstr ::= u =̇ n | u =̇ v | u =̇ xi | u =̇ v +̇ w | u =̇ v ×̇ w where n : N

Notice that these constraints do not have a “real” inductive structure, they are flat and of
size either 3 or 5. Given two interpretations, ϕ : U → N for variables and ν : V → N for
parameters, it is trivial to define the semantics JcKϕν : P of a single constraint c of type Dcstr:

Ju =̇ nKϕν := ϕu = n Ju =̇ vKϕν := ϕu = ϕv Ju =̇ v +̇ wKϕν := ϕu = ϕv + ϕw

Ju =̇ xiKϕν := ϕu = ν xi Ju =̇ v ×̇ wKϕν := ϕu = ϕv × ϕw

Given a list l : LDcstr of constraints, we write JlKϕν when all the constraints in l are
simultaneously satisfied, i.e. JlKϕν := ∀c, c ∈ l→ JcKϕν . We show the following result:

I Theorem 10 . For any Diophantine formula A : Dform one can compute a list of elementary
Diophantine constraints l : LDcstr such that ∀ν : V→ N, JAKν ↔ ∃ϕ : U→ N, JlKϕν .

I.e. for any given interpretation of parameters ν, JAKν holds if and only if the constraints in
l are simultaneously satisfiable. Hence any Diophantine logic formula is equivalent to the
satisfiability of the conjunction of finitely many elementary Diophantine constraints.

The proof of Theorem 10 spans the rest of this section. We will strengthen the result a
bit to be able to get an easy argument by induction on A.

I Definition 11 . Given a relation R : (V → N) → P and an interval [ua, ua+n[⊆ U, a
representation of R in [ua, ua+n[is given by:
1. a list E : LDcstr of constraints and a reference variable r : U;
2. proofs that r and the (existentially quantified) variables occurring in E belong to [ua, ua+n[;
3. a proof that the constraints in E are always (simultaneously) satisfiable, i.e. ∀ν∃ϕ JEKϕν ;
4. a proof that the list (r =̇ 0) :: E is equivalent to R, i.e. ∀ν, R ν ↔

(
∃ϕ, ϕ r = 0 ∧ JEKϕν

)
.

It is obvious that a representation of λν.JAKν in any interval [ua, ua+n[is enough to prove
Theorem 10 because of item 4 of Definition 11. But actually, computing such a representation
is simpler than proving Theorem 10 directly.3

I Lemma 12 . For any a : N and any A : Dform, one can compute a representation of the
relation λν.JAKν in [ua, ua+n[for some value n ≤ 4|A|.4

3 Proving Theorem 10 directly involves renamings of existential variables and might produce exponential
blow-up in the number of constraints when handled naively.

4 We denote the size of A with |A|. The actual statement in the code is a bit more complicated because
we also show that the number of elementary constraints can be bounded by 1 + 3|A|.

FSCD 2019

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_rt_closure.html#dio_rel_rt
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_elem.html#dio_formula_elem
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_elem.html#dio_repr_at
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_elem.html#dio_repr_at_form

27:8 Hilbert’s Tenth Problem in Coq

Proof. We show the result by structural induction on A.
If A is p =̇ q with p, q : Dexpr then we encode p and q as a directed list of constraints. See
Appendix B for a detailed explanation on an example;
When A is B ∧̇C, we get a representation in [ua, ua+nA [by induction. Hence, let (EB , rB)
be the representation of B in [ua, ua+nB [. Then, inductively again, let (EC , rC) be a
representation of C at [ua+nB , ua+nB+nC [. We define rA := ua+nA+nB and EA := (rA =̇
rB +̇ rC) :: EB ++ EC and then (EA, rA) represents A = B ∧̇ C in [ua, ua+1+nB+nC [;5

The case of B ∨̇ C is similar: simply replace rA =̇ rB +̇ rC with rA =̇ rB ×̇ rC ;
We finish with the case when A is ∃̇B. Let (EB , rB) be a representation of B in [ua, ua+nB [.
Let σ be the substitution mapping parameters in V and defined by σ(x0) := ua+nB and
σ(x1+i) := xi; existential variables in U are left unmodified by this substitution. Then
(σ(EB), rB) is a representation of A = ∃̇B in [ua, ua+1+nB [.

This concludes the recursive construction of a representation of λν.JAKν . J

4 Single Diophantine Equations

In this section, we show how a list of elementary Diophantine constraints can be simulated
by a single identity between two Diophantine polynomials. We use the following well known
convexity identity to achieve the reduction, the proof of which can be found in Appendix C.

I Proposition 13 . Let (p1, q1), . . . , (pn, qn) be a sequence of pairs in N× N. Then

n∑
i=1

2piqi =
n∑
i=1

p2
i + q2

i ↔ p1 = q1 ∧ · · · ∧ pn = qn.

We define Diophantine polynomials similar to the Diophantine expressions Dexpr of
Section 2.1 except that we now distinguish the types of bound variables (i.e. U) and of
parameters (or free variables) (i.e. V) and that the types U and V are not fixed copies of N
anymore, but type parameters of arbitrary value.

I Definition 14 . The type of Diophantine polynomials Dpoly(U,V) and the type of single
Diophantine equations Dsingle(U,V) are defined by:

p, q : Dpoly(U,V) ::= u : U | xi : V | n : N | p +̇ q | p ×̇ q E : Dsingle(U,V) ::= p =̇ q

For ϕ : U → N and ν : V → N we define the semantic interpretations of polynomials
JpKϕν : N and single Diophantine equations JEKϕν : P in the obvious way.

I Theorem 15 . For any list l : LDcstr of elementary Diophantine constraints, one can
compute a single Diophantine equation E : Dsingle(N,N) such that ∀ν∀ϕ, JEKϕν ↔ JlKϕν .

Proof. We write l = [p1 =̇ q1; . . . ; pn =̇ qn] and then use Proposition 13. In the code, we
moreover show that the size of E is linear in the length of l. If needed, one could also show
that the degree of the polynomial is less than 4. J

I Corollary 16 . Let R : (V → N) → P. Assuming DR R, one can compute a single
Diophantine equation p =̇ q : Dsingle(N,V) such that ∀ν, R ν ↔ ∃ϕ, JpKϕν = JqKϕν .

5 Since the intervals [ua, ua+nB [and [ua+nB , ua+nB+nC [are built disjoint, there is no difficulty in merging
valuations whereas this usually involves renamings when existential variables are not carefully chosen.

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#convex_n_eq
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#dio_polynomial
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#dio_elem_single
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#dio_rel_single

D. Larchey-Wendling and Y. Forster 27:9

Proof. Direct combination of Definition 1 and Theorems 10 and 15. In the formalisation, we
also show that the size of the obtained single Diophantine equation is linearly bounded by
the size of the witness formula contained in the proof of DR R. J

We have shown that the automation we designed to recognise relations of Diophantine
shape entail that these relations are also definable by satisfiability of a single equation
between Diophantine polynomials, so these tools are sound w.r.t. a formally restrictive
characterisation of Diophantineness. One could argue that the above existential quantifier
∃ϕ encodes infinitely many existential quantifiers but it can easily be replaced by finitely
many existential quantifiers over the bound variables that actually occur in p or q.

I Proposition 17 . For any single Diophantine equation p =̇ q : Dsingle(N,V), one can
compute n : N and a new single Diophantine equation p′ =̇ q′ : Dsingle(Fn,V) such that for
any ν : V→ N, (∃ϕ : N→ N, JpKϕν = JqKϕν)↔ (∃ϕ : Fn → N, Jp′Kϕν = Jq′Kϕν).

Proof. We choose n greater that the number of bound variables which occur in either p or q.
Then this subset of N can be faithfully embedded into the finite type Fn and we use such a
renaming to compute (p′, q′). Remark that the size of (p′, q′) is the same as that of (p, q). J

By Corollary 16 and Proposition 17, we see that a Diophantine logic formula A : Dform
potentially containing inner existential quantifiers and representing the Diophantine relation
λν.JAKν can effectively be reduced to a single Diophantine equation p′ =̇ q′ : Dsingle(Fn,V)
such that JAKν ↔ ∃ϕ : Fn → N, Jp′Kϕν = Jq′Kϕν . Because Fn is the finite type of n elements, the
(higher order) existential quantifier ∃ϕ simply encodes n successive (first order) existential
quantifiers. The existential quantifiers that occur deep inside A are not erased by the
reduction, they are moved at the outer level and are ultimately understood as solvability for
some polynomial equation of which the parameters match the freely occurring variables of A.

5 Remarks on the Implementation of Matiyasevich’s Theorems

Matiyasevich’s theorem stating that there is a Diophantine description of the exponential
relation x = yz is a masterpiece. It was the last missing step finishing the line of work by
Davis, Putnam and Robinson which started with Davis’ conjecture in 1953. Already in 1952,
Julia Robinson discovered that in order to show the exponential relation Diophantine, it
suffices to find a single binary Diophantine relation exhibiting exponential growth [27], a
so-called Robinson predicate, i.e. a predicate J(u, v) in two variables s.t. J(u, v) implies
v < uu and for every k there are u, v with J(u, v) and v > uk. Robinson’s insight meant
the only thing missing to prove what is nowadays called the DPRM theorem, was a single
polynomial equation capturing any freely chosen Robinson predicate. Similar to other famous
hard problems of mathematics, the question is easy to state, but from the start of the study of
Diophantine equations to the late 1960s, no such relation was known, rendering the problem
one of the most baffling questions for mathematicians and computer scientists alike.

In 1970 [19], Yuri Matiyasevich discovered that v = fib2u is both a Robinson predicate
and Diophantine. Here (fibn)n∈N is the well known Fibonacci sequence defined by the second
order recurrence relation fib0 = 0, fib1 = 1 and fibn+2 = fibn+1 + fibn. Combined with
previous results, this concluded the multi-decades effort to establish the Diophantineness of
all recursively enumerable predicates, implying a negative solution to Hilbert’s tenth problem.
That proof which included the original proof of Matiyasevich [19] was later simplified. For
instance, exploiting similar ideas but in the easier context of the solutions of another second
order equation – namely Pell’s equations x2− (a2− 1)y2 = 1 with parameter a > 1, – Martin
Davis [4] gave a standalone proof of the DPRM-theorem where recursively enumerable

FSCD 2019

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_single.html#dio_poly_eq_pos

27:10 Hilbert’s Tenth Problem in Coq

predicates are characterised by a variant of µ-recursive functions. In that paper, Davis also
provided a proof of the admissibility of bounded universal quantification using the Chinese
remainder theorem to encode finite sequences of numbers. There exists more recent and
simpler proofs of this admissibility result as well, see e.g. [20].

Before we discuss the mechanisation of the Diophantineness of both the exponential
relation and of bounded universal quantification, we want to remark on the difficulty of
mechanising the former proof. Both on its own and as a stepping stone towards the
negative solution to Hilbert’s tenth problem, it is clear that Matiyasevich’s theorem was an
extremely difficult question which required tremendous intellectual resources to be solved.
The mechanisation of a modernised form of the proof, although not trivial, cannot be
compared to the difficulty of finding a solution. In particular, the modern proof relies on
very mature background theories, lowering the number of possible design choices for the
mechanisation. Moreover, very detailed pen and paper accounts of the proof are available,
which can be followed closely.

An aspect that is more challenging in mechanisation than on paper are proofs regarding
the computability of certain functions. Since paper proofs oftentimes rely on a vague notion
of algorithm, most of the reasoning about these algorithms is hand-waved away by computer
scientists, relying on the implicit understanding of what is an algorithm. By using a synthetic
approach to computability [8, 9, 11], we make the notion of an algorithm precise and thus
enable mechanisation, at the same time circumventing the verification of low-level programs.

5.1 Exponential is Diophantine (Theorem 6)
For our mechanised proof, we rely on a more recent account of Matiyasevich’s theorem
from [21], which, among the many options we considered, seemed the shortest. The proof
employs Pell’s equation x2 − bxy + y2 = 1 for b ≥ 2. We use the second order recurrence
relation αb(−1) = −1, αb(0) = 0 and αb(n + 2) = bαb(n + 1) − αb(n) to describe the set
of solutions of Pell’s equation by

{
(αb(n), αb(n + 1)) | n ∈ N

}
. The recurrence can be

characterised by the following square 2× 2 matrix equation:

Ab(n) = (Bb)n with Ab(n) :=
(
αb(n+ 1) −αb(n)
αb(n) −αb(n− 1)

)
and Bb :=

(
b −1
1 0

)
Then, studying the properties of the sequence n 7→ αb(n) in N or Z, one can show that
α2(n) = n and n 7→ αb(n) grows exponentially for b ≥ 3. Studying the properties of the
same sequence in Z/pZ (for varying values of the modulus p), one can for instance show that
n = α2(n) ≡ αb(n) mod b−2, which relates n and αb(n) modulo (b−2). With various intricate
but elementary results,6 such as e.g. αb(k) | αb(m)↔ k | m and α2

b(k) | αb(m)↔ kαb(k) | m
(both for b ≥ 2 and any k,m ∈ N), one can show that a, b, c 7→ 3 < b ∧ a = αb(c) has a
Diophantine representation. In our formalisation, we get a Diophantine logic formula of size
490 as a witness (see dio_rel_alpha_size).

Once αb(n) is proven Diophantine, one can recover the exponential relation x, y, z 7→ x =
yz using the eigenvalue λ of the matrix Bb which satisfies λ2− bλ−1 = 0. By wisely choosing
m = bq − q2 − 1, one gets λ ≡ q mod m and thus, using the corresponding eigenvector, one
derives qαb(n)−αb(n− 1) ≡ qn mod m. For a large enough value of m, hence a large enough
value7 of b, this gives a Diophantine representation of qn. In our code, we get a Diophantine
logic formula of size 1689 as a witness (see dio_rel_expo_size).

6 by elementary we certainly do not mean either simple or obvious, but we mean that they only involve
standard tools from modular and linear algebra.

7 the largeness of which is secured using α itself again, but with other input values.

https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_expo.html#dio_rel_alpha_size
https://uds-psl.github.io/H10/website/Undecidability.H10.Dio.dio_expo.html#dio_rel_expo_size

D. Larchey-Wendling and Y. Forster 27:11

The main libraries which are needed to solve Pell’s equation and characterise its solutions
are linear algebra (or at least square 2× 2 matrices) over commutative rings such as Z and
Z/pZ, a good library for modular algebra (Z/pZ), and the binomial theorem over rings.
Without the help of the Coq ring tactic, such a development would be extremely painful.
These libraries are then used again to derive the Diophantine encoding of the exponential.

5.2 Admissibility of Bounded Universal Quantification (Theorem 7)
As hinted earlier, we provide an implementation of the algorithm for the elimination of
bounded universal quantification described in [20]. It does not involve the use of a model of
computation, hence does not create a chicken-and-egg problem when used for the proof of
the DPRM theorem. The technique of [20] uses the exponential function and thus Theorem 6
(a lot), and a combination of arithmetic and bitwise operations over N through base 2 and
base 2q representations of natural numbers.

The Diophantine admissibility of bitwise operations over N is based on the relation
stating that every bit of a is lower or equal than the corresponding bit in b and denoted
a 4 b. The equation a 4 b ↔ Cab is odd (where Cab denotes the binomial coefficient) gives
a Diophantine representation for a 4 b and then bitwise operators are derived from 4
in combination with regular addition +, in particular, the digit by digit AND operation
called “projection.” To obtain that a 4 b holds if and only if Cab ≡ 1 mod 2, we prove
Lucas’ theorem [18] which allows for the computation of the binomial coefficient in base p.
It states that Cab ≡ C

an
bn
× · · · × Ca0

b0
mod p holds when p is prime and a = anp

n + · · · + a0
and b = bnp

n + · · ·+ b0 are the respective base p representations of a and b.8 A Diophantine
representation of the binomial coefficient can be obtained via the binomial theorem: Ckn is
the k-th digit of the development of (1 + q)n =

∑n
i=0 Cinqi in base q = 2n+1. This gives a

Diophantine representation using Theorem 6 and the relation is_digit defined for Lemma 8.
The rest of the admissibility proof for bounded universal quantification ∀i, i < n→ A is a

very nice encoding of vectors of natural numbers of type Nn into natural numbers N such that
regular addition + (resp. multiplication ×) somehow performs parallel/simultaneous additions
(resp. multiplications) on the encoded vectors. More precisely, a vector (a1, . . . , an) ∈
[0, 2q − 1]n of natural numbers is encoded as the “cipher” a1r

2 + a2r
4 + a3r

8 + · · ·+ anr
2n

with r = 24q. In these sparse ciphers, only the digits occurring at r2i are non-zero. We
remark that none of the parameters, including n or q, are constant in the encoding.

Besides a low-level inductive proof of Lucas’ theorem, the essential library for the removal
of bounded universal quantification consists of tools to manipulate the type N simultaneously
and smoothly both as (a) usual natural numbers and (b) sparse base r = 24q encodings of
vectors of natural numbers in [0, 2q − 1]. Notice that r is defined as r = 22q in [20] but we
favour the alternative choice r = 24q which allows for an easier soundness proof for vector
multiplication because there is no need to manage for digit overflows (see Appendix D).

A significant step in the Diophantine encoding of + and × on Nn is the Diophantine
encoding of u =

∑n
i=1 r

2i and u1 =
∑n+1
i=2 r

2i as the ciphers of the constant vectors (1, . . . , 1) ∈
Nn and (0, 1, . . . , 1) ∈ Nn+1 respectively, obtained by masking u2 with w =

∑2n+1

i=0 r
i and 2w.

Finally, it should be noted that prior to the elimination of the quantifier in ∀i, i < n→ A,
the Diophantine formula A is first normalised into a conjunction of elementary constraints
using Theorem 10, and then the elimination is performed on that list of elementary constraints,
encoding e.g. v0 =̇ v1 +̇ v2 and v0 =̇ v1 ×̇ v2 with their respective sparse cipher counterparts.

8 With the usual convention that Ca
b = 0 when a > b.

FSCD 2019

27:12 Hilbert’s Tenth Problem in Coq

6 Minsky Machines Reduce to FRACTRAN

In previous work, we have reduced the halting problem for Turing machines to PCP [8] and
on to a specialised halting problem for Minsky machines [11] in Coq. The specialised halting
problem asked whether a machine on a given input halts in a configuration with all registers
containing zeros. In order to define Minsky machine recognisability, we consider a general
halting problem which allows any final configuration. The adaption of the formal proofs
reducing PCP via binary stack machines to Minsky machines is quite straightforward and
reuses the certified compiler for low-level languages defined in [11].

We first show that one can remove self loops from Minsky machines, i.e. instructions
which jump to their own location, using the compositional reasoning techniques developed
in [11]. We then formalise the FRACTRAN language [2] and show how the halting problem
for Minsky machines can be encoded into the halting problem for FRACTRAN programs.
While the verification of Minsky machines can be complex and needs preliminary thoughts on
compositional reasoning, the translation from Minsky machines to FRACTRAN is elementary
and needs no heavy machinery.

6.1 Minsky Machines
We employ Minsky machines [23] with instructions ι : In ::= INC (α : Fn) | DEC (α : Fn) (p : N).
A Minsky machine with n registers is a sequence of consecutively indexed instructions
s : ι0; . . . s + k : ιk; represented as a pair (s : N, [ι0; . . . ; ιk] : L In). Its state (i, ~v) is a
program counter (PC) value i : N and a vector of values for registers ~v : Nn. INC α increases
the value of register α and the PC by one. DEC α p decreases the value of register α by
one if that is possible and increases the PC, or, if the register is already 0, jumps to PC
value p. Given a Minsky machine (s, P), we write (s, P) //M (i1, ~v1) �n (i2, ~v2) when (s, P)
transforms state (i1, ~v1) into (i2, ~v2) in n steps of computation. For (s, P) to do a step in
state (i, ~v) the instruction at label i in (s, P) is considered. When a label i is outside of the
code of (s, P) we write out i (s, P) and in that case (and only that case), no computation
step can occur. We define the halting problem for Minsky Machines as

MM
(
n : N, P : L In, ~v : Nn

)
:= (1, P) //M (1, ~v) ↓

where (s, P) //M (i, ~v) ↓ := ∃n j ~w, (s, P) //M (i, ~v) �n (j, ~w) ∧ out j (s, P), meaning
that the machine (s, P) has a terminating computation starting at state (i, ~v). We refer
to [11] for a more in-depth formal description of those counter machines. Note that the
halting problem defined there is more specific than the problem MM above defined but
both are proved undecidable in our library .

We say that a machine has a self-loop if it contains an instruction of the form i : DEC α i,
i.e. jumps to itself in case the register α has value 0, leading necessarily to non-termination.
For every machine P with self-loops, we can construct an equivalent machine Q using one
additional register α0 with constant value 0, which has the same behaviour but no self-loops.
Since the effect of a self loop i : DEC α i is either decrement and move to the next instruction
at i+1 if α > 0 or else enter in a forever loop at i, it is easily simulated by a jump to a length-2
cycle, i.e. replacing i : DEC α i with i : DEC α j and adding j : DEC α0 (j + 1); j + 1 : DEC α0 j

somewhere near the end of the program.

I Theorem 18 . Given a Minsky machine P with n registers one can compute a machine Q
with 1+n registers and no self loops s.t. for any ~v, (1, P) //M (1, ~v) ↓ ↔ (1, Q) //M (1, 0 :: ~v) ↓.

https://uds-psl.github.io/H10/website/Undecidability.ILL.Mm.mm_defs.html#MM_HALTS_ON_ZERO
https://uds-psl.github.io/H10/website/Undecidability.ILL.Mm.mm_defs.html#MM_HALTING
https://uds-psl.github.io/H10/website/Undecidability.ILL.UNDEC.html#PCP_MM_HALTS_ON_ZERO
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.mm_no_self.html#mm_remove_self_loops

D. Larchey-Wendling and Y. Forster 27:13

Proof. We explain how any Minsky machine (1, P) with n registers can be transformed into
an equivalent one that uses an extra 0 valued spare register α0 = 0 ∈ F1+n and avoids self
loops. Let k be the length of P and let P ′ be the Minsky machine with 1 +n registers defined
by performing a 1-1 replacement of instructions of (1, P):

instructions of the form i : INC α are replaced by i : INC (1 + α);
self loops i : DEC α i are replaced by i : DEC (1 + α) (2 + k);
proper inside jumps i : DEC α j for i 6= j and 1 ≤ j ≤ k are replaced by i : DEC (1 + α) j;
and outside jumps i : DEC α j for j = 0 ∨ k < j are replaced by i : DEC (1 + α) 0.

Then we define Q := P ′ ++ [DEC α0 0; DEC α0 (3 + k); DEC α0 (2 + k)]. Notice that P ′ is
immediately followed DEC α0 0, i.e. by an unconditional jump to 0 (because α0 has value 0), and
that (1, Q) ends with the length-2 cycle composed of 2+k : DEC α0 (3+k); 3+k : DEC α0 (2+k).
We show that (1, Q) is a program without self loops (obvious) that satisfies the required
simulation equivalence. Indeed, self loops are replaced by jumps to the length-2 cycle that
uses the unmodified register α0 to loop forever. One should just be careful that the outside
jumps of (1, P) do not accidentally fall into that cycle and this is why we redirect them all
to PC value 0. J

A predicate R : Nn → P is MM-recognisable if there exist m : N and a Minsky machine
P : L In+m of (n+m) registers such that for any ~v : Nn we have R ~v ↔ (1, P) //M (1, ~v ++~0) ↓.
The last m registers serve as spare registers during the computation. Notice that not allowing
for spare registers would make e.g. the empty predicate un-recognisable.9 It is possible to
limit the number of (spare) registers but that question is not essential in our development.

6.2 FRACTRAN
We formalise the language FRACTRAN, introduced as a universal programming language for
arithmetic by Conway [2]. A FRACTRAN program Q consists of a list of positive fractions
[p1/q1; . . . ; pn/qn]. The current state of a FRACTRAN program is just a natural number s.
The first fraction pi/qi in Q such that s.(pi/qi) is still integral determines the successor state,
which then is s.(pi/qi). If there is no such fraction in Q, the program terminates.

We make this precise inductively for Q being a list of fractions p/q : N× N:

q.y = p.x

(p/q ::Q) //F x � y

q - p.x Q //F x � y

(p/q ::Q) //F x � y

i.e. at state x the first fraction p/q in Q where q divides p.x is used, and x is multiplied
by p and divided by q. For instance, the FRACTRAN program [5/7; 2/1] runs forever when
starting from state 7, producing the sequence 5 = 7.(5/7), 10 = 5.(2/1), 20 = 10.(2/1) ...10

We say that a FRACTRAN program Q = [p1/q1; . . . ; pn/qn] is regular if none of its
denominators is 0, i.e. if q1 6= 0, . . . , qn 6= 0. For a FRACTRAN program Q : L (N× N) and
s : N, we define the decision problem as the question “does Q halt when starting from s”:

FRACTRAN(Q, s) := Q //F s ↓ with Q //F s ↓ := ∃x, Q //F s �
∗ x ∧ ∀y, ¬Q //F x � y

Following [2], we now show how (regular) FRACTRAN halting can be used to simulate Minsky
machines halting. The idea is to use a simple Gödel encoding of the states of a Minsky

9 For any Minsky machine (1, P), if it starts on large enough register values, for instance if they are
all greater than the length of P , then no jump can occur and the machine terminates after its last
instruction executes. Such unfortunate behavior can be circumvented with a 0-valued spare register.

10No FRACTRAN program can ever stop when it contains a fraction having an integer value like 2/1.

FSCD 2019

27:14 Hilbert’s Tenth Problem in Coq

machine. We first fix two infinite sequences of prime numbers p0, p1, . . . and q0, q1, . . . all
distinct from each other. We define the encoding of n-register Minsky machine states as
(i, ~v) := piq

x0
0 . . . q

xn−1
n−1 where ~v = [x0, . . . , xn−1]:

To simulate the step semantics of Minsky machines for i : INC α, we divide the encoded
state by pi and multiply by pi+1 for the change in PC value, and increment the register
α by multiplying with qα, hence we add the fraction pi+1qα/pi;
To simulate i : DEC α j when ~v[α] = 1 + n we divide by pi, multiply by pi+1 and decrease
register α by dividing by qα, hence we add the fraction pi+1/piqα;
To simulate i : DEC α j when ~v[α] = 0 we divide by pi and multiply by pj . To make sure
that this is only executed when the previous rule does not apply, we add the fraction
pj/pi after the fraction pi+1/piqα.

In short, we define the encoding of labelled instructions and then programs as

(i, INC α) := [pi+1qα/pi]
(i, DEC α j) := [pi+1/piqα; pj/pi]

(i, [ι0; . . . ; ιk]) := (i, ι0) ++ · · ·++ (i+ k, ιk).

Notice that we only produce regular programs and that a self loop like i : DEC α i, jumping
on itself when ~v[α] = 0, will generate the fraction pi/pi potentially capturing any state (j, ~v)
even when j 6= i. So this encoding does not work on Minsky machines containing self loops.

I Lemma 19 . If (1, P) has no self loops then (1, P) //M (1, ~v) ↓ ↔ (1, P) //F (1, ~v) ↓.

Proof. Let (i, P) be a Minsky machine with no self loops. We show that the simulation
of (i, P) by (i, P) is 1-1, i.e. each step is simulated by one step. We first show the forward
simulation, i.e. that (i, P) //M (i1, ~v1) � (i2, ~v2) entails (i, P) //F (i1, ~v1) � (i2, ~v2), by case
analysis. Conversely we show that if (i, P) //F (i1, ~v1) � st holds then st = (i2, ~v2) for some
(i2, ~v2) such that (i, P) //M (i1, ~v1) � (i2, ~v2). Backward simulation involves the totality
of MM one step semantics and the determinism of regular FRACTRAN one step semantics
combined with the forward simulation.

Using these two simulation results, the desired equivalence follows by induction on the
length of terminating computations. J

I Theorem 20 . For any n-register Minsky machine P one can compute a regular FRACT-
RAN program Q s.t. (1, P) //M (1, [x1; . . . ;xn]) ↓ ↔ Q //F p1q

x1
1 . . . qxnn ↓ holds for any

x1, . . . , xn.

Proof. Using Theorem 18, we first compute a Minsky machine (1, P1) equivalent to (1, P)
but with one extra 0-valued spare register and no self loops. Then we apply Lemma 19 to
(1, P1) and let Q := (1, P1). The program Q is obviously regular and given ~v = [x1; . . . ;xn],
the encoding of the starting state (1, 0 :: ~v) for (1, P1) is p1q

0
0q
x1
1 . . . qxnn hence the result. J

This gives us a formal constructive proof that (regular) FRACTRAN is Turing complete
as a model of computation and is consequently undecidable.

I Corollary 21 . Halt reduces to FRACTRAN.

Proof. Theorem 20 gives us a reduction fromMM to FRACTRAN which can be combined with
the reduction of Halt to PCP from [8] and a slight modification of PCP to MM from [11]. J

https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.mm_fractran.html#mm_fractran_simulation
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.mm_fractran.html#mm_fractran_n
https://uds-psl.github.io/H10/website/Undecidability.H10.H10.html#Fractran_UNDEC

D. Larchey-Wendling and Y. Forster 27:15

7 Diophantine Encoding of FRACTRAN

We show that a single step of FRACTRAN computation is a Diophantine relation.

I Lemma 22 . For any FRACTRAN program Q : L (N × N) and any f, g : (V → N) → N,
there is a map DP f → DP g → DR (λν.Q //F fν � gν).

Proof. The map is built by induction on Q. If Q = [], then we show [] //F fν � gν ↔ False,
and thus DR (λν.Q //F fν � gν) by map 4 of Lemma 4 and Proposition 3. If Q is a composed
list Q = p/q ::Q′, then we show the equivalence(

p/q ::Q′
)
//F fν � gν ↔ q.gν = p.fν ∨ q - (p.fν) ∧Q′ //F fν � gν

and we derive DR (λν.Q //F fν � gν) by map 4 of Lemma 4, Proposition 5 and the induction
hypothesis, these last steps being automated by the dio_rel_auto tactic. J

In addition, the “Q has terminated at x” predicate is Diophantine for any FRACTRAN
program Q. The proof is similar to the previous one:

I Lemma 23 . For any FRACTRAN program Q : L (N × N) and any f : (V → N) → N,
there is a map DP f → DR (λν.∀y,¬Q //F fν � y).

Proof. The map ∀f, DP f → DR (λν.∀y,¬Q //F fν � y) is built by induction on Q. If
Q = [], then we show (∀y,¬ [] //F fν � y)↔ True, and thus DR (λν.∀y,¬Q //F fν � y) by
map 4 of Lemma 4 and Proposition 3. If Q = p/q :: Q′, then we show the equivalence
∀y,¬Q //F fν � y ↔ q - (p.fν) ∧ ∀y,¬Q′ //F fν � y and we get DR (λν.∀y,¬Q //F fν � y)
by map 4 of Lemma 4, Proposition 5 and the induction hypothesis. J

We can now deduce a core result of the paper which states that FRACTRAN programs
have Diophantine termination predicates.

I Theorem 24 . If Q is a FRACTRAN program and DP f then DR (λν.Q //F fν ↓).

Proof. By definition we have Q //F fν ↓ ↔ ∃x (Q //F fν �∗ x∧∀y, ¬Q //F x � y) and hence
we obtain the claim using Theorem 9 in conjunction with Lemma 22 and Lemma 23. J

We conclude with the undecidability of Hilbert’s tenth problem by a reduction chain
starting from the Halting problem for single tape Turing machines:

I Theorem 25 (Hilbert’s tenth problem). We have the following reduction chain

Halt � PCP � MM � FRACTRAN � DIO_FORM � DIO_ELEM � DIO_SINGLE � H10

and as a consequence, H10 is undecidable .

Proof. The proof combines the previous results like Theorems 20 and 24 and Corollary 16. J

8 The Davis-Putnam-Robinson-Matiyasevich Theorem

We conclude the paper with a proof of the DPRM theorem stating that recursively enu-
merable predicates are Diophantine. Here we assume that the informal notion of “recursive
enumerability” can be characterised by Minsky machines recognisability (see Section 6.1).

I Lemma 26 . For FRACTRAN programs Q we have DR
(
λν.Q //F p1q

ν x0
1 . . . q

ν xn−1
n ↓

)
.

FSCD 2019

https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.fractran_dio.html#dio_rel_fractran_step
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.fractran_dio.html#dio_rel_fractran_stop
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.fractran_dio.html#FRACTRAN_HALTING_on_diophantine
https://uds-psl.github.io/H10/website/Undecidability.H10.H10.html#Hilberts_Tenth
https://uds-psl.github.io/H10/website/Undecidability.H10.H10.html#H10_undec
https://uds-psl.github.io/H10/website/Undecidability.H10.Fractran.fractran_dio.html#FRACTRAN_HALTING_on_exp_diophantine

27:16 Hilbert’s Tenth Problem in Coq

Proof. By induction on n : N, we show ∀f, DP f → DR (λν.fν = p1q
ν x0
1 . . . q

ν xn−1
n). Notice

that p1 and the qi’s are hard-coded11 in the Diophantine representation but we of course use
Theorem 6. Then we end the proof by a combination with Theorem 24. J

I Theorem 27 (DPRM). Any MM-recognisable relation R : Nn → P is Diophantine: one
can compute a single Diophantine equation p =̇ q : Dsingle(Fm,Fn) with n parameters and m
variables s.t. ∀~v : Nn, R ~v ↔ ∃~w : Nm, JpK~w~v = JqK~w~v .12

Proof. By definition, R : Nn → P is recognised by some Minsky machine P with (n + m)
registers, i.e. R ~v ↔ (1, P) //M (1, ~v ++~0) ↓. By Theorem 20, we compute a FRACTRAN
program Q s.t. (1, P) //M (1, [v1; . . . ; vn;w1; . . . ;wm]) ↓ ↔ Q //F p1q

v1
1 . . . qvnn qw1

n+1 . . . q
wm
n+m ↓.

Hence we deduce R [v1; . . . ; vn] ↔ Q //F p1q
v1
1 . . . qvnn ↓. As a consequence, the relation

λν.R [ν x0; . . . ; ν xn−1] is Diophantine by Lemma 26. By Corollary 16, there is a Diophantine
equation p =̇ q : Dsingle(N,V) such that R [ν x0; . . . ; ν xn−1]↔ ∃ϕ, JpKϕν = JqKϕν . Notice that
the value ν xi of any parameter of p =̇ q greater than xn does not influence solvability.

Now let m be an upper bound of the number of (existentially quantified) variables in
p =̇ q. We injectively map those variables in Fm and we project the parameters of p =̇ q onto
Fn by replacing every parameter greater than xn with the 0 constant. We get a Diophantine
equation p′ =̇ q′ : Dsingle(Fm,Fn) of which the solvability at ~v is equivalent to R ~v. J

9 Related and Future Work

Regarding formalisations of Hilbert’s tenth problem, there are various unfinished and pre-
liminary results in different proof assistants: Carneiro [1] formalises Matiyasevich’s theorem
(Diophantineness of exponentiation) in Lean, but does not consider computational models or
the DPRM theorem. Pąk formalises results regarding Pell’s equation [24] and proves that
Diophantine sets are closed under union and intersection [25], both as parts of the Mizar
Mathematical Library. Stock et al. [28] report on an unfinished formalisation of the DPRM
theorem in Isabelle based on [21]. They cover some parts of the proof, but acknowledge
for important missing results like Lucas’ or “Kummer’s theorem” and a “formalisation of
a register machine.” Moreover, none of the cited reports considers the computability of
the reductions involved or the verification of a universal machine in the chosen model of
computation yet, one of them being a necessary proof goal for an actual undecidability result
in the classical meta-theories of Isabelle/HOL and Mizar.

Regarding undecidability proofs in type theory, Forster, Heiter, and Smolka [8] reduce
the halting problem of Turing machines to PCP. Forster and Larchey-Wendling [11] reduce
PCP to provability in linear logic via the halting problem of Minsky machines, which we
build on. Forster, Kirst and Smolka develop the notion of synthetic undecidability in Coq
and prove the undecidability of various notions in first-order logic [9].

In future developments, we want to connect our work to the formalisation of the recent
simplified undecidability proof for System F inhabitation by Dudenhefner and Rehof [7], which
builds on elementary Diophantine constraints. The undecidability of second-order unification
shown by Goldfarb [14] is also by reduction from elementary Diophantine constraints. We
want to formalise his proof as an addition to our library of undecidable problems.

11Which means we do not need to encode the algorithm that actually computes them.
12 In the notation JpK~w

~v we abusively identify the vector ~v : Nn (resp. ~w : Nm) with the valuation
λ(i : Fn).~v[i] (resp. λ(j : Fm). ~w[j]) that accesses the components of the vector ~v (resp. ~w).

https://uds-psl.github.io/H10/website/Undecidability.H10.DPRM.html#DPRM_n

D. Larchey-Wendling and Y. Forster 27:17

In the present paper, we prove that every MM-recognisable problem is Diophantine. This
result can be extended to an equivalence, and furthermore to other formalised models of
computation like µ-recursive functions [17], Turing machines, or the untyped λ-calculus [12].

References
1 Mario Carneiro. A Lean formalization of Matiyasevič’s theorem, 2018. arXiv:1802.01795.
2 John H. Conway. FRACTRAN: A Simple Universal Programming Language for Arithmetic,

pages 4–26. Springer New York, New York, NY, 1987.
3 Martin Davis. Arithmetical problems and recursively enumerable predicates 1. The Journal

of Symbolic Logic, 18(1):33–41, 1953.
4 Martin Davis. Hilbert’s Tenth Problem is Unsolvable. The American Mathematical Monthly,

80(3):233–269, 1973.
5 Martin Davis and Hilary Putnam. A computational proof procedure; Axioms for number theory;

Research on Hilbert’s Tenth Problem. Air Force Office of Scientific Research, Air Research and
Development, 1959.

6 Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for exponential
Diophantine equations. Annals of Mathematics, pages 425–436, 1961.

7 Andrej Dudenhefner and Jakob Rehof. A Simpler Undecidability Proof for System F Inhabita-
tion. TYPES 2018, 2018.

8 Yannick Forster, Edith Heiter, and Gert Smolka. Verification of PCP-Related Computational
Reductions in Coq. In ITP 2018, pages 253–269. Springer, 2018.

9 Yannick Forster, Dominik Kirst, and Gert Smolka. On Synthetic Undecidability in Coq, with
an Application to the Entscheidungsproblem. In CPP 2019, pages 38–51, 2019.

10 Yannick Forster and Dominique Larchey-Wendling. Towards a library of formalised undecidable
problems in Coq: The undecidability of intuitionistic linear logic. Workshop on Syntax and
Semantics of Low-level Languages, Oxford, 2018.

11 Yannick Forster and Dominique Larchey-Wendling. Certified Undecidability of Intuitionistic
Linear Logic via Binary Stack Machines and Minsky Machines. In CPP 2019, pages 104–117.
ACM, 2019. doi:10.1145/3293880.3294096.

12 Yannick Forster and Gert Smolka. Weak Call-By-Value Lambda Calculus as a Model of
Computation in Coq. In ITP 2018, pages 189–206. Springer, 2017.

13 Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I. Monatshefte für mathematik und physik, 38(1):173–198, 1931.

14 Warren D. Goldfarb. The undecidability of the secondorder unification problem. Theoretical
Computer Science, 13:225–230, 1981.

15 David Hilbert. Mathematical problems. Bulletin of the American Mathematical Society,
8(10):437–479, 1902.

16 J. P. Jones and Y. V. Matijasevič. Register Machine Proof of the Theorem on Exponential
Diophantine Representation of Enumerable Sets. J. Symb. Log., 49(3):818–829, 1984. doi:
10.2307/2274135.

17 Dominique Larchey-Wendling. Typing Total Recursive Functions in Coq. In ITP 2017, pages
371–388. Springer, 2017.

18 Edouard Lucas. Théorie des Fonctions Numériques Simplement Périodiques. [Continued].
American Journal of Mathematics, 1(3):197–240, 1878.

19 Yuri V. Matijasevič. Enumerable sets are Diophantine. In Soviet Mathematics: Doklady,
volume 11, pages 354–357, 1970.

20 Yuri V. Matiyasevich. A new technique for obtaining Diophantine representations via elimina-
tion of bounded universal quantifiers. J. Math. Sci., 87(1):3228–3233, 1997.

21 Yuri V. Matiyasevich. On Hilbert’s Tenth Problem. Expository Lectures 1, Pacific Institute
for the Mathematical Sciences, University of Calgary, February 2000. URL: http://www.
mathtube.org/sites/default/files/lecture-notes/Matiyasevich.pdf.

FSCD 2019

http://arxiv.org/abs/1802.01795
http://dx.doi.org/10.1145/3293880.3294096
http://dx.doi.org/10.2307/2274135
http://dx.doi.org/10.2307/2274135
http://www.mathtube.org/sites/default/files/lecture-notes/Matiyasevich.pdf
http://www.mathtube.org/sites/default/files/lecture-notes/Matiyasevich.pdf

27:18 Hilbert’s Tenth Problem in Coq

22 Yuri V. Matiyasevich. Martin Davis and Hilbert’s Tenth Problem. In Martin Davis on
Computability, Computational Logic, and Mathematical Foundations. Springer, 2016.

23 Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.
24 Karol Pąk. The Matiyasevich Theorem. Preliminaries. Formalized Mathematics, 25(4):315–322,

2017.
25 Karol Pąk. Diophantine sets. Preliminaries. Formalized Mathematics, 26(1):81–90, 2018.
26 Emil L. Post. Recursively enumerable sets of positive integers and their decision problems.

bulletin of the American Mathematical Society, 50(5):284–316, 1944.
27 Julia Robinson. Existential definability in arithmetic. Transactions of the American Mathem-

atical Society, 72(3):437–449, 1952.
28 Benedikt Stock et al. Hilbert Meets Isabelle: Formalisation of the DPRM Theorem in Isabelle.

Isabelle Workshop 2018, 2018. doi:10.29007/3q4s.
29 The Coq Proof Assistant. http://coq.inria.fr, 2019.

A Some numerical Details about the Coq Code Contents

We give a detailed overview of the structure of the code corresponding to the results presented
in this paper, and which was contributed to our Coq library of undecidable problems . The
following lines of code (loc) measurements combine both definitions and proof scripts but do
not account for comments. Notice that there are more files in the whole library than those
needed to actually cover H10, but here, we only present the latter. In total, we contribute
12k loc to our undecidability project, 4k being additions to its shared libraries as extensions
of the Coq standard library.

Concerning the multi-purpose shared libraries in Shared/Libs/DLW/Utils :
we implemented finitary sums/products (over monoids) up to the binomial theorem
(Newton) over non-commutative rings in sums.v and binomial.v for a total of 550 loc;
we implemented bitwise operations over N, both a lists of bits in bool_list.v and Peano
nat in bool_nat.v for a total of 1700 loc;
we implemented many results about Euclidean division and Bézout’s identity in gcd.v ,
prime numbers and their unboundedness in prime.v , and base p representations in
power_decomp.v for a total of 1200 loc;
we implemented miscellaneous libraries for the reification of bounded_quantification.v
(120 loc), the Pigeon Hole Principle in php.v (350 loc) and iterations of binary relations
in rel_iter.v (230 loc).

Concerning the libraries for Minsky machines and FRACTRAN programs:
by a slight update to the existing code [11], we proved in mm_comp.v that MM-
termination (on any state) is undecidable (10 loc). Both the pre-existing result (un-
decidability of MM-termination on the zero state) and the new result derive from the
correctness of the compiler of binary stack machines into Minsky machines;
we implemented the removal of self-loops in Minsky machines in mm_no_self.v (340 loc);
we construct two infinite sequences of primes pi and qi in prime_seq.v (240 loc);
FRACTRAN definitions and basic results occur in fractran_defs.v (310 loc) and the verified
compiler from Minsky machines to FRACTRAN occurs in mm_fractran.v (300 loc);

Concerning the libraries for proving Matiyasevich’s theorems:
we implemented a library for modular arithmetic (Z/pZ) in Zp.v (920 loc);
we implemented a library for 2 × 2-matrix computation including exponentiation and
determinants in matrix.v (210 loc);
we implemented an elementary proof of Lucas’ theorem in luca.v (290 loc);

http://dx.doi.org/10.29007/3q4s
http://coq.inria.fr
https://github.com/uds-psl/coq-library-undecidability
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/sums.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/binomial.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/bool_list.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/bool_nat.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/gcd.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/prime.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/power_decomp.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/bounded_quantification.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/php.v
https://github.com/uds-psl/H10/tree/master/Shared/Libs/DLW/Utils/rel_iter.v
https://github.com/uds-psl/H10/tree/master/ILL/Mm/mm_comp.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/mm_no_self.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/prime_seq.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/fractran_defs.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/mm_fractran.v
https://github.com/uds-psl/H10/tree/master/H10/ArithLibs/Zp.v
https://github.com/uds-psl/H10/tree/master/H10/ArithLibs/matrix.v
https://github.com/uds-psl/H10/tree/master/H10/ArithLibs/luca.v

D. Larchey-Wendling and Y. Forster 27:19

the solution αb(n) of Pell’s equation and its (modular) arithmetic properties up to a proof
of its Diophantineness are in alpha.v (1150 loc);
from αb(n), we implement the meta-level Diophantine encoding of the exponential in
expo_diophantine.v (150 loc);
we implement the sparse ciphers used in the Diophantine elimination of bounded universal
quantification in cipher.v (1450 loc).

Concerning the object-level Diophantine libraries:
the definition of Diophantine logic and basic results is in dio_logic.v (450 loc);
the definition of elementary Diophantine constraints and the reduction from Diophantine
logic is in dio_elem.v (580 loc);
the definition of single Diophantine equations and the reduction from elementary Dio-
phantine constraints is in dio_single.v (350 loc);
we implement the object-level Diophantine encoding of the exponential relation in
dio_expo.v (130 loc); but all the work is done in the previously mentioned libraries;
the object-level Diophantine encoding of bounded universal quantification spans over
dio_binary.v , dio_cipher.v and dio_bounded.v (430 loc);
we derive the object-level Diophantine encoding of the reflexive-transitive closure in
dio_rt_closure.v (40 loc);
we implement the object-level Diophantine encoding of the FRACTRAN termination
predicate in fractran_dio.v (110 loc).

To finish, the main undecidability results and the DPRM:
the undecidability of Minsky machines is in HALT_MM.v (20 loc);
the reduction from MM to FRACTRAN is in MM_FRACTRAN.v (50 loc);
the Diophantine encoding of FRACTRAN termination is in FRACTRAN_DIO.v (70 loc);
the whole reduction chain leading to the undecidability of H10 is in H10.v (60 loc);
and the DPRM theorem is in DPRM.v (45 loc).

B Atomic Formulæ as Elementary Constraints (Lemma 12)

We complete the postponed part of the proof of Lemma 12. We compute a representation
for an atomic logical formula p =̇ q : Dform in an interval [ua, ua+n[⊆ U.13 We describe the
technique on the example of the atomic formula x1 +̇ (x2 ×̇ 5) =̇ x3 which we represent in
the interval [u0, u10[. Let us consider the following definitions:

E :=

u0 =̇ u1 +̇ u2 ; u3 =̇ u1 +̇ u4 ; u3 =̇ u2 +̇ u9 ;
u4 =̇ u5 +̇ u6 ; u5 =̇ x1 ; u6 =̇ u7 ×̇ u8 ; u7 =̇ x2 ; u8 =̇ 5 ;
u9 =̇ x3

 r := u0

The second line of E encodes the expression x1 +̇ (x2 ×̇ 5) in [u4, u9[, and the third line
encodes the expression x3 in [u9, u10[in a directed way: the values of the ui’s are uniquely
determined by the values of the xi’s and the value of u4 (resp. u9) is always the same as
the value of x1 +̇ (x2 ×̇ 5) (resp. x3). By “directed” we mean that the encoding is oriented
bottom-up by the syntactic tree of sub-expressions: each variable in [u4, u9[(resp. [u9, u10[)
encodes a sub-expression of x1 +̇ (x2 ×̇ 5) (resp. x3) and its value is always the same as the
value of the corresponding sub-expression.

The first line encodes the identity sign in x1 +̇ (x2 ×̇ 5) =̇ x3. Indeed, whatever the values
of u4 and u9, the three constraints of the first line give enough freedom (in the choice of

13The value of a is an input but the value of n is an output.

FSCD 2019

https://github.com/uds-psl/H10/tree/master/H10/Matija/alpha.v
https://github.com/uds-psl/H10/tree/master/H10/Matija/expo_diophantine.v
https://github.com/uds-psl/H10/tree/master/H10/Matija/cipher.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_logic.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_elem.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_single.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_expo.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_binary.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_cipher.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_bounded.v
https://github.com/uds-psl/H10/tree/master/H10/Dio/dio_rt_closure.v
https://github.com/uds-psl/H10/tree/master/H10/Fractran/fractran_dio.v
https://github.com/uds-psl/H10/tree/master/H10/HALT_MM.v
https://github.com/uds-psl/H10/tree/master/H10/MM_FRACTRAN.v
https://github.com/uds-psl/H10/tree/master/H10/FRACTRAN_DIO.v
https://github.com/uds-psl/H10/tree/master/H10/H10.v
https://github.com/uds-psl/H10/tree/master/H10/DPRM.v

27:20 Hilbert’s Tenth Problem in Coq

u1, u2, u3) to always be satisfiable (requirement 3 of Definition 11). But when the single
constraint u0 =̇ 0 is added (because r is u0), then u1 and u2 must evaluate to 0 (because of
u0 =̇ u1 +̇ u2) and then u3 must have the same value as both u4 (because of u3 =̇ u1 +̇ u4)
and u9 (because of u3 =̇ u2 +̇ u9), hence the identity x1 +̇ (x2 ×̇ 5) =̇ x3 must be satisfied
(requirement 4 of Definition 11).

C Proof of a Convexity Identity (Proposition 13)

We give an elementary arithmetic justification of the result, proof which involves none of the
high-level tools of mathematical analysis. We first show the statement

for any a, b : N, we have 2ab ≤ a2 + b2 and 2ab = a2 + b2 ↔ a = b (1)

Assuming without loss of generality that a ≤ b, we can write b = a+ δ with δ ∈ N and then,
for ./ ∈ {≤,=} we have 2ab ./ a2 + b2 ↔ 2a2 + 2aδ ./ a2 + a2 + 2aδ + δ2 ↔ 0 ./ δ2 hence
the desired result.

Then we proceed with the proof of
∑n
i=1 2piqi =

∑n
i=1 p

2
i + q2

i ↔ p1 = q1 ∧ · · · ∧ pn = qn.
The if case is obvious so we only describe the only if case. If there is u ∈ [1, n] such that
pu 6= qu then we have 2puqu < p2

u + q2
u, and 2pjqj ≤ p2

j + q2
j for all the other j ∈ [1, n]− {u},

in all cases by Statement (1). Hence we get
∑n
i=1 2piqi <

∑n
i=1 p

2
i + q2

i and the identity is
not possible. So the only way to get the identity is when pu = qu holds for any i ∈ [1, n].
Despite its “classical logic” taste, this argument can easily be transformed into a constructive
one by reasoning inductively on n.

D Avoiding Overflows in the Proof of Theorem 7

The section explains why we slightly modified the original proof of the elimination of bounded
universal quantification [20] to avoid overflows when multiplying ciphers. Considering
Equation (40) of page 3232, we compute the following product of ciphers

n∑
i=1

air
2i ×

n∑
i=1

bir
2i =

n∑
i=1

aibir
2i+1

+
∑

1≤i<j≤n
(aibj + ajbi)r2i+2j

and we remark that aibj + ajbi overflows over r = 22q for e.g. ai = aj = bi = bj =
2q − 1. This slight overflow makes the implementation of the proof that the right part∑

i<j(aibj + ajbi)r2i+2j is masked out in Equation (40) significantly harder.
On the other hand, for r alternatively chosen as e.g. r = 24q, the overflow does not occur

any more. With this remark, we do not imply that Equation (40) of [20] is incorrect in any
way. However, its formal proof is really more complicated when overflows occur and that
situation is straightforward to avoid.

The ∆-calculus: Syntax and Types
Luigi Liquori
Université Côte d’Azur, Inria, Sophia Antipolis, France
Luigi.Liquori@inria.fr

Claude Stolze
Université Côte d’Azur, Inria, Sophia Antipolis, France
Claude.Stolze@inria.fr

Abstract
We present the ∆-calculus, an explicitly typed λ-calculus with strong pairs, projections and explicit
type coercions. The calculus can be parametrized with different intersection type theories T , e.g.
the Coppo-Dezani, the Coppo-Dezani-Sallé, the Coppo-Dezani-Venneri and the Barendregt-Coppo-
Dezani ones, producing a family of ∆-calculi with related intersection typed systems. We prove
the main properties like Church-Rosser, unicity of type, subject reduction, strong normalization,
decidability of type checking and type reconstruction. We state the relationship between the
intersection type assignment systems à la Curry and the corresponding intersection typed systems à
la Church by means of an essence function translating an explicitly typed ∆-term into a pure λ-term
one. We finally translate a ∆-term with type coercions into an equivalent one without them; the
translation is proved to be coherent because its essence is the identity. The generic ∆-calculus can
be parametrized to take into account other intersection type theories as the ones in the Barendregt
et al. book.

2012 ACM Subject Classification Theory of computation→ Lambda calculus; Theory of computation
→ Type theory

Keywords and phrases intersection types, lambda calculus à la Church and à la Curry, proof-
functional logics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.28

Related Version A full version of the paper is available at https://arxiv.org/abs/1803.09660.

Funding Work supported by the COST Action CA15123 EUTYPES “The European research network
on types for programming and verification”.

Acknowledgements We are grateful to Benjamin Pierce, Joe Wells, Furio Honsell, and the anonymous
reviewers for the useful comments and remarks.

1 Introduction

Intersection type theories T were first introduced as a form of ad hoc polymorphism in (pure)
λ-calculi à la Curry. The paper by Barendregt, Coppo, and Dezani [4] is a classic reference,
while [5] is a definitive reference.

Intersection type assignment systems λT∩ have been well known in the literature for almost
40 years for many reasons: among them, characterization of strongly normalizing λ-terms [5],
λ-models [1], automatic type inference [28], type inhabitation [45, 40], type unification [18].

As intersection had its classical development for type assignment systems, many papers
tried to find an explicitly typed λ-calculus à la Church corresponding to the original
intersection type assignment systems à la Curry. The programming language Forsythe,
by Reynolds [41], is probably the first reference, while Pierce’s Ph.D. thesis [36] combines
also unions, intersections and bounded polymorphism. In [49] intersection types were used
as a foundation for typed intermediate languages for optimizing compilers for higher-order

© Luigi Liquori and Claude Stolze;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Luigi.Liquori@inria.fr
mailto:Claude.Stolze@inria.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.28
https://arxiv.org/abs/1803.09660
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 The ∆-calculus: Syntax and Types

polymorphic programming languages; implementations of typed programming language
featuring intersection (and union) types can be found in SML-CIDRE [15] and in StardustML
[19, 20].

Annotating pure λ-terms with intersection types is not simple: a classical example is the
difficulty to decorate the bound variable of the explicitly typed polymorphic identity λx:?.x
such that the type of the identity is (σ → σ) ∩ (τ → τ): previous attempts showed that the
full power of the intersection type discipline can be easily lost.

In this paper, we define and prove the main properties of the ∆-calculus, a generic
intersection typed system for an explicitly typed λ-calculus à la Church enriched with strong
pairs, denoted by 〈∆1 ,∆2〉, projections, denoted by pri ∆, and type coercions, denoted by ∆σ.

A strong pair 〈∆1 ,∆2〉 is a special kind of cartesian product such that the two parts of a
pair satisfy a given property R on their “essence”, that is o∆1 o R o∆2 o.

An essence o∆ o of a ∆-term is a pure λ-term obtained by erasing type decorations,
projections and choosing one of the two elements inside a strong pair. As examples

o 〈λx:σ ∩ τ.pr2 x , λx:σ ∩ τ.pr1 x〉 o = λx.x

oλx:(σ → τ) ∩ σ.(pr1 x)(pr2 x) o = λx.x x

oλx:σ ∩ (τ ∩ ρ).〈〈pr1 x , pr1 pr2 x〉 , pr2 pr2 x〉 o = λx.x

and so on. Therefore, the essence of a ∆-term is its untyped skeleton: a strong pair 〈∆1 ,∆2〉
can be typechecked if and only if o∆1 o R o∆2 o is verified, otherwise the strong pair will
be ill-typed. The essence also gives the exact mapping between a term and its typing à la
Church and its corresponding term and type assignment à la Curry. Changing the parameters
T and R results in defining a totally different intersection typed system.

A type coercion ∆τ is a term of type τ whose type-decoration denotes an application of a
subsumption rule to the term ∆ of type σ such that σ 6T τ : if we omit type coercions, then
we lose the uniqueness of type property.

For the purpose of this paper, we study the four well-known intersection type theories T ,
namely Coppo-Dezani TCD [12], Coppo-Dezani-Sallé TCDS [13], Coppo-Dezani-Venneri TCDV
[14] and Barendregt-Coppo-Dezani TBCD [4]. We will inspect the above type theories using
three equivalence relations R on pure λ-terms, namely ≡,=β , and =βη.

The combination of the above T and R allows to define ten meaningful typed systems for
the ∆-calculus that can be pictorially displayed in a “∆-chair” (see Definition 9). Following
the same style as in the Barendrengt et al. book [5], the edges in the chair represent an
inclusion relation over the set of derivable judgments.

Section 3 shows a number of typable examples in the systems presented in the ∆-chair:
each example is provided with a corresponding type assignment derivation of its essence.
Some historical examples of Pottinger [39], Hindley [25] and Ben-Yelles [6] are essentially
re-decorated and inhabited (when possible) in the ∆-calculus. The aim of this section is
both to make the reader comfortable with the different intersection typed systems, and to
give a first intuition of the correspondence between Church-style and Curry-style calculi.

Section 4 proves the metatheory for all the systems in the ∆-chair: Church-Rosser, unicity
of type, subject reduction, strong normalization, decidability of type checking and type
reconstruction and studies the relations between intersection type assignment systems à la
Curry and the corresponding intersection typed systems à la Church. Notions of soundness,
completeness and isomorphism will relate type assignment and typed systems. We also show
how to remove type coercions ∆τ defining a translation function, denoted by ‖_‖, inspired
by the one of Tannen et al. [8]: the intuition of the translation is that if ∆ has type σ
and σ 6T τ , then ‖σ 6T τ‖ is a ∆-term of type σ → τ , (‖σ 6T τ‖ ‖∆‖) has type τ and
o ‖σ 6T τ‖ o is the identity λx.x.

L. Liquori and C. Stolze 28:3

1.1 λ-calculi with intersection types à la Church
Several calculi à la Church appeared in the literature: they capture the power of intersection
types; we briefly review them.

The Forsythe programming language by Reynolds [41] annotates a λ-abstraction with
types as in λx:σ1|· · ·|σn.M . However, there is no typed term whose type erasure is the
combinator K ≡ λx.λy.x, with the type (σ → σ → σ) ∩ (τ → τ → τ).

Pierce [37] improves Forsythe by using a for construct to build ad hoc polymorphic
typing, as in forα ∈ {σ, τ}.λx:α.λy:α.x. However, there is no typed term whose type erasure
is λx.λy.λz.(x y , x z), with the type
((σ → ρ) ∩ (τ → ρ′)→ σ → τ → ρ× ρ′) ∩ ((σ → σ) ∩ (σ → σ)→ σ → σ → σ × σ).

Freeman and Pfenning [21] introduced refinement types, that is types that allow ad hoc
polymorphism for ML constructors. Intuitively, refinement types can be seen as subtypes
of a standard type: the user first defines a type and then the refinement types of this type.
The main motivation for these refinement types is to allow non-exhaustive pattern matching,
which becomes exhaustive for a given refinement of the type of the argument. As an example,
we can define a type boolexp for boolean expressions, with constructors True, And, Not and
Var, and a refinement type ground for boolean expressions without variables, with the same
constructors except Var: then, the constructor True has type boolexp∩ground, the constructor
And has type (boolexp ∗ boolexp→ boolexp)∩ (ground ∗ ground→ ground) and so on. However,
intersection is meaningful only when using constructors.

Wells et al. [49] introduced λCIL, a typed intermediate λ-calculus for optimizing compilers
for higher-order programming languages. The calculus features intersection, union and flow
types, the latter being useful to optimize data representation. λCIL can faithfully encode
an intersection type assignment derivation by introducing the concept of virtual tuple, i.e.
a special kind of pair whose type erasure leads to exactly the same untyped λ-term. A
parallel context and parallel substitution, similar to the notion of [29, 30], is defined to reduce
expressions in parallel inside a virtual tuple. Subtyping is defined only on flow types and not
on intersection types: this system can encode the λCD

∩ type assignment system.
Wells and Haak [50] introduced λB, a more compact typed calculus encoding of λCIL: in

fact, by comparing Fig. 1 and Fig. 2 of [50] we can see that the set of typable terms with
intersection types of λCIL and λB are the same. In that paper, virtual tuples are removed
by introducing branching terms, typable with branching types, the latter representing
intersection type schemes. Two operations on types and terms are defined, namely expand,
expanding the branching shape of type annotations when a term is substituted into a new
context, and select, to choose the correct branch in terms and types. As there are no virtual
tuples, reductions do not need to be done in parallel. As in [49], the λCD

∩ type assignment
system can be encoded.

Frisch et al. [22] designed a typed system with intersection, union, negation and recursive
types. The authors inherit the usual problem of having a domain space D that contains
all the terms and, at the same time, all the functions from D to D. They prevent this by
having an auxiliary domain space which is the disjoint union of D2 and P(D2). The authors
interpret types as sets in a well-suited model where the set-inspired type constructs are
interpreted as the corresponding to set-theoretical constructs. Moreover, the model manages
higher-order functions in an elegant way. The subtyping relation is defined as a relation on
the set-theoretical interpretation J_K of the types. For instance, the problem σ ∩ τ 6 σ will
be interpreted as JσK ∩ JτK ⊆ JσK, where ∩ becomes the set intersection operator, and the
decision program actually decides whether (JσK ∩ JτK) ∩ JσK is the empty set.

FSCD 2019

28:4 The ∆-calculus: Syntax and Types

Bono et al. [7] introduced a relevant and strict parallel term constructor to build
inhabitants of intersections and a simple call-by-value parallel reduction strategy. In that
paper, an infinite number of constants cσ⇒τ is applied to typed variables xσ such that
cσ⇒τ xσ is upcasted to type τ . The paper also uses a local renaming typing rule, which
changes the type decoration in λ-abstractions, as well as coercions. Term synchronicity in
the tuples is guaranteed by the typing rules. The calculus uses van Bakel’s strict version [46]
of the TCD intersection type theory.

1.2 Logics for intersection types

Proof-functional (or strong) logical connectives, introduced by Pottinger [39], take into
account the shape of logical proofs, thus allowing for polymorphic features of proofs to be
made explicit in formulæ. This differs from classical or intuitionistic connectives where the
meaning of a compound formula is only dependent on the truth value or the provability of
its subformulæ.

Pottinger was the first to consider the intersection ∩ as a proof-functional connective. He
contrasted it to the intuitionistic connective ∧ as follows: “The intuitive meaning of ∩ can
be explained by saying that to assert A ∩B is to assert that one has a reason for asserting A
which is also a reason for asserting B, while to assert A ∧B is to assert that one has a pair
of reasons, the first of which is a reason for asserting A and the second of which is a reason
for asserting B”.

A simple example of a logical theorem involving intuitionistic conjunction which does
not hold for proof-functional conjunction is (A ⊃ A) ∧ (A ⊃ B ⊃ A). Otherwise there would
exist a term which behaves both as I and as K. Later, Lopez-Escobar [32] and Mints [33]
investigated extensively logics featuring both proof-functional and intuitionistic connectives
especially in the context of realizability interpretations.

It is not immediate to extend the judgments-as-types Curry-Howard paradigm to logics
supporting proof-functional connectives. These connectives need to compare the shapes of
derivations and do not just take into account their provability, i.e. the inhabitation of the
corresponding type.

There are many proposals to find a suitable logics to fit intersection types; among them
we cite [48, 42, 34, 10, 7, 38], and previous papers by the authors [16, 31, 43].

1.3 Raising the ∆-calculus to a ∆-framework.

Our long term goal is to build a prototype of a theorem prover based on the ∆-calculus and
proof-functional logic. Recently [27], we have extended a subset of the generic ∆-calculus
with other proof-functional operators like union types, relevant arrow types, together with
dependent types as in the Edinburgh Logical Framework [24]: a preliminary implementation
of a type checker appeared in [43] by the authors. In a nutshell:

Strong disjunction is a proof-functional connective that can be interpreted as the union
type ∪ [16, 43]: it contrasts with the intuitionistic connective ∨. As Pottinger did for
intersection, we could informally say that asserting (A ∪B) ⊃ C corresponds to have a same
reason for both A ⊃ C and B ⊃ C.

A simple example of a logical theorem involving intuitionistic disjunction which does not
hold for strong disjunction is ((A ⊃ B) ∪B) ⊃ A ⊃ B. Otherwise there would exist a term
which behaves both as I and as K.

L. Liquori and C. Stolze 28:5

Minimal type theory 6min

(refl) σ 6 σ (incl) σ ∩ τ 6 σ, σ ∩ τ 6 τ

(glb) ρ 6 σ, ρ 6 τ ⇒ ρ 6 σ ∩ τ (trans) σ 6 τ, τ 6 ρ⇒ σ 6 ρ

Axiom schemes
(Utop) σ 6 U (U→) U 6 σ → U

(→∩) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)
Rule scheme
(→) σ2 6 σ1, τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

Figure 1 Minimal type theory 6min, axioms and rule schemes (see Fig. 13.2 and 13.3 of [5]).

x:σ ∈ B
B `T∩ x : σ

(ax)
B, x:σ `T∩ M : τ

B `T∩ λx.M : σ → τ
(→I)

B `T∩ M : σ B `T∩ M : τ
B `T∩ M : σ ∩ τ

(∩I)
B `T∩ M : σ → τ B `T∩ N : σ

B `T∩ M N : τ
(→E)

B `T∩ M : σ ∩ τ
B `T∩ M : σ

(∩E1)
B `T∩ M : σ ∩ τ
B `T∩ M : τ

(∩E2)

U ∈ A
B `T∩ M : U

(top)
B `T∩ M : σ σ 6T τ

B `T∩ M : τ
(6T)

Figure 2 Generic intersection type assignment system λT∩ (see Figure 13.8 of [5]). Although rules
(∩Ei) are derivable with 6min, we add them for clarity.

Strong (relevant) implication is yet another proof-functional connective that was inter-
preted in [2] as a relevant arrow type →r. As explained in [2], it can be viewed as a
special case of implication whose related function space is the simplest one, namely the one
containing only the identity function. Because the operators ⊃ and →r differ, A→r B →r A

is not derivable.
Dependent types, as introduced in the Edinburgh Logical Framework [24] by Harper

et al., allows considering proofs as first-class citizens albeit differently with respect to
proof-functional logics. The interaction of both dependent and proof-functional operators
is intriguing: the former mentions proofs explicitly, while the latter mentions proofs
implicitly. Their combination therefore opens up new possibilities of formal reasoning
on proof-theoretic semantics.

2 Syntax, Reduction and Types

I Definition 1 (Type atoms, type syntax, type theories and type assignment systems). We
briefly review some basic definition from Subsection 13.1 of [5], in order to define type
assignment systems. The set of atoms, intersection types, intersection type theories and
intersection type assignment systems are defined as follows:
1. (Atoms). Let A be a set of symbols which we will call type atoms, and let U be a special

type atom denoting the universal type. In particular, we will use A∞ = {ai | i ∈ N} with
ai being different from U and AU

∞ = A∞ ∪ {U}.
2. (Syntax). The syntax of intersection types, parametrized by A, is: σ ::= A | σ → σ | σ∩σ.

FSCD 2019

28:6 The ∆-calculus: Syntax and Types

Table 1 Type theories λCD
∩ , λCDS

∩ , λCDV
∩ , and λBCD

∩ . The ref. column refers to the original article
these theories come from.

λT∩ T A 6min plus ref.
λCD
∩ TCD A∞ − [12]
λCDS
∩ TCDS AU

∞ (Utop) [13]
λCDV
∩ TCDV A∞ (→), (→∩) [14]
λBCD
∩ TBCD AU

∞ (→), (→∩), (Utop), (U→) [4]

3. (Intersection type theories T). An intersection type theory T is a set of sentences
of the form σ 6 τ satisfying at least the axioms and rules of the minimal type theory 6min
defined in Figure 1. The type theories TCD, TCDV, TCDS, and TBCD are the smallest type
theories over A satisfying the axioms and rules given in Table 1. We write T1 v T2 if,
for all σ, τ such that σ 6T1 τ , we have that σ 6T2 τ . In particular, TCD v TCDV v TBCD
and TCD v TCDS v TBCD. We will sometimes note, for instance, BCD instead of TBCD.

4. (Intersection type assignment systems λT∩). We define in Figure 2 an infinite
collection of type assignment systems parametrized by a set of atoms A and a type theory
T . We name four particular type assignment systems in the table below, which is an
excerpt from Figure 13.4 of [5]. B `T∩ M : σ denotes a derivable type assignment judgment
in the type assignment system λT∩. Type checking is not decidable for λCD

∩ , λCDV
∩ , λCDS

∩ ,
and λBCD

∩ .

2.1 The ∆-calculi
Intersection type assignment systems and ∆-calculi have in common their type syntax and
intersection type theories. The generic syntax of the ∆-calculus is defined as follows.

I Definition 2 (Generic ∆-calculus syntax).

∆ ::= u∆ | x | λx:σ.∆ | ∆ ∆ | 〈∆ ,∆〉 | pri ∆ | ∆σ i ∈ {1, 2}

Intuitively, u∆ ranges over an infinite set of constants, indexed with a particular ∆-term.
∆σ denotes an explicit coercion of ∆ to type σ. The expression 〈∆ ,∆〉 denotes a pair that,
following the Lopez-Escobar jargon [32], we call “strong pair” with respective projections pr1
and pr2 . Note that pri is not a term: if it were a term, then pri should have several types,
or a parametric polymorphic type. But our calculi do not have parametric polymorphism,
and they have unicity of typing.

The essence function o_ o is an erasing function mapping typed ∆-terms into pure λ-terms.
It is defined as follows.

I Definition 3 (Essence function).

ox o def= x o∆σ o def= o∆ o ou∆ o
def= o∆ o

oλx:σ.∆ o def= λx.o∆ o o∆1 ∆2 o
def= o∆1 o o∆2 o

o 〈∆1 ,∆2〉 o
def= o∆1 o o pri ∆ o def= o∆ o i ∈ {1, 2}

One could argue that the choice of o 〈∆1 ,∆2〉 o
def= o∆1 o is arbitrary and could have been

replaced with o 〈∆1 ,∆2〉 o
def= o∆2 o. However, the typing rules will ensure that, if 〈∆1 ,∆2〉

L. Liquori and C. Stolze 28:7

is typable, then, for some suitable equivalence relation R, we have that o∆1 o R o∆2 o. Thus,
strong pairs can be viewed as constrained cartesian products.

The generic reduction semantics reduces terms of the ∆-calculus as follows.

I Definition 4 (Generic reduction semantics). Syntactical equality is denoted by ≡.
1. (Substitution). Substitution on ∆-terms is defined as usual, with the additional rules:

u∆1 [∆2/x] def= u(∆1[∆2/x]) and ∆σ
1 [∆2/x] def= (∆1[∆2/x])σ

2. (One-step reduction). We define two notions of reduction:

(λx:σ.∆1) ∆2 −→β ∆1[∆2/x] (β)

pri 〈∆1 ,∆2〉 −→pri ∆i i ∈ {1, 2} (pri)

Observe that (λx:σ.∆1)σ ∆2 is not a redex, because the λ-abstraction is coerced. The
contextual closure is defined as usual except for reductions inside the index of u∆ that are
forbidden (even though substitutions are propagated). We write −→βpri for the contextual
closure of the (β) and (pri) notions of reduction. We also define a synchronous contextual
closure, which is like the usual contextual closure except for the strong pairs, as defined
in point (3). Synchronous contextual closure of the notions of reduction generates the
reduction relation −→‖βpri .

3. (Synchronous closure of −→‖). Synchronous closure is defined on the strong pairs
with the following constraint:

∆1 −→‖ ∆′1 ∆2 −→‖ ∆′2 o∆′1 o ≡ o∆′2 o
〈∆1 ,∆2〉 −→‖ 〈∆′1 ,∆′2〉

(Clos‖)

Note that we reduce in the two components of the strong pair;
4. (Multistep reduction). We write −→−→βpri (resp. −→−→‖βpri) as the reflexive and transitive

closure of −→βpri (resp. −→‖βpri);
5. (Congruence). We write =βpri as the congruence relation generated by −→−→βpri .
We mostly consider βpri -reductions, thus to ease the notation we omit the subscript in
βpri -reductions.

Note that η-reduction can be defined as in the untyped λ-calculus. The next definition
introduces a notion of synchronization inside strong pairs. This notion is also valid in untyped
calculi.

I Definition 5 (Synchronization). A ∆-term is synchronous if and only if, for all its subterms
of the shape 〈∆1 ,∆2〉, we have that o∆1 o ≡ o∆2 o.

It is easy to verify that −→‖ preserves synchronization, while this is not the case for −→.
The next definition introduces a generic intersection typed system for the ∆-calculus that is
parametrizable by suitable equivalence relations on pure λ-terms R and type theories T .

I Definition 6 (Generic intersection typed system). The generic intersection typed system is
defined in Figure 3. We denote by ∆TR a particular typed system with the type theory T and
under an equivalence relation R and by B `TR ∆ : σ a corresponding typing judgment.

The typing rules are intuitive for a calculus à la Church except rules (∩I), (top) and (6T).
The typing rule for a strong pair (∩I) is similar to the typing rule for a cartesian product,
except for the side-condition o∆1 o R o∆2 o, forcing the two parts of the strong pair to have
essences compatible under R, thus making a strong pair a special case of a cartesian pair.

FSCD 2019

28:8 The ∆-calculus: Syntax and Types

U ∈ A
B `T

R u∆ : U
(top) x:σ ∈ B

B `T
R x : σ

(ax)
B, x:σ `T

R ∆ : τ
B `T

R λx:σ.∆ : σ → τ
(→I)

B `T
R ∆1 : σ B `T

R ∆2 : τ o∆1 o R o∆2 o
B `T

R 〈∆1 ,∆2〉 : σ ∩ τ
(∩I)

B `T
R ∆1 : σ → τ B `T

R ∆2 : σ
B `T

R ∆1 ∆2 : τ
(→E)

B `T
R ∆ : σ ∩ τ

B `T
R pr1 ∆ : σ

(∩E1)
B `T

R ∆ : σ ∩ τ
B `T

R pr2 ∆ : τ
(∩E2)

B `T
R ∆ : σ σ 6T τ

B `T
R ∆τ : τ

(6T)

Figure 3 Generic intersection typed system ∆TR.

For instance, 〈λx:σ.λy:τ.x , λx:σ.x〉 is not typable in ∆T≡; 〈(λx:σ.x) y , y〉 is not typable in
∆T≡ but it is in ∆T=β ; 〈x , λy:σ.((λz:τ.z)x) y〉 is not typable in ∆T≡ nor ∆T=β but it is in ∆T=βη .
In the typing rule (top), the subscript ∆ in u∆ is not necessarily typable so ou∆ o can easily
be any arbitrary λ-term. The typing rule (6T) allows to change the type of a ∆-term from
σ to τ if σ 6T τ : the term in the conclusion must record this change with an explicit type
coercion _τ , producing the new term ∆τ : explicit type coercions are important to keep the
unicity of typing derivations.

The next definition introduces a partial order over equivalence relations on pure λ-terms
and an inclusion over typed systems as follows.

I Definition 7 (R and v).
1. Let R ∈ {≡,=β ,=βη}. R1 v R2 if, for all pure λ-terms M,N such that M R1 N , we

have that M R2 N ;
2. ∆T1

R1 v ∆T2
R2 if, whenever B `T1

R1
∆ : σ, we have B `T2

R2
∆ : σ.

I Lemma 8.
1. ∆CD

R v ∆CDS
R v ∆BCD

R and ∆CD
R v ∆CDV

R v ∆BCD
R ;

2. ∆T1
R1 v ∆T2

R2 if T1 v T2 and R1 v R2.

2.2 The ∆-chair
The next definition classifies ten typed systems for the ∆-calculus: some of them already
appeared (sometime with a different notation) in the literature by the present authors.

I Definition 9 (∆-chair). Ten typed systems ∆TR can be drawn pictorially in a ∆-chair,
where the arrows represent an inclusion relation. ∆CD

≡ corresponds roughly to [29, 30] (in
the expression M@∆, M is the essence of ∆) and in its intersection part to [43]; ∆CDS

≡

corresponds roughly in its intersection part to [17], ∆BCD
≡ corresponds in its intersection

part to [31], ∆CD
=βη

corresponds in its intersection part to [16]. The other typed systems are
basically new. The main properties of these systems are:
1. All the ∆T≡ systems enjoys the synchronous subject reduction property, the other systems

also enjoy ordinary subject reduction (Theorem 29);
2. All the systems strongly normalize (Theorem 33);
3. All the systems correspond to the to original type assignment systems except ∆CD

=β
, ∆CDV

=β
,

∆CDV
=βη

and ∆BCD
=βη

(Theorem 35);
4. Type checking and type reconstruction are decidable for all the systems, except ∆CDS

=β
,

∆BCD
=β

, and ∆BCD
=βη

(Theorem 37).

L. Liquori and C. Stolze 28:9

∆CD
≡

∆CD
=β

∆CDV
≡

∆CDV
=β

∆CDS
≡

∆CDS
=β

∆BCD
≡

∆BCD
=β

∆CDV
=βη

∆BCD
=βη

3 Examples

This section shows examples of typed derivations ∆TR and highlights the corresponding type
assignment judgment in λT∩ they correspond to, in the sense that we have a derivation
B `TR ∆ : σ and another derivation B `T∩ o∆ o : σ. The correspondence between intersection
typed systems ∆TR and intersection type assignment λT∩ will be defined in Subsection 5.1.

I Example 10 (Polymorphic identity). In all of the intersection type assignment systems λT∩
we can derive `T∩ λx.x : (σ → σ) ∩ (τ → τ). A corresponding ∆-term is: 〈λx:σ.x , λx:τ.x〉
that can be typed in all of the typed systems of the ∆-chair as follows

x:σ `TR x : σ
`TR λx:σ.x : σ → σ

x:τ `TR x : τ
`TR λx:τ.x : τ → τ λx.x R λx.x

`TR 〈λx:σ.x , λx:τ.x〉 : (σ → σ) ∩ (τ → τ)

I Example 11 (Auto application). In all of the intersection type assignment systems we
can derive `T∩ λx.x x : ((σ → τ) ∩ σ) → τ . A corresponding ∆-term is: λx:(σ → τ) ∩
σ.(pr1 x)(pr2 x) that can be typed in all of the typed systems of the ∆-chair as follows

x:(σ → τ) ∩ σ `TR x : (σ → τ) ∩ σ
x:(σ → τ) ∩ σ `TR pr1 x : σ → τ

x:(σ → τ) ∩ σ `TR x : (σ → τ) ∩ σ
x:(σ → τ) ∩ σ `TR pr2 x : σ

x:(σ → τ) ∩ σ `TR (pr1 x)(pr2 x) : τ
`TR λx:(σ → τ) ∩ σ.(pr1 x)(pr2 x) : (σ → τ) ∩ σ → τ

I Example 12 (Some examples in ∆CDS
R). In λCDS

∩ we can derive `TCDS
∩ (λx.λy.x) : σ → U→ σ,

and using this type assignment, we can derive z:σ `TCDS
∩ (λx.λy.x) z z : σ. A corresponding

FSCD 2019

28:10 The ∆-calculus: Syntax and Types

∆-term is: (λx:σ.λy:U.x) z zU that can be typed in ∆CDS
R as follows

z:σ, x:σ, y:U `TCDS
R x : σ

z:σ, x:σ `TCDS
R λy:U.x : U→ σ

z:σ `TCDS
R λx:σ.λy:U.x : σ → U→ σ z:σ `TCDS

R z : σ
z:σ `TCDS

R (λx:σ.λy:U.x) z : U→ σ

z:σ `TCDS
R z : σ σ 6TCDS U

z:σ `TCDS
R zU : U

z:σ `TCDS
R (λx:σ.λy:U.x) z zU : σ

As another example, we can also derive `TCDS
∩ λx.x : σ → σ ∩ U. A corresponding ∆-term is:

λx:σ.〈x , xU〉 that can be typed in ∆CDS
R as follows

x:σ `TCDS
R x : σ

x:σ `TCDS
R x : σ σ 6TCDS U

x:σ `TCDS
R xU : U x R x

x:σ `TCDS
R 〈x , xU〉 : σ ∩ U

`TCDS
R λx:σ.〈x , xU〉 : σ → σ ∩ U

I Example 13 (An example in ∆CDV
R). In λCDV

∩ we can prove the commutativity of intersection,
i.e. `TCDV

∩ λx.x : σ ∩ τ → τ ∩ σ. A corresponding ∆-term is:
〈λx:σ ∩ τ.pr2 x , λx:σ ∩ τ.pr1 x〉(σ∩τ)→(τ∩σ) that can be typed in ∆CDV

R as follows

x:σ ∩ τ `TCDS
R x : σ ∩ τ

x:σ ∩ τ `TCDS
R pr2 x : τ

`TCDS
R λx:σ ∩ τ.pr2 x : (σ ∩ τ)→ τ

x:σ ∩ τ `TCDS
R x : σ ∩ τ

x:σ ∩ τ `TCDS
R pr1 x : σ

`TCDS
R λx:σ ∩ τ.pr1 x : (σ ∩ τ)→ σ λx.x R λx.x

`TCDS
R 〈λx:σ ∩ τ.pr2 x , λx:σ ∩ τ.pr1 x〉 : ((σ ∩ τ)→ τ) ∩ ((σ ∩ τ)→ σ) ∗

`TCDS
R 〈λx:σ ∩ τ.pr2 x , λx:σ ∩ τ.pr1 x〉(σ∩τ)→(τ∩σ) : (σ ∩ τ)→ (τ ∩ σ)

where ∗ is ((σ ∩ τ)→ τ) ∩ ((σ ∩ τ)→ σ) 6TCDV (σ ∩ τ)→ (τ ∩ σ).

I Example 14 (Another polymorphic identity in ∆T=β). In all the ∆T=β you can type the
following ∆-term: 〈λx:σ.x , (λx:τ→τ.x) (λx:τ.x)〉. The typing derivation is thus

x:σ `T=β x : σ

`T=β λx:σ.x : σ → σ

x:τ → τ `T=β x : τ → τ

`T=β λx:τ→τ.x : (τ → τ)→ (τ → τ)

x:τ `T=β x : τ

`T=β λx:τ.x : τ → τ

`T=β (λx:τ→τ.x) (λx:τ.x) : τ → τ λx.x =β (λx.x) (λx.x)

`T=β 〈λx:σ.x , (λx:τ→τ.x) (λx:τ.x)〉 : (σ → σ) ∩ (τ → τ)

I Example 15 (Two examples in ∆BCD
≡ and ∆BCD

=βη
). In λBCD

∩ we can can type any term, including

the non-terminating term Ω def= (λx.x x) (λx.x x). More precisely, we have `TBCD
∩ Ω : U. A

corresponding ∆-term whose essence is Ω is (λx:U.xU→U x) (λx:U.xU→U x)U that can be typed
in ∆BCD

R as follows

∗
`TBCD
R λx:U.xU→U x : U→ U

∗
`TBCD
R λx:U.xU→U x : U→ U U→ U 6TBCD U

`TBCD
R (λx:U.xU→U x)U : U

`TBCD
R (λx:U.xU→U x) (λx:U.xU→U x)U : U

where ∗ is
x:U `TBCD

R x : U U 6TBCD U→ U

x:U `TBCD
R xU→U : U→ U x:U `TBCD

R x : U

x:U `TBCD
R xU→U x : U

L. Liquori and C. Stolze 28:11

In λBCD
∩ we can type x:U→ U `TBCD

∩ x : (U→ U) ∩ (σ → U). A corresponding ∆-term whose
essence is x is 〈x , λy:σ.x yU〉 that can be typed in ∆BCD

=βη
as follows

x:U→ U `TBCD
=βη x : U→ U

x:U→ U, y:σ `TBCD
=βη x : U→ U

x:U→ U, y:σ `TBCD
=βη y : σ σ 6 U

x:U→ U, y:σ `TBCD
=βη yU : U

x:U→ U, y:σ `TBCD
=βη x yU : U

x:U→ U `TBCD
=βη λy:σ.x yU : σ → U x =βη λy.x y

x:U→ U `TBCD
=βη 〈x , λy:σ.x yU〉 : (U→ U) ∩ (σ → U)

Note that the =βη condition has an interesting loophole, as it is well known that λBCD
∩

does not enjoy =η conversion property. Theorem 35 will show that we can construct a
∆-term which does not correspond to any λBCD

∩ derivation.

I Example 16 (Pottinger). The following examples can be typed in all the type theories
of the ∆-chair (we also display the corresponding pure λ-terms typable in λT∩). These are
encodings from the examples à la Curry given by Pottinger in [39].
λx.λy.x y

`TR λx:(σ → τ) ∩ (σ → ρ).λy:σ.〈(pr1 x) y) , (pr2 x) y〉 : (σ → τ) ∩ (σ → ρ)→ σ → τ ∩ ρ

λx.λy.x y

`TR λx:σ → τ ∩ ρ.〈λy:σ.pr1 (x y) , λy:σ.pr2 (x y)〉 : (σ → τ ∩ ρ)→ (σ → τ) ∩ (σ → ρ)

λx.λy.x y

`TR λx:σ → ρ.λy:σ ∩ τ.x (pr1 y) : (σ → ρ)→ σ ∩ τ → ρ

λx.λy.x

`TR λx:σ ∩ τ.λy:σ.pr2 x : σ ∩ τ → σ → τ

λx.λy.x y y

`TR λx:σ → τ → ρ.λy:σ ∩ τ.x (pr1 y) (pr2 y) : (σ → τ → ρ)→ σ ∩ τ → ρ

λx.x

`TR λx:σ ∩ τ.pr1 x : σ ∩ τ → σ

λx.x

`TR λx:σ.〈x , x〉 : σ → σ ∩ σ

λx.x

`TR λx:σ ∩ (τ ∩ ρ).〈〈pr1 x , pr1 pr2 x〉 , pr2 pr2 x〉 : σ ∩ (τ ∩ ρ)→ (σ ∩ τ) ∩ ρ

In the same paper, Pottinger lists some types that cannot be inhabited by any intersection
type assignment (6`T∩) in an empty context, namely: σ → (σ ∩ τ), and (σ → τ) → (σ →
ρ)→ σ → τ ∩ ρ, and ((σ ∩ τ)→ ρ)→ σ → τ → ρ. It is not difficult to verify that the above
types cannot be inhabited by any of the typed systems of the ∆-chair because of the failure
of the essence condition in the strong pair type rule.

I Example 17 (Intersection is not the conjunction operator). This counter-example is from
the corresponding counter-example à la Curry given by Hindley [26] and Ben-Yelles [6]. The
intersection type (σ → σ) ∩ ((σ → τ → ρ) → (σ → τ) → σ → ρ) where the left part of
the intersection corresponds to the type for the combinator I and the right part for the
combinator S cannot be assigned to a pure λ-term. Analogously, the same intersection type
cannot be assigned to any ∆-term.

FSCD 2019

28:12 The ∆-calculus: Syntax and Types

3.1 On synchronization and subject reduction
For the typed systems ∆T≡, strong pairs have an intrinsic notion of synchronization: some
redexes need to be reduced in a synchronous fashion unless we want to create meaningless
∆-terms that cannot be typed. Consider the ∆-term 〈(λx:σ.x) y , (λx:σ.x) y〉: if we use the
−→ reduction relation, then the following reduction paths are legal:

〈(λx:σ.x) y , (λx:σ.x) y〉
1β 〈(λx:σ.x) y , y〉 %β

%β 〈y , (λx:σ.x) y〉 1β
〈y , y〉

More precisely, the first and second redexes are rewritten asynchronously, thus they cannot
be typed in any typed system ∆T≡, because we fail to check the left and the right part of the
strong pair to be the same: the −→‖ reduction relation prevents this loophole and allows to
type all redexes. In summary, −→‖ can be thought of as the natural reduction relation for
the typed systems ∆T≡.

4 Metatheory of ∆T
R

For lack of space all proofs are omitted: the interested reader can find more technical details
in the related full version at https://arxiv.org/abs/1803.09660.

4.1 General properties
Unless specified, all properties applies to the intersection typed systems ∆TR. There are
several elegant ways to prove the Church-Rosser property: among others we could use the
historical method of Tait and Martin-Löf (see Definition 3.2.3 of [3]), or the van Oostrom and
van Raamsdonk technique [47], or the Takahashi parallel reduction technique [44]. Parallel
reduction semantics extends Definition 4 and it is inductively defined as follows.

I Definition 18 (Parallel reduction semantics).

x =⇒ x and u∆ =⇒ u∆

∆σ =⇒ (∆′)σ if ∆ =⇒ ∆′

∆1 ∆2 =⇒ ∆′1 ∆′2 if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2
λx:σ.∆ =⇒ λx:σ.∆′ if ∆ =⇒ ∆′

(λx:σ.∆1) ∆2 =⇒ ∆′1[∆′2/x] if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2
〈∆1 ,∆2〉 =⇒ 〈∆′1 ,∆′2〉 if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2

pri ∆ =⇒ pri ∆′ if ∆ =⇒ ∆′ and i ∈ {1, 2}

pri 〈∆1 ,∆2〉 =⇒ ∆′i if ∆i =⇒ ∆′i and i ∈ {1, 2}

Intuitively, ∆ =⇒ ∆′ means that ∆′ is obtained from ∆ by simultaneous contraction
of some βpri -redexes possibly overlapping each other. Church-Rosser can be achieved by
proving a stronger statement, namely ∆ =⇒ ∆′ implies ∆′ =⇒ ∆∗, where ∆∗ is a ∆-term
determined by ∆ and independent from ∆′. The above statement is satisfied by the term ∆∗
which is, in turn, obtained from ∆ by contracting all the redexes existing in ∆ simultaneously.

https://arxiv.org/abs/1803.09660

L. Liquori and C. Stolze 28:13

I Definition 19 (The map _∗).

x∗
def= x u∗∆

def= u∆

(∆σ)∗ def= (∆∗)σ 〈∆1 ,∆2〉∗
def= 〈∆∗1 ,∆∗2〉

(λx:σ.∆)∗ def= λx:σ.∆∗ (λx:σ.∆1) ∆∗2
def= ∆∗1[∆∗2/x]

(∆1 ∆2)∗ def= ∆∗1 ∆∗2 if ∆1 ∆2 is not a β-redex

(pri 〈∆1 ,∆2〉)∗
def= ∆∗i i ∈ {1, 2}

(pri ∆)∗ def= pri ∆∗ if ∆ is not a strong pair

The next technical lemma will be useful in showing that Church-Rosser for −→−→ can be
inherited from Church-Rosser for =⇒.

I Lemma 20.
1. If ∆1 −→ ∆′1, then ∆1 =⇒ ∆′1;
2. if ∆1 =⇒ ∆′1, then ∆1−→−→∆′1;
3. if ∆1 =⇒ ∆′1 and ∆2 =⇒ ∆′2, then ∆1[∆2/x] =⇒ ∆′1[∆′2/x];
4. ∆1 =⇒ ∆∗1.

Now we have to prove the Church-Rosser property for the parallel reduction.

I Lemma 21 (Confluence property for =⇒). If ∆ =⇒ ∆′, then ∆′ =⇒ ∆∗.

The Church-Rosser property follows.

I Theorem 22 (Confluence). If ∆1−→−→∆2 and ∆1−→−→∆3, then there exists ∆4 such that
∆2−→−→∆4 and ∆3−→−→∆4.

At this point, a small remark about η-reduction in the ∆-calculus could be useful. It
is well-known by Nederpelt [35] that Church-Rosser for βη-reduction in the λ-calculus à la
Church is just false; Geuvers in [23] proved the Church-Rosser for βη-reduction for well-typed
terms in Pure Type Systems; the same result can be easily proved for the ∆-calculus.

The next lemma says that all type derivations for ∆ have an unique type.

I Lemma 23 (Unicity of typing). If B `TR ∆ : σ, then σ is unique.

The next lemma proves inversion properties on typable ∆-terms.

I Lemma 24 (Generation).
1. If B `TR x : σ, then x:σ ∈ B;
2. if B `TR λx:σ.∆ : ρ, then ρ ≡ σ → τ for some τ and B, x:σ `TR ∆ : τ ;
3. if B `TR ∆1 ∆2 : τ , then there is σ such that B `TR ∆1 : σ → τ and B `TR ∆2 : σ;
4. if B `TR 〈∆1 ,∆2〉 : ρ, then there is σ, τ such that ρ ≡ σ ∩ τ and B `TR ∆1 : σ and

B `TR ∆2 : τ and o∆1 o R o∆2 o;
5. if B `TR pr1 ∆ : σ, then there is τ such that B `TR ∆ : σ ∩ τ ;
6. if B `TR pr2 ∆ : τ , then there is σ such that B `TR ∆ : σ ∩ τ ;
7. if B `TR u∆ : σ, then σ ≡ U;
8. if B `TR ∆τ : ρ, then ρ ≡ τ and there is σ such that σ 6T τ and B `TR ∆ : σ.

The next lemma says that all subterms of a typable ∆-term are typable too.

FSCD 2019

28:14 The ∆-calculus: Syntax and Types

I Lemma 25 (Subterms typability). If B `TR ∆ : σ, and ∆′ is a subterm of ∆, then there
exists B′ and τ such that B′ ⊇ B and B′ `TR ∆′ : τ .

As expected, the weakening and strengthening properties on contexts are verified.

I Lemma 26 (Free-variable properties).
1. If B `TR ∆ : σ, and B′ ⊇ B, then B′ `TR ∆ : σ;
2. if B `TR ∆ : σ, then FV(∆) ⊆ Dom(B);
3. if B `TR ∆ : σ, B′ ⊆ B and FV(∆) ⊆ Dom(B′), then B′ `TR ∆ : σ.

The next lemma also says that essence is closed under substitution.

I Lemma 27 (Substitution).
1. o∆1[∆2/x] o ≡ o∆1 o[o∆2 o/x];
2. If B, x:σ `TR ∆1 : τ and B `TR ∆2 : σ, then B `TR ∆1[∆2/x] : τ .

In order to prove subject reduction, we need to prove that reducing ∆-terms preserve
the side-condition o∆1 o R o∆2 o when typing the strong pair 〈∆1 ,∆2〉. We prove this in the
following lemma.

I Lemma 28 (Essence reduction).
1. If B `T≡ ∆1 : σ and ∆1 −→ ∆2, then o∆1 o =β o∆2 o;
2. for R ∈ {=β ,=βη}, if B `TR ∆1 : σ and ∆1 −→ ∆2, then o∆1 o R o∆2 o;
3. if B `T=βη ∆1 : σ and ∆1 −→η ∆2, then o∆1 o =η o∆2 o.

The next theorem states that all the ∆T≡ typed systems preserve synchronous βpri -
reduction, and all the ∆T=β and ∆T=βη typed systems preserve βpri -reduction.

I Theorem 29 (Subject reduction for βpri).
1. If B `T≡ ∆1 : σ and ∆1 −→‖ ∆2, then B `T≡ ∆2 : σ;
2. for R ∈ {=β ,=βη}, if B `TR ∆1 : σ and ∆1 −→ ∆2, then B `TR ∆2 : σ.

The next theorem states that some of the typed systems on the back of the ∆-chair
preserve η-reduction.

I Theorem 30 (Subject reduction for η for TCDV, TBCD). Let T ∈ {TCDV, TBCD}. If B `T=βη
∆1 : σ and ∆1 −→η ∆2, then B `T=βη ∆2 : σ.

4.2 Strong normalization
The idea of the strong normalization proof is to embed typable terms of the ∆-calculus into
Church-style terms of a target system, which is the simply-typed λ-calculus with pairs, in a
structure-preserving way (and forgetting all the essence side-conditions). The translation is
sufficiently faithful so as to preserve the number of reductions, and so strong normalization
for the ∆-calculus follows from strong normalization for simply-typed λ-calculus with pairs.
A similar technique has been used in [24] to prove the strong normalization property of LF
and in [9] to prove the strong normalization property of a subset of λCD

∩ .
The target system has one atomic type called ◦, a special constant term u◦ of type ◦ and

an infinite number of constants cσ of type σ for any type of the target system. We denote by
B `× M : σ a typing judgment in the target system.

L. Liquori and C. Stolze 28:15

I Definition 31 (Forgetful mapping).
On intersection types.

|ai|
def= ◦ ∀ai ∈ A and |σ∩τ | def= |σ|×|τ | and |σ → τ | def= |σ| → |τ |

On ∆-terms.

|x|B
def= x |u∆|B

def= u◦

|λx:σ.∆|B
def= λx.|∆|B,x:σ |∆1 ∆2|B

def= |∆1|B |∆2|B

|〈∆1 ,∆2〉|B
def= (|∆1|B , |∆2|B) |pri ∆|B

def= pri |∆|B

|∆τ |B
def= c|σ|→|τ | |∆|B if B `TR ∆ : σ

The map can be easily extended to basis B.

The following technical lemma states some properties of the forgetful function.

I Lemma 32.
1. If B `TR ∆ : σ, then |∆|B is defined, and, for all B′ ⊇ B, |∆|B ≡ |∆|B′ ;
2. |∆1[∆2/x]|B ≡ |∆1|B [|∆2|B/x];
3. If ∆1 −→ ∆2, then |∆1|B −→ |∆2|B;
4. If B `TR ∆ : σ then |B| `× |∆|B : |σ|.

Strong normalization follows easily from the above lemmas.

I Theorem 33 (Strong normalization). If B `TR ∆ : σ, then ∆ is strongly normalizing.

5 Typed systems à la Church vs. type assignment systems à la Curry

5.1 Relation between type assignment systems λT
∩ and typed systems

∆T
R

It is interesting to state some relations between type assignment systems à la Church and
typed systems à la Curry. An interesting property is the one of isomorphism, namely the
fact that whenever we assign a type σ to a pure λ-term M , the same type can be assigned
to a ∆-term such that the essence of ∆ is M . Conversely, for every assignment of σ to a
∆-term, a valid type assignment judgment of the same type for the essence of ∆ can be
derived. Soundness, completeness and isomorphism between intersection typed systems for
the ∆-calculus and the corresponding intersection type assignment systems for the λ-calculus
are defined as follows.

I Definition 34 (Soundness, completeness and isomorphism). Let ∆TR and λT∩.
1. (Soundness, ∆TR / λT∩). B `TR ∆ : σ implies B `T∩ o∆ o : σ;
2. (Completeness, ∆TR . λT∩). B `T∩ M : σ implies there exists ∆ such that M ≡ o∆ o and

B `TR ∆ : σ;
3. (Isomorphism, ∆TR ∼ λT∩). ∆TR . λT∩ and ∆TR / λT∩.

I Theorem 35 (Soundness, completeness and isomorphism). The following properties (left of
Figure 4) between ∆-calculi and type assignment systems λT∩ can be verified.

The next theorem characterizes the class of strongly normalizing ∆-terms.

FSCD 2019

28:16 The ∆-calculus: Syntax and Types

∆TR ∆TR / λT∩ ∆TR . λT∩
∆CD
≡

√ √

∆CDV
≡

√ √

∆CDS
≡

√ √

∆BCD
≡

√ √

∆CD
=β

×
√

∆CDV
=β

×
√

∆CDS
=β

√ √

∆BCD
=β

√ √

∆CDV
=βη

×
√

∆BCD
=βη

×
√

∆TR TC/TR
∆CD
≡

√

∆CDV
≡

√

∆CDS
≡

√

∆BCD
≡

√

∆CD
=β

√

∆CDV
=β

√

∆CDS
=β

×
∆BCD

=β
×

∆CDV
=βη

√

∆BCD
=βη

×

Source Target
∆CD
≡ ∆CD

=β

∆CDV
≡ ∆CDV

=βη

∆CDS
≡ ∆CDS

=β

∆BCD
≡ ∆BCD

=βη

∆CD
=β

∆CD
=β

∆CDV
=β

∆CDV
=βη

∆CDS
=β

∆CDS
=β

∆BCD
=β

∆BCD
=βη

∆CDV
=βη

∆CDV
=βη

∆BCD
=βη

∆BCD
=βη

Figure 4 On the left: Soundness, completeness, isomorphism. On the center: type
checking/reconstruction. On the right: source and target languages of the translation.

I Theorem 36 (Characterization). Every strongly normalizing λ-term can be type-annotated
so as to be the essence of a typable ∆-term.

We can finally state decidability of type checking (TC) and type reconstruction (TR).

I Theorem 37 (Decidability of type checking and type reconstruction). Figure 4 (in the center)
list decidability of type checking and type reconstruction.

5.2 Subtyping and explicit coercions
The typing rule (6T) in the general typed system introduces type coercions: once a type
coercion is introduced, it cannot be eliminated, so de facto freezing a ∆-term inside an
explicit coercion. Tannen et al. [8] showed a translation of a judgment derivation from a
“Source” system with subtyping (Cardelli’s Fun [11]) into an “equivalent” judgment derivation
in a “Target” system without subtyping (Girard system F with records and recursion). In
the same spirit, we present a translation that removes all explicit coercions. Intuitively, the
translation proceeds as follows: every derivation ending with rule (6T) is translated into the
following (coercion-free) derivation, i.e.

B `TR′ ‖σ 6T τ‖ : σ → τ B `TR′ ‖∆‖B : σ
B `TR′ ‖σ 6T τ‖ ‖∆‖B : τ

(→E)

where R′ is a suitable relation such that R v R′, ‖−‖ is a suitable translation function
defined later in Definition 39. Note that changing of the type theory is necessary to guarantee
well-typedness in the translation of strong pairs. Summarizing, we provide a type preserving
translation of a ∆-term into a coercion-free ∆-term such that o∆ o =βη o∆′ o. The following
example illustrates some trivial compilations of axioms and rule schemes of Figure 1.

I Example 38 (Translation of axioms and rule schemes of Figure 1).
(refl) the judgment x:σ `TR 〈x , xσ〉 : σ ∩ σ is translated to a coercion-free judgment

x:σ `T=β 〈x , (λy:σ.y)x〉 : σ ∩ σ;
(incl) the judgment x:σ ∩ τ `TR 〈x , xτ 〉 : (σ ∩ τ) ∩ τ is translated to a coercion-free judgment

x:σ ∩ τ `T=β 〈x , (λy:σ ∩ τ.pr2 y)x〉 : (σ ∩ τ) ∩ τ ;

L. Liquori and C. Stolze 28:17

(glb) the judgment x:σ `TR 〈x , xσ∩σ〉 : σ ∩ (σ ∩ σ) is translated to a coercion-free judgment
x:σ `T=β 〈x , (λy:σ.〈y , y〉)x〉 : σ ∩ (σ ∩ σ);

(Utop) the judgment x:σ `TR 〈x , xU〉 : σ ∩ U is translated to a coercion-free judgment
x:σ `T=β 〈x , (λy:σ.uy)x〉 : σ ∩ U;

(U→) the judgment x:U `TR 〈x , xσ→U〉 : U ∩ (σ → U) is translated to a coercion-free judgment
x:U `T=βη 〈x , (λf :U.λy:σ.u(f y))x〉 : U ∩ (σ → U);

(→∩) the judgment x:(σ → τ) ∩ (σ → ρ) `TR xσ→τ∩ρ : σ → τ ∩ ρ is translated to a coercion-
free judgment
x:(σ → τ)∩ (σ → ρ) `T=βη (λf :(σ → τ)∩ (σ → ρ).λy:σ.〈(pr1 f) y , (pr2 f) y〉)x : σ → τ ∩ρ;

(→) the judgment x:σ → τ ∩ ρ `TR 〈x , xσ∩ρ→τ 〉 : (σ → τ ∩ ρ) ∩ (σ ∩ ρ→ τ) is translated to
a coercion-free judgment
x:σ → τ ∩ρ `T=βη 〈x, (λf :σ → τ ∩ ρ.λy:σ ∩ ρ.pr1 (f (pr1 y)))x〉 : (σ → τ ∩ρ)∩(σ∩ρ→ τ);

(trans) the judgment x:σ `TR 〈x , (xU)σ→U〉 : σ ∩ (σ → U) is translated to a coercion-free
judgment
x:σ `T=βη 〈x , (λf :U.λy:σ.u(f y)) ((λy:σ.uy)x)〉 : σ ∩ (σ → U).

The next definition introduces two maps translating subtype judgments into explicit
coercions functions and ∆-terms into coercion-free ∆-terms.

I Definition 39 (Translations ‖−‖ and ‖−‖B).
1. The minimal type theory 6min and the extra axioms and schemes are translated as follows.

(refl) ‖σ 6T σ‖
def= `T=β λx:σ.x : σ → σ

(incl1) ‖σ ∩ τ 6T σ‖
def= `T=β λx:σ ∩ τ.pr1 x : σ ∩ τ → σ

(incl2) ‖σ ∩ τ 6T τ‖
def= `T=β λx:σ ∩ τ.pr2 x : σ ∩ τ → τ

(glb)
∥∥∥∥ρ 6T σ ρ 6T τ

ρ 6T σ ∩ τ

∥∥∥∥ def= `T=β λx:ρ.〈‖ρ 6T σ‖x , ‖ρ 6T τ‖x〉 : ρ→ σ ∩ τ

(trans)
∥∥∥∥σ 6T τ τ 6T ρ

σ 6T ρ

∥∥∥∥ def= `T=β λx:σ. ‖τ 6T ρ‖ (‖σ 6T τ‖ x) : σ → ρ

(Utop) ‖σ 6T U‖ def= `T=β λx:σ.ux : σ → U

(U→) ‖U 6T σ → U‖ def= `T
=βη λf :U.λx:σ.u(f x) : U→ (σ → U)

Let ξ1
def= (σ → τ) ∩ (σ → ρ) and ξ2

def= σ → τ ∩ ρ

(→∩) ‖ξ1 6T ξ2‖
def= `T

=βη λf :ξ1.λx:σ.〈(pr1 f)x , (pr2 f)x〉 : ξ1 → ξ2

Let ξ1
def= σ1 → τ1 and ξ2

def= σ2 → τ2

(→)
∥∥∥ σ2 6T σ1 τ1 6T τ2
σ1 → τ1 6T σ2 → τ2

∥∥∥ def= `T
=βη λf :ξ1.λx:σ2. ‖τ1 6T τ2‖ (f (‖σ2 6T σ1‖x)) : ξ1 → ξ2

2. The translation ‖−‖B is defined on ∆ as follows.

‖u∆‖B
def= u‖∆‖B ‖x‖B

def= x

‖λx:σ.∆‖B
def= λx:σ. ‖∆‖B,x:σ ‖∆1 ∆2‖B

def= ‖∆1‖B ‖∆2‖B

‖〈∆1 ,∆2〉‖B
def= 〈‖∆1‖B , ‖∆2‖B〉 ‖pri ∆‖B

def= pri ‖∆‖B i ∈ {1, 2}

‖∆τ‖B
def= ‖σ 6T τ‖ ‖∆‖B if B `TR ∆ : σ.

FSCD 2019

28:18 The ∆-calculus: Syntax and Types

By looking at the above translation functions we can see that if B `TR ∆ : σ, then ‖∆‖B
is defined and it is coercion-free.

The following key lemma states that a coercion function is always typable in ∆T=βη , that
it is essentially the identity and that, without using the rule schemes (→∩), (U→), and (→)
the translation can even be derivable in ∆T=β .

I Lemma 40 (Essence of a coercion is an identity).
1. If σ 6T τ , then `T=βη ‖σ 6T τ‖ : σ → τ and o ‖σ 6T τ‖ o =βη λx.x;
2. If σ 6T τ without using the rule schemes (→∩), (U→), and (→), then `T=β ‖σ 6T τ‖ :

σ → τ and o ‖σ 6T τ‖ o =β λx.x.

Proof. The proofs proceed in both parts by induction on the derivation of σ 6T τ . For
instance, in case of (glb), we can verify that `T=β λx:ρ.〈‖ρ 6T σ‖x , ‖ρ 6T τ‖x〉 : ρ→ σ ∩ τ
using the induction hypotheses that ‖ρ 6T σ‖ (resp. ‖ρ 6T τ‖) has type ρ→ σ (resp. ρ→ τ)
and has an essence convertible to λx.x. J

We can now prove the coherence of the translation as follows.

I Theorem 41 (Coherence). If B `TR ∆ : σ, then B `TR′ ‖∆‖B : σ and o ‖∆‖B o R′ o∆ o,
where ∆TR and ∆TR′ are respectively the source and target intersection typed systems given in
Figure 4 (right part).

Proof. By induction on the derivation. We illustrate the most important case, namely when
the last type rule is (6T). In this case ‖∆τ‖B is translated to ‖σ 6T τ‖ ‖∆‖B . By induction
hypothesis we have that B `TR ∆ : σ, and by Lemma 40 we have that B `TR′ ‖σ 6T τ‖ : σ → τ ;
therefore B `TR′ ‖∆τ‖B : τ . Moreover, we know that o ‖σ 6T τ‖ o R′ λx.x, and this gives
o ‖∆τ‖B o R′ o ‖∆‖B o. Again by induction hypothesis we have that o ‖∆‖B o R′ o∆ o, and this
gives the thesis o ‖∆τ‖B o R′ o∆τ o. J

References
1 Fabio Alessi, Franco Barbanera, and Mariangiola Dezani-Ciancaglini. Intersection types and

lambda models. Theor. Comput. Sci., 355(2):108–126, 2006.
2 Franco Barbanera and Simone Martini. Proof-functional connectives and realizability. Archive

for Mathematical Logic, 33:189–211, 1994.
3 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in

Logic and the Foundations of Mathematics. North-Holland, Amsterdam, revised edition, 1984.
4 Henk P. Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A Filter lambda

model and the completeness of type assignment. Journal of Symbolic Logic, 48(4):931–940,
1983.

5 Henk P. Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types.
Cambridge University Press, 2013.

6 Choukri-Bey Ben-Yelles. Type assignment in the lambda-calculus: syntax and semantics. PhD
thesis, University College of Swansea, 1979.

7 Viviana Bono, Betti Venneri, and Lorenzo Bettini. A typed lambda calculus with intersection
types. Theor. Comput. Sci., 398(1-3):95–113, 2008.

8 Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance as
Implicit Coercion. Inf. Comput., 93(1):172–221, 1991.

9 Antonio Bucciarelli, Adolfo Piperno, and Ivano Salvo. Intersection types and λ-definability.
Mathematical Structures in Computer Science, 13(1):15–53, 2003.

10 Beatrice Capitani, Michele Loreti, and Betti Venneri. Hyperformulae, Parallel Deductions and
Intersection Types. Proc. of BOTH, Electr. Notes Theor. Comput. Sci., 50(2):180–198, 2001.

L. Liquori and C. Stolze 28:19

11 Luca Cardelli and Peter Wegner. On Understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–523, December 1985.

12 Mario Coppo and Mariangiola Dezani-Ciancaglini. An Extension of the Basic Functionality
Theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

13 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Patrick Sallé. Functional characterization
of some semantic equalities inside λ-calculus. In International Colloquium on Automata,
Languages, and Programming, pages 133–146. Springer-Verlag, 1979.

14 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters
of solvable terms. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
27(2-6):45–58, 1981.

15 Rowan Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon University,
2005. CMU-CS-05-110.

16 Daniel J. Dougherty, Ugo de’Liguoro, Luigi Liquori, and Claude Stolze. A Realizability
Interpretation for Intersection and Union Types. In Proc. of APLAS, volume 10017 of Lecture
Notes in Computer Science, pages 187–205. Springer-Verlag, 2016.

17 Daniel J. Dougherty and Luigi Liquori. Logic and Computation in a Lambda Calculus with
Intersection and Union Types. In Proc. of LPAR, volume 6355 of Lecture Notes in Computer
Science, pages 173–191. Springer-Verlag, 2010.

18 Andrej Dudenhefner, Moritz Martens, and Jakob Rehof. The Algebraic Intersection Type
Unification Problem. Logical Methods in Computer Science, 13(3), 2017.

19 Joshua Dunfield. Refined typechecking with Stardust. In Proc. of PLPV, pages 21–32, 2007.
20 Joshua Dunfield. Elaborating intersection and union types. J. Funct. Program., 24(2-3):133–165,

2014.
21 Timothy S. Freeman and Frank Pfenning. Refinement Types for ML. In Proc. of PLDI, pages

268–277, 1991.
22 Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping: Dealing

set-theoretically with function, union, intersection, and negation types. Journal of the ACM,
55(4):19, 2008.

23 Herman Geuvers. The Church-Rosser Property for beta-eta-reduction in Typed lambda-Calculi.
In Proc. of LICS, pages 453–460, 1992.

24 Robert Harper, Furio Honsell, and Gordon Plotkin. A Framework for Defining Logics. J.
ACM, 40(1):143–184, 1993.

25 J. Roger Hindley. The simple semantics for Coppo-Dezani-Sallé types. In International
Symposium on Programming, pages 212–226, 1982.

26 J. Roger Hindley. Coppo-Dezani types do not correspond to propositional logic. Theor.
Comput. Sci., 28:235–236, 1984.

27 Furio Honsell, Luigi Liquori, Claude Stolze, and Ivan Scagnetto. The Delta-Framework. In
Proc of FSTTCS, pages 37:1–37:21, 2018.

28 Assaf J. Kfoury and Joe B. Wells. Principality and type inference for intersection types using
expansion variables. Theor. Comput. Sci., 311(1-3):1–70, 2004.

29 Luigi Liquori and Simona Ronchi Della Rocca. Towards an intersection typed system à la
Church. Proc. of ITRS, Electronic Notes in Theoretical Computer Science, 136:43–56, 2005.

30 Luigi Liquori and Simona Ronchi Della Rocca. Intersection Typed System à la Church.
Information and Computation, 9(205):1371–1386, 2007.

31 Luigi Liquori and Claude Stolze. A Decidable Subtyping Logic for Intersection and Union
Types. In Proc of TTCS, volume 10608 of Lecture Notes in Computer Science, pages 74–90.
Springer-Verlag, 2017.

32 Edgar G. K. Lopez-Escobar. Proof functional connectives. In Methods in Mathematical Logic,
volume 1130 of Lecture Notes in Mathematics, pages 208–221. Springer-Verlag, 1985.

33 Grigori Mints. The Completeness of Provable Realizability. Notre Dame Journal of Formal
Logic, 30(3):420–441, 1989.

FSCD 2019

28:20 The ∆-calculus: Syntax and Types

34 Alexandre Miquel. The Implicit Calculus of Constructions. In Proc. of TLCA, volume 2044 of
Lecture Notes in Computer Science, pages 344–359. Springer-Verlag, 2001.

35 Rob. P. Nederpelt. Strong Normalization in a typed lambda calculus with lambda structured
types. PhD thesis, Eindhoven Technological University, 1973.

36 Benjamin C. Pierce. Programming with intersection types, union types, and bounded
polymorphism. PhD thesis, Technical Report CMU-CS-91-205. Carnegie Mellon University,
1991.

37 Benjamin C. Pierce. Programming with intersection types, union types, and polymorphism.
Technical Report CMU-CS-91-106, Carnegie Mellon University, 1991.

38 Elaine Pimentel, Simona Ronchi Della Rocca, and Luca Roversi. Intersection Types from a
Proof-theoretic Perspective. Fundam. Inform., 121(1-4):253–274, 2012.

39 Garrel Pottinger. A Type Assignment for the Strongly Normalizable λ-terms. In To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 561–577. Academic
Press, 1980.

40 Jakob Rehof and Pawel Urzyczyn. The Complexity of Inhabitation with Explicit Intersection.
In Logic and Program Semantics - Essays Dedicated to Dexter Kozen on the Occasion of His
60th Birthday, pages 256–270, 2012.

41 John C. Reynolds. Preliminary Design of the Programming Language Forsythe. Report
CMU–CS–88–159, Carnegie Mellon University, june 21 1988.

42 Simona Ronchi Della Rocca and Luca Roversi. Intersection logic. In Proc. of CSL, volume
2142 of Lecture Notes in Computer Science, pages 421–428. Springer-Verlag, 2001.

43 Claude Stolze, Luigi Liquori, Furio Honsell, and Ivan Scagnetto. Towards a Logical Framework
with Intersection and Union Types. In Proc. of LFMTP, pages 1–9, 2017.

44 Masako Takahashi. Parallel reductions in λ-calculus. Information and computation, 118(1):120–
127, 1995.

45 Pawel Urzyczyn. The Emptiness Problem for Intersection Types. J. Symb. Log., 64(3):1195–
1215, 1999.

46 Steffen van Bakel. Cut-Elimination in the strict intersection type assignment system is strongly
normalizing. Notre Dame Journal of Formal Logic, 45(1):35–63, 2004.

47 Vincent van Oostrom and Femke van Raamsdonk. Weak orthogonality implies confluence: the
higher-order case. In Proc. of LFCS, volume 813 of Lecture Notes in Computer Science, pages
379–392. Springer-Verlag, 1994.

48 Betti Venneri. Intersection Types as Logical Formulae. J. Log. Comput., 4(2):109–124, 1994.
49 Joe B. Wells, Allyn Dimock, Robert Muller, and Franklyn Turbak. A calculus with polymorphic

and polyvariant flow types. J. Funct. Program., 12(3):183–227, 2002.
50 Joe B. Wells and Christian Haack. Branching Types. In Proc. of ESOP, volume 2305 of

Lecture Notes in Computer Science, pages 115–132. Springer-Verlag, 2002.

Pointers in Recursion: Exploring the Tropics
Paulin Jacobé de Naurois
CNRS, Université Paris 13, Sorbonne Paris Cité, LIPN, UMR 7030, F-93430 Villetaneuse, France
denaurois@lipn.univ-paris13.fr

Abstract
We translate the usual class of partial/primitive recursive functions to a pointer recursion framework,
accessing actual input values via a pointer reading unit-cost function. These pointer recursive
functions classes are proven equivalent to the usual partial/primitive recursive functions. Complexity-
wise, this framework captures in a streamlined way most of the relevant sub-polynomial classes.
Pointer recursion with the safe/normal tiering discipline of Bellantoni and Cook corresponds to
polylogtime computation. We introduce a new, non-size increasing tiering discipline, called tropical
tiering. Tropical tiering and pointer recursion, used with some of the most common recursion
schemes, capture the classes logspace, logspace/polylogtime, ptime, and NC. Finally, in a fashion
reminiscent of the safe recursive functions, tropical tiering is expressed directly in the syntax of the
function algebras, yielding the tropical recursive function algebras.

2012 ACM Subject Classification Software and its engineering → Recursion; Theory of computation
→ Complexity theory and logic; Theory of computation → Complexity classes

Keywords and phrases Implicit Complexity, Recursion Theory

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.29

Funding Paulin Jacobé de Naurois: Work partially supported by ANR project ELICA - ANR-14-
CE25-0005.

Acknowledgements I am grateful to the anonymous referees for their insightful and useful feedback.

Introduction

Characterizing complexity classes without explicit reference to the computational model
used for defining these classes, and without explicit bounds on the resources allowed for the
calculus, has been a long term goal of several lines of research in computer science. One
rather successful such line of research is recursion theory. The foundational work here is the
result of Cobham [8], who gave a characterization of polynomial time computable functions
in terms of bounded recursion on notations - where, however, an explicit polynomial bound
is used in the recursion scheme. Later on, Leivant [12] refined this approach with the notion
of tiered recursion: explicit bounds are no longer needed in his recursion schemes. Instead,
function arguments are annotated with a static, numeric denotation, a tier, and a tiering
discipline is imposed upon the recursion scheme to enforce a polynomial time computation
bound. A third important step in this line of research is the work of Bellantoni and Cook [3],
whose safe recursion scheme uses only syntactical constraints akin to the use of only two tier
values, to characterize, again, the class of polynomial time functions.

Cobham’s approach has also later on been fruitfully extended to other, important com-
plexity classes. Results relevant to our present work, using explicitly bounded recursion, are
those of Lind [16] for logarithmic space, and Allen [1] and Clote [7] for small parallel classes.

Later on, Bellantoni and Cook’s purely syntactical approach proved also useful for
characterizing other complexity classes. Leivant and Marion [15, 14] used a predicative
version of the safe recursion scheme to characterize alternating complexity classes, while
Bloch [4], Bonfante et al [5] and Kuroda[11], gave characterizations of small, polylogtime,
parallel complexity classes. An important feature of these results is that they use, either

© Paulin Jacobé de Naurois;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:denaurois@lipn.univ-paris13.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.29
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Pointers in Recursion: Exploring the Tropics

explicitly or not, a tree-recursion on the input. This tree-recursion is implicitly obtained
in Bloch’s work by the use of an extended set of basic functions, allowing for a dichotomy
recursion on the input string, while it is made explicit in the recursion scheme in the two
latter works. As a consequence, these characterizations all rely on the use of non-trivial basic
functions, and non-trivial data structures. Moreover, the use of distinct basic function sets
and data structures make it harder to express these characterizations in a uniform framework.

Among all these previous works on sub-polynomial complexity classes, an identification
is assumed between the argument of the functions of the algebra, on one hand, and the
computation input on the other hand: an alternating, logspace computation on input x
is denoted by a recursive function with argument x. While this seems very natural for
complexity classes above linear time, it actually yields a fair amount of technical subtleties
and difficulties for sub-linear complexity classes. Indeed, following Chandra et al. [6] seminal
paper, sub-polynomial complexity classes need to be defined with a proper, subtler model
than the one-tape Turing machine: the random access Turing machine (RATM), where
computation input is accessed via a unit-cost pointer reading instruction. RATM input is
thus accessed via a read-only instruction, and left untouched during the computation - a
feature quite different to that of a recursive function argument. Our proposal here is to use
a similar construct for reading the input in the setting of recursive functions: our functions
will take as input pointers on the computation input, and one-bit pointer reading will be
assumed to have unit cost. Actual computation input are thus implicit in our function
algebras: the fuel of the computational machinery is only pointer arithmetics. This proposal
takes inspiration partially from the Rational Bitwise Equations of [5].

Following this basic idea, we then introduce a new tiering discipline, called tropical
tiering, to enforce a non-size increasing behavior on our recursive functions, with some
inspirations taken from previous works of M. Hofmann [9, 10]. Tropical tiering induces a
polynomial interpretation in the tropical ring of polynomials - the ring of polynomials over
the tropical ring Z ∪ {−∞}, with max and + operations - and yields a characterization of
logarithmic space. Compared to the characterization of logarithmic space of Neergaard [17],
our algebra does not rely on an affine upper bound on the occurrences of safe arguments
in the recursion and composition schemes, which proves useful for combining this approach
with others. Worth mentioning also, Bellantoni [2] provides a characterization of logspace
over unary numerals.

Subsequently, the use of different, classical recursion schemes over this new tropical
tiering discipline yields characterizations of other, sub-polynomial complexity classes such as
polylogtime, NC, and the full polynomial time class. Following the approach of Bellantoni
and Cook, we furthermore embed the tiering discipline directly in the syntax, with only
finitely many different tier values - four tier values in our case, instead of only two tier
values for the safe recursive functions, and provide purely syntactical characterizations of
these complexity classes in a unified, simple framework. Compared to previous works, our
framework uses a unique, and rather minimal set of unit-cost basic functions, computing
indeed basic tasks, and a unique and also simple data structure. While the syntax of our
tropical composition and recursion schemes may appear overwhelming at first sight, it has
the nice feature, shared with the safe recursion functions of [3], of only adding a fine layer of
syntactic sugar over the usual composition and primitive recursion schemes. Removing this
sugar allows to retrieve the classical schemes. In that sense, we claim our approach to be
simpler than the previous ones of [4, 5, 11].

The paper is organized as follows. Section 1 introduces the notations, and the framework
of pointer recursion. Section 2 applies this framework to primitive recursion. Pointer
partial/primitive recursive functions are proven to coincide with their classical counterparts

P. Jacobé de Naurois 29:3

in Theorem 2. Section 3 applies this framework to safe recursion on notations. Pointer
safe recursive functions are proven to coincide with polylogtime computable functions in
Theorem 3. Tropical tiering is defined in Section 4. Proposition 4 establishes the tropical
interpretation induced by tropical tiering. Tropical recursive functions are then introduced in
Subsection 4.3. Section 5 gives a sub-algebra of the former, capturing logspace/polylogtime
computable functions in Theorem 9. Finally, Section 6 explores tropical recursion with
substitutions, and provides a characterization of P in Theorem 11 and of NC in Theorem 13.

1 Recursion

1.1 Notations, and Recursion on Notations
Data structures considered in our paper are finite words over a finite alphabet. For the sake
of simplicity, we consider the finite, boolean alphabet {0,1}. The set of finite words over
{0,1} is denoted as {0,1}∗.

Finite words over {0,1} are denoted with overlined variables names, as in x. Single
values in {0,1} are denoted as plain variables names, as in x. The empty word is denoted
by ε, while the dot symbol “.” denotes the concatenation of two words as in a.x, the finite
word obtained by adding an a in front of the word x. Finally, finite arrays of boolean words
are denoted with bold variable names, as in x = (x1, · · · , xn). When defining schemes, we
will often omit the length of the arrays at hand, when clear from context, and use bold
variable names to simplify notations. Similarly, for mutual recursion schemes, finite arrays of
mutually recursive functions are denoted by a single bold function name. In this case, the
width of this function name is the size of the array of the mutually recursive functions.

Natural numbers are identified with finite words over {0,1} via the usual binary encoding.
Yet, in most of our function algebras, recursion is not performed on the numerical value of an
integer, as in classical primitive recursion, but rather on its boolean encoding, that is, on the
finite word over {0,1} identified with it: this approach is denoted as recursion on notations.

1.2 Turing Machines with Random Access
When considering sub-polynomial complexity class, classical Turing Machines often fail to
provide a suitable cost model. A crucial example is the class DLOGTIME: in logarithmic
time, a classical Turing machine fails to read any further than the first k. log(n) input bits.
In order to provide a suitable time complexity measure for sub-polynomial complexity classes,
Chandra et al [6] introduced the Turing Machine with Random Access (RATM), whose
definition follows.

I Definition 1 (RATM). A Turing Machine with Random Access (RATM) is a Turing
machine with no input head, one (or several) working tapes and a special pointer tape, of
logarithmic size, over a binary alphabet. The Machine has a special Read state such that,
when the binary number on the pointer tape is k, the transition from the Read state consists
in writing the kth input symbol on the (first) working tape.

1.3 Recursion on Pointers
In usual recursion theory, a function computes a value on its input, which is given explicitly
as an argument. This, again, is the case in classical primitive recursion. While this is suitable
for describing explicit computation on the input, as, for instance for single tape Turing
Machines, this is not so for describing input-read-only computation models, as, for instance,

FSCD 2019

29:4 Pointers in Recursion: Exploring the Tropics

RATMs. In order to propose a suitable recursion framework for input-read-only computation,
we propose the following pointer recursion scheme, whose underlying idea is pretty similar to
that of the RATM.

As above, recursion data is given by finite, binary words, and the usual recursion on
notation techniques on these recursion data apply. The difference lies in the way the actual
computation input is accessed: in our framework, we distinguish two notions, the computation
input, and the function input: the former denotes the input of the RATM, while the latter
denotes the input in the function algebra. For classical primitive recursive functions, the
two coincide, up to the encoding of integer into binary strings. In our case, we assume an
explicit encoding of the former into the latter, given by the two following constructs.

Let w = w1. · · · .wn ∈ {0,1}∗ be a computation input. To w, we associate two constructs,
the Offset: a finite word over {0,1}, encoding in binary the length n of w, and
the Read construct, a 1-ary function, such that, for any binary encoding i of an integer
0 < i ≤ n, Read(i) = wi, and, for any other value v, Read(v) = ε.

Then, for a given computation input w, we fix accordingly the semantics of the Read and
Offset constructs as above, and a Pointer Recursive function over w is evaluated with sole
input the Offset, accessing computation input bits via the Read construct. For instance,
under these conventions, Read(hd(Offset)) outputs the first bit of the computational input
w. In some sense, the two constructs depend on w, and can be understood as functions on w.
However, in our approach, it is important to forbid w from appearing explicitly as a function
argument in the syntax of the function algebras we will define, and from playing any role in
the composition and recursion schemes. Since w plays no role at the syntactical level - its
only role is at the semantical level- we chose to remove it completely from the syntactical
definition of our functions algebras.

2 Pointers Primitive Recursion

Let us first detail our pointer recursive framework for the classical case of primitive recursion
on notations.

Basic pointer functions

Basic pointer functions are the following kind of functions:

1. Functions manipulating finite words over {0,1}. For any a ∈ {0,1}, x ∈ {0,1}∗,

hd(a.x) = a tl(a.x) = x s0(x) = 0.x
hd(ε) = ε tl(ε) = ε s1(x) = 1.x

2. Projections. For any n ∈ N, 1 ≤ i ≤ n,

Prn
i (x1, · · · , xn) = xi

3. and, finally, the Offset and Read constructs, as defined above.

Composition

Given functions g, and h1, · · · , hn, we define f by composition as

f(x) = g(h1(x), · · · , hn(x)).

P. Jacobé de Naurois 29:5

Primitive Recursion on Notations

Let ⊥ denote non-terminating computation. Given functions h, g0 and g1, we define f by
primitive recursion on notations as

f(ε,y) = h(y)

f(sa(x),y) =
{

ga(x, f(x,y),y) if f(x,y) 6=⊥
⊥ otherwise.

Minimization

For a function s, denote by s(n) its nth iterate. Then, given a function h, we define f by
minimization on x as

µx(h(x,y)) =
{
⊥ if ∀t ∈ N, hd(h(s(t)

0 (ε),y)) 6= s1(ε)
s(k)

0 (ε) where k = min{t : hd(h(s(t)
0 (ε),y)) = s1(ε)} otherwise.

In other words, a function f defined by minimization on h produces the shortest sequence of
0 symbols satisfying a simple condition on h , if it exists.

Let now PRpoint
not be the closure of basic pointer functions under composition and primitive

recursion on notations, and RECpoint
not be the closure of basic pointer functions under

composition, primitive recursion on notations, and minimization. Then, as expected,

I Theorem 2. Modulo the binary encoding of natural integers, PRpoint
not is the classical class

of primitive recursive functions, and RECpoint
not is the classical class of recursive functions.

Proof. It is already well known that primitive recursive functions on notations are the
classical primitive recursive functions, and recursive functions on notations are the classical
recursive functions. Now, for one direction, it suffices to express the Read and Offset basic
pointer functions as primitive recursive functions on the computation input. For the other
direction, it suffices to reconstruct with pointer primitive recursion the computation input
from the Read and Offset basic pointer functions. J

A Simple Example

Let us define the following functions.

ifε(ε, y, z) = y

ifε(sa(x), y, z) = z

RmvLastBit(ε) = ε

RmvLastBit(sa(x)) = ifε(x, ε, sa(RmvLastBit(x)))

Then, Read(RmvLastBit(Offset)) reads the middle bit of the computation input, in
logarithmic time. This exemplifies the purpose of recursion on pointers: this simple task
cannot be performed in less than linear time by the usual primitive recursion on notations,
nor by the classical Turing machine. However, switching the model definition from Turing
machines to RATMs, and from primitive recursion to pointer primitive recursion, allows to
perform this simple task in logarithmic time, in a straightforward way.

FSCD 2019

29:6 Pointers in Recursion: Exploring the Tropics

3 Pointer Safe Recursion

We recall the tiering discipline of Bellantoni and Cook [3]: function arguments are divided
into two tiers, normal arguments and safe arguments. Notation-wise, both tiers are separated
by a semicolon symbol in a block of arguments, the normal arguments being on the left,
and the safe arguments on the right. We simply apply this tiering discipline to our pointer
recursion framework.

Basic Pointer Safe Functions

Basic pointer safe functions are the basic pointer functions of the previous section, all their
arguments being considered safe.

Safe Composition

Safe composition is somewhat similar to the previous composition scheme, with a tiering
discipline, ensuring that safe arguments cannot be moved to a normal position in a function
call. The reverse however is allowed.

f(x; y) = g(h1(x;), · · · , hm(x;);hm+1(x; y), · · · , hm+n(x; y)).

Calls to functions hm+i, where safe arguments are used, are placed in safe position in the
argument block of g. A special case of safe composition is f(x; y) = g(;x, y), where a normal
argument x is used in safe position in a call. Hence, we liberally use normal arguments in
safe position, when necessary.

Safe Recursion

The recursion argument is normal. The recursive call is placed in safe position, a feature
that prevents nesting recursive calls exponentially.

f(ε,y; z) = h(y; z)
f(a.x,y; z) = ga(x,y; f(x,y; z), z).

Let now SRpoint
not be the closure of the basic pointer safe functions under safe composition

and safe recursion.

I Theorem 3. SRpoint
not is the class DTIME(polylog) of functions computable in poly-

logarithmic time.

Proof. The proof is essentially the same as for the classical result by Bellantoni and Cook [3].
Here however, it is crucial to use the RATM as computation model. Simulating a polylogtime
RATM with safe recursion on pointers is very similar to simulating a polytime TM with safe
recursion - instead of explicitly using the machine input as recursion data, we use the size of
the input as recursion data, and access the input values via the Read construct, exactly as
is done by the RATM model. The other direction is also similar: the tiering discipline of
the safe recursion on pointers enforces a polylog bound on the size of the strings (since the
initial recursion data - the Offset - has size logarithmic in the size n of the computation
input), and thus a polylog bound on the computation time. J

P. Jacobé de Naurois 29:7

4 Tropical Tiering

We present here another, stricter tiering discipline, that we call tropical Tiering. The adjective
“tropical” refers to the fact that this tiering induces a polynomial interpretation in the tropical
ring of polynomials. This tiering discipline takes some inspiration from Hofmann’s work on
non-size increasing types [9], and pure pointer programs [10]. The idea however is to use here
different tools than Hofmann’s to achieve a similar goal of bounding the size of the function
outputs. We provide here a non-size increasing discipline via the use of tiering, and use it
in the setting of pointer recursion to capture not only pure pointer programs (Hoffman’s
class), but rather pointer programs with pointer arithmetics, which is in essence the whole
class Logspace.

Basic Pointer Functions

We add the following numerical successor basic function. Denote by E : N → {0,1}∗ the
usual binary encoding of integers, and D : {0,1}∗ → N the decoding of binary strings to
integers. Then,

s(x) = E(D(x) + 1)

denotes the numerical successor on binary encodings, and, by convention, ε is the binary
encoding of the integer 0.

Primitive Recursion on Values

Primitive recursion on values is the usual primitive recursion, encoded into binary strings:

f(ε,y) = h(y)
f(s(x),y) = g(x, f(x,y),y).

4.1 Tropical Tier
As usual, tiering consists in assigning function variables to different classes, called tiers. In
our setting, these tiers are identified by a numerical value, called tropical tier, or, shortly,
tropic. The purpose of our tropical tiers is to enforce a strict control on the increase of the
size of the binary strings during computation. Tropics take values in Z ∪ {−∞}. The tropic
of the ith variable of a function f is denoted Ti(f). The intended meaning of the tropics is to
provide an upper bound on the linear growth of the function output size with respect to the
corresponding input size, as per Proposition 4. Tropics are inductively defined as follows.

1. Basic pointer functions:

Tj 6=i(Prn
i) = −∞ T1(hd) = −∞ T1(Read) = −∞

T1(tl) = −1
Ti(Prn

i) = 0
T1(s0) = 1 T1(s1) = 1 T1(s) = 1

2. Composition:

Tt(f) = max
i
{Ti(g) + Tt(hi)}.

3. Primitive recursion on notations. Two cases arise:

FSCD 2019

29:8 Pointers in Recursion: Exploring the Tropics

T2(g0) ≤ 0 and T2(g1) ≤ 0. In that case, we set
a. T1(f) = max {T1(g0), T1(g1), T2(g0), T2(g1)}, and,
b. for all t > 1,

Tt(f) = max{Tt+1(g0), Tt+1(g1), Tt−1(h), T2(g0), T2(g1)}.
the previous case above does not hold, T2(g0) ≤ 1, and T2(g1) ≤ 1. In that case,
we also require that T1(g0) ≤ 0, T1(g1) ≤ 0, and, for all t ≥ 2, Tt(g0) = Tt(g1) =
Tt−2(h) = −∞. Then, we set T1(f) = max{T1(g0), T1(g1), T2(g0)− 1, T2(g1)− 1, ch},
where ch is a constant for h given in Proposition 4 below, and, for t > 1, Tt(f) = −∞.

Other cases than the two above do not enjoy tropical tiering.
4. Primitive recursion on values. Only one case arises:

T2(g) ≤ 0 . In that case, we set
a. T1(f) = max {T1(g), T2(g)}, and,
b. for all t > 1, Tt(f) = max{Tt+1(g), Tt−1(h), T2(g)}.

Again, other cases than the one above do not enjoy tropical tiering.

Furthermore, when using tropical tiering, we use mutual recursion schemes. For f =
(f1, · · · , fn), mutual primitive recursion (on values) is classically defined as follows,

f(ε,y) = h(y)

f(s(x),y) =
{

g(x, f(x,y),y) if ∀i (fi(x,y) 6=⊥)
⊥ otherwise.

and similarly for mutual primitive recursion on notations. Tropical tiering is then extended
to mutual primitive recursion in a straightforward manner.

We define the set of L-primitive pointer recursive functions as the closure of the basic
pointer functions of Sections 2 and 4 under composition, (mutual) primitive recursion on
notations and (mutual) primitive recursion on values, with tropical tiering.

4.2 Tropical Interpretation
Tropical tiering induces a non-size increasing discipline. More formally,

I Proposition 4. The tropical tiering of a L-primitive recursive function f induces a poly-
nomial interpretation of f on the tropical ring of polynomials, as follows.

For any L-primitive recursive function f with n arguments, there exists a computable
constant cf ≥ 0 such that

|f(x1, · · · , xn)| ≤ max
t
{Tt(f) + |xt|, cf}.

Proof. The proof is given for non-mutual recursion schemes, by induction on the definition
tree. Mutual recursion schemes follow the same pattern.
1. For basic pointer functions, the result holds immediately.
2. Let f be defined by composition, and assume that the result holds for the functions g,

h1, · · · , hn . Then, for any i = 1, · · · , n, |hi(x)| ≤ maxt{Tt(hi)+|xt|, chi
}. Moreover, there

exists by induction cg such that |g(h1(x), · · · , hn(x))| ≤ maxi{Ti(g) + |hi(x)|, cg}. Com-
posing the inequalities above yields |g(h1(x), · · · , hn(x))| ≤ maxi{Ti(g) + maxt{Tt(hi) +
|xi|, chi

}, cg} = maxt{Tt(f) + |xt|,maxi{cfi
, cg}}.

3. Let f be defined by primitive recursion on notations, and assume that the first case holds.
Let f(a.x,y) = ga(x, f(x,y),y), for a ∈ {0, 1}, and assume T2(g0) ≤ 0 and T2(g1) ≤ 0.
We apply the tropical interpretation on g, and we show by induction the result for f on
the length of a.x.

P. Jacobé de Naurois 29:9

a. If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga} = |x| + T1(ga):
|f(a.x,y)| ≤ |x|+ T1(ga) ≤ |x|+ T1(f), and the result holds.

b. If maxx,f(x,y),t{|x|+T1(ga), |f(x,y)|+T2(ga), |yt|+Tt+2(ga), cga
} = |f(x,y)|+T2(ga):

Since T2(ga) ≤ 0, |f(a.x,y)| ≤ |f(x,y)|, and the induction hypothesis applies.
c. If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga

} = |yt| + Tt+2(ga)
for some t: the result applies immediately by structural induction on ga.

d. If maxx,f(x,y),t{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt+2(ga), cga} = cga , the result
holds immediately.

e. The base case f(ε,y) is immediate.
4. Let f be defined by primitive recursion on notations, and assume now that the second

of the two corresponding cases holds. Let f(a.x,y) = ga(x, f(x,y),y), for a ∈ {0, 1}.
Since the first case does not hold, T2(g0) = 1 or T2(g1) = 1: assume that T2(g0) = 1
(the other case being symmetric). Assume also that, T1(g0) ≤ 0 and T1(g1) ≤ 0, and
for all t ≥ 2, Tt(g0) = Tt(g1) = Tt−2(h) = −∞. Then, we set T1(f) = max{0, ch}. We
apply the tropical interpretation on g, and prove by induction on the length of a.x that
|f(a.x,y)| ≤ |a.x|+ max{cg1 , cg2 , ch}.
a. If maxt≥2{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt(ga), cga

} = |x| + T1(ga). Since
T1(ga) ≤ 0 and T1(f) ≥ 0, |f(a.x,y)| ≤ |x| ≤ T1(f) + |x|, and the result holds.

b. If maxt≥2{|x|+ T1(ga), |f(x,y)|+ T2(ga), |yt|+ Tt(ga), cga
} = |f(x)|+ T2(ga). Since

T2(ga) ≤ 1, |f(a.x)| ≤ 1 + |f(x)|, and the induction hypothesis allows to conclude.
c. If maxt≥2{|x| + T1(ga), |f(x,y)| + T2(ga), |yt| + Tt(ga), cga} = cga , the result holds

immediately.
d. The case maxt≥2{|x|+ T1(ga), |f(x,y)|+ T2(ga), |yt|+ Tt(ga), cga

} = |yt|+ Tt(ga) is
impossible since Tt(ga) = −∞ for t ≥ 2.

e. The base case f(ε,y) is immediate.
5. Let now assume f is define by primitive recursion on values. Then, the only possible case

is similar to the first case of primitive recursion on notation.

The proof by induction above emphasizes the critical difference between recursion on
notation and recursion on values: the second case of the safe recursion on notations correspond
to the linear, non-size increasing scanning of the input, as in, for instance,

f(a.x) = sa(f(x)).

This, of course, is only possible in recursion on notation, where the height of the recursive
calls stack is precisely the length of the scanned input. Recursion on values fails to perform
this linear scanning, since, for a given recursive argument x, the number of recursive calls is
then exponential in |x|. J

Proposition 4 proves that the tropical tiering of a function yields actually a tropical
polynomial interpretation for the function symbols: The right hand side of the Lemma
inequality is indeed a tropical interpretation. Moreover, this interpretation is directly given
by the syntax.

Furthermore, the proof also highlights why we use mutual recursion schemes instead of
more simple, non-mutual ones: non-size increasing discipline forbids the use of multiplicative
constants in the size of the strings. So, in order to capture a computational space of size
k. log(n), we need to use k binary strings of length log(n), defined by mutual recursion.

I Corollary 5. L-primitive pointer recursive functions are computable in logarithmic space.

FSCD 2019

29:10 Pointers in Recursion: Exploring the Tropics

Proof. Proposition 4 ensures that the size of all binary strings is logarithmically bounded.
A structural induction on the definition of f yields the result. The only critical case is
that of a recursive construct. When evaluating a recursive construct, one needs simply
to store all non-recursive arguments (the yi’s) in a shared memory, keep a shared counter
for keeping track of the recursive argument x, and use a simple while loop to compute
successively all intermediate recursive calls leading to f(x,y). All these shared values have
logarithmic size. The induction hypothesis ensures then that, at each step in the while
loop, all computations take logarithmic space. The two other cases, composition and basic
functions, are straightforward. J

In the following section, we prove the converse: logarithmic space functions can be
computed by a sub-algebra of the L-primitive pointer recursive functions.

4.3 Tropical Recursion
In this section we restrict our tropical tiering approach to only four possible tier values: 1, 0,
−1 and −∞. While doing so, we still retain the same expressiveness. The rules for tiering are
adapted accordingly. More importantly, the use of only four tier values allows us to denote
these tropics directly in the syntax, in an approach similar to that of Bellantoni and Cook,
by adding purely syntactical features to the composition and primitive recursion schemes.
Let us take as separator symbol the following o symbol, with leftmost variables having the
highest tier. As with safe recursive functions, we allow the use of a high tier variable in a
low tier position, as in, for instance,

f(x o y o z o t) = g(o y o x, z o t).

Our tropical recursive functions are then as follows.

Basic tropical pointer functions

Basic tropical pointer functions are the following.

hd(o o o a.x) = a tl(o o a.x o) = x

hd(o o o ε) = ε tl(o o ε o) = ε

s0(x o o o) = 0.x s1(x o o o) = 1.x
s(x o o o) = E(D(x) + 1) Read(o o o x) = a ∈ {0, 1}

Prn
i (o xi o o x1, · · · , xi−1, xi+1, · · · , xn) = xi

Tropical composition

Define t = t1, t2, t3, t4. The tropical composition scheme is then

f(x o y o z o t) = g(h1(o x o y o t), · · · , ha(o x o y o t) o
ha+1(x o y o z o t), · · · , hb(x o y o z o t) o
hb+1(y o z o o t), · · · , hc(y o z o o t) o
hc+1(t1 o t2 o t3 o t4), · · · , hd(t1 o t2 o t3 o t4))

Tropical Recursion on Notations – case 1

f(x o ε,y o z o t) = h(x o y o z o t)
f(x o sa(r o o o),y o z o t) = ga(x o r, f(x o r,y o z o t),y o z o t)

P. Jacobé de Naurois 29:11

Tropical Recursion on Notations – case 2 (Linear scanning)

f(o ε o o t) = ε

f(o sa(r o o o) o o t) = ga(f(o r o o t) o r o o t)

Tropical Recursion on Values

f(x o ε,y o z o t) = h(x o y o z o t)
f(x o s(r o o o),y o z o t) = g(x o r, f(x o r,y o z o t),y o z o t)

As above, we use the mutual version of these recursion schemes, with the same tiering
discipline. Note that, unlike previous characterizations of sub-polynomial complexity classes [4,
5, 11], our tropical composition and recursion schemes are only syntactical refinements of the
usual composition and primitive recursion schemes - removing the syntactical sugar yields
indeed the classical schemes.

I Definition 6 (L-tropical functions). The class of L-tropical functions is the closure of our
basic tropical pointer functions, under tropical composition, tropical mutual recursion on
notations, and tropical mutual recursion on values.

The restriction of only four tier values suffices to capture the computational power of
RATMs. More precisely,

I Theorem 7. The class of L-tropical functions is the class of functions computable in
logarithmic space, with logarithmic size output.

Proof. L-tropical functions are L- primitive pointer recursive functions with tropics 1, 0, −1
and −∞. Following Corollary 5, they are computable in logspace. The converse follows from
the simulation of a logarithmic space RATM, as follows.

Some Assumptions on the RATM being simulated. Let f be a function computable in
deterministic space k log(n), with output of size k log(n), computed by a RATM M . We
assume the following.

The machineM uses one pointer tape, of size dlog(n+1)e, and exactly one computation
tape.
For every input x of length n, the machine uses exactly k.dlog(n + 1)e cells on the
computation tape.
At the start of the computation, the computation tape is as follows.
1. The computation tape is on a cell containing the 0 symbol, followed by k.dlog(n+

1)e − 1 0 cells on the right.
2. The cells on the left of the computation head, and the cells on the right of the

k.dlog(n+ 1)e 0 symbols, contain only blank symbols.
Moreover, during the computation, the following holds.
1. The computation head never goes on any cell on the left of its initial position.
2. The machine never writes a blank symbol.
The same assumptions are made for the pointer tape.

It is easy to check that these assumptions are benign. They enable us to ignore the blank
symbol in the simulation, and have a strict correspondence between the binary symbols
of the RATM and those of the L-tropical algebra.

FSCD 2019

29:12 Pointers in Recursion: Exploring the Tropics

Encoding the machine configurations. Assume the machineM works in space kdlog(n+1)e.
A configuration of M is then encoded by 2k + 3 binary strings of length less than
dlog(n+ 1)e:
1. one string, of constant length, encodes the machine state,
2. one string, of length dlog(n+ 1)e, encodes the pointer tape,
3. one string, of length dlog(n+ 1)e, encodes the head of the pointer tape. It contains 0

symbols everywhere, but on the position of the head (where it contains a 1).
4. k strings, of length dlog(n+ 1)e, encode the content of the work tape, and
5. k strings, of length dlog(n+ 1)e, encode the position of the work tape head, with (as

for the pointer tape) 0 everywhere but on the position of the head.
Reading and Updating a configuration. Linear scanning of the recursive argument in trop-

ical recursion, corresponding to case 2 of the definition of tropical recursion on notations,
is used to read and to update the encoding of the configuration. In order to do so,
1. we encode booleans false and true with s0(ε o o o) and s1(ε o o o) respectively. We

define the following match construct
match x with

| s0(r o o o)→ A

| s1(r o o o)→ B

| ε→ C

as the following degenerate tropical recursion on notations.
match(o s0(r o o o), a, b, c o o) = a

match(o s1(r o o o), a, b, c o o) = b

match(o ε, a, b, c o o) = c

Then, if then esle, and AND and OR boolean functions are obtained by trivial
applications of the match construct above. We also use a function isempty, for testing
if a string equals ε.

2. we define the following function, which adds one-bit in first position.
1BC(y o x o o) = match x with

| s0(t o o o)→ s0(y o o o)
| s1(t o o o)→ s1(y o o o)
| ε→ y

For notational purposes we sometimes use hd(o o o x).y instead.
3. we define the following tail extraction, extracting the tail of a string, for a given prefix

length.

Te(o sa(x o o o) o e o) = tl(o o Te(o x o e o) o)
Te(o ε o e o) = e

4. we define the following bit extraction, extracting one bit of a string, for a given prefix
length.

Be(o o o x, e) = hd(o o o Te(o x o e o))

P. Jacobé de Naurois 29:13

5. we define the following head extraction, extracting the head of a string, for a given
prefix length.

He(o sa(o o o x) o o e) = Be(o o o sa(o o o x), e).He(o x o o e)
He(o ε o o e) = ε

6. we define the prefix length computation, which extracts the initial subsequence of 0
only symbols, followed by the first 1. This function is used for computing the prefix
length corresponding to the position of the head in our encoding of the tapes of the
RATM.

Prefix(o ε o o) = ε

Prefix(o s0(o o o x) o o) = s0(Prefix(o x o o) o o o)
Prefix(o s1(o o o x) o o) = s1(ε o o o)

7. we define a predicate for comparing string lengths

SameLength(o x, y o o) =

AND(o isempty(o Te(o x o o y) o o), isempty(o Te(o y o o x) o o) o o).

8. we define the one bit replacement function: Replacing exactly one bit in a string e by
the first bit of b, for a given prefix length x.

Cb(o sa(x o o o) o o y, e, b) =
if SameLength(o sa(x o o o), y o o)

then hd(o o o b).Cb(o x o o y, e, b)
else Be(o o o Te(o sa(x o o o) o e o), e).Cb(o x o o y, e, b)

Cb(o ε o o y, e, b) = ε

and

ChBit(o s o o x, e, b) = Cb(o s o o Te(o x o o e), e, b)

for any s with |s| = |e|.
With all these simple bricks, and especially with the in-place one-bit replacement, one is
then able to read a configuration, and to update it, with L-tropical functions. None of
these L-tropical functions uses recursion on values.

Computing the Transition map of the Machine. Given the functions above, the transition
map Next of the machine is then computed by a simple L-tropical function of width
(2k + 3): For a recursive argument s of size dlog(n+ 1)e, Next(o s, c o o) computes the
configuration reached from c in one transition step.
The Prefix function above computes the prefix corresponding the position of the head of
the pointer and of the computation tapes in our encoding. Used in conjunction with the
boolean constructs on the k strings encoding the computation tape, and in conjunction
with the bit extraction function Be above, it allows to read the current symbol on the
computation tape, and on the pointer tape, of the encoding of the RATM. Updating
these two symbols is performed with the ChBit in-place one-bit replacement function.
Similarly, moving the heads of these two tapes can easily be performed with this ChBit,
in conjunction with the tl and s1 basic tropical functions.
Let us now describe how we can read and update the machine state: This machine state is
encoded in binary by a string of length dlog(S + 1)e, where S is the number of the states
of M . The length of this string is fixed, and does not depend on the input. Therefore, we

FSCD 2019

29:14 Pointers in Recursion: Exploring the Tropics

can safely assume that we have a fixed decision tree of depth dlog(S + 1)e, for reading
each bit of this string. The leaves of this decision tree are in one-to-one correspondence
with the states of M . This decision tree can moreover be encoded with basic tropical
functions and tropical composition only. Similarly, overwriting the machine state can be
done with basic tropical functions and tropical composition only.
Finally, when in an input reading state, the input tape symbol is obtained simply by
using the basic tropical function Read, with the pointer tape as argument.
The transition map Next of the RATM is then obtained by a boolean composition of
the above functions. Similarly, computing an encoding of the initial configuration, and
reading a final configuration, is simple.

Simulating the RATM. The simulation of the RATM is then obtained by iterating its
transition map Next a suitable number of times. The time upper bound is here obtained
by nesting k tropical recursive functions on values: on an input of size dlog(n+ 1)e, the
unfolding of these recursive calls takes time nk. At each recursive step, this function
needs to apply the transition map. The transition map having width (2k + 3), we use
here a mutual recursion scheme, of width (2k + 3). Again, for a recursive argument s of
size dlog(n+ 1)e, we define

Step1(o ε, s, c o o) = c
Step1(o s(t o o o), s, c o o) = Next(o s,Step1(o t, n, c o o) o o)

Step2(o ε, s, c o o) = c
Step2(o s(t o o o), s, c o o) = Step1(o s, s,Step2(o t, s, c o o) o o)

...
Stepk(o ε, s, c o o) = c

Stepk(o s(t o o o), s, c o o) = Stepk−1(o s, s,Stepk(o t, s, c o o) o o).
Replacing s by the Offset in the above gives the correct bounds.
Finally, one simply needs to use simple L-tropical functions for computing the initial
configuration, and reading the final configuration. J

5 Logarithmic Space, Polylogarithmic Time

The polynomial time bound in Theorem 7 relies on the use of tropical recursion on values,
for clocking the simulation of the RATM. Restricting the algebra to tropical recursion on
notations only yields a straightforward time bound restriction, as follows.

I Definition 8 (LP-tropical functions). The class of LP-tropical functions is the closure of
our basic tropical pointer functions, under tropical composition and tropical mutual recursion
on notations.

I Theorem 9. The class of LP-tropical functions is the class of functions computable in
logarithmic space, polylogarithmic time, with logarithmic size output.

Proof. Mutual recursion on notations, with recursive arguments of logarithmic size, are
computable in polylogarithmic time, following similar arguments as in the proof of Theorem 7.
The converse follows from the simulation in the proof of Theorem 7 above, where mutual
recursion on values for the functions Stepi is replaced by mutual recursion on notations. J

P. Jacobé de Naurois 29:15

6 Alternation

In this section we extend the approach of Leivant and Marion [13] to our setting. Let us
define a similar tropical recursion on notations with substitutions. Note that the tropical
tiering discipline prevents using substitutions in case 2 of the tropical recursion on notations.
Substitutions are therefore only defined for case 1 of this recursion scheme, and only in
non-size increasing position.

Tropical Recursion with substitutions on Notations

Given functions h, g0, g1, k1 and k2,

f(x o ε,u,y o z o t) = h(x o u,y o z o t)
f(x o sa(r o o o),u,y o z o t) = ga(x o r, f(x o r, k1(o u o o),y o z o t),

f(x o r, k2(o u o o),y o z o t),u,y o z o t) .

Tropical Recursion with substitutions on Values

Given functions h, g, k1 and k2,

f(x o ε,u,y o z o t) = h(x o u,y o z o t)
f(x o s(r o o o),u,y o z o t) = g(x o r, f(x o r, k1(o u o o),y o z o t),

f(x o r, k2(o u o o),y o z o t),u,y o z o t) .

Again, as above, we assume these recursion schemes to be mutual. Tropical Recursion with
substitutions allows two recursive calls, where one parameter (u) is modified by the so-called
substitution function k1 or k2. This allows to denote branching, or parallel computations,
where a given configuration being accepting or rejecting depends on two distinct transition
steps. This is precisely the definition of an alternating Turing machine, whose relation with
parallel computation is well documented [6, 18].

I Definition 10 (P-tropical functions). The class of P-tropical functions is the closure of our
basic tropical pointer functions, under tropical composition, tropical recursion on notations
and on values, and tropical recursion with substitutions on notations and on values.

I Theorem 11. The class of P-tropical functions with binary output is the class P.

Proof. The result follows from Alogspace = P [6], and Theorem 7. Substitutions in the
tropical recursion scheme on notations amounts to alternation. Restriction to decision classes
instead of function classes comes from the use of alternating Turing machines, which compute
only decision problems.

Let us first see how to simulate a logspace alternating machine with P-tropical functions.
Recall the notations and functions of the proof of Theorem 7. Since we now need to simulate
a non-deterministic, alternating machine, we assume without loss of generality that we now
have two kinds of machine states:

non-deterministic universal
non-deterministic existential

and that non-deterministic transitions have at most two branches. Therefore, we also
assume that we have one predicate that determines the kind of a state in a configuration c:
IsUniversal(o s, c o o). This predicate is assumed to output false or true.

FSCD 2019

29:16 Pointers in Recursion: Exploring the Tropics

We also assume that we have two transition maps, Next0(o s, c o o), and Next1(o s, c o o),
for computing both branches of non-deterministic transitions. For deterministic transitions,
we assume both branches are the same. Finally, we also assume we have a predicate
isPositive(o s, c o o), which returns true if the configuration c is final and accepting, and
false otherwise.

We define now, with substitutions, the following:

Accept(o ε, s, c o o) = isPositive(o s, c o o)
Accept(o s(t), s, c o o)) = match IsUniversal(o s, c o o) with
|true→ AND (o Accept(o t, Next0(o s, c o o), c o o),

Accept(o t, Next1(o s, c o o)) o o)
|false→ OR (o Accept(o t, Next0(o s, c o o)), c o o),

Accept(o t, Next1(o s, c o o)) o o) .

Then, for t and s large enough, and an initial configuration c, Accept(o t, s, c o o) outputs
the result of the computation of the machine. Finally, nesting up to k layers of such recursion
on values schemes allows, as in the proof of Theorem 7, to simulate a polynomial computation
time.

The other direction is pretty straightforward: For any instance of a recursion scheme
with substitutions, for any given values r, u, x, y and z, each bit of
g(x o r, f(x o r, k1(o u o o),y o z o t), f(x o r, k2(o u o o),y o z o t),u,y o z o t) is a boolean
function of the bits of f(x o r, k1(o u o o),y o z o t) and f(x o r, k2(o u o o),y o z o t). Hence,
it can be computed by an alternating procedure. The space bound follows from the bound
on the size of the strings, provided by the tiering discipline. J

Recall now that the time bound in Theorem 9 follows from 7 by removing recursion on
values from the algebra. The same applies here, as follows.

I Definition 12 (NC-tropical functions). The class of NC-tropical functions is the closure
of our basic pointer tropical functions, under tropical composition, tropical recursion on
notations and tropical recursion with substitutions on notations.

I Theorem 13. The class of NC-tropical functions with binary output is NC.

Proof. The result follows from A(logspace, polylogtime) = NC [18], and Theorem 7. Sub-
stitutions in the tropical recursion scheme on notations amounts to alternation. The proof is
similar to that of Theorem 11, where additionally,

The time bound on the computation of the machine needs only to be polylogarithmic,
instead of polynomial. As in Theorem 9, tropical recursion on notations suffices to obtain
this bound, and tropical recursion on values is no longer needed.
For the other direction, any bit of ga(x o r, f(x o r, k1(o u o o),y o z o t),
f(x o r, k2(o u o o),y o z o t),u,y o z o t) is again a boolean function of the bits of
f(x o r, k1(o u o o),y o z o t) and f(x o r, k2(o u o o),y o z o t). Here, this boolean function
can be computed by a boolean circuit of polylogarithmic depth, hence, by an alternating
procedure in polylogarihtmic time. The arguments behind this remark are the same as
the ones in the proof of A(logspace, polylogtime) = NC. J

7 Concluding Remarks

Theorems 7, 9, 11, and 13 rely on mutual recursive schemes. As stated above, we use these
mutual schemes to express a space computation of size k log(n) for any constant k, with
binary strings of length at most log(n) + c. If we were to use only non-mutual recursion

P. Jacobé de Naurois 29:17

schemes, we would need to have longer binary strings. This can be achieved by taking as
input to our functions, not simply the Offset, but some larger string #k(Offset), where
#k is a function that appends k copies of its argument.

It also remains to be checked wether one can refine Theorem 13 to provide characterizations
of the classes NCi as in [14]. A first step in this direction is to define a recursion rank,
accounting for the nesting of recursion schemes: then, check wether NC-tropical functions of
rank i are computable in NCi. Conversely, check also whether the simulation of Theorem 7
induces a fixed overhead, and wether NCi can be encoded by NC-tropical functions of rank
i+ c for some constant c small enough.

Finally, note that we characterize logarithmic space functions with logarithmically long
output (Theorem 9), and NC functions with one-bit output (Theorem 13). As usual,
polynomially long outputs for these classes can be retrieved via a pointer access: it suffices
to parameterize these functions with an additional, logarithmically long input, denoting the
output bit one wants to compute. In order to retrieve functions with polynomially long
output, this approach could also be added to the syntax, with a Write construct similar to
our Read construct, for writing the output.

References

1 Bill Allen. Arithmetizing Uniform NC. Ann. Pure Appl. Logic, 53(1):1–50, 1991. doi:
10.1016/0168-0072(91)90057-S.

2 S. Bellantoni. Predicative Recursion and Computational Complexity. PhD thesis, University of
Toronto, 1992.

3 Stephen Bellantoni and Stephen A. Cook. A New Recursion-Theoretic Characterization of the
Polytime Functions. Computational Complexity, 2:97–110, 1992.

4 Stephen A. Bloch. Function-Algebraic Characterizations of Log and Polylog Parallel Time.
Computational Complexity, 4:175–205, 1994. doi:10.1007/BF01202288.

5 Guillaume Bonfante, Reinhard Kahle, Jean-Yves Marion, and Isabel Oitavem. Two function
algebras defining functions in NCk boolean circuits. Inf. Comput., 248:82–103, 2016. doi:
10.1016/j.ic.2015.12.009.

6 Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981. doi:10.1145/322234.322243.

7 P. Clote. Sequential, machine-independent characterizations of the parallel complexity classes
ALOGTIME, ACk, NCk and NC. Feasible Mathematics, Birkhaüser, 49-69, 1989.

8 A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor,
Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science,
pages 24–30. North-Holland, Amsterdam, 1962.

9 Martin Hofmann. Linear types and non-size-increasing polynomial time computation. Inf.
Comput., 183(1):57–85, 2003. doi:10.1016/S0890-5401(03)00009-9.

10 Martin Hofmann and Ulrich Schöpp. Pure pointer programs with iteration. ACM Trans.
Comput. Log., 11(4):26:1–26:23, 2010. doi:10.1145/1805950.1805956.

11 Satoru Kuroda. Recursion Schemata for Slowly Growing Depth Circuit Classes. Computational
Complexity, 13(1-2):69–89, 2004. doi:10.1007/s00037-004-0184-4.

12 Daniel Leivant. A Foundational Delineation of Computational Feasiblity. In Proceedings of
the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam, The
Netherlands, July 15-18, 1991, pages 2–11. IEEE Computer Society, 1991. doi:10.1109/LICS.
1991.151625.

13 Daniel Leivant and Jean-Yves Marion. Ramified Recurrence and Computational Complexity
II: Substitution and Poly-Space. In Leszek Pacholski and Jerzy Tiuryn, editors, CSL, volume
933 of Lecture Notes in Computer Science, pages 486–500. Springer, 1994.

FSCD 2019

http://dx.doi.org/10.1016/0168-0072(91)90057-S
http://dx.doi.org/10.1016/0168-0072(91)90057-S
http://dx.doi.org/10.1007/BF01202288
http://dx.doi.org/10.1016/j.ic.2015.12.009
http://dx.doi.org/10.1016/j.ic.2015.12.009
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1016/S0890-5401(03)00009-9
http://dx.doi.org/10.1145/1805950.1805956
http://dx.doi.org/10.1007/s00037-004-0184-4
http://dx.doi.org/10.1109/LICS.1991.151625
http://dx.doi.org/10.1109/LICS.1991.151625

29:18 Pointers in Recursion: Exploring the Tropics

14 Daniel Leivant and Jean-Yves Marion. A characterization of alternating log time by ramified
recurrence. Theor. Comput. Sci., 236(1-2):193–208, 2000. doi:10.1016/S0304-3975(99)
00209-1.

15 Daniel Leivant and Jean-Yves Marion. Ramified Recurrence and Computational Complexity
IV : Predicative Functionals and Poly-Space. Information and Computation, page 12 p, 2000.
to appear. Article dans revue scientifique avec comité de lecture. URL: https://hal.inria.
fr/inria-00099077.

16 J. C. Lind. Computing in logarithmic space. Technical report, Massachusetts Institute of
Technology, 1974.

17 Peter Møller Neergaard. A Functional Language for Logarithmic Space. In Wei-Ngan Chin,
editor, Programming Languages and Systems: Second Asian Symposium, APLAS 2004, Taipei,
Taiwan, November 4-6, 2004. Proceedings, volume 3302 of Lecture Notes in Computer Science,
pages 311–326. Springer, 2004. doi:10.1007/978-3-540-30477-7_21.

18 Walter L. Ruzzo. On Uniform Circuit Complexity. J. Comput. Syst. Sci., 22(3):365–383, 1981.
doi:10.1016/0022-0000(81)90038-6.

http://dx.doi.org/10.1016/S0304-3975(99)00209-1
http://dx.doi.org/10.1016/S0304-3975(99)00209-1
https://hal.inria.fr/inria-00099077
https://hal.inria.fr/inria-00099077
http://dx.doi.org/10.1007/978-3-540-30477-7_21
http://dx.doi.org/10.1016/0022-0000(81)90038-6

Typed Equivalence of Effect Handlers and
Delimited Control
Maciej Piróg
University of Wrocław, Poland
maciej.pirog@cs.uni.wroc.pl

Piotr Polesiuk
University of Wrocław, Poland
ppolesiuk@cs.uni.wroc.pl

Filip Sieczkowski
University of Wrocław, Poland
efes@cs.uni.wroc.pl

Abstract
It is folklore that effect handlers and delimited control operators are closely related: recently, this
relationship has been proved in an untyped setting for deep handlers and the shift0 delimited
control operator. We positively resolve the conjecture that in an appropriately polymorphic type
system this relationship can be extended to the level of types, by identifying the necessary forms of
polymorphism, thus extending the definability result to the typed context. In the process, we identify
a novel and potentially interesting type system feature for delimited control operators. Moreover, we
extend these results to substantiate the folklore connection between shallow handlers and control0
flavour of delimited control, both in an untyped and typed settings.

2012 ACM Subject Classification Theory of computation → Control primitives; Theory of compu-
tation → Operational semantics; Software and its engineering → Polymorphism

Keywords and phrases type-and-effect systems, algebraic effects, delimited control, macro express-
ibility

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.30

Supplement Material The formalisation of results presented in this paper, performed in the Coq
proof assistant, can be found at https://pl-uwr.bitbucket.io/efftrans.zip.

Funding Maciej Piróg: National Science Centre, Poland, POLONEZ 3 grant “Algebraic Effects and
Continuations” no. 2016/23/P/ST6/02217.
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No 665778.
Piotr Polesiuk: National Science Centre, Poland, grant no. 2014/15/B/ST6/00619.
Filip Sieczkowski: National Science Centre, Poland, grant no. 2016/23/D/ST6/01387.

Acknowledgements We would like to thank the anonymous reviewers of this paper for providing
insightful comments and questions, particularly regarding presentation, as well as Dariusz Biernacki
and Sam Lindley for helpful discussions of the technical content of the paper.

1 Introduction

Computational effects in programming languages are as pervasive as they are problematic.
Virtually any programming language must allow its programmer some interaction with the
outside world, at the very least through input and output channels, yet this concession
tends to open Pandora’s box of effects, built-in or user-defined, ranging from mutable state
or logging mechanisms to complex nondeterminism or concurrency, and beyond. In most
commonly used functional languages, such as OCaml or Scheme, control over occurrences

© Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5889-3388
mailto:maciej.pirog@cs.uni.wroc.pl
https://orcid.org/0000-0002-7012-4346
mailto:ppolesiuk@cs.uni.wroc.pl
https://orcid.org/0000-0001-5011-3458
mailto:efes@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.FSCD.2019.30
https://pl-uwr.bitbucket.io/efftrans.zip
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Typed Equivalence of Effect Handlers and Delimited Control

of such effects is lax at best: this, however, leads to loss of strong reasoning principles, like
β-equivalence, and invalidates many common program optimisations by making observational
equivalence a very small relation.

Two main approaches to control and contain the rise of complexity brought by the presence
of effects exist: monads [17, 21], as used in Haskell, is the more common in today’s practice,
but type-and-effect systems [15, 20] appear rather often in many of the more experimental
programming languages. Both these approaches feature means of establishing that a program
fragment is pure, which intuitively means that all the usual reasoning principles and program
transformations should apply, and both allow the programmer to control which particular
effects can arise in a given program fragment. Although the original type-and-effect systems
were geared towards particular computational effects, such as mutable state, they have since
been used also for languages with user-defined effects. In the following, we consider two
families of such user-defined effectful abstraction: delimited control operators and algebraic
effect handlers.

Delimited control operators were invented, in different flavours, by Felleisen [5] and
Danvy and Filinski [4], and have been used to encode effects ever since (see for instance [3]).
Algebraic effects and handlers, proposed by Plotkin and Pretnar [18] form an alternative
approach to user-defined effects, generalising exceptions and their handlers in a more direct
fashion than the delimited control operators, which arise more naturally by studying the
shape of effectful programs in continuation-passing style. Both these families of abstractions
admit diverse type systems: in this work we focus on a particular family of type-and-effect
systems with effect rows, which allows a large degree of control over what effects the program
performs and what is their order in the computation.

In this paper, we work within the program outlined by Forster et al. [8]: we study local
syntax-directed translations (Felleisen’s macro translations [6]) between mutually expressible
extensions of a base calculus, thus studying the relationships between different modes of
programming with user-defined effects. In this line, we make two contributions: first, we
pinpoint the precise mode of polymorphism that is required for the macro translations between
effect handlers and delimited control operators to preserve typings, and in the process we
discover a novel extension of a type system for delimited control operators. Furthermore,
we extend these results to the case of shallow effect handlers and the control0 operator,
thus substantiating the folklore claim that the shallow handlers behave in a “control-like”
fashion. In contrast to Forster et al., we focus solely on control operators with type-and-effect
systems, leaving out the monadic approach to structuring effectful computations. The results
presented in this paper are formalised using the Coq proof assistant.

2 The Common Core

In this paper, we discuss two calculi for delimited control operators (shift0 and control0) and
two for effect handlers (deep and shallow), all of which are given as extensions of the core
calculus defined in this section. This core calculus is a polymorphic λ-calculus with only
basic infrastructure for effects that is shared by all four final calculi. For readability, we keep
the calculi minimal, that is, they are equipped only with the features necessary to discuss
control effects and their relationships. In some examples, however, we assume some basic
types and constants, but this is only for readability, as they are clearly a feature orthogonal
to control.

The syntax of the core calculus is given in Figure 1. The type-level variables are denoted
α, β, . . ., while the term-level variables are denoted f, r, x, y, . . . The syntax of terms consists
of variables, λ-abstractions, applications, and, as a part of the infrastructure for effects,

M. Piróg, P. Polesiuk, and F. Sieczkowski 30:3

TVar 3 α, β, . . . (type-level variables)
Var 3 f, r, x, y, . . . (term-level variables)

Kind 3 κ ::= T | E | R (kinds)
Typelike 3 σ, τ, ε, ρ ::= α | τ→ρτ | ∀α :: κ . τ | ι | ε · ρ (types and rows)

Val 3 u, v ::= x | λx. e (values)
Exp 3 e ::= v | e e | [e] (expressions)

ECont 3 E ::= � | E e | v E | [E] (evaluation contexts)

Figure 1 Syntax of the common core of the calculi.

α :: κ ∈ ∆
∆ ` α :: κ

∆ ` τ1 :: T ∆ ` ρ :: R ∆ ` τ2 :: T
∆ ` τ1→ρτ2 :: T

∆, α :: κ ` τ :: T
∆ ` ∀α :: κ . τ :: T

∆ ` ι :: R
∆ ` ε :: E ∆ ` ρ :: R

∆ ` ε · ρ :: R

Figure 2 Well-formedness of types and rows.

Biernacki et al.’s [2] lift operator [e], which we discuss below. Note that the core calculus is
given à la Curry, so the variable in a λ-abstraction is not labelled with a type. Moreover, we
have the universal quantifier as a type former, but it is not reflected in the term-level syntax:
generalisations and instantiations of the quantifier take place only in type derivations.

The core calculus is equipped with a type-and-effect system organised into three kinds: T
for types, E for single effects, and R for rows of effects. Considering the well-formedness rules
given in Figure 2, we read that the types are given by the mentioned universal quantifier
(in which we quantify over variables of any kind), type variables, and arrows, which are
decorated with rows of effects. Intuitively, a row of effects specifies what effects can happen
when we evaluate an expression or call an effectful function (for a discussion on row-based
type-and-effect systems see, for instance, [14]). Importantly, the specific calculi that we
present in the subsequent sections do not distinguish effects by any sort of names, but by
their position in the row associated to an expression. This means that the order of effects in
a row is important and, intuitively, corresponds to the order of delimiters (handlers, resets)
that can be placed around the expression – or, from another point of view, to the order in
which a closing context introduces these effects. This is why we include the lift operator, as
it allows us to manipulate the order of effects in a row and so, as discussed in Section 3.1,
simulate a calculus with named effects. Formally, a row of effects can be given by a row
variable, an empty row, written ι, or can be built by placing an effect in front of an existing
row. In other words, each row is either closed, which means that it is a list of effects (in this
case, we tend to omit the trailing ι when this does not lead to confusion), or open, which
means that it is a list of effects that ends with a row variable. Note that the core calculus
does not say much about single effects, except for the fact that we can quantify over effects
as well as over types or rows. However, it captures how effects are organised into rows, as
this aspect is common to all four final calculi.

FSCD 2019

30:4 Typed Equivalence of Effect Handlers and Delimited Control

∆ ` σ <: σ
∆ ` τ1

2 <: τ1
1 ∆ ` ρ1 <: ρ2 ∆ ` τ2

1 <: τ2
2

∆ ` τ1
1→ρ1τ

2
1 <: τ1

2→ρ2τ
2
2

∆, α :: κ ` τ1 <: τ2

∆ ` ∀α :: κ . τ1 <: ∀α :: κ . τ2

∆ ` ρ :: R
∆ ` ι <: ρ

∆ ` ρ1 <: ρ2

∆ ` ε · ρ1 <: ε · ρ2

Figure 3 Subtyping.

x : τ ∈ Γ
∆; Γ ` x : τ / ι

∆ ` τ1 :: T ∆; Γ, x : τ1 ` e : τ2 / ρ

∆; Γ ` λx. e : τ1→ρτ2 / ι

∆; Γ ` e1 : τ1→ρτ2 / ρ ∆; Γ ` e2 : τ1 / ρ

∆; Γ ` e1 e2 : τ2 / ρ

∆ ` ε :: E ∆; Γ ` e : τ / ρ
∆; Γ ` [e] : τ / ε · ρ

∆, α :: κ; Γ ` e : τ / ι
∆; Γ ` e : ∀α :: κ . τ / ι

∆ ` σ :: κ ∆; Γ ` e : ∀α :: κ . τ / ρ
∆; Γ ` e : τ{σ /α} / ρ

∆ ` τ1 <: τ2 ∆ ` ρ1 <: ρ2 ∆; Γ ` e : τ1 / ρ1

∆; Γ ` e : τ2 / ρ2

Figure 4 Core typing rules.

Figure 3 shows the subtyping rules. The purpose of subtyping is to express the idea that
one expression can perform “more” effects than another. In particular, it means that the
empty row is a subtype of any other row, while two functions are in the relation if they
satisfy the usual “contravariant-in-argument, covariant-in-result” condition together with the
appropriate subtyping of their rows of effects.

With this, we can define the typing relation ∆; Γ ` e : τ / ρ, shown in Figure 4. It uses
two contexts, ∆ to assign a kind to a free type-level variable, and Γ to assign a type to
a free term-level variable.1 A term e is given a type τ and a row of effects ρ, which may
be performed when evaluating e. The rules for variables, λ-abstractions, and applications
are rather straightforward; the only deviation from the classic formulation of Talpin and
Jouvelot [20] is that in the application rule we require the same effect on all premises, which is
natural, as our system includes explicit subtyping. Additionally, we have the aforementioned
rules that allow us to introduce and instantiate a universal quantifier, and a rule to apply
subtyping. The rule for [e] reveals some intuition about the purpose of the lift operator, as it
allows us to add any effect in front of the row to “mask” the actual first effect. As hinted
before, this is due to the fact that order of the effects matters: thus, we might be allowed to
freely pretend that a given computation has more effects “outside” the ones that are actually
present, via subeffecting, but we need to be explicit, and use an operator with some runtime
content, when we want to manipulate effects at the beginning of the row. As it is much more
natural to discuss the details of the semantics of lift with some actual effects at hand, we
return to this discussion in more depth in Section 3.1, where we define deep effect handlers.

1 We treat contexts as lists of bindings, allowing ourselves to write types of the form ∀ ∆ . τ , with the
natural expansion as a chain of nested quantifiers of appropriate length.

M. Piróg, P. Polesiuk, and F. Sieczkowski 30:5

λx. e v 7→ e{v / x} [v] 7→ v
e1 7→ e2

E[e1]→ E[e2]

Figure 5 Single-step reduction and core contraction rules.

0−free(�)
n−free(E)
n−free(E e)

n−free(E)
n−free(v E)

n−free(E)
n+ 1−free([E])

Figure 6 Freeness for core evaluation contexts.

Figure 5 together with the syntax of evaluation contexts from Figure 1 define the call-
by-value operational semantics in terms of contractions, that is, single-step reductions in an
evaluation context, in the standard style of Felleisen and Friedman [7]. Note that while the
lift operator does not have any computational content on its own, it is used to manipulate the
freeness of evaluation contexts defined in Figure 6. The freeness judgment was introduced by
Biernacki et al. [2] to judgmentally match an effect handler to the operation, but it readily
scales to the other systems, allowing us to move the lift to the common part of the calculus.
Of course, since the core calculus does not contain any effect delimiters, the freeness can
only increase, and only via the lift, but its use will become apparent when we consider
particular effects.

3 Deep Effect Handlers and Delimited Control

We now turn to study the connection between the deep handlers and the shift0 calculus of
delimited control operators. The operational semantics of the calculi and their (untyped)
equivalence are a slight variation on the ones studied by Forster et al. [8]. The correspondence
between the type systems is our contribution.

3.1 Deep Handler Calculus
The calculus of deep effect handlers is given in Figure 7 as an extension of the core calculus.
We extend the syntax of expressions with two forms: the first one, do v, is an operation with
a single argument. Note that while the argument is necessarily a value, this restriction is
purely a matter of convenience. The second new form is a handler, handle e {x, r. e; x. e},
in which the first expression is the handled computation, the x, r. e part is an interpretation
of the operation, while x. e is the “return” clause, which describes the behaviour of the
handler on effect-free computations. Handlers come with one new form of evaluation contexts,
which allows reductions in the handled expression.

The reduction semantics for handlers is given by two contraction rules. The first one
states that if we handle a 0-free context that has an operation in the evaluation position, the
handler takes over, and proceeds according to the x, r. eh part, where eh is the computation
that we proceed with, in which x is bound to the value of the argument of the operation,
while r is bound to the resumption, which allows us to continue evaluating the handled
computation with a given value in place of the operation. Note that the resumption vc is
again wrapped in the same handler, which is why such handlers are called deep, as opposed

FSCD 2019

30:6 Typed Equivalence of Effect Handlers and Delimited Control

σ ::= . . . | ∆ . τ1⇒τ2

e ::= . . . | do v | handle e {x, r. e; x. e}
E ::= . . . | handle E {x, r. e; x. e}

∆,∆′ ` τ1 :: T ∆,∆′ ` τ2 :: T
∆ ` ∆′ . τ1⇒τ2 :: E

n+ 1−free(E)
n−free(handle E {x, r. eh; x. er})

0−free(E) vc = λ z. handle E[z] {x, r. eh; x. er}
handle E[do v] {x, r. eh; x. er} 7→ eh{v / x}{vc / r}

handle v {x, r. eh; x. er} 7→ er{v / x}

∆; Γ ` v : δ(τ1) / ι ∆ ` δ :: ∆′ ∆ ` ∆′ . τ1⇒τ2 :: E
∆; Γ ` do v : δ(τ2) / (∆′ . τ1⇒τ2)

∆; Γ ` e : τ / (∆′ . τ1⇒τ2) · ρ
∆,∆′; Γ, x : τ1, r : τ2→ρτr ` eh : τr / ρ ∆; Γ, x : τ ` er : τr / ρ

∆; Γ ` handle e {x, r. eh; x. er} : τr / ρ

Figure 7 Calculus of deep handlers.

to shallow handlers discussed in Section 4.1. The second single-step reduction rule is used
when we handle a value. In such a case, the entire handler evaluates to er from the x. er
part, in which x is bound to the handled value.

A single effect in the type system is given as ∆ . τ1⇒τ2, which, intuitively, specifies
the type of the do operation. This means that its argument is of the type τ1, while the
operation applied to an argument can be used in contexts that expect an expression of the
type τ2. Importantly, each effect may bind any number of type variables of appropriate kinds,
denoted by ∆, which means that the effect τ1⇒τ2 can be polymorphic. One example of why
such a feature is useful is the error effect, in which the operation is “raise an exception”.
Since we need to be able to do it regardless of the expected type, such an effect is captured
by α :: T . unit⇒α. For our purposes, such polymorphic effects are needed for the typed
translations between deep handlers and the shift0/reset delimited control operators. Such
polymorphic operations have been considered before, for instance by Kammar et al. [11], and
indeed such an extension to the type system with effects seems rather natural.

The typing rule for the do operation indeed matches the shape of the effect: the argument
is required to have the type τ1 and the entire expression has type τ2. Moreover, we may
pick any type-level substitution δ that is well-formed in ∆, and apply it to both types, thus
instantiating the polymorphic operation. For example, in the error effect, if we want to raise
an exception in a context in which we expect a value of the type int, we instantiate α to int.
Formally, we define the well-formedness of a substitution as

∆ ` δ :: ∆′ 4= dom(δ) = dom(∆′) ∧ ∀α ∈ dom(δ),∆ ` δ(α) :: ∆′(α).

The typing rule for handle e {x, r. eh; x. er} reveals that we handle the first effect in the
row of the handled expression. The overall result of the handler has a type τr, which needs
to be the type of both eh and er. Importantly, the handler needs to be polymorphic in ∆′,
which means that for each particular occurrence of the operation, the expression eh must be
oblivious to the concrete instantiation of the variables of ∆′.

M. Piróg, P. Polesiuk, and F. Sieczkowski 30:7

This type system is sound with respect to the operational semantics, as shown by
the following result, obtained by the standard technique of progress and preservation (cf.
Harper [9], Wright and Felleisen [22]:

I Theorem 1. If ·; · ` e : τ / ι and e→∗ e′ 6→ in the calculus of deep handlers, then there
exists a value v such that e′ = v and ·; · ` v : τ / ι.

One aspect that distinguishes our approach from most calculi for algebraic effects in
the literature is that, for the simplicity of presentation, we have only one operation, do.
Usually, one assumes a number of operations, often grouped in named effects, which is
much more convenient in a programmer-level language, but is not necessary for our semantic
considerations. This is the reason why we include the lift operator [e] in our calculi, since
it allows us to express programs with multiple effects. To see that this is the case, we now
briefly discuss the relationship with multiple effects and multiple operations in an effect.

In most settings with multiple effects, each operation is associated with a particular
effect [2, 13]. Then, operationally, it is assigned to the nearest enclosing handler of this
effect. On the level of types, one then takes the rows ε1 · ε2 · ρ and ε2 · ε1 · ρ as equivalent for
any two distinct effects ε1 and ε2, which allows freely swapping a pair of different effects in
a row. Then, in a typing derivation, one needs to apply enough swaps to move the effect
handled by a particular handler to the front of the row of the handled expression. However,
as shown by Biernacki et al. [2], in a language with the lift operator, we can express a term-
level swap function for any two positions in the row. For example, consider the expression
do 2 + [do ()] : int / (. int⇒int) · (. unit⇒int). Then, swapping the first two effects in the
row would yield an expression equivalent to [do 2] + do () : int / (. unit⇒int) · (. int⇒int).
This means that our calculus can simulate a multiple-effect setting by manually placing
enough lifts and swaps.

Another issue is the presence of multiple operations in an effect, which are handled
together by a single handler. One can simulate this by tagging the argument of do, in a way
that allows to distinguish between the operations. The difficulty is that different operations
can have different types, depending on the tag. Thus, to simulate multiple operations in an
effect, we could use GADTs, possibly encoded via equality types [23]. This aspect, however,
is orthogonal to the aspects of control that we consider in this paper.

3.2 The shift0 Delimited Control Calculus
The calculus of the shift0 flavour of delimited control is given in Figure 8. It extends the
core calculus with two new syntactic constructs: the shift0 operator and the reset delimiter,
〈e|x. er〉, where the expression e is the delimited computation, while x. er is the “return” part.

Operationally, an expression shift0 k. e aborts the evaluation of the appropriate enclosing
reset, replacing it with the expression e. However, the evaluation of the entire reset is not
all-lost, as it is captured as a continuation bound to the variable k in e. If it happens that
no shift0 is evaluated inside e in 〈e|x. er〉, the value of the entire reset is given by the value
of er in which x is bound to the value of e.

The type-and-effect system is a generalisation of the calculus introduced by [8]. A
single effect ∆ . τ / ρ can intuitively be seen as a specification of the type and effect of
the continuation captured by any shift within the expression. Thus, if we consider the
computation 〈e|x. er〉 and assume it has some type τr and effect row ρr, this type and row
will be preserved as the first effect in the row associated with e. Then, in each shift0 k. es
within e, the expression es is supposed to have this precise type and effect row – after all,
the entire reset is replaced by es, so their types must agree. As a novel feature in our

FSCD 2019

30:8 Typed Equivalence of Effect Handlers and Delimited Control

σ ::= . . . | ∆ . τ / ρ

e ::= . . . | shift0 k. e | 〈e|x. e〉
E ::= . . . | 〈E|x. e〉

∆,∆′ ` τ :: T ∆,∆′ ` ρ :: R
∆ ` ∆′ . τ / ρ :: E

n+ 1−free(E)
n−free(〈E|x. e〉)

0−free(E) vc = λ z. 〈E[z]|x. er〉
〈E[shift0 k. e]|x. er〉 7→ e{vc / k}

〈v|x. e〉 7→ e{v / x}

∆,∆′; Γ, k : τ ′→ρτ ` e : τ / ρ′
∆,∆′ ` ρ′ <: ρ ∆ ` τ ′ :: T ∆ ` (∆′ . τ / ρ) · ρ′ :: R

∆; Γ ` shift0 k. e : τ ′ / (∆′ . τ / ρ) · ρ′

∆ ` δ :: ∆′ ∆; Γ ` e : τ ′ / (∆′ . τ / ρ) · δ(ρ) ∆; Γ, x : τ ′ ` er : δ(τ) / δ(ρ)
∆; Γ ` 〈e|x. er〉 : δ(τ) / δ(ρ)

Figure 8 Calculus of shift0/reset.

calculus, parts of the type and row captured as an effect by the reset may be abstracted:
thus, both τ and ρ in an effect specification might depend on type variables bound by ∆
– by the typing rule in Figure 8 we would have τr = δ(τ), and likewise for ρ. This can be
intuitively understood as akin to existential quantification: the are concrete types known to
a reset are abstracted within its body, but they are not revealed to the shifts within, which
thus have to treat them parametrically, somewhat like an unpack operation.

This novel feature of the system should make us wonder if it is ever practical, particularly
so given the long history of delimited control operators – and we believe it is. As an
example, imagine a library that implements simple exceptions, with the signature given as
two functions, throw : ∀α :: T . unit→εα and try : ∀α :: T . (unit→εα)→α→α,2 for some, as
yet unknown, effect ε. Can we express such a library using shift0 and reset and, if so, what
is the definition of ε? Clearly, throw needs to capture the context and discard it, and try
should delimit the context – but how can throw procure the result it should return? In fact,
it cannot produce such a result directly, since at definition site the type of the result is
unknown – indeed, throw can (and should) be used in multiple contexts, where the return
types expected by try are different.

This is where parametricity comes in. We can have throw capture the context and
return an identity function, which will return whatever value the enclosing try would feed it,
giving us throw () 4= shift0 _. λx. x, which matches the signature given ε 4= α :: T . α→α / ι.
Similarly, we have try th v 4= 〈th ()|x. λ_. x〉 v, which also matches its signature with the
given definition of ε. This simple example shows that this novel form of polymorphism gives us
a certain separation of concerns, where the programmer may write effectful library functions
and eliminate them using other constructs that insert reset delimiters in the appropriate
places, instantiating the polymorphic effect at the same time.

2 The second argument of try denotes the result of the entire expression if the exception was raised; this
example could clearly be generalised, but as an illustration it is sufficient.

M. Piróg, P. Polesiuk, and F. Sieczkowski 30:9

Jshift0 k. eKDH 4= do (λ k. JeKDH)

J〈e|x. er〉KDH 4= handle JeKDH {x, r. x r; x. JerKDH}

J∆ . τ / ρKDH 4= α :: T .
(
∀∆ . (α→JρKDHJτKDH)→JρKDHJτKDH)

⇒α

Figure 9 Shift0 as deep handlers.

Note that our calculus has additional constructs over the usual presentations of shift0 and
reset. In particular, we have the return clause in resets and the lift operator inherited from
the core calculus. However, these constructs can be both macro-expressed in the standard
setting for well-typed programs: the former was shown by Materzok and Biernacki [16], while
the latter is definable as [e] 4= shift0 k. k e.

Like with the deep handlers, we use progress and preservation lemmas to obtain the
following soundness theorem:

I Theorem 2. If ·; · ` e : τ / ι and e→∗ e′ 6→ in the calculus of shift0 and reset, then there
exists a value v such that e′ = v and ·; · ` v : τ / ι.

3.3 Typed Correspondence
We show the typed correspondence of the calculi presented in previous sections by presenting
two local syntax-directed translations between calculi and showing that they preserve types
and semantics. The translations of expressions are simple adaptations of those of Forster et
al. [8], but the novel parts are translations of types and identifying which kind of polymorphism
is required to obtain type preservation.

The translation from the calculus of shift0 to deep handlers is shown in Figure 9. We
only show translations of those parts of the language which need to be “macro expanded”,
i.e., the control constructs shift0 k. e and 〈e|x. er〉 at the level of expressions and the single
effects at the level of types. For other constructs the translation behaves homomorphically:
λ-abstraction is translated to a λ-abstraction, application to an application, etc.

The control operator shift0 performs en effect, so it is translated to do operation. The
body of shift0 operator is expressed as a λ-abstraction and then passed as an argument to
the operation, while a handler is responsible for providing the captured continuation. Indeed,
the translation of reset follows this protocol: reset is turned into a handler which applies an
argument of operation directly to the resumption.

In order to explain the translation of single effects, consider the following example. The
expression 〈E[shift0 k. e]|x. er〉 of type τ0 where E is a 0-free evaluation context, will be
translated into

handle (JEKDH[do (λ k. JeKDH)]) {x, r. x r; x. JerKDH},

so the effect handled by this handler should have the shape ((τ ′→ρτ)→ρτ)⇒τ ′ where
τ = Jτ0KDH and τ ′ is a translation of the type of shift0 k. e expression. The main difficulty
of assigning types to this translation is that type τ ′ is not known by the handler, and can be
different for any of the shift0 constructs, potentially even within the same reset: type τ ′ in a
typing rule of shift0 does not occur in the effect. To solve this problem we use polymorphic
effects and quantify over all possible τ ′ in the translated effect: thus, the result has the shape
of α :: T . ((α→ρτ)→ρτ)⇒α.

FSCD 2019

30:10 Typed Equivalence of Effect Handlers and Delimited Control

Jdo vKDD 4= shift0 k. λh. h JvKDD (λx. k x h)

Jhandle e {x, r. eh; x. er}KDD 4= 〈JeKDD|x. λh. JerKDD〉 (λx. λ r. JehKDD)

J∆ . τ1⇒τ2KDD 4= α :: T, β :: R .
(
(∀∆ . Jτ1KDD→(Jτ2KDD→βα)→βα)→βα

)
/ β

Figure 10 Deep handlers as shift0.

Polymorphic variables of the delimited-control effect (bound by ∆), behave, intuitively,
as if they were existentially quantified, so they cannot be directly translated as polymorphic
variables of the algebraic effect, which behave akin to universal quantification. Therefore, we
express them as a chain of universal quantifiers on the left-hand-side of an arrow type: thus,
the body of shift0 is polymorphic in ∆.

The translation preserves types and semantics, which is expressed by the following
theorems.

I Theorem 3. If ∆; Γ ` e : τ / ρ in the calculus of shift0, then ∆; JΓKDH ` JeKDH : JτKDH /

JρKDH in the calculus of deep handlers.

I Theorem 4 (after Forster et al.). If e→ e′ in the calculus of shift0, then in the calculus of
deep handlers we have JeKDH →+ Je′KDH.

The translation in the opposite direction is shown in Figure 10 and is slightly more
complex. When the do v construct is reduced in the source language, the control is passed
to the handler. After the translation, the shift0 operator needs to somehow obtain the code
that “handles” the operation: thus, the body of shift0 immediately returns a λ-abstraction
which expects the translated code of the handler as an argument. Therefore, the translation
of the handler is itself more involved: it is translated into a reset applied to the body of the
handler, itself expressed as a function.

Since the translation of a handler is not just a reset, but a reset applied to an argument,
we have to take care about this argument in two places. First, the return clause of a
handler is translated into a λ-abstraction which throws away the handler code. Secondly, the
continuation k captured by the shift0 in the translation of do contains the reset, but does not
contain the handler code. So the resumption passed to the h is not just k, but λx. k x h.

The type part of the translation of an effect ∆ . τ1⇒τ2 is the type of a reset in the
translation of a handler. This reset is a function which expects the translated handler
clause of type ∀∆ . Jτ1KDD→(Jτ2KDD→βα)→βα and returns α, where α is a type of the
entire translated handler expression. The type α and the effect β of translated handler
expression are not known at the site where do is performed, so we quantify over them in the
translated effect, similarly to the previous translation. Now we can show that the translation
preserves types.

I Theorem 5. If ∆; Γ ` e : τ / ρ holds in the calculus of deep handlers, then ∆; JΓKDD `
JeKDD : JτKDD / JρKDD holds in the calculus of shift0.

As noted by Forster et al., we cannot obtain a direct analogue of Theorem 4. Instead, we
let →i be a relation on expressions in target calculus, defined by the following rule

e1 7→ e2

C[e1]→i C[e2]
,

M. Piróg, P. Polesiuk, and F. Sieczkowski 30:11

where C is a general context with one hole, not necessarily in the evaluation position, and
obtain the following theorem.

I Theorem 6 (after Forster et al.). If e → e′ holds in the calculus of deep handlers, then
JeKDD →+

i Je′KDD.

4 Shallow Effect Handlers and Delimited Control

We now turn to the calculi of shallow handlers and control0. While these flavours of operators
are arguably less popular than those studied in the previous section, they are nonetheless
an interesting part of the spectrum of user-defined control operators. In the following, we
formally capture the inter-expressibility of these two forms of delimited control, and comment
on the differences with respect to the translations and results obtained in the case of deep
handlers and shift0.

4.1 Shallow Handler Calculus
Much like in the case of deep handlers, the calculus of shallow handlers is given in Figure 11.
These handlers do not differ syntactically from their deep counterparts: the only difference
lies within their semantics.

The operational semantics proceeds in a fashion that is very similar to the deep handlers:
a do operation matches an enclosing handler using a freeness judgment, and both the value,
and the captured continuation are passed to the handler. The only difference is that the
captured continuation does not contain the handler itself – rather, only the evaluation context
within the handler is captured. This lack of replication is often intuitively explained via the
analogy to the case analysis and recursors, with the deep handlers’ replication of the context
making them behave in a more fold-like fashion [10].

Much like in the case of deep handlers, the calculus has a single effect constructor that
denotes the type of the do operation. However, in addition to the polymorphic quantification
that we have already seen in the previous section, this effect is recursive: it is prefixed with a
form µα, which binds α in the body of the effect as an effect-kinded variable. In both typing
rules, when we access the “input” and “output” types of the effect, we substitute the entire
effect for α in their body, thus effectively performing a single unfolding of the recursive effect.
The only other difference with respect to the type system for the deep handlers lies in the
type of the resumption in the rule for handle: since the resumption does not contain the
handler, its return type is τ rather than τr, and it may still perform the same effect ε.

While recursive effect declarations abound in the literature, we are unaware of a prior
formulation where the recursion is entirely confined to the type level, without making any
appearance at the expression level. Note also that, much like polymorphic effects, the
recursive effects are not necessary to establish soundness of the type system: we use them to
establish inter-expressibility with the calculus of control0.

As with the previous calculi, we prove type soundness via progress and preservation:

I Theorem 7. If ·; · ` e : τ / ι and e→∗ e′ 6→ in the calculus of shallow handlers, then there
exists a value v such that e′ = v and ·; · ` v : τ / ι.

4.2 The control0 Delimited Control Calculus
Finally, we turn to the last of our calculi, the delimited control calculus of control0, presented
in Figure 12. Much like the difference between deep and shallow handlers, the differences
between various delimited control operators are rather subtle. The common intuition refers to

FSCD 2019

30:12 Typed Equivalence of Effect Handlers and Delimited Control

σ ::= . . . | µα . ∆ . τ1⇒τ2

e ::= . . . | do v | handle e {x, r. e; x. e}
E ::= . . . | handle E {x, r. e; x. e}

∆, α :: E,∆′ ` τ1 :: T
∆, α :: E,∆′ ` τ2 :: T

∆ ` µα . ∆′ . τ1⇒τ2 :: E

n+ 1−free(E)
n−free(handle E {x, r. eh; x. er})

0−free(E)
handle E[do v] {x, r. eh; x. er} 7→ eh{v / x}{λ z. E[z] / r}

handle v {x, r. eh; x. er} 7→ er{v / x}

ε = µα . ∆′ . τ1⇒τ2 δ′ = δ[α 7→ ε]
∆; Γ ` v : δ′(τ1) / ι ∆ ` δ :: ∆′ ∆ ` ε :: E

∆; Γ ` do v : δ′(τ2) / ε

ε = µα . ∆′ . τ1⇒τ2 ∆; Γ ` e : τ / ε · ρ ∆; Γ, x : τ ` er : τr / ρ
∆,∆′; Γ, x : τ1{ε /α}, r : τ2{ε /α}→ε·ρτ ` eh : τr / ρ

∆; Γ ` handle e {x, r. eh; x. er} : τr / ρ

Figure 11 Calculus of shallow handlers with recursive effects.

the treatment of the reset delimiters – see the account of Shan [19] for the complete picture,
including shift and control. In our formulation, we keep the same shape of delimiters equipped
with “return” clauses that we used with shift0, and the control operator has an analogous
form, while the operational semantics changes in the standard way, by not wrapping the
captured continuation with delimiter.

The effect constructor for this calculus is the most complex of the ones we consider. In
addition to the quantified variables (three, in this case: two types and a row) and the effect
being recursive, like the one introduced for shallow effects, the underlying structure also
contains an additional type. This is due to the mismatch between the return type of the
continuation and the type of the expression under the control0 operator: mirroring the case
of shallow effects, this is caused by the fact that the captured continuation discards the
return clause of the delimiter. Thus, leaving out the polymorphic quantifiers, in an effect
τ1 ⇒ τ2 / ρ we have τ1 as the type of the expression within the delimiter and the return type
of the captured continuation, while τ2 as the type of the return clause in the delimiter and
the type of the expression under the control0 operator.

As with the previous calculi, we prove type soundness via progress and preservation:

I Theorem 8. If ·; · ` e : τ / ι and e →∗ e′ 6→ in the calculus of control0 and reset, then
there exists a value v such that e′ = v and ·; · ` v : τ / ι.

4.3 Typed Correspondence
The translation from the control0 calculus to shallow handlers is presented in Figure 13.
Note that the translation on expressions is precisely analogous to the case of shift0 and
deep handlers.

M. Piróg, P. Polesiuk, and F. Sieczkowski 30:13

σ ::= . . . | µα . ∆ . τ ⇒ τ / ρ

e ::= . . . | control0 k. e | 〈e|x. e〉
E ::= . . . | 〈E|x. e〉

∆, α :: E,∆′ ` τ1 :: T
∆, α :: E,∆′ ` τ2 :: T
∆, α :: E,∆′ ` ρ :: R

∆ ` µα . ∆′ . τ1 ⇒ τ2 / ρ :: E

n+ 1−free(E)
n−free(〈E|x. e〉)

0−free(E)
〈E[control0 k. e]|x. er〉 7→ e{λ z. E[z] / k}

〈v|x. e〉 7→ e{v / x}

ε = µα . ∆′ . τ1 ⇒ τ2 / ρ ∆,∆′; Γ, k : τ ′→ε·ρ{ε /α}τ1{ε /α} ` e : τ2{ε /α} / ρ′

∆,∆′ ` ρ′ <: ρ ∆ ` τ ′ :: T ∆ ` ε · ρ′ :: R
∆; Γ ` control0 k. e : τ ′ / ε · ρ′

ε = µα . ∆′ . τ1 ⇒ τ2 / ρ δ′ = δ[α 7→ ε] τe = δ′(τ1) τr = δ′(τ2)
ρr = δ′(ρ) ∆ ` δ :: ∆′ ∆; Γ ` e : τe / ε · ρr ∆; Γ, x : τe ` er : τr / ρr

∆; Γ ` 〈e|x. er〉 : τr / ρr

Figure 12 Calculus of control0 with recursive and polymorphic effects.

The new elements appear in the translation of the effect constructor. Like before, an
effect τ1 ⇒ τ2 / ρ after translation has the shape β :: T . ((β→ρc

τ ′1)→ρ′τ ′2)⇒β, where
the ρc is a translated row of effects of the captured continuation. However, in this case
the captured continuation does not contain the delimiter, so ρc is a nonempty row that
contains the entire translated effect in its head position: this is why we need recursive
effects to type-check the translated expressions. Now, the translated effect has the form
µα . β :: T . ((β→α·ρ′τ ′1)→ρ′τ ′2)⇒β. The translation of polymorphic variables of an effect is
analogous to what we have seen in the case of “deep” control, with variables quantifiers of
the effect turning into universal quantifiers in proper types.

We show the following theorems, which say that the translation preserves both types
and semantics.

I Theorem 9. If ∆; Γ ` e : τ / ρ in the calculus of control0, then ∆; JΓKSH ` JeKSH : JτKDH /

JρKSH in the calculus of shallow handlers.

I Theorem 10. If e→ e′ in the calculus of control0, then in the calculus of shallow handlers
we have JeKSH →+ Je′KSH.

The translation from shallow handlers to the control0 calculus is shown in Figure 14. The
translation for expressions is almost the same as for the deep case with one minor difference:
the continuation captured by control0 does not contain a delimiter, so it can be directly
passed as a resumption to a handler code. The translation also requires recursive effects, for
the same reasons as the translation in the other direction.

The translation preserves types and reduction semantics, as we show in the following
theorems.

FSCD 2019

30:14 Typed Equivalence of Effect Handlers and Delimited Control

Jcontrol0 k. eKSH 4= do λ k. JeKSH

J〈e|x. er〉KSH 4= handle JeKSH {x, r. x r; x. JerKSH}

Jµα . ∆ . τ1 ⇒ τ2 / ρKSH 4= µα . β :: T .
(
∀∆ . (β→α·JρKSHJτ1KSH)→JρKSHJτ2KSH)

⇒β

Figure 13 The control0 calculus via shallow handlers.

Jdo vKSD 4= control0 k. λh. h JvKSD k

Jhandle e {x, r. eh; x. er}KSD 4= 〈JeKSD|x. λh. JerKSD〉 (λx, r. JehKSD)

Jµα . ∆ . τ1⇒τ2KSD 4=
µα . β1 :: T, β2 :: T, γ :: R . β1 ⇒

(
∀∆ . Jτ1KSD→(Jτ2KSD→α·γβ1)→γβ2

)
→γβ2 / γ

Figure 14 Shallow handlers as shallow delimited control.

I Theorem 11. If ∆; Γ ` e : τ / ρ in the calculus of shallow handlers, then ∆; JΓKSD `
JeKSD : JτKSD / JρKSD in the calculus of control0.

I Theorem 12. If e→ e′ in the calculus of shallow handlers, then in the calculus of control0
we have JeKSD →+ Je′KSD.

Since we do not modify the captured continuation before passing it as a resumption, we are
able to prove Theorem 12 for a reduction in evaluation contexts instead of general contexts.

5 Discussion and Further Work

We have shown how the untyped correspondence between deep effect handlers and shift0,
known from prior work can be extended to the typed setting, given an appropriately expressive
type system. In the process, we have identified a novel type system for the shift0/reset
calculus, in which the shift expressions are parametric in the type and effect. To our
knowledge, such a system has not been considered before in the extensive literature on
delimited control operators, although further work is necessary to explore the relation of our
system to those presently found in literature – one aspect to consider would certainly be
answer-type modification.

At the same time, we believe it is useful to contrast the parametric shift0, which remains
rather difficult to grasp, to the apparently natural move to polymorphic effect handlers,
which indeed have been considered before. We feel that the fact that the effect handlers
give an interpretation to the control effect at the delimiter, rather than at the capture point
– which causes the translations studied in this paper to have to “invert” the direction of
control – may be the reason behind the recent surge in popularity of effect handlers as the
main control abstraction provided by a language, while delimited control operators have
been, throughout their history, somewhat of a niche interest.

M. Piróg, P. Polesiuk, and F. Sieczkowski 30:15

We have also adapted the translations, for both terms and types, to the shallow handlers
and a control0/reset calculus. While the translation for terms is barely different from the
case for deep handlers and shift0, the type systems that are required in order to achieve
inter-expressibility evidence the folklore notion that shallow handlers are “case-like” (while
the deep variant behaves “fold-like”): thus the need for explicit recursion within the effects.

Finally, since we work within a common type-and-effect system with effect rows, we
managed to extend the calculi with both a simple notion of subeffecting and a variant of
Biernacki et al.’s lift operator that allows “masking” effects at the front of the effect row
without any effect on the complexity of the translation.

While this work resolves a conjecture of Forster et al. [8], there remains a wide array of
topics for future work. The most obvious line of work that we chose not to pursue at this
point is answer-type modification [1, 12], which is a common feature of type systems for
delimited control operators. Whether it can be reconciled with the polymorphic effects of our
calculi remains to be investigated: if so, it is certainly interesting to see how it would translate
to the effect handler calculi. Relating our type systems to the monadic representation is
another aspect that would require further attention.

References

1 Kenichi Asai. On typing delimited continuations: three new solutions to the printf
problem. Higher-Order and Symbolic Computation, 22(3):275–291, 2009. doi:10.1007/
s10990-009-9049-5.

2 Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Handle with care:
relational interpretation of algebraic effects and handlers. PACMPL, 2(POPL):8:1–8:30, 2018.
doi:10.1145/3158096.

3 Olivier Danvy. An analytical approach to programs as data objects. DSc thesis, Department
of Computer Science, Aarhus University, 11, 2006.

4 Olivier Danvy and Andrzej Filinski. Abstracting Control. In LISP and Functional Programming,
pages 151–160, 1990. doi:10.1145/91556.91622.

5 Matthias Felleisen. The Theory and Practice of First-Class Prompts. In Conference Record of
the Fifteenth Annual ACM Symposium on Principles of Programming Languages, San Diego,
California, USA, January 10-13, 1988, pages 180–190, 1988. doi:10.1145/73560.73576.

6 Matthias Felleisen. On the Expressive Power of Programming Languages. Sci. Comput.
Program., 17(1-3):35–75, 1991. doi:10.1016/0167-6423(91)90036-W.

7 Matthias Felleisen and Daniel P. Friedman. A Reduction Semantics for Imperative Higher-
Order Languages. In PARLE, Parallel Architectures and Languages Europe, Volume II: Parallel
Languages, Eindhoven, The Netherlands, June 15-19, 1987, Proceedings, pages 206–223, 1987.
doi:10.1007/3-540-17945-3_12.

8 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power
of user-defined effects: effect handlers, monadic reflection, delimited control. PACMPL,
1(ICFP):13:1–13:29, 2017. doi:10.1145/3110257.

9 Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, New York, NY, USA, 2nd edition, 2016.

10 Daniel Hillerström and Sam Lindley. Shallow Effect Handlers. In Programming Languages
and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6,
2018, Proceedings, pages 415–435, 2018. doi:10.1007/978-3-030-02768-1_22.

11 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September
25 - 27, 2013, pages 145–158, 2013. doi:10.1145/2500365.2500590.

FSCD 2019

http://dx.doi.org/10.1007/s10990-009-9049-5
http://dx.doi.org/10.1007/s10990-009-9049-5
http://dx.doi.org/10.1145/3158096
http://dx.doi.org/10.1145/91556.91622
http://dx.doi.org/10.1145/73560.73576
http://dx.doi.org/10.1016/0167-6423(91)90036-W
http://dx.doi.org/10.1007/3-540-17945-3_12
http://dx.doi.org/10.1145/3110257
http://dx.doi.org/10.1007/978-3-030-02768-1_22
http://dx.doi.org/10.1145/2500365.2500590

30:16 Typed Equivalence of Effect Handlers and Delimited Control

12 Ikuo Kobori, Yukiyoshi Kameyama, and Oleg Kiselyov. Answer-Type Modification without
Tears: Prompt-Passing Style Translation for Typed Delimited-Control Operators. In Proceed-
ings of the Workshop on Continuations, WoC 2016, London, UK, April 12th 2015., pages
36–52, 2015. doi:10.4204/EPTCS.212.3.

13 Daan Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 486–499, 2017. URL: http://dl.acm.org/citation.cfm?
id=3009872.

14 Sam Lindley and James Cheney. Row-based effect types for database integration. In Proceedings
of TLDI 2012: The Seventh ACM SIGPLAN Workshop on Types in Languages Design and
Implementation, Philadelphia, PA, USA, Saturday, January 28, 2012, pages 91–102, 2012.
doi:10.1145/2103786.2103798.

15 John M. Lucassen and David K. Gifford. Polymorphic Effect Systems. In Conference Record
of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, San Diego,
California, USA, January 10-13, 1988, pages 47–57, 1988. doi:10.1145/73560.73564.

16 Marek Materzok and Dariusz Biernacki. A Dynamic Interpretation of the CPS Hierarchy. In
Programming Languages and Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan,
December 11-13, 2012. Proceedings, pages 296–311, 2012. doi:10.1007/978-3-642-35182-2_
21.

17 Eugenio Moggi. Computational Lambda-Calculus and Monads. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science (LICS ’89), Pacific Grove, California, USA,
June 5-8, 1989, pages 14–23, 1989. doi:10.1109/LICS.1989.39155.

18 Gordon D. Plotkin and Matija Pretnar. Handling Algebraic Effects. Logical Methods in
Computer Science, 9(4), 2013. doi:10.2168/LMCS-9(4:23)2013.

19 Chung-chieh Shan. A static simulation of dynamic delimited control. Higher-Order and
Symbolic Computation, 20(4):371–401, 2007. doi:10.1007/s10990-007-9010-4.

20 Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Discipline. Inf. Comput.,
111(2):245–296, 1994. doi:10.1006/inco.1994.1046.

21 Philip Wadler. Comprehending Monads. In LISP and Functional Programming, pages 61–78,
1990. doi:10.1145/91556.91592.

22 Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.

23 Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors. In
Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, New Orleans, Louisisana, USA, January 15-17, 2003, pages 224–235,
2003. doi:10.1145/640128.604150.

http://dx.doi.org/10.4204/EPTCS.212.3
http://dl.acm.org/citation.cfm?id=3009872
http://dl.acm.org/citation.cfm?id=3009872
http://dx.doi.org/10.1145/2103786.2103798
http://dx.doi.org/10.1145/73560.73564
http://dx.doi.org/10.1007/978-3-642-35182-2_21
http://dx.doi.org/10.1007/978-3-642-35182-2_21
http://dx.doi.org/10.1109/LICS.1989.39155
http://dx.doi.org/10.2168/LMCS-9(4:23)2013
http://dx.doi.org/10.1007/s10990-007-9010-4
http://dx.doi.org/10.1006/inco.1994.1046
http://dx.doi.org/10.1145/91556.91592
http://dx.doi.org/10.1006/inco.1994.1093
http://dx.doi.org/10.1145/640128.604150

Cubical Syntax for Reflection-Free Extensional
Equality
Jonathan Sterling
Carnegie Mellon University, Pittsburgh, USA
http://cs.cmu.edu/~jmsterli
jmsterli@cs.cmu.edu

Carlo Angiuli
Carnegie Mellon University, Pittsburgh, USA
http://cs.cmu.edu/~cangiuli
cangiuli@cs.cmu.edu

Daniel Gratzer
Aarhus University, Denmark
http://jozefg.github.io
gratzer@cs.au.dk

Abstract

We contribute XTT, a cubical reconstruction of Observational Type Theory [7] which extends Martin-
Löf’s intensional type theory with a dependent equality type that enjoys function extensionality
and a judgmental version of the unicity of identity proofs principle (UIP): any two elements of the
same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can
be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using
a novel extension of the logical families or categorical gluing argument inspired by Coquand and
Shulman [27, 48]: every closed element of boolean type is derivably equal to either true or false.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Algebraic semantics; Theory of computation → Denotational semantics

Keywords and phrases Dependent type theory, extensional equality, cubical type theory, categorical
gluing, canonicity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.31

Related Version An extended version is available at https://arxiv.org/abs/1904.08562.

Funding The authors gratefully acknowledge the support of the Air Force Office of Scientific Research
through MURI grant FA9550-15-1-0053. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of
the AFOSR.

Acknowledgements We thank Lars Birkedal, Evan Cavallo, David Thrane Christiansen, Thierry
Coquand, Kuen-Bang Hou (Favonia), Marcelo Fiore, Jonas Frey, Krzysztof Kapulkin, András Kovács,
Dan Licata, Conor McBride, Darin Morrison, Anders Mörtberg, Michael Shulman, Bas Spitters, and
Thomas Streicher for helpful conversations about extensional equality, algebraic type theory, and
categorical gluing. We thank our anonymous reviewers for their insightful comments, and especially
thank Robert Harper for valuable conversations throughout the development of this work. We
also thank Paul Taylor for his diagrams package, which we have used to typeset the commutative
diagrams in this paper.

© Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 31; pp. 31:1–31:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0585-5564
http://cs.cmu.edu/~jmsterli
mailto:jmsterli@cs.cmu.edu
https://orcid.org/0000-0002-9590-3303
http://cs.cmu.edu/~cangiuli
mailto:cangiuli@cs.cmu.edu
https://orcid.org/0000-0003-1944-0789
http://jozefg.github.io
mailto:gratzer@cs.au.dk
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
https://arxiv.org/abs/1904.08562
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Cubical Syntax for Reflection-Free Extensional Equality

1 Introduction

The past fifty years of constructive type theory can be summed up as the search for a scientific
understanding of equality, punctuated by moments of qualitative change in our perception
of the boundary between semantics (actual construction) and syntax (proof theory) from a
type-theoretic point of view. Computation is critical to both the semantics and syntax of
type theory – from Martin-Löf’s meaning explanations [43], supplying type theory with its
direct semantics and intuitionistic grounding, to syntactic properties such as closed and open
canonicity which establish computation as the indispensible method for deriving equations.

For too long, a limiting perspective on extensional type theory has prevailed, casting
it as a particular syntactic artifact (for instance, the formalism obtained by stripping of
their meaning the rules which incidentally appear in Martin-Löf’s monograph [43]), a formal
system which enjoys precious few desirable syntactic properties and is distinguished primarily
by its equality reflection rule.

We insist on the contrary that the importance of extensional type theory lies not in the
specific choice of syntactic presentation (historically, via equality reflection), but rather in
the semantic characteristics of its equality connective, which are invariant under choice of
syntax. The specifics of how such an equality construct is presented syntactically are entirely
negotiable (the internal language of a doctrine is determined only up to equivalence), and
therefore has an empirical component.

1.1 Internalizing equality: from judgments to types
Equality in type theory begins with a form of judgment Γ ` A = B type, which expresses
that A and B are exactly the same type; because types can depend on terms, one also
includes a form of judgment Γ `M = N : A to express that M and N are exactly the same
element of A. This kind of equality, called judgmental equality, is silent in the sense that if
Γ ` A = B type holds and Γ `M : A holds, then Γ `M : B without further ado.

Judgmental equality in type theory is a completely top-level affair: it cannot be assumed
or negated. On the other hand, both programming and mathematics require one to establish
equations under the assumption of other equations (for instance, as part of an induction
hypothesis). For this reason, it is necessary to internalize the judgmental equalityM = N : A
as a type EqA(M,N) which can be assumed, negated, or inhabited by induction.

The simplest way to internalize judgmental equality as a type is to provide introduction
and elimination rules which make the existence of a proof of EqA(M,N) equivalent to the
judgment M = N : A:

introduction
Γ `M = N : A

Γ ` refl : EqA(M,N)

elimination
Γ ` P : EqA(M,N)

Γ `M = N : A

The elimination rule above is usually called equality reflection, and is characteristic of
extensional versions of Martin-Löf’s type theory. This presentation of the equality type is
very strong, and broadens the reach of judgmental equality into assertions of higher-level.

A consequence of the equality reflection rule is that judgmental equality is no longer
decidable, a pragmatic concern which affects implementation and usability. On the other
hand, equality reflection implies numerous critical reasoning principles, including function
extensionality (if two functions agree on all inputs, then they are equal), a judgmental version
of the famous unicity of identity proofs (UIP) principle (any two elements of the equality
type are equal), and perhaps the most crucial consequence of internalized equality, coercion
(if M : P (a0) and P : EqA(a0, a1), then there is some term P ∗(M) : P (a1); in this case,
P ∗(M) = M).

J. Sterling, C. Angiuli, and D. Gratzer 31:3

1.2 Extensional equality via equality reflection
The earliest type-theoretic proof assistants employed the equality reflection rule (or equivalent
formulations) in order to internalize the judgmental equality, a method most famously
represented by Nuprl [25] and its descendents, including RedPRL [10]. The Nuprl-style
formalisms act as a “window on the truth” for a single intended semantics inspired by Martin-
Löf’s computational meaning explanations [2]; semantic justification in the computational
ontology is the only consideration when extending the Nuprl formalism with a new rule, in
contrast to other traditions in which global properties (e.g. admissibility of structural rules,
decidability of typing, interpretability in multiple models, etc.) are treated as definitive.

Rather than supporting type checking, proof assistants in this style rely heavily on
interactive development of typing derivations using tactics and partial decision procedures.
A notable aspect of the Nuprl family is that their formal sequents range not over typed
terms (proofs), but over untyped raw terms (realizers); a consequence is that during the
proof process, one must repeatedly establish numerous type functionality subgoals, which
restore the information that is lost when passing from a proof to a realizer. To mitigate the
corresponding blow-up in proof size, Nuprl relies heavily on untyped computational reasoning
via pointwise functionality, a non-standard semantics for dependently typed sequents which
has some surprising consequences, such as refuting the principle of dependent cut [38].

Another approach to implementing type theory with equality reflection is exemplified in
the experimental Andromeda proof assistant [15], in which proofs are also built interactively
using tactics, but judgments range over abstract proof derivations rather than realizers. This
approach mitigates to some degree the practical problems caused by erasing information
prematurely, and also enables interpretation into a broad class of semantic models.

Although Nuprl/RedPRL and Andromeda illustrate that techniques beyond mere type
checking are profitable to explore, the authors’ experiences building and using RedPRL
for concrete formalization of mathematics underscored the benefits of having a practical
algorithm to check types, particularly in the setting of cubical type theory (Section 1.6),
whose higher-dimensional structure significantly reduces the applicability of Nuprl-style
untyped reasoning.

In particular, whereas it is possible to treat all β-rules and many η-rules in non-cubical
type theory as untyped rewrites, such an approach is unsound for the cubical account of
higher inductive types and univalence [11]; consequently, in RedPRL many β/η rewrites must
emit auxiliary proof obligations. Synthesizing these experiences and challenges led to the
creation of the redtt proof assistant for Cartesian cubical type theory [9].

1.3 Equality in intensional type theory
Martin-Löf’s Intensional Type Theory (ITT) [41, 46] represents another extremal point in
the internalization of judgmental equality. ITT underapproximates the equality judgment
via its identity type, characterized by rules like the following:

formation
Γ ` A type Γ `M : A Γ ` N : A

Γ ` IdA(M,N) type

introduction
Γ `M : A

Γ ` reflA(M) : IdA(M,M)

elimination
Γ, x : A, y : A, z : IdA(x, y) ` C(x, y, z) type
Γ ` P : IdA(M,N) Γ, x : A ` Q : C(x, x, reflA(x))

Γ ` Jx,y,z.C(P ;x.Q) : C(M,N,P)
· · ·

FSCD 2019

31:4 Cubical Syntax for Reflection-Free Extensional Equality

Symmetry, transitivity and coercion follow from the elimination rule of the identity
type. Other properties which follow directly from equality reflection, such as the unicity
of identity proofs and function extensionality, are not validated by ITT; indeed, there are
sufficiently intensional models of the identity type to refute both properties [52, 33]. While
the desirability of the unicity principle is perhaps up for debate, especially in light of recent
developments in Homotopy Type Theory [55], theorists and practitioners alike generally
agree that function extensionality is desirable.

A significant selling-point for ITT is that, by avoiding equality reflection, it presents a
theory which can be implemented using type checking and normalization. Consequently, β
and η rules are totally automatic and never require intervention from the user – in contrast to
systems like RedPRL, whose users are accustomed to establishing β/η equivalences by hand
at times when heuristical tactics prove inadequate. The downsides of pure ITT, however, are
manifold: function extensionality is absolutely critical in practice.

1.4 Setoids and internal model constructions
A standard technique for avoiding the deficiencies of the identity type in ITT is the setoid
construction [32], an exact completion which glues an equivalence relation =A onto each
type |A| in the spirit of Bishop [16]. When using setoids, a function A → B consists of a
type-theoretic function f : |A| → |B| together with a proof that it preserves the equivalence
relation, f= : (x, y : |A|)→ x =A y → f(x) =B f(y); a dependent setoid (family of setoids)
is a type-theoretic family equipped with a coherent coercion operator.

Setoids are a discipline for expressing internally precisely the extrinsic properties required
for constructions to be extensional (compatible with equality); these extra proof obligations
must be satisfied in parallel with constructions at every turn. The state of affairs for setoids
is essentially analogous to that of proof assistants with equality reflection, in which type
functionality subgoals play a similar role to the auxiliary paperwork generated by setoids.

Paradoxically, however, every construction in ordinary ITT is automatically extensional
in this sense. A solution to the problem of equality in type theory should, unlike setoids,
take advantage of the fact that type theory is already restricted to extensional constructions,
adding to it only enough language to refer to equality internally. This is the approach taken
by both Observational Type Theory and XTT.

1.5 Observational Type Theory
The first systematic solution to the problem of syntax for extensional equality without
equality reflection was Observational Type Theory (OTT) [6, 7], which built on early work by
Altenkirch and McBride [3, 44]. The central idea of OTT is to work with a closed universe of
types, defining by recursion for each pair of types A,B a type Eq(A,B) of proofs that A and
B are equal, and for each pair of elements M : A and N : B, a type of proofs EqA,B(M,N)
that M and N are (heterogeneously) equal. Finally, one defines “generic programs” by
recursion on type structure which calculate coercions and coherences along proofs of equality.

One can think of OTT as equipping the semantic setoid construction with a direct-style
type-theoretic language, and adding to it closed, inductively defined universes of types. The
heterogeneous equality of OTT, initially a simplifying measure adopted from McBride’s
thesis [44], is an early precursor of the dependent paths which appear in Homotopy Type
Theory [55], Cubical Type Theory [24, 8, 11], and XTT.

Recently, McBride and his collaborators have made progress toward a cubical version of
OTT, using a different cube category and coercion structure, in which one coerces only from
0 to 1, and obtains fillers using an affine rescaling operation [23].

J. Sterling, C. Angiuli, and D. Gratzer 31:5

1.6 Cubical Type Theory

In a rather different line of research, Voevodsky showed that Intensional Type Theory is
compatible with a univalence axiom yielding an element of IdU (A,B) for every equivalence
(coherent isomorphism) between types A,B [37, 55]. A univalent universe classifies types
under a certain size cut-off in the sense of higher topos theory [40]. However, Intensional Type
Theory extended with univalence lacks canonicity, because identity elimination computes
only on refl and not on proofs constructed by univalence.

Since then, cubical type theories have been developed to validate univalence without
disrupting canonicity [24, 11]. These type theories extend Martin-Löf’s type theory with
an abstract interval, maps out of which represent paths, a higher-dimensional analogue to
equality; the interval has abstract elements, represented by a new sort of dimension variable i,
and constant endpoints 0, 1. Coercions arise as an instance of Kan structure governed directly
by the structure of paths between types, which are nothing more than types dependent on
an additional dimension variable.

There are currently two major formulations of cubical type theory. De Morgan cubical
type theory [24] equips the interval with negation and binary connection (minimum and
maximum) operations. Cartesian cubical type theory [8, 11], the closest relative of XTT,
has no additional structure on the interval, but equips types with a much stronger notion of
coercion generalizing the one described in Section 2.1.1.

1.7 Our contribution: XTT

We contribute XTT (Appendix A), a new type theory that supports extensional equality
without equality reflection, using ideas from cubical type theory [24, 8, 11]. In particular, we
obtain a compositional account of propositional equality satisfying function extensionality
and a judgmental version of the unicity of identity proofs – when P,Q : EqA(M,N), we have
P = Q judgmentally – enabling us to substantially simplify our Kan operations (Section 2.1.2).
Moreover, XTT is closed under a cumulative hierarchy1 of closed universes à la Russell. We
hope to integrate XTT into the redtt cubical proof assistant [9] as an implementation of
extensional equality in the style of two-level type theory [11].

A common thread that runs through the XTT formalism is the decomposition of constructs
from OTT into more modular, judgmental principles. For instance, rather than defining
equality separately at every type and entangling the connectives, we define equality once
and for all using the interval. Likewise, rather than ensuring that equality proofs are unique
through brute force, we obtain unicity using a structural rule which does not mention the
equality type.

By first developing the model theory of XTT in an algebraic way (Section 3), we then
prove a canonicity theorem for the initial model of XTT (Section 3.2): any closed term of
boolean type is equal to either true or false. This result is obtained using a novel extension
of the categorical gluing technique described by Coquand and Shulman [27, 48]. Canonicity
expresses a form of “computational adequacy” – in essence, that the equational theory of
XTT suffices to derive any equation which ought to hold by (closed) computation – and is one
of many syntactical considerations that experience has shown to be correlated to usability.

1 As in previous work [49], we employ an algebraic version of cumulativity which does not require
subtyping.

FSCD 2019

31:6 Cubical Syntax for Reflection-Free Extensional Equality

(cubes) Ψ,Φ ::= · | Ψ, i | Ψ, ξ
(contexts) Γ,∆ ::= · | Γ, x : A
(dimensions) r, s ::= i | ε
(constant dims.) ε ::= 0 | 1
(constraints) ξ ::= r = r′

(universe levels) k, l ::= n (n ∈ N)
(types) A,B ::= M | (x : A)→ B | (x : A)×B | Eqi.A(M,N) | ⇑l

kA | Uk | bool
(terms) M,N ::= x | A | λx.M | appx:A.B(M,N) | 〈M,N〉 | fstx:A.B(M) | sndx:A.B(M) |

λi.M | appi.A(M, r) | true | false | ifx.A(M ;N0, N1) |
[i.A] ↓r

r′ M | A ↓r
r′ M [s with 0 ↪→ j.N0 | 1 ↪→ j.N1]

Figure 1 A summary of the raw syntax of XTT. As a matter of top-level notation, we freely omit
annotations that can be inferred from context, writing M(N) for appx:A.B(M,N). The annotations
chosen in the raw syntax are the minimal ones required to establish a coherent interpretation into
the initial XTT-algebra; for instance, it is unnecessary to include an annotation on the λ-abstraction.

2 Programming and proving in XTT

Like other cubical type theories, the XTT language extends Martin-Löf’s type theory with a
new sort of variable i ranging over an abstract interval with global elements 0 and 1; we call
an element r of the interval a dimension, and we write ε to range over a constant dimension
0 or 1. Cubical type theories like XTT also use a special kind of hypothesis to constrain the
values of dimensions: when r and s are dimensions, then r = s is a constraint. In XTT, a
single context Ψ accounts for both dimension variables (Ψ, i) and constraints (Ψ, r = s). We
will write Ψ | r dim for when a dimension r is valid in a dimension context Ψ. The judgment
Ψ | r = s dim holds when r and s are equal as dimensions with respect to the constraints in
Ψ. Dimensions can be substituted for dimension variables, an operation written M〈r/i〉.

Finally, ordinary type-theoretic assumptions x : A are kept in a context Γ that depends on
Ψ. In XTT, a full context is therefore written Ψ | Γ. The meaning of a judgment at context
(Ψ, i = r) is completely determined by its instance under the substitution r/i. Under the
false constraint 0 = 1, all judgments hold; the resulting collapse of the typing judgment and
the judgmental equality does not disrupt any important metatheoretic properties, because
the theory of dimensions is decidable.

The general typehood judgment Ψ | Γ ` A typek means that A is a type of universe level
k in context Γ over the cube Ψ; note that this judgment presupposes the well-formedness of
Ψ,Γ. Likewise, the element typing judgment Ψ | Γ `M : A means that M is an element of
the type A in Γ over Ψ as above; this form of judgment presupposes the well-formedness
of A and thence Ψ,Γ. We also have typed judgmental equality Ψ | Γ ` A = B typek and
Ψ | Γ `M = N : A, which presuppose the well-formedness of all their constituents.

Dependent equality types

XTT extends Martin-Löf type theory with dependent equality types Eqi.A(N0, N1) when
Ψ, i | Γ ` A typek and Ψ | Γ ` N0 : A〈0/i〉 and Ψ | Γ ` N1 : A〈1/i〉. Geometrically, elements
of this type are lines or paths in the type A ranging over dimension i, with left endpoint N0
and right endpoint N1.2 This type captures internally the equality of N0 and N1; dependency

2 Our dependent equality types are locally the same as dependent path types Pathi.A(N0, N1) from
cubical type theories; however, we have arranged in XTT for them to satisfy a unicity principle by which

J. Sterling, C. Angiuli, and D. Gratzer 31:7

of A on the dimension i is in essence a cubical reconstruction of heterogeneous equality, albeit
with different properties from the version invented by McBride in his thesis [44].

An element of the equality type Eqi.A(N0, N1) is formed by the dimension λ-abstraction
λi.M , requiring that M is an element of A in the extended context, and that N0, N1 are
the left and right sides of M respectively. Proofs P of equality are eliminated by dimension
application, P (r), and are subject to β, η, ξ rules analogous to those for function types.
Finally, we have P (ε) = Nε always, extending Gentzen’s principle of inversion to the side
condition that we placed on M . More formally:

Ψ, i | Γ `M : A
−−−−−−−−−−−−−−−−−−−⇀
Ψ, i = ε | Γ `M = Nε : A

Ψ | Γ ` λi.M : Eqi.A(N0, N1)

Ψ | r dim
Ψ | Γ `M : Eqi.A(N0, N1)

Ψ | Γ `M(r) : A〈r/i〉
Ψ | Γ `M : Eqi.A(N0, N1)

Ψ | Γ `M(ε) = Nε : A〈ε/i〉

Ψ | Γ `M : Eqi.A(N0, N1)
Ψ | Γ `M = λi.M(i) : Eqi.A(N0, N1)

Ψ, i | Γ `M : A
Ψ | Γ ` (λi.M)(r) = M〈r/i〉 : A〈r/i〉

Function extensionality

A benefit of the cubical formulation of equality types is that the principle of function
extensionality is trivially derivable in a computationally well-behaved way. Suppose that
f, g : (x : A)→ B and we have a family of equalities h : (x : A)→ Eq_.B(f(x), g(x)); then,
we obtain a proof that f equals g by abstraction and application:

λi.λx.h(x)(i) : Eq_.(x:A)→B(f, g)

In semantics of type theory, the structure of equality on a type usually mirrors the
structure of the elements of that type in a straightforward way: for instance, a function of
equations is used to equate two functions, and a pair of equations is used to equate two
pairs. The benefit of the cubical approach is that this observation, at first purely empirical,
is systematized by defining equality in every type in terms of the elements of that type in a
context extended by a dimension.

Judgmental unicity of equality: boundary separation

In keeping with our desire to provide convenient syntax for working with extensional equality,
we want proofs P,Q : Eqi.A(N0, N1) of the same equation to be judgmentally equal. Rather
than adding a rule to that effect, whose justification in the presence of the elimination rules
for equality types would be unclear, we instead impose a more primitive boundary separation
principle at the judgmental level: every term is completely determined by its boundary.3

Ψ | r dim
−−−−−−−−−−−−−−−−−−−⇀
Ψ, r = ε | Γ `M = N : A

Ψ | Γ `M = N : A

In this rule we have abbreviated Ψ, r = 0 | Γ `M = N : A and Ψ, r = 1 | Γ `M = N : A as
−−−−−−−−−−−−−−−−−−−⇀
Ψ, r = ε | Γ `M = N : A. We shall make use of this notation throughout the paper.

they earn the name “equality” rather than “path”.
3 We call this principle “boundary separation” because it turns out to be exactly the fact that the

collections of types and elements, when arranged into presheaves on the category of contexts, are
separated with respect to a certain coverage on this category. We develop this perspective in the
extended version of our paper [50].

FSCD 2019

31:8 Cubical Syntax for Reflection-Free Extensional Equality

We can now derive a rule that (judgmentally) equates all P,Q : Eqi.A(N0, N1).

Proof. If P,Q : Eqi.A(M,N), then to show that P = Q, it suffices to show that λi.P (i) =
λi.Q(i); by the congruence rule for equality abstraction, it suffices to show that P (i) = Q(i)
in the extended context. But by boundary separation, we may pivot on the boundary of i,
and it suffices to show that P (0) = Q(0) and P (1) = Q(1). But these are automatic, because
P and Q are both proofs of Eqi.A(N0, N1), and therefore P (ε) = Q(ε) = Nε. J

In an unpublished note from 2017, Thierry Coquand identifies a class of cubical sets
equivalent to our separated types, calling them “Bishop sets” [26].

2.1 Kan operations: coercion and composition
How does one use a proof of equality? We must have at least a coercion operation which,
given a proof Q : Eq_.Uk

(A,B), coherently transforms elements M : A to elements of B.

2.1.1 Generalized coercion
In XTT, coercion and its coherence are obtained as instances of one general operation: for
any two dimensions r, r′ and a line of types i.C, ifM is an element of C〈r/i〉, then [i.C]↓rr′M
is an element of C〈r′/i〉.

Ψ | r, r′ dim Ψ, i | Γ ` C typek Ψ | Γ `M : C〈r/i〉
Ψ | Γ ` [i.C] ↓rr′ M : C〈r′/i〉

In the case of a proof Q : Eq_.Uk
(A,B) of equality between types, we coerce M : A to the

type B using the instance [i.Q(i)] ↓01 M . But how does M relate to its coercion? Coherence
of coercion demands their equality, although such an equation must relate terms of (formally)
different types; this heterogeneous equality is stated in XTT using a dependent equality type
Eqi.Q(i)(M, [i.Q(i)] ↓01 M). To construct an element of this equality type, we use the same
coercion operator but with a different choice of r, r′; we construct this filler by coercing from
0 to a fresh dimension, obtaining λj.[i.Q(i)] ↓0j M : Eqi.Q(i)(M, [i.Q(i)] ↓01 M):

j.Q(j) 3 M
j.[i.Q(i)]↓0

jM [i.Q(i)] ↓01 M

To see that the filler [i.Q(i)] ↓0j M has the correct boundary with respect to j, we inspect
its instances under the substitutions 0/j, 1/j. First, we observe that the right-hand side
([i.Q(i)] ↓0j M)〈1/j〉 is exactly [i.Q(i)] ↓01 M ; second, we must see that ([i.Q(i)] ↓0j M)〈0/j〉 is
M , bringing us to an important equation that we must impose generally:

Ψ | Γ ` [i.C] ↓rr M = M : C〈r/i〉

How do coercions compute?

In order to ensure that proofs in XTT can be computed to a canonical form, we need to
explain generalized coercion in each type in terms of the elements of that type. To warm up,
we explain how coercion must compute in a non-dependent function type:

[i.A→ B] ↓rr′ M = λx.[i.B] ↓rr′
(
M([i.A] ↓r

′

r x)
)

That is, we abstract a variable x : A〈r′/i〉 and need to obtain an element of type B〈r′/i〉.
By reverse coercion, we obtain [i.A] ↓r′r x : A〈r/i〉; by applying M to this, we obtain an

J. Sterling, C. Angiuli, and D. Gratzer 31:9

element of type B〈r/i〉. Finally, we coerce from r to r′. The version for dependent function
types is not much harder, but requires a filler:

x̃ , λj.[i.A] ↓r
′

j x

[i.(x : A)→ B] ↓rr′ M = λx.[i.B[x̃(i)/x]] ↓rr′ M(x̃(r))

The case for dependent pair types is similar, but without the contravariance:

M̃0 , λj.[i.A] ↓rj fst(M)
[i.(x : A)×B] ↓rr′ M = 〈M̃0(r′), [i.B[M̃0(i)/x]] ↓rr′ snd(M)〉

Coercions for base types (like bool) are uniformly determined by regularity, a rule of XTT
stating that if A is a type which doesn’t vary in the dimension i, then [i.A] ↓rr′ M is just M .
Regularity makes type sense because A〈r/i〉 = A = A〈r′/i〉; semantically, it is more difficult
to justify in the presence of standard universes, and is not known to be compatible with
principles like univalence.4 But XTT is specifically designed to provide a theory of equality
rather than paths, so we do not expect or desire to justify univalence at this level.5

The only difficult case is to define coercion for equality types; at first, we might try to
define [i.Eqj.A(N0, N1)] ↓rr′ P as λj.[i.A] ↓rr′ P (j), but this does not make type-sense: we need
to see that

(
[i.A] ↓rr′ P (j)

)
〈ε/j〉 = Nε, but we only obtain

(
[i.A] ↓rr′ P (j)

)
〈ε/j〉 = [i.A] ↓rr′ Nε,

which is “off by” a coercion. Intuitively, we can solve this problem by specifying what values
a coercion takes under certain substitutions: in this case, N0 under 0/j, and N1 under 1/j.
We call the resulting operation generalized composition.

2.1.2 Generalized composition
For any dimensions r, r′, s and a line of types i.C, if M is an element of C〈r/i〉 and i.N0, i.N1
are lines of elements of C defined respectively on the subcubes (s = 0), (s = 1) such that
Nε〈r/i〉 = M , then [i.C] ↓rr′ M [s with 0 ↪→ i.N0 | 1 ↪→ i.N1] is an element of C〈r′/i〉. This
is called the composite of M with N0, N1 from r to r′, schematically abbreviated [i.C] ↓rr′M
[s with −−−−−−⇀ε ↪→ i.Nε]. As with coercion, when r = r′, we have [i.C]↓rr′M [s with −−−−−−⇀ε ↪→ i.Nε] = M ,
and moreover, if s = ε, we have [i.C] ↓rr′ M [s with −−−−−−⇀ε ↪→ i.Nε] = Nε〈r′/i〉.

Returning to coercion for equality types, we now have exactly what we need:

[i.Eqj.C(N0, N1)] ↓rr′ P = λj.([i.C] ↓rr′ P (j) [j with −−−−−−−⇀ε ↪→ _.Nε])

Next we must explain how the generalized composition operation computes at each
type; in previous works [11], we have seen that it is simpler to instead define generalized
composition in terms of a simpler homogeneous version, in which one composes in a type
C rather than a line of types i.C; we write C ↓rr′ M [s with −−−−−−⇀ε ↪→ j.Nε] for this homogeneous
composition, defining the generalized composition in terms of it as follows:

[i.C] ↓rr′ M [s with −−−−−−⇀ε ↪→ i.Nε] = C〈r′/i〉 ↓rr′ ([i.C] ↓rr′ M) [s with
−−−−−−−−−−−−⇀
ε ↪→ i.[i.C] ↓ir′ Nε]

4 Regularity is proved by Swan to be incompatible with univalent universes assuming that certain standard
techniques are used [53]; however, it is still possible that there is a different way to model univalent
universes with regularity. Awodey constructs a model of intensional type theory without universes in
regular Kan cubical sets [13], using the term normality for what we have called regularity.

5 Indeed, unicity of identity proofs is also incompatible with univalence. XTT is, however, compatible
with a formulation in which it is just one level of a two-level type theory, along the lines of Voevodsky’s
Homotopy Type System, in which the other level would have a univalent notion of path that coexists in
harmony with our notion of equality [56, 11].

FSCD 2019

31:10 Cubical Syntax for Reflection-Free Extensional Equality

Surprisingly, in XTT we do not need to build in any computation rules for homogeneous
composition, because they are completely determined by judgmental boundary separation.
For instance, we can derive a computation rule already for homogeneous composition in
the dependent function type, by observing that the equands have the same boundary with
respect to the dimension j:

(x : A)→ B ↓rr′ M [j with −−−−−−⇀ε ↪→ i.Nε] = λx.B ↓rr′ M(x) [j with −−−−−−⇀ε ↪→ i.Nε]

From homogeneous composition, we obtain symmetry and transitivity for the equality
types. Given P : Eq

.A(M,N), we obtain an element of type Eq_.A(N,M) as follows:

λi.A ↓01 P (0) [i with 0 ↪→ j.P (j) | 1 ↪→ _.P (0)]

Furthermore, given Q : Eq_.A(N,O), we obtain an element of type Eq_.A(M,O) as follows:

λi.A ↓01 P (i) [i with 0 ↪→ _.P (0) | 1 ↪→ j.Q(j)]

I Example 2.1 (Identity type). It is possible to define Martin-Löf’s identity type and its
eliminator, albeit with a much stronger computation rule than is customary.

IdA(M,N) , Eq_.A(M,N) reflA(M) , λ_.M

P̃ , λj.(A ↓0j P (0) [i with 0 ↪→ _.P (0) | 1 ↪→ k.P (k)])
Jx,y,p.C(x,y,p)(P ;x.Q(x)) , [i.C(P (0), P (i), P̃)] ↓01 Q(P (0))

This particular definition of J relies on XTT’s boundary separation rule, but one could
instead define it in a more complicated way without boundary separation. However, that this
construction of the identity type models the computation rule relies crucially on regularity,
which does not hold in other cubical type theories whose path types validate univalence. In
the absence of regularity, one can define an operator with the same type as J but which
satisfies its computation rule only up to a path.

2.2 Closed universes and type-case
In Section 2.1.1, we showed how to calculate coercions [i.C] ↓rr′ M in each type former C. In
previous cubical type theories [24, 11], one could “uncover” all the things that a coercion
must be equal to by reducing according to the rules which inspect the interior of the type
line i.C. While this strategy can be used to establish canonicity for closed terms, it fails to
uncover certain reductions for open terms, a prerequisite for algorithmic type checking.

Specifically, given a variable q : Eq_.Uk
(A0 → B0, A1 → B1), the coercion [i.q(i)] ↓rr′ M is

not necessarily stuck, unlike in other cubical type theories. Suppose that we can find further
proofs QA : Eq_.Uk

(A0, A1) and QB : Eq_.Uk
(B0, B1); in this case, λi.QA(i)→ QB(i) is also

a proof of Eq_.Uk
(A0 → B0, A1 → B1), so by boundary separation it must be equal to q,

and therefore [i.q(i)] ↓rr′ M must be equal to [i.QA(i)→ QB(i)] ↓rr′ M . But the type-directed
reduction rule for coercion applies only to the latter! Generally, to see how to reduce the
first coercion, it seems that we need to be able to “dream up” proofs QA, QB out of thin air,
or determine that they can’t exist, an impossible task.

In XTT, we cut this Gordian knot by ensuring that QA, QB always exist, following the
approach employed in OTT. To invert the equation q into QA and QB , we add an intensional
type-case operator to XTT, committing to a closed and inductive notion of universe by
allowing pattern-matching on types [46]. It is also possible to extend XTT with open and/or
univalent universes which themselves lack boundary separation, as in two-level type theories.

J. Sterling, C. Angiuli, and D. Gratzer 31:11

For illustrative purposes, consider coercion along an equality between dependent function
types. Given q : Eq_.Uk

((x : A0)→ B0, (x : A1)→ B1), we define by type-case the following:

QA , λi.tycase q(i) [ΠAB 7→ A | _ 7→ bool] : Eq_.Uk
(A0, A1)

QB , λi.tycase q(i) [ΠAB 7→ B | _ 7→ λ_.bool] : Eqi.QA(i)→Uk
(λx.B0, λx.B1)

Because of q’s boundary, we are concerned only with the Π branch of the above expressions,
and are free to emit a “dummy” answer in other branches. With QA, QB in hand, we note
that q(i) = (x : QA(i)) → QB(i)(x) using boundary separation; therefore, we are free to
calculate [i.q(i)] ↓rr′ M as follows:

x̃ , λj.[i.QA(i)] ↓r
′

j x

[i.q(i)] ↓rr′ M = λx.[i.QB(i)(x̃(i))] ↓rr′ M(x̃(r))

This lazy style of computing with proofs of equality means, in particular, that coercing
along an equation cannot tell the difference between a postulated axiom and a canonical
proof of equality, making XTT compatible with extension by consistent equational axioms.
I Remark 2.2. One might wonder whether it is possible to tame the use of type-case above
to something compatible with a parametric understanding of types, in which (as in OTT)
one cannot branch on whether or not C is a function type or a pair type, etc. It is likely
that this can be done, but we stress that the fundamental difficulty is not resolved: whether
or not we allow general type-case, we have not escaped the need for type constructors to
be disjoint and injective, which contradicts the role of universes in mathematics as (weak)
classifiers of small families. Future work on XTT and its successors must focus on resolving
this issue, quite apart from any considerations of parametricity.

2.3 Future extensions
Universe of propositions

XTT currently lacks one of the hallmarks of OTT, an extensional universe of proof-irrelevant
propositions. In future work, we intend to extend XTT with a reflective subuniverse Ω of
propositions closed under equality and universal and existential quantification over arbitrary
types, satisfying:

Proof irrelevance. For each proposition Ψ | Γ ` p : Ω, we have Ψ | Γ `M = N : p for all
Ψ | Γ `M,N : p.
Extensionality (univalence). For all Ψ | Γ ` p, q : Ω, we have an element of Eq_.Ω(p, q)
whenever there are functions p→ q and q → p.

The reflection of the propositional subuniverse will take a type Ψ | Γ ` A typek to
a proof-irrelevant proposition Ψ | Γ ` ‖A‖ : Ω, acting as a strict truncation or squash
type [25, 47, 14]. The addition of Ω will allow XTT to be used as a syntax for topos-theoretic
constructions, with Ω playing the role of the subobject classifier.

(Indexed) Quotient Inductive Types

Another natural extension of XTT is the addition of quotient types; already considered as
an extension to OTT by the Epigram Team [18] and more recently by Atkey [12], quotient
types are essential when using type theory for either programming or mathematics. One of
the ideas of Homotopy Type Theory and cubical type theories in particular is to reconstruct
the notion of quotienting by an equivalence relation as a special case of higher inductive

FSCD 2019

31:12 Cubical Syntax for Reflection-Free Extensional Equality

type (HITs), a generalization of ordinary inductive types which allows constructors to target
higher dimensions with a specified partial boundary. When working purely at the level of
sets, as in XTT, these higher inductive types are called quotient inductive types (QITs) [5].

We intend to adapt the work of Cavallo and Harper [22] to a general schema for indexed
quotient inductive types as an extension of XTT. The resulting system would support ordinary
quotients by equivalence relations en passant, and when these equivalence relations are
valued in Ω, one can show that they are effective. Quotient inductive types also enable the
construction of free algebras for infinitary algebraic theories, usually obtained in classical set
theory from the non-constructive axiom of choice [17, 39]. Another application of quotient
inductive types is the definition of a localization functor with respect to a class of maps,
enabling users of the extended XTT to work internally with sheaf subtoposes.

The extension of XTT with quotient inductive types means that we must account for
formal homogeneous composites in QITs which are canonical forms [22, 28]. Ordinarily,
this introduces a severe complicating factor to a canonicity proof, because the notion of
canonical form ceases to be stable under all dimension substitutions [11, 34], but we expect
the proof-relevant cubical logical families technique that we introduce in Section 3 to scale
directly to the case of quotient inductive types without significant change, in contrast with
classical approaches based on partial equivalence relations.

3 Algebraic model theory and canonicity

We have been careful to formulate the XTT language in a (generalized) algebraic way,
obtaining automatically a category of algebras and homomorphisms which is equipped with
an initial object [19, 20, 36]. That this initial object is isomorphic to the model of XTT
obtained by constraining and quotienting its raw syntax under judgmental equality (i.e. the
Lindenbaum–Tarski algebra) is an instance of Voevodsky’s famous Initiality Conjecture [57],
and we do not attempt to prove it here; we merely observe that this result has been established
for several simpler type theories [51, 21].

Working within the category of XTT-algebras enables us to formulate and prove results
like canonicity and normalization for the initial XTT-algebra in an economical manner,
avoiding the usual bureaucratic overhead of reduction relations and partial equivalence
relations, which were the state of the art for type-theoretic metatheory prior to the work of
Shulman [48], Altenkirch and Kaposi [4], and Coquand [27].

Because our algebraic techniques involve defining families over only well-typed terms
already quotiented by judgmental equality, we avoid many of the technical difficulties arising
from working with the raw terms of cubical type theories, including the closure under
“coherent expansion” which is critical to earlier cubical metatheories [11, 34]. Our abstract
gluing-based approach therefore represents a methodological advance in metatheory for
cubical type theories.

I Theorem 3.1 (Canonicity). In the initial XTT-algebra, if · | · ` M : bool, then either
· | · `M = true : bool or · | · `M = false : bool.

Following previous work [49], we employ for our semantics a variant of categories with
families (cwf) [29] which supports a predicative hierarchy of universes à la Russell. A cwf in
our sense begins with a category of contexts C, and a presheaf of types TyC : Ĉ × L; here L is
the category of universe levels, with objects the natural numbers and unique arrows l)k

J. Sterling, C. Angiuli, and D. Gratzer 31:13

if and only if k ≤ l.6 The fiber of the presheaf of types TyC : Ĉ × L at (Γ, k) is written
TykC(Γ), and contains the types in context Γ of universe level k. Reindexing implements
simultaneous substitution γ∗A and universe level shifting ⇑lkA. In our metatheory, we assume
the Grothendieck Universe Axiom, and consequently obtain a transfinite ordinal-indexed
hierarchy of meta-level universes Vk. We impose the requirement that each collection of
types TykC(Γ) is k-small, i.e. TykC(Γ) ∈ Vk.

Next, we require a dependent presheaf of elements ElC :
∫̂

TyC , whose fibers ElC((Γ, k), A)
we write ElC(Γ ` A); to interpret the actions of level lifting on terms properly, we require the
functorial actions ElC(Γ ` A))ElC(Γ ` ⇑lkA) to be identities, strictly equating the fibers
ElC(Γ ` A) and ElC(Γ ` ⇑lkA). The remaining data of a basic cwf is a context comprehension,
which for every context Γ and type A ∈ TykC(Γ) determines an extended context Γ.A with a
weakening substitution Γ.A p

)Γ and a variable term q ∈ ElC(Γ.A ` p∗A).
Next, we specify what further structure is required to make such a cwf into an XTT-

algebra. To represent contexts Ψ semantically, we use the augmented Cartesian cube category
�+, which adjoins to the Cartesian cube category � an initial object; from this, we obtain
equalizers 0 = 1 in addition to the equalizers i = r which exist in �. We then require a split
fibration C u

. �+ with a terminal object, which implements the dependency of contexts Γ
on cubes Ψ and forces appropriate dimension restrictions to exist for contexts, types and
elements. The split fibration induces all the structure necessary to implement dimension
operations; we refer the reader to the extended version of our paper [50] for details. In the
following discussion, we limit ourselves to a few simpler consequences. First, we can apply
dimension substitutions in terms and types, writing ψ‡ΓA to apply ψ in a type A in context
Γ. We can also apply dimension substitutions to contexts, written ψ∗Γ. We write ı̂ for the
dimension substitution which weakens by a dimension variable i. Finally, we write DimC(Γ)
for the set of valid dimensions expressions generated from u(Γ).

I Requirement (Boundary separation in models). In order to enforce boundary separation in
XTT-algebras we require that types and elements over them satisfy a separation property.
In the extended version of our paper [50] we phrase the full condition as a separation
requirement with respect to a particular Grothendieck topology on the category of contexts.
A specific consequence is the familiar boundary separation principle for types: given two
types A,B ∈ TyC(Γ) and a dimension i ∈ u(Γ), if (ε/i)‡A = (ε/i)‡B for each ε ∈ {0, 1} then
A = B.

I Requirement (Coercion in models). An XTT-algebra must also come with a coercion
structure, specifying how generalized coercion is interpreted in each type. For every type
A ∈ TynC (̂ı∗Γ) over Ψ, i, dimensions r, r′ ∈ DimC(Γ), and element M ∈ ElC(Γ ` (r/i)‡ı̂∗ΓA),
we require an element coer r′i.A M ∈ ElC(Γ ` (r′/i)‡ı̂∗ΓA) with the following properties (in
addition to naturality requirements):

Adjacency. If r = r′ then coer r′i.A M = M .
Regularity. If A = ı̂‡ΓA

′ for some A′ ∈ TynC(Γ), then coer r′i.A M = M .
Additional equations in later requirements specify that generalized coercion computes properly
in each connective. Similarly, a model must be equipped with a composition structure which
specifies the interpretation of the composition operator.

Finally, we specify algebraically the data with which such a cwf must be equipped in
order to model all the connectives of XTT (again, details are contained in the extended

6 Observe that L = ωop; reversing arrows allows us to move types from smaller universes to larger ones.

FSCD 2019

31:14 Cubical Syntax for Reflection-Free Extensional Equality

version of our paper [50]); to distinguish the abstract (De Bruijn) syntax of the cwf from the
raw syntax of XTT we use boldface, writing Π(A,B), papp(i.A,M, r) and Uk to correspond
to (x : A) → B, appi.A(M, r) and Uk respectively, etc. We take a moment to specify how
some of the primitives of XTT are translated into requirements on a model.

I Requirement (Dependent equality types in models). An XTT-algebra must model dependent
equality types, which is to say that the following structure is exhibited:

Formation. For each type A ∈ TynC (̂ı∗Γ) and elements
−−−−−−−−−−−−−−−−⇀
Nε ∈ ElC(Γ ` (ε/i)‡A), a type

Eq(i.A,N0, N1) ∈ TynC(Γ).
Introduction. For each M ∈ ElC (̂ı∗Γ ` A), an element plam(i.A,M) ∈ ElC(Γ `
Eq(i.A, (0/i)‡M, (1/i)‡M)).
Elimination. For each M ∈ ElC(Γ ` Eq(i.A,N0, N1)) and r ∈ DimC(Γ), an element
papp(i.A,M, r) ∈ ElC(Γ ` (r/i)‡A) satisfying the equations

−−−−−−−−−−−−−−−−⇀
papp(i.A,M, ε) = Nε.

Computation. For M ∈ ElC (̂ı∗Γ ` A) and r ∈ DimC(Γ), the equation:

papp(i.A,plam(i.A, i.M), r) = (r/i)‡M

Unicity. For M ∈ ElC(Γ ` Eq(i.A,N0, N1)), M = plam(i.A, j.papp(i.̂‡A, ̂‡M, j)).
Level restriction. The following equations:

⇑lkEq(i.A,N0, N1) = Eq(i.⇑lkA,N0, N1) plam(i.⇑lkA,M)r = plam(i.A,M)r

papp(i.⇑lkA,M, r) = papp(i.A,M, r)

Naturality. For ∆ γ
)Γ, the following naturality equations:

γ∗Eq(i.A,N0, N1) = Eq(i.(̂ı+γ)∗A, γ∗N0, γ
∗N1)

γ∗plam(i.A, i.M) = plam(i.(̂ı+γ)∗A, i.(̂ı+γ)∗M)

γ∗papp(i.A,M, r) = papp(i.(̂ı+γ)∗A, γ∗M,γ∗r)

Coercion. When Γ u
. Ψ, j and M ∈ ElC((r/j)∗Γ ` (r/j)‡Eq(i.A,N0, N1)) where

Ψ | r, r′ dim, we require that coer r′j.Eq(i.A,N0,N1)M equals the following abstraction:

plam(i.(r′/j)‡A, i.comr r′
j.A papp(i.(r/j)‡A, ı̂‡M, i) [i with

−−−−−−−⇀
ε ↪→ j.̂‡Nε])

Any model of extensional type theory can be used to construct a model of XTT, so long
as it is equipped with a cumulative, inductively defined hierarchy of universes closed under
dependent function types, dependent pair types, extensional equality types and booleans.
(Meaning explanations in the style of Martin-Löf [43] are one such model.) The interpretation
of XTT into extensional models involves erasing dimensions, coercions, and compositions; the
only subtlety, easily managed, is to ensure that all judgments under absurd constraints hold.

3.1 The cubical logical families construction
Any XTT-algebra C extends to a category C? of proof-relevant logical predicates, which we
call logical families by analogy. The proof-relevant character of the construction enables a
simpler proof of canonicity than is obtained with proof-irrelevant techniques, such as partial
equivalence relations. Logical families are a type-theoretic version of the categorical gluing
construction, in which a very rich semantic category (such as sets) is cut down to include

J. Sterling, C. Angiuli, and D. Gratzer 31:15

just the morphisms which track definable morphisms in C;7 one then uses the rich structure
of the semantic category to obtain metatheoretic results about syntax (choosing C to be the
initial model) without considering raw terms at any point in the process.

Usually, to prove canonicity one glues the initial model C together with Set along the
global sections functor; this equips each context Γ with a family of sets Γ• indexed in the
closing substitutions for Γ. In order to prove canonicity for a cubical language like XTT,
we will need a more sophisticated version of this construction, in which the global sections
functor is replaced with something that determines substitutions which are closed with
respect to term variables, but open with respect to dimension variables.

The split fibration C u
. �+ induces a functor �+

〈−〉
)C which takes every cube Ψ to the

empty variable context over Ψ. This functor in turn induces a nerve construction C L−M
) �̂+,

taking Γ to the cubical set C(〈−〉,Γ).8 Intuitively, this is the presheaf of substitutions which
are closed with respect to term variables, but open with respect to dimension variables; when
wearing �̂+-tinted glasses, these appear to be the closed substitutions.

This nerve construction extends to the presheaves of types and elements; we define the
fiber of LTykM : �̂+ at Ψ to be the set TykC(〈Ψ〉); likewise, we define the fiber of LElkM :

∫̂
LTykM

at (Ψ, A) to be the set ElC(〈Ψ〉 ` A). Internally to �̂+, we regard LElkM as a dependent type
over LTykM. We will then (abusively) write LAM for the fiber of LElkM determined by A : LTykM.

Category of cubical logical families

Gluing C together with �̂+ along L−M gives us a category of cubical logical families C? whose
objects are pairs Γ = (Γ,Γ•), with Γ : C and Γ• a dependent cubical set over the cubical set
LΓM. In other words, Γ• is a “Kripke logical family” on the substitutions 〈Ψ〉)Γ which
commutes with dimension substitutions Ψ′)Ψ. A morphism ∆)Γ is a substitution
∆ γ

)Γ together with a proof that γ preserves the logical family: that is, a closed element
γ• of the type

∏
δ:L∆M ∆•(δ)→ Γ•(γ∗δ) in the internal type theory of �̂+. We write γ for the

pair (γ, γ•). We have a fibration C? πsyn
. C which merely projects Γ from Γ = (Γ,Γ•).

Glued type structure

Recall from Section 2.2 that we must model closed universes. Therefore, the standard presheaf
universes which lift Vk to (weakly) classify all k-small presheaves are insufficient in our case;
instead, we must equip each type with a code so that type-case is definable. Accordingly, we
define for each n ∈ N an inductive cubical set U•nA : Vn+1 indexed over A : LTynM; internally
to �̂+, the cubical set U•nA is the collection of realizers for the C-type A. An imprecise but
helpful analogy is to think of a realizer A : U•nA as something like a whnf of A, with the
caveat that A is an element of this inductively defined set, not a C-type. Simultaneously, for
each A : U•nA, we define a cubical family A◦ : LAM → Vn of realizers of elements of A, with
each A◦ being the logical family of the C-type A; finally, we also define realizers for coercion
and composition by recursion on the realizers for types.9 A fragment of this definition is

7 The gluing construction is similar to realizability; the main difference is that in gluing, one considers
collections of “realizers” which are not all drawn from a single computational domain.

8 This construction is also called the relative hom functor by Fiore [30]; its use in logic originates in the
study of definability for λ-calculus, characterizing the domains of discourse for Kripke logical predicates
of varying arity [35]. We learned the connection to the abstract nerve construction in conversations
with M. Fiore about his unpublished joint work with S. Awodey.

9 It is important to note that we do not use large induction-recursion in �̂+ (to our knowledge, the
construction of inductive-recursive definitions has not yet been lifted to presheaf toposes); instead, we

FSCD 2019

31:16 Cubical Syntax for Reflection-Free Extensional Equality

(j < n)
univj : U•nUj bool : U•nbool

A : U•nA B :
∏
M :LAM A◦M → U•n(〈id,M〉∗B)

pi(A; B) : U•nΠ(A,B) sg(A; B) : U•nΣ(A,B)
A :
∏
i:I U

•
nAi

−−−−−−−−−⇀
N•ε : A(ε)◦Nε

eq(A;N•0 , N•1) : U•nEq(i.Ai, N0, N1)

univ◦nA = U•nA

bool◦M = (M = true) + (M = false)
pi(A; B)◦M =

∏
N :LAM

∏
N•:A•N (BNN•)◦app(A,B,M,N)

sg(A; B)◦M =
∑
M•0 :A◦fst(A,B,M)(B(fst(A,B,M))M•0)◦snd(A,B,M)

eq(A;N•0 , N•1)◦M =
{
M• :

∏
i:I A(i)◦papp(i.A,M, i) |

−−−−−−−−−⇀
M•(ε) = N•ε

}

[i.bool] ↓r
r′ M

• = M•

[i.pi(A; B)] ↓r
r′ M

• = λN•. [i.B([i.A] ↓r′
i N•)] ↓r

r′ M
•([i.A] ↓r′

r N•
)

[i.eq(A;N•0 , N•1)] ↓r
r′ M

• = λk. [i.Ak] ↓r
r′ M

•k [k with
−−−−−−−⇀
ε ↪→ _.N•ε]

pi(A; B) ↓r
r′ M

• [s with
−−−−−−−⇀
ε ↪→ i.M ′•i] = λN•. BN• ↓r

r′ M
•N• [s with

−−−−−−−−−−−−⇀
ε ↪→ i.M ′•iNN•]

eq(A;N•0 , N•1) ↓r
r′ M

• [s with
−−−−−−−⇀
ε ↪→ i.M ′•i] = λj. Aj ↓r

r′ M
•j [s with

−−−−−−−−⇀
ε ↪→ i.M ′•ij]

...

Figure 2 The inductive definition of realizers U•nA : Vn+1 for types A : LTynM in �̂+; we also
include a fragment of the realizers for Kan operations, which are also defined by recursion on the
realizers for types. We write I for the representable presheaf y(i).

summarized in Figure 2. In the definition of A◦ we freely make use of the internal type theory
of �̂+. This not only exposes the underlying logical relations flavor of these definitions but
simplifies a number of proofs (see the extended version of our paper [50]).

From all this, we can define the cwf structure on C?. We obtain a presheaf of types
TyC? : Ĉ? × L by taking TykC?(Γ) to be the set of pairs A = (A,A•) where A ∈ TykC(Γ)
and A• is an element of the type

∏
γ:LΓM

∏
γ•:Γ•(γ) U

•
k(γ∗A) in the internal type theory

of �̂+. To define the dependent presheaf of elements, we take ElC?(Γ ` A) to be the
set of pairs M = (M,M•) where M ∈ ElC(Γ ` A) and M• is an element of the type∏
γ:LΓM

∏
γ•:Γ•(γ)(A•γγ•)

◦(γ∗M) in the internal type theory of �̂+. In this model, the context
comprehension operation Γ.A is defined as the pair (Γ.A, (Γ.A)•) where (Γ.A)•〈γ,M〉 is
the cubical set

∑
γ•:Γ•(γ)(A•γγ•)

◦(γ∗M); it is easy to see that we obtain realizers for the
weakening substitution and the variable term.

I Construction 3.2 (Dependent equality types in C?). Recall that we required a model of

model n object universes using the meta-universe Vn+1. This is an instance of small induction-recursion,
which can be translated into indexed inductive definitions which exist in every presheaf topos [31, 45].

J. Sterling, C. Angiuli, and D. Gratzer 31:17

XTT to have sufficient structure to interpret dependent equality types. Here, we discuss how
to obtain the formation rule; the full construction can be found in the extended version of our
paper [50]. Suppose A ∈ TynC? (̂ı∗Γ) and elements N0 and N1 with Nε ∈ ElC?(Γ ` (ε/i)‡A).
We wish to construct a type in TynC? (̂ı∗Γ).

In C?, such a type is a pair of a type E ∈ TynC (̂ı∗Γ) from C with an element witnessing the
logical family

∏
γ:LΓM

∏
γ•:Γ•(γ) U

•
k(γ∗E). We will set the first component to the dependent

equality type from C itself, namely E = Eq(i.A,N0, N1). For the second component, we
wish to construct an element of

∏
γ:LΓM

∏
γ•:Γ•(γ) U

•
k(γ∗Eq(i.A,N0, N1)). Inspecting the rules

for U•k from Figure 2, there is only one choice: E• = λγ.λγ•.eq(A•γγ•;N•0 γγ•, N•1 γγ•).

I Construction 3.3 (Coercion in C?). The coercion structure on C? is constructed from the
coercion structures on C and the coercion operator for codes from Figure 2.

Given a type A ∈ TynΓ(̂ı∗Γ) over Ψ, i, dimensions r, r′ ∈ DimC(Γ), and an element
M ∈ ElC(Γ ` (r/i)‡

ı̂∗Γ
A), we must construct an element of ElC(Γ ` (r′/i)‡

ı̂∗Γ
A). This element

must be a pair of N ∈ ElC(Γ ` (r′/i)‡ı̂∗ΓA) and a term N• :
∏
γ:LΓM

∏
γ•:Γ•(γ)(A•γγ•)

◦(γ∗N).
For the former, we rely on the coercion structure for C and pick N = coer r′i.A M . For
the latter, we use the coercion operation on codes defined in Figure 2 and choose N• =
λγ.λγ•.[i.A•γγ•] ↓rr′ M•γγ•.

It is routine to check that this coercion structure enjoys adjacency, regularity, and
naturality once the corresponding properties are checked for the coercion operator on codes.

I Theorem 3.4. C? is an XTT-algebra, and moreover, C? πsyn
. C is a homomorphism of

XTT-algebras.

3.2 Canonicity theorem
Because C? is an XTT-algebra, we are now equipped to prove a canonicity theorem for the
initial XTT-algebra C: if M is an element of type bool in the empty context, then either
M = true or M = false, and not both.

Proof. We have M ∈ ElC(· ` bool), and therefore JMK ∈ ElC?(· ` bool). From this we
obtain N : ElC(· ` bool) where N = πsynJMK, and N• ∈ bool◦· (N); by definition, N• is
either a proof that N = true or a proof that N = false (see Figure 2). Therefore, it suffices
to observe that πsynJMK = M ; but this follows from the universal property of the initial
XTT-algebra and the fact that C? πsyn

. C is an XTT-homomorphism. Moreover, because the
interpretation of bool in C? is disjoint, M cannot equal both true and false. J

References
1 Andreas Abel, Thierry Coquand, and Peter Dybjer. On the Algebraic Foundation of Proof

Assistants for Intuitionistic Type Theory. In Jacques Garrigue and Manuel V. Hermenegildo,
editors, Functional and Logic Programming, pages 3–13. Springer Berlin Heidelberg, 2008.

2 Stuart Frazier Allen. A non-type-theoretic semantics for type-theoretic language. phdthesis,
Cornell University, 1987.

3 Thorsten Altenkirch. Extensional equality in intensional type theory. In Proceedings. 14th
Symposium on Logic in Computer Science (Cat. No. PR00158), pages 412–420, July 1999.
doi:10.1109/LICS.1999.782636.

4 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by Evaluation for Dependent Types. In
Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures
for Computation and Deduction (FSCD 2016), volume 52 of Leibniz International Proceedings

FSCD 2019

http://dx.doi.org/10.1109/LICS.1999.782636

31:18 Cubical Syntax for Reflection-Free Extensional Equality

in Informatics (LIPIcs), pages 6:1–6:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.FSCD.2016.6.

5 Thorsten Altenkirch and Ambrus Kaposi. Type Theory in Type Theory Using Quotient
Inductive Types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, pages 18–29. ACM, 2016. doi:10.1145/
2837614.2837638.

6 Thorsten Altenkirch and Conor McBride. Towards Observational Type Theory, 2006. URL:
www.strictlypositive.org/ott.pdf.

7 Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational Equality, Now!
In Proceedings of the 2007 Workshop on Programming Languages Meets Program Verification,
PLPV ’07, pages 57–68. ACM, 2007.

8 Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert
Harper, and Daniel R. Licata. Syntax and Models of Cartesian Cubical Type Theory, February
2019. Preprint. URL: https://github.com/dlicata335/cart-cube.

9 Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper, Anders Mörtberg,
and Jonathan Sterling. redtt: implementing Cartesian cubical type theory. Dagstuhl Seminar
18341: Formalization of Mathematics in Type Theory. URL: http://www.jonmsterling.com/
pdfs/dagstuhl.pdf.

10 Carlo Angiuli, Evan Cavallo, Kuen-Bang Hou (Favonia), Robert Harper, and Jonathan Sterling.
The RedPRL Proof Assistant (Invited Paper). In Proceedings of the 13th International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP@FSCD 2018,
Oxford, UK, 7th July 2018., pages 1–10, 2018. doi:10.4204/EPTCS.274.1.

11 Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Cartesian Cubical Compu-
tational Type Theory: Constructive Reasoning with Paths and Equalities. In Dan Ghica
and Achim Jung, editors, 27th EACSL Annual Conference on Computer Science Logic (CSL
2018), volume 119 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–6:17.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.6.

12 Robert Atkey. Simplified Observational Type Theory, 2018. URL: https://github.com/
bobatkey/sott.

13 Steve Awodey. A cubical model of homotopy type theory. Annals of Pure and Applied Logic,
169(12):1270–1294, 2018. Logic Colloquium 2015. doi:10.1016/j.apal.2018.08.002.

14 Steven Awodey and Andrej Bauer. Propositions As [Types]. J. Log. and Comput., 14(4):447–
471, August 2004. doi:10.1093/logcom/14.4.447.

15 Andrej Bauer, Gaëtan Gilbert, Philipp Haselwarter, Matija Pretnar, and Christopher A.
Stone. Design and Implementation of the Andromeda proof assistant, 2016. TYPES. URL:
http://www.types2016.uns.ac.rs/images/abstracts/bauer2.pdf.

16 Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.
17 Andreas Blass. Words, free algebras, and coequalizers. Fundamenta Mathematicae, 117(2):117–

160, 1983. URL: http://eudml.org/doc/211359.
18 Edwin Brady, James Chapman, Pierre-Évariste Dagand, Adam Gundry, Conor McBride, Peter

Morris, Ulf Norell, and Nicolas Oury. An Epigram Implementation, February 2011.
19 John Cartmell. Generalised Algebraic Theories and Contextual Categories. phdthesis, Oxford

University, January 1978.
20 John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and

Applied Logic, 32:209–243, 1986.
21 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Undecidability of Equality in the

Free Locally Cartesian Closed Category (Extended version). Logical Methods in Computer
Science, 13(4), 2017.

22 Evan Cavallo and Robert Harper. Higher Inductive Types in Cubical Computational Type
Theory. Proc. ACM Program. Lang., 3(POPL):1:1–1:27, January 2019. doi:10.1145/3290314.

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.6
http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.1145/2837614.2837638
www.strictlypositive.org/ott.pdf
https://github.com/dlicata335/cart-cube
http://www.jonmsterling.com/pdfs/dagstuhl.pdf
http://www.jonmsterling.com/pdfs/dagstuhl.pdf
http://dx.doi.org/10.4204/EPTCS.274.1
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.6
https://github.com/bobatkey/sott
https://github.com/bobatkey/sott
http://dx.doi.org/10.1016/j.apal.2018.08.002
http://dx.doi.org/10.1093/logcom/14.4.447
http://www.types2016.uns.ac.rs/images/abstracts/bauer2.pdf
http://eudml.org/doc/211359
http://dx.doi.org/10.1145/3290314

J. Sterling, C. Angiuli, and D. Gratzer 31:19

23 James Chapman, Fredrik Nordvall Forsberg, and Conor McBride. The Box of Delights (Cubical
Observational Type Theory), January 2018. Unpublished note. URL: https://github.com/
msp-strath/platypus/blob/master/January18/doc/CubicalOTT/CubicalOTT.pdf.

24 Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:
a constructive interpretation of the univalence axiom. IfCoLog Journal of Logics and their
Applications, 4(10):3127–3169, November 2017. URL: http://www.collegepublications.co.
uk/journals/ifcolog/?00019.

25 R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper,
D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, Inc.,
1986.

26 Thierry Coquand. Universe of Bishop sets, February 2017. URL: http://www.cse.chalmers.
se/~coquand/bishop.pdf.

27 Thierry Coquand. Canonicity and normalization for Dependent Type Theory, October 2018.
arXiv:1810.09367.

28 Thierry Coquand, Simon Huber, and Anders Mörtberg. On Higher Inductive Types in Cubical
Type Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’18, pages 255–264. ACM, 2018. doi:10.1145/3209108.3209197.

29 Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types for
Proofs and Programs: International Workshop, TYPES ’95 Torino, Italy, June 5–8, 1995
Selected Papers, pages 120–134. Springer Berlin Heidelberg, 1996.

30 Marcelo Fiore. Semantic Analysis of Normalisation by Evaluation for Typed Lambda Calculus.
In Proceedings of the 4th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, PPDP ’02, pages 26–37. ACM, 2002. doi:10.1145/571157.
571161.

31 Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and Thorsten Altenkirch. Small
Induction Recursion. In Masahito Hasegawa, editor, Typed Lambda Calculi and Applications:
11th International Conference, TLCA 2013, Eindhoven, The Netherlands, June 26-28, 2013.
Proceedings, pages 156–172. Springer Berlin Heidelberg, 2013.

32 Martin Hofmann. Extensional concepts in intensional type theory. phdthesis, University of
Edinburgh, January 1995.

33 Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides,
pages 83–111. Oxford Univ. Press, 1998.

34 Simon Huber. Canonicity for Cubical Type Theory. Journal of Automated Reasoning, June
2018. doi:10.1007/s10817-018-9469-1.

35 Achim Jung and Jerzy Tiuryn. A new characterization of lambda definability. In Marc Bezem
and Jan Friso Groote, editors, Typed Lambda Calculi and Applications, pages 245–257. Springer
Berlin Heidelberg, 1993.

36 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing Quotient Inductive-
inductive Types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, January 2019. doi:10.1145/
3290315.

37 Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent Foundations
(after Voevodsky), June 2016. Preprint. arXiv:1211.2851.

38 Alexei Kopylov. Type Theoretical Foundations for Data Structures, Classes and Objects.
phdthesis, Cornell University, 2004.

39 Peter LeFanu Lumsdaine and Michael Shulman. Semantics of higher inductive types, 2017.
arXiv:1705.07088.

40 Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009.
41 Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H. E. Rose and J. C.

Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic and the Foundations
of Mathematics, pages 73–118. Elsevier, 1975. doi:10.1016/S0049-237X(08)71945-1.

FSCD 2019

https://github.com/msp-strath/platypus/blob/master/January18/doc/CubicalOTT/CubicalOTT.pdf
https://github.com/msp-strath/platypus/blob/master/January18/doc/CubicalOTT/CubicalOTT.pdf
http://www.collegepublications.co.uk/journals/ifcolog/?00019
http://www.collegepublications.co.uk/journals/ifcolog/?00019
http://www.cse.chalmers.se/~coquand/bishop.pdf
http://www.cse.chalmers.se/~coquand/bishop.pdf
http://arxiv.org/abs/1810.09367
http://dx.doi.org/10.1145/3209108.3209197
http://dx.doi.org/10.1145/571157.571161
http://dx.doi.org/10.1145/571157.571161
http://dx.doi.org/10.1007/s10817-018-9469-1
http://dx.doi.org/10.1145/3290315
http://dx.doi.org/10.1145/3290315
http://arxiv.org/abs/1211.2851
http://arxiv.org/abs/1705.07088
http://dx.doi.org/10.1016/S0049-237X(08)71945-1

31:20 Cubical Syntax for Reflection-Free Extensional Equality

42 Per Martin-Löf. Constructive Mathematics and Computer Programming. In 6th International
Congress for Logic, Methodology and Philosophy of Science, pages 153–175, August 1979.
Published by North Holland, Amsterdam. 1982.

43 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis,
1984.

44 Conor McBride. Dependently typed functional programs and their proofs. phdthesis, University
of Edinburgh, 1999.

45 Ieke Moerdijk and Erik Palmgren. Wellfounded trees in categories. Annals of Pure and Applied
Logic, 104(1):189–218, 2000.

46 Bengt Nordström, Kent Peterson, and Jan M. Smith. Programming in Martin-Löf’s Type
Theory, volume 7 of International Series of Monographs on Computer Science. Oxford
University Press, 1990.

47 Frank Pfenning. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory.
In Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science, LICS
’01, pages 221–. IEEE Computer Society, 2001. URL: http://dl.acm.org/citation.cfm?id=
871816.871845.

48 Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical
Structures in Computer Science, 25(5):1203–1277, 2015. doi:10.1017/S0960129514000565.

49 Jonathan Sterling. Algebraic Type Theory and Universe Hierarchies, December 2018. arXiv:
1902.08848.

50 Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical Syntax for Reflection-Free
Extensional Equality, 2019. Extended version. arXiv:1904.08562.

51 Thomas Streicher. Semantics of Type Theory: Correctness, Completeness, and Independence
Results. Birkhauser Boston Inc., 1991.

52 Thomas Streicher. Investigations Into Intensional Type Theory. Habilitationsschrift, Univer-
sität München, 1994.

53 Andrew Swan. Separating Path and Identity Types in Presheaf Models of Univalent Type
Theory, 2018. arXiv:https://arxiv.org/abs/1808.00920.

54 Paul Taylor. Practical Foundations of Mathematics. Cambridge studies in advanced mathe-
matics. Cambridge University Press, 1999.

55 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, 2013.

56 Vladimir Voevodsky. A simple type system with two identity types, February 2013.
Talk at Andre Joyal’s 70th birthday conference. (Slides available at https://www.math.
ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS_slides.pdf). URL: https:
//www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf.

57 Vladimir Voevodsky. Mathematical theory of type theories and the initiality conjecture, April
2016. Research proposal to the Templeton Foundation for 2016-2019, project description. URL:
http://www.math.ias.edu/Voevodsky/other/Voevodsky%20Templeton%20proposal.pdf.

A The rules of XTT

In the following sections, we summarize the rules of XTT; we systematically omit obvious
premises to equational rules and all congruence rules for judgmental equality, because these
can be mechanically obtained from the typing rules. We will write J= schematically to refer
to an equality judgment Ψ | Γ ` A = B typek or Ψ | Γ `M = N : A.

cube/emp

· cube+

cube/snoc/dim
Ψ cube+

Ψ, i cube+

cube/snoc/constr
Ψ cube+
Ψ | r, r′ dim

Ψ, r = r′ cube+

ctx/emp

Ψ | · ctx

ctx/snoc
Ψ | Γ ctx
Ψ | Γ ` A typek
Ψ | Γ, x : A ctx

http://dl.acm.org/citation.cfm?id=871816.871845
http://dl.acm.org/citation.cfm?id=871816.871845
http://dx.doi.org/10.1017/S0960129514000565
http://arxiv.org/abs/1902.08848
http://arxiv.org/abs/1902.08848
http://arxiv.org/abs/1904.08562
http://arxiv.org/abs/https://arxiv.org/abs/1808.00920
https://homotopytypetheory.org/book
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS_slides.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS_slides.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/HTS.pdf
http://www.math.ias.edu/Voevodsky/other/Voevodsky%20Templeton%20proposal.pdf

J. Sterling, C. Angiuli, and D. Gratzer 31:21

constant

Ψ | ε dim

variable
i ∈ Ψ

Ψ | i dim

reflexivity

Ψ | r = r dim

symm+trans
Ψ | r0 = r1 dim
Ψ | r1 = r2 dim
Ψ | r2 = r0 dim

hyp
Ψ 3 r = r′

Ψ | r = r′ dim

variable
Γ 3 x : A

Ψ | Γ ` x : A

false constraint
Ψ | 0 = 1 dim

Ψ | Γ ` J

conversion
Ψ | Γ ` A0 = A1 typek
Ψ | Γ `M : A0

Ψ | Γ `M : A1

boundary separation
Ψ | r dim
−−−−−−−−−−−−⇀
Ψ, r = ε | Γ ` J=

Ψ | Γ ` J=

coercion
Ψ | r, r′ dim
Ψ, i | Γ ` A typek
Ψ | Γ `M : A〈r/i〉

Ψ | Γ ` [i.A] ↓rr′ M : A〈r′/i〉
Ψ | Γ ` [i.A] ↓rr M = M : A〈r/i〉

coercion regularity
Ψ, j, j′ | Γ ` A〈j/i〉 = A〈j′/i〉 typek
Ψ | Γ ` [i.A] ↓rr′ M = M : A〈r′/i〉

composition
Ψ | r, r′, s dim Ψ | Γ `M : A

−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, j, s = ε | Γ ` Nε : A [j = r ↪→M]

Ψ | Γ ` A ↓rr′ M [s with −−−−−−⇀ε ↪→ j.Nε] : A
Ψ | Γ ` A ↓rr M [s with −−−−−−⇀ε ↪→ j.Nε] = M : A
Ψ | Γ ` A ↓rr′ M [ε with

−−−−−−−⇀
ε′ ↪→ j.Nε′] = Nε〈r′/j〉 : A

lift formation
Ψ | Γ ` A typek k ≤ l

Ψ | Γ ` ⇑lkA typel
Ψ | Γ ` ⇑kkA = A typek
Ψ | Γ ` ⇑ml ⇑

l
kA = ⇑mk A typek

lift element
Ψ | Γ `M : A

Ψ | Γ `M : ⇑lkA
===============

lift hypothesis
Ψ | Γ, x : A ` J

Ψ | Γ, x : ⇑lkA ` J
=================

lift coercion

Ψ | Γ ` [i.⇑lkA] ↓rr′ M = [i.A] ↓rr′ M : ⇑lkA〈r′/i〉

pair formation, lifting
Ψ | Γ ` A typek Ψ | Γ, x : A ` B typek

Ψ | Γ ` (x : A)×B typek
Ψ | Γ ` ⇑lk(x : A)×B = (x : ⇑lkA)× ⇑lkB typel

pair introduction
Ψ | Γ ` A typek
Ψ | Γ, x : A ` B typek
Ψ | Γ `M : A
Ψ | Γ ` N : B[M/x]

Ψ | Γ ` 〈M,N〉 : (x : A)×B

FSCD 2019

31:22 Cubical Syntax for Reflection-Free Extensional Equality

pair elimination
Ψ | Γ ` A typek Ψ | Γ, x : A ` B typek Ψ | Γ `M : (x : A)×B

Ψ | Γ ` fstx:A.B(M) : A
Ψ | Γ ` sndx:A.B(M) : B[fst(M)/x]
Ψ | Γ ` fstx:⇑l

k
A.⇑l

k
B(M) = fstx:A.B(M) : A

Ψ | Γ ` sndx:⇑l
k
A.⇑l

k
B(M) = sndx:A.B(M) : B[fst(M)/x]

pair computation
Ψ | Γ ` H , [i.B[[i.A] ↓ri fst(M)/x]] ↓rr′ snd(M)

Ψ | Γ ` fst(〈M,N〉) = M : A
Ψ | Γ ` snd(〈M,N〉) = N : B[M/x]
Ψ | Γ ` fst([i.(x : A)×B] ↓rr′ M) = [i.A] ↓rr′ fst(M) : A〈r′/i〉
Ψ | Γ ` snd([i.(x : A)×B] ↓rr′ M) = H : B〈r′/i〉[[i.A] ↓rr′ fst(M)/x]

pair unicity

Ψ | Γ `M = 〈fst(M), snd(M)〉 : (x : A)×B

function formation, lifting
Ψ | Γ ` A typek
Ψ | Γ, x : A ` B typek

Ψ | Γ ` (x : A)→ B typek
Ψ | Γ ` ⇑lk(x : A)→ B = (x : ⇑lkA)→ ⇑lkB typel

function introduction
Ψ | Γ ` A typek
Ψ | Γ, x : A ` B typek
Ψ | Γ, x : A `M : B

Ψ | Γ ` λx.M : (x : A)→ B

function elimination
Ψ | Γ ` A typek Ψ | Γ, x : A ` B typek
Ψ | Γ `M : (x : A)→ B Ψ | Γ ` N : A

Ψ | Γ ` appx:A.B(M,N) : B[N/x]
Ψ | Γ ` appx:⇑l

k
A.⇑l

k
B(M,N) = appx:A.B(M,N) : x[N/B]

function computation
Ψ, i | Γ ` Ñ [i] , [i.A] ↓r

′

i N

Ψ | Γ ` (λx.M)(N) = M [N/x] : B[N/x]
Ψ | Γ ` ([i.(x : A)→ B] ↓rr′ M)(N) = [i.B[Ñ [i]/x]] ↓rr′ M(Ñ [r]) : C

function unicity

Ψ | Γ `M = λx.M(x) : (x : A)→ B

equality formation, lifting
Ψ, i | Γ ` A typek

−−−−−−−−−−−−−−−−⇀
Ψ, i, i = ε | Γ ` Nε : A

Ψ | Γ ` Eqi.A(N0, N1) typek
Ψ | Γ ` ⇑lkEqi.A(N0, N1) = Eqi.⇑l

k
A(N0, N1) typel

equality introduction
Ψ, i | Γ `M : A [−−−−−−−−⇀i = ε ↪→ Nε]
Ψ | Γ ` λi.M : Eqi.A(N0, N1)

equality elimination
Ψ | r dim Ψ, i | Γ ` A typek

−−−−−−−−−−−−−−−−⇀
Ψ, i, i = ε | Γ ` Nε : A Ψ | Γ `M : Eqi.A(N0, N1)

Ψ | Γ ` appi.A(M, r) : A〈r/i〉
Ψ | Γ ` appi.⇑l

k
A(M, r) = appi.A(M, r) : A〈r/i〉

Ψ | Γ ` appi.A(M, ε) = Nε : A〈ε/i〉

J. Sterling, C. Angiuli, and D. Gratzer 31:23

equality computation

Ψ | Γ ` (λi.M)(r) = M〈r/i〉 : A〈r/i〉
Ψ | Γ ` ([j.Eqi.A(N0, N1)] ↓rr′ P)(s) = [j.A〈s/i〉] ↓rr′ P (s) [s with −−−−−−⇀ε ↪→ j.Nε] : A〈r′, s/j, i〉

equality unicity

Ψ | Γ `M = λi.M(i) : Eqi.A(N0, N1)

boolean formation, lifting, introduction

Ψ | Γ ` bool typek
Ψ | Γ ` ⇑lkbool = bool typel
Ψ | Γ ` true : bool
Ψ | Γ ` false : bool

boolean elimination
Ψ | Γ, x : bool ` C typek
Ψ | Γ `M : bool
Ψ | Γ ` N0 : C[true/x]
Ψ | Γ ` N1 : C[false/x]

Ψ | Γ ` ifx.C(M ;N0, N1) : C[M/x]

boolean elimination lifting

Ψ | Γ ` ifx.⇑l
k
C(M ;N0, N1) = ifx.C(M ;N0, N1) : ⇑lkC[M/x]

boolean computation

Ψ | Γ ` ifx.C(true;N0, N1) = N0 : C[true/x]
Ψ | Γ ` ifx.C(false;N0, N1) = N1 : C[false/x]

universe formation, lifting
k < l

Ψ | Γ ` Uk typel
Ψ | Γ ` ⇑ml Uk = Uk typem

universe elements
Ψ | Γ ` A typek
Ψ | Γ ` A : Uk

==============

universe equality
Ψ | Γ ` A0 = A1 typek
Ψ | Γ ` A0 = A1 : Uk

=====================

type-case
Ψ | Γ ` C typel
Ψ | Γ, x : Uk, y : x→ Uk `MΠ : C
Ψ | Γ, x : Uk, y : x→ Uk `MΣ : C
Ψ | Γ, x0 : Uk, x1 : Uk, x= : Eqi.Uk

(x0, x1), y0 : x0, y1 : x1 `MEq : C
Ψ | Γ `Mbool : C
Ψ | Γ `MU : C

Ψ | Γ ` tycase X [Πxy 7→MΠ | Σxy 7→MΣ | Eqx0,x1,x=(y0, y1) 7→MEq | bool 7→Mbool | U 7→MU] : C

type-case computation
Ψ | Γ ` HEq ,M [A〈0/i〉, A〈1/i〉, λi.A,N0, N1/x0, x1, x

=, y0, y1]
Ψ | Γ ` tycase ((z : A)→ B) [Πxy 7→M | . . .] = M [A, λz.B/x, y] : C
Ψ | Γ ` tycase ((z : A)×B) [. . . | Σxy 7→M | . . .] = M [A, λz.B/x, y] : C
Ψ | Γ ` tycase bool [. . . | bool 7→M | . . .] = M : C
Ψ | Γ ` tycase Uk′ [. . . | U 7→M] = M : C
Ψ | Γ ` tycase (Eqi.A(N0, N1)) [. . . | Eqx0,x1,x=(y0, y1) 7→M | . . .] = HEq : C

type boundary
Ψ | Γ `M : A

−−−−−−−−−−−−−−−⇀
Ψ, ξ | Γ `M = N : A

Ψ | Γ `M : A [
−−−−⇀
ξ ↪→ N]

term boundary
Ψ | Γ ` A typek

−−−−−−−−−−−−−−−−⇀
Ψ, ξ | Γ ` A = B typek

Ψ | Γ ` A typek [
−−−−⇀
ξ ↪→ B]

FSCD 2019

31:24 Cubical Syntax for Reflection-Free Extensional Equality

A.1 Derivable Rules

Numerous additional rules about compositions are derivable by exploiting boundary separa-
tion. In previous presentations of cubical type theory (which did not enjoy the unicity of
equality proofs), it was necessary to include β-rules for compositions explicitly.

composition regularity−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, j0, j1, i = ε | Γ ` Nε〈j0/j〉 = Nε〈j1/j〉 : A
Ψ | Γ ` A ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε] = M : A

heterogeneous composition
Ψ | r, r′, s dim Ψ | Γ `M : A〈r/j〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
Ψ, j, s = ε | Γ ` Nε : A [j = r ↪→M]

Ψ | Γ ` [j.A] ↓rr′ M [s with −−−−−−⇀ε ↪→ j.Nε] : A〈r′/j〉
Ψ | Γ ` [j.A] ↓rr M [s with −−−−−−⇀ε ↪→ j.Nε] = M : A〈r/j〉
Ψ | Γ ` [j.A] ↓rr′ M [ε with

−−−−−−−⇀
ε′ ↪→ j.Nε′] = Nε〈r′/j〉 : A〈r′/j〉

lift composition

Ψ | Γ ` ⇑lkA ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε] = A ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε] : ⇑lkA

lift type composition

Ψ | Γ ` Ul ↓rr′ ⇑
l
kA [i with

−−−−−−−−⇀
ε ↪→ j.⇑lkBε] = ⇑lkUk ↓rr′ A [i with −−−−−−⇀ε ↪→ j.Bε] typek

pair composition computation (1)
Ψ | Γ ` H , A ↓rr′ fst(M) [i with

−−−−−−−−−⇀
ε ↪→ j.fst(Nε)]

Ψ | Γ ` fst((x : A)×B ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε]) = H : A

pair composition computation (2)
Ψ, k | Γ ` M̃1[k] , A ↓rk fst(M) [i with

−−−−−−−−−⇀
ε ↪→ j.fst(Nε)]

Ψ | Γ ` H , [k.B[M̃1[k]/x]] ↓rr′ snd(M) [i with
−−−−−−−−−−⇀
ε ↪→ j.snd(Nε)]

Ψ | Γ ` snd((x : A)×B ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Nε]) = H : B[M̃1[r′]/x]

pair type composition
Ψ, k | Γ ` Ã[k] , Uk ↓rk A [i with −−−−−−⇀ε ↪→ j.Aε]
Ψ, j | Γ, x : Ã[r′] ` x̃[j] , [k.Ã[k]] ↓r

′

j x

Ψ | Γ, x : Ã[r′] ` B̃ , Uk ↓rr′ B[x̃[r]/x] [i with
−−−−−−−−−−−−⇀
ε ↪→ j.Bε[x̃[j]/x]]

Ψ | Γ ` Uk ↓rr′ ((x : A)×B) [i with
−−−−−−−−−−−−−−⇀
ε ↪→ j.(x : Aε)×Bε] = (x : Ã[r′])× B̃ typel

function composition computation
Ψ | Γ ` H , B[N/x] ↓rr′ M(N) [i with

−−−−−−−−−⇀
ε ↪→ j.Mε(N)]

Ψ | Γ ` ((x : A)→ B ↓rr′ M [i with −−−−−−⇀ε ↪→ j.Mε])(N) = H : (x : A)→ B

J. Sterling, C. Angiuli, and D. Gratzer 31:25

function type composition
Ψ, k | Γ ` Ã[k] , Uk ↓rk A [i with −−−−−−⇀ε ↪→ j.Aε]
Ψ, j | Γ, x : Ã[r′] ` x̃[j] , [k.Ã[k]] ↓r

′

j x

Ψ | Γ, x : Ã[r′] ` B̃ , Uk ↓rr′ B[x̃[r]/x] [i with
−−−−−−−−−−−−⇀
ε ↪→ j.Bε[x̃[j]/x]]

Ψ | Γ ` Uk ↓rr′ ((x : A)→ B) [i with
−−−−−−−−−−−−−−−⇀
ε ↪→ j.(x : Aε)→ Bε] = (x : Ã[r′])→ B̃ typel

equality composition computation
Ψ | Γ ` H , A〈s/i〉 ↓rr′ P (s) [k with

−−−−−−−−⇀
ε ↪→ j.Qε(s)]

Ψ | Γ ` (Eqi.A(N0, N1) ↓rr′ P [k with −−−−−−⇀ε ↪→ j.Qε])(s) = H : A〈s/i〉

equality type composition
Ψ, j, i | Γ ` Ã[j, i] , Uk ↓rj A [k with −−−−−−⇀ε ↪→ j.Aε]
Ψ | Γ ` M̃ , [j.Ã[j, r]] ↓rr′ M [k with −−−−−−⇀ε ↪→ j.Mε]
Ψ | Γ ` Ñ , [j.Ã[j, r′]] ↓rr′ N [k with −−−−−−⇀ε ↪→ j.Nε]

Ψ | Γ ` Uk ↓rr′ Eqi.A(M,N) [k with
−−−−−−−−−−−−−−−−⇀
ε ↪→ j.Eqi.Aε

(Mε, Nε)] = Eq
i.Ã[r′,i](M̃, Ñ) typel

base type composition
(b ∈ {bool,Uk′})

Ψ | Γ ` Uk ↓rr′ b [i with −−−−−⇀ε ↪→ j.b] = b typel

FSCD 2019

Guarded Recursion in Agda via Sized Types
Niccolò Veltri
Department of Computer Science, IT University of Copenhagen, Denmark
nive@itu.dk

Niels van der Weide
Institute for Computation and Information Sciences, Radboud University
Nijmegen, The Netherlands
nweide@cs.ru.nl

Abstract
In type theory, programming and reasoning with possibly non-terminating programs and potentially
infinite objects is achieved using coinductive types. Recursively defined programs of these types need
to be productive to guarantee the consistency of the type system. Proof assistants such as Agda
and Coq traditionally employ strict syntactic productivity checks, which often make programming
with coinductive types convoluted. One way to overcome this issue is by encoding productivity at
the level of types so that the type system forbids the implementation of non-productive corecursive
programs. In this paper we compare two different approaches to type-based productivity: guarded
recursion and sized types. More specifically, we show how to simulate guarded recursion in Agda
using sized types. We formalize the syntax of a simple type theory for guarded recursion, which is a
variant of Atkey and McBride’s calculus for productive coprogramming. Then we give a denotational
semantics using presheaves over the preorder of sizes. Sized types are fundamentally used to interpret
the characteristic features of guarded recursion, notably the fixpoint combinator.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Categorical semantics

Keywords and phrases guarded recursion, type theory, semantics, coinduction, sized types

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.32

Funding Niccolò Veltri: Veltri was supported by a research grant (13156) from VILLUM FONDEN.

Acknowledgements We are thankful to Andreas Abel, Guillaume Allais, Herman Geuvers, Rasmus
Ejlers Møgelberg and Andrea Vezzosi for discussions and valuable hints. We thank the anonymous
referees for their useful comments.

1 Introduction

Dependent type theory is an expressive functional programming language that underlies the
deductive system of proof assistants such as Agda [22] and Coq [10]. It is a total language,
meaning that every program definable inside type theory is necessarily terminating. This is
an important requirement that ensures the consistency of the type system.

Possibly non-terminating computations and infinite structures, such as non-wellfounded
trees, can be represented in type theory by extending the type system with coinductive
types. Recursively defined elements of these types need to be productive in the sense that
every finite part of the output can be computed in a finite number of steps [15]. In Agda’s
encoding of coinductive types using “musical notation” [16], productivity is enforced via
a strict obligation: in the definition of a corecursive function, recursive calls must appear
directly under the application of a constructor. A similar syntactic check is used in Coq. This
restriction typically makes programming with coinductive types cumbersome, which spawned
the search for alternative techniques to ensure the well-definedness of corecursive definitions.

© Niccolò Veltri and Niels van der Weide;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 32; pp. 32:1–32:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7230-3436
mailto:nive@itu.dk
https://orcid.org/0000-0003-1146-4161
mailto:nweide@cs.ru.nl
https://doi.org/10.4230/LIPIcs.FSCD.2019.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Guarded Recursion in Agda via Sized Types

We focus on two of these techniques in which productivity is encoded at the level of types:
sized types and guarded recursion. A sized type is a type annotated with the number of
unfoldings that elements of this type can undergo [17]. Sized types have been implemented in
Agda and can be used in combination with coinductive records to specify coinductive types
[4, 6], as exemplified by Abel and Chapman’s work [3]. There also are other approaches to
sized types. One of those is developed by Sacchini [23], which allows less terms to be typed
compared to Agda’s approach.

Guarded recursion [21] is a different approach where the type system is enhanced with a
modality, called “later” and written B, encoding time delay in types. The later modality comes
with a general fixpoint combinator for programming with productive recursive functions and
allows the specification of guarded recursive types. These types can be used in combination
with clock quantification to define coinductive types [8, 9, 12]. Currently there is no
implementation of a calculus for guarded recursion.

Sized types and guarded recursion are different solutions to the same problem, but a
thorough study of the relation between these two disciplines is still missing. In this paper
we take a first step in this direction by showing how guarded recursion can be simulated in
Agda using sized types.

Utilizing techniques for representing “type theory in type theory” [7, 13], we present
an Agda formalization of the syntax of a simple type theory for guarded recursion. This
object language, which we call GTT, is a variant of Atkey and McBride’s type system for
productive coprogramming [8] in which the clock context can contain at most one clock.
The types of GTT include the aforementioned B modality and a � modality, a nameless
analogue of Atkey and McBride’s universal clock quantification. Clouston et al. [14] studied a
guarded variant of lambda calculus extended with a � operation, which they call “constant”.
Our object calculus differs from theirs in that our judgments are indexed by a clock context,
which can be empty or containing exactly one clock. The design of GTT has the benefit of
allowing a more appealing introduction rule for � than Clouston et al.’s. GTT also differs
from Clouston et al.’s calculus in the class of definable guarded recursive types. We follow
Atkey and McBride’s approach and restrict the least fixpoint operator µ to act on strictly
positive functors, while µ type former in Clouston et al.solely operates on functors in which
all variables are guarded by an occurrence of the B modality.

Afterwards we develop a categorical semantics for GTT using sized types. More precisely,
we define a presheaf model where the type formers of simply typed lambda calculus are
evaluated using the standard Kripke semantics. Typically, the semantics of a type theory
for guarded recursion is given in the topos of trees or variations thereof [11, 19, 20]. Here,
to clarify the connection between guarded recursion and sized types, we take the preorder
of sizes as the indexing category of our presheaves. This means that types and contexts of
GTT are interpreted as antitone sized types. The well-order relation on sizes is fundamental
for constructing a terminating definition of the semantic fixpoint combinator.

The decision to restrict the clock context of GTT to contain at most one clock variable
was dictated by our choice to use Agda with sized types as the metatheory. In Agda, it
is possible to encode semantic clock contexts containing multiple clocks as lists of sizes or
as functions from a finite interval of natural numbers into sizes. However, Agda’s support
for sized types is tailored to types depending on exactly one size, or on a finite but precise
number of sizes, which makes it cumbersome to work with types depending on clock contexts
containing an indefinite number of clocks. More technically, as it was privately communicated
to us by Agda implementors, Agda’s type inference only works properly for first-order size
constraints. We believe that if future Agda releases add the capability of handling multiple

N. Veltri and N. van der Weide 32:3

sizes, it would be possible to extend the semantics of GTT to include the full Atkey and
McBride’s type theory. We also believe that extending our formalization to the multiclock
case, while technically challenging, would not be conceptually harder.

GTT is stricly less expressive than Atkey and McBride’s calculus, since we are unable to
implement nested coinductive types. But the one clock variant of the calculus still allows the
construction of a large class of coinductive types and it is the subject of active research [14].

To summarize, the contributions of this paper are twofold:
1. We formalize syntax and semantics of a type theory for guarded recursion in Agda. This is

the first such denotational model developed using an extension of Martin-Löf intensional
type theory as the metalanguage, in contrast with the previous set-theoretic models of
guarded recursion.

2. The interpretation of the characteristic features of guarded recursion crucially requires
the employment of sized types. This shows that guarded recursion can be reduced to sized
types and constitutes a stepping stone towards a clear understanding of the connections
between different approaches to productive coprogramming.

This paper only include the essential parts of our Agda formalization. The full code is
available at https://github.com/niccoloveltri/agda-gtt. The formalization uses Agda
2.5.4.2 and Agda standard library 0.16. The paper is extracted from a literate Agda file,
which implies that all the displayed code passed Agda’s type and termination checker.

The material is organized in the following way. In Section 2, we discuss the metatheory
and we give an overview of sized types. In Section 3, we introduce the syntax of GTT, our
object type theory for guarded recursion. Subsequently, we give a categorical semantics. In
Section 4, we show how to implement presheaves over sizes and how to model the fragment of
GTT corresponding to simply typed lambda calculus. In Section 5, we discuss the semantics
of the guarded recursive and coinductive features. In Section 6, we prove the object language
sound w.r.t. the categorical model, which in turn entails the consistency of the syntax. Finally,
in Section 7, we draw conclusions and suggest future directions of work.

2 The Host Type Theory

We work in Martin-Löf type theory extended with functional extensionality, uniqueness of
identity proofs (UIP), and sized types. Practically, we work in Agda, which supports sized
types and where UIP holds by default. In this section, we give a brief overview of these
principles and we introduce the basic Agda notation that we employ in our formalization.

We write = for judgmental equality and ≡ for propositional equality. Implicit arguments
of functions are delimited by curly brackets. We write ∀ {∆} for an implicit argument ∆
whose type can be inferred by Agda. We write Set, Set1 and Set2 for the first three universes
of types. We write ⊥ for the empty type.

We make extensive use of record types. These are like iterated Σ-types, in which each
component, also called field, has been given a name. We open each record we introduce,
which allows us to access a field by function application. For example, given a record type
R containing a field f of type A, we have f R : A. We use Agda’s copatterns for defining
elements of a record type. If a record type R contains fields f1 : A1 and f2 : A2, we construct
a term r : R by specifying its components f1 r : A1 and f2 r : A2.

The principle of functional extensionality states that every two functions f and g in the
same function space are equal whenever f x and g x are equal for all inputs x. This principle
is not provable in Agda, so we need to postulate it. UIP states that all proofs of an identity
are propositionally equal. Agda natively supports this principle, which is therefore derivable.

FSCD 2019

https://github.com/niccoloveltri/agda-gtt

32:4 Guarded Recursion in Agda via Sized Types

Agda also natively supports sized types [2, 6]. Intuitively, a sized type is a type annotated
with an abstract ordinal indicating the number of possible unfoldings that can be performed
of elements of the type. These abstract ordinals, called sizes, assist the termination checker
in assessing the well-definedness of corecursive definitions.

In Agda, there is a type Size of sizes and a type Size< i of sizes strictly smaller than i.
Every size j : Size< i is coerced to j : Size. The order relation on sizes is transitive, which
means that whenever j : Size< i and k : Size< j, then k : Size< i. The order relation is also
well-founded, which is used to define productive corecursive functions. There is a successor
operation ↑ on sizes and a size ∞ such that i : Size< ∞ for all i. Lastly, we define a sized
type to be a type indexed by Size.

3 The Object Type Theory

The object language we consider is simply typed lambda calculus extended with additional
features for programming with guarded recursive and coinductive types. We call this language
GTT. It is a variant of Atkey and McBride’s type system for productive coprogramming [8].
In Atkey and McBride’s calculus, all judgments are indexed by a clock context, which may
contain several different clocks. They extend simply typed lambda calculus with two additional
type formers: a modality B for encoding time delay into types and universal quantification
over clock variables ∀, which is used in combination with B to specify coinductive types. In
GTT, judgments are also indexed by a clock context, but in our case the latter can contain
at most one clock variable κ. The type system of GTT also includes a B modality, plus a
box modality corresponding to Atkey and McBride’s quantification over the clock variable κ.

In this section we introduce the syntax of GTT as in our Agda formalization. We give a
more standard presentation of the calculus in Appendix A.

GTT is a type theory with explicit substitutions [1]. It comprises well-formed types
and contexts, well-typed terms and substitutions, definitional equality of terms and of
substitutions. All of them depend on a clock context. In GTT, the clock context can either
be empty or contain a single clock κ.

data ClockCtx : Set where
∅ : ClockCtx
κ : ClockCtx

We refer to types and contexts in the empty clock context as ∅-types and ∅-contexts
respectively. Similarly, κ-types and κ-contexts are types and contexts depending on κ.

3.1 Types
The well-formed types of GTT include the unit type, products, coproducts, and function
spaces. Notice that 1 is a ∅-type.

data Ty : ClockCtx → Set where
1 : Ty ∅
� : ∀ {∆} → Ty ∆ → Ty ∆ → Ty ∆
� : ∀ {∆} → Ty ∆ → Ty ∆ → Ty ∆
→ : ∀ {∆} → Ty ∆ → Ty ∆ → Ty ∆

We include a modality B as an operation on κ-types similar to the one in Atkey and
McBride’s system. There also is a nameless analogue of clock quantification, which we call
“box” and denote by � following [14]. The box modality takes a κ-type and returns a ∅-type.

N. Veltri and N. van der Weide 32:5

The well-formed types of GTT include a weakening type former ↑, which maps ∅-types
to κ-types.

B : Ty κ → Ty κ
� : Ty κ → Ty ∅
↑ : Ty ∅ → Ty κ

Guarded recursive types are defined using a least fixpoint type former µ.

µ : ∀ {∆} → Code ∆ → Ty ∆

For µ to be well-defined, one typically limits its applicability to strictly positive functors.
We instead consider a grammar Code ∆ for functors, which has codes for constant functors,
the identity, products, coproducts, and the later modality. Since there is a code for constant
functors, the type family Code needs to be defined simultaneously with Ty.

data Code : ClockCtx → Set where
C : ∀ {∆} → Ty ∆ → Code ∆
I : ∀ {∆} → Code ∆
� : ∀ {∆} → Code ∆ → Code ∆ → Code ∆
� : ∀ {∆} → Code ∆ → Code ∆ → Code ∆
B : Code κ → Code κ

The constructors of Code ∆ suffice for the specification of interesting examples of guarded
recursive types such as streams. Nevertheless, it would not be complicated to add exponentials
with constant domain and the box modality to the grammar. In addition, this grammar does
not allow the possibility of defining nested inductive types.

3.2 Contexts
The well-formed contexts of GTT are built from the empty context, context extension, and
context weakening. The last operation embeds ∅-contexts into κ-contexts. Notice that we
are overloading the symbol ↑, which is used for both type and context weakening.

data Ctx : ClockCtx → Set where
• : ∀ {∆} → Ctx ∆
, : ∀ {∆} → Ctx ∆ → Ty ∆ → Ctx ∆
↑ : Ctx ∅ → Ctx κ

3.3 Terms
The well-typed terms and substitutions of GTT are defined simultaneously. Terms include
constructors for variables and substitutions.

data Tm : ∀ {∆} → Ctx ∆ → Ty ∆ → Set where
var : ∀ {∆} (Γ : Ctx ∆) (A : Ty ∆) → Tm (Γ , A) A
sub : ∀ {∆} {Γ1 Γ2 : Ctx ∆} {A : Ty ∆} → Tm Γ2 A → Sub Γ1 Γ2 → Tm Γ1 A

We have lambda abstraction and application, plus the usual introduction and elimination
rules for the unit types, products, coproducts, and guarded recursive types. Here we only
show the typing rules associated to function types and guarded recursive types. The function

FSCD 2019

32:6 Guarded Recursion in Agda via Sized Types

eval evaluates codes in Code ∆ into endofunctors on Ty ∆. We use a categorical combinator
app for application. We derive the conventional application, taking additionally an element
in Tm Γ A and returning an inhabitant of Tm Γ B, in Section 3.4.

lambda : ∀ {∆} {Γ : Ctx ∆} {A B : Ty ∆} → Tm (Γ , A) B → Tm Γ (A → B)
app : ∀ {∆} {Γ : Ctx ∆} {A B : Ty ∆} → Tm Γ (A → B) → Tm (Γ , A) B
cons : ∀ {∆} {Γ : Ctx ∆} (P : Code ∆) → Tm Γ (eval P (µ P)) → Tm Γ (µ P)
primrec : ∀ {∆} (P : Code ∆) {Γ : Ctx ∆} {A : Ty ∆}
→ Tm Γ (eval P (µ P � A) → A) → Tm Γ (µ P → A)

The later modality is required to be an applicative functor, which means that we have
terms next and ~. The delayed fixpoint combinator dfix [9] allows defining productive
recursive programs. The usual fixpoint returning a term in A instead of B A is derivable.

next : {Γ : Ctx κ} {A : Ty κ} → Tm Γ A → Tm Γ (B A)
~ : {Γ : Ctx κ} {A B : Ty κ} → Tm Γ (B (A → B)) → Tm Γ (B A) → Tm Γ (B B)
dfix : {Γ : Ctx κ} {A : Ty κ} → Tm Γ (B A → A) → Tm Γ (B A)

We have introduction and elimination rules for the � modality. The rule box is the
analogue in GTT of Atkey and McBride’s rule for clock abstraction [8]. Notice that box
can only be applied to terms of type A over a weakened context ↑ Γ. This is analogous to
Atkey and McBride’s side condition requiring the universally quantified clock variable to not
appear freely in the context Γ. Similarly, the rule unbox corresponds to clock application.
The operation force is used for removing occurrences of B protected by the � modality.

box : {Γ : Ctx ∅} {A : Ty κ} → Tm (↑ Γ) A → Tm Γ (� A)
unbox : {Γ : Ctx ∅} {A : Ty κ} → Tm Γ (� A) → Tm (↑ Γ) A
force : {Γ : Ctx ∅} {A : Ty κ} → Tm Γ (� (B A)) → Tm Γ (� A)

The introduction and elimination rules for type weakening say that elements of Tm Γ A
can be embedded in Tm (↑ Γ) (↑ A) and vice versa.

up : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ A → Tm (↑ Γ) (↑ A)
down : {Γ : Ctx ∅} {A : Ty ∅} → Tm (↑ Γ) (↑ A) → Tm Γ A

Atkey and McBride assume the existence of certain type equalities [8]. Møgelberg, who
works in a dependently typed setting, considers similar type isomorphisms [20]. In GTT, we
follow the second approach. This means that we do not introduce an equivalence relation on
types specifying which types should be considered equal, as in Chapman’s object type theory
[13]. Instead, we include additional term constructors corresponding to functions underlying
the required type isomorphisms. For example, the clock irrelevance axiom formulated in our
setting states that every ∅-type A is isomorphic to � (↑ A). This is obtained by adding to
Tm a constructor �const.

�const : {Γ : Ctx ∅} (A : Ty ∅) → Tm Γ (� (↑ A) → A)

A function const� A in the other direction is derivable. When defining definitional equality
on terms, described in Section 3.5, we ask for �const and const� to be each other inverses.
The other type isomorphisms, listed in Appendix A are constructed in a similar way.

N. Veltri and N. van der Weide 32:7

3.4 Substitutions
For substitutions, we need the canonical necessary operations [7, 13]: identity and composition
of substitutions, the empty substitution, the extension with an additional term, and the
projection which forgets the last term.

data Sub : ∀ {∆} → Ctx ∆ → Ctx ∆ → Set where
ε : ∀ {∆} (Γ : Ctx ∆) → Sub Γ •
id : ∀ {∆} (Γ : Ctx ∆) → Sub Γ Γ
, : ∀ {∆} {Γ1 Γ2 : Ctx ∆} {A : Ty ∆} → Sub Γ1 Γ2 → Tm Γ1 A → Sub Γ1 (Γ2 , A)
◦ : ∀ {∆} {Γ1 Γ2 Γ3 : Ctx ∆} → Sub Γ2 Γ3 → Sub Γ1 Γ2 → Sub Γ1 Γ3

pr : ∀ {∆} {Γ1 Γ2 : Ctx ∆} {A : Ty ∆} → Sub Γ1 (Γ2 , A) → Sub Γ1 Γ2

We also add rules for embedding substitutions between ∅-contexts into substitutions
between κ-contexts and vice versa.

up : {Γ1 Γ2 : Ctx ∅} → Sub Γ1 Γ2 → Sub (↑ Γ1) (↑ Γ2)
down : {Γ1 Γ2 : Ctx ∅} → Sub (↑ Γ1) (↑ Γ2) → Sub Γ1 Γ2

In addition, we require the existence of two context isomorphisms. The context ↑ • needs
to be isomorphic to • and ↑ (Γ , A) needs to be isomorphic to ↑ Γ , ↑ A. For both of them,
we add a constructor representing the underlying functions.

•↑ : Sub • (↑ •)
,↑ : (Γ : Ctx ∅) (A : Ty ∅) → Sub (↑ Γ , ↑ A) (↑ (Γ , A))

An element ↑• in Sub (↑ •) • is derivable. In the definitional equality on substitutions, we
ask for •↑ and ↑• to be each other inverses. We proceed similarly with ,↑.

Using the term constructor sub, we can derive a weakening operation for terms and the
conventional application combinator.

wk : ∀ {∆} {Γ : Ctx ∆} {A B : Ty ∆} → Tm Γ B → Tm (Γ , A) B
wk {∆} {Γ} {A} x = sub x (pr (id (Γ , A)))

$: ∀ {∆} {Γ : Ctx ∆} {A B : Ty ∆} → Tm Γ (A → B) → Tm Γ A → Tm Γ B
$ {∆} {Γ} f x = sub (app f) (id Γ , x)

3.5 Definitional equalities
Definitional equalities on terms and substitutions are defined simultaneously. Here we only
discuss equality on terms and we refer to the formalization for the equality on substitutions.

data _∼_ : ∀ {∆} {Γ : Ctx ∆} {A : Ty ∆} (t1 t2 : Tm Γ A) → Set where

The term equality includes rules for equivalence, congruence, and substitution. There
also are β and η rules for the type formers. We only show the ones associated to the �
modality here. The rules state that box and unbox are each other’s inverses.

�-β : ∀ {Γ} {A} (t : Tm (↑ Γ) A) → unbox (box t) ∼ t
�-η : ∀ {Γ} {A} (t : Tm Γ (� A)) → box (unbox t) ∼ t

FSCD 2019

32:8 Guarded Recursion in Agda via Sized Types

We include definitional equalities stating that B is an applicative functor w.r.t. the
operations next and ~. Furthermore, the delayed fixpoint combinator dfix must satisfy its
characteristic unfolding equation. We refer to Møgelberg’s paper [20] for a complete list of
the required definitional equalities for B and �.

For the type isomorphisms, we require term equalities exhibiting that certain maps are
mutual inverses. For example, we have the following two equalities about �const and const�:

const�const : ∀ {Γ} {A} (t : Tm Γ (� (↑ A))) → const� A $ (�const A $ t) ∼ t
�const� : ∀ {Γ} {A} (t : Tm Γ A) → �const A $ (const� A $ t) ∼ t

The last group of term equalities describes the relationship between the weakening
operations up and down and other term constructors. Here we omit their description and we
refer the interested reader to the Agda formalization.

3.6 Example: Streams
We give a taste of how to program with streams in GTT. Our implementation is based on
Atkey and McBride’s approach to coinductive types [8]. To define a type of streams, we first
define guarded streams over a ∅-type A. It is the least fixpoint of the functor with code C (↑
A) � B I.

F : Ty ∅ → Code κ
F A = C (↑ A) � B I

g-Str : Ty ∅ → Ty κ
g-Str A = µ (F A)

The usual type of streams over A is then obtained by applying the � modality to g-Str A.

Str : Ty ∅ → Ty ∅
Str A = � (g-Str A)

We compute the head and tail of a stream using a function decons, which destructs an
element of an inductive type. The term decons is the inverse of cons and it is derivable using
primrec. Note that in both cases we need to use unbox, because of the application of the box
modality in the definition of Str. For the tail, we also use box and force. The operations π1
and π2 are the projections associated to the product type former �.

hd : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ (Str A) → Tm Γ A
hd xs = down (π1 (decons (unbox xs)))

tl : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ (Str A) → Tm Γ (Str A)
tl xs = force (box (π2 (decons (unbox xs))))

Given a GTT term a of type A, we can construct the constant guarded stream over a
using the fixpoint combinator.

g-const-str : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ A → Tm (↑ Γ) (g-Str A)
g-const-str {Γ} {A} a = fix (lambda (cons (F A) [wk (up a) & var (↑ Γ) (B (g-Str A))]))

The constant stream over a is obtained by boxing the guarded stream g-const a.

N. Veltri and N. van der Weide 32:9

const-str : {Γ : Ctx ∅} {A : Ty ∅} → Tm Γ A → Tm Γ (Str A)
const-str a = box (g-const-str a)

In our Agda formalization, we also construct a function removing the elements at even indices
out of a given stream, which is an example of a non-causal function.

4 Categorical Semantics

Next we give a categorical semantics for the calculus introduced in Section 3. We take
inspiration from Møgelberg’s model [20] in which a (simple) type in a clock context containing
n clocks is interpreted as a presheaf in Set(ωn)op

, where ω is the preorder of ordered natural
numbers. In our model, we replace the category ω with the preorder of sizes. Moreover, we
only consider the cases where either the clock context is empty or it contains exactly one
clock. This means that a type in GTT is either interpreted as an element of Set or as a
presheaf over Size. In this section, we show how to implement presheaves and how to model
the fragment of GTT corresponding to simply typed lambda calculus. The interpretation of
the guarded recursive and coinductive features of GTT is given in Section 5.

4.1 Presheaves
Presheaves are defined as a record PSh. The fields Obj and Mor represent the actions on
objects and morphisms respectively, while MorId and MorComp are the functor laws. The
type Size< (↑ i) contains sizes smaller or equal than i. In the type of MorId we use the
reflexivity of the order on sizes, which means i : Size< (↑ i). In the type of MorComp we use
transitivity.

record PSh : Set1 where
field
Obj : Size → Set
Mor : (i : Size) (j : Size< (↑ i)) → Obj i → Obj j
MorId : {i : Size} {x : Obj i} → Mor i i x ≡ x
MorComp : {i : Size} {j : Size< (↑ i)} {k : Size< (↑ j)} {x : Obj i}
→ Mor i k x ≡ Mor j k (Mor i j x)

Beside presheaves, we also need natural transformations. These are defined as a record
NatTrans, consisting of a map nat-map and a proof of the usual commutativity requirement.

record NatTrans (P Q : PSh) : Set where
field
nat-map : (i : Size) → Obj P i → Obj Q i
nat-com : (i : Size) (j : Size< (↑ i)) (x : Obj P i)
→ Mor Q i j (nat-map i x) ≡ nat-map j (Mor P i j x)

Products and sums of presheaves are defined pointwise. More precisely, we define the
product as follows

ProdObj : Size → Set
ProdObj i = Obj P i × Obj Q i

The sum is defined similarly. The weakening type former ↑ of GTT is modeled using the
constant presheaf, which we denote by Const. Function spaces are defined as the exponential
of presheaves. The action on a size i of this presheaf consists of natural transformations
restricted to sizes smaller or equal than i.

FSCD 2019

32:10 Guarded Recursion in Agda via Sized Types

record ExpObj (P Q : PSh) (i : Size) : Set where
field
fun : (j : Size< (↑ i)) → Obj P j → Obj Q j
funcom : (j : Size< (↑ i)) (k : Size< (↑ j)) (x : Obj P j)
→ Mor Q j k (fun j x) ≡ fun k (Mor P j k x)

All in all, we get an operation Exp : PSh → PSh → PSh.

4.2 Modelling Simple Types
To interpret the fragment of GTT corresponding to simply typed lambda calculus, we use
Kripke semantics [18]. Semantic judgments, similar to their syntactic counterparts, are
indexed by a clock context. We reuse the type ClockCtx for the semantic clock contexts. The
semantic variable contexts are sets if the clock context is empty, and they are presheaves
otherwise.

SemCtx : ClockCtx → Set1

SemCtx ∅ = Set
SemCtx κ = PSh

Note that GTT is a simple type theory, thus types do not depend on contexts. For this
reason, we define the type SemTy of semantic types in the same way as SemCtx.

The semantic terms of type A in context Γ are functions from Γ to A if the clock context
is empty, and they are natural transformations between Γ and A otherwise.

SemTm : {∆ : ClockCtx} (Γ : SemCtx ∆) (A : SemTy ∆) → Set
SemTm {∅} Γ A = Γ → A
SemTm {κ} Γ A = NatTrans Γ A

Since GTT is a type theory with explicit substitutions, we must provide an interpretation
for them as well. Semantic substitutions are maps between contexts and we define the type
SemSub in the same way as SemTm. Definitional equality of semantic terms and substitutions
is modeled as propositional equality.

We also need to provide a semantic version of the context operations, the simple type
formers and the operations on substitutions. Since their definitions are standard, we do not
discuss them in detail. For each of them, we need to make a case distinction based on the
clock context. For example, the empty variable context • is interpreted as the unit type in
the clock context ∅, and it is interpreted as the terminal presheaf in the clock context κ. We
use the operations on presheaves defined in Section 4.1 to interpret simple type formers. In
the next section, we use the interpretation of function types, whose action of objects in the
clock context κ is given by ExpObj. This is denoted by A ⇒ B for semantic types A and B.

⇒ : ∀ {∆} (A B : SemTy ∆) → SemTy ∆
⇒ {∅} A B = A → B
⇒ {κ} A B = Exp A B

5 Modelling Guarded Recursion

In this section, we add the required guarded recursive and coinductive features to the
denotational semantics. We start by defining the semantic box modality together with its
introduction and elimination rule. Then we construct the semantic later modality. We show
how to define the fixpoint combinator and the force operation using sized types. In the end,
we discuss how to model guarded recursive types.

N. Veltri and N. van der Weide 32:11

5.1 Context Weakening and the Box Modality
Similarly to the weakening type former ↑, the weakening context former ↑ is modeled using
the constant presheaf Const.

⇑ : SemCtx ∅ → SemCtx κ
⇑ Γ = Const Γ

Møgelberg models universal clock quantification by taking limits [20]. We define the
semantic box modality � similarly: given a presheaf A, we take � A to be the limit of A.
Formally, the limit of A is constructed as a record with two fields. The field �cone is given
by a family f i in Obj A i for each size i. The field �com is a proof that the restriction of f i
to a size j smaller than i is equal to f j.

record � (A : SemTy κ) : SemTy ∅ where
field
�cone : (i : Size) → Obj A i
�com : (i : Size) (j : Size< (↑ i)) → Mor A i j (�cone i) ≡ �cone j

The semantic box modality is right adjoint to context weakening. In other words, the
types Tm (⇑ Γ) A and Tm Γ (� A) are isomorphic for all Γ and A. The function underlying
the isomorphism is sem-box and its inverse is sem-unbox, modeling box and unbox respectively.

sem-box : (Γ : SemCtx ∅) (A : SemTy κ) (t : SemTm (⇑ Γ) A) → SemTm Γ (� A)
�cone (sem-box Γ A t x) i = nat-map t i x
�com (sem-box Γ A t x) i j = nat-com t i j x

sem-unbox : (Γ : SemCtx ∅) (A : SemTy κ) (t : SemTm Γ (� A)) → SemTm (⇑ Γ) A
nat-map (sem-unbox Γ A t) i x = �cone (t x) i
nat-com (sem-unbox Γ A t) i j x = �com (t x) i j

5.2 The Later Modality
The semantic later modality is an operation I on semantic κ-types. Recall that the later
modality in the topos of trees [11] is defined as

(I A)(0) = {∗}
(I A)(n+ 1) = A(n)

We cannot directly replicate the latter in our setting since the preorder of sizes does not
possess a least element. However, we know from [11] that the definition above is equivalent
to (I A)(n) = limk<nA(k). Adapting this to our setting leads to the following action of I
on objects:

record IObjTry (A : SemTy κ) (i : Size) : Set where
field
Icone : (j : Size< i) → Obj A j
Icom : (j : Size< i) (k : Size< (↑ j)) → Mor A j k (Icone j) ≡ Icone k

However, with this definition, we are unable to implement a terminating semantic fixpoint
combinator. Later in this section we discuss why this is the case.

FSCD 2019

32:12 Guarded Recursion in Agda via Sized Types

There are several ways to modify the above definition and implement a terminating
fixpoint operation. A possible solution, which was suggested to us by Andrea Vezzosi, is
using an inductive analogue of the predicate Size<, which we call SizeLt.

data SizeLt (i : Size) : Set where
[_] : Size< i → SizeLt i

The type SizeLt is a mechanism for suspending computations. If we define a function f of
type (j : SizeLt i) → Obj A j by pattern matching, then f j does not reduce unless j is of
the form [j’] for some j’ : Size< i. This simple observation turns out to be essential for a
terminating implementation of the fixpoint combinator.

From an inhabitant of SizeLt, we obtain an actual size by pattern matching.

size : ∀ {i} → SizeLt i → Size
size [j] = j

Furthermore, functions with domain SizeLt i can be specified using functions on Size< i.

elimLt : {A : Size → Set1} {i : Size} → ((j : Size< i) → A j)
→ (j : SizeLt i) → A (size j)

elimLt f [j] = f j

We define the action on objects of the semantic later modality similarly to IObjTry but
with SizeLt in place of Size<. Before we do so, we introduce two auxiliary functions, which
turn out to be handy when modeling guarded recursive types. The first is a function Later,
which instead of a semantic κ-type, takes a sized type as its input. Its definition is the same
as the type of the field Icone in IObjTry but with Size< replaced by SizeLt.

Later : (Size → Set) → Size → Set
Later A i = (j : SizeLt i) → A (size j)

The second auxiliary function is LaterLim. It takes as input a sized type A together with
a proof that it is antitone. Again its definition is the same as the type of the field Icom in
IObjTry but with two applications of elimLt and Size< replaced by SizeLt.

LaterLim : (A : Size → Set) (m : (i : Size) (j : Size< (↑ i)) → A i → A j)
→ (i : Size) (x : Later A i) → Set

LaterLim A m i x = (j : SizeLt i)
→ elimLt (λ { j’ → (k : SizeLt (↑ j’))

→ elimLt (λ k’ → m j’ k’ (x [j’]) ≡ x [k’]) k }) j

Putting everything together, we obtain the following definition of the object part of
the semantic later modality I. We refer to the Agda formalization for the action on the
morphisms and the functor laws.

record IObj (A : SemTy κ) (i : Size) : Set where
field
Icone : Later (Obj A) i
Icom : LaterLim (Obj A) (Mor A) i Icone

We omit the semantic equivalents of next and ~. To interpret the delayed fixpoint
combinator dfix, we introduce an auxiliary term sem-dfix1, for which we only show how to
construct the field Icone. This is defined using self-application.

N. Veltri and N. van der Weide 32:13

sem-dfix1 : (A : SemTy κ) (i : Size) → ExpObj (I A) A i → IObj A i
Icone (sem-dfix1 A i f) [j] = fun f j (sem-dfix1 A j f)

This definition is accepted by Agda’s termination checker for two reasons:
every recursive call is applied to a strictly smaller size;
the usage of SizeLt in place of Size< in the definition of Later prevents indefinite unfolding,
which would have happened if we used IObjTry instead of IObj.

In fact, if we would replace IObj by IObjTry as the return type of sem-dfix1 while keeping
the same definition (with j in place of [j]), we would obtain the following non-terminating
sequence of reductions:

Icone (sem-dfix1 A i f)
= λ j → fun f j (sem-dfix1 A j f)
= λ j → fun f j (record { Icone = λ k → fun f k (sem-dfix1 A k f) ; Icom = . . . })
= . . .

The termination of the Icom component of sem-dfix1 additionally relies on the presence
of elimLt in the definition of LaterLim.

The field nat-map of sem-dfix is defined using sem-dfix1. We omit the nat-com component.

sem-dfix : (Γ : SemCtx κ) (A : SemTy κ) (f : SemTm Γ (I A ⇒ A)) → SemTm Γ (I A)
nat-map (sem-dfix Γ A f) i γ = sem-dfix1 A i (nat-map f i γ)

Finally, we show how to interpret force. To this aim, we introduce an auxiliary function
sem-force’, which, given a type A and an inhabitant t of �(I A), returns a term in � A. For
the field �cone of sem-force’ A t, we are required to construct an element of Obj A i for
each size i. Notice that �cone t, when applied to a size i’, gives a term t’ of type IObj A i’.
Furthermore, the component Icone of t’, when applied to a size j’ smaller than i’, returns a
term of type Obj A j’. Hence, in order to construct the required inhabitant of Obj A i, it
suffices to find a size j greater than i. An option for such a size j is ∞. The field �com is
defined in a similar way.

sem-force’ : (A : SemTy κ) → � (I A) → � A
�cone (sem-force’ A t) i = Icone (�cone t ∞) [i]
�com (sem-force’ A t) i j = Icom (�cone t ∞) [i] [j]

The semantic force operation follows immediately from sem-force’.

sem-force : (Γ : SemCtx ∅) (A : SemTy κ) (t : SemTm Γ (� (I A))) → SemTm Γ (� A)
sem-force Γ A t x = sem-force’ A (t x)

5.3 Guarded Recursive Types
For semantic guarded recursive types, we introduce a type of semantic codes for functors. We
cannot reutilize the syntactic grammar Code since the code for the constant functor should
depend on SemTy rather than Ty. Instead we use the following definition.

data SemCode : ClockCtx → Set1 where
C : ∀ {∆} → SemTy ∆ → SemCode ∆
I : ∀ {∆} → SemCode ∆

FSCD 2019

32:14 Guarded Recursion in Agda via Sized Types

� : ∀ {∆} → SemCode ∆ → SemCode ∆ → SemCode ∆
� : ∀ {∆} → SemCode ∆ → SemCode ∆ → SemCode ∆
I : SemCode κ → SemCode κ

In the remainder of this section, we only discuss guarded recursive κ-types. The inter-
pretation of µ in the clock context ∅ is standard and therefore omitted. Given a semantic
code P, our goal is to construct the action on objects and morphisms of a presheaf mu-κ P.

A first naïve attempt would be to define the action on objects muObj P as the initial
algebra of sem-eval P, where sem-eval evaluates a code as an endofunctor on SemTy κ. This
means defining muObj P as an inductive type with one constructor taking in input sem-eval P
(muObj P). This idea does not work, since muObj P is a sized type while sem-eval P expects
a semantic κ-type.

Another possibility would be to define muObj P by induction on P. However, there is a
problem when we arrive at the I constructor. In this case, we would like to make a recursive
call to muObj applied to the original code P, which is unavailable at this point. We solve the
issue by introducing an auxiliary inductive type family muObj’, which depends on two codes
instead of one. The first code is the original one used to define the guarded recursive type
and we do induction on the second one. Then we define muObj P to be muObj’ P P.

The constructors of muObj’ P Q follow the structure of Q. If Q is a product we have a
pairing constructor, if it is a sum we have the two injections. When Q is the code for the
identity functor, we make a recursive call. For the I case, we have a constructor later taking
two arguments with the same types as the two fields of IObj. Since LaterLim depends both
on a sized type and a proof that it is antitone, we need to define muObj’ mutually with its
own proof of antitonicity muMor’. This construction works since Later and LaterLim take in
input part of the data of a presheaf and they crucially do not depend on the functor laws.

mutual
data muObj’ (P : SemCode κ) : SemCode κ → Size → Set where
const : {X : PSh} {i : Size} → Obj X i → muObj’ P (C X) i
rec : ∀{i} → muObj’ P P i → muObj’ P I i
, : ∀{Q R i} → muObj’ P Q i → muObj’ P R i → muObj’ P (Q � R) i
in1 : ∀{Q R i} → muObj’ P Q i → muObj’ P (Q � R) i
in2 : ∀{Q R i} → muObj’ P R i → muObj’ P (Q � R) i
later : ∀{Q i} (x : Later (muObj’ P Q) i)
→ LaterLim (muObj’ P Q) (muMor’ P Q) i x → muObj’ P (I Q) i

muMor’ : (P Q : SemCode κ) (i : Size) (j : Size< (↑ i)) → muObj’ P Q i → muObj’ P Q j
muMor’ P (C X) i j (const x) = const (Mor X i j x)
muMor’ P I i j (rec x) = rec (muMor’ P P i j x)
muMor’ P (Q � R) i j (x , y) = muMor’ P Q i j x , muMor’ P R i j y
muMor’ P (Q � R) i j (in1 x) = in1 (muMor’ P Q i j x)
muMor’ P (Q � R) i j (in2 x) = in2 (muMor’ P R i j x)
muMor’ P (I Q) i j (later x p) = later x (λ { [k] → p [k] })

We define muMor P to be muMor’ P P. Since muMor preserves the identity and composition,
we get a presheaf mu-κ P for each P. This is used to interpret µ in the clock context κ. We
write mu for the interpretation of µ in a general clock context.

N. Veltri and N. van der Weide 32:15

6 Soundness and Consistency

We now define the notion of interpretation of GTT. To interpret types, one must give a type
of semantical types and a function mapping each syntactic type to its semantical counterpart.
Similarly for contexts, terms, substitutions and definitional equalities. This leads to the
following record where we only show the fields related to types.

record interpret-syntax : Set2 where
field
semTy : ClockCtx → Set1

_J_KTy : ∀ {∆} → Ty ∆ → semTy ∆

Now we prove GTT sound w.r.t. the categorical semantics. We only show the inter-
pretation of the types whose semantics were explicitly discussed in Sections 4 and 5. Since
syntactic types are defined mutually with codes, the interpretation of types J_Ktype has to
be defined simultaneously with the interpretation of codes J_Kcode, which we omit here.

J_Ktype : ∀ {∆} → Ty ∆ → SemTy ∆
J A → B Ktype = J A Ktype ⇒ J B Ktype
J B A Ktype = I J A Ktype
J � A Ktype = � J A Ktype
J µ P Ktype = mu J P Kcode

Similarly, Ctx, Tm and Sub are mapped into SemCtx, SemTm and SemSub respectively.
Definitional equality of terms is interpreted as Agda’s propositional equality, the same for
definitional equality of substitutions.

sem : interpret-syntax
semTy sem = SemTy
_J_KTy sem = J_Ktype

Using the interpetation sem, we can show that GTT is consistent, by which we mean
that not every definitional equality is deducible. We first define a type bool : Ty ∅ as 1 �
1 and two terms TRUE and FALSE as in1 tt and in2 tt respectively, where in1 and in2 are
the two constructors of �. We say that GTT is consistent if TRUE and FALSE are not
definitionally equal.

consistent : Set
consistent = TRUE ∼ FALSE → ⊥

This is proved by noticing that if TRUE were definitionally equal to FALSE, then their
interpretations in sem would be equal. However, they are interpreted as inj1 tt and inj2 tt
respectively, and those are unequal. Hence, GTT is consistent.

7 Conclusions and Future Work

We presented a simple type theory for guarded recursion that we called GTT. We formalized
its syntax and semantics in Agda. Sized types were employed to interpret the characteristic
features of guarded recursion. From this, we conclude that guarded recursion can be simulated
using sized types. We greatly benefited from the fact that sized types constitute a native
feature of Agda, so we were able to fully develop our theory inside a proof assistant.

FSCD 2019

32:16 Guarded Recursion in Agda via Sized Types

This work can be extended in several different directions. Various type theories for
guarded recursion in the literature include dependent types. Currently, there exist two
disciplines for mixing dependent types with guarded recursion: delayed substitutions [12]
and ticks [9]. It would be interesting to extend the syntax and semantics of GTT with
dependent types following one of these two methods.

Abel and Vezzosi [5] formalized a simple type theory extended with the later modality
in Agda. They focus on operational properties of the calculus and give a certified proof
of strong normalization. As future work, we plan to investigate the metatheory and the
dynamic behavior of GTT by formalizing a type checker and a normalization algorithm.
This would also set up the basis for a usable implementation of GTT.

In GTT we restrict the least fixpoint operator µ to act exclusively on strictly positive
functors. This restriction is already present in Atkey and McBride’s calculus, which is
aimed at encoding coinductive types using the later modality and it does not allow solving
general guarded recursive domain equations. GTT is a variant of Atkey and McBride’s type
theory, therefore the similar restriction to stricly positive functors. From the formalization
perspective, this restriction allows us to use Agda’s inductive types to model the guarded
recursive types of GTT, as shown in Section 5.3. In future work, we plan to extend GTT
with the possibility of solving general guarded recursive domain equations. This could be
done in two ways: extending the language with a universe, which allows the encoding of
guarded recursive types as fixpoints in the universe as shown e.g. by Møgelberg [20]; or
considering a µ type former which, besides stricly positive functors, also operates on functors
where all variables are guarded by an occurrence of the later modality. In the second option
we have to consider strictly positive functors to encode usual inductive types, such as the
natural numbers.

Finally, we would like to understand whether sized types can be simulated using guarded
recursion. This could either be done by modeling sized types in a topos of trees-like category
[11, 19] or via the encoding of a type theory with sized types into a dependent type theory
for guarded recursion such as Clocked Type Theory [9].

References
1 Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit Substitu-

tions. J. Funct. Program., 1(4):375–416, 1991. doi:10.1017/S0956796800000186.
2 Andreas Abel. MiniAgda: Integrating Sized and Dependent Types. In Partiality and Recursion

in Interactive Theorem Provers, PAR@ITP 2010, Edinburgh, UK, July 15, 2010, pages 18–32,
2010. URL: http://www.easychair.org/publications/paper/51657.

3 Andreas Abel and James Chapman. Normalization by Evaluation in the Delay Monad: A
Case Study for Coinduction via Copatterns and Sized Types. In Proceedings 5th Workshop on
Mathematically Structured Functional Programming, MSFP@ETAPS 2014, Grenoble, France,
12 April 2014., pages 51–67, 2014. doi:10.4204/EPTCS.153.4.

4 Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Program-
ming Infinite Structures by Observations. In The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 -
25, 2013, pages 27–38, 2013. doi:10.1145/2429069.2429075.

5 Andreas Abel and Andrea Vezzosi. A Formalized Proof of Strong Normalization for Guarded
Recursive Types. In Programming Languages and Systems - 12th Asian Symposium, APLAS
2014, Singapore, November 17-19, 2014, Proceedings, pages 140–158, 2014. doi:10.1007/
978-3-319-12736-1_8.

6 Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. Normalization by Evaluation for Sized
Dependent Types. PACMPL, 1(ICFP):33:1–33:30, 2017. doi:10.1145/3110277.

http://dx.doi.org/10.1017/S0956796800000186
http://www.easychair.org/publications/paper/51657
http://dx.doi.org/10.4204/EPTCS.153.4
http://dx.doi.org/10.1145/2429069.2429075
http://dx.doi.org/10.1007/978-3-319-12736-1_8
http://dx.doi.org/10.1007/978-3-319-12736-1_8
http://dx.doi.org/10.1145/3110277

N. Veltri and N. van der Weide 32:17

7 Thorsten Altenkirch and Ambrus Kaposi. Type Theory in Type Theory using Quotient
Inductive Types. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, pages 18–29, 2016. doi:10.1145/2837614.2837638.

8 Robert Atkey and Conor McBride. Productive Coprogramming with Guarded Recursion. In
ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA,
USA - September 25 - 27, 2013, pages 197–208, 2013.

9 Patrick Bahr, Hans Bugge Grathwohl, and Rasmus Ejlers Møgelberg. The Clocks are Ticking:
No More Delays! In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.
8005097.

10 Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliatre,
Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan Murthy, et al. The
Coq Proof Assistant Reference Manual: Version 6.1. PhD thesis, Inria, 1997.

11 Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
Steps in Synthetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. Logical
Methods in Computer Science, 8(4), 2012. doi:10.2168/LMCS-8(4:1)2012.

12 Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E Møgelberg, and Lars Birkedal.
Guarded Dependent Type Theory with Coinductive Types. In International Conference on
Foundations of Software Science and Computation Structures, pages 20–35. Springer, 2016.

13 James Chapman. Type Theory Should Eat Itself. Electr. Notes Theor. Comput. Sci., 228:21–36,
2009. doi:10.1016/j.entcs.2008.12.114.

14 Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal. Programming and
Reasoning with Guarded Recursion for Coinductive Types. In Foundations of Software Science
and Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, pages 407–421, 2015. doi:10.1007/978-3-662-46678-0_26.

15 Thierry Coquand. Infinite Objects in Type Theory. In Types for Proofs and Programs,
International Workshop TYPES’93, Nijmegen, The Netherlands, May 24-28, 1993, Selected
Papers, pages 62–78, 1993. doi:10.1007/3-540-58085-9_72.

16 Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, Declaratively. In Mathematics
of Program Construction, 10th International Conference, MPC 2010, Québec City, Canada,
June 21-23, 2010. Proceedings, pages 100–118, 2010. doi:10.1007/978-3-642-13321-3_8.

17 John Hughes, Lars Pareto, and Amr Sabry. Proving the Correctness of Reactive Systems
Using Sized Types. In Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Papers Presented at the Symposium, St.
Petersburg Beach, Florida, USA, January 21-24, 1996, pages 410–423, 1996. doi:10.1145/
237721.240882.

18 Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first introduction to
topos theory. Springer Science & Business Media, 1992.

19 Bassel Mannaa and Rasmus Ejlers Møgelberg. The Clocks They Are Adjunctions Denotational
Semantics for Clocked Type Theory. In 3rd International Conference on Formal Structures
for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, pages 23:1–23:17,
2018. doi:10.4230/LIPIcs.FSCD.2018.23.

20 Rasmus Ejlers Møgelberg. A Type Theory for Productive Coprogramming via Guarded
Recursion. In Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 71:1–
71:10, 2014. doi:10.1145/2603088.2603132.

21 Hiroshi Nakano. A Modality for Recursion. In 15th Annual IEEE Symposium on Logic in
Computer Science, Santa Barbara, California, USA, June 26-29, 2000, pages 255–266, 2000.
doi:10.1109/LICS.2000.855774.

FSCD 2019

http://dx.doi.org/10.1145/2837614.2837638
http://dx.doi.org/10.1109/LICS.2017.8005097
http://dx.doi.org/10.1109/LICS.2017.8005097
http://dx.doi.org/10.2168/LMCS-8(4:1)2012
http://dx.doi.org/10.1016/j.entcs.2008.12.114
http://dx.doi.org/10.1007/978-3-662-46678-0_26
http://dx.doi.org/10.1007/3-540-58085-9_72
http://dx.doi.org/10.1007/978-3-642-13321-3_8
http://dx.doi.org/10.1145/237721.240882
http://dx.doi.org/10.1145/237721.240882
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.23
http://dx.doi.org/10.1145/2603088.2603132
http://dx.doi.org/10.1109/LICS.2000.855774

32:18 Guarded Recursion in Agda via Sized Types

22 Ulf Norell. Dependently Typed Programming in Agda. In Proceedings of TLDI’09: 2009
ACM SIGPLAN International Workshop on Types in Languages Design and Implementation,
Savannah, GA, USA, January 24, 2009, pages 1–2, 2009.

23 Jorge Luis Sacchini. Type-Based Productivity of Stream Definitions in the Calculus of
Constructions. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2013, New Orleans, LA, USA, June 25-28, 2013, pages 233–242, 2013. doi:10.1109/LICS.
2013.29.

A Syntax of GTT

Contexts

− `∆

Γ `∆ Γ `∆ A type
Γ, x : A `∆

Γ `∅
↑Γ `κ

Codes

Γ `∆ I code
Γ `∆ A type
Γ `∆ A code

Γ `∆ P code Γ `∆ Q code
Γ `∆ P ×Q code

Γ `∆ P code Γ `∆ Q code
Γ `∆ P +Q code

Γ `κ P code
Γ `κ .P code

Types

Γ `∅ 1 type
Γ `∆ A type Γ `∆ B type

Γ `∆ A×B type

Γ `∆ A type Γ `∆ B type
Γ `∆ A+B type

Γ `∆ A type Γ `∆ B type
Γ `∆ A→ B type

↑Γ `κ A type
Γ `∅ �A type

Γ `∅ A type
↑Γ `κ ↑A type

Γ `κ A type
Γ `κ .A type

Γ `∆ P code
Γ `∆ µP type

Substitutions

Γ `∆
`∆ ε : Γ→ −

Γ `∆
`∆ id : Γ→ Γ

`∆ s : Γ1 → Γ2, A

`∆ pr s : Γ1 → Γ2

`∆ s : Γ1 → Γ2 Γ1 `∆ t : A
`∆ s, t : Γ1 → Γ2, A

`∆ s1 : Γ1 → Γ2 `∆ s2 : Γ2 → Γ3
`∆ s2 ◦ s1 : Γ1 → Γ3

`∅ s : Γ1 → Γ2

`κ up s : ↑Γ1 → ↑Γ2

`κ s : ↑Γ1 → ↑Γ2
`∅ down s : Γ1 → Γ2

http://dx.doi.org/10.1109/LICS.2013.29
http://dx.doi.org/10.1109/LICS.2013.29

N. Veltri and N. van der Weide 32:19

Terms

x : A ∈ Γ
Γ `∆ x : A

`∆ s : Γ1 → Γ2 Γ2 `∆ t : A
Γ1 `∆ t[s] : A

Γ, x : A `∆ t : B
Γ `∆ λx. t : A→ B

Γ `∆ f : A→ B Γ `∆ t : A
Γ `∆ f t : B

Γ `∅ tt : 1
Γ `∅ t : A

Γ, x : 1 `∅ unitrec t : A

Γ `∆ t : A×B
Γ `∆ π1t : A

Γ `∆ t : A×B
Γ `∆ π2t : B

Γ `∆ t : A
Γ `∆ in1t : A+B

Γ `∆ t : B
Γ `∆ in2t : A+B

Γ `∆ t1 : A Γ `∆ t2 : B
Γ `∆ (t1, t2) : A×B

Γ, x : A `∆ t1 : C Γ, y : B `∆ t2 : C
Γ, z : A+B `∆ plusrec t1 t2 : C

↑Γ `κ: t : A
Γ `∅ box t : �A

Γ `∅: t : �A
↑Γ `κ unbox t : A

Γ `∅ t : A
↑Γ `κ up t : ↑A

↑Γ `κ t : ↑A
Γ `∅ down t : A

Γ `κ t : A
Γ `κ next t : .A

Γ `κ f : .(A→ B) Γ `κ t : .A
Γ `κ f ~ t : .B

Γ `κ f : .A→ A

Γ `κ dfix f : .A
Γ `∅ t : � . A

Γ `∅ force t : �A

Γ `∆ t : FP (µP)
Γ `∆ cons t : µP

Γ ` f : FP (µP ×A)→ A

Γ `∆ primrec f : µP → A

where FP is the evaluation of the code P into endofunctors on types, called eval P in
Section 3. We omit the presentation of the definitional equalities of terms and substitutions,
which can be found in our Agda formalization.

Type Isomorphisms

�(↑A) ∼= A �(A+B) ∼= �A+�B ↑(A→ B) ∼= ↑A→ ↑B ↑(µP) ∼= µ(↑P)

Context Isomorphisms

− ∼= ↑− ↑Γ, ↑A ∼= ↑(Γ, A)

FSCD 2019

Sequence Types for Hereditary Permutators
Pierre Vial
Inria, Nantes, France
pierre.vial@inria.fr

Abstract
The invertible terms in Scott’s model D∞ are known as the hereditary permutators. Equivalently,
they are terms which are invertible up to βη-conversion with respect to the composition of the
λ-terms. Finding a type-theoretic characterization to the set of hereditary permutators was problem
20 of TLCA list of problems. In 2008, Tatsuta proved that this was not possible with an inductive
type system. Building on previous work, we use an infinitary intersection type system based on
sequences (i.e., families of types indexed by integers) to characterize hereditary permutators with a
unique type. This gives a positive answer to the problem in the coinductive case.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases hereditary permutators, Böhm trees, intersection types, coinduction, ridigity,
sequence types, non-idempotent intersection

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.33

Funding This research has been partially funded by the CoqHoTT ERC Grant 637339.

0 Introduction

The study of βη-invertible terms goes back to Curry and Feys [7], who showed that the only
regular combinators having an inverse are of the form λxx1 . . . xn.x xσ(1) . . . xσ(n) with σ a
permutation. Building on this work, Dezani [9] gave a characterization of the normal forms
of all the invertible normalizing terms. This characterization was extended by Bergstra
and Klop [3] for any term: βη-invertible terms were proved to have Böhm trees of a
certain form, generalizing that given by Curry and Feys and suggesting to name them
hereditary permutators.

On another hand, intersection types systems were introduced by Coppo and Dezani [6, 12]
around 1980 (see [16] for a survey). They were extensively used to characterize various sets
of terms having common semantic properties (including head, weak, strong normalization)
in different calculi. Yet, hereditary permutators resisted such a characterization, so that the
problem of finding a type system assigning a unique type to all hereditary permutators (and
only to them) was inscribed in TLCA list of open problems by Dezani in 2006 (Problem #
20). Two years later, Tatsuta [14] proved that the set HP of hereditary head permutators
is not recursively enumerable. This entails that HP cannot be characterized in an inductive
type system.

However, in [17], using a coinductive intersection type system named system S, we
characterized the so-called set of hereditary head normalizing (HHN) terms which is also a
set of terms having Böhm trees of certain form (without the constant ⊥), whereas this set
was also proved not to be recursively enumerable by Tatsuta [13]. As in the finitary case,
infinite types bring simpler semantic proofs of well-known theorems, e.g., system S helps
proving that an asymptotic reduction strategy produces the infinitary normal form of a term
when it exists. In this paper, we extend system S with a type constant characterizing the set
of hereditary permutators and we thus give a positive answer to TLCA Problem # 20 in the
coinductive case. This also proves that infinitary type systems may be used to characterize
other sets of Böhm trees.

© Pierre Vial;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1825-0097
mailto:pierre.vial@inria.fr
https://doi.org/10.4230/LIPIcs.FSCD.2019.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Typing Hereditary Permutators

Before properly starting the article, a few words should be said on system S and infinitary
typing: intersections are represented by families of types indexed by sets K of integers > 2.
These indexes are called tracks. Thus, system S is close to non-idempotent intersection,
introduced by Gardner [10] and de Carvalho [5], for which A ∧ A 6= A. In the finite case,
non-idempotency gives very simple proofs of normalization (see [4] for a survey). Tracks allow
tracing occurrences of a given type in a derivation (rigidity) while ensuring syntax-direction,
whereas having both is not possible when non-idempotent intersection is represented by lists
or multisets. Rigidity is crucial in the infinitary case, because coinductive type grammars give
birth to unsound derivations, e.g., the unsolvable term Ω := (λx.x x)(λx.x x) becomes typable.
However, rigidity allows defining a validity criterion, called approximability, which brings
back semantic soundness. This is why system S provides a good framework to characterize
hereditary permutators.

Last, Tatsuta defines a type system with a family of type constants ptypd (with d ∈ N)
such that t : ptypd iff t is a hereditary permutator on d levels. Then, a term is a hereditary
permutator iff t : ptypd is derivable for all d ∈ N. However, given a hereditary permutator t,
there is no explicit relation between the different typings t : ptypd when d ranges over N.
We reuse this idea here, but the notion of approximability hinted at above allows formally
expressing the typing derivations concluding with t : ptypd as extensions of those concluding
with t : ptypd0

with d0 < d. Actually, we define a type constant ptyp, which can be assigned
to hereditary permutators and to them only, which is the “supremum” of all ptypd i.e., such
that a typing t : ptyp is an extension of typings t : ptypd for all d ∈ N.

Structure of the paper. We conclude this introduction with some technical background
on hereditary permutators. Section 1 recalls some basic definitions about Böhm trees and
the infinite λ-calculus, but also on system S and infinite types. In Section 2, we give a
type-theoretic characterization of hereditary permutations in system S. In Section 3, we
introduce system Shp, an extension of system S, such that hereditary permutators have a
unique type. The technical contributions of this paper are found mainly in Section 2 and 3.1.

Hereditary Permutators
Let V be a set of term variables. For all n ∈ N, Sn denotes the set of permutations of
{1, . . . , n}, →h denotes head reduction and the reflexive-transitive closure of a reduction
→R is denoted →∗R. To define hereditary permutators, we first consider headed hereditary
permutators, i.e., hereditary permutators whose head variables have not been bound yet.

I Definition 1.
For all x ∈ V, the sets HP(x) of x-headed Hereditary Permutators (x-HP) (x ∈ V)
are defined by mutual coinduction:

h1 ∈ HP(x1) . . . hn ∈ HP(xn) (n > 0, σ ∈ Sn, xi 6= x, xi pairwise distinct)
and h→∗h λx1 . . . xn.x hσ(1) . . . hσ(n)

h ∈ HP(x)

A closed hereditary permutator, or simply, a Hereditary Permutator (HP) is a term
of the form h = λx.h0 with h0 ∈ HP(x) for some x.

A headed hereditary permutator is the head reduct of a hereditary permutator applied to
a variable.

P. Vial 33:3

I Theorem 2 ([3]). A λ-term t is a hereditary permutator iff t is invertible modulo βη-
conversion for the operation · defined by u · v = λx.u (v x), whose neutral element is I = λx.x.

Thus, u is invertible when there exists v such that λx.u(v x) =βη= λx.v(ux) =βη I. An
extensive presentation of hereditary permutators and their properties is given in Chapter 21
of [2].

1 Infinite terms and types

In this section, we present Böhm trees (Chapter 10 of [2]) and the construction of one
of the infinitary calculi introduced in [11]. See also [8, 1] for alternative presentations.
We then present system S, an infinitary intersection type system with a validity criterion
(approximability) discarding unsound coinductive derivations and using sequences to represent
intersection. Some more details can also be found in [17].

General notations. The set of finite words on N is denoted with N∗, ε is the empty word,
a · a′ the concatenation of a and a′. The prefix order � is defined on N∗ by a � a′ if there is
a0 such that a′ = a · a0, e.g., 2·3 � 2·3·0·1.

Intuitively, 0 is dedicated to the constructor λx, 1 is dedicated to the left-hand side
of applications and all the k > 2 to the possibly multiple typings of the arguments of
applications. This also explains why 0 and 1 will have a particular status in the definitions
to come. For instance, the applicative depth ad(a) of a ∈ N∗ is the number of nestings
inside arguments, i.e., ad(a) is defined inductively by ad(ε) = 0, ad(a · k) = ad(a) if k = 0
or k = 1 and ad(a · k) = ad(a) + 1 if k > 2. The collapse is defined on N by k = min(k, 2)
and on N∗ inductively by ε = ε, a · k = a · k, e.g., 7 = 2, 1 = 1 and 2·3·0·1 = 2·2·0·1. These
notions are straightforwardly extended to words of infinite length, e.g., 2ω, which is the
infinite repetition of 2.

1.1 Infinite Lambda Terms
The set Λ∞ of infinitary λ-terms is coinductively defined by:

t, u := x ∈ V ‖ (λx.t) ‖ (t u)

When there is no ambiguity, we usually just write λx.t and t u1 . . . un instead of (λx.t)
and (. . . (t u1) . . . un). If t is an infinitary term, then supp(t), the support of t (the set of
positions in t) is defined in the usual way, i.e., coinductively, supp(x) = {ε}, supp(λx.t) =
{ε} ∪ 0 · supp(t) and supp(t u) = {ε} ∪ 1 · supp(t) ∪ 2 · supp(u). If a ∈ supp(t), the subterm
(resp. the constructor) of t at position a is denoted t|a (resp. t(a)), e.g., if t = λx.(x y)z and
a = 0 · 1 (resp. a = 0 · 4), then t|a = x y and t(a) = @) (resp. t|a = t(a) = z).

I Definition 3 (001-Terms). Let t ∈ Λ∞. Then t is a 001-term, if, for all infinite branches
γ in supp(t), ad(γ) =∞.

Once again, the vocable “001-term” comes from [11]. For instance, the 001-term fω

is formally defined as the tree such that supp(fω) = {2n | n ∈ N} ∪ {2n · 1 |n ∈ N},
fω(2n) = @ and fω(2n · 1) = f for all n ∈ N. Its unique infinite branch is 2ω (since all
the finite prefixes of 2ω are in supp(fω)), which satisfies ad(2ω) = ∞. In contrast, the
infinite term t defined by t = t x, so that t = (((. . .)x)x)x, is not a 001-term: indeed,
supp(t) = {1n |n ∈ N} ∪ {1n · 2 |n ∈ N}, so supp(t) has the infinite branch 1ω (this indicates
a leftward infinite branch), which satisfies ad(1ω) = 0 since 2 does not occur in 1ω.

FSCD 2019

33:4 Typing Hereditary Permutators

1.2 The computation of Böhm trees
The notation t[u/x] denotes the term obtained from t by the capture-free substitution of
the occurrences of x with u ([11] gives a formal definition in the infinitary calculus). The
β-reduction→β is obtained by the contextual closure of (λx.t)u→β t[u/x] and t b→β t′ denotes
the reduction of a redex at position b in t, e.g., λy.((λx.x)u)v 0·1→β λy.u v. A 001-Normal
Form (001-NF) is a 001-term that does not contain a redex. A 001-term is solvable if
t→∗h λx1 . . . xp.x t1 . . . tq, which is a head normal form (HNF) of arity p.

I Definition 4 (Böhm tree of a term). Let t be a 001-term.
The Böhm tree BT(t) of t is coinductively defined by:

BT(t) = λx1 . . . xp.x BT(t1) . . . BT(tq) if t→∗h λx1 . . . xp.x t1 . . . tq.
BT(t) = ⊥ if t is unsolvable.

For instance, BT(Ω) = ⊥ where Ω = (λx.x x)(λx.x x) and BT(t) = t if t a 001-normal
form. Definition 1 can be read as the specification of a set of terms whose Böhm trees have a
particular form. Intuitively, the computation of Böhm trees is done by a possibly infinite
series of head reductions at deeper and deeper levels. This corresponds to an asymptotic
reduction strategy known as hereditary head reduction.

Some reduction paths are of infinite length but asymptotically produce a term.

I Definition 5 (Productive reduction paths). Let t = t0
b0→β t1

b1→β t2 . . . tn
bn→β tn+1 . . . be a

reduction path of length ` 6 ω.
Then, this reduction path is said to be productive if either it is of finite length (` ∈ N), or
` =∞ and ad(bn) tends to infinity (recall that ad(·) is applicative depth).

A productive reduction path is called a strongly converging reduction sequence in [11], in
which numerous examples are found. When BT(t) does not contain ⊥, the hereditary head
reduction strategy on a term t gives a particular case of productive path.

I Lemma 6 (Limits of productive paths). Let t = t0
b0→β t1

b1→β t2 . . . tn
bn→β tn+1 . . . be a

productive reduction path of infinite length.
Then, there is a 001-term t′ such that, for every d > 0, there is N ∈ N such that, for all
n > N , supp(tn) ∩ {b ∈ {0, 1, 2}∗ | ad(b) 6 d} = supp(t′) ∩ {b ∈ {0, 1, 2}∗ | ad(b) 6 d}.

The term t′ in the statement of Lemma 6 is called the limit of the productive path.
Intuitively, when t′ is the limit of (tn)n>0, then t′ induces the same tree as tn at fixed
applicative depth after sufficiently many reduction steps. We then write t→∞β t′ if t→∗β t′
or t is the limit of a productive path starting at t. For instance, if ∆f = λx.f(xx),
Yf = ∆f ∆f (with f ∈ V), then Yf

ε→β f(Yf), which gives the productive path Yf
ε→β

f(Yf) 2→β . . . fn(Yf) 2n

→β fn+1(Yf) . . . since ad(2n) −→ ∞. The limit of this path – which
implements hereditary head reduction on Yf – is fω, i.e., Yf →∞β fω and also BT(Yf) = fω.

A 001-term t is said to be infinitary weakly normalizing (WN∞) if there is a 001-NF
t′ such that t→∞β t′. It turns out that t is WN∞ iff its Böhm tree does not contain ⊥. The
result is proved in [11] in a syntactical way, but we give a semantic proof of this fact in [17].

1.3 System S (sequential intersection)
A sequence of elements of a set X is a family (xk)k∈K with K ⊆ N \ {0, 1}. In this case, if
k0 ∈ K, xk0 is the element of (xk)k∈K on track k. We often write (k·xk)k∈K for (xk)k∈K ,
which, for instance, allows us to denote by (2 · a, 4 · b, 5 · a) or (4 · b, 2 · a, 5 · a) the sequence

P. Vial 33:5

(xk)k∈K with K = {2, 4, 5}, x2 = x5 = a and x4 = b. In this sequence, the element on track
4 is b. Sequences come along with a disjoint union operator, denoted]. Let (xk)k∈K and
(x′k)k∈K′ be two sequences:

If K ∩K ′ = ∅, then (xk)k∈K] (x′k)k∈K′ is (x′′)k∈K′′ with K ′′ = K ∪K ′ and x′′k = xk
when k ∈ K and x′′k = x′k when k ∈ K ′.
If K ∩K ′ 6= ∅, (xk)k∈K] (x′k)k∈K′ is not defined.

The operator] is partial, associative and commutative.
Let O be a set of type atoms o. The set of S-types is coinductively defined by:

T, Sk ::= o ∈ O ‖ (Sk)k∈K → T

A sequence of types (Sk)k∈K is called a sequence type and it represents an intersection of
types. The types of system S collapse on usual non-idempotent intersection types built on
multisets [4], e.g., the S-types (2 · o, 3 · o′, 4 · o) → o and (2 · o′, 8 · o, 9 · o) → o collapse on
[o, o, o′]→ o. The system is strict [12, 15, 16] since intersections occur only on left-hand sides
of arrows. The domain and codomain of an arrow type are defined by dom((Sk)k∈K →
T) = (Sk)k∈K and codom((Sk)k∈K → T) = T . The arity of a type is coinductively
defined by ar(o) = 0 and ar((Sk)k∈K → T) = ar(T) + 1. For instance, if T is defined by
T = (2 · o)→ T = (2 · o)→ (2 · o)→ . . ., then ar(T) =∞.

The support of a type or a sequence type U is coinductively defined by supp(o) = {ε},
supp((Sk)k∈K) = ∪k∈Kk · supp(Sk) and supp((Sk)k∈K → T) = {ε} ∪ supp((Sk)k∈K) ∪ 1 ·
supp(T). Since 1 /∈ K by convention, this definition is correct. If c ∈ supp(U), then U |c
denotes the type or sequence type rooted at position c in U (U |c is a type when U is a type or
c 6= ε). For instance, if U = (2 · o)→ (2 · o, 3 · o′)→ o and c = 1, then U |c = (2 · o, 3 · o′)→ o.
Likewise, U(c) denotes the type constructor (o ∈ O or →) at position c. With the same
example, U(ε) = U(1) =→, U(2) = o and U(1·3) = o′

A 001-type is a S-type T such that, for all c ∈ supp(T), ar(T |c) < ∞, where T |c is
the subtree rooted at c in T (T |c is a type). The target type targ(T) of a 001-type S is
inductively defined by targ(o) = o and targ((Sk)k∈K → T) = targ(T).

An S-context C (or D) is a total function from V to the set of S-types. The operator] is
extended point-wise. An S-judgment is a triple C ` t : T , where C, t and T are respectively
an S-context, a 001-term and an S-type. A sequence judgment is a sequence of judgments
(Ck ` t : Tk)k∈K with K ⊆ N \ {0, 1}. For instance, if 8 ∈ K, the judgment C8 ` t : T8 is
specified on track 8. The set of S-derivations is defined coinductively by:

ax
x : (k · T) ` x : T

C;x : (Sk)k∈K ` t : T
abs

C ` λx.t : (Sk)k∈K → T

C ` t : (Sk)k∈K → T (Dk ` u : Sk)k∈K
app

C] (]k∈KDk) ` t u : T
In app, K may be empty, and then u is untyped. We call S0, the restriction of system S

to finite types and contexts, but allowing infinite terms. The derivation Pex below is in S0.
Let P be a S-derivation typing a term t. The support of P is the set of positions of

judgments inside P defined in the expected way: 0 to visit the premise of an abs-rule, 1 to
visit the left-hand side of an app-rule and k > 2 to visit an argument judgment on track k on
the right-hand side of the app-rule. Thus, if a ∈ supp(P), P (a), which denotes the judgment
at position a in P , types the subterm t|a. We denote the type and the context of P (a) by
TP (a) and CP (a), so that P (a) = CP (a) ` t|a : TP (a). Moreover:

If a ∈ supp(P) and c ∈ supp(TP (a)), then the pair (a, c) is a right biposition of P and
P (a, c) denotes TP (a)(c), which is a type constructor (o ∈ O or →).

FSCD 2019

33:6 Typing Hereditary Permutators

If a ∈ supp(P), x ∈ V and k · c ∈ supp(CP (a)(x)), then the triple (a, x, k · c) is a left
biposition in P and P (a, x, c) denotes CP (a)(x)(c).

The set of bipositions of P is called the bisupport of P and is denoted by bisupp(P). An
S-derivation P is finite, i.e., is a derivation of system S0, iff bisupp(P) is a finite set. If
a ∈ supp(P) and t(a) = x, P (a) is an ax-rule and CP (a) = x : (k · TP (a)).

I Example 7. In the derivation, the notation [7] indicates that the judgment f : 2·()→o `
fω : o is on track 7.

Pex =
ax

x : (2·(7 · o)→ o′) ` x : (7 · o)→ o′

ax
f : (2·()→ o) ` f : ()→ o

app
f : (2 · ()→ o) ` fω : o [7]

app
x : (2 · (7 · o)→ o′), f : (2 · ()→ o) ` x fω : o′

abs
x : (2 · (7 · o)→ o′) ` λf.x fω : (2 · ()→ o)→ o′

We have supp(Pex) = {ε, 0, 0·1, 0·7, 0·7·1}. Remark how fω is typed in the derivation
using the type () → o. We have Pex(0·7·1) = f : (2·()→o) ` f : ()→o and TPex(0·1) =
(7·o)→o. Since supp(TPex) = {ε, 7, 1} and TPex(ε) =→, TPex(7) = o and TPex(1) = o′, we
have (0·1, ε), (0·1, 7), (0·1, 1) ∈ bisupp(Pex) and Pex(0·1, ε) =→, Pex(0·1, 7) = o, Pex(0·1, 1) =
o′. Likewise, TPex(0·7) = o and CPex(0) = x : (2·(7·o)→o), f : (2·()→o), so that, e.g.,
(0, x, 2·7), (0, f, 2) ∈ bisupp(Pex), Pex(0, x, 2·7) = o, Pex(0, f, 2) =→.

A derivation P is quantitative when the context is computable from the axiom rules:

I Definition 8 (Quantitative derivation). Let P be a S-derivation. Then P is quantitative
if, for all a ∈ supp(P), x ∈ V, k ∈ N \ {0, 1} such that (a, x, k) ∈ bisupp(P), there is a0 � a
such that P (a0) = x : (k · S) ` x : S.

Observe that, in a quantitative derivation P B C ` t : T , if C(x) = (k · S) i.e., x is
assigned a singleton sequence type, then there is exactly one ax-rule typing x (we use this in
the proof of Claim 21).

An example of non-quantitative derivations is given by the family (Pk)k>2 defined by:

Pk =
ax

f : (k·(2·o)→o) ` f : (2·o)→o Pk+1Bf : (`·(2·o)→o)`>k+1, x:(2·o) ` fω : o [2]
app

f : (`·(2·o)→o)`>k, x : (2·o) ` fω : o

The Pk type fω with o but they assign a non-empty sequence type to x /∈ fv(fω): this is
why there are not quantitative. Indeed, (ε, x, 2) ∈ bisupp(Pk), but there is no a0 ∈ supp(Pk)
such that Pk(a0) = x : (2·o) ` x : o. Remark how the infinite branch of fω is used to assign
a type to x whereas it does not occur in the subject. In contrast, if t is a finite λ-term, every
derivation typing t is quantitative. However, Lemma 16 below states that quantitativity is a
sufficient condition for soundness for normal forms.

1.4 Approximability

I Definition 9 (Approximation). Let P0 and P be two S-derivations typing the same term t.
Then P0 is an approximation of P if bisupp(P0) ⊆ bisupp(P) and, for all p ∈ bisupp(P0),
P0(p) = P (p). When this holds, we write P0 6 P .

P. Vial 33:7

Intuitively, P0 6 P if the derivation P0 can be obtained from the derivation P by erasing
some symbols inside P . For instance, let:

P 0
ex =

ax
x : (2·()→ o′) ` x : ()→ o′

app
x : (2 · ()→ o′) ` x fω : o

abs
x : (2 · ()→ o′) ` λf.x fω : ()→ o′

Then P 0
ex 6 Pex, since P 0

ex has been obtained from Pex by erasing all typing information
on fω. Indeed, we check that supp(P 0

ex) ⊆ supp(Pex), bisupp(P 0
ex) ⊆ bisupp(Pex) and

P 0
ex(p) = Pex(p) for all p ∈ bisupp(P 0

ex).
The relation 6 is an order. There are S-derivations P that do not have finite approx-

imations, e.g., any derivation typing Ω (see [17] for an example), but these derivation are
unsound: they do not ensure any form of finitary or infinitary normalization. In contrast, a
finite derivation is sound.

To retrieve validity, we must specify that infinitary derivations should be obtained as
asymptotic extensions of finite derivations:

I Definition 10 (Approximability). Let P be a S-derivation. Then P is approximable if P
is the supremum of its finite approximations i.e., if, for all finite sets B ⊆ bisupp(P), there
is a finite derivation P0 such that P0 6 P and B ⊆ bisupp(P0).

A term that is in the conclusion of an approximable derivation is said to be approximably
typable. Quantitativity is of course a necessary condition for approximability, and types of
infinite arity are unsound:

I Lemma 11. If P is approximable, then P is quantitative and contains only 001-types.

1.5 Soundness and completeness for system S

The main characterization theorem of system S states the equivalence between infinitary
weak normalization and typability: more precisely, t is WN∞ iff there is an unforgetful and
approximable S-derivation typing P . This characterization is proved by the propositions
below, that we will also use in this article. One recognizes usual properties that are expected
from an intersection type system (subject reduction, expansion, typing of the normal forms),
except that they pertain to infinitary objects and computations.

I Proposition 12 (Infinitary subject reduction). If P BC ` t : T is approximable and t→∞β t′,
then there is an approximable derivation P ′ B C ` t′ : T .

If a term is approximably typable, then, in particular, it is finitely typable, so that it is
HN, as for usual, inductive intersection type systems:

I Lemma 13 (Approximability and Head Normalization). If P B C ` t : T is approximable,
then t is head normalizing.

Approximable S-derivations ensure only head normalization because of the empty sequence
(), which allows us to leave an argument untyped. For instance, if x is assigned ()→ o, then
x t is typed with o for any term t. To ensure WN∞, one needs to control the occurrences
of (): by definition, the empty sequence type () occur negatively in ()→ T (base case), ()
occurs negatively (resp. positively) in (Sk)k∈K → T if it occurs negatively (resp. positively)
in T or positively (resp. negatively) in one of the Sk (inductive case).

FSCD 2019

33:8 Typing Hereditary Permutators

I Definition 14 (Unforgetfulness). Let P B C ` t : T be a derivation. Then P is unforgetful
when () does not occur negatively in C and does not occur positively in T .

In particular, when () does not occur in C nor in T , then P is unforgetful.

I Proposition 15 (Correctness for system S). If P BC ` t : T is approximable and unforgetful,
then t is infinitary weakly normalizing.

Completeness for infinitary normal forms – i.e., the fact that they are approximably and
unforgetfully typable – is proved in two steps: one shows that every quantitative derivation
typing a normal form is approximable (this is not true for non-normal forms). Since one
finds quantitative unforgetful derivations for each normal form, one concludes:

I Lemma 16 (Completeness for Normal Forms). Let t be a NF∞.
If P B C ` t : T and P is quantitative, then P is approximable.
t is approximably typable by derivation P such that supp(P) = supp(t).

Subject expansion holds for productive reduction paths:

I Proposition 17 (Infinitary subject expansion). If t→∞β t′ and P ′BC ` t′ : T is approximable,
then there is an approximable derivation concluding with C ` t : T .

From Lemma 16 and Proposition 17, one concludes that every infinitary weakly normaliz-
ing term is approximably and unforgetfully typable.

Last, Propositions 12 and 17 entail:

I Lemma 18. If t is WN∞, then t and BT(t) have the same approximable typings.

2 Characterizing hereditary permutators

We now want to define the permutator pairs (S, T) (with S, T types of system S) so that the
judgments of the form x : (2 · S) ` t : T characterize the x-HP (i.e., there is an approximable
P B x : (2 · S) ` t : T iff t is an x-HP). Informally, if h = λx1 . . . xn.x hσ(1) . . . hσ(n) and h is
typed with a type of arity n and x1, . . . , xn are the respective head variables of h1, . . . , hn,
then we have:

Type of h = (type of x1) → . . .→ (type of xn) → o (eq1)
Type of x = (type of hσ(1)) → . . .→ (type of hσ(n)) → o (eq2)

Since x1, . . . , xn are the respective head variables of the headed hereditary permutators
h1, . . . , hn, the equations (eq1) and (eq2), which are the golden thread of the proofs to come
in the remainder of the paper, suggest the following coinductive definition:

I Definition 19 (Permutators pairs).
When o ranges over O (the set of type atoms), the set PP(o) of o-permutator pairs
(S, T), where S and T are S-types, is defined by mutual coinduction:

(S1, T1) ∈ PP(o1), . . . , (Sn, Tn) ∈ PP(on) o1, . . . , on, o pairwise distinct σ ∈ Sn

((2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o, (2 · S1)→ . . . (2 · Sn)→ o) ∈ PP(o)

A pair (S, T) ∈ PP(o) is said to be proper, if, for all o′ ∈ O, o′ occurs at most once in S
and in T . The set of proper o-permutator pairs is denoted PPP(o).

P. Vial 33:9

x〈b0 · 0p · 1p〉

S = Tσ(1)→ . . .→Tσ(n)→ob0

C1 ` t1 : Tσ(1)

@
Cp−1 ` tp−1:Tσ(p−1)

@

Cp ` tp : Tσ(p)

@〈b0 · 0p〉 : Tσ(p+1)→ . . .→ Tσ(p) → o

= Sp+1→ . . .→ Sp → o

λxp Sp→ . . .→Sn→o

λx1〈b0〉

t : T = S1→ . . .→Sn→o

Arguments (part 1):
ti has type Tσ(i) (proper)
so ti is free-headed
so the head var. of ti is one of the xj
so the head var. of ti is xσ(i) : Sσ(i)

Arguments (part 2):
C1] . . .] Cp = x1 : (2·S1), . . . , xp : (2·Sp)
the head var. of ti is x : Sσ(i)

so Ci = x : (2·Sσ(i)).

Figure 1 Hereditary permutators and permutator pairs.

Actually, we could allow other tracks than 2 in the definition (e.g., T = (`1 · S1)→ . . .→
(`n · Sn)→ o would be fine), but it is more convenient to consider this restriction, so that we
are relieved of the care of specifying the values of `1, . . . , `n.

The condition of properness is here to ensure that every term variable occurs at exactly
one level deeper than its binder and to distinguish them from one another: it is a key point
of the proof of Claim 21, because two distinct variables will have types with distinct targets.

The first implication of the characterization is quite natural to prove:

B Claim 20 (From hereditary permutators to permutator pairs). Let y ∈ V and t be a y-head
hereditary permutator. Then there is an approximable S-derivation P and a permutator pair
(S, T) such that P B y : (2 · S) ` h : T .

Proof. We skip the proof of this property. Observe that Definition 19 is designed so that it
holds. The converse claim (Claim 21) is more difficult to prove and requires to be carefully
verified. C

B Claim 21 (From permutator pairs to hereditary permutators). Let t ∈ Λ001 be a 001-normal
form and (S, T) a permutator pair and P a quantitative S-derivation typing t.

If PB ` t : (2 · S)→ T , then t is a hereditary permutator.
If P B x : (2 · S) ` T , then t is a x-headed hereditary permutator.

In both cases, supp(P) = supp(t).

Proof. The proof uses the following observation: let us say that a HNF is free-headed when
its head variable is free. If (S, T) is a proper permutator pair and t = λx1 . . . xp.xi t1 . . . tq
(with 1 6 i 6 p) is a HNF which is not free headed, then t cannot have the types S and T ,
since the target of the type of xi appears twice in the type of t.

We now start the proof, whose main stages are summarized in Fig. 1, in which we
abusively write S instead of (2·S). Assume S = (2 · Tσ(1)) → . . . → (2 · Tσ(n)) → o and
T = (2 · S1)→ . . .→ (2 · Sn)→ o. We first prove that the first point of the claim reduces to
the second one.

Since the context in ` t : (2 · S) → T is empty, the head variable of t is bound and
the arity of t is > 1. Thus, t = λx0.λx1 . . . xp.x t1 . . . tq with t1, . . . , tq normal forms whose
respective head variables are denoted y1, . . . , yq. Note that:

FSCD 2019

33:10 Typing Hereditary Permutators

x is x1, . . . , xp or x0 since x is bound.
The type assigned to x0 is S. The respective types assigned to x1, . . . xp are S1, . . . , Sp.
The common target type of T and the type of x0 is o.

Since (S, T) is proper, o does not occur in S1, . . . , Sn, so necessarily, x = x0 and x :
(2 · S) ` λx1 . . . xp.x t1 . . . tq : T is derivable by means of a quantitative derivation P∗. Thus,
we are now in the second case. The type of x t1 . . . tq is both Tσ(q+1) → . . . → Tσ(n) → o

since x : S and Sp+1 → . . . → Sn → o since t : T , so p = q and for p+ 1 6 i 6 n, σ(i) = i

and Si = Ti. Let us denote o1, . . . , on the respective target types of S1, . . . , Sn. Since the
type of x is S, the respective types of t1, . . . , tp must be Tσ(1), . . . , Tσ(p). Moreover, since
the “tail” of T is made of singleton sequence types (2·Si), t1, . . . , tp are typed once in P and
the head variables y1, . . . , yp of t1, . . . tp are also typed exactly once. In particular, P∗ has a
subderivation at depth n of the form:

ax
x : (2·S) ` x : S P1 B C1 ` t1 : Tσ(1) [2]

app
x : (2·S), C1 ` x t1 : (2·Sσ(2))→ . . .→ o . . .

app
. . . Pp B Cp ` tp : Tσ(p) [2]

app
x : (2·S), C1] . . .] Cp ` x t1 . . . tp : T ′

where T ′ = Tσ(p+1) → . . .→ Tσ(n) → o = Sp+1 → . . .→ Sn → o.
Let us prove now that, for all 1 6 i 6 p, the unique argument derivation of x in P typing

ti, that we denote Pi, concludes with xσ(i) : (2 · Sσ(i)) ` ti : Tσ(i).
First, since ti is normal, ti = λz1 . . . zp′ .yi u1 . . . u

′
q. Since ti : Tσ(i), ti is free-headed by

the observation above. Moreover, the head variable of ti is typed once in P∗ since ti is typed
once. Thus, yi is one of the x1, . . . , xp. The only possibility is yi = xσ(i) since the types of
x1, . . . , xp have pairwise distinct targets.

Since P is quantitative and (2 ·Si) is a singleton sequence type, x1, . . . , xp must be exactly
typed once in P∗, the subderivation of P typing x t1 . . . tp. This entails that the ax-rule
typing xσ(i) as the head variable of ti concludes with xσ(i) : (2 · Sσ(i)) ` xσ(i) : Sσ(i). Thus,
Pi concludes with a judgment of the form xσ(i) : (2 · Sσ(i))] C ′i ` ti : Tσ(i) (2nd argument).

Since]16i6p(xσ(i) : (2 · Sσ(i))] C ′i) = x1 : (2 · S1), . . . , xp : (2 · Sp), we deduce that C ′i is
empty for all 1 6 i 6 p (3rd argument). Thus, Pi concludes with xσ(i) : (2 · Sσ(i)) ` ti : Tσ(i).

This easily implies that x1 : (2·S1) ` tσ−1(1) : T1, . . . xp : (2·Sp) ` tσ−1(p) : Tp are
judgments of P∗. In particular, they are approximably derivable. Thus, t1, . . . , tp also satisfy
the hypothesis of point 2 of the claim. Since t = λx1 . . . xp.x t1 . . . tp, we conclude using
Definition 1. C

The two claims, which are valid for 001-normal forms, along with infinitary subject
reduction and expansion, give a type-theoretical characterization of hereditary permutators
in system S:

I Theorem 22. Let t ∈ Λ001. Then t is a hereditary permutator iff ` t : (2 · S) → T is
approximably derivable for some proper permutator pair (S, T).

Proof.
The implication ⇐ is given by Claim 21 and Proposition 17.
Implication ⇒: let t be a hereditary permutator. By Definition 1, its Böhm tree is
of the form λx.h where h is a normal x-headed hereditary permutator. By Claim 20,
there is a proper permutator pair (S, T) and an approximable derivation P such that
P B x : (2 · S) ` h : T . By Proposition 17, ` t : (2 · S) → T is also approximably
derivable. J

P. Vial 33:11

3 A unique type to rule them all

In this section, we explain how to enrich system S with type constants and typing rules so
that there is one type characterizing the set of hereditary permutators, as expected.

In Section 2, we proved that a term t is a hereditary permutator iff it can be assigned a
type of the form (2·S)→ T where (S, T) is a proper permutator pair. To obtain a unique type
for all the hereditary permutators, one idea is to identify all the types of the form (2·S)→ T ,
where (S, T) ranges over PPP with a type constant ptyp. However, since quotienting types
may bring unsoundness (e.g., if o and o→ o are identified), one must then verify that the
correctness and the completeness of system S is preserved, and that the approximability
criterion can be suitably extended. The main argument, given by Lemma 26, is that the
notions of hereditary permutators and permutators pairs, which are infinitary, have arbitrarily
big finite approximations, which are defined as trucations at some applicative depth d. Thus,
we may express hereditary permutators and permutator pairs as asymptotic limits and adapt
the general methods of system S.

Our approach parallels that of Tatsuta [14], which uses a family of constants ptypd, with
a few differences: in the finite restriction of our system, it is easier to deal with hereditary
permutators (normalization is simple to prove in finite non-idempotent type systems), but of
course we have to treat the infinitary typings and we consider the constant ptyp, which is
subsumed under all the ptypd, which represent hereditary permutators under level d.

3.1 Permutator schemes
Before presenting the system giving a unique type to all hereditary permutators, we must
first explain how the typings of hereditary permutators are approximated in system S.

I Definition 23 (Permutator schemes). Let d > 0. A term t is a x-headed (resp. closed)
permutator scheme of degree d if its Böhm tree is equal to that of a hereditary permutator
on {b ∈ {0, 1, 2}∗ | ad(b) 6 d}. The set of x-headed (resp. closed) permutators schemes of
degree d is denoted PSd(x) (resp. PSd).

The sequence (PSd) is decreasing, i.e., PSd ⊇ PSd+1, and HP = ∩d>0PSd.

I Definition 24 (Permutator pairs of degree d). Let d ∈ N.
When o ranges over O, the set PPd(o) of o-permutator pairs of degree d (S, T), where
S and T are S-types, is defined by induction on d:

(()→ . . . ()︸ ︷︷ ︸
n

→ o, ()→ . . .→ ()︸ ︷︷ ︸
n

→ o) ∈ PP0(o)

(S1, T1) ∈ PPd−1(o1), . . . , (Sn, Tn) ∈ PPd−1(on) o1, . . . , on, o pairwise distinct σ ∈ Sn

((2 · Tσ(1))→ . . .→ (2 · Tσ(n))→ o, (2 · S1)→ . . . (2 · Sn)→ o) ∈ PPd(o)

A pair (S, T) ∈ PPd(o) is said to be proper if every type variable occurs at most once in
S and T . The set of proper permutator pairs of degree d is denoted PPPd.

We can also see permutator pairs of degree d as truncation of permutator pairs: let U
be a S-type or a sequence type and d ∈ N. We denote by (U)6d the truncation of T at
depth d i.e., supp((U)6d) = supp(U) ∩ {c ∈ N∗ | ad(c) 6 d} and (U)6d(c) = U(c) for all
c ∈ supp((U)6d). It is easy to check that (U)6d is a correct type or sequence type. We extend
the notation to S-contexts. Note that, if d > 1, ((Sk)k∈K → T)6d = ((Sk)6d−1)k∈K → (T)6d

FSCD 2019

33:12 Typing Hereditary Permutators

and d = 1, then ((Sk)k∈K → T)6d = () → (T)61. By induction on d, this entails that, if
(S, T) ∈ PPP, then ((S)6d, (T)6d) ∈ PPPd. Indeed, the base case (d = 0) is obvious and if
d > 1, T = (2 · S1) → . . . → (2 · Sn) → o and S = (2 · Tσ(1)) → . . . → (2 · Tσ(n)) → o with
σ ∈ Sn, (Si, Ti) ∈ PPP for 1 6 i 6 n, then:

(T)6d = (2 · (S1)6d−1)→ . . .→ (2 · (S1)6d−1)→ o (eq3)
(S)6d = (2 · (Tσ(1))6d−1)→ . . .→ (2 · (Tσ(n))6d−1)→ o (eq4)

so that, by Definition 24, ((S)6d, (T)6d) ∈ PPPd(o).

I Proposition 25 (Characterizing permutation schemes). Let d > 1 and t be a 001-term. Then
t ∈ PSd iff ` t : (2 · S)→ T is approximably derivable for some (S, T) ∈ PPPd.

Proof.
⇒ Straightforward induction on the structure of t.
⇐ The proof is the same as Claim 21, we also obtain that xi : (2 · Si) ` tσ−1(i) : Ti are

judgments of P , except that (Si, Ti) ∈ PPPd−1 instead of (Si, Ti) ∈ PPP. J

It is not enough to know that a x-headed hereditary permutator t is approximably typable
in a judgment x : (2 · S) ` t : T with (S, T) ∈ PPP, which implies that T is the supremum of
a direct family of finite types which be assigned to t: in order to prove soundness regarding
quotienting, we must prove that this typing is the supremum of typings ensuring that t is a
permutator scheme of degree d, i.e., by Proposition 25, one must type t with (Sd, Td) ∈ PPPd
for all d. The lemma below is the missing third ingredient (along with Claims 20 and 21)
of this article and will allow us to define in Section 3.2 an extension of system S giving a
unique type to hereditary permutators:

I Lemma 26 (Approximations and permutator pairs). If P B x : (2·S) ` t : P is approximable,
where (S, T) ∈ PPP, then, for all d ∈ N, there is a finite Pd 6 P such that Pd B x : (2 · Sd) `
t : Td with (Sd, Td) ∈ PPPd.

Proof. Since () does not occur in S and T , by Lemma 18, we can assume that t is a
001-normal form without loss of generality. We then reason by induction on d.

Let us present the argument informally. Say that t = λx1 . . . xp.x t1 . . . tp, S = Tσ(1)→ . . .

→Tσ(n)→o and T = S1→ . . .→Sn→o. Intuitively, t : T with x : S and for 1 6 i 6 p,
ti : Tσ(i) is a hereditary permutator headed by xσ(i) : Sσ(i), as specified by Fig. 1. When we
truncate the type of t at applicative depth d, we have now t : (T)6d with x : (S)6d. But, by
(eq3) and (eq4), we must truncate the types of t1, . . . , tp and x1, . . . , xp at applicative depth
d− 1. Inductively, this demands that we truncate the types of the arguments of t1, . . . , tp at
applicative depth d− 2. By proceeding so, we obtain a finite derivation Pd 6 P concluding
with x : (2 · (S)6d) ` t : (T)6d. J

3.2 System Shp

Let ptyp and ptypd (d ∈ N) be a family of type constants. The set of Shp-types is defined by:

T, Sk ::= o ‖ ptypd ‖ ptyp ‖ (Sk)k∈K → T

System Shp has the same typing rules as system S with the addition of:

x : (2 · S) ` t : T (S, T) ∈ PPPd
hpd` λx.t : ptypd

x : (2 · S) ` t : T (S, T) ∈ PPP
hp

` λx.t : ptyp

P. Vial 33:13

Thus, rule hpd allows assigning the constant ptypd to any normal permutator scheme of
degree d and rule hp assign the constant ptyp to any normal hereditary permutator by
Claims 20 and 21. Intuitively, ptyp = ptyp∞ and we will make this idea more precise with
Definition 27. Note also that if t : ptypd or t : ptyp, t cannot be applied to an argument u,
even if t is an abstraction: the rules hpd/hp freeze the terms.

The notions of support, bisupport, permutator pairs etc naturally extend to Shp. We
define an order 6 on O ∪ {→, ptyp} ∪ {ptypd | d ∈ N} by o 6 o, →6→, ptypd 6 ptyp and
ptypd 6 ptypd′ for d 6 d′.

I Definition 27 (Approximation and Approximability in system Sh).
Let P0 and P be two Shp-derivations. We write P0 6 P (P0 is an approximation of P) if
bisupp(P0) ⊆ bisupp(P) and, for all p ∈ bisupp(P0), P0(p) 6 P (p).
Let P be a Shp-derivation. Then P is approximable if P is the supremum of its finite
approximations.

This extends Definition 10: for all S-derivations P , P is approximable for system S iff it
is approximable for system Shp. We first notice that rules hp(d) are invertible for HNF:

I Lemma 28 (Inverting rules (hpd) for head normal forms). Let t be a HNF. If ` t : ptypd
(resp. PB ` t : ptyp) is approximably derivable, then t = λx.t0 with x : (2 · S) ` t0 : T
approximably derivable, for some (S, T) ∈ PPPd (resp. (S, T) ∈ PPP).

Proof. We consider the case ptyp (the case ptypd is similar), i.e., we assume that P ′B ` t :
ptyp is approximable. For one, t = x t1 . . . xn is impossible, because we would have C(x) 6= ()
since the head variable x is free in x t1 . . . tn. So, t is an abstraction, i.e., t = λx.t0 and thus,
the last rule of P is either abs, hpd, hp. But it is neither abs (we would have an arrow type)
nor hpd, so it is hp and thus, P ′ is of the form:

P ′ =
P B x : (2 · S) ` t0 : T (S, T) ∈ PPP

hp
` t : ptyp

Since P ′ is approximable, P also is. J

All is now in place to obtain the expected properties of system Shp:

I Lemma 29 (Characterizing normal hereditary permutators). Let t be a 001-normal form.
t ∈ PSd iff ` t : ptypd is approximably derivable.
t ∈ HP iff ` t : ptyp is approximably derivable.

Proof. The two points are handled similarly. We do not prove the first one, which uses
Proposition 25:

If t = λx.h is a HP, then, by Claim 20, there is (S, T) ∈ PPP and P a S-derivation such
that P B x : (2 · S) ` h : T . We then set:

P ′ =
P B h : (2 · S) ` p : T

hp
` t : ptyp

By Lemma 26, for all d ∈ N, there is a finite S-derivation Pd 6 P such that Pd B x :
(2 · Sd) ` h : Td with (Sd, Td) ∈ PPPd and P = supd Pd. We then set:

P ′d =
Pd B x : (2 · Sd) ` h : Td

hpd` t : ptypd

By construction, supd P ′d = P ′.

FSCD 2019

33:14 Typing Hereditary Permutators

Conversely, assume that P ′B ` t : ptyp is approximable. By Lemma 28, P ′ concludes
with the hp-rule, so P ′ is of the form:

P ′ =
P B x : (2 · S) ` t0 : T (S, T) ∈ PPP

hp
` t : ptyp

Let d ∈ N. Since P ′ is the supremum of its finite approximations, there is a finite
approximation P ′0 6 P ′ concluding with1 ` t : ptyp or ` t : ptypd′ with d′ > d. Thus,
t ∈ PSd′ ⊆ PSd or t ∈ HP. This proves that t ∈ ∩d>0PSd = HP. J

I Lemma 30 (Soundness of system Shp). If t is approximably typable in system Shp, then t is
head normalizing.

Proof. If t is approximably typable, there is a finite Shp-derivation P B C ` t : T . If t is a
HNF, we are done. In the other case, t→h t

′ for some t′. It is routine work in non-idempotent
intersection type theory (see [4]) to prove a weighted subject reduction property, i.e., that
there is P ′ B C ` t′ : T such that |supp(P ′)| < |supp(P)|, i.e., P ′ contains strictly less
judgments than P does. The only unusual rules are hpd and hp, which are easily handled.

Since |supp(P)| ∈ N and N is well-founded, weighted subject reduction entails that head
reduction terminates on t. J

I Corollary 31. If ` t : ptyp is approximably derivable, then t is WN∞.

Proof. By Lemma 30, t reduces to a HNF t′. By subject reduction, ` t′ : ptyp is also
approximably derivable. Then, Lemma 28 entails that t = λx.t0 and x : (2 · S) ` t0 : T is
approximably derivable in system S for some t0 and permutation pair (S, T). Since this latter
judgment is ()-free, Proposition 15 entails that t0 is WN∞. Thus, t also is WN∞. J

More generally, the dynamic properties of system S are preserved in system Shp.

I Proposition 32 (Infinitary subject reduction). If t →∞β t′ and P B C ` t : T is an
approximable Shp-derivation, then there exists an approximable derivation P ′ B C ` t′ : T .

I Proposition 33 (Infinitary subject expansion). If t →∞β t′ and P ′ B C ` t′ : T is an
approximable Shp-derivation, then there exists an approximable derivation P B C ` t : T .

Proof. The proofs of infinitary subject reduction and expansion in system Shp do not differ
of those for system S, which can be found in [17] (in particular, Section II.D. and VI.D.) or
in Chapter 10 of [18], so we do not give the details. Once again, the only new rules are hp
and hpd, which are easily handled in the one step case, then in the asymptotic case.

Infinitary subject reduction is easy to prove, but infinitary subject expansion holds
because we can expand finite approximations of a derivation P ′ concluding a productive
reduction path. Why? Because, if t→∞β t′ and P ′f is finite and types t′, then there is a term
t→k

β tk obtained from t after a finite number k of β-reduction steps such that, on supp(P ′),
tk and t′ induce the same subtree (this is a consequence of Definition 5). Thus, we can
substitute t′ with tk in P ′f : we then obtain P kf typing tk. After k expansion steps, we obtain
from P kf a derivation Pf typing t. To conclude this dense summary, let us just say that the
infinitary subject expansion is not so about the rules than about the possibility to replace a
derivation by its finite approximations, which is precisely what Definition 27 captures for
system Shp. J

1 The case P ′0B ` t : ptyp is possible: there are finite HP and PPP, e.g., λx.x and (o, o).

P. Vial 33:15

We now give a positive answer to TLCA Problem # 20:

I Theorem 34 (Characterizing hereditary permutators with a unique type). Let t ∈ Λ001. Then
t is a hereditary permutator iff ` t : ptyp is approximably derivable in system Shp.

Proof.
⇒ If t is a HP, let t′ be its 001-NF. By Lemma 29, there is an approximable derivation

P ′B ` t′ : ptyp. By Proposition 33, there is PB ` t′ : ptyp approximable.
⇐ Given by Corollary 31. J

Future work
We plan to adapt system S to characterize other sets of Böhm trees and other notions of
infinitary normalization, including weak normalization in the calculi Λ101 and Λ111 of [11].

References
1 Patrick Bahr. Strict Ideal Completions of the Lambda Calculus. In FSCD 2018, July 9-12,

Oxford, pages 8:1–8:16, 2018.
2 Henk Barendregt. The Lambda-Calculus: Its Syntax and Sematics. Ellis Horwood series in

computers and their applications. Elsevier, 1985.
3 Jan A. Bergstra and Jan Willem Klop. Invertible Terms in the Lambda Calculus. Theor.

Comput. Sci., 11:19–37, 1980.
4 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-Idempotent Intersection Types

for the Lambda-Calculus. Mathematical Structures in Computer Science., 2017.
5 Daniel De Carvalho. Sémantique de la logique linéaire et temps de calcul. PhD thesis, Université

Aix-Marseille, November 2007.
6 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality

theory for the λ-calculus. Notre Dame Journal of Formal Logic, 4:685–693, 1980.
7 Haskell B. Curry and Robert Feys. Combinatory Logic, volume I. North-Holland Co.,

Amsterdam, 1958. (3rd edn. 1974).
8 Lukasz Czajka. A Coinductive Confluence Proof for Infinitary Lambda-Calculus. In Rewriting

and Typed Lambda Calculi - Joint International Conference, RTA-TLCA, Vienna, Austria,
July 14-17, pages 164–178, 2014.

9 Mariangiola Dezani-Ciancaglini. Characterization of Normal Forms Possessing Inverse in the
lambda-beta-eta-Calculus. Theor. Comput. Sci., 2(3):323–337, 1976.

10 Philippa Gardner. Discovering Needed Reductions Using Type Theory. In TACS, Sendai,
1994.

11 Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. Infinitary
Lambda Calculus. Theor. Comput. Sci., 175(1):93–125, 1997.

12 Betti Venneri Mario Coppo, Mariangiola Dezani-Ciancaglini. Functional Characters of Solvable
Terms. Mathematical Logic Quarterly, 27:45–58, 1981.

13 Makoto Tatsuta. Types for Hereditary Head Normalizing Terms. In FLOPS, Ise, Japan, April
14-16, pages 195–209, 2008.

14 Makoto Tatsuta. Types for Hereditary Permutators. In LICS, 24-27 June, Pittsburgh, pages
83–92, 2008.

15 Steffen van Bakel. Complete Restrictions of the Intersection Type Discipline. Theor. Comput.
Sci., 102(1):135–163, 1992.

16 Steffen van Bakel. Intersection Type Assignment Systems. Theor. Comput. Sci., 151(2):385–435,
1995.

17 Pierre Vial. Infinitary intersection types as sequences: a new answer to Klop’s problem. In
LICS, Reykjavik, 2017.

18 Pierre Vial. Non-Idempotent Typing Operator, beyond the Lambda-Calculus. Phd thesis,
Université Sorbonne Paris-Cité, 2017, available on http://www.irif.fr/~pvial.

FSCD 2019

http://www.irif.fr/~pvial

Model Checking Strategy-Controlled Rewriting
Systems
Rubén Rubio
Facultad de Informática, Universidad Complutense de Madrid, Spain
rubenrub@ucm.es

Narciso Martí-Oliet
Facultad de Informática, Universidad Complutense de Madrid, Spain
narciso@ucm.es

Isabel Pita
Facultad de Informática, Universidad Complutense de Madrid, Spain
ipandreu@ucm.es

Alberto Verdejo
Facultad de Informática, Universidad Complutense de Madrid, Spain
jalberto@ucm.es

Abstract
Strategies are widespread in Computer Science. In the domain of reduction and rewriting systems,
strategies are studied as recipes to restrict and control reduction steps and rule applications, which
are intimately local, in a derivation-global sense. This idea has been exploited by various tools
and rewriting-based specification languages, where strategies are an additional specification layer.
Systems so described need to be analyzed too. This article discusses model checking of systems
controlled by strategies and presents a working strategy-aware LTL model checker for the Maude
specification language, based on rewriting logic, and its strategy language.

2012 ACM Subject Classification Software and its engineering → Model checking; Theory of
computation → Equational logic and rewriting; Theory of computation → Rewrite systems

Keywords and phrases Model checking, strategies, Maude, rewriting logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.34

Category System Description

Related Version An extended version of the paper is available at http://maude.sip.ucm.es/
strategies/tr0219.pdf ([30]).

Funding Research partially supported by MCIU Spanish project TRACES (TIN2015-67522-C3-3-R).
Rubén Rubio: Partially supported by MCIU grant FPU17/02319.

Acknowledgements We are grateful to the reviewers for their careful reading, and their detailed
and very useful comments.

1 Introduction

Strategies are meaningful for artificial intelligence, games, semantics of programming
languages, automated reasoning, etc. Although their purposes and formalizations differ, they
all honor the Greek etymology of the word, meaning the office of a general, who is in charge of
the overall planning of the operations. In the modeling of concurrent systems using rewriting
techniques, strategies are a useful resource to capture the global behavior of the intended
models. Since rewriting consists of a successive, non-deterministic and somehow unrelated
application of rules anywhere within a term, strategies have been studied in deep [32], and

© Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, and Alberto Verdejo;
licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 34; pp. 34:1–34:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2983-3404
mailto:rubenrub@ucm.es
https://orcid.org/0000-0002-6576-762X
mailto:narciso@ucm.es
https://orcid.org/0000-0003-4915-5452
mailto:ipandreu@ucm.es
https://orcid.org/0000-0002-7374-3214
mailto:jalberto@ucm.es
https://doi.org/10.4230/LIPIcs.FSCD.2019.34
http://maude.sip.ucm.es/strategies/tr0219.pdf
http://maude.sip.ucm.es/strategies/tr0219.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Model Checking Strategy-Controlled Rewriting Systems

different definitions have been proposed [8, 19]. Strategies as a first-class object have been
exploited in tools like Stratego [10], Tom [4], and the specification languages ELAN [7],
and Maude [13].

Model checking [11] is a consolidated formal method, which still evolves in multiple
directions. Its classical setting is transition systems, where the notion of strategy is naturally
defined. This paper studies the satisfaction of temporal properties by models controlled by
strategies and how it can be checked, and applies the method to the Maude strategy language
by implementing a strategy-aware model checker. It is built as an extension of the existing
Maude LTL model checker [16] for systems specified in rewriting logic, already applied to
various interesting systems [6, 23, 28].

Strategies and model checking together have already been addressed in the literature,
but with a different approach and objectives. In the context of multiplayer games, several
logics have been proposed to reason about player strategies like ATL* [1] and strategy
logic [27]. However, strategies are not provided as input but quantified in the formula, and
they are not represented explicitly. Other logics take past actions into account to condition
its requirements like mCTL* [21]. In our case, strategies are part of the model specification
while the property logic remains unaltered. As well, strategies should not be confused with
heuristics to guide the search in the model-checker algorithms [14].

After reviewing the model-checking framework and strategies as defined in the literature,
this paper discusses model checking linear temporal properties on strategy-controlled systems
and a model transformation is proposed to match the classical setting and allow using the
standard algorithms. Following a short introduction to rewriting logic [26], Maude [12], and
its strategy language [15], we propose a small-step operational semantics from which model
checking is defined according to the previous approach. The strategy-aware LTL model
checker we have implemented is then described and illustrated by an example. The extended
version of this document [30], the complete semantics of the Maude strategy language, and
the model checker itself are all available at http://maude.sip.ucm.es/strategies.

2 Preliminaries

2.1 Model checking

Model checking [11] is a well-established formal method to ensure or refute the correctness of
a model according to a temporal specification. In the classical setting, models are based on
transition systems, formally described by Kripke structures [20] K = (S,→, I, AP, `) where

S is the set of states,
(→) ⊆ S × S is a serial binary relation on S,
I ⊆ S is a finite set of initial states,
AP is a finite set of atomic propositions, and
` : S → P(AP) labels each state with the propositions that hold on it.

In turn, the property is expressed by a formula ϕ in some temporal logic like CTL, CTL* or
LTL, which describes the intended behavior in terms of the atomic properties p, q, . . . ∈ AP
combined by different temporal operators. The model-checking problem, deciding whether
the model satisfies the formula K � ϕ, is decidable for any of the previous logics, a decidable
transition relation, and a finite S. However, for both CTL* and LTL, model checking is
PSPACE-complete and the models of interest usually have a huge number of states. In
various situations, the expectation of refuting correctness in reasonable time is good enough.

http://maude.sip.ucm.es/strategies

R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo 34:3

The actual model executions π = (sk)∞k=1 leave propositional traces `(π) := (`(sk))∞k=1,
from which the satisfaction of the formula is decided.

s1 s2 · · · sn · · ·
{p} ∅ · · · {p, q} · · ·

π

`(π)
∈ Sω

∈ P(AP)ω

Linear-time properties can always be characterized by a satisfaction relation `(π) � ϕ

on propositional traces and an implicit universal quantification over all model paths π.
Differently, branching-time properties combine universal and existential requirements on any
state of the derivation, so that the execution should be seen as a tree.

2.2 Strategies
In rewriting systems, rules typically represent local transitions that are often not enough to
describe complex computations. These intricacies are usually expressed at a higher level,
describing how rules should be applied. This is the task of strategies, whose study goes
back to the λ-calculus, as fixed criteria for selecting the next redex to be reduced [5]. Later,
strategies were allowed to be aware of the derivation history and to be explicit [2, §11.5],
expressed as programs that control the application of rules. We are interested in the latter
kind of strategies, for which different abstract descriptions and practical representations have
been proposed and implemented [8, 19].

Strategies are properly defined in the context of abstract reduction systems (ARS). An
ARS [2] A = (S,→) is a set of states S endowed with a binary relation →. An element
(s, s′) ∈ (→) or s→ s′ is called a reduction step, and a finite or infinite sequence of connected
reduction steps s0 → s1 → · · · → sn is a derivation. We denote by Γω

A the set of infinite
derivations of A seen as words in Sω,

Γω
A := {s0s1 · · · sn · · · : sk ∈ S and sk → sk+1, k ≥ 0},

Γ∗A is the set of finite derivations as words in S∗, and ΓA := Γω
A ∪ Γ∗A the union of both

in S∞ := Sω ∪ S∗. Considering both finite and infinite derivations is tedious, but we are
interested in modeling computations and proofs as well as reactive systems behavior, for
which they are respectively relevant. We say that A is finite if S is finite, and A is finitary if
for any s ∈ S the states s′ such that s→ s′ are finitely many.

Several definitions of strategies are reviewed in [8], but two general formalizations are
specially discussed:
1. Abstract or extensional strategies are subsets of derivations E ⊆ ΓA, that is, languages in

S∞ whose words w are A-derivations with wk → wk+1.
2. Intensional strategies are defined as partial functions λ : S∗ → P(S ∪ {>}) that decide

the possible next steps according to the past of the derivation. They must satisfy that for
all s, s′ ∈ S and v ∈ S∗, s′ ∈ λ(vs) must imply s→ s′. The symbol > indicates that the
derivation can stop there. In case λ(w) = ∅, the derivation cannot stop or continue, so it
is discarded. Hence, these strategies can attempt rewriting paths that may eventually fail.

Extensional strategies represent an abstract selection of ARS executions as a whole, while the
more constructive intensional strategies determine the next reduction in each step. Unlike
in [8], we have considered unlabeled transition systems to simplify the presentation. Since
classical model checking only considers properties on the states, labels can be easily added
without repercussions. Moreover, the definition of intensional strategies has been modified to
include the > symbol. Otherwise, derivations could stop at any step, which is inconvenient in
practice. These definitions fall into the class of history aware strategies of [32], and intensional
strategies are similar to non-deterministic strategies in games, except that these may select
the next player action instead of the next state.

FSCD 2019

34:4 Model Checking Strategy-Controlled Rewriting Systems

I Example 1. Consider the ARS ({a, b}, {(a, a), (a, b), (b, a)})

a b

A strategy allowing at most one stay in b is described extensionally as {a}∗{b, ε}({a}∗∪{a}ω),
and intensionally as λ(v) = {a,>} if v contains a b, and λ(v) = {a, b,>} otherwise.

An intensional strategy induces an extensional one

E(λ) := {w ∈ ΓA : wi ∈ λ(w0 · · ·wi−1) ∧ (w ∈ Sω ∨ > ∈ λ(w))}.

But the converse is not true, intensional strategies are less expressive than extensional ones.
In the ARS of Example 1, the intensional strategy for {a}∗ has to be defined by λ(v) = {a,>}
for any v ∈ {a}∗, since another a can always be added. And thus, the word aω would be
included in E(λ) by definition, so that E(λ) 6= {a}∗. Intuitively, intensional strategies
decide on-the-fly while constructing the derivation, so they cannot decide on properties on
the infinity. Languages recognized by automata with non-trivial acceptance conditions are
examples of strategies that are necessarily extensional, but the more realistic devices or
computations we are interested in modeling are very likely to be intensional. In any case,
the extensional definition is simpler and will be useful.

Formally, intensional strategies are characterized as closed sets [8], which contain all
words w ∈ Sω whose finite prefixes are all prefixes of derivations within the strategy1. When
discussing model checking, we will find an alternative characterization.

3 Strategy-aware model checking

Given a Kripke structure K = (S,→, I, AP, `) and a strategy E ⊆ ΓK := Γ(S,→) ∩ IS∞
starting from the initial states of K, we want to give sense to model checking against a linear
temporal formula ϕ and define the satisfaction relation (K, E) |= ϕ. First, since temporal
formulas are properly defined on infinite executions, we assimilate finite traces to infinite
ones by repeating its last state forever. This is standard and fits with the idea of a finite
machine that remains in its final state once stopped.

system model
K Kripke structure + strategy E

property specification
ϕ temporal logic formula

model checker
(K, E) � ϕ

yes/no

Figure 1 Model-checking procedure sketch.

Model checking a system controlled by a strategy against a linear-time property has an
unavoidable and clear definition. As pointed in Section 2, the satisfaction of a linear property
follows from a satisfaction relation ρ � ϕ on propositional traces ρ ∈ P(AP)ω. Then,

I Definition 2. Let ϕ be a linear formula, (K, E) |= ϕ if `(π) |= ϕ for all π ∈ E.

The set of allowed propositional traces P = { ρ ∈ P(AP)ω : ρ |= ϕ } completely defines
the property, and the model-checking problem is the language containment problem `(E) ⊆ P ,
which is decidable and PSPACE-complete as long as `(E) and P are ω-regular, like in the

1 In fact, Xω can be given a prefix topology (and even a distance) such that closed can be understood in
the topological sense and the points so described are limits.

R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo 34:5

A′

A

Ea

a

b

b

b

d

Figure 2 Strategy representation in an ARS (Definition 3).

LTL case [29]. Although this is a clear starting point and it would provide an actual algorithm
if strategies were given as Büchi automata, this is not usually the case since they are rather
expressed in some intensional or syntactical form like the Maude strategy language described
in Section 4.1. Thus, to effectively decide model checking with standard algorithms, we
propose to encode the model controlled by strategies as another abstract reduction system.
Any intensional strategy can be so encoded, but the actual procedure will depend on the
strategy representation. In Section 4.2, we do it for the Maude strategy language by means
of a small-step operational semantics.

I Definition 3. Given an ARS A = (S,→) and a strategy E ⊆ ΓA, the pair (A, E) is
represented in the ARS A′ = (X,R) with descent function d : X → S if

d(ΓA′ ∩ J X∞ ∩ (Xω ∪X∗F)) = E

for some sets J, F ⊆ X of initial and final states of the strategy.

The representation A′ simulates the system A constrained by E, in the sense that the
executions of A′ are the traces selected by the strategy. Intuitively, the representation states
include something else to guarantee that the strategy is respected, which can be stripped
with the descent function d. The initial states for the strategy execution are the subset J ,
since other states in X may represent ongoing strategy executions. The final set F is only
required to distinguish admitted finite traces from incomplete ones. Still, we do not want
them for model checking: the trace extension of the first paragraph can be implemented in
the above representation by adding self-loops in F . However, this cannot be done without
care. For example, observe the following encoding for the strategy {a, ab}, where a and b
are final.

a b a a b

The extended language is {aω, abω} according to our criterion. However, a loop in a will
allow spurious derivations like aabω. This can be solved by adding an extra copy of the final
states, like in the right figure. Now, we assume that the strategies are over infinite words
and define the concept of model checking.

I Proposition 4. Let K = (S,→, I, AP, `) be a Kripke structure, E ⊆ ΓK a strategy, and
(X,R) a representation of (A, E) with descent function d and initial states J , (K, E) |= ϕ iff
K′ |= ϕ where K′ = (X,R, J,AP, ` ◦ d).

That is, model checking K controlled by E is model checking its representation K′. The
reason is that the propositional traces of any such K′ are exactly those of E. This method
can be applied to any intensional strategy, but model checking will only be decidable if the
ARS representation is finite.

I Proposition 5. A strategy E ⊆ ΓA on a finitary ARS A can be represented in a finitary
ARS iff E is intensional, i.e. there is an intensional strategy λ such that E = E(λ). In that
case, it can be represented in a finite ARS iff E is ω-regular.

FSCD 2019

34:6 Model Checking Strategy-Controlled Rewriting Systems

We can draw from this proposition that a strategy on a finite ARS must be intensional
and ω-regular to match the classical model-checking framework and apply its algorithms,
because otherwise it cannot be represented in a finite Kripke structure.

Notice that the discussion in this section is restricted to linear-time properties. The
representation of Definition 3 is not adequate for branching-time properties, since branches
need not be preserved while descending with d. A suitable model-checking definition for
logics like CTL* passes by model checking a more restricted representation, any bisimulation
of the ARS (S+, R) where v R vs if v ∈ λ(v) and λ is an intensional strategy.

4 Maude and its strategy language

Maude is a specification language [13, 12] based on rewriting logic [26], a general framework
for modeling concurrency proposed in 1992 by José Meseguer. Its specifications are organized
in modules of different kinds:
1. Functional modules define membership equational logic theories, composed of an order-

sorted signature Σ, equations E, and sort membership axioms to express that a term t

belongs to a sort s. Equations and membership axioms can be conditional.

(∀X) t = t′

t : s if
∧

i

ui = u′i ∧
∧
j

vj : sj

For the specification to be executable, equations are oriented and functional modules
must be confluent and terminating [12, §4.6]. Bidirectional relations, like commutativity,
associativity and identity, are specified apart as structural axioms.

2. System modules specify rewriting theories R = (Σ, E,R) by adding rewriting rules R to
a functional specification. Unlike equations, rewriting rules need be neither confluent nor
terminating, so they are likely to express non-deterministic behavior.

(∀X) t⇒ t′ if
∧

i

ui = u′i ∧
∧
j

vj : sj ∧
∧
k

wk ⇒ w′k

However, rules are required to be coherent with equations and axioms [12, 26]. Conditional
rules take a third type of conditions called rewriting conditions, that are satisfied if the
term wk can be rewritten to match w′k.

The language syntax is a natural ASCII encoding of the mathematical notation above.
Modules are a collection of declarations between mod NAME is ... endm (or fmod/endfm for
functional modules). An operator f : s1 × · · · × sn → s is defined as op f : s1 .. sn -> s .
and structural axioms are inserted as attributes (comm, assoc, . . .) between brackets.
Equations are introduced by the keyword eq and rules by rl, prefixed by c if conditional.

I Example 6. The classical problem of the dining philosophers [18] is specified in the module
PHILOSOPHER-DINNER of Listing 1. A philosopher is represented as a triple describing both
hands contents (a fork ψ or nothing o) and an identifier. Rules left and right allow them
to take the forks at their sides if they are in the table. The release rule restores both forks
to the table. Since a circular table is represented by a list, we adopt the convention that the
fork between the last and first philosophers is on the right, ensure it by the equation, and
add a second left rule to allow the first philosopher to take this fork.

R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo 34:7

Listing 1 Dining philosophers problem specified in Maude.
fmod PHILOSOPHERS-TABLE is *** functional module

protecting NAT . *** import a module (natural n.)

sorts Obj Phil List Table . *** declare some sorts
subsorts Obj Phil < List . *** establish subsort relations

op (_|_|_) : Obj Nat Obj -> Phil [ctor] . *** constructor
ops o ψ : -> Obj [ctor] .
op empty : -> List [ctor] .
op __ : List List -> List [ctor assoc id: empty] .
op <_> : List -> Table [ctor] .

var L : List . var P : Phil . *** declare a variable
eq < ψ L P > = < L P ψ > .

op initial : -> Table .
eq initial = < (o | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) ψ > .

endfm

mod PHILOSOPHERS-DINNER is *** system module
protecting PHILOSOPHERS-TABLE .
var Id : Nat .
var X : Obj .
var L : List .
rl [left] : ψ (o | Id | X) => (ψ | Id | X) .
rl [right] : (X | Id | o) ψ => (X | Id | ψ) .
rl [left] : < (o | Id | X) L ψ > => < (ψ | Id | X) L > .
rl [release] : (ψ | Id | ψ) => ψ (o | Id | o) ψ .

endm

Terms can be reduced equationally to a normal form using the reduce command. Rules
can be applied using the rewrite and frewrite commands, which follow different fixed
built-in strategies to choose which rule, which subterm, and which substitution to try first.
Finally, search allows searching for any terms satisfying some given conditions in all possible
rewriting paths from its argument [12, §5.4].

4.1 The strategy language
Effective manipulation of strategies requires expressing them in a convenient syntactical form.
Since Maude is a reflective language, strategies have usually been expressed by explicitly
applying rules at the metalevel. Because of its low-level, this is an awkward and error-prone
method, so a strategy language was proposed [25, 15], conceived as an additional layer above
functional and system specification. It has already been used in different contexts, among
others [17, 24, 31, 33]. A strategy expression α can be executed to rewrite a term t using the
srewrite t using α command. The language’s basic component is rule application

ruleLabel[x1 <- t1, . . . ,xn <- tn]{α1, . . . , αm}

where rules are selected by their labels, an optional initial substitution can instantiate both
rule sides before matching, and strategies between curly brackets must be provided for rules
with rewriting conditions. The other basic construct is the test match P s.t. C that checks

FSCD 2019

34:8 Model Checking Strategy-Controlled Rewriting Systems

if the subject term matches the pattern P and the condition C is satisfied. Tests come in
three flavors: match that matches on top only, xmatch that can also match fragments by
structural axioms, and amatch that matches anywhere within the term. These operators are
combined by various constructs like

concatenation α;β, to execute α and then β on its results;
alternation α|β, which non-deterministically chooses α or β;
iteration α*, which executes α zero or more consecutive times;
the constants idle, to do nothing, and fail, to discard the current execution path;
the conditional α ? β : γ, with condition α, positive β and negative γ branches, where γ
is only executed if α does not produce any result. Otherwise, β is run after any of those.

Notice that concatenation, alternation, idle, and fail are the counterparts of regular
expression constructors. Derived operators are available too, like α+ ≡ α;α*, not(α) ≡
α ? fail : idle, a normalization operator α! ≡ α* ; not(α), etc. To control where rules
are applied, the language counts with the top(α) operator that restricts rule applications to
the top symbol, and with a subterm rewriting operator

matchrew P (x1, . . . , xn) s.t. C by x1 using α1, . . . , xn using αn

that matches the subject term against a pattern P , extracts the matched subterms, and
rewrites them by means of substrategies α1, . . . , αn in parallel. Like the match operator,
three different versions of this operator exist. Finally, the language allows the declaration of
named strategies with arguments in separate strategy modules smod NAME is . . . endsm:

strat slabel [: parameterTypes] @ subjectType .

Strategies are called slabel(t1, . . . ,tn) by citing its strategy name and providing the required
arguments in a comma-separated list between parentheses, as a typical function invocation.
They can be recursive and mutually recursive, and are defined in strategy modules with any
number of (potentially conditional) definitions of the form

[c]sd slabel(arguments) := strategyExpression [if C] .

where the strategy expression can use the variables in the left-hand side and in the condition.
All strategy definitions whose left-hand side matches the call term are executed. An example
is shown in Listing 2.

Listing 2 Dining philosophers strategy module.
smod DINNER-STRAT is

protecting PHILOSOPHERS-DINNER .

strats free parity @ Table .

sd free := all ? free : idle .

sd parity := (release
*** The even take the left ψ first
| (amatchrew L s.t. ψ (o | Id | o) := L /\ 2 divides Id

by L using left)
| left[Id <- 0]
*** The odd take the right ψ first
| (amatchrew L s.t. (o | Id | o) ψ := L

/\ not (2 divides Id) by L using right)

R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo 34:9

*** When they already have one , they take the other ψ

| (amatchrew L s.t. (ψ | Id | o) ψ := L by L using right)
| (matchrew M s.t. < L (o | Id | ψ) L’ > := M

by M using left[Id <- Id])
) ? parity : idle .

endsm

The DINNER-STRAT module imports the module PHILOSOPHERS-DINNER (Example 6) that
it will control, and defines two recursive strategies. The first one, free, is the recursive
application of any rule (all allows the application of any available rule) until it cannot be
further applied. It behaves like the built-in rewrite strategy. The other strategy, parity,
forces a particular order in which to take the forks, which is alternative for evens and odds,
that is, for neighbors. In Section 5.1, we will see properties that are satisfied with parity
but not with free.

More details on the language syntax and semantics are provided in [15, 9] and the
companion web page, where the complete implementation of the strategy language is available
for download.

4.2 An operational semantics for model checking

This section provides the basis to model check systems specified in Maude and controlled
by its strategy language. In this situation, it is essential to know which rewriting paths are
allowed by the strategy. However, the semantics of a strategy expression applied to a term
has usually been given as a set of result terms [15], so that the intermediate execution states
remain unknown. A small-step operational semantics is required to observe them all. One
has already been given in [9] by means of a rewrite theory transformation. Still and all, it
specifies a global strategic search where multiple execution paths advance in parallel, in a
way that they cannot be easily isolated. Based on these, we propose a non-deterministic
operational semantics whose derivations clearly denote the full rewriting paths allowed by
the strategy. Some technical details have been omitted, but are available in [30].

First, we define the strategy execution states on which the semantics is defined. Essentially,
states consist of a term t in some rewrite theory R = (Σ, E,R) and a stack s of pending
strategies and variable contexts, represented by substitutions σ : X → TΣ/E(X). However,
the subterm rewriting operator and rewriting conditions require executing strategies in nested
contexts that are represented by the “subterm” and “rewc” symbols. In summary, execution
states are generated by the following grammar where x is a variable, t is a term in R, α is a
strategy expression, and ε is the empty word.

s ::= ε | σs | αs
p ::= t | subterm(x : q, . . . , x : q; t) | rewc(p : q, σ, C, α · · ·α, σ, t, t; t)
q ::= p@ s

Any execution state can be projected to a term by the recursive function cterm(t@ s) = t,
cterm(subterm(x1 : q1, . . . , xn : qn; t)@ s) = t[x1/cterm(q1), . . . , xn/cterm(qn)] and finally
cterm(rewc(p : q, σ, C, ~α, θ, r, c; t)@ s) = t. Moreover, every stack designates a variable
context by looking at the top-most substitution, vctx(ε) = id, vctx(θs) = θ and vctx(αs) =
vctx(s) where id is the identity function. States of the form t@ ε are called solutions and
represent successful strategy executions.

FSCD 2019

34:10 Model Checking Strategy-Controlled Rewriting Systems

The semantics is defined by two distinct transition relations: control →c and system →s

steps. The latter represents real transitions in the underlying system, i.e. rule rewrites, while
the first does the auxiliary work to make strategies run. Among control transitions, some
are devoted to handle alternation and iteration by taking non-deterministic choices,

t@α|β →c t@α t@α|β →c t@β t@α*→c t@ ε t@α*→c t@αα*

Concatenation is reduced by a rule t@α;β →c t@αβ that pushes α on top of β in the
pending strategies stack. The rule for tests simply pops the operator on success

t@(match P s.t. C) θ →c t@ θ if there is σ s.t. σ(θ(P)) = t and σ(θ(C)) holds

where substitutions σ are extended to substitute variables within terms and conditions. The
other test flavors have similar rules. There is no rule for the negative case: the execution
path arrives to a deadlock state and will later be discarded. The positive case behaves like
an idle, whose rule is t@ idle→c t@ ε. The semantics of conditionals is given by two rules

t@α ? β : γ →c t@αβ
the derivations from t@α θ are finite and no solution is reached

t@(α ? β : γ) θ →c t@ γ θ

The first rule simply tries the condition followed by the positive branch: in case α does not
produce any result, β will not be executed. Then, the second strategy must be triggered to
run γ. Notice that the →c rule is undecidable in general since the negative branch condition
implies deciding whether the derivations from t@αθ are all terminating.

Strategy calls are handled with rule instances of the form

t@ sl(p1, . . . , pn) θ →c t@ δσθ for any matching σ of (ti)n
i=1 in (pi)n

i=1 s.t. σ(C) holds

for each strategy definition csd sl(t1, . . ., tn) := δ if C (or its unconditional version).
When a strategy call finishes, its variable context is popped t@ θ →c t@ ε.

The mission of the execution stack is holding pending strategies and also active call
contexts. Only the top element determines the possible next steps, but the current variable
context may be determined by a substitution buried by multiple strategies inside the stack.
Rules have been defined for states with almost empty stacks, but they can be easily extended
from the bottom as long as the variable context is preserved.

t@ s = t@ s id t@ s θ →• t′@ s′ θ

t@ s s0 →• t@ s′s0
if vctx(s0) = θ

where →• can be replaced by both →s and →c.
The matchrew rewrites matched subterms independently via the subterm execution states,

qi →c
s q
′
i

subterm(. . . , xi : qi, . . . ; t)@ s→c
s subterm(. . . , xi : q′i, . . . ; t)@ s

These structured states are created with the rule

t@(matchrew P (x1, . . . , xn) s.t. C by x1 using α1, . . . , xn using αn) θ
→c subterm(x1 : σ(x1)@α1 ρ, . . . , xn : σ(xn)@αn ρ, . . .)@ θ

for any matching σ of θ(P) in t such that σ(θ(C)) holds, and where ρ(x) = σ(x) if σ(x) 6= x

and θ(x) otherwise. And they are resolved, once its subterms have arrived to solutions, with

subterm(x1 : t1 @ ε, . . . , xn : tn @ ε; t)@ s→c t[x1/t1, . . . , xn/tn] @ s

R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo 34:11

Finally, system transitions →s are generated by rule applications. The execution of a
maybe conditional rule without rewriting fragments is

t@ rl[x1 ← t1, . . . , xn ← tn] θ →s t[p/σ(ρ(r))]@ θ

if for a position p within t and for a rule l→ r, there is a matching σ such that tp = σ(ρ(l))
and σ(ρ(C)) holds, where ρ is the initial substitution that maps xi to θ(ti). If the rule
application is surrounded by the top modifier, it is only applied on top. For rules with
rewriting conditions l => r, substrategies must be provided between curly brackets and these
must be used to rewrite its condition fragments. This is achieved using a structured execution
state similar to the subterm construct, where the nested state q executes the corresponding
strategy in the rewriting fragment initial term.

t@ rl[. . . , xi ← ti, . . .]{α1, . . . , αm} θ →c rewc(tr : σ(tl)@α1θ, σ, C, α2 · · ·αm, θ, r, c; t)

for any rule rl with condition C0 ∧ tl => tr ∧ C where C0 is an equational condition, and any
matching substitution σ and matching context c such that σ(C0) holds. Like in the previous
case, the rule is first instantiated with the given initial substitution. The right-hand side of
the rule r is kept to do the actual rewriting once the conditions have been checked:

rewc(p : t′@ ε, σ, C0, ε, θ, r, c; t)→s c(σ′(r))

where the substitution σ′ extends σ by matching t′ against σ(p) and satisfies the equational
condition σ′(C0). If the remaining condition contains more rewriting fragments, these are
tried one after another accumulating variable bindings:

rewc(p : t′@ ε, σ, C0 ∧ tl => tr ∧ C,α~α, θ, r, c; t)→c rewc(tr : σ′(tl)@α θ, σ′, C, ~α, θ, r, c; t)

The rewc state follows the transitions of the inner state,

q →• q′
rewc(p : q, σ, C, ~α, θ, r, c; t)→c rewc(p : q′, σ, C, ~α, θ, r, c; t)

However, transitions inside this nested state are always control transitions in the outer one,
because they are not applied to the subject term.

Finally, this semantics can be used to define the translation of the strategy expression α
to an abstract strategy E(α) in (TΣ/E ,→1

R) where TΣ/E is the initial term algebra and →1
R

the one-step rewrite relation of the rewrite theory R. The derived relation � =→∗c ◦→s,
a single system transition preceded with all the necessary strategic preparation, has the
property that q � q′ implies cterm(q)→1

R cterm(q′).

I Definition 7. For a strategy expression α and a set of initial states I, we define

E(α) :={t cterm(q1) · · · cterm(qn) · · · : t@α� q1 � · · ·� qn � · · · , t ∈ I}
∪ {t cterm(q1) · · · cterm(qn) : t@α� q1 � · · ·� qn →∗c tn @ ε, t ∈ I}

Observe that finite derivations end with solutions, perhaps modulo some control transitions.
The strategy E(α) is intensional and can be encoded in the ARS A′ = (XS,�, {t@α : t ∈ I})
with final states F = {q ∈ XS : ∃ t ∈ TΣ/E q →∗c t@ ε}, and d = cterm the descent function.
XS, the set of execution states, is always an infinite set, but we can restrict to the reachable
execution states from the initial ones. For model checking to be decidable, the ARS needs to
be finite. Some sufficient conditions can be established:

FSCD 2019

34:12 Model Checking Strategy-Controlled Rewriting Systems

SATISFACTIONQIDLTL

BOOL

STRATEGY-MODEL-CHECKER

M-PREDS SM

M

SM-CHECK

Figure 3 Structure of the strategy model checker modules.

I Proposition 8. Given a term t ∈ TΣ/E and a strategy expression α, if the reachable terms
from t@α are finitely many, and the recursive strategy calls are tail recursive and their
call arguments only take a finite number of values, � is decidable and the set of reachable
execution states is finite.

Both premises are reasonable, since they bound the number of state and strategy
combinations that may appear during execution. This also implies the decidability of
the � relation, whose threats are the negative branch of the conditional combinator and
rewriting conditions. We understand by reachable terms all the elements of TΣ/E that occur
while executing the strategy, while rewriting both the state and the rewriting conditions
of rules. It is easy to observe that expressions without iterations and recursive calls never
produce an infinite number of execution states, but they are not usually interesting.

Often, this sufficient condition holds and is checked easily, like in the example strategies
of Listing 2. In the free and parity definitions, all strategy calls are tail recursive and
do not take parameters. The reachable terms from initial are finitely many since, even
by unrestricted rewriting, only 33 tables are reachable, as shown by counting the possible
positions of the forks.

5 The Maude strategy-aware model checker

Following the principles of Section 3 and the strategy language semantics, the new Maude
strategy-aware model checker was programmed in C++ as an extension of the already existing
explicit-state LTL model checker [16]. Both have a similar interface [12, §10] and are accessed
using separate special operators declared in Maude itself.

The built-in modules of the model checker appear on the left of Figure 3. All but
STRATEGY-MODEL-CHECKER are shared with the standard model checker. The right side of
the figure shows the typical structure of the user specification of the model and properties.
The user must:
1. Specify the model in a system module M, and define strategies to control M in a strategy

module SM.
2. In a protecting2 extension of M, say M-PREDS, choose the sort of the model states, making

it a subsort of the State sort declared in SATISFACTION, declare atomic propositions as
operators of type Prop, and define the satisfaction relation |= for all of them.

fmod SATISFACTION is
protecting BOOL . sorts State Prop .
op _|=_ : State Prop -> Bool .

endfm

2 Protecting means that it does not alter the signature, equations and rules of the types defined in M.

R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo 34:13

mod M-PREDS is
protecting M .
including SATISFACTION .
subsort Foo < State .
op p : -> Prop .
eq F:Foo |= p =

endm

3. Declare a strategy module, say SM-CHECK, to combine the model M with the property
specification in M-PREDS and the strategies SM. Import STRATEGY-MODEL-CHECKER too.

smod SM-CHECK is
protecting M-PREDS .
protecting SM .
including STRATEGY-MODEL-CHECKER .

endsm

Once this is done, model checking is invoked using the operator

op modelCheck : State Formula Qid QidList
~> ModelCheckerResult [special (...)] .

which receives an initial state, an LTL formula as defined in the LTL module [12, §10], and a
strategy identifier, which must correspond to a strategy without parameters defined in the
module. The last argument is an optional list of opaque strategy names: when a strategy
in this list is called, instead of the transitions occurring during the strategy execution, the
model checker will see direct transitions to its results. This optional feature produces traces
that do not fit in the base M model, but allows model checking coarse-grain and fine-grain
models with little changes.

The result is either true if the model satisfies the specification, or a counterexample,
expressed as a cycle of rewriting steps and a path to it, if it does not. Additionally, the
model checker optionally outputs an extended dump, from which graphical representations
of the system automaton and counterexamples can be generated using an auxiliary program.
The model checker, the auxiliary program, additional documentation, and various examples
can be downloaded at http://maude.sip.ucm.es/strategies.

The fundamentals of the strategy-aware model checker are given by the small-step
operational semantics of Section 4.2 and the fundamentals of the original model checker.
The model controlled by a strategy α from an initial term t ∈ TΣ/E can be encoded in the
Kripke structure

K = (XS,�, {t@α}, APΠ, LΠ ◦ cterm),

where atomic propositions are defined as in the standard model checker, for Π the signature
of M-PREDS and D its set of equations,

APΠ := { θ(p(x1, . . . , xn)) | p ∈ Π, θ ground substitution }.

The labeling function LΠ : TΣ/E → P(APΠ) is given by

LΠ([t]) := {θ(p(x1, . . . , xn)) ∈ APΠ | (E ∪D) ` t � θ(p(x1, . . . , xn)) = true}.

For the model checking to be decidable the conditions in [12, §10.3] for the standard one
must be fulfilled, and additionally the reachable execution states must be finitely many.

FSCD 2019

http://maude.sip.ucm.es/strategies

34:14 Model Checking Strategy-Controlled Rewriting Systems

5.1 Example: dining philosophers
In this section, we resume the dining philosophers problem (Example 6) to model check
some properties with different strategies. Although the example is presented with three
philosophers, it can be instantiated with many more. We already know that some unwanted
situations may appear during the dinner: a philosopher may starve or, even worse, none of
them could be able to eat. First, we express the collection of properties “the philosopher n
eats” as atomic propositions and prepare the model checker input data.

Listing 3 Atomic proposition for the dining philosophers example.
mod DINNER-PREDS is

protecting PHILOSOPHERS-DINNER . *** From Example 6 (Listing 1)
including SATISFACTION .

subsort Table < State .
op eats : Nat -> Prop [ctor] .

var Id : Nat .
vars L M : List .

eq < L (ψ | Id | ψ) M > |= eats(Id) = true .
eq < L > |= eats(Id) = false [owise] . *** otherwise

endm

Then, we put together and include the built-in model checker module.
smod DINNER-CHECK is

protecting DINNER-PREDS .
protecting DINNER-STRAT . *** From Listing 2
including STRATEGY-MODEL-CHECKER .
including MODEL-CHECKER . *** the standard model checker too

endsm

Now, we can check that the property � ♦ (eats(0)∨ eats(1)∨ eats(2)) (no deadlock) does
not hold for free rewriting, either using the standard model checking or the strategy-aware
one with the free strategy, but it does hold when using the parity strategy.
Maude > red modelCheck (initial ,

[] <> (eats (0) \/ eats (1) \/ eats (2))) .
ModelCheckerSymbol : Examined 4 system states .
rewrites : 43 in 4ms cpu (0ms real) (10750 rewrites / second)
result ModelCheckResult : counterexample (

{< (o | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) ψ >,’left}
{< (ψ | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) >, ’left}
{< (ψ | 0 | o) (ψ | 1 | o) ψ (o | 2 | o) >,’left},
{< (ψ | 0 | o) (ψ | 1 | o) (ψ | 2 | o) >,deadlock })

Maude > red modelCheck (initial ,
[] <> (eats (0) \/ eats (1) \/ eats (2)) , ’parity) .

StrategyModelCheckerSymbol : Examined 12 system states .
rewrites : 159 in 0ms cpu (2ms real) (~ rewrites / second)
result Bool: true

However, parity does not guarantee that all of them eat, because the property ♦ eats(0)
does not hold. The model checker presents a counterexample, where the philosopher number
two takes both forks and releases them in a loop, while the rest keep inactive:

R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo 34:15

Maude > red modelCheck (initial , <> eats (0), ’parity) .
rewrites : 55 in 0ms cpu (0ms real) (~ rewrites / second)
result ModelCheckResult : counterexample (nil ,

{< (o | 0 | o) ψ (o | 1 | o) ψ (o | 2 | o) ψ >,’left}
{< (o | 0 | o) ψ (o | 1 | o) (ψ | 2 | o) ψ >,’right}
{< (o | 0 | o) ψ (o | 1 | o) (ψ | 2 | ψ) >,’release })

In order to ensure that all of them eat, the strategy should act as a referee. A succinct
and direct solution is fixing turns, like in the following strategy:

sd turns(K, N) := left[Id <- K] ; right[Id <- K] ; release ;
turns(s(K) rem N, N) .

sd turns := turns (0, 3) .

If the number of diners is greater, a more parallel version can be written allowing n div 2
philosophers to eat at the same time. By model checking with turns, we obtain

Maude > red modelCheck (initial ,
[] (<> eats (0) /\ <> eats (1) /\ <> eats (2)) , ’turns) .

rewrites : 131 in 0ms cpu (1ms real) (~ rewrites / second)
result Bool: true

5.2 Implementation notes
We have programmed the new model checker in C++ as part of a modified version of the
Maude interpreter that includes full strategy language support. The implementation reuses
both the existing explicit-state LTL model checker and the existing infrastructure for strategic
execution [15], which we have completed to support strategy modules and the matchrew
operator. This infrastructure is based on a collection of tasks, which reflect continuations
and call frames, and processes that are in charge of finding matches, applying rules, etc. The
already existing model checker follows the automata-theoretic approach [11, §4] based on
testing the emptiness of the language recognized by the synchronous product of the model
and the negation of the linear property as Büchi automata. The model automaton is built
specifically for the system controlled by the strategy, while the LTL to Büchi automaton
translation and the nested depth-first algorithm are reused.

Each model state corresponds to a strategy execution state in the proposed semantics,
and stores some identifying information and a list of processes from which successors are
obtained on-the-fly when requested. Control operations→c are handled as in usual execution,
but rule rewrites trigger the commitment of a new state. Different techniques are used to
detect cycles and already visited states in order to reuse previous work.

6 Conclusions and future work

Strategies and languages to express them are useful resources to specify restrictions and
global control in rewriting systems, following the separation of concerns principle. This
approach has already been used to specify deduction procedures, semantics of programming
languages, chemical and biological processes, Such models need to be formally verified
and analyzed. In this paper, we show that model checking has a natural definition in this
context, and we tell how to effectively model check specifications for the Maude strategy
language, by means of a small-step operational semantics that emphasizes rewriting sequences.

FSCD 2019

34:16 Model Checking Strategy-Controlled Rewriting Systems

This procedure can be applied to other strategy representations. A model checker for systems
specified in Maude and controlled by its strategy language has been implemented in C++ as
an extension of the existing explicit-state LTL model checker, which can be downloaded from
http://maude.sip.ucm.es/strategies. It has already been tested with classical examples
and its performance is comparable to the original model checker.

The ongoing work comprises the study of branching-time properties and other theoretical
aspects, as well as the development of examples to exploit and test the performance of the
tool. The model checker can also be improved by providing clearer counterexamples with
more information on the strategy execution, and updating the inherited LTL-to-automaton
algorithm to more recent and efficient proposals [3, 22].

References
1 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.

Journal of the ACM, 49(5):672–713, 2002. doi:10.1145/585265.585270.
2 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,

1998. doi:10.1017/CBO9781139172752.
3 Tomás Babiak, Mojmír Kretínský, Vojtech Rehák, and Jan Strejcek. LTL to Büchi automata

translation: Fast and more deterministic. In Cormac Flanagan and Barbara König, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 18th International
Conference, TACAS 2012, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings,
volume 7214 of LNCS, pages 95–109. Springer, 2012. doi:10.1007/978-3-642-28756-5_8.

4 Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine Reilles. Tom:
Piggybacking Rewriting on Java. In Franz Baader, editor, Term Rewriting and Applications,
18th International Conference, RTA 2007, Paris, France, June 26-28, 2007, Proceedings,
volume 4533 of LNCS, pages 36–47. Springer, 2007. doi:10.1007/978-3-540-73449-9_5.

5 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 131. North Holland,
2nd edition, 2014.

6 Massimo Bartoletti, Maurizio Murgia, Alceste Scalas, and Roberto Zunino. Modelling and
Verifying Contract-Oriented Systems in Maude. In Santiago Escobar, editor, Rewriting Logic
and Its Applications - 10th International Workshop, WRLA 2014, Held as a Satellite Event of
ETAPS, Grenoble, France, April 5-6, 2014, Revised Selected Papers, volume 8663 of LNCS,
pages 130–146. Springer, 2014. doi:10.1007/978-3-319-12904-4_7.

7 Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau, and Christophe
Ringeissen. An Overview of ELAN. In Claude Kirchner and Hélène Kirchner, editors,
Proceedings of the Second International Workshop on Rewriting Logic and its Applications,
WRLA’98, Pont-à-Mousson, France, September 1-4, 1998, volume 15 of ENTCS, pages 55–70.
Elsevier, 1998. doi:10.1016/S1571-0661(05)82552-6.

8 Tony Bourdier, Horatiu Cirstea, Daniel J. Dougherty, and Hélène Kirchner. Extensional
and Intensional Strategies. In Maribel Fernández, editor, Proceedings Ninth International
Workshop on Reduction Strategies in Rewriting and Programming, WRS 2009, Brasilia, Brazil,
28th June 2009, volume 15 of EPTCS, pages 1–19, 2009. doi:10.4204/EPTCS.15.1.

9 Christiano Braga and Alberto Verdejo. Modular Structural Operational Semantics with
Strategies. In Rob van Glabbeek and Peter D. Mosses, editors, Proceedings of the Third
Workshop on Structural Operational Semantics, SOS 2006, Bonn, Germany, August 26, 2006,
volume 175(1) of ENTCS, pages 3–17. Elsevier, 2007. doi:10.1016/j.entcs.2006.10.024.

10 Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT
0.17. A language and toolset for program transformation. Science of Computer Programming,
72(1-2):52–70, 2008. doi:10.1016/j.scico.2007.11.003.

11 Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors.
Handbook of Model Checking. Springer, 2018. doi:10.1007/978-3-319-10575-8.

http://maude.sip.ucm.es/strategies
http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1017/CBO9781139172752
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-540-73449-9_5
http://dx.doi.org/10.1007/978-3-319-12904-4_7
http://dx.doi.org/10.1016/S1571-0661(05)82552-6
http://dx.doi.org/10.4204/EPTCS.15.1
http://dx.doi.org/10.1016/j.entcs.2006.10.024
http://dx.doi.org/10.1016/j.scico.2007.11.003
http://dx.doi.org/10.1007/978-3-319-10575-8

R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo 34:17

12 Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick Lincoln, Narciso
Martí-Oliet, José Meseguer, and Carolyn Talcott. Maude Manual v2.7.1, July 2016. URL:
http://maude.lcc.uma.es/manual271/maude-manual.html.

13 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn L. Talcott. All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of LNCS.
Springer, 2007. doi:10.1007/978-3-540-71999-1.

14 Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. Directed explicit-state model
checking in the validation of communication protocols. International Journal on Software
Tools for Technology Transfer, 5(2-3):247–267, 2004. doi:10.1007/s10009-002-0104-3.

15 Steven Eker, Narciso Martí-Oliet, José Meseguer, and Alberto Verdejo. Deduction, Strategies,
and Rewriting. In Myla Archer, Thierry Boy de la Tour, and César Muñoz, editors, Proceedings
of the 6th International Workshop on Strategies in Automated Deduction, STRATEGIES 2006,
Seattle, WA, USA, August 16, 2006, volume 174(11) of ENTCS, pages 3–25. Elsevier, 2007.
doi:10.1016/j.entcs.2006.03.017.

16 Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTLModel Checker.
In Fabio Gadducci and Ugo Montanari, editors, Proceedings of the Fourth International
Workshop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy, September 19-21,
2002, volume 71 of ENTCS, pages 162–187. Elsevier, 2004. doi:10.1016/S1571-0661(05)
82534-4.

17 Mercedes Hidalgo-Herrero, Alberto Verdejo, and Yolanda Ortega-Mallén. Using Maude and
Its Strategies for Defining a Framework for Analyzing Eden Semantics. In Sergio Antoy, editor,
Proceedings of the Sixth International Workshop on Reduction Strategies in Rewriting and
Programming, WRS 2006, Seattle, WA, USA, August 11, 2006, volume 174(10) of ENTCS,
pages 119–137. Elsevier, 2007. doi:10.1016/j.entcs.2007.02.051.

18 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
19 Hélène Kirchner. Rewriting Strategies and Strategic Rewrite Programs. In Narciso Martí-Oliet,

Peter Csaba Ölveczky, and Carolyn L. Talcott, editors, Logic, Rewriting, and Concurrency
- Essays dedicated to José Meseguer on the Occasion of His 65th Birthday, volume 9200 of
LNCS, pages 380–403. Springer, 2015. doi:10.1007/978-3-319-23165-5_18.

20 Saul Kripke. A Completeness Theorem in Modal Logic. Journal of Symbolic Logic, 24(1):1–14,
1959. doi:10.2307/2964568.

21 Orna Kupferman and Moshe Y. Vardi. Memoryful Branching-Time Logic. In 21th IEEE
Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA,
Proceedings, pages 265–274. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.34.

22 Weiwei Li, Shuanglong Kan, and Zhiqiu Huang. A Better Translation From LTL to Transition-
Based Generalized Büchi Automata. IEEE Access, 5:27081–27090, 2017. doi:10.1109/ACCESS.
2017.2773123.

23 Si Liu, Muntasir Raihan Rahman, Stephen Skeirik, Indranil Gupta, and José Meseguer. Formal
Modeling and Analysis of Cassandra in Maude. In Stephan Merz and Jun Pang, editors, Formal
Methods and Software Engineering - 16th International Conference on Formal Engineering
Methods, ICFEM 2014, Luxembourg, Luxembourg, November 3-5, 2014. Proceedings, volume
8829 of LNCS, pages 332–347. Springer, 2014. doi:10.1007/978-3-319-11737-9_22.

24 Narciso Martí-Oliet, Miguel Palomino, and Alberto Verdejo. Strategies and simulations in a
semantic framework. Journal of Algorithms, 62(3-4):95–116, 2007. doi:10.1016/j.jalgor.
2007.04.002.

25 Narciso Martí-Oliet, José Meseguer, and Alberto Verdejo. Towards a Strategy Language for
Maude. In Narciso Martí-Oliet, editor, Proceedings of the Fifth International Workshop on
Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain, March 27-April 4, 2004,
volume 117 of ENTCS, pages 417–441. Elsevier, 2004. doi:10.1016/j.entcs.2004.06.020.

26 José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992. doi:10.1016/0304-3975(92)90182-F.

FSCD 2019

http://maude.lcc.uma.es/manual271/maude-manual.html
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/s10009-002-0104-3
http://dx.doi.org/10.1016/j.entcs.2006.03.017
http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://dx.doi.org/10.1016/S1571-0661(05)82534-4
http://dx.doi.org/10.1016/j.entcs.2007.02.051
http://dx.doi.org/10.1007/978-3-319-23165-5_18
http://dx.doi.org/10.2307/2964568
http://dx.doi.org/10.1109/LICS.2006.34
http://dx.doi.org/10.1109/ACCESS.2017.2773123
http://dx.doi.org/10.1109/ACCESS.2017.2773123
http://dx.doi.org/10.1007/978-3-319-11737-9_22
http://dx.doi.org/10.1016/j.jalgor.2007.04.002
http://dx.doi.org/10.1016/j.jalgor.2007.04.002
http://dx.doi.org/10.1016/j.entcs.2004.06.020
http://dx.doi.org/10.1016/0304-3975(92)90182-F

34:18 Model Checking Strategy-Controlled Rewriting Systems

27 Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Reasoning About
Strategies: On the Model-Checking Problem. ACM Transactions in Computational Logic,
15(4):34:1–34:47, 2014. doi:10.1145/2631917.

28 Martin R. Neuhäußer and Thomas Noll. Abstraction and Model Checking of Core Erlang
Programs in Maude. In Grit Denker and Carolyn Talcott, editors, Proceedings of the 6th
International Workshop on Rewriting Logic and its Applications, WRLA 2006, Vienna, Austria,
April 1-2, 2006, volume 176 (4) of ENTCS, pages 147–163. Elsevier, 2007. doi:10.1016/j.
entcs.2007.06.013.

29 Amir Pnueli. The Temporal Logic of Programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

30 Rubén Rubio, Narciso Martí-Oliet, Isabel Pita, and Alberto Verdejo. Model checking strategy-
controlled rewriting systems (extended version). Technical Report 02/19, Departamento de
Sistemas Informáticos y Computación, Universidad Complutense de Madrid, 2019. URL:
http://maude.sip.ucm.es/strategies/tr0219.pdf.

31 Gustavo Santos-García and Miguel Palomino. Solving Sudoku Puzzles with Rewriting Rules.
In Grit Denker and Carolyn Talcott, editors, Proceedings of the 6th International Workshop on
Rewriting Logic and its Applications, WRLA 2006, Vienna, Austria, April 1-2, 2006, volume
176 (4) of ENTCS, pages 79–93. Elsevier, 2007. doi:10.1016/j.entcs.2007.06.009.

32 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
33 Alberto Verdejo and Narciso Martí-Oliet. Basic completion strategies as another application

of the Maude strategy language. In Santiago Escobar, editor, Proceedings 10th International
Workshop on Reduction Strategies in Rewriting and Programming, WRS 2011, Novi Sad,
Serbia, 29 May 2011, volume 82 of EPTCS, pages 17–36, 2011. doi:10.4204/EPTCS.82.2.

http://dx.doi.org/10.1145/2631917
http://dx.doi.org/10.1016/j.entcs.2007.06.013
http://dx.doi.org/10.1016/j.entcs.2007.06.013
http://dx.doi.org/10.1109/SFCS.1977.32
http://maude.sip.ucm.es/strategies/tr0219.pdf
http://dx.doi.org/10.1016/j.entcs.2007.06.009
http://dx.doi.org/10.4204/EPTCS.82.2

	p000-Frontmatter
	Preface
	Steering Committee
	Program Committee
	External Reviewers

	p001-Accattoli
	Introduction
	The Higher-Order Time Problem
	Abstract Machines
	Denotational Semantics

	From the lambda-calculus to lambda-calculi
	Open Call-by-Value
	Benchmark for lambda-Calculi

	Sharing
	Rewriting at a Distance, or Disentangling Search and Substitution
	A Rewriting Pearl: Confluence from Local Diagrams
	Linear Substitutions, Weak Evaluation, and Garbage Collection

	p002-Felty
	p003-Winkler
	Introduction
	Preliminaries
	Maximal Completion
	Ordered Completion and Theorem Proving
	Theorem Proving
	Completeness for Linear Systems

	Normalized Completion
	Implementation
	Conclusion

	p004-Yang
	Introduction
	Some research questions
	Final remark

	p005-Ahrens
	Introduction
	Bicategories and Some Examples
	Univalent Bicategories
	Displayed Bicategories
	Displayed univalence
	Univalence of Complicated Bicategories
	Pseudofunctors
	Algebraic Examples
	Categories with Families

	Conclusions and Further Work

	p006-Ahrens
	Introduction
	Categories of modules over monads
	1-signatures and their models
	2-Signatures and their models
	Equations
	2-signatures and their models
	Modularity for 2-signatures
	Initial Semantics for 2-Signatures

	Proof of Theorem 32
	Examples of algebraic 2-signatures
	Monoids
	Colimits of algebraic 2-signatures
	Algebraic theories
	Fixpoint operator

	Recursion
	Principle of recursion
	Translation of lambda calculus with fixpoint to lambda calculus

	p007-Bendkowski
	Introduction
	Preliminaries
	Lambda upsilon calculus
	Regular tree languages

	Reduction grammars
	Finite intersection partitions
	The construction of simple v-reduction grammars
	Analytic combinatorics and simple v-reduction grammars
	Applications to other term rewriting systems
	lambda v-calculus
	S K-combinators

	Conclusions
	Correctness of the finite intersection partition algorithm
	The construction of (G_n)_n
	Quantitative analysis of (G_n)_n

	p008-Biernacka
	Introduction
	Preliminaries
	Weak call by need
	Reduction strategy
	Refocusing

	Reduction semantics for strong call by need
	An abstract machine for strong call by need
	Correctness
	Related work
	Conclusion
	References

	p009-Blanqui
	Introduction
	Terms and types
	Interpretation of types as reducibility candidates
	Dependency pairs theorem
	Checking accessibility
	Size-change termination
	Implementation and comparison with other criteria and tools
	Conclusion and future work
	Proofs of lemmas on the interpretation
	Definition of the interpretation
	Computability predicates
	Invariance by reduction
	Adequacy of the interpretation

	Termination proof of Example 1

	p010-Cerna
	Introduction
	Preliminaries
	Special forms of terms, generalization problems
	Variants of higher-order anti-unification

	Generic anti-unification transformation rules
	The Solve rule

	Special cases
	Projection-based variant
	Generalization with common subterms
	CS-variant
	RFC-variant
	FC-variant
	Pattern variant

	Conclusion
	Examples

	p011-Coquand
	Cubical categories with families
	Category with families
	Internal language of presheaves
	Cubical categories with families

	Two examples of cubical cwfs
	Term model
	Developments in presheaves over C
	Standard model

	Sconing
	Contexts, substitutions, types and elements
	Type formers and operations
	Dependent products
	Dependent sums
	Universes
	Natural numbers
	Dependent paths
	Filling operation
	Glue types

	Main result

	Homotopy canonicity
	Extensions
	Identity types
	Higher inductive types

	Rules of the term model
	Indexed inductive sets in presheaves over C
	Variations
	Univalence as an axiom
	Canonicity

	Simplicial set model

	p012-Czajka
	Introduction
	Preliminaries
	Polymorphic Functional Systems
	A well-ordered set of interpretation terms
	Interpretation terms
	The ordering pair (succeq,succ)
	Weak monotonicity

	A reduction pair for PFS terms
	Proving termination with rule removal
	A larger example
	Conclusions and future work

	p013-Lago
	Introduction
	Probabilistic Resource Calculus
	The Basics
	Infinite Terms
	Regular Terms
	Regularity and the Exponential

	Explicit Probabilistic Taylor Expansion
	The Definition
	Probabilistic Reduction

	Generic Taylor Expansion of Probabilistic lambda-terms
	Barycentric Semantics of Choices
	Normalisation
	Adequacy

	On the Taylor Expansion and Böhm Trees
	A Commutation Theorem
	Böhm Tests

	Implementing Tests as Resource Terms
	Conclusion

	p014-Diaz-Caro
	Introduction
	Identifying isomorphic propositions
	Lambda-calculus
	Non-determinism

	Type isomorphisms
	Types and isomorphisms
	Prime factors
	Measure of types
	Decomposition properties on types

	System I
	Syntax
	Operational semantics
	Examples

	Subject Reduction
	Strong Normalisation
	Normalisation of simply typed lambda calculus
	Reduction of a product
	Reduction of a term of a conjunctive type
	Reducibility
	Adequacy

	Consistency
	Computing with System I
	Conclusion, Discussion and Future Work
	Non-terminating extension
	Other Related Work
	Towards more connectives
	Eta-expansion rule

	Detailed proofs of Section 4
	Detailed proofs of Section 5
	Detailed proofs of Section 5.2
	Detailed proofs of Section 5.5

	p015-Ciaffaglione
	Introduction
	Affine Combinatory Logic and the lambda!-calculus
	The Model of Partial Involutions
	The !Intersection Type Discipline for the lambda!-calculus
	The !Intersection Principal Type Discipline for the lambda!-calculus
	Relating the Principal Type System to the Type System

	Relating Principal Types and Partial Involutions
	Final Remarks and Directions for Future Work

	p016-Eberhart
	Introduction
	Template games vs. simple games
	Template strategies vs. simple strategies
	Template games
	Double categories
	The template moo as a double category
	Template games as a double slice

	Refined template games, simple games, and Day convolution
	Refined template games
	Simple games
	Day convolution

	Conclusion and perspectives

	p017-Ehrhard
	Probabilistic coherence spaces (PCS)
	A few words about cones
	Basic definitions on PCSs

	Probabilistic PCF, time expectation and derivatives
	The core language
	Denotational semantics
	Operational semantics

	Probabilistic PCF with labels and the associated random variables
	Probabilistic PCF with labeled coins
	Spying labeled terms in pPCF

	Differentials and distances
	Order theoretic characterization of PCSs
	Local PCS and derivatives
	Glb's, lub's and distance
	A Lipschitz property

	Application to the observational distance in pPCF

	p018-Santo
	Introduction
	Background
	Modal embeddings
	Modal target calculus lambda_{box}
	Comparison of lambda_{box} with IS4
	Modal embeddings (*)^{o} and (*)*

	Refined modal target calculus lambda_{{b}}
	Motivation
	Definition of lambda_{{b}} and relationship with lambda_{box}
	Properties of lambda_{{b}}

	Refined embeddings into lambda_{{b}}
	Refined Girard's embedding
	Refined Gödel's embedding

	Instantiations
	Final remarks
	Natural deduction system for the logic IS4

	p019-Faggian
	Introduction
	Key notions
	Probabilistic lambda-calculus and (Non-)Unique Result

	Probabilistic Abstract Rewriting System
	Probabilistic Abstract Rewrite Systems (PARS)
	Evolution of a system described by a PARS

	A Formalism for Probabilistic Rewriting
	Asymptotic Behaviour and Normal Forms
	Limit Distributions
	Normalization and Termination
	On Unique Normal Forms
	Confluence and UN^unlim

	Newman's Lemma Failure, and Proof Technique for PARS

	Random Descent (RD)
	Expected Termination Time

	Analysis of a probabilistic calculus: weak CbV lambda-calculus
	Comparing Strategies
	Conclusion and Further Work
	Omitted Proofs and Technical Details
	Appendix to Section 3. A Formalism for Probabilistic Rewriting
	Appendix to Section 4. Asymptotic Behaviour and Normal Forms
	Confluence and UN^unlim: Greatest Limit Distribution
	More on Newman's Lemma and Proof Techniques

	Appendix to Section 5. Random Descent
	Section 5.1. Finite expected time to termination

	Appendix to Section 6. Weak CbV lambda-calculus
	Appendix to Section 7. Comparing Strategies
	Comments

	p020-Fukuda
	Introduction
	Preliminaries
	Intuitionistic MELL and its Girard translation
	Intuitionistic S4
	Typed lambda-calculus of the intuitionistic S4

	Linear-logical reconstruction
	Naive attempt at the linear-logical reconstruction
	Modal linear logic

	Curry–Howard correspondence
	Typed lambda-calculus for the intuitionistic modal linear logic
	Embedding from the modal lambda-calculus by Pfenning and Davies

	Axiomatization of modal linear logic
	Geometry of Interaction Machine
	Sequent calculus for classical modal linear logic
	Proof-nets formalization
	Computational interpretation

	Related work
	Linear-logical reconstruction of modal logic
	Computation of modal logic and its relation to metaprogramming

	Conclusion
	Appendix
	Cut-elimination theorem for the intuitionistic modal linear logic
	Strong normalizability of the typed lambda-calculus for modal linear logic
	Bracket abstraction algorithm

	p021-Geser
	Introduction
	Notation
	Rewriting and Reachability
	Forward Closures
	Partial Algebras and Partial Models
	Languages defined by Tilings

	Tiled Rewrite Systems and Shift Algebras
	Completion in Shift Algebras
	Examples of Termination Proofs via Forward Closures
	Overlap Closures and Relative Termination
	Computation of Overlap Closures by Completion
	Examples of Relative Termination Proofs via Overlap Closures
	Experimental Evaluation
	Conclusion
	Composition Trees of Overlap Closures

	p022-Heijltjes
	Introduction
	Proof nets for first-order additive linear logic
	Geometric correctness
	Composition
	Unification nets
	Conclusion and related work
	Proofs

	p023-Horne
	Introduction
	The processes-as-formulae paradigm
	Motivation: uncovering the probabilistic sub-additive operators

	Background: an established notion of probabilistic simulation
	Extending linear logic with probabilistic sub-additive operators
	An established presentation of MALL in the calculus of structures
	Extending with the probabilistic sub-additives (and sequentiality)
	Embedding of Probabilistic Processes in DeltaMAV

	Examples of properties established using linear implication
	Refinements also provable using probabilistic simulation
	Distributivity properties, some forbidden others permitted
	But are the medial rules necessary in DeltaMAV?

	On the proof of cut-elimination (Theorem 2)
	Related work on Sub-Additive Operators and Nominal Quantifiers
	Conclusion

	p024-Ikebuchi
	Introduction
	Main Theorem
	Preliminaries on Algebra
	Modules and Homological Algebra
	String Rewriting Systems and Homology Groups of Monoids

	An Overview of the Homology Theory of TRSs
	Proof of Main Theorem
	The matrix D(R) for The Theory of Groups

	p025-Kaposi
	Introduction
	Type theory
	The identity type

	The Set model
	Pseudomorphism
	Gluing
	Global section functor
	Reaping the fruits
	Conclusions and further work
	The global section functor is a pseudomorphism
	Full version of if_P and equalities in gluing

	p026-Kasterovic
	Introduction
	Preliminaries
	Probabilistic Lambda Calculus Lambda_{oplus,let}
	Context Equivalence

	Probabilistic Applicative Bisimulation
	Full Abstraction
	Every Test has an Equivalent Context

	Conclusion
	Appendix - Proofs
	Context Equivalence is a Congruence
	Bisimulation Equivalence is a Congruence

	p027-Larchey-Wendling
	Introduction
	Diophantine Relations
	Diophantine Logic
	Example of a Mechanised Diophantineness Proof
	Exponentiation and Bounded Universal Quantification
	Reflexive-Transitive Closure is Diophantine

	Elementary Diophantine Constraints
	Single Diophantine Equations
	Remarks on the Implementation of Matiyasevich's Theorems
	Exponential is Diophantine (Theorem 6)
	Admissibility of Bounded Universal Quantification (Theorem 7)

	Minsky Machines Reduce to FRACTRAN
	Minsky Machines
	FRACTRAN

	Diophantine Encoding of FRACTRAN
	The Davis-Putnam-Robinson-Matiyasevich Theorem
	Related and Future Work
	Some numerical Details about the Coq Code Contents
	Atomic Formulæ as Elementary Constraints (Lemma 12)
	Proof of a Convexity Identity (Proposition 13)
	Avoiding Overflows in the Proof of Theorem 7

	p028-Liquori
	Introduction
	lambda-calculi with intersection types à la Church
	Logics for intersection types
	Raising the {Delta}-calculus to a {Delta}-framework.

	Syntax, Reduction and Types
	The {Delta}-calculi
	The Delta-chair

	Examples
	On synchronization and subject reduction

	Metatheory of Delta^T_R
	General properties
	Strong normalization

	Typed systems à la Church vs. type assignment systems à la Curry
	Relation between type assignment systems Lambda^T_{cap} and typed systems Delta^T_R
	Subtyping and explicit coercions

	p029-DeNaurois
	Recursion
	Notations, and Recursion on Notations
	Turing Machines with Random Access
	Recursion on Pointers

	Pointers Primitive Recursion
	Pointer Safe Recursion
	Tropical Tiering
	Tropical Tier
	Tropical Interpretation
	Tropical Recursion

	Logarithmic Space, Polylogarithmic Time
	Alternation
	Concluding Remarks

	p030-Pirog
	Introduction
	The Common Core
	Deep Effect Handlers and Delimited Control
	Deep Handler Calculus
	The shift_0 Delimited Control Calculus
	Typed Correspondence

	Shallow Effect Handlers and Delimited Control
	Shallow Handler Calculus
	The control_0 Delimited Control Calculus
	Typed Correspondence

	Discussion and Further Work

	p031-Sterling
	Introduction
	Internalizing equality: from judgments to types
	Extensional equality via equality reflection
	Equality in intensional type theory
	Setoids and internal model constructions
	Observational Type Theory
	Cubical Type Theory
	Our contribution: XTT

	Programming and proving in XTT
	Kan operations: coercion and composition
	Generalized coercion
	Generalized composition

	Closed universes and type-case
	Future extensions

	Algebraic model theory and canonicity
	The cubical logical families construction
	Canonicity theorem

	The rules of XTT
	Derivable Rules

	p032-Veltri
	Introduction
	The Host Type Theory
	The Object Type Theory
	Types
	Contexts
	Terms
	Substitutions
	Definitional equalities
	Example: Streams

	Categorical Semantics
	Presheaves
	Modelling Simple Types

	Modelling Guarded Recursion
	Context Weakening and the Box Modality
	The Later Modality
	Guarded Recursive Types

	Soundness and Consistency
	Conclusions and Future Work
	Syntax of GTT

	p033-Vial
	Introduction
	Infinite terms and types
	Infinite Lambda Terms
	The computation of Böhm trees
	System {S} (sequential intersection)
	Approximability
	Soundness and completeness for system {S}

	Characterizing hereditary permutators
	A unique type to rule them all
	Permutator schemes
	System {S}_{{hp}}

	p034-Rubio
	Introduction
	Preliminaries
	Model checking
	Strategies

	Strategy-aware model checking
	Maude and its strategy language
	The strategy language
	An operational semantics for model checking

	The Maude strategy-aware model checker
	Example: dining philosophers
	Implementation notes

	Conclusions and future work

