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Preface

The 4th International Conference on Formal Structures for Computation and Deduction
(FSCD 2019) was held June 24-30, 2019 in Dortmund, Germany. FSCD (http://fscd-
conference.org/) covers all aspects of formal structures for computation and deduction, from
theoretical foundations to applications. Building on two communities, RTA (Rewriting
Techniques and Applications) and TLCA (Typed Lambda Calculi and Applications), FSCD
embraces their core topics and broadens their scope to closely related areas in logics and
proof theory, new emerging models of computation (e.g. homotopy type theory or quantum
computing), semantics and verification in new challenging areas (e.g. blockchain protocols or
deep learning algorithms). The FSCD program featured four invited talks given by Beniamino
Accattoli (Inria, Paris, France), Amy Felty (University of Ottawa, Canada), Sarah Winkler
(University of Innsbruck, Austria) and Hongseok Yang (KAIST, South Korea). FSCD 2019
received 69 submissions with contributing authors from 18 countries. The program committee
consisted of 32 members from 18 countries. Each submitted paper has been reviewed by
at least three PC members with the help of 105 external reviewers. The reviewing process,
which included a rebuttal phase, took place over a period of eight weeks. A total of 30 papers,
29 regular research papers and one system description paper, were accepted for publication
and are included in these proceedings.

The Program Committee awarded two FSCD 2019 Best Paper Awards for Junior Re-
searchers: Mirai Ikebuchi for the paper “A Lower Bound of The Number of Rewrite Rules
Obtained by Homological Methods”, and Jonathan Sterling, Carlo Angiuli and Daniel Gratzer
for the paper “Cubical Syntax for Reflection-Free Extensional Equality”. Mirai Ikebuchi is
a graduate student and Jonathan Sterling, Carlo Angiuli and Daniel Gratzer are all PhD
students.

In addition to the main program, 7 FSCD-associated workshops were planned on days
before and mostly after the conference:

8th International Workshop on Confluence, IWC 2019,

10th Workshop on Higher Order Rewriting, HOR, 2019,

IFIP Working Group 1.6: Rewriting IFIP Meeting 2019 - 22nd edition,

3d Workshop on Trends in Linear Logic and Applications, TLLA 2019,

6th International Workshop on Rewriting Techniques for Program Transformations and

Evaluation, WPTE 2019,

33nd International Workshop on Unification, UNIF 2019,

5th International Workshop on Structures and Deduction, SD 2019.

This volume of the proceedings of FSCD 2019 is published in the LIPIcs series under a
Creative Common license: online access is free to all papers and authors retain rights over
their contributions. We thank the Leibniz Center for Informatics at Schloss Dagstuhl, in
particular Michael Wagner for his efficient and reactive support during the production of
these proceedings.

Many people have helped to make FSCD 2019 a successful meeting. On behalf of the
Program Committee, I thank the many authors of submitted papers for considering FSCD
as a venue for their work and the invited speakers who have agreed to speak at this meeting.
The Program Committee and the external reviewers deserve big thanks for their careful
review and evaluation of the submitted papers. (The members of the Program Committee
and the list of external reviewers can be found on the following pages.) The EasyChair
conference management system has been a useful tool in all phases of the work of the Program
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Preface

Committee. The associated workshops have made a big contribution to the lively scientific
atmosphere of this meeting and I thank the workshop organizers for their efforts in bringing
their meetings to Dortmund and the local Workshop Chair, Boris Dudder, for making the
workshops run smoothly. Jakob Rehof, the Conference Chair for FSCD 2019, deserves a very
warm thanks for the over all organisation of FSCD 2019, for the smooth functioning of the
meeting and for producing the web site. Sandra Alves, as Publicity Chair, made a great
contribution in advertising the Conference. The steering committee, lead by Delia Kesner,
provided valuable guidance in setting up this meeting and in ensuring that FSCD will have a
bright and enduring future. Finally, I thank all participants of the conference for creating a
lively and interesting event.

On behalf of the FSCD community, I would like to thank the City of Dortmund, the
TU Dortmund University, and the U-Tower for providing the venue of FSCD 2019. I
furthermore would like to thank MAXIMAGO, the Friends of the TU Dortmund, and the
Alumni of the Faculty of Informatics (aido) for supporting FSCD 2019. The Center of
Excellence Logistics & IT (Leistungszentrum Logistik und IT), is gratefully acknowledged as
scientific partner of FSCD 2019.

Herman Geuvers
Program Chair of FSCD 2019
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—— Abstract

The (untyped) A-calculus is almost 90 years old. And yet — we argue here — its study is far from
being over. The paper is a bird’s eye view of the questions the author worked on in the last few years:
how to measure the complexity of A-terms, how to decompose their evaluation, how to implement it,
and how all this varies according to the evaluation strategy. The paper aims at inducing a new way
of looking at an old topic, focussing on high-level issues and perspectives.
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1 Introduction

The A-calculus is as old as computer science. Many programming languages incorporate
its key ideas, many proof assistants are built on it, and various research fields — such as
proof theory, category theory, or linguistics — use it as a tool. Books are written about it,
it is taught in most curricula on theoretical computer science, and it is the basis of many
fashionable trends in programming languages such as probabilistic or quantum programming,
or gradual type systems. Is there anything left to say about it? The aim of this informal
paper is to provide evidence that yes, the theory of A-calculus is less understood and stable
than it may seem and there still are things left to say about it.

A first point is the solution of the schism between Turing machines and the A-calculus as
models of computation. The schism happened mostly to the detriment of the A-calculus, that
became a niche model. Despite belonging to computer science, indeed, the whole theory of
the A-calculus was developed paying no attention to cost issues. Adopting a complexity-aware
point of view sheds a new light on old topics and poses new fundamental questions.

A second point is the fact that the A-calculus does not exist. Despite books such as
Barendregt’s [31] and Krivine’s [54], devoted to the A-calculus, it is nowadays clear that,
even if one sticks to the untyped A-calculus with no additional features, there are a number
of A-calculi depending at least on whether evaluation is call-by-name, call-by-value, or
call-by-need, and — orthogonally — whether evaluation is strong or weak (that is, whether
abstraction bodies are evaluated or not) and, when it is weak, whether terms are closed or
can also be open. These choices affect the theory and impact considerably on the design of
abstract machines. A comparative study of the various dialects allows to identify principles
and differences, and to develop a deeper understanding of higher-order computations.
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A third point is about decomposing A-calculi and the role of sharing. More or less
ubiquitously, for practical as well as for theoretical reasons, A-calculi are presented with let
expressions, that are nothing else but constructs for first-class sharing, logically corresponding
to the logical rule behind computation, the cut rule. Sharing is also essential for the
two previous points, complexity-aware understandings of A-calculi and defining evaluation
strategies such as call-by-need. Perhaps surprisingly, there are simple extensions with sharing
that have important properties that “the” A-calculus lacks. Therefore, there is a third sharing
azis — beyond the strong/weak axis and the call-by-name/value/need axis — along which
the A-calculus splits into various calculi, that should gain the same relevant status of the
other A-calculi.

This paper tries to explain and motivate these points, through an informal overview of
the author’s research. The unifying theme is the ambition to harmonise together theoretical
topics such as denotational semantics or advanced rewriting properties and practical studies
such as abstract machines and call-by-need, using as key ingredients sharing and cost analyses.

2 The Higher-Order Time Problem

The higher-order time problem is the problem of how to measure the time complexity of
programs expressed as A-terms. It is a subtle and neglected problem. There are indeed no
traces of the question in the two classic books on the A-calculus, Barendegt’s and Krivine’s,
for instance.

Size Explosion. The A-calculus has only one computational rule, S-reduction, and the
question is whether it is possible to take the number of S-steps as a reasonable time measure
or not. Of course, the question is subtler than that, because a A-term in general admits
many different evaluation sequences, of different length, so that one should rather first fix an
evaluation strategy. Unfortunately, we have to first deal with a deeper difficulty that affects
every strategy.

The essence of the problem indeed amounts to a degeneracy, called size explosion: there
are families of programs {t, }nen such that ¢, evaluates in n (8 steps to a result s, of size
exponential in n (and in the size |¢,| of ¢,). Now, it seems that the number of S-steps cannot
be a reasonable measure, because n — the candidate measure of time complexity — does not
even account for the time to write down the exponential result s,,.

Size explosion is extremely robust: there is an exploding family {¢,},en (for details
see [6]) such that

t, is closed;

all its evaluation sequences to normal form have the same length;

strong and weak evaluations produce the same result, in the same number of steps;

lives in the continuation-passing style fragment of the A-calculus, what is sometimes

considered as a sort of simpler kernel;

can even be typed with simple types.

Moreover, even if one restricts to, say, terms evaluating to booleans, for which normal forms
have constant size, size explosion can still happen along the way: evaluation can produce a
sub-term of exponential size and then erase it, making the number of steps a doubtful notion
of cost model even if it is no longer possible to produce an exponential normal form.

Phrased differently, there are no easy tricks: size explosion is here to stay.

Surprisingly, until very recently size explosion was folklore. There are no traces of it in
the major literature on the A-calculus. It was known that duplications in the A-calculus can
have a nasty behaviour, and this is why the A-calculus is never implemented as it is defined —
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all implementations indeed rely on some form of sharing. In 2006, Dal Lago and Martini
started the first conscious exploration of the higher-order time problem [39], having instances
of size explosion in mind. But it is only in 2014 that Accattoli and Dal Lago named the
degeneracy size explosion [17], taking it out from the collective unconscious, and starting a
systematic exploration.

Reasonable Cost Models. What does it exactly mean for a cost measure to be reasonable?
First of all, one has to fix a computational model M, whose role in our case is played by the
A-calculus. As proposed by Slot and van Emde Boas in 1984 [88], a time cost model for M is
reasonable when there are simulations of M by Turing machines and of Turing machines by
M having overhead bounded by a polynomial of the input and of the number of steps (in
the source model). For space, similarly, one requires a linear overhead. The basic idea is

to preserve the complexity class €, that then becomes robust, that is, model-independent.

Random access machines for instance are a reasonable model (if multiplication is a primitive
operation, they need to be endowed with a logarithmic cost model).

The question becomes: are there reasonable cost models for the A-calculus? At least for
time? In principle, everything can be a cost model, but of course one is mainly interested in
the natural one, the number of 3-steps. The precise question then is: are there reasonable
evaluation strategies, that is, strategies whose number of steps is a reasonable time cost model?

Sharing. The good news is that there are strategies for which size explosion is avoidable,

or, rather, it can be circumvented, and so, the answer is yes, reasonable strategies do exist.

The price to pay is the shift to a A-calculus enriched with sharing of subterms. Roughly, size
explosion is based on the blind duplication of useless sub-terms — by keeping these sub-terms
shared, the exponential blow up of the size can be avoided and the number of 3-steps can be
taken as a reasonable measure of time complexity.

Fix a dialect Ax of the A-calculus with a deterministic evaluation strategy — x, and note
nf x (¢) the normal form of ¢ with respect to —x. The idea is to introduce an intermediate
setting Aspx where Ay is refined with sharing (we are vague about sharing on purpose) and
evaluation in Ax is simulated by some refinement —¢,x of —x. The situation can then be
refined as in the following diagram:

polynomial
Ax > RAM

T~

polynomial

&
Aenx polynomial

In the best cases [85, 13, 21] the simulations have bilinear overhead, that is, linear in the
number of steps and in the size of the initial term. A term with sharing ¢ represents the
ordinary term t| obtained by unfolding the sharing in ¢t — the key point is that ¢ can be
exponentially smaller than ¢|. Evaluation in Agyx produces a shared normal form nfgy,x (%)

that is a compact representation of the ordinary result, that is, such that nfg,x (¢)] = nf x (¢).

Let us stress that one needs sharing to obtain the simulations but then the strategy
proved to be reasonable is the one without sharing (that is, —x) — here sharing is the key
tool for the proof, but the cost model is not taken on the calculus with sharing.

Sharing and Reasonable Strategies. The kind of sharing at work in diagram (1), and
therefore the definitions of A\gyx and — ¢, x, depends very much on the strategy — x. Let us
fix some terminology.

1:3
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The weak A-calculus is the sub-calculus in which evaluation does not enter into abstractions,
and, with the additional hypothesis that terms are closed, it models functional programming
languages. The strong A-calculus is the case where evaluation enters into function bodies,
and its main domain of application are proof assistants.

The first result for weak strategies is due to Blelloch and Greiner in 1995 [32] and concerns
weak CbV evaluation. Similar results were then proved again, independently, by Sands,
Gustavsson, and Moran in 2002 [85] who also addressed CbN and CbNeed, and by combining
the results by Dal Lago and Martini in 2009 in [41] and [40], who also addressed CbN in [61].
Actually already in 2006, Dal Lago and Martini proposed a reasonable cost model for the
CbV case [39], but that cost model does not count 1 for each S-step.

Note, en passant, that reasonable does not mean efficient: CbN and CbV are incomparable
for efficiency, and CbNeed is more efficient than CbN, and yet they are all reasonable.
reasonable and efficient are indeed unrelated properties of strategies. Roughly, efficiency is
a comparative property, it makes sense only if there are many strategies and one aims at
comparing them. Being reasonable instead is a property of the strategy itself, independently
of any other strategy, and it boils down to the fact that the strategy can be implemented
with a negligible overhead.

In the strong case, at present, only one reasonable strategy is known, the leftmost-
outermost (LO) strategy, that is the extension of the CbN strategy to the strong case. The
result is due to Accattoli and Dal Lago [17] (2014), and it is inherently harder than the weak
case, as a more sophisticated notion of sharing is required.

There also is an example of an unreasonable strategy. Asperti and Mairson in [27]
(1998) proved that Lévy’s parallel optimal evaluation [67] is unreasonable. Careful again:
unreasonable does not mean inefficient (but it does not mean efficient either).

An Anecdote. To give an idea of the subtlety but also of how much these questions are
neglected by the community, let us report an anecdote. In 2011, we attended a talk where
the speaker started by motivating the study of strong evaluation as follows. There exists
a family {s,}nen of terms such that s, evaluates in 2(2") steps with any weak strategy
while it takes O(n) steps with rightmost-innermost strong evaluation. Thus, the speaker
concluded, strong evaluation can be faster than weak evaluation, and it is worth studying it.

Such a reasoning is wrong (but the conclusion is correct, it is worth studying strong
evaluation!). It is based on the hidden assumption that it makes sense to count the number
of B-steps and compare strategies accordingly. Such an assumption, however, is valid only if
the compared strategies are reasonable, that is, if it is proved that their number of steps is a
reasonable time measure. In the talk, the speaker was comparing weak strategies, of which
we have various reasonable examples, together with a strong strategy that is not known to
be reasonable. In particular, rightmost-innermost evaluation is probably unreasonable, given
that even when decomposed with sharing it lacks one of the key properties (the sub-term
property) used in all proofs of reasonability in the literature.

That talk was given in front of an impressive audience, including many big names and
historical figures of the A-calculus. And yet no one noticed that identifying the number of 3
steps with the actual cost was naive and improper.

Apart from avoiding traps as the one of the anecdote, a proper approach to the cost of
computation sheds a new light on questions of various nature. The next two subsections discuss
the practical case of abstract machines and the theoretical case of denotational semantics.
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2.1 Abstract Machines

The first natural research direction is the re-understanding of implementation techniques
from a quantitative point of view.

Environment-Based Abstract Machines. The theory of implementations of A-calculi is
mainly based on environment-based abstract machines, that use environments to implement
sharing and avoid size explosion. Having a reasonable cost model of reference, namely the
number of S-steps of the strategy implemented by the machine, it is possible to bound the
complexity of the machine overhead as a function of the size of the initial term and the
number of steps taken by the strategy in the calculus.

A complexity-based approach to abstract machines is not a pedantic formality: Cregut’s
machine [37], that was the only known machine for strong evaluation for 25 years, has an
exponential overhead with respect to the number of S-steps. Essentially, Cregut machine is
as bad as implementing g-reduction literally as it is defined, without any form of sharing.

Similarly, the abstract machine for open terms described by Grégoire and Leroy in [50]
suffers of exponential overhead, even if the authors in practice implement a slightly different
machine with polynomial overhead.

In collaboration with Barenbaum, Mazza, Sacerdoti Coen, Guerrieri, Barras, and Con-
doluci, we developed a new theory of abstract machines [9, 10, 13, 7, 14, 11, 21, 15], where
different term representations, data structures, and evaluation techniques are studied from a
complexity point of view, compared, and sometimes improved to match a certain complexity.
Some of the outcomes have been:

A reasonable variant of Cregut’s machine [7].
A detailed study of how to improve Grégoire and Leroy’s machine [13, 21].

The first results showing that de Bruijn indices bring no asymptotic speed-up with respect
to using names and perform a-renaming [11].

The proof that administrative normal forms bring no asymptotic slowdown [15] (in
contrast to what claimed by Kennedy in [52]).

and, as a side contribution, the simplest presentations of CbNeed [9].

Apart from two exceptions actually focusing on other topics (the already cited studies by
Blelloch and Greiner [32] and by Sands, Gustavsson, and Moran [85]), the literature before
this new wave never studied the complexity of abstract machines.

Token-Based Abstract Machines. There is another class of abstract machines that is much
less famous than those based on environments. These are so-called token-based abstract
machines, introduced by Danos and Regnier [43], then studied by Mackie [69], Schépp [86]
and more recently by Mazza [72], Muroya and Ghica [78], and Dal Lago and coauthors
[56, 57, 62, 58]. Their theoretical background is Girard’s geometry of interaction. The basic
idea is that, instead of storing all previously encountered [-redexes in environments, these
machines keep a minimalistic amount of information inside a data structure called token, that
is used to navigate the program without ever modifying it. The aim is to have an execution
model that sacrifices time, by possibly repeating some work already done, in order to be
efficient with respect to space. Various researchers conjecture the size of the token to be a
reasonable cost model for space, but there are no results in the literature.

1:5
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2.2 Denotational Semantics

Another research direction is the connection between the cost of computations and denota-
tional semantics. At first sight, it looks like a non-topic, because denotational semantics
are invariant under evaluation, and so it seems that they cannot be sensitive to intensional
properties such as evaluation lengths. There are however hints that the question is subtler
than it seems at first sight.

There are works in the literature trying to address somehow the question, by either
building model of logics / A-calculi with bounded complexity [77, 28, 59, 66], or by designing
resource-sensitive models [48, 60, 63], or by extracting evaluation bounds from some semantics,
typically game semantics [34, 35, 26]. The questions we propose here are related, but — at
present — very open and somewhat vague. They stem from the work of Daniel de Carvalho
on non-idempotent intersection types [44] (finally published in 2018 but first appeared in
2007), or, as we prefer to call them, multi types (because non-idempotent intersections can
be seen as multi-sets).

One of de Carvalho’s ideas is that even if the interpretation [¢] of a A-term ¢ cannot tell us
anything about the evaluation of ¢ itself, there is still hope that (when ¢ and s are normal) [t]
and [s] provide information about the evaluation of ts, typically about the number of steps
to normal form and the size of the normal form. De Carvalho studies the CbN relational
model (induced by the relational model of linear logic via the call-by-name translation of
A-calculus into linear logic), that can be syntactically presented via multi types. The key
points of his study are:

1. the size of a type derivation m of I' F ¢ : A provides bounds to both the number of CbN
steps to evaluate t to its normal form nf(t) and the size |nf(t)| of nf(t).
2. the size of the types themselves — more precisely A plus the types in the typing context I

— bounds |nf(t)].

3. the interpretation of a term in the model is the set of type judgements — again, A plus the
types in the typing context I' — that can be derived for it in the typing system, that is,

[t] == {((My,...,.Mp),A) |z :My,...,xp My t: A}.

where the M; are multi-sets of types.

4. Minimal derivations provide the exact measure of the number of steps plus the size of
the normal form. Similarly the minimal derivable types provide the exact measure of the
normal form.

5. From [t] and [s] one can bound the number of steps plus the size of the normal form
of ts.

Such a strong correspondence does not happen by chance. Further work [45, 19] has shown

that multi types and the relational model compute according to natural strategies in linear

logic proof nets, including in particular CbN evaluation. The link is natural: multi types are
intersection types without idempotency, that is, without the principle AN A = A, or, said
differently, the number of times that A is appear does matter... exactly as in linear logic.

Similar results connect strategies in linear logic proof nets and game semantics [42, 34, 35].

The Extraction of Computational Mechanisms from Models. De Carvalho’s work sug-
gests that denotational models hide a computational machinery behind their compositional
principles. The one between relational and game semantics and evaluation strategies may be
only the easiest one to observe. A natural question is: what about (idempotent) intersection
types? They are syntactic presentations of domain-based semantics @ la Scott. Despite being
the first discovered model of the A-calculus, nothing is known about their hidden evaluation
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scheme, apart from the fact that it is not the one behind the relational model, for which
non-idempotency is required. Intuition says that idempotency may model some form of
sharing. The question is however open.

Models Internalising Sharing. The key points about size explosion and reasonable cost

models are:

1. In an evaluation to normal form ¢ —% nf(t) the size [nf(¢)| of the normal form may be
exponential in n;

2. n is nonetheless a reasonable measure of complexity (if evaluation is done according to a
reasonable strategy);

3. this is possible because sharing allows to compute a compact representation nfg,x (t) of
the normal form that is polynomial in n.

Now, the interpretation of a term ¢ in de Carvalho’s CbN relational model is a set whose

smallest element is as large as the normal form nf(¢). It seems then difficult that such a

model may give accurate information about the time cost of A-terms, as in general from [t]

and [s] one can only obtain information about the evaluation of ts together with the size of

nf(¢s), which may however be much larger than the length of evaluation to normal form.
For such a reason, Accattoli, Graham-Lengrand, and Kesner in [19] refined de Carvalho’s

type system as to have type derivations that provide separate bounds with respect to

evaluation lengths and the size of normal forms. The idea is that judgements now have

the form:

x1 My, ..., x, M, FO) 4. A

where b provides a bound to number of S-steps to evaluate ¢ to its normal form nf(¢) (that
is, the evaluation length) and r is a bound to the size of nf(¢). This is a slight improvement,
but still not enough, as such a refined information is on type derivations but not on the types
themselves, that are what defines the semantical interpretation.

An important open question is then whether there are models where the (smallest point
in the) interpretation of ¢ is of the order of the size of the compact representation nfg,x (t) of
the normal form, and not of the order of |nf(t)|. Roughly, it would be a model whose hidden

computational mechanism uses sharing as it is needed to obtain reasonable implementations.

We believe that this is an important question to answer in order to establish a semantical
understanding of sharing and close the gap between semantical and syntactical studies.

We conjecture that the CbV relational model may have this property, as — despite being
built from non-idempotent intersection types — it allows a special use of the empty intersection,
which is the only idempotent type of the model (as the intersection of two empty intersections
is still empty) and that may be the key tool to internalise sharing.

Lax and Tight Models with Respect to Strategies. A related question is how to refine
the notion of model as to be relative to an evaluation strategy. The need for a refined notion
of model arises naturally when studying CbNeed evaluation. CbNeed is sometimes considered
simply as an optimisation of CbN. It is however better understood as an evaluation scheme
on its own, obtained by mixing the good aspects of both CbN and CbV, and observationally
equivalent to CbN. Because of such an equivalence, every model of CbN provides a model
of CbNeed. In particular, the relational model built on multi types discussed above is a
model of CbNeed — Kesner used it to provide a simple proof of the equivalence of CbN and
CbNeed [53].
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The bounds provided by that relational model, however, are not exact for CbNeed, since
they are exact for CbN, and thus cannot capture its faster alternative. Recently, Accattoli,
Guerrieri, and Leberle have obtained a multi type system providing exact bounds for CbNeed
[23]. The type system induces a model, which is “better” than de Carvalho’s one, as it more
precisely captures CbNeed evaluation lengths. There is however no abstract, categorical
way — at present — to separate the two models, as there are no abstract notions of lax or
tight model with respect to an evaluation strategy. To be fair, there is not even a notion of
categorical model of CbNeed, that should certainly be developed.

3 From the )\-calculus to \-calculi

There are at least two theories of the A-calculus, the strong and the weak. Historically, the
theory of A-calculus rather dealt with strong evaluation, and it is only since the seminal
work of Abramsky and Ong [2] that the theory took weak evaluation seriously. Dually, the
practice of functional languages mostly ignored strong evaluation, with the notable exception
of Crégut [36, 37] (1990) and, more recently, the semi-strong approach of Grégoire and
Leroy [50] (2002), following the idea that a function is an algorithm to apply to some data
rather than data by itself. Strong evaluation is nonetheless essential in the implementation of
proof assistants or higher-order logic programming, typically for type-checking in frameworks
with dependent types as the Edinburgh Logical Framework or the Calculus of Constructions,
as well as for unification modulo £7 in simply typed frameworks like A-prolog.

There is also another axis of duplication of work. Historically, the theory is mostly studied
with respect to CbN evaluation, while functional programming languages tend to employ
CbV (of which there are no traces in Barendregt’s and Krivine’s books) or CbNeed. The
differences between these settings is striking. What is considered the A-calculus is the strong
CbN A-calculus, and it has been studied in depth, despite the fact that no programming
language or proof assistant implements it. Given the practical relevance of weak CbV with
closed terms, that is the backbone of the languages of the ML family, such a setting is also well
known, even if its theory is anyway less developed than the one for strong CbN. Weak CbN
is also reasonably well studied. But as soon as one steps out of these settings the situation
changes drastically. The simple extension of weak CbV to open terms is already a delicate
subject, not to speak of strong CbV. About CbNeed- that is the strategy implemented by
Haskell — the situation is even worse, as its logical (Curry-Howard) understanding is less
satisfactory than for CbN and CbV, its semantical understanding essentially inexistent, and
there is only one paper about Strong CbNeed, by Balabonski et al. [29].

We believe that there is a strong need of reconciling theory and practice. A key step has
to be a change of perspective. The A-calculus comes in different flavors, and in my experience
a comparative study is very fruitful, as it identifies commonalities, cleaning up concepts, and
also stresses differences and peculiar traits of each setting.

The Open Setting. There actually is an intermediate setting between the weak and the
strong A-calculi. First of all, it is important to stress that weak evaluation is usually paired
with the hypothesis that terms are closed, which is essential in order to obtain the key
property that weak normal forms are all and only abstractions — this is why we rather prefer
to call it the closed A-calculus. On the other hand, in the strong case it does not make sense
to restrict to closed terms, because evaluation enters into function bodies, that cannot be
assumed closed. Such a difference forbids to see the strong case as the iteration of the closed
one under abstraction, as the closed hypothesis is not stable under iterations.
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It is then natural to consider the case of weak evaluation with open terms, what we like
to refer to as the open A-calculus. The open A-calculus can be iterated under abstraction
providing a procedure for strong evaluation — this is for instance done by Grégoire and Leroy
in [50]. Historically, the open case was neglected. The reason is that the differences between
the closed and open case are striking in CbV but negligible in CbN. Since the CbV literature
focused on the closed setting, the open case sat in a blind spot.

The study of reasonable cost models made evident that different, increasingly sophisticated
techniques are needed in the three settings — closed, open, and strong — in order to obtain
reasonable abstract machines. Moreover, such a classification is stable by moving on the
other axis, that is, closed CbN, closed CbV, and closed CbNeed share the same issues, and
similarly for the three open cases and the three strong cases.

3.1 Open Call-by-Value

The ordinary approach to CbV, due to Plotkin, has a famous property that we like to call
harmony: a closed term either is a value or it CbV reduces.

The Issue with Open Terms. Plotkin’s operational semantics for CbV does have some
good properties on open terms. For instance, it is confluent and it admits a standardisation
theorem, as Plotkin himself proved [81]. It comes however also with deep problems. First,
open terms bring stuck B-redexes such as

(Az.t)(yz)

the argument is not a value and will never become one, thus the term is CbV normal (there
is a f-redex but it is not a f,-redex) — that is, harmony is lost.

Unfortunately, stuck redexes induce a further problem: they block creations. Consider
the open term (where § is the usual duplicator)

((Az.9)(y=))é

As before, it is normal in Plotkin’s traditional A-calculus for CbV. Now, however, there are
semantic reasons to consider it as a divergent term. Roughly, there are denotational semantics
that are adequate on closed terms (adequacy means that the semantical interpretation of
a term ¢ is non-empty if and only if ¢ evaluates to a value; by harmony, it is equivalent to
say that ¢ is not divergent) and with respect to which (Axz.§)(yz)d has empty interpretation
(that is, it is considered as being a divergent term, while it is normal). This semantical
mismatch has first been pointed out by Paolini and Ronchi Della Rocca [80, 79, 82]. A
similar phenomenon happens if one looks at the interpretation of the term according to the
CbV translation into linear logic, as pointed out by the author in [5]. Essentially, that term
is expected to reduce as follows

(Az.0)(yz))0 — &6

and create the redex §9. Evaluation then would go on forever. If one sticks to Plotkin’s
rewriting rule, however, the creation is blocked by the stuck redex (Az.d)(yz) and the term
is normal — quite a mismatch with what is expected semantically and logically. A similar
problem affects the term §((Ax.d)(yz)) that is also normal while it should be divergent.

The subtlety of the problem is that one would like to have a notion of CbV evaluation on
open terms making terms such as ((Az.0)(yz))d and 6((Ax.d)(yz)) divergent, thus extending
Plotkin’s evaluation, but at the same time preserving CbV divergence without collapsing on
CbN, that is, such that (Az.y)(dd) has no normal form.
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Open CbV. In his seminal work, Plotkin already pointed out an asymmetry between CbN
and CbV: his continuation-passing style (CPS) translation is sound and complete for CbN,
but only sound for CbV. This fact led to a number of studies about monad, CPS, and logical
translations [76, 83, 84, 70, 46, 51] that introduced many proposals of improved calculi for
CbV. The dissonance between open terms and CbV has been repeatedly pointed out and
studied per se via various calculi related to linear logic [24, 5, 33, 13]. To improve the
implementation of the Coq proof assistant, Grégoire and Leroy introduced another extension
of CbV to open terms [50]. A further point of view on CbV comes from the computational
interpretation of sequent calculus due to Curien and Herbelin [38]. An important point is
that most of these works focus on strong CbV.

Inspired by the robustness of complexity classes via reasonable cost models, in a series of
works Accattoli, Guerrieri and Sacerdoti Coen define what they call open CbV, that is the
isolation of the case of weak evaluation with open terms (rather than strong evaluation) that
they show to be a simpler abstract framework with many different incarnations:

Operational semantics: in [20], 4 representative calculi extending Plotkin’s CbV are

compared, and showed to be termination equivalent (the evaluation of a fixed term

t terminates in one of the calculi if and only if terminates in the others). Moreover,

evaluation lengths (in 3 of them) are linearly related;

Cost model: In [13, 21], such a common evaluation length is proved to be a reasonable

cost model, by providing abstract machines that are proved reasonable;

Denotational semantics: In [22], Ehrhard’s relational model of CbV [47] is shown to be

an adequate denotational model of open CbV, providing exact bounds along the lines of

de Carvalho’s work.
Last, let us stress both the termination equivalence of the 4 presentations of open CbV and
the relationship with the denotational semantics make crucial use of formalisms with sharing.

A key point is that each presentation of open CbV has its pros and cons, but none of
them is perfect. This is in contrast to CbN, where there are no doubts about the canonicity
of its presentation.

Strong CbV. The obvious next step is to lift the obtained relationships to strong evaluation.
This is a technically demanding ongoing work.

3.2 Benchmark for \-Calculi

The work on open CbV forced to ask ourselves what are the guiding principles that define a
good \-calculus. This is especially important if one takes seriously the idea that there is not
just one A-calculus but a rich set of A-calculi, in order to fix standards and allow comparisons.

It is of course impossible to give an absolute answer, because different applications value
different properties. It is nonetheless possible to collect requirements that seem desirable in
order to have an abstract framework that is also useful in practice. We can isolate at least
six principles to be satisfied by a good A-calculus:

1. Rewriting: there should be a small-step operational semantics having nice rewriting
properties. Typically, the calculus should be non-deterministic but confluent, and a
deterministic evaluation strategy should emerge naturally from some good rewriting
property (factorisation / standardisation theorem, or the diamond property). The strategy
emerging from the calculus principle guarantees that the chosen evaluation is not ad-hoc.

2. Logic: typed versions of the calculus should be in Curry-Howard correspondences with
some proof systems, providing logical intuitions and guiding principles for the features of
the calculus and the study of its properties.
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3. Implementation: there should be a good understanding of how to decompose evaluation
in micro-steps, that is, at the level of abstract machines, in order to guide the design of
languages or proof assistants based on the calculus.

4. Cost model: the number of steps of the deterministic evaluation strategy should be a
reasonable time cost model, so that cost analyses of A-terms are possible and independent
of implementative choices.

5. Denotations: there should be denotational semantics that reflect some of its properties,
typically an adequate semantics reflecting termination. Well-behaved denotations guaran-
tee that the calculus is somewhat independent from its own syntax, which is a further
guarantee that it is not ad-hoc.

6. Fquality: contextual equivalence can be characterised by some form of bisimilarity, showing
that there is a robust notion of program equivalence. Program equivalence is indeed
essential for studying program transformations and optimisations at work in compilers.

Finally, there is a sort of meta-principle: the more principles are connected, the better.
For instance, it is desirable that evaluation in the calculus correspond to cut-elimination in
some logical interpretation of the calculus. Denotations are usually at least required to be
adequate with respect to the rewriting: the denotation of a term is non-degenerate if and
only if its evaluation terminates. Additionally, denotations are fully abstract if they reflect
contextual equivalence. And implementations have to work within an overhead that respects
the intended cost semantics. Ideally, all principles are satisfied and perfectly interconnected.

Of course, some specific cases may drop some requirements — for instance, a probabilistic
A-calculus would not be confluent — some properties may also be strengthened — for instance,
equality may be characterised via a separation theorem akin to Bohm’s — and other principles
may be added — categorical semantics, graphical representations, etc. As concrete cases, the
strong CbN A-calculus satisfies all these principles, while at present open CbV satisfies the
first 5, with an high degree of connection between them, strong CbNeed only 2 or 3 of them,
and strong CbV none of them.

We are here exposing these principles hoping to receive feedback from the community,
for instance, helping us identifying further essential principles, if any. We also believe that
single researchers tend to specialise excessively in one of the principles, forgetting the global
picture, which is instead where the meaning of the single studies stems, in our opinion. A
new book or new introductory notes on the A-calculus should be developed around the idea
of connecting these principles, to form students in the field.

4  Sharing

The aim of this section is to convince the reader that sharing is an unavoidable ingredient
of a modern understanding of A-calculi. This is done by pointing out a number of reasons,
including a historical perspective, and giving some examples coming from the work of the
author. In particular, we would like to stress that, rather than a feature such as continuations
or pattern matching that can be added on top of A-calculi, sharing is the éminence grise of
the higher-order world.

Sharing is a vague term that means different things in different contexts. For instance,
sharing as in environment-based abstract machines or sharing as in Lamping’s sharing
graphs [64] implementing Lévy’s parallel optimal strategy [67] have not much in common.
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Here we refer to the simplest possible form, that is closer to sharing as it appears in
abstract machines. While we do want to commit to a certain style, as it shall be evident
below, we also want to stay vague about it, as such a style can be realized in various ways.

The simplest construct for sharing is a let = s in ¢ expression, that is a syntactic
annotation for ¢ where & will be substituted by s. We also write it more concisely as t[z+s]
(not to be confused with meta-level substitution, noted t{z+s}) and call it ES (for explicit
sharing, or explicit substitution). Thanks to ES, S-reduction can be decomposed into more
atomic steps. The simplest decomposition splits S-reduction as follows:

(Ax.t)s —p  tlzes] —ps  t{zes}

It is well-known that ES are somewhat redundant, as they can always be removed, by simply
coding them as [S-redexes. They are however more than syntactic sugar, as they provide
a simple and yet remarkably effective tool to understand, implement, and program with
A-calculi and functional programming languages:

From a logical point of view ES are the proof terms corresponding to the extension of
natural deduction with a cut rule, and the cut rule is the rule representing computation,
according to Curry-Howard.

From an operational semantics point of view, they allow elegant formulations of subtle
strategies such as call-by-need evaluation — various presentations of call-by-need use ES
[89, 65, 71, 25, 87, 55] and a particularly simple one is in [9].

From a programming point of view, let expressions are part of the syntax of all functional
programming languages we are aware of.

From a rewriting point of view, they enable proof techniques that are not available within
the A-calculus, as we are going to explain below.

Finally, sharing is used in all implementations of tools based on the A-calculus to
circumvent size explosion.

A Historical Perspective. Between the end of the eighties and the beginning of the nineties,

three independent decompositions of the A-calculus arose with different aims and techniques:

1. Girard’s linear logic [49], where the A-calculus is decomposed in two layers, multiplicative
and exponential;

2. Abadi, Cardelli, Curien, and Lévy’s explicit substitutions [1], that are refinements of the
A-calculus where meta-level substitution is delayed, by introducing explicit annotations,
and then computed in a micro-step fashion.

3. Milner, Parrow, and Walker’s 7-calculus [75], where the A-calculus can be represented,
as shown by Milner [73], by decomposing evaluation into message passing and process
replication.

All these settings introduce an explicit treatment of sharing — called exponentials in linear

logic, or explicit substitutions, or replication in the m-calculus. At first sight these approaches

look quite different. It took more than 20 years to obtain the Linear Substitution Calculus

(LSC), a A-calculus with sharing that captures the essence of all three approaches in a simple

and manageable formalism.

The LSC [3, 12] is a refinement of the A-calculus with sharing, introduced by Accattoli
and Kesner as a minor variation over a calculus by Milner [74]. The rest of the section is
a gentle introduction to some of its unique features. We shall also discuss an even simpler
setting, the substitution calculus, that is probably the most basic setting for sharing.
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4.1 Rewriting at a Distance, or Disentangling Search and Substitution

Usually, A-calculi with ES have rules accounting for two tasks, one is decomposing (or just
executing) the substitution process and one is commuting ES with other constructs. For the
time being, let us simplify the first task, and assume that ES are executed in just one step,
as follows

tlzes] —es t{zes)
The second task is required for instance in situations such as
(Ax.t)[y<s]u

where the ES [y«s] is blocking the possibility of reducing the 5 redex (Az.t)u. Usually the
calculus is endowed with one of the two following rules

(Ax.t)[y<s] = Az.t[y<s] tly<sju —a (tu)[y<s]

that incarnate opposite approaches to expose the f-redex and continue the computation.

There is however a simpler alternative. Instead of adding a rule to commute ES, one can
generalise the notion of S-redex, by allowing the abstraction and the argument to interact at
a distance, that is, even if there are ES in between:

Axt)[yr1<s1] .. [ypesplu —ap tlzeu][yiesi] ... [ypesk

The name of the rule stands for distant B, where B is the variant of 5 that creates an ES.
The rule can be made compact by employing contexts. Define substitution contexts as
follows

L= ()| L[z<t]
Then the previous rule can be rewritten as:
L{x.t)yu —qgp L{t[x<ul)

Define the substitution calculus as the language of the A-calculus with ES plus rules —45 and
—gs. Such a simple formalism already provides relevant insights.

First of all, it has a strong connection with the linear logic proof nets representation
of the A-calculus [8]. Rules —4p and —gs indeed correspond ezactly to multiplicative and
exponential cut-elimination in such a representation (if one assumes a one shot cut-elimination
rule for the exponentials), where exactly means that there is a bijection of redexes providing a
strong bisimulation between terms and proof nets (of that fragment). This happens because

the trick of rewriting at a distance captures exactly the graphical dynamics of proof nets.

Phrased differently, commuting rules such as —, or —q have no analogous on proof nets.

4.2 A Rewriting Pearl: Confluence from Local Diagrams

The substitution calculus already allows to show that sharing enables simple and elegant
proof techniques that are impossible in A-calculi without sharing.

The best example concerns confluence. In rewriting, termination often allows to lift local
properties to the global level. The typical example is Newman lemma, that in presence of
strong normalisation lifts local confluence to confluence. The A-calculus is locally confluent
but not strongly normalising (not even weakly!), so Newman lemma cannot be applied. It is
then necessary, for instance, to introduce parallel steps and adopt the Tait and Martin Lof
proof technique.
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In the substitution calculus, instead, we can prove confluence from local confluence.
Newman lemma does not apply directly, but an elegant alternative reasoning is possible.

The key observation is that having decomposed S in two rules —4g and —gs, one still has
that the whole calculus may not terminate, but a new local termination principle is available:
—4p and —gg are strongly normalising when considered separately. Local termination can
be seen as the internalisation of a classic result, the finite developments theorem, stating that
in the A-calculus every evaluation that does not reduce redexes created by the sequence itself
terminates. The proof of confluence of the substitution calculus goes as follows:

Rules —4g and —gg are both locally confluent, so that by Newman lemma they are

(separately) confluent.

To obtain confluence of the full calculus we need another classic rewriting lemma by

Hindley and Rosen: the union of confluent and commuting relations is confluent.

We then need to prove commutation of —4 and —gs, that is, if s g t —3; u then

there exists r such that s —3; r g5 u.

Again, commutation is a global property that can be obtained via a local one. In this case

there are no lemmas analogous to Newman (commutation is more general than confluence),

but the fact that —¢g cannot duplicate —gs implies that their local commutation diagram

trivially lifts to global commutation.

Then — 4 U —gs is confluent.
This proof scheme was used for the first time by Accattoli and Paolini in [24]. In [3], Accattoli
uses the local termination principle to prove the head factorisation theorem for the LSC in a
way that is impossible in the A-calculus.

The moral is that introducing sharing enables rewriting proof techniques that are im-
possible without it.

4.3 Linear Substitutions, Weak Evaluation, and Garbage Collection

Let’s now decompose the substitution rule and define the LSC. Most of the literature of ES
decomposes the substitution process using rules that are entangled with commuting rules
such as — and —q described above. The special ingredient of the LSC is that substitution
is decomposed but also disentangled from the commuting process. To properly define the
rules we need to introduce a general notion of context:

ES CONTEXTS C,D == ()] .C|Ct|tC ]| Clet] | tlx<C]

Now, there are only two rules for evaluating explicit substitutions at a distance (plus dB, to
create them):

LINEAR SUBSTITUTION C{z)[x
GARBAGE COLLECTION tlz

«s] —1s C(t)[x<s]

S| —ge if x ¢ £v(t)

The idea is that given t[z«<s] either 2 has no occurrences in ¢, and so the garbage collection
rule —,. applies, or x does occur in ¢, which can then be written as C(x) for some context
C (not capturing ), potentially in more than one way. The linear substitution rule then
allows to replace the occurrence of z isolated by C' without moving the ES [z« s].

The LSC is given by rules —4g, —+15, and —g.. More precisely, the definition of these
rules includes a further contextual closure (as it is standard also in the A-calculus), that is,
one defines C(t) —45 C(s) if t —4p s, and similarly for the other rules.

Confluence for the LSC can be proved following exactly the same schema used for the
substitution calculus.
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Confluence of Weak Evaluation. One of the nice features of the LSC is that its definition
is parametric in the grammar of contexts. For instance, we can define the Weak LSC by
simply restricting general contexts C' (used both to define rule —;5 at top level and to
give the contextual closure of the three rules) to weak contexts W that do not enter into
abstractions:

WEAK ES CONTEXTS W,2W' u= () | Wt [ tW | W]a<t] | tfz<W]

The Weak LSC is confluent, and the proof goes always along the same lines.

Note that this is in striking contrast to what happens in the A-calculus. Defining the
weak A-calculus by simply restricting the contextual closure to weak contexts produces a
non-confluent calculus. For instance, the following diagram cannot be closed:

A Ayyz)l g Az yyx)(LI) —p Ay.(y(I1))

because I1 in the right reduct occurs under abstraction and it is then frozen. There are
solutions to this issue, see Lévy and Maranget’s [68], but they are all ad-hoc. In the LSC,
instead, everything is as natural as it can possibly be.

Garbage Collection. Another natural property that holds in the LSC but not in the A-
calculus is the postponement of garbage collection. Rule —4. can indeed be postponed, that
is, one has that if £ =7 g s then ¢ =3 1 —5
then safe to remove it and only consider the two other rules, —45 and —5.

s. Since —g. is also strongly normalising, it is

The postponement of garbage collection models the fact that in programming languages
the garbage collector acts asynchronously with respect to the execution flow.

In the A-calculus, erasing steps are the analogous of garbage collection. A step (Az.t)s —g
t{x«s} is erasing if — like for garbage collection — the abstracted variable z does not occur
in ¢, so that t{z<s} =t, and s is simply erased.

The key point is that erasing steps cannot be postponed in the A-calculus. Consider
indeed the following sequence:

(A Ay.y)ts =5 (Ay.y)s =3 s

The first step is erasing but it cannot be postponed after the second one, because the second
step is created by the first one.

A Bird’s Eye View. The list of unique elegant properties of the LSC is long. For instance,
it has deep and simple connections to linear logic proof nets [8], the m-calculus [4], abstract
machines and CbNeed [9], reasonable cost models [16, 18], open CbV [20], linear head
reduction [3], multi types [19], it admits a residual system and a rich theory of standardisation
[12], and even Lévy optimality [30]. Essentially, it is the canonical decomposition of the
A-calculus, and, in many respects, it is more expressive and flexible than the A-calculus — it
is a sort of A-calculus 2.0.

Should then the LSC replace the A-calculus? No. The point is not which system is the
best. The point is acknowledging that the field is rich, and that even the simplest higher-order
framework declines itself in a multitude of ways (weak/open/strong, cbn/cbv/cbneed, no
sharing/one shot sharing/linear sharing), each one with its features and being a piece of a
great puzzle.
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—— Abstract

We present a linear logical framework implemented within the Hybrid system [2]. Hybrid is designed
to support the use of higher-order abstract syntax for representing and reasoning about formal
systems, implemented in the Coq Proof Assistant. In this work, we extend the system with two
linear specification logics, which provide infrastructure for reasoning directly about object languages
with linear features.

We originally developed this framework in order to address the challenges of reasoning about
the type system of a quantum lambda calculus. In particular, we started by considering the Proto-
Quipper language [6], which contains the core of Quipper [3, 7]. Quipper is a relatively new quantum
programming language under active development with a linear type system. We have completed a
formal proof of type soundness for Proto-Quipper [5]. Our current work includes extending this work
to other properties of Proto-Quipper, reasoning about other quantum programming languages [4],
and reasoning about other languages such as the meta-theory of low-level abstract machine code.

We are also interested in applying this framework to applications outside the domain of meta-
theory of programming languages and have focused on two areas — formal reasoning about the proof
theory of focused linear sequent calculi and modeling biological processes as transition systems and
proving properties about them. We found that a slight extension of the initial linear specification
logic allowed us to provide succinct encodings and facilitate reasoning in these new domains. We
illustrate by discussing a model of breast cancer progression as a set of transition rules and proving
properties about this model [1]. Current work also includes modeling stem cells as they mature into
different types of blood cells.

This work illustrates the use of Hybrid as a meta-logical framework for fast prototyping of logical
frameworks, which is achieved by defining inference rules of a specification logic inductively in Coq
and building a library of definitions and lemmas used to reason about a class of object logics. Our
focus here is on linear specification logics and their applications.
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—— Abstract

Maximal completion (Klein and Hirokawa 2011) is an elegantly simple yet powerful variant of
Knuth-Bendix completion. This paper extends the approach to ordered completion and theorem
proving as well as normalized completion. An implementation of the different procedures is described,
and its practicality is demonstrated by various examples.
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1 Introduction

Knuth-Bendix completion [18] constitutes a milestone in the history of equational theorem
proving and automated deduction in general. Given a set of input equalities &, it can
generate a presentation of the equational theory as a complete rewrite system R which may
serve to decide the validity problem for the theory.

» Example 1. In order to simplify proofs found by SMT solvers, Wehrman and Stump [32]
pursue an algebraic approach: proofs are represented by first-order terms, and the equivalences
usable for simplification are described by 20 equations like the following ones:

(z-y)-zmz-(y-2) (refl - 2) =z (x-refl) = o

ory (refl) = refl and (refl) ~ refl not(refl) ~ refl
ory(z) - ord ~ ord and; (z) - and; ~ and} ory(z) - orf =~ (orf - 2)
or(x) - orh ~ (orf - ) not(zx) - not(y) = not(z - y) ory(x) - or] ~ or]

Here - denotes concatenation, refl is the reflexivity proof, the symbols and;, or; and not are
used for congruence, and constants like or] stand for operations with boolean constants.

A Knuth-Bendix completion procedure can transform this set of equations into a termin-
ating and confluent rewrite system R consisting of 45 rules, including the following:

(x-y)-z—=x (y-2) ory(z) -ory — ory (refl - z) = x
(ora(z) - ory(y)) - or] — ory(y) -orf ory(x) - or{ — or] ory(refl) — refl
(z - anda(y)) - anda(2) — x - anda(y - 2) ora(refl) — refl ory(x) - or] — or]

This rewrite system can be used to simplify an arbitrary proof (represented by a term) into
its unique normal form. Moreover, any two proofs can be tested for equivalence simply by
checking whether their normal forms are the same.
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£ complete for &7  yes » R

£:=EUCP(R) %

Figure 1 Maximal completion.

Knuth and Bendix presented completion as a concrete algorithm. Pioneered by Bachmair,
Dershowitz, and Hsiang [5], it is nowadays more common to describe completion by an
inference system, thus abstracting from concrete implementations.

More recently, Klein and Hirokawa [17] proposed a radically different approach: Mazimal
completion first approximates a complete presentation by extracting a terminating rewrite
system from an equation pool. It then checks whether the candidate system is complete, and
if a counterexample was found the procedure is repeated with an extended equation pool.
Figure 1 illustrates the approach. Maximal completion has the advantage that the reduction
order, a typically critical input parameter, need not be fixed in advance and can be changed
at any point. The candidate rewrite systems are generated by means of SAT/SMT solvers;
thus also advanced termination methods can be used in this setting and the search can be
guided towards different objectives [25]. Despite the simple, declarative formulation of the
procedure, the authors’ implementation resulted in a competitive tool [17, 25].

Apart from these improvements of classical Knuth-Bendix completion, numerous variants
have by now joined the family of completion calculi, aiming to make completion more versatile
and powerful. One of the most prominent variants is ordered completion. It was developed
by Bachmair, Dershowitz, and Plaisted to remedy the shortcoming that classical completion
fails if unorientable equations like commutativity are encountered [6].

Another line of research tackled the development of dedicated completion procedures
for equational systems which incorporate common algebraic theories such as associativity
and commutativity [23, 12]. The latest and most generally applicable method of this kind is
normalized completion, developed by Marché [22].

In this paper maximal completion is revisited (Section 3) and extended to ordered and
normalized completion. More specifically, the contributions of this paper are as follows:

Maximal ordered completion and an according equational theorem proving method are
explained in detail. In particular a completeness proof is presented, showing that a ground
complete system can always be found.

The proofs for (ordered) completion require only prime critical pairs to be considered.

For the case of linear input equalities, it is proven that even a complete system can be
found if it exists (Section 4.2), and a bound on the number of iterations is derived.

A maximal completion version of normalized completion (Section 5) is presented. This
covers AC completion, as well as the computation of Grébner bases [22].
Section 6 is devoted to the implementation of these procedures in the tool MadMax. Some
example use cases from different application areas are demonstrated along the way. Finally,
Section 7 concludes.
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2 Preliminaries

In the sequel familiarity with the basics of term rewriting is assumed [2], but some key notions
are recalled in this section. Let 7 (F, V) denote the set of all terms over a signature F and
an infinite set of variables V, and T (F) the set of all ground terms over F. A substitution
o is a mapping from variables to terms. As usual, to denotes the application of o to the
term ¢t. A pair of terms (s,t) is sometimes considered an equation, which is expressed by
writing s & ¢, and sometimes a (rewrite) rule, denoted s — ¢. An equational system (ES) is
a set of equations, a term rewrite system (TRS) is a set of rewrite rules. Given an ES &,
we write £F to denote its symmetric closure EU{t = s|s~t € E}. A reduction order is a
proper and well-founded order on terms which is closed under contexts and substitutions. It
is ground total if it is total on T (F). In the remainder most examples use the Knuth-Bendix
order (KBO), written >ypo, and the lexicographic path order (LPO), written >p.

A TRS R is terminating if —x is well-founded. It is (ground) confluent if s J<— - =% t
implies s =% - 54 t for all (ground) terms s and ¢. It is (ground) complete if it is terminating
and (ground) confluent. We say that R is a complete presentation of an ES £ if R is complete
and <% = <¢. Similarly, R is a ground complete presentation of an ES &£ if R is ground
complete and the equivalence <+% = <+% holds on ground terms. For a TRS R and terms
s and ¢, the notation s |r ¢ expresses existence of a joining sequence s =% - g« t. f R
is terminating then ¢z denotes some fixed normal form of ¢, and NF(R) denotes the set
of all normal forms of R. This notation is extended to ESs £ by writing £/ for the ES
{slr = tlr | s=te & and slr #tir}.

Completion procedures are based on critical pair analysis. To that end, an overlap of
a TRS R is a triple (/1 — 71,p,f2 — r3) such that ¢; — r; and o — ro are variants of
rules in R without common variables, p € Posz(¢3), {1 and ls|, are unifiable, and if p = ¢
then ¢; — r; and ¢2 — ro are not variants of each other. Suppose ({1 — r1,p,la — r3) is
an overlap of a TRS R and o is a most general unifier of ¢; and #3|,. Then the equation

Ua[ri]po = reo is a critical pair of R. The set of all critical pairs of R is denoted by CP(R).

A critical pair is prime if no proper subterm of /10 is reducible in R. The set of all prime
critical pairs of R is denoted by PCP(R). It is known that only prime critical pairs need to
be considered for confluence of terminating TRSs:

» Lemma 2 ([14]). A terminating TRS R is confluent if and only if PCP(R) C |x.

Further preliminaries will be introduced in later sections as necessary.

3 Maximal Completion

This section recapitulates the maximal completion approach by Klein and Hirokawa [17]. A
TRS R is said to be over an ES £ if R C £%. The set of all terminating TRSs R over & is
denoted T(€). We assume two functions 2% and Ext such that 53(€) C T(E) returns a set of
terminating TRSs over &£, and the extension function Ext satisfies Ext(£) C «»% for all ESs
E. We define maximal completion by means of the following transformation.

» Definition 3. Given a set of input equalities &y and an ES &, let

&) = R if R € R(E) such that PCP(R)U & C Ir
4 ©(EUEXt(E)) otherwise.

Note that this definition differs from [17, Definition 2] by the use of prime critical pairs.

In general ¢ does not need to be defined, nor is it necessarily unique. But if ¢(&) is
defined then we can assume a sequence of ESs &1, ..., &, called mazimal completion sequence
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such that &1 = & UExt(&;) for all 0 < @ < k, and there is some R € PR(E) such that
PCP(R)U &y C Jr. The following theorem expresses correctness of maximal completion [17,
Theorem 3|:

» Lemma 4. If p(&) is defined then it is a complete presentation of &.

Proof. Let (&) =R and &,...,E& be an according maximal completion sequence. The
TRS R must be terminating since it was returned by . Because of PCP(R) C | it is
confluent by Lemma 2, and hence complete.

A simple induction argument using the global assumption Ext(€) C «++§ for all ESs £
shows that & C <—>}}U for all 2 > 0. Since R is over &, also <% C <—>j§0 holds. Conversely,
& C g ensures <3z C <>%. So R is a complete presentation of &. |

Note that maximal completion is based on just three ingredients: (1) completeness is
overapproximated by termination using the function R, (2) a success check determines
whether some TRS R € (&) is complete, and (3) the current set of equations £ is extended
by means of a theory-preserving function Ext.

It is natural to choose Ext(€) such that Ext(€) € Ugene) CP(R){=. Klein and Hirokawa
moreover proposed JR(E) to return elements of T(£) with maximal cardinality, hence the
name. The rationale for this choice is that adding rules to a complete presentation R of &
does not hurt this property, as long as termination and the equational theory are preserved.
This is formally expressed by the following lemma.

» Lemma 5 ([17, Lemma 4]). Let R be a complete presentation of & and R’ a terminating
TRS such that R C R’ C <%, Then also R’ is a complete presentation of &. <

Nevertheless a maximal terminating TRS may constitute an unfortunate choice in maximal
completion, as illustrated by the next example.

» Example 6. Let & consist of the following four equations:
r+0~z s(z+y ~z+s(y) z(z)=0 z(s(x+y))=~z(x+s(0))
Let R1 be the TRS obtained by orienting all equations from left to right:
z+0—z s(z+vy) =z +s(y) z(x) = 0 z(s(z 4+ y)) — z(x +s(0))

Termination of Ry can e.g. be verified using a KBO with s > + and wy = w(f) =1 for all
function symbols f. Thus R(&) = {R1} is a valid choice for maximal completion. Now the
first two rules admit the overlap s(x) < s(z + 0) — x + s(0) which creates an irreducible
critical pair s(z) = z + s(0). There are also three critical pairs involving the last rule, but
they are all joinable. Let thus & be & U {s(x) ~ = + s(0)}. Using the same reduction order,
all equations can be oriented into the TRS Ro = Ry U {x +s(0) — s(z)}. Suppose R(&1) is
{R2}. There is only one new non-joinable overlap: s(s(x)) + s(z +s(0)) — = + s(s(0)), so
let & = & U {s(s(x)) = = + s(s(0))}. Repeating this strategy will fail to produce a finite
complete system, as it gives rise to infinitely many equations s™(z) =~ x + s(0).

So this reduction order does not lead to a finite complete presentation of £&. But in
fact R4 is the only terminating TRS over & which has four rules: This is because the last
equation can only be oriented from left to right, and the second cannot be oriented from
right to left in combination with the last without violating termination.

Suppose that PR(Ey) contains instead the following TRS R/ which has only three rules:

z+0—z x+s(y) = s(z+y) z(xz) = 0

Termination of R} can be shown by changing the precedence in the above KBO to + > s.
There are no critical pairs, and R} joins the input equalities £. So maximal completion can
succeed immediately by returning R.
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In the implementation in the tool Ma&dMax the function R chooses rewrite systems R
over £ which can reduce rather than orient a maximal number of equations in £. Note that
the TRS R} in Example 6 is optimal in this sense, since it reduces all equations in &.

» Example 7. In nine iterations of maximal completion, that is within nine recursive calls
of the procedure ¢, the proof reduction system described in Example 1 can be transformed
into a complete rewrite system R. The maximal completion run produces 150 equations and
takes about 10 seconds. It is worth noting that to complete this system, LPO or KBO alone

do not suffice; advanced termination techniques like dependency pairs are required, see [25].

4 Ordered Completion and Theorem Proving

This section is devoted to the extension of maximal completion to ordered completion and
equational theorem proving. The basic procedure was already outlined in [36].

First some concepts specific to this setting are introduced. In this section a ground total
reduction order > is considered, unless stated otherwise. Given a reduction order > and an
ES &, the ordered rewrite system Es consists of all rules so — to such that s =~ ¢ € £ and
so > to. A triple (R,&,>) of a TRS R, an ES &, and a reduction order > is called ground
complete if the (possibly infinite) TRS R U &5 is. An equation s & t is ground joinable over
a TRS R if so | to for all grounding substitutions ¢. Ordered completion uses a relaxed
definition of critical pairs. Given a reduction order > and an ES &, an extended overlap
consists of two variable-disjoint variants 1 ~ r; and f5 ~ r5 of equations in E* such that
p € Posr(l2) and ¢; and 3|, are unifiable with most general unifier o. An extended overlap

which satisfies 0 # (10 and roo ¥ 20 gives rise to the extended critical pair {3]r1],0 = rao.

The set CP+ (€) consists of all extended critical pairs between equations in £. An extended
critical pair is prime if all proper subterms of /10 are £~-normal forms. The set of prime
extended critical pairs among equations in £ is denoted by PCP (£).

Next, an ordered version of maximal completion gets defined. Let R, be a function such
that R,(€) C T(E) returns a set of totally terminating TRSs over £, that is TRSs R which
are contained in a ground total reduction order >. Moreover, the extension function Ext, is
supposed to satisfy Exto(€) C <% for all ESs €.

» Definition 8. Given a set of input equalities &y and an ES &, let
(R,ERr,>) if R € Ro(E) and all equations in Eg UPCPs (Elr UR)
Vo) = are ground joinable in RU (Elr)>
wo(E UExto(E)) otherwise.

In order to show correctness of this procedure, the following auxiliary result is useful:

» Lemma 9. Suppose R C >, RUE C < and all equations in & UPCP. (£ UR) are
ground joinable in R U Es. Then (R,E,>) is a ground complete presentation of &.

Proof. Let S denote the TRS R U &<, which terminates because it is contained in >. We
can thus show ground confluence of S via local ground confluence. The inclusion

- U 1
PCP(5) ~ PCPs (RUE) v 1)
holds on ground terms according to [11, Lemma 26]. By assumption we have S-ground
joinability of PCP. (R U &), and hence <+pcp(s) € s on ground terms. So by Lemma 2 the
TRS S is confluent on ground terms.

3:5
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Since RUE C <—>20 was assumed, also «+§ C <—>§0 holds. Moreover & is S-ground joinable
by assumption. Hence the equivalence «+5 = <> is satisfied on ground terms, so S is a
ground complete presentation of &g. <

Now correctness of the transformation ¢, is obvious:
» Lemma 10. If po(&y) is defined then it is a ground complete presentation of &.

Note that Definition 8 uses the idea of Definition 3 in the setting of ground completeness
but suffers the major drawback of an undecidable success check since ground joinability
of ordered rewriting is undecidable [20]. An implementation thus has to rely on sufficient
ground joinability criteria, an example of which is stated next. Its correctness follows from
the more sophisticated test presented in [33].

» Lemma 11. An equation s =~ t is ground joinable in RUEs if s gt or sig ~tlg € €.

In our implementation Exto(£) is chosen as a subset of Ug g gy PCP>(RUELR )R-

Bachmair, Dershowitz, and Plaisted showed that their ordered completion procedures
always succeed in producing a ground complete system (though possibly in the limit) [6].
Next, we derive a similar property for maximal ordered completion, under the assumption
that all prime critical pairs are considered. To this end, we consider an infinite maximal
ordered completion sequence &y, &1, s, ... such that 11 = & U Exto(&;) for all ¢ > 0. Let
moreover £ denote the limit (J; &. The following statement holds by the global assumption
on Ext,.

» Lemma 12. The conversion equivalence <¢ = <>z, holds for all i > 0.

It is known that ground complete systems remain ground complete when they get
(moderately) reduced, the following result follows from Lemma 5 and [11, Theorem 43].

» Lemma 13. If RUES is ground complete then so is RU (Elr)>.
Next we show the main completeness result for maximal ordered completion:

» Theorem 14. Suppose Exto(E) 2 Urem, ) PCP>(R U E)Ir for all ESs €. For any
R € Ro(E) the system R U (E®|r)s is a ground complete presentation of &.

Proof. Let R € R,(€%). The following arguments show that S = R U (£*°)> is ground
complete. The claim then follows from Lemma 13.

The TRS § is terminating because S C >. In order to show that S considered as a TRS
on ground terms is also confluent, according to Lemma 2 applied to S it suffices to show that
all prime critical pairs of S are joinable. So consider an equation s ~ t € PCP(S). Like in
the proof of Lemma 9, we can use [11, Lemma 26] to obtain inclusion (1). So we have s |s t,
or there is some equation u ~ v € PCPs (R U £%) such that s <>y~ t. In the former case,
there is nothing to show. Otherwise, we have ulg =~ vlr € Exto(£%°) C £°° by assumption.
But then ulr ~ v{g is S-ground joinable by Lemma 11, and hence s = ¢ is joinable.

By Lemma 12 and the definition of £°°, the inclusion £ C <—>§0 holds. The equivalence
e = ¢, thus follows from & C £°°. Because > is ground complete, <+s = ¢>g= holds
on ground terms, which implies <35 = <¢ . <
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» Example 15. Consider the following ES &, axiomatizing a Boolean ring, where multiplica-
tion is denoted by concatenation.

(1) @ty +zmot@rs) (@) s+y~yta () Otaome
() aly+mayrar  (6) @reayn)  (6)  wy~ye
(7) (r+y)z~zz+yz (8) T R T (9) z+ax=0
(10) lr =z

Let (i) denote equation (i) oriented from left to right, and (i) the reverse orientation. Suppose

R is the TRS {(1), (3), (4), (5),(7),(8),(9), (10)}, and Ro(Ey) = {R1}. Now the set Exto (o)
may consist of the following extended critical pairs of rules among R, and the unorientable
commutativity equation:

(11) z+@y+z)=~y+(x+2) (12)  a(yz2) = y(x2) (13) =z+0=z
(14) y+@+y =2 (15)  a(yz) =y (16) tl~
a7 y+(y+o)~e 18) sy ~ay (19 Ormo0

(where all R;-joinable critical pairs, like z + (z + 0) =~ 0 or 20 ~ y0, are omitted). We
obtain & = & U Ext.(&y). Now R,(E1) may contain the TRS Ro consisting of the rules
(1),(3),(4),(5),(7),...,(10),(13),...,(19). This TRS is LPO-terminating, so there is a
ground-total reduction order > that contains —x,. We have & lgr, = {(2), (6), (11), (12)},
and it can be shown that for £ = £, the system Ry U is ground complete. Despite its
simplicity, neither WM [1] nor E [28] or Vampire [19] succeed on this example.

4.1 Theorem Proving

Next the approach is extended to purely equational theorem proving: Given a set of equations
&o and a goal equation s ~ ¢ as input, the aim is to decide whether s <+3 ¢ holds. Let Ext,
be a binary function on ESs such that Extg(G,&) C <5 g \ <+¢ for all ESs £ and G. In our
implementation, Extg(G,E) consists of extended critical pairs between an equation in G and
an equation in €. The following relation ¢z maps a pair of ESs £ and G to YES or NO.

» Definition 16. Given an ES &y, an initial ground goal so =ty and ESs € and G, let

YES if s lrue. t for some s =t € G and R € R, (E),

NO if RU(EIR)> is a ground complete presentation of &
but so Yrue. to, for some R € Ro(E), and

we(EUE,GUG) for G =Extg(G,RUE) and & = Exto(E).

‘pg(gﬂ g) =

For a set of input equations & and an initial goal sg =~ t(, a maximal ordered completion
procedure can then be run on the tuple (£, {so = to}). Note that the parameter G of ¢,
denotes a disjunction of goals, not a conjunction. Due to the declarative nature of ¢, the
following correctness result is straightforward.

» Lemma 17. Let & be an ES and so =ty be a ground goal. If pg(Ey,{so = to}) is defined
then @g(&o, {so = to}) = YES if and only if sg g, to-

» Example 18. The conditional confluence tool ConCon [29] interfaces equational theorem
provers like MaedMax to show infeasibility of conditional critical pairs, which can be used
to prove confluence of conditional TRSs. Here a conditional critical pair is called infeasible

FSCD 2019
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if the involved conditions s; ~ t1, ..., s, =~ t, do not admit a substitution ¢ such that
;0 <>g, tio for all i. For example, ConCon encounters for Cops #340 the axioms &y:

f(z1,91) =~ g(21) f(z1,h(y1)) =~ g(21)

and the conditions x1 & y1, h(z2) ~ y1, T1 = Yy, T2 = yo. Let s & ¢ be the goal equation
conds(x1, h(xs),x1,x2) & conds(y1, y1, Y2, Y2 ), using a fresh symbol conds. In order to decide
whether there is a substitution o such that so <>, to holds, a common trick is used [6]:
existence of such a o can be refuted if the (ground) goal true = false is not entailed by &y
extended with the following two equations:

eq(z,xz) ~true (1) eq(conds(zy, h(xs),x1,x2), conds(y1, y1,y2,y2)) ~ false  (2)

For this extended ES &) a maximal ordered procedure call og(&), {true ~ false}) can result
in the answer NO immediately because a ground complete system exists, consisting of the
two rewrite rules obtained when orienting (1) and (2) from left to right plus the following
(unoriented) equations:

f(z1,91) ~ g(21) f(z1,91) = f(22, y2) g(z1) ~ g(y1)

Both true and false are in normal form with respect to this system, so no suitable o exists.

4.2 Completeness for Linear Systems

We conclude this section with a completeness result. A natural question in the context of
completion is whether a complete system can be found by a completion procedure whenever it
exists. For standard completion, it is well known that this is not the case: for example, the ES
consisting of the equations f(z) ~ f(a) and f(b) &~ b cannot be completed by Knuth-Bendix
completion, or (standard) maximal completion if Ext(€) € Ugeane) CP(R). Nevertheless a
complete presentation is given by the TRS {f(z) — b} [16].

For ordered completion, two sufficient conditions are known to answer this question
in the positive: Bachmair, Dershowitz, and Plaisted showed that a complete system can
always be found if the reduction order is ground total [6], and Devie proved that complete
representations are invariably found for linear systems, irrespective of the order’s totality [8].

Next, a completeness result for linear systems in the spirit of the result by Devie [8] is
presented. To that end, the reduction order > does not need to be ground total. In order
to express that the reduction order leading to the presupposed completion system must be
considered by the procedure, the function R is said to support a reduction order > if R(E)
contains a maximal TRS R such that R C >, for all ESs £.

Devie’s notion of linear overlaps refers to extended overlaps which satisfy ¢; > r; and
r9 $ lo, or lo > ro and 11 ¥ ¢1. Critical pairs originating from such overlaps are called linear
critical pairs, and the set of all linear critical pairs formed using equations in £ is denoted
by LCP- (). A TRS R is called reduced if for all rules ¢ — r in R both r € NF(R) and
L e NF(R\ {£— r}) hold.

» Theorem 19. Let & be a linear ES which admits a complete and reduced presentation
as the TRS C such that C C >. Suppose moreover that R supports >, Exto(E) is linear
whenever & is linear, and Exto(€) 2 Ugen(e) LCP>(RUE) for all ESs €.

Then ©o(&y) is defined and constitutes a complete TRS.

Proof. Let &y,&1,&2,... be a maximal ordered completion sequence, and S; denote the
TRS &;~. It can be assumed that &; is linear for all ¢ > 0, because & is linear and Ext, is
supposed to preserve linearity.
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Consider a cost function ¢ defined on equation steps as follows: for ¢ =~ r € &;, let
c(s = C[lo] <>pnr Clro] =t) be {t} if lo > ro, {s} if ro > Lo, and {s,¢} otherwise. This
measure is extended to conversions P: ty > t1 <> ... <> t,, by defining ¢(P) as the multiset
union Uy, ¢(ti > tit1). In the sequel P> @ is written to abbreviate c(P) >mu ¢(Q).

Consider a rule £ — 7 in C. As C is assumed to be a complete presentation of &, there is
a conversion £ <>z 7. According to Lemma 12, also £ <»2 r holds for all ¢ > 0. Let P}, be
fixed conversions £ <>z r which are minimal with respect to >, for all ¢ > 0.

We show that for every 4, if P}, is not of the form ¢ —%, 7 then there is a conversion
Pgii which has fewer steps and satisfies P}, > Pg:}a. Note that all conversions £ <>¢ r
must have at least one step: otherwise, we would have ¢ = r, which contradicts C C >
because > is well-founded.

Let P;_,, be a minimal conversion £ <% r. Since it has at least one step, we can assume
some term 7’ such that P/, has the form £ <% 1’ ¢, 7, and 1’ # r. Note that the last
step 1’ <>¢, r must satisfy ' > r: By conversion equivalence, we must have r’ <+% r. Since C
is complete, r’ |¢ r holds. Because C is also reduced, the term r is irreducible, so we have
r’ —% r. By the above assumption that ' # r this means that / %ér r, which implies v’ > r
because C C >. So the equation step 1/ <>¢, 7 is an ordered rewrite step ' —g, r.

If £ <>z, 7 is not of the form £ —%5 r then it must therefore contain a peak involving

non-S; step followed by an S; step, that is, a peak of the form

Q:s U t

li1=r1,0 loxTs,0
for some terms s, t, and u, equations 1 ~ ry, o ~ ro € &;, and a substitution ¢ such that
U0 # ri0 but foo > a0, 80 lao — reo € S;. Note that ¢(Q) = {s,u,t}.
(a) If £; =~ ry and fy =~ 7y form a proper overlap then s <+ cp. (g,) t because {10 % 10 and
lyc > roo. By assumption LCP< (&;) C &;11. Hence there is a conversion pitl.y HZHI r

L—r"

t and ¢(Q) >mul {8, t} Zmul ¢(Q'). Moreover, pitl

L—r

where () is replaced by Q': s <3¢
has fewer steps than P} ., .

i+1

(b) Suppose ¢; ~ 1 and {5 & ry occur in parallel. Then the two steps can be swapped, so
there is a term v which allows for the conversion Q’: s —/,5—ry0 U 0,00 t- This
contradicts the assumption that P}, was minimal: we have ¢(Q) >mu {v,v,t} = c(Q’)
because s > v.

(c) Similarly, if ¢; ~ 71 and ¢5 =~ r9 form a variable overlap then because &; is linear there is
a term v such that there is a conversion Q: s =g . v <y . . t. But this again
contradicts minimality of P}, because C(Q) >my {v,v,t} Zmu ¢(Q') due to s > v.

Let k£ be the maximal number of steps of Plf) ", for £ = r € C. The above argument shows

that £ —%, r holds for all £ — r € C. Hence we have NF(Sy) C NF(C).

Let S be the TRS R U (Erdr).. Any term reducible by S;, must also be reducible in S,
which implies NF(S) C NF(S;) and hence NF(S) € NF(C). Since moreover R UE, C ¢
implies =g, C <+ and S is terminating because S C >, the TRS S is complete according
to [11, Lemma 31]. <

Note that the above proof implies a bound on the number of iterations needed to derive
a complete system, namely the number of &y-steps required for conversions of the rules in
the complete system C. Naturally, due to incompleteness of implementations, this bound
cannot be kept up in practice.
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» Example 20. Consider the linear ES £ consisting of the following three equations:
f(a,i(z)) ~ f(b,b) g(b,z) ~ g(a,a) f(a,z) = f(a,y)

The TRS R = {f(a,z) — f(b,b), g(b,x) — g(a,a)} is terminating and confluent, as is easily
checked by state-of the art tools. We also have & C |z, and from the conversion

f(a,z) <> f(a,i(x)) <> f(b,b) (2)

we can conclude <>z = <%, so R is a complete presentation of &. By Theorem 19, maximal
ordered completion supporting > = —>£ will succeed with a complete system, and according
to the bound derived in the proof, this takes at most two iterations since (2) has two steps.

5 Normalized Completion

Many algebraic theories like groups and rings feature associative and commutative operators.
However, since the commutativity equation cannot be oriented into a terminating rewrite
rule, such theories cannot be handled by standard Knuth-Bendix completion. This triggered
the development of dedicated completion calculi that can deal with such cases [23, 12].

Various generalizations have been proposed to extend completion to different algebraic
theories, apart from plain AC. A version for general theories 7 has been proposed in [12, 4],
provided that 7 admits finitary unification and the subterm ordering modulo 7T is well-
founded. Constrained completion [13] constitutes an attempt to overcome these restrictions
on the theory, it admits for instance completion modulo AC with a unit element (ACU).
However, it excludes other theories such as Abelian groups.

Normalized completion [21, 22, 34] can be seen as the last result in this line of research.
It has three advantages over earlier methods. (1) It allows completion modulo any theory 7
that can be represented as an AC-complete rewrite system S. (2) Critical pairs need not be
computed for the theory 7, which may not be finitary or even have a decidable unification
problem. Instead, any theory between AC and 7 can be used. (3) The AC-compatible
reduction order used to establish termination need not be compatible with 7. This is
beneficial for theories like ACU where no T-compatible simplification order exists.

» Example 21. Consider an Abelian group with AC operator - and an endomorphism f as
described by the following three equations:
e-x T i(x) x~e f(z-y) =f(x) f(y)

together with ACRPO [24] with precedence f > i > - > e. Using AC completion, or
equivalently normalized completion with respect to & = @, one obtains the following AC
complete TRS Rac:

e-r—a i(z)-z—e ile) > e
i(i(z)) = = i(z - y) = i(z) -i(y) flz-y) —f(z) - f(y)
fle) — e f(i(z)) — i(f(z))

Alternatively, one can perform normalized completion with respect to an AC complete
representation of Abelian groups, like for example the following TRS Sg [3]:

e-x—w i(x) - x—e ile) >e i(i(z)) = x i(x-y) —i(z)-i(y)
Note that Sg C >. Normalized completion with respect to Sg results in the TRS Rg:

flz-y) = f(z) f(y) fle) »e f(i(z)) = i(f(x))
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Before proposing a maximal normalized completion procedure, we recall some concepts
and notations related to AC rewriting and normalized rewriting.

AC Rewriting and Unification. A TRS R terminates modulo AC whenever the relation
—r/ac is well-founded. To establish AC termination we will consider AC-compatible
reduction orders >, i.e., reduction orders that satisfy <+3o - > 4o € >. The TRS R is
complete modulo AC if it terminates modulo AC and the relation <}~ coincides with
*)iIkQ/AC G “%/AC' It is an AC-complete presentation of an ES £ if R is AC complete
and <z ac = ©Ruac

Let £ be a theory with finitary and decidable unification problem. A substitution o
constitutes an L-unifier of two terms s and ¢ if so <+7. to holds. An L-overlap is a quadruple
(61 = 11,p,la — T2)% consisting of rewrite rules ¢1 — r1, €5 — 9, a position p € Posg({z),
and a complete set ¥ of L-unifiers of £5], and ¢1. Then ¢5[rq],0 ~ ryo constitutes an L-critical
pair for every o € ¥. For two sets of rewrite rules R; and Ro, we also write CP.(R1, R2) for
the set of all L-critical pairs emerging from an overlap where £; — r1 € R1 and {5 — 79 € Ro,
and CP,(Rq) for the set of all L-critical pairs such that ¢ — r1, lo — 19 € R4.

We assume there is a fixed set of AC symbols Fac C F. For a rewrite rule £ — r with
+ € Fac the notation (£ — r)¢ refers to the extended rule { + x — r + x, where z € V is
fresh. The TRS R¢ contains all rules in R plus all extended rules £ + x — r + x such that
{—=reR 3.

Normalized Rewriting. We define normalized rewriting as in [22] but use a different notation
to distinguish it from the common notation for rewriting modulo. Let 7 be a theory which
has an AC-complete presentation as a TRS S.

Two terms s and t admit an S-normalized R-rewrite step if

sy Pty (3)
S/AC  AC  f—r  AC

for some rule { — r in R and position p. We abbreviate (3) by s _>:§~>r\8 t and write
s —r\s tifs _>ZZ)~>7‘\S t for a rule £ — r in R and position p. Let > be an AC-compatible
reduction order such that § C >. For any set of rewrite rules R satisfying R C > the
normalized rewrite relation —x\s is well-founded [21, 22], so we can consider equational
proofs of the form s _>!72\ PR <_!72\ s t- These normal form proofs play a special role and
are called normalized rewrite proofs. Because S is AC-complete for 7, any such proof can be
transformed into a proof s |z\s t, where |lz\s abbreviates the relation

! ! * ! !

R\S S/AC AC  S/AC R\S

A TRS R is an S-complete presentation of a set of equations & if —x\s is terminating and
the relations <%+ and —>IR\$ R <_!R\S7 hence |r\s, coincide.

In the remainder of this section we assume that Rs(E) is a finite set of rewrite systems
R such that R U S is AC terminating, for all ESs £. Moreover, let the function Extg satisfy
Exts(€) C < hcusue for all ESs €. We write CPs(R) for the set of critical pairs

CP.(R°) UCPAc(S% R?) UCPAc(R S
» Definition 22. Given a set of input equalities &y and an ES &, let

(5) N R ZfR € %S ((‘3) such that CPS (R) @] 5(] Q ‘U’R\S
e ws(E UExts(E)) otherwise.
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The proof of the following correctness statement is a straightforward adaptation of the
respective result for standard completion (Lemma 4).

» Lemma 23. If ps(€) is defined then it is an S-complete presentation of &.

Proof. Suppose ¢s(&) = R, so RUS is AC terminating since it was returned by Rs. Because
of CPs(R) C r\s the TRS R is S-complete according to the results by Marché [22].

Let &1,...,& be a sequence of normalized maximal completion, that is &1 = & U
Exts(&;) for all 1 <4 < k and there is some R € Rs (&) such that CPs(R) U & C Iry\s-
A simple induction argument using the global assumption that Exts(£) C <} sue for
all ESs &£ shows that &, C <—>ZCU$U£U. Since R is over &, also <% C HT\CUSUEO holds.
Conversely, & C |r\s is assumed. So R is an S-complete presentation of &. <

The maximal normalized completion implementation in MaedMax can for instance complete
the ES in Example 21 with respect to both AC (so S = @) or group theory (using Sg).

6 Implementation

In this section we briefly summarize an implementation of the discussed variants of maximal
completion in the tool MaedMax [36]. MadMax is implemented in OCaml and available as a
command-line tool as well as via a web interface, on the accompanying website also example
input can be found.! Input problems can be submitted in the TPTP [31] as well as the trs
format.? The tool supports standard maximal completion, maximal ordered completion and
theorem proving, as well as normalized completion. However, many modules are used for all
of these modes. For the former, MadMax incorporates the extended Maxcomp version [25]
which supports advanced termination techniques like dependency pairs.

In the following paragraphs we comment on the implementation of the three components
corresponding to the main steps in maximal completion: (1) finding (AC) terminating TRSs,
(2) success checks, and (3) selection of new equations and goals.

Finding rewrite systems. In order to find (AC) terminating rewrite systems that play the
role of () and Rs (&), respectively, MeedMax adheres to the basic approach of Maxcomp [17]
in that it solves optimization problems by means of a maxSAT /maxSMT solver. The objective
of this optimization can be to (a) maximize the number of oriented equations as done in
Maxcomp, or (b) the equations in £ that are reducible, or to (c¢) minimize the number of rules
or (d) the number of critical pairs. These optimization targets can also be combined, and
completeness requirements as described in [25] can be added. Strategy (b) in combination
with (c¢) has proved to be particularly useful, because it prefers small TRSs which can simplify
many equations. This is especially beneficial in presence of AC symbols, where many rewrite
rules and hence many critical pairs can drastically impact performance.

In order to guarantee termination of the resulting system, SMT encodings of termination
techniques are used. These are LPO, KBO, and linear polynomials for ordered completion,
where a ground-total reduction order is desired. For standard completion, MaedMax addition-
ally supports dependency pairs, a dependency graph approximation, and argument filterings
for LPO and KBO, as described earlier [25]. These techniques can also be combined in a
strategy involving sequential composition and choice. As a means to ensure AC termination,
ACRPO is encoded [24]. The supported SMT solvers are Yices 1.0 [10] and Z3 [7].

! http://cl-informatik.uibk.ac.at/software/maedmax/
2 https://www.lri.fr/~marche/tpdb/format.html
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Success checks. For standard and normalized completion, it is straightforward to check
whether all critical pairs are joinable. In the latter case, MeedMax only supports AC critical
pairs. To conclude ground confluence, our tool supports the criterion of [33].

Selection. The extension functions Ext, Extg, and Exts are implemented to add a subset
of (extended, AC) critical pairs among rules in R, and equations/goal for the case of ordered
completion. In any case the selected equations get reduced to R-normal form before they are
added. MadMax severely limits the number of critical pairs that are added in every iteration
to confine the exponential blowup. The selection heuristic prefers small equations and old,
but not yet reducible equations.

Furthermore, MaedMax can output equational (dis)proofs and ground completion proofs
in a format that can be validated by the proof checker CETA [30]. Further implementation
details and evaluations on standard benchmark sets can be found in [36, 25].

We conclude with a final example illustrating a practical application. The tool AQL?
performs functorial data integration by means of a category-theoretic approach [27], taking

advantage of (ground) completion. The following problem was communicated by the authors.

» Example 24. Consider two database tables ylsAL and ylsAW relating amphibians to land
and water animals, respectively. The relationship between their entries are described by 400
ground equations over symbols ylsAL, ylsALL, ylsAW, yIsAWW (which correspond to fields in
the schemas) and 449 constants of the form a;, w;, |; representing data items. The following
six example equations may convey an impression:

yIsAW(al) X Wo9 yIsAW(a78) ~ Wig yIsAW(aGl) ~ W30
yIsAL(a37) ~ Iso yIsAL(ass) ~ Ig yIsAL(as9) ~ Ly

In addition, the equation ylsALL(ylsAL(z)) ~ ylsAWW/(ylsAW(x)) describes a mapping to
a second database schema. A ground complete presentation of the entire system thus
constitutes a representation of the data, translated to the second schema. MadMax discovers
a complete presentation of 889 rules in less then 20 seconds, while AQL’s internal completion
prover fails. MaedMax’ automatic mode switches to linear polynomials for such systems with
many symbols, which turned out to be faster than LPO or KBO in this situation.

7 Conclusion

This paper explored variants of maximal completion, corresponding to ordered and normalized
completion. These methods have multiple advantages over earlier approaches:
The reduction order, a notoriously critical parameter, need not be fixed in advance. This
also holds for tools with an automatic mode such as RRL [15], but there it is unsound to
change the order once it was fixed [26]. In contrast, no such problem occurs in maximal
completion.
Using maxSMT encodings, the choice of an ordering can be “steered” towards beneficial
properties of the resulting system (e.g. to orient a maximal number of equations, to
reduce a maximal number of equations, or to stimulate complete systems [25]).
Maximal completion exploits the advantage of parallelization in that multiple reduction

orders can be considered (by choosing multiple rewrite systems in every iteration).

Theorem 19 shows that in the linear case any complete system for a supported ordering
will be found. But at the same time rewriting and critical pair computation are shared
among the processes corresponding to the different choices of an ordering.

3 http://categoricaldata.net/aql.html
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Efficiency is gained by orienting multiple equations at the same time. Theorem 19 shows
that this also admits a (theoretical) bound on the number of required iterations.
Finally, the definitions and the corresponding proofs are concise and simple: neither proof
orders [5] nor notions like peak or source decreasingness [11] are required.

Several directions for future work arise. First, we believe that also the completeness

result for ground-total reduction orders carries over to maximal ordered completion [6].

The general case of completeness is still an open problem. Another interesting because

practically relevant variant of completion operates on logically constrained rewrite systems
(LCTRSs) [35]. Supporting maximal completion procedure for this setting might thus be
a useful addition to MaedMax. Maximal completion can be considered an approximation-

and conflict-based approach: complete TRSs are overapproximated by terminating TRSs,

and if a conflict (that is a non-joinable critical pair) is encountered, the approximation is

refined. It would be interesting to investigate connections to other conflict-driven learning
approaches such as lazy SMT solving or DPLL [9].
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—— Abstract

This is a slightly extended abstract of my talk at FSCD’19 about probabilistic programming and a
few semantic issues on it. The main purpose of this abstract is to provide keywords and references
on the work mentioned in my talk, and help interested audience to do follow-up study.
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1 Introduction

Probabilistic programming [11, 9, 35, 8] refers to the idea of developing a programming
language for writing and reasoning about probabilistic models from machine learning and
statistics. Such a language comes with the implementation of several generic inference
algorithms that answer various queries about the models written in the language, such
as posterior inference and marginalisation. By providing these algorithms, a probabilistic
programming language enables data scientists to focus on designing good models based
on their domain knowledge, instead of building effective inference engines for their models,
a task that typically requires expertise in machine learning, statistics and systems. Even
experts in machine learning and statistics may benefit from such a probabilistic program-
ming system because using the system they can easily explore highly advanced models.
Several probabilistic programming languages have been built. Good examples are Stan [8],
PyMC [23], Church [9], Venture [19], Anglican [35, 30], Turing [7], Pyro [3], Edward [32, 31],
ProbTorch [26] and Hakaru [20].

In the past five years, with colleagues from programming languages, machine learning and
probability theory, I have worked on developing the semantic foundations, efficient inference
algorithms, and static program analysis for such probabilistic programming languages,
especially those that support expressive language features such as higher-order functions,
continuous distributions and general recursion. At FSCD’19, I plan to talk about some of
these projects related to semantics and the lessons that I learnt.

This document is a companion to my FSCD’19 talk. Its primary goal is to provide
keywords and references to the work mentioned in the talk, and help interested people
start their follow-up study. If the reader looks for systematic introduction to probabilistic
programming, I recommend to look at books [10, 34, 6] and teaching materials on probabilistic
programming instead.
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Listing 1 Anglican program with undefined posterior. (normal_pdf x 0 1) computes the density
of the standard normal distribution at z. The program defines a model with two random variables
x and y, the former being sampled from the standard normal distribution and the latter from the
exponential distribution. The random variable y is observed to have the value 0, and the program
expresses the posterior of x under this observation.

(let [x (sample (normal 0 1))
x_pdf (normal_pdf x 0 1)
y (observe (exponential (/ 1 x_prob)) 0)]
x)

2 Some research questions

A large part of my research has been about building a solid theoretical foundation for
probabilistic programming languages. Doing so is particularly needed for such languages,
because programs in those languages are run by inference engines but these inference
engines only approximate the ideal mathematical semantics of these programs, namely,
their posterior distributions. Even worse, sometimes probabilistic programs do not have
posterior distributions at all, and I do not know of any inference engines that can detect
it. Listing 1 shows one such program in Anglican, whose posterior distribution (or more
precisely posterior density) is undefined.! Also, I found this foundation building intellectually
rewarding, because, as I will explain shortly, it made me think about unexpected connections
among multiple disciplines and revisit old concepts in programming languages, such as data
abstraction, from a new perspective.

Here are three specific research questions about the foundation for probabilistic program-
ming that intrigued me and my colleagues.

Q1: How to define a good denotational semantics for higher-order probabilistic pro-
gramming languages with continuous distributions and general recursions?

A standard tool for defining a continuous probability distribution rigorously is measure
theory. But it turns out that measure theory is not good enough for defining the denotational
semantics of higher-order probabilistic programming languages, such as Church, Venture
and Anglican, because measure theory does not support higher-order functions well. The
category of measurable spaces is not Cartesian closed, because the set of measurable functions
[R —,, R] cannot be turned into a measurable space that makes the following evaluation
map measurable [1]:

ev:[R =, R xR =R, ev(f,r) = f(r).

I have been involved in the joint efforts to address this semantic issue [29, 12, 25]. Using
tools from category theory, we developed a theory of quasi-Borel spaces [12], which extends
measure theory, and used our theory to define the denotational semantics of higher-order
probabilistic programming languages and to prove the correctness of inference algorithms for

L Let pn (2,0,1) be the density at z of the normal distribution with mean 0 and standard deviation 1, and
pa(y) be the density of the exponential distribution with rate A. The prior of the program in Listing 1
is pn(z,0,1), and the likelihood is the density of the 1/pn(x,0,1)-rate exponential distribution at y = 0,
which is p1/p,. (2,0,1) (¥ = 0) = 1/pn(x,0,1). Thus, the joint density is 1. The marginal likelihood is co.
Thus, the posterior density p(z|y = 0) is undefined.
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Listing 2 Anglican program with non-differentiable density. The program denotes a model with
three random variables x1, x2,y, all three being drawn from the normal distribution with different
parameters. It expresses the posterior distribution of x1 under the condition that y has the value 4.

(let [x1 (sample (normal 0 1))
x2 (sample (mormal (* x1 x1) 1))
x3 (if (> x2 0) x1 x2)
y (observe (normal x3 1) 4)]
x1)

such languages [25]. Recently, Vakar, Kammar and Staton built a domain theory on top
of quasi-Borel spaces, and showed how to handle term and type recursions in denotational
semantics in the presence of continuous probability distributions [33].

An interesting future direction is to generalise well-known results from probability theory
using the theory of quasi-Borel spaces. Our initial investigation with de Finetti’s theorem
for exchangeable random sequences shows a promise [12].

Q2: Can a probabilistic program denote a distribution with a density that is not
differentiable at some non-measure-zero set?

This question assumes a typical setting that gradient-based inference algorithms operate.

In the setting, all sampling statements in probabilistic programs use distributions on R"™ for
some n that have densities with respect to the Lebesgue measure, and those probabilistic
programs mean distributions on traces of sampled values during execution. For instance, the
posterior distribution of the program in Listing 2 has the following density f : R? — [0, c0)
with respect to the Lebesgue measure on R?: for x;,xs € R,

f(-rlwx?) = pn(xlaoa 1) 'pn(l'g,l'%, 1) : (]l[z2>0] 'pn(4a$17 1) + ]l[zggo] 'pn(4,$2, 1))

where p,,(z, m, o) is the density at = of the normal distribution with mean m and standard
deviation o and 1|, is the indicator function returning 1 if ¢ holds and 0 otherwise.

The negative answer to the question is needed in order for these gradient-based inference
algorithms to work correctly [21, 18]. Intuitively, it ensures that the algorithms never attempt
to compute gradients at non-differentiable points, and the effects of these non-differentiable
points to the algorithms can be estimated algorithmically.

Currently we have only a partial answer to the question. We proved that for a first-order
probabilistic programming language without loops, if a program in the language uses only
analytic operations as its primitive operations, the set of its non-differentiable points has
measure zero [36]. The question is open for a language that supports higher-order functions,
includes loops, or permits non-analytic primitive operations.

Q3: What is a good theory of data abstraction for probabilistic programming languages,
which in particular can let us analyse modules from Bayesian nonparametrics?

Sophisticated probabilistic models from Bayesian nonparametrics are implemented as

modules in some probabilistic programming languages, such as Church and Anglican [24, 30].
This question asks for extending the theory of data abstraction to account for such modules.

Ideally, the theory should provide guidance about how to implement such modules, and help
programmers understand the consequences of using these modules.

I became interested in the question because of an intriguing feature of these modules.

They are often implemented using impure features, such as mutable state, but they still
satisfy a type of equations that typically hold for pure modules, such as commutativity of
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module operations. It turns out that this phenomenon is not an accident; the probabilistic
models that the modules denote satisfy symmetry properties such as exchangeability and
contractibility [22, 16], and the equations for the modules come from these properties [28, 27].

Answering the question amounts to connecting the theory of data abstraction in pro-
gramming languages to the study on these symmetry properties in probability theory. So far
we found a connection for the Beta-Bernoulli process, one of the simplest models [27], and
inspired by this connection, we defined a new type of symmetry properties for probabilistic
models and proved a representation theorem for them [15]. These results are far from
answering the question posed, and I expect (and hope) that more deep results are waiting to
be discovered.

The three questions are chosen mainly based on my personal taste. If the reader wants
to gain a broad view on what semantics researchers care about regarding probabilistic
programming languages, I recommend to read the following papers [17, 14, 13, 4, 2, 5].

3 Final remark

Probabilistic programming is an exciting topic that raises several fresh theoretical and
practical questions in programming languages, statistics, machine learning and probability
theory. I hope that my FCSD’19 talk and (highly incomplete and biased) list of research
questions in the previous section helps the reader partially understand why I and my colleagues
are excited about the topic. This document conveys the view of one programming-language
researcher on probabilistic programming. To understand how machine learning researchers
think about probabilistic programming, I recommend to watch the video recording of Josh
Tenenbaum’s ICML’18 invited talk, and read the introduction of the book on probabilistic
programming [34]; the introduction is written mostly by Frank Wood.
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Bicategories in Univalent Foundations

1 Introduction

Category theory (by which we mean 1-category theory) is established as a convenient
language to structure, and discuss, mathematical objects and maps between them. To
axiomatize the fundamental objects of category theory itself — categories, functors, and
natural transformations — the theory of 1-categories is not enough. Instead, category-like
structures allowing for “morphisms between morphisms” were developed to account for the
natural transformations. Among those are bicategories.

Bicategory theory was originally developed by Bénabou [5] in set-theoretic foundations.
The goal of our work is to develop bicategory theory in univalent foundations. Specifically,
we give here a notion of univalent bicategory and show that some bicategories of interest
are univalent. To this end, we generalize displayed categories [2] to the bicategorical setting,
and prove that the total bicategory spanned by a displayed bicategory is univalent, if the
constituent pieces are.

Univalent foundations and categories therein. According to Voevodsky, a foundation of
mathematics consists of three things:

1. a language for mathematical objects;

2. a notion of proposition and proof; and

3. an interpretation of those into a world of mathematical objects.

By “univalent foundations”, we mean the foundation given by univalent type theory as
described, e.g., in the HoTT book [21], with its notion of “univalent logic”, and the inter-
pretation of univalent type theory in simplicial sets expected to arise from Voevodsky’s
simplicial set model [14].

In the simplicial set model, univalent categories (just called “categories” in [1]) correspond
to truncated complete Segal spaces, which in turn are equivalent to ordinary (set-theoretic)
categories. This means that univalent categories are “the right” notion of categories in
univalent foundations: they correspond exactly to the traditional set-theoretic notion of
category. Similarly, the notion of univalent bicategory, studied in this paper, provides the
correct notion of bicategory in univalent foundations.

Throughout this article, we work in type theory with function extensionality. We
explicitly mention any use of the univalence axiom. We use the notation standardized in [21];
a significantly shorter overview of the setting we work in is given in [1]. As a reference for
1-category theory in univalent foundations, we refer to [1], which follows a path suggested by
Hofmann and Streicher [13, Section 5.5].

Bicategories for Type Theory. Our motivation for this work stems from several particular
(classes of) bicategories, that come up in our work on the semantics of type theories and
Higher Inductive Types (HITS).

Firstly, we are interested in the “categories with structure” that have been used in the
model theory of type theories. The purpose of the various categorical structures is to model
context extension and substitution. Prominent such notions are categories with families (see,
e.g., [8, 9]), categories with attributes (see, e.g., [19]), and categories with display maps (see,
e.g., [20]). Each notion of “categorical structure” gives rise to a bicategory whose objects are
categories equipped with such a structure. Secondly, in the study of HITs, bicategories of
algebras feature prominently, see, e.g., work by Dybjer and Moenclaey [10]. Our long term
goal is to show that these bicategories are univalent.
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Displayed bicategories. In this work, we develop the notion of displayed bicategory anal-
ogous to the 1-categorical notion of displayed category introduced in [2]. Intuitively, a
displayed bicategory D over a bicategory B represents data and properties to be added to B
to form a new bicategory: D gives rise to the total bicategory [D. Its cells are pairs (b, d)
where d in D is a “displayed cell” over b in B.

When a bicategory is built as the total bicategory [D of a displayed bicategory D over
base B, univalence of [D can be shown from univalence of B and “displayed univalence” of
D. The latter two conditions are easier to show, sometimes significantly easier.

Two features make the displayed point of view particularly useful: firstly, displayed
structures can be iterated, making it possible to build bicategories of very complicated objects
layerwise. Secondly, displayed “building blocks” can be provided, for which univalence
is proved once and for all. These building blocks, e.g., cartesian product, can be used
like LEGO™ pieces to modularly build complicated bicategories that are automatically
accompanied by a proof of univalence.

We demonstrate these features in examples, proving univalence of three complicated
(classes of) bicategories: first, the bicategory of pseudofunctors between two univalent bicate-
gories; second, bicategories of algebraic structures; and third, the bicategory of categories
with families.

Formalization. The results presented here are mechanized in the UniMath library [22],
which is based on the Coq proof assistant [17]. The UniMath library is under constant
development; in this paper, we refer to the version with git hash ab97d96. Throughout the
paper, definitions and statements are accompanied by a link to the online documentation of
that version. For instance, the link bicat points to the definition of a bicategory.

Related work. Our work extends the notion of univalence from 1-categories [1] to bicate-
gories. Similarly, we extend the notion of displayed 1-category [2] to the bicategorical setting.

Capriotti and Kraus [7] study univalent (n,1)-categories for n € {0,1,2}. They only
consider bicategories where the 2-cells are equalities between 1-cells; in particular, all 2-cells
in [7] are invertible, and their (2, 1)-categories are by definition locally univalent. Consequently,
the condition called univalence by Capriotti and Kraus is what we call global univalence,
cf. Definition 3.1, Item 2. In this work, we study bicategories, a.k.a. (2,2)-categories, that
is, we allow for non-invertible 2-cells. The examples we study in Section 6 are proper
(2, 2)-categories and are not covered by [7].

Lafont, Hirschowitz, and Tabareau [15] are working on formalizing w-categories in type
theory. Their work is guided by work by Finster and Mimram [11], who develop a type
theory for which the models (in set theory) are precisely weak w-categories.

2 Bicategories and Some Examples

Bicategories were introduced by Bénabou [5] in 1967, encompassing monoidal categories,
2-categories (in particular, the 2-category of categories), and other examples. He (and
later many other authors) defines bicategories in the style of “categories weakly enriched
in categories”. That is, the homs Bj(a,b) of a bicategory B are taken to be (1-)categories,
and composition is given by a functor Bi(a,b) x By(b,¢) — Bi(a,c). This presentation of
bicategories is concise and convenient for communication between mathematicians.

In this article, we use a different, more unfolded definition of bicategories, which is
inspired by Bénabou [5, Section 1.3] and [18, Section “Details”]. It is more verbose than the
definition via weak enrichment. However, it is better suited for our purposes, in particular,
it is suitable for defining displayed bicategories, cf. Section 4.

5:3

FSCD 2019


https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath/tree/ab97d96f51a3f911f7027c1f4a2b36b558487443
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Bicat.html#bicat

5:4

Bicategories in Univalent Foundations

Definition 2.1 (bicat). A bicategory B consists of

of a type By of objects;

a type Bi(a,b) of 1-cells for all a,b: By;

a set Bo(f,g) of 2-cells for all a,b: By and f, g : B1(a,b);

an identity 1-cell id;(a) : B1(a, a);

a composition Bj(a,b) x B1(b,¢) — Bi(a,c), written f - g;

an identity 2-cell ids(f) : Bo(f, f);

a vertical composition 6 e v : By(f,h) for all 1-cells f,g,h : Bi(a,b) and 2-cells

0 :Ba(f,9) and v : Ba(g, h);

8. a left whiskering f <10 : By(f g, f-h) for all 1-cells f : By(a,b) and g, h : B1(b,¢) and
2-cells 6 : B2(g, h);

9. a right whiskering 6 > h : Bo(f - h,g- h) for all 1-cells f,g : B1(a,b) and h : By (b,¢)
and 2-cells 6 : Bo(f, g);

10. a left unitor A\(f) : Ba(idi(a) - f, f) and its inverse A\(f) ™! : Bo(f,id1(a) - f);

11. a right unitor p(f) : Bo(f - id1(b), f) and its inverse p(f)~! : Bo(f, f - id1(b));

12. a left associator a(f,g,h) : B2(f-(g-h),(f-g)-h) and a right associator a(f,g,h)~!:
Ba((f-g)-hyf-(g-h)) for f:Bi(a,b), g:Bi(b,c), and h: Bi(c,d)

such that, for all suitable objects, 1-cells, and 2-cells,

13. ida(f)e0 =0, Oeida(g) =0, Oe(yer)=(0evy)erT;

14. f<(ideg) =id2(f-9), f<(0ey)=(f<0)e(f <)

15. (id2 f) > g =ida(f - g), (0ev)>g= (01> g)e(y>g);

NoosrwN=Y

16. (idi(a) <1 0) @ A(g) = A(f) 00;

17. (0 > 1dy (b)) @ p(g) = p(f) ®

18. (f<(g<b))ealfyg J)foz(f,g, h)e((f-g) <0);

19. (f 2 (0> 10)) ealf,hi) = alf, g,1) e ((f < 0) > i);

20. (0> (h- ))'a(gyh, ) = a(f h,i) e (0> h) > i);

21 A(f) o A(f)™" =ida(idi(a) - f),  A(F)™ 1°/\(f) ida(f);

A(S )7
22. p(f)ep(f)~ =ida(f -id1(b)), p(f)~" e p(f) = ida(f);
23. o(f,g.h) e a(f,g,h)"  =ida(f - (g-h)), o(f,9.h)"" ea(f,g,h) =id2((f-g) h);
24. a(f,id1(b),g) e (p(f) > g) = f < A(f);

25. (f797 )004(f~g,h,i) - (f<1a(g,h,i))oa(f,g-h,i)o(a(f,g,h) [>i)'

We write a — b for By(a,b) and f = g for Ba(f,g). Riley formalized a definition of
bicategories via weak enrichment in UniMath, based on work by Lumsdaine. These two
definitions are equivalent.

=

» Proposition 2.2. The definition of bicategories given in Definition 2.1 is equivalent to the
formalized definition in terms of weak enrichment.

This result is not formalized in our computer-checked library. However, as a sanity check for
our definition of bicategory, we constructed maps between the two variations of bicategories,
see BicategoryOfBicat.v and BicatOfBicategory.v.

Recall that our goal is to study univalence of bicategories, which is a property that relates
equivalence and equality. For this reason, we study the two analogs of the 1-categorical
notion of isomorphism. The first one is the notion of invertible 2-cells.

» Definition 2.3 (is_invertible_2cell). A 2-cell § : f = g is called invertible if we
have v : g = f such that 6 e v = idy(f) and v e 8 = id2(g). An invertible 2-cell consists
of a 2-cell and a proof that it is invertible, and inv2cell(f, g) is the type of invertible 2-cells
from f to g.


https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.Bicategories.Bicat.html#bicat
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Since inverses are unique, being an invertible 2-cell is a proposition. In addition, ida(f)
is invertible, and we write ida(f) : inv2cell(f, f) for this invertible 2-cell. The second analog
of isomorphisms is the notion of adjoint equivalences.

» Definition 2.4 (adjoint_equivalence). An adjoint equivalence structure on a 1-cell
f i a — b consists of a 1-cell g : b — a and invertible 2-cells n : id2(f) = f - g and
e:g- f=1ida(g) together with paths

plg) P e(g<an)ealy, f,g) " e(c>g)eA(g) =ida(g),
Mg) te(ne> flealf, g, f)e(f <e)ep(f)=ida(f).

An adjoint equivalence consists of a map f together with an adjoint equivalence structure
on f. The type AdjEquiv(a,b) consists of all adjoint equivalences from a to b.

We call n and € the unit and counit of the adjunction, and we call g the right adjoint.
The prime example of an adjoint equivalence is the identity 1-cell id;(a) and we denote it by
id; (a) : AdjEquiv(a, a). Sometimes, we write a ~ b for AdjEquiv(a, b).

Before we continue our study of univalence, we present some examples of bicategories.

» Example 2.5 (fundamental_bigroupoid). Let X be a 2-type. Then we define a bicategory
whose 0-cells are inhabitants of X, 1-cells from x to y are paths = y, and 2-cells from p to
q are higher paths p = ¢q. The operations are defined with path induction. Every 1-cell is an
adjoint equivalence and every 2-cell is invertible.

» Example 2.6 (one_types). Let U be a universe. The objects of the bicategory 1-Type of
1-types from U are 1-truncated types of the universe U, the 1-cells are functions between
the underlying types, and the 2-cells are homotopies between functions. The 1-cells id; (X)
and f - g are defined as the identity and composition of functions. The 2-cell ids(f) is refl,
the 2-cell p e ¢ is the concatenation of paths. The unitors and associators are defined as the
identity path. Every 2-cell is invertible and adjoint equivalences between X and Y are the
same as equivalences from X to Y.

» Example 2.7 (bicat_of_cats). We define the bicategory Cat of univalent categories as
the bicategory whose 0-cells are univalent categories, 1-cells are functors, and 2-cells are
natural transformations. For the operations, we use the identity and composition of functors,
and whiskering of functors and transformations. The internal invertible 2-cells are the natural
isomorphisms of functors, and the internal adjoint equivalences correspond to external adjoint
equivalences of categories.

3  Univalent Bicategories

Recall that a (1-)category C (called “precategory” in [1]) is called univalent if, for every two
objects a, b : Cp, the canonical map idtoiso, p : (@ = b) — Iso(a, b) from identities between a
and b to ismorphisms between them is an equivalence. For bicategories, where we have one
more layer of structure, univalence can be imposed both locally and globally.

» Definition 3.1 (Univalence.v). Univalence for bicategories is defined as follows:

1. Let a,b: By and f,g : Bi(a,b) be objects and morphisms of B; by path induction we
define a map idtoiso?”; : f = g — inv2cell(f, g) which sends refl(f) to id2(f). A bicategory
B is locally univalent if, for every two objects a,b : Bg and two 1-cells f, g : Bi(a,b),
the map idtoiso?p’); is an equivalence.
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2. Let a,b : By be objects of B; using path induction we define idtoisoiig ta=b—

AdjEquiv(a, b) sending refl(a) to id;(a). A bicategory B is globally univalent if, for
every two objects a, b : By, the canonical map idtoisoi”g is an equivalence.

3. (is_univalent_2) We say that B is univalent if B is both locally and globally univalent.

While right adjoints are only unique up to equivalence in general, they are unique up to
identity when the bicategory is locally univalent:

» Proposition 3.2 (isaprop_left_adjoint_equivalence). Let B be locally univalent. Then
having an adjoint equivalence structure on a 1-cell in B is a proposition.

As a corollary of this proposition we get the following;:

» Theorem 3.3. In a univalent bicategory B, the type By of 0-cells is a 2-type, and for any
two objects a,b : By, the type a — b of 1-cells from a to b is a 1-type.

To prove global univalence of a bicategory, we need to show that idtoisoiig is an equivalence.
Often we do that by constructing a map in the other direction and showing these two
are inverses. This requires comparing adjoint equivalences, which is done with the help of
Proposition 3.2.

Now let us prove the examples from Section 2 are univalent.

» Example 3.4. The following bicategories are univalent:

1. (TwoType.v, Example 2.5 cont’d) The fundamental bigroupoid of each 2-type is univalent.

2. (OneTypes.v, Example 2.6 cont’d) The bicategory of 1-types of a universe U is locally
univalent; this is a consequence of function extensionality. If we assume the univalence
axiom for U, then 1-types form a univalent bicategory.

It is more difficult to prove the bicategory of univalent categories is univalent, and we only

give a brief sketch of this proof.

» Proposition 3.5 (Bicat0fCats.v, Example 2.7 cont'd). The bicategory Cat is univalent.

Local univalence follows from the fact that the functor category [C, D] is univalent if D is.
For global univalence, we use that the type of identities on categories is equivalent to the type
of adjoint equivalences between categories [1, Theorem 6.17]. The proof proceeds by factoring
idtoiso®” as a chain of equivalences (C' = D) = Catlso(C, D) =+ AdjEquiv(C, D). To our
knowledge, a proof of global univalence was first computer-formalized by Rafaél Bocquet!.

In the previous examples, we proved univalence directly. However, in many complicated
bicategories such proofs are not feasible. An example of such a bicategory is the bicategory
Pseudo(B, C) of pseudofunctors from B to C, pseudotransformations, and modifications [16]
(for a univalent bicategory C). Even in the 1-categorical case, proving the univalence of
the category [C, D] of functors from C to D, and natural transformations between them, is
tedious. In Section 5, we develop some machinery to prove the following theorem.

» Theorem 3.6 (psfunctor_bicat_is_univalent_2). If B is a (not necessarily univalent)
bicategory and C is a univalent bicategory, then the bicategory Pseudo(B, C) of pseudofunctors
from B to C is univalent.

! https://github.com/mortberg/cubicaltt/blob/master/examples/category.ctt
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4 Displayed Bicategories

In this section, we introduce displayed bicategories, the bicategorical analog to the notion of
displayed category developed in [2]. A displayed (1-)category D over a given (base) category
C consists of a family of objects over objects in C' and a family of morphisms over morphisms
in C' together with suitable displayed operations of composition and identity. A category [D
is then constructed, the objects and morphisms of which are pairs of objects and morphisms
from C and D, respectively. Properties of [ D, in particular univalence, can be shown from
analogous, but simpler, conditions on C and D.

A prototypical example is the following displayed category over C' := Set: an object over
a set X is a group structure on X, and a morphism over a function f : X — X’ from group
structure G (on X) to group structure G’ (on X') is a proof of the fact that f is compatible
with G and G’. The total category is the category of groups, and its univalence follows from
univalence of Set and a univalence property of the displayed data.

Just like in 1-category theory, many examples of bicategories are obtained by endowing
previously considered bicategories with additional structure. An example is the bicategory of
pointed 1-types in U. The objects in this bicategory are pairs of a 1-type A and an inhabitant
a : A. The morphisms are pairs of a morphism f of 1-types and a path witnessing that f
preserves the selected points. Similarly, the 2-cells are pairs of a homotopy p and a proof
that this p commutes with the point preservation proofs. Thus, this bicategory is obtained
from 1-Typey by endowing the cells on each level with additional structure.

Of course, the structure should be added in such a way that we are guaranteed to obtain
a bicategory at the end. Now let us give the formal definition of displayed bicategories.

» Definition 4.1 (disp_bicat). Given a bicategory B, a displayed bicategory D over B
is given by data analogous to that of a bicategory, to which the numbering refers:
1. for each a : By a type D, of displayed 0-cells over a;
2. foreach f:a —bin B and a: D,,b: Dy a type a Lop of displayed 1-cells over f;
3. foreachf: f=¢ginB, f:a b and G:a%baset f:0> g of displayed 2-cells over 0
and dependent versions of operations and laws from Definition 2.1, which are
4. for each a : By and a : Dg(a), we have id;(a) : a dila), a;
5. for all 1-cells f:a — b, g : b — ¢, and displayed 1-cells f : @ 1,5 and G:b% ¢ we have
a displayed 1-cell f-g:a EEN c;
6. for all f:By(a,b), a:Dg(a), b:Dg(b), and f:a ER b, we have idy(f) : f% f;
7. for 2-cells @ : f = g and v : g = h, and displayed 2-cells 0 : f 4 g and 7 :
have a displayed 2-cell f o7 : f g h.
8. for each displayed 1-cell f : @ < b and each displayed 2-cell g E we have a displayed
f<0 71
bl

Q|
>
2
@

2cell f<:f §g=—
9. for each displayed 1-cell h :

2cell > h: f- B%g h;

10. for each_f caly b, we have displayed 2-cells A(f) : id;(a) - f f and A\(f)71: f 2
idi(a) - f;

11. for each f:a ER b, displayed 2-cells p(f) : f

h:é=

1:

\&h\

and each displayed 2-cell 6 f , we have a displayed

di0) 2 Fand p() " L= Fridi ()
12. foreachf:dég,gzgéé,and

Fo(g-h) 22 (F.g) - hoand aff, g, )

we have displayed 2-cells a(f,g,h) :

4 4,
(F-g)-h 2L Fog. ).
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Note that we use the same notation for the displayed and the non-displayed operations.
These operations are subject to laws, which are derived systematically from the non-

displayed version. Just as for displayed 1-categories, the laws of displayed bicategories are

heterogeneous, because they are transported along the analogous law in the base bicategory.

For instance, the displayed left-unitary law for identity reads as ida( f )e 0 =. 0, where e is

the corresponding identity of Item 13 in Definition 2.1.

13. ida(f)e0=.0, 6Oeidy(g)=s0, Oe(yer)=,(0ey)er;

14. f < (idzg) = ido(f - g), [ < (Ben) = (f<10)(f <7):

15. (idz f) > g =+ ida2(f - ) (Oe)>g=s(0>g)e(y>g);

16. (idi(a) <1 0) @ A(g) =« A(f) @ 0;

17. (6 > idy (b)) ® p(g) = () 0;

18. (f < (g <) ealf,g,i) =« a(f,g,h) e ((f-g) <0);

19. (f @ (0 >1)) e a(f,h,i) =« a(f,g,i) o ((f <0) >1i);

20. (0> (h- ))-a(g,hw) =« a(f, h,i) e ((0 > h) > i);

21 M(f) e A(f) "t =« ida(idi(a) - ), A(S)™ 1°A(f) =, ida(f);

22. p(f) e p(f)~" =« ido(f -idi (D)), p(f)~" @ p(f) *1d2( )i

23. a(f,g,h)ea(f,g,h)~" =, ida(f-(g-h), alf,g,h)" " ea(f,g,h) =.id2((f-g) - h);
24. a(f,id1(b),g) e (p(f) > g) =« f < A(f);

25. a(f,g,h-i)ea(f - g,h,i) =« (f Qalg,h,i)) ea(f,g-h,i)e(a(f ,g,h) > 1i).

The purpose of displayed bicategories is to give rise to a total bicategory together with a
projection pseudofunctor. They are defined as follows:

» Definition 4.2 (total_bicat). Given a displayed bicategory D over a bicategory B, we
can form a total bicategory [D (or [; D) which has:
1. as O-cells tuples (a,a), where a : B and a : Dg;

2. as 1-cells tuples (f, f) : (a,a) — (b,b), where f:a — band f:a i)E
3. as 2-cells tuples (0,0) : (f, f) = (g,3), where 6 : f = g and 0 : fé g.
We also have a projection pseudofunctor 7p : Pseudo( [ D, B).

As mentioned before, the bicategory of pointed 1-types is the total bicategory of the
following displayed bicategory.

» Example 4.3 (piltypes_disp, Example 3.4, Item 2 cont'd). Given a universe U, we build a
displayed bicategory of pointed 1-types over the base bicategory of 1-types in U (Example 2.6).
For 1-type A in U, the objects over A are inhabitants of A.
For f: A — B with A, B 1-types in U, the maps over f from a to b are paths f(a) =b
Given two maps f,g: A — B, apath p: f =g, two points a : A and b : B, and paths
qs : f(a) =band g, : g(a) = b, the 2-cells over p are paths transport”>*=’(p, q¢) = q,.
The bicategory of pointed 1-types is the total bicategory of this displayed bicategory.

» Example 4.4 (disp_fullsubbicat). We can select the 0-cells of a bicategory B by
attaching a property P : B — hProp. Define a displayed bicategory D over B such that
D, := P(x), and the types of displayed 1-cells and 2-cells are the unit type. Now we define
the full subbicategory of B with cells satisfying P to be the total bicategory of D.

We end this section with several general constructions of displayed bicategories.

» Definition 4.5 (Various constructions of displayed bicategories).

1. (disp_dirprod_bicat) Given displayed bicategories D; and Do over a bicategory B, we
construct the product D; x Dy over B. The 0-cells, 1-cells, and 2-cells are pairs of 0-cells,
1-cells, and 2-cells respectively.


https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.DispBicat.html#total_bicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.PointedOneTypes.html#p1types_disp
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.FullSub.html#disp_fullsubbicat
https://unimath.github.io/doc/UniMath/ab97d96//UniMath.CategoryTheory.Bicategories.DisplayedBicats.Examples.Prod.html#disp_dirprod_bicat
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2. (sigma_bicat) Given a displayed bicategory D over a base B and a displayed bicategory
E over [D, we construct a displayed bicategory Y E over B as follows. The objects over
a : B are pairs (a,e), where a : D, and e : E(a,a), the morphisms over f : a — b from (a, e)

to (b, e’) are pairs (f, ), where f : a I b and pre A, ¢’, and similarly for 2-cells.

3. (trivial_displayed_bicat) Every bicategory D is, in a trivial way, a displayed bicate-
gory over any other bicategory B. Its total bicategory is the direct product B x D.

4. (disp_cell_unit_bicat) We say a displayed bicategory D over B is chaotic if, for each
a:figandf:d@l;andgzﬁgl_), the type f = g is contractible. Let B be a
bicategory and suppose we have

a type Dy and a type family D; on B as in Definition 4.1;

displayed 1-identities id; and compositions (-) of displayed 1-cells as Definition 4.1.
Then we have an associated chaotic displayed bicategory Ij(Do7 Dy,idy, (+)) over B
by stipulating that the types of 2-cells are the unit type.

5 Displayed univalence

Given a bicategory B and a displayed bicategory D on B, our goal is to prove the univalence
of f D from conditions on B and D. For that, we develop the notion of univalent displayed
bicategories. We start by defining displayed versions of invertible 2-cells.

» Definition 5.1 (is_disp_invertible_2cell). Given are a bicategory B and a displayed
bicategory D over B. Suppose we have objects a,b : By, two 1-cells f,g : B1(a,b), and an
invertible 2-cell 6 : By(f,g). Suppose that we also have a : Do(a), b : Do(b), f : @ EN b,
— — — — -1 _ —

G:aLbandf: f 24 g. Then we say 6 is invertible if we have 7 : g LN f such that 6 e 5
and 7 e § are identities modulo transport over the corresponding identity laws of 6.

A displayed invertible 2-cell over 6, where 6 is an invertible 2-cell, is a pair of a
displayed 2-cell 8 over 6 and a proof that 6 is invertible. The type of displayed invertible
2-cells from f to g over 6 is denoted by f =y g.

Being a displayed invertible 2-cell is a proposition and the displayed 2-cell idy(f) over ida(f)
is invertible. Next we define displayed adjoint equivalences.

» Definition 5.2 (disp_left_adjoint_equivalence). Given are a bicategory B and a
displayed bicategory D over B. Suppose we have objects a,b : By and a 1-cell f : Bi(a,b)
together with an adjoint equivalence structure A on f. We write 7, n, € for the right adjoint,
unit, and counit of f respectively. Furthermore, suppose that we have a : Do(a),B : Do(b),

and f:a ENTAY displayed adjoint equivalence structure on f consists of

A displayed 1-cell 7 : b = a;

An invertible displayed 2-cell id; (@) = f - 7

An invertible displayed 2-cell 7 - f = id; (D).
In addition, two laws reminiscent of those in Definition 2.4 need to be satisfied.

A displayed adjoint equivalence over the adjoint equivalence A is a pair of a displayed
1-cell f over f together with a displayed adjoint equivalence structure on f. The type of
displayed adjoint equivalences from @ to b over f is denoted by @ ~ I b.

The displayed 1-cell id;(a) is a displayed adjoint equivalence over id; (a).
Using these definitions, we define univalence of displayed bicategories similarly to univa-
lence for ordinary bicategories. Again we separate it in a local and global condition.
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» Definition 5.3 (DispUnivalence.v). Let D be a displayed bicategory over B.
1. Let a,b: B, and @: D,,b: Dy. Let f,g:a —b,let p: f =g, and let f and g be displayed
morphisms over f and g respectively. Then we define a function

fT |dt0|so (p) 9

Il

. . .21 7
dlspildt0|sop7f’§ f=p

ﬂe |

sending refl to the identity displayed isomorphism. We say that D is locally univalent

if the map disp__ idtoiso™’L _is an equivalence for each p, f, and g.

f _
2. Let a,b: B, and a : Da, b: Dy. Given p: a = b, we define a function

disp__idtoiso 2

2, - -
p,a,b Y b |dt0|so2 O(p) b
sending refl to the identity displayed adjoint equivalence. We say that D is globally
univalent if the map disp__ |dt0|so§ -0 b is an equivalence for each p, a, and b.
3. (disp_univalent_2) We call D univalent if it is both locally and globally univalent.

Now we give the main theorem of this paper. It says that the total bicategory [z D is
univalent if B and D are.

» Theorem 5.4 (total_is_univalent_2). Let B be a bicategory and let D be a displayed
bicategory over B. Then

1. [D is locally univalent if B is locally univalent and D is locally univalent;

2. [D is globally univalent if B is globally univalent and D is globally univalent.

Proof. The main idea behind the proof is to characterize invertible 2-cells in the total
bicategory as pairs of an invertible 2-cell p in the base bicategory, and a displayed invertible
2-cell over p. Concretely, for the local univalence, we factor idtoiso! as a composition of the
following equivalences:

(F, ) = (9,9) —— 2" invacell (£, ). (9, )

wIJN NT’[Dg

E(p:f:g) 'f:p g TQN> Z(p:inv2cel|(fg f%

The map wy is just a characterization of paths in a sigma type. The map wy turns equalities
into (displayed) invertible 2-cells, and it is an equivalence by local univalence of B and
displayed local univalence of D. Finally, the map ws characterizes invertible 2-cells in the
total bicategory.

The proof is similar in the case of global univalence. The most important step is the
characterization of adjoint equivalences in the total bicategory.

(a,a) ~ (b,b) = Z acpb. <
(p:a=~b)
To check displayed univalence, it suffices to prove the condition in the case where p is

reflexivity. This step, done by path induction, simplifies some proofs of displayed univalence.

» Proposition 5.5. Given a displayed bicategory D over B, then D is univalent if the following
maps are equivalences:
(fiberwise_ local_univalent_ is_univalent_2_ 1)

91
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(fiverwise_univalent_2_ O_to_disp_univalent_2_0)

2,0 ) = a7
—la=a — a4 a
refl(a),a,a’ idy (a)

disp__idtoiso

Now we establish the univalence of several examples.

» Example 5.6. The following bicategories and displayed bicategories are univalent:

1. The category of pointed 1-types (see Example 4.3) is univalent (pltypes_univalent_2).

2. The full subbicategory (see Example 4.4) of a univalent bicategory is univalent (is_
univalent_2_fullsubbicat).

3. The product of univalent displayed bicategories (Definition 4.5, Item 1) is univalent
(is_univalent_2_dirprod_bicat).

4. Given univalent displayed bicategories D; and D4 on B and f D; respectively, the displayed
bicategory > p Dz (Definition 4.5, Ttem 2) is univalent (sigma_is_univalent_2).

Lastly, we give a condition for when the chaotic displayed bicategory is univalent.

» Proposition 5.7 (disp_cell_unit_bicat_univalent_2). Let B be a univalent bicategory.
Given D = (Dg, Dy,idy, (+)) as in Definition 4.5, Item 4, such that Dy is a set and Dy is a
family of propositions. Then the chaotic displayed bicategory on D is univalent if we have a

map in the opposite direction of disp_idtoiso®".

6 Univalence of Complicated Bicategories

In this section, we demonstrate the power of displayed bicategories on a number of complicated
examples. We show the univalence of the bicategory of pseudofunctors between univalent
bicategories and of univalent categories with families. In addition, we give two constructions
to define univalent bicategories of algebras.

6.1 Pseudofunctors

As promised, we use displayed bicategories to prove Theorem 3.6. For the remainder, fix
bicategories B and C such that C is univalent. Recall that a pseudofunctor consists of an
action on 0-cells, 1-cells, 2-cells, a family of 2-cells witnessing the preservation of composition
and identity 1-cells, such that a number of laws are satisfied. We call the 2-cells witnessing
the preservation of composition and identity the compositor and identitor respectively.

To construct Pseudo(B, C), we add structure to a base bicategory in several layers. This
base bicategory consists of functions from By to Cy. Each layer is given by a displayed
bicategory on the total bicategory of the preceding layer. We start by defining a displayed
bicategory of actions on 1-cells. On its total bicategory, we define three displayed bicategories:
one for the preservation of composition, one for the preservation of identities, and one for
the action on 2-cells. We take the product of these three and we finish by taking a full
subbicategory with the required laws. To show the resulting bicategory is univalent, we show
the base and each layer is univalent.

Now let us look at the formal definitions.

» Definition 6.1 (ps_base). The bicategory Base(B, C) is defined as follows.
The objects are maps By — Cg;
The 1-cells from Fy to Gy are maps 7o, o : H(I:BO) Fo(x) = Go(x);
The 2-cells from no to By are maps I' : ][ .5,y Mm0(z) = Bo(z).

The operations are defined pointwise.
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Next we define a displayed bicategory on Base(B, C). The displayed 0-cells are actions of
pseudofunctors on 1-cells. The displayed 1-cells over g are 2-cells witnessing the naturality
of ng. The displayed 2-cells over I' are equalities which show that I' is a modification.

» Definition 6.2 (maplcells_disp_bicat). We define a displayed bicategory MaplD(B, C)
on Base(B, C) such that
the objects over Fy : By — Cy are maps

Fy: H B1(X,Y) — Ci(Fo(X), Fo(Y));
(X.Y:Bo)

the 1-cells over ng : Fo(x) = Go(x) from F; to G, are invertible 2-cells

m: H m0(X) - G1(f) = Fi(f) - mo(Y);

(X,Y:Bo)(f: X —>Y)

the 2-cells over I": ng(x) = Bo(x) from 7, to By are equalities

11 m(f) e (Fi(f) aT(Y)) = (D(X) > G1(f)) ¢ Bu(f)-

(X,Y:Bo)(f:X—Y)

We denote the total bicategory of MaplD(B, C) by Mapl(B,C). Now we define three
displayed bicategories over Mapl(B,C). Each of them is defined as a chaotic displayed
bicategory (Item 4 in Definition 4.5).

» Definition 6.3 (identitor_disp_cat). We define a displayed bicategory Mapld(B, C) over
Mapl(B, C) as follows:
The objects over (Fp, F1) are identitors

Fi: [ idi(Fo(X)) = Fiidi(X));
(X:Bo)

The morphisms over (19, 71) from F; to G; are equalities
p(10(X)) @ A(no(X)) ™" @ (Fi(X) > 10(X)) = (no(X) < Gi(X)) @ m (i1 (X))

» Definition 6.4 (compositor_disp_cat). We define a displayed bicategory MapC(B, C)
over Mapl(B, C) as follows:
The objects over (Fy, F1) are compositors

Fe: II Fi(f)- Fi(g) = Fi(f - 9);
(X,Y,Z:Bo)(f:B1(X,Y))(9:B1(Y,Z))

The morphisms over (19, 71) from F. to G. consists of equalities

ae(n(f) > Gi(g))ea "o (Fi(f) <m(g))eae(F.>n(Z)) = (no(X) < Ge)em(f-g)
forall X,Y,Z : By, f:B1(X,Y) and g : B1(Y, Z).

» Definition 6.5 (map2cells_disp_cat). We define a displayed bicategory Map2D(B, C)
over Mapl(B, C) as follows:
The objects over (Fy, F1) are

Fy: H Ba(f,9) = Fi(f) = Fi(g);

(a,b:Bo)(f,9:a—b)
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The morphisms over (19,71) from F5 to Gy consist of equalities

[T (X)) < G2(6)) emlg) = m(f) e (F2(6) > no(Y)).
(6:F=9)

We denote the total category of the product of Map2D(B, C), Mapld(B, C), and MapC(B, C)
by RawPseudo(B, C). Note that its objects are of the form ((Fp, Fy), (Fs, F;, F.)), its 1-cells
are pseudotransformations, and its 2-cells are modifications. However, its objects are not yet
pseudofunctors, because they also need to satisfy several laws.

» Definition 6.6 (psfunctor_bicat). We define the bicategory Pseudo(B,C) as the full
subbicategory of RawPseudo(B, C) where the objects satisfy the following laws

Fy(id2(f)) = id2(F1(f)) and Fo(f e g) = F>(f) @ F2(9);

A(FL(f) = (Fi(a) > Fi(f)) @ Fe(idi(a), f) ® F2(A(f));

p(FL(f)) = (F1(f) < Fi(b)) @ Fe(f,id1(b)) @ F2(p(f));

(F1(f) @ Fe(g,h)) @ Fu(f,g - h) @ Fa(a) = a e (Fu(f,g) > Fi(h)) @ Fo(f - g, h);

Fo(f, 1) @ Fo(f <0) = (Fi(f) < F2(0)) @ Fe(f, 92);

Fe(f1,9) @ Fo(0 > g) = (F2(0) > Fi(g)) @ Fe(f2,9);

F;(X) and F.(f,g) are invertible 2-cells.

Each displayed layer in this construction is univalent. In addition, if C is univalent, then
so is Base(B, C). Hence, Theorem 3.6 follows from repeated application of Theorem 5.4.

6.2 Algebraic Examples

Next, we consider two constructions to build bicategories of algebras. To illustrate their
usage, we show how to define the bicategory of monads internal to a bicategory. Note that
each monad has a 0O-cell X and a 1-cell X — X. This structure is encapsulated by algebras
of a pseudofunctor [6].

» Definition 6.7 (disp_alg_bicat). Let B be a bicategory and let F': Pseudo(B, B) be a
pseudofunctor. We define a displayed bicategory Algp (F).
The objects over a : B are 1-cells F'(a) — a.
The 1-cells over f : Bi(a,b) from h, : F(a) = a to hy : F(b) — b are invertible 2-cells
ha - f = F1(f) - he.
Given f,g : Bi(a,b), algebras h, : F(a) — a and hy : F(b) — b, and hy and hgy over f
and g respectively, a 2-cell over 6 : f = g is an equality

(hg <10)@hy=h;e(Fy(8) > hy).
We write Alg(F') for the total category of Algp(F).

» Theorem 6.8 (bicat_algebra_is_univalent_2). Let B be a bicategory and let F :
Pseudo(B, B) be a pseudofunctor. If B is univalent, then so is Alg(F).

» Example 6.9 (Example 4.3 cont'd). The bicategory of pointed 1-types is the bicategory of
algebras for the constant pseudofunctor F'(a) = 1.

Define M; to be Alg(idg(B)). Objects of M; consist of an X : By and a 1-cell X —
X. These are not monads yet, because those are supposed to also have two 2-cells: the
unit and multiplication. To add this structure, we define two displayed bicategories on
M;. Both are defined via a more general construction, for which we use that there is
an identity pseudofunctor idy(B) : Pseudo(B, B) and that for all F; : Pseudo(B;,B2) and
F5 : Pseudo(Bs2, B3), we have a composition Fy - F5 : Pseudo(B1, Bs).
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Before giving this construction, let us describe the setting. Suppose that we have a
displayed bicategory D over some B. Our goal is to define a displayed bicategory over [D
where the displayed O-cells are certain 2-cells in B. We define the endpoints of these as
natural 1-cells, so we use pseudotransfomations. The source of these is mp - S for some
S : Pseudo(B, B), and the target is defined to be 7p - idg(B) where mp is the projection
from fD to B. Note that instead of mp, we use mp - idg(B), which is symmetric to the
source p - S. This allows us to construct such transformations by composing them. In
addition, pseudotransformations I,r : 7p - S — 7p -idg(B) give, for each (a, hy) : [D, a 1-cell
l(a) : B1(S(a),a). The construction adds 2-cells from I(a) to (a) and formally, we define the
following displayed bicategory.

» Definition 6.10 (add_cell_disp_cat). Suppose that D is a displayed bicategory over B
and given are S : Pseudo(B,B) and I,7 : 7p S — 7p -idp(B). We use Item 4 in Definition 4.5
to define a displayed bicategory Add2Cell(D, 1, r) over [D.

Its objects over a are 2-cells I(a) = r(a).

The morphisms over f : By(a,b) from n; to 7y are equalities

(m > 7p(f)) er(f) = 1(f) & (Si(mn(f)) < m2)-

» Theorem 6.11. The displayed bicategory Add2Cell(D, 1, r) is locally univalent (add_ cell_
disp_ cat_univalent_2_1). Moreover, if C is locally univalent and D is locally univalent,
then Add2Cell(D, 1, ) is globally univalent (add_ cell_disp_ cat_univalent_2_0).

Let us show how to add the unit and multiplication to the structure. For that, we first
need the following pseudotransformation.

» Definition 6.12 (alg_map). Let B be a bicategory, and let F' : Pseudo(B, B) be pseudo-
functors. We define a pseudotransformation h : majg r - ' — Taigyr - ido(B). On objects
(@, hq), we define h(a, hy) = h, and on 1-cells (f, hy), we define h(f, hy) = hy.

To add the unit to the structure, we use Definition 6.10. For S, we take idg, for [ we
take the identity transformation on g4, - idg and for r we take h. The multiplication is done
similarly, but instead we take h - h for [.

Let M, be the total bicategory of the product of these two displayed bicategories. To
obtain actual monads, the structure needs to satisfy three laws, namely

AF) o (> f) o = ida(f);

p(f)~ e (f <m) e p=ida(f);

(fap)op=alf.f.f)e(ne f)epu.

We define M(B) to be the full subbicategory of M, with respect to these laws. From
Theorems 6.8 and 6.11 and Example 5.6 we conclude:

» Theorem 6.13 (monad_is_univalent_2). If B is univalent, then so is M(B).

6.3 Categories with Families

Finally, we discuss the last example: the bicategory of (univalent) categories with families
(CwFs) [9]. We follow the formulation by Fiore [12] and Awodey [4], which is already
formalized in UniMath [3]: a CwF consists of a category C, two presheaves Ty and Tm on C,
a morphism p : Tm — Ty, and a representation structure for p.

However, rather than defining CwFs in one step, we use a stratified construction yielding
the sought bicategory as the total bicategory of iterated displayed layers. The base bicategory
is Cat (cf. Example 2.7). The second layer of data consists of two presheaves, each described
by the following construction.
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» Definition 6.14 (disp_presheaf_bicat). Define the displayed bicategory PShD on Cat:
The objects over C' are functors from C°P to the univalent category Set;
The 1-cells from T : C — Set to T” : D — Set over F' : C' — D are natural transformations
from T to F°P.T";
The 2-cells from B: T = F°?-T" to ' : T = G°° - T" over v : F = G are equalities

B=p (> T

Denote by CwF; the total category of the product of PShD with itself. An object in CwF;
consists of a category C' and two presheaves Ty, Tm : C°P — Set. The third piece of data is a
natural transformation between them.

» Definition 6.15 (morphisms_of_presheaves_display). We define a displayed bicategory
dCwF; on CwF; as the chaotic displayed bicategory (Item 4 in Definition 4.5) such that
The objects over (C,(Ty, Tm)) are natural transformations from Ty to Tm.
Suppose we have two objects (C, (Ty, Tm)) and (C’, (Ty’, Tm')), two natural transforma-
tions p: Tm = Ty and p’ : Tm’ = Ty’, and suppose we have a 1-cell f from (C, (Ty, Tm))
to (C’, (Ty’, Tm")). Note that f consists of a functor F': C' — C’ and two transformations
B:Ty=F®oTy and 8/ : Tm = F° o Tm’. Then a l-cell over f is an equality

pef=p"e(FPayp).

With dCwF;, and the sigma construction from Item 2 in Definition 4.5, we get a displayed
bicategory over Cat and we denote its total bicategory by CwF,. As the last piece of data,
we add the representation structure for the morphism p of presheaves.

» Definition 6.16 (cwf_representation). Given a category C together with functors
Ty, Tm : C°P — Set and a natural transformation p : Tm = Ty, we say isCwF(C, Ty, Tm, p) if
for each T : C and A : Ty(T"), we have a representation of the fiber of p over A.

A detailed definition can be found in [3, Definition 3.1]. Since C' is univalent, the type
isCwF(C, Ty, Tm, p) is a proposition, and thus we define CwF as a full subbicategory of CwF,.

» Proposition 6.17 ([3, Lemma 4.3] , isaprop_cwf_representation). isCwF(C, Ty, Tm,p)
1S a proposition.

» Definition 6.18 (cwf). We define CwF as the full subbicategory of dCwF;, with isCwF.

» Theorem 6.19 (cwf_is_univalent_2). CwF is univalent.

7 Conclusions and Further Work

In the present work, we studied univalent bicategories. Showing that a bicategory is univalent
can be challenging; to simplify this task, we introduced displayed bicategories, which provide
a way to modularly reason about complicated bicategories. We then demonstrated the
usefulness of displayed bicategories by showing, using the displayed technology, that several
complicated bicategories are univalent.

For the practical mechanization of mathematics in a computer proof assistant, two issues
may arise when building complicated bicategories as the total bicategory of iterated displayed
bicategories. Firstly, the structures may not be parenthesized as desired. This problem can
be avoided or at least alleviated through a suitable use of the sigma construction of displayed
bicategories (Item 2 in Definition 4.5). Secondly, “meaningless” terms of unit type may occur
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in the cells of this bicategory. We are not aware of a way of avoiding these occurrences
while still using displayed bicategories. However, both issues can be addressed through the
definition of a suitable “interface” to the structures, in form of “builder” and projection
functions, which build, or project a component out of, an instance of the structure. The
interface hides the implementation details of the structure, and thus provides a welcome
separation of concerns between mathematical and foundational aspects.
We have only started, in the present work, the development of bicategory theory in
univalent foundations and its formalization. Our main goals for the future are
A bicategorical Rezk completion: to construct the free univalent bicategory associated to
a bicategory. It will fundamentally use Definition 6.6 and Theorem 3.6.
Equivalence Principle: to show that identity is biequivalence for univalent bicategories.
More displayed machinery: to define and study displayed notions of pseudofunctors, biequiv-
alences, etc over the respective notions in the base. In particular, the extra displayed
machinery will allow us to build not just (univalent) bicategories layerwise, but also maps
and equivalences between them.
The envisioned displayed machinery can also be used to study the semantics of higher
inductive types (HITs). Using Definitions 6.7 and 6.10, we can define bicategories of algebras
on a signature; its initial object is the HIT specified by the signature. The Rezk completion
1 : Grpdy — 1-Typey from groupoids to 1-types can then be used to construct a biadjunction
— obtained as the total biadjunction of a suitable displayed biadjunction — between algebras
of 1-types and algebras of groupoids. To construct higher inductive 1-types, we just need to
show that the groupoid model has HITs, which was proved by Dybjer and Moenclaey [10].
Displayed notions naturally appear in Clairambault and Dybjer’s [8] pair of biequiva-
lences FL m—— CwFIdivj‘I;’E and LCC —= Cngegr‘h’z’H relating categories with families
equipped with structure modelling type and term formers to finite limit categories and locally
cartesian closed categories, respectively. Here, the latter biequivalence is an “extension” of
the former; this can be made formal by a displayed biequivalence relating the Il-structure
with the locally cartesian closed structure.
More generally, we aim to use the displayed machinery when extending to the bicategorical
setting the comparison of different categorical structures for type theories started in [3].
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—— Abstract

In their work on second-order equational logic, Fiore and Hur have studied presentations of simply
typed languages by generating binding constructions and equations among them. To each pair
consisting of a binding signature and a set of equations, they associate a category of “models”, and
they give a monadicity result which implies that this category has an initial object, which is the
language presented by the pair.

In the present work, we propose, for the untyped setting, a variant of their approach where
monads and modules over them are the central notions. More precisely, we study, for monads over
sets, presentations by generating (“higher-order”) operations and equations among them. We consider
a notion of 2-signature which allows to specify a monad with a family of binding operations subject
to a family of equations, as is the case for the paradigmatic example of the lambda calculus, specified
by its two standard constructions (application and abstraction) subject to 8- and n-equalities. Such
a 2-signature is hence a pair (3,E) of a binding signature ¥ and a family F of equations for ¥. This
notion of 2-signature has been introduced earlier by Ahrens in a slightly different context.

We associate, to each 2-signature (3, E), a category of “models of (2, E)”; and we say that a
2-signature is “effective” if this category has an initial object; the monad underlying this (essentially
unique) object is the “monad specified by the 2-signature”. Not every 2-signature is effective; we
identify a class of 2-signatures, which we call “algebraic”, that are effective.

Importantly, our 2-signatures together with their models enjoy “modularity”: when we glue
(algebraic) 2-signatures together, their initial models are glued accordingly.

We provide a computer formalization for our main results.
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1 Introduction

The present work is devoted to the study of presentations of monads on the category of
sets. More precisely, there is a well established theory of presentations of monads through
generating (first-order) operations equipped with relations among the corresponding derived
operations. Here we propose a counterpart of this theory, where we consider generation of
monads by binding operations. Various algebraic structures generated by binding operations
have been considered by many, going back at least to Fiore, Plotkin, and Turi [10], Gabbay
and Pitts [12], and Hofmann [18]. Every such operation has a binding arity, which is a
sequence of non-negative integers. For example, the binding arity of the application operation
of the lambda calculus is (0,0): it takes two arguments without binding any variable in them,
while the abstraction operation on the monad of the lambda calculus has binding arity (1),
as it binds one variable in its single argument. For each family 3 of binding arities, there is
a generated “free” monad $ on Set which maps a set of free variables X to the set of terms
33(X) taking variables in X.

If p: $ — R is a monad epimorphism, we understand that R is generated by a family
of operations whose binding arities are given by 3, subject to suitable identifications. In
particular, for ¥ := ((0,0), (1)), £ may be understood as the monad LC of syntactic terms of
the lambda calculus, and we have an obvious epimorphism p : IS LCgy, where LCg,, is the
monad of lambda-terms modulo 8 and 7. In order to manage such equalities, the approach
in the first-order case suggests to identify p as the coequalizer of a double arrow from T to N
where T is again a “free” monad. Let us see what comes out when we attempt to find such
an encoding for the B-equality of the monad LCg,. It should say that for each set X, the
following two maps from 2(X + {*}) x 3(X) to B(X),

(t,u) — app(abs(t),u)

(t,u) — t[x — u)
are equal. Here a problem occurs, namely that the above collections of maps, which can
be understood as a morphism of functors, cannot be understood as a morphism of monads.
Notably, they do not send variables to variables.

On the other hand, we observe that the members of our equations, which are not
morphisms of monads, commute with substitution, and hence are more than morphisms of
functors: indeed they are morphisms of modules over 3. (In Section 2, we recall briefly what
modules over a monad are.) Accordingly, a (second-order) presentation for a monad R could
be a diagram

r—s5 " . p (1)

where ¥ is a binding signature, 3 is the associated free monad, 7" is a module over 27 fis
a pair of morphisms of modules over i, and p is a monad epimorphism. And now we are
faced with the task of finding a condition meaning something like “p is the coequalizer of f71.
To this end, we introduce the category Mon™ “of models of 7, whose objects are monads
“equipped with an action of ¥”. Of course 3 is equipped with such an action which turns it
into the initial object. Next, we define the full subcategory of models satisfying the equation

L This cannot be the case stricto sensu since f is a pair of module morphisms while p is a monad morphism.
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f, and require R to be the initial object therein. Our definition is suited for the case where
the equation f is parametric in the model: this means that now 7" and f are functions of the
model S, and f(S) = (u(S),v(9)) is a pair of S-module morphisms from 7'(S) to S. We say
that S satisfies the equation f if u(S) = v(S). Generalizing the case of one equation to the
case of a family of equations yields the notion of 2-signature already introduced by Ahrens
[1] in a slightly different context.

Now we are ready to formulate our main problem: given a 2-signature (X, F), where E is
a family of parametric equations as above, does the subcategory of models of 3 satisfying
the family of equations E' admit an initial object?

We answer positively for a large subclass of 2-signatures which we call algebraic 2-
signatures (see Theorem 32).

This provides a construction of a monad from an algebraic 2-signature, and we prove
furthermore (see Theorem 27) that this construction is modular, in the sense that merging
two extensions of 2-signatures corresponds to building an amalgamated sum of initial models.
This is analogous to our previous result for 1-signatures shown in [2, Theorem 32].

As expected, our initiality property generates a recursion principle which is a recipe
allowing us to specify a morphism from the presented monad to any given other monad.

We give various examples of monads arising “in nature” that can be specified via an
algebraic 2-signature (see Section 6), and we also show through a simple example how our
recursion principle applies (see Section 7).

Computer-checked formalization. This work is accompanied by a computer-checked form-
alization of the main results, based on the formalization of our previous work [2]. We
work over the UniMath library [27], which is implemented in the proof assistant Coq
[23]. The formalization consists of about 9,500 lines of code, and can be consulted on
https://github.com/UniMath/largecatmodules. A guide is given in the README, and
a summary of our formalization is available at https://initialsemantics.github.io/
doc/50£d617/Modules.SoftEquations. Summary.html.

For the purpose of this article, we refer to a fixed version of our library, with the short
hash 50fd617. This version compiles with version 10839ee of UniMath.

Throughout the article, statements are annotated with their corresponding identifiers in
the formalization. These identifiers are also hyperlinks to the online documentation stored
at https://initialsemantics.github.io/doc/50£d617/index.html.

Related work. The present work follows a previous work of ours [2] where we study a
slightly different kind of presentation of monads. Specifically, in [2], we treat a class of
1-signatures which can be understood as quotients of algebraic 1-signatures. This should
amount to considering a specific kind of equations, as suggested in Section 6.2, where we
recover, in the current setting, all the examples given there.

Ahrens [1] introduces the notion of 2-signature which we consider here, in the slightly
different context of (relative) monads on preordered sets, where the preorder models the
reduction relation. In some sense, our result tackles the technical issue of quotienting the
initial (relative) monad constructed in [1] by the preorder.

In a classical paper, Barr [3] explained the construction of the “free monad” generated by
an endofunctor?. In another classical paper, Kelly and Power [19] explained how any finitary

2 Fiore and Saville [11] give an enlightening generalization of the construction by Barr.
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monad can be presented as a coequalizer of free monads®. There, free monads correspond to
our initial models of an algebraic 1-signature without any binding construction.
As mentioned above, the present work is also closely related to that of Fiore and
collaborators:
Our notion of equations and that of model for them seem very close to the notion of
equational systems and that of algebra for them in [7]: in particular, the preservation of
epimorphisms, which occurs in their construction of inductive free algebras for equational
systems, appears here in our definition of elementary equation. It would be interesting to
understand formal connections between the two approaches.
In [8], Fiore and Hur introduce a notion of equation based on syntax with meta-variables:
essentially, a specific syntax, say, T := T (M, X) considered there depends on two contexts:
a meta-context M, and an object-context X. The terms of the actual syntax are then
those terms t € T((), X) in an empty meta-context. An equation for 7' is, simply speaking,
a pair of terms in the same pair of contexts. Transferring an equation to any model of the
underlying algebraic 1-signature is done by induction on the syntax with meta-variables.
The authors show a monadicity theorem which straightforwardly implies an initiality
result very similar to ours. That monadicity result is furthermore an instance of a more
general theorem by Fiore and Mahmoud [9, Theorem 6.2].
Translations between languages similar to the translation we present in Section 7 are also
studied in [9]. Here again, it would be interesting to understand formal connections.
At this stage, our work only concerns untyped syntax, but we anticipate it will generalize
to the sorted setting as in [8] (see also the more general [6]).
Furthermore, Hamana [15] proposes initial algebra semantics for “binding term rewriting
systems”, based on Fiore, Plotkin, and Turi’s presheaf semantics of variable binding and
Liith and Ghani’s monadic semantics of term rewriting systems [21].
The alternative nominal approach to binding syntax initiated by Gabbay and Pitts [12]
has been actively studied*. We highlight some contributions:
Clouston [4] discusses signatures, structures (a.k.a. models), and equations over signatures
in nominal style.
Ferndndez and Gabbay [5] study signatures and equational theories as well as rewrite
theories over signatures.
Kurz and Petrisan [20] study closure properties of subcategories of algebras under
quotients, subalgebras, and products. They characterize full subcategories closed under
these operations as those that are definable by equations. They also show that the
signature of the lambda calculus is effective, and study the subcategory of algebras of
that signature specified by the §- and n-equations.

2 Categories of modules over monads

In this section, we recall the notions of monad and module over a monad, as well as some
constructions of modules. We restrict our attention to the category Set of sets, although most
definitions are straightforwardly generalizable. See [17] for a more extensive introduction.
A monad (over Set) is a triple R = (R, u,n) given by a functor R: Set — Set, and
two natural transformations pu: R- R — R and n: I — R such that the well-known
monadic laws hold. A monad morphism to another such monad (R/, /,n’) is a natural

3 Their work has been applied to various more general contexts (e.g. [25]).
4 The approaches by Fiore and collaborators and Gabbay and Pitts [12] are nicely compared by Power
[24], who also comments on some generalization of the former approach.
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transformation f : R — R’ that commutes with the monadic structure. The category of
monads is denoted by Mon.

Let R be a monad. A (left) R-module’ is given by a functor M : Set — Set equipped
with a natural transformation p: M-R — M, called module substitution, which is compatible
with the monad composition and identity:

popR=poMy, poMn=1p.

Let f: R — S be a morphism of monads and M an S-module. The module substitution
M-RML M-S 5 M turns M into an R-module f*M, called pullback of M along f.

A natural transformation of R-modules ¢: M — N is linear if it is compatible with
module substitution on either side, that is, if p o pM = p¥ 0 @ R. Modules over R and their
morphisms form a category denoted Mod(R), which is complete and cocomplete: limits and
colimits are computed pointwise.

We define the total module category [, Mod(R) as follows: its objects are pairs (R, M)
of a monad R and an R-module M. A morphism from (R, M) to (S, N) is a pair (f, m) where
f: R — S is a morphism of monads, and m: M — f*N is a morphism of R-modules.
The category | R Mod(R) comes equipped with a forgetful functor to the category of monads,
given by the projection (R, M) — R. This functor is a Grothendieck fibration with fiber
Mod(R) over R. In particular, any monad morphism f : R — S gives rise to a functor
f*: Mod(S) — Mod(R) which preserves limits and colimits.

» Example 1. We give some important examples of modules:

1. Every monad R is a module over itself, which we call the tautological module.

2. For any functor F': Set — Set and any R-module M : Set — Set, the composition
F - M is an R-module (in the evident way).

3. For every set W we denote by W: Set — Set the constant functor W := X +— W. Then
W is trivially an R-module since W =W - R.

4. Given an R-module M, the R-module M’ is defined on objects by M'(X) := M (X + {x}),
and with the obvious module structure. Derivation yields an endofunctor on Mod(R)
that is right adjoint to the functor M +— M x R, “product with the tautological module”.
Details are given, e.g., in [2, Section 2.3].

5. Derivation can be iterated. Given a list of non negative integers (a) = (a1,...,a,)
and a left module M over a monad R, we denote by M(®) = M(a1:an) the module
M) x ... x M) with MO =1 the final module.

3 1-signatures and their models

In this section, we review the notion of 1-signature studied in detail in [2] — there only called
“signature”.

A 1-signature is a section of the forgetful functor from the category [, Mod(R) to the
category Mon. A morphism between two 1l-signatures 3i,%s: Mon — fR Mod(R)
is a natural transformation m: ¥; — 35 which, post-composed with the projection
fR Mod(R) — Mon, is the identity. The category of 1-signatures is denoted by 1-Sig.

Limits and colimits of 1-signatures can be easily constructed pointwise: the category of
1-signatures is complete and cocomplete.

5 The analogous notion of right R-module is not used in this work, we hence simply write “ R-module”
instead of “left R-module” for brevity.
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Table 1 Examples of 1-signatures.

Hypotheses On objects Notation of the 1-signature
R— R (C)

¥ l-signature, F' functor R w— F-X(R) F.-X
Rw— 1gr 1

Y, U 1-signatures R+— X(R) x ¥(R) XU

¥, U 1-signatures R+— X(R)+ ¥(R) S+ U
R~ R S}

neN R~ R™ e

(a) =(a1,...,an) € N" R— R = R x .. x Rl®) @ elementary signatures

Table 1 lists important examples of 1-signatures. An algebraic 1-signature is a (possibly
infinite) coproduct of elementary signatures (defined in Table 1). For instance, the algebraic
1-signature of the lambda calculus is ¥ c = 62 + ©'.

Given a monad R over Set, we define an action of the 1-signature ¥ in R to be a
module morphism from X(R) to R. For example, the application app: LC? — LC is an
action of the elementary 1-signature ©2 into the monad LC of syntactic lambda calculus.
The abstraction abs: LC’ — LC is an action of the elementary 1l-signature ©’ into the
monad LC. Then [app, abs] : LC? + LC' —» LC is an action of the algebraic 1-signature of
the lambda-calculus ©2 + ©’ into the monad LC.

Given a 1-signature X, we build the category Mon™ of models of X as follows. Its objects
are pairs (R,r) of a monad R equipped with an action r : 3(R) — R of ¥. A morphism
from (R, ) to (S, s) is a morphism of monads m : R — S making the following diagram of
R-modules commutes:

S(R) R

—r
3(m) m
—>

%(5))

m*S

Let f: ¥ — ¥ be a morphism of 1-signatures and R = (R,r) a model of ¥. The linear
morphism X(R) i) U(R) — R defines an action of ¥ in R. The induced model of ¥ is
called pullback of R along f and noted f*R.

The total category fz Mon®™ of models is defined as follows:

An object of fz Mon™ is a triple (3, R,r) where ¥ is a 1-signature, R is a monad, and r

is an action of ¥ in R.

A morphism in [, Mon* from (21, R1,71) to (X2, Ra,72) consists of a pair (i,m) of a

1-signature morphism i : ¥; — X5 and a morphism m of X;-models from (Ry,71) to

(RQ, i*(TQ)).

The forgetful functor [, Mon* — Sig is a Grothendieck fibration.

Given a 1-signature X, the initial object in Mon™, if it exists, is denoted by $. In this

case, the 1-signature ¥ is said effective®.

» Theorem 2 ([16, Theorems 1 and 2]). Algebraic 1-signatures are effective.

% In our previous work [2], we call representable any 1-signature ¥ that has an initial model, called a
representation of ¥, or syntax generated by X.
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4  2-Signatures and their models

In this section we study 2-signatures and models of 2-signatures. A 2-signature is a pair of a
1-signature and a family of equations over it.

4.1 Equations

Our equations are those of Ahrens [1]: they are parallel module morphisms parametrized by

the models of the underlying 1-signature. The underlying notion of 1-model is essentially the

same as in [1], even if, there, such equations are interpreted instead as inequalities.
Throughout this subsection, we fix a 1-signature X, that we instantiate in the examples.

» Definition 3. We define a 3-module to be a functor T from the category of models of
Y to the category fR Mod(R) commuting with the forgetful functors to the category Mon of
monads,

Mon™ T [ Mod(R)

N

Mon

» Example 4. To each 1-signature V¥ is associated, by precomposition with the projection
from Mon* to Mon, a X-module still denoted ¥. All the S-modules occurring in this work
arise in this way from 1-signatures; in other words, they do not depend on the action of the
1-model. In particular, we have the tautological ¥-module ©, and, more generally, for
any natural number n € N, a ¥-module ©(™ . Also we have another fundamental X-module
(arising in this way from) X itself.

» Definition 5. Let S and T be X-modules. We define a morphism of X-modules from S
to T to be a natural transformation from S to T which becomes the identity when postcomposed
with the forgetful functor [, Mod(R) — Mon.

» Example 6. Each 1-signature morphism ¥ — ® upgrades into a morphism of ¥-modules.
Further in that vein, there is a morphism of ¥-modules 7> : ¥ — ©. It is given, on a model
(R,m) of 3, by m : ¥(R) — R. (Note that it does not arise from a morphism of 1-signatures.)
When the context is clear, we write simply 7 for this morphism, and call it the tautological
morphism of 3-modules.

» Proposition 7. Our X-modules and their morphisms, with the obvious composition and
identity, form a category.

» Definition 8. We define a X-equation to be a pair of parallel morphisms of %-modules.
We also write ey = eq for the Yi-equation e = (e, €2).

» Example 9 (Commutativity of a binary operation). Here we instantiate our fixed 1-signature

as follows: X := © x ©. In this case, we say that 7 is the (tautological) binary operation.

Now we can formulate the usual law of commutativity for this binary operation.

We consider the morphism of 1-signatures swap : ©2 — ©2 that exchanges the two
components of the direct product. Again by Example 6, we have an induced morphism of
Y-modules, still denoted swap.
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Then, the ¥-equation for commutativity is given by the two morphisms of X-modules

swap

(SR O N o)
R

See also Section 6.1 where we explain in detail the case of monoids.

For the example of the lambda calculus with - and n-equality (given in Example 11), we
need to introduce currying:

» Definition 10. By abstracting over the base monad R the adjunction in the category of
R-modules of Example 1, item 4, we can perform currying of morphisms of 1-signatures:
given a morphism of signatures X1 X © — 3o it produces a new morphism X1 — ¥5. By
Ezxample 4, currying acts also on morphisms of X-modules.

Conversely, given a morphism of 1-signatures (resp. Y-modules) 31 — 3, we can define
the uncurryied map 1 X © — 3.

» Example 11 (- and 7-conversions). Here we instantiate our fixed 1-signature as follows:
Yic:=0© x0O+0 This is the 1-signature of the lambda calculus. We break the tautological
Y-module morphism into its two pieces, namely app := 7oinl : © x © — O and abs := Toinr:
©’ — O. Applying currying to app yields the morphism app; : @ — ©’ of ¥} c-modules.
The usual § and 7 relations are implemented in our formalism by two | c-equations that we
call eg and e,, respectively:

o abs o) appP; o o app; % abs o
eg: o o and ey o o
e d _—
1 1

4.2 2-signatures and their models

» Definition 12. A 2-signature is a pair (X, E) of a I-signature X and a family E of
Yi-equations.

» Example 13. The 2-signature for a commutative binary operation is (02,7 o swap = 7)
(cf. Example 9).

» Example 14. The 2-signature of the lambda calculus modulo 8- and n-equality is Tic,, =
(© x©+ 0, {eg,e,}), where eg, e, are the ¥ c-equations defined in Example 11.

» Definition 15 (satisfies_equation). We say that a model M of ¥ satisfies the -
equation e = (ey,ez2) if e1(M) = ea(M). If E is a family of ¥-equations, we say that a
model M of ¥ satisfies E if M satisfies each X-equation in E.

» Definition 16. Given a monad R and a 2-signature T = (X, E), an action of T in R is
an action of ¥ in R such that the induced 1-model satisfies all the equations in E.

» Definition 17 (category_model_equations). For a 2-signature (X, E), we define the
category Mon %) of models of (3, E) to be the full subcategory of the category of models
of XX whose objects are models of ¥ satisfying E, or equivalently, monads equipped with an
action of (3, E).

» Example 18. A model of the 2-signature T c,, = (0 x©0+0’, {eg,e,}) is given by a model
(R,app™ : R x R — R,abs™ : R’ — R) of the 1-signature X ¢ such that appf - abs®™ = 15
and abs™ - appt = 1y (see Example 11).
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» Definition 19. A 2-signature (X, E) is said to be effective if its category of models
Mon ™) has an initial object, denoted (, E).

In Section 4.4, we aim to find sufficient conditions for a 2-signature (X, F) to be effective.

4.3 Modularity for 2-signatures

In this section, we define the category 2Sig of 2-signatures and the category 2Mod of models
of 2-signatures, together with functors that relate them with the categories of 1-signatures
and 1-models. The situation is summarized in the commutative diagram of functors

UmMod

/\
2Mod T Mod
\_/

Fmod

where
27 is a Grothendieck fibration;
m is the Grothendieck fibration defined in [2, Section 5.2];
Usig is a coreflection and preserves colimits; and
Uwmod is a coreflection.
As a simple consequence of this data, we obtain, in Theorem 27, a modularity result in
the sense of Ghani, Uustalu, and Hamana [13]: it explains how the initial model of an
amalgamated sum of 2-signatures is the amalgamation of the initial model of the summands’.
We start by defining the category 2Sig of 2-signatures:

» Definition 20 (TwoSig_category). Given 2-signatures (31, E1) and (X2, E3), a morph-
ism of 2-signatures from (X1, E1) to (X2, E3) is a morphism of 1-signatures m : ¥ —
Yo such that for any model M of ¥ satisfying Eo, the ¥1-model m*M satisfies E1.

These morphisms, together with composition and identity inherited from 1-signatures,
form the category 2Sig.

We now study the existence of colimits in 2Sig. We know that Sig is cocomplete, and we
use this knowledge in our study of 2Sig, by relating the two categories:

Let Fsig : Sig — 2Sig be the functor which associates to any 1l-signature ¥ the empty
family of equations, Fsig(X) := (X,0). Call Us;g : 2Sig — Sig the forgetful functor defined on
objects as Usig(X, E) := X.

» Lemma 21 (TwoSig_OneSig_is_right_adjoint, OneSig_TwoSig_fully_faithful). We

have Fsig 4 Usig. Furthermore, Usig is a coreflection.

We are interested in specifying new languages by “gluing together” simpler ones. On the
level of 2-signatures, this is done by taking the coproduct, or, more generally, the pushout of
2-signatures:

7 As noticed by an anonymous referee, this definition of “modularity” does not seem related to the specific
meaning it has in the rewriting community (see, for example, [14]).
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» Theorem 22 (TwoSig_PushoutsSET). The category 2Sig has pushouts.

Coproducts are computed by taking the union of the equations and the coproducts of
the underlying 1-signatures. Coequalizers are computed by keeping the equations of the
codomain and taking the coequalizer of the underlying 1-signatures. Thus, by decomposing
any colimit into coequalizers and coproducts, we have this more general result:

» Proposition 23. The category 2Sig is cocomplete and Usig preserves colimits.

We now turn to our modularity result, which states that the initial model of a coproduct
of two 2-signatures is the coproduct of the initial models of each 2-signature. More generally,
the two languages can be amalgamated along a common “core language”, by considering a
pushout rather than a coproduct.

For a precise statement of that result, we define a “total category of models of 2-signatures”:

» Definition 24. The category f(E’E) Mon(E’E), or 2Mod for short, has, as objects, pairs
((3,E), M) of a 2-signature (X, E) and a model M of (X, E).

A morphism from (31, E1), My) to (22, Es), M2) is a pair (m, f) consisting of a morph-
ismm: (X1, E1) = (22, E2) of 2-signatures and a morphism f : My — m*Ms of (X1, F1)-
models (or, equivalently, of ¥1-models).

This category of models of 2-signatures contains the models of 1-signatures as a coreflective
subcategory. Let Foq : Mod — 2Mod be the functor which associates to any 1-model (%, M)
the empty family of equations, Fmoq (X, M) := (Fsig(X), M). Conversely, the forgetful functor
UMod : 2Mod — Mod maps ((Z, FE), M) to (X, M).

» Lemma 25 (TwoMod_OneMod_is_right_adjoint, OneMod_TwoMod_fully_faithful). We
have Fuod 1 Umod- Furthermore, Upod s a coreflection.

The modularity result is a consequence of the following technical result:

» Proposition 26 (TwoMod_cleaving). The forgetful functor 2w : 2Mod — 2Sig is a Grothen-
dieck fibration.

The modularity result below is analogous to the modularity result for 1-signatures [2,
Theorem 32]:

» Theorem 27 (Modularity for 2-signatures, pushout_in_big_rep). Suppose we have a
pushout diagram of effective 2-signatures, as on the left below. This pushout gives rise to
a commutative square of morphisms of models in 2Mod as on the right below, where we
only write the second components, omitting the (morphisms of) signatures. This square is a
pushout square.

Tog—— T4 YQH’YH
To——T 1,57

Intuitively, the 2-signatures T; and Y5 specify two extensions of the 2-signature Y, and T
is the smallest extension containing both these extensions. By Theorem 27 the initial model
of T is the “smallest model containing both the languages generated by T; and Y5
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4.4 Initial Semantics for 2-Signatures

We now turn to the problem of constructing the initial model of a 2-signature (X, E'). More

—

specifically, we identify sufficient conditions for (3, E') to admit an initial object (X, E') in
the category of models. Our approach is very straightforward: we seek to construct (Z,/E)
by applying a suitable quotient construction to the initial object $ of Mon®.

This leads immediately to our first requirement on (3, E'), which is that ¥ must be an
effective 1-signature. (For instance, we can assume that 3 is an algebraic 1-signature, see
Theorem 2.) This is a very natural hypothesis, since in the case where E is the empty family
of Y-equations, it is obviously a necessary and sufficient condition.

Some Y-equations are never satisfied. In that case, the category Mon is empty. For
example, given any 1l-signature ¥, consider the Y-equation inl,inr : © = © + © given by
the left and right inclusion. This is obviously an unsatisfiable ¥-equation. We have to find
suitable hypotheses to rule out such unsatisfiable Y-equations. This motivates the notion of
elementary equations.

(2,E)

» Definition 28. Given a 1-signature 33, a X-module S is nice if S sends pointwise epimorphic
Y.-model morphisms to pointwise epimorphic module morphisms.

» Definition 29 (elementary_equation). Given a I-signature X, an elementary X-
equation is a Y-equation such that
the target is a finite derivative of the tautological 2-signature ©, i.e., of the form O™ for
somen € N, and
the source is a nice X-module.

» Example 30 (BindingSigAreEpiSig). Any algebraic l-signature is nice [2, Example 45].
Thus, any Y-equation between an algebraic 1-signature and ©(")| for some natural number
n, is elementary.

» Definition 31. A 2-signature (X, E) is said algebraic if ¥ is algebraic and E is a family
of elementary equations.

» Theorem 32 (elementary_equations_on_alg_preserve_initiality). Any algebraic
2-signature has an initial model.

The proof of Theorem 32 is given in Section 5.

» Example 33. The 2-signature of lambda calculus modulo 8 and 7 equations given in
Example 14 is algebraic. Its initial model is precisely the monad LCg, of lambda calculus
modulo Sn equations.

The instantiation of the formalized Theorem 32 to this 2-signature is done in LCBetaEta®.

Let us mention finally that, using the axiom of choice, we can take a similar quotient on
all the 1-models of 3i:

» Proposition 34 (ModEq_Mod_is_right_adjoint, ModEq_Mod_fully_faithful). Here we
assume the axiom of choice. The forgetful functor from the category Mon %) of 2-models
of (3,E) to the category Mon® of S-models has a left adjoint. Moreover, the left adjoint
s a reflector.

8 An initiality result for this particular case was also previously discussed and proved formally in the Coq
proof assistant in [17].
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5 Proof of Theorem 32

Our main technical result on effectiveness is the following Lemma 35. In Theorem 32, we
give a much simpler criterion that encompasses all the examples we give.
The main technical result is encapsulated in the following lemma.

» Lemma 35 (elementary_equations_preserve_initiality). Let (X, E) be a 2-signature
such that:

1. X sends epimorphic natural transformations to epimorphic natural transformations,

2. E is a family of elementary equations,

3. the initial 1-model of X exists,

4. the initial 1-model of ¥ preserves epimorphisms,

5. the image by X of the initial 1-model of 3 preserves epimorphisms.

Then, the category of 2-models of (X, E) has an initial object.

Before tackling the proof of Lemma 35, we discuss how to derive Theorem 32 from it,
and we prove some auxiliary results.
We start with a lemma about preservation of epimorphisms:

» Lemma 36 (algebraic_model_Epi and BindingSig_on_model_isEpi). Let X be an al-
gebraic 1-signature. Then X and X(X) preserve epimorphisms.

Now we have everything we need to prove Theorem 32:

Proof of Theorem 32. The “epimorphism” hypotheses of Lemma 35 are used to transfer
structure from the initial model 3 of the 1-signature ¥ onto a suitable quotient. There are
different ways to prove these hypotheses:

The axiom of choice implies conditions 4 and 5 since, in this case, any epimorphism in

Set is split and thus preserved by any functor.

Condition 5 is a consequence of condition 4 if ¥ sends monads preserving epimorphisms

to modules preserving epimorphisms.

If ¥ is algebraic, then conditions 1, 3, 4 and 5 are satisfied, cf. Example 30 and Lemma 36.
From the remarks above, we derive the simpler and weaker statement of Theorem 32 that
covers all our examples, which are algebraic. |

The rest of this section is dedicated to the proof of the main technical result, Lemma 35.
The reader inclined to do so may safely skip this part, and rely on the correctness of the
machine-checked proof instead.

The proof of Lemma 35 uses some quotient constructions that we present now:

» Proposition 37 (u_monad_def). Given a monad R preserving epimorphisms and a collec-
tion of monad morphisms (f; : R — Si)ic1, there exists a quotient monad R/(f;) together
with a projection pf*: R — R/(f;), which is a morphism of monads such that each f; factors
through p.

Proof. The set R/(f;)(X) is computed as the quotient of R(X) with respect to the relation
x ~ y if and only if f;(x) = fi(y) for each i € I. This is a straightforward adaptation of
Lemma 47 of [2]. <

Note that the epimorphism preservation is implied by the axiom of choice, but can be
proven for the monad underlying the initial model S of an algebraic 1-signature ¥ even
without resorting to the axiom of choice.

The above construction can be transported on X-models:
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» Proposition 38 (u_rep_def). Let X be a 1-signature sending epimorphic natural transform-
ations to epimorphic natural transformations, and let R be a X-model such that R and X(R)
preserve epimorphisms. Let (f; : R — S;)ier be a collection of X-model morphisms. Then the
monad R/(f;) has a natural structure of ¥-model and the quotient map p: R — R/(f;) is
a morphism of Y-models. Any morphism f; factors through p™ in the category of L-models.

The fact that R and 3(R) preserve epimorphisms is implied by the axiom of choice. The
proof follows the same line of reasoning as the proof of Proposition 37.
Now we are ready to prove the main technical lemma:

Proof of Lemma 35. Let X be an effective 1-signature, and let E be a set of elementary

Y-equations. The plan of the proof is as follows:

1. Start with the initial model (2, 0), with o : $(3) — 3.

2. Construct the quotient model $/(f;) according to Proposition 38 where (f; : & — S;); is
the collection of all initial S-morphisms from ¥ to any Y-model satisfying the equations.
We denote by o/(fi) : £(3/(fi)) = /(i) the action of the quotient model.

3. Given a model M of the 2-signature (X, E), we obtain a morphism iy : 3/(f;) — M
from Proposition 38. Uniqueness of iy; is shown using epimorphicity of the projection
p:E o3 /(f:). For this, it suffices to show uniqueness of the composition iy op : S M
in the category of 1-models of ¥, which follows from initiality of 3.

4. The verification that (3/(f;),a/(f:)) satisfies the equations is given below. Actually, it
follows the same line of reasoning as in the proof of Proposition 37 that ¥/(f;) satisfies
the monad equations.

Let e = (e1,e3) : U — O™ be an elementary equation of E. We want to prove that the two

arrows

€1.5/(f:) €2,8/(f:) " U(i/(fi)) — (i/(fz‘))(n)

are equal. As p is an epimorphic natural transformation, U(p) also is by definition of an
elementary equation. It is thus sufficient to prove that

elvi/(fi) © U(p) = e2,i}/(fi) ° U(p) )

which, by naturality of e; and es, is equivalent to p(™ o e 5= p™ o €y 5

Let & be an element of U(S) and let us show that p(”)(el,i(x)) = p(”)(ezﬁ(ac)). By
definition of f)/ (fi) as a pointwise quotient (see Proposition 37), it is enough to show that
for any j, the equality f;n)(el,i(x)) = f;n)(ezi(x)) is satisfied. Now, by naturality of e;
and e, this equation is equivalent to e1 s, (U(f;)(x))) = e2,s, (U(f;)(x))) which is true since
S; satisfies the equation e; = es. <

6 Examples of algebraic 2-signatures

We already illustrated our theory by looking at the paradigmatic case of lambda calculus
modulo - and n-equations (Examples 11 and 33). This section collects further examples of
application of our results.

In our framework, complex signatures can be built out of simpler ones by taking their
coproducts. Note that the class of algebraic 2-signatures encompasses the algebraic 1-
signatures and is closed under arbitrary coproducts: the prototypical examples of algebraic
2-signatures given in this section can be combined with any other algebraic 2-signature,
yielding an effective 2-signature thanks to Theorem 32.
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6.1 Monoids

We begin with an example of monad for a first-order syntax with equations. Given a set
X, we denote by M(X) the free monoid built over X. This is a classical example of monad
over the category of (small) sets. The monoid structure gives us, for each set X, two maps
mx: M(X)x M(X) — M(X) and ex: 1 — M(X) given by the product and the identity
respectively. It can be easily verified that m: M? — M and e: 1 — M are M-module
morphisms. In other words, (M, p) = (M, [m, €]) is a model of the 1-signature ¥ = © x © + 1.

We break the tautological morphism of X-modules (cf. Example 6) into constituent pieces,
defining m:=70inl: O x O - O ande:=7oinr: 1 — O.

Over the 1-signature X we specify equations postulating associativity and left and right
unitality as follows:

e — M g2 "9 2% e2-",e 0-T02-",0
o3 02 6 ©e— 36 ©6e—— 0
mx© m 1 1

and we denote by F the family consisting of these three X-equations. All are elementary
since their codomain is ©, and their domain a product of Os.

One checks easily that (M, [m,e]) is the initial model of (¥, E).

Several other classical (equational) algebraic theories, such as groups and rings, can be
treated similarly, see Section 6.3 below. However, at the present state we cannot model
theories with partial construction (e.g., fields).

6.2 Colimits of algebraic 2-signatures

In this section, we argue that our framework encompasses any colimit of algebraic 2-signatures.
Actually, the class of algebraic 2-signatures is not stable under colimits, as this is not
even the case for algebraic 1-signatures. However, we can weaken this statement as follows:

» Proposition 39. Given any colimit of algebraic 2-signatures, there is an algebraic 2-
signature yielding an isomorphic category of models.

Proof. As the class of algebraic 2-signatures is closed under arbitrary coproducts, using
the decomposition of colimits into coproducts and coequalizers, any colimit = of algebraic
2-signatures can be expressed as a coequalizer of two morphisms f, g between some algebraic
2—signatures (21, El) and (22, EQ),

f
(31, Ey) ?g (B9, By) — 5 2 = (33, Bs) .

where Y3 is the coequalizer of the 1-signatures morphisms f and g. Note that the set of
equations of = is Fs, by definition of the coequalizer in the category of 2-signatures. Now,
consider the algebraic 2-signature Z' = (X3, E2 + (2)) consisting of the 1-signature 3o and
the equations of Fy plus the following elementary equation (see Example 30):

f 2
Y1 —— 3y —— 0 (2)
Y1 —— 3y — 0

g 52
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/

We show that Mon® and Mon® are isomorphic. A model of Z’ is a monad R together with
an R-module morphism r : £5(R) — R such that r o fr = r o gg and that the equations of
E5 are satisfied. By universal property of the coequalizer, this is exactly the same as giving
an R-module morphism ¥3(R) — R satisfying the equations of Fs, i.e., giving R an action
of = = (23, Eg)

It is straightforward to check that this correspondence yields an isomorphism between
the category of models of Z and the category of models of Z'. <

This proposition, together with the following corollary, allow us to recover all the examples
presented in [2], as colimits of algebraic 1-signatures: syntactic commutative binary operator,
maximum operator, application a la differential lambda calculus, syntactic closure operator,
integrated substitution operator, coherent fixpoint operator.

» Corollary 40. If F is a finitary endofunctor on Set, then there is an algebraic 2-signature
whose category of models is isomorphic to the category of 1-models of the 1-signature F - ©.

Proof. It is enough to prove that F - © is a colimit of algebraic 1-signatures.

As F is finitary, it is isomorphic to the coend [ "N p (n) x _™ where N is the full
subcategory of Set of finite ordinals (see, e.g., [26, Example 3.19]). As colimits are computed
pointwise, the 1-signature F - © is the coend fneN F(n) x ©™, and as such, it is a colimit of
algebraic 2-signatures. <

However, we do not know whether we can recover our theorem [2, Theorem 35] stating
that any presentable 1-signature is effective.
6.3 Algebraic theories

From the categorical point of view, several fundamental algebraic structures in mathematics
can be conveniently and elegantly described using finitary monads. For instance, the category

of monoids can be seen as the category of Eilenberg—Moore algebras of the monad of lists.

Other important examples, like groups and rings, can be treated analogously. A classical
reference on the subject is the work of Manes, where such monads are significantly called
finitary algebraic theories [22, Definition 3.17].

We want to show that such “algebraic theories” fit in our framework, in the sense that they
can be incorporated into an algebraic 2-signature, with the effect of enriching the initial model
with the operations of the algebraic theory, subject to the axioms of the algebraic theory.

For a finitary monad T, Corollary 40 says how to encode the 1-signature T - © as an
algebraic 2-signature (X7, E7). Models are monads R together with an R-linear morphism
r:T-R— R.

Now, for any model (R,m) of T - ©, we would like to enforce the usual T-algebra
equations on the action m. This is done thanks to the following equations, where 7 denotes
the tautological morphism of T - ©-modules:

0% .0 730 T T-0% .0 "0

C) : o T-T-0——T-0——0

(3)

The first equation is clearly elementary. The second one is elementary thanks to the
following lemma:

» Lemma 41. Let F be a finitary endofunctor on Set. Then F preserves epimorphisms.
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Proof. An anonymous referee remarked that this is a consequence of the axiom of choice,
because then any epimorphism in the category of Set is split, and thus preserved by any functor.
Here we provide an alternative proof which does not rely on the axiom of choice. (However,
it may require the excluded middle, depending on the chosen definition of finitary functor.)
nel F(n) x _™ [26, Example 3.19]. By
decomposing it as a coequalizer of coproducts, we get an epimorphism « : [],, eN Fn)x_" —
F. Now, let f: X — Y be a surjective function between two sets. We show that F(f) is
epimorphic. By naturality, the following diagram commutes:

As F is finitary, it is isomorphic to the coend [

nF(n )X f™ n
Hoen F(n) x X® —= [[,en F(n) x Y

o I

F(X) 0 F(Y)

The composition along the top-right is epimorphic by composition of epimorphisms. Thus, the
bottom left is also epimorphic, and so is F'(f) as the last morphism of this composition. <«

In conclusion, we have exhibited the algebraic 2-signature (X1, E%.), where Ef. extends
the family Ep with the two elementary equations of Diagram 3. This signature allows to
enrich any other algebraic 2-signature with the operations of the algebraic theory T', subject
to the relevant equations.

6.4 Fixpoint operator

Here, we show the algebraic 2-signature corresponding to a fixpoint operator. In [2, Sec-
tion 8.4] we studied fixpoint operators in the context of 1-signatures. In that setting, we
treated a syntactic fixpoint operator called coherent fixpoint operator, somehow reminiscent
of mutual letrec. We were able to impose many natural equations to this operator but we
were not able to enforce the fixpoint equation. In this section, we show how a fixpoint
operator can be fully specified by an algebraic 2-signature. We restrict our discussion to the
unary case; the coherent family of multi-ary fixpoint operators presented in [2, Section 8.4],
now including the fixpoint equations, can also be specified, in an analogous way, via an
algebraic 2-signature.
Let us start by recalling the following

» Definition 42. A wnary fixpoint operator for a monad R [2, Definition 40] is a
module morphism [ from R’ to R that makes the following diagram commute, where o is the

substitution morphism defined as the uncurrying (see Definition 10) of the identity morphism
on ©':

(idgr,f) R % R

N

R

In order to rephrase this definition, we introduce the obviously algebraic 2-signature Y
consisting of the 1-signature X, = ©’ and the family Fg, consisting of the single following
Yfix-equation:

o1 orxe—7 L0
Efix - @/ @ (4)
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This allows us to rephrase the previous definition as follows: a unary fixpoint operator
for a monad R is just an action of the 2-signature Yy, in R.
The name “fixpoint operator” is motivated by the following proposition:

» Proposition 43 ([2, Proposition 41]). Fizpoint combinators are in one-to-one correspondence
with actions of Ty in the monad LCg,, of the lambda calculus modulo 5- and n-equality.

Recall that fixpoint combinators are lambda terms Y satisfying, for any (possibly open) term
t, the equation

app(t, app(Y;t)) = app(Y,?) .

Explicitly, such a combinator Y induces a fixpoint operator Y LC/’&7 — LCp, which associates,
to any term ¢ depending on an additional variable *, the term ?(t) = app(Y, abs t).

7 Recursion

In this section, we explain how a recursion principle can be derived from our initiality
result, and give an example of a morphism — a translation — between monads defined via the
recursion principle.

7.1 Principle of recursion

In our context, the recursion principle is a recipe for constructing a morphism from the
monad underlying the initial model of a 2-signature to an arbitrary monad.

» Proposition 44 (Recursion principle). Let S be the monad underlying the initial model of
the 2-signature Y. To any action a of T in T is associated a monad morphism a: S — T.

Proof. The action a defines a 2-model M of YT, and a is the monad morphism underlying
the initial morphism to M. |

Hence the recipe consists in the following two steps:
1. give T an action of the 1-signature X;
2. check that all the equations in F are satisfied for the induced model.

In the next section, we illustrate this principle.

7.2 Translation of lambda calculus with fixpoint to lambda calculus

In this section, we consider the 2-signature Tic,, . = Tic,, + Thix where the two components
have been introduced above (see Example 18 and Section 6.4).

As a coproduct of algebraic 2-signatures, Tic,, ,, is itself algebraic, and thus the initial
model exists. The underlying monad LCg, fix of the initial model can be understood as
the monad of lambda calculus modulo 8 and 7 enriched with an ezplicit fixpoint operator
fix : LC’ﬁn’ﬁX — LCpgy,fix. Now we build by recursion a monad morphism from this monad to
the “bare” monad LCg, of lambda calculus modulo 3 and 7.

As explained in Section 7.1, we need to define an action of T\ ¢, . in LCg,, that is to say
an action of Tc,, plus an action of Tgy. For the action of T\ c,, , we take the one yielding
the initial model.

Now, in order to find an action of Ty in LCg,), we choose a fixpoint combinator Y (say
the one of Curry) and take the action Y as defined at the end of Section 6.4.

In more concrete terms, our translation is a kind of compilation which replaces each
occurrence of the explicit fixpoint operator fix(t) with app(Y, abs t).

6:17

FSCD 2019



6:18

Modular Specification of Monads Through Higher-Order Presentations

—— References

1

10

11

12

13

14

15

Benedikt Ahrens. Modules over relative monads for syntax and semantics. Mathematical
Structures in Computer Science, 26:3-37, 2016. doi:10.1017/50960129514000103.

Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. High-Level
Signatures and Initial Semantics. In Dan Ghica and Achim Jung, editors, 27th EACSL
Annual Conference on Computer Science Logic (CSL 2018), volume 119 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 4:1-4:22, Dagstuhl, Germany, 2018. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2018.4.

Michael Barr. Coequalizers and free triples. Mathematische Zeitschrift, 116(4):307-322,
December 1970. doi:10.1007/BF01111838.

Ranald Clouston. Binding in Nominal Equational Logic. Electr. Notes Theor. Comput. Sci.,
265:259-276, 2010. doi:10.1016/j.entcs.2010.08.016.

Maribel Fernandez and Murdoch J. Gabbay. Closed nominal rewriting and efficiently com-
putable nominal algebra equality. In Karl Crary and Marino Miculan, editors, Proceedings
5th International Workshop on Logical Frameworks and Meta-languages: Theory and Practice,
LEMTP 2010, Edinburgh, UK, 14th July 2010., volume 34 of EPTCS, pages 37-51, 2010.
doi:10.4204/EPTCS.34.5.

Marcelo P. Fiore and Makoto Hamana. Multiversal Polymorphic Algebraic Theories: Syntax,
Semantics, Translations, and Equational Logic. In 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages
520-529. IEEE Computer Society, 2013. doi:10.1109/LICS.2013.59.

Marcelo P. Fiore and Chung-Kil Hur. On the construction of free algebras for equational
systems. Theor. Comput. Sci., 410(18):1704-1729, 2009. doi:10.1016/j.tcs.2008.12.052.
Marcelo P. Fiore and Chung-Kil Hur. Second-Order Equational Logic (Extended Abstract).
In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of Lecture Notes in Computer
Science, pages 320-335. Springer, 2010. doi:10.1007/978-3-642-15205-4_26.

Marcelo P. Fiore and Ola Mahmoud. Second-Order Algebraic Theories (Extended Abstract). In
Petr Hlineny and Antonin Kucera, editors, MFCS, volume 6281 of Lecture Notes in Computer
Science, pages 368—-380. Springer, 2010. doi:10.1007/978-3-642-15155-2_33.

Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract Syntax and Variable Binding.
In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 193-202, 1999. doi:10.1109/LICS.1999.782615.

Marcelo P. Fiore and Philip Saville. List Objects with Algebraic Structure. In Dale Miller,
editor, 2nd International Conference on Formal Structures for Computation and Deduction
(FSCD 2017), volume 84 of Leibniz International Proceedings in Informatics (LIPIcs), pages
16:1-16:18, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.FSCD.2017.16.

Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax Involving
Binders. In 14th Annual Symposium on Logic in Computer Science, pages 214—224, Washington,
DC, USA, 1999. IEEE Computer Society Press. doi:10.1109/LICS.1999.782617.

Neil Ghani, Tarmo Uustalu, and Makoto Hamana. Explicit substitutions and higher-order
syntax. Higher-Order and Symbolic Computation, 19(2-3):263-282, 2006. doi:10.1007/
$10990-006-8748-4.

Bernhard Gramlich. Modularity in term rewriting revisited. Theoretical Computer Science,
464:3-19, 2012. New Directions in Rewriting (Honoring the 60th Birthday of Yoshihito
Toyama). doi:10.1016/j.tcs.2012.09.008.

Makoto Hamana. Term Rewriting with Variable Binding: An Initial Algebra Approach. In
Proceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice
of Declaritive Programming, PPDP ’03, pages 148-159, New York, NY, USA, 2003. ACM.
doi:10.1145/888251.888266.


http://dx.doi.org/10.1017/S0960129514000103
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.4
http://dx.doi.org/10.1007/BF01111838
http://dx.doi.org/10.1016/j.entcs.2010.08.016
http://dx.doi.org/10.4204/EPTCS.34.5
http://dx.doi.org/10.1109/LICS.2013.59
http://dx.doi.org/10.1016/j.tcs.2008.12.052
http://dx.doi.org/10.1007/978-3-642-15205-4_26
http://dx.doi.org/10.1007/978-3-642-15155-2_33
http://dx.doi.org/10.1109/LICS.1999.782615
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.16
http://dx.doi.org/10.1109/LICS.1999.782617
http://dx.doi.org/10.1007/s10990-006-8748-4
http://dx.doi.org/10.1007/s10990-006-8748-4
http://dx.doi.org/10.1016/j.tcs.2012.09.008
http://dx.doi.org/10.1145/888251.888266

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi

16

17

18

19

20

21

22

23

24

25

26

27

André Hirschowitz and Marco Maggesi. Modules over Monads and Linearity. In D. Leivant
and R. J. G. B. de Queiroz, editors, WoLLIC, volume 4576 of Lecture Notes in Computer
Science, pages 218-237. Springer, 2007. doi:10.1007/978-3-540-73445-1_16.

André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Information
and Computation, 208(5):545-564, May 2010. Special Issue: 14th Workshop on Logic, Language,
Information and Computation (WoLLIC 2007). doi:10.1016/j.ic.2009.07.003.

Martin Hofmann. Semantical Analysis of Higher-Order Abstract Syntax. In 14th Annual

IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 204-213.

IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782616.

G. Maxwell Kelly and A. John Power. Adjunctions whose counits are coequalizers, and
presentations of finitary enriched monads. Journal of Pure and Applied Algebra, 89(1):163-179,
1993. doi:10.1016/0022-4049(93)90092-8.

Alexander Kurz and Daniela Petrisan. On universal algebra over nominal sets. Mathematical
Structures in Computer Science, 20(2):285-318, 2010. doi:10.1017/S0960129509990399.
Christoph Liith and Neil Ghani. Monads and Modular Term Rewriting. In Eugenio Moggi
and Giuseppe Rosolini, editors, Category Theory and Computer Science, 7th International

Conference, CTCS 97, volume 1290 of Lecture Notes in Computer Science, pages 69—86.

Springer, 1997. doi:10.1007/BFb0026982.

Ernest Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics. Springer,
1976.

The Coq development team. The Coq Proof Assistant, version 8.9, 2019. Version 8.9. URL:
http://coq.inria.fr.

A. John Power. Abstract Syntax: Substitution and Binders: Invited Address. FElectr. Notes
Theor. Comput. Sci., 173:3-16, 2007. doi:10.1016/j.entcs.2007.02.024.

Sam Staton. An Algebraic Presentation of Predicate Logic (Extended Abstract). In Frank
Pfenning, editor, Foundations of Software Science and Computation Structures - 16th Interna-
tional Conference, FOSSACS 2013, volume 7794 of Lecture Notes in Computer Science, pages
401-417. Springer, 2013. doi:10.1007/978-3-642-37075-5_26.

Jif{ Velebil and Alexander Kurz. Equational presentations of functors and monads. Mathemat-
ical Structures in Computer Science, 21(2):363-381, 2011. doi:10.1017/S0960129510000575.
Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. Available at https://github.com/UniMath/UniMath.

6:19

FSCD 2019


http://dx.doi.org/10.1007/978-3-540-73445-1_16
http://dx.doi.org/10.1016/j.ic.2009.07.003
http://dx.doi.org/10.1109/LICS.1999.782616
http://dx.doi.org/10.1016/0022-4049(93)90092-8
http://dx.doi.org/10.1017/S0960129509990399
http://dx.doi.org/10.1007/BFb0026982
http://coq.inria.fr
http://dx.doi.org/10.1016/j.entcs.2007.02.024
http://dx.doi.org/10.1007/978-3-642-37075-5_26
http://dx.doi.org/10.1017/S0960129510000575
https://github.com/UniMath/UniMath




Towards the Average-Case Analysis of
Substitution Resolution in A-Calculus
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—— Abstract

Substitution resolution supports the computational character of S-reduction, complementing its
execution with a capture-avoiding exchange of terms for bound variables. Alas, the meta-level
definition of substitution, masking a non-trivial computation, turns S-reduction into an atomic
rewriting rule, despite its varying operational complexity. In the current paper we propose a
somewhat indirect average-case analysis of substitution resolution in the classic A-calculus, based
on the quantitative analysis of substitution in Av, an extension of A-calculus internalising the
v-calculus of explicit substitutions. Within this framework, we show that for any fixed n > 0, the
probability that a uniformly random, conditioned on size, Av-term v-normalises in n normal-order
(i-e. leftmost-outermost) reduction steps tends to a computable limit as the term size tends to infinity.
For that purpose, we establish an effective hierarchy (G,),, of regular tree grammars partitioning
v-normalisable terms into classes of terms normalising in n normal-order rewriting steps. The main
technical ingredient in our construction is an inductive approach to the construction of §,+1 out
of G,, based, in turn, on the algorithmic construction of finite intersection partitions, inspired by
Robinson’s unification algorithm. Finally, we briefly discuss applications of our approach to other
term rewriting systems, focusing on two closely related formalisms, i.e. the full Av-calculus and
combinatory logic.
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1 Introduction

Traditional, machine-based computational models, such as Turing machines or RAMs, admit
a natural notion of an atomic computation step, closely reflecting the actual operational
cost of executing the represented computations. Unfortunately, this is not quite the case
for computational models based on term rewriting systems with substitution, such as the
classic A-calculus. Given the (traditionally) epitheoretic nature of substitution, the single
rewriting rule of S-reduction (Az.a)b —p alr := b] masks a non-trivial computation of
resolving (i.e. executing) the pending substitution of b for occurrences of  in a. Moreover,
unlike machine-based models, A-calculus (as other term rewriting systems) does not impose
a strict, deterministic evaluation mechanism. Consequently, various strategies for resolving
substitutions can be used, even more obfuscating the operational semantics of S-reduction
and hence also its operational cost. Those subtle nuances hidden behind the implementation
details of substitution resolution are in fact one of the core issues in establishing reasonable
cost models for the classic A-calculus, relating it with other, machine-based computational
models, see [14].
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In order to resolve this apparent inadequacy, Abadi et al. proposed to refine substitution
in the classic A-calculus and decompose it into a series of atomic rewriting steps, internalising
in effect the calculus of executing substitutions [1]. Substitutions become first-class citizens
and so can be manipulated together with regular terms. Consequently, the general framework
of explicit substitutions provides a machine-independent setup for the operational semantics
of substitution, based on a finite set of unit rewriting primitives. Remarkably, with the help of
linear substitution calculus (a resource aware calculus of explicit substitutions) Accattoli and
Dal Lago showed recently that the leftmost-outermost S-reduction strategy is a reasonable
invariant cost model for A-calculus, and hence it is able to simulate RAMs (or equivalent,
machine-based models) within a polynomial time overhead [2].

Various subtleties of substitution resolution, reflected in the variety of available calculi
of explicit substitutions, induce different operational semantics for executing substitutions
in A-calculus. This abundance of approaches is perhaps the main barrier in establishing a
systematic, quantitative analysis of the operational complexity of substitution resolution and,
among other things, a term rewriting analogue of classic average-case complexity analysis.
In the current paper we propose a step towards filling this gap by offering a quantitative
approach to substitution resolution in Lescanne’s Av-calculus of explicit substitutions [15].
In particular, we focus on the following, average-case analysis type of question. Having fixed
arbitrary non-negative n, what is the probability that a (uniformly) random Av-term of given
size is v-normalisable (i.e. can be reduced to a normal form without explicit substitutions)
in exactly n leftmost-outermost reduction steps? Furthermore, how does this probability
distribution change when the term size tends to infinity?

We address the above questions using a two-step approach. First, we exhibit an effective
(i.e. computable) hierarchy (G,),, of unambiguous regular tree grammars with the property
that G,, describes the language of terms v-normalising in precisely n leftmost-outermost
v-rewriting steps. Next, borrowing techniques from analytic combinatorics, we analyse
the limit proportion of terms v-normalising in n normal-order steps. To that end, we
construct appropriate generating functions and provide asymptotic estimates for the number
of Av-terms v-normalising in n normal-order reduction steps. As a result, we base our
approach on a direct quantitative analysis of the v term rewriting system, measuring the
operational cost of evaluating substitution in terms of the number of leftmost-outermost
rewriting steps required to reach a (v-)normal form.

The paper is structured as follows. In Section 2 we outline Av-calculus and the framework
of regular tree grammars, establishing the necessary terminology for the remainder of the
paper. Next, in Section 3, we prepare the background for the construction of (9,),. In
particular, we sketch its general, intuitive scheme. In Section 4 we introduce the main tool
of finite intersection partitions and show that it is indeed constructible in the context of
generated reduction grammars. Afterwards, in Section 5, we show how finite intersection
partitions can be used in the construction of new productions in G, 11 based on productions in
the grammar G,,. Having constructed (G,,),, we then proceed to the main quantitative analysis
of v-calculus using methods of analytic combinatorics, see Section 6. Finally, in Section 7 we
discuss broader applications of our technique to other term rewriting systems, based on the
examples of Av-calculus and combinatory logic, and conclude the paper in the final Section 8.

2 Preliminaries

2.1 Lambda upsilon calculus

Av (lambda upsilon) is a simple, first-order term rewriting system extending the classic
A-calculus based on de Bruijn indices [11] with the calculus of resolving pending substitu-
tions [15, 16]. Its formal terms, so-called Av-terms, are comprised of de Bruijn indices n,
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application, abstraction, together with an additional, explicit closure operator [-] standing
for unresolved substitutions. De Bruijn indices are represented in unary base expansion.
In other words, n is encoded as an n-fold application of the successor operator S to zero 0.
Substitutions, in turn, consist of three primitives, i.e. a constant shift T, a unary lift operator
1}, mapping substitutions onto substitutions, and a unary slash operator /, mapping terms
onto substitutions. Terms containing closures are called impure whereas terms without
them are said to be pure. Figure 1 summarises the formal specification of Av-terms and the
corresponding rewriting system Awv.

(Aa)b — alb/] (Beta)

(ab)[s] — als](b[s]) (App)

(Aa)[s] = AGalf (5)))  (Lambda)

0la/] = a (FVar)

(Sn)la/] = n (RVar)

ta=n| Attt | ts] o[t (s)] =0 (FVarLift)

sa=t/ | ()| 1 S ()] > sl (RVarLite)

n:=0] Sn. n[t] = Sn (VarShift)
(a) Terms of Av-calculus. (b) Rewriting rules.

Figure 1 The Av-calculus rewriting system.

» Example 2.1. Note that the well-known combinator K = Azy.zr is represented in the
de Bruijn notation as AA1l. The reverse application term Axy.yzx, on the other hand, is

represented as AA01. Consequently, in a single S-reduction step, it holds (AA01) K — 3 A (0K).

In Av-calculus, however, this single S-reduction is decomposed into a series of small rewriting
steps governing both the -reduction as well as the subsequent substitution resolution. For
instance, we have

(AX0L) K — (A01) [K/] = (A (01) [t (K/)]) = A (Q[tr (K/)]) (L[ (K/)))
= AOQAM (K)D) = AQQK/][T]) = AQ (K1) (1)

Furthermore,

K[ = (AAL) [1] = A (A (D) = A (o (1))
= A (NI — AX(O[1])
S A=K (2)

hence indeed (AAN01) K rewrites to A (0K).
Let us notice that in the presence of the erasing (RVar) and duplicating (App) rewriting

rules, not all reduction sequences starting with the same term have to be of equal length.

Like in the classic A-calculus, depending on the considered term, some rewriting strategies
might be more efficient then others.

Av enjoys a series of pleasing properties. Most notably, Av is confluent, correctly
implements [S-reduction of the classic A-calculus, and preserves strong normalisation of
closed terms [3]. Moreover, the v fragment, i.e. Av without the (Beta) rule, is terminating. In
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other words, each Av-term is v-normalising as can be shown using, for instance, polynomial
interpretations [9]. In the current paper we focus on the normal-order (i.e. leftmost-outermost)
evaluation strategy of v-reduction. For convenience, we assume the following notational
conventions. We use lowercase letters a, b, ¢, ... to denote arbitrary terms and s (with or
without subscripts) to denote substitutions. Moreover, we write a J, to denote the fact
that a normalises to its v-normal form in n normal-order v-reduction steps. Sometimes, for
further convenience, we also simply state that ¢ normalises in n steps, without specifying the
assumed evaluation strategy nor the specific rewriting steps and normal form.

2.2 Regular tree languages

We base our main construction in the framework of regular tree languages. In what follows,
we outline their basic characteristics and that of corresponding regular tree grammars,
introducing necessary terminology. We refer the curious reader to [10, Chapter II] for a more
detailed exposition.

» Definition 2.2 (Ranked alphabet). A ranked alphabet F is a finite set of function symbols
endowed with a corresponding arity function arity: F — N. We use F,, to denote the set of
function symbols of arity n, i.e. function symbols f € F such that arity(f) = n. Function
symbols of arity zero are called constants. As a notational convention, we use lowercase
letters f, g, h,... to denote arbitrary function symbols.

» Definition 2.3 (Terms). Let X be a finite set of variables. Then, the set T5(X) of terms
over F is defined inductively as follows:
X, Fo C T5(X);
If feF, and as,...,a, € T5(X), then f(aq,...,ay) € T5(X).
Terms not containing variables, in other words elements of T5(2), are called ground terms.
As a notational convention, we use lowercase Greek letters a, 3,7, ... to denote arbitrary
terms. Whenever it is clear from the context, we use the word term both to refer to the above
structures as well as to denote Av-terms.

» Definition 2.4 (Regular tree grammars). A regular tree grammar G = (S, N, F, P) is a tuple
consisting of:

an axiom S € N;

a finite set N of non-terminal symbols;

a ranked alphabet F of terminal symbols such that FNOAN = &; and

a finite set P of productions in form of N — « such that N € N and o € T5(N).

A production N — « is self-referencing if N occurs in «. Otherwise, if N does not
occur in o, we say that n — « is regular. As a notational convention, we use capital letters
XY, Z ... to denote arbitrary non-terminal symbols.

» Definition 2.5 (Derivation relation). The derivation relation —g associated with the
grammar § = (S,N,F,P) is a relation on pairs of terms in T5(N) satisfying o —g B if
and only if there exists a production N — ~ in P such that after substituting v for some
occurrence of N in o we obtain 3. Following standard notational conventions, we use —g to
denote the transitive closure of —g. Moreover, if G is clear from the context, we omit it in
the subscript of the derivation relations and simply write — and =.

A regular tree grammar G with axiom S is said to be unambiguous if and only if for
each ground term o« € Tg(D) there exists at most one derivation sequence in form of
S = v — - = v, = «a. Likewise, N is said to be unambiguous in G if and only if
for each ground term « € T3 (D) there exists at most one derivation sequence in form of
N =y ==y, =o
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» Definition 2.6 (Regular tree languages). The language L(G) generated by G is the set of
all ground terms o such that S = « where S is the aziom of §. Similarly, the language
generated by term a € T5(N) in G, denoted as Lg(a), is the set of all ground terms B such
that « = . Finally, a set £ of ground terms is said to be a regular tree language if there
exists a regular tree grammar G such that L(G) = L.

» Example 2.7. The set of \v-terms is an example of a regular tree language. The corres-
ponding regular tree grammar A = (T, N, F, P) consists of
a set N of three non-terminal symbols T', S, N intended to stand for Av-terms, substitu-
tions, and de Bruijn indices, respectively, with T being the axiom of A;
a set F of terminal symbols, comprised of all the symbols of the A\v-calculus language,
i.e. term application and abstraction, closure -[-], slash -/, lift 4} () and shift 1 operators,
and the successor S(-) with the constant 0; and
a set P of productions

T — N | AT | TT | T[S]
S=T/[ (S| 1
N 0| SN. (3)

Let us notice that (3) consists of five self-referencing productions, three for 7" and one for
each S and N. Moreover, L(N) C L(T') as P includes a production T'— N.

» Example 2.8. Each Av-term admits a natural tree-like structure. The following example
depicts the tree representation of the term AL[O[1][ft (0/)]]. Note that the (conventionally)
implicit term application is represented as an explicit binary node (-).

A

|
N
N
N

o —W0n

o — "~ —=

Figure 2 Tree representation of A1[O[1][1+ (0/)]].

3 Reduction grammars

We conduct our construction of (Gy,),, in an inductive, incremental fashion. Starting with G
corresponding to the set of pure terms (i.e. Av-terms without closures) we build the (n 4 1)st
grammar G, 41 based on the structure of the nth grammar G,,. First-order rewriting rules
of Av-calculus guarantee a close structural resemblance of both their left- and right-hand
sides, see Figure 1b. Consequently, with G,, at hand, we can analyse the right-hand sides of
v rewriting rules and match them with productions of G,,. Based on their structure, we then
determine the structure of productions of G, 11 which correspond to respective left-hand
sides. Although such a general idea of constructing G,,+1 out of G,, is quite straightforward,
its implementation requires some careful amount of detail.
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For that reason, we make the following initial preparations. Each grammar G, uses
the same, global, ranked alphabet F corresponding to Av-calculus, see Example 2.7. The
standard non-terminal symbols T, S, and N, together with their respective productions (3),
are pre-defined in each grammar G,. In addition, §,, includes n + 1 non-terminal symbols
Go,...,Gyp (the final one being the axiom of G,) with the intended meaning that for all
0 < k < n, the language Lg, (G}) is equal to the set of terms v-normalising in k normal-order
steps. In this manner, building (9,,),, amounts to a careful, incremental extension process,
starting with the initial grammar Gy comprised of the following extra, i.e. not included
in (3), productions:

Go — N ‘ )\G() | GOGO. (4)

In order to formalise the above preparations and the overall presentation of our construc-
tion, we introduce the following, abstract notions of v-reduction grammar and later also
their simple variants.

» Definition 3.1 (v-reduction grammars). Let A = (T, N,F,P) be the regular tree grammar
corresponding to Av-terms, see Example 2.7. Then, the regular tree grammar

9n = (Gn7Nna§aan) (5)

with

N, =NU{Go,Gy,...,Gn}; and

P, being a set of productions such that P C P,
18 said to be a v-reduction grammar, v-RG in short, if all non-terminal symbols N, are
unambiguous in G, for all 0 < k < n the language L(Gy) is equal to the set of Av-terms
v-normalising in k normal-order v-steps, and finally L(T), L(S) and L(N) are equal to the
sets of Av-terms, substitutions and de Bruijn indices, respectively.

» Definition 3.2 (Partial order of sorts). The partial order of sorts (N,,, <) is a partial order

(i.e. reflexive, transitive, and anti-symmetric relation) on non-terminal symbols Ny, satisfying
X =Y if and only if Lg, (X) C Lg, (Y). For convenience, we write X \'Y to denote the
greatest lower bound of {X,Y}. Figure 3 depicts the partial order (N, <).

Figure 3 Hasse diagram of the partial order (N, X).

» Remark 3.3. Let us notice that given the interpretation of L(Gy),...,L(G), the partial
order of sorts (N,,, <) captures all the inclusions among the non-terminal languages within

9. However, in addition, if X and Y are not comparable through =<, then L(X)NL(Y) = &
as each term v-normalises in a unique, determined number of steps.



M. Bendkowski

» Definition 3.4 (Simple v-reduction grammars). A v-RG G, is said to be simple if all its
self-referencing productions are either productions of the reqular tree grammar corresponding
to Av-terms, see Example 2.7, or are of the form

Gk — )\Gk | G()Gk | GkGo (6)

and moreover, for all regular productions in form of Gy — « in Gy, it holds o € Ty(N U
{Go,...,Gr_1}), i.e. a does not reference non-terminals other than Gy, ...,Gg_1.

» Remark 3.5. Let us note that, in general, v-reduction grammars do not have to be simple.

Due to the erasing (RVar) rewriting rule, it is possible to construct, inter alia, more involved
self-referencing productions. Nonetheless, for technical convenience, we will maintain the
simplicity of constructed grammars (G,,),,.

Also, let us remark that the above definition of simple v-reduction grammars asserts that
if G,,41 is a simple v-RG, then, by a suitable truncation, it is possible to obtain all of the
v-reduction grammars Gy up to G,. Consequently, G,1 contains, in a proper sense, all the
proceeding grammars G, ..., G,.

4 Finite intersection partitions

The main technical ingredient in our construction of (G,,),, are finite intersection partitions.

» Definition 4.1 (Finite intersection partition). Assume that «, 8 are two terms in T5(X).
Then, a finite intersection partition, FIP in short, of a and 8 is a finite set (o, B) =
{m1,...,m} C T5(X) such that L(m;) N L(7;) = @ whenever i # j, and moreover | J; L(m;) =
L(a) N L(5).

Let us note that, a priori, it is not immediately clear if II(«, ) exists for o and 8 in the
term algebra T(N,,) associated with a simple v-RG G,, nor whether there exists an algorithmic
method of its construction. The following result states that both questions can be settled in
the affirmative.

» Lemma 4.2 (Constructible finite intersection partitions). Let G,, be a simple v-reduction
grammar. Assume that a, 5 are two (not necessarily ground) terms in T(N,,) where N, is
the set of non-terminal symbols of G,,. Then, a and B have a computable finite intersection
partition I(«, B).

Figure 4 provides a functional pseudocode description of fip, constructing II(e, 3) for
arbitrary terms «, 3 within the scope of a simple v-RG Gi. A corresponding proof of
correctness is given in Appendix A.

Our finite intersection partition algorithm resembles a variant of Robinson’s unification
algorithm [17] applied to many-sorted term algebras with a tree hierarchy of sorts, as
investigated by Walther, cf. [19]. It becomes even more apparent once the correspondence
between sorts, as stated in the language of many-sorted term algebra, and the tree-like
hierarchy of non-terminal symbols in v-reduction grammars is established, see Figure 3.

5  The construction of simple v-reduction grammars

Equipped with constructible, finite intersection partitions, we are now ready to describe the
generation procedure for (Gy,),. We begin with establishing a convenient verbosity invariant
maintained during the construction of (G,),,.

77

FSCD 2019



7:8

10

11

12

13

14

15

16

17

18

Towards the Average-Case Analysis of Substitution Resolution in A-Calculus

fun fipy a B :=
match «, § with
| flar,. .y an)s g(B1,...yBm) =
if f#gVn#m then @ (* symbol clash *)
else if n=m =0 then {f}
else let II; := fipy o; B;, V 1<i<n
in {f(m1,...,mn) | (M1, o, m) €0 X oo x I, }

| X, Y =
{X\Y|X<YVY <X}

| f(al,...,an), X =
fipr X f(aa,...,an) (* flip arguments *)

| X, f(Oél,...,Oén) =
let II, := fipy v f(ai,...,on), V (X = 7)€ G

in Uxoyes, Dy
end.

Figure 4 Pseudocode of the fip, procedure computing II(«, 3).

» Definition 5.1 (Closure width). Let a be a term in T5(X) for some finite set X. Then,
a has closure width w, if w is the largest non-negative integer such that « is of form
xlo1] - - [ow] for some term x and substitutions o1, ...,0,. For convenience, we refer to x
as the head of a and to o1,...,0, as its tail.

» Definition 5.2 (Verbose v-reduction grammars). A v-RG G, is said to be verbose if none
of its productions is of form X — Gilo1] -+ [ow] for some arbitrary non-negative w and k.

Simple, verbose v-reduction grammars admit a neat structural feature. Specifically, their
productions preserve closure width of generated terms.

» Lemma 5.3. Assume that G, is a simple, verbose v-RG. Then, for each production
Gn — x[o1] -+ [ow] in Gy such that its right-hand side is of closure width w, either x = N
or x is in form x = f(ai,...,auy) for some non-closure function symbol f of arity m.

Proof. See Appendix B. |

» Lemma 5.4. Assume that G, is a simple, verbose v-RG. Then, for each production
Gn = Xlo1] -+ [ow] in G such that its right-hand side is of closure width w, and ground
term § € L(x[o1] -+ - [ow]) @t holds that & is of closure width w.

Proof. Direct consequence of Lemma 5.3. <

The following ¢-matchings are the central tool used in the construction of new reduction
grammars. Based on finite intersection partitions, ¢-matchings provide a simple template
recognition mechanism which allows us to match productions in G,, with right-hand sides of
v rewriting rules.
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» Definition 5.5 (p-matchings). Let G,, be a simple, verbose v-RG and ¢ = x[m1] -+ [14] €
T(N;,) be a template (term) of closure width d. Assume that X — y[o1]- - [0w] s a production
of G, which right-hand side has closure width w > d. Furthermore, let

Ap(ylon]---[ow]) =T(vlon] - - [ow], x[m] - - - [a] [S] - - [S]) (7)

w—d times

be the set of p-matchings of y[o1] - - [ow].
Then, the set Ay of p-matchings of Gy, is defined as

AL =J(A¢() | Gu =7 € Gn}- (8)
For further convenience, we write p;y to denote the template o = x[71]-- - [14] with i copies
of [S] appended to its original tail, i.e. @y = x[r1]---[7a] [S]---[S].

———

i times

Table 1 v-rewriting rules with respective templates and production schemes.

Rewriting rule Template ¢ Production scheme A7 —

(App) | (ab)ls] = als)bls) | TISITTS]) | alnlBlrad)lon] - [ow) = (@B)rlios] - [ou]'
(Lambda) | (\a)ls] = Maltt (5)]) | AT (S) | Maft @Doa] - [ou] = Q)folion] - [ou]

(FVar) 0la/] — a T see Remark 5.8

(RVar) (Sn)la/] = n N afor] -+ [ow] = (SA)[T/]lon] - - - [ow]
(FVarLift) o ()] = 0 0 0lo1] - - [ow] = Ol (S)llon] - - - [ow]
(RVarLift) | (Sn)[ft (s)] = n[s][t] | N[S][M] afo][tlo1] - - - [ow] = (S (9)][on] - - - [ow]
(VarShift) n[t] = Sn SN (Sa)[o1] -+ [ow] — a[t]lo1] - - [ow]

TFor each 7 € II(71,72), see Remark 5.7.

In what follows we use computable intersection partitions in our iterative construction of
(Sn),,- Recall that if G, is simple then, inter alia, self-referencing productions starting with
the non-terminal G,, take the form

G = AGy | GoGhy | GG 9)

If t |, (for n > 1) but it does not start with a head v-redex, then it must be of form ¢ = Aa
or t = ab. In the former case, it must hold a |,,; hence the pre-defined production G,, — \G,,
in G,,. In the latter case, it must hold a |, whereas b |, _j for some 0 < k < n. And so, it
means that we have to include productions in form of G,, = GG,,_; for all 0 < k < n in
Gy; in particular, the already mentioned two self-referencing productions, see (9).

Remaining terms have to start with head redexes. Each of these head v-redexes is covered
by a dedicated set of productions. The following Lemma 5.6 demonstrates how ¢-matchings
and, in particular, finite intersection partitions can be used for that purpose.

» Lemma 5.6. Let o = M\(T[f (S)]) be the template corresponding to the (Lambda) rewriting
rule, see Table 1, and t = (Aa)[s][s1] -~ [sw]. Then, t Ln11 if and only if there exists a unique
term m = (A(a[ft (0)])) [o1] - - [ow] € AR such that t € L((Aa)[o][o1] -+ [ow])-

Proof. See Appendix B. <
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Let us remark that almost all of the rewriting rules of Av exhibit a similar construction
scheme; the exceptional (App) and (FVar) rewriting rules are discussed in Remark 5.7
and Remark 5.8, respectively. Given a rewriting rule, we start with the respective template
¢ (see Table 1) and generate all possible p-matchings in G,,. Intuitively, such an operation
extracts unambiguous sublanguages out of each production in G,, which match the right-hand
side of the considered rewriting rule. Next, we consider each term 7 € A7 and establish
new productions G, 41 — 7 in 9,41 out of 7. Assuming that G,, is a simple and verbose
v-RG, the novel productions generated by means of A7 cover all the Av-terms reducing
in n + 1 normal-order steps, starting with the prescribed head rewriting rule. Since the
head of each so constructed production either starts with a function symbol or is equal to
N, cf. Table 1, the outcome grammar is necessarily verbose. Moreover, if we complete the
production generation for all rewriting rules, by construction, the grammar G,, 1 must be, at
the same time, simple. Consequently, the construction of the hierarchy (9,,),, amounts to an
inductive application of the above construction scheme.

» Remark 5.7. While following the same pattern for the (App) rule, we notice that the
corresponding construction requires a slight modification. Specifically, while matching
¢ = T[S](T[S]) with a right-hand side 7 of a production G,, — 7 in G, we cannot conclude
that m € A7, takes the form 7 = a[o](B[o])[o1] - - - [0]. Note that, in fact, we know that 7 =
alm](Blre2])|o1] - + - [ow] however perhaps 71 # T2. Nonetheless, we can still compute II(71, 72)
and use 7 € II(71, 7o) to generate a finite set of terms in form of 7 = «[7](B[7])[o1] - - - [ow]-
Using those terms, we can continue with our construction and establish a set of new
productions in form of G,, — (a8)[7][o1] - - - [0w] meant to be included in Gp41.

» Remark 5.8. Let us also remark that the single rewriting rule which has a template ¢
not retaining closure width is (FVar). In consequence, the utility of Ap(7) is substantially
limited. If ¢ = 0[a/][s1] - - - [Sw] 4n+1, then t — ¢’ = a[s1] - - - [s4] Which, in turn, satisfies ¢’ |,.
Note that if «y is the right-hand side of a unique production G,, — v in G,, generating t’, then
we can match T with any non-empty prefix of «v. The length of the chosen prefix influences
what initial part « of + is going to be placed under the closure in G411 — 0[a/][o1] - -+ [0w]-

This motivates the following approach. Let G,, — v = x|o1] - [0w] be an arbitrary
production in G,, of closure width w. If ¢’ € L(y') and t — ¢’ in a single head (FVar)-reduction,
then t € L(0[x[o1] - - - [0d]/][0d+1] - - - [ow] for some 0 < d < w. Therefore, in order to generate
all productions in G, 41 corresponding to Av-terms v-normalising in n + 1 steps, starting
with a head (FVar)-reduction, we have to include all productions in form of G,y; —
Olxlo1] - [eal/l[oa+1] - - - [ow] for each production G,, — ' in G,,.

Finally, note that it is, again, possible to optimise the (FVar) construction scheme with
respect to the number of generated productions. For each G,, — v in §,, the above scheme
produces, inter alia, a production G,,11 — 0[y/]. Note that we can easily merge them into a
single production G,,4+1 — 0[G,, /] instead.

Such a construction leads us to the following conclusion.
» Theorem 5.9. For all n > 0 there exists a constructible, simple v-RG G,,.

» Example 5.10. The following example demonstrates the construction of §; out of Gy.
Note that G; includes the following productions associated with the axiom G;:

G1 — )\Gl | GOG1 | GlGo

| 0[(GoGo)/] | O[AGo/] | O[N/]
| (SN)T/Taln (S)] | N[1]. (10)
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The first three productions are included by default. The next three productions are derived
from the (FVar) rule applied to all the productions of Go — ~ in Gg. The final three
productions are obtained by (RVar), (FVarLift), and (VarShift), respectively.

6 Analytic combinatorics and simple v-reduction grammars

Having established an effective hierarchy (Gy), of simple v-reduction grammars, we can now
proceed with their quantitative analysis. Given the fact that regular tree grammars represent
well-known algebraic tree-like structures, our analysis is in fact a standard application of
algebraic singularity analysis of respective generating functions [12, 13]. The following result
provides the main tool of the current section.

» Proposition 6.1 (Algebraic singularity analysis, see [13], Theorem VII.8). Assume that
flz) = ( 1- z/C) g(z) + h(2) is an algebraic function, analytic at 0, and has a unique
dominant singularity z = (. Moreover, assume that g(z) and h(z) are analytic in the disk
|z| < ¢ +¢€ for some e > 0. Then, the coefficients [z™]f(z) in the series expansion of f(z)
around the origin, satisfy the following asymptotic estimate

n32¢(¢)
L(-3)
In order to analyse the number of Av-terms normalising in k steps, we execute the
following plan. First, we use the structure (and unambiguity) of G5 to convert it by means
of symbolic methods into a corresponding generating function Gi(z) =Y gT(I,k ) 2" in which
the integer coefficient gy(Lk) standing by 2" in the series expansion of Gj(z), also denoted as
[2"]Gk(2), is equal to the number of Av-terms of size n normalising in k steps. Next, we

[2"]f(z) ~ " (11)

show that so obtained generating functions fit the premises of Proposition 6.1. We start with
establishing an appropriate size notion for Av-terms. For technical convenience, we assume
the following natural size notion, equivalent to the number of constructors in the associated
term algebra T4(9), see Figure 5.

In[=n+1

ol 1 la/] =1+l
jabl = 1+ |al + [b] I e =1 -+
[TI=1

lals]] = 1+ |al + |s|
Figure 5 Natural size notion for Av-terms, cf. Figure 2.

The following results exhibit the closed-form of generating functions corresponding to
pure terms as well as the general class of Av-terms and explicit substitutions.

» Proposition 6.2 (see [5]). Let Lo (z) denote the generating function corresponding to the
set of A-terms in v-normal form (i.e. without v-redexes). Then,

1— 25— 1—3211222—23
Lolz) = v . (12)

2z

» Proposition 6.3 (see [7]). Let T(z), S(z) and N(z) denote the generating functions
corresponding to Av-terms, substitutions, and de Bruijn indices, respectively. Then,
1—+v1—-4z 1—\/1—42( z

T(Z):T 1, S(z)= 5 12) and N(z)zliz

(13)
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With the above basic generating functions, we can now proceed with the construction of
generating functions corresponding to simple v-reduction grammars. See Appendix C for
respective proofs.

» Proposition 6.4 (Constructible generating functions). Let ®; denote the set of regular
productions in Gg. Then, for all k > 1 there exists a generating function Gy (z) such that
[2"]Gr(z) (i.e. the coefficient standing by z™ in the power series expansion of Gy (z)) is equal
to the number of terms of size n which v-normalise in k normal-order reduction steps, and
moreover Gi(z) admits a closed-form of the following shape:

Gil2) . Y6 (14)

T l—z— 22L00(2) o,

where
G (2) :ZC(’Y)T(Z)T(’Y)S(Z)U(’Y)N(Z)V(’Y) H Gi(z)’”("*) (15)
0<i<k
and all (), (), o(v), v(7), and p;(y) are non-negative integers depending on ~.
» Theorem 6.5. For all k > 1, the coefficients [2"|Gy(z) satisfy the asymptotic estimate
[2"]Gr(2) ~ cp - 4"n~3/2, (16)

Consider the following asymptotic density of Av-terms v-normalisable in k& normal-order
reduction steps in the set of all Av-terms:
- [2"]Gr(2)
= lim ———~.
TS T ()
In other words, the limit uj of the probability that a uniformly random Av-term of size
n normalises in k steps as n tends to infinity. Note that for each & > 1, the asymptotic
density py, is positive as both [2"])Gg(z) and [2"]T(z) admit the same (up to a multiplicative
constant) asymptotic estimate. Moreover, it holds puy k—> 0 as the sum ), py, is increasing
—00

(17)

and necessarily bounded above by one.

Figure 6 provides the specific asymptotic densities pyg, ..., 19 obtained by means of a
direct construction and symbolic computations! (numerical values are rounded up to the
fifth decimal point).

» Remark 6.6. Theorem 5.9 and Theorem 6.5 are effective in the sense that both the
symbolic representation and the symbolic asymptotic estimate of respective coefficients are
computable. Since I'(—1/2) = —24/7 is the sole transcendental number occurring in the
asymptotic estimates, and cancels out when asymptotic densities are considered, cf. (17), we
immediately note that for each k£ > 0, the asymptotic density of terms v-normalising in k
steps is necessarily an algebraic number.

» Remark 6.7. Each Av-term is v-normalising in some (determined) number of normal-order
reduction steps. However, it is not clear whether ), u, = 1 as asymptotic density is, in
general, not countably additive. Let us remark that if this sum converges to one, then
the random variable X,, denoting the number of normal-order v-reduction steps required
to normalise a random Av-term of size n (i.e. the average-case cost of resolving pending
substitutions in a random term of size n) converges pointwise to a discrete random variable
X defined as P(X = k) = py. Alas, our current analysis does not determine an answer to
this problem.

L Corresponding software is available at https://github.com/maciej-bendkowski/towards-acasrlc.


https://github.com/maciej-bendkowski/towards-acasrlc

M. Bendkowski

1072
2.5 0 T

HEk

0.
0.02176
0.02054
0.01200
0.01306
0.00920
0.00915
0.00700
0.00710
0.00600
0.00585

Asymptotic density

| | | |
0 2 4 6 8 10

Number of v-reduction steps

Figure 6 Asymptotic densities of terms v-normalising in k& normal-order reduction steps. In
particular, we have po + - -+ + pi0 ~ 0.11162.

7 Applications to other term rewriting systems

Let us note that the presented construction of reduction grammars does not depend on
specific traits immanent to Av, but rather on certain more general features of its rewriting
rules. The key ingredient in our approach is the ability to compute finite intersection
partitions for arbitrary terms within the scope of established reduction grammars, which
themselves admit certain neat structural properties. Using finite intersection partitions, it
becomes possible to generate new productions based on the structural resemblance of both
the left-hand and right-hand sides of associated rewriting rules. In what follows we sketch
the application of the presented approach to other term rewriting systems, focusing on two
examples, i.e. Av-calculus and combinatory logic. Although the technique is similar, some
careful amount of details is required.

7.1 Av-calculus

In order to characterise the full Av-calculus, we need a few adjustments to the already
established construction of (), corresponding to the v fragment. Clearly, we have to

establish a new production construction scheme associated with the (Beta) rewriting rule.

Consider the corresponding template ¢ = T[T'/]. Like the respective template for (FVar),
cf. Remark 5.8, the current template ¢ does not retain closure width of generated ground
terms. However, at the same time it is also amenable to similar treatment as (FVar).

Let ¢t = (Aa)b[s1] - [Sw] dnt1. Note that t — a[b/][s1]- - [Sw] In- Consequently, one
should attempt to match ¢ with all possible prefizes of + in all productions G,, — -y instead
of merely their heads, as in the case of A7. Let v = x[o1]- -+ [04] be of closure width d and
d = x[o1] - - - [04] be its prefix (1 < i < d). Note that, effectively, II(6, T[T'/]) checks if [o;] takes
form S/ for some term . Hence, for each 7 € I1(§, T[T/]) we have m = a[r] - - [1i—1][5/]
for some terms a, 7,...,7;—1, and 8. Out of such a partition m we can then construct the
production Gpt1 — (Aa[m]- - - [Tic1])B[Tit1] - -+ [7a] In G-

However, with the new scheme for (Beta) we are not yet done with our construction. Note
that due to the new head redex type, we are, inter alia, forced to change the pre-defined set
of productions corresponding to Av-terms without a head redex. Indeed, note that if ¢ does
not start with a head redex, then it must be of form (Aa) or (ab) where in the latter case
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a cannot start with a leading abstraction. This constraint suggests the following approach.
We split the set of productions in form of G,, — v into two categories, i.e. productions
whose right-hand sides are of form Ay’ and the remainder ones. Since both sets are disjoint,
we can group them separately and introduce two auxiliary non-terminal symbols G&f’ and
Ggf)‘) for terms starting with a head abstraction and for those without a head abstraction,
respectively, with the additional productions G,, — GQ

to pre-define the all the productions corresponding to terms without head redexes using

) | G%ﬁ)‘). In doing so, it is possible

productions in form of
Gn = AGn |GV G, where 0<k<n. (18)

This operation, however, requires a minor adjustment in the formal argument concerning the
termination and correctness of constructed finite intersection partitions, see Appendix A and,
in particular, Definition A.1). Afterwards, it becomes possible to reuse already established
techniques in the construction of new productions in G, 41 out of G,,.

7.2 SK-combinators

Using a similar approach, it becomes possible to construct appropriate reduction grammars
for SK-combinators. In particular, our current technique (partially) subsumes, and also
simplifies, the results of [6, 4]. With merely two rewriting rules in form of Kzy — x and
Szyz — xz(yz) we can use the developed finite intersection partitions and ¢-matchings to
construct a hierarchy (§G,),, of normal-order reduction grammars for SK-combinators. The
rewriting rule corresponding to K is similar to (FVar) whereas the respective rule for S
resembles the (App) rule; as in this case, we have to deal with variable duplication on the
right-hand side of the rewriting rule. Instead of closure width, we use a different normal form
of terms, and so also productions, based on the sole binary constructor of term application.
Consequently, a combinator is of application width w if it takes the form Xa; ...y for
some primitive combinator X € {S, K}. Consider the more involved case of productions
corresponding to head S-redexes. Let t = Szxyza; ...ay be a term of application width
w -+ 3 where w > 0. Note that

Sxyz01 ...0uw — 2(y2)01 ... 0. (19)

Let us rewrite the right-hand side of (19) as ¢/ = Xy ...2,2(y2)01 ..., where z =
Xxy ...z and X is a primitive combinator. Assume that v is the right-hand side of the
unique production G,, — v in G, such that ¢’ € L(vy). Note that the shape of ¢’ suggests a
construction scheme similar to the already discussed (App), see Remark 5.7, where we first
have to match the pattern ¢ = T'(TT) with some arguments of v and subsequently attempt
to extract a finite intersection partition II(«, ) of respective subterms « and 8 so that for
each 7 € II(«, B) we have z € L(w). With appropriate terms at hand, we can then construct
corresponding productions in the next grammar G,, 1.

8 Conclusions

Quantitative aspects of term rewriting systems are not well studied. A general complexity
analysis was undertaken by Choppy, Kaplan, and Soria who considered a class of confluent,
terminating term rewriting systems in which the evaluation cost, measured in the number of
rewriting steps required to reach the normal form, is independent of the assumed evaluation
strategy [8]. More recently, typical evaluation cost of normal-order reduction in combinatory
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logic was studied by Bendkowski, Grygiel and Zaionc [6, 4]. Using quite different, non-analytic
methods, Sin’Ya, Asada, Kobayashi and Tsukada considered certain asymptotic aspects of
B-reduction in the simply-typed variant of A-calculus showing that, typically, A-terms of
order k have (k — 1)-fold exponentially long S-reduction sequences [18].

Arguably, the main novelty in the presented approach lies in the algorithmic construction
of reduction grammars (Gy), based on finite intersection partitions, assembled using a
general technique reminiscent of Robinson’s unification algorithm applied to many-sorted
term algebras, cf. [17, 19]. Equipped with finite intersection partitions, the construction
of G41 out of Gy follows a stepwise approach, in which new productions are established
on a per rewriting rule basis. Consequently, the general technique of generating reduction
grammars does not depend on specific features of Av, but rather on more general traits
of certain first-order rewriting systems. Nonetheless, the full scope of our technique is yet
to be determined.

Although the presented construction is based on the leftmost-outermost reduction scheme,
it does not depend on the specific size notion associated with A\v-terms; in principle, more
involved size models can be assumed and analysed. The assumed evaluation strategy, size
notion, as well as the specific choice of \v are clearly arbitrary and other, equally perfect
choices for modelling substitution resolution could have been made. However, due to merely
eight rewriting rules forming Av, it is one of the conceptually simplest calculus of explicit
substitutions. Together with the normal-order evaluation tactic, it is therefore one of the
simplest to investigate in quantitative terms and to demonstrate the finite intersection
partitions technique.

Due to the unambiguity of constructed grammars (Gy), it is possible to automatically es-
tablish their corresponding combinatorial specifications and, in consequence, obtain respective

generating functions encoding sequences (gﬁbk)) comprised of numbers 97(114) associated with
n

Av-terms of size n which reduce in k£ normal-order rewriting steps to their v-normal forms.
Singularity analysis provides then the means for systematic, quantitative investigations into
the properties of substitution resolution in Av, as well as its machine-independent operational
complexity. Finally, with generating functions at hand, it is possible to undertake a more
sophisticated statistical analysis of substitution (in particular v-normalisation) using available
techniques of analytic combinatorics, effectively analysing the average-case cost of A-calculus
and related term rewriting systems.

It should be noted that such an analysis might provide some novel insight into the combin-
atorial structure of substitution and, in the long-term perspective, provide a theoretical model
for the operational, average-case analysis of substitution in modern functional programming
languages. In view of these objectives, we conclude the paper with the following conjecture,
postulating the existence of a limit distribution associated with the average-case cost of
substitution resolution, and its close relation with the constructible hierarchy of reduction
grammars and established series of asymptotic densities.

» Conjecture. Let p denote the asymptotic density of Av-terms v-normalising in k leftmost-
outermost v-reduction steps, cf. Remark 6.7. Then, it holds

Zﬂk =1 (20)

k>0

Consequently, the sequence (X,,), of random variables corresponding to the number of
v-reductions required to normalise a uniformly random Av-term of size n (i.e. the average-
case cost of resolving all pending substitutions in a random \v-term of size n) converges
pointwise to a random variable X satisfying P(X = k) := ug.
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A Correctness of the finite intersection partition algorithm

In order to prove the correctness of fip, constructing II(c, §) for arbitrary terms «, 5 within
the scope of a simple v-RG G, see Lemma 4.2, we resort to the following technical notion of
term potential used to embed terms into the well-founded set of natural numbers.

» Definition A.1 (Term potential). Let o € T(N,,) be a term and G, be a simple v-RG. Let
Prodg, (X) denote the set consisting of right-hand sides of regular productions in form of
X — B in G,. Then, the potential w(«) of a in G, is defined inductively as follows:

Ifa= f(ar,...,qm), then () =1+ Zﬁ(ai);
Ifa=X € {T,S,N}, then () = 1 +11;;11X{77(7) | v € Prodg, (X)}:
k

If o = Gy, for some 0 < k <mn, then m(a) =1+ max{n(y) | v € U Prodg, (G;)}.
i=0

Let us note that 7 is well-defined as, by assumption, Prodg, (X) # @ for all simple
v-reduction grammars Gyn; otherwise L(Gy) could not span the whole set of Av-terms
v-normalising in k normal-order steps. Moreover, w has the following crucial properties:

For each term a we have w(a) > 1;

If a is a proper subterm of 8, then w(a) < w(B);

If X — « is a regular production, then m(a) < n(X); and

For each G; and G, it holds w(G;) < w(G;) whenever i < j.

» Example A.2. Note that the term potential of N associated with de Bruijn indices is
equal to 7(IN) = 2 as w(0) = 1. Since T'— N is the single regular production starting with
T on its left-hand side, the potential 7(T') is therefore equal to 3. Consequently, we also have
m(S) = 5 as witnessed by the regular production S — T'/. Finally, since 7(N) = 2 it holds
m(Gp) = 3 and so, for instance, we also have 7(GoGp) = 7.

Productions of a simple G,, cannot reference non-terminals other than Gy, ..., G,. Since
the potential of Gj41 is defined in terms of the potential of its regular productions, this

means that 7(Gg11) depends, in an implicit manner, on the potentials 7(Gy), ..., 7(Gg).

Note that this constitutes a traditional inductive definition. In order to compute the potential
of a given term «a, we start with computing the potential of associated non-terminals. In
particular, we find the values 7(Gy),...,n(Gy) in ascending order. Afterwards, we can
recursively decompose « and calculate its potential based on the potential of non-terminal
symbols occurring in «. Note that the same scheme holds, in particular, for the right-hand
sides of self-referencing productions.

» Definition A.3 (Conservative productions). A self-referencing production X — f(aq, ..., ap)
is said to be conservative if w(a;) < w(X) for all1 <i < n.

» Remark A.4. Conservative productions play a central role in the algorithmic construction
of finite intersection partitions II(«, 8). In particular, let us remark that all self-referencing
productions of a simple v-RG G,,, as listed in Figure 7, are at the same time conservative.

With the technical notions of term potential and conservative productions, we are now
ready to prove the correctness of fip,, see Figure 4.

Proof of Lemma 4.2. Induction over the total potential of o and £.

Let us start with the base case w(«) + m(8) = 2. Note that both o and 8 have to be
constant ground terms (the potential of non-terminals in Ny, is at least 2). If o # 3, then
certainly L(«a) N L(B) = @ and so I(«, 8) = &, see Line 4. Otherwise if « = 3, then both
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T =\ | TT | T[S N SN

Figure 7 Self-referencing productions of simple v-reduction grammars.

L(a) N L(B) = (e, B) = {a} = {B}; hence, fip, returns a correct intersection partition
II(c, B), see Line 5. And so, assume that m(«) + 7(5) > 2. Depending on the joint structure
of both « and 3 we have to consider three cases.

Case 1. Suppose that a = f(aq,...,a,) and = g(B4, ..., Bm) for some function symbols
f and g with n,m > 0. Certainly, if either f # g or n # m, then L(a) N L(8) = @. In
consequence, & is the sole valid FIP of both a and 3, see Line 4.

So, let us assume that both f = g and n = m. Moreover, we can also assume that
n,m > 1 as the trivial case n = m = 0 cannot occur under the working assumption
m(a) + 7(B) > 2. Take an arbitrary § € L(a) N L(B). Note that ¢ takes the form of
6= f(d1,...,0,) for some ground terms d1,...,d,. By induction, for all 1 < i < n, the
recursive call £ip, «; §; yields a finite intersection partition II(«;, 5;) of o; and ;. Since
d; € L(a;) N L(B;) there exists a unique m; € II(ey, B;) such that 6; € L(m;). Accordingly,

for 6 = f(d1,...,0,) there exists a unique term 7™ = f(m1,...,m,) in fip, o B such that
d € L(m).

Conversely, take an arbitrary ground term 6 = f(d1,...,0,) € L(m) for some m € fip, a f.
Note that 7 takes the form = = f(m1,...,7m,), see Line 7. Since 6 € L(w), we know

that 0; € L(m;), for each 1 < ¢ < n. Moreover, m; € II; by the construction of fip, a S,
see Line 6. Following the inductive hypothesis that II; is a FIP of a; and f;, we notice
that L(m;) € L(oy) N L(S;). Consequently, 6; € L(a;) N L(B;) and so § € L(a) N L(S).

Case 2. Suppose that « = X and § =Y are two non-terminal symbols in Ny, see Line 9.
Let us consider the sort poset (N, =) associated with G. Assume that X and Y
are comparable through < (w.l.o.g. let X <Y). Consequently, L(X) C L(Y) and so
X \Y = X. Clearly, {X} is a valid FIP, see Line 10. On the other hand, if X and Y are
incomparable in the sort poset associated with Gy, it means that L(X)N L(Y) = & and
so I(«, B) = @, see Remark 3.3.

Case 3. Suppose w.l.o.g that « = X and j takes the form g = f(51,...,8,) withn > 0. Note
that fip, flips its arguments if necessary, see Line 13. Take an arbitrary § € L(«) N L(B).
Note that from the form of 8 we know that § = f(d1,...,d,) for some ground terms
01,...,0n (n > 0). Since « = X is a non-terminal symbol which, by assumption, is
unambiguous in G, there exists a unique production X —  such that § € L(v).

If X — v is regular (i.e. X does not occur in ), then m(y) < m(X) and so 7(vy) + 7(5) <
7(X) 4+ 7(8). Hence, by induction, fip, v constructs a finite intersection partition
II(~, 8) with a unique = € TI(, 8) C II(X, 8) such that § € L(w), see Line 17.

Let us therefore assume that X — « is not regular, but instead self-referencing (i.e. X
occurs in ). In such a case m(X) < w() and so we cannot directly apply the induction
hypothesis to £ip, v 8. Note however, that since 6 € L(y) N L(8) and v # X, the term
~ must be of form v = f(v1,...,7n) as otherwise § ¢ L(v). Furthermore if n = 0, then
trivially v = 8 = f, see Line 5. Hence, let us assume that n > 1. It follows that fip,
proceeds to construct finite intersection partitions for respective pairs of arguments ~;
and ;. However, since X — f(y1,...,7n) is conservative (see Remark A.4), it holds
m(y) < w(X). At the same time, 7(5;) < 7(8); hence, by induction we can argue
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that £ip, 7; B; constructs a proper intersection partition II(vy;, 3;) for each 1 < i < n,
see Line 7. There exists therefore a unique term © = f(my,...,7,) € fip, X 0 such that
d € L(r), see Line 7 and Line 17.

Conversely, take an arbitrary ground term § = f(d1,...,9d,) € L(x) for some 7 € fip, X
(n > 0). By definition, fip, proceeds to invoke itself on pairs of arguments v and
where v is the right-hand side of a production X — 7 in i, see Line 16, and returns
the set-theoretic union of recursively obtained outcomes. There exists therefore some ~
such that m € fip, v 3. If X — + is regular, then by induction, fip, v 3 constructs a
FIP for both v and . Consequently, it holds § € L(w) C L(v) N L(B) € L(X) N L(B).
Assume therefore that X — ~ is not regular, but instead self-referencing. As before,
we cannot directly argue about fip, v 3 since the total potential of v and 8 exceeds
the potential of X and 8. However, since 7 € fip, v/ and v # X, we note that v
takes form v = f(v1,...,7n), see Line 4. If f is a constant symbol, then certainly
fip, v B outputs a proper FIP. Otherwise, fip, proceeds to invoke itself recursively on
respective pairs of arguments ~; and 3;. Since X — f(71,...,7s) is conservative, we
know that, by induction, fip, y; 5; constructs finite intersection partitions II(vy;, 3;) for
all pairs ; and B;. Certainly, ¢; € L(m;) for some m; € II(v;, 8;); hence é € L(w) where
m = f(m,...,m) € fip, v B. It follows that 6 € L(m) N L(5) C L(X) N L(B), which
finishes the proof. |

» Remark A.5. Note that the termination of fip, is based on the fact that all self-referencing
productions of simple v-reduction grammars are at the same time conservative. Indeed,
fip, does not terminate in the presence of non-conservative productions. Consider the
non-conservative production X — f(f(X)). Note that

£ip, (f(f(X)), f(X)) = £ip,(f(X), X)
— fip, (X, f(X))
— fip, (f(f (X)), F(X))
— e (21)

B  The construction of (G,),,

Simple, verbose v-reduction grammars satisfy the neat structural property of retaining closure
width of generated terms. For that reason, we maintain both simplicity and verbosity as an
invariant during the construction of (Gy),,.

Proof of Lemma 5.3. Suppose that neither x = N nor x = f(a1,...,q,). Since G, is
simple, it follows that either x = T or x = Gy for some 0 < k < n. However, due to the
verbosity of G,, we know that y # G} and so it must hold x = T. Consider the following
inductive family of terms:

01 = 0[fr ()] whereas On+1 = 0[0,/]. (22)

By construction, we note that d, },. Let s1,...,s, be substitutions satisfying s; € L(o;).

Note that 0 := dpy1[s1] - [sw] € L(T[o1] -+ [0w]); hence, simultaneously ¢ reduces in n
steps, as 0 € L(G,,), and in at least n + 1 steps, contradiction. <

The following result demonstrates a simple scheme of how ¢-matchings can be exploited
during the construction of new productions generating terms with specific head redexes.

Proof of Lemma 5.6. Let t = (Aa)[s|[s1] - - - [Sw] $n+1 Where w > 0. Since ¢ admits a head
v-redex, we note that ¢ — t' = (A(a[f (9)])) [s1] - - [Sw] 4n- By assumption, G, is simple,
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hence there exists a unique production G,, — 7 in G, such that ¢ € L(y). Consider the set
A7. Since G, — 7 is the unique production satisfying t' € L(y), it follows that for each
production Gy, — 7' in G,, such that 7/ # v and all 7 € A,(v’) it holds ¢ & L(m). Let us
therefore focus on the set A, () of p-matchings limited to ~.

By assumption, §,, is not only simple but also verbose. Consequently, we know that
~ retains the closure width of generated terms, see Lemma 5.4. It follows that 7 has
closure width w and takes the form v = x[r]---[r,]. Certainly, t' € L(¢(,)). Moreover,
Ay(y) = II(7, ¢(wy). There exists therefore a unique 7 € II(y, () such that ¢t € L(r).
Given the fact that the head of ¢, is equal to ¢ = A(T[ft (S)]) we note that 7 must
be of form m = A(a[ft (0)])[o1] - [ow]. However, since t' = (Aa[ft (s)][s1] - [Sw]) € L(m)
it also means that a € L(a), s € L(o), and s; € L(o;) for all 1 < i < w. Consequently,
t € L(Aa)[o][o1] - - - [0w]) as required.

Conversely, let m = A(a[ft (0)])[o1] - - - [0w] be the unique term in the g-matching family
A7 such that t € L((Aa)[o][o1] - [ow]). Note that a € L(a), s € L(0), and s; € L(0;)
for all 1 < i < w. Since t has a head v-redex, after a single reduction step ¢ reduces to
t" = Xa[f (s)])[s1] -+ [sw] € L(m). By construction of A7, it means that there exists a
production G,, = v in G,, such that L(7) C L() and hence t' |,,. Certainly, it follows that
t \Ln+1~ <

C Quantitative analysis of (G,,),,

Techniques of analytic combinatorics provide systematic means of investigating various
discrete structures through a direct analysis of their corresponding generating functions [12,
13]. Although the presented analysis is quite straightforward, it requires a fair amount of
background knowledge. We refer the unfamiliar reader to Flajolet and Sedgewick’s excellent
textbook [13] for a thorough introduction to the subject.

Proof of Proposition 6.4. Let G, — - be a regular production in Gi. Since by construction
Gy, is simple, we know that v € T5(NU{Go, ..., Gr—1}). Following symbolic methods [13, Part
A, Symbolic Methods] we can therefore convert each non-terminal X € NU{Go,...,Gr_1}
occurring in v into an appropriate generating function X (z). Likewise, we can convert each
function symbol occurrence f into an appropriate monomial z, see Figure 5. Finally, we group
respective monomials together, and note that the generating function G, (z) corresponding
to v takes the form (15). Respective exponents denote the number of occurrences of their
associated symbols.

Consider the remaining self-referencing productions Gy — 4. Again, since G is simple, we
know that § takes the form AGy, GoGy or (symmetrically) GpGo. And so, as each X € N,
is unambiguous in G, by symbolic methods, it follows that Gy (z) satisfies the following
functional equation:

Gi(2) = 2Gi(2) +22Go(2)Gr(2) + Y. Go(2). (23)

Gr—vedy

Note that as no G,(z) references the left-hand side Gi(z), equation (23) is in fact linear
in G(z). Furthermore, as Go(2) = Loo(z) we finally obtain the requested form of G (z),
see (14). <

Equipped with Proposition 6.4 we are now ready to prove the main quantitative result of
the current paper.
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Proof of Theorem 6.5. We claim that for each k& > 1 the generating function Gy (z) can
be represented as G (z) = /1 — 42P(2) + Q(z) where both P(z) and Q(z) are functions
analytic in the disk |z| < i + ¢ for some positive €. The asserted asymptotic estimate follows
then as a straightforward application of algebraic singularity analysis, see Proposition 6.1.

We start with showing that each Gy, (2) includes a summand in form of /1 — 4z P(2)+Q(2)
such that both P(z) and Q(z) are analytic in a large enough disk containing (properly)
|z| < }. Afterwards, we argue that no summand has singularities in |z| < 1. Standard
closure properties of analytic functions with single dominant, square-root type singularities
guarantee the required representation of Gy (z).

Let ¢ = N be the template corresponding to the (RVar) rule, see Table 1. Note that since
9o includes the production Gy — N, the set of ¢-matchings AS, consists of the single term
N. Hence, due to the respective production construction, it means that Gy — (SN)[T/] is a
production of Gy, cf. Example 5.10. Moreover, as a consequence of the construction associated
with the (FVar) rule, for each G — 7 in G, there exists a production G413 — 0[v/] in the
subsequent grammar Gx11. And so, each Gj includes among its productions one production
in form of

Gy — 0[0[...O[(SN)[T/]/] ... /1/] (24)
——
k—1 times
Denote the right-hand side of the above production as . Note that the associated generating
function G (z), cf. (23), must therefore take form

G (2) = 22T(2)N(2) and so G,(2) =V1—42P(2) + Q(2) (25)

where both P(z) and Q(z) are analytic in |2| < 1 + ¢ for some (determined) & > 0.

In order to show that no production admits a corresponding generating function with
singularities in the disk |z| < i we note that the single dominant singularity of Go(z), and so
at the same time Lo, (2), is equal to the smallest positive real root p of 1 — 3z — 22 — 23 which
satisfies i < p =~ 0.295598, see Proposition 6.2. Due to the form of basic generating functions
corresponding to T, S and N, see Proposition 6.3, we further note that other singularities
must lie on the unit circle |z| = 1. And so, each G (z) admits the asserted form

Gr(2) = V1 —42P(2) + Q(2) (26)

for some functions analytic in a disk |z| <  + €. <
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—— Abstract

Strong call by need is a reduction strategy for computing strong normal forms in the lambda calculus,
where terms are fully normalized inside the bodies of lambda abstractions and open terms are

allowed. As typical for a call-by-need strategy, the arguments of a function call are evaluated at
most once, only when they are needed. This strategy has been introduced recently by Balabonski et
al., who proved it complete with respect to full 8-reduction and conservative over weak call by need.

We show a novel reduction semantics and the first abstract machine for the strong call-by-need
strategy. The reduction semantics incorporates syntactic distinction between strict and non-strict
let constructs and is geared towards an efficient implementation. It has been defined within the
framework of generalized refocusing, i.e., a generic method that allows to go from a reduction
semantics instrumented with context kinds to the corresponding abstract machine; the machine is
thus correct by construction. The format of the semantics that we use makes it explicit that strong
call by need is an example of a hybrid strategy with an infinite number of substrategies.
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1 Introduction

Call by need, or lazy evaluation, is a strategy to evaluate A-terms based on two principles:
first, evaluation of an expression should be delayed until its value is needed; second, the
arguments of a function call should be evaluated at most once [32]. Lazy evaluation can be
considered as an optimization of call-by-name evaluation where the computation of arguments
is delayed but its results are not reused. A model implementation of lazy evaluation is
often given in the form of an abstract machine which typically includes a store to facilitate
memoization of intermediate results, as in the well-known STG machine of Peyton Jones
used in the Haskell compiler [26]. On the other hand, theoretical studies of lazy evaluation
stem from two canonical approaches: a store-based natural semantics of Launchbury [24, 28],
and a storeless, purely syntactic account of Ariola et al. [8, 25, 17, 21]. Lazy evaluation is an
example of a strategy realizing weak reduction, which is standard in functional programming
languages, where all A-abstractions are considered to be values; consequently, evaluation
of a term always stops after reducing it to a A-abstraction. In contrast, strong reduction
continues to reduce inside the bodies of A-abstractions until a full S-normal form is reached;
consequently, it must reduce inside substitutions and it must be able to evaluate open
terms. Strong reduction and the corresponding reduction strategies have been gaining more
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attention due to the development of proof assistants based on dependent types, such as Agda
or Coq, whose implementation requires full term normalization for type-checking [23, 14]. In
particular, the current version of the Coq proof assistant [30] employs an abstract machine
that uses a lazy strategy to fully normalize terms, but the strategy has not been studied
formally. Recently, Balabonski et al. proposed a strong call-by-need reduction strategy as
a theoretical foundation for implementations of strong call by need [10]. Their strategy is
proved to be complete with respect to S-reduction in the A-calculus and conservative over
the weak call-by-need strategy. Even though it has good theoretical properties, it is not clear
how the strategy can be efficiently implemented, because it lacks operational account.

The goal of this paper is twofold: to contribute to the study of strong call by need by
presenting a novel reduction semantics and an abstract machine for the strategy described
in [10], and to showcase the existing framework of generalized refocusing used to inter-derive
the two, quite complex, semantic artefacts. To this end, we first give a proper formulation of
reduction semantics for the strategy, one that fits the framework and thus directly enables
its implementation, and which can be seen as an operationalized variant of Balabonski et
al’s semantics. Second, we derive an abstract machine from the strategy, by means of the
refocusing procedure [12] which takes as input a reduction semantics satisfying mild syntactic
conditions and produces a lower-level specification that is provably correct with respect to
the reduction semantics. The procedure is implemented in Coq and is fully automatic, once
the syntactic conditions are proved.

The reduction semantics we present is inspired by previous work on weak [9, 19] and
strong [10] call-by-need strategies. In particular, it builds on the concepts from [10] and
incorporates syntactic distinction between strict and non-strict let constructs from [19], and it
does not introduce an explicit store. However, in contrast to [10], we avoid collecting non-local
information in the process of decomposition of terms (such as traversing a term to identify all
its needed variables), but rather we thread the required information throughout. We prove
that our version of the reduction semantics is adequate with respect to that from [10]; the
formal correspondence between the two can be found in Section 6. The reduction semantics
is presented in a format recently developed in [12], based on contexts instrumented with
kinds that carry extra information. This format makes it explicit that strong call by need is
an example of a hybrid strategy with an infinite number of substrategies (which equals the
number of nonterminal symbols in the grammar).

Since the strong call-by-need semantics is quite sophisticated, as a warm-up we show a
reduction semantics and an abstract machine for weak call by need, which is much simpler
and presented in the same framework of generalized refocusing.

The rest of the paper is organized as follows. In Section 2 we recall the semantic
formats that we use throughout the paper. In Section 3 we show the reduction semantics for
the weak call-by-need strategy due to Danvy and Zerny, and we derive the corresponding
abstract machine in the framework of generalized refocusing. In Section 4 we present a
novel formulation of a reduction semantics for the strong call-by-need strategy, in Section 5
we discuss the derived abstract machine for this strategy. In Section 6 we show that our
semantics is equivalent to that of Balabonski et al. In Section 7 we discuss the closest related
work, and we conclude in Section 8.

2 Preliminaries

A reduction semantics is a kind of small-step operational semantics, where the positions
in a term that can be rewritten are explicitly defined by reduction contexts, rather than
implicit in inference rules [20]. By a contexrt we mean a term with exactly one occurrence of
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a variable called a hole and denoted 0. For a given term ¢ and a context C, by C[t] we denote
the result of plugging t into C, i.e., the term obtained by substituting the hole in C' with
t. We say that a pair (C,t) is a decomposition of the term C[t] into the context C' and the
term t. The set of reduction contexts in a reduction semantics is often defined in form of a
grammar of contexts [18]. A contraction relation — of a reduction semantics specifies atomic
computation steps, typically given by a set of rewriting rules. Terms that can be rewritten
by — are called redices and those produced by it — contracta. In a reduction semantics, the
reduction relation — is defined as the compatible closure of the contraction: a term ¢ reduces
in one step to ¢’ if it can be decomposed into a redex r in an evaluation context E, that is
t = E[r], the redex r can be rewritten in one step to t” by one of the contraction rules, and
t' is obtained by the recomposition of F and t”, that is ¢ = E[t”]. In Section 4 we use a
more general definition of reduction that accounts for more complex strategies.

When considering programs as closed terms (i.e., terms without free variables), evaluation
is defined as the reflexive-transitive closure of the reduction relation (written —*), and values
are expected results of computation, chosen from the set of all normal forms (other normal
forms are often called stuck terms). All A-abstractions are typically considered values and
evaluation does not enter A-bodies. More generally, and when we consider reduction of open
terms, we often use the term normalization instead of evaluation, and normal form rather
than value. In this paper, we consider open terms and we use these terms interchangeably
(effectively, we treat all normal forms as values).

A grammar of contexts consists of a set N of nonterminal symbols, a starting nonterminal,
a set S of variables denoting syntactic categories and a set of productions. Productions have
the form C' — 7 where C' € N and 7 is a term with free variables in N U {0} U S, with
exactly one occurrence of a variable from N U {OJ}. If the grammar of reduction contexts
encoding a strategy contains just one nonterminal symbol, we call this strategy uniform;
intuitively, one always proceeds in the same way when decomposing a term into a reduction
context and a redex. On the other hand, strategies that require multiple nonterminals in
grammars are hybrid: it is necessary to use different substrategies for finding redices, one
substrategy for each nonterminal symbol.

Figure 1 contains an example of a grammar with two nonterminals C, E (where C is the
starting nonterminal) and syntactic categories ¢,n and v of terms, neutral terms and values.
Figure 2 contains an example of a grammar with one nonterminal F and syntactic categories
t,v of terms and values, and F[z] is a succinct notation for the category of needy terms, i.e.,
terms decomposable into a variable in context (an explicit definition of needy terms will be
given later in Figure 4).

C :=0¢c|.C|Et|nC where tu=Az.t|x|tt,
E :=0g|Et|nC nu=x|nwv,
vi=n|Az.v

(B—contraction) (Az.ty) ta — t1[z — to]

Figure 1 Normal-order reduction semantics from [12].

Figure 1 shows the normal-order strategy, which is a hybrid strategy. This strategy
normalizes a term to its full S-normal form (if it exists) by first evaluating it to its weak-head
normal form with the call-by-name strategy, and only then reducing subterms of the resulting
weak-head normal form with the same normal-order strategy. There are two substrategies,
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one for each nonterminal symbol in the grammar. The E substrategy corresponds to call
by name and reduces to weak-head normal form; the C substrategy allows reduction in
bodies of A-abstractions and in arguments to neutral terms. Each substrategy comes with
its own kind of hole — the subscript indicates the kind of context that can be built inside
the hole. In other words, if we want to extend a reduction context with a hole of kind k by
plugging another context in it, this new context has to be derivable from the nonterminal k.
The contraction rule (standard S-reduction) is here common to both substrategies, but in
Section 4 we show that the contraction relation may be parameterized by kinds.

Abstract machines abound in the literature. They may serve as theoretical artefacts that
facilitate reasoning about the strategy and the execution of programs, or provide the basis
for further transformations and optimizations in a principled way, possibly using known,
off-the-shelf techniques. Intuitively, abstract machines are just another form of operational
semantics, only defined at a lower level of abstraction. They typically provide reasonably
precise and efficient models of implementation. Ideally, each step of an abstract machine
should be done in constant time, which usually can be achieved by rewriting only topmost
symbols of machine configurations. Therefore complex operations such as finding a redex
in a term or substituting a term for a variable in another term should be divided into
smaller steps, making explicit the process of decomposition of terms. It is nontrivial how to
achieve this atomicity when the strategy requires non-local information to proceed — one
typically needs to thread some extra information in machine configurations. The strong
call-by-need strategy is an example where this happens and in this paper we show how we
solve this problem for finding redices. However, we do not deal with the decomposition of
the contraction rules into atomic steps, which is an orthogonal issue. In fact, decomposition
of contraction can also be handled by the refocusing methodology, as witnessed by previous
work deriving environment-based abstract machines from calculi of closures by refocusing [13].
We leave it for future work.

3 Weak call by need

As a gentle introduction we first review the simpler weak call-by-need strategy and discuss
some of the concepts we later extend to the strong case. We also summarize the main
idea behind the refocusing procedure that allows to derive an abstract machine from a
reduction semantics.

3.1 Reduction strategy

There is a wide range of theoretical studies of lazy evaluation in the A-calculus, presenting
different semantic formats of the weak call-by-need strategy. Here we recall one: Danvy and
Zerny’s “revised storeless reduction semantics”, which is most relevant to our work and can
be seen as the basis for our strong variant of the call-by-need reduction semantics. This
strategy was derived in [19] from the standard call-by-need reduction for the A\t calculus
common to Ariola, Felleisen, Maraist, Odersky and Wadler [8, 9, 25] as part of a bigger
picture connecting the various approaches to the weak call-by-need strategy.

The strategy is presented in Figure 2. The grammar of terms extends lambda terms with
two forms of let-constructors declaring denotables. A strict let expression let x:=tg in g
makes it syntactically explicit that the variable z is needed in the let-body ¢; and its value
is still not known. Informally, we say that the variable x is needed in ¢; whenever the
first thing to do when evaluating ¢; is to establish the value of x, i.e., when ¢; can be
uniquely decomposed as t; = E[z], where E is a reduction context. In a non-strict version
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Syntax:
(terms) ¢ =z |zt |tt|letax=tint|let x:=t in E[z]
(A-values) v =zt
(answer contexts) A u=0]|letz=tin A
(evaluation contexts) E ==0|Et|letax=tin F |let 2:=F in Flx]
(redices) r = Afv|t|let x:=Afv] in E[z] | let z =t in E[x]

Contraction rules:

(1) Adzt]t; — Afletx=t; int]

(2) let z=tin F[z] — letz:=tin F|x]

(3) letz:=A[v]in E[z] — Alet z=v in E[v]]

Figure 2 The revised call-by-need Aie¢ calculus from [19].

let x =t( in t; the variable z is possibly not needed or its value is already known. In other
words, evaluation of a strict expression let x:=ty in t; starts with evaluation of ¢y, while
evaluation of a non-strict expression let x =ty in ¢; starts with evaluation of ¢;.

In Danvy and Zerny’s setting only closed terms are considered, values are arbitrary
A-abstractions and the answers produced by evaluation are values possibly wrapped in a
number of let bindings — the answers are represented here as values plugged in answer contexts
A. Throughout this paper we assume the variable convention, i.e., that all the bound and
free variable names are pairwise distinct. The evaluation contexts F encode the strategy; in
an application we look for a redex in the operator position, and the strategy for the two let
constructs described informally above is encoded in the last two context constructors.

Let us briefly discuss the contraction rules. Rule (1) implements delayed computation:
we delay the evaluation of the actual parameter ¢; and instead start the computation of the
body t. This is because the contractum here is a non-strict let expression, where, by the
third production in the grammar of evaluation contexts, a reduction context is sought in
the subterm ¢. Rule (2) states that the computation of z can no longer be delayed. Rule
(3) implements memoization: when the value of the term bound to z is known, it not only
replaces x in the current context, but also it is stored in the answer substitution. The let

construct is no longer strict because we do not know if 2 will be needed again.’

» Example 3.1. To observe the benefits of the call-by-need strategy we should look at an
evaluation of a term of the form fts where the terms ¢ and s require some computation
and f contains two formal parameters: one that occurs at least twice and the other that
does not occur in the body. The simplest case is f = Az.Ay.x x and ¢ = idid where id = Az.z;
a definition of s is not relevant. Figure 3 shows this evaluation. In each step the redex is
underlined and the relevant contexts are marked with square brackets. In steps (i) — (i) the
computations of x and y are delayed; in step (i¢) x is needed. In steps (iv) — (vi) the value
of the term bound to x is computed and in step (vii) it is memoized. In step (x) x is needed
again and in step (x4) the computed value is reused thus avoiding the second computation
of t. Step (xii) finishes the computation in the body of f. The variable y is never needed, so
the value of s is not computed.

! Danvy and Zerny also include a fourth rule which is a short-cut of rules (2) and (3) in the case when ¢
is a value. We do not consider it here since it does not constitute a different contraction step but can
be seen as an optimization of the reduction sequence.
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[(Az.Ay.x2)] (idid) s
X [let z=(idid) in \y.z 2] s

$

G

let x=(idid) in let y=s in [z]z

$®

let z:=([id]id) inlet y=sinzz

$=

let z:=(let z=idin [z]) inlet y=s inzx

O

let z:=(let z:=[id] in [z]) inlet y=sinxx

§e

let z:=(let z=id in [id]) in let y=s in [z]x

w

let z=id in let x=id in let y=s in [id| =

[

viit) ~> let z=idinlet x=id inlet y=sinlet z=z in [z
Y
(iz) % letz=idinlet z=id inlet y=sinlet z:=[z] in 2
(z) ~% letz=idinlet z:=[id] in let y=s in let z:=|[z] in 2
) 2 letz=idinlet z=id in let y=s in let z:= [id] in [2]

w

—~
<
. . B
A N s N N N N

$

let z=id inlet x=id in let y =5 in let z=id in id

Figure 3 Evaluation of (Az.\y.xz z) (idid) s in weak call-by-need.

3.2 Refocusing

Refocusing is a mechanical procedure for deriving abstract machines from reduction semantics.
It was introduced in [18], formalized [29] in the Coq proof assistant, and recently generalized
in [12]. The method was applied (both by hand and in Coq) to a number of reduction
semantics, to derive new machines as well as to establish the connection between existing
machines and their underlying reduction semantics [13, 21, 12].

A naive implementation of evaluation in a reduction semantics consists in repeating
the following steps until the processed term is a normal form: (a) decompose the given
term into a context and a redex, (b) contract the redex, and (c) recompose a new term
by plugging the contractum in the context. Consider, for example, step (iv) in Figure 3.
After contracting the redex idid, the contractum let z=id in z is wrapped in the context
let x:=0 in let y=s in .z in the recomposition phase of step (iv) and immediately
unwrapped by removing the very same context in the decomposition phase of step (v).

Refocusing optimizes this naive implementation by avoiding the reconstruction of inter-
mediate terms in a reduction sequence. To make this optimization work as an automatic
procedure, the user must provide additional input — below we describe what is required by the
current implementation. Figure 4 shows the essential part of this input in our implementation
of weak call by need.

First, the user must define the set of values. The implementation requires all useful
normal forms to be considered values, where by “useful” we mean that such a normal form
put into some reduction context can potentially lead to further reduction. Under weak call
by need, values are answers and needy terms, which are used in contraction (3) in Figure 2,
and can be thought of as intermediate values. Their grammar is shown explicitly in Figure 4,
parameterized by the needed variable (we use dash symbol - in place of variable when it is
not relevant).

Second, the user must provide two functions, effectively defining the elementary contexts
of the strategy. The first of them, denoted |}, takes a term ¢ and tells what to do when
this term is processed for the first time. The possible options are: decompose it (if ¢ is
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(needy terms) n* =2z |n”t|let y=tinn”|let y:=n" innY
(answers) a u=Azx.t|letz=tina
]t v
[a}tﬂR
x v let x =t in [n"]
Azt v leta::tin[ny]ﬂVﬁx;éy
t1to J [t1] to letz=tinfa] } V
let x=t; inty || let o =1¢; in [to] letz:=[n]inn” 'V
let x:=t; inte | let x:=[t1] ints let z:=[a] inn® R

Figure 4 Input to the refocusing procedure for weak call-by-need.

decomposable); reduce it (if ¢ is not decomposable and a redex, denoted R) or report a value
(if ¢ is not decomposable and a value, denoted V). In the decomposable case the function
returns a decomposition into an elementary context and a subterm. (The R option is not
used in the definition of || in the weak call-by-need strategy.)

The second function, denoted f}, tells how to process a term when we already know that
it is a value. In such a case we have to take into account the context surrounding the term.
Thus 1} takes an elementary context ec and a value v and informs how to process ec[v]; the
options are as in the case of .

Third, in the case when the grammar of contexts contains overlapping productions, the
user must also provide an order on these productions that prescribes which of the possible
decompositions of a given term should be tried first (there are overlapping production in
strong call by need, but not in weak call by need).

Finally, the user must prove that the defined semantics satisfies mild syntactic conditions
described in detail in [12]. An example of such a condition is that the order on productions
in the grammar is well-founded, which implies that all possible decompositions of a term
are checked in a finite number of steps. The complete formalization of the weak call by
need strategy can be found in the repository http://bitbucket.org/pl-uwr/generalized_
refocusing in the file examples/weak_cbnd.v.

The resulting abstract machine is presented in Figure 5. We show it in a simplified form
where some parts of configurations are omitted, e.g., the information about the kind of
contexts, since there is 